xref: /freebsd/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This defines CStringChecker, which is an assortment of checks on calls
10 // to functions in <string.h>.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InterCheckerAPI.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
18 #include "clang/StaticAnalyzer/Core/Checker.h"
19 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 using namespace clang;
30 using namespace ento;
31 
32 namespace {
33 struct AnyArgExpr {
34   // FIXME: Remove constructor in C++17 to turn it into an aggregate.
35   AnyArgExpr(const Expr *Expression, unsigned ArgumentIndex)
36       : Expression{Expression}, ArgumentIndex{ArgumentIndex} {}
37   const Expr *Expression;
38   unsigned ArgumentIndex;
39 };
40 
41 struct SourceArgExpr : AnyArgExpr {
42   using AnyArgExpr::AnyArgExpr; // FIXME: Remove using in C++17.
43 };
44 
45 struct DestinationArgExpr : AnyArgExpr {
46   using AnyArgExpr::AnyArgExpr; // FIXME: Same.
47 };
48 
49 struct SizeArgExpr : AnyArgExpr {
50   using AnyArgExpr::AnyArgExpr; // FIXME: Same.
51 };
52 
53 using ErrorMessage = SmallString<128>;
54 enum class AccessKind { write, read };
55 
56 static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription,
57                                              AccessKind Access) {
58   ErrorMessage Message;
59   llvm::raw_svector_ostream Os(Message);
60 
61   // Function classification like: Memory copy function
62   Os << toUppercase(FunctionDescription.front())
63      << &FunctionDescription.data()[1];
64 
65   if (Access == AccessKind::write) {
66     Os << " overflows the destination buffer";
67   } else { // read access
68     Os << " accesses out-of-bound array element";
69   }
70 
71   return Message;
72 }
73 
74 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 };
75 class CStringChecker : public Checker< eval::Call,
76                                          check::PreStmt<DeclStmt>,
77                                          check::LiveSymbols,
78                                          check::DeadSymbols,
79                                          check::RegionChanges
80                                          > {
81   mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
82       BT_NotCString, BT_AdditionOverflow;
83 
84   mutable const char *CurrentFunctionDescription;
85 
86 public:
87   /// The filter is used to filter out the diagnostics which are not enabled by
88   /// the user.
89   struct CStringChecksFilter {
90     DefaultBool CheckCStringNullArg;
91     DefaultBool CheckCStringOutOfBounds;
92     DefaultBool CheckCStringBufferOverlap;
93     DefaultBool CheckCStringNotNullTerm;
94 
95     CheckerNameRef CheckNameCStringNullArg;
96     CheckerNameRef CheckNameCStringOutOfBounds;
97     CheckerNameRef CheckNameCStringBufferOverlap;
98     CheckerNameRef CheckNameCStringNotNullTerm;
99   };
100 
101   CStringChecksFilter Filter;
102 
103   static void *getTag() { static int tag; return &tag; }
104 
105   bool evalCall(const CallEvent &Call, CheckerContext &C) const;
106   void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
107   void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
108   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
109 
110   ProgramStateRef
111     checkRegionChanges(ProgramStateRef state,
112                        const InvalidatedSymbols *,
113                        ArrayRef<const MemRegion *> ExplicitRegions,
114                        ArrayRef<const MemRegion *> Regions,
115                        const LocationContext *LCtx,
116                        const CallEvent *Call) const;
117 
118   typedef void (CStringChecker::*FnCheck)(CheckerContext &,
119                                           const CallExpr *) const;
120   CallDescriptionMap<FnCheck> Callbacks = {
121       {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy},
122       {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy},
123       {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp},
124       {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove},
125       {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset},
126       {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset},
127       {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy},
128       {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy},
129       {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy},
130       {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy},
131       {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat},
132       {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat},
133       {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat},
134       {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength},
135       {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength},
136       {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp},
137       {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp},
138       {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp},
139       {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp},
140       {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep},
141       {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy},
142       {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp},
143       {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero},
144       {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero},
145   };
146 
147   // These require a bit of special handling.
148   CallDescription StdCopy{{"std", "copy"}, 3},
149       StdCopyBackward{{"std", "copy_backward"}, 3};
150 
151   FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const;
152   void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
153   void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
154   void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
155   void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
156   void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
157                       ProgramStateRef state, SizeArgExpr Size,
158                       DestinationArgExpr Dest, SourceArgExpr Source,
159                       bool Restricted, bool IsMempcpy) const;
160 
161   void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
162 
163   void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
164   void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
165   void evalstrLengthCommon(CheckerContext &C,
166                            const CallExpr *CE,
167                            bool IsStrnlen = false) const;
168 
169   void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
170   void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
171   void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
172   void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const;
173   void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd,
174                         bool IsBounded, ConcatFnKind appendK,
175                         bool returnPtr = true) const;
176 
177   void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
178   void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
179   void evalStrlcat(CheckerContext &C, const CallExpr *CE) const;
180 
181   void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
182   void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
183   void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
184   void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
185   void evalStrcmpCommon(CheckerContext &C,
186                         const CallExpr *CE,
187                         bool IsBounded = false,
188                         bool IgnoreCase = false) const;
189 
190   void evalStrsep(CheckerContext &C, const CallExpr *CE) const;
191 
192   void evalStdCopy(CheckerContext &C, const CallExpr *CE) const;
193   void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const;
194   void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const;
195   void evalMemset(CheckerContext &C, const CallExpr *CE) const;
196   void evalBzero(CheckerContext &C, const CallExpr *CE) const;
197 
198   // Utility methods
199   std::pair<ProgramStateRef , ProgramStateRef >
200   static assumeZero(CheckerContext &C,
201                     ProgramStateRef state, SVal V, QualType Ty);
202 
203   static ProgramStateRef setCStringLength(ProgramStateRef state,
204                                               const MemRegion *MR,
205                                               SVal strLength);
206   static SVal getCStringLengthForRegion(CheckerContext &C,
207                                         ProgramStateRef &state,
208                                         const Expr *Ex,
209                                         const MemRegion *MR,
210                                         bool hypothetical);
211   SVal getCStringLength(CheckerContext &C,
212                         ProgramStateRef &state,
213                         const Expr *Ex,
214                         SVal Buf,
215                         bool hypothetical = false) const;
216 
217   const StringLiteral *getCStringLiteral(CheckerContext &C,
218                                          ProgramStateRef &state,
219                                          const Expr *expr,
220                                          SVal val) const;
221 
222   static ProgramStateRef InvalidateBuffer(CheckerContext &C,
223                                           ProgramStateRef state,
224                                           const Expr *Ex, SVal V,
225                                           bool IsSourceBuffer,
226                                           const Expr *Size);
227 
228   static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
229                               const MemRegion *MR);
230 
231   static bool memsetAux(const Expr *DstBuffer, SVal CharE,
232                         const Expr *Size, CheckerContext &C,
233                         ProgramStateRef &State);
234 
235   // Re-usable checks
236   ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State,
237                                AnyArgExpr Arg, SVal l) const;
238   ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state,
239                                 AnyArgExpr Buffer, SVal Element,
240                                 AccessKind Access) const;
241   ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State,
242                                     AnyArgExpr Buffer, SizeArgExpr Size,
243                                     AccessKind Access) const;
244   ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state,
245                                SizeArgExpr Size, AnyArgExpr First,
246                                AnyArgExpr Second) const;
247   void emitOverlapBug(CheckerContext &C,
248                       ProgramStateRef state,
249                       const Stmt *First,
250                       const Stmt *Second) const;
251 
252   void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S,
253                       StringRef WarningMsg) const;
254   void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State,
255                           const Stmt *S, StringRef WarningMsg) const;
256   void emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
257                          const Stmt *S, StringRef WarningMsg) const;
258   void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const;
259 
260   ProgramStateRef checkAdditionOverflow(CheckerContext &C,
261                                             ProgramStateRef state,
262                                             NonLoc left,
263                                             NonLoc right) const;
264 
265   // Return true if the destination buffer of the copy function may be in bound.
266   // Expects SVal of Size to be positive and unsigned.
267   // Expects SVal of FirstBuf to be a FieldRegion.
268   static bool IsFirstBufInBound(CheckerContext &C,
269                                 ProgramStateRef state,
270                                 const Expr *FirstBuf,
271                                 const Expr *Size);
272 };
273 
274 } //end anonymous namespace
275 
276 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
277 
278 //===----------------------------------------------------------------------===//
279 // Individual checks and utility methods.
280 //===----------------------------------------------------------------------===//
281 
282 std::pair<ProgramStateRef , ProgramStateRef >
283 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
284                            QualType Ty) {
285   Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
286   if (!val)
287     return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
288 
289   SValBuilder &svalBuilder = C.getSValBuilder();
290   DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
291   return state->assume(svalBuilder.evalEQ(state, *val, zero));
292 }
293 
294 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
295                                              ProgramStateRef State,
296                                              AnyArgExpr Arg, SVal l) const {
297   // If a previous check has failed, propagate the failure.
298   if (!State)
299     return nullptr;
300 
301   ProgramStateRef stateNull, stateNonNull;
302   std::tie(stateNull, stateNonNull) =
303       assumeZero(C, State, l, Arg.Expression->getType());
304 
305   if (stateNull && !stateNonNull) {
306     if (Filter.CheckCStringNullArg) {
307       SmallString<80> buf;
308       llvm::raw_svector_ostream OS(buf);
309       assert(CurrentFunctionDescription);
310       OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1)
311          << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to "
312          << CurrentFunctionDescription;
313 
314       emitNullArgBug(C, stateNull, Arg.Expression, OS.str());
315     }
316     return nullptr;
317   }
318 
319   // From here on, assume that the value is non-null.
320   assert(stateNonNull);
321   return stateNonNull;
322 }
323 
324 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
325 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
326                                               ProgramStateRef state,
327                                               AnyArgExpr Buffer, SVal Element,
328                                               AccessKind Access) const {
329 
330   // If a previous check has failed, propagate the failure.
331   if (!state)
332     return nullptr;
333 
334   // Check for out of bound array element access.
335   const MemRegion *R = Element.getAsRegion();
336   if (!R)
337     return state;
338 
339   const auto *ER = dyn_cast<ElementRegion>(R);
340   if (!ER)
341     return state;
342 
343   if (ER->getValueType() != C.getASTContext().CharTy)
344     return state;
345 
346   // Get the size of the array.
347   const auto *superReg = cast<SubRegion>(ER->getSuperRegion());
348   DefinedOrUnknownSVal Size =
349       getDynamicExtent(state, superReg, C.getSValBuilder());
350 
351   // Get the index of the accessed element.
