1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This defines CStringChecker, which is an assortment of checks on calls 10 // to functions in <string.h>. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InterCheckerAPI.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/Checker.h" 19 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 23 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace clang; 30 using namespace ento; 31 32 namespace { 33 struct AnyArgExpr { 34 // FIXME: Remove constructor in C++17 to turn it into an aggregate. 35 AnyArgExpr(const Expr *Expression, unsigned ArgumentIndex) 36 : Expression{Expression}, ArgumentIndex{ArgumentIndex} {} 37 const Expr *Expression; 38 unsigned ArgumentIndex; 39 }; 40 41 struct SourceArgExpr : AnyArgExpr { 42 using AnyArgExpr::AnyArgExpr; // FIXME: Remove using in C++17. 43 }; 44 45 struct DestinationArgExpr : AnyArgExpr { 46 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 47 }; 48 49 struct SizeArgExpr : AnyArgExpr { 50 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 51 }; 52 53 using ErrorMessage = SmallString<128>; 54 enum class AccessKind { write, read }; 55 56 static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription, 57 AccessKind Access) { 58 ErrorMessage Message; 59 llvm::raw_svector_ostream Os(Message); 60 61 // Function classification like: Memory copy function 62 Os << toUppercase(FunctionDescription.front()) 63 << &FunctionDescription.data()[1]; 64 65 if (Access == AccessKind::write) { 66 Os << " overflows the destination buffer"; 67 } else { // read access 68 Os << " accesses out-of-bound array element"; 69 } 70 71 return Message; 72 } 73 74 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 }; 75 class CStringChecker : public Checker< eval::Call, 76 check::PreStmt<DeclStmt>, 77 check::LiveSymbols, 78 check::DeadSymbols, 79 check::RegionChanges 80 > { 81 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 82 BT_NotCString, BT_AdditionOverflow; 83 84 mutable const char *CurrentFunctionDescription; 85 86 public: 87 /// The filter is used to filter out the diagnostics which are not enabled by 88 /// the user. 89 struct CStringChecksFilter { 90 DefaultBool CheckCStringNullArg; 91 DefaultBool CheckCStringOutOfBounds; 92 DefaultBool CheckCStringBufferOverlap; 93 DefaultBool CheckCStringNotNullTerm; 94 95 CheckerNameRef CheckNameCStringNullArg; 96 CheckerNameRef CheckNameCStringOutOfBounds; 97 CheckerNameRef CheckNameCStringBufferOverlap; 98 CheckerNameRef CheckNameCStringNotNullTerm; 99 }; 100 101 CStringChecksFilter Filter; 102 103 static void *getTag() { static int tag; return &tag; } 104 105 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 106 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 107 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 108 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 109 110 ProgramStateRef 111 checkRegionChanges(ProgramStateRef state, 112 const InvalidatedSymbols *, 113 ArrayRef<const MemRegion *> ExplicitRegions, 114 ArrayRef<const MemRegion *> Regions, 115 const LocationContext *LCtx, 116 const CallEvent *Call) const; 117 118 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 119 const CallExpr *) const; 120 CallDescriptionMap<FnCheck> Callbacks = { 121 {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy}, 122 {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy}, 123 {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp}, 124 {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove}, 125 {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset}, 126 {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset}, 127 {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy}, 128 {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy}, 129 {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy}, 130 {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy}, 131 {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat}, 132 {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat}, 133 {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat}, 134 {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength}, 135 {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength}, 136 {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp}, 137 {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp}, 138 {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp}, 139 {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp}, 140 {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep}, 141 {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy}, 142 {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp}, 143 {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero}, 144 {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero}, 145 }; 146 147 // These require a bit of special handling. 148 CallDescription StdCopy{{"std", "copy"}, 3}, 149 StdCopyBackward{{"std", "copy_backward"}, 3}; 150 151 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; 152 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 153 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 154 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 155 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 156 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 157 ProgramStateRef state, SizeArgExpr Size, 158 DestinationArgExpr Dest, SourceArgExpr Source, 159 bool Restricted, bool IsMempcpy) const; 160 161 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 162 163 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 164 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 165 void evalstrLengthCommon(CheckerContext &C, 166 const CallExpr *CE, 167 bool IsStrnlen = false) const; 168 169 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 170 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 171 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 172 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; 173 void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd, 174 bool IsBounded, ConcatFnKind appendK, 175 bool returnPtr = true) const; 176 177 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 178 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 179 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; 180 181 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 182 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 183 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 184 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 185 void evalStrcmpCommon(CheckerContext &C, 186 const CallExpr *CE, 187 bool IsBounded = false, 188 bool IgnoreCase = false) const; 189 190 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 191 192 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 193 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 194 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 195 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 196 void evalBzero(CheckerContext &C, const CallExpr *CE) const; 197 198 // Utility methods 199 std::pair<ProgramStateRef , ProgramStateRef > 200 static assumeZero(CheckerContext &C, 201 ProgramStateRef state, SVal V, QualType Ty); 202 203 static ProgramStateRef setCStringLength(ProgramStateRef state, 204 const MemRegion *MR, 205 SVal strLength); 206 static SVal getCStringLengthForRegion(CheckerContext &C, 207 ProgramStateRef &state, 208 const Expr *Ex, 209 const MemRegion *MR, 210 bool hypothetical); 211 SVal getCStringLength(CheckerContext &C, 212 ProgramStateRef &state, 213 const Expr *Ex, 214 SVal Buf, 215 bool hypothetical = false) const; 216 217 const StringLiteral *getCStringLiteral(CheckerContext &C, 218 ProgramStateRef &state, 219 const Expr *expr, 220 SVal val) const; 221 222 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 223 ProgramStateRef state, 224 const Expr *Ex, SVal V, 225 bool IsSourceBuffer, 226 const Expr *Size); 227 228 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 229 const MemRegion *MR); 230 231 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 232 const Expr *Size, CheckerContext &C, 233 ProgramStateRef &State); 234 235 // Re-usable checks 236 ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State, 237 AnyArgExpr Arg, SVal l) const; 238 ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state, 239 AnyArgExpr Buffer, SVal Element, 240 AccessKind Access) const; 241 ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State, 242 AnyArgExpr Buffer, SizeArgExpr Size, 243 AccessKind Access) const; 244 ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state, 245 SizeArgExpr Size, AnyArgExpr First, 246 AnyArgExpr Second) const; 247 void emitOverlapBug(CheckerContext &C, 248 ProgramStateRef state, 249 const Stmt *First, 250 const Stmt *Second) const; 251 252 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 253 StringRef WarningMsg) const; 254 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 255 const Stmt *S, StringRef WarningMsg) const; 256 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 257 const Stmt *S, StringRef WarningMsg) const; 258 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 259 260 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 261 ProgramStateRef state, 262 NonLoc left, 263 NonLoc right) const; 264 265 // Return true if the destination buffer of the copy function may be in bound. 266 // Expects SVal of Size to be positive and unsigned. 267 // Expects SVal of FirstBuf to be a FieldRegion. 268 static bool IsFirstBufInBound(CheckerContext &C, 269 ProgramStateRef state, 270 const Expr *FirstBuf, 271 const Expr *Size); 272 }; 273 274 } //end anonymous namespace 275 276 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 277 278 //===----------------------------------------------------------------------===// 279 // Individual checks and utility methods. 280 //===----------------------------------------------------------------------===// 281 282 std::pair<ProgramStateRef , ProgramStateRef > 283 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 284 QualType Ty) { 285 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 286 if (!val) 287 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 288 289 SValBuilder &svalBuilder = C.getSValBuilder(); 290 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 291 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 292 } 293 294 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 295 ProgramStateRef State, 296 AnyArgExpr Arg, SVal l) const { 297 // If a previous check has failed, propagate the failure. 