1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This defines CStringChecker, which is an assortment of checks on calls 10 // to functions in <string.h>. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InterCheckerAPI.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/Checker.h" 19 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 23 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace clang; 31 using namespace ento; 32 33 namespace { 34 struct AnyArgExpr { 35 // FIXME: Remove constructor in C++17 to turn it into an aggregate. 36 AnyArgExpr(const Expr *Expression, unsigned ArgumentIndex) 37 : Expression{Expression}, ArgumentIndex{ArgumentIndex} {} 38 const Expr *Expression; 39 unsigned ArgumentIndex; 40 }; 41 42 struct SourceArgExpr : AnyArgExpr { 43 using AnyArgExpr::AnyArgExpr; // FIXME: Remove using in C++17. 44 }; 45 46 struct DestinationArgExpr : AnyArgExpr { 47 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 48 }; 49 50 struct SizeArgExpr : AnyArgExpr { 51 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 52 }; 53 54 using ErrorMessage = SmallString<128>; 55 enum class AccessKind { write, read }; 56 57 static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription, 58 AccessKind Access) { 59 ErrorMessage Message; 60 llvm::raw_svector_ostream Os(Message); 61 62 // Function classification like: Memory copy function 63 Os << toUppercase(FunctionDescription.front()) 64 << &FunctionDescription.data()[1]; 65 66 if (Access == AccessKind::write) { 67 Os << " overflows the destination buffer"; 68 } else { // read access 69 Os << " accesses out-of-bound array element"; 70 } 71 72 return Message; 73 } 74 75 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 }; 76 class CStringChecker : public Checker< eval::Call, 77 check::PreStmt<DeclStmt>, 78 check::LiveSymbols, 79 check::DeadSymbols, 80 check::RegionChanges 81 > { 82 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 83 BT_NotCString, BT_AdditionOverflow; 84 85 mutable const char *CurrentFunctionDescription; 86 87 public: 88 /// The filter is used to filter out the diagnostics which are not enabled by 89 /// the user. 90 struct CStringChecksFilter { 91 DefaultBool CheckCStringNullArg; 92 DefaultBool CheckCStringOutOfBounds; 93 DefaultBool CheckCStringBufferOverlap; 94 DefaultBool CheckCStringNotNullTerm; 95 96 CheckerNameRef CheckNameCStringNullArg; 97 CheckerNameRef CheckNameCStringOutOfBounds; 98 CheckerNameRef CheckNameCStringBufferOverlap; 99 CheckerNameRef CheckNameCStringNotNullTerm; 100 }; 101 102 CStringChecksFilter Filter; 103 104 static void *getTag() { static int tag; return &tag; } 105 106 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 107 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 108 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 109 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 110 111 ProgramStateRef 112 checkRegionChanges(ProgramStateRef state, 113 const InvalidatedSymbols *, 114 ArrayRef<const MemRegion *> ExplicitRegions, 115 ArrayRef<const MemRegion *> Regions, 116 const LocationContext *LCtx, 117 const CallEvent *Call) const; 118 119 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 120 const CallExpr *) const; 121 CallDescriptionMap<FnCheck> Callbacks = { 122 {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy}, 123 {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy}, 124 {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp}, 125 {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove}, 126 {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset}, 127 {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset}, 128 {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy}, 129 {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy}, 130 {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy}, 131 {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy}, 132 {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat}, 133 {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat}, 134 {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat}, 135 {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength}, 136 {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength}, 137 {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp}, 138 {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp}, 139 {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp}, 140 {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp}, 141 {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep}, 142 {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy}, 143 {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp}, 144 {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero}, 145 {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero}, 146 }; 147 148 // These require a bit of special handling. 149 CallDescription StdCopy{{"std", "copy"}, 3}, 150 StdCopyBackward{{"std", "copy_backward"}, 3}; 151 152 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; 153 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 154 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 155 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 156 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 157 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 158 ProgramStateRef state, SizeArgExpr Size, 159 DestinationArgExpr Dest, SourceArgExpr Source, 160 bool Restricted, bool IsMempcpy) const; 161 162 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 163 164 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 165 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 166 void evalstrLengthCommon(CheckerContext &C, 167 const CallExpr *CE, 168 bool IsStrnlen = false) const; 169 170 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 171 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 172 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 173 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; 174 void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd, 175 bool IsBounded, ConcatFnKind appendK, 176 bool returnPtr = true) const; 177 178 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 179 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 180 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; 181 182 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 183 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 184 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 185 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 186 void evalStrcmpCommon(CheckerContext &C, 187 const CallExpr *CE, 188 bool IsBounded = false, 189 bool IgnoreCase = false) const; 190 191 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 192 193 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 194 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 195 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 196 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 197 void evalBzero(CheckerContext &C, const CallExpr *CE) const; 198 199 // Utility methods 200 std::pair<ProgramStateRef , ProgramStateRef > 201 static assumeZero(CheckerContext &C, 202 ProgramStateRef state, SVal V, QualType Ty); 203 204 static ProgramStateRef setCStringLength(ProgramStateRef state, 205 const MemRegion *MR, 206 SVal strLength); 207 static SVal getCStringLengthForRegion(CheckerContext &C, 208 ProgramStateRef &state, 209 const Expr *Ex, 210 const MemRegion *MR, 211 bool hypothetical); 212 SVal getCStringLength(CheckerContext &C, 213 ProgramStateRef &state, 214 const Expr *Ex, 215 SVal Buf, 216 bool hypothetical = false) const; 217 218 const StringLiteral *getCStringLiteral(CheckerContext &C, 219 ProgramStateRef &state, 220 const Expr *expr, 221 SVal val) const; 222 223 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 224 ProgramStateRef state, 225 const Expr *Ex, SVal V, 226 bool IsSourceBuffer, 227 const Expr *Size); 228 229 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 230 const MemRegion *MR); 231 232 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 233 const Expr *Size, CheckerContext &C, 234 ProgramStateRef &State); 235 236 // Re-usable checks 237 ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State, 238 AnyArgExpr Arg, SVal l) const; 239 ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state, 240 AnyArgExpr Buffer, SVal Element, 241 AccessKind Access) const; 242 ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State, 243 AnyArgExpr Buffer, SizeArgExpr Size, 244 AccessKind Access) const; 245 ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state, 246 SizeArgExpr Size, AnyArgExpr First, 247 AnyArgExpr Second) const; 248 void emitOverlapBug(CheckerContext &C, 249 ProgramStateRef state, 250 const Stmt *First, 251 const Stmt *Second) const; 252 253 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 254 StringRef WarningMsg) const; 255 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 256 const Stmt *S, StringRef WarningMsg) const; 257 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 258 const Stmt *S, StringRef WarningMsg) const; 259 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 260 261 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 262 ProgramStateRef state, 263 NonLoc left, 264 NonLoc right) const; 265 266 // Return true if the destination buffer of the copy function may be in bound. 267 // Expects SVal of Size to be positive and unsigned. 268 // Expects SVal of FirstBuf to be a FieldRegion. 269 static bool IsFirstBufInBound(CheckerContext &C, 270 ProgramStateRef state, 271 const Expr *FirstBuf, 272 const Expr *Size); 273 }; 274 275 } //end anonymous namespace 276 277 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 278 279 //===----------------------------------------------------------------------===// 280 // Individual checks and utility methods. 281 //===----------------------------------------------------------------------===// 282 283 std::pair<ProgramStateRef , ProgramStateRef > 284 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 285 QualType Ty) { 286 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 287 if (!val) 288 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 289 290 SValBuilder &svalBuilder = C.getSValBuilder(); 291 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 292 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 293 } 294 295 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 296 ProgramStateRef State, 297 AnyArgExpr Arg, SVal l) const { 298 // If a previous check has failed, propagate the failure. 