352   DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
353 
354   ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
355   ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
356   if (StOutBound && !StInBound) {
357     // These checks are either enabled by the CString out-of-bounds checker
358     // explicitly or implicitly by the Malloc checker.
359     // In the latter case we only do modeling but do not emit warning.
360     if (!Filter.CheckCStringOutOfBounds)
361       return nullptr;
362 
363     // Emit a bug report.
364     ErrorMessage Message =
365         createOutOfBoundErrorMsg(CurrentFunctionDescription, Access);
366     emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message);
367     return nullptr;
368   }
369 
370   // Array bound check succeeded.  From this point forward the array bound
371   // should always succeed.
372   return StInBound;
373 }
374 
375 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
376                                                   ProgramStateRef State,
377                                                   AnyArgExpr Buffer,
378                                                   SizeArgExpr Size,
379                                                   AccessKind Access) const {
380   // If a previous check has failed, propagate the failure.
381   if (!State)
382     return nullptr;
383 
384   SValBuilder &svalBuilder = C.getSValBuilder();
385   ASTContext &Ctx = svalBuilder.getContext();
386 
387   QualType SizeTy = Size.Expression->getType();
388   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
389 
390   // Check that the first buffer is non-null.
391   SVal BufVal = C.getSVal(Buffer.Expression);
392   State = checkNonNull(C, State, Buffer, BufVal);
393   if (!State)
394     return nullptr;
395 
396   // If out-of-bounds checking is turned off, skip the rest.
397   if (!Filter.CheckCStringOutOfBounds)
398     return State;
399 
400   // Get the access length and make sure it is known.
401   // FIXME: This assumes the caller has already checked that the access length
402   // is positive. And that it's unsigned.
403   SVal LengthVal = C.getSVal(Size.Expression);
404   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
405   if (!Length)
406     return State;
407 
408   // Compute the offset of the last element to be accessed: size-1.
409   NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>();
410   SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy);
411   if (Offset.isUnknown())
412     return nullptr;
413   NonLoc LastOffset = Offset.castAs<NonLoc>();
414 
415   // Check that the first buffer is sufficiently long.
416   SVal BufStart =
417       svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType());
418   if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
419 
420     SVal BufEnd =
421         svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy);
422 
423     State = CheckLocation(C, State, Buffer, BufEnd, Access);
424 
425     // If the buffer isn't large enough, abort.
426     if (!State)
427       return nullptr;
428   }
429 
430   // Large enough or not, return this state!
431   return State;
432 }
433 
434 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
435                                              ProgramStateRef state,
436                                              SizeArgExpr Size, AnyArgExpr First,
437                                              AnyArgExpr Second) const {
438   if (!Filter.CheckCStringBufferOverlap)
439     return state;
440 
441   // Do a simple check for overlap: if the two arguments are from the same
442   // buffer, see if the end of the first is greater than the start of the second
443   // or vice versa.
444 
445   // If a previous check has failed, propagate the failure.
446   if (!state)
447     return nullptr;
448 
449   ProgramStateRef stateTrue, stateFalse;
450 
451   // Get the buffer values and make sure they're known locations.
452   const LocationContext *LCtx = C.getLocationContext();
453   SVal firstVal = state->getSVal(First.Expression, LCtx);
454   SVal secondVal = state->getSVal(Second.Expression, LCtx);
455 
456   Optional<Loc> firstLoc = firstVal.getAs<Loc>();
457   if (!firstLoc)
458     return state;
459 
460   Optional<Loc> secondLoc = secondVal.getAs<Loc>();
461   if (!secondLoc)
462     return state;
463 
464   // Are the two values the same?
465   SValBuilder &svalBuilder = C.getSValBuilder();
466   std::tie(stateTrue, stateFalse) =
467       state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
468 
469   if (stateTrue && !stateFalse) {
470     // If the values are known to be equal, that's automatically an overlap.
471     emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
472     return nullptr;
473   }
474 
475   // assume the two expressions are not equal.
476   assert(stateFalse);
477   state = stateFalse;
478 
479   // Which value comes first?
480   QualType cmpTy = svalBuilder.getConditionType();
481   SVal reverse =
482       svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy);
483   Optional<DefinedOrUnknownSVal> reverseTest =
484       reverse.getAs<DefinedOrUnknownSVal>();
485   if (!reverseTest)
486     return state;
487 
488   std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
489   if (stateTrue) {
490     if (stateFalse) {
491       // If we don't know which one comes first, we can't perform this test.
492       return state;
493     } else {
494       // Switch the values so that firstVal is before secondVal.
495       std::swap(firstLoc, secondLoc);
496 
497       // Switch the Exprs as well, so that they still correspond.
498       std::swap(First, Second);
499     }
500   }
501 
502   // Get the length, and make sure it too is known.
503   SVal LengthVal = state->getSVal(Size.Expression, LCtx);
504   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
505   if (!Length)
506     return state;
507 
508   // Convert the first buffer's start address to char*.
509   // Bail out if the cast fails.
510   ASTContext &Ctx = svalBuilder.getContext();
511   QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
512   SVal FirstStart =
513       svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType());
514   Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
515   if (!FirstStartLoc)
516     return state;
517 
518   // Compute the end of the first buffer. Bail out if THAT fails.
519   SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc,
520                                           *Length, CharPtrTy);
521   Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
522   if (!FirstEndLoc)
523     return state;
524 
525   // Is the end of the first buffer past the start of the second buffer?
526   SVal Overlap =
527       svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy);
528   Optional<DefinedOrUnknownSVal> OverlapTest =
529       Overlap.getAs<DefinedOrUnknownSVal>();
530   if (!OverlapTest)
531     return state;
532 
533   std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
534 
535   if (stateTrue && !stateFalse) {
536     // Overlap!
537     emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
538     return nullptr;
539   }
540 
541   // assume the two expressions don't overlap.
542   assert(stateFalse);
543   return stateFalse;
544 }
545 
546 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
547                                   const Stmt *First, const Stmt *Second) const {
548   ExplodedNode *N = C.generateErrorNode(state);
549   if (!N)
550     return;
551 
552   if (!BT_Overlap)
553     BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
554                                  categories::UnixAPI, "Improper arguments"));
555 
556   // Generate a report for this bug.
557   auto report = std::make_unique<PathSensitiveBugReport>(
558       *BT_Overlap, "Arguments must not be overlapping buffers", N);
559   report->addRange(First->getSourceRange());
560   report->addRange(Second->getSourceRange());
561 
562   C.emitReport(std::move(report));
563 }
564 
565 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State,
566                                     const Stmt *S, StringRef WarningMsg) const {
567   if (ExplodedNode *N = C.generateErrorNode(State)) {
568     if (!BT_Null)
569       BT_Null.reset(new BuiltinBug(
570           Filter.CheckNameCStringNullArg, categories::UnixAPI,
571           "Null pointer argument in call to byte string function"));
572 
573     BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get());
574     auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
575     Report->addRange(S->getSourceRange());
576     if (const auto *Ex = dyn_cast<Expr>(S))
577       bugreporter::trackExpressionValue(N, Ex, *Report);
578     C.emitReport(std::move(Report));
579   }
580 }
581 
582 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C,
583                                         ProgramStateRef State, const Stmt *S,
584                                         StringRef WarningMsg) const {
585   if (ExplodedNode *N = C.generateErrorNode(State)) {
586     if (!BT_Bounds)
587       BT_Bounds.reset(new BuiltinBug(
588           Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds
589                                          : Filter.CheckNameCStringNullArg,
590           "Out-of-bound array access",
591           "Byte string function accesses out-of-bound array element"));
592 
593     BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get());
594 
595     // FIXME: It would be nice to eventually make this diagnostic more clear,
596     // e.g., by referencing the original declaration or by saying *why* this
597     // reference is outside the range.
598     auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
599     Report->addRange(S->getSourceRange());
600     C.emitReport(std::move(Report));
601   }
602 }
603 
604 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
605                                        const Stmt *S,
606                                        StringRef WarningMsg) const {
607   if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) {
608     if (!BT_NotCString)
609       BT_NotCString.reset(new BuiltinBug(
610           Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
611           "Argument is not a null-terminated string."));
612 
613     auto Report =
614         std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
615 
616     Report->addRange(S->getSourceRange());
617     C.emitReport(std::move(Report));
618   }
619 }
620 
621 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C,
622                                              ProgramStateRef State) const {
623   if (ExplodedNode *N = C.generateErrorNode(State)) {
624     if (!BT_NotCString)
625       BT_NotCString.reset(
626           new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API",
627                          "Sum of expressions causes overflow."));
628 
629     // This isn't a great error message, but this should never occur in real
630     // code anyway -- you'd have to create a buffer longer than a size_t can
631     // represent, which is sort of a contradiction.
632     const char *WarningMsg =
633         "This expression will create a string whose length is too big to "
634         "be represented as a size_t";
635 
636     auto Report =
637         std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
638     C.emitReport(std::move(Report));
639   }
640 }
641 
642 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
643                                                      ProgramStateRef state,
644                                                      NonLoc left,
645                                                      NonLoc right) const {
646   // If out-of-bounds checking is turned off, skip the rest.
647   if (!Filter.CheckCStringOutOfBounds)
648     return state;
649 
650   // If a previous check has failed, propagate the failure.
651   if (!state)
652     return nullptr;
653 
654   SValBuilder &svalBuilder = C.getSValBuilder();
655   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
656 
657   QualType sizeTy = svalBuilder.getContext().getSizeType();
658   const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
659   NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
660 
661   SVal maxMinusRight;
662   if (right.getAs<nonloc::ConcreteInt>()) {
663     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
664                                                  sizeTy);
665   } else {
666     // Try switching the operands. (The order of these two assignments is
667     // important!)
668     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
669                                             sizeTy);
670     left = right;
671   }
672 
673   if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
674     QualType cmpTy = svalBuilder.getConditionType();
675     // If left > max - right, we have an overflow.
676     SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
677                                                 *maxMinusRightNL, cmpTy);
678 
679     ProgramStateRef stateOverflow, stateOkay;
680     std::tie(stateOverflow, stateOkay) =
681       state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
682 
683     if (stateOverflow && !stateOkay) {
684       // We have an overflow. Emit a bug report.
685       emitAdditionOverflowBug(C, stateOverflow);
686       return nullptr;
687     }
688 
689     // From now on, assume an overflow didn't occur.