298 if (!State) 299 return nullptr; 300 301 ProgramStateRef stateNull, stateNonNull; 302 std::tie(stateNull, stateNonNull) = 303 assumeZero(C, State, l, Arg.Expression->getType()); 304 305 if (stateNull && !stateNonNull) { 306 if (Filter.CheckCStringNullArg) { 307 SmallString<80> buf; 308 llvm::raw_svector_ostream OS(buf); 309 assert(CurrentFunctionDescription); 310 OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1) 311 << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to " 312 << CurrentFunctionDescription; 313 314 emitNullArgBug(C, stateNull, Arg.Expression, OS.str()); 315 } 316 return nullptr; 317 } 318 319 // From here on, assume that the value is non-null. 320 assert(stateNonNull); 321 return stateNonNull; 322 } 323 324 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 325 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 326 ProgramStateRef state, 327 AnyArgExpr Buffer, SVal Element, 328 AccessKind Access) const { 329 330 // If a previous check has failed, propagate the failure. 331 if (!state) 332 return nullptr; 333 334 // Check for out of bound array element access. 335 const MemRegion *R = Element.getAsRegion(); 336 if (!R) 337 return state; 338 339 const auto *ER = dyn_cast<ElementRegion>(R); 340 if (!ER) 341 return state; 342 343 if (ER->getValueType() != C.getASTContext().CharTy) 344 return state; 345 346 // Get the size of the array. 347 const auto *superReg = cast<SubRegion>(ER->getSuperRegion()); 348 DefinedOrUnknownSVal Size = 349 getDynamicExtent(state, superReg, C.getSValBuilder()); 350 351 // Get the index of the accessed element. 352 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 353 354 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 355 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 356 if (StOutBound && !StInBound) { 357 // These checks are either enabled by the CString out-of-bounds checker 358 // explicitly or implicitly by the Malloc checker. 359 // In the latter case we only do modeling but do not emit warning. 360 if (!Filter.CheckCStringOutOfBounds) 361 return nullptr; 362 363 // Emit a bug report. 364 ErrorMessage Message = 365 createOutOfBoundErrorMsg(CurrentFunctionDescription, Access); 366 emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message); 367 return nullptr; 368 } 369 370 // Array bound check succeeded. From this point forward the array bound 371 // should always succeed. 372 return StInBound; 373 } 374 375 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 376 ProgramStateRef State, 377 AnyArgExpr Buffer, 378 SizeArgExpr Size, 379 AccessKind Access) const { 380 // If a previous check has failed, propagate the failure. 381 if (!State) 382 return nullptr; 383 384 SValBuilder &svalBuilder = C.getSValBuilder(); 385 ASTContext &Ctx = svalBuilder.getContext(); 386 387 QualType SizeTy = Size.Expression->getType(); 388 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 389 390 // Check that the first buffer is non-null. 391 SVal BufVal = C.getSVal(Buffer.Expression); 392 State = checkNonNull(C, State, Buffer, BufVal); 393 if (!State) 394 return nullptr; 395 396 // If out-of-bounds checking is turned off, skip the rest. 397 if (!Filter.CheckCStringOutOfBounds) 398 return State; 399 400 // Get the access length and make sure it is known. 401 // FIXME: This assumes the caller has already checked that the access length 402 // is positive. And that it's unsigned. 403 SVal LengthVal = C.getSVal(Size.Expression); 404 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 405 if (!Length) 406 return State; 407 408 // Compute the offset of the last element to be accessed: size-1. 409 NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>(); 410 SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy); 411 if (Offset.isUnknown()) 412 return nullptr; 413 NonLoc LastOffset = Offset.castAs<NonLoc>(); 414 415 // Check that the first buffer is sufficiently long. 416 SVal BufStart = 417 svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType()); 418 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 419 420 SVal BufEnd = 421 svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy); 422 423 State = CheckLocation(C, State, Buffer, BufEnd, Access); 424 425 // If the buffer isn't large enough, abort. 426 if (!State) 427 return nullptr; 428 } 429 430 // Large enough or not, return this state! 431 return State; 432 } 433 434 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 435 ProgramStateRef state, 436 SizeArgExpr Size, AnyArgExpr First, 437 AnyArgExpr Second) const { 438 if (!Filter.CheckCStringBufferOverlap) 439 return state; 440 441 // Do a simple check for overlap: if the two arguments are from the same 442 // buffer, see if the end of the first is greater than the start of the second 443 // or vice versa. 444 445 // If a previous check has failed, propagate the failure. 446 if (!state) 447 return nullptr; 448 449 ProgramStateRef stateTrue, stateFalse; 450 451 // Get the buffer values and make sure they're known locations. 452 const LocationContext *LCtx = C.getLocationContext(); 453 SVal firstVal = state->getSVal(First.Expression, LCtx); 454 SVal secondVal = state->getSVal(Second.Expression, LCtx); 455 456 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 457 if (!firstLoc) 458 return state; 459 460 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 461 if (!secondLoc) 462 return state; 463 464 // Are the two values the same? 465 SValBuilder &svalBuilder = C.getSValBuilder(); 466 std::tie(stateTrue, stateFalse) = 467 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 468 469 if (stateTrue && !stateFalse) { 470 // If the values are known to be equal, that's automatically an overlap. 471 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 472 return nullptr; 473 } 474 475 // assume the two expressions are not equal. 476 assert(stateFalse); 477 state = stateFalse; 478 479 // Which value comes first? 480 QualType cmpTy = svalBuilder.getConditionType(); 481 SVal reverse = 482 svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy); 483 Optional<DefinedOrUnknownSVal> reverseTest = 484 reverse.getAs<DefinedOrUnknownSVal>(); 485 if (!reverseTest) 486 return state; 487 488 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 489 if (stateTrue) { 490 if (stateFalse) { 491 // If we don't know which one comes first, we can't perform this test. 492 return state; 493 } else { 494 // Switch the values so that firstVal is before secondVal. 495 std::swap(firstLoc, secondLoc); 496 497 // Switch the Exprs as well, so that they still correspond. 498 std::swap(First, Second); 499 } 500 } 501 502 // Get the length, and make sure it too is known. 503 SVal LengthVal = state->getSVal(Size.Expression, LCtx); 504 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 505 if (!Length) 506 return state; 507 508 // Convert the first buffer's start address to char*. 509 // Bail out if the cast fails. 510 ASTContext &Ctx = svalBuilder.getContext(); 511 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 512 SVal FirstStart = 513 svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType()); 514 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 515 if (!FirstStartLoc) 516 return state; 517 518 // Compute the end of the first buffer. Bail out if THAT fails. 519 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc, 520 *Length, CharPtrTy); 521 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 522 if (!FirstEndLoc) 523 return state; 524 525 // Is the end of the first buffer past the start of the second buffer? 526 SVal Overlap = 527 svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy); 528 Optional<DefinedOrUnknownSVal> OverlapTest = 529 Overlap.getAs<DefinedOrUnknownSVal>(); 530 if (!OverlapTest) 531 return state; 532 533 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 534 535 if (stateTrue && !stateFalse) { 536 // Overlap! 537 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 538 return nullptr; 539 } 540 541 // assume the two expressions don't overlap. 542 assert(stateFalse); 543 return stateFalse; 544 } 545 546 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 547 const Stmt *First, const Stmt *Second) const { 548 ExplodedNode *N = C.generateErrorNode(state); 549 if (!N) 550 return; 551 552 if (!BT_Overlap) 553 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 554 categories::UnixAPI, "Improper arguments")); 555 556 // Generate a report for this bug. 557 auto report = std::make_unique<PathSensitiveBugReport>( 558 *BT_Overlap, "Arguments must not be overlapping buffers", N); 559 report->addRange(First->getSourceRange()); 560 report->addRange(Second->getSourceRange()); 561 562 C.emitReport(std::move(report)); 563 } 564 565 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 566 const Stmt *S, StringRef WarningMsg) const { 567 if (ExplodedNode *N = C.generateErrorNode(State)) { 568 if (!BT_Null) 569 BT_Null.reset(new BuiltinBug( 570 Filter.CheckNameCStringNullArg, categories::UnixAPI, 571 "Null pointer argument in call to byte string function")); 572 573 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); 574 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 575 Report->addRange(S->getSourceRange()); 576 if (const auto *Ex = dyn_cast<Expr>(S)) 577 bugreporter::trackExpressionValue(N, Ex, *Report); 578 C.emitReport(std::move(Report)); 579 } 580 } 581 582 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 583 ProgramStateRef State, const Stmt *S, 584 StringRef WarningMsg) const { 585 if (ExplodedNode *N = C.generateErrorNode(State)) { 586 if (!BT_Bounds) 587 BT_Bounds.reset(new BuiltinBug( 588 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds 589 : Filter.CheckNameCStringNullArg, 590 "Out-of-bound array access", 591 "Byte string function accesses out-of-bound array element")); 592 593 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); 594 595 // FIXME: It would be nice to eventually make this diagnostic more clear, 596 // e.g., by referencing the original declaration or by saying *why* this 597 // reference is outside the range. 598 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 599 Report->addRange(S->getSourceRange()); 600 C.emitReport(std::move(Report)); 601 } 602 } 603 604 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 605 const Stmt *S, 606 StringRef WarningMsg) const { 607 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 608 if (!BT_NotCString) 609 BT_NotCString.reset(new BuiltinBug( 610 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 611 "Argument is not a null-terminated string.")); 612 613 auto Report = 614 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 615 616 Report->addRange(S->getSourceRange()); 617 C.emitReport(std::move(Report)); 618 } 619 } 620 621 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 622 ProgramStateRef State) const { 623 if (ExplodedNode *N = C.generateErrorNode(State)) { 624 if (!BT_NotCString) 625 BT_NotCString.reset( 626 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 627 "Sum of expressions causes overflow.")); 628 629 // This isn't a great error message, but this should never occur in real 630 // code anyway -- you'd have to create a buffer longer than a size_t can 631 // represent, which is sort of a contradiction. 