1 //===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/ 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===/ 7 // 8 // This file implements C++ template instantiation for declarations. 9 // 10 //===----------------------------------------------------------------------===/ 11 #include "clang/Sema/SemaInternal.h" 12 #include "clang/AST/ASTConsumer.h" 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/ASTMutationListener.h" 15 #include "clang/AST/DeclTemplate.h" 16 #include "clang/AST/DeclVisitor.h" 17 #include "clang/AST/DependentDiagnostic.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/PrettyDeclStackTrace.h" 21 #include "clang/AST/TypeLoc.h" 22 #include "clang/Sema/Initialization.h" 23 #include "clang/Sema/Lookup.h" 24 #include "clang/Sema/Template.h" 25 #include "clang/Sema/TemplateInstCallback.h" 26 #include "llvm/Support/TimeProfiler.h" 27 28 using namespace clang; 29 30 static bool isDeclWithinFunction(const Decl *D) { 31 const DeclContext *DC = D->getDeclContext(); 32 if (DC->isFunctionOrMethod()) 33 return true; 34 35 if (DC->isRecord()) 36 return cast<CXXRecordDecl>(DC)->isLocalClass(); 37 38 return false; 39 } 40 41 template<typename DeclT> 42 static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl, 43 const MultiLevelTemplateArgumentList &TemplateArgs) { 44 if (!OldDecl->getQualifierLoc()) 45 return false; 46 47 assert((NewDecl->getFriendObjectKind() || 48 !OldDecl->getLexicalDeclContext()->isDependentContext()) && 49 "non-friend with qualified name defined in dependent context"); 50 Sema::ContextRAII SavedContext( 51 SemaRef, 52 const_cast<DeclContext *>(NewDecl->getFriendObjectKind() 53 ? NewDecl->getLexicalDeclContext() 54 : OldDecl->getLexicalDeclContext())); 55 56 NestedNameSpecifierLoc NewQualifierLoc 57 = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(), 58 TemplateArgs); 59 60 if (!NewQualifierLoc) 61 return true; 62 63 NewDecl->setQualifierInfo(NewQualifierLoc); 64 return false; 65 } 66 67 bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl, 68 DeclaratorDecl *NewDecl) { 69 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); 70 } 71 72 bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl, 73 TagDecl *NewDecl) { 74 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); 75 } 76 77 // Include attribute instantiation code. 78 #include "clang/Sema/AttrTemplateInstantiate.inc" 79 80 static void instantiateDependentAlignedAttr( 81 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 82 const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) { 83 if (Aligned->isAlignmentExpr()) { 84 // The alignment expression is a constant expression. 85 EnterExpressionEvaluationContext Unevaluated( 86 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 87 ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs); 88 if (!Result.isInvalid()) 89 S.AddAlignedAttr(New, *Aligned, Result.getAs<Expr>(), IsPackExpansion); 90 } else { 91 TypeSourceInfo *Result = S.SubstType(Aligned->getAlignmentType(), 92 TemplateArgs, Aligned->getLocation(), 93 DeclarationName()); 94 if (Result) 95 S.AddAlignedAttr(New, *Aligned, Result, IsPackExpansion); 96 } 97 } 98 99 static void instantiateDependentAlignedAttr( 100 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 101 const AlignedAttr *Aligned, Decl *New) { 102 if (!Aligned->isPackExpansion()) { 103 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); 104 return; 105 } 106 107 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 108 if (Aligned->isAlignmentExpr()) 109 S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(), 110 Unexpanded); 111 else 112 S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(), 113 Unexpanded); 114 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); 115 116 // Determine whether we can expand this attribute pack yet. 117 bool Expand = true, RetainExpansion = false; 118 Optional<unsigned> NumExpansions; 119 // FIXME: Use the actual location of the ellipsis. 120 SourceLocation EllipsisLoc = Aligned->getLocation(); 121 if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(), 122 Unexpanded, TemplateArgs, Expand, 123 RetainExpansion, NumExpansions)) 124 return; 125 126 if (!Expand) { 127 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1); 128 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true); 129 } else { 130 for (unsigned I = 0; I != *NumExpansions; ++I) { 131 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I); 132 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); 133 } 134 } 135 } 136 137 static void instantiateDependentAssumeAlignedAttr( 138 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 139 const AssumeAlignedAttr *Aligned, Decl *New) { 140 // The alignment expression is a constant expression. 141 EnterExpressionEvaluationContext Unevaluated( 142 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 143 144 Expr *E, *OE = nullptr; 145 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); 146 if (Result.isInvalid()) 147 return; 148 E = Result.getAs<Expr>(); 149 150 if (Aligned->getOffset()) { 151 Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs); 152 if (Result.isInvalid()) 153 return; 154 OE = Result.getAs<Expr>(); 155 } 156 157 S.AddAssumeAlignedAttr(New, *Aligned, E, OE); 158 } 159 160 static void instantiateDependentAlignValueAttr( 161 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 162 const AlignValueAttr *Aligned, Decl *New) { 163 // The alignment expression is a constant expression. 164 EnterExpressionEvaluationContext Unevaluated( 165 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 166 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); 167 if (!Result.isInvalid()) 168 S.AddAlignValueAttr(New, *Aligned, Result.getAs<Expr>()); 169 } 170 171 static void instantiateDependentAllocAlignAttr( 172 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 173 const AllocAlignAttr *Align, Decl *New) { 174 Expr *Param = IntegerLiteral::Create( 175 S.getASTContext(), 176 llvm::APInt(64, Align->getParamIndex().getSourceIndex()), 177 S.getASTContext().UnsignedLongLongTy, Align->getLocation()); 178 S.AddAllocAlignAttr(New, *Align, Param); 179 } 180 181 static Expr *instantiateDependentFunctionAttrCondition( 182 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 183 const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) { 184 Expr *Cond = nullptr; 185 { 186 Sema::ContextRAII SwitchContext(S, New); 187 EnterExpressionEvaluationContext Unevaluated( 188 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 189 ExprResult Result = S.SubstExpr(OldCond, TemplateArgs); 190 if (Result.isInvalid()) 191 return nullptr; 192 Cond = Result.getAs<Expr>(); 193 } 194 if (!Cond->isTypeDependent()) { 195 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); 196 if (Converted.isInvalid()) 197 return nullptr; 198 Cond = Converted.get(); 199 } 200 201 SmallVector<PartialDiagnosticAt, 8> Diags; 202 if (OldCond->isValueDependent() && !Cond->isValueDependent() && 203 !Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) { 204 S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A; 205 for (const auto &P : Diags) 206 S.Diag(P.first, P.second); 207 return nullptr; 208 } 209 return Cond; 210 } 211 212 static void instantiateDependentEnableIfAttr( 213 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 214 const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) { 215 Expr *Cond = instantiateDependentFunctionAttrCondition( 216 S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New); 217 218 if (Cond) 219 New->addAttr(new (S.getASTContext()) EnableIfAttr(S.getASTContext(), *EIA, 220 Cond, EIA->getMessage())); 221 } 222 223 static void instantiateDependentDiagnoseIfAttr( 224 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 225 const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) { 226 Expr *Cond = instantiateDependentFunctionAttrCondition( 227 S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New); 228 229 if (Cond) 230 New->addAttr(new (S.getASTContext()) DiagnoseIfAttr( 231 S.getASTContext(), *DIA, Cond, DIA->getMessage(), 232 DIA->getDiagnosticType(), DIA->getArgDependent(), New)); 233 } 234 235 // Constructs and adds to New a new instance of CUDALaunchBoundsAttr using 236 // template A as the base and arguments from TemplateArgs. 237 static void instantiateDependentCUDALaunchBoundsAttr( 238 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 239 const CUDALaunchBoundsAttr &Attr, Decl *New) { 240 // The alignment expression is a constant expression. 241 EnterExpressionEvaluationContext Unevaluated( 242 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 243 244 ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs); 245 if (Result.isInvalid()) 246 return; 247 Expr *MaxThreads = Result.getAs<Expr>(); 248 249 Expr *MinBlocks = nullptr; 250 if (Attr.getMinBlocks()) { 251 Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs); 252 if (Result.isInvalid()) 253 return; 254 MinBlocks = Result.getAs<Expr>(); 255 } 256 257 S.AddLaunchBoundsAttr(New, Attr, MaxThreads, MinBlocks); 258 } 259 260 static void 261 instantiateDependentModeAttr(Sema &S, 262 const MultiLevelTemplateArgumentList &TemplateArgs, 263 const ModeAttr &Attr, Decl *New) { 264 S.AddModeAttr(New, Attr, Attr.getMode(), 265 /*InInstantiation=*/true); 266 } 267 268 /// Instantiation of 'declare simd' attribute and its arguments. 269 static void instantiateOMPDeclareSimdDeclAttr( 270 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 271 const OMPDeclareSimdDeclAttr &Attr, Decl *New) { 272 // Allow 'this' in clauses with varlists. 273 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New)) 274 New = FTD->getTemplatedDecl(); 275 auto *FD = cast<FunctionDecl>(New); 276 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext()); 277 SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps; 278 SmallVector<unsigned, 4> LinModifiers; 279 280 auto SubstExpr = [&](Expr *E) -> ExprResult { 281 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 282 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 283 Sema::ContextRAII SavedContext(S, FD); 284 LocalInstantiationScope Local(S); 285 if (FD->getNumParams() > PVD->getFunctionScopeIndex()) 286 Local.InstantiatedLocal( 287 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); 288 return S.SubstExpr(E, TemplateArgs); 289 } 290 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(), 291 FD->isCXXInstanceMember()); 292 return S.SubstExpr(E, TemplateArgs); 293 }; 294 295 // Substitute a single OpenMP clause, which is a potentially-evaluated 296 // full-expression. 297 auto Subst = [&](Expr *E) -> ExprResult { 298 EnterExpressionEvaluationContext Evaluated( 299 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 300 ExprResult Res = SubstExpr(E); 301 if (Res.isInvalid()) 302 return Res; 303 return S.ActOnFinishFullExpr(Res.get(), false); 304 }; 305 306 ExprResult Simdlen; 307 if (auto *E = Attr.getSimdlen()) 308 Simdlen = Subst(E); 309 310 if (Attr.uniforms_size() > 0) { 311 for(auto *E : Attr.uniforms()) { 312 ExprResult Inst = Subst(E); 313 if (Inst.isInvalid()) 314 continue; 315 Uniforms.push_back(Inst.get()); 316 } 317 } 318 319 auto AI = Attr.alignments_begin(); 320 for (auto *E : Attr.aligneds()) { 321 ExprResult Inst = Subst(E); 322 if (Inst.isInvalid()) 323 continue; 324 Aligneds.push_back(Inst.get()); 325 Inst = ExprEmpty(); 326 if (*AI) 327 Inst = S.SubstExpr(*AI, TemplateArgs); 328 Alignments.push_back(Inst.get()); 329 ++AI; 330 } 331 332 auto SI = Attr.steps_begin(); 333 for (auto *E : Attr.linears()) { 334 ExprResult Inst = Subst(E); 335 if (Inst.isInvalid()) 336 continue; 337 Linears.push_back(Inst.get()); 338 Inst = ExprEmpty(); 339 if (*SI) 340 Inst = S.SubstExpr(*SI, TemplateArgs); 341 Steps.push_back(Inst.get()); 342 ++SI; 343 } 344 LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end()); 345 (void)S.ActOnOpenMPDeclareSimdDirective( 346 S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(), 347 Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps, 348 Attr.getRange()); 349 } 350 351 /// Instantiation of 'declare variant' attribute and its arguments. 352 static void instantiateOMPDeclareVariantAttr( 353 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 354 const OMPDeclareVariantAttr &Attr, Decl *New) { 355 // Allow 'this' in clauses with varlists. 356 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New)) 357 New = FTD->getTemplatedDecl(); 358 auto *FD = cast<FunctionDecl>(New); 359 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext()); 360 361 auto &&SubstExpr = [FD, ThisContext, &S, &TemplateArgs](Expr *E) { 362 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 363 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 364 Sema::ContextRAII SavedContext(S, FD); 365 LocalInstantiationScope Local(S); 366 if (FD->getNumParams() > PVD->getFunctionScopeIndex()) 367 Local.InstantiatedLocal( 368 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); 369 return S.SubstExpr(E, TemplateArgs); 370 } 371 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(), 372 FD->isCXXInstanceMember()); 373 return S.SubstExpr(E, TemplateArgs); 374 }; 375 376 // Substitute a single OpenMP clause, which is a potentially-evaluated 377 // full-expression. 378 auto &&Subst = [&SubstExpr, &S](Expr *E) { 379 EnterExpressionEvaluationContext Evaluated( 380 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 381 ExprResult Res = SubstExpr(E); 382 if (Res.isInvalid()) 383 return Res; 384 return S.ActOnFinishFullExpr(Res.get(), false); 385 }; 386 387 ExprResult VariantFuncRef; 388 if (Expr *E = Attr.getVariantFuncRef()) { 389 // Do not mark function as is used to prevent its emission if this is the 390 // only place where it is used. 391 EnterExpressionEvaluationContext Unevaluated( 392 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 393 VariantFuncRef = Subst(E); 394 } 395 396 // Check function/variant ref. 397 Optional<std::pair<FunctionDecl *, Expr *>> DeclVarData = 398 S.checkOpenMPDeclareVariantFunction( 399 S.ConvertDeclToDeclGroup(New), VariantFuncRef.get(), Attr.getRange()); 400 if (!DeclVarData) 401 return; 402 SmallVector<Sema::OMPCtxSelectorData, 4> Data; 403 for (unsigned I = 0, E = Attr.scores_size(); I < E; ++I) { 404 ExprResult Score; 405 if (Expr *E = *std::next(Attr.scores_begin(), I)) 406 Score = Subst(E); 407 // Instantiate the attribute. 408 auto CtxSet = static_cast<OpenMPContextSelectorSetKind>( 409 *std::next(Attr.ctxSelectorSets_begin(), I)); 410 auto Ctx = static_cast<OpenMPContextSelectorKind>( 411 *std::next(Attr.ctxSelectors_begin(), I)); 412 switch (CtxSet) { 413 case OMP_CTX_SET_implementation: 414 switch (Ctx) { 415 case OMP_CTX_vendor: 416 Data.emplace_back(CtxSet, Ctx, Score, Attr.implVendors()); 417 break; 418 case OMP_CTX_kind: 419 case OMP_CTX_unknown: 420 llvm_unreachable("Unexpected context selector kind."); 421 } 422 break; 423 case OMP_CTX_SET_device: 424 switch (Ctx) { 425 case OMP_CTX_kind: 426 Data.emplace_back(CtxSet, Ctx, Score, Attr.deviceKinds()); 427 break; 428 case OMP_CTX_vendor: 429 case OMP_CTX_unknown: 430 llvm_unreachable("Unexpected context selector kind."); 431 } 432 break; 433 case OMP_CTX_SET_unknown: 434 llvm_unreachable("Unexpected context selector set kind."); 435 } 436 } 437 S.ActOnOpenMPDeclareVariantDirective(DeclVarData.getValue().first, 438 DeclVarData.getValue().second, 439 Attr.getRange(), Data); 440 } 441 442 static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr( 443 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 444 const AMDGPUFlatWorkGroupSizeAttr &Attr, Decl *New) { 445 // Both min and max expression are constant expressions. 446 EnterExpressionEvaluationContext Unevaluated( 447 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 448 449 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs); 450 if (Result.isInvalid()) 451 return; 452 Expr *MinExpr = Result.getAs<Expr>(); 453 454 Result = S.SubstExpr(Attr.getMax(), TemplateArgs); 455 if (Result.isInvalid()) 456 return; 457 Expr *MaxExpr = Result.getAs<Expr>(); 458 459 S.addAMDGPUFlatWorkGroupSizeAttr(New, Attr, MinExpr, MaxExpr); 460 } 461 462 static ExplicitSpecifier 463 instantiateExplicitSpecifier(Sema &S, 464 const MultiLevelTemplateArgumentList &TemplateArgs, 465 ExplicitSpecifier ES, FunctionDecl *New) { 466 if (!ES.getExpr()) 467 return ES; 468 Expr *OldCond = ES.getExpr(); 469 Expr *Cond = nullptr; 470 { 471 EnterExpressionEvaluationContext Unevaluated( 472 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 473 ExprResult SubstResult = S.SubstExpr(OldCond, TemplateArgs); 474 if (SubstResult.isInvalid()) { 475 return ExplicitSpecifier::Invalid(); 476 } 477 Cond = SubstResult.get(); 478 } 479 ExplicitSpecifier Result(Cond, ES.getKind()); 480 if (!Cond->isTypeDependent()) 481 S.tryResolveExplicitSpecifier(Result); 482 return Result; 483 } 484 485 static void instantiateDependentAMDGPUWavesPerEUAttr( 486 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 487 const AMDGPUWavesPerEUAttr &Attr, Decl *New) { 488 // Both min and max expression are constant expressions. 489 EnterExpressionEvaluationContext Unevaluated( 490 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 491 492 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs); 493 if (Result.isInvalid()) 494 return; 495 Expr *MinExpr = Result.getAs<Expr>(); 496 497 Expr *MaxExpr = nullptr; 498 if (auto Max = Attr.getMax()) { 499 Result = S.SubstExpr(Max, TemplateArgs); 500 if (Result.isInvalid()) 501 return; 502 MaxExpr = Result.getAs<Expr>(); 503 } 504 505 S.addAMDGPUWavesPerEUAttr(New, Attr, MinExpr, MaxExpr); 506 } 507 508 void Sema::InstantiateAttrsForDecl( 509 const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl, 510 Decl *New, LateInstantiatedAttrVec *LateAttrs, 511 LocalInstantiationScope *OuterMostScope) { 512 if (NamedDecl *ND = dyn_cast<NamedDecl>(New)) { 513 for (const auto *TmplAttr : Tmpl->attrs()) { 514 // FIXME: If any of the special case versions from InstantiateAttrs become 515 // applicable to template declaration, we'll need to add them here. 516 CXXThisScopeRAII ThisScope( 517 *this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()), 518 Qualifiers(), ND->isCXXInstanceMember()); 519 520 Attr *NewAttr = sema::instantiateTemplateAttributeForDecl( 521 TmplAttr, Context, *this, TemplateArgs); 522 if (NewAttr) 523 New->addAttr(NewAttr); 524 } 525 } 526 } 527 528 static Sema::RetainOwnershipKind 529 attrToRetainOwnershipKind(const Attr *A) { 530 switch (A->getKind()) { 531 case clang::attr::CFConsumed: 532 return Sema::RetainOwnershipKind::CF; 533 case clang::attr::OSConsumed: 534 return Sema::RetainOwnershipKind::OS; 535 case clang::attr::NSConsumed: 536 return Sema::RetainOwnershipKind::NS; 537 default: 538 llvm_unreachable("Wrong argument supplied"); 539 } 540 } 541 542 void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, 543 const Decl *Tmpl, Decl *New, 544 LateInstantiatedAttrVec *LateAttrs, 545 LocalInstantiationScope *OuterMostScope) { 546 for (const auto *TmplAttr : Tmpl->attrs()) { 547 // FIXME: This should be generalized to more than just the AlignedAttr. 548 const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr); 549 if (Aligned && Aligned->isAlignmentDependent()) { 550 instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New); 551 continue; 552 } 553 554 if (const auto *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr)) { 555 instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New); 556 continue; 557 } 558 559 if (const auto *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr)) { 560 instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New); 561 continue; 562 } 563 564 if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) { 565 instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New); 566 continue; 567 } 568 569 570 if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) { 571 instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl, 572 cast<FunctionDecl>(New)); 573 continue; 574 } 575 576 if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) { 577 instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl, 578 cast<FunctionDecl>(New)); 579 continue; 580 } 581 582 if (const auto *CUDALaunchBounds = 583 dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) { 584 instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs, 585 *CUDALaunchBounds, New); 586 continue; 587 } 588 589 if (const auto *Mode = dyn_cast<ModeAttr>(TmplAttr)) { 590 instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New); 591 continue; 592 } 593 594 if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) { 595 instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New); 596 continue; 597 } 598 599 if (const auto *OMPAttr = dyn_cast<OMPDeclareVariantAttr>(TmplAttr)) { 600 instantiateOMPDeclareVariantAttr(*this, TemplateArgs, *OMPAttr, New); 601 continue; 602 } 603 604 if (const auto *AMDGPUFlatWorkGroupSize = 605 dyn_cast<AMDGPUFlatWorkGroupSizeAttr>(TmplAttr)) { 606 instantiateDependentAMDGPUFlatWorkGroupSizeAttr( 607 *this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New); 608 } 609 610 if (const auto *AMDGPUFlatWorkGroupSize = 611 dyn_cast<AMDGPUWavesPerEUAttr>(TmplAttr)) { 612 instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs, 613 *AMDGPUFlatWorkGroupSize, New); 614 } 615 616 // Existing DLL attribute on the instantiation takes precedence. 