1 //===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/ 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===/ 7 // 8 // This file implements C++ template instantiation for declarations. 9 // 10 //===----------------------------------------------------------------------===/ 11 12 #include "TreeTransform.h" 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTMutationListener.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/DeclVisitor.h" 18 #include "clang/AST/DependentDiagnostic.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/PrettyDeclStackTrace.h" 22 #include "clang/AST/TypeLoc.h" 23 #include "clang/Basic/SourceManager.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Sema/EnterExpressionEvaluationContext.h" 26 #include "clang/Sema/Initialization.h" 27 #include "clang/Sema/Lookup.h" 28 #include "clang/Sema/ScopeInfo.h" 29 #include "clang/Sema/SemaAMDGPU.h" 30 #include "clang/Sema/SemaCUDA.h" 31 #include "clang/Sema/SemaInternal.h" 32 #include "clang/Sema/SemaObjC.h" 33 #include "clang/Sema/SemaOpenMP.h" 34 #include "clang/Sema/SemaSwift.h" 35 #include "clang/Sema/Template.h" 36 #include "clang/Sema/TemplateInstCallback.h" 37 #include "llvm/Support/TimeProfiler.h" 38 #include <optional> 39 40 using namespace clang; 41 42 static bool isDeclWithinFunction(const Decl *D) { 43 const DeclContext *DC = D->getDeclContext(); 44 if (DC->isFunctionOrMethod()) 45 return true; 46 47 if (DC->isRecord()) 48 return cast<CXXRecordDecl>(DC)->isLocalClass(); 49 50 return false; 51 } 52 53 template<typename DeclT> 54 static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl, 55 const MultiLevelTemplateArgumentList &TemplateArgs) { 56 if (!OldDecl->getQualifierLoc()) 57 return false; 58 59 assert((NewDecl->getFriendObjectKind() || 60 !OldDecl->getLexicalDeclContext()->isDependentContext()) && 61 "non-friend with qualified name defined in dependent context"); 62 Sema::ContextRAII SavedContext( 63 SemaRef, 64 const_cast<DeclContext *>(NewDecl->getFriendObjectKind() 65 ? NewDecl->getLexicalDeclContext() 66 : OldDecl->getLexicalDeclContext())); 67 68 NestedNameSpecifierLoc NewQualifierLoc 69 = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(), 70 TemplateArgs); 71 72 if (!NewQualifierLoc) 73 return true; 74 75 NewDecl->setQualifierInfo(NewQualifierLoc); 76 return false; 77 } 78 79 bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl, 80 DeclaratorDecl *NewDecl) { 81 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); 82 } 83 84 bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl, 85 TagDecl *NewDecl) { 86 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); 87 } 88 89 // Include attribute instantiation code. 90 #include "clang/Sema/AttrTemplateInstantiate.inc" 91 92 static void instantiateDependentAlignedAttr( 93 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 94 const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) { 95 if (Aligned->isAlignmentExpr()) { 96 // The alignment expression is a constant expression. 97 EnterExpressionEvaluationContext Unevaluated( 98 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 99 ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs); 100 if (!Result.isInvalid()) 101 S.AddAlignedAttr(New, *Aligned, Result.getAs<Expr>(), IsPackExpansion); 102 } else { 103 if (TypeSourceInfo *Result = 104 S.SubstType(Aligned->getAlignmentType(), TemplateArgs, 105 Aligned->getLocation(), DeclarationName())) { 106 if (!S.CheckAlignasTypeArgument(Aligned->getSpelling(), Result, 107 Aligned->getLocation(), 108 Result->getTypeLoc().getSourceRange())) 109 S.AddAlignedAttr(New, *Aligned, Result, IsPackExpansion); 110 } 111 } 112 } 113 114 static void instantiateDependentAlignedAttr( 115 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 116 const AlignedAttr *Aligned, Decl *New) { 117 if (!Aligned->isPackExpansion()) { 118 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); 119 return; 120 } 121 122 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 123 if (Aligned->isAlignmentExpr()) 124 S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(), 125 Unexpanded); 126 else 127 S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(), 128 Unexpanded); 129 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); 130 131 // Determine whether we can expand this attribute pack yet. 132 bool Expand = true, RetainExpansion = false; 133 std::optional<unsigned> NumExpansions; 134 // FIXME: Use the actual location of the ellipsis. 135 SourceLocation EllipsisLoc = Aligned->getLocation(); 136 if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(), 137 Unexpanded, TemplateArgs, Expand, 138 RetainExpansion, NumExpansions)) 139 return; 140 141 if (!Expand) { 142 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1); 143 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true); 144 } else { 145 for (unsigned I = 0; I != *NumExpansions; ++I) { 146 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I); 147 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); 148 } 149 } 150 } 151 152 static void instantiateDependentAssumeAlignedAttr( 153 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 154 const AssumeAlignedAttr *Aligned, Decl *New) { 155 // The alignment expression is a constant expression. 156 EnterExpressionEvaluationContext Unevaluated( 157 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 158 159 Expr *E, *OE = nullptr; 160 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); 161 if (Result.isInvalid()) 162 return; 163 E = Result.getAs<Expr>(); 164 165 if (Aligned->getOffset()) { 166 Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs); 167 if (Result.isInvalid()) 168 return; 169 OE = Result.getAs<Expr>(); 170 } 171 172 S.AddAssumeAlignedAttr(New, *Aligned, E, OE); 173 } 174 175 static void instantiateDependentAlignValueAttr( 176 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 177 const AlignValueAttr *Aligned, Decl *New) { 178 // The alignment expression is a constant expression. 179 EnterExpressionEvaluationContext Unevaluated( 180 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 181 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); 182 if (!Result.isInvalid()) 183 S.AddAlignValueAttr(New, *Aligned, Result.getAs<Expr>()); 184 } 185 186 static void instantiateDependentAllocAlignAttr( 187 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 188 const AllocAlignAttr *Align, Decl *New) { 189 Expr *Param = IntegerLiteral::Create( 190 S.getASTContext(), 191 llvm::APInt(64, Align->getParamIndex().getSourceIndex()), 192 S.getASTContext().UnsignedLongLongTy, Align->getLocation()); 193 S.AddAllocAlignAttr(New, *Align, Param); 194 } 195 196 static void instantiateDependentAnnotationAttr( 197 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 198 const AnnotateAttr *Attr, Decl *New) { 199 EnterExpressionEvaluationContext Unevaluated( 200 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 201 202 // If the attribute has delayed arguments it will have to instantiate those 203 // and handle them as new arguments for the attribute. 204 bool HasDelayedArgs = Attr->delayedArgs_size(); 205 206 ArrayRef<Expr *> ArgsToInstantiate = 207 HasDelayedArgs 208 ? ArrayRef<Expr *>{Attr->delayedArgs_begin(), Attr->delayedArgs_end()} 209 : ArrayRef<Expr *>{Attr->args_begin(), Attr->args_end()}; 210 211 SmallVector<Expr *, 4> Args; 212 if (S.SubstExprs(ArgsToInstantiate, 213 /*IsCall=*/false, TemplateArgs, Args)) 214 return; 215 216 StringRef Str = Attr->getAnnotation(); 217 if (HasDelayedArgs) { 218 if (Args.size() < 1) { 219 S.Diag(Attr->getLoc(), diag::err_attribute_too_few_arguments) 220 << Attr << 1; 221 return; 222 } 223 224 if (!S.checkStringLiteralArgumentAttr(*Attr, Args[0], Str)) 225 return; 226 227 llvm::SmallVector<Expr *, 4> ActualArgs; 228 ActualArgs.insert(ActualArgs.begin(), Args.begin() + 1, Args.end()); 229 std::swap(Args, ActualArgs); 230 } 231 S.AddAnnotationAttr(New, *Attr, Str, Args); 232 } 233 234 static Expr *instantiateDependentFunctionAttrCondition( 235 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 236 const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) { 237 Expr *Cond = nullptr; 238 { 239 Sema::ContextRAII SwitchContext(S, New); 240 EnterExpressionEvaluationContext Unevaluated( 241 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 242 ExprResult Result = S.SubstExpr(OldCond, TemplateArgs); 243 if (Result.isInvalid()) 244 return nullptr; 245 Cond = Result.getAs<Expr>(); 246 } 247 if (!Cond->isTypeDependent()) { 248 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); 249 if (Converted.isInvalid()) 250 return nullptr; 251 Cond = Converted.get(); 252 } 253 254 SmallVector<PartialDiagnosticAt, 8> Diags; 255 if (OldCond->isValueDependent() && !Cond->isValueDependent() && 256 !Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) { 257 S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A; 258 for (const auto &P : Diags) 259 S.Diag(P.first, P.second); 260 return nullptr; 261 } 262 return Cond; 263 } 264 265 static void instantiateDependentEnableIfAttr( 266 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 267 const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) { 268 Expr *Cond = instantiateDependentFunctionAttrCondition( 269 S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New); 270 271 if (Cond) 272 New->addAttr(new (S.getASTContext()) EnableIfAttr(S.getASTContext(), *EIA, 273 Cond, EIA->getMessage())); 274 } 275 276 static void instantiateDependentDiagnoseIfAttr( 277 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 278 const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) { 279 Expr *Cond = instantiateDependentFunctionAttrCondition( 280 S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New); 281 282 if (Cond) 283 New->addAttr(new (S.getASTContext()) DiagnoseIfAttr( 284 S.getASTContext(), *DIA, Cond, DIA->getMessage(), 285 DIA->getDiagnosticType(), DIA->getArgDependent(), New)); 286 } 287 288 // Constructs and adds to New a new instance of CUDALaunchBoundsAttr using 289 // template A as the base and arguments from TemplateArgs. 290 static void instantiateDependentCUDALaunchBoundsAttr( 291 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 292 const CUDALaunchBoundsAttr &Attr, Decl *New) { 293 // The alignment expression is a constant expression. 294 EnterExpressionEvaluationContext Unevaluated( 295 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 296 297 ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs); 298 if (Result.isInvalid()) 299 return; 300 Expr *MaxThreads = Result.getAs<Expr>(); 301 302 Expr *MinBlocks = nullptr; 303 if (Attr.getMinBlocks()) { 304 Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs); 305 if (Result.isInvalid()) 306 return; 307 MinBlocks = Result.getAs<Expr>(); 308 } 309 310 Expr *MaxBlocks = nullptr; 311 if (Attr.getMaxBlocks()) { 312 Result = S.SubstExpr(Attr.getMaxBlocks(), TemplateArgs); 313 if (Result.isInvalid()) 314 return; 315 MaxBlocks = Result.getAs<Expr>(); 316 } 317 318 S.AddLaunchBoundsAttr(New, Attr, MaxThreads, MinBlocks, MaxBlocks); 319 } 320 321 static void 322 instantiateDependentModeAttr(Sema &S, 323 const MultiLevelTemplateArgumentList &TemplateArgs, 324 const ModeAttr &Attr, Decl *New) { 325 S.AddModeAttr(New, Attr, Attr.getMode(), 326 /*InInstantiation=*/true); 327 } 328 329 /// Instantiation of 'declare simd' attribute and its arguments. 330 static void instantiateOMPDeclareSimdDeclAttr( 331 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 332 const OMPDeclareSimdDeclAttr &Attr, Decl *New) { 333 // Allow 'this' in clauses with varlists. 334 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New)) 335 New = FTD->getTemplatedDecl(); 336 auto *FD = cast<FunctionDecl>(New); 337 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext()); 338 SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps; 339 SmallVector<unsigned, 4> LinModifiers; 340 341 auto SubstExpr = [&](Expr *E) -> ExprResult { 342 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 343 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 344 Sema::ContextRAII SavedContext(S, FD); 345 LocalInstantiationScope Local(S); 346 if (FD->getNumParams() > PVD->getFunctionScopeIndex()) 347 Local.InstantiatedLocal( 348 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); 349 return S.SubstExpr(E, TemplateArgs); 350 } 351 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(), 352 FD->isCXXInstanceMember()); 353 return S.SubstExpr(E, TemplateArgs); 354 }; 355 356 // Substitute a single OpenMP clause, which is a potentially-evaluated 357 // full-expression. 358 auto Subst = [&](Expr *E) -> ExprResult { 359 EnterExpressionEvaluationContext Evaluated( 360 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 361 ExprResult Res = SubstExpr(E); 362 if (Res.isInvalid()) 363 return Res; 364 return S.ActOnFinishFullExpr(Res.get(), false); 365 }; 366 367 ExprResult Simdlen; 368 if (auto *E = Attr.getSimdlen()) 369 Simdlen = Subst(E); 370 371 if (Attr.uniforms_size() > 0) { 372 for(auto *E : Attr.uniforms()) { 373 ExprResult Inst = Subst(E); 374 if (Inst.isInvalid()) 375 continue; 376 Uniforms.push_back(Inst.get()); 377 } 378 } 379 380 auto AI = Attr.alignments_begin(); 381 for (auto *E : Attr.aligneds()) { 382 ExprResult Inst = Subst(E); 383 if (Inst.isInvalid()) 384 continue; 385 Aligneds.push_back(Inst.get()); 386 Inst = ExprEmpty(); 387 if (*AI) 388 Inst = S.SubstExpr(*AI, TemplateArgs); 389 Alignments.push_back(Inst.get()); 390 ++AI; 391 } 392 393 auto SI = Attr.steps_begin(); 394 for (auto *E : Attr.linears()) { 395 ExprResult Inst = Subst(E); 396 if (Inst.isInvalid()) 397 continue; 398 Linears.push_back(Inst.get()); 399 Inst = ExprEmpty(); 400 if (*SI) 401 Inst = S.SubstExpr(*SI, TemplateArgs); 402 Steps.push_back(Inst.get()); 403 ++SI; 404 } 405 LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end()); 406 (void)S.OpenMP().ActOnOpenMPDeclareSimdDirective( 407 S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(), 408 Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps, 409 Attr.getRange()); 410 } 411 412 /// Instantiation of 'declare variant' attribute and its arguments. 413 static void instantiateOMPDeclareVariantAttr( 414 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 415 const OMPDeclareVariantAttr &Attr, Decl *New) { 416 // Allow 'this' in clauses with varlists. 417 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New)) 418 New = FTD->getTemplatedDecl(); 419 auto *FD = cast<FunctionDecl>(New); 420 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext()); 421 422 auto &&SubstExpr = [FD, ThisContext, &S, &TemplateArgs](Expr *E) { 423 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 424 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 425 Sema::ContextRAII SavedContext(S, FD); 426 LocalInstantiationScope Local(S); 427 if (FD->getNumParams() > PVD->getFunctionScopeIndex()) 428 Local.InstantiatedLocal( 429 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); 430 return S.SubstExpr(E, TemplateArgs); 431 } 432 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(), 433 FD->isCXXInstanceMember()); 434 return S.SubstExpr(E, TemplateArgs); 435 }; 436 437 // Substitute a single OpenMP clause, which is a potentially-evaluated 438 // full-expression. 439 auto &&Subst = [&SubstExpr, &S](Expr *E) { 440 EnterExpressionEvaluationContext Evaluated( 441 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 442 ExprResult Res = SubstExpr(E); 443 if (Res.isInvalid()) 444 return Res; 445 return S.ActOnFinishFullExpr(Res.get(), false); 446 }; 447 448 ExprResult VariantFuncRef; 449 if (Expr *E = Attr.getVariantFuncRef()) { 450 // Do not mark function as is used to prevent its emission if this is the 451 // only place where it is used. 452 EnterExpressionEvaluationContext Unevaluated( 453 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 454 VariantFuncRef = Subst(E); 455 } 456 457 // Copy the template version of the OMPTraitInfo and run substitute on all 458 // score and condition expressiosn. 459 OMPTraitInfo &TI = S.getASTContext().getNewOMPTraitInfo(); 460 TI = *Attr.getTraitInfos(); 461 462 // Try to substitute template parameters in score and condition expressions. 463 auto SubstScoreOrConditionExpr = [&S, Subst](Expr *&E, bool) { 464 if (E) { 465 EnterExpressionEvaluationContext Unevaluated( 466 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 467 ExprResult ER = Subst(E); 468 if (ER.isUsable()) 469 E = ER.get(); 470 else 471 return true; 472 } 473 return false; 474 }; 475 if (TI.anyScoreOrCondition(SubstScoreOrConditionExpr)) 476 return; 477 478 Expr *E = VariantFuncRef.get(); 479 480 // Check function/variant ref for `omp declare variant` but not for `omp 481 // begin declare variant` (which use implicit attributes). 482 std::optional<std::pair<FunctionDecl *, Expr *>> DeclVarData = 483 S.OpenMP().checkOpenMPDeclareVariantFunction( 484 S.ConvertDeclToDeclGroup(New), E, TI, Attr.appendArgs_size(), 485 Attr.getRange()); 486 487 if (!DeclVarData) 488 return; 489 490 E = DeclVarData->second; 491 FD = DeclVarData->first; 492 493 if (auto *VariantDRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) { 494 if (auto *VariantFD = dyn_cast<FunctionDecl>(VariantDRE->getDecl())) { 495 if (auto *VariantFTD = VariantFD->getDescribedFunctionTemplate()) { 496 if (!VariantFTD->isThisDeclarationADefinition()) 497 return; 498 Sema::TentativeAnalysisScope Trap(S); 499 const TemplateArgumentList *TAL = TemplateArgumentList::CreateCopy( 500 S.Context, TemplateArgs.getInnermost()); 501 502 auto *SubstFD = S.InstantiateFunctionDeclaration(VariantFTD, TAL, 503 New->getLocation()); 504 if (!SubstFD) 505 return; 506 QualType NewType = S.Context.mergeFunctionTypes( 507 SubstFD->getType(), FD->getType(), 508 /* OfBlockPointer */ false, 509 /* Unqualified */ false, /* AllowCXX */ true); 510 if (NewType.isNull()) 511 return; 512 S.InstantiateFunctionDefinition( 513 New->getLocation(), SubstFD, /* Recursive */ true, 514 /* DefinitionRequired */ false, /* AtEndOfTU */ false); 515 SubstFD->setInstantiationIsPending(!SubstFD->isDefined()); 516 E = DeclRefExpr::Create(S.Context, NestedNameSpecifierLoc(), 517 SourceLocation(), SubstFD, 518 /* RefersToEnclosingVariableOrCapture */ false, 519 /* NameLoc */ SubstFD->getLocation(), 520 SubstFD->getType(), ExprValueKind::VK_PRValue); 521 } 522 } 523 } 524 525 SmallVector<Expr *, 8> NothingExprs; 526 SmallVector<Expr *, 8> NeedDevicePtrExprs; 527 SmallVector<OMPInteropInfo, 4> AppendArgs; 528 529 for (Expr *E : Attr.adjustArgsNothing()) { 530 ExprResult ER = Subst(E); 531 if (ER.isInvalid()) 532 continue; 533 NothingExprs.push_back(ER.get()); 534 } 535 for (Expr *E : Attr.adjustArgsNeedDevicePtr()) { 536 ExprResult ER = Subst(E); 537 if (ER.isInvalid()) 538 continue; 539 NeedDevicePtrExprs.push_back(ER.get()); 540 } 541 for (OMPInteropInfo &II : Attr.appendArgs()) { 542 // When prefer_type is implemented for append_args handle them here too. 543 AppendArgs.emplace_back(II.IsTarget, II.IsTargetSync); 544 } 545 546 S.OpenMP().ActOnOpenMPDeclareVariantDirective( 547 FD, E, TI, NothingExprs, NeedDevicePtrExprs, AppendArgs, SourceLocation(), 548 SourceLocation(), Attr.getRange()); 549 } 550 551 static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr( 552 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 553 const AMDGPUFlatWorkGroupSizeAttr &Attr, Decl *New) { 554 // Both min and max expression are constant expressions. 555 EnterExpressionEvaluationContext Unevaluated( 556 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 557 558 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs); 559 if (Result.isInvalid()) 560 return; 561 Expr *MinExpr = Result.getAs<Expr>(); 562 563 Result = S.SubstExpr(Attr.getMax(), TemplateArgs); 564 if (Result.isInvalid()) 565 return; 566 Expr *MaxExpr = Result.getAs<Expr>(); 567 568 S.AMDGPU().addAMDGPUFlatWorkGroupSizeAttr(New, Attr, MinExpr, MaxExpr); 569 } 570 571 ExplicitSpecifier Sema::instantiateExplicitSpecifier( 572 const MultiLevelTemplateArgumentList &TemplateArgs, ExplicitSpecifier ES) { 573 if (!ES.getExpr()) 574 return ES; 575 Expr *OldCond = ES.getExpr(); 576 Expr *Cond = nullptr; 577 { 578 EnterExpressionEvaluationContext Unevaluated( 579 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 580 ExprResult SubstResult = SubstExpr(OldCond, TemplateArgs); 581 if (SubstResult.isInvalid()) { 582 return ExplicitSpecifier::Invalid(); 583 } 584 Cond = SubstResult.get(); 585 } 586 ExplicitSpecifier Result(Cond, ES.getKind()); 587 if (!Cond->isTypeDependent()) 588 tryResolveExplicitSpecifier(Result); 589 return Result; 590 } 591 592 static void instantiateDependentAMDGPUWavesPerEUAttr( 593 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 594 const AMDGPUWavesPerEUAttr &Attr, Decl *New) { 595 // Both min and max expression are constant expressions. 596 EnterExpressionEvaluationContext Unevaluated( 597 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 598 599 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs); 600 if (Result.isInvalid()) 601 return; 602 Expr *MinExpr = Result.getAs<Expr>(); 603 604 Expr *MaxExpr = nullptr; 605 if (auto Max = Attr.getMax()) { 606 Result = S.SubstExpr(Max, TemplateArgs); 607 if (Result.isInvalid()) 608 return; 609 MaxExpr = Result.getAs<Expr>(); 610 } 611 612 S.AMDGPU().addAMDGPUWavesPerEUAttr(New, Attr, MinExpr, MaxExpr); 613 } 614 615 static void instantiateDependentAMDGPUMaxNumWorkGroupsAttr( 616 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 617 const AMDGPUMaxNumWorkGroupsAttr &Attr, Decl *New) { 618 EnterExpressionEvaluationContext Unevaluated( 619 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 620 621 ExprResult ResultX = S.SubstExpr(Attr.getMaxNumWorkGroupsX(), TemplateArgs); 622 if (!ResultX.isUsable()) 623 return; 624 ExprResult ResultY = S.SubstExpr(Attr.getMaxNumWorkGroupsY(), TemplateArgs); 625 if (!ResultY.isUsable()) 626 return; 627 ExprResult ResultZ = S.SubstExpr(Attr.getMaxNumWorkGroupsZ(), TemplateArgs); 628 if (!ResultZ.isUsable()) 629 return; 630 631 Expr *XExpr = ResultX.getAs<Expr>(); 632 Expr *YExpr = ResultY.getAs<Expr>(); 633 Expr *ZExpr = ResultZ.getAs<Expr>(); 634 635 S.AMDGPU().addAMDGPUMaxNumWorkGroupsAttr(New, Attr, XExpr, YExpr, ZExpr); 636 } 637 638 // This doesn't take any template parameters, but we have a custom action that 639 // needs to happen when the kernel itself is instantiated. We need to run the 640 // ItaniumMangler to mark the names required to name this kernel. 641 static void instantiateDependentSYCLKernelAttr( 642 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 643 const SYCLKernelAttr &Attr, Decl *New) { 644 New->addAttr(Attr.clone(S.getASTContext())); 645 } 646 647 /// Determine whether the attribute A might be relevant to the declaration D. 648 /// If not, we can skip instantiating it. The attribute may or may not have 649 /// been instantiated yet. 650 static bool isRelevantAttr(Sema &S, const Decl *D, const Attr *A) { 651 // 'preferred_name' is only relevant to the matching specialization of the 652 // template. 653 if (const auto *PNA = dyn_cast<PreferredNameAttr>(A)) { 654 QualType T = PNA->getTypedefType(); 655 const auto *RD = cast<CXXRecordDecl>(D); 656 if (!T->isDependentType() && !RD->isDependentContext() && 657 !declaresSameEntity(T->getAsCXXRecordDecl(), RD)) 658 return false; 659 for (const auto *ExistingPNA : D->specific_attrs<PreferredNameAttr>()) 660 if (S.Context.hasSameType(ExistingPNA->getTypedefType(), 661 PNA->getTypedefType())) 662 return false; 663 return true; 664 } 665 666 if (const auto *BA = dyn_cast<BuiltinAttr>(A)) { 667 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 668 switch (BA->getID()) { 669 case Builtin::BIforward: 670 // Do not treat 'std::forward' as a builtin if it takes an rvalue reference 671 // type and returns an lvalue reference type. The library implementation 672 // will produce an error in this case; don't get in its way. 673 if (FD && FD->getNumParams() >= 1 && 674 FD->getParamDecl(0)->getType()->isRValueReferenceType() && 675 FD->getReturnType()->isLValueReferenceType()) { 676 return false; 677 } 678 [[fallthrough]]; 679 case Builtin::BImove: 680 case Builtin::BImove_if_noexcept: 681 // HACK: Super-old versions of libc++ (3.1 and earlier) provide 682 // std::forward and std::move overloads that sometimes return by value 683 // instead of by reference when building in C++98 mode. Don't treat such 684 // cases as builtins. 685 if (FD && !FD->getReturnType()->isReferenceType()) 686 return false; 687 break; 688 } 689 } 690 691 return true; 692 } 693 694 static void instantiateDependentHLSLParamModifierAttr( 695 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 696 const HLSLParamModifierAttr *Attr, Decl *New) { 697 ParmVarDecl *P = cast<ParmVarDecl>(New); 698 P->addAttr(Attr->clone(S.getASTContext())); 699 P->setType(S.getASTContext().getLValueReferenceType(P->getType())); 700 } 701 702 void Sema::InstantiateAttrsForDecl( 703 const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl, 704 Decl *New, LateInstantiatedAttrVec *LateAttrs, 705 LocalInstantiationScope *OuterMostScope) { 706 if (NamedDecl *ND = dyn_cast<NamedDecl>(New)) { 707 // FIXME: This function is called multiple times for the same template 708 // specialization. We should only instantiate attributes that were added 709 // since the previous instantiation. 710 for (const auto *TmplAttr : Tmpl->attrs()) { 711 if (!isRelevantAttr(*this, New, TmplAttr)) 712 continue; 713 714 // FIXME: If any of the special case versions from InstantiateAttrs become 715 // applicable to template declaration, we'll need to add them here. 716 CXXThisScopeRAII ThisScope( 717 *this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()), 718 Qualifiers(), ND->isCXXInstanceMember()); 719 720 Attr *NewAttr = sema::instantiateTemplateAttributeForDecl( 721 TmplAttr, Context, *this, TemplateArgs); 722 if (NewAttr && isRelevantAttr(*this, New, NewAttr)) 723 New->addAttr(NewAttr); 724 } 725 } 726 } 727 728 static Sema::RetainOwnershipKind 729 attrToRetainOwnershipKind(const Attr *A) { 730 switch (A->getKind()) { 731 case clang::attr::CFConsumed: 732 return Sema::RetainOwnershipKind::CF; 733 case clang::attr::OSConsumed: 734 return Sema::RetainOwnershipKind::OS; 735 case clang::attr::NSConsumed: 736 return Sema::RetainOwnershipKind::NS; 737 default: 738 llvm_unreachable("Wrong argument supplied"); 739 } 740 } 741 742 void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, 743 const Decl *Tmpl, Decl *New, 744 LateInstantiatedAttrVec *LateAttrs, 745 LocalInstantiationScope *OuterMostScope) { 746 for (const auto *TmplAttr : Tmpl->attrs()) { 747 if (!isRelevantAttr(*this, New, TmplAttr)) 748 continue; 749 750 // FIXME: This should be generalized to more than just the AlignedAttr. 751 const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr); 752 if (Aligned && Aligned->isAlignmentDependent()) { 753 instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New); 754 continue; 755 } 756 757 if (const auto *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr)) { 758 instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New); 759 continue; 760 } 761 762 if (const auto *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr)) { 763 instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New); 764 continue; 765 } 766 767 if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) { 768 instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New); 769 continue; 770 } 771 772 if (const auto *Annotate = dyn_cast<AnnotateAttr>(TmplAttr)) { 773 instantiateDependentAnnotationAttr(*this, TemplateArgs, Annotate, New); 774 continue; 775 } 776 777 if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) { 778 instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl, 779 cast<FunctionDecl>(New)); 780 continue; 781 } 782 783 if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) { 784 instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl, 785 cast<FunctionDecl>(New)); 786 continue; 787 } 788 789 if (const auto *CUDALaunchBounds = 790 dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) { 791 instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs, 792 *CUDALaunchBounds, New); 793 continue; 794 } 795 796 if (const auto *Mode = dyn_cast<ModeAttr>(TmplAttr)) { 797 instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New); 798 continue; 799 } 800 801 if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) { 802 instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New); 803 continue; 804 } 805 806 if (const auto *OMPAttr = dyn_cast<OMPDeclareVariantAttr>(TmplAttr)) { 807 instantiateOMPDeclareVariantAttr(*this, TemplateArgs, *OMPAttr, New); 808 continue; 809 } 810 811 if (const auto *AMDGPUFlatWorkGroupSize = 812 dyn_cast<AMDGPUFlatWorkGroupSizeAttr>(TmplAttr)) { 813 instantiateDependentAMDGPUFlatWorkGroupSizeAttr( 814 *this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New); 815 } 816 817 if (const auto *AMDGPUFlatWorkGroupSize = 818 dyn_cast<AMDGPUWavesPerEUAttr>(TmplAttr)) { 819 instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs, 820 *AMDGPUFlatWorkGroupSize, New); 821 } 822 823 if (const auto *AMDGPUMaxNumWorkGroups = 824 dyn_cast<AMDGPUMaxNumWorkGroupsAttr>(TmplAttr)) { 825 instantiateDependentAMDGPUMaxNumWorkGroupsAttr( 826 *this, TemplateArgs, *AMDGPUMaxNumWorkGroups, New); 827 } 828 829 if (const auto *ParamAttr = dyn_cast<HLSLParamModifierAttr>(TmplAttr)) { 830 instantiateDependentHLSLParamModifierAttr(*this, TemplateArgs, ParamAttr, 831 New); 832 continue; 833 } 834 835 // Existing DLL attribute on the instantiation takes precedence. 836 if (TmplAttr->getKind() == attr::DLLExport || 837 TmplAttr->getKind() == attr::DLLImport) { 838 if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) { 839 continue; 840 } 841 } 842 843 if (const auto *ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) { 844 Swift().AddParameterABIAttr(New, *ABIAttr, ABIAttr->getABI()); 845 continue; 846 } 847 848 if (isa<NSConsumedAttr>(TmplAttr) || isa<OSConsumedAttr>(TmplAttr) || 849 isa<CFConsumedAttr>(TmplAttr)) { 850 ObjC().AddXConsumedAttr(New, *TmplAttr, 851 attrToRetainOwnershipKind(TmplAttr), 852 /*template instantiation=*/true); 853 continue; 854 } 855 856 if (auto *A = dyn_cast<PointerAttr>(TmplAttr)) { 857 if (!New->hasAttr<PointerAttr>()) 858 New->addAttr(A->clone(Context)); 859 continue; 860 } 861 862 if (auto *A = dyn_cast<OwnerAttr>(TmplAttr)) { 863 if (!New->hasAttr<OwnerAttr>()) 864 New->addAttr(A->clone(Context)); 865 continue; 866 } 867 868 if (auto *A = dyn_cast<SYCLKernelAttr>(TmplAttr)) { 869 instantiateDependentSYCLKernelAttr(*this, TemplateArgs, *A, New); 870 continue; 871 } 872 873 assert(!TmplAttr->isPackExpansion()); 874 if (TmplAttr->isLateParsed() && LateAttrs) { 875 // Late parsed attributes must be instantiated and attached after the 876 // enclosing class has been instantiated. See Sema::InstantiateClass. 