299 if (!State) 300 return nullptr; 301 302 ProgramStateRef stateNull, stateNonNull; 303 std::tie(stateNull, stateNonNull) = 304 assumeZero(C, State, l, Arg.Expression->getType()); 305 306 if (stateNull && !stateNonNull) { 307 if (Filter.CheckCStringNullArg) { 308 SmallString<80> buf; 309 llvm::raw_svector_ostream OS(buf); 310 assert(CurrentFunctionDescription); 311 OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1) 312 << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to " 313 << CurrentFunctionDescription; 314 315 emitNullArgBug(C, stateNull, Arg.Expression, OS.str()); 316 } 317 return nullptr; 318 } 319 320 // From here on, assume that the value is non-null. 321 assert(stateNonNull); 322 return stateNonNull; 323 } 324 325 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 326 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 327 ProgramStateRef state, 328 AnyArgExpr Buffer, SVal Element, 329 AccessKind Access) const { 330 331 // If a previous check has failed, propagate the failure. 332 if (!state) 333 return nullptr; 334 335 // Check for out of bound array element access. 336 const MemRegion *R = Element.getAsRegion(); 337 if (!R) 338 return state; 339 340 const auto *ER = dyn_cast<ElementRegion>(R); 341 if (!ER) 342 return state; 343 344 if (ER->getValueType() != C.getASTContext().CharTy) 345 return state; 346 347 // Get the size of the array. 348 const auto *superReg = cast<SubRegion>(ER->getSuperRegion()); 349 DefinedOrUnknownSVal Size = 350 getDynamicExtent(state, superReg, C.getSValBuilder()); 351 352 // Get the index of the accessed element. 353 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 354 355 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 356 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 357 if (StOutBound && !StInBound) { 358 // These checks are either enabled by the CString out-of-bounds checker 359 // explicitly or implicitly by the Malloc checker. 360 // In the latter case we only do modeling but do not emit warning. 361 if (!Filter.CheckCStringOutOfBounds) 362 return nullptr; 363 364 // Emit a bug report. 365 ErrorMessage Message = 366 createOutOfBoundErrorMsg(CurrentFunctionDescription, Access); 367 emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message); 368 return nullptr; 369 } 370 371 // Array bound check succeeded. From this point forward the array bound 372 // should always succeed. 373 return StInBound; 374 } 375 376 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 377 ProgramStateRef State, 378 AnyArgExpr Buffer, 379 SizeArgExpr Size, 380 AccessKind Access) const { 381 // If a previous check has failed, propagate the failure. 382 if (!State) 383 return nullptr; 384 385 SValBuilder &svalBuilder = C.getSValBuilder(); 386 ASTContext &Ctx = svalBuilder.getContext(); 387 388 QualType SizeTy = Size.Expression->getType(); 389 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 390 391 // Check that the first buffer is non-null. 392 SVal BufVal = C.getSVal(Buffer.Expression); 393 State = checkNonNull(C, State, Buffer, BufVal); 394 if (!State) 395 return nullptr; 396 397 // If out-of-bounds checking is turned off, skip the rest. 398 if (!Filter.CheckCStringOutOfBounds) 399 return State; 400 401 // Get the access length and make sure it is known. 402 // FIXME: This assumes the caller has already checked that the access length 403 // is positive. And that it's unsigned. 404 SVal LengthVal = C.getSVal(Size.Expression); 405 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 406 if (!Length) 407 return State; 408 409 // Compute the offset of the last element to be accessed: size-1. 410 NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>(); 411 SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy); 412 if (Offset.isUnknown()) 413 return nullptr; 414 NonLoc LastOffset = Offset.castAs<NonLoc>(); 415 416 // Check that the first buffer is sufficiently long. 417 SVal BufStart = 418 svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType()); 419 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 420 421 SVal BufEnd = 422 svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy); 423 424 State = CheckLocation(C, State, Buffer, BufEnd, Access); 425 426 // If the buffer isn't large enough, abort. 427 if (!State) 428 return nullptr; 429 } 430 431 // Large enough or not, return this state! 432 return State; 433 } 434 435 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 436 ProgramStateRef state, 437 SizeArgExpr Size, AnyArgExpr First, 438 AnyArgExpr Second) const { 439 if (!Filter.CheckCStringBufferOverlap) 440 return state; 441 442 // Do a simple check for overlap: if the two arguments are from the same 443 // buffer, see if the end of the first is greater than the start of the second 444 // or vice versa. 445 446 // If a previous check has failed, propagate the failure. 447 if (!state) 448 return nullptr; 449 450 ProgramStateRef stateTrue, stateFalse; 451 452 // Get the buffer values and make sure they're known locations. 453 const LocationContext *LCtx = C.getLocationContext(); 454 SVal firstVal = state->getSVal(First.Expression, LCtx); 455 SVal secondVal = state->getSVal(Second.Expression, LCtx); 456 457 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 458 if (!firstLoc) 459 return state; 460 461 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 462 if (!secondLoc) 463 return state; 464 465 // Are the two values the same? 466 SValBuilder &svalBuilder = C.getSValBuilder(); 467 std::tie(stateTrue, stateFalse) = 468 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 469 470 if (stateTrue && !stateFalse) { 471 // If the values are known to be equal, that's automatically an overlap. 472 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 473 return nullptr; 474 } 475 476 // assume the two expressions are not equal. 477 assert(stateFalse); 478 state = stateFalse; 479 480 // Which value comes first? 481 QualType cmpTy = svalBuilder.getConditionType(); 482 SVal reverse = 483 svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy); 484 Optional<DefinedOrUnknownSVal> reverseTest = 485 reverse.getAs<DefinedOrUnknownSVal>(); 486 if (!reverseTest) 487 return state; 488 489 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 490 if (stateTrue) { 491 if (stateFalse) { 492 // If we don't know which one comes first, we can't perform this test. 493 return state; 494 } else { 495 // Switch the values so that firstVal is before secondVal. 496 std::swap(firstLoc, secondLoc); 497 498 // Switch the Exprs as well, so that they still correspond. 499 std::swap(First, Second); 500 } 501 } 502 503 // Get the length, and make sure it too is known. 504 SVal LengthVal = state->getSVal(Size.Expression, LCtx); 505 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 506 if (!Length) 507 return state; 508 509 // Convert the first buffer's start address to char*. 510 // Bail out if the cast fails. 511 ASTContext &Ctx = svalBuilder.getContext(); 512 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 513 SVal FirstStart = 514 svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType()); 515 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 516 if (!FirstStartLoc) 517 return state; 518 519 // Compute the end of the first buffer. Bail out if THAT fails. 520 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc, 521 *Length, CharPtrTy); 522 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 523 if (!FirstEndLoc) 524 return state; 525 526 // Is the end of the first buffer past the start of the second buffer? 527 SVal Overlap = 528 svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy); 529 Optional<DefinedOrUnknownSVal> OverlapTest = 530 Overlap.getAs<DefinedOrUnknownSVal>(); 531 if (!OverlapTest) 532 return state; 533 534 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 535 536 if (stateTrue && !stateFalse) { 537 // Overlap! 538 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 539 return nullptr; 540 } 541 542 // assume the two expressions don't overlap. 543 assert(stateFalse); 544 return stateFalse; 545 } 546 547 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 548 const Stmt *First, const Stmt *Second) const { 549 ExplodedNode *N = C.generateErrorNode(state); 550 if (!N) 551 return; 552 553 if (!BT_Overlap) 554 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 555 categories::UnixAPI, "Improper arguments")); 556 557 // Generate a report for this bug. 558 auto report = std::make_unique<PathSensitiveBugReport>( 559 *BT_Overlap, "Arguments must not be overlapping buffers", N); 560 report->addRange(First->getSourceRange()); 561 report->addRange(Second->getSourceRange()); 562 563 C.emitReport(std::move(report)); 564 } 565 566 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 567 const Stmt *S, StringRef WarningMsg) const { 568 if (ExplodedNode *N = C.generateErrorNode(State)) { 569 if (!BT_Null) 570 BT_Null.reset(new BuiltinBug( 571 Filter.CheckNameCStringNullArg, categories::UnixAPI, 572 "Null pointer argument in call to byte string function")); 573 574 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); 575 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 576 Report->addRange(S->getSourceRange()); 577 if (const auto *Ex = dyn_cast<Expr>(S)) 578 bugreporter::trackExpressionValue(N, Ex, *Report); 579 C.emitReport(std::move(Report)); 580 } 581 } 582 583 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 584 ProgramStateRef State, const Stmt *S, 585 StringRef WarningMsg) const { 586 if (ExplodedNode *N = C.generateErrorNode(State)) { 587 if (!BT_Bounds) 588 BT_Bounds.reset(new BuiltinBug( 589 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds 590 : Filter.CheckNameCStringNullArg, 591 "Out-of-bound array access", 592 "Byte string function accesses out-of-bound array element")); 593 594 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); 595 596 // FIXME: It would be nice to eventually make this diagnostic more clear, 597 // e.g., by referencing the original declaration or by saying *why* this 598 // reference is outside the range. 599 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 600 Report->addRange(S->getSourceRange()); 601 C.emitReport(std::move(Report)); 602 } 603 } 604 605 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 606 const Stmt *S, 607 StringRef WarningMsg) const { 608 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 609 if (!BT_NotCString) 610 BT_NotCString.reset(new BuiltinBug( 611 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 612 "Argument is not a null-terminated string.")); 613 614 auto Report = 615 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 616 617 Report->addRange(S->getSourceRange()); 618 C.emitReport(std::move(Report)); 619 } 620 } 621 622 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 623 ProgramStateRef State) const { 624 if (ExplodedNode *N = C.generateErrorNode(State)) { 625 if (!BT_NotCString) 626 BT_NotCString.reset( 627 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 628 "Sum of expressions causes overflow.")); 629 630 // This isn't a great error message, but this should never occur in real 631 // code anyway -- you'd have to create a buffer longer than a size_t can 632 // represent, which is sort of a contradiction. 