632 const char *WarningMsg = 633 "This expression will create a string whose length is too big to " 634 "be represented as a size_t"; 635 636 auto Report = 637 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 638 C.emitReport(std::move(Report)); 639 } 640 } 641 642 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 643 ProgramStateRef state, 644 NonLoc left, 645 NonLoc right) const { 646 // If out-of-bounds checking is turned off, skip the rest. 647 if (!Filter.CheckCStringOutOfBounds) 648 return state; 649 650 // If a previous check has failed, propagate the failure. 651 if (!state) 652 return nullptr; 653 654 SValBuilder &svalBuilder = C.getSValBuilder(); 655 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 656 657 QualType sizeTy = svalBuilder.getContext().getSizeType(); 658 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 659 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 660 661 SVal maxMinusRight; 662 if (right.getAs<nonloc::ConcreteInt>()) { 663 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 664 sizeTy); 665 } else { 666 // Try switching the operands. (The order of these two assignments is 667 // important!) 668 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 669 sizeTy); 670 left = right; 671 } 672 673 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 674 QualType cmpTy = svalBuilder.getConditionType(); 675 // If left > max - right, we have an overflow. 676 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 677 *maxMinusRightNL, cmpTy); 678 679 ProgramStateRef stateOverflow, stateOkay; 680 std::tie(stateOverflow, stateOkay) = 681 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 682 683 if (stateOverflow && !stateOkay) { 684 // We have an overflow. Emit a bug report. 685 emitAdditionOverflowBug(C, stateOverflow); 686 return nullptr; 687 } 688 689 // From now on, assume an overflow didn't occur. 690 assert(stateOkay); 691 state = stateOkay; 692 } 693 694 return state; 695 } 696 697 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 698 const MemRegion *MR, 699 SVal strLength) { 700 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 701 702 MR = MR->StripCasts(); 703 704 switch (MR->getKind()) { 705 case MemRegion::StringRegionKind: 706 // FIXME: This can happen if we strcpy() into a string region. This is 707 // undefined [C99 6.4.5p6], but we should still warn about it. 708 return state; 709 710 case MemRegion::SymbolicRegionKind: 711 case MemRegion::AllocaRegionKind: 712 case MemRegion::NonParamVarRegionKind: 713 case MemRegion::ParamVarRegionKind: 714 case MemRegion::FieldRegionKind: 715 case MemRegion::ObjCIvarRegionKind: 716 // These are the types we can currently track string lengths for. 717 break; 718 719 case MemRegion::ElementRegionKind: 720 // FIXME: Handle element regions by upper-bounding the parent region's 721 // string length. 722 return state; 723 724 default: 725 // Other regions (mostly non-data) can't have a reliable C string length. 726 // For now, just ignore the change. 727 // FIXME: These are rare but not impossible. We should output some kind of 728 // warning for things like strcpy((char[]){'a', 0}, "b"); 729 return state; 730 } 731 732 if (strLength.isUnknown()) 733 return state->remove<CStringLength>(MR); 734 735 return state->set<CStringLength>(MR, strLength); 736 } 737 738 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 739 ProgramStateRef &state, 740 const Expr *Ex, 741 const MemRegion *MR, 742 bool hypothetical) { 743 if (!hypothetical) { 744 // If there's a recorded length, go ahead and return it. 745 const SVal *Recorded = state->get<CStringLength>(MR); 746 if (Recorded) 747 return *Recorded; 748 } 749 750 // Otherwise, get a new symbol and update the state. 751 SValBuilder &svalBuilder = C.getSValBuilder(); 752 QualType sizeTy = svalBuilder.getContext().getSizeType(); 753 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 754 MR, Ex, sizeTy, 755 C.getLocationContext(), 756 C.blockCount()); 757 758 if (!hypothetical) { 759 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 760 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 761 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 762 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 763 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 764 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 765 fourInt); 766 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 767 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 768 maxLength, sizeTy); 769 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 770 } 771 state = state->set<CStringLength>(MR, strLength); 772 } 773 774 return strLength; 775 } 776 777 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 778 const Expr *Ex, SVal Buf, 779 bool hypothetical) const { 780 const MemRegion *MR = Buf.getAsRegion(); 781 if (!MR) { 782 // If we can't get a region, see if it's something we /know/ isn't a 783 // C string. In the context of locations, the only time we can issue such 784 // a warning is for labels. 785 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 786 if (Filter.CheckCStringNotNullTerm) { 787 SmallString<120> buf; 788 llvm::raw_svector_ostream os(buf); 789 assert(CurrentFunctionDescription); 790 os << "Argument to " << CurrentFunctionDescription 791 << " is the address of the label '" << Label->getLabel()->getName() 792 << "', which is not a null-terminated string"; 793 794 emitNotCStringBug(C, state, Ex, os.str()); 795 } 796 return UndefinedVal(); 797 } 798 799 // If it's not a region and not a label, give up. 800 return UnknownVal(); 801 } 802 803 // If we have a region, strip casts from it and see if we can figure out 804 // its length. For anything we can't figure out, just return UnknownVal. 805 MR = MR->StripCasts(); 806 807 switch (MR->getKind()) { 808 case MemRegion::StringRegionKind: { 809 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 810 // so we can assume that the byte length is the correct C string length. 811 SValBuilder &svalBuilder = C.getSValBuilder(); 812 QualType sizeTy = svalBuilder.getContext().getSizeType(); 813 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 814 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 815 } 816 case MemRegion::SymbolicRegionKind: 817 case MemRegion::AllocaRegionKind: 818 case MemRegion::NonParamVarRegionKind: 819 case MemRegion::ParamVarRegionKind: 820 case MemRegion::FieldRegionKind: 821 case MemRegion::ObjCIvarRegionKind: 822 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 823 case MemRegion::CompoundLiteralRegionKind: 824 // FIXME: Can we track this? Is it necessary? 825 return UnknownVal(); 826 case MemRegion::ElementRegionKind: 827 // FIXME: How can we handle this? It's not good enough to subtract the 828 // offset from the base string length; consider "123\x00567" and &a[5]. 829 return UnknownVal(); 830 default: 831 // Other regions (mostly non-data) can't have a reliable C string length. 832 // In this case, an error is emitted and UndefinedVal is returned. 833 // The caller should always be prepared to handle this case. 834 if (Filter.CheckCStringNotNullTerm) { 835 SmallString<120> buf; 836 llvm::raw_svector_ostream os(buf); 837 838 assert(CurrentFunctionDescription); 839 os << "Argument to " << CurrentFunctionDescription << " is "; 840 841 if (SummarizeRegion(os, C.getASTContext(), MR)) 842 os << ", which is not a null-terminated string"; 843 else 844 os << "not a null-terminated string"; 845 846 emitNotCStringBug(C, state, Ex, os.str()); 847 } 848 return UndefinedVal(); 849 } 850 } 851 852 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 853 ProgramStateRef &state, const Expr *expr, SVal val) const { 854 855 // Get the memory region pointed to by the val. 856 const MemRegion *bufRegion = val.getAsRegion(); 857 if (!bufRegion) 858 return nullptr; 859 860 // Strip casts off the memory region. 861 bufRegion = bufRegion->StripCasts(); 862 863 // Cast the memory region to a string region. 864 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 865 if (!strRegion) 866 return nullptr; 867 868 // Return the actual string in the string region. 869 return strRegion->getStringLiteral(); 870 } 871 872 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 873 ProgramStateRef state, 874 const Expr *FirstBuf, 875 const Expr *Size) { 876 // If we do not know that the buffer is long enough we return 'true'. 877 // Otherwise the parent region of this field region would also get 878 // invalidated, which would lead to warnings based on an unknown state. 879 880 // Originally copied from CheckBufferAccess and CheckLocation. 881 SValBuilder &svalBuilder = C.getSValBuilder(); 882 ASTContext &Ctx = svalBuilder.getContext(); 883 const LocationContext *LCtx = C.getLocationContext(); 884 885 QualType sizeTy = Size->getType(); 886 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 887 SVal BufVal = state->getSVal(FirstBuf, LCtx); 888 889 SVal LengthVal = state->getSVal(Size, LCtx); 890 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 891 if (!Length) 892 return true; // cf top comment. 893 894 // Compute the offset of the last element to be accessed: size-1. 895 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 896 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 897 if (Offset.isUnknown()) 898 return true; // cf top comment 899 NonLoc LastOffset = Offset.castAs<NonLoc>(); 900 901 // Check that the first buffer is sufficiently long. 902 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 903 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 904 if (!BufLoc) 905 return true; // cf top comment. 906 907 SVal BufEnd = 908 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 909 910 // Check for out of bound array element access. 911 const MemRegion *R = BufEnd.getAsRegion(); 912 if (!R) 913 return true; // cf top comment. 914 915 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 916 if (!ER) 917 return true; // cf top comment. 918 919 // FIXME: Does this crash when a non-standard definition 920 // of a library function is encountered? 921 assert(ER->getValueType() == C.getASTContext().CharTy && 922 "IsFirstBufInBound should only be called with char* ElementRegions"); 923 924 // Get the size of the array. 925 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 926 DefinedOrUnknownSVal SizeDV = getDynamicExtent(state, superReg, svalBuilder); 927 928 // Get the index of the accessed element. 929 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 930 931 ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true); 932 933 return static_cast<bool>(StInBound); 934 } 935 936 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 937 ProgramStateRef state, 938 const Expr *E, SVal V, 939 bool IsSourceBuffer, 940 const Expr *Size) { 941 Optional<Loc> L = V.getAs<Loc>(); 942 if (!L) 943 return state; 944 945 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 946 // some assumptions about the value that CFRefCount can't. Even so, it should 947 // probably be refactored. 948 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 949 const MemRegion *R = MR->getRegion()->StripCasts(); 950 951 // Are we dealing with an ElementRegion? If so, we should be invalidating 952 // the super-region. 