877 LocalInstantiationScope *Saved = nullptr; 878 if (CurrentInstantiationScope) 879 Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope); 880 LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New)); 881 } else { 882 // Allow 'this' within late-parsed attributes. 883 auto *ND = cast<NamedDecl>(New); 884 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()); 885 CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(), 886 ND->isCXXInstanceMember()); 887 888 Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context, 889 *this, TemplateArgs); 890 if (NewAttr && isRelevantAttr(*this, New, TmplAttr)) 891 New->addAttr(NewAttr); 892 } 893 } 894 } 895 896 void Sema::updateAttrsForLateParsedTemplate(const Decl *Pattern, Decl *Inst) { 897 for (const auto *Attr : Pattern->attrs()) { 898 if (auto *A = dyn_cast<StrictFPAttr>(Attr)) { 899 if (!Inst->hasAttr<StrictFPAttr>()) 900 Inst->addAttr(A->clone(getASTContext())); 901 continue; 902 } 903 } 904 } 905 906 void Sema::InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor) { 907 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() && 908 Ctor->isDefaultConstructor()); 909 unsigned NumParams = Ctor->getNumParams(); 910 if (NumParams == 0) 911 return; 912 DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>(); 913 if (!Attr) 914 return; 915 for (unsigned I = 0; I != NumParams; ++I) { 916 (void)CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor, 917 Ctor->getParamDecl(I)); 918 CleanupVarDeclMarking(); 919 } 920 } 921 922 /// Get the previous declaration of a declaration for the purposes of template 923 /// instantiation. If this finds a previous declaration, then the previous 924 /// declaration of the instantiation of D should be an instantiation of the 925 /// result of this function. 926 template<typename DeclT> 927 static DeclT *getPreviousDeclForInstantiation(DeclT *D) { 928 DeclT *Result = D->getPreviousDecl(); 929 930 // If the declaration is within a class, and the previous declaration was 931 // merged from a different definition of that class, then we don't have a 932 // previous declaration for the purpose of template instantiation. 933 if (Result && isa<CXXRecordDecl>(D->getDeclContext()) && 934 D->getLexicalDeclContext() != Result->getLexicalDeclContext()) 935 return nullptr; 936 937 return Result; 938 } 939 940 Decl * 941 TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) { 942 llvm_unreachable("Translation units cannot be instantiated"); 943 } 944 945 Decl *TemplateDeclInstantiator::VisitHLSLBufferDecl(HLSLBufferDecl *Decl) { 946 llvm_unreachable("HLSL buffer declarations cannot be instantiated"); 947 } 948 949 Decl * 950 TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) { 951 llvm_unreachable("pragma comment cannot be instantiated"); 952 } 953 954 Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl( 955 PragmaDetectMismatchDecl *D) { 956 llvm_unreachable("pragma comment cannot be instantiated"); 957 } 958 959 Decl * 960 TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) { 961 llvm_unreachable("extern \"C\" context cannot be instantiated"); 962 } 963 964 Decl *TemplateDeclInstantiator::VisitMSGuidDecl(MSGuidDecl *D) { 965 llvm_unreachable("GUID declaration cannot be instantiated"); 966 } 967 968 Decl *TemplateDeclInstantiator::VisitUnnamedGlobalConstantDecl( 969 UnnamedGlobalConstantDecl *D) { 970 llvm_unreachable("UnnamedGlobalConstantDecl cannot be instantiated"); 971 } 972 973 Decl *TemplateDeclInstantiator::VisitTemplateParamObjectDecl( 974 TemplateParamObjectDecl *D) { 975 llvm_unreachable("template parameter objects cannot be instantiated"); 976 } 977 978 Decl * 979 TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) { 980 LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(), 981 D->getIdentifier()); 982 Owner->addDecl(Inst); 983 return Inst; 984 } 985 986 Decl * 987 TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) { 988 llvm_unreachable("Namespaces cannot be instantiated"); 989 } 990 991 Decl * 992 TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { 993 NamespaceAliasDecl *Inst 994 = NamespaceAliasDecl::Create(SemaRef.Context, Owner, 995 D->getNamespaceLoc(), 996 D->getAliasLoc(), 997 D->getIdentifier(), 998 D->getQualifierLoc(), 999 D->getTargetNameLoc(), 1000 D->getNamespace()); 1001 Owner->addDecl(Inst); 1002 return Inst; 1003 } 1004 1005 Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D, 1006 bool IsTypeAlias) { 1007 bool Invalid = false; 1008 TypeSourceInfo *DI = D->getTypeSourceInfo(); 1009 if (DI->getType()->isInstantiationDependentType() || 1010 DI->getType()->isVariablyModifiedType()) { 1011 DI = SemaRef.SubstType(DI, TemplateArgs, 1012 D->getLocation(), D->getDeclName()); 1013 if (!DI) { 1014 Invalid = true; 1015 DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy); 1016 } 1017 } else { 1018 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 1019 } 1020 1021 // HACK: 2012-10-23 g++ has a bug where it gets the value kind of ?: wrong. 1022 // libstdc++ relies upon this bug in its implementation of common_type. If we 1023 // happen to be processing that implementation, fake up the g++ ?: 1024 // semantics. See LWG issue 2141 for more information on the bug. The bugs 1025 // are fixed in g++ and libstdc++ 4.9.0 (2014-04-22). 1026 const DecltypeType *DT = DI->getType()->getAs<DecltypeType>(); 1027 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext()); 1028 if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) && 1029 DT->isReferenceType() && 1030 RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() && 1031 RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") && 1032 D->getIdentifier() && D->getIdentifier()->isStr("type") && 1033 SemaRef.getSourceManager().isInSystemHeader(D->getBeginLoc())) 1034 // Fold it to the (non-reference) type which g++ would have produced. 1035 DI = SemaRef.Context.getTrivialTypeSourceInfo( 1036 DI->getType().getNonReferenceType()); 1037 1038 // Create the new typedef 1039 TypedefNameDecl *Typedef; 1040 if (IsTypeAlias) 1041 Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 1042 D->getLocation(), D->getIdentifier(), DI); 1043 else 1044 Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 1045 D->getLocation(), D->getIdentifier(), DI); 1046 if (Invalid) 1047 Typedef->setInvalidDecl(); 1048 1049 // If the old typedef was the name for linkage purposes of an anonymous 1050 // tag decl, re-establish that relationship for the new typedef. 1051 if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) { 1052 TagDecl *oldTag = oldTagType->getDecl(); 1053 if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) { 1054 TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl(); 1055 assert(!newTag->hasNameForLinkage()); 1056 newTag->setTypedefNameForAnonDecl(Typedef); 1057 } 1058 } 1059 1060 if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) { 1061 NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev, 1062 TemplateArgs); 1063 if (!InstPrev) 1064 return nullptr; 1065 1066 TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev); 1067 1068 // If the typedef types are not identical, reject them. 1069 SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef); 1070 1071 Typedef->setPreviousDecl(InstPrevTypedef); 1072 } 1073 1074 SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef); 1075 1076 if (D->getUnderlyingType()->getAs<DependentNameType>()) 1077 SemaRef.inferGslPointerAttribute(Typedef); 1078 1079 Typedef->setAccess(D->getAccess()); 1080 Typedef->setReferenced(D->isReferenced()); 1081 1082 return Typedef; 1083 } 1084 1085 Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) { 1086 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false); 1087 if (Typedef) 1088 Owner->addDecl(Typedef); 1089 return Typedef; 1090 } 1091 1092 Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) { 1093 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true); 1094 if (Typedef) 1095 Owner->addDecl(Typedef); 1096 return Typedef; 1097 } 1098 1099 Decl *TemplateDeclInstantiator::InstantiateTypeAliasTemplateDecl( 1100 TypeAliasTemplateDecl *D) { 1101 // Create a local instantiation scope for this type alias template, which 1102 // will contain the instantiations of the template parameters. 1103 LocalInstantiationScope Scope(SemaRef); 1104 1105 TemplateParameterList *TempParams = D->getTemplateParameters(); 1106 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1107 if (!InstParams) 1108 return nullptr; 1109 1110 TypeAliasDecl *Pattern = D->getTemplatedDecl(); 1111 Sema::InstantiatingTemplate InstTemplate( 1112 SemaRef, D->getBeginLoc(), D, 1113 D->getTemplateDepth() >= TemplateArgs.getNumLevels() 1114 ? ArrayRef<TemplateArgument>() 1115 : (TemplateArgs.begin() + TemplateArgs.getNumLevels() - 1 - 1116 D->getTemplateDepth()) 1117 ->Args); 1118 if (InstTemplate.isInvalid()) 1119 return nullptr; 1120 1121 TypeAliasTemplateDecl *PrevAliasTemplate = nullptr; 1122 if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) { 1123 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1124 if (!Found.empty()) { 1125 PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front()); 1126 } 1127 } 1128 1129 TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>( 1130 InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true)); 1131 if (!AliasInst) 1132 return nullptr; 1133 1134 TypeAliasTemplateDecl *Inst 1135 = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(), 1136 D->getDeclName(), InstParams, AliasInst); 1137 AliasInst->setDescribedAliasTemplate(Inst); 1138 if (PrevAliasTemplate) 1139 Inst->setPreviousDecl(PrevAliasTemplate); 1140 1141 Inst->setAccess(D->getAccess()); 1142 1143 if (!PrevAliasTemplate) 1144 Inst->setInstantiatedFromMemberTemplate(D); 1145 1146 return Inst; 1147 } 1148 1149 Decl * 1150 TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) { 1151 Decl *Inst = InstantiateTypeAliasTemplateDecl(D); 1152 if (Inst) 1153 Owner->addDecl(Inst); 1154 1155 return Inst; 1156 } 1157 1158 Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) { 1159 auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(), 1160 D->getIdentifier()); 1161 NewBD->setReferenced(D->isReferenced()); 1162 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD); 1163 return NewBD; 1164 } 1165 1166 Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) { 1167 // Transform the bindings first. 1168 SmallVector<BindingDecl*, 16> NewBindings; 1169 for (auto *OldBD : D->bindings()) 1170 NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD))); 1171 ArrayRef<BindingDecl*> NewBindingArray = NewBindings; 1172 1173 auto *NewDD = cast_or_null<DecompositionDecl>( 1174 VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray)); 1175 1176 if (!NewDD || NewDD->isInvalidDecl()) 1177 for (auto *NewBD : NewBindings) 1178 NewBD->setInvalidDecl(); 1179 1180 return NewDD; 1181 } 1182 1183 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) { 1184 return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false); 1185 } 1186 1187 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D, 1188 bool InstantiatingVarTemplate, 1189 ArrayRef<BindingDecl*> *Bindings) { 1190 1191 // Do substitution on the type of the declaration 1192 TypeSourceInfo *DI = SemaRef.SubstType( 1193 D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(), 1194 D->getDeclName(), /*AllowDeducedTST*/true); 1195 if (!DI) 1196 return nullptr; 1197 1198 if (DI->getType()->isFunctionType()) { 1199 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) 1200 << D->isStaticDataMember() << DI->getType(); 1201 return nullptr; 1202 } 1203 1204 DeclContext *DC = Owner; 1205 if (D->isLocalExternDecl()) 1206 SemaRef.adjustContextForLocalExternDecl(DC); 1207 1208 // Build the instantiated declaration. 1209 VarDecl *Var; 1210 if (Bindings) 1211 Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), 1212 D->getLocation(), DI->getType(), DI, 1213 D->getStorageClass(), *Bindings); 1214 else 1215 Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), 1216 D->getLocation(), D->getIdentifier(), DI->getType(), 1217 DI, D->getStorageClass()); 1218 1219 // In ARC, infer 'retaining' for variables of retainable type. 1220 if (SemaRef.getLangOpts().ObjCAutoRefCount && 1221 SemaRef.ObjC().inferObjCARCLifetime(Var)) 1222 Var->setInvalidDecl(); 1223 1224 if (SemaRef.getLangOpts().OpenCL) 1225 SemaRef.deduceOpenCLAddressSpace(Var); 1226 1227 // Substitute the nested name specifier, if any. 1228 if (SubstQualifier(D, Var)) 1229 return nullptr; 1230 1231 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, 1232 StartingScope, InstantiatingVarTemplate); 1233 if (D->isNRVOVariable() && !Var->isInvalidDecl()) { 1234 QualType RT; 1235 if (auto *F = dyn_cast<FunctionDecl>(DC)) 1236 RT = F->getReturnType(); 1237 else if (isa<BlockDecl>(DC)) 1238 RT = cast<FunctionType>(SemaRef.getCurBlock()->FunctionType) 1239 ->getReturnType(); 1240 else 1241 llvm_unreachable("Unknown context type"); 1242 1243 // This is the last chance we have of checking copy elision eligibility 1244 // for functions in dependent contexts. The sema actions for building 1245 // the return statement during template instantiation will have no effect 1246 // regarding copy elision, since NRVO propagation runs on the scope exit 1247 // actions, and these are not run on instantiation. 1248 // This might run through some VarDecls which were returned from non-taken 1249 // 'if constexpr' branches, and these will end up being constructed on the 1250 // return slot even if they will never be returned, as a sort of accidental 1251 // 'optimization'. Notably, functions with 'auto' return types won't have it 1252 // deduced by this point. Coupled with the limitation described 1253 // previously, this makes it very hard to support copy elision for these. 1254 Sema::NamedReturnInfo Info = SemaRef.getNamedReturnInfo(Var); 1255 bool NRVO = SemaRef.getCopyElisionCandidate(Info, RT) != nullptr; 1256 Var->setNRVOVariable(NRVO); 1257 } 1258 1259 Var->setImplicit(D->isImplicit()); 1260 1261 if (Var->isStaticLocal()) 1262 SemaRef.CheckStaticLocalForDllExport(Var); 1263 1264 if (Var->getTLSKind()) 1265 SemaRef.CheckThreadLocalForLargeAlignment(Var); 1266 1267 return Var; 1268 } 1269 1270 Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) { 1271 AccessSpecDecl* AD 1272 = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner, 1273 D->getAccessSpecifierLoc(), D->getColonLoc()); 1274 Owner->addHiddenDecl(AD); 1275 return AD; 1276 } 1277 1278 Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) { 1279 bool Invalid = false; 1280 TypeSourceInfo *DI = D->getTypeSourceInfo(); 1281 if (DI->getType()->isInstantiationDependentType() || 1282 DI->getType()->isVariablyModifiedType()) { 1283 DI = SemaRef.SubstType(DI, TemplateArgs, 1284 D->getLocation(), D->getDeclName()); 1285 if (!DI) { 1286 DI = D->getTypeSourceInfo(); 1287 Invalid = true; 1288 } else if (DI->getType()->isFunctionType()) { 1289 // C++ [temp.arg.type]p3: 1290 // If a declaration acquires a function type through a type 1291 // dependent on a template-parameter and this causes a 1292 // declaration that does not use the syntactic form of a 1293 // function declarator to have function type, the program is 1294 // ill-formed. 1295 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) 1296 << DI->getType(); 1297 Invalid = true; 1298 } 1299 } else { 1300 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 1301 } 1302 1303 Expr *BitWidth = D->getBitWidth(); 1304 if (Invalid) 1305 BitWidth = nullptr; 1306 else if (BitWidth) { 1307 // The bit-width expression is a constant expression. 1308 EnterExpressionEvaluationContext Unevaluated( 1309 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1310 1311 ExprResult InstantiatedBitWidth 1312 = SemaRef.SubstExpr(BitWidth, TemplateArgs); 1313 if (InstantiatedBitWidth.isInvalid()) { 1314 Invalid = true; 1315 BitWidth = nullptr; 1316 } else 1317 BitWidth = InstantiatedBitWidth.getAs<Expr>(); 1318 } 1319 1320 FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(), 1321 DI->getType(), DI, 1322 cast<RecordDecl>(Owner), 1323 D->getLocation(), 1324 D->isMutable(), 1325 BitWidth, 1326 D->getInClassInitStyle(), 1327 D->getInnerLocStart(), 1328 D->getAccess(), 1329 nullptr); 1330 if (!Field) { 1331 cast<Decl>(Owner)->setInvalidDecl(); 1332 return nullptr; 1333 } 1334 1335 SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope); 1336 1337 if (Field->hasAttrs()) 1338 SemaRef.CheckAlignasUnderalignment(Field); 1339 1340 if (Invalid) 1341 Field->setInvalidDecl(); 1342 1343 if (!Field->getDeclName()) { 1344 // Keep track of where this decl came from. 1345 SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D); 1346 } 1347 if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) { 1348 if (Parent->isAnonymousStructOrUnion() && 1349 Parent->getRedeclContext()->isFunctionOrMethod()) 1350 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field); 1351 } 1352 1353 Field->setImplicit(D->isImplicit()); 1354 Field->setAccess(D->getAccess()); 1355 Owner->addDecl(Field); 1356 1357 return Field; 1358 } 1359 1360 Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) { 1361 bool Invalid = false; 1362 TypeSourceInfo *DI = D->getTypeSourceInfo(); 1363 1364 if (DI->getType()->isVariablyModifiedType()) { 1365 SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified) 1366 << D; 1367 Invalid = true; 1368 } else if (DI->getType()->isInstantiationDependentType()) { 1369 DI = SemaRef.SubstType(DI, TemplateArgs, 1370 D->getLocation(), D->getDeclName()); 1371 if (!DI) { 1372 DI = D->getTypeSourceInfo(); 1373 Invalid = true; 1374 } else if (DI->getType()->isFunctionType()) { 1375 // C++ [temp.arg.type]p3: 1376 // If a declaration acquires a function type through a type 1377 // dependent on a template-parameter and this causes a 1378 // declaration that does not use the syntactic form of a 1379 // function declarator to have function type, the program is 1380 // ill-formed. 1381 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) 1382 << DI->getType(); 1383 Invalid = true; 1384 } 1385 } else { 1386 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 1387 } 1388 1389 MSPropertyDecl *Property = MSPropertyDecl::Create( 1390 SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(), 1391 DI, D->getBeginLoc(), D->getGetterId(), D->getSetterId()); 1392 1393 SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs, 1394 StartingScope); 1395 1396 if (Invalid) 1397 Property->setInvalidDecl(); 1398 1399 Property->setAccess(D->getAccess()); 1400 Owner->addDecl(Property); 1401 1402 return Property; 1403 } 1404 1405 Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) { 1406 NamedDecl **NamedChain = 1407 new (SemaRef.Context)NamedDecl*[D->getChainingSize()]; 1408 1409 int i = 0; 1410 for (auto *PI : D->chain()) { 1411 NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI, 1412 TemplateArgs); 1413 if (!Next) 1414 return nullptr; 1415 1416 NamedChain[i++] = Next; 1417 } 1418 1419 QualType T = cast<FieldDecl>(NamedChain[i-1])->getType(); 1420 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( 1421 SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T, 1422 {NamedChain, D->getChainingSize()}); 1423 1424 for (const auto *Attr : D->attrs()) 1425 IndirectField->addAttr(Attr->clone(SemaRef.Context)); 1426 1427 IndirectField->setImplicit(D->isImplicit()); 1428 IndirectField->setAccess(D->getAccess()); 1429 Owner->addDecl(IndirectField); 1430 return IndirectField; 1431 } 1432 1433 Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) { 1434 // Handle friend type expressions by simply substituting template 1435 // parameters into the pattern type and checking the result. 1436 if (TypeSourceInfo *Ty = D->getFriendType()) { 1437 TypeSourceInfo *InstTy; 1438 // If this is an unsupported friend, don't bother substituting template 1439 // arguments into it. The actual type referred to won't be used by any 1440 // parts of Clang, and may not be valid for instantiating. Just use the 1441 // same info for the instantiated friend. 1442 if (D->isUnsupportedFriend()) { 1443 InstTy = Ty; 1444 } else { 1445 InstTy = SemaRef.SubstType(Ty, TemplateArgs, 1446 D->getLocation(), DeclarationName()); 1447 } 1448 if (!InstTy) 1449 return nullptr; 1450 1451 FriendDecl *FD = FriendDecl::Create( 1452 SemaRef.Context, Owner, D->getLocation(), InstTy, D->getFriendLoc()); 1453 FD->setAccess(AS_public); 1454 FD->setUnsupportedFriend(D->isUnsupportedFriend()); 1455 Owner->addDecl(FD); 1456 return FD; 1457 } 1458 1459 NamedDecl *ND = D->getFriendDecl(); 1460 assert(ND && "friend decl must be a decl or a type!"); 1461 1462 // All of the Visit implementations for the various potential friend 1463 // declarations have to be carefully written to work for friend 1464 // objects, with the most important detail being that the target 1465 // decl should almost certainly not be placed in Owner. 1466 Decl *NewND = Visit(ND); 1467 if (!NewND) return nullptr; 1468 1469 FriendDecl *FD = 1470 FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(), 1471 cast<NamedDecl>(NewND), D->getFriendLoc()); 1472 FD->setAccess(AS_public); 1473 FD->setUnsupportedFriend(D->isUnsupportedFriend()); 1474 Owner->addDecl(FD); 1475 return FD; 1476 } 1477 1478 Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) { 1479 Expr *AssertExpr = D->getAssertExpr(); 1480 1481 // The expression in a static assertion is a constant expression. 1482 EnterExpressionEvaluationContext Unevaluated( 1483 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1484 1485 ExprResult InstantiatedAssertExpr 1486 = SemaRef.SubstExpr(AssertExpr, TemplateArgs); 1487 if (InstantiatedAssertExpr.isInvalid()) 1488 return nullptr; 1489 1490 ExprResult InstantiatedMessageExpr = 1491 SemaRef.SubstExpr(D->getMessage(), TemplateArgs); 1492 if (InstantiatedMessageExpr.isInvalid()) 1493 return nullptr; 1494 1495 return SemaRef.BuildStaticAssertDeclaration( 1496 D->getLocation(), InstantiatedAssertExpr.get(), 1497 InstantiatedMessageExpr.get(), D->getRParenLoc(), D->isFailed()); 1498 } 1499 1500 Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) { 1501 EnumDecl *PrevDecl = nullptr; 1502 if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { 1503 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), 1504 PatternPrev, 1505 TemplateArgs); 1506 if (!Prev) return nullptr; 1507 PrevDecl = cast<EnumDecl>(Prev); 1508 } 1509 1510 EnumDecl *Enum = 1511 EnumDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 1512 D->getLocation(), D->getIdentifier(), PrevDecl, 1513 D->isScoped(), D->isScopedUsingClassTag(), D->isFixed()); 1514 if (D->isFixed()) { 1515 if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) { 1516 // If we have type source information for the underlying type, it means it 1517 // has been explicitly set by the user. Perform substitution on it before 1518 // moving on. 1519 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 1520 TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc, 1521 DeclarationName()); 1522 if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI)) 1523 Enum->setIntegerType(SemaRef.Context.IntTy); 1524 else 1525 Enum->setIntegerTypeSourceInfo(NewTI); 1526 } else { 1527 assert(!D->getIntegerType()->isDependentType() 1528 && "Dependent type without type source info"); 1529 Enum->setIntegerType(D->getIntegerType()); 1530 } 1531 } 1532 1533 SemaRef.InstantiateAttrs(TemplateArgs, D, Enum); 1534 1535 Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation); 1536 Enum->setAccess(D->getAccess()); 1537 // Forward the mangling number from the template to the instantiated decl. 1538 SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D)); 1539 // See if the old tag was defined along with a declarator. 1540 // If it did, mark the new tag as being associated with that declarator. 1541 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) 1542 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD); 1543 // See if the old tag was defined along with a typedef. 1544 // If it did, mark the new tag as being associated with that typedef. 1545 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) 1546 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND); 1547 if (SubstQualifier(D, Enum)) return nullptr; 1548 Owner->addDecl(Enum); 1549 1550 EnumDecl *Def = D->getDefinition(); 1551 if (Def && Def != D) { 1552 // If this is an out-of-line definition of an enum member template, check 1553 // that the underlying types match in the instantiation of both 1554 // declarations. 1555 if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) { 1556 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 1557 QualType DefnUnderlying = 1558 SemaRef.SubstType(TI->getType(), TemplateArgs, 1559 UnderlyingLoc, DeclarationName()); 1560 SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(), 1561 DefnUnderlying, /*IsFixed=*/true, Enum); 1562 } 1563 } 1564 1565 // C++11 [temp.inst]p1: The implicit instantiation of a class template 1566 // specialization causes the implicit instantiation of the declarations, but 1567 // not the definitions of scoped member enumerations. 1568 // 1569 // DR1484 clarifies that enumeration definitions inside of a template 1570 // declaration aren't considered entities that can be separately instantiated 1571 // from the rest of the entity they are declared inside of. 1572 if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) { 1573 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum); 1574 InstantiateEnumDefinition(Enum, Def); 1575 } 1576 1577 return Enum; 1578 } 1579 1580 void TemplateDeclInstantiator::InstantiateEnumDefinition( 1581 EnumDecl *Enum, EnumDecl *Pattern) { 1582 Enum->startDefinition(); 1583 1584 // Update the location to refer to the definition. 1585 Enum->setLocation(Pattern->getLocation()); 1586 1587 SmallVector<Decl*, 4> Enumerators; 1588 1589 EnumConstantDecl *LastEnumConst = nullptr; 1590 for (auto *EC : Pattern->enumerators()) { 1591 // The specified value for the enumerator. 1592 ExprResult Value((Expr *)nullptr); 1593 if (Expr *UninstValue = EC->getInitExpr()) { 1594 // The enumerator's value expression is a constant expression. 1595 EnterExpressionEvaluationContext Unevaluated( 1596 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1597 1598 Value = SemaRef.SubstExpr(UninstValue, TemplateArgs); 1599 } 1600 1601 // Drop the initial value and continue. 1602 bool isInvalid = false; 1603 if (Value.isInvalid()) { 1604 Value = nullptr; 1605 isInvalid = true; 1606 } 1607 1608 EnumConstantDecl *EnumConst 1609 = SemaRef.CheckEnumConstant(Enum, LastEnumConst, 1610 EC->getLocation(), EC->getIdentifier(), 1611 Value.get()); 1612 1613 if (isInvalid) { 1614 if (EnumConst) 1615 EnumConst->setInvalidDecl(); 1616 Enum->setInvalidDecl(); 1617 } 1618 1619 if (EnumConst) { 1620 SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst); 1621 1622 EnumConst->setAccess(Enum->getAccess()); 1623 Enum->addDecl(EnumConst); 1624 Enumerators.push_back(EnumConst); 1625 LastEnumConst = EnumConst; 1626 1627 if (Pattern->getDeclContext()->isFunctionOrMethod() && 1628 !Enum->isScoped()) { 1629 // If the enumeration is within a function or method, record the enum 1630 // constant as a local. 1631 SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst); 1632 } 1633 } 1634 } 1635 1636 SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum, 1637 Enumerators, nullptr, ParsedAttributesView()); 1638 } 1639 1640 Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) { 1641 llvm_unreachable("EnumConstantDecls can only occur within EnumDecls."); 1642 } 1643 1644 Decl * 1645 TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) { 1646 llvm_unreachable("BuiltinTemplateDecls cannot be instantiated."); 1647 } 1648 1649 Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) { 1650 bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 1651 1652 // Create a local instantiation scope for this class template, which 1653 // will contain the instantiations of the template parameters. 1654 LocalInstantiationScope Scope(SemaRef); 1655 TemplateParameterList *TempParams = D->getTemplateParameters(); 1656 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1657 if (!InstParams) 1658 return nullptr; 1659 1660 CXXRecordDecl *Pattern = D->getTemplatedDecl(); 1661 1662 // Instantiate the qualifier. We have to do this first in case 1663 // we're a friend declaration, because if we are then we need to put 1664 // the new declaration in the appropriate context. 1665 NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc(); 1666 if (QualifierLoc) { 1667 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 1668 TemplateArgs); 1669 if (!QualifierLoc) 1670 return nullptr; 1671 } 1672 1673 CXXRecordDecl *PrevDecl = nullptr; 1674 ClassTemplateDecl *PrevClassTemplate = nullptr; 1675 1676 if (!isFriend && getPreviousDeclForInstantiation(Pattern)) { 1677 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1678 if (!Found.empty()) { 1679 PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front()); 1680 if (PrevClassTemplate) 1681 PrevDecl = PrevClassTemplate->getTemplatedDecl(); 1682 } 1683 } 1684 1685 // If this isn't a friend, then it's a member template, in which 1686 // case we just want to build the instantiation in the 1687 // specialization. If it is a friend, we want to build it in 1688 // the appropriate context. 1689 DeclContext *DC = Owner; 1690 if (isFriend) { 1691 if (QualifierLoc) { 1692 CXXScopeSpec SS; 1693 SS.Adopt(QualifierLoc); 1694 DC = SemaRef.computeDeclContext(SS); 1695 if (!DC) return nullptr; 1696 } else { 1697 DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(), 1698 Pattern->getDeclContext(), 1699 TemplateArgs); 1700 } 1701 1702 // Look for a previous declaration of the template in the owning 1703 // context. 1704 LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(), 1705 Sema::LookupOrdinaryName, 1706 SemaRef.forRedeclarationInCurContext()); 1707 SemaRef.LookupQualifiedName(R, DC); 1708 1709 if (R.isSingleResult()) { 1710 PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>(); 1711 if (PrevClassTemplate) 1712 PrevDecl = PrevClassTemplate->getTemplatedDecl(); 1713 } 1714 1715 if (!PrevClassTemplate && QualifierLoc) { 1716 SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope) 1717 << llvm::to_underlying(D->getTemplatedDecl()->getTagKind()) 1718 << Pattern->getDeclName() << DC << QualifierLoc.getSourceRange(); 1719 return nullptr; 1720 } 1721 } 1722 1723 CXXRecordDecl *RecordInst = CXXRecordDecl::Create( 1724 SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getBeginLoc(), 1725 Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl, 1726 /*DelayTypeCreation=*/true); 1727 if (QualifierLoc) 1728 RecordInst->setQualifierInfo(QualifierLoc); 1729 1730 SemaRef.InstantiateAttrsForDecl(TemplateArgs, Pattern, RecordInst, LateAttrs, 1731 StartingScope); 1732 1733 ClassTemplateDecl *Inst 1734 = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(), 1735 D->getIdentifier(), InstParams, RecordInst); 1736 RecordInst->setDescribedClassTemplate(Inst); 1737 1738 if (isFriend) { 1739 assert(!Owner->isDependentContext()); 1740 Inst->setLexicalDeclContext(Owner); 1741 RecordInst->setLexicalDeclContext(Owner); 1742 Inst->setObjectOfFriendDecl(); 1743 1744 if (PrevClassTemplate) { 1745 Inst->setCommonPtr(PrevClassTemplate->getCommonPtr()); 1746 RecordInst->setTypeForDecl( 1747 PrevClassTemplate->getTemplatedDecl()->getTypeForDecl()); 1748 const ClassTemplateDecl *MostRecentPrevCT = 1749 PrevClassTemplate->getMostRecentDecl(); 1750 TemplateParameterList *PrevParams = 1751 MostRecentPrevCT->getTemplateParameters(); 1752 1753 // Make sure the parameter lists match. 