633 const char *WarningMsg = 634 "This expression will create a string whose length is too big to " 635 "be represented as a size_t"; 636 637 auto Report = 638 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 639 C.emitReport(std::move(Report)); 640 } 641 } 642 643 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 644 ProgramStateRef state, 645 NonLoc left, 646 NonLoc right) const { 647 // If out-of-bounds checking is turned off, skip the rest. 648 if (!Filter.CheckCStringOutOfBounds) 649 return state; 650 651 // If a previous check has failed, propagate the failure. 652 if (!state) 653 return nullptr; 654 655 SValBuilder &svalBuilder = C.getSValBuilder(); 656 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 657 658 QualType sizeTy = svalBuilder.getContext().getSizeType(); 659 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 660 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 661 662 SVal maxMinusRight; 663 if (right.getAs<nonloc::ConcreteInt>()) { 664 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 665 sizeTy); 666 } else { 667 // Try switching the operands. (The order of these two assignments is 668 // important!) 669 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 670 sizeTy); 671 left = right; 672 } 673 674 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 675 QualType cmpTy = svalBuilder.getConditionType(); 676 // If left > max - right, we have an overflow. 677 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 678 *maxMinusRightNL, cmpTy); 679 680 ProgramStateRef stateOverflow, stateOkay; 681 std::tie(stateOverflow, stateOkay) = 682 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 683 684 if (stateOverflow && !stateOkay) { 685 // We have an overflow. Emit a bug report. 686 emitAdditionOverflowBug(C, stateOverflow); 687 return nullptr; 688 } 689 690 // From now on, assume an overflow didn't occur. 691 assert(stateOkay); 692 state = stateOkay; 693 } 694 695 return state; 696 } 697 698 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 699 const MemRegion *MR, 700 SVal strLength) { 701 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 702 703 MR = MR->StripCasts(); 704 705 switch (MR->getKind()) { 706 case MemRegion::StringRegionKind: 707 // FIXME: This can happen if we strcpy() into a string region. This is 708 // undefined [C99 6.4.5p6], but we should still warn about it. 709 return state; 710 711 case MemRegion::SymbolicRegionKind: 712 case MemRegion::AllocaRegionKind: 713 case MemRegion::NonParamVarRegionKind: 714 case MemRegion::ParamVarRegionKind: 715 case MemRegion::FieldRegionKind: 716 case MemRegion::ObjCIvarRegionKind: 717 // These are the types we can currently track string lengths for. 718 break; 719 720 case MemRegion::ElementRegionKind: 721 // FIXME: Handle element regions by upper-bounding the parent region's 722 // string length. 723 return state; 724 725 default: 726 // Other regions (mostly non-data) can't have a reliable C string length. 727 // For now, just ignore the change. 728 // FIXME: These are rare but not impossible. We should output some kind of 729 // warning for things like strcpy((char[]){'a', 0}, "b"); 730 return state; 731 } 732 733 if (strLength.isUnknown()) 734 return state->remove<CStringLength>(MR); 735 736 return state->set<CStringLength>(MR, strLength); 737 } 738 739 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 740 ProgramStateRef &state, 741 const Expr *Ex, 742 const MemRegion *MR, 743 bool hypothetical) { 744 if (!hypothetical) { 745 // If there's a recorded length, go ahead and return it. 746 const SVal *Recorded = state->get<CStringLength>(MR); 747 if (Recorded) 748 return *Recorded; 749 } 750 751 // Otherwise, get a new symbol and update the state. 752 SValBuilder &svalBuilder = C.getSValBuilder(); 753 QualType sizeTy = svalBuilder.getContext().getSizeType(); 754 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 755 MR, Ex, sizeTy, 756 C.getLocationContext(), 757 C.blockCount()); 758 759 if (!hypothetical) { 760 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 761 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 762 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 763 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 764 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 765 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 766 fourInt); 767 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 768 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 769 maxLength, sizeTy); 770 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 771 } 772 state = state->set<CStringLength>(MR, strLength); 773 } 774 775 return strLength; 776 } 777 778 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 779 const Expr *Ex, SVal Buf, 780 bool hypothetical) const { 781 const MemRegion *MR = Buf.getAsRegion(); 782 if (!MR) { 783 // If we can't get a region, see if it's something we /know/ isn't a 784 // C string. In the context of locations, the only time we can issue such 785 // a warning is for labels. 786 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 787 if (Filter.CheckCStringNotNullTerm) { 788 SmallString<120> buf; 789 llvm::raw_svector_ostream os(buf); 790 assert(CurrentFunctionDescription); 791 os << "Argument to " << CurrentFunctionDescription 792 << " is the address of the label '" << Label->getLabel()->getName() 793 << "', which is not a null-terminated string"; 794 795 emitNotCStringBug(C, state, Ex, os.str()); 796 } 797 return UndefinedVal(); 798 } 799 800 // If it's not a region and not a label, give up. 801 return UnknownVal(); 802 } 803 804 // If we have a region, strip casts from it and see if we can figure out 805 // its length. For anything we can't figure out, just return UnknownVal. 806 MR = MR->StripCasts(); 807 808 switch (MR->getKind()) { 809 case MemRegion::StringRegionKind: { 810 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 811 // so we can assume that the byte length is the correct C string length. 812 SValBuilder &svalBuilder = C.getSValBuilder(); 813 QualType sizeTy = svalBuilder.getContext().getSizeType(); 814 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 815 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 816 } 817 case MemRegion::SymbolicRegionKind: 818 case MemRegion::AllocaRegionKind: 819 case MemRegion::NonParamVarRegionKind: 820 case MemRegion::ParamVarRegionKind: 821 case MemRegion::FieldRegionKind: 822 case MemRegion::ObjCIvarRegionKind: 823 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 824 case MemRegion::CompoundLiteralRegionKind: 825 // FIXME: Can we track this? Is it necessary? 826 return UnknownVal(); 827 case MemRegion::ElementRegionKind: 828 // FIXME: How can we handle this? It's not good enough to subtract the 829 // offset from the base string length; consider "123\x00567" and &a[5]. 830 return UnknownVal(); 831 default: 832 // Other regions (mostly non-data) can't have a reliable C string length. 833 // In this case, an error is emitted and UndefinedVal is returned. 834 // The caller should always be prepared to handle this case. 835 if (Filter.CheckCStringNotNullTerm) { 836 SmallString<120> buf; 837 llvm::raw_svector_ostream os(buf); 838 839 assert(CurrentFunctionDescription); 840 os << "Argument to " << CurrentFunctionDescription << " is "; 841 842 if (SummarizeRegion(os, C.getASTContext(), MR)) 843 os << ", which is not a null-terminated string"; 844 else 845 os << "not a null-terminated string"; 846 847 emitNotCStringBug(C, state, Ex, os.str()); 848 } 849 return UndefinedVal(); 850 } 851 } 852 853 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 854 ProgramStateRef &state, const Expr *expr, SVal val) const { 855 856 // Get the memory region pointed to by the val. 857 const MemRegion *bufRegion = val.getAsRegion(); 858 if (!bufRegion) 859 return nullptr; 860 861 // Strip casts off the memory region. 862 bufRegion = bufRegion->StripCasts(); 863 864 // Cast the memory region to a string region. 865 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 866 if (!strRegion) 867 return nullptr; 868 869 // Return the actual string in the string region. 870 return strRegion->getStringLiteral(); 871 } 872 873 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 874 ProgramStateRef state, 875 const Expr *FirstBuf, 876 const Expr *Size) { 877 // If we do not know that the buffer is long enough we return 'true'. 878 // Otherwise the parent region of this field region would also get 879 // invalidated, which would lead to warnings based on an unknown state. 880 881 // Originally copied from CheckBufferAccess and CheckLocation. 882 SValBuilder &svalBuilder = C.getSValBuilder(); 883 ASTContext &Ctx = svalBuilder.getContext(); 884 const LocationContext *LCtx = C.getLocationContext(); 885 886 QualType sizeTy = Size->getType(); 887 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 888 SVal BufVal = state->getSVal(FirstBuf, LCtx); 889 890 SVal LengthVal = state->getSVal(Size, LCtx); 891 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 892 if (!Length) 893 return true; // cf top comment. 894 895 // Compute the offset of the last element to be accessed: size-1. 896 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 897 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 898 if (Offset.isUnknown()) 899 return true; // cf top comment 900 NonLoc LastOffset = Offset.castAs<NonLoc>(); 901 902 // Check that the first buffer is sufficiently long. 903 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 904 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 905 if (!BufLoc) 906 return true; // cf top comment. 907 908 SVal BufEnd = 909 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 910 911 // Check for out of bound array element access. 912 const MemRegion *R = BufEnd.getAsRegion(); 913 if (!R) 914 return true; // cf top comment. 915 916 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 917 if (!ER) 918 return true; // cf top comment. 919 920 // FIXME: Does this crash when a non-standard definition 921 // of a library function is encountered? 922 assert(ER->getValueType() == C.getASTContext().CharTy && 923 "IsFirstBufInBound should only be called with char* ElementRegions"); 924 925 // Get the size of the array. 926 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 927 DefinedOrUnknownSVal SizeDV = getDynamicExtent(state, superReg, svalBuilder); 928 929 // Get the index of the accessed element. 930 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 931 932 ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true); 933 934 return static_cast<bool>(StInBound); 935 } 936 937 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 938 ProgramStateRef state, 939 const Expr *E, SVal V, 940 bool IsSourceBuffer, 941 const Expr *Size) { 942 Optional<Loc> L = V.getAs<Loc>(); 943 if (!L) 944 return state; 945 946 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 947 // some assumptions about the value that CFRefCount can't. Even so, it should 948 // probably be refactored. 949 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 950 const MemRegion *R = MR->getRegion()->StripCasts(); 951 952 // Are we dealing with an ElementRegion? If so, we should be invalidating 953 // the super-region. 