690     assert(stateOkay);
691     state = stateOkay;
692   }
693 
694   return state;
695 }
696 
697 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
698                                                 const MemRegion *MR,
699                                                 SVal strLength) {
700   assert(!strLength.isUndef() && "Attempt to set an undefined string length");
701 
702   MR = MR->StripCasts();
703 
704   switch (MR->getKind()) {
705   case MemRegion::StringRegionKind:
706     // FIXME: This can happen if we strcpy() into a string region. This is
707     // undefined [C99 6.4.5p6], but we should still warn about it.
708     return state;
709 
710   case MemRegion::SymbolicRegionKind:
711   case MemRegion::AllocaRegionKind:
712   case MemRegion::NonParamVarRegionKind:
713   case MemRegion::ParamVarRegionKind:
714   case MemRegion::FieldRegionKind:
715   case MemRegion::ObjCIvarRegionKind:
716     // These are the types we can currently track string lengths for.
717     break;
718 
719   case MemRegion::ElementRegionKind:
720     // FIXME: Handle element regions by upper-bounding the parent region's
721     // string length.
722     return state;
723 
724   default:
725     // Other regions (mostly non-data) can't have a reliable C string length.
726     // For now, just ignore the change.
727     // FIXME: These are rare but not impossible. We should output some kind of
728     // warning for things like strcpy((char[]){'a', 0}, "b");
729     return state;
730   }
731 
732   if (strLength.isUnknown())
733     return state->remove<CStringLength>(MR);
734 
735   return state->set<CStringLength>(MR, strLength);
736 }
737 
738 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
739                                                ProgramStateRef &state,
740                                                const Expr *Ex,
741                                                const MemRegion *MR,
742                                                bool hypothetical) {
743   if (!hypothetical) {
744     // If there's a recorded length, go ahead and return it.
745     const SVal *Recorded = state->get<CStringLength>(MR);
746     if (Recorded)
747       return *Recorded;
748   }
749 
750   // Otherwise, get a new symbol and update the state.
751   SValBuilder &svalBuilder = C.getSValBuilder();
752   QualType sizeTy = svalBuilder.getContext().getSizeType();
753   SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
754                                                     MR, Ex, sizeTy,
755                                                     C.getLocationContext(),
756                                                     C.blockCount());
757 
758   if (!hypothetical) {
759     if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
760       // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
761       BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
762       const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
763       llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
764       const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
765                                                         fourInt);
766       NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
767       SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn,
768                                                 maxLength, sizeTy);
769       state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
770     }
771     state = state->set<CStringLength>(MR, strLength);
772   }
773 
774   return strLength;
775 }
776 
777 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
778                                       const Expr *Ex, SVal Buf,
779                                       bool hypothetical) const {
780   const MemRegion *MR = Buf.getAsRegion();
781   if (!MR) {
782     // If we can't get a region, see if it's something we /know/ isn't a
783     // C string. In the context of locations, the only time we can issue such
784     // a warning is for labels.
785     if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
786       if (Filter.CheckCStringNotNullTerm) {
787         SmallString<120> buf;
788         llvm::raw_svector_ostream os(buf);
789         assert(CurrentFunctionDescription);
790         os << "Argument to " << CurrentFunctionDescription
791            << " is the address of the label '" << Label->getLabel()->getName()
792            << "', which is not a null-terminated string";
793 
794         emitNotCStringBug(C, state, Ex, os.str());
795       }
796       return UndefinedVal();
797     }
798 
799     // If it's not a region and not a label, give up.
800     return UnknownVal();
801   }
802 
803   // If we have a region, strip casts from it and see if we can figure out
804   // its length. For anything we can't figure out, just return UnknownVal.
805   MR = MR->StripCasts();
806 
807   switch (MR->getKind()) {
808   case MemRegion::StringRegionKind: {
809     // Modifying the contents of string regions is undefined [C99 6.4.5p6],
810     // so we can assume that the byte length is the correct C string length.
811     SValBuilder &svalBuilder = C.getSValBuilder();
812     QualType sizeTy = svalBuilder.getContext().getSizeType();
813     const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
814     return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
815   }
816   case MemRegion::SymbolicRegionKind:
817   case MemRegion::AllocaRegionKind:
818   case MemRegion::NonParamVarRegionKind:
819   case MemRegion::ParamVarRegionKind:
820   case MemRegion::FieldRegionKind:
821   case MemRegion::ObjCIvarRegionKind:
822     return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
823   case MemRegion::CompoundLiteralRegionKind:
824     // FIXME: Can we track this? Is it necessary?
825     return UnknownVal();
826   case MemRegion::ElementRegionKind:
827     // FIXME: How can we handle this? It's not good enough to subtract the
828     // offset from the base string length; consider "123\x00567" and &a[5].
829     return UnknownVal();
830   default:
831     // Other regions (mostly non-data) can't have a reliable C string length.
832     // In this case, an error is emitted and UndefinedVal is returned.
833     // The caller should always be prepared to handle this case.
834     if (Filter.CheckCStringNotNullTerm) {
835       SmallString<120> buf;
836       llvm::raw_svector_ostream os(buf);
837 
838       assert(CurrentFunctionDescription);
839       os << "Argument to " << CurrentFunctionDescription << " is ";
840 
841       if (SummarizeRegion(os, C.getASTContext(), MR))
842         os << ", which is not a null-terminated string";
843       else
844         os << "not a null-terminated string";
845 
846       emitNotCStringBug(C, state, Ex, os.str());
847     }
848     return UndefinedVal();
849   }
850 }
851 
852 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
853   ProgramStateRef &state, const Expr *expr, SVal val) const {
854 
855   // Get the memory region pointed to by the val.
856   const MemRegion *bufRegion = val.getAsRegion();
857   if (!bufRegion)
858     return nullptr;
859 
860   // Strip casts off the memory region.
861   bufRegion = bufRegion->StripCasts();
862 
863   // Cast the memory region to a string region.
864   const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
865   if (!strRegion)
866     return nullptr;
867 
868   // Return the actual string in the string region.
869   return strRegion->getStringLiteral();
870 }
871 
872 bool CStringChecker::IsFirstBufInBound(CheckerContext &C,
873                                        ProgramStateRef state,
874                                        const Expr *FirstBuf,
875                                        const Expr *Size) {
876   // If we do not know that the buffer is long enough we return 'true'.
877   // Otherwise the parent region of this field region would also get
878   // invalidated, which would lead to warnings based on an unknown state.
879 
880   // Originally copied from CheckBufferAccess and CheckLocation.
881   SValBuilder &svalBuilder = C.getSValBuilder();
882   ASTContext &Ctx = svalBuilder.getContext();
883   const LocationContext *LCtx = C.getLocationContext();
884 
885   QualType sizeTy = Size->getType();
886   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
887   SVal BufVal = state->getSVal(FirstBuf, LCtx);
888 
889   SVal LengthVal = state->getSVal(Size, LCtx);
890   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
891   if (!Length)
892     return true; // cf top comment.
893 
894   // Compute the offset of the last element to be accessed: size-1.
895   NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
896   SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy);
897   if (Offset.isUnknown())
898     return true; // cf top comment
899   NonLoc LastOffset = Offset.castAs<NonLoc>();
900 
901   // Check that the first buffer is sufficiently long.
902   SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
903   Optional<Loc> BufLoc = BufStart.getAs<Loc>();
904   if (!BufLoc)
905     return true; // cf top comment.
906 
907   SVal BufEnd =
908       svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy);
909 
910   // Check for out of bound array element access.
911   const MemRegion *R = BufEnd.getAsRegion();
912   if (!R)
913     return true; // cf top comment.
914 
915   const ElementRegion *ER = dyn_cast<ElementRegion>(R);
916   if (!ER)
917     return true; // cf top comment.
918 
919   // FIXME: Does this crash when a non-standard definition
920   // of a library function is encountered?
921   assert(ER->getValueType() == C.getASTContext().CharTy &&
922          "IsFirstBufInBound should only be called with char* ElementRegions");
923 
924   // Get the size of the array.
925   const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
926   DefinedOrUnknownSVal SizeDV = getDynamicExtent(state, superReg, svalBuilder);
927 
928   // Get the index of the accessed element.
929   DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
930 
931   ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true);
932 
933   return static_cast<bool>(StInBound);
934 }
935 
936 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
937                                                  ProgramStateRef state,
938                                                  const Expr *E, SVal V,
939                                                  bool IsSourceBuffer,
940                                                  const Expr *Size) {
941   Optional<Loc> L = V.getAs<Loc>();
942   if (!L)
943     return state;
944 
945   // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
946   // some assumptions about the value that CFRefCount can't. Even so, it should
947   // probably be refactored.
948   if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
949     const MemRegion *R = MR->getRegion()->StripCasts();
950 
951     // Are we dealing with an ElementRegion?  If so, we should be invalidating
952     // the super-region.
953     if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
954       R = ER->getSuperRegion();
955       // FIXME: What about layers of ElementRegions?
956     }
957 
958     // Invalidate this region.
959     const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
960 
961     bool CausesPointerEscape = false;
962     RegionAndSymbolInvalidationTraits ITraits;
963     // Invalidate and escape only indirect regions accessible through the source
964     // buffer.
965     if (IsSourceBuffer) {
966       ITraits.setTrait(R->getBaseRegion(),
967                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
968       ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
969       CausesPointerEscape = true;
970     } else {
971       const MemRegion::Kind& K = R->getKind();
972       if (K == MemRegion::FieldRegionKind)
973         if (Size && IsFirstBufInBound(C, state, E, Size)) {
974           // If destination buffer is a field region and access is in bound,
975           // do not invalidate its super region.
976           ITraits.setTrait(
977               R,
978               RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
979         }
980     }
981 
982     return state->invalidateRegions(R, E, C.blockCount(), LCtx,
983                                     CausesPointerEscape, nullptr, nullptr,
984                                     &ITraits);
985   }
986 
987   // If we have a non-region value by chance, just remove the binding.
988   // FIXME: is this necessary or correct? This handles the non-Region
989   //  cases.  Is it ever valid to store to these?