1754 if (!SemaRef.TemplateParameterListsAreEqual( 1755 RecordInst, InstParams, MostRecentPrevCT->getTemplatedDecl(), 1756 PrevParams, true, Sema::TPL_TemplateMatch)) 1757 return nullptr; 1758 1759 // Do some additional validation, then merge default arguments 1760 // from the existing declarations. 1761 if (SemaRef.CheckTemplateParameterList(InstParams, PrevParams, 1762 Sema::TPC_ClassTemplate)) 1763 return nullptr; 1764 1765 Inst->setAccess(PrevClassTemplate->getAccess()); 1766 } else { 1767 Inst->setAccess(D->getAccess()); 1768 } 1769 1770 Inst->setObjectOfFriendDecl(); 1771 // TODO: do we want to track the instantiation progeny of this 1772 // friend target decl? 1773 } else { 1774 Inst->setAccess(D->getAccess()); 1775 if (!PrevClassTemplate) 1776 Inst->setInstantiatedFromMemberTemplate(D); 1777 } 1778 1779 Inst->setPreviousDecl(PrevClassTemplate); 1780 1781 // Trigger creation of the type for the instantiation. 1782 SemaRef.Context.getInjectedClassNameType( 1783 RecordInst, Inst->getInjectedClassNameSpecialization()); 1784 1785 // Finish handling of friends. 1786 if (isFriend) { 1787 DC->makeDeclVisibleInContext(Inst); 1788 return Inst; 1789 } 1790 1791 if (D->isOutOfLine()) { 1792 Inst->setLexicalDeclContext(D->getLexicalDeclContext()); 1793 RecordInst->setLexicalDeclContext(D->getLexicalDeclContext()); 1794 } 1795 1796 Owner->addDecl(Inst); 1797 1798 if (!PrevClassTemplate) { 1799 // Queue up any out-of-line partial specializations of this member 1800 // class template; the client will force their instantiation once 1801 // the enclosing class has been instantiated. 1802 SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs; 1803 D->getPartialSpecializations(PartialSpecs); 1804 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) 1805 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) 1806 OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I])); 1807 } 1808 1809 return Inst; 1810 } 1811 1812 Decl * 1813 TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl( 1814 ClassTemplatePartialSpecializationDecl *D) { 1815 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); 1816 1817 // Lookup the already-instantiated declaration in the instantiation 1818 // of the class template and return that. 1819 DeclContext::lookup_result Found 1820 = Owner->lookup(ClassTemplate->getDeclName()); 1821 if (Found.empty()) 1822 return nullptr; 1823 1824 ClassTemplateDecl *InstClassTemplate 1825 = dyn_cast<ClassTemplateDecl>(Found.front()); 1826 if (!InstClassTemplate) 1827 return nullptr; 1828 1829 if (ClassTemplatePartialSpecializationDecl *Result 1830 = InstClassTemplate->findPartialSpecInstantiatedFromMember(D)) 1831 return Result; 1832 1833 return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D); 1834 } 1835 1836 Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) { 1837 assert(D->getTemplatedDecl()->isStaticDataMember() && 1838 "Only static data member templates are allowed."); 1839 1840 // Create a local instantiation scope for this variable template, which 1841 // will contain the instantiations of the template parameters. 1842 LocalInstantiationScope Scope(SemaRef); 1843 TemplateParameterList *TempParams = D->getTemplateParameters(); 1844 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1845 if (!InstParams) 1846 return nullptr; 1847 1848 VarDecl *Pattern = D->getTemplatedDecl(); 1849 VarTemplateDecl *PrevVarTemplate = nullptr; 1850 1851 if (getPreviousDeclForInstantiation(Pattern)) { 1852 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1853 if (!Found.empty()) 1854 PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); 1855 } 1856 1857 VarDecl *VarInst = 1858 cast_or_null<VarDecl>(VisitVarDecl(Pattern, 1859 /*InstantiatingVarTemplate=*/true)); 1860 if (!VarInst) return nullptr; 1861 1862 DeclContext *DC = Owner; 1863 1864 VarTemplateDecl *Inst = VarTemplateDecl::Create( 1865 SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams, 1866 VarInst); 1867 VarInst->setDescribedVarTemplate(Inst); 1868 Inst->setPreviousDecl(PrevVarTemplate); 1869 1870 Inst->setAccess(D->getAccess()); 1871 if (!PrevVarTemplate) 1872 Inst->setInstantiatedFromMemberTemplate(D); 1873 1874 if (D->isOutOfLine()) { 1875 Inst->setLexicalDeclContext(D->getLexicalDeclContext()); 1876 VarInst->setLexicalDeclContext(D->getLexicalDeclContext()); 1877 } 1878 1879 Owner->addDecl(Inst); 1880 1881 if (!PrevVarTemplate) { 1882 // Queue up any out-of-line partial specializations of this member 1883 // variable template; the client will force their instantiation once 1884 // the enclosing class has been instantiated. 1885 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 1886 D->getPartialSpecializations(PartialSpecs); 1887 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) 1888 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) 1889 OutOfLineVarPartialSpecs.push_back( 1890 std::make_pair(Inst, PartialSpecs[I])); 1891 } 1892 1893 return Inst; 1894 } 1895 1896 Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl( 1897 VarTemplatePartialSpecializationDecl *D) { 1898 assert(D->isStaticDataMember() && 1899 "Only static data member templates are allowed."); 1900 1901 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); 1902 1903 // Lookup the already-instantiated declaration and return that. 1904 DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName()); 1905 assert(!Found.empty() && "Instantiation found nothing?"); 1906 1907 VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); 1908 assert(InstVarTemplate && "Instantiation did not find a variable template?"); 1909 1910 if (VarTemplatePartialSpecializationDecl *Result = 1911 InstVarTemplate->findPartialSpecInstantiatedFromMember(D)) 1912 return Result; 1913 1914 return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D); 1915 } 1916 1917 Decl * 1918 TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { 1919 // Create a local instantiation scope for this function template, which 1920 // will contain the instantiations of the template parameters and then get 1921 // merged with the local instantiation scope for the function template 1922 // itself. 1923 LocalInstantiationScope Scope(SemaRef); 1924 Sema::ConstraintEvalRAII<TemplateDeclInstantiator> RAII(*this); 1925 1926 TemplateParameterList *TempParams = D->getTemplateParameters(); 1927 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1928 if (!InstParams) 1929 return nullptr; 1930 1931 FunctionDecl *Instantiated = nullptr; 1932 if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl())) 1933 Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod, 1934 InstParams)); 1935 else 1936 Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl( 1937 D->getTemplatedDecl(), 1938 InstParams)); 1939 1940 if (!Instantiated) 1941 return nullptr; 1942 1943 // Link the instantiated function template declaration to the function 1944 // template from which it was instantiated. 1945 FunctionTemplateDecl *InstTemplate 1946 = Instantiated->getDescribedFunctionTemplate(); 1947 InstTemplate->setAccess(D->getAccess()); 1948 assert(InstTemplate && 1949 "VisitFunctionDecl/CXXMethodDecl didn't create a template!"); 1950 1951 bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None); 1952 1953 // Link the instantiation back to the pattern *unless* this is a 1954 // non-definition friend declaration. 1955 if (!InstTemplate->getInstantiatedFromMemberTemplate() && 1956 !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition())) 1957 InstTemplate->setInstantiatedFromMemberTemplate(D); 1958 1959 // Make declarations visible in the appropriate context. 1960 if (!isFriend) { 1961 Owner->addDecl(InstTemplate); 1962 } else if (InstTemplate->getDeclContext()->isRecord() && 1963 !getPreviousDeclForInstantiation(D)) { 1964 SemaRef.CheckFriendAccess(InstTemplate); 1965 } 1966 1967 return InstTemplate; 1968 } 1969 1970 Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) { 1971 CXXRecordDecl *PrevDecl = nullptr; 1972 if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { 1973 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), 1974 PatternPrev, 1975 TemplateArgs); 1976 if (!Prev) return nullptr; 1977 PrevDecl = cast<CXXRecordDecl>(Prev); 1978 } 1979 1980 CXXRecordDecl *Record = nullptr; 1981 bool IsInjectedClassName = D->isInjectedClassName(); 1982 if (D->isLambda()) 1983 Record = CXXRecordDecl::CreateLambda( 1984 SemaRef.Context, Owner, D->getLambdaTypeInfo(), D->getLocation(), 1985 D->getLambdaDependencyKind(), D->isGenericLambda(), 1986 D->getLambdaCaptureDefault()); 1987 else 1988 Record = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner, 1989 D->getBeginLoc(), D->getLocation(), 1990 D->getIdentifier(), PrevDecl, 1991 /*DelayTypeCreation=*/IsInjectedClassName); 1992 // Link the type of the injected-class-name to that of the outer class. 1993 if (IsInjectedClassName) 1994 (void)SemaRef.Context.getTypeDeclType(Record, cast<CXXRecordDecl>(Owner)); 1995 1996 // Substitute the nested name specifier, if any. 1997 if (SubstQualifier(D, Record)) 1998 return nullptr; 1999 2000 SemaRef.InstantiateAttrsForDecl(TemplateArgs, D, Record, LateAttrs, 2001 StartingScope); 2002 2003 Record->setImplicit(D->isImplicit()); 2004 // FIXME: Check against AS_none is an ugly hack to work around the issue that 2005 // the tag decls introduced by friend class declarations don't have an access 2006 // specifier. Remove once this area of the code gets sorted out. 2007 if (D->getAccess() != AS_none) 2008 Record->setAccess(D->getAccess()); 2009 if (!IsInjectedClassName) 2010 Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); 2011 2012 // If the original function was part of a friend declaration, 2013 // inherit its namespace state. 2014 if (D->getFriendObjectKind()) 2015 Record->setObjectOfFriendDecl(); 2016 2017 // Make sure that anonymous structs and unions are recorded. 2018 if (D->isAnonymousStructOrUnion()) 2019 Record->setAnonymousStructOrUnion(true); 2020 2021 if (D->isLocalClass()) 2022 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record); 2023 2024 // Forward the mangling number from the template to the instantiated decl. 2025 SemaRef.Context.setManglingNumber(Record, 2026 SemaRef.Context.getManglingNumber(D)); 2027 2028 // See if the old tag was defined along with a declarator. 2029 // If it did, mark the new tag as being associated with that declarator. 2030 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) 2031 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD); 2032 2033 // See if the old tag was defined along with a typedef. 2034 // If it did, mark the new tag as being associated with that typedef. 2035 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) 2036 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND); 2037 2038 Owner->addDecl(Record); 2039 2040 // DR1484 clarifies that the members of a local class are instantiated as part 2041 // of the instantiation of their enclosing entity. 2042 if (D->isCompleteDefinition() && D->isLocalClass()) { 2043 Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef); 2044 2045 SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs, 2046 TSK_ImplicitInstantiation, 2047 /*Complain=*/true); 2048 2049 // For nested local classes, we will instantiate the members when we 2050 // reach the end of the outermost (non-nested) local class. 2051 if (!D->isCXXClassMember()) 2052 SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs, 2053 TSK_ImplicitInstantiation); 2054 2055 // This class may have local implicit instantiations that need to be 2056 // performed within this scope. 2057 LocalInstantiations.perform(); 2058 } 2059 2060 SemaRef.DiagnoseUnusedNestedTypedefs(Record); 2061 2062 if (IsInjectedClassName) 2063 assert(Record->isInjectedClassName() && "Broken injected-class-name"); 2064 2065 return Record; 2066 } 2067 2068 /// Adjust the given function type for an instantiation of the 2069 /// given declaration, to cope with modifications to the function's type that 2070 /// aren't reflected in the type-source information. 2071 /// 2072 /// \param D The declaration we're instantiating. 2073 /// \param TInfo The already-instantiated type. 2074 static QualType adjustFunctionTypeForInstantiation(ASTContext &Context, 2075 FunctionDecl *D, 2076 TypeSourceInfo *TInfo) { 2077 const FunctionProtoType *OrigFunc 2078 = D->getType()->castAs<FunctionProtoType>(); 2079 const FunctionProtoType *NewFunc 2080 = TInfo->getType()->castAs<FunctionProtoType>(); 2081 if (OrigFunc->getExtInfo() == NewFunc->getExtInfo()) 2082 return TInfo->getType(); 2083 2084 FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo(); 2085 NewEPI.ExtInfo = OrigFunc->getExtInfo(); 2086 return Context.getFunctionType(NewFunc->getReturnType(), 2087 NewFunc->getParamTypes(), NewEPI); 2088 } 2089 2090 /// Normal class members are of more specific types and therefore 2091 /// don't make it here. This function serves three purposes: 2092 /// 1) instantiating function templates 2093 /// 2) substituting friend and local function declarations 2094 /// 3) substituting deduction guide declarations for nested class templates 2095 Decl *TemplateDeclInstantiator::VisitFunctionDecl( 2096 FunctionDecl *D, TemplateParameterList *TemplateParams, 2097 RewriteKind FunctionRewriteKind) { 2098 // Check whether there is already a function template specialization for 2099 // this declaration. 2100 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); 2101 if (FunctionTemplate && !TemplateParams) { 2102 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2103 2104 void *InsertPos = nullptr; 2105 FunctionDecl *SpecFunc 2106 = FunctionTemplate->findSpecialization(Innermost, InsertPos); 2107 2108 // If we already have a function template specialization, return it. 2109 if (SpecFunc) 2110 return SpecFunc; 2111 } 2112 2113 bool isFriend; 2114 if (FunctionTemplate) 2115 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); 2116 else 2117 isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 2118 2119 bool MergeWithParentScope = (TemplateParams != nullptr) || 2120 Owner->isFunctionOrMethod() || 2121 !(isa<Decl>(Owner) && 2122 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); 2123 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); 2124 2125 ExplicitSpecifier InstantiatedExplicitSpecifier; 2126 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) { 2127 InstantiatedExplicitSpecifier = SemaRef.instantiateExplicitSpecifier( 2128 TemplateArgs, DGuide->getExplicitSpecifier()); 2129 if (InstantiatedExplicitSpecifier.isInvalid()) 2130 return nullptr; 2131 } 2132 2133 SmallVector<ParmVarDecl *, 4> Params; 2134 TypeSourceInfo *TInfo = SubstFunctionType(D, Params); 2135 if (!TInfo) 2136 return nullptr; 2137 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); 2138 2139 if (TemplateParams && TemplateParams->size()) { 2140 auto *LastParam = 2141 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back()); 2142 if (LastParam && LastParam->isImplicit() && 2143 LastParam->hasTypeConstraint()) { 2144 // In abbreviated templates, the type-constraints of invented template 2145 // type parameters are instantiated with the function type, invalidating 2146 // the TemplateParameterList which relied on the template type parameter 2147 // not having a type constraint. Recreate the TemplateParameterList with 2148 // the updated parameter list. 2149 TemplateParams = TemplateParameterList::Create( 2150 SemaRef.Context, TemplateParams->getTemplateLoc(), 2151 TemplateParams->getLAngleLoc(), TemplateParams->asArray(), 2152 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause()); 2153 } 2154 } 2155 2156 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); 2157 if (QualifierLoc) { 2158 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2159 TemplateArgs); 2160 if (!QualifierLoc) 2161 return nullptr; 2162 } 2163 2164 Expr *TrailingRequiresClause = D->getTrailingRequiresClause(); 2165 2166 // If we're instantiating a local function declaration, put the result 2167 // in the enclosing namespace; otherwise we need to find the instantiated 2168 // context. 2169 DeclContext *DC; 2170 if (D->isLocalExternDecl()) { 2171 DC = Owner; 2172 SemaRef.adjustContextForLocalExternDecl(DC); 2173 } else if (isFriend && QualifierLoc) { 2174 CXXScopeSpec SS; 2175 SS.Adopt(QualifierLoc); 2176 DC = SemaRef.computeDeclContext(SS); 2177 if (!DC) return nullptr; 2178 } else { 2179 DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), 2180 TemplateArgs); 2181 } 2182 2183 DeclarationNameInfo NameInfo 2184 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 2185 2186 if (FunctionRewriteKind != RewriteKind::None) 2187 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo); 2188 2189 FunctionDecl *Function; 2190 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) { 2191 Function = CXXDeductionGuideDecl::Create( 2192 SemaRef.Context, DC, D->getInnerLocStart(), 2193 InstantiatedExplicitSpecifier, NameInfo, T, TInfo, 2194 D->getSourceRange().getEnd(), DGuide->getCorrespondingConstructor(), 2195 DGuide->getDeductionCandidateKind()); 2196 Function->setAccess(D->getAccess()); 2197 } else { 2198 Function = FunctionDecl::Create( 2199 SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo, 2200 D->getCanonicalDecl()->getStorageClass(), D->UsesFPIntrin(), 2201 D->isInlineSpecified(), D->hasWrittenPrototype(), D->getConstexprKind(), 2202 TrailingRequiresClause); 2203 Function->setFriendConstraintRefersToEnclosingTemplate( 2204 D->FriendConstraintRefersToEnclosingTemplate()); 2205 Function->setRangeEnd(D->getSourceRange().getEnd()); 2206 } 2207 2208 if (D->isInlined()) 2209 Function->setImplicitlyInline(); 2210 2211 if (QualifierLoc) 2212 Function->setQualifierInfo(QualifierLoc); 2213 2214 if (D->isLocalExternDecl()) 2215 Function->setLocalExternDecl(); 2216 2217 DeclContext *LexicalDC = Owner; 2218 if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) { 2219 assert(D->getDeclContext()->isFileContext()); 2220 LexicalDC = D->getDeclContext(); 2221 } 2222 else if (D->isLocalExternDecl()) { 2223 LexicalDC = SemaRef.CurContext; 2224 } 2225 2226 Function->setLexicalDeclContext(LexicalDC); 2227 2228 // Attach the parameters 2229 for (unsigned P = 0; P < Params.size(); ++P) 2230 if (Params[P]) 2231 Params[P]->setOwningFunction(Function); 2232 Function->setParams(Params); 2233 2234 if (TrailingRequiresClause) 2235 Function->setTrailingRequiresClause(TrailingRequiresClause); 2236 2237 if (TemplateParams) { 2238 // Our resulting instantiation is actually a function template, since we 2239 // are substituting only the outer template parameters. For example, given 2240 // 2241 // template<typename T> 2242 // struct X { 2243 // template<typename U> friend void f(T, U); 2244 // }; 2245 // 2246 // X<int> x; 2247 // 2248 // We are instantiating the friend function template "f" within X<int>, 2249 // which means substituting int for T, but leaving "f" as a friend function 2250 // template. 2251 // Build the function template itself. 2252 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC, 2253 Function->getLocation(), 2254 Function->getDeclName(), 2255 TemplateParams, Function); 2256 Function->setDescribedFunctionTemplate(FunctionTemplate); 2257 2258 FunctionTemplate->setLexicalDeclContext(LexicalDC); 2259 2260 if (isFriend && D->isThisDeclarationADefinition()) { 2261 FunctionTemplate->setInstantiatedFromMemberTemplate( 2262 D->getDescribedFunctionTemplate()); 2263 } 2264 } else if (FunctionTemplate && 2265 SemaRef.CodeSynthesisContexts.back().Kind != 2266 Sema::CodeSynthesisContext::BuildingDeductionGuides) { 2267 // Record this function template specialization. 2268 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2269 Function->setFunctionTemplateSpecialization(FunctionTemplate, 2270 TemplateArgumentList::CreateCopy(SemaRef.Context, 2271 Innermost), 2272 /*InsertPos=*/nullptr); 2273 } else if (FunctionRewriteKind == RewriteKind::None) { 2274 if (isFriend && D->isThisDeclarationADefinition()) { 2275 // Do not connect the friend to the template unless it's actually a 2276 // definition. We don't want non-template functions to be marked as being 2277 // template instantiations. 2278 Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); 2279 } else if (!isFriend) { 2280 // If this is not a function template, and this is not a friend (that is, 2281 // this is a locally declared function), save the instantiation 2282 // relationship for the purposes of constraint instantiation. 2283 Function->setInstantiatedFromDecl(D); 2284 } 2285 } 2286 2287 if (isFriend) { 2288 Function->setObjectOfFriendDecl(); 2289 if (FunctionTemplateDecl *FT = Function->getDescribedFunctionTemplate()) 2290 FT->setObjectOfFriendDecl(); 2291 } 2292 2293 if (InitFunctionInstantiation(Function, D)) 2294 Function->setInvalidDecl(); 2295 2296 bool IsExplicitSpecialization = false; 2297 2298 LookupResult Previous( 2299 SemaRef, Function->getDeclName(), SourceLocation(), 2300 D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage 2301 : Sema::LookupOrdinaryName, 2302 D->isLocalExternDecl() ? RedeclarationKind::ForExternalRedeclaration 2303 : SemaRef.forRedeclarationInCurContext()); 2304 2305 if (DependentFunctionTemplateSpecializationInfo *DFTSI = 2306 D->getDependentSpecializationInfo()) { 2307 assert(isFriend && "dependent specialization info on " 2308 "non-member non-friend function?"); 2309 2310 // Instantiate the explicit template arguments. 2311 TemplateArgumentListInfo ExplicitArgs; 2312 if (const auto *ArgsWritten = DFTSI->TemplateArgumentsAsWritten) { 2313 ExplicitArgs.setLAngleLoc(ArgsWritten->getLAngleLoc()); 2314 ExplicitArgs.setRAngleLoc(ArgsWritten->getRAngleLoc()); 2315 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs, 2316 ExplicitArgs)) 2317 return nullptr; 2318 } 2319 2320 // Map the candidates for the primary template to their instantiations. 2321 for (FunctionTemplateDecl *FTD : DFTSI->getCandidates()) { 2322 if (NamedDecl *ND = 2323 SemaRef.FindInstantiatedDecl(D->getLocation(), FTD, TemplateArgs)) 2324 Previous.addDecl(ND); 2325 else 2326 return nullptr; 2327 } 2328 2329 if (SemaRef.CheckFunctionTemplateSpecialization( 2330 Function, 2331 DFTSI->TemplateArgumentsAsWritten ? &ExplicitArgs : nullptr, 2332 Previous)) 2333 Function->setInvalidDecl(); 2334 2335 IsExplicitSpecialization = true; 2336 } else if (const ASTTemplateArgumentListInfo *ArgsWritten = 2337 D->getTemplateSpecializationArgsAsWritten()) { 2338 // The name of this function was written as a template-id. 2339 SemaRef.LookupQualifiedName(Previous, DC); 2340 2341 // Instantiate the explicit template arguments. 2342 TemplateArgumentListInfo ExplicitArgs(ArgsWritten->getLAngleLoc(), 2343 ArgsWritten->getRAngleLoc()); 2344 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs, 2345 ExplicitArgs)) 2346 return nullptr; 2347 2348 if (SemaRef.CheckFunctionTemplateSpecialization(Function, 2349 &ExplicitArgs, 2350 Previous)) 2351 Function->setInvalidDecl(); 2352 2353 IsExplicitSpecialization = true; 2354 } else if (TemplateParams || !FunctionTemplate) { 2355 // Look only into the namespace where the friend would be declared to 2356 // find a previous declaration. This is the innermost enclosing namespace, 2357 // as described in ActOnFriendFunctionDecl. 2358 SemaRef.LookupQualifiedName(Previous, DC->getRedeclContext()); 2359 2360 // In C++, the previous declaration we find might be a tag type 2361 // (class or enum). In this case, the new declaration will hide the 2362 // tag type. Note that this does not apply if we're declaring a 2363 // typedef (C++ [dcl.typedef]p4). 2364 if (Previous.isSingleTagDecl()) 2365 Previous.clear(); 2366 2367 // Filter out previous declarations that don't match the scope. The only 2368 // effect this has is to remove declarations found in inline namespaces 2369 // for friend declarations with unqualified names. 2370 if (isFriend && !QualifierLoc) { 2371 SemaRef.FilterLookupForScope(Previous, DC, /*Scope=*/ nullptr, 2372 /*ConsiderLinkage=*/ true, 2373 QualifierLoc.hasQualifier()); 2374 } 2375 } 2376 2377 // Per [temp.inst], default arguments in function declarations at local scope 2378 // are instantiated along with the enclosing declaration. For example: 2379 // 2380 // template<typename T> 2381 // void ft() { 2382 // void f(int = []{ return T::value; }()); 2383 // } 2384 // template void ft<int>(); // error: type 'int' cannot be used prior 2385 // to '::' because it has no members 2386 // 2387 // The error is issued during instantiation of ft<int>() because substitution 2388 // into the default argument fails; the default argument is instantiated even 2389 // though it is never used. 2390 if (Function->isLocalExternDecl()) { 2391 for (ParmVarDecl *PVD : Function->parameters()) { 2392 if (!PVD->hasDefaultArg()) 2393 continue; 2394 if (SemaRef.SubstDefaultArgument(D->getInnerLocStart(), PVD, TemplateArgs)) { 2395 // If substitution fails, the default argument is set to a 2396 // RecoveryExpr that wraps the uninstantiated default argument so 2397 // that downstream diagnostics are omitted. 2398 Expr *UninstExpr = PVD->getUninstantiatedDefaultArg(); 2399 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr( 2400 UninstExpr->getBeginLoc(), UninstExpr->getEndLoc(), 2401 { UninstExpr }, UninstExpr->getType()); 2402 if (ErrorResult.isUsable()) 2403 PVD->setDefaultArg(ErrorResult.get()); 2404 } 2405 } 2406 } 2407 2408 SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous, 2409 IsExplicitSpecialization, 2410 Function->isThisDeclarationADefinition()); 2411 2412 // Check the template parameter list against the previous declaration. The 2413 // goal here is to pick up default arguments added since the friend was 2414 // declared; we know the template parameter lists match, since otherwise 2415 // we would not have picked this template as the previous declaration. 2416 if (isFriend && TemplateParams && FunctionTemplate->getPreviousDecl()) { 2417 SemaRef.CheckTemplateParameterList( 2418 TemplateParams, 2419 FunctionTemplate->getPreviousDecl()->getTemplateParameters(), 2420 Function->isThisDeclarationADefinition() 2421 ? Sema::TPC_FriendFunctionTemplateDefinition 2422 : Sema::TPC_FriendFunctionTemplate); 2423 } 2424 2425 // If we're introducing a friend definition after the first use, trigger 2426 // instantiation. 2427 // FIXME: If this is a friend function template definition, we should check 2428 // to see if any specializations have been used. 2429 if (isFriend && D->isThisDeclarationADefinition() && Function->isUsed(false)) { 2430 if (MemberSpecializationInfo *MSInfo = 2431 Function->getMemberSpecializationInfo()) { 2432 if (MSInfo->getPointOfInstantiation().isInvalid()) { 2433 SourceLocation Loc = D->getLocation(); // FIXME 2434 MSInfo->setPointOfInstantiation(Loc); 2435 SemaRef.PendingLocalImplicitInstantiations.push_back( 2436 std::make_pair(Function, Loc)); 2437 } 2438 } 2439 } 2440 2441 if (D->isExplicitlyDefaulted()) { 2442 if (SubstDefaultedFunction(Function, D)) 2443 return nullptr; 2444 } 2445 if (D->isDeleted()) 2446 SemaRef.SetDeclDeleted(Function, D->getLocation(), D->getDeletedMessage()); 2447 2448 NamedDecl *PrincipalDecl = 2449 (TemplateParams ? cast<NamedDecl>(FunctionTemplate) : Function); 2450 2451 // If this declaration lives in a different context from its lexical context, 2452 // add it to the corresponding lookup table. 2453 if (isFriend || 2454 (Function->isLocalExternDecl() && !Function->getPreviousDecl())) 2455 DC->makeDeclVisibleInContext(PrincipalDecl); 2456 2457 if (Function->isOverloadedOperator() && !DC->isRecord() && 2458 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) 2459 PrincipalDecl->setNonMemberOperator(); 2460 2461 return Function; 2462 } 2463 2464 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl( 2465 CXXMethodDecl *D, TemplateParameterList *TemplateParams, 2466 RewriteKind FunctionRewriteKind) { 2467 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); 2468 if (FunctionTemplate && !TemplateParams) { 2469 // We are creating a function template specialization from a function 2470 // template. Check whether there is already a function template 2471 // specialization for this particular set of template arguments. 2472 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2473 2474 void *InsertPos = nullptr; 2475 FunctionDecl *SpecFunc 2476 = FunctionTemplate->findSpecialization(Innermost, InsertPos); 2477 2478 // If we already have a function template specialization, return it. 2479 if (SpecFunc) 2480 return SpecFunc; 2481 } 2482 2483 bool isFriend; 2484 if (FunctionTemplate) 2485 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); 2486 else 2487 isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 2488 2489 bool MergeWithParentScope = (TemplateParams != nullptr) || 2490 !(isa<Decl>(Owner) && 2491 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); 2492 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); 2493 2494 Sema::LambdaScopeForCallOperatorInstantiationRAII LambdaScope( 2495 SemaRef, const_cast<CXXMethodDecl *>(D), TemplateArgs, Scope); 2496 2497 // Instantiate enclosing template arguments for friends. 2498 SmallVector<TemplateParameterList *, 4> TempParamLists; 2499 unsigned NumTempParamLists = 0; 2500 if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) { 2501 TempParamLists.resize(NumTempParamLists); 2502 for (unsigned I = 0; I != NumTempParamLists; ++I) { 2503 TemplateParameterList *TempParams = D->getTemplateParameterList(I); 2504 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 2505 if (!InstParams) 2506 return nullptr; 2507 TempParamLists[I] = InstParams; 2508 } 2509 } 2510 2511 auto InstantiatedExplicitSpecifier = ExplicitSpecifier::getFromDecl(D); 2512 // deduction guides need this 2513 const bool CouldInstantiate = 2514 InstantiatedExplicitSpecifier.getExpr() == nullptr || 2515 !InstantiatedExplicitSpecifier.getExpr()->isValueDependent(); 2516 2517 // Delay the instantiation of the explicit-specifier until after the 2518 // constraints are checked during template argument deduction. 2519 if (CouldInstantiate || 2520 SemaRef.CodeSynthesisContexts.back().Kind != 2521 Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution) { 2522 InstantiatedExplicitSpecifier = SemaRef.instantiateExplicitSpecifier( 2523 TemplateArgs, InstantiatedExplicitSpecifier); 2524 2525 if (InstantiatedExplicitSpecifier.isInvalid()) 2526 return nullptr; 2527 } else { 2528 InstantiatedExplicitSpecifier.setKind(ExplicitSpecKind::Unresolved); 2529 } 2530 2531 // Implicit destructors/constructors created for local classes in 2532 // DeclareImplicit* (see SemaDeclCXX.cpp) might not have an associated TSI. 2533 // Unfortunately there isn't enough context in those functions to 2534 // conditionally populate the TSI without breaking non-template related use 2535 // cases. Populate TSIs prior to calling SubstFunctionType to make sure we get 2536 // a proper transformation. 