954 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 955 R = ER->getSuperRegion(); 956 // FIXME: What about layers of ElementRegions? 957 } 958 959 // Invalidate this region. 960 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 961 962 bool CausesPointerEscape = false; 963 RegionAndSymbolInvalidationTraits ITraits; 964 // Invalidate and escape only indirect regions accessible through the source 965 // buffer. 966 if (IsSourceBuffer) { 967 ITraits.setTrait(R->getBaseRegion(), 968 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 969 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 970 CausesPointerEscape = true; 971 } else { 972 const MemRegion::Kind& K = R->getKind(); 973 if (K == MemRegion::FieldRegionKind) 974 if (Size && IsFirstBufInBound(C, state, E, Size)) { 975 // If destination buffer is a field region and access is in bound, 976 // do not invalidate its super region. 977 ITraits.setTrait( 978 R, 979 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 980 } 981 } 982 983 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 984 CausesPointerEscape, nullptr, nullptr, 985 &ITraits); 986 } 987 988 // If we have a non-region value by chance, just remove the binding. 989 // FIXME: is this necessary or correct? This handles the non-Region 990 // cases. Is it ever valid to store to these? 991 return state->killBinding(*L); 992 } 993 994 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 995 const MemRegion *MR) { 996 switch (MR->getKind()) { 997 case MemRegion::FunctionCodeRegionKind: { 998 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl()) 999 os << "the address of the function '" << *FD << '\''; 1000 else 1001 os << "the address of a function"; 1002 return true; 1003 } 1004 case MemRegion::BlockCodeRegionKind: 1005 os << "block text"; 1006 return true; 1007 case MemRegion::BlockDataRegionKind: 1008 os << "a block"; 1009 return true; 1010 case MemRegion::CXXThisRegionKind: 1011 case MemRegion::CXXTempObjectRegionKind: 1012 os << "a C++ temp object of type " 1013 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1014 return true; 1015 case MemRegion::NonParamVarRegionKind: 1016 os << "a variable of type" 1017 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1018 return true; 1019 case MemRegion::ParamVarRegionKind: 1020 os << "a parameter of type" 1021 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1022 return true; 1023 case MemRegion::FieldRegionKind: 1024 os << "a field of type " 1025 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1026 return true; 1027 case MemRegion::ObjCIvarRegionKind: 1028 os << "an instance variable of type " 1029 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1030 return true; 1031 default: 1032 return false; 1033 } 1034 } 1035 1036 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1037 const Expr *Size, CheckerContext &C, 1038 ProgramStateRef &State) { 1039 SVal MemVal = C.getSVal(DstBuffer); 1040 SVal SizeVal = C.getSVal(Size); 1041 const MemRegion *MR = MemVal.getAsRegion(); 1042 if (!MR) 1043 return false; 1044 1045 // We're about to model memset by producing a "default binding" in the Store. 1046 // Our current implementation - RegionStore - doesn't support default bindings 1047 // that don't cover the whole base region. So we should first get the offset 1048 // and the base region to figure out whether the offset of buffer is 0. 1049 RegionOffset Offset = MR->getAsOffset(); 1050 const MemRegion *BR = Offset.getRegion(); 1051 1052 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1053 if (!SizeNL) 1054 return false; 1055 1056 SValBuilder &svalBuilder = C.getSValBuilder(); 1057 ASTContext &Ctx = C.getASTContext(); 1058 1059 // void *memset(void *dest, int ch, size_t count); 1060 // For now we can only handle the case of offset is 0 and concrete char value. 1061 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1062 Offset.getOffset() == 0) { 1063 // Get the base region's size. 1064 DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder); 1065 1066 ProgramStateRef StateWholeReg, StateNotWholeReg; 1067 std::tie(StateWholeReg, StateNotWholeReg) = 1068 State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL)); 1069 1070 // With the semantic of 'memset()', we should convert the CharVal to 1071 // unsigned char. 1072 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1073 1074 ProgramStateRef StateNullChar, StateNonNullChar; 1075 std::tie(StateNullChar, StateNonNullChar) = 1076 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1077 1078 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1079 !StateNonNullChar) { 1080 // If the 'memset()' acts on the whole region of destination buffer and 1081 // the value of the second argument of 'memset()' is zero, bind the second 1082 // argument's value to the destination buffer with 'default binding'. 1083 // FIXME: Since there is no perfect way to bind the non-zero character, we 1084 // can only deal with zero value here. In the future, we need to deal with 1085 // the binding of non-zero value in the case of whole region. 1086 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1087 C.getLocationContext()); 1088 } else { 1089 // If the destination buffer's extent is not equal to the value of 1090 // third argument, just invalidate buffer. 1091 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1092 /*IsSourceBuffer*/ false, Size); 1093 } 1094 1095 if (StateNullChar && !StateNonNullChar) { 1096 // If the value of the second argument of 'memset()' is zero, set the 1097 // string length of destination buffer to 0 directly. 1098 State = setCStringLength(State, MR, 1099 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1100 } else if (!StateNullChar && StateNonNullChar) { 1101 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1102 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1103 C.getLocationContext(), C.blockCount()); 1104 1105 // If the value of second argument is not zero, then the string length 1106 // is at least the size argument. 1107 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1108 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1109 1110 State = setCStringLength( 1111 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1112 MR, NewStrLen); 1113 } 1114 } else { 1115 // If the offset is not zero and char value is not concrete, we can do 1116 // nothing but invalidate the buffer. 1117 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1118 /*IsSourceBuffer*/ false, Size); 1119 } 1120 return true; 1121 } 1122 1123 //===----------------------------------------------------------------------===// 1124 // evaluation of individual function calls. 1125 //===----------------------------------------------------------------------===// 1126 1127 void CStringChecker::evalCopyCommon(CheckerContext &C, const CallExpr *CE, 1128 ProgramStateRef state, SizeArgExpr Size, 1129 DestinationArgExpr Dest, 1130 SourceArgExpr Source, bool Restricted, 1131 bool IsMempcpy) const { 1132 CurrentFunctionDescription = "memory copy function"; 1133 1134 // See if the size argument is zero. 1135 const LocationContext *LCtx = C.getLocationContext(); 1136 SVal sizeVal = state->getSVal(Size.Expression, LCtx); 1137 QualType sizeTy = Size.Expression->getType(); 1138 1139 ProgramStateRef stateZeroSize, stateNonZeroSize; 1140 std::tie(stateZeroSize, stateNonZeroSize) = 1141 assumeZero(C, state, sizeVal, sizeTy); 1142 1143 // Get the value of the Dest. 1144 SVal destVal = state->getSVal(Dest.Expression, LCtx); 1145 1146 // If the size is zero, there won't be any actual memory access, so 1147 // just bind the return value to the destination buffer and return. 1148 if (stateZeroSize && !stateNonZeroSize) { 1149 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1150 C.addTransition(stateZeroSize); 1151 return; 1152 } 1153 1154 // If the size can be nonzero, we have to check the other arguments. 1155 if (stateNonZeroSize) { 1156 state = stateNonZeroSize; 1157 1158 // Ensure the destination is not null. If it is NULL there will be a 1159 // NULL pointer dereference. 1160 state = checkNonNull(C, state, Dest, destVal); 1161 if (!state) 1162 return; 1163 1164 // Get the value of the Src. 1165 SVal srcVal = state->getSVal(Source.Expression, LCtx); 1166 1167 // Ensure the source is not null. If it is NULL there will be a 1168 // NULL pointer dereference. 1169 state = checkNonNull(C, state, Source, srcVal); 1170 if (!state) 1171 return; 1172 1173 // Ensure the accesses are valid and that the buffers do not overlap. 1174 state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write); 1175 state = CheckBufferAccess(C, state, Source, Size, AccessKind::read); 1176 1177 if (Restricted) 1178 state = CheckOverlap(C, state, Size, Dest, Source); 1179 1180 if (!state) 1181 return; 1182 1183 // If this is mempcpy, get the byte after the last byte copied and 1184 // bind the expr. 1185 if (IsMempcpy) { 1186 // Get the byte after the last byte copied. 1187 SValBuilder &SvalBuilder = C.getSValBuilder(); 1188 ASTContext &Ctx = SvalBuilder.getContext(); 1189 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1190 SVal DestRegCharVal = 1191 SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType()); 1192 SVal lastElement = C.getSValBuilder().evalBinOp( 1193 state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType()); 1194 // If we don't know how much we copied, we can at least 1195 // conjure a return value for later. 1196 if (lastElement.isUnknown()) 1197 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1198 C.blockCount()); 1199 1200 // The byte after the last byte copied is the return value. 1201 state = state->BindExpr(CE, LCtx, lastElement); 1202 } else { 1203 // All other copies return the destination buffer. 1204 // (Well, bcopy() has a void return type, but this won't hurt.) 1205 state = state->BindExpr(CE, LCtx, destVal); 1206 } 1207 1208 // Invalidate the destination (regular invalidation without pointer-escaping 1209 // the address of the top-level region). 1210 // FIXME: Even if we can't perfectly model the copy, we should see if we 1211 // can use LazyCompoundVals to copy the source values into the destination. 1212 // This would probably remove any existing bindings past the end of the 1213 // copied region, but that's still an improvement over blank invalidation. 1214 state = 1215 InvalidateBuffer(C, state, Dest.Expression, C.getSVal(Dest.Expression), 1216 /*IsSourceBuffer*/ false, Size.Expression); 1217 1218 // Invalidate the source (const-invalidation without const-pointer-escaping 1219 // the address of the top-level region). 1220 state = InvalidateBuffer(C, state, Source.Expression, 1221 C.getSVal(Source.Expression), 1222 /*IsSourceBuffer*/ true, nullptr); 1223 1224 C.addTransition(state); 1225 } 1226 } 1227 1228 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1229 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1230 // The return value is the address of the destination buffer. 