953 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 954 R = ER->getSuperRegion(); 955 // FIXME: What about layers of ElementRegions? 956 } 957 958 // Invalidate this region. 959 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 960 961 bool CausesPointerEscape = false; 962 RegionAndSymbolInvalidationTraits ITraits; 963 // Invalidate and escape only indirect regions accessible through the source 964 // buffer. 965 if (IsSourceBuffer) { 966 ITraits.setTrait(R->getBaseRegion(), 967 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 968 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 969 CausesPointerEscape = true; 970 } else { 971 const MemRegion::Kind& K = R->getKind(); 972 if (K == MemRegion::FieldRegionKind) 973 if (Size && IsFirstBufInBound(C, state, E, Size)) { 974 // If destination buffer is a field region and access is in bound, 975 // do not invalidate its super region. 976 ITraits.setTrait( 977 R, 978 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 979 } 980 } 981 982 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 983 CausesPointerEscape, nullptr, nullptr, 984 &ITraits); 985 } 986 987 // If we have a non-region value by chance, just remove the binding. 988 // FIXME: is this necessary or correct? This handles the non-Region 989 // cases. Is it ever valid to store to these? 990 return state->killBinding(*L); 991 } 992 993 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 994 const MemRegion *MR) { 995 switch (MR->getKind()) { 996 case MemRegion::FunctionCodeRegionKind: { 997 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl()) 998 os << "the address of the function '" << *FD << '\''; 999 else 1000 os << "the address of a function"; 1001 return true; 1002 } 1003 case MemRegion::BlockCodeRegionKind: 1004 os << "block text"; 1005 return true; 1006 case MemRegion::BlockDataRegionKind: 1007 os << "a block"; 1008 return true; 1009 case MemRegion::CXXThisRegionKind: 1010 case MemRegion::CXXTempObjectRegionKind: 1011 os << "a C++ temp object of type " 1012 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1013 return true; 1014 case MemRegion::NonParamVarRegionKind: 1015 os << "a variable of type" 1016 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1017 return true; 1018 case MemRegion::ParamVarRegionKind: 1019 os << "a parameter of type" 1020 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1021 return true; 1022 case MemRegion::FieldRegionKind: 1023 os << "a field of type " 1024 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1025 return true; 1026 case MemRegion::ObjCIvarRegionKind: 1027 os << "an instance variable of type " 1028 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1029 return true; 1030 default: 1031 return false; 1032 } 1033 } 1034 1035 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1036 const Expr *Size, CheckerContext &C, 1037 ProgramStateRef &State) { 1038 SVal MemVal = C.getSVal(DstBuffer); 1039 SVal SizeVal = C.getSVal(Size); 1040 const MemRegion *MR = MemVal.getAsRegion(); 1041 if (!MR) 1042 return false; 1043 1044 // We're about to model memset by producing a "default binding" in the Store. 1045 // Our current implementation - RegionStore - doesn't support default bindings 1046 // that don't cover the whole base region. So we should first get the offset 1047 // and the base region to figure out whether the offset of buffer is 0. 1048 RegionOffset Offset = MR->getAsOffset(); 1049 const MemRegion *BR = Offset.getRegion(); 1050 1051 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1052 if (!SizeNL) 1053 return false; 1054 1055 SValBuilder &svalBuilder = C.getSValBuilder(); 1056 ASTContext &Ctx = C.getASTContext(); 1057 1058 // void *memset(void *dest, int ch, size_t count); 1059 // For now we can only handle the case of offset is 0 and concrete char value. 1060 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1061 Offset.getOffset() == 0) { 1062 // Get the base region's size. 1063 DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder); 1064 1065 ProgramStateRef StateWholeReg, StateNotWholeReg; 1066 std::tie(StateWholeReg, StateNotWholeReg) = 1067 State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL)); 1068 1069 // With the semantic of 'memset()', we should convert the CharVal to 1070 // unsigned char. 1071 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1072 1073 ProgramStateRef StateNullChar, StateNonNullChar; 1074 std::tie(StateNullChar, StateNonNullChar) = 1075 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1076 1077 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1078 !StateNonNullChar) { 1079 // If the 'memset()' acts on the whole region of destination buffer and 1080 // the value of the second argument of 'memset()' is zero, bind the second 1081 // argument's value to the destination buffer with 'default binding'. 1082 // FIXME: Since there is no perfect way to bind the non-zero character, we 1083 // can only deal with zero value here. In the future, we need to deal with 1084 // the binding of non-zero value in the case of whole region. 1085 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1086 C.getLocationContext()); 1087 } else { 1088 // If the destination buffer's extent is not equal to the value of 1089 // third argument, just invalidate buffer. 1090 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1091 /*IsSourceBuffer*/ false, Size); 1092 } 1093 1094 if (StateNullChar && !StateNonNullChar) { 1095 // If the value of the second argument of 'memset()' is zero, set the 1096 // string length of destination buffer to 0 directly. 1097 State = setCStringLength(State, MR, 1098 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1099 } else if (!StateNullChar && StateNonNullChar) { 1100 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1101 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1102 C.getLocationContext(), C.blockCount()); 1103 1104 // If the value of second argument is not zero, then the string length 1105 // is at least the size argument. 1106 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1107 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1108 1109 State = setCStringLength( 1110 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1111 MR, NewStrLen); 1112 } 1113 } else { 1114 // If the offset is not zero and char value is not concrete, we can do 1115 // nothing but invalidate the buffer. 1116 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1117 /*IsSourceBuffer*/ false, Size); 1118 } 1119 return true; 1120 } 1121 1122 //===----------------------------------------------------------------------===// 1123 // evaluation of individual function calls. 1124 //===----------------------------------------------------------------------===// 1125 1126 void CStringChecker::evalCopyCommon(CheckerContext &C, const CallExpr *CE, 1127 ProgramStateRef state, SizeArgExpr Size, 1128 DestinationArgExpr Dest, 1129 SourceArgExpr Source, bool Restricted, 1130 bool IsMempcpy) const { 1131 CurrentFunctionDescription = "memory copy function"; 1132 1133 // See if the size argument is zero. 1134 const LocationContext *LCtx = C.getLocationContext(); 1135 SVal sizeVal = state->getSVal(Size.Expression, LCtx); 1136 QualType sizeTy = Size.Expression->getType(); 1137 1138 ProgramStateRef stateZeroSize, stateNonZeroSize; 1139 std::tie(stateZeroSize, stateNonZeroSize) = 1140 assumeZero(C, state, sizeVal, sizeTy); 1141 1142 // Get the value of the Dest. 1143 SVal destVal = state->getSVal(Dest.Expression, LCtx); 1144 1145 // If the size is zero, there won't be any actual memory access, so 1146 // just bind the return value to the destination buffer and return. 1147 if (stateZeroSize && !stateNonZeroSize) { 1148 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1149 C.addTransition(stateZeroSize); 1150 return; 1151 } 1152 1153 // If the size can be nonzero, we have to check the other arguments. 1154 if (stateNonZeroSize) { 1155 state = stateNonZeroSize; 1156 1157 // Ensure the destination is not null. If it is NULL there will be a 1158 // NULL pointer dereference. 1159 state = checkNonNull(C, state, Dest, destVal); 1160 if (!state) 1161 return; 1162 1163 // Get the value of the Src. 1164 SVal srcVal = state->getSVal(Source.Expression, LCtx); 1165 1166 // Ensure the source is not null. If it is NULL there will be a 1167 // NULL pointer dereference. 1168 state = checkNonNull(C, state, Source, srcVal); 1169 if (!state) 1170 return; 1171 1172 // Ensure the accesses are valid and that the buffers do not overlap. 1173 state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write); 1174 state = CheckBufferAccess(C, state, Source, Size, AccessKind::read); 1175 1176 if (Restricted) 1177 state = CheckOverlap(C, state, Size, Dest, Source); 1178 1179 if (!state) 1180 return; 1181 1182 // If this is mempcpy, get the byte after the last byte copied and 1183 // bind the expr. 1184 if (IsMempcpy) { 1185 // Get the byte after the last byte copied. 1186 SValBuilder &SvalBuilder = C.getSValBuilder(); 1187 ASTContext &Ctx = SvalBuilder.getContext(); 1188 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1189 SVal DestRegCharVal = 1190 SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType()); 1191 SVal lastElement = C.getSValBuilder().evalBinOp( 1192 state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType()); 1193 // If we don't know how much we copied, we can at least 1194 // conjure a return value for later. 1195 if (lastElement.isUnknown()) 1196 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1197 C.blockCount()); 1198 1199 // The byte after the last byte copied is the return value. 1200 state = state->BindExpr(CE, LCtx, lastElement); 1201 } else { 1202 // All other copies return the destination buffer. 1203 // (Well, bcopy() has a void return type, but this won't hurt.) 1204 state = state->BindExpr(CE, LCtx, destVal); 1205 } 1206 1207 // Invalidate the destination (regular invalidation without pointer-escaping 1208 // the address of the top-level region). 1209 // FIXME: Even if we can't perfectly model the copy, we should see if we 1210 // can use LazyCompoundVals to copy the source values into the destination. 1211 // This would probably remove any existing bindings past the end of the 1212 // copied region, but that's still an improvement over blank invalidation. 1213 state = 1214 InvalidateBuffer(C, state, Dest.Expression, C.getSVal(Dest.Expression), 1215 /*IsSourceBuffer*/ false, Size.Expression); 1216 1217 // Invalidate the source (const-invalidation without const-pointer-escaping 1218 // the address of the top-level region). 1219 state = InvalidateBuffer(C, state, Source.Expression, 1220 C.getSVal(Source.Expression), 1221 /*IsSourceBuffer*/ true, nullptr); 1222 1223 C.addTransition(state); 1224 } 1225 } 1226 1227 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1228 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1229 // The return value is the address of the destination buffer. 