990   return state->killBinding(*L);
991 }
992 
993 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
994                                      const MemRegion *MR) {
995   switch (MR->getKind()) {
996   case MemRegion::FunctionCodeRegionKind: {
997     if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl())
998       os << "the address of the function '" << *FD << '\'';
999     else
1000       os << "the address of a function";
1001     return true;
1002   }
1003   case MemRegion::BlockCodeRegionKind:
1004     os << "block text";
1005     return true;
1006   case MemRegion::BlockDataRegionKind:
1007     os << "a block";
1008     return true;
1009   case MemRegion::CXXThisRegionKind:
1010   case MemRegion::CXXTempObjectRegionKind:
1011     os << "a C++ temp object of type "
1012        << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1013     return true;
1014   case MemRegion::NonParamVarRegionKind:
1015     os << "a variable of type"
1016        << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1017     return true;
1018   case MemRegion::ParamVarRegionKind:
1019     os << "a parameter of type"
1020        << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1021     return true;
1022   case MemRegion::FieldRegionKind:
1023     os << "a field of type "
1024        << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1025     return true;
1026   case MemRegion::ObjCIvarRegionKind:
1027     os << "an instance variable of type "
1028        << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1029     return true;
1030   default:
1031     return false;
1032   }
1033 }
1034 
1035 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal,
1036                                const Expr *Size, CheckerContext &C,
1037                                ProgramStateRef &State) {
1038   SVal MemVal = C.getSVal(DstBuffer);
1039   SVal SizeVal = C.getSVal(Size);
1040   const MemRegion *MR = MemVal.getAsRegion();
1041   if (!MR)
1042     return false;
1043 
1044   // We're about to model memset by producing a "default binding" in the Store.
1045   // Our current implementation - RegionStore - doesn't support default bindings
1046   // that don't cover the whole base region. So we should first get the offset
1047   // and the base region to figure out whether the offset of buffer is 0.
1048   RegionOffset Offset = MR->getAsOffset();
1049   const MemRegion *BR = Offset.getRegion();
1050 
1051   Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>();
1052   if (!SizeNL)
1053     return false;
1054 
1055   SValBuilder &svalBuilder = C.getSValBuilder();
1056   ASTContext &Ctx = C.getASTContext();
1057 
1058   // void *memset(void *dest, int ch, size_t count);
1059   // For now we can only handle the case of offset is 0 and concrete char value.
1060   if (Offset.isValid() && !Offset.hasSymbolicOffset() &&
1061       Offset.getOffset() == 0) {
1062     // Get the base region's size.
1063     DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder);
1064 
1065     ProgramStateRef StateWholeReg, StateNotWholeReg;
1066     std::tie(StateWholeReg, StateNotWholeReg) =
1067         State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL));
1068 
1069     // With the semantic of 'memset()', we should convert the CharVal to
1070     // unsigned char.
1071     CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy);
1072 
1073     ProgramStateRef StateNullChar, StateNonNullChar;
1074     std::tie(StateNullChar, StateNonNullChar) =
1075         assumeZero(C, State, CharVal, Ctx.UnsignedCharTy);
1076 
1077     if (StateWholeReg && !StateNotWholeReg && StateNullChar &&
1078         !StateNonNullChar) {
1079       // If the 'memset()' acts on the whole region of destination buffer and
1080       // the value of the second argument of 'memset()' is zero, bind the second
1081       // argument's value to the destination buffer with 'default binding'.
1082       // FIXME: Since there is no perfect way to bind the non-zero character, we
1083       // can only deal with zero value here. In the future, we need to deal with
1084       // the binding of non-zero value in the case of whole region.
1085       State = State->bindDefaultZero(svalBuilder.makeLoc(BR),
1086                                      C.getLocationContext());
1087     } else {
1088       // If the destination buffer's extent is not equal to the value of
1089       // third argument, just invalidate buffer.
1090       State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1091                                /*IsSourceBuffer*/ false, Size);
1092     }
1093 
1094     if (StateNullChar && !StateNonNullChar) {
1095       // If the value of the second argument of 'memset()' is zero, set the
1096       // string length of destination buffer to 0 directly.
1097       State = setCStringLength(State, MR,
1098                                svalBuilder.makeZeroVal(Ctx.getSizeType()));
1099     } else if (!StateNullChar && StateNonNullChar) {
1100       SVal NewStrLen = svalBuilder.getMetadataSymbolVal(
1101           CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(),
1102           C.getLocationContext(), C.blockCount());
1103 
1104       // If the value of second argument is not zero, then the string length
1105       // is at least the size argument.
1106       SVal NewStrLenGESize = svalBuilder.evalBinOp(
1107           State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType());
1108 
1109       State = setCStringLength(
1110           State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true),
1111           MR, NewStrLen);
1112     }
1113   } else {
1114     // If the offset is not zero and char value is not concrete, we can do
1115     // nothing but invalidate the buffer.
1116     State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1117                              /*IsSourceBuffer*/ false, Size);
1118   }
1119   return true;
1120 }
1121 
1122 //===----------------------------------------------------------------------===//
1123 // evaluation of individual function calls.
1124 //===----------------------------------------------------------------------===//
1125 
1126 void CStringChecker::evalCopyCommon(CheckerContext &C, const CallExpr *CE,
1127                                     ProgramStateRef state, SizeArgExpr Size,
1128                                     DestinationArgExpr Dest,
1129                                     SourceArgExpr Source, bool Restricted,
1130                                     bool IsMempcpy) const {
1131   CurrentFunctionDescription = "memory copy function";
1132 
1133   // See if the size argument is zero.
1134   const LocationContext *LCtx = C.getLocationContext();
1135   SVal sizeVal = state->getSVal(Size.Expression, LCtx);
1136   QualType sizeTy = Size.Expression->getType();
1137 
1138   ProgramStateRef stateZeroSize, stateNonZeroSize;
1139   std::tie(stateZeroSize, stateNonZeroSize) =
1140       assumeZero(C, state, sizeVal, sizeTy);
1141 
1142   // Get the value of the Dest.
1143   SVal destVal = state->getSVal(Dest.Expression, LCtx);
1144 
1145   // If the size is zero, there won't be any actual memory access, so
1146   // just bind the return value to the destination buffer and return.
1147   if (stateZeroSize && !stateNonZeroSize) {
1148     stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
1149     C.addTransition(stateZeroSize);
1150     return;
1151   }
1152 
1153   // If the size can be nonzero, we have to check the other arguments.
1154   if (stateNonZeroSize) {
1155     state = stateNonZeroSize;
1156 
1157     // Ensure the destination is not null. If it is NULL there will be a
1158     // NULL pointer dereference.
1159     state = checkNonNull(C, state, Dest, destVal);
1160     if (!state)
1161       return;
1162 
1163     // Get the value of the Src.
1164     SVal srcVal = state->getSVal(Source.Expression, LCtx);
1165 
1166     // Ensure the source is not null. If it is NULL there will be a
1167     // NULL pointer dereference.
1168     state = checkNonNull(C, state, Source, srcVal);
1169     if (!state)
1170       return;
1171 
1172     // Ensure the accesses are valid and that the buffers do not overlap.
1173     state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write);
1174     state = CheckBufferAccess(C, state, Source, Size, AccessKind::read);
1175 
1176     if (Restricted)
1177       state = CheckOverlap(C, state, Size, Dest, Source);
1178 
1179     if (!state)
1180       return;
1181 
1182     // If this is mempcpy, get the byte after the last byte copied and
1183     // bind the expr.
1184     if (IsMempcpy) {
1185       // Get the byte after the last byte copied.
1186       SValBuilder &SvalBuilder = C.getSValBuilder();
1187       ASTContext &Ctx = SvalBuilder.getContext();
1188       QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
1189       SVal DestRegCharVal =
1190           SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType());
1191       SVal lastElement = C.getSValBuilder().evalBinOp(
1192           state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType());
1193       // If we don't know how much we copied, we can at least
1194       // conjure a return value for later.
1195       if (lastElement.isUnknown())
1196         lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1197                                                           C.blockCount());
1198 
1199       // The byte after the last byte copied is the return value.
1200       state = state->BindExpr(CE, LCtx, lastElement);
1201     } else {
1202       // All other copies return the destination buffer.
1203       // (Well, bcopy() has a void return type, but this won't hurt.)
1204       state = state->BindExpr(CE, LCtx, destVal);
1205     }
1206 
1207     // Invalidate the destination (regular invalidation without pointer-escaping
1208     // the address of the top-level region).
1209     // FIXME: Even if we can't perfectly model the copy, we should see if we
1210     // can use LazyCompoundVals to copy the source values into the destination.
1211     // This would probably remove any existing bindings past the end of the
1212     // copied region, but that's still an improvement over blank invalidation.
1213     state =
1214         InvalidateBuffer(C, state, Dest.Expression, C.getSVal(Dest.Expression),
1215                          /*IsSourceBuffer*/ false, Size.Expression);
1216 
1217     // Invalidate the source (const-invalidation without const-pointer-escaping
1218     // the address of the top-level region).
1219     state = InvalidateBuffer(C, state, Source.Expression,
1220                              C.getSVal(Source.Expression),
1221                              /*IsSourceBuffer*/ true, nullptr);
1222 
1223     C.addTransition(state);
1224   }
1225 }
1226 
1227 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
1228   // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
1229   // The return value is the address of the destination buffer.
1230   DestinationArgExpr Dest = {CE->getArg(0), 0};
1231   SourceArgExpr Src = {CE->getArg(1), 1};
1232   SizeArgExpr Size = {CE->getArg(2), 2};
1233 
1234   ProgramStateRef State = C.getState();
1235 
1236   constexpr bool IsRestricted = true;
1237   constexpr bool IsMempcpy = false;
1238   evalCopyCommon(C, CE, State, Size, Dest, Src, IsRestricted, IsMempcpy);
1239 }
1240 
1241 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
1242   // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
1243   // The return value is a pointer to the byte following the last written byte.
1244   DestinationArgExpr Dest = {CE->getArg(0), 0};
1245   SourceArgExpr Src = {CE->getArg(1), 1};
1246   SizeArgExpr Size = {CE->getArg(2), 2};
1247 
1248   constexpr bool IsRestricted = true;
1249   constexpr bool IsMempcpy = true;
1250   evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy);
1251 }
1252 
1253 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
1254   // void *memmove(void *dst, const void *src, size_t n);
1255   // The return value is the address of the destination buffer.
1256   DestinationArgExpr Dest = {CE->getArg(0), 0};
1257   SourceArgExpr Src = {CE->getArg(1), 1};
1258   SizeArgExpr Size = {CE->getArg(2), 2};
1259 
1260   constexpr bool IsRestricted = false;
1261   constexpr bool IsMempcpy = false;
1262   evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy);
1263 }
1264 
1265 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1266   // void bcopy(const void *src, void *dst, size_t n);
1267   SourceArgExpr Src(CE->getArg(0), 0);
1268   DestinationArgExpr Dest = {CE->getArg(1), 1};
1269   SizeArgExpr Size = {CE->getArg(2), 2};
1270 
1271   constexpr bool IsRestricted = false;
1272   constexpr bool IsMempcpy = false;
1273   evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy);
1274 }
1275 
1276 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
1277   // int memcmp(const void *s1, const void *s2, size_t n);
1278   CurrentFunctionDescription = "memory comparison function";
1279 
1280   AnyArgExpr Left = {CE->getArg(0), 0};
1281   AnyArgExpr Right = {CE->getArg(1), 1};
1282   SizeArgExpr Size = {CE->getArg(2), 2};
1283 
1284   ProgramStateRef State = C.getState();
1285   SValBuilder &Builder = C.getSValBuilder();
1286   const LocationContext *LCtx = C.getLocationContext();
1287 
1288   // See if the size argument is zero.