2537 if (cast<CXXRecordDecl>(D->getParent())->isLambda() && 2538 !D->getTypeSourceInfo() && 2539 isa<CXXConstructorDecl, CXXDestructorDecl>(D)) { 2540 TypeSourceInfo *TSI = 2541 SemaRef.Context.getTrivialTypeSourceInfo(D->getType()); 2542 D->setTypeSourceInfo(TSI); 2543 } 2544 2545 SmallVector<ParmVarDecl *, 4> Params; 2546 TypeSourceInfo *TInfo = SubstFunctionType(D, Params); 2547 if (!TInfo) 2548 return nullptr; 2549 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); 2550 2551 if (TemplateParams && TemplateParams->size()) { 2552 auto *LastParam = 2553 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back()); 2554 if (LastParam && LastParam->isImplicit() && 2555 LastParam->hasTypeConstraint()) { 2556 // In abbreviated templates, the type-constraints of invented template 2557 // type parameters are instantiated with the function type, invalidating 2558 // the TemplateParameterList which relied on the template type parameter 2559 // not having a type constraint. Recreate the TemplateParameterList with 2560 // the updated parameter list. 2561 TemplateParams = TemplateParameterList::Create( 2562 SemaRef.Context, TemplateParams->getTemplateLoc(), 2563 TemplateParams->getLAngleLoc(), TemplateParams->asArray(), 2564 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause()); 2565 } 2566 } 2567 2568 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); 2569 if (QualifierLoc) { 2570 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2571 TemplateArgs); 2572 if (!QualifierLoc) 2573 return nullptr; 2574 } 2575 2576 DeclContext *DC = Owner; 2577 if (isFriend) { 2578 if (QualifierLoc) { 2579 CXXScopeSpec SS; 2580 SS.Adopt(QualifierLoc); 2581 DC = SemaRef.computeDeclContext(SS); 2582 2583 if (DC && SemaRef.RequireCompleteDeclContext(SS, DC)) 2584 return nullptr; 2585 } else { 2586 DC = SemaRef.FindInstantiatedContext(D->getLocation(), 2587 D->getDeclContext(), 2588 TemplateArgs); 2589 } 2590 if (!DC) return nullptr; 2591 } 2592 2593 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 2594 Expr *TrailingRequiresClause = D->getTrailingRequiresClause(); 2595 2596 DeclarationNameInfo NameInfo 2597 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 2598 2599 if (FunctionRewriteKind != RewriteKind::None) 2600 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo); 2601 2602 // Build the instantiated method declaration. 2603 CXXMethodDecl *Method = nullptr; 2604 2605 SourceLocation StartLoc = D->getInnerLocStart(); 2606 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 2607 Method = CXXConstructorDecl::Create( 2608 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2609 InstantiatedExplicitSpecifier, Constructor->UsesFPIntrin(), 2610 Constructor->isInlineSpecified(), false, 2611 Constructor->getConstexprKind(), InheritedConstructor(), 2612 TrailingRequiresClause); 2613 Method->setRangeEnd(Constructor->getEndLoc()); 2614 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { 2615 Method = CXXDestructorDecl::Create( 2616 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2617 Destructor->UsesFPIntrin(), Destructor->isInlineSpecified(), false, 2618 Destructor->getConstexprKind(), TrailingRequiresClause); 2619 Method->setIneligibleOrNotSelected(true); 2620 Method->setRangeEnd(Destructor->getEndLoc()); 2621 Method->setDeclName(SemaRef.Context.DeclarationNames.getCXXDestructorName( 2622 SemaRef.Context.getCanonicalType( 2623 SemaRef.Context.getTypeDeclType(Record)))); 2624 } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { 2625 Method = CXXConversionDecl::Create( 2626 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2627 Conversion->UsesFPIntrin(), Conversion->isInlineSpecified(), 2628 InstantiatedExplicitSpecifier, Conversion->getConstexprKind(), 2629 Conversion->getEndLoc(), TrailingRequiresClause); 2630 } else { 2631 StorageClass SC = D->isStatic() ? SC_Static : SC_None; 2632 Method = CXXMethodDecl::Create( 2633 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, SC, 2634 D->UsesFPIntrin(), D->isInlineSpecified(), D->getConstexprKind(), 2635 D->getEndLoc(), TrailingRequiresClause); 2636 } 2637 2638 if (D->isInlined()) 2639 Method->setImplicitlyInline(); 2640 2641 if (QualifierLoc) 2642 Method->setQualifierInfo(QualifierLoc); 2643 2644 if (TemplateParams) { 2645 // Our resulting instantiation is actually a function template, since we 2646 // are substituting only the outer template parameters. For example, given 2647 // 2648 // template<typename T> 2649 // struct X { 2650 // template<typename U> void f(T, U); 2651 // }; 2652 // 2653 // X<int> x; 2654 // 2655 // We are instantiating the member template "f" within X<int>, which means 2656 // substituting int for T, but leaving "f" as a member function template. 2657 // Build the function template itself. 2658 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record, 2659 Method->getLocation(), 2660 Method->getDeclName(), 2661 TemplateParams, Method); 2662 if (isFriend) { 2663 FunctionTemplate->setLexicalDeclContext(Owner); 2664 FunctionTemplate->setObjectOfFriendDecl(); 2665 } else if (D->isOutOfLine()) 2666 FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext()); 2667 Method->setDescribedFunctionTemplate(FunctionTemplate); 2668 } else if (FunctionTemplate) { 2669 // Record this function template specialization. 2670 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2671 Method->setFunctionTemplateSpecialization(FunctionTemplate, 2672 TemplateArgumentList::CreateCopy(SemaRef.Context, 2673 Innermost), 2674 /*InsertPos=*/nullptr); 2675 } else if (!isFriend && FunctionRewriteKind == RewriteKind::None) { 2676 // Record that this is an instantiation of a member function. 2677 Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); 2678 } 2679 2680 // If we are instantiating a member function defined 2681 // out-of-line, the instantiation will have the same lexical 2682 // context (which will be a namespace scope) as the template. 2683 if (isFriend) { 2684 if (NumTempParamLists) 2685 Method->setTemplateParameterListsInfo( 2686 SemaRef.Context, 2687 llvm::ArrayRef(TempParamLists.data(), NumTempParamLists)); 2688 2689 Method->setLexicalDeclContext(Owner); 2690 Method->setObjectOfFriendDecl(); 2691 } else if (D->isOutOfLine()) 2692 Method->setLexicalDeclContext(D->getLexicalDeclContext()); 2693 2694 // Attach the parameters 2695 for (unsigned P = 0; P < Params.size(); ++P) 2696 Params[P]->setOwningFunction(Method); 2697 Method->setParams(Params); 2698 2699 if (InitMethodInstantiation(Method, D)) 2700 Method->setInvalidDecl(); 2701 2702 LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName, 2703 RedeclarationKind::ForExternalRedeclaration); 2704 2705 bool IsExplicitSpecialization = false; 2706 2707 // If the name of this function was written as a template-id, instantiate 2708 // the explicit template arguments. 2709 if (DependentFunctionTemplateSpecializationInfo *DFTSI = 2710 D->getDependentSpecializationInfo()) { 2711 // Instantiate the explicit template arguments. 2712 TemplateArgumentListInfo ExplicitArgs; 2713 if (const auto *ArgsWritten = DFTSI->TemplateArgumentsAsWritten) { 2714 ExplicitArgs.setLAngleLoc(ArgsWritten->getLAngleLoc()); 2715 ExplicitArgs.setRAngleLoc(ArgsWritten->getRAngleLoc()); 2716 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs, 2717 ExplicitArgs)) 2718 return nullptr; 2719 } 2720 2721 // Map the candidates for the primary template to their instantiations. 2722 for (FunctionTemplateDecl *FTD : DFTSI->getCandidates()) { 2723 if (NamedDecl *ND = 2724 SemaRef.FindInstantiatedDecl(D->getLocation(), FTD, TemplateArgs)) 2725 Previous.addDecl(ND); 2726 else 2727 return nullptr; 2728 } 2729 2730 if (SemaRef.CheckFunctionTemplateSpecialization( 2731 Method, DFTSI->TemplateArgumentsAsWritten ? &ExplicitArgs : nullptr, 2732 Previous)) 2733 Method->setInvalidDecl(); 2734 2735 IsExplicitSpecialization = true; 2736 } else if (const ASTTemplateArgumentListInfo *ArgsWritten = 2737 D->getTemplateSpecializationArgsAsWritten()) { 2738 SemaRef.LookupQualifiedName(Previous, DC); 2739 2740 TemplateArgumentListInfo ExplicitArgs(ArgsWritten->getLAngleLoc(), 2741 ArgsWritten->getRAngleLoc()); 2742 2743 if (SemaRef.SubstTemplateArguments(ArgsWritten->arguments(), TemplateArgs, 2744 ExplicitArgs)) 2745 return nullptr; 2746 2747 if (SemaRef.CheckFunctionTemplateSpecialization(Method, 2748 &ExplicitArgs, 2749 Previous)) 2750 Method->setInvalidDecl(); 2751 2752 IsExplicitSpecialization = true; 2753 } else if (!FunctionTemplate || TemplateParams || isFriend) { 2754 SemaRef.LookupQualifiedName(Previous, Record); 2755 2756 // In C++, the previous declaration we find might be a tag type 2757 // (class or enum). In this case, the new declaration will hide the 2758 // tag type. Note that this does not apply if we're declaring a 2759 // typedef (C++ [dcl.typedef]p4). 2760 if (Previous.isSingleTagDecl()) 2761 Previous.clear(); 2762 } 2763 2764 // Per [temp.inst], default arguments in member functions of local classes 2765 // are instantiated along with the member function declaration. For example: 2766 // 2767 // template<typename T> 2768 // void ft() { 2769 // struct lc { 2770 // int operator()(int p = []{ return T::value; }()); 2771 // }; 2772 // } 2773 // template void ft<int>(); // error: type 'int' cannot be used prior 2774 // to '::'because it has no members 2775 // 2776 // The error is issued during instantiation of ft<int>()::lc::operator() 2777 // because substitution into the default argument fails; the default argument 2778 // is instantiated even though it is never used. 2779 if (D->isInLocalScopeForInstantiation()) { 2780 for (unsigned P = 0; P < Params.size(); ++P) { 2781 if (!Params[P]->hasDefaultArg()) 2782 continue; 2783 if (SemaRef.SubstDefaultArgument(StartLoc, Params[P], TemplateArgs)) { 2784 // If substitution fails, the default argument is set to a 2785 // RecoveryExpr that wraps the uninstantiated default argument so 2786 // that downstream diagnostics are omitted. 2787 Expr *UninstExpr = Params[P]->getUninstantiatedDefaultArg(); 2788 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr( 2789 UninstExpr->getBeginLoc(), UninstExpr->getEndLoc(), 2790 { UninstExpr }, UninstExpr->getType()); 2791 if (ErrorResult.isUsable()) 2792 Params[P]->setDefaultArg(ErrorResult.get()); 2793 } 2794 } 2795 } 2796 2797 SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous, 2798 IsExplicitSpecialization, 2799 Method->isThisDeclarationADefinition()); 2800 2801 if (D->isPureVirtual()) 2802 SemaRef.CheckPureMethod(Method, SourceRange()); 2803 2804 // Propagate access. For a non-friend declaration, the access is 2805 // whatever we're propagating from. For a friend, it should be the 2806 // previous declaration we just found. 2807 if (isFriend && Method->getPreviousDecl()) 2808 Method->setAccess(Method->getPreviousDecl()->getAccess()); 2809 else 2810 Method->setAccess(D->getAccess()); 2811 if (FunctionTemplate) 2812 FunctionTemplate->setAccess(Method->getAccess()); 2813 2814 SemaRef.CheckOverrideControl(Method); 2815 2816 // If a function is defined as defaulted or deleted, mark it as such now. 2817 if (D->isExplicitlyDefaulted()) { 2818 if (SubstDefaultedFunction(Method, D)) 2819 return nullptr; 2820 } 2821 if (D->isDeletedAsWritten()) 2822 SemaRef.SetDeclDeleted(Method, Method->getLocation(), 2823 D->getDeletedMessage()); 2824 2825 // If this is an explicit specialization, mark the implicitly-instantiated 2826 // template specialization as being an explicit specialization too. 2827 // FIXME: Is this necessary? 2828 if (IsExplicitSpecialization && !isFriend) 2829 SemaRef.CompleteMemberSpecialization(Method, Previous); 2830 2831 // If the method is a special member function, we need to mark it as 2832 // ineligible so that Owner->addDecl() won't mark the class as non trivial. 2833 // At the end of the class instantiation, we calculate eligibility again and 2834 // then we adjust trivility if needed. 2835 // We need this check to happen only after the method parameters are set, 2836 // because being e.g. a copy constructor depends on the instantiated 2837 // arguments. 2838 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Method)) { 2839 if (Constructor->isDefaultConstructor() || 2840 Constructor->isCopyOrMoveConstructor()) 2841 Method->setIneligibleOrNotSelected(true); 2842 } else if (Method->isCopyAssignmentOperator() || 2843 Method->isMoveAssignmentOperator()) { 2844 Method->setIneligibleOrNotSelected(true); 2845 } 2846 2847 // If there's a function template, let our caller handle it. 2848 if (FunctionTemplate) { 2849 // do nothing 2850 2851 // Don't hide a (potentially) valid declaration with an invalid one. 2852 } else if (Method->isInvalidDecl() && !Previous.empty()) { 2853 // do nothing 2854 2855 // Otherwise, check access to friends and make them visible. 2856 } else if (isFriend) { 2857 // We only need to re-check access for methods which we didn't 2858 // manage to match during parsing. 2859 if (!D->getPreviousDecl()) 2860 SemaRef.CheckFriendAccess(Method); 2861 2862 Record->makeDeclVisibleInContext(Method); 2863 2864 // Otherwise, add the declaration. We don't need to do this for 2865 // class-scope specializations because we'll have matched them with 2866 // the appropriate template. 2867 } else { 2868 Owner->addDecl(Method); 2869 } 2870 2871 // PR17480: Honor the used attribute to instantiate member function 2872 // definitions 2873 if (Method->hasAttr<UsedAttr>()) { 2874 if (const auto *A = dyn_cast<CXXRecordDecl>(Owner)) { 2875 SourceLocation Loc; 2876 if (const MemberSpecializationInfo *MSInfo = 2877 A->getMemberSpecializationInfo()) 2878 Loc = MSInfo->getPointOfInstantiation(); 2879 else if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(A)) 2880 Loc = Spec->getPointOfInstantiation(); 2881 SemaRef.MarkFunctionReferenced(Loc, Method); 2882 } 2883 } 2884 2885 return Method; 2886 } 2887 2888 Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) { 2889 return VisitCXXMethodDecl(D); 2890 } 2891 2892 Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) { 2893 return VisitCXXMethodDecl(D); 2894 } 2895 2896 Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) { 2897 return VisitCXXMethodDecl(D); 2898 } 2899 2900 Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) { 2901 return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, 2902 std::nullopt, 2903 /*ExpectParameterPack=*/false); 2904 } 2905 2906 Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl( 2907 TemplateTypeParmDecl *D) { 2908 assert(D->getTypeForDecl()->isTemplateTypeParmType()); 2909 2910 std::optional<unsigned> NumExpanded; 2911 2912 if (const TypeConstraint *TC = D->getTypeConstraint()) { 2913 if (D->isPackExpansion() && !D->isExpandedParameterPack()) { 2914 assert(TC->getTemplateArgsAsWritten() && 2915 "type parameter can only be an expansion when explicit arguments " 2916 "are specified"); 2917 // The template type parameter pack's type is a pack expansion of types. 2918 // Determine whether we need to expand this parameter pack into separate 2919 // types. 2920 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 2921 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) 2922 SemaRef.collectUnexpandedParameterPacks(ArgLoc, Unexpanded); 2923 2924 // Determine whether the set of unexpanded parameter packs can and should 2925 // be expanded. 2926 bool Expand = true; 2927 bool RetainExpansion = false; 2928 if (SemaRef.CheckParameterPacksForExpansion( 2929 cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint()) 2930 ->getEllipsisLoc(), 2931 SourceRange(TC->getConceptNameLoc(), 2932 TC->hasExplicitTemplateArgs() ? 2933 TC->getTemplateArgsAsWritten()->getRAngleLoc() : 2934 TC->getConceptNameInfo().getEndLoc()), 2935 Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpanded)) 2936 return nullptr; 2937 } 2938 } 2939 2940 TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create( 2941 SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(), 2942 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(), 2943 D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack(), 2944 D->hasTypeConstraint(), NumExpanded); 2945 2946 Inst->setAccess(AS_public); 2947 Inst->setImplicit(D->isImplicit()); 2948 if (auto *TC = D->getTypeConstraint()) { 2949 if (!D->isImplicit()) { 2950 // Invented template parameter type constraints will be instantiated 2951 // with the corresponding auto-typed parameter as it might reference 2952 // other parameters. 2953 if (SemaRef.SubstTypeConstraint(Inst, TC, TemplateArgs, 2954 EvaluateConstraints)) 2955 return nullptr; 2956 } 2957 } 2958 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 2959 TemplateArgumentLoc Output; 2960 if (!SemaRef.SubstTemplateArgument(D->getDefaultArgument(), TemplateArgs, 2961 Output)) 2962 Inst->setDefaultArgument(SemaRef.getASTContext(), Output); 2963 } 2964 2965 // Introduce this template parameter's instantiation into the instantiation 2966 // scope. 2967 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst); 2968 2969 return Inst; 2970 } 2971 2972 Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl( 2973 NonTypeTemplateParmDecl *D) { 2974 // Substitute into the type of the non-type template parameter. 2975 TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc(); 2976 SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten; 2977 SmallVector<QualType, 4> ExpandedParameterPackTypes; 2978 bool IsExpandedParameterPack = false; 2979 TypeSourceInfo *DI; 2980 QualType T; 2981 bool Invalid = false; 2982 2983 if (D->isExpandedParameterPack()) { 2984 // The non-type template parameter pack is an already-expanded pack 2985 // expansion of types. Substitute into each of the expanded types. 2986 ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes()); 2987 ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes()); 2988 for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) { 2989 TypeSourceInfo *NewDI = 2990 SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs, 2991 D->getLocation(), D->getDeclName()); 2992 if (!NewDI) 2993 return nullptr; 2994 2995 QualType NewT = 2996 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); 2997 if (NewT.isNull()) 2998 return nullptr; 2999 3000 ExpandedParameterPackTypesAsWritten.push_back(NewDI); 3001 ExpandedParameterPackTypes.push_back(NewT); 3002 } 3003 3004 IsExpandedParameterPack = true; 3005 DI = D->getTypeSourceInfo(); 3006 T = DI->getType(); 3007 } else if (D->isPackExpansion()) { 3008 // The non-type template parameter pack's type is a pack expansion of types. 3009 // Determine whether we need to expand this parameter pack into separate 3010 // types. 3011 PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>(); 3012 TypeLoc Pattern = Expansion.getPatternLoc(); 3013 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 3014 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); 3015 3016 // Determine whether the set of unexpanded parameter packs can and should 3017 // be expanded. 3018 bool Expand = true; 3019 bool RetainExpansion = false; 3020 std::optional<unsigned> OrigNumExpansions = 3021 Expansion.getTypePtr()->getNumExpansions(); 3022 std::optional<unsigned> NumExpansions = OrigNumExpansions; 3023 if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(), 3024 Pattern.getSourceRange(), 3025 Unexpanded, 3026 TemplateArgs, 3027 Expand, RetainExpansion, 3028 NumExpansions)) 3029 return nullptr; 3030 3031 if (Expand) { 3032 for (unsigned I = 0; I != *NumExpansions; ++I) { 3033 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 3034 TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs, 3035 D->getLocation(), 3036 D->getDeclName()); 3037 if (!NewDI) 3038 return nullptr; 3039 3040 QualType NewT = 3041 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); 3042 if (NewT.isNull()) 3043 return nullptr; 3044 3045 ExpandedParameterPackTypesAsWritten.push_back(NewDI); 3046 ExpandedParameterPackTypes.push_back(NewT); 3047 } 3048 3049 // Note that we have an expanded parameter pack. The "type" of this 3050 // expanded parameter pack is the original expansion type, but callers 3051 // will end up using the expanded parameter pack types for type-checking. 3052 IsExpandedParameterPack = true; 3053 DI = D->getTypeSourceInfo(); 3054 T = DI->getType(); 3055 } else { 3056 // We cannot fully expand the pack expansion now, so substitute into the 3057 // pattern and create a new pack expansion type. 3058 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 3059 TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs, 3060 D->getLocation(), 3061 D->getDeclName()); 3062 if (!NewPattern) 3063 return nullptr; 3064 3065 SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation()); 3066 DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(), 3067 NumExpansions); 3068 if (!DI) 3069 return nullptr; 3070 3071 T = DI->getType(); 3072 } 3073 } else { 3074 // Simple case: substitution into a parameter that is not a parameter pack. 3075 DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, 3076 D->getLocation(), D->getDeclName()); 3077 if (!DI) 3078 return nullptr; 3079 3080 // Check that this type is acceptable for a non-type template parameter. 3081 T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation()); 3082 if (T.isNull()) { 3083 T = SemaRef.Context.IntTy; 3084 Invalid = true; 3085 } 3086 } 3087 3088 NonTypeTemplateParmDecl *Param; 3089 if (IsExpandedParameterPack) 3090 Param = NonTypeTemplateParmDecl::Create( 3091 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 3092 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3093 D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes, 3094 ExpandedParameterPackTypesAsWritten); 3095 else 3096 Param = NonTypeTemplateParmDecl::Create( 3097 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 3098 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3099 D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI); 3100 3101 if (AutoTypeLoc AutoLoc = DI->getTypeLoc().getContainedAutoTypeLoc()) 3102 if (AutoLoc.isConstrained()) { 3103 SourceLocation EllipsisLoc; 3104 if (IsExpandedParameterPack) 3105 EllipsisLoc = 3106 DI->getTypeLoc().getAs<PackExpansionTypeLoc>().getEllipsisLoc(); 3107 else if (auto *Constraint = dyn_cast_if_present<CXXFoldExpr>( 3108 D->getPlaceholderTypeConstraint())) 3109 EllipsisLoc = Constraint->getEllipsisLoc(); 3110 // Note: We attach the uninstantiated constriant here, so that it can be 3111 // instantiated relative to the top level, like all our other 3112 // constraints. 3113 if (SemaRef.AttachTypeConstraint(AutoLoc, /*NewConstrainedParm=*/Param, 3114 /*OrigConstrainedParm=*/D, EllipsisLoc)) 3115 Invalid = true; 3116 } 3117 3118 Param->setAccess(AS_public); 3119 Param->setImplicit(D->isImplicit()); 3120 if (Invalid) 3121 Param->setInvalidDecl(); 3122 3123 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 3124 EnterExpressionEvaluationContext ConstantEvaluated( 3125 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 3126 TemplateArgumentLoc Result; 3127 if (!SemaRef.SubstTemplateArgument(D->getDefaultArgument(), TemplateArgs, 3128 Result)) 3129 Param->setDefaultArgument(SemaRef.Context, Result); 3130 } 3131 3132 // Introduce this template parameter's instantiation into the instantiation 3133 // scope. 3134 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); 3135 return Param; 3136 } 3137 3138 static void collectUnexpandedParameterPacks( 3139 Sema &S, 3140 TemplateParameterList *Params, 3141 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) { 3142 for (const auto &P : *Params) { 3143 if (P->isTemplateParameterPack()) 3144 continue; 3145 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) 3146 S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(), 3147 Unexpanded); 3148 if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P)) 3149 collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(), 3150 Unexpanded); 3151 } 3152 } 3153 3154 Decl * 3155 TemplateDeclInstantiator::VisitTemplateTemplateParmDecl( 3156 TemplateTemplateParmDecl *D) { 3157 // Instantiate the template parameter list of the template template parameter. 3158 TemplateParameterList *TempParams = D->getTemplateParameters(); 3159 TemplateParameterList *InstParams; 3160 SmallVector<TemplateParameterList*, 8> ExpandedParams; 3161 3162 bool IsExpandedParameterPack = false; 3163 3164 if (D->isExpandedParameterPack()) { 3165 // The template template parameter pack is an already-expanded pack 3166 // expansion of template parameters. Substitute into each of the expanded 3167 // parameters. 3168 ExpandedParams.reserve(D->getNumExpansionTemplateParameters()); 3169 for (unsigned I = 0, N = D->getNumExpansionTemplateParameters(); 3170 I != N; ++I) { 3171 LocalInstantiationScope Scope(SemaRef); 3172 TemplateParameterList *Expansion = 3173 SubstTemplateParams(D->getExpansionTemplateParameters(I)); 3174 if (!Expansion) 3175 return nullptr; 3176 ExpandedParams.push_back(Expansion); 3177 } 3178 3179 IsExpandedParameterPack = true; 3180 InstParams = TempParams; 3181 } else if (D->isPackExpansion()) { 3182 // The template template parameter pack expands to a pack of template 3183 // template parameters. Determine whether we need to expand this parameter 3184 // pack into separate parameters. 3185 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 3186 collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(), 3187 Unexpanded); 3188 3189 // Determine whether the set of unexpanded parameter packs can and should 3190 // be expanded. 3191 bool Expand = true; 3192 bool RetainExpansion = false; 3193 std::optional<unsigned> NumExpansions; 3194 if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(), 3195 TempParams->getSourceRange(), 3196 Unexpanded, 3197 TemplateArgs, 3198 Expand, RetainExpansion, 3199 NumExpansions)) 3200 return nullptr; 3201 3202 if (Expand) { 3203 for (unsigned I = 0; I != *NumExpansions; ++I) { 3204 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 3205 LocalInstantiationScope Scope(SemaRef); 3206 TemplateParameterList *Expansion = SubstTemplateParams(TempParams); 3207 if (!Expansion) 3208 return nullptr; 3209 ExpandedParams.push_back(Expansion); 3210 } 3211 3212 // Note that we have an expanded parameter pack. The "type" of this 3213 // expanded parameter pack is the original expansion type, but callers 3214 // will end up using the expanded parameter pack types for type-checking. 3215 IsExpandedParameterPack = true; 3216 InstParams = TempParams; 3217 } else { 3218 // We cannot fully expand the pack expansion now, so just substitute 3219 // into the pattern. 3220 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 3221 3222 LocalInstantiationScope Scope(SemaRef); 3223 InstParams = SubstTemplateParams(TempParams); 3224 if (!InstParams) 3225 return nullptr; 3226 } 3227 } else { 3228 // Perform the actual substitution of template parameters within a new, 3229 // local instantiation scope. 3230 LocalInstantiationScope Scope(SemaRef); 3231 InstParams = SubstTemplateParams(TempParams); 3232 if (!InstParams) 3233 return nullptr; 3234 } 3235 3236 // Build the template template parameter. 3237 TemplateTemplateParmDecl *Param; 3238 if (IsExpandedParameterPack) 3239 Param = TemplateTemplateParmDecl::Create( 3240 SemaRef.Context, Owner, D->getLocation(), 3241 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3242 D->getPosition(), D->getIdentifier(), D->wasDeclaredWithTypename(), 3243 InstParams, ExpandedParams); 3244 else 3245 Param = TemplateTemplateParmDecl::Create( 3246 SemaRef.Context, Owner, D->getLocation(), 3247 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3248 D->getPosition(), D->isParameterPack(), D->getIdentifier(), 3249 D->wasDeclaredWithTypename(), InstParams); 3250 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 3251 NestedNameSpecifierLoc QualifierLoc = 3252 D->getDefaultArgument().getTemplateQualifierLoc(); 3253 QualifierLoc = 3254 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); 3255 TemplateName TName = SemaRef.SubstTemplateName( 3256 QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(), 3257 D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs); 3258 if (!TName.isNull()) 3259 Param->setDefaultArgument( 3260 SemaRef.Context, 3261 TemplateArgumentLoc(SemaRef.Context, TemplateArgument(TName), 3262 D->getDefaultArgument().getTemplateQualifierLoc(), 3263 D->getDefaultArgument().getTemplateNameLoc())); 3264 } 3265 Param->setAccess(AS_public); 3266 Param->setImplicit(D->isImplicit()); 3267 3268 // Introduce this template parameter's instantiation into the instantiation 3269 // scope. 3270 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); 3271 3272 return Param; 3273 } 3274 3275 Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { 3276 // Using directives are never dependent (and never contain any types or 3277 // expressions), so they require no explicit instantiation work. 3278 3279 UsingDirectiveDecl *Inst 3280 = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(), 3281 D->getNamespaceKeyLocation(), 3282 D->getQualifierLoc(), 3283 D->getIdentLocation(), 3284 D->getNominatedNamespace(), 3285 D->getCommonAncestor()); 3286 3287 // Add the using directive to its declaration context 3288 // only if this is not a function or method. 3289 if (!Owner->isFunctionOrMethod()) 3290 Owner->addDecl(Inst); 3291 3292 return Inst; 3293 } 3294 3295 Decl *TemplateDeclInstantiator::VisitBaseUsingDecls(BaseUsingDecl *D, 3296 BaseUsingDecl *Inst, 3297 LookupResult *Lookup) { 3298 3299 bool isFunctionScope = Owner->isFunctionOrMethod(); 3300 3301 for (auto *Shadow : D->shadows()) { 3302 // FIXME: UsingShadowDecl doesn't preserve its immediate target, so 3303 // reconstruct it in the case where it matters. Hm, can we extract it from 3304 // the DeclSpec when parsing and save it in the UsingDecl itself? 3305 NamedDecl *OldTarget = Shadow->getTargetDecl(); 3306 if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Shadow)) 3307 if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl()) 3308 OldTarget = BaseShadow; 3309 3310 NamedDecl *InstTarget = nullptr; 3311 if (auto *EmptyD = 3312 dyn_cast<UnresolvedUsingIfExistsDecl>(Shadow->getTargetDecl())) { 3313 InstTarget = UnresolvedUsingIfExistsDecl::Create( 3314 SemaRef.Context, Owner, EmptyD->getLocation(), EmptyD->getDeclName()); 3315 } else { 3316 InstTarget = cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl( 3317 Shadow->getLocation(), OldTarget, TemplateArgs)); 3318 } 3319 if (!InstTarget) 3320 return nullptr; 3321 3322 UsingShadowDecl *PrevDecl = nullptr; 3323 if (Lookup && 3324 SemaRef.CheckUsingShadowDecl(Inst, InstTarget, *Lookup, PrevDecl)) 3325 continue; 3326 3327 if (UsingShadowDecl *OldPrev = getPreviousDeclForInstantiation(Shadow)) 3328 PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl( 3329 Shadow->getLocation(), OldPrev, TemplateArgs)); 3330 3331 UsingShadowDecl *InstShadow = SemaRef.BuildUsingShadowDecl( 3332 /*Scope*/ nullptr, Inst, InstTarget, PrevDecl); 3333 SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow); 3334 3335 if (isFunctionScope) 3336 SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow); 3337 } 3338 3339 return Inst; 3340 } 3341 3342 Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) { 3343 3344 // The nested name specifier may be dependent, for example 3345 // template <typename T> struct t { 3346 // struct s1 { T f1(); }; 3347 // struct s2 : s1 { using s1::f1; }; 3348 // }; 3349 // template struct t<int>; 3350 // Here, in using s1::f1, s1 refers to t<T>::s1; 3351 // we need to substitute for t<int>::s1. 