617 if (TmplAttr->getKind() == attr::DLLExport || 618 TmplAttr->getKind() == attr::DLLImport) { 619 if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) { 620 continue; 621 } 622 } 623 624 if (const auto *ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) { 625 AddParameterABIAttr(New, *ABIAttr, ABIAttr->getABI()); 626 continue; 627 } 628 629 if (isa<NSConsumedAttr>(TmplAttr) || isa<OSConsumedAttr>(TmplAttr) || 630 isa<CFConsumedAttr>(TmplAttr)) { 631 AddXConsumedAttr(New, *TmplAttr, attrToRetainOwnershipKind(TmplAttr), 632 /*template instantiation=*/true); 633 continue; 634 } 635 636 if (auto *A = dyn_cast<PointerAttr>(TmplAttr)) { 637 if (!New->hasAttr<PointerAttr>()) 638 New->addAttr(A->clone(Context)); 639 continue; 640 } 641 642 if (auto *A = dyn_cast<OwnerAttr>(TmplAttr)) { 643 if (!New->hasAttr<OwnerAttr>()) 644 New->addAttr(A->clone(Context)); 645 continue; 646 } 647 648 assert(!TmplAttr->isPackExpansion()); 649 if (TmplAttr->isLateParsed() && LateAttrs) { 650 // Late parsed attributes must be instantiated and attached after the 651 // enclosing class has been instantiated. See Sema::InstantiateClass. 652 LocalInstantiationScope *Saved = nullptr; 653 if (CurrentInstantiationScope) 654 Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope); 655 LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New)); 656 } else { 657 // Allow 'this' within late-parsed attributes. 658 auto *ND = cast<NamedDecl>(New); 659 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()); 660 CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(), 661 ND->isCXXInstanceMember()); 662 663 Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context, 664 *this, TemplateArgs); 665 if (NewAttr) 666 New->addAttr(NewAttr); 667 } 668 } 669 } 670 671 /// Get the previous declaration of a declaration for the purposes of template 672 /// instantiation. If this finds a previous declaration, then the previous 673 /// declaration of the instantiation of D should be an instantiation of the 674 /// result of this function. 675 template<typename DeclT> 676 static DeclT *getPreviousDeclForInstantiation(DeclT *D) { 677 DeclT *Result = D->getPreviousDecl(); 678 679 // If the declaration is within a class, and the previous declaration was 680 // merged from a different definition of that class, then we don't have a 681 // previous declaration for the purpose of template instantiation. 682 if (Result && isa<CXXRecordDecl>(D->getDeclContext()) && 683 D->getLexicalDeclContext() != Result->getLexicalDeclContext()) 684 return nullptr; 685 686 return Result; 687 } 688 689 Decl * 690 TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) { 691 llvm_unreachable("Translation units cannot be instantiated"); 692 } 693 694 Decl * 695 TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) { 696 llvm_unreachable("pragma comment cannot be instantiated"); 697 } 698 699 Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl( 700 PragmaDetectMismatchDecl *D) { 701 llvm_unreachable("pragma comment cannot be instantiated"); 702 } 703 704 Decl * 705 TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) { 706 llvm_unreachable("extern \"C\" context cannot be instantiated"); 707 } 708 709 Decl * 710 TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) { 711 LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(), 712 D->getIdentifier()); 713 Owner->addDecl(Inst); 714 return Inst; 715 } 716 717 Decl * 718 TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) { 719 llvm_unreachable("Namespaces cannot be instantiated"); 720 } 721 722 Decl * 723 TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { 724 NamespaceAliasDecl *Inst 725 = NamespaceAliasDecl::Create(SemaRef.Context, Owner, 726 D->getNamespaceLoc(), 727 D->getAliasLoc(), 728 D->getIdentifier(), 729 D->getQualifierLoc(), 730 D->getTargetNameLoc(), 731 D->getNamespace()); 732 Owner->addDecl(Inst); 733 return Inst; 734 } 735 736 Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D, 737 bool IsTypeAlias) { 738 bool Invalid = false; 739 TypeSourceInfo *DI = D->getTypeSourceInfo(); 740 if (DI->getType()->isInstantiationDependentType() || 741 DI->getType()->isVariablyModifiedType()) { 742 DI = SemaRef.SubstType(DI, TemplateArgs, 743 D->getLocation(), D->getDeclName()); 744 if (!DI) { 745 Invalid = true; 746 DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy); 747 } 748 } else { 749 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 750 } 751 752 // HACK: g++ has a bug where it gets the value kind of ?: wrong. 753 // libstdc++ relies upon this bug in its implementation of common_type. 754 // If we happen to be processing that implementation, fake up the g++ ?: 755 // semantics. See LWG issue 2141 for more information on the bug. 756 const DecltypeType *DT = DI->getType()->getAs<DecltypeType>(); 757 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext()); 758 if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) && 759 DT->isReferenceType() && 760 RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() && 761 RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") && 762 D->getIdentifier() && D->getIdentifier()->isStr("type") && 763 SemaRef.getSourceManager().isInSystemHeader(D->getBeginLoc())) 764 // Fold it to the (non-reference) type which g++ would have produced. 765 DI = SemaRef.Context.getTrivialTypeSourceInfo( 766 DI->getType().getNonReferenceType()); 767 768 // Create the new typedef 769 TypedefNameDecl *Typedef; 770 if (IsTypeAlias) 771 Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 772 D->getLocation(), D->getIdentifier(), DI); 773 else 774 Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 775 D->getLocation(), D->getIdentifier(), DI); 776 if (Invalid) 777 Typedef->setInvalidDecl(); 778 779 // If the old typedef was the name for linkage purposes of an anonymous 780 // tag decl, re-establish that relationship for the new typedef. 781 if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) { 782 TagDecl *oldTag = oldTagType->getDecl(); 783 if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) { 784 TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl(); 785 assert(!newTag->hasNameForLinkage()); 786 newTag->setTypedefNameForAnonDecl(Typedef); 787 } 788 } 789 790 if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) { 791 NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev, 792 TemplateArgs); 793 if (!InstPrev) 794 return nullptr; 795 796 TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev); 797 798 // If the typedef types are not identical, reject them. 799 SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef); 800 801 Typedef->setPreviousDecl(InstPrevTypedef); 802 } 803 804 SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef); 805 806 if (D->getUnderlyingType()->getAs<DependentNameType>()) 807 SemaRef.inferGslPointerAttribute(Typedef); 808 809 Typedef->setAccess(D->getAccess()); 810 811 return Typedef; 812 } 813 814 Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) { 815 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false); 816 if (Typedef) 817 Owner->addDecl(Typedef); 818 return Typedef; 819 } 820 821 Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) { 822 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true); 823 if (Typedef) 824 Owner->addDecl(Typedef); 825 return Typedef; 826 } 827 828 Decl * 829 TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) { 830 // Create a local instantiation scope for this type alias template, which 831 // will contain the instantiations of the template parameters. 832 LocalInstantiationScope Scope(SemaRef); 833 834 TemplateParameterList *TempParams = D->getTemplateParameters(); 835 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 836 if (!InstParams) 837 return nullptr; 838 839 TypeAliasDecl *Pattern = D->getTemplatedDecl(); 840 841 TypeAliasTemplateDecl *PrevAliasTemplate = nullptr; 842 if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) { 843 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 844 if (!Found.empty()) { 845 PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front()); 846 } 847 } 848 849 TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>( 850 InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true)); 851 if (!AliasInst) 852 return nullptr; 853 854 TypeAliasTemplateDecl *Inst 855 = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(), 856 D->getDeclName(), InstParams, AliasInst); 857 AliasInst->setDescribedAliasTemplate(Inst); 858 if (PrevAliasTemplate) 859 Inst->setPreviousDecl(PrevAliasTemplate); 860 861 Inst->setAccess(D->getAccess()); 862 863 if (!PrevAliasTemplate) 864 Inst->setInstantiatedFromMemberTemplate(D); 865 866 Owner->addDecl(Inst); 867 868 return Inst; 869 } 870 871 Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) { 872 auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(), 873 D->getIdentifier()); 874 NewBD->setReferenced(D->isReferenced()); 875 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD); 876 return NewBD; 877 } 878 879 Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) { 880 // Transform the bindings first. 881 SmallVector<BindingDecl*, 16> NewBindings; 882 for (auto *OldBD : D->bindings()) 883 NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD))); 884 ArrayRef<BindingDecl*> NewBindingArray = NewBindings; 885 886 auto *NewDD = cast_or_null<DecompositionDecl>( 887 VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray)); 888 889 if (!NewDD || NewDD->isInvalidDecl()) 890 for (auto *NewBD : NewBindings) 891 NewBD->setInvalidDecl(); 892 893 return NewDD; 894 } 895 896 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) { 897 return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false); 898 } 899 900 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D, 901 bool InstantiatingVarTemplate, 902 ArrayRef<BindingDecl*> *Bindings) { 903 904 // Do substitution on the type of the declaration 905 TypeSourceInfo *DI = SemaRef.SubstType( 906 D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(), 907 D->getDeclName(), /*AllowDeducedTST*/true); 908 if (!DI) 909 return nullptr; 910 911 if (DI->getType()->isFunctionType()) { 912 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) 913 << D->isStaticDataMember() << DI->getType(); 914 return nullptr; 915 } 916 917 DeclContext *DC = Owner; 918 if (D->isLocalExternDecl()) 919 SemaRef.adjustContextForLocalExternDecl(DC); 920 921 // Build the instantiated declaration. 922 VarDecl *Var; 923 if (Bindings) 924 Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), 925 D->getLocation(), DI->getType(), DI, 926 D->getStorageClass(), *Bindings); 927 else 928 Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), 929 D->getLocation(), D->getIdentifier(), DI->getType(), 930 DI, D->getStorageClass()); 931 932 // In ARC, infer 'retaining' for variables of retainable type. 933 if (SemaRef.getLangOpts().ObjCAutoRefCount && 934 SemaRef.inferObjCARCLifetime(Var)) 935 Var->setInvalidDecl(); 936 937 if (SemaRef.getLangOpts().OpenCL) 938 SemaRef.deduceOpenCLAddressSpace(Var); 939 940 // Substitute the nested name specifier, if any. 941 if (SubstQualifier(D, Var)) 942 return nullptr; 943 944 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, 945 StartingScope, InstantiatingVarTemplate); 946 947 if (D->isNRVOVariable()) { 948 QualType ReturnType = cast<FunctionDecl>(DC)->getReturnType(); 949 if (SemaRef.isCopyElisionCandidate(ReturnType, Var, Sema::CES_Strict)) 950 Var->setNRVOVariable(true); 951 } 952 953 Var->setImplicit(D->isImplicit()); 954 955 if (Var->isStaticLocal()) 956 SemaRef.CheckStaticLocalForDllExport(Var); 957 958 return Var; 959 } 960 961 Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) { 962 AccessSpecDecl* AD 963 = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner, 964 D->getAccessSpecifierLoc(), D->getColonLoc()); 965 Owner->addHiddenDecl(AD); 966 return AD; 967 } 968 969 Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) { 970 bool Invalid = false; 971 TypeSourceInfo *DI = D->getTypeSourceInfo(); 972 if (DI->getType()->isInstantiationDependentType() || 973 DI->getType()->isVariablyModifiedType()) { 974 DI = SemaRef.SubstType(DI, TemplateArgs, 975 D->getLocation(), D->getDeclName()); 976 if (!DI) { 977 DI = D->getTypeSourceInfo(); 978 Invalid = true; 979 } else if (DI->getType()->isFunctionType()) { 980 // C++ [temp.arg.type]p3: 981 // If a declaration acquires a function type through a type 982 // dependent on a template-parameter and this causes a 983 // declaration that does not use the syntactic form of a 984 // function declarator to have function type, the program is 985 // ill-formed. 986 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) 987 << DI->getType(); 988 Invalid = true; 989 } 990 } else { 991 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 992 } 993 994 Expr *BitWidth = D->getBitWidth(); 995 if (Invalid) 996 BitWidth = nullptr; 997 else if (BitWidth) { 998 // The bit-width expression is a constant expression. 999 EnterExpressionEvaluationContext Unevaluated( 1000 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1001 1002 ExprResult InstantiatedBitWidth 1003 = SemaRef.SubstExpr(BitWidth, TemplateArgs); 1004 if (InstantiatedBitWidth.isInvalid()) { 1005 Invalid = true; 1006 BitWidth = nullptr; 1007 } else 1008 BitWidth = InstantiatedBitWidth.getAs<Expr>(); 1009 } 1010 1011 FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(), 1012 DI->getType(), DI, 1013 cast<RecordDecl>(Owner), 1014 D->getLocation(), 1015 D->isMutable(), 1016 BitWidth, 1017 D->getInClassInitStyle(), 1018 D->getInnerLocStart(), 1019 D->getAccess(), 1020 nullptr); 1021 if (!Field) { 1022 cast<Decl>(Owner)->setInvalidDecl(); 1023 return nullptr; 1024 } 1025 1026 SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope); 1027 1028 if (Field->hasAttrs()) 1029 SemaRef.CheckAlignasUnderalignment(Field); 1030 1031 if (Invalid) 1032 Field->setInvalidDecl(); 1033 1034 if (!Field->getDeclName()) { 1035 // Keep track of where this decl came from. 1036 SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D); 1037 } 1038 if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) { 1039 if (Parent->isAnonymousStructOrUnion() && 1040 Parent->getRedeclContext()->isFunctionOrMethod()) 1041 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field); 1042 } 1043 1044 Field->setImplicit(D->isImplicit()); 1045 Field->setAccess(D->getAccess()); 1046 Owner->addDecl(Field); 1047 1048 return Field; 1049 } 1050 1051 Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) { 1052 bool Invalid = false; 1053 TypeSourceInfo *DI = D->getTypeSourceInfo(); 1054 1055 if (DI->getType()->isVariablyModifiedType()) { 1056 SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified) 1057 << D; 1058 Invalid = true; 1059 } else if (DI->getType()->isInstantiationDependentType()) { 1060 DI = SemaRef.SubstType(DI, TemplateArgs, 1061 D->getLocation(), D->getDeclName()); 1062 if (!DI) { 1063 DI = D->getTypeSourceInfo(); 1064 Invalid = true; 1065 } else if (DI->getType()->isFunctionType()) { 1066 // C++ [temp.arg.type]p3: 1067 // If a declaration acquires a function type through a type 1068 // dependent on a template-parameter and this causes a 1069 // declaration that does not use the syntactic form of a 1070 // function declarator to have function type, the program is 1071 // ill-formed. 1072 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) 1073 << DI->getType(); 1074 Invalid = true; 1075 } 1076 } else { 1077 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 1078 } 1079 1080 MSPropertyDecl *Property = MSPropertyDecl::Create( 1081 SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(), 1082 DI, D->getBeginLoc(), D->getGetterId(), D->getSetterId()); 1083 1084 SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs, 1085 StartingScope); 1086 1087 if (Invalid) 1088 Property->setInvalidDecl(); 1089 1090 Property->setAccess(D->getAccess()); 1091 Owner->addDecl(Property); 1092 1093 return Property; 1094 } 1095 1096 Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) { 1097 NamedDecl **NamedChain = 1098 new (SemaRef.Context)NamedDecl*[D->getChainingSize()]; 1099 1100 int i = 0; 1101 for (auto *PI : D->chain()) { 1102 NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI, 1103 TemplateArgs); 1104 if (!Next) 1105 return nullptr; 1106 1107 NamedChain[i++] = Next; 1108 } 1109 1110 QualType T = cast<FieldDecl>(NamedChain[i-1])->getType(); 1111 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( 1112 SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T, 1113 {NamedChain, D->getChainingSize()}); 1114 1115 for (const auto *Attr : D->attrs()) 1116 IndirectField->addAttr(Attr->clone(SemaRef.Context)); 1117 1118 IndirectField->setImplicit(D->isImplicit()); 1119 IndirectField->setAccess(D->getAccess()); 1120 Owner->addDecl(IndirectField); 1121 return IndirectField; 1122 } 1123 1124 Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) { 1125 // Handle friend type expressions by simply substituting template 1126 // parameters into the pattern type and checking the result. 1127 if (TypeSourceInfo *Ty = D->getFriendType()) { 1128 TypeSourceInfo *InstTy; 1129 // If this is an unsupported friend, don't bother substituting template 1130 // arguments into it. The actual type referred to won't be used by any 1131 // parts of Clang, and may not be valid for instantiating. Just use the 1132 // same info for the instantiated friend. 1133 if (D->isUnsupportedFriend()) { 1134 InstTy = Ty; 1135 } else { 1136 InstTy = SemaRef.SubstType(Ty, TemplateArgs, 1137 D->getLocation(), DeclarationName()); 1138 } 1139 if (!InstTy) 1140 return nullptr; 1141 1142 FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getBeginLoc(), 1143 D->getFriendLoc(), InstTy); 1144 if (!FD) 1145 return nullptr; 1146 1147 FD->setAccess(AS_public); 1148 FD->setUnsupportedFriend(D->isUnsupportedFriend()); 1149 Owner->addDecl(FD); 1150 return FD; 1151 } 1152 1153 NamedDecl *ND = D->getFriendDecl(); 1154 assert(ND && "friend decl must be a decl or a type!"); 1155 1156 // All of the Visit implementations for the various potential friend 1157 // declarations have to be carefully written to work for friend 1158 // objects, with the most important detail being that the target 1159 // decl should almost certainly not be placed in Owner. 1160 Decl *NewND = Visit(ND); 1161 if (!NewND) return nullptr; 1162 1163 FriendDecl *FD = 1164 FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(), 1165 cast<NamedDecl>(NewND), D->getFriendLoc()); 1166 FD->setAccess(AS_public); 1167 FD->setUnsupportedFriend(D->isUnsupportedFriend()); 1168 Owner->addDecl(FD); 1169 return FD; 1170 } 1171 1172 Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) { 1173 Expr *AssertExpr = D->getAssertExpr(); 1174 1175 // The expression in a static assertion is a constant expression. 