1289   SVal sizeVal = State->getSVal(Size.Expression, LCtx);
1290   QualType sizeTy = Size.Expression->getType();
1291 
1292   ProgramStateRef stateZeroSize, stateNonZeroSize;
1293   std::tie(stateZeroSize, stateNonZeroSize) =
1294       assumeZero(C, State, sizeVal, sizeTy);
1295 
1296   // If the size can be zero, the result will be 0 in that case, and we don't
1297   // have to check either of the buffers.
1298   if (stateZeroSize) {
1299     State = stateZeroSize;
1300     State = State->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType()));
1301     C.addTransition(State);
1302   }
1303 
1304   // If the size can be nonzero, we have to check the other arguments.
1305   if (stateNonZeroSize) {
1306     State = stateNonZeroSize;
1307     // If we know the two buffers are the same, we know the result is 0.
1308     // First, get the two buffers' addresses. Another checker will have already
1309     // made sure they're not undefined.
1310     DefinedOrUnknownSVal LV =
1311         State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
1312     DefinedOrUnknownSVal RV =
1313         State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
1314 
1315     // See if they are the same.
1316     ProgramStateRef SameBuffer, NotSameBuffer;
1317     std::tie(SameBuffer, NotSameBuffer) =
1318         State->assume(Builder.evalEQ(State, LV, RV));
1319 
1320     // If the two arguments are the same buffer, we know the result is 0,
1321     // and we only need to check one size.
1322     if (SameBuffer && !NotSameBuffer) {
1323       State = SameBuffer;
1324       State = CheckBufferAccess(C, State, Left, Size, AccessKind::read);
1325       if (State) {
1326         State =
1327             SameBuffer->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType()));
1328         C.addTransition(State);
1329       }
1330       return;
1331     }
1332 
1333     // If the two arguments might be different buffers, we have to check
1334     // the size of both of them.
1335     assert(NotSameBuffer);
1336     State = CheckBufferAccess(C, State, Right, Size, AccessKind::read);
1337     State = CheckBufferAccess(C, State, Left, Size, AccessKind::read);
1338     if (State) {
1339       // The return value is the comparison result, which we don't know.
1340       SVal CmpV = Builder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1341       State = State->BindExpr(CE, LCtx, CmpV);
1342       C.addTransition(State);
1343     }
1344   }
1345 }
1346 
1347 void CStringChecker::evalstrLength(CheckerContext &C,
1348                                    const CallExpr *CE) const {
1349   // size_t strlen(const char *s);
1350   evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1351 }
1352 
1353 void CStringChecker::evalstrnLength(CheckerContext &C,
1354                                     const CallExpr *CE) const {
1355   // size_t strnlen(const char *s, size_t maxlen);
1356   evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1357 }
1358 
1359 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1360                                          bool IsStrnlen) const {
1361   CurrentFunctionDescription = "string length function";
1362   ProgramStateRef state = C.getState();
1363   const LocationContext *LCtx = C.getLocationContext();
1364 
1365   if (IsStrnlen) {
1366     const Expr *maxlenExpr = CE->getArg(1);
1367     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1368 
1369     ProgramStateRef stateZeroSize, stateNonZeroSize;
1370     std::tie(stateZeroSize, stateNonZeroSize) =
1371       assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1372 
1373     // If the size can be zero, the result will be 0 in that case, and we don't
1374     // have to check the string itself.
1375     if (stateZeroSize) {
1376       SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1377       stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1378       C.addTransition(stateZeroSize);
1379     }
1380 
1381     // If the size is GUARANTEED to be zero, we're done!
1382     if (!stateNonZeroSize)
1383       return;
1384 
1385     // Otherwise, record the assumption that the size is nonzero.
1386     state = stateNonZeroSize;
1387   }
1388 
1389   // Check that the string argument is non-null.
1390   AnyArgExpr Arg = {CE->getArg(0), 0};
1391   SVal ArgVal = state->getSVal(Arg.Expression, LCtx);
1392   state = checkNonNull(C, state, Arg, ArgVal);
1393 
1394   if (!state)
1395     return;
1396 
1397   SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal);
1398 
1399   // If the argument isn't a valid C string, there's no valid state to
1400   // transition to.
1401   if (strLength.isUndef())
1402     return;
1403 
1404   DefinedOrUnknownSVal result = UnknownVal();
1405 
1406   // If the check is for strnlen() then bind the return value to no more than
1407   // the maxlen value.
1408   if (IsStrnlen) {
1409     QualType cmpTy = C.getSValBuilder().getConditionType();
1410 
1411     // It's a little unfortunate to be getting this again,
1412     // but it's not that expensive...
1413     const Expr *maxlenExpr = CE->getArg(1);
1414     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1415 
1416     Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1417     Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
1418 
1419     if (strLengthNL && maxlenValNL) {
1420       ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1421 
1422       // Check if the strLength is greater than the maxlen.
1423       std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
1424           C.getSValBuilder()
1425               .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
1426               .castAs<DefinedOrUnknownSVal>());
1427 
1428       if (stateStringTooLong && !stateStringNotTooLong) {
1429         // If the string is longer than maxlen, return maxlen.
1430         result = *maxlenValNL;
1431       } else if (stateStringNotTooLong && !stateStringTooLong) {
1432         // If the string is shorter than maxlen, return its length.
1433         result = *strLengthNL;
1434       }
1435     }
1436 
1437     if (result.isUnknown()) {
1438       // If we don't have enough information for a comparison, there's
1439       // no guarantee the full string length will actually be returned.
1440       // All we know is the return value is the min of the string length
1441       // and the limit. This is better than nothing.
1442       result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1443                                                    C.blockCount());
1444       NonLoc resultNL = result.castAs<NonLoc>();
1445 
1446       if (strLengthNL) {
1447         state = state->assume(C.getSValBuilder().evalBinOpNN(
1448                                   state, BO_LE, resultNL, *strLengthNL, cmpTy)
1449                                   .castAs<DefinedOrUnknownSVal>(), true);
1450       }
1451 
1452       if (maxlenValNL) {
1453         state = state->assume(C.getSValBuilder().evalBinOpNN(
1454                                   state, BO_LE, resultNL, *maxlenValNL, cmpTy)
1455                                   .castAs<DefinedOrUnknownSVal>(), true);
1456       }
1457     }
1458 
1459   } else {
1460     // This is a plain strlen(), not strnlen().
1461     result = strLength.castAs<DefinedOrUnknownSVal>();
1462 
1463     // If we don't know the length of the string, conjure a return
1464     // value, so it can be used in constraints, at least.
1465     if (result.isUnknown()) {
1466       result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1467                                                    C.blockCount());
1468     }
1469   }
1470 
1471   // Bind the return value.
1472   assert(!result.isUnknown() && "Should have conjured a value by now");
1473   state = state->BindExpr(CE, LCtx, result);
1474   C.addTransition(state);
1475 }
1476 
1477 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1478   // char *strcpy(char *restrict dst, const char *restrict src);
1479   evalStrcpyCommon(C, CE,
1480                    /* ReturnEnd = */ false,
1481                    /* IsBounded = */ false,
1482                    /* appendK = */ ConcatFnKind::none);
1483 }
1484 
1485 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1486   // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1487   evalStrcpyCommon(C, CE,
1488                    /* ReturnEnd = */ false,
1489                    /* IsBounded = */ true,
1490                    /* appendK = */ ConcatFnKind::none);
1491 }
1492 
1493 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1494   // char *stpcpy(char *restrict dst, const char *restrict src);
1495   evalStrcpyCommon(C, CE,
1496                    /* ReturnEnd = */ true,
1497                    /* IsBounded = */ false,
1498                    /* appendK = */ ConcatFnKind::none);
1499 }
1500 
1501 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const {
1502   // size_t strlcpy(char *dest, const char *src, size_t size);
1503   evalStrcpyCommon(C, CE,
1504                    /* ReturnEnd = */ true,
1505                    /* IsBounded = */ true,
1506                    /* appendK = */ ConcatFnKind::none,
1507                    /* returnPtr = */ false);
1508 }
1509 
1510 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1511   // char *strcat(char *restrict s1, const char *restrict s2);
1512   evalStrcpyCommon(C, CE,
1513                    /* ReturnEnd = */ false,
1514                    /* IsBounded = */ false,
1515                    /* appendK = */ ConcatFnKind::strcat);
1516 }
1517 
1518 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1519   //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1520   evalStrcpyCommon(C, CE,
1521                    /* ReturnEnd = */ false,
1522                    /* IsBounded = */ true,
1523                    /* appendK = */ ConcatFnKind::strcat);
1524 }
1525 
1526 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const {
1527   // size_t strlcat(char *dst, const char *src, size_t size);
1528   // It will append at most size - strlen(dst) - 1 bytes,
1529   // NULL-terminating the result.
1530   evalStrcpyCommon(C, CE,
1531                    /* ReturnEnd = */ false,
1532                    /* IsBounded = */ true,
1533                    /* appendK = */ ConcatFnKind::strlcat,
1534                    /* returnPtr = */ false);
1535 }
1536 
1537 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1538                                       bool ReturnEnd, bool IsBounded,
1539                                       ConcatFnKind appendK,
1540                                       bool returnPtr) const {
1541   if (appendK == ConcatFnKind::none)
1542     CurrentFunctionDescription = "string copy function";
1543   else
1544     CurrentFunctionDescription = "string concatenation function";
1545 
1546   ProgramStateRef state = C.getState();
1547   const LocationContext *LCtx = C.getLocationContext();
1548 
1549   // Check that the destination is non-null.
1550   DestinationArgExpr Dst = {CE->getArg(0), 0};
1551   SVal DstVal = state->getSVal(Dst.Expression, LCtx);
1552   state = checkNonNull(C, state, Dst, DstVal);
1553   if (!state)
1554     return;
1555 
1556   // Check that the source is non-null.
1557   SourceArgExpr srcExpr = {CE->getArg(1), 1};
1558   SVal srcVal = state->getSVal(srcExpr.Expression, LCtx);
1559   state = checkNonNull(C, state, srcExpr, srcVal);
1560   if (!state)
1561     return;
1562 
1563   // Get the string length of the source.