3352 NestedNameSpecifierLoc QualifierLoc 3353 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), 3354 TemplateArgs); 3355 if (!QualifierLoc) 3356 return nullptr; 3357 3358 // For an inheriting constructor declaration, the name of the using 3359 // declaration is the name of a constructor in this class, not in the 3360 // base class. 3361 DeclarationNameInfo NameInfo = D->getNameInfo(); 3362 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) 3363 if (auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.CurContext)) 3364 NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName( 3365 SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD)))); 3366 3367 // We only need to do redeclaration lookups if we're in a class scope (in 3368 // fact, it's not really even possible in non-class scopes). 3369 bool CheckRedeclaration = Owner->isRecord(); 3370 LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName, 3371 RedeclarationKind::ForVisibleRedeclaration); 3372 3373 UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner, 3374 D->getUsingLoc(), 3375 QualifierLoc, 3376 NameInfo, 3377 D->hasTypename()); 3378 3379 CXXScopeSpec SS; 3380 SS.Adopt(QualifierLoc); 3381 if (CheckRedeclaration) { 3382 Prev.setHideTags(false); 3383 SemaRef.LookupQualifiedName(Prev, Owner); 3384 3385 // Check for invalid redeclarations. 3386 if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(), 3387 D->hasTypename(), SS, 3388 D->getLocation(), Prev)) 3389 NewUD->setInvalidDecl(); 3390 } 3391 3392 if (!NewUD->isInvalidDecl() && 3393 SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(), SS, 3394 NameInfo, D->getLocation(), nullptr, D)) 3395 NewUD->setInvalidDecl(); 3396 3397 SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D); 3398 NewUD->setAccess(D->getAccess()); 3399 Owner->addDecl(NewUD); 3400 3401 // Don't process the shadow decls for an invalid decl. 3402 if (NewUD->isInvalidDecl()) 3403 return NewUD; 3404 3405 // If the using scope was dependent, or we had dependent bases, we need to 3406 // recheck the inheritance 3407 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) 3408 SemaRef.CheckInheritingConstructorUsingDecl(NewUD); 3409 3410 return VisitBaseUsingDecls(D, NewUD, CheckRedeclaration ? &Prev : nullptr); 3411 } 3412 3413 Decl *TemplateDeclInstantiator::VisitUsingEnumDecl(UsingEnumDecl *D) { 3414 // Cannot be a dependent type, but still could be an instantiation 3415 EnumDecl *EnumD = cast_or_null<EnumDecl>(SemaRef.FindInstantiatedDecl( 3416 D->getLocation(), D->getEnumDecl(), TemplateArgs)); 3417 3418 if (SemaRef.RequireCompleteEnumDecl(EnumD, EnumD->getLocation())) 3419 return nullptr; 3420 3421 TypeSourceInfo *TSI = SemaRef.SubstType(D->getEnumType(), TemplateArgs, 3422 D->getLocation(), D->getDeclName()); 3423 3424 if (!TSI) 3425 return nullptr; 3426 3427 UsingEnumDecl *NewUD = 3428 UsingEnumDecl::Create(SemaRef.Context, Owner, D->getUsingLoc(), 3429 D->getEnumLoc(), D->getLocation(), TSI); 3430 3431 SemaRef.Context.setInstantiatedFromUsingEnumDecl(NewUD, D); 3432 NewUD->setAccess(D->getAccess()); 3433 Owner->addDecl(NewUD); 3434 3435 // Don't process the shadow decls for an invalid decl. 3436 if (NewUD->isInvalidDecl()) 3437 return NewUD; 3438 3439 // We don't have to recheck for duplication of the UsingEnumDecl itself, as it 3440 // cannot be dependent, and will therefore have been checked during template 3441 // definition. 3442 3443 return VisitBaseUsingDecls(D, NewUD, nullptr); 3444 } 3445 3446 Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) { 3447 // Ignore these; we handle them in bulk when processing the UsingDecl. 3448 return nullptr; 3449 } 3450 3451 Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl( 3452 ConstructorUsingShadowDecl *D) { 3453 // Ignore these; we handle them in bulk when processing the UsingDecl. 3454 return nullptr; 3455 } 3456 3457 template <typename T> 3458 Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl( 3459 T *D, bool InstantiatingPackElement) { 3460 // If this is a pack expansion, expand it now. 3461 if (D->isPackExpansion() && !InstantiatingPackElement) { 3462 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 3463 SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded); 3464 SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded); 3465 3466 // Determine whether the set of unexpanded parameter packs can and should 3467 // be expanded. 3468 bool Expand = true; 3469 bool RetainExpansion = false; 3470 std::optional<unsigned> NumExpansions; 3471 if (SemaRef.CheckParameterPacksForExpansion( 3472 D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs, 3473 Expand, RetainExpansion, NumExpansions)) 3474 return nullptr; 3475 3476 // This declaration cannot appear within a function template signature, 3477 // so we can't have a partial argument list for a parameter pack. 3478 assert(!RetainExpansion && 3479 "should never need to retain an expansion for UsingPackDecl"); 3480 3481 if (!Expand) { 3482 // We cannot fully expand the pack expansion now, so substitute into the 3483 // pattern and create a new pack expansion. 3484 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 3485 return instantiateUnresolvedUsingDecl(D, true); 3486 } 3487 3488 // Within a function, we don't have any normal way to check for conflicts 3489 // between shadow declarations from different using declarations in the 3490 // same pack expansion, but this is always ill-formed because all expansions 3491 // must produce (conflicting) enumerators. 3492 // 3493 // Sadly we can't just reject this in the template definition because it 3494 // could be valid if the pack is empty or has exactly one expansion. 3495 if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) { 3496 SemaRef.Diag(D->getEllipsisLoc(), 3497 diag::err_using_decl_redeclaration_expansion); 3498 return nullptr; 3499 } 3500 3501 // Instantiate the slices of this pack and build a UsingPackDecl. 3502 SmallVector<NamedDecl*, 8> Expansions; 3503 for (unsigned I = 0; I != *NumExpansions; ++I) { 3504 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 3505 Decl *Slice = instantiateUnresolvedUsingDecl(D, true); 3506 if (!Slice) 3507 return nullptr; 3508 // Note that we can still get unresolved using declarations here, if we 3509 // had arguments for all packs but the pattern also contained other 3510 // template arguments (this only happens during partial substitution, eg 3511 // into the body of a generic lambda in a function template). 3512 Expansions.push_back(cast<NamedDecl>(Slice)); 3513 } 3514 3515 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); 3516 if (isDeclWithinFunction(D)) 3517 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); 3518 return NewD; 3519 } 3520 3521 UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D); 3522 SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation(); 3523 3524 NestedNameSpecifierLoc QualifierLoc 3525 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), 3526 TemplateArgs); 3527 if (!QualifierLoc) 3528 return nullptr; 3529 3530 CXXScopeSpec SS; 3531 SS.Adopt(QualifierLoc); 3532 3533 DeclarationNameInfo NameInfo 3534 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 3535 3536 // Produce a pack expansion only if we're not instantiating a particular 3537 // slice of a pack expansion. 3538 bool InstantiatingSlice = D->getEllipsisLoc().isValid() && 3539 SemaRef.ArgumentPackSubstitutionIndex != -1; 3540 SourceLocation EllipsisLoc = 3541 InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc(); 3542 3543 bool IsUsingIfExists = D->template hasAttr<UsingIfExistsAttr>(); 3544 NamedDecl *UD = SemaRef.BuildUsingDeclaration( 3545 /*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(), 3546 /*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc, 3547 ParsedAttributesView(), 3548 /*IsInstantiation*/ true, IsUsingIfExists); 3549 if (UD) { 3550 SemaRef.InstantiateAttrs(TemplateArgs, D, UD); 3551 SemaRef.Context.setInstantiatedFromUsingDecl(UD, D); 3552 } 3553 3554 return UD; 3555 } 3556 3557 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl( 3558 UnresolvedUsingTypenameDecl *D) { 3559 return instantiateUnresolvedUsingDecl(D); 3560 } 3561 3562 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl( 3563 UnresolvedUsingValueDecl *D) { 3564 return instantiateUnresolvedUsingDecl(D); 3565 } 3566 3567 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingIfExistsDecl( 3568 UnresolvedUsingIfExistsDecl *D) { 3569 llvm_unreachable("referring to unresolved decl out of UsingShadowDecl"); 3570 } 3571 3572 Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) { 3573 SmallVector<NamedDecl*, 8> Expansions; 3574 for (auto *UD : D->expansions()) { 3575 if (NamedDecl *NewUD = 3576 SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs)) 3577 Expansions.push_back(NewUD); 3578 else 3579 return nullptr; 3580 } 3581 3582 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); 3583 if (isDeclWithinFunction(D)) 3584 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); 3585 return NewD; 3586 } 3587 3588 Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl( 3589 OMPThreadPrivateDecl *D) { 3590 SmallVector<Expr *, 5> Vars; 3591 for (auto *I : D->varlists()) { 3592 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); 3593 assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr"); 3594 Vars.push_back(Var); 3595 } 3596 3597 OMPThreadPrivateDecl *TD = 3598 SemaRef.OpenMP().CheckOMPThreadPrivateDecl(D->getLocation(), Vars); 3599 3600 TD->setAccess(AS_public); 3601 Owner->addDecl(TD); 3602 3603 return TD; 3604 } 3605 3606 Decl *TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl *D) { 3607 SmallVector<Expr *, 5> Vars; 3608 for (auto *I : D->varlists()) { 3609 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); 3610 assert(isa<DeclRefExpr>(Var) && "allocate arg is not a DeclRefExpr"); 3611 Vars.push_back(Var); 3612 } 3613 SmallVector<OMPClause *, 4> Clauses; 3614 // Copy map clauses from the original mapper. 3615 for (OMPClause *C : D->clauselists()) { 3616 OMPClause *IC = nullptr; 3617 if (auto *AC = dyn_cast<OMPAllocatorClause>(C)) { 3618 ExprResult NewE = SemaRef.SubstExpr(AC->getAllocator(), TemplateArgs); 3619 if (!NewE.isUsable()) 3620 continue; 3621 IC = SemaRef.OpenMP().ActOnOpenMPAllocatorClause( 3622 NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc()); 3623 } else if (auto *AC = dyn_cast<OMPAlignClause>(C)) { 3624 ExprResult NewE = SemaRef.SubstExpr(AC->getAlignment(), TemplateArgs); 3625 if (!NewE.isUsable()) 3626 continue; 3627 IC = SemaRef.OpenMP().ActOnOpenMPAlignClause( 3628 NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc()); 3629 // If align clause value ends up being invalid, this can end up null. 3630 if (!IC) 3631 continue; 3632 } 3633 Clauses.push_back(IC); 3634 } 3635 3636 Sema::DeclGroupPtrTy Res = SemaRef.OpenMP().ActOnOpenMPAllocateDirective( 3637 D->getLocation(), Vars, Clauses, Owner); 3638 if (Res.get().isNull()) 3639 return nullptr; 3640 return Res.get().getSingleDecl(); 3641 } 3642 3643 Decl *TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl *D) { 3644 llvm_unreachable( 3645 "Requires directive cannot be instantiated within a dependent context"); 3646 } 3647 3648 Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl( 3649 OMPDeclareReductionDecl *D) { 3650 // Instantiate type and check if it is allowed. 3651 const bool RequiresInstantiation = 3652 D->getType()->isDependentType() || 3653 D->getType()->isInstantiationDependentType() || 3654 D->getType()->containsUnexpandedParameterPack(); 3655 QualType SubstReductionType; 3656 if (RequiresInstantiation) { 3657 SubstReductionType = SemaRef.OpenMP().ActOnOpenMPDeclareReductionType( 3658 D->getLocation(), 3659 ParsedType::make(SemaRef.SubstType( 3660 D->getType(), TemplateArgs, D->getLocation(), DeclarationName()))); 3661 } else { 3662 SubstReductionType = D->getType(); 3663 } 3664 if (SubstReductionType.isNull()) 3665 return nullptr; 3666 Expr *Combiner = D->getCombiner(); 3667 Expr *Init = D->getInitializer(); 3668 bool IsCorrect = true; 3669 // Create instantiated copy. 3670 std::pair<QualType, SourceLocation> ReductionTypes[] = { 3671 std::make_pair(SubstReductionType, D->getLocation())}; 3672 auto *PrevDeclInScope = D->getPrevDeclInScope(); 3673 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { 3674 PrevDeclInScope = cast<OMPDeclareReductionDecl>( 3675 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope) 3676 ->get<Decl *>()); 3677 } 3678 auto DRD = SemaRef.OpenMP().ActOnOpenMPDeclareReductionDirectiveStart( 3679 /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(), 3680 PrevDeclInScope); 3681 auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl()); 3682 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD); 3683 Expr *SubstCombiner = nullptr; 3684 Expr *SubstInitializer = nullptr; 3685 // Combiners instantiation sequence. 3686 if (Combiner) { 3687 SemaRef.OpenMP().ActOnOpenMPDeclareReductionCombinerStart( 3688 /*S=*/nullptr, NewDRD); 3689 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3690 cast<DeclRefExpr>(D->getCombinerIn())->getDecl(), 3691 cast<DeclRefExpr>(NewDRD->getCombinerIn())->getDecl()); 3692 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3693 cast<DeclRefExpr>(D->getCombinerOut())->getDecl(), 3694 cast<DeclRefExpr>(NewDRD->getCombinerOut())->getDecl()); 3695 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner); 3696 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(), 3697 ThisContext); 3698 SubstCombiner = SemaRef.SubstExpr(Combiner, TemplateArgs).get(); 3699 SemaRef.OpenMP().ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, 3700 SubstCombiner); 3701 } 3702 // Initializers instantiation sequence. 3703 if (Init) { 3704 VarDecl *OmpPrivParm = 3705 SemaRef.OpenMP().ActOnOpenMPDeclareReductionInitializerStart( 3706 /*S=*/nullptr, NewDRD); 3707 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3708 cast<DeclRefExpr>(D->getInitOrig())->getDecl(), 3709 cast<DeclRefExpr>(NewDRD->getInitOrig())->getDecl()); 3710 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3711 cast<DeclRefExpr>(D->getInitPriv())->getDecl(), 3712 cast<DeclRefExpr>(NewDRD->getInitPriv())->getDecl()); 3713 if (D->getInitializerKind() == OMPDeclareReductionInitKind::Call) { 3714 SubstInitializer = SemaRef.SubstExpr(Init, TemplateArgs).get(); 3715 } else { 3716 auto *OldPrivParm = 3717 cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()); 3718 IsCorrect = IsCorrect && OldPrivParm->hasInit(); 3719 if (IsCorrect) 3720 SemaRef.InstantiateVariableInitializer(OmpPrivParm, OldPrivParm, 3721 TemplateArgs); 3722 } 3723 SemaRef.OpenMP().ActOnOpenMPDeclareReductionInitializerEnd( 3724 NewDRD, SubstInitializer, OmpPrivParm); 3725 } 3726 IsCorrect = IsCorrect && SubstCombiner && 3727 (!Init || 3728 (D->getInitializerKind() == OMPDeclareReductionInitKind::Call && 3729 SubstInitializer) || 3730 (D->getInitializerKind() != OMPDeclareReductionInitKind::Call && 3731 !SubstInitializer)); 3732 3733 (void)SemaRef.OpenMP().ActOnOpenMPDeclareReductionDirectiveEnd( 3734 /*S=*/nullptr, DRD, IsCorrect && !D->isInvalidDecl()); 3735 3736 return NewDRD; 3737 } 3738 3739 Decl * 3740 TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) { 3741 // Instantiate type and check if it is allowed. 3742 const bool RequiresInstantiation = 3743 D->getType()->isDependentType() || 3744 D->getType()->isInstantiationDependentType() || 3745 D->getType()->containsUnexpandedParameterPack(); 3746 QualType SubstMapperTy; 3747 DeclarationName VN = D->getVarName(); 3748 if (RequiresInstantiation) { 3749 SubstMapperTy = SemaRef.OpenMP().ActOnOpenMPDeclareMapperType( 3750 D->getLocation(), 3751 ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs, 3752 D->getLocation(), VN))); 3753 } else { 3754 SubstMapperTy = D->getType(); 3755 } 3756 if (SubstMapperTy.isNull()) 3757 return nullptr; 3758 // Create an instantiated copy of mapper. 3759 auto *PrevDeclInScope = D->getPrevDeclInScope(); 3760 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { 3761 PrevDeclInScope = cast<OMPDeclareMapperDecl>( 3762 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope) 3763 ->get<Decl *>()); 3764 } 3765 bool IsCorrect = true; 3766 SmallVector<OMPClause *, 6> Clauses; 3767 // Instantiate the mapper variable. 3768 DeclarationNameInfo DirName; 3769 SemaRef.OpenMP().StartOpenMPDSABlock(llvm::omp::OMPD_declare_mapper, DirName, 3770 /*S=*/nullptr, 3771 (*D->clauselist_begin())->getBeginLoc()); 3772 ExprResult MapperVarRef = 3773 SemaRef.OpenMP().ActOnOpenMPDeclareMapperDirectiveVarDecl( 3774 /*S=*/nullptr, SubstMapperTy, D->getLocation(), VN); 3775 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3776 cast<DeclRefExpr>(D->getMapperVarRef())->getDecl(), 3777 cast<DeclRefExpr>(MapperVarRef.get())->getDecl()); 3778 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner); 3779 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(), 3780 ThisContext); 3781 // Instantiate map clauses. 3782 for (OMPClause *C : D->clauselists()) { 3783 auto *OldC = cast<OMPMapClause>(C); 3784 SmallVector<Expr *, 4> NewVars; 3785 for (Expr *OE : OldC->varlists()) { 3786 Expr *NE = SemaRef.SubstExpr(OE, TemplateArgs).get(); 3787 if (!NE) { 3788 IsCorrect = false; 3789 break; 3790 } 3791 NewVars.push_back(NE); 3792 } 3793 if (!IsCorrect) 3794 break; 3795 NestedNameSpecifierLoc NewQualifierLoc = 3796 SemaRef.SubstNestedNameSpecifierLoc(OldC->getMapperQualifierLoc(), 3797 TemplateArgs); 3798 CXXScopeSpec SS; 3799 SS.Adopt(NewQualifierLoc); 3800 DeclarationNameInfo NewNameInfo = 3801 SemaRef.SubstDeclarationNameInfo(OldC->getMapperIdInfo(), TemplateArgs); 3802 OMPVarListLocTy Locs(OldC->getBeginLoc(), OldC->getLParenLoc(), 3803 OldC->getEndLoc()); 3804 OMPClause *NewC = SemaRef.OpenMP().ActOnOpenMPMapClause( 3805 OldC->getIteratorModifier(), OldC->getMapTypeModifiers(), 3806 OldC->getMapTypeModifiersLoc(), SS, NewNameInfo, OldC->getMapType(), 3807 OldC->isImplicitMapType(), OldC->getMapLoc(), OldC->getColonLoc(), 3808 NewVars, Locs); 3809 Clauses.push_back(NewC); 3810 } 3811 SemaRef.OpenMP().EndOpenMPDSABlock(nullptr); 3812 if (!IsCorrect) 3813 return nullptr; 3814 Sema::DeclGroupPtrTy DG = SemaRef.OpenMP().ActOnOpenMPDeclareMapperDirective( 3815 /*S=*/nullptr, Owner, D->getDeclName(), SubstMapperTy, D->getLocation(), 3816 VN, D->getAccess(), MapperVarRef.get(), Clauses, PrevDeclInScope); 3817 Decl *NewDMD = DG.get().getSingleDecl(); 3818 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDMD); 3819 return NewDMD; 3820 } 3821 3822 Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl( 3823 OMPCapturedExprDecl * /*D*/) { 3824 llvm_unreachable("Should not be met in templates"); 3825 } 3826 3827 Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) { 3828 return VisitFunctionDecl(D, nullptr); 3829 } 3830 3831 Decl * 3832 TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) { 3833 Decl *Inst = VisitFunctionDecl(D, nullptr); 3834 if (Inst && !D->getDescribedFunctionTemplate()) 3835 Owner->addDecl(Inst); 3836 return Inst; 3837 } 3838 3839 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) { 3840 return VisitCXXMethodDecl(D, nullptr); 3841 } 3842 3843 Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) { 3844 llvm_unreachable("There are only CXXRecordDecls in C++"); 3845 } 3846 3847 Decl * 3848 TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl( 3849 ClassTemplateSpecializationDecl *D) { 3850 // As a MS extension, we permit class-scope explicit specialization 3851 // of member class templates. 3852 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); 3853 assert(ClassTemplate->getDeclContext()->isRecord() && 3854 D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 3855 "can only instantiate an explicit specialization " 3856 "for a member class template"); 3857 3858 // Lookup the already-instantiated declaration in the instantiation 3859 // of the class template. 3860 ClassTemplateDecl *InstClassTemplate = 3861 cast_or_null<ClassTemplateDecl>(SemaRef.FindInstantiatedDecl( 3862 D->getLocation(), ClassTemplate, TemplateArgs)); 3863 if (!InstClassTemplate) 3864 return nullptr; 3865 3866 // Substitute into the template arguments of the class template explicit 3867 // specialization. 3868 TemplateArgumentListInfo InstTemplateArgs; 3869 if (const ASTTemplateArgumentListInfo *TemplateArgsInfo = 3870 D->getTemplateArgsAsWritten()) { 3871 InstTemplateArgs.setLAngleLoc(TemplateArgsInfo->getLAngleLoc()); 3872 InstTemplateArgs.setRAngleLoc(TemplateArgsInfo->getRAngleLoc()); 3873 3874 if (SemaRef.SubstTemplateArguments(TemplateArgsInfo->arguments(), 3875 TemplateArgs, InstTemplateArgs)) 3876 return nullptr; 3877 } 3878 3879 // Check that the template argument list is well-formed for this 3880 // class template. 3881 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 3882 if (SemaRef.CheckTemplateArgumentList(InstClassTemplate, D->getLocation(), 3883 InstTemplateArgs, false, 3884 SugaredConverted, CanonicalConverted, 3885 /*UpdateArgsWithConversions=*/true)) 3886 return nullptr; 3887 3888 // Figure out where to insert this class template explicit specialization 3889 // in the member template's set of class template explicit specializations. 3890 void *InsertPos = nullptr; 3891 ClassTemplateSpecializationDecl *PrevDecl = 3892 InstClassTemplate->findSpecialization(CanonicalConverted, InsertPos); 3893 3894 // Check whether we've already seen a conflicting instantiation of this 3895 // declaration (for instance, if there was a prior implicit instantiation). 3896 bool Ignored; 3897 if (PrevDecl && 3898 SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(), 3899 D->getSpecializationKind(), 3900 PrevDecl, 3901 PrevDecl->getSpecializationKind(), 3902 PrevDecl->getPointOfInstantiation(), 3903 Ignored)) 3904 return nullptr; 3905 3906 // If PrevDecl was a definition and D is also a definition, diagnose. 3907 // This happens in cases like: 3908 // 3909 // template<typename T, typename U> 3910 // struct Outer { 3911 // template<typename X> struct Inner; 3912 // template<> struct Inner<T> {}; 3913 // template<> struct Inner<U> {}; 3914 // }; 3915 // 3916 // Outer<int, int> outer; // error: the explicit specializations of Inner 3917 // // have the same signature. 3918 if (PrevDecl && PrevDecl->getDefinition() && 3919 D->isThisDeclarationADefinition()) { 3920 SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl; 3921 SemaRef.Diag(PrevDecl->getDefinition()->getLocation(), 3922 diag::note_previous_definition); 3923 return nullptr; 3924 } 3925 3926 // Create the class template partial specialization declaration. 3927 ClassTemplateSpecializationDecl *InstD = 3928 ClassTemplateSpecializationDecl::Create( 3929 SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(), 3930 D->getLocation(), InstClassTemplate, CanonicalConverted, PrevDecl); 3931 InstD->setTemplateArgsAsWritten(InstTemplateArgs); 3932 3933 // Add this partial specialization to the set of class template partial 3934 // specializations. 3935 if (!PrevDecl) 3936 InstClassTemplate->AddSpecialization(InstD, InsertPos); 3937 3938 // Substitute the nested name specifier, if any. 3939 if (SubstQualifier(D, InstD)) 3940 return nullptr; 3941 3942 InstD->setAccess(D->getAccess()); 3943 InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); 3944 InstD->setSpecializationKind(D->getSpecializationKind()); 3945 InstD->setExternKeywordLoc(D->getExternKeywordLoc()); 3946 InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc()); 3947 3948 Owner->addDecl(InstD); 3949 3950 // Instantiate the members of the class-scope explicit specialization eagerly. 3951 // We don't have support for lazy instantiation of an explicit specialization 3952 // yet, and MSVC eagerly instantiates in this case. 3953 // FIXME: This is wrong in standard C++. 3954 if (D->isThisDeclarationADefinition() && 3955 SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs, 3956 TSK_ImplicitInstantiation, 3957 /*Complain=*/true)) 3958 return nullptr; 3959 3960 return InstD; 3961 } 3962 3963 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( 3964 VarTemplateSpecializationDecl *D) { 3965 3966 TemplateArgumentListInfo VarTemplateArgsInfo; 3967 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); 3968 assert(VarTemplate && 3969 "A template specialization without specialized template?"); 3970 3971 VarTemplateDecl *InstVarTemplate = 3972 cast_or_null<VarTemplateDecl>(SemaRef.FindInstantiatedDecl( 3973 D->getLocation(), VarTemplate, TemplateArgs)); 3974 if (!InstVarTemplate) 3975 return nullptr; 3976 3977 // Substitute the current template arguments. 3978 if (const ASTTemplateArgumentListInfo *TemplateArgsInfo = 3979 D->getTemplateArgsAsWritten()) { 3980 VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo->getLAngleLoc()); 3981 VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo->getRAngleLoc()); 3982 3983 if (SemaRef.SubstTemplateArguments(TemplateArgsInfo->arguments(), 3984 TemplateArgs, VarTemplateArgsInfo)) 3985 return nullptr; 3986 } 3987 3988 // Check that the template argument list is well-formed for this template. 3989 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 3990 if (SemaRef.CheckTemplateArgumentList(InstVarTemplate, D->getLocation(), 3991 VarTemplateArgsInfo, false, 3992 SugaredConverted, CanonicalConverted, 3993 /*UpdateArgsWithConversions=*/true)) 3994 return nullptr; 3995 3996 // Check whether we've already seen a declaration of this specialization. 3997 void *InsertPos = nullptr; 3998 VarTemplateSpecializationDecl *PrevDecl = 3999 InstVarTemplate->findSpecialization(CanonicalConverted, InsertPos); 4000 4001 // Check whether we've already seen a conflicting instantiation of this 4002 // declaration (for instance, if there was a prior implicit instantiation). 4003 bool Ignored; 4004 if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl( 4005 D->getLocation(), D->getSpecializationKind(), PrevDecl, 4006 PrevDecl->getSpecializationKind(), 4007 PrevDecl->getPointOfInstantiation(), Ignored)) 4008 return nullptr; 4009 4010 return VisitVarTemplateSpecializationDecl( 4011 InstVarTemplate, D, VarTemplateArgsInfo, CanonicalConverted, PrevDecl); 4012 } 4013 4014 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( 4015 VarTemplateDecl *VarTemplate, VarDecl *D, 4016 const TemplateArgumentListInfo &TemplateArgsInfo, 4017 ArrayRef<TemplateArgument> Converted, 4018 VarTemplateSpecializationDecl *PrevDecl) { 4019 4020 // Do substitution on the type of the declaration 4021 TypeSourceInfo *DI = 4022 SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, 4023 D->getTypeSpecStartLoc(), D->getDeclName()); 4024 if (!DI) 4025 return nullptr; 4026 4027 if (DI->getType()->isFunctionType()) { 4028 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) 4029 << D->isStaticDataMember() << DI->getType(); 4030 return nullptr; 4031 } 4032 4033 // Build the instantiated declaration 4034 VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create( 4035 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 4036 VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted); 4037 Var->setTemplateArgsAsWritten(TemplateArgsInfo); 4038 if (!PrevDecl) { 4039 void *InsertPos = nullptr; 4040 VarTemplate->findSpecialization(Converted, InsertPos); 4041 VarTemplate->AddSpecialization(Var, InsertPos); 4042 } 4043 4044 if (SemaRef.getLangOpts().OpenCL) 4045 SemaRef.deduceOpenCLAddressSpace(Var); 4046 4047 // Substitute the nested name specifier, if any. 4048 if (SubstQualifier(D, Var)) 4049 return nullptr; 4050 4051 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, 4052 StartingScope, false, PrevDecl); 4053 4054 return Var; 4055 } 4056 4057 Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) { 4058 llvm_unreachable("@defs is not supported in Objective-C++"); 4059 } 4060 4061 Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) { 4062 // FIXME: We need to be able to instantiate FriendTemplateDecls. 4063 unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID( 4064 DiagnosticsEngine::Error, 4065 "cannot instantiate %0 yet"); 4066 SemaRef.Diag(D->getLocation(), DiagID) 4067 << D->getDeclKindName(); 4068 4069 return nullptr; 4070 } 4071 4072 Decl *TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl *D) { 4073 llvm_unreachable("Concept definitions cannot reside inside a template"); 4074 } 4075 4076 Decl *TemplateDeclInstantiator::VisitImplicitConceptSpecializationDecl( 4077 ImplicitConceptSpecializationDecl *D) { 4078 llvm_unreachable("Concept specializations cannot reside inside a template"); 4079 } 4080 4081 Decl * 4082 TemplateDeclInstantiator::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) { 4083 return RequiresExprBodyDecl::Create(SemaRef.Context, D->getDeclContext(), 4084 D->getBeginLoc()); 4085 } 4086 4087 Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) { 4088 llvm_unreachable("Unexpected decl"); 4089 } 4090 4091 Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner, 4092 const MultiLevelTemplateArgumentList &TemplateArgs) { 4093 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); 4094 if (D->isInvalidDecl()) 4095 return nullptr; 4096 4097 Decl *SubstD; 4098 runWithSufficientStackSpace(D->getLocation(), [&] { 4099 SubstD = Instantiator.Visit(D); 4100 }); 4101 return SubstD; 4102 } 4103 4104 void TemplateDeclInstantiator::adjustForRewrite(RewriteKind RK, 4105 FunctionDecl *Orig, QualType &T, 4106 TypeSourceInfo *&TInfo, 4107 DeclarationNameInfo &NameInfo) { 4108 assert(RK == RewriteKind::RewriteSpaceshipAsEqualEqual); 4109 4110 // C++2a [class.compare.default]p3: 4111 // the return type is replaced with bool 4112 auto *FPT = T->castAs<FunctionProtoType>(); 4113 T = SemaRef.Context.getFunctionType( 4114 SemaRef.Context.BoolTy, FPT->getParamTypes(), FPT->getExtProtoInfo()); 4115 4116 // Update the return type in the source info too. The most straightforward 4117 // way is to create new TypeSourceInfo for the new type. Use the location of 4118 // the '= default' as the location of the new type. 4119 // 4120 // FIXME: Set the correct return type when we initially transform the type, 4121 // rather than delaying it to now. 4122 TypeSourceInfo *NewTInfo = 4123 SemaRef.Context.getTrivialTypeSourceInfo(T, Orig->getEndLoc()); 4124 auto OldLoc = TInfo->getTypeLoc().getAsAdjusted<FunctionProtoTypeLoc>(); 4125 assert(OldLoc && "type of function is not a function type?"); 4126 auto NewLoc = NewTInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>(); 4127 for (unsigned I = 0, N = OldLoc.getNumParams(); I != N; ++I) 4128 NewLoc.setParam(I, OldLoc.getParam(I)); 4129 TInfo = NewTInfo; 4130 4131 // and the declarator-id is replaced with operator== 4132 NameInfo.setName( 4133 SemaRef.Context.DeclarationNames.getCXXOperatorName(OO_EqualEqual)); 4134 } 4135 4136 FunctionDecl *Sema::SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD, 4137 FunctionDecl *Spaceship) { 4138 if (Spaceship->isInvalidDecl()) 4139 return nullptr; 4140 4141 // C++2a [class.compare.default]p3: 4142 // an == operator function is declared implicitly [...] with the same 4143 // access and function-definition and in the same class scope as the 4144 // three-way comparison operator function 4145 MultiLevelTemplateArgumentList NoTemplateArgs; 4146 NoTemplateArgs.setKind(TemplateSubstitutionKind::Rewrite); 4147 NoTemplateArgs.addOuterRetainedLevels(RD->getTemplateDepth()); 4148 TemplateDeclInstantiator Instantiator(*this, RD, NoTemplateArgs); 4149 Decl *R; 4150 if (auto *MD = dyn_cast<CXXMethodDecl>(Spaceship)) { 4151 R = Instantiator.VisitCXXMethodDecl( 4152 MD, /*TemplateParams=*/nullptr, 4153 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual); 4154 } else { 4155 assert(Spaceship->getFriendObjectKind() && 4156 "defaulted spaceship is neither a member nor a friend"); 4157 4158 R = Instantiator.VisitFunctionDecl( 4159 Spaceship, /*TemplateParams=*/nullptr, 4160 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual); 4161 if (!R) 4162 return nullptr; 4163 4164 FriendDecl *FD = 4165 FriendDecl::Create(Context, RD, Spaceship->getLocation(), 4166 cast<NamedDecl>(R), Spaceship->getBeginLoc()); 4167 FD->setAccess(AS_public); 4168 RD->addDecl(FD); 4169 } 4170 return cast_or_null<FunctionDecl>(R); 4171 } 4172 4173 /// Instantiates a nested template parameter list in the current 4174 /// instantiation context. 