1176 EnterExpressionEvaluationContext Unevaluated( 1177 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1178 1179 ExprResult InstantiatedAssertExpr 1180 = SemaRef.SubstExpr(AssertExpr, TemplateArgs); 1181 if (InstantiatedAssertExpr.isInvalid()) 1182 return nullptr; 1183 1184 return SemaRef.BuildStaticAssertDeclaration(D->getLocation(), 1185 InstantiatedAssertExpr.get(), 1186 D->getMessage(), 1187 D->getRParenLoc(), 1188 D->isFailed()); 1189 } 1190 1191 Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) { 1192 EnumDecl *PrevDecl = nullptr; 1193 if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { 1194 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), 1195 PatternPrev, 1196 TemplateArgs); 1197 if (!Prev) return nullptr; 1198 PrevDecl = cast<EnumDecl>(Prev); 1199 } 1200 1201 EnumDecl *Enum = 1202 EnumDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 1203 D->getLocation(), D->getIdentifier(), PrevDecl, 1204 D->isScoped(), D->isScopedUsingClassTag(), D->isFixed()); 1205 if (D->isFixed()) { 1206 if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) { 1207 // If we have type source information for the underlying type, it means it 1208 // has been explicitly set by the user. Perform substitution on it before 1209 // moving on. 1210 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 1211 TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc, 1212 DeclarationName()); 1213 if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI)) 1214 Enum->setIntegerType(SemaRef.Context.IntTy); 1215 else 1216 Enum->setIntegerTypeSourceInfo(NewTI); 1217 } else { 1218 assert(!D->getIntegerType()->isDependentType() 1219 && "Dependent type without type source info"); 1220 Enum->setIntegerType(D->getIntegerType()); 1221 } 1222 } 1223 1224 SemaRef.InstantiateAttrs(TemplateArgs, D, Enum); 1225 1226 Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation); 1227 Enum->setAccess(D->getAccess()); 1228 // Forward the mangling number from the template to the instantiated decl. 1229 SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D)); 1230 // See if the old tag was defined along with a declarator. 1231 // If it did, mark the new tag as being associated with that declarator. 1232 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) 1233 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD); 1234 // See if the old tag was defined along with a typedef. 1235 // If it did, mark the new tag as being associated with that typedef. 1236 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) 1237 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND); 1238 if (SubstQualifier(D, Enum)) return nullptr; 1239 Owner->addDecl(Enum); 1240 1241 EnumDecl *Def = D->getDefinition(); 1242 if (Def && Def != D) { 1243 // If this is an out-of-line definition of an enum member template, check 1244 // that the underlying types match in the instantiation of both 1245 // declarations. 1246 if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) { 1247 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 1248 QualType DefnUnderlying = 1249 SemaRef.SubstType(TI->getType(), TemplateArgs, 1250 UnderlyingLoc, DeclarationName()); 1251 SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(), 1252 DefnUnderlying, /*IsFixed=*/true, Enum); 1253 } 1254 } 1255 1256 // C++11 [temp.inst]p1: The implicit instantiation of a class template 1257 // specialization causes the implicit instantiation of the declarations, but 1258 // not the definitions of scoped member enumerations. 1259 // 1260 // DR1484 clarifies that enumeration definitions inside of a template 1261 // declaration aren't considered entities that can be separately instantiated 1262 // from the rest of the entity they are declared inside of. 1263 if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) { 1264 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum); 1265 InstantiateEnumDefinition(Enum, Def); 1266 } 1267 1268 return Enum; 1269 } 1270 1271 void TemplateDeclInstantiator::InstantiateEnumDefinition( 1272 EnumDecl *Enum, EnumDecl *Pattern) { 1273 Enum->startDefinition(); 1274 1275 // Update the location to refer to the definition. 1276 Enum->setLocation(Pattern->getLocation()); 1277 1278 SmallVector<Decl*, 4> Enumerators; 1279 1280 EnumConstantDecl *LastEnumConst = nullptr; 1281 for (auto *EC : Pattern->enumerators()) { 1282 // The specified value for the enumerator. 1283 ExprResult Value((Expr *)nullptr); 1284 if (Expr *UninstValue = EC->getInitExpr()) { 1285 // The enumerator's value expression is a constant expression. 1286 EnterExpressionEvaluationContext Unevaluated( 1287 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1288 1289 Value = SemaRef.SubstExpr(UninstValue, TemplateArgs); 1290 } 1291 1292 // Drop the initial value and continue. 1293 bool isInvalid = false; 1294 if (Value.isInvalid()) { 1295 Value = nullptr; 1296 isInvalid = true; 1297 } 1298 1299 EnumConstantDecl *EnumConst 1300 = SemaRef.CheckEnumConstant(Enum, LastEnumConst, 1301 EC->getLocation(), EC->getIdentifier(), 1302 Value.get()); 1303 1304 if (isInvalid) { 1305 if (EnumConst) 1306 EnumConst->setInvalidDecl(); 1307 Enum->setInvalidDecl(); 1308 } 1309 1310 if (EnumConst) { 1311 SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst); 1312 1313 EnumConst->setAccess(Enum->getAccess()); 1314 Enum->addDecl(EnumConst); 1315 Enumerators.push_back(EnumConst); 1316 LastEnumConst = EnumConst; 1317 1318 if (Pattern->getDeclContext()->isFunctionOrMethod() && 1319 !Enum->isScoped()) { 1320 // If the enumeration is within a function or method, record the enum 1321 // constant as a local. 1322 SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst); 1323 } 1324 } 1325 } 1326 1327 SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum, 1328 Enumerators, nullptr, ParsedAttributesView()); 1329 } 1330 1331 Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) { 1332 llvm_unreachable("EnumConstantDecls can only occur within EnumDecls."); 1333 } 1334 1335 Decl * 1336 TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) { 1337 llvm_unreachable("BuiltinTemplateDecls cannot be instantiated."); 1338 } 1339 1340 Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) { 1341 bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 1342 1343 // Create a local instantiation scope for this class template, which 1344 // will contain the instantiations of the template parameters. 1345 LocalInstantiationScope Scope(SemaRef); 1346 TemplateParameterList *TempParams = D->getTemplateParameters(); 1347 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1348 if (!InstParams) 1349 return nullptr; 1350 1351 CXXRecordDecl *Pattern = D->getTemplatedDecl(); 1352 1353 // Instantiate the qualifier. We have to do this first in case 1354 // we're a friend declaration, because if we are then we need to put 1355 // the new declaration in the appropriate context. 1356 NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc(); 1357 if (QualifierLoc) { 1358 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 1359 TemplateArgs); 1360 if (!QualifierLoc) 1361 return nullptr; 1362 } 1363 1364 CXXRecordDecl *PrevDecl = nullptr; 1365 ClassTemplateDecl *PrevClassTemplate = nullptr; 1366 1367 if (!isFriend && getPreviousDeclForInstantiation(Pattern)) { 1368 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1369 if (!Found.empty()) { 1370 PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front()); 1371 if (PrevClassTemplate) 1372 PrevDecl = PrevClassTemplate->getTemplatedDecl(); 1373 } 1374 } 1375 1376 // If this isn't a friend, then it's a member template, in which 1377 // case we just want to build the instantiation in the 1378 // specialization. If it is a friend, we want to build it in 1379 // the appropriate context. 1380 DeclContext *DC = Owner; 1381 if (isFriend) { 1382 if (QualifierLoc) { 1383 CXXScopeSpec SS; 1384 SS.Adopt(QualifierLoc); 1385 DC = SemaRef.computeDeclContext(SS); 1386 if (!DC) return nullptr; 1387 } else { 1388 DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(), 1389 Pattern->getDeclContext(), 1390 TemplateArgs); 1391 } 1392 1393 // Look for a previous declaration of the template in the owning 1394 // context. 1395 LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(), 1396 Sema::LookupOrdinaryName, 1397 SemaRef.forRedeclarationInCurContext()); 1398 SemaRef.LookupQualifiedName(R, DC); 1399 1400 if (R.isSingleResult()) { 1401 PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>(); 1402 if (PrevClassTemplate) 1403 PrevDecl = PrevClassTemplate->getTemplatedDecl(); 1404 } 1405 1406 if (!PrevClassTemplate && QualifierLoc) { 1407 SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope) 1408 << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC 1409 << QualifierLoc.getSourceRange(); 1410 return nullptr; 1411 } 1412 1413 bool AdoptedPreviousTemplateParams = false; 1414 if (PrevClassTemplate) { 1415 bool Complain = true; 1416 1417 // HACK: libstdc++ 4.2.1 contains an ill-formed friend class 1418 // template for struct std::tr1::__detail::_Map_base, where the 1419 // template parameters of the friend declaration don't match the 1420 // template parameters of the original declaration. In this one 1421 // case, we don't complain about the ill-formed friend 1422 // declaration. 1423 if (isFriend && Pattern->getIdentifier() && 1424 Pattern->getIdentifier()->isStr("_Map_base") && 1425 DC->isNamespace() && 1426 cast<NamespaceDecl>(DC)->getIdentifier() && 1427 cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__detail")) { 1428 DeclContext *DCParent = DC->getParent(); 1429 if (DCParent->isNamespace() && 1430 cast<NamespaceDecl>(DCParent)->getIdentifier() && 1431 cast<NamespaceDecl>(DCParent)->getIdentifier()->isStr("tr1")) { 1432 if (cast<Decl>(DCParent)->isInStdNamespace()) 1433 Complain = false; 1434 } 1435 } 1436 1437 TemplateParameterList *PrevParams 1438 = PrevClassTemplate->getMostRecentDecl()->getTemplateParameters(); 1439 1440 // Make sure the parameter lists match. 1441 if (!SemaRef.TemplateParameterListsAreEqual(InstParams, PrevParams, 1442 Complain, 1443 Sema::TPL_TemplateMatch)) { 1444 if (Complain) 1445 return nullptr; 1446 1447 AdoptedPreviousTemplateParams = true; 1448 InstParams = PrevParams; 1449 } 1450 1451 // Do some additional validation, then merge default arguments 1452 // from the existing declarations. 1453 if (!AdoptedPreviousTemplateParams && 1454 SemaRef.CheckTemplateParameterList(InstParams, PrevParams, 1455 Sema::TPC_ClassTemplate)) 1456 return nullptr; 1457 } 1458 } 1459 1460 CXXRecordDecl *RecordInst = CXXRecordDecl::Create( 1461 SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getBeginLoc(), 1462 Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl, 1463 /*DelayTypeCreation=*/true); 1464 1465 if (QualifierLoc) 1466 RecordInst->setQualifierInfo(QualifierLoc); 1467 1468 SemaRef.InstantiateAttrsForDecl(TemplateArgs, Pattern, RecordInst, LateAttrs, 1469 StartingScope); 1470 1471 ClassTemplateDecl *Inst 1472 = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(), 1473 D->getIdentifier(), InstParams, RecordInst); 1474 assert(!(isFriend && Owner->isDependentContext())); 1475 Inst->setPreviousDecl(PrevClassTemplate); 1476 1477 RecordInst->setDescribedClassTemplate(Inst); 1478 1479 if (isFriend) { 1480 if (PrevClassTemplate) 1481 Inst->setAccess(PrevClassTemplate->getAccess()); 1482 else 1483 Inst->setAccess(D->getAccess()); 1484 1485 Inst->setObjectOfFriendDecl(); 1486 // TODO: do we want to track the instantiation progeny of this 1487 // friend target decl? 1488 } else { 1489 Inst->setAccess(D->getAccess()); 1490 if (!PrevClassTemplate) 1491 Inst->setInstantiatedFromMemberTemplate(D); 1492 } 1493 1494 // Trigger creation of the type for the instantiation. 1495 SemaRef.Context.getInjectedClassNameType(RecordInst, 1496 Inst->getInjectedClassNameSpecialization()); 1497 1498 // Finish handling of friends. 1499 if (isFriend) { 1500 DC->makeDeclVisibleInContext(Inst); 1501 Inst->setLexicalDeclContext(Owner); 1502 RecordInst->setLexicalDeclContext(Owner); 1503 return Inst; 1504 } 1505 1506 if (D->isOutOfLine()) { 1507 Inst->setLexicalDeclContext(D->getLexicalDeclContext()); 1508 RecordInst->setLexicalDeclContext(D->getLexicalDeclContext()); 1509 } 1510 1511 Owner->addDecl(Inst); 1512 1513 if (!PrevClassTemplate) { 1514 // Queue up any out-of-line partial specializations of this member 1515 // class template; the client will force their instantiation once 1516 // the enclosing class has been instantiated. 1517 SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs; 1518 D->getPartialSpecializations(PartialSpecs); 1519 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) 1520 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) 1521 OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I])); 1522 } 1523 1524 return Inst; 1525 } 1526 1527 Decl * 1528 TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl( 1529 ClassTemplatePartialSpecializationDecl *D) { 1530 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); 1531 1532 // Lookup the already-instantiated declaration in the instantiation 1533 // of the class template and return that. 1534 DeclContext::lookup_result Found 1535 = Owner->lookup(ClassTemplate->getDeclName()); 1536 if (Found.empty()) 1537 return nullptr; 1538 1539 ClassTemplateDecl *InstClassTemplate 1540 = dyn_cast<ClassTemplateDecl>(Found.front()); 1541 if (!InstClassTemplate) 1542 return nullptr; 1543 1544 if (ClassTemplatePartialSpecializationDecl *Result 1545 = InstClassTemplate->findPartialSpecInstantiatedFromMember(D)) 1546 return Result; 1547 1548 return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D); 1549 } 1550 1551 Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) { 1552 assert(D->getTemplatedDecl()->isStaticDataMember() && 1553 "Only static data member templates are allowed."); 1554 1555 // Create a local instantiation scope for this variable template, which 1556 // will contain the instantiations of the template parameters. 1557 LocalInstantiationScope Scope(SemaRef); 1558 TemplateParameterList *TempParams = D->getTemplateParameters(); 1559 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1560 if (!InstParams) 1561 return nullptr; 1562 1563 VarDecl *Pattern = D->getTemplatedDecl(); 1564 VarTemplateDecl *PrevVarTemplate = nullptr; 1565 1566 if (getPreviousDeclForInstantiation(Pattern)) { 1567 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1568 if (!Found.empty()) 1569 PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); 1570 } 1571 1572 VarDecl *VarInst = 1573 cast_or_null<VarDecl>(VisitVarDecl(Pattern, 1574 /*InstantiatingVarTemplate=*/true)); 1575 if (!VarInst) return nullptr; 1576 1577 DeclContext *DC = Owner; 1578 1579 VarTemplateDecl *Inst = VarTemplateDecl::Create( 1580 SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams, 1581 VarInst); 1582 VarInst->setDescribedVarTemplate(Inst); 1583 Inst->setPreviousDecl(PrevVarTemplate); 1584 1585 Inst->setAccess(D->getAccess()); 1586 if (!PrevVarTemplate) 1587 Inst->setInstantiatedFromMemberTemplate(D); 1588 1589 if (D->isOutOfLine()) { 1590 Inst->setLexicalDeclContext(D->getLexicalDeclContext()); 1591 VarInst->setLexicalDeclContext(D->getLexicalDeclContext()); 1592 } 1593 1594 Owner->addDecl(Inst); 1595 1596 if (!PrevVarTemplate) { 1597 // Queue up any out-of-line partial specializations of this member 1598 // variable template; the client will force their instantiation once 1599 // the enclosing class has been instantiated. 1600 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 1601 D->getPartialSpecializations(PartialSpecs); 1602 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) 1603 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) 1604 OutOfLineVarPartialSpecs.push_back( 1605 std::make_pair(Inst, PartialSpecs[I])); 1606 } 1607 1608 return Inst; 1609 } 1610 1611 Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl( 1612 VarTemplatePartialSpecializationDecl *D) { 1613 assert(D->isStaticDataMember() && 1614 "Only static data member templates are allowed."); 1615 1616 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); 1617 1618 // Lookup the already-instantiated declaration and return that. 1619 DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName()); 1620 assert(!Found.empty() && "Instantiation found nothing?"); 1621 1622 VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); 1623 assert(InstVarTemplate && "Instantiation did not find a variable template?"); 1624 1625 if (VarTemplatePartialSpecializationDecl *Result = 1626 InstVarTemplate->findPartialSpecInstantiatedFromMember(D)) 1627 return Result; 1628 1629 return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D); 1630 } 1631 1632 Decl * 1633 TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { 1634 // Create a local instantiation scope for this function template, which 1635 // will contain the instantiations of the template parameters and then get 1636 // merged with the local instantiation scope for the function template 1637 // itself. 1638 LocalInstantiationScope Scope(SemaRef); 1639 1640 TemplateParameterList *TempParams = D->getTemplateParameters(); 1641 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1642 if (!InstParams) 1643 return nullptr; 1644 1645 FunctionDecl *Instantiated = nullptr; 1646 if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl())) 1647 Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod, 1648 InstParams)); 1649 else 1650 Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl( 1651 D->getTemplatedDecl(), 1652 InstParams)); 1653 1654 if (!Instantiated) 1655 return nullptr; 1656 1657 // Link the instantiated function template declaration to the function 1658 // template from which it was instantiated. 1659 FunctionTemplateDecl *InstTemplate 1660 = Instantiated->getDescribedFunctionTemplate(); 1661 InstTemplate->setAccess(D->getAccess()); 1662 assert(InstTemplate && 1663 "VisitFunctionDecl/CXXMethodDecl didn't create a template!"); 1664 1665 bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None); 1666 1667 // Link the instantiation back to the pattern *unless* this is a 1668 // non-definition friend declaration. 1669 if (!InstTemplate->getInstantiatedFromMemberTemplate() && 1670 !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition())) 1671 InstTemplate->setInstantiatedFromMemberTemplate(D); 1672 1673 // Make declarations visible in the appropriate context. 1674 if (!isFriend) { 1675 Owner->addDecl(InstTemplate); 1676 } else if (InstTemplate->getDeclContext()->isRecord() && 1677 !getPreviousDeclForInstantiation(D)) { 1678 SemaRef.CheckFriendAccess(InstTemplate); 1679 } 1680 1681 return InstTemplate; 1682 } 1683 1684 Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) { 1685 CXXRecordDecl *PrevDecl = nullptr; 1686 if (D->isInjectedClassName()) 1687 PrevDecl = cast<CXXRecordDecl>(Owner); 1688 else if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { 1689 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), 1690 PatternPrev, 1691 TemplateArgs); 1692 if (!Prev) return nullptr; 1693 PrevDecl = cast<CXXRecordDecl>(Prev); 1694 } 1695 1696 CXXRecordDecl *Record = CXXRecordDecl::Create( 1697 SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(), 1698 D->getLocation(), D->getIdentifier(), PrevDecl); 1699 1700 // Substitute the nested name specifier, if any. 1701 if (SubstQualifier(D, Record)) 1702 return nullptr; 1703 1704 SemaRef.InstantiateAttrsForDecl(TemplateArgs, D, Record, LateAttrs, 1705 StartingScope); 1706 1707 Record->setImplicit(D->isImplicit()); 1708 // FIXME: Check against AS_none is an ugly hack to work around the issue that 1709 // the tag decls introduced by friend class declarations don't have an access 1710 // specifier. Remove once this area of the code gets sorted out. 1711 if (D->getAccess() != AS_none) 1712 Record->setAccess(D->getAccess()); 1713 if (!D->isInjectedClassName()) 1714 Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); 1715 1716 // If the original function was part of a friend declaration, 1717 // inherit its namespace state. 1718 if (D->getFriendObjectKind()) 1719 Record->setObjectOfFriendDecl(); 1720 1721 // Make sure that anonymous structs and unions are recorded. 1722 if (D->isAnonymousStructOrUnion()) 1723 Record->setAnonymousStructOrUnion(true); 1724 1725 if (D->isLocalClass()) 1726 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record); 1727 1728 // Forward the mangling number from the template to the instantiated decl. 1729 SemaRef.Context.setManglingNumber(Record, 1730 SemaRef.Context.getManglingNumber(D)); 1731 1732 // See if the old tag was defined along with a declarator. 1733 // If it did, mark the new tag as being associated with that declarator. 1734 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) 1735 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD); 1736 1737 // See if the old tag was defined along with a typedef. 1738 // If it did, mark the new tag as being associated with that typedef. 