1230 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1231 SourceArgExpr Src = {CE->getArg(1), 1}; 1232 SizeArgExpr Size = {CE->getArg(2), 2}; 1233 1234 ProgramStateRef State = C.getState(); 1235 1236 constexpr bool IsRestricted = true; 1237 constexpr bool IsMempcpy = false; 1238 evalCopyCommon(C, CE, State, Size, Dest, Src, IsRestricted, IsMempcpy); 1239 } 1240 1241 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1242 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1243 // The return value is a pointer to the byte following the last written byte. 1244 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1245 SourceArgExpr Src = {CE->getArg(1), 1}; 1246 SizeArgExpr Size = {CE->getArg(2), 2}; 1247 1248 constexpr bool IsRestricted = true; 1249 constexpr bool IsMempcpy = true; 1250 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1251 } 1252 1253 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1254 // void *memmove(void *dst, const void *src, size_t n); 1255 // The return value is the address of the destination buffer. 1256 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1257 SourceArgExpr Src = {CE->getArg(1), 1}; 1258 SizeArgExpr Size = {CE->getArg(2), 2}; 1259 1260 constexpr bool IsRestricted = false; 1261 constexpr bool IsMempcpy = false; 1262 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1263 } 1264 1265 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1266 // void bcopy(const void *src, void *dst, size_t n); 1267 SourceArgExpr Src(CE->getArg(0), 0); 1268 DestinationArgExpr Dest = {CE->getArg(1), 1}; 1269 SizeArgExpr Size = {CE->getArg(2), 2}; 1270 1271 constexpr bool IsRestricted = false; 1272 constexpr bool IsMempcpy = false; 1273 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1274 } 1275 1276 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1277 // int memcmp(const void *s1, const void *s2, size_t n); 1278 CurrentFunctionDescription = "memory comparison function"; 1279 1280 AnyArgExpr Left = {CE->getArg(0), 0}; 1281 AnyArgExpr Right = {CE->getArg(1), 1}; 1282 SizeArgExpr Size = {CE->getArg(2), 2}; 1283 1284 ProgramStateRef State = C.getState(); 1285 SValBuilder &Builder = C.getSValBuilder(); 1286 const LocationContext *LCtx = C.getLocationContext(); 1287 1288 // See if the size argument is zero. 1289 SVal sizeVal = State->getSVal(Size.Expression, LCtx); 1290 QualType sizeTy = Size.Expression->getType(); 1291 1292 ProgramStateRef stateZeroSize, stateNonZeroSize; 1293 std::tie(stateZeroSize, stateNonZeroSize) = 1294 assumeZero(C, State, sizeVal, sizeTy); 1295 1296 // If the size can be zero, the result will be 0 in that case, and we don't 1297 // have to check either of the buffers. 1298 if (stateZeroSize) { 1299 State = stateZeroSize; 1300 State = State->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1301 C.addTransition(State); 1302 } 1303 1304 // If the size can be nonzero, we have to check the other arguments. 1305 if (stateNonZeroSize) { 1306 State = stateNonZeroSize; 1307 // If we know the two buffers are the same, we know the result is 0. 1308 // First, get the two buffers' addresses. Another checker will have already 1309 // made sure they're not undefined. 1310 DefinedOrUnknownSVal LV = 1311 State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1312 DefinedOrUnknownSVal RV = 1313 State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1314 1315 // See if they are the same. 1316 ProgramStateRef SameBuffer, NotSameBuffer; 1317 std::tie(SameBuffer, NotSameBuffer) = 1318 State->assume(Builder.evalEQ(State, LV, RV)); 1319 1320 // If the two arguments are the same buffer, we know the result is 0, 1321 // and we only need to check one size. 1322 if (SameBuffer && !NotSameBuffer) { 1323 State = SameBuffer; 1324 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1325 if (State) { 1326 State = 1327 SameBuffer->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1328 C.addTransition(State); 1329 } 1330 return; 1331 } 1332 1333 // If the two arguments might be different buffers, we have to check 1334 // the size of both of them. 1335 assert(NotSameBuffer); 1336 State = CheckBufferAccess(C, State, Right, Size, AccessKind::read); 1337 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1338 if (State) { 1339 // The return value is the comparison result, which we don't know. 1340 SVal CmpV = Builder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1341 State = State->BindExpr(CE, LCtx, CmpV); 1342 C.addTransition(State); 1343 } 1344 } 1345 } 1346 1347 void CStringChecker::evalstrLength(CheckerContext &C, 1348 const CallExpr *CE) const { 1349 // size_t strlen(const char *s); 1350 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1351 } 1352 1353 void CStringChecker::evalstrnLength(CheckerContext &C, 1354 const CallExpr *CE) const { 1355 // size_t strnlen(const char *s, size_t maxlen); 1356 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1357 } 1358 1359 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1360 bool IsStrnlen) const { 1361 CurrentFunctionDescription = "string length function"; 1362 ProgramStateRef state = C.getState(); 1363 const LocationContext *LCtx = C.getLocationContext(); 1364 1365 if (IsStrnlen) { 1366 const Expr *maxlenExpr = CE->getArg(1); 1367 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1368 1369 ProgramStateRef stateZeroSize, stateNonZeroSize; 1370 std::tie(stateZeroSize, stateNonZeroSize) = 1371 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1372 1373 // If the size can be zero, the result will be 0 in that case, and we don't 1374 // have to check the string itself. 1375 if (stateZeroSize) { 1376 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1377 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1378 C.addTransition(stateZeroSize); 1379 } 1380 1381 // If the size is GUARANTEED to be zero, we're done! 1382 if (!stateNonZeroSize) 1383 return; 1384 1385 // Otherwise, record the assumption that the size is nonzero. 1386 state = stateNonZeroSize; 1387 } 1388 1389 // Check that the string argument is non-null. 1390 AnyArgExpr Arg = {CE->getArg(0), 0}; 1391 SVal ArgVal = state->getSVal(Arg.Expression, LCtx); 1392 state = checkNonNull(C, state, Arg, ArgVal); 1393 1394 if (!state) 1395 return; 1396 1397 SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal); 1398 1399 // If the argument isn't a valid C string, there's no valid state to 1400 // transition to. 1401 if (strLength.isUndef()) 1402 return; 1403 1404 DefinedOrUnknownSVal result = UnknownVal(); 1405 1406 // If the check is for strnlen() then bind the return value to no more than 1407 // the maxlen value. 1408 if (IsStrnlen) { 1409 QualType cmpTy = C.getSValBuilder().getConditionType(); 1410 1411 // It's a little unfortunate to be getting this again, 1412 // but it's not that expensive... 1413 const Expr *maxlenExpr = CE->getArg(1); 1414 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1415 1416 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1417 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1418 1419 if (strLengthNL && maxlenValNL) { 1420 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1421 1422 // Check if the strLength is greater than the maxlen. 1423 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1424 C.getSValBuilder() 1425 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1426 .castAs<DefinedOrUnknownSVal>()); 1427 1428 if (stateStringTooLong && !stateStringNotTooLong) { 1429 // If the string is longer than maxlen, return maxlen. 1430 result = *maxlenValNL; 1431 } else if (stateStringNotTooLong && !stateStringTooLong) { 1432 // If the string is shorter than maxlen, return its length. 1433 result = *strLengthNL; 1434 } 1435 } 1436 1437 if (result.isUnknown()) { 1438 // If we don't have enough information for a comparison, there's 1439 // no guarantee the full string length will actually be returned. 1440 // All we know is the return value is the min of the string length 1441 // and the limit. This is better than nothing. 1442 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1443 C.blockCount()); 1444 NonLoc resultNL = result.castAs<NonLoc>(); 1445 1446 if (strLengthNL) { 1447 state = state->assume(C.getSValBuilder().evalBinOpNN( 1448 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1449 .castAs<DefinedOrUnknownSVal>(), true); 1450 } 1451 1452 if (maxlenValNL) { 1453 state = state->assume(C.getSValBuilder().evalBinOpNN( 1454 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1455 .castAs<DefinedOrUnknownSVal>(), true); 1456 } 1457 } 1458 1459 } else { 1460 // This is a plain strlen(), not strnlen(). 1461 result = strLength.castAs<DefinedOrUnknownSVal>(); 1462 1463 // If we don't know the length of the string, conjure a return 1464 // value, so it can be used in constraints, at least. 1465 if (result.isUnknown()) { 1466 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1467 C.blockCount()); 1468 } 1469 } 1470 1471 // Bind the return value. 1472 assert(!result.isUnknown() && "Should have conjured a value by now"); 1473 state = state->BindExpr(CE, LCtx, result); 1474 C.addTransition(state); 1475 } 1476 1477 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1478 // char *strcpy(char *restrict dst, const char *restrict src); 1479 evalStrcpyCommon(C, CE, 1480 /* ReturnEnd = */ false, 1481 /* IsBounded = */ false, 1482 /* appendK = */ ConcatFnKind::none); 1483 } 1484 1485 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1486 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1487 evalStrcpyCommon(C, CE, 1488 /* ReturnEnd = */ false, 1489 /* IsBounded = */ true, 1490 /* appendK = */ ConcatFnKind::none); 1491 } 1492 1493 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1494 // char *stpcpy(char *restrict dst, const char *restrict src); 1495 evalStrcpyCommon(C, CE, 1496 /* ReturnEnd = */ true, 1497 /* IsBounded = */ false, 1498 /* appendK = */ ConcatFnKind::none); 1499 } 1500 1501 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { 1502 // size_t strlcpy(char *dest, const char *src, size_t size); 1503 evalStrcpyCommon(C, CE, 1504 /* ReturnEnd = */ true, 1505 /* IsBounded = */ true, 1506 /* appendK = */ ConcatFnKind::none, 1507 /* returnPtr = */ false); 1508 } 1509 1510 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1511 // char *strcat(char *restrict s1, const char *restrict s2); 1512 evalStrcpyCommon(C, CE, 1513 /* ReturnEnd = */ false, 1514 /* IsBounded = */ false, 1515 /* appendK = */ ConcatFnKind::strcat); 1516 } 1517 1518 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1519 //char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1520 evalStrcpyCommon(C, CE, 1521 /* ReturnEnd = */ false, 1522 /* IsBounded = */ true, 1523 /* appendK = */ ConcatFnKind::strcat); 1524 } 1525 1526 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { 1527 // size_t strlcat(char *dst, const char *src, size_t size); 1528 // It will append at most size - strlen(dst) - 1 bytes, 1529 // NULL-terminating the result. 