4175 /// 4176 /// \param L The parameter list to instantiate 4177 /// 4178 /// \returns NULL if there was an error 4179 TemplateParameterList * 4180 TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) { 4181 // Get errors for all the parameters before bailing out. 4182 bool Invalid = false; 4183 4184 unsigned N = L->size(); 4185 typedef SmallVector<NamedDecl *, 8> ParamVector; 4186 ParamVector Params; 4187 Params.reserve(N); 4188 for (auto &P : *L) { 4189 NamedDecl *D = cast_or_null<NamedDecl>(Visit(P)); 4190 Params.push_back(D); 4191 Invalid = Invalid || !D || D->isInvalidDecl(); 4192 } 4193 4194 // Clean up if we had an error. 4195 if (Invalid) 4196 return nullptr; 4197 4198 Expr *InstRequiresClause = L->getRequiresClause(); 4199 4200 TemplateParameterList *InstL 4201 = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(), 4202 L->getLAngleLoc(), Params, 4203 L->getRAngleLoc(), InstRequiresClause); 4204 return InstL; 4205 } 4206 4207 TemplateParameterList * 4208 Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner, 4209 const MultiLevelTemplateArgumentList &TemplateArgs, 4210 bool EvaluateConstraints) { 4211 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); 4212 Instantiator.setEvaluateConstraints(EvaluateConstraints); 4213 return Instantiator.SubstTemplateParams(Params); 4214 } 4215 4216 /// Instantiate the declaration of a class template partial 4217 /// specialization. 4218 /// 4219 /// \param ClassTemplate the (instantiated) class template that is partially 4220 // specialized by the instantiation of \p PartialSpec. 4221 /// 4222 /// \param PartialSpec the (uninstantiated) class template partial 4223 /// specialization that we are instantiating. 4224 /// 4225 /// \returns The instantiated partial specialization, if successful; otherwise, 4226 /// NULL to indicate an error. 4227 ClassTemplatePartialSpecializationDecl * 4228 TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization( 4229 ClassTemplateDecl *ClassTemplate, 4230 ClassTemplatePartialSpecializationDecl *PartialSpec) { 4231 // Create a local instantiation scope for this class template partial 4232 // specialization, which will contain the instantiations of the template 4233 // parameters. 4234 LocalInstantiationScope Scope(SemaRef); 4235 4236 // Substitute into the template parameters of the class template partial 4237 // specialization. 4238 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); 4239 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 4240 if (!InstParams) 4241 return nullptr; 4242 4243 // Substitute into the template arguments of the class template partial 4244 // specialization. 4245 const ASTTemplateArgumentListInfo *TemplArgInfo 4246 = PartialSpec->getTemplateArgsAsWritten(); 4247 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, 4248 TemplArgInfo->RAngleLoc); 4249 if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs, 4250 InstTemplateArgs)) 4251 return nullptr; 4252 4253 // Check that the template argument list is well-formed for this 4254 // class template. 4255 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4256 if (SemaRef.CheckTemplateArgumentList( 4257 ClassTemplate, PartialSpec->getLocation(), InstTemplateArgs, 4258 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted)) 4259 return nullptr; 4260 4261 // Check these arguments are valid for a template partial specialization. 4262 if (SemaRef.CheckTemplatePartialSpecializationArgs( 4263 PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(), 4264 CanonicalConverted)) 4265 return nullptr; 4266 4267 // Figure out where to insert this class template partial specialization 4268 // in the member template's set of class template partial specializations. 4269 void *InsertPos = nullptr; 4270 ClassTemplateSpecializationDecl *PrevDecl = 4271 ClassTemplate->findPartialSpecialization(CanonicalConverted, InstParams, 4272 InsertPos); 4273 4274 // Build the canonical type that describes the converted template 4275 // arguments of the class template partial specialization. 4276 QualType CanonType = SemaRef.Context.getTemplateSpecializationType( 4277 TemplateName(ClassTemplate), CanonicalConverted); 4278 4279 // Create the class template partial specialization declaration. 4280 ClassTemplatePartialSpecializationDecl *InstPartialSpec = 4281 ClassTemplatePartialSpecializationDecl::Create( 4282 SemaRef.Context, PartialSpec->getTagKind(), Owner, 4283 PartialSpec->getBeginLoc(), PartialSpec->getLocation(), InstParams, 4284 ClassTemplate, CanonicalConverted, CanonType, 4285 /*PrevDecl=*/nullptr); 4286 4287 InstPartialSpec->setTemplateArgsAsWritten(InstTemplateArgs); 4288 4289 // Substitute the nested name specifier, if any. 4290 if (SubstQualifier(PartialSpec, InstPartialSpec)) 4291 return nullptr; 4292 4293 InstPartialSpec->setInstantiatedFromMember(PartialSpec); 4294 4295 if (PrevDecl) { 4296 // We've already seen a partial specialization with the same template 4297 // parameters and template arguments. This can happen, for example, when 4298 // substituting the outer template arguments ends up causing two 4299 // class template partial specializations of a member class template 4300 // to have identical forms, e.g., 4301 // 4302 // template<typename T, typename U> 4303 // struct Outer { 4304 // template<typename X, typename Y> struct Inner; 4305 // template<typename Y> struct Inner<T, Y>; 4306 // template<typename Y> struct Inner<U, Y>; 4307 // }; 4308 // 4309 // Outer<int, int> outer; // error: the partial specializations of Inner 4310 // // have the same signature. 4311 SemaRef.Diag(InstPartialSpec->getLocation(), 4312 diag::err_partial_spec_redeclared) 4313 << InstPartialSpec; 4314 SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here) 4315 << SemaRef.Context.getTypeDeclType(PrevDecl); 4316 return nullptr; 4317 } 4318 4319 // Check the completed partial specialization. 4320 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); 4321 4322 // Add this partial specialization to the set of class template partial 4323 // specializations. 4324 ClassTemplate->AddPartialSpecialization(InstPartialSpec, 4325 /*InsertPos=*/nullptr); 4326 return InstPartialSpec; 4327 } 4328 4329 /// Instantiate the declaration of a variable template partial 4330 /// specialization. 4331 /// 4332 /// \param VarTemplate the (instantiated) variable template that is partially 4333 /// specialized by the instantiation of \p PartialSpec. 4334 /// 4335 /// \param PartialSpec the (uninstantiated) variable template partial 4336 /// specialization that we are instantiating. 4337 /// 4338 /// \returns The instantiated partial specialization, if successful; otherwise, 4339 /// NULL to indicate an error. 4340 VarTemplatePartialSpecializationDecl * 4341 TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization( 4342 VarTemplateDecl *VarTemplate, 4343 VarTemplatePartialSpecializationDecl *PartialSpec) { 4344 // Create a local instantiation scope for this variable template partial 4345 // specialization, which will contain the instantiations of the template 4346 // parameters. 4347 LocalInstantiationScope Scope(SemaRef); 4348 4349 // Substitute into the template parameters of the variable template partial 4350 // specialization. 4351 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); 4352 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 4353 if (!InstParams) 4354 return nullptr; 4355 4356 // Substitute into the template arguments of the variable template partial 4357 // specialization. 4358 const ASTTemplateArgumentListInfo *TemplArgInfo 4359 = PartialSpec->getTemplateArgsAsWritten(); 4360 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, 4361 TemplArgInfo->RAngleLoc); 4362 if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs, 4363 InstTemplateArgs)) 4364 return nullptr; 4365 4366 // Check that the template argument list is well-formed for this 4367 // class template. 4368 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4369 if (SemaRef.CheckTemplateArgumentList( 4370 VarTemplate, PartialSpec->getLocation(), InstTemplateArgs, 4371 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted)) 4372 return nullptr; 4373 4374 // Check these arguments are valid for a template partial specialization. 4375 if (SemaRef.CheckTemplatePartialSpecializationArgs( 4376 PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(), 4377 CanonicalConverted)) 4378 return nullptr; 4379 4380 // Figure out where to insert this variable template partial specialization 4381 // in the member template's set of variable template partial specializations. 4382 void *InsertPos = nullptr; 4383 VarTemplateSpecializationDecl *PrevDecl = 4384 VarTemplate->findPartialSpecialization(CanonicalConverted, InstParams, 4385 InsertPos); 4386 4387 // Do substitution on the type of the declaration 4388 TypeSourceInfo *DI = SemaRef.SubstType( 4389 PartialSpec->getTypeSourceInfo(), TemplateArgs, 4390 PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName()); 4391 if (!DI) 4392 return nullptr; 4393 4394 if (DI->getType()->isFunctionType()) { 4395 SemaRef.Diag(PartialSpec->getLocation(), 4396 diag::err_variable_instantiates_to_function) 4397 << PartialSpec->isStaticDataMember() << DI->getType(); 4398 return nullptr; 4399 } 4400 4401 // Create the variable template partial specialization declaration. 4402 VarTemplatePartialSpecializationDecl *InstPartialSpec = 4403 VarTemplatePartialSpecializationDecl::Create( 4404 SemaRef.Context, Owner, PartialSpec->getInnerLocStart(), 4405 PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(), 4406 DI, PartialSpec->getStorageClass(), CanonicalConverted); 4407 4408 InstPartialSpec->setTemplateArgsAsWritten(InstTemplateArgs); 4409 4410 // Substitute the nested name specifier, if any. 4411 if (SubstQualifier(PartialSpec, InstPartialSpec)) 4412 return nullptr; 4413 4414 InstPartialSpec->setInstantiatedFromMember(PartialSpec); 4415 4416 if (PrevDecl) { 4417 // We've already seen a partial specialization with the same template 4418 // parameters and template arguments. This can happen, for example, when 4419 // substituting the outer template arguments ends up causing two 4420 // variable template partial specializations of a member variable template 4421 // to have identical forms, e.g., 4422 // 4423 // template<typename T, typename U> 4424 // struct Outer { 4425 // template<typename X, typename Y> pair<X,Y> p; 4426 // template<typename Y> pair<T, Y> p; 4427 // template<typename Y> pair<U, Y> p; 4428 // }; 4429 // 4430 // Outer<int, int> outer; // error: the partial specializations of Inner 4431 // // have the same signature. 4432 SemaRef.Diag(PartialSpec->getLocation(), 4433 diag::err_var_partial_spec_redeclared) 4434 << InstPartialSpec; 4435 SemaRef.Diag(PrevDecl->getLocation(), 4436 diag::note_var_prev_partial_spec_here); 4437 return nullptr; 4438 } 4439 // Check the completed partial specialization. 4440 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); 4441 4442 // Add this partial specialization to the set of variable template partial 4443 // specializations. The instantiation of the initializer is not necessary. 4444 VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr); 4445 4446 SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs, 4447 LateAttrs, Owner, StartingScope); 4448 4449 return InstPartialSpec; 4450 } 4451 4452 TypeSourceInfo* 4453 TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D, 4454 SmallVectorImpl<ParmVarDecl *> &Params) { 4455 TypeSourceInfo *OldTInfo = D->getTypeSourceInfo(); 4456 assert(OldTInfo && "substituting function without type source info"); 4457 assert(Params.empty() && "parameter vector is non-empty at start"); 4458 4459 CXXRecordDecl *ThisContext = nullptr; 4460 Qualifiers ThisTypeQuals; 4461 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4462 ThisContext = cast<CXXRecordDecl>(Owner); 4463 ThisTypeQuals = Method->getFunctionObjectParameterType().getQualifiers(); 4464 } 4465 4466 TypeSourceInfo *NewTInfo = SemaRef.SubstFunctionDeclType( 4467 OldTInfo, TemplateArgs, D->getTypeSpecStartLoc(), D->getDeclName(), 4468 ThisContext, ThisTypeQuals, EvaluateConstraints); 4469 if (!NewTInfo) 4470 return nullptr; 4471 4472 TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens(); 4473 if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) { 4474 if (NewTInfo != OldTInfo) { 4475 // Get parameters from the new type info. 4476 TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens(); 4477 FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>(); 4478 unsigned NewIdx = 0; 4479 for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams(); 4480 OldIdx != NumOldParams; ++OldIdx) { 4481 ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx); 4482 if (!OldParam) 4483 return nullptr; 4484 4485 LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope; 4486 4487 std::optional<unsigned> NumArgumentsInExpansion; 4488 if (OldParam->isParameterPack()) 4489 NumArgumentsInExpansion = 4490 SemaRef.getNumArgumentsInExpansion(OldParam->getType(), 4491 TemplateArgs); 4492 if (!NumArgumentsInExpansion) { 4493 // Simple case: normal parameter, or a parameter pack that's 4494 // instantiated to a (still-dependent) parameter pack. 4495 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); 4496 Params.push_back(NewParam); 4497 Scope->InstantiatedLocal(OldParam, NewParam); 4498 } else { 4499 // Parameter pack expansion: make the instantiation an argument pack. 4500 Scope->MakeInstantiatedLocalArgPack(OldParam); 4501 for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) { 4502 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); 4503 Params.push_back(NewParam); 4504 Scope->InstantiatedLocalPackArg(OldParam, NewParam); 4505 } 4506 } 4507 } 4508 } else { 4509 // The function type itself was not dependent and therefore no 4510 // substitution occurred. However, we still need to instantiate 4511 // the function parameters themselves. 4512 const FunctionProtoType *OldProto = 4513 cast<FunctionProtoType>(OldProtoLoc.getType()); 4514 for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end; 4515 ++i) { 4516 ParmVarDecl *OldParam = OldProtoLoc.getParam(i); 4517 if (!OldParam) { 4518 Params.push_back(SemaRef.BuildParmVarDeclForTypedef( 4519 D, D->getLocation(), OldProto->getParamType(i))); 4520 continue; 4521 } 4522 4523 ParmVarDecl *Parm = 4524 cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam)); 4525 if (!Parm) 4526 return nullptr; 4527 Params.push_back(Parm); 4528 } 4529 } 4530 } else { 4531 // If the type of this function, after ignoring parentheses, is not 4532 // *directly* a function type, then we're instantiating a function that 4533 // was declared via a typedef or with attributes, e.g., 4534 // 4535 // typedef int functype(int, int); 4536 // functype func; 4537 // int __cdecl meth(int, int); 4538 // 4539 // In this case, we'll just go instantiate the ParmVarDecls that we 4540 // synthesized in the method declaration. 4541 SmallVector<QualType, 4> ParamTypes; 4542 Sema::ExtParameterInfoBuilder ExtParamInfos; 4543 if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr, 4544 TemplateArgs, ParamTypes, &Params, 4545 ExtParamInfos)) 4546 return nullptr; 4547 } 4548 4549 return NewTInfo; 4550 } 4551 4552 void Sema::addInstantiatedLocalVarsToScope(FunctionDecl *Function, 4553 const FunctionDecl *PatternDecl, 4554 LocalInstantiationScope &Scope) { 4555 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(getFunctionScopes().back()); 4556 4557 for (auto *decl : PatternDecl->decls()) { 4558 if (!isa<VarDecl>(decl) || isa<ParmVarDecl>(decl)) 4559 continue; 4560 4561 VarDecl *VD = cast<VarDecl>(decl); 4562 IdentifierInfo *II = VD->getIdentifier(); 4563 4564 auto it = llvm::find_if(Function->decls(), [&](Decl *inst) { 4565 VarDecl *InstVD = dyn_cast<VarDecl>(inst); 4566 return InstVD && InstVD->isLocalVarDecl() && 4567 InstVD->getIdentifier() == II; 4568 }); 4569 4570 if (it == Function->decls().end()) 4571 continue; 4572 4573 Scope.InstantiatedLocal(VD, *it); 4574 LSI->addCapture(cast<VarDecl>(*it), /*isBlock=*/false, /*isByref=*/false, 4575 /*isNested=*/false, VD->getLocation(), SourceLocation(), 4576 VD->getType(), /*Invalid=*/false); 4577 } 4578 } 4579 4580 bool Sema::addInstantiatedParametersToScope( 4581 FunctionDecl *Function, const FunctionDecl *PatternDecl, 4582 LocalInstantiationScope &Scope, 4583 const MultiLevelTemplateArgumentList &TemplateArgs) { 4584 unsigned FParamIdx = 0; 4585 for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) { 4586 const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I); 4587 if (!PatternParam->isParameterPack()) { 4588 // Simple case: not a parameter pack. 4589 assert(FParamIdx < Function->getNumParams()); 4590 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); 4591 FunctionParam->setDeclName(PatternParam->getDeclName()); 4592 // If the parameter's type is not dependent, update it to match the type 4593 // in the pattern. They can differ in top-level cv-qualifiers, and we want 4594 // the pattern's type here. If the type is dependent, they can't differ, 4595 // per core issue 1668. Substitute into the type from the pattern, in case 4596 // it's instantiation-dependent. 4597 // FIXME: Updating the type to work around this is at best fragile. 4598 if (!PatternDecl->getType()->isDependentType()) { 4599 QualType T = SubstType(PatternParam->getType(), TemplateArgs, 4600 FunctionParam->getLocation(), 4601 FunctionParam->getDeclName()); 4602 if (T.isNull()) 4603 return true; 4604 FunctionParam->setType(T); 4605 } 4606 4607 Scope.InstantiatedLocal(PatternParam, FunctionParam); 4608 ++FParamIdx; 4609 continue; 4610 } 4611 4612 // Expand the parameter pack. 4613 Scope.MakeInstantiatedLocalArgPack(PatternParam); 4614 std::optional<unsigned> NumArgumentsInExpansion = 4615 getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs); 4616 if (NumArgumentsInExpansion) { 4617 QualType PatternType = 4618 PatternParam->getType()->castAs<PackExpansionType>()->getPattern(); 4619 for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) { 4620 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); 4621 FunctionParam->setDeclName(PatternParam->getDeclName()); 4622 if (!PatternDecl->getType()->isDependentType()) { 4623 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, Arg); 4624 QualType T = 4625 SubstType(PatternType, TemplateArgs, FunctionParam->getLocation(), 4626 FunctionParam->getDeclName()); 4627 if (T.isNull()) 4628 return true; 4629 FunctionParam->setType(T); 4630 } 4631 4632 Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam); 4633 ++FParamIdx; 4634 } 4635 } 4636 } 4637 4638 return false; 4639 } 4640 4641 bool Sema::InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD, 4642 ParmVarDecl *Param) { 4643 assert(Param->hasUninstantiatedDefaultArg()); 4644 4645 // Instantiate the expression. 4646 // 4647 // FIXME: Pass in a correct Pattern argument, otherwise 4648 // getTemplateInstantiationArgs uses the lexical context of FD, e.g. 4649 // 4650 // template<typename T> 4651 // struct A { 4652 // static int FooImpl(); 4653 // 4654 // template<typename Tp> 4655 // // bug: default argument A<T>::FooImpl() is evaluated with 2-level 4656 // // template argument list [[T], [Tp]], should be [[Tp]]. 4657 // friend A<Tp> Foo(int a); 4658 // }; 4659 // 4660 // template<typename T> 4661 // A<T> Foo(int a = A<T>::FooImpl()); 4662 MultiLevelTemplateArgumentList TemplateArgs = 4663 getTemplateInstantiationArgs(FD, FD->getLexicalDeclContext(), 4664 /*Final=*/false, /*Innermost=*/std::nullopt, 4665 /*RelativeToPrimary=*/true); 4666 4667 if (SubstDefaultArgument(CallLoc, Param, TemplateArgs, /*ForCallExpr*/ true)) 4668 return true; 4669 4670 if (ASTMutationListener *L = getASTMutationListener()) 4671 L->DefaultArgumentInstantiated(Param); 4672 4673 return false; 4674 } 4675 4676 void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation, 4677 FunctionDecl *Decl) { 4678 const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>(); 4679 if (Proto->getExceptionSpecType() != EST_Uninstantiated) 4680 return; 4681 4682 InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl, 4683 InstantiatingTemplate::ExceptionSpecification()); 4684 if (Inst.isInvalid()) { 4685 // We hit the instantiation depth limit. Clear the exception specification 4686 // so that our callers don't have to cope with EST_Uninstantiated. 4687 UpdateExceptionSpec(Decl, EST_None); 4688 return; 4689 } 4690 if (Inst.isAlreadyInstantiating()) { 4691 // This exception specification indirectly depends on itself. Reject. 4692 // FIXME: Corresponding rule in the standard? 4693 Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl; 4694 UpdateExceptionSpec(Decl, EST_None); 4695 return; 4696 } 4697 4698 // Enter the scope of this instantiation. We don't use 4699 // PushDeclContext because we don't have a scope. 4700 Sema::ContextRAII savedContext(*this, Decl); 4701 LocalInstantiationScope Scope(*this); 4702 4703 MultiLevelTemplateArgumentList TemplateArgs = 4704 getTemplateInstantiationArgs(Decl, Decl->getLexicalDeclContext(), 4705 /*Final=*/false, /*Innermost=*/std::nullopt, 4706 /*RelativeToPrimary*/ true); 4707 4708 // FIXME: We can't use getTemplateInstantiationPattern(false) in general 4709 // here, because for a non-defining friend declaration in a class template, 4710 // we don't store enough information to map back to the friend declaration in 4711 // the template. 4712 FunctionDecl *Template = Proto->getExceptionSpecTemplate(); 4713 if (addInstantiatedParametersToScope(Decl, Template, Scope, TemplateArgs)) { 4714 UpdateExceptionSpec(Decl, EST_None); 4715 return; 4716 } 4717 4718 // The noexcept specification could reference any lambda captures. Ensure 4719 // those are added to the LocalInstantiationScope. 4720 LambdaScopeForCallOperatorInstantiationRAII PushLambdaCaptures( 4721 *this, Decl, TemplateArgs, Scope, 4722 /*ShouldAddDeclsFromParentScope=*/false); 4723 4724 SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(), 4725 TemplateArgs); 4726 } 4727 4728 /// Initializes the common fields of an instantiation function 4729 /// declaration (New) from the corresponding fields of its template (Tmpl). 4730 /// 4731 /// \returns true if there was an error 4732 bool 4733 TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New, 4734 FunctionDecl *Tmpl) { 4735 New->setImplicit(Tmpl->isImplicit()); 4736 4737 // Forward the mangling number from the template to the instantiated decl. 4738 SemaRef.Context.setManglingNumber(New, 4739 SemaRef.Context.getManglingNumber(Tmpl)); 4740 4741 // If we are performing substituting explicitly-specified template arguments 4742 // or deduced template arguments into a function template and we reach this 4743 // point, we are now past the point where SFINAE applies and have committed 4744 // to keeping the new function template specialization. We therefore 4745 // convert the active template instantiation for the function template 4746 // into a template instantiation for this specific function template 4747 // specialization, which is not a SFINAE context, so that we diagnose any 4748 // further errors in the declaration itself. 4749 // 4750 // FIXME: This is a hack. 4751 typedef Sema::CodeSynthesisContext ActiveInstType; 4752 ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back(); 4753 if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution || 4754 ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) { 4755 if (isa<FunctionTemplateDecl>(ActiveInst.Entity)) { 4756 SemaRef.InstantiatingSpecializations.erase( 4757 {ActiveInst.Entity->getCanonicalDecl(), ActiveInst.Kind}); 4758 atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); 4759 ActiveInst.Kind = ActiveInstType::TemplateInstantiation; 4760 ActiveInst.Entity = New; 4761 atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); 4762 } 4763 } 4764 4765 const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>(); 4766 assert(Proto && "Function template without prototype?"); 4767 4768 if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) { 4769 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 4770 4771 // DR1330: In C++11, defer instantiation of a non-trivial 4772 // exception specification. 4773 // DR1484: Local classes and their members are instantiated along with the 4774 // containing function. 4775 if (SemaRef.getLangOpts().CPlusPlus11 && 4776 EPI.ExceptionSpec.Type != EST_None && 4777 EPI.ExceptionSpec.Type != EST_DynamicNone && 4778 EPI.ExceptionSpec.Type != EST_BasicNoexcept && 4779 !Tmpl->isInLocalScopeForInstantiation()) { 4780 FunctionDecl *ExceptionSpecTemplate = Tmpl; 4781 if (EPI.ExceptionSpec.Type == EST_Uninstantiated) 4782 ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate; 4783 ExceptionSpecificationType NewEST = EST_Uninstantiated; 4784 if (EPI.ExceptionSpec.Type == EST_Unevaluated) 4785 NewEST = EST_Unevaluated; 4786 4787 // Mark the function has having an uninstantiated exception specification. 4788 const FunctionProtoType *NewProto 4789 = New->getType()->getAs<FunctionProtoType>(); 4790 assert(NewProto && "Template instantiation without function prototype?"); 4791 EPI = NewProto->getExtProtoInfo(); 4792 EPI.ExceptionSpec.Type = NewEST; 4793 EPI.ExceptionSpec.SourceDecl = New; 4794 EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate; 4795 New->setType(SemaRef.Context.getFunctionType( 4796 NewProto->getReturnType(), NewProto->getParamTypes(), EPI)); 4797 } else { 4798 Sema::ContextRAII SwitchContext(SemaRef, New); 4799 SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs); 4800 } 4801 } 4802 4803 // Get the definition. Leaves the variable unchanged if undefined. 4804 const FunctionDecl *Definition = Tmpl; 4805 Tmpl->isDefined(Definition); 4806 4807 SemaRef.InstantiateAttrs(TemplateArgs, Definition, New, 4808 LateAttrs, StartingScope); 4809 4810 return false; 4811 } 4812 4813 /// Initializes common fields of an instantiated method 4814 /// declaration (New) from the corresponding fields of its template 4815 /// (Tmpl). 4816 /// 4817 /// \returns true if there was an error 4818 bool 4819 TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New, 4820 CXXMethodDecl *Tmpl) { 4821 if (InitFunctionInstantiation(New, Tmpl)) 4822 return true; 4823 4824 if (isa<CXXDestructorDecl>(New) && SemaRef.getLangOpts().CPlusPlus11) 4825 SemaRef.AdjustDestructorExceptionSpec(cast<CXXDestructorDecl>(New)); 4826 4827 New->setAccess(Tmpl->getAccess()); 4828 if (Tmpl->isVirtualAsWritten()) 4829 New->setVirtualAsWritten(true); 4830 4831 // FIXME: New needs a pointer to Tmpl 4832 return false; 4833 } 4834 4835 bool TemplateDeclInstantiator::SubstDefaultedFunction(FunctionDecl *New, 4836 FunctionDecl *Tmpl) { 4837 // Transfer across any unqualified lookups. 4838 if (auto *DFI = Tmpl->getDefalutedOrDeletedInfo()) { 4839 SmallVector<DeclAccessPair, 32> Lookups; 4840 Lookups.reserve(DFI->getUnqualifiedLookups().size()); 4841 bool AnyChanged = false; 4842 for (DeclAccessPair DA : DFI->getUnqualifiedLookups()) { 4843 NamedDecl *D = SemaRef.FindInstantiatedDecl(New->getLocation(), 4844 DA.getDecl(), TemplateArgs); 4845 if (!D) 4846 return true; 4847 AnyChanged |= (D != DA.getDecl()); 4848 Lookups.push_back(DeclAccessPair::make(D, DA.getAccess())); 4849 } 4850 4851 // It's unlikely that substitution will change any declarations. Don't 4852 // store an unnecessary copy in that case. 4853 New->setDefaultedOrDeletedInfo( 4854 AnyChanged ? FunctionDecl::DefaultedOrDeletedFunctionInfo::Create( 4855 SemaRef.Context, Lookups) 4856 : DFI); 4857 } 4858 4859 SemaRef.SetDeclDefaulted(New, Tmpl->getLocation()); 4860 return false; 4861 } 4862 4863 FunctionDecl *Sema::InstantiateFunctionDeclaration( 4864 FunctionTemplateDecl *FTD, const TemplateArgumentList *Args, 4865 SourceLocation Loc, CodeSynthesisContext::SynthesisKind CSC) { 4866 FunctionDecl *FD = FTD->getTemplatedDecl(); 4867 4868 sema::TemplateDeductionInfo Info(Loc); 4869 InstantiatingTemplate Inst(*this, Loc, FTD, Args->asArray(), CSC, Info); 4870 if (Inst.isInvalid()) 4871 return nullptr; 4872 4873 ContextRAII SavedContext(*this, FD); 4874 MultiLevelTemplateArgumentList MArgs(FTD, Args->asArray(), 4875 /*Final=*/false); 4876 4877 return cast_or_null<FunctionDecl>(SubstDecl(FD, FD->getParent(), MArgs)); 4878 } 4879 4880 void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, 4881 FunctionDecl *Function, 4882 bool Recursive, 4883 bool DefinitionRequired, 4884 bool AtEndOfTU) { 4885 if (Function->isInvalidDecl() || isa<CXXDeductionGuideDecl>(Function)) 4886 return; 4887 4888 // Never instantiate an explicit specialization except if it is a class scope 4889 // explicit specialization. 4890 TemplateSpecializationKind TSK = 4891 Function->getTemplateSpecializationKindForInstantiation(); 4892 if (TSK == TSK_ExplicitSpecialization) 4893 return; 4894 4895 // Never implicitly instantiate a builtin; we don't actually need a function 4896 // body. 4897 if (Function->getBuiltinID() && TSK == TSK_ImplicitInstantiation && 4898 !DefinitionRequired) 4899 return; 4900 4901 // Don't instantiate a definition if we already have one. 4902 const FunctionDecl *ExistingDefn = nullptr; 4903 if (Function->isDefined(ExistingDefn, 4904 /*CheckForPendingFriendDefinition=*/true)) { 4905 if (ExistingDefn->isThisDeclarationADefinition()) 4906 return; 4907 4908 // If we're asked to instantiate a function whose body comes from an 4909 // instantiated friend declaration, attach the instantiated body to the 4910 // corresponding declaration of the function. 