1739 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) 1740 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND); 1741 1742 Owner->addDecl(Record); 1743 1744 // DR1484 clarifies that the members of a local class are instantiated as part 1745 // of the instantiation of their enclosing entity. 1746 if (D->isCompleteDefinition() && D->isLocalClass()) { 1747 Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef); 1748 1749 SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs, 1750 TSK_ImplicitInstantiation, 1751 /*Complain=*/true); 1752 1753 // For nested local classes, we will instantiate the members when we 1754 // reach the end of the outermost (non-nested) local class. 1755 if (!D->isCXXClassMember()) 1756 SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs, 1757 TSK_ImplicitInstantiation); 1758 1759 // This class may have local implicit instantiations that need to be 1760 // performed within this scope. 1761 LocalInstantiations.perform(); 1762 } 1763 1764 SemaRef.DiagnoseUnusedNestedTypedefs(Record); 1765 1766 return Record; 1767 } 1768 1769 /// Adjust the given function type for an instantiation of the 1770 /// given declaration, to cope with modifications to the function's type that 1771 /// aren't reflected in the type-source information. 1772 /// 1773 /// \param D The declaration we're instantiating. 1774 /// \param TInfo The already-instantiated type. 1775 static QualType adjustFunctionTypeForInstantiation(ASTContext &Context, 1776 FunctionDecl *D, 1777 TypeSourceInfo *TInfo) { 1778 const FunctionProtoType *OrigFunc 1779 = D->getType()->castAs<FunctionProtoType>(); 1780 const FunctionProtoType *NewFunc 1781 = TInfo->getType()->castAs<FunctionProtoType>(); 1782 if (OrigFunc->getExtInfo() == NewFunc->getExtInfo()) 1783 return TInfo->getType(); 1784 1785 FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo(); 1786 NewEPI.ExtInfo = OrigFunc->getExtInfo(); 1787 return Context.getFunctionType(NewFunc->getReturnType(), 1788 NewFunc->getParamTypes(), NewEPI); 1789 } 1790 1791 /// Normal class members are of more specific types and therefore 1792 /// don't make it here. This function serves three purposes: 1793 /// 1) instantiating function templates 1794 /// 2) substituting friend declarations 1795 /// 3) substituting deduction guide declarations for nested class templates 1796 Decl *TemplateDeclInstantiator::VisitFunctionDecl( 1797 FunctionDecl *D, TemplateParameterList *TemplateParams, 1798 RewriteKind FunctionRewriteKind) { 1799 // Check whether there is already a function template specialization for 1800 // this declaration. 1801 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); 1802 if (FunctionTemplate && !TemplateParams) { 1803 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 1804 1805 void *InsertPos = nullptr; 1806 FunctionDecl *SpecFunc 1807 = FunctionTemplate->findSpecialization(Innermost, InsertPos); 1808 1809 // If we already have a function template specialization, return it. 1810 if (SpecFunc) 1811 return SpecFunc; 1812 } 1813 1814 bool isFriend; 1815 if (FunctionTemplate) 1816 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); 1817 else 1818 isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 1819 1820 bool MergeWithParentScope = (TemplateParams != nullptr) || 1821 Owner->isFunctionOrMethod() || 1822 !(isa<Decl>(Owner) && 1823 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); 1824 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); 1825 1826 ExplicitSpecifier InstantiatedExplicitSpecifier; 1827 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) { 1828 InstantiatedExplicitSpecifier = instantiateExplicitSpecifier( 1829 SemaRef, TemplateArgs, DGuide->getExplicitSpecifier(), DGuide); 1830 if (InstantiatedExplicitSpecifier.isInvalid()) 1831 return nullptr; 1832 } 1833 1834 SmallVector<ParmVarDecl *, 4> Params; 1835 TypeSourceInfo *TInfo = SubstFunctionType(D, Params); 1836 if (!TInfo) 1837 return nullptr; 1838 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); 1839 1840 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); 1841 if (QualifierLoc) { 1842 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 1843 TemplateArgs); 1844 if (!QualifierLoc) 1845 return nullptr; 1846 } 1847 1848 // FIXME: Concepts: Do not substitute into constraint expressions 1849 Expr *TrailingRequiresClause = D->getTrailingRequiresClause(); 1850 if (TrailingRequiresClause) { 1851 EnterExpressionEvaluationContext ConstantEvaluated( 1852 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); 1853 ExprResult SubstRC = SemaRef.SubstExpr(TrailingRequiresClause, 1854 TemplateArgs); 1855 if (SubstRC.isInvalid()) 1856 return nullptr; 1857 TrailingRequiresClause = SubstRC.get(); 1858 if (!SemaRef.CheckConstraintExpression(TrailingRequiresClause)) 1859 return nullptr; 1860 } 1861 1862 // If we're instantiating a local function declaration, put the result 1863 // in the enclosing namespace; otherwise we need to find the instantiated 1864 // context. 1865 DeclContext *DC; 1866 if (D->isLocalExternDecl()) { 1867 DC = Owner; 1868 SemaRef.adjustContextForLocalExternDecl(DC); 1869 } else if (isFriend && QualifierLoc) { 1870 CXXScopeSpec SS; 1871 SS.Adopt(QualifierLoc); 1872 DC = SemaRef.computeDeclContext(SS); 1873 if (!DC) return nullptr; 1874 } else { 1875 DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), 1876 TemplateArgs); 1877 } 1878 1879 DeclarationNameInfo NameInfo 1880 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 1881 1882 if (FunctionRewriteKind != RewriteKind::None) 1883 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo); 1884 1885 FunctionDecl *Function; 1886 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) { 1887 Function = CXXDeductionGuideDecl::Create( 1888 SemaRef.Context, DC, D->getInnerLocStart(), 1889 InstantiatedExplicitSpecifier, NameInfo, T, TInfo, 1890 D->getSourceRange().getEnd()); 1891 if (DGuide->isCopyDeductionCandidate()) 1892 cast<CXXDeductionGuideDecl>(Function)->setIsCopyDeductionCandidate(); 1893 Function->setAccess(D->getAccess()); 1894 } else { 1895 Function = FunctionDecl::Create( 1896 SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo, 1897 D->getCanonicalDecl()->getStorageClass(), D->isInlineSpecified(), 1898 D->hasWrittenPrototype(), D->getConstexprKind(), 1899 TrailingRequiresClause); 1900 Function->setRangeEnd(D->getSourceRange().getEnd()); 1901 } 1902 1903 if (D->isInlined()) 1904 Function->setImplicitlyInline(); 1905 1906 if (QualifierLoc) 1907 Function->setQualifierInfo(QualifierLoc); 1908 1909 if (D->isLocalExternDecl()) 1910 Function->setLocalExternDecl(); 1911 1912 DeclContext *LexicalDC = Owner; 1913 if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) { 1914 assert(D->getDeclContext()->isFileContext()); 1915 LexicalDC = D->getDeclContext(); 1916 } 1917 1918 Function->setLexicalDeclContext(LexicalDC); 1919 1920 // Attach the parameters 1921 for (unsigned P = 0; P < Params.size(); ++P) 1922 if (Params[P]) 1923 Params[P]->setOwningFunction(Function); 1924 Function->setParams(Params); 1925 1926 if (TrailingRequiresClause) 1927 Function->setTrailingRequiresClause(TrailingRequiresClause); 1928 1929 if (TemplateParams) { 1930 // Our resulting instantiation is actually a function template, since we 1931 // are substituting only the outer template parameters. For example, given 1932 // 1933 // template<typename T> 1934 // struct X { 1935 // template<typename U> friend void f(T, U); 1936 // }; 1937 // 1938 // X<int> x; 1939 // 1940 // We are instantiating the friend function template "f" within X<int>, 1941 // which means substituting int for T, but leaving "f" as a friend function 1942 // template. 1943 // Build the function template itself. 1944 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC, 1945 Function->getLocation(), 1946 Function->getDeclName(), 1947 TemplateParams, Function); 1948 Function->setDescribedFunctionTemplate(FunctionTemplate); 1949 1950 FunctionTemplate->setLexicalDeclContext(LexicalDC); 1951 1952 if (isFriend && D->isThisDeclarationADefinition()) { 1953 FunctionTemplate->setInstantiatedFromMemberTemplate( 1954 D->getDescribedFunctionTemplate()); 1955 } 1956 } else if (FunctionTemplate) { 1957 // Record this function template specialization. 1958 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 1959 Function->setFunctionTemplateSpecialization(FunctionTemplate, 1960 TemplateArgumentList::CreateCopy(SemaRef.Context, 1961 Innermost), 1962 /*InsertPos=*/nullptr); 1963 } else if (isFriend && D->isThisDeclarationADefinition()) { 1964 // Do not connect the friend to the template unless it's actually a 1965 // definition. We don't want non-template functions to be marked as being 1966 // template instantiations. 1967 Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); 1968 } 1969 1970 if (isFriend) 1971 Function->setObjectOfFriendDecl(); 1972 1973 if (InitFunctionInstantiation(Function, D)) 1974 Function->setInvalidDecl(); 1975 1976 bool IsExplicitSpecialization = false; 1977 1978 LookupResult Previous( 1979 SemaRef, Function->getDeclName(), SourceLocation(), 1980 D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage 1981 : Sema::LookupOrdinaryName, 1982 D->isLocalExternDecl() ? Sema::ForExternalRedeclaration 1983 : SemaRef.forRedeclarationInCurContext()); 1984 1985 if (DependentFunctionTemplateSpecializationInfo *Info 1986 = D->getDependentSpecializationInfo()) { 1987 assert(isFriend && "non-friend has dependent specialization info?"); 1988 1989 // Instantiate the explicit template arguments. 1990 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), 1991 Info->getRAngleLoc()); 1992 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(), 1993 ExplicitArgs, TemplateArgs)) 1994 return nullptr; 1995 1996 // Map the candidate templates to their instantiations. 1997 for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) { 1998 Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(), 1999 Info->getTemplate(I), 2000 TemplateArgs); 2001 if (!Temp) return nullptr; 2002 2003 Previous.addDecl(cast<FunctionTemplateDecl>(Temp)); 2004 } 2005 2006 if (SemaRef.CheckFunctionTemplateSpecialization(Function, 2007 &ExplicitArgs, 2008 Previous)) 2009 Function->setInvalidDecl(); 2010 2011 IsExplicitSpecialization = true; 2012 } else if (const ASTTemplateArgumentListInfo *Info = 2013 D->getTemplateSpecializationArgsAsWritten()) { 2014 // The name of this function was written as a template-id. 2015 SemaRef.LookupQualifiedName(Previous, DC); 2016 2017 // Instantiate the explicit template arguments. 2018 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), 2019 Info->getRAngleLoc()); 2020 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(), 2021 ExplicitArgs, TemplateArgs)) 2022 return nullptr; 2023 2024 if (SemaRef.CheckFunctionTemplateSpecialization(Function, 2025 &ExplicitArgs, 2026 Previous)) 2027 Function->setInvalidDecl(); 2028 2029 IsExplicitSpecialization = true; 2030 } else if (TemplateParams || !FunctionTemplate) { 2031 // Look only into the namespace where the friend would be declared to 2032 // find a previous declaration. This is the innermost enclosing namespace, 2033 // as described in ActOnFriendFunctionDecl. 2034 SemaRef.LookupQualifiedName(Previous, DC); 2035 2036 // In C++, the previous declaration we find might be a tag type 2037 // (class or enum). In this case, the new declaration will hide the 2038 // tag type. Note that this does does not apply if we're declaring a 2039 // typedef (C++ [dcl.typedef]p4). 2040 if (Previous.isSingleTagDecl()) 2041 Previous.clear(); 2042 } 2043 2044 SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous, 2045 IsExplicitSpecialization); 2046 2047 NamedDecl *PrincipalDecl = (TemplateParams 2048 ? cast<NamedDecl>(FunctionTemplate) 2049 : Function); 2050 2051 // If the original function was part of a friend declaration, 2052 // inherit its namespace state and add it to the owner. 2053 if (isFriend) { 2054 Function->setObjectOfFriendDecl(); 2055 if (FunctionTemplateDecl *FT = Function->getDescribedFunctionTemplate()) 2056 FT->setObjectOfFriendDecl(); 2057 DC->makeDeclVisibleInContext(PrincipalDecl); 2058 2059 bool QueuedInstantiation = false; 2060 2061 // C++11 [temp.friend]p4 (DR329): 2062 // When a function is defined in a friend function declaration in a class 2063 // template, the function is instantiated when the function is odr-used. 2064 // The same restrictions on multiple declarations and definitions that 2065 // apply to non-template function declarations and definitions also apply 2066 // to these implicit definitions. 2067 if (D->isThisDeclarationADefinition()) { 2068 SemaRef.CheckForFunctionRedefinition(Function); 2069 if (!Function->isInvalidDecl()) { 2070 for (auto R : Function->redecls()) { 2071 if (R == Function) 2072 continue; 2073 2074 // If some prior declaration of this function has been used, we need 2075 // to instantiate its definition. 2076 if (!QueuedInstantiation && R->isUsed(false)) { 2077 if (MemberSpecializationInfo *MSInfo = 2078 Function->getMemberSpecializationInfo()) { 2079 if (MSInfo->getPointOfInstantiation().isInvalid()) { 2080 SourceLocation Loc = R->getLocation(); // FIXME 2081 MSInfo->setPointOfInstantiation(Loc); 2082 SemaRef.PendingLocalImplicitInstantiations.push_back( 2083 std::make_pair(Function, Loc)); 2084 QueuedInstantiation = true; 2085 } 2086 } 2087 } 2088 } 2089 } 2090 } 2091 2092 // Check the template parameter list against the previous declaration. The 2093 // goal here is to pick up default arguments added since the friend was 2094 // declared; we know the template parameter lists match, since otherwise 2095 // we would not have picked this template as the previous declaration. 2096 if (TemplateParams && FunctionTemplate->getPreviousDecl()) { 2097 SemaRef.CheckTemplateParameterList( 2098 TemplateParams, 2099 FunctionTemplate->getPreviousDecl()->getTemplateParameters(), 2100 Function->isThisDeclarationADefinition() 2101 ? Sema::TPC_FriendFunctionTemplateDefinition 2102 : Sema::TPC_FriendFunctionTemplate); 2103 } 2104 } 2105 2106 if (D->isExplicitlyDefaulted()) { 2107 if (SubstDefaultedFunction(Function, D)) 2108 return nullptr; 2109 } 2110 if (D->isDeleted()) 2111 SemaRef.SetDeclDeleted(Function, D->getLocation()); 2112 2113 if (Function->isLocalExternDecl() && !Function->getPreviousDecl()) 2114 DC->makeDeclVisibleInContext(PrincipalDecl); 2115 2116 if (Function->isOverloadedOperator() && !DC->isRecord() && 2117 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) 2118 PrincipalDecl->setNonMemberOperator(); 2119 2120 return Function; 2121 } 2122 2123 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl( 2124 CXXMethodDecl *D, TemplateParameterList *TemplateParams, 2125 Optional<const ASTTemplateArgumentListInfo *> ClassScopeSpecializationArgs, 2126 RewriteKind FunctionRewriteKind) { 2127 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); 2128 if (FunctionTemplate && !TemplateParams) { 2129 // We are creating a function template specialization from a function 2130 // template. Check whether there is already a function template 2131 // specialization for this particular set of template arguments. 2132 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2133 2134 void *InsertPos = nullptr; 2135 FunctionDecl *SpecFunc 2136 = FunctionTemplate->findSpecialization(Innermost, InsertPos); 2137 2138 // If we already have a function template specialization, return it. 2139 if (SpecFunc) 2140 return SpecFunc; 2141 } 2142 2143 bool isFriend; 2144 if (FunctionTemplate) 2145 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); 2146 else 2147 isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 2148 2149 bool MergeWithParentScope = (TemplateParams != nullptr) || 2150 !(isa<Decl>(Owner) && 2151 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); 2152 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); 2153 2154 // Instantiate enclosing template arguments for friends. 2155 SmallVector<TemplateParameterList *, 4> TempParamLists; 2156 unsigned NumTempParamLists = 0; 2157 if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) { 2158 TempParamLists.resize(NumTempParamLists); 2159 for (unsigned I = 0; I != NumTempParamLists; ++I) { 2160 TemplateParameterList *TempParams = D->getTemplateParameterList(I); 2161 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 2162 if (!InstParams) 2163 return nullptr; 2164 TempParamLists[I] = InstParams; 2165 } 2166 } 2167 2168 ExplicitSpecifier InstantiatedExplicitSpecifier = 2169 instantiateExplicitSpecifier(SemaRef, TemplateArgs, 2170 ExplicitSpecifier::getFromDecl(D), D); 2171 if (InstantiatedExplicitSpecifier.isInvalid()) 2172 return nullptr; 2173 2174 SmallVector<ParmVarDecl *, 4> Params; 2175 TypeSourceInfo *TInfo = SubstFunctionType(D, Params); 2176 if (!TInfo) 2177 return nullptr; 2178 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); 2179 2180 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); 2181 if (QualifierLoc) { 2182 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2183 TemplateArgs); 2184 if (!QualifierLoc) 2185 return nullptr; 2186 } 2187 2188 // FIXME: Concepts: Do not substitute into constraint expressions 2189 Expr *TrailingRequiresClause = D->getTrailingRequiresClause(); 2190 if (TrailingRequiresClause) { 2191 EnterExpressionEvaluationContext ConstantEvaluated( 2192 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); 2193 ExprResult SubstRC = SemaRef.SubstExpr(TrailingRequiresClause, 2194 TemplateArgs); 2195 if (SubstRC.isInvalid()) 2196 return nullptr; 2197 TrailingRequiresClause = SubstRC.get(); 2198 if (!SemaRef.CheckConstraintExpression(TrailingRequiresClause)) 2199 return nullptr; 2200 } 2201 2202 DeclContext *DC = Owner; 2203 if (isFriend) { 2204 if (QualifierLoc) { 2205 CXXScopeSpec SS; 2206 SS.Adopt(QualifierLoc); 2207 DC = SemaRef.computeDeclContext(SS); 2208 2209 if (DC && SemaRef.RequireCompleteDeclContext(SS, DC)) 2210 return nullptr; 2211 } else { 2212 DC = SemaRef.FindInstantiatedContext(D->getLocation(), 2213 D->getDeclContext(), 2214 TemplateArgs); 2215 } 2216 if (!DC) return nullptr; 2217 } 2218 2219 DeclarationNameInfo NameInfo 2220 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 2221 2222 if (FunctionRewriteKind != RewriteKind::None) 2223 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo); 2224 2225 // Build the instantiated method declaration. 2226 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 2227 CXXMethodDecl *Method = nullptr; 2228 2229 SourceLocation StartLoc = D->getInnerLocStart(); 2230 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 2231 Method = CXXConstructorDecl::Create( 2232 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2233 InstantiatedExplicitSpecifier, Constructor->isInlineSpecified(), false, 2234 Constructor->getConstexprKind(), InheritedConstructor(), 2235 TrailingRequiresClause); 2236 Method->setRangeEnd(Constructor->getEndLoc()); 2237 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { 2238 Method = CXXDestructorDecl::Create( 2239 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2240 Destructor->isInlineSpecified(), false, Destructor->getConstexprKind(), 2241 TrailingRequiresClause); 2242 Method->setRangeEnd(Destructor->getEndLoc()); 2243 } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { 2244 Method = CXXConversionDecl::Create( 2245 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2246 Conversion->isInlineSpecified(), InstantiatedExplicitSpecifier, 2247 Conversion->getConstexprKind(), Conversion->getEndLoc(), 2248 TrailingRequiresClause); 2249 } else { 2250 StorageClass SC = D->isStatic() ? SC_Static : SC_None; 2251 Method = CXXMethodDecl::Create(SemaRef.Context, Record, StartLoc, NameInfo, 2252 T, TInfo, SC, D->isInlineSpecified(), 2253 D->getConstexprKind(), D->getEndLoc(), 2254 TrailingRequiresClause); 2255 } 2256 2257 if (D->isInlined()) 2258 Method->setImplicitlyInline(); 2259 2260 if (QualifierLoc) 2261 Method->setQualifierInfo(QualifierLoc); 2262 2263 if (TemplateParams) { 2264 // Our resulting instantiation is actually a function template, since we 2265 // are substituting only the outer template parameters. For example, given 2266 // 2267 // template<typename T> 2268 // struct X { 2269 // template<typename U> void f(T, U); 2270 // }; 2271 // 2272 // X<int> x; 2273 // 2274 // We are instantiating the member template "f" within X<int>, which means 2275 // substituting int for T, but leaving "f" as a member function template. 2276 // Build the function template itself. 