1530 evalStrcpyCommon(C, CE, 1531 /* ReturnEnd = */ false, 1532 /* IsBounded = */ true, 1533 /* appendK = */ ConcatFnKind::strlcat, 1534 /* returnPtr = */ false); 1535 } 1536 1537 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1538 bool ReturnEnd, bool IsBounded, 1539 ConcatFnKind appendK, 1540 bool returnPtr) const { 1541 if (appendK == ConcatFnKind::none) 1542 CurrentFunctionDescription = "string copy function"; 1543 else 1544 CurrentFunctionDescription = "string concatenation function"; 1545 1546 ProgramStateRef state = C.getState(); 1547 const LocationContext *LCtx = C.getLocationContext(); 1548 1549 // Check that the destination is non-null. 1550 DestinationArgExpr Dst = {CE->getArg(0), 0}; 1551 SVal DstVal = state->getSVal(Dst.Expression, LCtx); 1552 state = checkNonNull(C, state, Dst, DstVal); 1553 if (!state) 1554 return; 1555 1556 // Check that the source is non-null. 1557 SourceArgExpr srcExpr = {CE->getArg(1), 1}; 1558 SVal srcVal = state->getSVal(srcExpr.Expression, LCtx); 1559 state = checkNonNull(C, state, srcExpr, srcVal); 1560 if (!state) 1561 return; 1562 1563 // Get the string length of the source. 1564 SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal); 1565 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1566 1567 // Get the string length of the destination buffer. 1568 SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal); 1569 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1570 1571 // If the source isn't a valid C string, give up. 1572 if (strLength.isUndef()) 1573 return; 1574 1575 SValBuilder &svalBuilder = C.getSValBuilder(); 1576 QualType cmpTy = svalBuilder.getConditionType(); 1577 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1578 1579 // These two values allow checking two kinds of errors: 1580 // - actual overflows caused by a source that doesn't fit in the destination 1581 // - potential overflows caused by a bound that could exceed the destination 1582 SVal amountCopied = UnknownVal(); 1583 SVal maxLastElementIndex = UnknownVal(); 1584 const char *boundWarning = nullptr; 1585 1586 // FIXME: Why do we choose the srcExpr if the access has no size? 1587 // Note that the 3rd argument of the call would be the size parameter. 1588 SizeArgExpr SrcExprAsSizeDummy = {srcExpr.Expression, srcExpr.ArgumentIndex}; 1589 state = CheckOverlap( 1590 C, state, 1591 (IsBounded ? SizeArgExpr{CE->getArg(2), 2} : SrcExprAsSizeDummy), Dst, 1592 srcExpr); 1593 1594 if (!state) 1595 return; 1596 1597 // If the function is strncpy, strncat, etc... it is bounded. 1598 if (IsBounded) { 1599 // Get the max number of characters to copy. 1600 SizeArgExpr lenExpr = {CE->getArg(2), 2}; 1601 SVal lenVal = state->getSVal(lenExpr.Expression, LCtx); 1602 1603 // Protect against misdeclared strncpy(). 1604 lenVal = 1605 svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType()); 1606 1607 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1608 1609 // If we know both values, we might be able to figure out how much 1610 // we're copying. 1611 if (strLengthNL && lenValNL) { 1612 switch (appendK) { 1613 case ConcatFnKind::none: 1614 case ConcatFnKind::strcat: { 1615 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1616 // Check if the max number to copy is less than the length of the src. 1617 // If the bound is equal to the source length, strncpy won't null- 1618 // terminate the result! 1619 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1620 svalBuilder 1621 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1622 .castAs<DefinedOrUnknownSVal>()); 1623 1624 if (stateSourceTooLong && !stateSourceNotTooLong) { 1625 // Max number to copy is less than the length of the src, so the 1626 // actual strLength copied is the max number arg. 1627 state = stateSourceTooLong; 1628 amountCopied = lenVal; 1629 1630 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1631 // The source buffer entirely fits in the bound. 1632 state = stateSourceNotTooLong; 1633 amountCopied = strLength; 1634 } 1635 break; 1636 } 1637 case ConcatFnKind::strlcat: 1638 if (!dstStrLengthNL) 1639 return; 1640 1641 // amountCopied = min (size - dstLen - 1 , srcLen) 1642 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1643 *dstStrLengthNL, sizeTy); 1644 if (!freeSpace.getAs<NonLoc>()) 1645 return; 1646 freeSpace = 1647 svalBuilder.evalBinOp(state, BO_Sub, freeSpace, 1648 svalBuilder.makeIntVal(1, sizeTy), sizeTy); 1649 Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>(); 1650 1651 // While unlikely, it is possible that the subtraction is 1652 // too complex to compute, let's check whether it succeeded. 1653 if (!freeSpaceNL) 1654 return; 1655 SVal hasEnoughSpace = svalBuilder.evalBinOpNN( 1656 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy); 1657 1658 ProgramStateRef TrueState, FalseState; 1659 std::tie(TrueState, FalseState) = 1660 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>()); 1661 1662 // srcStrLength <= size - dstStrLength -1 1663 if (TrueState && !FalseState) { 1664 amountCopied = strLength; 1665 } 1666 1667 // srcStrLength > size - dstStrLength -1 1668 if (!TrueState && FalseState) { 1669 amountCopied = freeSpace; 1670 } 1671 1672 if (TrueState && FalseState) 1673 amountCopied = UnknownVal(); 1674 break; 1675 } 1676 } 1677 // We still want to know if the bound is known to be too large. 1678 if (lenValNL) { 1679 switch (appendK) { 1680 case ConcatFnKind::strcat: 1681 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1682 1683 // Get the string length of the destination. If the destination is 1684 // memory that can't have a string length, we shouldn't be copying 1685 // into it anyway. 1686 if (dstStrLength.isUndef()) 1687 return; 1688 1689 if (dstStrLengthNL) { 1690 maxLastElementIndex = svalBuilder.evalBinOpNN( 1691 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy); 1692 1693 boundWarning = "Size argument is greater than the free space in the " 1694 "destination buffer"; 1695 } 1696 break; 1697 case ConcatFnKind::none: 1698 case ConcatFnKind::strlcat: 1699 // For strncpy and strlcat, this is just checking 1700 // that lenVal <= sizeof(dst). 1701 // (Yes, strncpy and strncat differ in how they treat termination. 1702 // strncat ALWAYS terminates, but strncpy doesn't.) 1703 1704 // We need a special case for when the copy size is zero, in which 1705 // case strncpy will do no work at all. Our bounds check uses n-1 1706 // as the last element accessed, so n == 0 is problematic. 1707 ProgramStateRef StateZeroSize, StateNonZeroSize; 1708 std::tie(StateZeroSize, StateNonZeroSize) = 1709 assumeZero(C, state, *lenValNL, sizeTy); 1710 1711 // If the size is known to be zero, we're done. 1712 if (StateZeroSize && !StateNonZeroSize) { 1713 if (returnPtr) { 1714 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1715 } else { 1716 if (appendK == ConcatFnKind::none) { 1717 // strlcpy returns strlen(src) 1718 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength); 1719 } else { 1720 // strlcat returns strlen(src) + strlen(dst) 1721 SVal retSize = svalBuilder.evalBinOp( 1722 state, BO_Add, strLength, dstStrLength, sizeTy); 1723 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize); 1724 } 1725 } 1726 C.addTransition(StateZeroSize); 1727 return; 1728 } 1729 1730 // Otherwise, go ahead and figure out the last element we'll touch. 1731 // We don't record the non-zero assumption here because we can't 1732 // be sure. We won't warn on a possible zero. 1733 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1734 maxLastElementIndex = 1735 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy); 1736 boundWarning = "Size argument is greater than the length of the " 1737 "destination buffer"; 1738 break; 1739 } 1740 } 1741 } else { 1742 // The function isn't bounded. The amount copied should match the length 1743 // of the source buffer. 1744 amountCopied = strLength; 1745 } 1746 1747 assert(state); 1748 1749 // This represents the number of characters copied into the destination 1750 // buffer. (It may not actually be the strlen if the destination buffer 1751 // is not terminated.) 1752 SVal finalStrLength = UnknownVal(); 1753 SVal strlRetVal = UnknownVal(); 1754 1755 if (appendK == ConcatFnKind::none && !returnPtr) { 1756 // strlcpy returns the sizeof(src) 1757 strlRetVal = strLength; 1758 } 1759 1760 // If this is an appending function (strcat, strncat...) then set the 1761 // string length to strlen(src) + strlen(dst) since the buffer will 1762 // ultimately contain both. 1763 if (appendK != ConcatFnKind::none) { 1764 // Get the string length of the destination. If the destination is memory 1765 // that can't have a string length, we shouldn't be copying into it anyway. 1766 if (dstStrLength.isUndef()) 1767 return; 1768 1769 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) { 1770 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL, 1771 *dstStrLengthNL, sizeTy); 1772 } 1773 1774 Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>(); 1775 1776 // If we know both string lengths, we might know the final string length. 1777 if (amountCopiedNL && dstStrLengthNL) { 1778 // Make sure the two lengths together don't overflow a size_t. 1779 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL); 1780 if (!state) 1781 return; 1782 1783 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL, 1784 *dstStrLengthNL, sizeTy); 1785 } 1786 1787 // If we couldn't get a single value for the final string length, 1788 // we can at least bound it by the individual lengths. 1789 if (finalStrLength.isUnknown()) { 1790 // Try to get a "hypothetical" string length symbol, which we can later 1791 // set as a real value if that turns out to be the case. 1792 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1793 assert(!finalStrLength.isUndef()); 1794 1795 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1796 if (amountCopiedNL && appendK == ConcatFnKind::none) { 1797 // we overwrite dst string with the src 1798 // finalStrLength >= srcStrLength 1799 SVal sourceInResult = svalBuilder.evalBinOpNN( 1800 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy); 1801 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1802 true); 1803 if (!state) 1804 return; 1805 } 1806 1807 if (dstStrLengthNL && appendK != ConcatFnKind::none) { 1808 // we extend the dst string with the src 1809 // finalStrLength >= dstStrLength 1810 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1811 *finalStrLengthNL, 1812 *dstStrLengthNL, 1813 cmpTy); 1814 state = 1815 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1816 if (!state) 1817 return; 1818 } 1819 } 1820 } 1821 1822 } else { 1823 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1824 // the final string length will match the input string length. 1825 finalStrLength = amountCopied; 1826 } 1827 1828 SVal Result; 1829 1830 if (returnPtr) { 1831 // The final result of the function will either be a pointer past the last 1832 // copied element, or a pointer to the start of the destination buffer. 