1231 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1232 SourceArgExpr Src = {CE->getArg(1), 1}; 1233 SizeArgExpr Size = {CE->getArg(2), 2}; 1234 1235 ProgramStateRef State = C.getState(); 1236 1237 constexpr bool IsRestricted = true; 1238 constexpr bool IsMempcpy = false; 1239 evalCopyCommon(C, CE, State, Size, Dest, Src, IsRestricted, IsMempcpy); 1240 } 1241 1242 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1243 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1244 // The return value is a pointer to the byte following the last written byte. 1245 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1246 SourceArgExpr Src = {CE->getArg(1), 1}; 1247 SizeArgExpr Size = {CE->getArg(2), 2}; 1248 1249 constexpr bool IsRestricted = true; 1250 constexpr bool IsMempcpy = true; 1251 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1252 } 1253 1254 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1255 // void *memmove(void *dst, const void *src, size_t n); 1256 // The return value is the address of the destination buffer. 1257 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1258 SourceArgExpr Src = {CE->getArg(1), 1}; 1259 SizeArgExpr Size = {CE->getArg(2), 2}; 1260 1261 constexpr bool IsRestricted = false; 1262 constexpr bool IsMempcpy = false; 1263 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1264 } 1265 1266 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1267 // void bcopy(const void *src, void *dst, size_t n); 1268 SourceArgExpr Src(CE->getArg(0), 0); 1269 DestinationArgExpr Dest = {CE->getArg(1), 1}; 1270 SizeArgExpr Size = {CE->getArg(2), 2}; 1271 1272 constexpr bool IsRestricted = false; 1273 constexpr bool IsMempcpy = false; 1274 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1275 } 1276 1277 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1278 // int memcmp(const void *s1, const void *s2, size_t n); 1279 CurrentFunctionDescription = "memory comparison function"; 1280 1281 AnyArgExpr Left = {CE->getArg(0), 0}; 1282 AnyArgExpr Right = {CE->getArg(1), 1}; 1283 SizeArgExpr Size = {CE->getArg(2), 2}; 1284 1285 ProgramStateRef State = C.getState(); 1286 SValBuilder &Builder = C.getSValBuilder(); 1287 const LocationContext *LCtx = C.getLocationContext(); 1288 1289 // See if the size argument is zero. 1290 SVal sizeVal = State->getSVal(Size.Expression, LCtx); 1291 QualType sizeTy = Size.Expression->getType(); 1292 1293 ProgramStateRef stateZeroSize, stateNonZeroSize; 1294 std::tie(stateZeroSize, stateNonZeroSize) = 1295 assumeZero(C, State, sizeVal, sizeTy); 1296 1297 // If the size can be zero, the result will be 0 in that case, and we don't 1298 // have to check either of the buffers. 1299 if (stateZeroSize) { 1300 State = stateZeroSize; 1301 State = State->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1302 C.addTransition(State); 1303 } 1304 1305 // If the size can be nonzero, we have to check the other arguments. 1306 if (stateNonZeroSize) { 1307 State = stateNonZeroSize; 1308 // If we know the two buffers are the same, we know the result is 0. 1309 // First, get the two buffers' addresses. Another checker will have already 1310 // made sure they're not undefined. 1311 DefinedOrUnknownSVal LV = 1312 State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1313 DefinedOrUnknownSVal RV = 1314 State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1315 1316 // See if they are the same. 1317 ProgramStateRef SameBuffer, NotSameBuffer; 1318 std::tie(SameBuffer, NotSameBuffer) = 1319 State->assume(Builder.evalEQ(State, LV, RV)); 1320 1321 // If the two arguments are the same buffer, we know the result is 0, 1322 // and we only need to check one size. 1323 if (SameBuffer && !NotSameBuffer) { 1324 State = SameBuffer; 1325 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1326 if (State) { 1327 State = 1328 SameBuffer->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1329 C.addTransition(State); 1330 } 1331 return; 1332 } 1333 1334 // If the two arguments might be different buffers, we have to check 1335 // the size of both of them. 1336 assert(NotSameBuffer); 1337 State = CheckBufferAccess(C, State, Right, Size, AccessKind::read); 1338 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1339 if (State) { 1340 // The return value is the comparison result, which we don't know. 1341 SVal CmpV = Builder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1342 State = State->BindExpr(CE, LCtx, CmpV); 1343 C.addTransition(State); 1344 } 1345 } 1346 } 1347 1348 void CStringChecker::evalstrLength(CheckerContext &C, 1349 const CallExpr *CE) const { 1350 // size_t strlen(const char *s); 1351 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1352 } 1353 1354 void CStringChecker::evalstrnLength(CheckerContext &C, 1355 const CallExpr *CE) const { 1356 // size_t strnlen(const char *s, size_t maxlen); 1357 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1358 } 1359 1360 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1361 bool IsStrnlen) const { 1362 CurrentFunctionDescription = "string length function"; 1363 ProgramStateRef state = C.getState(); 1364 const LocationContext *LCtx = C.getLocationContext(); 1365 1366 if (IsStrnlen) { 1367 const Expr *maxlenExpr = CE->getArg(1); 1368 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1369 1370 ProgramStateRef stateZeroSize, stateNonZeroSize; 1371 std::tie(stateZeroSize, stateNonZeroSize) = 1372 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1373 1374 // If the size can be zero, the result will be 0 in that case, and we don't 1375 // have to check the string itself. 1376 if (stateZeroSize) { 1377 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1378 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1379 C.addTransition(stateZeroSize); 1380 } 1381 1382 // If the size is GUARANTEED to be zero, we're done! 1383 if (!stateNonZeroSize) 1384 return; 1385 1386 // Otherwise, record the assumption that the size is nonzero. 1387 state = stateNonZeroSize; 1388 } 1389 1390 // Check that the string argument is non-null. 1391 AnyArgExpr Arg = {CE->getArg(0), 0}; 1392 SVal ArgVal = state->getSVal(Arg.Expression, LCtx); 1393 state = checkNonNull(C, state, Arg, ArgVal); 1394 1395 if (!state) 1396 return; 1397 1398 SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal); 1399 1400 // If the argument isn't a valid C string, there's no valid state to 1401 // transition to. 1402 if (strLength.isUndef()) 1403 return; 1404 1405 DefinedOrUnknownSVal result = UnknownVal(); 1406 1407 // If the check is for strnlen() then bind the return value to no more than 1408 // the maxlen value. 1409 if (IsStrnlen) { 1410 QualType cmpTy = C.getSValBuilder().getConditionType(); 1411 1412 // It's a little unfortunate to be getting this again, 1413 // but it's not that expensive... 1414 const Expr *maxlenExpr = CE->getArg(1); 1415 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1416 1417 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1418 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1419 1420 if (strLengthNL && maxlenValNL) { 1421 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1422 1423 // Check if the strLength is greater than the maxlen. 1424 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1425 C.getSValBuilder() 1426 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1427 .castAs<DefinedOrUnknownSVal>()); 1428 1429 if (stateStringTooLong && !stateStringNotTooLong) { 1430 // If the string is longer than maxlen, return maxlen. 1431 result = *maxlenValNL; 1432 } else if (stateStringNotTooLong && !stateStringTooLong) { 1433 // If the string is shorter than maxlen, return its length. 1434 result = *strLengthNL; 1435 } 1436 } 1437 1438 if (result.isUnknown()) { 1439 // If we don't have enough information for a comparison, there's 1440 // no guarantee the full string length will actually be returned. 1441 // All we know is the return value is the min of the string length 1442 // and the limit. This is better than nothing. 1443 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1444 C.blockCount()); 1445 NonLoc resultNL = result.castAs<NonLoc>(); 1446 1447 if (strLengthNL) { 1448 state = state->assume(C.getSValBuilder().evalBinOpNN( 1449 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1450 .castAs<DefinedOrUnknownSVal>(), true); 1451 } 1452 1453 if (maxlenValNL) { 1454 state = state->assume(C.getSValBuilder().evalBinOpNN( 1455 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1456 .castAs<DefinedOrUnknownSVal>(), true); 1457 } 1458 } 1459 1460 } else { 1461 // This is a plain strlen(), not strnlen(). 1462 result = strLength.castAs<DefinedOrUnknownSVal>(); 1463 1464 // If we don't know the length of the string, conjure a return 1465 // value, so it can be used in constraints, at least. 1466 if (result.isUnknown()) { 1467 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1468 C.blockCount()); 1469 } 1470 } 1471 1472 // Bind the return value. 1473 assert(!result.isUnknown() && "Should have conjured a value by now"); 1474 state = state->BindExpr(CE, LCtx, result); 1475 C.addTransition(state); 1476 } 1477 1478 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1479 // char *strcpy(char *restrict dst, const char *restrict src); 1480 evalStrcpyCommon(C, CE, 1481 /* ReturnEnd = */ false, 1482 /* IsBounded = */ false, 1483 /* appendK = */ ConcatFnKind::none); 1484 } 1485 1486 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1487 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1488 evalStrcpyCommon(C, CE, 1489 /* ReturnEnd = */ false, 1490 /* IsBounded = */ true, 1491 /* appendK = */ ConcatFnKind::none); 1492 } 1493 1494 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1495 // char *stpcpy(char *restrict dst, const char *restrict src); 1496 evalStrcpyCommon(C, CE, 1497 /* ReturnEnd = */ true, 1498 /* IsBounded = */ false, 1499 /* appendK = */ ConcatFnKind::none); 1500 } 1501 1502 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { 1503 // size_t strlcpy(char *dest, const char *src, size_t size); 1504 evalStrcpyCommon(C, CE, 1505 /* ReturnEnd = */ true, 1506 /* IsBounded = */ true, 1507 /* appendK = */ ConcatFnKind::none, 1508 /* returnPtr = */ false); 1509 } 1510 1511 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1512 // char *strcat(char *restrict s1, const char *restrict s2); 1513 evalStrcpyCommon(C, CE, 1514 /* ReturnEnd = */ false, 1515 /* IsBounded = */ false, 1516 /* appendK = */ ConcatFnKind::strcat); 1517 } 1518 1519 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1520 // char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1521 evalStrcpyCommon(C, CE, 1522 /* ReturnEnd = */ false, 1523 /* IsBounded = */ true, 1524 /* appendK = */ ConcatFnKind::strcat); 1525 } 1526 1527 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { 1528 // size_t strlcat(char *dst, const char *src, size_t size); 1529 // It will append at most size - strlen(dst) - 1 bytes, 1530 // NULL-terminating the result. 