2277 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record, 2278 Method->getLocation(), 2279 Method->getDeclName(), 2280 TemplateParams, Method); 2281 if (isFriend) { 2282 FunctionTemplate->setLexicalDeclContext(Owner); 2283 FunctionTemplate->setObjectOfFriendDecl(); 2284 } else if (D->isOutOfLine()) 2285 FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext()); 2286 Method->setDescribedFunctionTemplate(FunctionTemplate); 2287 } else if (FunctionTemplate) { 2288 // Record this function template specialization. 2289 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2290 Method->setFunctionTemplateSpecialization(FunctionTemplate, 2291 TemplateArgumentList::CreateCopy(SemaRef.Context, 2292 Innermost), 2293 /*InsertPos=*/nullptr); 2294 } else if (!isFriend) { 2295 // Record that this is an instantiation of a member function. 2296 Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); 2297 } 2298 2299 // If we are instantiating a member function defined 2300 // out-of-line, the instantiation will have the same lexical 2301 // context (which will be a namespace scope) as the template. 2302 if (isFriend) { 2303 if (NumTempParamLists) 2304 Method->setTemplateParameterListsInfo( 2305 SemaRef.Context, 2306 llvm::makeArrayRef(TempParamLists.data(), NumTempParamLists)); 2307 2308 Method->setLexicalDeclContext(Owner); 2309 Method->setObjectOfFriendDecl(); 2310 } else if (D->isOutOfLine()) 2311 Method->setLexicalDeclContext(D->getLexicalDeclContext()); 2312 2313 // Attach the parameters 2314 for (unsigned P = 0; P < Params.size(); ++P) 2315 Params[P]->setOwningFunction(Method); 2316 Method->setParams(Params); 2317 2318 if (InitMethodInstantiation(Method, D)) 2319 Method->setInvalidDecl(); 2320 2321 LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName, 2322 Sema::ForExternalRedeclaration); 2323 2324 bool IsExplicitSpecialization = false; 2325 2326 // If the name of this function was written as a template-id, instantiate 2327 // the explicit template arguments. 2328 if (DependentFunctionTemplateSpecializationInfo *Info 2329 = D->getDependentSpecializationInfo()) { 2330 assert(isFriend && "non-friend has dependent specialization info?"); 2331 2332 // Instantiate the explicit template arguments. 2333 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), 2334 Info->getRAngleLoc()); 2335 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(), 2336 ExplicitArgs, TemplateArgs)) 2337 return nullptr; 2338 2339 // Map the candidate templates to their instantiations. 2340 for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) { 2341 Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(), 2342 Info->getTemplate(I), 2343 TemplateArgs); 2344 if (!Temp) return nullptr; 2345 2346 Previous.addDecl(cast<FunctionTemplateDecl>(Temp)); 2347 } 2348 2349 if (SemaRef.CheckFunctionTemplateSpecialization(Method, 2350 &ExplicitArgs, 2351 Previous)) 2352 Method->setInvalidDecl(); 2353 2354 IsExplicitSpecialization = true; 2355 } else if (const ASTTemplateArgumentListInfo *Info = 2356 ClassScopeSpecializationArgs.getValueOr( 2357 D->getTemplateSpecializationArgsAsWritten())) { 2358 SemaRef.LookupQualifiedName(Previous, DC); 2359 2360 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), 2361 Info->getRAngleLoc()); 2362 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(), 2363 ExplicitArgs, TemplateArgs)) 2364 return nullptr; 2365 2366 if (SemaRef.CheckFunctionTemplateSpecialization(Method, 2367 &ExplicitArgs, 2368 Previous)) 2369 Method->setInvalidDecl(); 2370 2371 IsExplicitSpecialization = true; 2372 } else if (ClassScopeSpecializationArgs) { 2373 // Class-scope explicit specialization written without explicit template 2374 // arguments. 2375 SemaRef.LookupQualifiedName(Previous, DC); 2376 if (SemaRef.CheckFunctionTemplateSpecialization(Method, nullptr, Previous)) 2377 Method->setInvalidDecl(); 2378 2379 IsExplicitSpecialization = true; 2380 } else if (!FunctionTemplate || TemplateParams || isFriend) { 2381 SemaRef.LookupQualifiedName(Previous, Record); 2382 2383 // In C++, the previous declaration we find might be a tag type 2384 // (class or enum). In this case, the new declaration will hide the 2385 // tag type. Note that this does does not apply if we're declaring a 2386 // typedef (C++ [dcl.typedef]p4). 2387 if (Previous.isSingleTagDecl()) 2388 Previous.clear(); 2389 } 2390 2391 SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous, 2392 IsExplicitSpecialization); 2393 2394 if (D->isPure()) 2395 SemaRef.CheckPureMethod(Method, SourceRange()); 2396 2397 // Propagate access. For a non-friend declaration, the access is 2398 // whatever we're propagating from. For a friend, it should be the 2399 // previous declaration we just found. 2400 if (isFriend && Method->getPreviousDecl()) 2401 Method->setAccess(Method->getPreviousDecl()->getAccess()); 2402 else 2403 Method->setAccess(D->getAccess()); 2404 if (FunctionTemplate) 2405 FunctionTemplate->setAccess(Method->getAccess()); 2406 2407 SemaRef.CheckOverrideControl(Method); 2408 2409 // If a function is defined as defaulted or deleted, mark it as such now. 2410 if (D->isExplicitlyDefaulted()) { 2411 if (SubstDefaultedFunction(Method, D)) 2412 return nullptr; 2413 } 2414 if (D->isDeletedAsWritten()) 2415 SemaRef.SetDeclDeleted(Method, Method->getLocation()); 2416 2417 // If this is an explicit specialization, mark the implicitly-instantiated 2418 // template specialization as being an explicit specialization too. 2419 // FIXME: Is this necessary? 2420 if (IsExplicitSpecialization && !isFriend) 2421 SemaRef.CompleteMemberSpecialization(Method, Previous); 2422 2423 // If there's a function template, let our caller handle it. 2424 if (FunctionTemplate) { 2425 // do nothing 2426 2427 // Don't hide a (potentially) valid declaration with an invalid one. 2428 } else if (Method->isInvalidDecl() && !Previous.empty()) { 2429 // do nothing 2430 2431 // Otherwise, check access to friends and make them visible. 2432 } else if (isFriend) { 2433 // We only need to re-check access for methods which we didn't 2434 // manage to match during parsing. 2435 if (!D->getPreviousDecl()) 2436 SemaRef.CheckFriendAccess(Method); 2437 2438 Record->makeDeclVisibleInContext(Method); 2439 2440 // Otherwise, add the declaration. We don't need to do this for 2441 // class-scope specializations because we'll have matched them with 2442 // the appropriate template. 2443 } else { 2444 Owner->addDecl(Method); 2445 } 2446 2447 // PR17480: Honor the used attribute to instantiate member function 2448 // definitions 2449 if (Method->hasAttr<UsedAttr>()) { 2450 if (const auto *A = dyn_cast<CXXRecordDecl>(Owner)) { 2451 SourceLocation Loc; 2452 if (const MemberSpecializationInfo *MSInfo = 2453 A->getMemberSpecializationInfo()) 2454 Loc = MSInfo->getPointOfInstantiation(); 2455 else if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(A)) 2456 Loc = Spec->getPointOfInstantiation(); 2457 SemaRef.MarkFunctionReferenced(Loc, Method); 2458 } 2459 } 2460 2461 return Method; 2462 } 2463 2464 Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) { 2465 return VisitCXXMethodDecl(D); 2466 } 2467 2468 Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) { 2469 return VisitCXXMethodDecl(D); 2470 } 2471 2472 Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) { 2473 return VisitCXXMethodDecl(D); 2474 } 2475 2476 Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) { 2477 return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, None, 2478 /*ExpectParameterPack=*/ false); 2479 } 2480 2481 Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl( 2482 TemplateTypeParmDecl *D) { 2483 // TODO: don't always clone when decls are refcounted. 2484 assert(D->getTypeForDecl()->isTemplateTypeParmType()); 2485 2486 Optional<unsigned> NumExpanded; 2487 2488 if (const TypeConstraint *TC = D->getTypeConstraint()) { 2489 if (D->isPackExpansion() && !D->isExpandedParameterPack()) { 2490 assert(TC->getTemplateArgsAsWritten() && 2491 "type parameter can only be an expansion when explicit arguments " 2492 "are specified"); 2493 // The template type parameter pack's type is a pack expansion of types. 2494 // Determine whether we need to expand this parameter pack into separate 2495 // types. 2496 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 2497 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) 2498 SemaRef.collectUnexpandedParameterPacks(ArgLoc, Unexpanded); 2499 2500 // Determine whether the set of unexpanded parameter packs can and should 2501 // be expanded. 2502 bool Expand = true; 2503 bool RetainExpansion = false; 2504 if (SemaRef.CheckParameterPacksForExpansion( 2505 cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint()) 2506 ->getEllipsisLoc(), 2507 SourceRange(TC->getConceptNameLoc(), 2508 TC->hasExplicitTemplateArgs() ? 2509 TC->getTemplateArgsAsWritten()->getRAngleLoc() : 2510 TC->getConceptNameInfo().getEndLoc()), 2511 Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpanded)) 2512 return nullptr; 2513 } 2514 } 2515 2516 TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create( 2517 SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(), 2518 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(), 2519 D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack(), 2520 D->hasTypeConstraint(), NumExpanded); 2521 2522 Inst->setAccess(AS_public); 2523 Inst->setImplicit(D->isImplicit()); 2524 if (auto *TC = D->getTypeConstraint()) { 2525 // TODO: Concepts: do not instantiate the constraint (delayed constraint 2526 // substitution) 2527 const ASTTemplateArgumentListInfo *TemplArgInfo 2528 = TC->getTemplateArgsAsWritten(); 2529 TemplateArgumentListInfo InstArgs; 2530 2531 if (TemplArgInfo) { 2532 InstArgs.setLAngleLoc(TemplArgInfo->LAngleLoc); 2533 InstArgs.setRAngleLoc(TemplArgInfo->RAngleLoc); 2534 if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(), 2535 TemplArgInfo->NumTemplateArgs, 2536 InstArgs, TemplateArgs)) 2537 return nullptr; 2538 } 2539 if (SemaRef.AttachTypeConstraint( 2540 TC->getNestedNameSpecifierLoc(), TC->getConceptNameInfo(), 2541 TC->getNamedConcept(), &InstArgs, Inst, 2542 D->isParameterPack() 2543 ? cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint()) 2544 ->getEllipsisLoc() 2545 : SourceLocation())) 2546 return nullptr; 2547 } 2548 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 2549 TypeSourceInfo *InstantiatedDefaultArg = 2550 SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs, 2551 D->getDefaultArgumentLoc(), D->getDeclName()); 2552 if (InstantiatedDefaultArg) 2553 Inst->setDefaultArgument(InstantiatedDefaultArg); 2554 } 2555 2556 // Introduce this template parameter's instantiation into the instantiation 2557 // scope. 2558 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst); 2559 2560 return Inst; 2561 } 2562 2563 Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl( 2564 NonTypeTemplateParmDecl *D) { 2565 // Substitute into the type of the non-type template parameter. 2566 TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc(); 2567 SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten; 2568 SmallVector<QualType, 4> ExpandedParameterPackTypes; 2569 bool IsExpandedParameterPack = false; 2570 TypeSourceInfo *DI; 2571 QualType T; 2572 bool Invalid = false; 2573 2574 if (D->isExpandedParameterPack()) { 2575 // The non-type template parameter pack is an already-expanded pack 2576 // expansion of types. Substitute into each of the expanded types. 2577 ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes()); 2578 ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes()); 2579 for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) { 2580 TypeSourceInfo *NewDI = 2581 SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs, 2582 D->getLocation(), D->getDeclName()); 2583 if (!NewDI) 2584 return nullptr; 2585 2586 QualType NewT = 2587 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); 2588 if (NewT.isNull()) 2589 return nullptr; 2590 2591 ExpandedParameterPackTypesAsWritten.push_back(NewDI); 2592 ExpandedParameterPackTypes.push_back(NewT); 2593 } 2594 2595 IsExpandedParameterPack = true; 2596 DI = D->getTypeSourceInfo(); 2597 T = DI->getType(); 2598 } else if (D->isPackExpansion()) { 2599 // The non-type template parameter pack's type is a pack expansion of types. 2600 // Determine whether we need to expand this parameter pack into separate 2601 // types. 2602 PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>(); 2603 TypeLoc Pattern = Expansion.getPatternLoc(); 2604 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 2605 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); 2606 2607 // Determine whether the set of unexpanded parameter packs can and should 2608 // be expanded. 2609 bool Expand = true; 2610 bool RetainExpansion = false; 2611 Optional<unsigned> OrigNumExpansions 2612 = Expansion.getTypePtr()->getNumExpansions(); 2613 Optional<unsigned> NumExpansions = OrigNumExpansions; 2614 if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(), 2615 Pattern.getSourceRange(), 2616 Unexpanded, 2617 TemplateArgs, 2618 Expand, RetainExpansion, 2619 NumExpansions)) 2620 return nullptr; 2621 2622 if (Expand) { 2623 for (unsigned I = 0; I != *NumExpansions; ++I) { 2624 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 2625 TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs, 2626 D->getLocation(), 2627 D->getDeclName()); 2628 if (!NewDI) 2629 return nullptr; 2630 2631 QualType NewT = 2632 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); 2633 if (NewT.isNull()) 2634 return nullptr; 2635 2636 ExpandedParameterPackTypesAsWritten.push_back(NewDI); 2637 ExpandedParameterPackTypes.push_back(NewT); 2638 } 2639 2640 // Note that we have an expanded parameter pack. The "type" of this 2641 // expanded parameter pack is the original expansion type, but callers 2642 // will end up using the expanded parameter pack types for type-checking. 2643 IsExpandedParameterPack = true; 2644 DI = D->getTypeSourceInfo(); 2645 T = DI->getType(); 2646 } else { 2647 // We cannot fully expand the pack expansion now, so substitute into the 2648 // pattern and create a new pack expansion type. 2649 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 2650 TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs, 2651 D->getLocation(), 2652 D->getDeclName()); 2653 if (!NewPattern) 2654 return nullptr; 2655 2656 SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation()); 2657 DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(), 2658 NumExpansions); 2659 if (!DI) 2660 return nullptr; 2661 2662 T = DI->getType(); 2663 } 2664 } else { 2665 // Simple case: substitution into a parameter that is not a parameter pack. 2666 DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, 2667 D->getLocation(), D->getDeclName()); 2668 if (!DI) 2669 return nullptr; 2670 2671 // Check that this type is acceptable for a non-type template parameter. 2672 T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation()); 2673 if (T.isNull()) { 2674 T = SemaRef.Context.IntTy; 2675 Invalid = true; 2676 } 2677 } 2678 2679 NonTypeTemplateParmDecl *Param; 2680 if (IsExpandedParameterPack) 2681 Param = NonTypeTemplateParmDecl::Create( 2682 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 2683 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 2684 D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes, 2685 ExpandedParameterPackTypesAsWritten); 2686 else 2687 Param = NonTypeTemplateParmDecl::Create( 2688 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 2689 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 2690 D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI); 2691 2692 if (AutoTypeLoc AutoLoc = DI->getTypeLoc().getContainedAutoTypeLoc()) 2693 if (AutoLoc.isConstrained()) 2694 if (SemaRef.AttachTypeConstraint( 2695 AutoLoc, Param, 2696 IsExpandedParameterPack 2697 ? DI->getTypeLoc().getAs<PackExpansionTypeLoc>() 2698 .getEllipsisLoc() 2699 : SourceLocation())) 2700 Invalid = true; 2701 2702 Param->setAccess(AS_public); 2703 Param->setImplicit(D->isImplicit()); 2704 if (Invalid) 2705 Param->setInvalidDecl(); 2706 2707 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 2708 EnterExpressionEvaluationContext ConstantEvaluated( 2709 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 2710 ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs); 2711 if (!Value.isInvalid()) 2712 Param->setDefaultArgument(Value.get()); 2713 } 2714 2715 // Introduce this template parameter's instantiation into the instantiation 2716 // scope. 2717 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); 2718 return Param; 2719 } 2720 2721 static void collectUnexpandedParameterPacks( 2722 Sema &S, 2723 TemplateParameterList *Params, 2724 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) { 2725 for (const auto &P : *Params) { 2726 if (P->isTemplateParameterPack()) 2727 continue; 2728 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) 2729 S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(), 2730 Unexpanded); 2731 if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P)) 2732 collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(), 2733 Unexpanded); 2734 } 2735 } 2736 2737 Decl * 2738 TemplateDeclInstantiator::VisitTemplateTemplateParmDecl( 2739 TemplateTemplateParmDecl *D) { 2740 // Instantiate the template parameter list of the template template parameter. 2741 TemplateParameterList *TempParams = D->getTemplateParameters(); 2742 TemplateParameterList *InstParams; 2743 SmallVector<TemplateParameterList*, 8> ExpandedParams; 2744 2745 bool IsExpandedParameterPack = false; 2746 2747 if (D->isExpandedParameterPack()) { 2748 // The template template parameter pack is an already-expanded pack 2749 // expansion of template parameters. Substitute into each of the expanded 2750 // parameters. 2751 ExpandedParams.reserve(D->getNumExpansionTemplateParameters()); 2752 for (unsigned I = 0, N = D->getNumExpansionTemplateParameters(); 2753 I != N; ++I) { 2754 LocalInstantiationScope Scope(SemaRef); 2755 TemplateParameterList *Expansion = 2756 SubstTemplateParams(D->getExpansionTemplateParameters(I)); 2757 if (!Expansion) 2758 return nullptr; 2759 ExpandedParams.push_back(Expansion); 2760 } 2761 2762 IsExpandedParameterPack = true; 2763 InstParams = TempParams; 2764 } else if (D->isPackExpansion()) { 2765 // The template template parameter pack expands to a pack of template 2766 // template parameters. Determine whether we need to expand this parameter 2767 // pack into separate parameters. 2768 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 2769 collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(), 2770 Unexpanded); 2771 2772 // Determine whether the set of unexpanded parameter packs can and should 2773 // be expanded. 2774 bool Expand = true; 2775 bool RetainExpansion = false; 2776 Optional<unsigned> NumExpansions; 2777 if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(), 2778 TempParams->getSourceRange(), 2779 Unexpanded, 2780 TemplateArgs, 2781 Expand, RetainExpansion, 2782 NumExpansions)) 2783 return nullptr; 2784 2785 if (Expand) { 2786 for (unsigned I = 0; I != *NumExpansions; ++I) { 2787 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 2788 LocalInstantiationScope Scope(SemaRef); 2789 TemplateParameterList *Expansion = SubstTemplateParams(TempParams); 2790 if (!Expansion) 2791 return nullptr; 2792 ExpandedParams.push_back(Expansion); 2793 } 2794 2795 // Note that we have an expanded parameter pack. The "type" of this 2796 // expanded parameter pack is the original expansion type, but callers 2797 // will end up using the expanded parameter pack types for type-checking. 2798 IsExpandedParameterPack = true; 2799 InstParams = TempParams; 2800 } else { 2801 // We cannot fully expand the pack expansion now, so just substitute 2802 // into the pattern. 2803 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 2804 2805 LocalInstantiationScope Scope(SemaRef); 2806 InstParams = SubstTemplateParams(TempParams); 2807 if (!InstParams) 2808 return nullptr; 2809 } 2810 } else { 2811 // Perform the actual substitution of template parameters within a new, 2812 // local instantiation scope. 2813 LocalInstantiationScope Scope(SemaRef); 2814 InstParams = SubstTemplateParams(TempParams); 2815 if (!InstParams) 2816 return nullptr; 2817 } 2818 2819 // Build the template template parameter. 