1833 Result = (ReturnEnd ? UnknownVal() : DstVal); 1834 } else { 1835 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none) 1836 //strlcpy, strlcat 1837 Result = strlRetVal; 1838 else 1839 Result = finalStrLength; 1840 } 1841 1842 assert(state); 1843 1844 // If the destination is a MemRegion, try to check for a buffer overflow and 1845 // record the new string length. 1846 if (Optional<loc::MemRegionVal> dstRegVal = 1847 DstVal.getAs<loc::MemRegionVal>()) { 1848 QualType ptrTy = Dst.Expression->getType(); 1849 1850 // If we have an exact value on a bounded copy, use that to check for 1851 // overflows, rather than our estimate about how much is actually copied. 1852 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1853 SVal maxLastElement = 1854 svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy); 1855 1856 state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write); 1857 if (!state) 1858 return; 1859 } 1860 1861 // Then, if the final length is known... 1862 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1863 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1864 *knownStrLength, ptrTy); 1865 1866 // ...and we haven't checked the bound, we'll check the actual copy. 1867 if (!boundWarning) { 1868 state = CheckLocation(C, state, Dst, lastElement, AccessKind::write); 1869 if (!state) 1870 return; 1871 } 1872 1873 // If this is a stpcpy-style copy, the last element is the return value. 1874 if (returnPtr && ReturnEnd) 1875 Result = lastElement; 1876 } 1877 1878 // Invalidate the destination (regular invalidation without pointer-escaping 1879 // the address of the top-level region). This must happen before we set the 1880 // C string length because invalidation will clear the length. 1881 // FIXME: Even if we can't perfectly model the copy, we should see if we 1882 // can use LazyCompoundVals to copy the source values into the destination. 1883 // This would probably remove any existing bindings past the end of the 1884 // string, but that's still an improvement over blank invalidation. 1885 state = InvalidateBuffer(C, state, Dst.Expression, *dstRegVal, 1886 /*IsSourceBuffer*/ false, nullptr); 1887 1888 // Invalidate the source (const-invalidation without const-pointer-escaping 1889 // the address of the top-level region). 1890 state = InvalidateBuffer(C, state, srcExpr.Expression, srcVal, 1891 /*IsSourceBuffer*/ true, nullptr); 1892 1893 // Set the C string length of the destination, if we know it. 1894 if (IsBounded && (appendK == ConcatFnKind::none)) { 1895 // strncpy is annoying in that it doesn't guarantee to null-terminate 1896 // the result string. If the original string didn't fit entirely inside 1897 // the bound (including the null-terminator), we don't know how long the 1898 // result is. 1899 if (amountCopied != strLength) 1900 finalStrLength = UnknownVal(); 1901 } 1902 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1903 } 1904 1905 assert(state); 1906 1907 if (returnPtr) { 1908 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1909 // overflow, we still need a result. Conjure a return value. 1910 if (ReturnEnd && Result.isUnknown()) { 1911 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1912 } 1913 } 1914 // Set the return value. 1915 state = state->BindExpr(CE, LCtx, Result); 1916 C.addTransition(state); 1917 } 1918 1919 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1920 //int strcmp(const char *s1, const char *s2); 1921 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false); 1922 } 1923 1924 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1925 //int strncmp(const char *s1, const char *s2, size_t n); 1926 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false); 1927 } 1928 1929 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1930 const CallExpr *CE) const { 1931 //int strcasecmp(const char *s1, const char *s2); 1932 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true); 1933 } 1934 1935 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1936 const CallExpr *CE) const { 1937 //int strncasecmp(const char *s1, const char *s2, size_t n); 1938 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true); 1939 } 1940 1941 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1942 bool IsBounded, bool IgnoreCase) const { 1943 CurrentFunctionDescription = "string comparison function"; 1944 ProgramStateRef state = C.getState(); 1945 const LocationContext *LCtx = C.getLocationContext(); 1946 1947 // Check that the first string is non-null 1948 AnyArgExpr Left = {CE->getArg(0), 0}; 1949 SVal LeftVal = state->getSVal(Left.Expression, LCtx); 1950 state = checkNonNull(C, state, Left, LeftVal); 1951 if (!state) 1952 return; 1953 1954 // Check that the second string is non-null. 1955 AnyArgExpr Right = {CE->getArg(1), 1}; 1956 SVal RightVal = state->getSVal(Right.Expression, LCtx); 1957 state = checkNonNull(C, state, Right, RightVal); 1958 if (!state) 1959 return; 1960 1961 // Get the string length of the first string or give up. 1962 SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal); 1963 if (LeftLength.isUndef()) 1964 return; 1965 1966 // Get the string length of the second string or give up. 1967 SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal); 1968 if (RightLength.isUndef()) 1969 return; 1970 1971 // If we know the two buffers are the same, we know the result is 0. 1972 // First, get the two buffers' addresses. Another checker will have already 1973 // made sure they're not undefined. 1974 DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>(); 1975 DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>(); 1976 1977 // See if they are the same. 1978 SValBuilder &svalBuilder = C.getSValBuilder(); 1979 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1980 ProgramStateRef StSameBuf, StNotSameBuf; 1981 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1982 1983 // If the two arguments might be the same buffer, we know the result is 0, 1984 // and we only need to check one size. 1985 if (StSameBuf) { 1986 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1987 svalBuilder.makeZeroVal(CE->getType())); 1988 C.addTransition(StSameBuf); 1989 1990 // If the two arguments are GUARANTEED to be the same, we're done! 1991 if (!StNotSameBuf) 1992 return; 1993 } 1994 1995 assert(StNotSameBuf); 1996 state = StNotSameBuf; 1997 1998 // At this point we can go about comparing the two buffers. 1999 // For now, we only do this if they're both known string literals. 2000 2001 // Attempt to extract string literals from both expressions. 2002 const StringLiteral *LeftStrLiteral = 2003 getCStringLiteral(C, state, Left.Expression, LeftVal); 2004 const StringLiteral *RightStrLiteral = 2005 getCStringLiteral(C, state, Right.Expression, RightVal); 2006 bool canComputeResult = false; 2007 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 2008 C.blockCount()); 2009 2010 if (LeftStrLiteral && RightStrLiteral) { 2011 StringRef LeftStrRef = LeftStrLiteral->getString(); 2012 StringRef RightStrRef = RightStrLiteral->getString(); 2013 2014 if (IsBounded) { 2015 // Get the max number of characters to compare. 2016 const Expr *lenExpr = CE->getArg(2); 2017 SVal lenVal = state->getSVal(lenExpr, LCtx); 2018 2019 // If the length is known, we can get the right substrings. 2020 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 2021 // Create substrings of each to compare the prefix. 2022 LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue()); 2023 RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue()); 2024 canComputeResult = true; 2025 } 2026 } else { 2027 // This is a normal, unbounded strcmp. 2028 canComputeResult = true; 2029 } 2030 2031 if (canComputeResult) { 2032 // Real strcmp stops at null characters. 2033 size_t s1Term = LeftStrRef.find('\0'); 2034 if (s1Term != StringRef::npos) 2035 LeftStrRef = LeftStrRef.substr(0, s1Term); 2036 2037 size_t s2Term = RightStrRef.find('\0'); 2038 if (s2Term != StringRef::npos) 2039 RightStrRef = RightStrRef.substr(0, s2Term); 2040 2041 // Use StringRef's comparison methods to compute the actual result. 2042 int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef) 2043 : LeftStrRef.compare(RightStrRef); 2044 2045 // The strcmp function returns an integer greater than, equal to, or less 2046 // than zero, [c11, p7.24.4.2]. 2047 if (compareRes == 0) { 2048 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 2049 } 2050 else { 2051 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 2052 // Constrain strcmp's result range based on the result of StringRef's 2053 // comparison methods. 2054 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 2055 SVal compareWithZero = 2056 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2057 svalBuilder.getConditionType()); 2058 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2059 state = state->assume(compareWithZeroVal, true); 2060 } 2061 } 2062 } 2063 2064 state = state->BindExpr(CE, LCtx, resultVal); 2065 2066 // Record this as a possible path. 2067 C.addTransition(state); 2068 } 2069 2070 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 2071 //char *strsep(char **stringp, const char *delim); 2072 // Sanity: does the search string parameter match the return type? 2073 SourceArgExpr SearchStrPtr = {CE->getArg(0), 0}; 2074 2075 QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType(); 2076 if (CharPtrTy.isNull() || 2077 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 2078 return; 2079 2080 CurrentFunctionDescription = "strsep()"; 2081 ProgramStateRef State = C.getState(); 2082 const LocationContext *LCtx = C.getLocationContext(); 2083 2084 // Check that the search string pointer is non-null (though it may point to 2085 // a null string). 2086 SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx); 2087 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 2088 if (!State) 2089 return; 2090 2091 // Check that the delimiter string is non-null. 2092 AnyArgExpr DelimStr = {CE->getArg(1), 1}; 2093 SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx); 2094 State = checkNonNull(C, State, DelimStr, DelimStrVal); 2095 if (!State) 2096 return; 2097 2098 SValBuilder &SVB = C.getSValBuilder(); 2099 SVal Result; 2100 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2101 // Get the current value of the search string pointer, as a char*. 2102 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2103 2104 // Invalidate the search string, representing the change of one delimiter 2105 // character to NUL. 2106 State = InvalidateBuffer(C, State, SearchStrPtr.Expression, Result, 2107 /*IsSourceBuffer*/ false, nullptr); 2108 2109 // Overwrite the search string pointer. The new value is either an address 2110 // further along in the same string, or NULL if there are no more tokens. 2111 State = State->bindLoc(*SearchStrLoc, 2112 SVB.conjureSymbolVal(getTag(), 2113 CE, 2114 LCtx, 2115 CharPtrTy, 2116 C.blockCount()), 2117 LCtx); 2118 } else { 2119 assert(SearchStrVal.isUnknown()); 2120 // Conjure a symbolic value. It's the best we can do. 2121 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2122 } 2123 2124 // Set the return value, and finish. 