1531 evalStrcpyCommon(C, CE, 1532 /* ReturnEnd = */ false, 1533 /* IsBounded = */ true, 1534 /* appendK = */ ConcatFnKind::strlcat, 1535 /* returnPtr = */ false); 1536 } 1537 1538 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1539 bool ReturnEnd, bool IsBounded, 1540 ConcatFnKind appendK, 1541 bool returnPtr) const { 1542 if (appendK == ConcatFnKind::none) 1543 CurrentFunctionDescription = "string copy function"; 1544 else 1545 CurrentFunctionDescription = "string concatenation function"; 1546 1547 ProgramStateRef state = C.getState(); 1548 const LocationContext *LCtx = C.getLocationContext(); 1549 1550 // Check that the destination is non-null. 1551 DestinationArgExpr Dst = {CE->getArg(0), 0}; 1552 SVal DstVal = state->getSVal(Dst.Expression, LCtx); 1553 state = checkNonNull(C, state, Dst, DstVal); 1554 if (!state) 1555 return; 1556 1557 // Check that the source is non-null. 1558 SourceArgExpr srcExpr = {CE->getArg(1), 1}; 1559 SVal srcVal = state->getSVal(srcExpr.Expression, LCtx); 1560 state = checkNonNull(C, state, srcExpr, srcVal); 1561 if (!state) 1562 return; 1563 1564 // Get the string length of the source. 1565 SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal); 1566 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1567 1568 // Get the string length of the destination buffer. 1569 SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal); 1570 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1571 1572 // If the source isn't a valid C string, give up. 1573 if (strLength.isUndef()) 1574 return; 1575 1576 SValBuilder &svalBuilder = C.getSValBuilder(); 1577 QualType cmpTy = svalBuilder.getConditionType(); 1578 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1579 1580 // These two values allow checking two kinds of errors: 1581 // - actual overflows caused by a source that doesn't fit in the destination 1582 // - potential overflows caused by a bound that could exceed the destination 1583 SVal amountCopied = UnknownVal(); 1584 SVal maxLastElementIndex = UnknownVal(); 1585 const char *boundWarning = nullptr; 1586 1587 // FIXME: Why do we choose the srcExpr if the access has no size? 1588 // Note that the 3rd argument of the call would be the size parameter. 1589 SizeArgExpr SrcExprAsSizeDummy = {srcExpr.Expression, srcExpr.ArgumentIndex}; 1590 state = CheckOverlap( 1591 C, state, 1592 (IsBounded ? SizeArgExpr{CE->getArg(2), 2} : SrcExprAsSizeDummy), Dst, 1593 srcExpr); 1594 1595 if (!state) 1596 return; 1597 1598 // If the function is strncpy, strncat, etc... it is bounded. 1599 if (IsBounded) { 1600 // Get the max number of characters to copy. 1601 SizeArgExpr lenExpr = {CE->getArg(2), 2}; 1602 SVal lenVal = state->getSVal(lenExpr.Expression, LCtx); 1603 1604 // Protect against misdeclared strncpy(). 1605 lenVal = 1606 svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType()); 1607 1608 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1609 1610 // If we know both values, we might be able to figure out how much 1611 // we're copying. 1612 if (strLengthNL && lenValNL) { 1613 switch (appendK) { 1614 case ConcatFnKind::none: 1615 case ConcatFnKind::strcat: { 1616 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1617 // Check if the max number to copy is less than the length of the src. 1618 // If the bound is equal to the source length, strncpy won't null- 1619 // terminate the result! 1620 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1621 svalBuilder 1622 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1623 .castAs<DefinedOrUnknownSVal>()); 1624 1625 if (stateSourceTooLong && !stateSourceNotTooLong) { 1626 // Max number to copy is less than the length of the src, so the 1627 // actual strLength copied is the max number arg. 1628 state = stateSourceTooLong; 1629 amountCopied = lenVal; 1630 1631 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1632 // The source buffer entirely fits in the bound. 1633 state = stateSourceNotTooLong; 1634 amountCopied = strLength; 1635 } 1636 break; 1637 } 1638 case ConcatFnKind::strlcat: 1639 if (!dstStrLengthNL) 1640 return; 1641 1642 // amountCopied = min (size - dstLen - 1 , srcLen) 1643 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1644 *dstStrLengthNL, sizeTy); 1645 if (!freeSpace.getAs<NonLoc>()) 1646 return; 1647 freeSpace = 1648 svalBuilder.evalBinOp(state, BO_Sub, freeSpace, 1649 svalBuilder.makeIntVal(1, sizeTy), sizeTy); 1650 Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>(); 1651 1652 // While unlikely, it is possible that the subtraction is 1653 // too complex to compute, let's check whether it succeeded. 1654 if (!freeSpaceNL) 1655 return; 1656 SVal hasEnoughSpace = svalBuilder.evalBinOpNN( 1657 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy); 1658 1659 ProgramStateRef TrueState, FalseState; 1660 std::tie(TrueState, FalseState) = 1661 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>()); 1662 1663 // srcStrLength <= size - dstStrLength -1 1664 if (TrueState && !FalseState) { 1665 amountCopied = strLength; 1666 } 1667 1668 // srcStrLength > size - dstStrLength -1 1669 if (!TrueState && FalseState) { 1670 amountCopied = freeSpace; 1671 } 1672 1673 if (TrueState && FalseState) 1674 amountCopied = UnknownVal(); 1675 break; 1676 } 1677 } 1678 // We still want to know if the bound is known to be too large. 1679 if (lenValNL) { 1680 switch (appendK) { 1681 case ConcatFnKind::strcat: 1682 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1683 1684 // Get the string length of the destination. If the destination is 1685 // memory that can't have a string length, we shouldn't be copying 1686 // into it anyway. 1687 if (dstStrLength.isUndef()) 1688 return; 1689 1690 if (dstStrLengthNL) { 1691 maxLastElementIndex = svalBuilder.evalBinOpNN( 1692 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy); 1693 1694 boundWarning = "Size argument is greater than the free space in the " 1695 "destination buffer"; 1696 } 1697 break; 1698 case ConcatFnKind::none: 1699 case ConcatFnKind::strlcat: 1700 // For strncpy and strlcat, this is just checking 1701 // that lenVal <= sizeof(dst). 1702 // (Yes, strncpy and strncat differ in how they treat termination. 1703 // strncat ALWAYS terminates, but strncpy doesn't.) 1704 1705 // We need a special case for when the copy size is zero, in which 1706 // case strncpy will do no work at all. Our bounds check uses n-1 1707 // as the last element accessed, so n == 0 is problematic. 1708 ProgramStateRef StateZeroSize, StateNonZeroSize; 1709 std::tie(StateZeroSize, StateNonZeroSize) = 1710 assumeZero(C, state, *lenValNL, sizeTy); 1711 1712 // If the size is known to be zero, we're done. 1713 if (StateZeroSize && !StateNonZeroSize) { 1714 if (returnPtr) { 1715 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1716 } else { 1717 if (appendK == ConcatFnKind::none) { 1718 // strlcpy returns strlen(src) 1719 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength); 1720 } else { 1721 // strlcat returns strlen(src) + strlen(dst) 1722 SVal retSize = svalBuilder.evalBinOp( 1723 state, BO_Add, strLength, dstStrLength, sizeTy); 1724 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize); 1725 } 1726 } 1727 C.addTransition(StateZeroSize); 1728 return; 1729 } 1730 1731 // Otherwise, go ahead and figure out the last element we'll touch. 1732 // We don't record the non-zero assumption here because we can't 1733 // be sure. We won't warn on a possible zero. 1734 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1735 maxLastElementIndex = 1736 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy); 1737 boundWarning = "Size argument is greater than the length of the " 1738 "destination buffer"; 1739 break; 1740 } 1741 } 1742 } else { 1743 // The function isn't bounded. The amount copied should match the length 1744 // of the source buffer. 1745 amountCopied = strLength; 1746 } 1747 1748 assert(state); 1749 1750 // This represents the number of characters copied into the destination 1751 // buffer. (It may not actually be the strlen if the destination buffer 1752 // is not terminated.) 1753 SVal finalStrLength = UnknownVal(); 1754 SVal strlRetVal = UnknownVal(); 1755 1756 if (appendK == ConcatFnKind::none && !returnPtr) { 1757 // strlcpy returns the sizeof(src) 1758 strlRetVal = strLength; 1759 } 1760 1761 // If this is an appending function (strcat, strncat...) then set the 1762 // string length to strlen(src) + strlen(dst) since the buffer will 1763 // ultimately contain both. 1764 if (appendK != ConcatFnKind::none) { 1765 // Get the string length of the destination. If the destination is memory 1766 // that can't have a string length, we shouldn't be copying into it anyway. 1767 if (dstStrLength.isUndef()) 1768 return; 1769 1770 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) { 1771 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL, 1772 *dstStrLengthNL, sizeTy); 1773 } 1774 1775 Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>(); 1776 1777 // If we know both string lengths, we might know the final string length. 1778 if (amountCopiedNL && dstStrLengthNL) { 1779 // Make sure the two lengths together don't overflow a size_t. 1780 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL); 1781 if (!state) 1782 return; 1783 1784 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL, 1785 *dstStrLengthNL, sizeTy); 1786 } 1787 1788 // If we couldn't get a single value for the final string length, 1789 // we can at least bound it by the individual lengths. 1790 if (finalStrLength.isUnknown()) { 1791 // Try to get a "hypothetical" string length symbol, which we can later 1792 // set as a real value if that turns out to be the case. 1793 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1794 assert(!finalStrLength.isUndef()); 1795 1796 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1797 if (amountCopiedNL && appendK == ConcatFnKind::none) { 1798 // we overwrite dst string with the src 1799 // finalStrLength >= srcStrLength 1800 SVal sourceInResult = svalBuilder.evalBinOpNN( 1801 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy); 1802 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1803 true); 1804 if (!state) 1805 return; 1806 } 1807 1808 if (dstStrLengthNL && appendK != ConcatFnKind::none) { 1809 // we extend the dst string with the src 1810 // finalStrLength >= dstStrLength 1811 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1812 *finalStrLengthNL, 1813 *dstStrLengthNL, 1814 cmpTy); 1815 state = 1816 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1817 if (!state) 1818 return; 1819 } 1820 } 1821 } 1822 1823 } else { 1824 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1825 // the final string length will match the input string length. 1826 finalStrLength = amountCopied; 1827 } 1828 1829 SVal Result; 1830 1831 if (returnPtr) { 1832 // The final result of the function will either be a pointer past the last 1833 // copied element, or a pointer to the start of the destination buffer. 