2820 TemplateTemplateParmDecl *Param; 2821 if (IsExpandedParameterPack) 2822 Param = TemplateTemplateParmDecl::Create( 2823 SemaRef.Context, Owner, D->getLocation(), 2824 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 2825 D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams); 2826 else 2827 Param = TemplateTemplateParmDecl::Create( 2828 SemaRef.Context, Owner, D->getLocation(), 2829 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 2830 D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams); 2831 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 2832 NestedNameSpecifierLoc QualifierLoc = 2833 D->getDefaultArgument().getTemplateQualifierLoc(); 2834 QualifierLoc = 2835 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); 2836 TemplateName TName = SemaRef.SubstTemplateName( 2837 QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(), 2838 D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs); 2839 if (!TName.isNull()) 2840 Param->setDefaultArgument( 2841 SemaRef.Context, 2842 TemplateArgumentLoc(TemplateArgument(TName), 2843 D->getDefaultArgument().getTemplateQualifierLoc(), 2844 D->getDefaultArgument().getTemplateNameLoc())); 2845 } 2846 Param->setAccess(AS_public); 2847 Param->setImplicit(D->isImplicit()); 2848 2849 // Introduce this template parameter's instantiation into the instantiation 2850 // scope. 2851 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); 2852 2853 return Param; 2854 } 2855 2856 Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { 2857 // Using directives are never dependent (and never contain any types or 2858 // expressions), so they require no explicit instantiation work. 2859 2860 UsingDirectiveDecl *Inst 2861 = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(), 2862 D->getNamespaceKeyLocation(), 2863 D->getQualifierLoc(), 2864 D->getIdentLocation(), 2865 D->getNominatedNamespace(), 2866 D->getCommonAncestor()); 2867 2868 // Add the using directive to its declaration context 2869 // only if this is not a function or method. 2870 if (!Owner->isFunctionOrMethod()) 2871 Owner->addDecl(Inst); 2872 2873 return Inst; 2874 } 2875 2876 Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) { 2877 2878 // The nested name specifier may be dependent, for example 2879 // template <typename T> struct t { 2880 // struct s1 { T f1(); }; 2881 // struct s2 : s1 { using s1::f1; }; 2882 // }; 2883 // template struct t<int>; 2884 // Here, in using s1::f1, s1 refers to t<T>::s1; 2885 // we need to substitute for t<int>::s1. 2886 NestedNameSpecifierLoc QualifierLoc 2887 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), 2888 TemplateArgs); 2889 if (!QualifierLoc) 2890 return nullptr; 2891 2892 // For an inheriting constructor declaration, the name of the using 2893 // declaration is the name of a constructor in this class, not in the 2894 // base class. 2895 DeclarationNameInfo NameInfo = D->getNameInfo(); 2896 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) 2897 if (auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.CurContext)) 2898 NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName( 2899 SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD)))); 2900 2901 // We only need to do redeclaration lookups if we're in a class 2902 // scope (in fact, it's not really even possible in non-class 2903 // scopes). 2904 bool CheckRedeclaration = Owner->isRecord(); 2905 2906 LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName, 2907 Sema::ForVisibleRedeclaration); 2908 2909 UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner, 2910 D->getUsingLoc(), 2911 QualifierLoc, 2912 NameInfo, 2913 D->hasTypename()); 2914 2915 CXXScopeSpec SS; 2916 SS.Adopt(QualifierLoc); 2917 if (CheckRedeclaration) { 2918 Prev.setHideTags(false); 2919 SemaRef.LookupQualifiedName(Prev, Owner); 2920 2921 // Check for invalid redeclarations. 2922 if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(), 2923 D->hasTypename(), SS, 2924 D->getLocation(), Prev)) 2925 NewUD->setInvalidDecl(); 2926 2927 } 2928 2929 if (!NewUD->isInvalidDecl() && 2930 SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(), 2931 SS, NameInfo, D->getLocation())) 2932 NewUD->setInvalidDecl(); 2933 2934 SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D); 2935 NewUD->setAccess(D->getAccess()); 2936 Owner->addDecl(NewUD); 2937 2938 // Don't process the shadow decls for an invalid decl. 2939 if (NewUD->isInvalidDecl()) 2940 return NewUD; 2941 2942 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) 2943 SemaRef.CheckInheritingConstructorUsingDecl(NewUD); 2944 2945 bool isFunctionScope = Owner->isFunctionOrMethod(); 2946 2947 // Process the shadow decls. 2948 for (auto *Shadow : D->shadows()) { 2949 // FIXME: UsingShadowDecl doesn't preserve its immediate target, so 2950 // reconstruct it in the case where it matters. 2951 NamedDecl *OldTarget = Shadow->getTargetDecl(); 2952 if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Shadow)) 2953 if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl()) 2954 OldTarget = BaseShadow; 2955 2956 NamedDecl *InstTarget = 2957 cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl( 2958 Shadow->getLocation(), OldTarget, TemplateArgs)); 2959 if (!InstTarget) 2960 return nullptr; 2961 2962 UsingShadowDecl *PrevDecl = nullptr; 2963 if (CheckRedeclaration) { 2964 if (SemaRef.CheckUsingShadowDecl(NewUD, InstTarget, Prev, PrevDecl)) 2965 continue; 2966 } else if (UsingShadowDecl *OldPrev = 2967 getPreviousDeclForInstantiation(Shadow)) { 2968 PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl( 2969 Shadow->getLocation(), OldPrev, TemplateArgs)); 2970 } 2971 2972 UsingShadowDecl *InstShadow = 2973 SemaRef.BuildUsingShadowDecl(/*Scope*/nullptr, NewUD, InstTarget, 2974 PrevDecl); 2975 SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow); 2976 2977 if (isFunctionScope) 2978 SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow); 2979 } 2980 2981 return NewUD; 2982 } 2983 2984 Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) { 2985 // Ignore these; we handle them in bulk when processing the UsingDecl. 2986 return nullptr; 2987 } 2988 2989 Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl( 2990 ConstructorUsingShadowDecl *D) { 2991 // Ignore these; we handle them in bulk when processing the UsingDecl. 2992 return nullptr; 2993 } 2994 2995 template <typename T> 2996 Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl( 2997 T *D, bool InstantiatingPackElement) { 2998 // If this is a pack expansion, expand it now. 2999 if (D->isPackExpansion() && !InstantiatingPackElement) { 3000 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 3001 SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded); 3002 SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded); 3003 3004 // Determine whether the set of unexpanded parameter packs can and should 3005 // be expanded. 3006 bool Expand = true; 3007 bool RetainExpansion = false; 3008 Optional<unsigned> NumExpansions; 3009 if (SemaRef.CheckParameterPacksForExpansion( 3010 D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs, 3011 Expand, RetainExpansion, NumExpansions)) 3012 return nullptr; 3013 3014 // This declaration cannot appear within a function template signature, 3015 // so we can't have a partial argument list for a parameter pack. 3016 assert(!RetainExpansion && 3017 "should never need to retain an expansion for UsingPackDecl"); 3018 3019 if (!Expand) { 3020 // We cannot fully expand the pack expansion now, so substitute into the 3021 // pattern and create a new pack expansion. 3022 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 3023 return instantiateUnresolvedUsingDecl(D, true); 3024 } 3025 3026 // Within a function, we don't have any normal way to check for conflicts 3027 // between shadow declarations from different using declarations in the 3028 // same pack expansion, but this is always ill-formed because all expansions 3029 // must produce (conflicting) enumerators. 3030 // 3031 // Sadly we can't just reject this in the template definition because it 3032 // could be valid if the pack is empty or has exactly one expansion. 3033 if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) { 3034 SemaRef.Diag(D->getEllipsisLoc(), 3035 diag::err_using_decl_redeclaration_expansion); 3036 return nullptr; 3037 } 3038 3039 // Instantiate the slices of this pack and build a UsingPackDecl. 3040 SmallVector<NamedDecl*, 8> Expansions; 3041 for (unsigned I = 0; I != *NumExpansions; ++I) { 3042 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 3043 Decl *Slice = instantiateUnresolvedUsingDecl(D, true); 3044 if (!Slice) 3045 return nullptr; 3046 // Note that we can still get unresolved using declarations here, if we 3047 // had arguments for all packs but the pattern also contained other 3048 // template arguments (this only happens during partial substitution, eg 3049 // into the body of a generic lambda in a function template). 3050 Expansions.push_back(cast<NamedDecl>(Slice)); 3051 } 3052 3053 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); 3054 if (isDeclWithinFunction(D)) 3055 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); 3056 return NewD; 3057 } 3058 3059 UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D); 3060 SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation(); 3061 3062 NestedNameSpecifierLoc QualifierLoc 3063 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), 3064 TemplateArgs); 3065 if (!QualifierLoc) 3066 return nullptr; 3067 3068 CXXScopeSpec SS; 3069 SS.Adopt(QualifierLoc); 3070 3071 DeclarationNameInfo NameInfo 3072 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 3073 3074 // Produce a pack expansion only if we're not instantiating a particular 3075 // slice of a pack expansion. 3076 bool InstantiatingSlice = D->getEllipsisLoc().isValid() && 3077 SemaRef.ArgumentPackSubstitutionIndex != -1; 3078 SourceLocation EllipsisLoc = 3079 InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc(); 3080 3081 NamedDecl *UD = SemaRef.BuildUsingDeclaration( 3082 /*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(), 3083 /*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc, 3084 ParsedAttributesView(), 3085 /*IsInstantiation*/ true); 3086 if (UD) 3087 SemaRef.Context.setInstantiatedFromUsingDecl(UD, D); 3088 3089 return UD; 3090 } 3091 3092 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl( 3093 UnresolvedUsingTypenameDecl *D) { 3094 return instantiateUnresolvedUsingDecl(D); 3095 } 3096 3097 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl( 3098 UnresolvedUsingValueDecl *D) { 3099 return instantiateUnresolvedUsingDecl(D); 3100 } 3101 3102 Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) { 3103 SmallVector<NamedDecl*, 8> Expansions; 3104 for (auto *UD : D->expansions()) { 3105 if (NamedDecl *NewUD = 3106 SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs)) 3107 Expansions.push_back(NewUD); 3108 else 3109 return nullptr; 3110 } 3111 3112 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); 3113 if (isDeclWithinFunction(D)) 3114 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); 3115 return NewD; 3116 } 3117 3118 Decl *TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl( 3119 ClassScopeFunctionSpecializationDecl *Decl) { 3120 CXXMethodDecl *OldFD = Decl->getSpecialization(); 3121 return cast_or_null<CXXMethodDecl>( 3122 VisitCXXMethodDecl(OldFD, nullptr, Decl->getTemplateArgsAsWritten())); 3123 } 3124 3125 Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl( 3126 OMPThreadPrivateDecl *D) { 3127 SmallVector<Expr *, 5> Vars; 3128 for (auto *I : D->varlists()) { 3129 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); 3130 assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr"); 3131 Vars.push_back(Var); 3132 } 3133 3134 OMPThreadPrivateDecl *TD = 3135 SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars); 3136 3137 TD->setAccess(AS_public); 3138 Owner->addDecl(TD); 3139 3140 return TD; 3141 } 3142 3143 Decl *TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl *D) { 3144 SmallVector<Expr *, 5> Vars; 3145 for (auto *I : D->varlists()) { 3146 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); 3147 assert(isa<DeclRefExpr>(Var) && "allocate arg is not a DeclRefExpr"); 3148 Vars.push_back(Var); 3149 } 3150 SmallVector<OMPClause *, 4> Clauses; 3151 // Copy map clauses from the original mapper. 3152 for (OMPClause *C : D->clauselists()) { 3153 auto *AC = cast<OMPAllocatorClause>(C); 3154 ExprResult NewE = SemaRef.SubstExpr(AC->getAllocator(), TemplateArgs); 3155 if (!NewE.isUsable()) 3156 continue; 3157 OMPClause *IC = SemaRef.ActOnOpenMPAllocatorClause( 3158 NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc()); 3159 Clauses.push_back(IC); 3160 } 3161 3162 Sema::DeclGroupPtrTy Res = SemaRef.ActOnOpenMPAllocateDirective( 3163 D->getLocation(), Vars, Clauses, Owner); 3164 if (Res.get().isNull()) 3165 return nullptr; 3166 return Res.get().getSingleDecl(); 3167 } 3168 3169 Decl *TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl *D) { 3170 llvm_unreachable( 3171 "Requires directive cannot be instantiated within a dependent context"); 3172 } 3173 3174 Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl( 3175 OMPDeclareReductionDecl *D) { 3176 // Instantiate type and check if it is allowed. 3177 const bool RequiresInstantiation = 3178 D->getType()->isDependentType() || 3179 D->getType()->isInstantiationDependentType() || 3180 D->getType()->containsUnexpandedParameterPack(); 3181 QualType SubstReductionType; 3182 if (RequiresInstantiation) { 3183 SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType( 3184 D->getLocation(), 3185 ParsedType::make(SemaRef.SubstType( 3186 D->getType(), TemplateArgs, D->getLocation(), DeclarationName()))); 3187 } else { 3188 SubstReductionType = D->getType(); 3189 } 3190 if (SubstReductionType.isNull()) 3191 return nullptr; 3192 Expr *Combiner = D->getCombiner(); 3193 Expr *Init = D->getInitializer(); 3194 bool IsCorrect = true; 3195 // Create instantiated copy. 3196 std::pair<QualType, SourceLocation> ReductionTypes[] = { 3197 std::make_pair(SubstReductionType, D->getLocation())}; 3198 auto *PrevDeclInScope = D->getPrevDeclInScope(); 3199 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { 3200 PrevDeclInScope = cast<OMPDeclareReductionDecl>( 3201 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope) 3202 ->get<Decl *>()); 3203 } 3204 auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart( 3205 /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(), 3206 PrevDeclInScope); 3207 auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl()); 3208 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD); 3209 Expr *SubstCombiner = nullptr; 3210 Expr *SubstInitializer = nullptr; 3211 // Combiners instantiation sequence. 3212 if (Combiner) { 3213 SemaRef.ActOnOpenMPDeclareReductionCombinerStart( 3214 /*S=*/nullptr, NewDRD); 3215 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3216 cast<DeclRefExpr>(D->getCombinerIn())->getDecl(), 3217 cast<DeclRefExpr>(NewDRD->getCombinerIn())->getDecl()); 3218 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3219 cast<DeclRefExpr>(D->getCombinerOut())->getDecl(), 3220 cast<DeclRefExpr>(NewDRD->getCombinerOut())->getDecl()); 3221 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner); 3222 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(), 3223 ThisContext); 3224 SubstCombiner = SemaRef.SubstExpr(Combiner, TemplateArgs).get(); 3225 SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, SubstCombiner); 3226 } 3227 // Initializers instantiation sequence. 3228 if (Init) { 3229 VarDecl *OmpPrivParm = SemaRef.ActOnOpenMPDeclareReductionInitializerStart( 3230 /*S=*/nullptr, NewDRD); 3231 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3232 cast<DeclRefExpr>(D->getInitOrig())->getDecl(), 3233 cast<DeclRefExpr>(NewDRD->getInitOrig())->getDecl()); 3234 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3235 cast<DeclRefExpr>(D->getInitPriv())->getDecl(), 3236 cast<DeclRefExpr>(NewDRD->getInitPriv())->getDecl()); 3237 if (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit) { 3238 SubstInitializer = SemaRef.SubstExpr(Init, TemplateArgs).get(); 3239 } else { 3240 auto *OldPrivParm = 3241 cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()); 3242 IsCorrect = IsCorrect && OldPrivParm->hasInit(); 3243 if (IsCorrect) 3244 SemaRef.InstantiateVariableInitializer(OmpPrivParm, OldPrivParm, 3245 TemplateArgs); 3246 } 3247 SemaRef.ActOnOpenMPDeclareReductionInitializerEnd(NewDRD, SubstInitializer, 3248 OmpPrivParm); 3249 } 3250 IsCorrect = IsCorrect && SubstCombiner && 3251 (!Init || 3252 (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit && 3253 SubstInitializer) || 3254 (D->getInitializerKind() != OMPDeclareReductionDecl::CallInit && 3255 !SubstInitializer)); 3256 3257 (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd( 3258 /*S=*/nullptr, DRD, IsCorrect && !D->isInvalidDecl()); 3259 3260 return NewDRD; 3261 } 3262 3263 Decl * 3264 TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) { 3265 // Instantiate type and check if it is allowed. 3266 const bool RequiresInstantiation = 3267 D->getType()->isDependentType() || 3268 D->getType()->isInstantiationDependentType() || 3269 D->getType()->containsUnexpandedParameterPack(); 3270 QualType SubstMapperTy; 3271 DeclarationName VN = D->getVarName(); 3272 if (RequiresInstantiation) { 3273 SubstMapperTy = SemaRef.ActOnOpenMPDeclareMapperType( 3274 D->getLocation(), 3275 ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs, 3276 D->getLocation(), VN))); 3277 } else { 3278 SubstMapperTy = D->getType(); 3279 } 3280 if (SubstMapperTy.isNull()) 3281 return nullptr; 3282 // Create an instantiated copy of mapper. 3283 auto *PrevDeclInScope = D->getPrevDeclInScope(); 3284 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { 3285 PrevDeclInScope = cast<OMPDeclareMapperDecl>( 3286 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope) 3287 ->get<Decl *>()); 3288 } 3289 OMPDeclareMapperDecl *NewDMD = SemaRef.ActOnOpenMPDeclareMapperDirectiveStart( 3290 /*S=*/nullptr, Owner, D->getDeclName(), SubstMapperTy, D->getLocation(), 3291 VN, D->getAccess(), PrevDeclInScope); 3292 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDMD); 3293 SmallVector<OMPClause *, 6> Clauses; 3294 bool IsCorrect = true; 3295 if (!RequiresInstantiation) { 3296 // Copy the mapper variable. 3297 NewDMD->setMapperVarRef(D->getMapperVarRef()); 3298 // Copy map clauses from the original mapper. 3299 for (OMPClause *C : D->clauselists()) 3300 Clauses.push_back(C); 3301 } else { 3302 // Instantiate the mapper variable. 3303 DeclarationNameInfo DirName; 3304 SemaRef.StartOpenMPDSABlock(llvm::omp::OMPD_declare_mapper, DirName, 3305 /*S=*/nullptr, 3306 (*D->clauselist_begin())->getBeginLoc()); 3307 SemaRef.ActOnOpenMPDeclareMapperDirectiveVarDecl( 3308 NewDMD, /*S=*/nullptr, SubstMapperTy, D->getLocation(), VN); 3309 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3310 cast<DeclRefExpr>(D->getMapperVarRef())->getDecl(), 3311 cast<DeclRefExpr>(NewDMD->getMapperVarRef())->getDecl()); 3312 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner); 3313 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(), 3314 ThisContext); 3315 // Instantiate map clauses. 3316 for (OMPClause *C : D->clauselists()) { 3317 auto *OldC = cast<OMPMapClause>(C); 3318 SmallVector<Expr *, 4> NewVars; 3319 for (Expr *OE : OldC->varlists()) { 3320 Expr *NE = SemaRef.SubstExpr(OE, TemplateArgs).get(); 3321 if (!NE) { 3322 IsCorrect = false; 3323 break; 3324 } 3325 NewVars.push_back(NE); 3326 } 3327 if (!IsCorrect) 3328 break; 3329 NestedNameSpecifierLoc NewQualifierLoc = 3330 SemaRef.SubstNestedNameSpecifierLoc(OldC->getMapperQualifierLoc(), 3331 TemplateArgs); 3332 CXXScopeSpec SS; 3333 SS.Adopt(NewQualifierLoc); 3334 DeclarationNameInfo NewNameInfo = SemaRef.SubstDeclarationNameInfo( 3335 OldC->getMapperIdInfo(), TemplateArgs); 3336 OMPVarListLocTy Locs(OldC->getBeginLoc(), OldC->getLParenLoc(), 3337 OldC->getEndLoc()); 3338 OMPClause *NewC = SemaRef.ActOnOpenMPMapClause( 3339 OldC->getMapTypeModifiers(), OldC->getMapTypeModifiersLoc(), SS, 3340 NewNameInfo, OldC->getMapType(), OldC->isImplicitMapType(), 3341 OldC->getMapLoc(), OldC->getColonLoc(), NewVars, Locs); 3342 Clauses.push_back(NewC); 3343 } 3344 SemaRef.EndOpenMPDSABlock(nullptr); 3345 } 3346 (void)SemaRef.ActOnOpenMPDeclareMapperDirectiveEnd(NewDMD, /*S=*/nullptr, 3347 Clauses); 3348 if (!IsCorrect) 3349 return nullptr; 3350 return NewDMD; 3351 } 3352 3353 Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl( 3354 OMPCapturedExprDecl * /*D*/) { 3355 llvm_unreachable("Should not be met in templates"); 3356 } 3357 3358 Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) { 3359 return VisitFunctionDecl(D, nullptr); 3360 } 3361 3362 Decl * 3363 TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) { 3364 Decl *Inst = VisitFunctionDecl(D, nullptr); 3365 if (Inst && !D->getDescribedFunctionTemplate()) 3366 Owner->addDecl(Inst); 3367 return Inst; 3368 } 3369 3370 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) { 3371 return VisitCXXMethodDecl(D, nullptr); 3372 } 3373 3374 Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) { 3375 llvm_unreachable("There are only CXXRecordDecls in C++"); 3376 } 3377 3378 Decl * 3379 TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl( 3380 ClassTemplateSpecializationDecl *D) { 3381 // As a MS extension, we permit class-scope explicit specialization 3382 // of member class templates. 