4911 assert(ExistingDefn->isThisDeclarationInstantiatedFromAFriendDefinition()); 4912 Function = const_cast<FunctionDecl*>(ExistingDefn); 4913 } 4914 4915 // Find the function body that we'll be substituting. 4916 const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern(); 4917 assert(PatternDecl && "instantiating a non-template"); 4918 4919 const FunctionDecl *PatternDef = PatternDecl->getDefinition(); 4920 Stmt *Pattern = nullptr; 4921 if (PatternDef) { 4922 Pattern = PatternDef->getBody(PatternDef); 4923 PatternDecl = PatternDef; 4924 if (PatternDef->willHaveBody()) 4925 PatternDef = nullptr; 4926 } 4927 4928 // FIXME: We need to track the instantiation stack in order to know which 4929 // definitions should be visible within this instantiation. 4930 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function, 4931 Function->getInstantiatedFromMemberFunction(), 4932 PatternDecl, PatternDef, TSK, 4933 /*Complain*/DefinitionRequired)) { 4934 if (DefinitionRequired) 4935 Function->setInvalidDecl(); 4936 else if (TSK == TSK_ExplicitInstantiationDefinition || 4937 (Function->isConstexpr() && !Recursive)) { 4938 // Try again at the end of the translation unit (at which point a 4939 // definition will be required). 4940 assert(!Recursive); 4941 Function->setInstantiationIsPending(true); 4942 PendingInstantiations.push_back( 4943 std::make_pair(Function, PointOfInstantiation)); 4944 } else if (TSK == TSK_ImplicitInstantiation) { 4945 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && 4946 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) { 4947 Diag(PointOfInstantiation, diag::warn_func_template_missing) 4948 << Function; 4949 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); 4950 if (getLangOpts().CPlusPlus11) 4951 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) 4952 << Function; 4953 } 4954 } 4955 4956 return; 4957 } 4958 4959 // Postpone late parsed template instantiations. 4960 if (PatternDecl->isLateTemplateParsed() && 4961 !LateTemplateParser) { 4962 Function->setInstantiationIsPending(true); 4963 LateParsedInstantiations.push_back( 4964 std::make_pair(Function, PointOfInstantiation)); 4965 return; 4966 } 4967 4968 llvm::TimeTraceScope TimeScope("InstantiateFunction", [&]() { 4969 llvm::TimeTraceMetadata M; 4970 llvm::raw_string_ostream OS(M.Detail); 4971 Function->getNameForDiagnostic(OS, getPrintingPolicy(), 4972 /*Qualified=*/true); 4973 if (llvm::isTimeTraceVerbose()) { 4974 auto Loc = SourceMgr.getExpansionLoc(Function->getLocation()); 4975 M.File = SourceMgr.getFilename(Loc); 4976 M.Line = SourceMgr.getExpansionLineNumber(Loc); 4977 } 4978 return M; 4979 }); 4980 4981 // If we're performing recursive template instantiation, create our own 4982 // queue of pending implicit instantiations that we will instantiate later, 4983 // while we're still within our own instantiation context. 4984 // This has to happen before LateTemplateParser below is called, so that 4985 // it marks vtables used in late parsed templates as used. 4986 GlobalEagerInstantiationScope GlobalInstantiations(*this, 4987 /*Enabled=*/Recursive); 4988 LocalEagerInstantiationScope LocalInstantiations(*this); 4989 4990 // Call the LateTemplateParser callback if there is a need to late parse 4991 // a templated function definition. 4992 if (!Pattern && PatternDecl->isLateTemplateParsed() && 4993 LateTemplateParser) { 4994 // FIXME: Optimize to allow individual templates to be deserialized. 4995 if (PatternDecl->isFromASTFile()) 4996 ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap); 4997 4998 auto LPTIter = LateParsedTemplateMap.find(PatternDecl); 4999 assert(LPTIter != LateParsedTemplateMap.end() && 5000 "missing LateParsedTemplate"); 5001 LateTemplateParser(OpaqueParser, *LPTIter->second); 5002 Pattern = PatternDecl->getBody(PatternDecl); 5003 updateAttrsForLateParsedTemplate(PatternDecl, Function); 5004 } 5005 5006 // Note, we should never try to instantiate a deleted function template. 5007 assert((Pattern || PatternDecl->isDefaulted() || 5008 PatternDecl->hasSkippedBody()) && 5009 "unexpected kind of function template definition"); 5010 5011 // C++1y [temp.explicit]p10: 5012 // Except for inline functions, declarations with types deduced from their 5013 // initializer or return value, and class template specializations, other 5014 // explicit instantiation declarations have the effect of suppressing the 5015 // implicit instantiation of the entity to which they refer. 5016 if (TSK == TSK_ExplicitInstantiationDeclaration && 5017 !PatternDecl->isInlined() && 5018 !PatternDecl->getReturnType()->getContainedAutoType()) 5019 return; 5020 5021 if (PatternDecl->isInlined()) { 5022 // Function, and all later redeclarations of it (from imported modules, 5023 // for instance), are now implicitly inline. 5024 for (auto *D = Function->getMostRecentDecl(); /**/; 5025 D = D->getPreviousDecl()) { 5026 D->setImplicitlyInline(); 5027 if (D == Function) 5028 break; 5029 } 5030 } 5031 5032 InstantiatingTemplate Inst(*this, PointOfInstantiation, Function); 5033 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 5034 return; 5035 PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(), 5036 "instantiating function definition"); 5037 5038 // The instantiation is visible here, even if it was first declared in an 5039 // unimported module. 5040 Function->setVisibleDespiteOwningModule(); 5041 5042 // Copy the source locations from the pattern. 5043 Function->setLocation(PatternDecl->getLocation()); 5044 Function->setInnerLocStart(PatternDecl->getInnerLocStart()); 5045 Function->setRangeEnd(PatternDecl->getEndLoc()); 5046 Function->setDeclarationNameLoc(PatternDecl->getNameInfo().getInfo()); 5047 5048 EnterExpressionEvaluationContext EvalContext( 5049 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 5050 5051 Qualifiers ThisTypeQuals; 5052 CXXRecordDecl *ThisContext = nullptr; 5053 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 5054 ThisContext = Method->getParent(); 5055 ThisTypeQuals = Method->getMethodQualifiers(); 5056 } 5057 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals); 5058 5059 // Introduce a new scope where local variable instantiations will be 5060 // recorded, unless we're actually a member function within a local 5061 // class, in which case we need to merge our results with the parent 5062 // scope (of the enclosing function). The exception is instantiating 5063 // a function template specialization, since the template to be 5064 // instantiated already has references to locals properly substituted. 5065 bool MergeWithParentScope = false; 5066 if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext())) 5067 MergeWithParentScope = 5068 Rec->isLocalClass() && !Function->isFunctionTemplateSpecialization(); 5069 5070 LocalInstantiationScope Scope(*this, MergeWithParentScope); 5071 auto RebuildTypeSourceInfoForDefaultSpecialMembers = [&]() { 5072 // Special members might get their TypeSourceInfo set up w.r.t the 5073 // PatternDecl context, in which case parameters could still be pointing 5074 // back to the original class, make sure arguments are bound to the 5075 // instantiated record instead. 5076 assert(PatternDecl->isDefaulted() && 5077 "Special member needs to be defaulted"); 5078 auto PatternSM = getDefaultedFunctionKind(PatternDecl).asSpecialMember(); 5079 if (!(PatternSM == CXXSpecialMemberKind::CopyConstructor || 5080 PatternSM == CXXSpecialMemberKind::CopyAssignment || 5081 PatternSM == CXXSpecialMemberKind::MoveConstructor || 5082 PatternSM == CXXSpecialMemberKind::MoveAssignment)) 5083 return; 5084 5085 auto *NewRec = dyn_cast<CXXRecordDecl>(Function->getDeclContext()); 5086 const auto *PatternRec = 5087 dyn_cast<CXXRecordDecl>(PatternDecl->getDeclContext()); 5088 if (!NewRec || !PatternRec) 5089 return; 5090 if (!PatternRec->isLambda()) 5091 return; 5092 5093 struct SpecialMemberTypeInfoRebuilder 5094 : TreeTransform<SpecialMemberTypeInfoRebuilder> { 5095 using Base = TreeTransform<SpecialMemberTypeInfoRebuilder>; 5096 const CXXRecordDecl *OldDecl; 5097 CXXRecordDecl *NewDecl; 5098 5099 SpecialMemberTypeInfoRebuilder(Sema &SemaRef, const CXXRecordDecl *O, 5100 CXXRecordDecl *N) 5101 : TreeTransform(SemaRef), OldDecl(O), NewDecl(N) {} 5102 5103 bool TransformExceptionSpec(SourceLocation Loc, 5104 FunctionProtoType::ExceptionSpecInfo &ESI, 5105 SmallVectorImpl<QualType> &Exceptions, 5106 bool &Changed) { 5107 return false; 5108 } 5109 5110 QualType TransformRecordType(TypeLocBuilder &TLB, RecordTypeLoc TL) { 5111 const RecordType *T = TL.getTypePtr(); 5112 RecordDecl *Record = cast_or_null<RecordDecl>( 5113 getDerived().TransformDecl(TL.getNameLoc(), T->getDecl())); 5114 if (Record != OldDecl) 5115 return Base::TransformRecordType(TLB, TL); 5116 5117 QualType Result = getDerived().RebuildRecordType(NewDecl); 5118 if (Result.isNull()) 5119 return QualType(); 5120 5121 RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result); 5122 NewTL.setNameLoc(TL.getNameLoc()); 5123 return Result; 5124 } 5125 } IR{*this, PatternRec, NewRec}; 5126 5127 TypeSourceInfo *NewSI = IR.TransformType(Function->getTypeSourceInfo()); 5128 assert(NewSI && "Type Transform failed?"); 5129 Function->setType(NewSI->getType()); 5130 Function->setTypeSourceInfo(NewSI); 5131 5132 ParmVarDecl *Parm = Function->getParamDecl(0); 5133 TypeSourceInfo *NewParmSI = IR.TransformType(Parm->getTypeSourceInfo()); 5134 assert(NewParmSI && "Type transformation failed."); 5135 Parm->setType(NewParmSI->getType()); 5136 Parm->setTypeSourceInfo(NewParmSI); 5137 }; 5138 5139 if (PatternDecl->isDefaulted()) { 5140 RebuildTypeSourceInfoForDefaultSpecialMembers(); 5141 SetDeclDefaulted(Function, PatternDecl->getLocation()); 5142 } else { 5143 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs( 5144 Function, Function->getLexicalDeclContext(), /*Final=*/false, 5145 /*Innermost=*/std::nullopt, false, PatternDecl); 5146 5147 // Substitute into the qualifier; we can get a substitution failure here 5148 // through evil use of alias templates. 5149 // FIXME: Is CurContext correct for this? Should we go to the (instantiation 5150 // of the) lexical context of the pattern? 5151 SubstQualifier(*this, PatternDecl, Function, TemplateArgs); 5152 5153 ActOnStartOfFunctionDef(nullptr, Function); 5154 5155 // Enter the scope of this instantiation. We don't use 5156 // PushDeclContext because we don't have a scope. 5157 Sema::ContextRAII savedContext(*this, Function); 5158 5159 FPFeaturesStateRAII SavedFPFeatures(*this); 5160 CurFPFeatures = FPOptions(getLangOpts()); 5161 FpPragmaStack.CurrentValue = FPOptionsOverride(); 5162 5163 if (addInstantiatedParametersToScope(Function, PatternDecl, Scope, 5164 TemplateArgs)) 5165 return; 5166 5167 StmtResult Body; 5168 if (PatternDecl->hasSkippedBody()) { 5169 ActOnSkippedFunctionBody(Function); 5170 Body = nullptr; 5171 } else { 5172 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Function)) { 5173 // If this is a constructor, instantiate the member initializers. 5174 InstantiateMemInitializers(Ctor, cast<CXXConstructorDecl>(PatternDecl), 5175 TemplateArgs); 5176 5177 // If this is an MS ABI dllexport default constructor, instantiate any 5178 // default arguments. 5179 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 5180 Ctor->isDefaultConstructor()) { 5181 InstantiateDefaultCtorDefaultArgs(Ctor); 5182 } 5183 } 5184 5185 // Instantiate the function body. 5186 Body = SubstStmt(Pattern, TemplateArgs); 5187 5188 if (Body.isInvalid()) 5189 Function->setInvalidDecl(); 5190 } 5191 // FIXME: finishing the function body while in an expression evaluation 5192 // context seems wrong. Investigate more. 5193 ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true); 5194 5195 PerformDependentDiagnostics(PatternDecl, TemplateArgs); 5196 5197 if (auto *Listener = getASTMutationListener()) 5198 Listener->FunctionDefinitionInstantiated(Function); 5199 5200 savedContext.pop(); 5201 } 5202 5203 DeclGroupRef DG(Function); 5204 Consumer.HandleTopLevelDecl(DG); 5205 5206 // This class may have local implicit instantiations that need to be 5207 // instantiation within this scope. 5208 LocalInstantiations.perform(); 5209 Scope.Exit(); 5210 GlobalInstantiations.perform(); 5211 } 5212 5213 VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation( 5214 VarTemplateDecl *VarTemplate, VarDecl *FromVar, 5215 const TemplateArgumentList *PartialSpecArgs, 5216 const TemplateArgumentListInfo &TemplateArgsInfo, 5217 SmallVectorImpl<TemplateArgument> &Converted, 5218 SourceLocation PointOfInstantiation, LateInstantiatedAttrVec *LateAttrs, 5219 LocalInstantiationScope *StartingScope) { 5220 if (FromVar->isInvalidDecl()) 5221 return nullptr; 5222 5223 InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar); 5224 if (Inst.isInvalid()) 5225 return nullptr; 5226 5227 // Instantiate the first declaration of the variable template: for a partial 5228 // specialization of a static data member template, the first declaration may 5229 // or may not be the declaration in the class; if it's in the class, we want 5230 // to instantiate a member in the class (a declaration), and if it's outside, 5231 // we want to instantiate a definition. 5232 // 5233 // If we're instantiating an explicitly-specialized member template or member 5234 // partial specialization, don't do this. The member specialization completely 5235 // replaces the original declaration in this case. 5236 bool IsMemberSpec = false; 5237 MultiLevelTemplateArgumentList MultiLevelList; 5238 if (auto *PartialSpec = 5239 dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar)) { 5240 assert(PartialSpecArgs); 5241 IsMemberSpec = PartialSpec->isMemberSpecialization(); 5242 MultiLevelList.addOuterTemplateArguments( 5243 PartialSpec, PartialSpecArgs->asArray(), /*Final=*/false); 5244 } else { 5245 assert(VarTemplate == FromVar->getDescribedVarTemplate()); 5246 IsMemberSpec = VarTemplate->isMemberSpecialization(); 5247 MultiLevelList.addOuterTemplateArguments(VarTemplate, Converted, 5248 /*Final=*/false); 5249 } 5250 if (!IsMemberSpec) 5251 FromVar = FromVar->getFirstDecl(); 5252 5253 TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(), 5254 MultiLevelList); 5255 5256 // TODO: Set LateAttrs and StartingScope ... 5257 5258 return cast_or_null<VarTemplateSpecializationDecl>( 5259 Instantiator.VisitVarTemplateSpecializationDecl( 5260 VarTemplate, FromVar, TemplateArgsInfo, Converted)); 5261 } 5262 5263 VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl( 5264 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl, 5265 const MultiLevelTemplateArgumentList &TemplateArgs) { 5266 assert(PatternDecl->isThisDeclarationADefinition() && 5267 "don't have a definition to instantiate from"); 5268 5269 // Do substitution on the type of the declaration 5270 TypeSourceInfo *DI = 5271 SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs, 5272 PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName()); 5273 if (!DI) 5274 return nullptr; 5275 5276 // Update the type of this variable template specialization. 5277 VarSpec->setType(DI->getType()); 5278 5279 // Convert the declaration into a definition now. 5280 VarSpec->setCompleteDefinition(); 5281 5282 // Instantiate the initializer. 5283 InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs); 5284 5285 if (getLangOpts().OpenCL) 5286 deduceOpenCLAddressSpace(VarSpec); 5287 5288 return VarSpec; 5289 } 5290 5291 void Sema::BuildVariableInstantiation( 5292 VarDecl *NewVar, VarDecl *OldVar, 5293 const MultiLevelTemplateArgumentList &TemplateArgs, 5294 LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner, 5295 LocalInstantiationScope *StartingScope, 5296 bool InstantiatingVarTemplate, 5297 VarTemplateSpecializationDecl *PrevDeclForVarTemplateSpecialization) { 5298 // Instantiating a partial specialization to produce a partial 5299 // specialization. 5300 bool InstantiatingVarTemplatePartialSpec = 5301 isa<VarTemplatePartialSpecializationDecl>(OldVar) && 5302 isa<VarTemplatePartialSpecializationDecl>(NewVar); 5303 // Instantiating from a variable template (or partial specialization) to 5304 // produce a variable template specialization. 5305 bool InstantiatingSpecFromTemplate = 5306 isa<VarTemplateSpecializationDecl>(NewVar) && 5307 (OldVar->getDescribedVarTemplate() || 5308 isa<VarTemplatePartialSpecializationDecl>(OldVar)); 5309 5310 // If we are instantiating a local extern declaration, the 5311 // instantiation belongs lexically to the containing function. 5312 // If we are instantiating a static data member defined 5313 // out-of-line, the instantiation will have the same lexical 5314 // context (which will be a namespace scope) as the template. 5315 if (OldVar->isLocalExternDecl()) { 5316 NewVar->setLocalExternDecl(); 5317 NewVar->setLexicalDeclContext(Owner); 5318 } else if (OldVar->isOutOfLine()) 5319 NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext()); 5320 NewVar->setTSCSpec(OldVar->getTSCSpec()); 5321 NewVar->setInitStyle(OldVar->getInitStyle()); 5322 NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl()); 5323 NewVar->setObjCForDecl(OldVar->isObjCForDecl()); 5324 NewVar->setConstexpr(OldVar->isConstexpr()); 5325 NewVar->setInitCapture(OldVar->isInitCapture()); 5326 NewVar->setPreviousDeclInSameBlockScope( 5327 OldVar->isPreviousDeclInSameBlockScope()); 5328 NewVar->setAccess(OldVar->getAccess()); 5329 5330 if (!OldVar->isStaticDataMember()) { 5331 if (OldVar->isUsed(false)) 5332 NewVar->setIsUsed(); 5333 NewVar->setReferenced(OldVar->isReferenced()); 5334 } 5335 5336 InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope); 5337 5338 LookupResult Previous( 5339 *this, NewVar->getDeclName(), NewVar->getLocation(), 5340 NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage 5341 : Sema::LookupOrdinaryName, 5342 NewVar->isLocalExternDecl() ? RedeclarationKind::ForExternalRedeclaration 5343 : forRedeclarationInCurContext()); 5344 5345 if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() && 5346 (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() || 5347 OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) { 5348 // We have a previous declaration. Use that one, so we merge with the 5349 // right type. 5350 if (NamedDecl *NewPrev = FindInstantiatedDecl( 5351 NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs)) 5352 Previous.addDecl(NewPrev); 5353 } else if (!isa<VarTemplateSpecializationDecl>(NewVar) && 5354 OldVar->hasLinkage()) { 5355 LookupQualifiedName(Previous, NewVar->getDeclContext(), false); 5356 } else if (PrevDeclForVarTemplateSpecialization) { 5357 Previous.addDecl(PrevDeclForVarTemplateSpecialization); 5358 } 5359 CheckVariableDeclaration(NewVar, Previous); 5360 5361 if (!InstantiatingVarTemplate) { 5362 NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar); 5363 if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl()) 5364 NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar); 5365 } 5366 5367 if (!OldVar->isOutOfLine()) { 5368 if (NewVar->getDeclContext()->isFunctionOrMethod()) 5369 CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar); 5370 } 5371 5372 // Link instantiations of static data members back to the template from 5373 // which they were instantiated. 5374 // 5375 // Don't do this when instantiating a template (we link the template itself 5376 // back in that case) nor when instantiating a static data member template 5377 // (that's not a member specialization). 5378 if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate && 5379 !InstantiatingSpecFromTemplate) 5380 NewVar->setInstantiationOfStaticDataMember(OldVar, 5381 TSK_ImplicitInstantiation); 5382 5383 // If the pattern is an (in-class) explicit specialization, then the result 5384 // is also an explicit specialization. 5385 if (VarTemplateSpecializationDecl *OldVTSD = 5386 dyn_cast<VarTemplateSpecializationDecl>(OldVar)) { 5387 if (OldVTSD->getSpecializationKind() == TSK_ExplicitSpecialization && 5388 !isa<VarTemplatePartialSpecializationDecl>(OldVTSD)) 5389 cast<VarTemplateSpecializationDecl>(NewVar)->setSpecializationKind( 5390 TSK_ExplicitSpecialization); 5391 } 5392 5393 // Forward the mangling number from the template to the instantiated decl. 5394 Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar)); 5395 Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar)); 5396 5397 // Figure out whether to eagerly instantiate the initializer. 5398 if (InstantiatingVarTemplate || InstantiatingVarTemplatePartialSpec) { 5399 // We're producing a template. Don't instantiate the initializer yet. 5400 } else if (NewVar->getType()->isUndeducedType()) { 5401 // We need the type to complete the declaration of the variable. 5402 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); 5403 } else if (InstantiatingSpecFromTemplate || 5404 (OldVar->isInline() && OldVar->isThisDeclarationADefinition() && 5405 !NewVar->isThisDeclarationADefinition())) { 5406 // Delay instantiation of the initializer for variable template 5407 // specializations or inline static data members until a definition of the 5408 // variable is needed. 5409 } else { 5410 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); 5411 } 5412 5413 // Diagnose unused local variables with dependent types, where the diagnostic 5414 // will have been deferred. 5415 if (!NewVar->isInvalidDecl() && 5416 NewVar->getDeclContext()->isFunctionOrMethod() && 5417 OldVar->getType()->isDependentType()) 5418 DiagnoseUnusedDecl(NewVar); 5419 } 5420 5421 void Sema::InstantiateVariableInitializer( 5422 VarDecl *Var, VarDecl *OldVar, 5423 const MultiLevelTemplateArgumentList &TemplateArgs) { 5424 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 5425 L->VariableDefinitionInstantiated(Var); 5426 5427 // We propagate the 'inline' flag with the initializer, because it 5428 // would otherwise imply that the variable is a definition for a 5429 // non-static data member. 5430 if (OldVar->isInlineSpecified()) 5431 Var->setInlineSpecified(); 5432 else if (OldVar->isInline()) 5433 Var->setImplicitlyInline(); 5434 5435 if (OldVar->getInit()) { 5436 EnterExpressionEvaluationContext Evaluated( 5437 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var); 5438 5439 keepInLifetimeExtendingContext(); 5440 // Instantiate the initializer. 5441 ExprResult Init; 5442 5443 { 5444 ContextRAII SwitchContext(*this, Var->getDeclContext()); 5445 Init = SubstInitializer(OldVar->getInit(), TemplateArgs, 5446 OldVar->getInitStyle() == VarDecl::CallInit); 5447 } 5448 5449 if (!Init.isInvalid()) { 5450 Expr *InitExpr = Init.get(); 5451 5452 if (Var->hasAttr<DLLImportAttr>() && 5453 (!InitExpr || 5454 !InitExpr->isConstantInitializer(getASTContext(), false))) { 5455 // Do not dynamically initialize dllimport variables. 5456 } else if (InitExpr) { 5457 bool DirectInit = OldVar->isDirectInit(); 5458 AddInitializerToDecl(Var, InitExpr, DirectInit); 5459 } else 5460 ActOnUninitializedDecl(Var); 5461 } else { 5462 // FIXME: Not too happy about invalidating the declaration 5463 // because of a bogus initializer. 5464 Var->setInvalidDecl(); 5465 } 5466 } else { 5467 // `inline` variables are a definition and declaration all in one; we won't 5468 // pick up an initializer from anywhere else. 5469 if (Var->isStaticDataMember() && !Var->isInline()) { 5470 if (!Var->isOutOfLine()) 5471 return; 5472 5473 // If the declaration inside the class had an initializer, don't add 5474 // another one to the out-of-line definition. 5475 if (OldVar->getFirstDecl()->hasInit()) 5476 return; 5477 } 5478 5479 // We'll add an initializer to a for-range declaration later. 5480 if (Var->isCXXForRangeDecl() || Var->isObjCForDecl()) 5481 return; 5482 5483 ActOnUninitializedDecl(Var); 5484 } 5485 5486 if (getLangOpts().CUDA) 5487 CUDA().checkAllowedInitializer(Var); 5488 } 5489 5490 void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation, 5491 VarDecl *Var, bool Recursive, 5492 bool DefinitionRequired, bool AtEndOfTU) { 5493 if (Var->isInvalidDecl()) 5494 return; 5495 5496 // Never instantiate an explicitly-specialized entity. 5497 TemplateSpecializationKind TSK = 5498 Var->getTemplateSpecializationKindForInstantiation(); 5499 if (TSK == TSK_ExplicitSpecialization) 5500 return; 5501 5502 // Find the pattern and the arguments to substitute into it. 5503 VarDecl *PatternDecl = Var->getTemplateInstantiationPattern(); 5504 assert(PatternDecl && "no pattern for templated variable"); 5505 MultiLevelTemplateArgumentList TemplateArgs = 5506 getTemplateInstantiationArgs(Var); 5507 5508 VarTemplateSpecializationDecl *VarSpec = 5509 dyn_cast<VarTemplateSpecializationDecl>(Var); 5510 if (VarSpec) { 5511 // If this is a static data member template, there might be an 5512 // uninstantiated initializer on the declaration. If so, instantiate 5513 // it now. 5514 // 5515 // FIXME: This largely duplicates what we would do below. The difference 5516 // is that along this path we may instantiate an initializer from an 5517 // in-class declaration of the template and instantiate the definition 5518 // from a separate out-of-class definition. 5519 if (PatternDecl->isStaticDataMember() && 5520 (PatternDecl = PatternDecl->getFirstDecl())->hasInit() && 5521 !Var->hasInit()) { 5522 // FIXME: Factor out the duplicated instantiation context setup/tear down 5523 // code here. 5524 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); 5525 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 5526 return; 5527 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 5528 "instantiating variable initializer"); 5529 5530 // The instantiation is visible here, even if it was first declared in an 5531 // unimported module. 5532 Var->setVisibleDespiteOwningModule(); 5533 5534 // If we're performing recursive template instantiation, create our own 5535 // queue of pending implicit instantiations that we will instantiate 5536 // later, while we're still within our own instantiation context. 5537 GlobalEagerInstantiationScope GlobalInstantiations(*this, 5538 /*Enabled=*/Recursive); 5539 LocalInstantiationScope Local(*this); 5540 LocalEagerInstantiationScope LocalInstantiations(*this); 5541 5542 // Enter the scope of this instantiation. We don't use 5543 // PushDeclContext because we don't have a scope. 5544 ContextRAII PreviousContext(*this, Var->getDeclContext()); 5545 InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs); 5546 PreviousContext.pop(); 5547 5548 // This variable may have local implicit instantiations that need to be 5549 // instantiated within this scope. 5550 LocalInstantiations.perform(); 5551 Local.Exit(); 5552 GlobalInstantiations.perform(); 5553 } 5554 } else { 5555 assert(Var->isStaticDataMember() && PatternDecl->isStaticDataMember() && 5556 "not a static data member?"); 5557 } 5558 5559 VarDecl *Def = PatternDecl->getDefinition(getASTContext()); 5560 5561 // If we don't have a definition of the variable template, we won't perform 5562 // any instantiation. Rather, we rely on the user to instantiate this 5563 // definition (or provide a specialization for it) in another translation 5564 // unit. 5565 if (!Def && !DefinitionRequired) { 5566 if (TSK == TSK_ExplicitInstantiationDefinition) { 5567 PendingInstantiations.push_back( 5568 std::make_pair(Var, PointOfInstantiation)); 5569 } else if (TSK == TSK_ImplicitInstantiation) { 5570 // Warn about missing definition at the end of translation unit. 5571 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && 5572 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) { 5573 Diag(PointOfInstantiation, diag::warn_var_template_missing) 5574 << Var; 5575 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); 5576 if (getLangOpts().CPlusPlus11) 5577 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var; 5578 } 5579 return; 5580 } 5581 } 5582 5583 // FIXME: We need to track the instantiation stack in order to know which 5584 // definitions should be visible within this instantiation. 5585 // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember(). 5586 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var, 5587 /*InstantiatedFromMember*/false, 5588 PatternDecl, Def, TSK, 5589 /*Complain*/DefinitionRequired)) 5590 return; 5591 5592 // C++11 [temp.explicit]p10: 5593 // Except for inline functions, const variables of literal types, variables 5594 // of reference types, [...] explicit instantiation declarations 5595 // have the effect of suppressing the implicit instantiation of the entity 5596 // to which they refer. 5597 // 5598 // FIXME: That's not exactly the same as "might be usable in constant 5599 // expressions", which only allows constexpr variables and const integral 5600 // types, not arbitrary const literal types. 5601 if (TSK == TSK_ExplicitInstantiationDeclaration && 5602 !Var->mightBeUsableInConstantExpressions(getASTContext())) 5603 return; 5604 5605 // Make sure to pass the instantiated variable to the consumer at the end. 5606 struct PassToConsumerRAII { 5607 ASTConsumer &Consumer; 5608 VarDecl *Var; 5609 5610 PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var) 5611 : Consumer(Consumer), Var(Var) { } 5612 5613 ~PassToConsumerRAII() { 5614 Consumer.HandleCXXStaticMemberVarInstantiation(Var); 5615 } 5616 } PassToConsumerRAII(Consumer, Var); 5617 5618 // If we already have a definition, we're done. 5619 if (VarDecl *Def = Var->getDefinition()) { 5620 // We may be explicitly instantiating something we've already implicitly 5621 // instantiated. 5622 Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(), 5623 PointOfInstantiation); 5624 return; 5625 } 5626 5627 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); 5628 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 5629 return; 5630 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 5631 "instantiating variable definition"); 5632 5633 // If we're performing recursive template instantiation, create our own 5634 // queue of pending implicit instantiations that we will instantiate later, 5635 // while we're still within our own instantiation context. 5636 GlobalEagerInstantiationScope GlobalInstantiations(*this, 5637 /*Enabled=*/Recursive); 5638 5639 // Enter the scope of this instantiation. We don't use 5640 // PushDeclContext because we don't have a scope. 5641 ContextRAII PreviousContext(*this, Var->getDeclContext()); 5642 LocalInstantiationScope Local(*this); 5643 5644 LocalEagerInstantiationScope LocalInstantiations(*this); 5645 5646 VarDecl *OldVar = Var; 5647 if (Def->isStaticDataMember() && !Def->isOutOfLine()) { 5648 // We're instantiating an inline static data member whose definition was 5649 // provided inside the class. 