1834 Result = (ReturnEnd ? UnknownVal() : DstVal); 1835 } else { 1836 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none) 1837 //strlcpy, strlcat 1838 Result = strlRetVal; 1839 else 1840 Result = finalStrLength; 1841 } 1842 1843 assert(state); 1844 1845 // If the destination is a MemRegion, try to check for a buffer overflow and 1846 // record the new string length. 1847 if (Optional<loc::MemRegionVal> dstRegVal = 1848 DstVal.getAs<loc::MemRegionVal>()) { 1849 QualType ptrTy = Dst.Expression->getType(); 1850 1851 // If we have an exact value on a bounded copy, use that to check for 1852 // overflows, rather than our estimate about how much is actually copied. 1853 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1854 SVal maxLastElement = 1855 svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy); 1856 1857 state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write); 1858 if (!state) 1859 return; 1860 } 1861 1862 // Then, if the final length is known... 1863 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1864 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1865 *knownStrLength, ptrTy); 1866 1867 // ...and we haven't checked the bound, we'll check the actual copy. 1868 if (!boundWarning) { 1869 state = CheckLocation(C, state, Dst, lastElement, AccessKind::write); 1870 if (!state) 1871 return; 1872 } 1873 1874 // If this is a stpcpy-style copy, the last element is the return value. 1875 if (returnPtr && ReturnEnd) 1876 Result = lastElement; 1877 } 1878 1879 // Invalidate the destination (regular invalidation without pointer-escaping 1880 // the address of the top-level region). This must happen before we set the 1881 // C string length because invalidation will clear the length. 1882 // FIXME: Even if we can't perfectly model the copy, we should see if we 1883 // can use LazyCompoundVals to copy the source values into the destination. 1884 // This would probably remove any existing bindings past the end of the 1885 // string, but that's still an improvement over blank invalidation. 1886 state = InvalidateBuffer(C, state, Dst.Expression, *dstRegVal, 1887 /*IsSourceBuffer*/ false, nullptr); 1888 1889 // Invalidate the source (const-invalidation without const-pointer-escaping 1890 // the address of the top-level region). 1891 state = InvalidateBuffer(C, state, srcExpr.Expression, srcVal, 1892 /*IsSourceBuffer*/ true, nullptr); 1893 1894 // Set the C string length of the destination, if we know it. 1895 if (IsBounded && (appendK == ConcatFnKind::none)) { 1896 // strncpy is annoying in that it doesn't guarantee to null-terminate 1897 // the result string. If the original string didn't fit entirely inside 1898 // the bound (including the null-terminator), we don't know how long the 1899 // result is. 1900 if (amountCopied != strLength) 1901 finalStrLength = UnknownVal(); 1902 } 1903 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1904 } 1905 1906 assert(state); 1907 1908 if (returnPtr) { 1909 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1910 // overflow, we still need a result. Conjure a return value. 1911 if (ReturnEnd && Result.isUnknown()) { 1912 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1913 } 1914 } 1915 // Set the return value. 1916 state = state->BindExpr(CE, LCtx, Result); 1917 C.addTransition(state); 1918 } 1919 1920 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1921 //int strcmp(const char *s1, const char *s2); 1922 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false); 1923 } 1924 1925 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1926 //int strncmp(const char *s1, const char *s2, size_t n); 1927 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false); 1928 } 1929 1930 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1931 const CallExpr *CE) const { 1932 //int strcasecmp(const char *s1, const char *s2); 1933 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true); 1934 } 1935 1936 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1937 const CallExpr *CE) const { 1938 //int strncasecmp(const char *s1, const char *s2, size_t n); 1939 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true); 1940 } 1941 1942 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1943 bool IsBounded, bool IgnoreCase) const { 1944 CurrentFunctionDescription = "string comparison function"; 1945 ProgramStateRef state = C.getState(); 1946 const LocationContext *LCtx = C.getLocationContext(); 1947 1948 // Check that the first string is non-null 1949 AnyArgExpr Left = {CE->getArg(0), 0}; 1950 SVal LeftVal = state->getSVal(Left.Expression, LCtx); 1951 state = checkNonNull(C, state, Left, LeftVal); 1952 if (!state) 1953 return; 1954 1955 // Check that the second string is non-null. 1956 AnyArgExpr Right = {CE->getArg(1), 1}; 1957 SVal RightVal = state->getSVal(Right.Expression, LCtx); 1958 state = checkNonNull(C, state, Right, RightVal); 1959 if (!state) 1960 return; 1961 1962 // Get the string length of the first string or give up. 1963 SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal); 1964 if (LeftLength.isUndef()) 1965 return; 1966 1967 // Get the string length of the second string or give up. 1968 SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal); 1969 if (RightLength.isUndef()) 1970 return; 1971 1972 // If we know the two buffers are the same, we know the result is 0. 1973 // First, get the two buffers' addresses. Another checker will have already 1974 // made sure they're not undefined. 1975 DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>(); 1976 DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>(); 1977 1978 // See if they are the same. 1979 SValBuilder &svalBuilder = C.getSValBuilder(); 1980 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1981 ProgramStateRef StSameBuf, StNotSameBuf; 1982 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1983 1984 // If the two arguments might be the same buffer, we know the result is 0, 1985 // and we only need to check one size. 1986 if (StSameBuf) { 1987 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1988 svalBuilder.makeZeroVal(CE->getType())); 1989 C.addTransition(StSameBuf); 1990 1991 // If the two arguments are GUARANTEED to be the same, we're done! 1992 if (!StNotSameBuf) 1993 return; 1994 } 1995 1996 assert(StNotSameBuf); 1997 state = StNotSameBuf; 1998 1999 // At this point we can go about comparing the two buffers. 2000 // For now, we only do this if they're both known string literals. 2001 2002 // Attempt to extract string literals from both expressions. 2003 const StringLiteral *LeftStrLiteral = 2004 getCStringLiteral(C, state, Left.Expression, LeftVal); 2005 const StringLiteral *RightStrLiteral = 2006 getCStringLiteral(C, state, Right.Expression, RightVal); 2007 bool canComputeResult = false; 2008 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 2009 C.blockCount()); 2010 2011 if (LeftStrLiteral && RightStrLiteral) { 2012 StringRef LeftStrRef = LeftStrLiteral->getString(); 2013 StringRef RightStrRef = RightStrLiteral->getString(); 2014 2015 if (IsBounded) { 2016 // Get the max number of characters to compare. 2017 const Expr *lenExpr = CE->getArg(2); 2018 SVal lenVal = state->getSVal(lenExpr, LCtx); 2019 2020 // If the length is known, we can get the right substrings. 2021 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 2022 // Create substrings of each to compare the prefix. 2023 LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue()); 2024 RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue()); 2025 canComputeResult = true; 2026 } 2027 } else { 2028 // This is a normal, unbounded strcmp. 2029 canComputeResult = true; 2030 } 2031 2032 if (canComputeResult) { 2033 // Real strcmp stops at null characters. 2034 size_t s1Term = LeftStrRef.find('\0'); 2035 if (s1Term != StringRef::npos) 2036 LeftStrRef = LeftStrRef.substr(0, s1Term); 2037 2038 size_t s2Term = RightStrRef.find('\0'); 2039 if (s2Term != StringRef::npos) 2040 RightStrRef = RightStrRef.substr(0, s2Term); 2041 2042 // Use StringRef's comparison methods to compute the actual result. 2043 int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef) 2044 : LeftStrRef.compare(RightStrRef); 2045 2046 // The strcmp function returns an integer greater than, equal to, or less 2047 // than zero, [c11, p7.24.4.2]. 2048 if (compareRes == 0) { 2049 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 2050 } 2051 else { 2052 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 2053 // Constrain strcmp's result range based on the result of StringRef's 2054 // comparison methods. 2055 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 2056 SVal compareWithZero = 2057 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2058 svalBuilder.getConditionType()); 2059 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2060 state = state->assume(compareWithZeroVal, true); 2061 } 2062 } 2063 } 2064 2065 state = state->BindExpr(CE, LCtx, resultVal); 2066 2067 // Record this as a possible path. 2068 C.addTransition(state); 2069 } 2070 2071 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 2072 // char *strsep(char **stringp, const char *delim); 2073 // Verify whether the search string parameter matches the return type. 2074 SourceArgExpr SearchStrPtr = {CE->getArg(0), 0}; 2075 2076 QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType(); 2077 if (CharPtrTy.isNull() || 2078 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 2079 return; 2080 2081 CurrentFunctionDescription = "strsep()"; 2082 ProgramStateRef State = C.getState(); 2083 const LocationContext *LCtx = C.getLocationContext(); 2084 2085 // Check that the search string pointer is non-null (though it may point to 2086 // a null string). 2087 SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx); 2088 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 2089 if (!State) 2090 return; 2091 2092 // Check that the delimiter string is non-null. 2093 AnyArgExpr DelimStr = {CE->getArg(1), 1}; 2094 SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx); 2095 State = checkNonNull(C, State, DelimStr, DelimStrVal); 2096 if (!State) 2097 return; 2098 2099 SValBuilder &SVB = C.getSValBuilder(); 2100 SVal Result; 2101 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2102 // Get the current value of the search string pointer, as a char*. 2103 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2104 2105 // Invalidate the search string, representing the change of one delimiter 2106 // character to NUL. 2107 State = InvalidateBuffer(C, State, SearchStrPtr.Expression, Result, 2108 /*IsSourceBuffer*/ false, nullptr); 2109 2110 // Overwrite the search string pointer. The new value is either an address 2111 // further along in the same string, or NULL if there are no more tokens. 2112 State = State->bindLoc(*SearchStrLoc, 2113 SVB.conjureSymbolVal(getTag(), 2114 CE, 2115 LCtx, 2116 CharPtrTy, 2117 C.blockCount()), 2118 LCtx); 2119 } else { 2120 assert(SearchStrVal.isUnknown()); 2121 // Conjure a symbolic value. It's the best we can do. 2122 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2123 } 2124 2125 // Set the return value, and finish. 