3383 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); 3384 assert(ClassTemplate->getDeclContext()->isRecord() && 3385 D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 3386 "can only instantiate an explicit specialization " 3387 "for a member class template"); 3388 3389 // Lookup the already-instantiated declaration in the instantiation 3390 // of the class template. 3391 ClassTemplateDecl *InstClassTemplate = 3392 cast_or_null<ClassTemplateDecl>(SemaRef.FindInstantiatedDecl( 3393 D->getLocation(), ClassTemplate, TemplateArgs)); 3394 if (!InstClassTemplate) 3395 return nullptr; 3396 3397 // Substitute into the template arguments of the class template explicit 3398 // specialization. 3399 TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc(). 3400 castAs<TemplateSpecializationTypeLoc>(); 3401 TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(), 3402 Loc.getRAngleLoc()); 3403 SmallVector<TemplateArgumentLoc, 4> ArgLocs; 3404 for (unsigned I = 0; I != Loc.getNumArgs(); ++I) 3405 ArgLocs.push_back(Loc.getArgLoc(I)); 3406 if (SemaRef.Subst(ArgLocs.data(), ArgLocs.size(), 3407 InstTemplateArgs, TemplateArgs)) 3408 return nullptr; 3409 3410 // Check that the template argument list is well-formed for this 3411 // class template. 3412 SmallVector<TemplateArgument, 4> Converted; 3413 if (SemaRef.CheckTemplateArgumentList(InstClassTemplate, 3414 D->getLocation(), 3415 InstTemplateArgs, 3416 false, 3417 Converted, 3418 /*UpdateArgsWithConversion=*/true)) 3419 return nullptr; 3420 3421 // Figure out where to insert this class template explicit specialization 3422 // in the member template's set of class template explicit specializations. 3423 void *InsertPos = nullptr; 3424 ClassTemplateSpecializationDecl *PrevDecl = 3425 InstClassTemplate->findSpecialization(Converted, InsertPos); 3426 3427 // Check whether we've already seen a conflicting instantiation of this 3428 // declaration (for instance, if there was a prior implicit instantiation). 3429 bool Ignored; 3430 if (PrevDecl && 3431 SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(), 3432 D->getSpecializationKind(), 3433 PrevDecl, 3434 PrevDecl->getSpecializationKind(), 3435 PrevDecl->getPointOfInstantiation(), 3436 Ignored)) 3437 return nullptr; 3438 3439 // If PrevDecl was a definition and D is also a definition, diagnose. 3440 // This happens in cases like: 3441 // 3442 // template<typename T, typename U> 3443 // struct Outer { 3444 // template<typename X> struct Inner; 3445 // template<> struct Inner<T> {}; 3446 // template<> struct Inner<U> {}; 3447 // }; 3448 // 3449 // Outer<int, int> outer; // error: the explicit specializations of Inner 3450 // // have the same signature. 3451 if (PrevDecl && PrevDecl->getDefinition() && 3452 D->isThisDeclarationADefinition()) { 3453 SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl; 3454 SemaRef.Diag(PrevDecl->getDefinition()->getLocation(), 3455 diag::note_previous_definition); 3456 return nullptr; 3457 } 3458 3459 // Create the class template partial specialization declaration. 3460 ClassTemplateSpecializationDecl *InstD = 3461 ClassTemplateSpecializationDecl::Create( 3462 SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(), 3463 D->getLocation(), InstClassTemplate, Converted, PrevDecl); 3464 3465 // Add this partial specialization to the set of class template partial 3466 // specializations. 3467 if (!PrevDecl) 3468 InstClassTemplate->AddSpecialization(InstD, InsertPos); 3469 3470 // Substitute the nested name specifier, if any. 3471 if (SubstQualifier(D, InstD)) 3472 return nullptr; 3473 3474 // Build the canonical type that describes the converted template 3475 // arguments of the class template explicit specialization. 3476 QualType CanonType = SemaRef.Context.getTemplateSpecializationType( 3477 TemplateName(InstClassTemplate), Converted, 3478 SemaRef.Context.getRecordType(InstD)); 3479 3480 // Build the fully-sugared type for this class template 3481 // specialization as the user wrote in the specialization 3482 // itself. This means that we'll pretty-print the type retrieved 3483 // from the specialization's declaration the way that the user 3484 // actually wrote the specialization, rather than formatting the 3485 // name based on the "canonical" representation used to store the 3486 // template arguments in the specialization. 3487 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( 3488 TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs, 3489 CanonType); 3490 3491 InstD->setAccess(D->getAccess()); 3492 InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); 3493 InstD->setSpecializationKind(D->getSpecializationKind()); 3494 InstD->setTypeAsWritten(WrittenTy); 3495 InstD->setExternLoc(D->getExternLoc()); 3496 InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc()); 3497 3498 Owner->addDecl(InstD); 3499 3500 // Instantiate the members of the class-scope explicit specialization eagerly. 3501 // We don't have support for lazy instantiation of an explicit specialization 3502 // yet, and MSVC eagerly instantiates in this case. 3503 // FIXME: This is wrong in standard C++. 3504 if (D->isThisDeclarationADefinition() && 3505 SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs, 3506 TSK_ImplicitInstantiation, 3507 /*Complain=*/true)) 3508 return nullptr; 3509 3510 return InstD; 3511 } 3512 3513 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( 3514 VarTemplateSpecializationDecl *D) { 3515 3516 TemplateArgumentListInfo VarTemplateArgsInfo; 3517 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); 3518 assert(VarTemplate && 3519 "A template specialization without specialized template?"); 3520 3521 VarTemplateDecl *InstVarTemplate = 3522 cast_or_null<VarTemplateDecl>(SemaRef.FindInstantiatedDecl( 3523 D->getLocation(), VarTemplate, TemplateArgs)); 3524 if (!InstVarTemplate) 3525 return nullptr; 3526 3527 // Substitute the current template arguments. 3528 const TemplateArgumentListInfo &TemplateArgsInfo = D->getTemplateArgsInfo(); 3529 VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo.getLAngleLoc()); 3530 VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo.getRAngleLoc()); 3531 3532 if (SemaRef.Subst(TemplateArgsInfo.getArgumentArray(), 3533 TemplateArgsInfo.size(), VarTemplateArgsInfo, TemplateArgs)) 3534 return nullptr; 3535 3536 // Check that the template argument list is well-formed for this template. 3537 SmallVector<TemplateArgument, 4> Converted; 3538 if (SemaRef.CheckTemplateArgumentList(InstVarTemplate, D->getLocation(), 3539 VarTemplateArgsInfo, false, Converted, 3540 /*UpdateArgsWithConversion=*/true)) 3541 return nullptr; 3542 3543 // Check whether we've already seen a declaration of this specialization. 3544 void *InsertPos = nullptr; 3545 VarTemplateSpecializationDecl *PrevDecl = 3546 InstVarTemplate->findSpecialization(Converted, InsertPos); 3547 3548 // Check whether we've already seen a conflicting instantiation of this 3549 // declaration (for instance, if there was a prior implicit instantiation). 3550 bool Ignored; 3551 if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl( 3552 D->getLocation(), D->getSpecializationKind(), PrevDecl, 3553 PrevDecl->getSpecializationKind(), 3554 PrevDecl->getPointOfInstantiation(), Ignored)) 3555 return nullptr; 3556 3557 return VisitVarTemplateSpecializationDecl( 3558 InstVarTemplate, D, InsertPos, VarTemplateArgsInfo, Converted, PrevDecl); 3559 } 3560 3561 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( 3562 VarTemplateDecl *VarTemplate, VarDecl *D, void *InsertPos, 3563 const TemplateArgumentListInfo &TemplateArgsInfo, 3564 ArrayRef<TemplateArgument> Converted, 3565 VarTemplateSpecializationDecl *PrevDecl) { 3566 3567 // Do substitution on the type of the declaration 3568 TypeSourceInfo *DI = 3569 SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, 3570 D->getTypeSpecStartLoc(), D->getDeclName()); 3571 if (!DI) 3572 return nullptr; 3573 3574 if (DI->getType()->isFunctionType()) { 3575 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) 3576 << D->isStaticDataMember() << DI->getType(); 3577 return nullptr; 3578 } 3579 3580 // Build the instantiated declaration 3581 VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create( 3582 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 3583 VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted); 3584 Var->setTemplateArgsInfo(TemplateArgsInfo); 3585 if (InsertPos) 3586 VarTemplate->AddSpecialization(Var, InsertPos); 3587 3588 // Substitute the nested name specifier, if any. 3589 if (SubstQualifier(D, Var)) 3590 return nullptr; 3591 3592 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, 3593 StartingScope, false, PrevDecl); 3594 3595 return Var; 3596 } 3597 3598 Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) { 3599 llvm_unreachable("@defs is not supported in Objective-C++"); 3600 } 3601 3602 Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) { 3603 // FIXME: We need to be able to instantiate FriendTemplateDecls. 3604 unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID( 3605 DiagnosticsEngine::Error, 3606 "cannot instantiate %0 yet"); 3607 SemaRef.Diag(D->getLocation(), DiagID) 3608 << D->getDeclKindName(); 3609 3610 return nullptr; 3611 } 3612 3613 Decl *TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl *D) { 3614 llvm_unreachable("Concept definitions cannot reside inside a template"); 3615 } 3616 3617 Decl * 3618 TemplateDeclInstantiator::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) { 3619 return RequiresExprBodyDecl::Create(SemaRef.Context, D->getDeclContext(), 3620 D->getBeginLoc()); 3621 } 3622 3623 Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) { 3624 llvm_unreachable("Unexpected decl"); 3625 } 3626 3627 Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner, 3628 const MultiLevelTemplateArgumentList &TemplateArgs) { 3629 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); 3630 if (D->isInvalidDecl()) 3631 return nullptr; 3632 3633 Decl *SubstD; 3634 runWithSufficientStackSpace(D->getLocation(), [&] { 3635 SubstD = Instantiator.Visit(D); 3636 }); 3637 return SubstD; 3638 } 3639 3640 void TemplateDeclInstantiator::adjustForRewrite(RewriteKind RK, 3641 FunctionDecl *Orig, QualType &T, 3642 TypeSourceInfo *&TInfo, 3643 DeclarationNameInfo &NameInfo) { 3644 assert(RK == RewriteKind::RewriteSpaceshipAsEqualEqual); 3645 3646 // C++2a [class.compare.default]p3: 3647 // the return type is replaced with bool 3648 auto *FPT = T->castAs<FunctionProtoType>(); 3649 T = SemaRef.Context.getFunctionType( 3650 SemaRef.Context.BoolTy, FPT->getParamTypes(), FPT->getExtProtoInfo()); 3651 3652 // Update the return type in the source info too. The most straightforward 3653 // way is to create new TypeSourceInfo for the new type. Use the location of 3654 // the '= default' as the location of the new type. 3655 // 3656 // FIXME: Set the correct return type when we initially transform the type, 3657 // rather than delaying it to now. 3658 TypeSourceInfo *NewTInfo = 3659 SemaRef.Context.getTrivialTypeSourceInfo(T, Orig->getEndLoc()); 3660 auto OldLoc = TInfo->getTypeLoc().getAsAdjusted<FunctionProtoTypeLoc>(); 3661 assert(OldLoc && "type of function is not a function type?"); 3662 auto NewLoc = NewTInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>(); 3663 for (unsigned I = 0, N = OldLoc.getNumParams(); I != N; ++I) 3664 NewLoc.setParam(I, OldLoc.getParam(I)); 3665 TInfo = NewTInfo; 3666 3667 // and the declarator-id is replaced with operator== 3668 NameInfo.setName( 3669 SemaRef.Context.DeclarationNames.getCXXOperatorName(OO_EqualEqual)); 3670 } 3671 3672 FunctionDecl *Sema::SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD, 3673 FunctionDecl *Spaceship) { 3674 if (Spaceship->isInvalidDecl()) 3675 return nullptr; 3676 3677 // C++2a [class.compare.default]p3: 3678 // an == operator function is declared implicitly [...] with the same 3679 // access and function-definition and in the same class scope as the 3680 // three-way comparison operator function 3681 MultiLevelTemplateArgumentList NoTemplateArgs; 3682 TemplateDeclInstantiator Instantiator(*this, RD, NoTemplateArgs); 3683 Decl *R; 3684 if (auto *MD = dyn_cast<CXXMethodDecl>(Spaceship)) { 3685 R = Instantiator.VisitCXXMethodDecl( 3686 MD, nullptr, None, 3687 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual); 3688 } else { 3689 assert(Spaceship->getFriendObjectKind() && 3690 "defaulted spaceship is neither a member nor a friend"); 3691 3692 R = Instantiator.VisitFunctionDecl( 3693 Spaceship, nullptr, 3694 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual); 3695 if (!R) 3696 return nullptr; 3697 3698 FriendDecl *FD = 3699 FriendDecl::Create(Context, RD, Spaceship->getLocation(), 3700 cast<NamedDecl>(R), Spaceship->getBeginLoc()); 3701 FD->setAccess(AS_public); 3702 RD->addDecl(FD); 3703 } 3704 return cast_or_null<FunctionDecl>(R); 3705 } 3706 3707 /// Instantiates a nested template parameter list in the current 3708 /// instantiation context. 3709 /// 3710 /// \param L The parameter list to instantiate 3711 /// 3712 /// \returns NULL if there was an error 3713 TemplateParameterList * 3714 TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) { 3715 // Get errors for all the parameters before bailing out. 3716 bool Invalid = false; 3717 3718 unsigned N = L->size(); 3719 typedef SmallVector<NamedDecl *, 8> ParamVector; 3720 ParamVector Params; 3721 Params.reserve(N); 3722 for (auto &P : *L) { 3723 NamedDecl *D = cast_or_null<NamedDecl>(Visit(P)); 3724 Params.push_back(D); 3725 Invalid = Invalid || !D || D->isInvalidDecl(); 3726 } 3727 3728 // Clean up if we had an error. 3729 if (Invalid) 3730 return nullptr; 3731 3732 // FIXME: Concepts: Substitution into requires clause should only happen when 3733 // checking satisfaction. 3734 Expr *InstRequiresClause = nullptr; 3735 if (Expr *E = L->getRequiresClause()) { 3736 EnterExpressionEvaluationContext ConstantEvaluated( 3737 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); 3738 ExprResult Res = SemaRef.SubstExpr(E, TemplateArgs); 3739 if (Res.isInvalid() || !Res.isUsable()) { 3740 return nullptr; 3741 } 3742 InstRequiresClause = Res.get(); 3743 } 3744 3745 TemplateParameterList *InstL 3746 = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(), 3747 L->getLAngleLoc(), Params, 3748 L->getRAngleLoc(), InstRequiresClause); 3749 return InstL; 3750 } 3751 3752 TemplateParameterList * 3753 Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner, 3754 const MultiLevelTemplateArgumentList &TemplateArgs) { 3755 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); 3756 return Instantiator.SubstTemplateParams(Params); 3757 } 3758 3759 /// Instantiate the declaration of a class template partial 3760 /// specialization. 3761 /// 3762 /// \param ClassTemplate the (instantiated) class template that is partially 3763 // specialized by the instantiation of \p PartialSpec. 3764 /// 3765 /// \param PartialSpec the (uninstantiated) class template partial 3766 /// specialization that we are instantiating. 3767 /// 3768 /// \returns The instantiated partial specialization, if successful; otherwise, 3769 /// NULL to indicate an error. 3770 ClassTemplatePartialSpecializationDecl * 3771 TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization( 3772 ClassTemplateDecl *ClassTemplate, 3773 ClassTemplatePartialSpecializationDecl *PartialSpec) { 3774 // Create a local instantiation scope for this class template partial 3775 // specialization, which will contain the instantiations of the template 3776 // parameters. 3777 LocalInstantiationScope Scope(SemaRef); 3778 3779 // Substitute into the template parameters of the class template partial 3780 // specialization. 3781 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); 3782 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 3783 if (!InstParams) 3784 return nullptr; 3785 3786 // Substitute into the template arguments of the class template partial 3787 // specialization. 3788 const ASTTemplateArgumentListInfo *TemplArgInfo 3789 = PartialSpec->getTemplateArgsAsWritten(); 3790 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, 3791 TemplArgInfo->RAngleLoc); 3792 if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(), 3793 TemplArgInfo->NumTemplateArgs, 3794 InstTemplateArgs, TemplateArgs)) 3795 return nullptr; 3796 3797 // Check that the template argument list is well-formed for this 3798 // class template. 3799 SmallVector<TemplateArgument, 4> Converted; 3800 if (SemaRef.CheckTemplateArgumentList(ClassTemplate, 3801 PartialSpec->getLocation(), 3802 InstTemplateArgs, 3803 false, 3804 Converted)) 3805 return nullptr; 3806 3807 // Check these arguments are valid for a template partial specialization. 3808 if (SemaRef.CheckTemplatePartialSpecializationArgs( 3809 PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(), 3810 Converted)) 3811 return nullptr; 3812 3813 // Figure out where to insert this class template partial specialization 3814 // in the member template's set of class template partial specializations. 3815 void *InsertPos = nullptr; 3816 ClassTemplateSpecializationDecl *PrevDecl 3817 = ClassTemplate->findPartialSpecialization(Converted, InstParams, 3818 InsertPos); 3819 3820 // Build the canonical type that describes the converted template 3821 // arguments of the class template partial specialization. 3822 QualType CanonType 3823 = SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate), 3824 Converted); 3825 3826 // Build the fully-sugared type for this class template 3827 // specialization as the user wrote in the specialization 3828 // itself. This means that we'll pretty-print the type retrieved 3829 // from the specialization's declaration the way that the user 3830 // actually wrote the specialization, rather than formatting the 3831 // name based on the "canonical" representation used to store the 3832 // template arguments in the specialization. 3833 TypeSourceInfo *WrittenTy 3834 = SemaRef.Context.getTemplateSpecializationTypeInfo( 3835 TemplateName(ClassTemplate), 3836 PartialSpec->getLocation(), 3837 InstTemplateArgs, 3838 CanonType); 3839 3840 if (PrevDecl) { 3841 // We've already seen a partial specialization with the same template 3842 // parameters and template arguments. This can happen, for example, when 3843 // substituting the outer template arguments ends up causing two 3844 // class template partial specializations of a member class template 3845 // to have identical forms, e.g., 3846 // 3847 // template<typename T, typename U> 3848 // struct Outer { 3849 // template<typename X, typename Y> struct Inner; 3850 // template<typename Y> struct Inner<T, Y>; 3851 // template<typename Y> struct Inner<U, Y>; 3852 // }; 3853 // 3854 // Outer<int, int> outer; // error: the partial specializations of Inner 3855 // // have the same signature. 3856 SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared) 3857 << WrittenTy->getType(); 3858 SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here) 3859 << SemaRef.Context.getTypeDeclType(PrevDecl); 3860 return nullptr; 3861 } 3862 3863 3864 // Create the class template partial specialization declaration. 