5650 InstantiateVariableInitializer(Var, Def, TemplateArgs); 5651 } else if (!VarSpec) { 5652 Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(), 5653 TemplateArgs)); 5654 } else if (Var->isStaticDataMember() && 5655 Var->getLexicalDeclContext()->isRecord()) { 5656 // We need to instantiate the definition of a static data member template, 5657 // and all we have is the in-class declaration of it. Instantiate a separate 5658 // declaration of the definition. 5659 TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(), 5660 TemplateArgs); 5661 5662 TemplateArgumentListInfo TemplateArgInfo; 5663 if (const ASTTemplateArgumentListInfo *ArgInfo = 5664 VarSpec->getTemplateArgsAsWritten()) { 5665 TemplateArgInfo.setLAngleLoc(ArgInfo->getLAngleLoc()); 5666 TemplateArgInfo.setRAngleLoc(ArgInfo->getRAngleLoc()); 5667 for (const TemplateArgumentLoc &Arg : ArgInfo->arguments()) 5668 TemplateArgInfo.addArgument(Arg); 5669 } 5670 5671 Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl( 5672 VarSpec->getSpecializedTemplate(), Def, TemplateArgInfo, 5673 VarSpec->getTemplateArgs().asArray(), VarSpec)); 5674 if (Var) { 5675 llvm::PointerUnion<VarTemplateDecl *, 5676 VarTemplatePartialSpecializationDecl *> PatternPtr = 5677 VarSpec->getSpecializedTemplateOrPartial(); 5678 if (VarTemplatePartialSpecializationDecl *Partial = 5679 PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>()) 5680 cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf( 5681 Partial, &VarSpec->getTemplateInstantiationArgs()); 5682 5683 // Attach the initializer. 5684 InstantiateVariableInitializer(Var, Def, TemplateArgs); 5685 } 5686 } else 5687 // Complete the existing variable's definition with an appropriately 5688 // substituted type and initializer. 5689 Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs); 5690 5691 PreviousContext.pop(); 5692 5693 if (Var) { 5694 PassToConsumerRAII.Var = Var; 5695 Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(), 5696 OldVar->getPointOfInstantiation()); 5697 } 5698 5699 // This variable may have local implicit instantiations that need to be 5700 // instantiated within this scope. 5701 LocalInstantiations.perform(); 5702 Local.Exit(); 5703 GlobalInstantiations.perform(); 5704 } 5705 5706 void 5707 Sema::InstantiateMemInitializers(CXXConstructorDecl *New, 5708 const CXXConstructorDecl *Tmpl, 5709 const MultiLevelTemplateArgumentList &TemplateArgs) { 5710 5711 SmallVector<CXXCtorInitializer*, 4> NewInits; 5712 bool AnyErrors = Tmpl->isInvalidDecl(); 5713 5714 // Instantiate all the initializers. 5715 for (const auto *Init : Tmpl->inits()) { 5716 // Only instantiate written initializers, let Sema re-construct implicit 5717 // ones. 5718 if (!Init->isWritten()) 5719 continue; 5720 5721 SourceLocation EllipsisLoc; 5722 5723 if (Init->isPackExpansion()) { 5724 // This is a pack expansion. We should expand it now. 5725 TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc(); 5726 SmallVector<UnexpandedParameterPack, 4> Unexpanded; 5727 collectUnexpandedParameterPacks(BaseTL, Unexpanded); 5728 collectUnexpandedParameterPacks(Init->getInit(), Unexpanded); 5729 bool ShouldExpand = false; 5730 bool RetainExpansion = false; 5731 std::optional<unsigned> NumExpansions; 5732 if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(), 5733 BaseTL.getSourceRange(), 5734 Unexpanded, 5735 TemplateArgs, ShouldExpand, 5736 RetainExpansion, 5737 NumExpansions)) { 5738 AnyErrors = true; 5739 New->setInvalidDecl(); 5740 continue; 5741 } 5742 assert(ShouldExpand && "Partial instantiation of base initializer?"); 5743 5744 // Loop over all of the arguments in the argument pack(s), 5745 for (unsigned I = 0; I != *NumExpansions; ++I) { 5746 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I); 5747 5748 // Instantiate the initializer. 5749 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, 5750 /*CXXDirectInit=*/true); 5751 if (TempInit.isInvalid()) { 5752 AnyErrors = true; 5753 break; 5754 } 5755 5756 // Instantiate the base type. 5757 TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(), 5758 TemplateArgs, 5759 Init->getSourceLocation(), 5760 New->getDeclName()); 5761 if (!BaseTInfo) { 5762 AnyErrors = true; 5763 break; 5764 } 5765 5766 // Build the initializer. 5767 MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(), 5768 BaseTInfo, TempInit.get(), 5769 New->getParent(), 5770 SourceLocation()); 5771 if (NewInit.isInvalid()) { 5772 AnyErrors = true; 5773 break; 5774 } 5775 5776 NewInits.push_back(NewInit.get()); 5777 } 5778 5779 continue; 5780 } 5781 5782 // Instantiate the initializer. 5783 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, 5784 /*CXXDirectInit=*/true); 5785 if (TempInit.isInvalid()) { 5786 AnyErrors = true; 5787 continue; 5788 } 5789 5790 MemInitResult NewInit; 5791 if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) { 5792 TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(), 5793 TemplateArgs, 5794 Init->getSourceLocation(), 5795 New->getDeclName()); 5796 if (!TInfo) { 5797 AnyErrors = true; 5798 New->setInvalidDecl(); 5799 continue; 5800 } 5801 5802 if (Init->isBaseInitializer()) 5803 NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(), 5804 New->getParent(), EllipsisLoc); 5805 else 5806 NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(), 5807 cast<CXXRecordDecl>(CurContext->getParent())); 5808 } else if (Init->isMemberInitializer()) { 5809 FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl( 5810 Init->getMemberLocation(), 5811 Init->getMember(), 5812 TemplateArgs)); 5813 if (!Member) { 5814 AnyErrors = true; 5815 New->setInvalidDecl(); 5816 continue; 5817 } 5818 5819 NewInit = BuildMemberInitializer(Member, TempInit.get(), 5820 Init->getSourceLocation()); 5821 } else if (Init->isIndirectMemberInitializer()) { 5822 IndirectFieldDecl *IndirectMember = 5823 cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl( 5824 Init->getMemberLocation(), 5825 Init->getIndirectMember(), TemplateArgs)); 5826 5827 if (!IndirectMember) { 5828 AnyErrors = true; 5829 New->setInvalidDecl(); 5830 continue; 5831 } 5832 5833 NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(), 5834 Init->getSourceLocation()); 5835 } 5836 5837 if (NewInit.isInvalid()) { 5838 AnyErrors = true; 5839 New->setInvalidDecl(); 5840 } else { 5841 NewInits.push_back(NewInit.get()); 5842 } 5843 } 5844 5845 // Assign all the initializers to the new constructor. 5846 ActOnMemInitializers(New, 5847 /*FIXME: ColonLoc */ 5848 SourceLocation(), 5849 NewInits, 5850 AnyErrors); 5851 } 5852 5853 // TODO: this could be templated if the various decl types used the 5854 // same method name. 5855 static bool isInstantiationOf(ClassTemplateDecl *Pattern, 5856 ClassTemplateDecl *Instance) { 5857 Pattern = Pattern->getCanonicalDecl(); 5858 5859 do { 5860 Instance = Instance->getCanonicalDecl(); 5861 if (Pattern == Instance) return true; 5862 Instance = Instance->getInstantiatedFromMemberTemplate(); 5863 } while (Instance); 5864 5865 return false; 5866 } 5867 5868 static bool isInstantiationOf(FunctionTemplateDecl *Pattern, 5869 FunctionTemplateDecl *Instance) { 5870 Pattern = Pattern->getCanonicalDecl(); 5871 5872 do { 5873 Instance = Instance->getCanonicalDecl(); 5874 if (Pattern == Instance) return true; 5875 Instance = Instance->getInstantiatedFromMemberTemplate(); 5876 } while (Instance); 5877 5878 return false; 5879 } 5880 5881 static bool 5882 isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern, 5883 ClassTemplatePartialSpecializationDecl *Instance) { 5884 Pattern 5885 = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl()); 5886 do { 5887 Instance = cast<ClassTemplatePartialSpecializationDecl>( 5888 Instance->getCanonicalDecl()); 5889 if (Pattern == Instance) 5890 return true; 5891 Instance = Instance->getInstantiatedFromMember(); 5892 } while (Instance); 5893 5894 return false; 5895 } 5896 5897 static bool isInstantiationOf(CXXRecordDecl *Pattern, 5898 CXXRecordDecl *Instance) { 5899 Pattern = Pattern->getCanonicalDecl(); 5900 5901 do { 5902 Instance = Instance->getCanonicalDecl(); 5903 if (Pattern == Instance) return true; 5904 Instance = Instance->getInstantiatedFromMemberClass(); 5905 } while (Instance); 5906 5907 return false; 5908 } 5909 5910 static bool isInstantiationOf(FunctionDecl *Pattern, 5911 FunctionDecl *Instance) { 5912 Pattern = Pattern->getCanonicalDecl(); 5913 5914 do { 5915 Instance = Instance->getCanonicalDecl(); 5916 if (Pattern == Instance) return true; 5917 Instance = Instance->getInstantiatedFromMemberFunction(); 5918 } while (Instance); 5919 5920 return false; 5921 } 5922 5923 static bool isInstantiationOf(EnumDecl *Pattern, 5924 EnumDecl *Instance) { 5925 Pattern = Pattern->getCanonicalDecl(); 5926 5927 do { 5928 Instance = Instance->getCanonicalDecl(); 5929 if (Pattern == Instance) return true; 5930 Instance = Instance->getInstantiatedFromMemberEnum(); 5931 } while (Instance); 5932 5933 return false; 5934 } 5935 5936 static bool isInstantiationOf(UsingShadowDecl *Pattern, 5937 UsingShadowDecl *Instance, 5938 ASTContext &C) { 5939 return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance), 5940 Pattern); 5941 } 5942 5943 static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance, 5944 ASTContext &C) { 5945 return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern); 5946 } 5947 5948 template<typename T> 5949 static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other, 5950 ASTContext &Ctx) { 5951 // An unresolved using declaration can instantiate to an unresolved using 5952 // declaration, or to a using declaration or a using declaration pack. 5953 // 5954 // Multiple declarations can claim to be instantiated from an unresolved 5955 // using declaration if it's a pack expansion. We want the UsingPackDecl 5956 // in that case, not the individual UsingDecls within the pack. 5957 bool OtherIsPackExpansion; 5958 NamedDecl *OtherFrom; 5959 if (auto *OtherUUD = dyn_cast<T>(Other)) { 5960 OtherIsPackExpansion = OtherUUD->isPackExpansion(); 5961 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD); 5962 } else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Other)) { 5963 OtherIsPackExpansion = true; 5964 OtherFrom = OtherUPD->getInstantiatedFromUsingDecl(); 5965 } else if (auto *OtherUD = dyn_cast<UsingDecl>(Other)) { 5966 OtherIsPackExpansion = false; 5967 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD); 5968 } else { 5969 return false; 5970 } 5971 return Pattern->isPackExpansion() == OtherIsPackExpansion && 5972 declaresSameEntity(OtherFrom, Pattern); 5973 } 5974 5975 static bool isInstantiationOfStaticDataMember(VarDecl *Pattern, 5976 VarDecl *Instance) { 5977 assert(Instance->isStaticDataMember()); 5978 5979 Pattern = Pattern->getCanonicalDecl(); 5980 5981 do { 5982 Instance = Instance->getCanonicalDecl(); 5983 if (Pattern == Instance) return true; 5984 Instance = Instance->getInstantiatedFromStaticDataMember(); 5985 } while (Instance); 5986 5987 return false; 5988 } 5989 5990 // Other is the prospective instantiation 5991 // D is the prospective pattern 5992 static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) { 5993 if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D)) 5994 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); 5995 5996 if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(D)) 5997 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); 5998 5999 if (D->getKind() != Other->getKind()) 6000 return false; 6001 6002 if (auto *Record = dyn_cast<CXXRecordDecl>(Other)) 6003 return isInstantiationOf(cast<CXXRecordDecl>(D), Record); 6004 6005 if (auto *Function = dyn_cast<FunctionDecl>(Other)) 6006 return isInstantiationOf(cast<FunctionDecl>(D), Function); 6007 6008 if (auto *Enum = dyn_cast<EnumDecl>(Other)) 6009 return isInstantiationOf(cast<EnumDecl>(D), Enum); 6010 6011 if (auto *Var = dyn_cast<VarDecl>(Other)) 6012 if (Var->isStaticDataMember()) 6013 return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var); 6014 6015 if (auto *Temp = dyn_cast<ClassTemplateDecl>(Other)) 6016 return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp); 6017 6018 if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Other)) 6019 return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp); 6020 6021 if (auto *PartialSpec = 6022 dyn_cast<ClassTemplatePartialSpecializationDecl>(Other)) 6023 return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D), 6024 PartialSpec); 6025 6026 if (auto *Field = dyn_cast<FieldDecl>(Other)) { 6027 if (!Field->getDeclName()) { 6028 // This is an unnamed field. 6029 return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field), 6030 cast<FieldDecl>(D)); 6031 } 6032 } 6033 6034 if (auto *Using = dyn_cast<UsingDecl>(Other)) 6035 return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx); 6036 6037 if (auto *Shadow = dyn_cast<UsingShadowDecl>(Other)) 6038 return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx); 6039 6040 return D->getDeclName() && 6041 D->getDeclName() == cast<NamedDecl>(Other)->getDeclName(); 6042 } 6043 6044 template<typename ForwardIterator> 6045 static NamedDecl *findInstantiationOf(ASTContext &Ctx, 6046 NamedDecl *D, 6047 ForwardIterator first, 6048 ForwardIterator last) { 6049 for (; first != last; ++first) 6050 if (isInstantiationOf(Ctx, D, *first)) 6051 return cast<NamedDecl>(*first); 6052 6053 return nullptr; 6054 } 6055 6056 DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC, 6057 const MultiLevelTemplateArgumentList &TemplateArgs) { 6058 if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) { 6059 Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true); 6060 return cast_or_null<DeclContext>(ID); 6061 } else return DC; 6062 } 6063 6064 /// Determine whether the given context is dependent on template parameters at 6065 /// level \p Level or below. 6066 /// 6067 /// Sometimes we only substitute an inner set of template arguments and leave 6068 /// the outer templates alone. In such cases, contexts dependent only on the 6069 /// outer levels are not effectively dependent. 6070 static bool isDependentContextAtLevel(DeclContext *DC, unsigned Level) { 6071 if (!DC->isDependentContext()) 6072 return false; 6073 if (!Level) 6074 return true; 6075 return cast<Decl>(DC)->getTemplateDepth() > Level; 6076 } 6077 6078 NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, 6079 const MultiLevelTemplateArgumentList &TemplateArgs, 6080 bool FindingInstantiatedContext) { 6081 DeclContext *ParentDC = D->getDeclContext(); 6082 // Determine whether our parent context depends on any of the template 6083 // arguments we're currently substituting. 6084 bool ParentDependsOnArgs = isDependentContextAtLevel( 6085 ParentDC, TemplateArgs.getNumRetainedOuterLevels()); 6086 // FIXME: Parameters of pointer to functions (y below) that are themselves 6087 // parameters (p below) can have their ParentDC set to the translation-unit 6088 // - thus we can not consistently check if the ParentDC of such a parameter 6089 // is Dependent or/and a FunctionOrMethod. 6090 // For e.g. this code, during Template argument deduction tries to 6091 // find an instantiated decl for (T y) when the ParentDC for y is 6092 // the translation unit. 6093 // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {} 6094 // float baz(float(*)()) { return 0.0; } 6095 // Foo(baz); 6096 // The better fix here is perhaps to ensure that a ParmVarDecl, by the time 6097 // it gets here, always has a FunctionOrMethod as its ParentDC?? 6098 // For now: 6099 // - as long as we have a ParmVarDecl whose parent is non-dependent and 6100 // whose type is not instantiation dependent, do nothing to the decl 6101 // - otherwise find its instantiated decl. 6102 if (isa<ParmVarDecl>(D) && !ParentDependsOnArgs && 6103 !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType()) 6104 return D; 6105 if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) || 6106 isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) || 6107 (ParentDependsOnArgs && (ParentDC->isFunctionOrMethod() || 6108 isa<OMPDeclareReductionDecl>(ParentDC) || 6109 isa<OMPDeclareMapperDecl>(ParentDC))) || 6110 (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda() && 6111 cast<CXXRecordDecl>(D)->getTemplateDepth() > 6112 TemplateArgs.getNumRetainedOuterLevels())) { 6113 // D is a local of some kind. Look into the map of local 6114 // declarations to their instantiations. 6115 if (CurrentInstantiationScope) { 6116 if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) { 6117 if (Decl *FD = Found->dyn_cast<Decl *>()) 6118 return cast<NamedDecl>(FD); 6119 6120 int PackIdx = ArgumentPackSubstitutionIndex; 6121 assert(PackIdx != -1 && 6122 "found declaration pack but not pack expanding"); 6123 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack; 6124 return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]); 6125 } 6126 } 6127 6128 // If we're performing a partial substitution during template argument 6129 // deduction, we may not have values for template parameters yet. They 6130 // just map to themselves. 6131 if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) || 6132 isa<TemplateTemplateParmDecl>(D)) 6133 return D; 6134 6135 if (D->isInvalidDecl()) 6136 return nullptr; 6137 6138 // Normally this function only searches for already instantiated declaration 6139 // however we have to make an exclusion for local types used before 6140 // definition as in the code: 6141 // 6142 // template<typename T> void f1() { 6143 // void g1(struct x1); 6144 // struct x1 {}; 6145 // } 6146 // 6147 // In this case instantiation of the type of 'g1' requires definition of 6148 // 'x1', which is defined later. Error recovery may produce an enum used 6149 // before definition. In these cases we need to instantiate relevant 6150 // declarations here. 6151 bool NeedInstantiate = false; 6152 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) 6153 NeedInstantiate = RD->isLocalClass(); 6154 else if (isa<TypedefNameDecl>(D) && 6155 isa<CXXDeductionGuideDecl>(D->getDeclContext())) 6156 NeedInstantiate = true; 6157 else 6158 NeedInstantiate = isa<EnumDecl>(D); 6159 if (NeedInstantiate) { 6160 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); 6161 CurrentInstantiationScope->InstantiatedLocal(D, Inst); 6162 return cast<TypeDecl>(Inst); 6163 } 6164 6165 // If we didn't find the decl, then we must have a label decl that hasn't 6166 // been found yet. Lazily instantiate it and return it now. 6167 assert(isa<LabelDecl>(D)); 6168 6169 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); 6170 assert(Inst && "Failed to instantiate label??"); 6171 6172 CurrentInstantiationScope->InstantiatedLocal(D, Inst); 6173 return cast<LabelDecl>(Inst); 6174 } 6175 6176 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 6177 if (!Record->isDependentContext()) 6178 return D; 6179 6180 // Determine whether this record is the "templated" declaration describing 6181 // a class template or class template specialization. 6182 ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate(); 6183 if (ClassTemplate) 6184 ClassTemplate = ClassTemplate->getCanonicalDecl(); 6185 else if (ClassTemplateSpecializationDecl *Spec = 6186 dyn_cast<ClassTemplateSpecializationDecl>(Record)) 6187 ClassTemplate = Spec->getSpecializedTemplate()->getCanonicalDecl(); 6188 6189 // Walk the current context to find either the record or an instantiation of 6190 // it. 6191 DeclContext *DC = CurContext; 6192 while (!DC->isFileContext()) { 6193 // If we're performing substitution while we're inside the template 6194 // definition, we'll find our own context. We're done. 6195 if (DC->Equals(Record)) 6196 return Record; 6197 6198 if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) { 6199 // Check whether we're in the process of instantiating a class template 6200 // specialization of the template we're mapping. 6201 if (ClassTemplateSpecializationDecl *InstSpec 6202 = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){ 6203 ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate(); 6204 if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate)) 6205 return InstRecord; 6206 } 6207 6208 // Check whether we're in the process of instantiating a member class. 6209 if (isInstantiationOf(Record, InstRecord)) 6210 return InstRecord; 6211 } 6212 6213 // Move to the outer template scope. 6214 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) { 6215 if (FD->getFriendObjectKind() && 6216 FD->getNonTransparentDeclContext()->isFileContext()) { 6217 DC = FD->getLexicalDeclContext(); 6218 continue; 6219 } 6220 // An implicit deduction guide acts as if it's within the class template 6221 // specialization described by its name and first N template params. 6222 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FD); 6223 if (Guide && Guide->isImplicit()) { 6224 TemplateDecl *TD = Guide->getDeducedTemplate(); 6225 // Convert the arguments to an "as-written" list. 6226 TemplateArgumentListInfo Args(Loc, Loc); 6227 for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front( 6228 TD->getTemplateParameters()->size())) { 6229 ArrayRef<TemplateArgument> Unpacked(Arg); 6230 if (Arg.getKind() == TemplateArgument::Pack) 6231 Unpacked = Arg.pack_elements(); 6232 for (TemplateArgument UnpackedArg : Unpacked) 6233 Args.addArgument( 6234 getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc)); 6235 } 6236 QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args); 6237 // We may get a non-null type with errors, in which case 6238 // `getAsCXXRecordDecl` will return `nullptr`. For instance, this 6239 // happens when one of the template arguments is an invalid 6240 // expression. We return early to avoid triggering the assertion 6241 // about the `CodeSynthesisContext`. 6242 if (T.isNull() || T->containsErrors()) 6243 return nullptr; 6244 CXXRecordDecl *SubstRecord = T->getAsCXXRecordDecl(); 6245 6246 if (!SubstRecord) { 6247 // T can be a dependent TemplateSpecializationType when performing a 6248 // substitution for building a deduction guide. 6249 assert(CodeSynthesisContexts.back().Kind == 6250 CodeSynthesisContext::BuildingDeductionGuides); 6251 // Return a nullptr as a sentinel value, we handle it properly in 6252 // the TemplateInstantiator::TransformInjectedClassNameType 6253 // override, which we transform it to a TemplateSpecializationType. 6254 return nullptr; 6255 } 6256 // Check that this template-id names the primary template and not a 6257 // partial or explicit specialization. (In the latter cases, it's 6258 // meaningless to attempt to find an instantiation of D within the 6259 // specialization.) 6260 // FIXME: The standard doesn't say what should happen here. 6261 if (FindingInstantiatedContext && 6262 usesPartialOrExplicitSpecialization( 6263 Loc, cast<ClassTemplateSpecializationDecl>(SubstRecord))) { 6264 Diag(Loc, diag::err_specialization_not_primary_template) 6265 << T << (SubstRecord->getTemplateSpecializationKind() == 6266 TSK_ExplicitSpecialization); 6267 return nullptr; 6268 } 6269 DC = SubstRecord; 6270 continue; 6271 } 6272 } 6273 6274 DC = DC->getParent(); 6275 } 6276 6277 // Fall through to deal with other dependent record types (e.g., 6278 // anonymous unions in class templates). 6279 } 6280 6281 if (!ParentDependsOnArgs) 6282 return D; 6283 6284 ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs); 6285 if (!ParentDC) 6286 return nullptr; 6287 6288 if (ParentDC != D->getDeclContext()) { 6289 // We performed some kind of instantiation in the parent context, 6290 // so now we need to look into the instantiated parent context to 6291 // find the instantiation of the declaration D. 6292 6293 // If our context used to be dependent, we may need to instantiate 6294 // it before performing lookup into that context. 6295 bool IsBeingInstantiated = false; 6296 if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) { 6297 if (!Spec->isDependentContext()) { 6298 QualType T = Context.getTypeDeclType(Spec); 6299 const RecordType *Tag = T->getAs<RecordType>(); 6300 assert(Tag && "type of non-dependent record is not a RecordType"); 6301 if (Tag->isBeingDefined()) 6302 IsBeingInstantiated = true; 6303 if (!Tag->isBeingDefined() && 6304 RequireCompleteType(Loc, T, diag::err_incomplete_type)) 6305 return nullptr; 6306 6307 ParentDC = Tag->getDecl(); 6308 } 6309 } 6310 6311 NamedDecl *Result = nullptr; 6312 // FIXME: If the name is a dependent name, this lookup won't necessarily 6313 // find it. Does that ever matter? 6314 if (auto Name = D->getDeclName()) { 6315 DeclarationNameInfo NameInfo(Name, D->getLocation()); 6316 DeclarationNameInfo NewNameInfo = 6317 SubstDeclarationNameInfo(NameInfo, TemplateArgs); 6318 Name = NewNameInfo.getName(); 6319 if (!Name) 6320 return nullptr; 6321 DeclContext::lookup_result Found = ParentDC->lookup(Name); 6322 6323 Result = findInstantiationOf(Context, D, Found.begin(), Found.end()); 6324 } else { 6325 // Since we don't have a name for the entity we're looking for, 6326 // our only option is to walk through all of the declarations to 6327 // find that name. This will occur in a few cases: 6328 // 6329 // - anonymous struct/union within a template 6330 // - unnamed class/struct/union/enum within a template 6331 // 6332 // FIXME: Find a better way to find these instantiations! 6333 Result = findInstantiationOf(Context, D, 6334 ParentDC->decls_begin(), 6335 ParentDC->decls_end()); 6336 } 6337 6338 if (!Result) { 6339 if (isa<UsingShadowDecl>(D)) { 6340 // UsingShadowDecls can instantiate to nothing because of using hiding. 6341 } else if (hasUncompilableErrorOccurred()) { 6342 // We've already complained about some ill-formed code, so most likely 6343 // this declaration failed to instantiate. There's no point in 6344 // complaining further, since this is normal in invalid code. 6345 // FIXME: Use more fine-grained 'invalid' tracking for this. 6346 } else if (IsBeingInstantiated) { 6347 // The class in which this member exists is currently being 6348 // instantiated, and we haven't gotten around to instantiating this 6349 // member yet. This can happen when the code uses forward declarations 6350 // of member classes, and introduces ordering dependencies via 6351 // template instantiation. 6352 Diag(Loc, diag::err_member_not_yet_instantiated) 6353 << D->getDeclName() 6354 << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC)); 6355 Diag(D->getLocation(), diag::note_non_instantiated_member_here); 6356 } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) { 6357 // This enumeration constant was found when the template was defined, 6358 // but can't be found in the instantiation. This can happen if an 6359 // unscoped enumeration member is explicitly specialized. 6360 EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext()); 6361 EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum, 6362 TemplateArgs)); 6363 assert(Spec->getTemplateSpecializationKind() == 6364 TSK_ExplicitSpecialization); 6365 Diag(Loc, diag::err_enumerator_does_not_exist) 6366 << D->getDeclName() 6367 << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext())); 6368 Diag(Spec->getLocation(), diag::note_enum_specialized_here) 6369 << Context.getTypeDeclType(Spec); 6370 } else { 6371 // We should have found something, but didn't. 6372 llvm_unreachable("Unable to find instantiation of declaration!"); 6373 } 6374 } 6375 6376 D = Result; 6377 } 6378 6379 return D; 6380 } 6381 6382 void Sema::PerformPendingInstantiations(bool LocalOnly) { 6383 std::deque<PendingImplicitInstantiation> delayedPCHInstantiations; 6384 while (!PendingLocalImplicitInstantiations.empty() || 6385 (!LocalOnly && !PendingInstantiations.empty())) { 6386 PendingImplicitInstantiation Inst; 6387 6388 if (PendingLocalImplicitInstantiations.empty()) { 6389 Inst = PendingInstantiations.front(); 6390 PendingInstantiations.pop_front(); 6391 } else { 6392 Inst = PendingLocalImplicitInstantiations.front(); 6393 PendingLocalImplicitInstantiations.pop_front(); 6394 } 6395 6396 // Instantiate function definitions 6397 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) { 6398 bool DefinitionRequired = Function->getTemplateSpecializationKind() == 6399 TSK_ExplicitInstantiationDefinition; 6400 if (Function->isMultiVersion()) { 6401 getASTContext().forEachMultiversionedFunctionVersion( 6402 Function, [this, Inst, DefinitionRequired](FunctionDecl *CurFD) { 6403 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, CurFD, true, 6404 DefinitionRequired, true); 6405 if (CurFD->isDefined()) 6406 CurFD->setInstantiationIsPending(false); 6407 }); 6408 } else { 6409 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, Function, true, 6410 DefinitionRequired, true); 6411 if (Function->isDefined()) 6412 Function->setInstantiationIsPending(false); 6413 } 6414 // Definition of a PCH-ed template declaration may be available only in the TU. 6415 if (!LocalOnly && LangOpts.PCHInstantiateTemplates && 6416 TUKind == TU_Prefix && Function->instantiationIsPending()) 6417 delayedPCHInstantiations.push_back(Inst); 6418 continue; 6419 } 6420 6421 // Instantiate variable definitions 6422 VarDecl *Var = cast<VarDecl>(Inst.first); 6423 6424 assert((Var->isStaticDataMember() || 6425 isa<VarTemplateSpecializationDecl>(Var)) && 6426 "Not a static data member, nor a variable template" 6427 " specialization?"); 6428 6429 // Don't try to instantiate declarations if the most recent redeclaration 6430 // is invalid. 6431 if (Var->getMostRecentDecl()->isInvalidDecl()) 6432 continue; 6433 6434 // Check if the most recent declaration has changed the specialization kind 6435 // and removed the need for implicit instantiation. 6436 switch (Var->getMostRecentDecl() 6437 ->getTemplateSpecializationKindForInstantiation()) { 6438 case TSK_Undeclared: 6439 llvm_unreachable("Cannot instantitiate an undeclared specialization."); 6440 case TSK_ExplicitInstantiationDeclaration: 6441 case TSK_ExplicitSpecialization: 6442 continue; // No longer need to instantiate this type. 6443 case TSK_ExplicitInstantiationDefinition: 6444 // We only need an instantiation if the pending instantiation *is* the 6445 // explicit instantiation. 6446 if (Var != Var->getMostRecentDecl()) 6447 continue; 6448 break; 6449 case TSK_ImplicitInstantiation: 6450 break; 6451 } 6452 6453 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 6454 "instantiating variable definition"); 6455 bool DefinitionRequired = Var->getTemplateSpecializationKind() == 6456 TSK_ExplicitInstantiationDefinition; 6457 6458 // Instantiate static data member definitions or variable template 6459 // specializations. 6460 InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true, 6461 DefinitionRequired, true); 6462 } 6463 6464 if (!LocalOnly && LangOpts.PCHInstantiateTemplates) 6465 PendingInstantiations.swap(delayedPCHInstantiations); 6466 } 6467 6468 void Sema::PerformDependentDiagnostics(const DeclContext *Pattern, 6469 const MultiLevelTemplateArgumentList &TemplateArgs) { 6470 for (auto *DD : Pattern->ddiags()) { 6471 switch (DD->getKind()) { 6472 case DependentDiagnostic::Access: 6473 HandleDependentAccessCheck(*DD, TemplateArgs); 6474 break; 6475 } 6476 } 6477 } 6478