2125 State = State->BindExpr(CE, LCtx, Result); 2126 C.addTransition(State); 2127 } 2128 2129 // These should probably be moved into a C++ standard library checker. 2130 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 2131 evalStdCopyCommon(C, CE); 2132 } 2133 2134 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2135 const CallExpr *CE) const { 2136 evalStdCopyCommon(C, CE); 2137 } 2138 2139 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2140 const CallExpr *CE) const { 2141 if (!CE->getArg(2)->getType()->isPointerType()) 2142 return; 2143 2144 ProgramStateRef State = C.getState(); 2145 2146 const LocationContext *LCtx = C.getLocationContext(); 2147 2148 // template <class _InputIterator, class _OutputIterator> 2149 // _OutputIterator 2150 // copy(_InputIterator __first, _InputIterator __last, 2151 // _OutputIterator __result) 2152 2153 // Invalidate the destination buffer 2154 const Expr *Dst = CE->getArg(2); 2155 SVal DstVal = State->getSVal(Dst, LCtx); 2156 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 2157 /*Size=*/nullptr); 2158 2159 SValBuilder &SVB = C.getSValBuilder(); 2160 2161 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2162 State = State->BindExpr(CE, LCtx, ResultVal); 2163 2164 C.addTransition(State); 2165 } 2166 2167 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2168 // void *memset(void *s, int c, size_t n); 2169 CurrentFunctionDescription = "memory set function"; 2170 2171 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2172 AnyArgExpr CharE = {CE->getArg(1), 1}; 2173 SizeArgExpr Size = {CE->getArg(2), 2}; 2174 2175 ProgramStateRef State = C.getState(); 2176 2177 // See if the size argument is zero. 2178 const LocationContext *LCtx = C.getLocationContext(); 2179 SVal SizeVal = C.getSVal(Size.Expression); 2180 QualType SizeTy = Size.Expression->getType(); 2181 2182 ProgramStateRef ZeroSize, NonZeroSize; 2183 std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy); 2184 2185 // Get the value of the memory area. 2186 SVal BufferPtrVal = C.getSVal(Buffer.Expression); 2187 2188 // If the size is zero, there won't be any actual memory access, so 2189 // just bind the return value to the buffer and return. 2190 if (ZeroSize && !NonZeroSize) { 2191 ZeroSize = ZeroSize->BindExpr(CE, LCtx, BufferPtrVal); 2192 C.addTransition(ZeroSize); 2193 return; 2194 } 2195 2196 // Ensure the memory area is not null. 2197 // If it is NULL there will be a NULL pointer dereference. 2198 State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal); 2199 if (!State) 2200 return; 2201 2202 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2203 if (!State) 2204 return; 2205 2206 // According to the values of the arguments, bind the value of the second 2207 // argument to the destination buffer and set string length, or just 2208 // invalidate the destination buffer. 2209 if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression), 2210 Size.Expression, C, State)) 2211 return; 2212 2213 State = State->BindExpr(CE, LCtx, BufferPtrVal); 2214 C.addTransition(State); 2215 } 2216 2217 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { 2218 CurrentFunctionDescription = "memory clearance function"; 2219 2220 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2221 SizeArgExpr Size = {CE->getArg(1), 1}; 2222 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2223 2224 ProgramStateRef State = C.getState(); 2225 2226 // See if the size argument is zero. 2227 SVal SizeVal = C.getSVal(Size.Expression); 2228 QualType SizeTy = Size.Expression->getType(); 2229 2230 ProgramStateRef StateZeroSize, StateNonZeroSize; 2231 std::tie(StateZeroSize, StateNonZeroSize) = 2232 assumeZero(C, State, SizeVal, SizeTy); 2233 2234 // If the size is zero, there won't be any actual memory access, 2235 // In this case we just return. 2236 if (StateZeroSize && !StateNonZeroSize) { 2237 C.addTransition(StateZeroSize); 2238 return; 2239 } 2240 2241 // Get the value of the memory area. 2242 SVal MemVal = C.getSVal(Buffer.Expression); 2243 2244 // Ensure the memory area is not null. 2245 // If it is NULL there will be a NULL pointer dereference. 2246 State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal); 2247 if (!State) 2248 return; 2249 2250 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2251 if (!State) 2252 return; 2253 2254 if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State)) 2255 return; 2256 2257 C.addTransition(State); 2258 } 2259 2260 //===----------------------------------------------------------------------===// 2261 // The driver method, and other Checker callbacks. 2262 //===----------------------------------------------------------------------===// 2263 2264 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, 2265 CheckerContext &C) const { 2266 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 2267 if (!CE) 2268 return nullptr; 2269 2270 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 2271 if (!FD) 2272 return nullptr; 2273 2274 if (Call.isCalled(StdCopy)) { 2275 return &CStringChecker::evalStdCopy; 2276 } else if (Call.isCalled(StdCopyBackward)) { 2277 return &CStringChecker::evalStdCopyBackward; 2278 } 2279 2280 // Pro-actively check that argument types are safe to do arithmetic upon. 2281 // We do not want to crash if someone accidentally passes a structure 2282 // into, say, a C++ overload of any of these functions. We could not check 2283 // that for std::copy because they may have arguments of other types. 2284 for (auto I : CE->arguments()) { 2285 QualType T = I->getType(); 2286 if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) 2287 return nullptr; 2288 } 2289 2290 const FnCheck *Callback = Callbacks.lookup(Call); 2291 if (Callback) 2292 return *Callback; 2293 2294 return nullptr; 2295 } 2296 2297 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { 2298 FnCheck Callback = identifyCall(Call, C); 2299 2300 // If the callee isn't a string function, let another checker handle it. 2301 if (!Callback) 2302 return false; 2303 2304 // Check and evaluate the call. 2305 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2306 (this->*Callback)(C, CE); 2307 2308 // If the evaluate call resulted in no change, chain to the next eval call 2309 // handler. 2310 // Note, the custom CString evaluation calls assume that basic safety 2311 // properties are held. However, if the user chooses to turn off some of these 2312 // checks, we ignore the issues and leave the call evaluation to a generic 2313 // handler. 2314 return C.isDifferent(); 2315 } 2316 2317 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2318 // Record string length for char a[] = "abc"; 2319 ProgramStateRef state = C.getState(); 2320 2321 for (const auto *I : DS->decls()) { 2322 const VarDecl *D = dyn_cast<VarDecl>(I); 2323 if (!D) 2324 continue; 2325 2326 // FIXME: Handle array fields of structs. 2327 if (!D->getType()->isArrayType()) 2328 continue; 2329 2330 const Expr *Init = D->getInit(); 2331 if (!Init) 2332 continue; 2333 if (!isa<StringLiteral>(Init)) 2334 continue; 2335 2336 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2337 const MemRegion *MR = VarLoc.getAsRegion(); 2338 if (!MR) 2339 continue; 2340 2341 SVal StrVal = C.getSVal(Init); 2342 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2343 DefinedOrUnknownSVal strLength = 2344 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2345 2346 state = state->set<CStringLength>(MR, strLength); 2347 } 2348 2349 C.addTransition(state); 2350 } 2351 2352 ProgramStateRef 2353 CStringChecker::checkRegionChanges(ProgramStateRef state, 2354 const InvalidatedSymbols *, 2355 ArrayRef<const MemRegion *> ExplicitRegions, 2356 ArrayRef<const MemRegion *> Regions, 2357 const LocationContext *LCtx, 2358 const CallEvent *Call) const { 2359 CStringLengthTy Entries = state->get<CStringLength>(); 2360 if (Entries.isEmpty()) 2361 return state; 2362 2363 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2364 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2365 2366 // First build sets for the changed regions and their super-regions. 2367 for (ArrayRef<const MemRegion *>::iterator 2368 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2369 const MemRegion *MR = *I; 2370 Invalidated.insert(MR); 2371 2372 SuperRegions.insert(MR); 2373 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2374 MR = SR->getSuperRegion(); 2375 SuperRegions.insert(MR); 2376 } 2377 } 2378 2379 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2380 2381 // Then loop over the entries in the current state. 2382 for (CStringLengthTy::iterator I = Entries.begin(), 2383 E = Entries.end(); I != E; ++I) { 2384 const MemRegion *MR = I.getKey(); 2385 2386 // Is this entry for a super-region of a changed region? 2387 if (SuperRegions.count(MR)) { 2388 Entries = F.remove(Entries, MR); 2389 continue; 2390 } 2391 2392 // Is this entry for a sub-region of a changed region? 2393 const MemRegion *Super = MR; 2394 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2395 Super = SR->getSuperRegion(); 2396 if (Invalidated.count(Super)) { 2397 Entries = F.remove(Entries, MR); 2398 break; 2399 } 2400 } 2401 } 2402 2403 return state->set<CStringLength>(Entries); 2404 } 2405 2406 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2407 SymbolReaper &SR) const { 2408 // Mark all symbols in our string length map as valid. 2409 CStringLengthTy Entries = state->get<CStringLength>(); 2410 2411 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2412 I != E; ++I) { 2413 SVal Len = I.getData(); 2414 2415 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2416 se = Len.symbol_end(); si != se; ++si) 2417 SR.markInUse(*si); 2418 } 2419 } 2420 2421 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2422 CheckerContext &C) const { 2423 ProgramStateRef state = C.getState(); 2424 CStringLengthTy Entries = state->get<CStringLength>(); 2425 if (Entries.isEmpty()) 2426 return; 2427 2428 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2429 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2430 I != E; ++I) { 2431 SVal Len = I.getData(); 2432 if (SymbolRef Sym = Len.getAsSymbol()) { 2433 if (SR.isDead(Sym)) 2434 Entries = F.remove(Entries, I.getKey()); 2435 } 2436 } 2437 2438 state = state->set<CStringLength>(Entries); 2439 C.addTransition(state); 2440 } 2441 2442 void ento::registerCStringModeling(CheckerManager &Mgr) { 2443 Mgr.registerChecker<CStringChecker>(); 2444 } 2445 2446 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) { 2447 return true; 2448 } 2449 2450 #define REGISTER_CHECKER(name) \ 2451 void ento::register##name(CheckerManager &mgr) { \ 2452 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ 2453 checker->Filter.Check##name = true; \ 2454 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \ 2455 } \ 2456 \ 2457 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 2458 2459 REGISTER_CHECKER(CStringNullArg) 2460 REGISTER_CHECKER(CStringOutOfBounds) 2461 REGISTER_CHECKER(CStringBufferOverlap) 2462 REGISTER_CHECKER(CStringNotNullTerm) 2463