1564   SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal);
1565   Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1566 
1567   // Get the string length of the destination buffer.
1568   SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal);
1569   Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
1570 
1571   // If the source isn't a valid C string, give up.
1572   if (strLength.isUndef())
1573     return;
1574 
1575   SValBuilder &svalBuilder = C.getSValBuilder();
1576   QualType cmpTy = svalBuilder.getConditionType();
1577   QualType sizeTy = svalBuilder.getContext().getSizeType();
1578 
1579   // These two values allow checking two kinds of errors:
1580   // - actual overflows caused by a source that doesn't fit in the destination
1581   // - potential overflows caused by a bound that could exceed the destination
1582   SVal amountCopied = UnknownVal();
1583   SVal maxLastElementIndex = UnknownVal();
1584   const char *boundWarning = nullptr;
1585 
1586   // FIXME: Why do we choose the srcExpr if the access has no size?
1587   //  Note that the 3rd argument of the call would be the size parameter.
1588   SizeArgExpr SrcExprAsSizeDummy = {srcExpr.Expression, srcExpr.ArgumentIndex};
1589   state = CheckOverlap(
1590       C, state,
1591       (IsBounded ? SizeArgExpr{CE->getArg(2), 2} : SrcExprAsSizeDummy), Dst,
1592       srcExpr);
1593 
1594   if (!state)
1595     return;
1596 
1597   // If the function is strncpy, strncat, etc... it is bounded.
1598   if (IsBounded) {
1599     // Get the max number of characters to copy.
1600     SizeArgExpr lenExpr = {CE->getArg(2), 2};
1601     SVal lenVal = state->getSVal(lenExpr.Expression, LCtx);
1602 
1603     // Protect against misdeclared strncpy().
1604     lenVal =
1605         svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType());
1606 
1607     Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
1608 
1609     // If we know both values, we might be able to figure out how much
1610     // we're copying.
1611     if (strLengthNL && lenValNL) {
1612       switch (appendK) {
1613       case ConcatFnKind::none:
1614       case ConcatFnKind::strcat: {
1615         ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1616         // Check if the max number to copy is less than the length of the src.
1617         // If the bound is equal to the source length, strncpy won't null-
1618         // terminate the result!
1619         std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
1620             svalBuilder
1621                 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
1622                 .castAs<DefinedOrUnknownSVal>());
1623 
1624         if (stateSourceTooLong && !stateSourceNotTooLong) {
1625           // Max number to copy is less than the length of the src, so the
1626           // actual strLength copied is the max number arg.
1627           state = stateSourceTooLong;
1628           amountCopied = lenVal;
1629 
1630         } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1631           // The source buffer entirely fits in the bound.
1632           state = stateSourceNotTooLong;
1633           amountCopied = strLength;
1634         }
1635         break;
1636       }
1637       case ConcatFnKind::strlcat:
1638         if (!dstStrLengthNL)
1639           return;
1640 
1641         // amountCopied = min (size - dstLen - 1 , srcLen)
1642         SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1643                                                  *dstStrLengthNL, sizeTy);
1644         if (!freeSpace.getAs<NonLoc>())
1645           return;
1646         freeSpace =
1647             svalBuilder.evalBinOp(state, BO_Sub, freeSpace,
1648                                   svalBuilder.makeIntVal(1, sizeTy), sizeTy);
1649         Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>();
1650 
1651         // While unlikely, it is possible that the subtraction is
1652         // too complex to compute, let's check whether it succeeded.
1653         if (!freeSpaceNL)
1654           return;
1655         SVal hasEnoughSpace = svalBuilder.evalBinOpNN(
1656             state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy);
1657 
1658         ProgramStateRef TrueState, FalseState;
1659         std::tie(TrueState, FalseState) =
1660             state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>());
1661 
1662         // srcStrLength <= size - dstStrLength -1
1663         if (TrueState && !FalseState) {
1664           amountCopied = strLength;
1665         }
1666 
1667         // srcStrLength > size - dstStrLength -1
1668         if (!TrueState && FalseState) {
1669           amountCopied = freeSpace;
1670         }
1671 
1672         if (TrueState && FalseState)
1673           amountCopied = UnknownVal();
1674         break;
1675       }
1676     }
1677     // We still want to know if the bound is known to be too large.
1678     if (lenValNL) {
1679       switch (appendK) {
1680       case ConcatFnKind::strcat:
1681         // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1682 
1683         // Get the string length of the destination. If the destination is
1684         // memory that can't have a string length, we shouldn't be copying
1685         // into it anyway.
1686         if (dstStrLength.isUndef())
1687           return;
1688 
1689         if (dstStrLengthNL) {
1690           maxLastElementIndex = svalBuilder.evalBinOpNN(
1691               state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy);
1692 
1693           boundWarning = "Size argument is greater than the free space in the "
1694                          "destination buffer";
1695         }
1696         break;
1697       case ConcatFnKind::none:
1698       case ConcatFnKind::strlcat:
1699         // For strncpy and strlcat, this is just checking
1700         //  that lenVal <= sizeof(dst).
1701         // (Yes, strncpy and strncat differ in how they treat termination.
1702         // strncat ALWAYS terminates, but strncpy doesn't.)
1703 
1704         // We need a special case for when the copy size is zero, in which
1705         // case strncpy will do no work at all. Our bounds check uses n-1
1706         // as the last element accessed, so n == 0 is problematic.
1707         ProgramStateRef StateZeroSize, StateNonZeroSize;
1708         std::tie(StateZeroSize, StateNonZeroSize) =
1709             assumeZero(C, state, *lenValNL, sizeTy);
1710 
1711         // If the size is known to be zero, we're done.
1712         if (StateZeroSize && !StateNonZeroSize) {
1713           if (returnPtr) {
1714             StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
1715           } else {
1716             if (appendK == ConcatFnKind::none) {
1717               // strlcpy returns strlen(src)
1718               StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength);
1719             } else {
1720               // strlcat returns strlen(src) + strlen(dst)
1721               SVal retSize = svalBuilder.evalBinOp(
1722                   state, BO_Add, strLength, dstStrLength, sizeTy);
1723               StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize);
1724             }
1725           }
1726           C.addTransition(StateZeroSize);
1727           return;
1728         }
1729 
1730         // Otherwise, go ahead and figure out the last element we'll touch.
1731         // We don't record the non-zero assumption here because we can't
1732         // be sure. We won't warn on a possible zero.
1733         NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
1734         maxLastElementIndex =
1735             svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy);
1736         boundWarning = "Size argument is greater than the length of the "
1737                        "destination buffer";
1738         break;
1739       }
1740     }
1741   } else {
1742     // The function isn't bounded. The amount copied should match the length
1743     // of the source buffer.
1744     amountCopied = strLength;
1745   }
1746 
1747   assert(state);
1748 
1749   // This represents the number of characters copied into the destination
1750   // buffer. (It may not actually be the strlen if the destination buffer
1751   // is not terminated.)
1752   SVal finalStrLength = UnknownVal();
1753   SVal strlRetVal = UnknownVal();
1754 
1755   if (appendK == ConcatFnKind::none && !returnPtr) {
1756     // strlcpy returns the sizeof(src)
1757     strlRetVal = strLength;
1758   }
1759 
1760   // If this is an appending function (strcat, strncat...) then set the
1761   // string length to strlen(src) + strlen(dst) since the buffer will
1762   // ultimately contain both.
1763   if (appendK != ConcatFnKind::none) {
1764     // Get the string length of the destination. If the destination is memory
1765     // that can't have a string length, we shouldn't be copying into it anyway.
1766     if (dstStrLength.isUndef())
1767       return;
1768 
1769     if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) {
1770       strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL,
1771                                            *dstStrLengthNL, sizeTy);
1772     }
1773 
1774     Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>();
1775 
1776     // If we know both string lengths, we might know the final string length.
1777     if (amountCopiedNL && dstStrLengthNL) {
1778       // Make sure the two lengths together don't overflow a size_t.
1779       state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL);
1780       if (!state)
1781         return;
1782 
1783       finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL,
1784                                                *dstStrLengthNL, sizeTy);
1785     }
1786 
1787     // If we couldn't get a single value for the final string length,
1788     // we can at least bound it by the individual lengths.
1789     if (finalStrLength.isUnknown()) {
1790       // Try to get a "hypothetical" string length symbol, which we can later
1791       // set as a real value if that turns out to be the case.
1792       finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1793       assert(!finalStrLength.isUndef());
1794 
1795       if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) {
1796         if (amountCopiedNL && appendK == ConcatFnKind::none) {
1797           // we overwrite dst string with the src
1798           // finalStrLength >= srcStrLength
1799           SVal sourceInResult = svalBuilder.evalBinOpNN(
1800               state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy);
1801           state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
1802                                 true);
1803           if (!state)
1804             return;
1805         }
1806 
1807         if (dstStrLengthNL && appendK != ConcatFnKind::none) {
1808           // we extend the dst string with the src
1809           // finalStrLength >= dstStrLength
1810           SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1811                                                       *finalStrLengthNL,
1812                                                       *dstStrLengthNL,
1813                                                       cmpTy);
1814           state =
1815               state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
1816           if (!state)
1817             return;
1818         }
1819       }
1820     }
1821 
1822   } else {
1823     // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1824     // the final string length will match the input string length.
1825     finalStrLength = amountCopied;
1826   }
1827 
1828   SVal Result;
1829 
1830   if (returnPtr) {
1831     // The final result of the function will either be a pointer past the last
1832     // copied element, or a pointer to the start of the destination buffer.
1833     Result = (ReturnEnd ? UnknownVal() : DstVal);
1834   } else {
1835     if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none)
1836       //strlcpy, strlcat
1837       Result = strlRetVal;
1838     else
1839       Result = finalStrLength;
1840   }
1841 
1842   assert(state);
1843 
1844   // If the destination is a MemRegion, try to check for a buffer overflow and
1845   // record the new string length.
1846   if (Optional<loc::MemRegionVal> dstRegVal =
1847       DstVal.getAs<loc::MemRegionVal>()) {
1848     QualType ptrTy = Dst.Expression->getType();
1849 
1850     // If we have an exact value on a bounded copy, use that to check for
1851     // overflows, rather than our estimate about how much is actually copied.
1852     if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
1853       SVal maxLastElement =
1854           svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy);
1855 
1856       state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write);
1857       if (!state)
1858         return;
1859     }
1860 
1861     // Then, if the final length is known...
1862     if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
1863       SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1864           *knownStrLength, ptrTy);
1865 
1866       // ...and we haven't checked the bound, we'll check the actual copy.