2126 State = State->BindExpr(CE, LCtx, Result); 2127 C.addTransition(State); 2128 } 2129 2130 // These should probably be moved into a C++ standard library checker. 2131 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 2132 evalStdCopyCommon(C, CE); 2133 } 2134 2135 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2136 const CallExpr *CE) const { 2137 evalStdCopyCommon(C, CE); 2138 } 2139 2140 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2141 const CallExpr *CE) const { 2142 if (!CE->getArg(2)->getType()->isPointerType()) 2143 return; 2144 2145 ProgramStateRef State = C.getState(); 2146 2147 const LocationContext *LCtx = C.getLocationContext(); 2148 2149 // template <class _InputIterator, class _OutputIterator> 2150 // _OutputIterator 2151 // copy(_InputIterator __first, _InputIterator __last, 2152 // _OutputIterator __result) 2153 2154 // Invalidate the destination buffer 2155 const Expr *Dst = CE->getArg(2); 2156 SVal DstVal = State->getSVal(Dst, LCtx); 2157 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 2158 /*Size=*/nullptr); 2159 2160 SValBuilder &SVB = C.getSValBuilder(); 2161 2162 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2163 State = State->BindExpr(CE, LCtx, ResultVal); 2164 2165 C.addTransition(State); 2166 } 2167 2168 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2169 // void *memset(void *s, int c, size_t n); 2170 CurrentFunctionDescription = "memory set function"; 2171 2172 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2173 AnyArgExpr CharE = {CE->getArg(1), 1}; 2174 SizeArgExpr Size = {CE->getArg(2), 2}; 2175 2176 ProgramStateRef State = C.getState(); 2177 2178 // See if the size argument is zero. 2179 const LocationContext *LCtx = C.getLocationContext(); 2180 SVal SizeVal = C.getSVal(Size.Expression); 2181 QualType SizeTy = Size.Expression->getType(); 2182 2183 ProgramStateRef ZeroSize, NonZeroSize; 2184 std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy); 2185 2186 // Get the value of the memory area. 2187 SVal BufferPtrVal = C.getSVal(Buffer.Expression); 2188 2189 // If the size is zero, there won't be any actual memory access, so 2190 // just bind the return value to the buffer and return. 2191 if (ZeroSize && !NonZeroSize) { 2192 ZeroSize = ZeroSize->BindExpr(CE, LCtx, BufferPtrVal); 2193 C.addTransition(ZeroSize); 2194 return; 2195 } 2196 2197 // Ensure the memory area is not null. 2198 // If it is NULL there will be a NULL pointer dereference. 2199 State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal); 2200 if (!State) 2201 return; 2202 2203 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2204 if (!State) 2205 return; 2206 2207 // According to the values of the arguments, bind the value of the second 2208 // argument to the destination buffer and set string length, or just 2209 // invalidate the destination buffer. 2210 if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression), 2211 Size.Expression, C, State)) 2212 return; 2213 2214 State = State->BindExpr(CE, LCtx, BufferPtrVal); 2215 C.addTransition(State); 2216 } 2217 2218 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { 2219 CurrentFunctionDescription = "memory clearance function"; 2220 2221 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2222 SizeArgExpr Size = {CE->getArg(1), 1}; 2223 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2224 2225 ProgramStateRef State = C.getState(); 2226 2227 // See if the size argument is zero. 2228 SVal SizeVal = C.getSVal(Size.Expression); 2229 QualType SizeTy = Size.Expression->getType(); 2230 2231 ProgramStateRef StateZeroSize, StateNonZeroSize; 2232 std::tie(StateZeroSize, StateNonZeroSize) = 2233 assumeZero(C, State, SizeVal, SizeTy); 2234 2235 // If the size is zero, there won't be any actual memory access, 2236 // In this case we just return. 2237 if (StateZeroSize && !StateNonZeroSize) { 2238 C.addTransition(StateZeroSize); 2239 return; 2240 } 2241 2242 // Get the value of the memory area. 2243 SVal MemVal = C.getSVal(Buffer.Expression); 2244 2245 // Ensure the memory area is not null. 2246 // If it is NULL there will be a NULL pointer dereference. 2247 State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal); 2248 if (!State) 2249 return; 2250 2251 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2252 if (!State) 2253 return; 2254 2255 if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State)) 2256 return; 2257 2258 C.addTransition(State); 2259 } 2260 2261 //===----------------------------------------------------------------------===// 2262 // The driver method, and other Checker callbacks. 2263 //===----------------------------------------------------------------------===// 2264 2265 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, 2266 CheckerContext &C) const { 2267 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 2268 if (!CE) 2269 return nullptr; 2270 2271 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 2272 if (!FD) 2273 return nullptr; 2274 2275 if (StdCopy.matches(Call)) 2276 return &CStringChecker::evalStdCopy; 2277 if (StdCopyBackward.matches(Call)) 2278 return &CStringChecker::evalStdCopyBackward; 2279 2280 // Pro-actively check that argument types are safe to do arithmetic upon. 2281 // We do not want to crash if someone accidentally passes a structure 2282 // into, say, a C++ overload of any of these functions. We could not check 2283 // that for std::copy because they may have arguments of other types. 2284 for (auto I : CE->arguments()) { 2285 QualType T = I->getType(); 2286 if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) 2287 return nullptr; 2288 } 2289 2290 const FnCheck *Callback = Callbacks.lookup(Call); 2291 if (Callback) 2292 return *Callback; 2293 2294 return nullptr; 2295 } 2296 2297 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { 2298 FnCheck Callback = identifyCall(Call, C); 2299 2300 // If the callee isn't a string function, let another checker handle it. 2301 if (!Callback) 2302 return false; 2303 2304 // Check and evaluate the call. 2305 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2306 (this->*Callback)(C, CE); 2307 2308 // If the evaluate call resulted in no change, chain to the next eval call 2309 // handler. 2310 // Note, the custom CString evaluation calls assume that basic safety 2311 // properties are held. However, if the user chooses to turn off some of these 2312 // checks, we ignore the issues and leave the call evaluation to a generic 2313 // handler. 2314 return C.isDifferent(); 2315 } 2316 2317 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2318 // Record string length for char a[] = "abc"; 2319 ProgramStateRef state = C.getState(); 2320 2321 for (const auto *I : DS->decls()) { 2322 const VarDecl *D = dyn_cast<VarDecl>(I); 2323 if (!D) 2324 continue; 2325 2326 // FIXME: Handle array fields of structs. 2327 if (!D->getType()->isArrayType()) 2328 continue; 2329 2330 const Expr *Init = D->getInit(); 2331 if (!Init) 2332 continue; 2333 if (!isa<StringLiteral>(Init)) 2334 continue; 2335 2336 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2337 const MemRegion *MR = VarLoc.getAsRegion(); 2338 if (!MR) 2339 continue; 2340 2341 SVal StrVal = C.getSVal(Init); 2342 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2343 DefinedOrUnknownSVal strLength = 2344 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2345 2346 state = state->set<CStringLength>(MR, strLength); 2347 } 2348 2349 C.addTransition(state); 2350 } 2351 2352 ProgramStateRef 2353 CStringChecker::checkRegionChanges(ProgramStateRef state, 2354 const InvalidatedSymbols *, 2355 ArrayRef<const MemRegion *> ExplicitRegions, 2356 ArrayRef<const MemRegion *> Regions, 2357 const LocationContext *LCtx, 2358 const CallEvent *Call) const { 2359 CStringLengthTy Entries = state->get<CStringLength>(); 2360 if (Entries.isEmpty()) 2361 return state; 2362 2363 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2364 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2365 2366 // First build sets for the changed regions and their super-regions. 2367 for (ArrayRef<const MemRegion *>::iterator 2368 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2369 const MemRegion *MR = *I; 2370 Invalidated.insert(MR); 2371 2372 SuperRegions.insert(MR); 2373 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2374 MR = SR->getSuperRegion(); 2375 SuperRegions.insert(MR); 2376 } 2377 } 2378 2379 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2380 2381 // Then loop over the entries in the current state. 2382 for (CStringLengthTy::iterator I = Entries.begin(), 2383 E = Entries.end(); I != E; ++I) { 2384 const MemRegion *MR = I.getKey(); 2385 2386 // Is this entry for a super-region of a changed region? 2387 if (SuperRegions.count(MR)) { 2388 Entries = F.remove(Entries, MR); 2389 continue; 2390 } 2391 2392 // Is this entry for a sub-region of a changed region? 2393 const MemRegion *Super = MR; 2394 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2395 Super = SR->getSuperRegion(); 2396 if (Invalidated.count(Super)) { 2397 Entries = F.remove(Entries, MR); 2398 break; 2399 } 2400 } 2401 } 2402 2403 return state->set<CStringLength>(Entries); 2404 } 2405 2406 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2407 SymbolReaper &SR) const { 2408 // Mark all symbols in our string length map as valid. 2409 CStringLengthTy Entries = state->get<CStringLength>(); 2410 2411 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2412 I != E; ++I) { 2413 SVal Len = I.getData(); 2414 2415 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2416 se = Len.symbol_end(); si != se; ++si) 2417 SR.markInUse(*si); 2418 } 2419 } 2420 2421 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2422 CheckerContext &C) const { 2423 ProgramStateRef state = C.getState(); 2424 CStringLengthTy Entries = state->get<CStringLength>(); 2425 if (Entries.isEmpty()) 2426 return; 2427 2428 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2429 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2430 I != E; ++I) { 2431 SVal Len = I.getData(); 2432 if (SymbolRef Sym = Len.getAsSymbol()) { 2433 if (SR.isDead(Sym)) 2434 Entries = F.remove(Entries, I.getKey()); 2435 } 2436 } 2437 2438 state = state->set<CStringLength>(Entries); 2439 C.addTransition(state); 2440 } 2441 2442 void ento::registerCStringModeling(CheckerManager &Mgr) { 2443 Mgr.registerChecker<CStringChecker>(); 2444 } 2445 2446 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) { 2447 return true; 2448 } 2449 2450 #define REGISTER_CHECKER(name) \ 2451 void ento::register##name(CheckerManager &mgr) { \ 2452 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ 2453 checker->Filter.Check##name = true; \ 2454 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \ 2455 } \ 2456 \ 2457 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 2458 2459 REGISTER_CHECKER(CStringNullArg) 2460 REGISTER_CHECKER(CStringOutOfBounds) 2461 REGISTER_CHECKER(CStringBufferOverlap) 2462 REGISTER_CHECKER(CStringNotNullTerm) 2463