1867       if (!boundWarning) {
1868         state = CheckLocation(C, state, Dst, lastElement, AccessKind::write);
1869         if (!state)
1870           return;
1871       }
1872 
1873       // If this is a stpcpy-style copy, the last element is the return value.
1874       if (returnPtr && ReturnEnd)
1875         Result = lastElement;
1876     }
1877 
1878     // Invalidate the destination (regular invalidation without pointer-escaping
1879     // the address of the top-level region). This must happen before we set the
1880     // C string length because invalidation will clear the length.
1881     // FIXME: Even if we can't perfectly model the copy, we should see if we
1882     // can use LazyCompoundVals to copy the source values into the destination.
1883     // This would probably remove any existing bindings past the end of the
1884     // string, but that's still an improvement over blank invalidation.
1885     state = InvalidateBuffer(C, state, Dst.Expression, *dstRegVal,
1886                              /*IsSourceBuffer*/ false, nullptr);
1887 
1888     // Invalidate the source (const-invalidation without const-pointer-escaping
1889     // the address of the top-level region).
1890     state = InvalidateBuffer(C, state, srcExpr.Expression, srcVal,
1891                              /*IsSourceBuffer*/ true, nullptr);
1892 
1893     // Set the C string length of the destination, if we know it.
1894     if (IsBounded && (appendK == ConcatFnKind::none)) {
1895       // strncpy is annoying in that it doesn't guarantee to null-terminate
1896       // the result string. If the original string didn't fit entirely inside
1897       // the bound (including the null-terminator), we don't know how long the
1898       // result is.
1899       if (amountCopied != strLength)
1900         finalStrLength = UnknownVal();
1901     }
1902     state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1903   }
1904 
1905   assert(state);
1906 
1907   if (returnPtr) {
1908     // If this is a stpcpy-style copy, but we were unable to check for a buffer
1909     // overflow, we still need a result. Conjure a return value.
1910     if (ReturnEnd && Result.isUnknown()) {
1911       Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1912     }
1913   }
1914   // Set the return value.
1915   state = state->BindExpr(CE, LCtx, Result);
1916   C.addTransition(state);
1917 }
1918 
1919 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
1920   //int strcmp(const char *s1, const char *s2);
1921   evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false);
1922 }
1923 
1924 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
1925   //int strncmp(const char *s1, const char *s2, size_t n);
1926   evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false);
1927 }
1928 
1929 void CStringChecker::evalStrcasecmp(CheckerContext &C,
1930     const CallExpr *CE) const {
1931   //int strcasecmp(const char *s1, const char *s2);
1932   evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true);
1933 }
1934 
1935 void CStringChecker::evalStrncasecmp(CheckerContext &C,
1936     const CallExpr *CE) const {
1937   //int strncasecmp(const char *s1, const char *s2, size_t n);
1938   evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true);
1939 }
1940 
1941 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
1942     bool IsBounded, bool IgnoreCase) const {
1943   CurrentFunctionDescription = "string comparison function";
1944   ProgramStateRef state = C.getState();
1945   const LocationContext *LCtx = C.getLocationContext();
1946 
1947   // Check that the first string is non-null
1948   AnyArgExpr Left = {CE->getArg(0), 0};
1949   SVal LeftVal = state->getSVal(Left.Expression, LCtx);
1950   state = checkNonNull(C, state, Left, LeftVal);
1951   if (!state)
1952     return;
1953 
1954   // Check that the second string is non-null.
1955   AnyArgExpr Right = {CE->getArg(1), 1};
1956   SVal RightVal = state->getSVal(Right.Expression, LCtx);
1957   state = checkNonNull(C, state, Right, RightVal);
1958   if (!state)
1959     return;
1960 
1961   // Get the string length of the first string or give up.
1962   SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal);
1963   if (LeftLength.isUndef())
1964     return;
1965 
1966   // Get the string length of the second string or give up.
1967   SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal);
1968   if (RightLength.isUndef())
1969     return;
1970 
1971   // If we know the two buffers are the same, we know the result is 0.
1972   // First, get the two buffers' addresses. Another checker will have already
1973   // made sure they're not undefined.
1974   DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>();
1975   DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>();
1976 
1977   // See if they are the same.
1978   SValBuilder &svalBuilder = C.getSValBuilder();
1979   DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1980   ProgramStateRef StSameBuf, StNotSameBuf;
1981   std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1982 
1983   // If the two arguments might be the same buffer, we know the result is 0,
1984   // and we only need to check one size.
1985   if (StSameBuf) {
1986     StSameBuf = StSameBuf->BindExpr(CE, LCtx,
1987         svalBuilder.makeZeroVal(CE->getType()));
1988     C.addTransition(StSameBuf);
1989 
1990     // If the two arguments are GUARANTEED to be the same, we're done!
1991     if (!StNotSameBuf)
1992       return;
1993   }
1994 
1995   assert(StNotSameBuf);
1996   state = StNotSameBuf;
1997 
1998   // At this point we can go about comparing the two buffers.
1999   // For now, we only do this if they're both known string literals.
2000 
2001   // Attempt to extract string literals from both expressions.
2002   const StringLiteral *LeftStrLiteral =
2003       getCStringLiteral(C, state, Left.Expression, LeftVal);
2004   const StringLiteral *RightStrLiteral =
2005       getCStringLiteral(C, state, Right.Expression, RightVal);
2006   bool canComputeResult = false;
2007   SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
2008       C.blockCount());
2009 
2010   if (LeftStrLiteral && RightStrLiteral) {
2011     StringRef LeftStrRef = LeftStrLiteral->getString();
2012     StringRef RightStrRef = RightStrLiteral->getString();
2013 
2014     if (IsBounded) {
2015       // Get the max number of characters to compare.
2016       const Expr *lenExpr = CE->getArg(2);
2017       SVal lenVal = state->getSVal(lenExpr, LCtx);
2018 
2019       // If the length is known, we can get the right substrings.
2020       if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
2021         // Create substrings of each to compare the prefix.
2022         LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue());
2023         RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue());
2024         canComputeResult = true;
2025       }
2026     } else {
2027       // This is a normal, unbounded strcmp.
2028       canComputeResult = true;
2029     }
2030 
2031     if (canComputeResult) {
2032       // Real strcmp stops at null characters.
2033       size_t s1Term = LeftStrRef.find('\0');
2034       if (s1Term != StringRef::npos)
2035         LeftStrRef = LeftStrRef.substr(0, s1Term);
2036 
2037       size_t s2Term = RightStrRef.find('\0');
2038       if (s2Term != StringRef::npos)
2039         RightStrRef = RightStrRef.substr(0, s2Term);
2040 
2041       // Use StringRef's comparison methods to compute the actual result.
2042       int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef)
2043                                   : LeftStrRef.compare(RightStrRef);
2044 
2045       // The strcmp function returns an integer greater than, equal to, or less
2046       // than zero, [c11, p7.24.4.2].
2047       if (compareRes == 0) {
2048         resultVal = svalBuilder.makeIntVal(compareRes, CE->getType());
2049       }
2050       else {
2051         DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType());
2052         // Constrain strcmp's result range based on the result of StringRef's
2053         // comparison methods.
2054         BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT;
2055         SVal compareWithZero =
2056           svalBuilder.evalBinOp(state, op, resultVal, zeroVal,
2057               svalBuilder.getConditionType());
2058         DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>();
2059         state = state->assume(compareWithZeroVal, true);
2060       }
2061     }
2062   }
2063 
2064   state = state->BindExpr(CE, LCtx, resultVal);
2065 
2066   // Record this as a possible path.
2067   C.addTransition(state);
2068 }
2069 
2070 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const {
2071   //char *strsep(char **stringp, const char *delim);
2072   // Sanity: does the search string parameter match the return type?
2073   SourceArgExpr SearchStrPtr = {CE->getArg(0), 0};
2074 
2075   QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType();
2076   if (CharPtrTy.isNull() ||
2077       CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType())
2078     return;
2079 
2080   CurrentFunctionDescription = "strsep()";
2081   ProgramStateRef State = C.getState();
2082   const LocationContext *LCtx = C.getLocationContext();
2083 
2084   // Check that the search string pointer is non-null (though it may point to
2085   // a null string).
2086   SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx);
2087   State = checkNonNull(C, State, SearchStrPtr, SearchStrVal);
2088   if (!State)
2089     return;
2090 
2091   // Check that the delimiter string is non-null.
2092   AnyArgExpr DelimStr = {CE->getArg(1), 1};
2093   SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx);
2094   State = checkNonNull(C, State, DelimStr, DelimStrVal);
2095   if (!State)
2096     return;
2097 
2098   SValBuilder &SVB = C.getSValBuilder();
2099   SVal Result;
2100   if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
2101     // Get the current value of the search string pointer, as a char*.
2102     Result = State->getSVal(*SearchStrLoc, CharPtrTy);
2103 
2104     // Invalidate the search string, representing the change of one delimiter
2105     // character to NUL.
2106     State = InvalidateBuffer(C, State, SearchStrPtr.Expression, Result,
2107                              /*IsSourceBuffer*/ false, nullptr);
2108 
2109     // Overwrite the search string pointer. The new value is either an address
2110     // further along in the same string, or NULL if there are no more tokens.
2111     State = State->bindLoc(*SearchStrLoc,
2112         SVB.conjureSymbolVal(getTag(),
2113           CE,
2114           LCtx,
2115           CharPtrTy,
2116           C.blockCount()),
2117         LCtx);
2118   } else {
2119     assert(SearchStrVal.isUnknown());
2120     // Conjure a symbolic value. It's the best we can do.
2121     Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2122   }
2123 
2124   // Set the return value, and finish.
2125   State = State->BindExpr(CE, LCtx, Result);
2126   C.addTransition(State);
2127 }
2128 
2129 // These should probably be moved into a C++ standard library checker.
2130 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const {
2131   evalStdCopyCommon(C, CE);
2132 }
2133 
2134 void CStringChecker::evalStdCopyBackward(CheckerContext &C,
2135     const CallExpr *CE) const {
2136   evalStdCopyCommon(C, CE);
2137 }
2138 
2139 void CStringChecker::evalStdCopyCommon(CheckerContext &C,
2140     const CallExpr *CE) const {
2141   if (!CE->getArg(2)->getType()->isPointerType())
2142     return;
2143 
2144   ProgramStateRef State = C.getState();
2145 
2146   const LocationContext *LCtx = C.getLocationContext();
2147 
2148   // template <class _InputIterator, class _OutputIterator>
2149   // _OutputIterator
2150   // copy(_InputIterator __first, _InputIterator __last,
2151   //        _OutputIterator __result)
2152 
2153   // Invalidate the destination buffer
2154   const Expr *Dst = CE->getArg(2);
2155   SVal DstVal = State->getSVal(Dst, LCtx);
2156   State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false,
2157       /*Size=*/nullptr);
2158 
2159   SValBuilder &SVB = C.getSValBuilder();
2160 
2161   SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2162   State = State->BindExpr(CE, LCtx, ResultVal);
2163 
2164   C.addTransition(State);
2165 }
2166 
2167 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const {
2168   // void *memset(void *s, int c, size_t n);
2169   CurrentFunctionDescription = "memory set function";
2170 
2171   DestinationArgExpr Buffer = {CE->getArg(0), 0};
2172   AnyArgExpr CharE = {CE->getArg(1), 1};
2173   SizeArgExpr Size = {CE->getArg(2), 2};
2174 
2175   ProgramStateRef State = C.getState();
2176 
2177   // See if the size argument is zero.
2178   const LocationContext *LCtx = C.getLocationContext();
2179   SVal SizeVal = C.getSVal(Size.Expression);
2180   QualType SizeTy = Size.Expression->getType();
2181 
2182   ProgramStateRef ZeroSize, NonZeroSize;
2183   std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy);
2184 
2185   // Get the value of the memory area.
2186   SVal BufferPtrVal = C.getSVal(Buffer.Expression);
2187 
2188   // If the size is zero, there won't be any actual memory access, so
2189   // just bind the return value to the buffer and return.
2190   if (ZeroSize && !NonZeroSize) {
2191     ZeroSize = ZeroSize->BindExpr(CE, LCtx, BufferPtrVal);
2192     C.addTransition(ZeroSize);
2193     return;
2194   }
2195 
2196   // Ensure the memory area is not null.
2197   // If it is NULL there will be a NULL pointer dereference.
2198   State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal);
2199   if (!State)
2200     return;
2201 
2202   State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
2203   if (!State)
2204     return;
2205 
2206   // According to the values of the arguments, bind the value of the second
2207   // argument to the destination buffer and set string length, or just
2208   // invalidate the destination buffer.
2209   if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression),
2210                  Size.Expression, C, State))
2211     return;
2212 
2213   State = State->BindExpr(CE, LCtx, BufferPtrVal);
2214   C.addTransition(State);
2215 }
2216 
2217 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const {
2218   CurrentFunctionDescription = "memory clearance function";
2219 
2220   DestinationArgExpr Buffer = {CE->getArg(0), 0};
2221   SizeArgExpr Size = {CE->getArg(1), 1};
2222   SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy);
2223 
2224   ProgramStateRef State = C.getState();
2225 
2226   // See if the size argument is zero.
2227   SVal SizeVal = C.getSVal(Size.Expression);
2228   QualType SizeTy = Size.Expression->getType();
2229 
2230   ProgramStateRef StateZeroSize, StateNonZeroSize;
2231   std::tie(StateZeroSize, StateNonZeroSize) =
2232     assumeZero(C, State, SizeVal, SizeTy);
2233 
2234   // If the size is zero, there won't be any actual memory access,
2235   // In this case we just return.
2236   if (StateZeroSize && !StateNonZeroSize) {
2237     C.addTransition(StateZeroSize);
2238     return;
2239   }
2240 
2241   // Get the value of the memory area.
2242   SVal MemVal = C.getSVal(Buffer.Expression);
2243 
2244   // Ensure the memory area is not null.
2245   // If it is NULL there will be a NULL pointer dereference.
2246   State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal);
2247   if (!State)
2248     return;
2249 
2250   State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
2251   if (!State)
2252     return;
2253 
2254   if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State))
2255     return;
2256 
2257   C.addTransition(State);
2258 }
2259 
2260 //===----------------------------------------------------------------------===//
2261 // The driver method, and other Checker callbacks.
2262 //===----------------------------------------------------------------------===//
2263 
2264 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call,
2265                                                      CheckerContext &C) const {
2266   const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
2267   if (!CE)
2268     return nullptr;
2269 
2270   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
2271   if (!FD)
2272     return nullptr;
2273 
2274   if (Call.isCalled(StdCopy)) {
2275     return &CStringChecker::evalStdCopy;
2276   } else if (Call.isCalled(StdCopyBackward)) {
2277     return &CStringChecker::evalStdCopyBackward;
2278   }
2279 
2280   // Pro-actively check that argument types are safe to do arithmetic upon.
2281   // We do not want to crash if someone accidentally passes a structure
2282   // into, say, a C++ overload of any of these functions. We could not check
2283   // that for std::copy because they may have arguments of other types.
2284   for (auto I : CE->arguments()) {
2285     QualType T = I->getType();
2286     if (!T->isIntegralOrEnumerationType() && !T->isPointerType())
2287       return nullptr;
2288   }
2289 
2290   const FnCheck *Callback = Callbacks.lookup(Call);
2291   if (Callback)
2292     return *Callback;
2293 
2294   return nullptr;
2295 }
2296 
2297 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const {
2298   FnCheck Callback = identifyCall(Call, C);
2299 
2300   // If the callee isn't a string function, let another checker handle it.
2301   if (!Callback)
2302     return false;
2303 
2304   // Check and evaluate the call.
2305   const auto *CE = cast<CallExpr>(Call.getOriginExpr());
2306   (this->*Callback)(C, CE);
2307 
2308   // If the evaluate call resulted in no change, chain to the next eval call
2309   // handler.
2310   // Note, the custom CString evaluation calls assume that basic safety
2311   // properties are held. However, if the user chooses to turn off some of these
2312   // checks, we ignore the issues and leave the call evaluation to a generic
2313   // handler.
2314   return C.isDifferent();
2315 }
2316 
2317 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
2318   // Record string length for char a[] = "abc";
2319   ProgramStateRef state = C.getState();
2320 
2321   for (const auto *I : DS->decls()) {
2322     const VarDecl *D = dyn_cast<VarDecl>(I);
2323     if (!D)
2324       continue;
2325 
2326     // FIXME: Handle array fields of structs.
2327     if (!D->getType()->isArrayType())
2328       continue;
2329 
2330     const Expr *Init = D->getInit();
2331     if (!Init)
2332       continue;
2333     if (!isa<StringLiteral>(Init))
2334       continue;
2335 
2336     Loc VarLoc = state->getLValue(D, C.getLocationContext());
2337     const MemRegion *MR = VarLoc.getAsRegion();
2338     if (!MR)
2339       continue;
2340 
2341     SVal StrVal = C.getSVal(Init);
2342     assert(StrVal.isValid() && "Initializer string is unknown or undefined");
2343     DefinedOrUnknownSVal strLength =
2344       getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
2345 
2346     state = state->set<CStringLength>(MR, strLength);
2347   }
2348 
2349   C.addTransition(state);
2350 }
2351 
2352 ProgramStateRef
2353 CStringChecker::checkRegionChanges(ProgramStateRef state,
2354     const InvalidatedSymbols *,
2355     ArrayRef<const MemRegion *> ExplicitRegions,
2356     ArrayRef<const MemRegion *> Regions,
2357     const LocationContext *LCtx,
2358     const CallEvent *Call) const {
2359   CStringLengthTy Entries = state->get<CStringLength>();
2360   if (Entries.isEmpty())
2361     return state;
2362 
2363   llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
2364   llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
2365 
2366   // First build sets for the changed regions and their super-regions.
2367   for (ArrayRef<const MemRegion *>::iterator
2368       I = Regions.begin(), E = Regions.end(); I != E; ++I) {
2369     const MemRegion *MR = *I;
2370     Invalidated.insert(MR);
2371 
2372     SuperRegions.insert(MR);
2373     while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
2374       MR = SR->getSuperRegion();
2375       SuperRegions.insert(MR);
2376     }
2377   }
2378 
2379   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2380 
2381   // Then loop over the entries in the current state.
2382   for (CStringLengthTy::iterator I = Entries.begin(),
2383       E = Entries.end(); I != E; ++I) {
2384     const MemRegion *MR = I.getKey();
2385 
2386     // Is this entry for a super-region of a changed region?
2387     if (SuperRegions.count(MR)) {
2388       Entries = F.remove(Entries, MR);
2389       continue;
2390     }
2391 
2392     // Is this entry for a sub-region of a changed region?
2393     const MemRegion *Super = MR;
2394     while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
2395       Super = SR->getSuperRegion();
2396       if (Invalidated.count(Super)) {
2397         Entries = F.remove(Entries, MR);
2398         break;
2399       }
2400     }
2401   }
2402 
2403   return state->set<CStringLength>(Entries);
2404 }
2405 
2406 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
2407     SymbolReaper &SR) const {
2408   // Mark all symbols in our string length map as valid.
2409   CStringLengthTy Entries = state->get<CStringLength>();
2410 
2411   for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2412       I != E; ++I) {
2413     SVal Len = I.getData();
2414 
2415     for (SymExpr::symbol_iterator si = Len.symbol_begin(),
2416         se = Len.symbol_end(); si != se; ++si)
2417       SR.markInUse(*si);
2418   }
2419 }
2420 
2421 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
2422     CheckerContext &C) const {
2423   ProgramStateRef state = C.getState();
2424   CStringLengthTy Entries = state->get<CStringLength>();
2425   if (Entries.isEmpty())
2426     return;
2427 
2428   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2429   for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2430       I != E; ++I) {
2431     SVal Len = I.getData();
2432     if (SymbolRef Sym = Len.getAsSymbol()) {
2433       if (SR.isDead(Sym))
2434         Entries = F.remove(Entries, I.getKey());
2435     }
2436   }
2437 
2438   state = state->set<CStringLength>(Entries);
2439   C.addTransition(state);
2440 }
2441 
2442 void ento::registerCStringModeling(CheckerManager &Mgr) {
2443   Mgr.registerChecker<CStringChecker>();
2444 }
2445 
2446 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) {
2447   return true;
2448 }
2449 
2450 #define REGISTER_CHECKER(name)                                                 \
2451   void ento::register##name(CheckerManager &mgr) {                             \
2452     CStringChecker *checker = mgr.getChecker<CStringChecker>();                \
2453     checker->Filter.Check##name = true;                                        \
2454     checker->Filter.CheckName##name = mgr.getCurrentCheckerName();             \
2455   }                                                                            \
2456                                                                                \
2457   bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
2458 
2459 REGISTER_CHECKER(CStringNullArg)
2460 REGISTER_CHECKER(CStringOutOfBounds)
2461 REGISTER_CHECKER(CStringBufferOverlap)
2462 REGISTER_CHECKER(CStringNotNullTerm)
2463