3865 ClassTemplatePartialSpecializationDecl *InstPartialSpec = 3866 ClassTemplatePartialSpecializationDecl::Create( 3867 SemaRef.Context, PartialSpec->getTagKind(), Owner, 3868 PartialSpec->getBeginLoc(), PartialSpec->getLocation(), InstParams, 3869 ClassTemplate, Converted, InstTemplateArgs, CanonType, nullptr); 3870 // Substitute the nested name specifier, if any. 3871 if (SubstQualifier(PartialSpec, InstPartialSpec)) 3872 return nullptr; 3873 3874 InstPartialSpec->setInstantiatedFromMember(PartialSpec); 3875 InstPartialSpec->setTypeAsWritten(WrittenTy); 3876 3877 // Check the completed partial specialization. 3878 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); 3879 3880 // Add this partial specialization to the set of class template partial 3881 // specializations. 3882 ClassTemplate->AddPartialSpecialization(InstPartialSpec, 3883 /*InsertPos=*/nullptr); 3884 return InstPartialSpec; 3885 } 3886 3887 /// Instantiate the declaration of a variable template partial 3888 /// specialization. 3889 /// 3890 /// \param VarTemplate the (instantiated) variable template that is partially 3891 /// specialized by the instantiation of \p PartialSpec. 3892 /// 3893 /// \param PartialSpec the (uninstantiated) variable template partial 3894 /// specialization that we are instantiating. 3895 /// 3896 /// \returns The instantiated partial specialization, if successful; otherwise, 3897 /// NULL to indicate an error. 3898 VarTemplatePartialSpecializationDecl * 3899 TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization( 3900 VarTemplateDecl *VarTemplate, 3901 VarTemplatePartialSpecializationDecl *PartialSpec) { 3902 // Create a local instantiation scope for this variable template partial 3903 // specialization, which will contain the instantiations of the template 3904 // parameters. 3905 LocalInstantiationScope Scope(SemaRef); 3906 3907 // Substitute into the template parameters of the variable template partial 3908 // specialization. 3909 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); 3910 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 3911 if (!InstParams) 3912 return nullptr; 3913 3914 // Substitute into the template arguments of the variable template partial 3915 // specialization. 3916 const ASTTemplateArgumentListInfo *TemplArgInfo 3917 = PartialSpec->getTemplateArgsAsWritten(); 3918 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, 3919 TemplArgInfo->RAngleLoc); 3920 if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(), 3921 TemplArgInfo->NumTemplateArgs, 3922 InstTemplateArgs, TemplateArgs)) 3923 return nullptr; 3924 3925 // Check that the template argument list is well-formed for this 3926 // class template. 3927 SmallVector<TemplateArgument, 4> Converted; 3928 if (SemaRef.CheckTemplateArgumentList(VarTemplate, PartialSpec->getLocation(), 3929 InstTemplateArgs, false, Converted)) 3930 return nullptr; 3931 3932 // Check these arguments are valid for a template partial specialization. 3933 if (SemaRef.CheckTemplatePartialSpecializationArgs( 3934 PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(), 3935 Converted)) 3936 return nullptr; 3937 3938 // Figure out where to insert this variable template partial specialization 3939 // in the member template's set of variable template partial specializations. 3940 void *InsertPos = nullptr; 3941 VarTemplateSpecializationDecl *PrevDecl = 3942 VarTemplate->findPartialSpecialization(Converted, InstParams, InsertPos); 3943 3944 // Build the canonical type that describes the converted template 3945 // arguments of the variable template partial specialization. 3946 QualType CanonType = SemaRef.Context.getTemplateSpecializationType( 3947 TemplateName(VarTemplate), Converted); 3948 3949 // Build the fully-sugared type for this variable template 3950 // specialization as the user wrote in the specialization 3951 // itself. This means that we'll pretty-print the type retrieved 3952 // from the specialization's declaration the way that the user 3953 // actually wrote the specialization, rather than formatting the 3954 // name based on the "canonical" representation used to store the 3955 // template arguments in the specialization. 3956 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( 3957 TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs, 3958 CanonType); 3959 3960 if (PrevDecl) { 3961 // We've already seen a partial specialization with the same template 3962 // parameters and template arguments. This can happen, for example, when 3963 // substituting the outer template arguments ends up causing two 3964 // variable template partial specializations of a member variable template 3965 // to have identical forms, e.g., 3966 // 3967 // template<typename T, typename U> 3968 // struct Outer { 3969 // template<typename X, typename Y> pair<X,Y> p; 3970 // template<typename Y> pair<T, Y> p; 3971 // template<typename Y> pair<U, Y> p; 3972 // }; 3973 // 3974 // Outer<int, int> outer; // error: the partial specializations of Inner 3975 // // have the same signature. 3976 SemaRef.Diag(PartialSpec->getLocation(), 3977 diag::err_var_partial_spec_redeclared) 3978 << WrittenTy->getType(); 3979 SemaRef.Diag(PrevDecl->getLocation(), 3980 diag::note_var_prev_partial_spec_here); 3981 return nullptr; 3982 } 3983 3984 // Do substitution on the type of the declaration 3985 TypeSourceInfo *DI = SemaRef.SubstType( 3986 PartialSpec->getTypeSourceInfo(), TemplateArgs, 3987 PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName()); 3988 if (!DI) 3989 return nullptr; 3990 3991 if (DI->getType()->isFunctionType()) { 3992 SemaRef.Diag(PartialSpec->getLocation(), 3993 diag::err_variable_instantiates_to_function) 3994 << PartialSpec->isStaticDataMember() << DI->getType(); 3995 return nullptr; 3996 } 3997 3998 // Create the variable template partial specialization declaration. 3999 VarTemplatePartialSpecializationDecl *InstPartialSpec = 4000 VarTemplatePartialSpecializationDecl::Create( 4001 SemaRef.Context, Owner, PartialSpec->getInnerLocStart(), 4002 PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(), 4003 DI, PartialSpec->getStorageClass(), Converted, InstTemplateArgs); 4004 4005 // Substitute the nested name specifier, if any. 4006 if (SubstQualifier(PartialSpec, InstPartialSpec)) 4007 return nullptr; 4008 4009 InstPartialSpec->setInstantiatedFromMember(PartialSpec); 4010 InstPartialSpec->setTypeAsWritten(WrittenTy); 4011 4012 // Check the completed partial specialization. 4013 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); 4014 4015 // Add this partial specialization to the set of variable template partial 4016 // specializations. The instantiation of the initializer is not necessary. 4017 VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr); 4018 4019 SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs, 4020 LateAttrs, Owner, StartingScope); 4021 4022 return InstPartialSpec; 4023 } 4024 4025 TypeSourceInfo* 4026 TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D, 4027 SmallVectorImpl<ParmVarDecl *> &Params) { 4028 TypeSourceInfo *OldTInfo = D->getTypeSourceInfo(); 4029 assert(OldTInfo && "substituting function without type source info"); 4030 assert(Params.empty() && "parameter vector is non-empty at start"); 4031 4032 CXXRecordDecl *ThisContext = nullptr; 4033 Qualifiers ThisTypeQuals; 4034 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4035 ThisContext = cast<CXXRecordDecl>(Owner); 4036 ThisTypeQuals = Method->getMethodQualifiers(); 4037 } 4038 4039 TypeSourceInfo *NewTInfo 4040 = SemaRef.SubstFunctionDeclType(OldTInfo, TemplateArgs, 4041 D->getTypeSpecStartLoc(), 4042 D->getDeclName(), 4043 ThisContext, ThisTypeQuals); 4044 if (!NewTInfo) 4045 return nullptr; 4046 4047 TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens(); 4048 if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) { 4049 if (NewTInfo != OldTInfo) { 4050 // Get parameters from the new type info. 4051 TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens(); 4052 FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>(); 4053 unsigned NewIdx = 0; 4054 for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams(); 4055 OldIdx != NumOldParams; ++OldIdx) { 4056 ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx); 4057 LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope; 4058 4059 Optional<unsigned> NumArgumentsInExpansion; 4060 if (OldParam->isParameterPack()) 4061 NumArgumentsInExpansion = 4062 SemaRef.getNumArgumentsInExpansion(OldParam->getType(), 4063 TemplateArgs); 4064 if (!NumArgumentsInExpansion) { 4065 // Simple case: normal parameter, or a parameter pack that's 4066 // instantiated to a (still-dependent) parameter pack. 4067 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); 4068 Params.push_back(NewParam); 4069 Scope->InstantiatedLocal(OldParam, NewParam); 4070 } else { 4071 // Parameter pack expansion: make the instantiation an argument pack. 4072 Scope->MakeInstantiatedLocalArgPack(OldParam); 4073 for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) { 4074 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); 4075 Params.push_back(NewParam); 4076 Scope->InstantiatedLocalPackArg(OldParam, NewParam); 4077 } 4078 } 4079 } 4080 } else { 4081 // The function type itself was not dependent and therefore no 4082 // substitution occurred. However, we still need to instantiate 4083 // the function parameters themselves. 4084 const FunctionProtoType *OldProto = 4085 cast<FunctionProtoType>(OldProtoLoc.getType()); 4086 for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end; 4087 ++i) { 4088 ParmVarDecl *OldParam = OldProtoLoc.getParam(i); 4089 if (!OldParam) { 4090 Params.push_back(SemaRef.BuildParmVarDeclForTypedef( 4091 D, D->getLocation(), OldProto->getParamType(i))); 4092 continue; 4093 } 4094 4095 ParmVarDecl *Parm = 4096 cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam)); 4097 if (!Parm) 4098 return nullptr; 4099 Params.push_back(Parm); 4100 } 4101 } 4102 } else { 4103 // If the type of this function, after ignoring parentheses, is not 4104 // *directly* a function type, then we're instantiating a function that 4105 // was declared via a typedef or with attributes, e.g., 4106 // 4107 // typedef int functype(int, int); 4108 // functype func; 4109 // int __cdecl meth(int, int); 4110 // 4111 // In this case, we'll just go instantiate the ParmVarDecls that we 4112 // synthesized in the method declaration. 4113 SmallVector<QualType, 4> ParamTypes; 4114 Sema::ExtParameterInfoBuilder ExtParamInfos; 4115 if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr, 4116 TemplateArgs, ParamTypes, &Params, 4117 ExtParamInfos)) 4118 return nullptr; 4119 } 4120 4121 return NewTInfo; 4122 } 4123 4124 /// Introduce the instantiated function parameters into the local 4125 /// instantiation scope, and set the parameter names to those used 4126 /// in the template. 4127 static bool addInstantiatedParametersToScope(Sema &S, FunctionDecl *Function, 4128 const FunctionDecl *PatternDecl, 4129 LocalInstantiationScope &Scope, 4130 const MultiLevelTemplateArgumentList &TemplateArgs) { 4131 unsigned FParamIdx = 0; 4132 for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) { 4133 const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I); 4134 if (!PatternParam->isParameterPack()) { 4135 // Simple case: not a parameter pack. 4136 assert(FParamIdx < Function->getNumParams()); 4137 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); 4138 FunctionParam->setDeclName(PatternParam->getDeclName()); 4139 // If the parameter's type is not dependent, update it to match the type 4140 // in the pattern. They can differ in top-level cv-qualifiers, and we want 4141 // the pattern's type here. If the type is dependent, they can't differ, 4142 // per core issue 1668. Substitute into the type from the pattern, in case 4143 // it's instantiation-dependent. 4144 // FIXME: Updating the type to work around this is at best fragile. 4145 if (!PatternDecl->getType()->isDependentType()) { 4146 QualType T = S.SubstType(PatternParam->getType(), TemplateArgs, 4147 FunctionParam->getLocation(), 4148 FunctionParam->getDeclName()); 4149 if (T.isNull()) 4150 return true; 4151 FunctionParam->setType(T); 4152 } 4153 4154 Scope.InstantiatedLocal(PatternParam, FunctionParam); 4155 ++FParamIdx; 4156 continue; 4157 } 4158 4159 // Expand the parameter pack. 4160 Scope.MakeInstantiatedLocalArgPack(PatternParam); 4161 Optional<unsigned> NumArgumentsInExpansion 4162 = S.getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs); 4163 if (NumArgumentsInExpansion) { 4164 QualType PatternType = 4165 PatternParam->getType()->castAs<PackExpansionType>()->getPattern(); 4166 for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) { 4167 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); 4168 FunctionParam->setDeclName(PatternParam->getDeclName()); 4169 if (!PatternDecl->getType()->isDependentType()) { 4170 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, Arg); 4171 QualType T = S.SubstType(PatternType, TemplateArgs, 4172 FunctionParam->getLocation(), 4173 FunctionParam->getDeclName()); 4174 if (T.isNull()) 4175 return true; 4176 FunctionParam->setType(T); 4177 } 4178 4179 Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam); 4180 ++FParamIdx; 4181 } 4182 } 4183 } 4184 4185 return false; 4186 } 4187 4188 void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation, 4189 FunctionDecl *Decl) { 4190 const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>(); 4191 if (Proto->getExceptionSpecType() != EST_Uninstantiated) 4192 return; 4193 4194 InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl, 4195 InstantiatingTemplate::ExceptionSpecification()); 4196 if (Inst.isInvalid()) { 4197 // We hit the instantiation depth limit. Clear the exception specification 4198 // so that our callers don't have to cope with EST_Uninstantiated. 4199 UpdateExceptionSpec(Decl, EST_None); 4200 return; 4201 } 4202 if (Inst.isAlreadyInstantiating()) { 4203 // This exception specification indirectly depends on itself. Reject. 4204 // FIXME: Corresponding rule in the standard? 4205 Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl; 4206 UpdateExceptionSpec(Decl, EST_None); 4207 return; 4208 } 4209 4210 // Enter the scope of this instantiation. We don't use 4211 // PushDeclContext because we don't have a scope. 4212 Sema::ContextRAII savedContext(*this, Decl); 4213 LocalInstantiationScope Scope(*this); 4214 4215 MultiLevelTemplateArgumentList TemplateArgs = 4216 getTemplateInstantiationArgs(Decl, nullptr, /*RelativeToPrimary*/true); 4217 4218 FunctionDecl *Template = Proto->getExceptionSpecTemplate(); 4219 if (addInstantiatedParametersToScope(*this, Decl, Template, Scope, 4220 TemplateArgs)) { 4221 UpdateExceptionSpec(Decl, EST_None); 4222 return; 4223 } 4224 4225 SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(), 4226 TemplateArgs); 4227 } 4228 4229 bool Sema::CheckInstantiatedFunctionTemplateConstraints( 4230 SourceLocation PointOfInstantiation, FunctionDecl *Decl, 4231 ArrayRef<TemplateArgument> TemplateArgs, 4232 ConstraintSatisfaction &Satisfaction) { 4233 // In most cases we're not going to have constraints, so check for that first. 4234 FunctionTemplateDecl *Template = Decl->getPrimaryTemplate(); 4235 // Note - code synthesis context for the constraints check is created 4236 // inside CheckConstraintsSatisfaction. 4237 SmallVector<const Expr *, 3> TemplateAC; 4238 Template->getAssociatedConstraints(TemplateAC); 4239 if (TemplateAC.empty()) { 4240 Satisfaction.IsSatisfied = true; 4241 return false; 4242 } 4243 4244 // Enter the scope of this instantiation. We don't use 4245 // PushDeclContext because we don't have a scope. 4246 Sema::ContextRAII savedContext(*this, Decl); 4247 LocalInstantiationScope Scope(*this); 4248 4249 MultiLevelTemplateArgumentList MLTAL = 4250 getTemplateInstantiationArgs(Decl, nullptr, /*RelativeToPrimary*/true); 4251 4252 // If this is not an explicit specialization - we need to get the instantiated 4253 // version of the template arguments and add them to scope for the 4254 // substitution. 4255 if (Decl->isTemplateInstantiation()) { 4256 InstantiatingTemplate Inst(*this, Decl->getPointOfInstantiation(), 4257 InstantiatingTemplate::ConstraintsCheck{}, Decl->getPrimaryTemplate(), 4258 MLTAL.getInnermost(), SourceRange()); 4259 if (Inst.isInvalid()) 4260 return true; 4261 if (addInstantiatedParametersToScope( 4262 *this, Decl, Decl->getPrimaryTemplate()->getTemplatedDecl(), 4263 Scope, MLTAL)) 4264 return true; 4265 } 4266 4267 return CheckConstraintSatisfaction(Template, TemplateAC, TemplateArgs, 4268 PointOfInstantiation, Satisfaction); 4269 } 4270 4271 /// Initializes the common fields of an instantiation function 4272 /// declaration (New) from the corresponding fields of its template (Tmpl). 4273 /// 4274 /// \returns true if there was an error 4275 bool 4276 TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New, 4277 FunctionDecl *Tmpl) { 4278 New->setImplicit(Tmpl->isImplicit()); 4279 4280 // Forward the mangling number from the template to the instantiated decl. 4281 SemaRef.Context.setManglingNumber(New, 4282 SemaRef.Context.getManglingNumber(Tmpl)); 4283 4284 // If we are performing substituting explicitly-specified template arguments 4285 // or deduced template arguments into a function template and we reach this 4286 // point, we are now past the point where SFINAE applies and have committed 4287 // to keeping the new function template specialization. We therefore 4288 // convert the active template instantiation for the function template 4289 // into a template instantiation for this specific function template 4290 // specialization, which is not a SFINAE context, so that we diagnose any 4291 // further errors in the declaration itself. 4292 typedef Sema::CodeSynthesisContext ActiveInstType; 4293 ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back(); 4294 if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution || 4295 ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) { 4296 if (FunctionTemplateDecl *FunTmpl 4297 = dyn_cast<FunctionTemplateDecl>(ActiveInst.Entity)) { 4298 assert(FunTmpl->getTemplatedDecl() == Tmpl && 4299 "Deduction from the wrong function template?"); 4300 (void) FunTmpl; 4301 atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); 4302 ActiveInst.Kind = ActiveInstType::TemplateInstantiation; 4303 ActiveInst.Entity = New; 4304 atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); 4305 } 4306 } 4307 4308 const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>(); 4309 assert(Proto && "Function template without prototype?"); 4310 4311 if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) { 4312 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 4313 4314 // DR1330: In C++11, defer instantiation of a non-trivial 4315 // exception specification. 4316 // DR1484: Local classes and their members are instantiated along with the 4317 // containing function. 4318 if (SemaRef.getLangOpts().CPlusPlus11 && 4319 EPI.ExceptionSpec.Type != EST_None && 4320 EPI.ExceptionSpec.Type != EST_DynamicNone && 4321 EPI.ExceptionSpec.Type != EST_BasicNoexcept && 4322 !Tmpl->isLexicallyWithinFunctionOrMethod()) { 4323 FunctionDecl *ExceptionSpecTemplate = Tmpl; 4324 if (EPI.ExceptionSpec.Type == EST_Uninstantiated) 4325 ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate; 4326 ExceptionSpecificationType NewEST = EST_Uninstantiated; 4327 if (EPI.ExceptionSpec.Type == EST_Unevaluated) 4328 NewEST = EST_Unevaluated; 4329 4330 // Mark the function has having an uninstantiated exception specification. 4331 const FunctionProtoType *NewProto 4332 = New->getType()->getAs<FunctionProtoType>(); 4333 assert(NewProto && "Template instantiation without function prototype?"); 4334 EPI = NewProto->getExtProtoInfo(); 4335 EPI.ExceptionSpec.Type = NewEST; 4336 EPI.ExceptionSpec.SourceDecl = New; 4337 EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate; 4338 New->setType(SemaRef.Context.getFunctionType( 4339 NewProto->getReturnType(), NewProto->getParamTypes(), EPI)); 4340 } else { 4341 Sema::ContextRAII SwitchContext(SemaRef, New); 4342 SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs); 4343 } 4344 } 4345 4346 // Get the definition. Leaves the variable unchanged if undefined. 4347 const FunctionDecl *Definition = Tmpl; 4348 Tmpl->isDefined(Definition); 4349 4350 SemaRef.InstantiateAttrs(TemplateArgs, Definition, New, 4351 LateAttrs, StartingScope); 4352 4353 return false; 4354 } 4355 4356 /// Initializes common fields of an instantiated method 4357 /// declaration (New) from the corresponding fields of its template 4358 /// (Tmpl). 4359 /// 4360 /// \returns true if there was an error 4361 bool 4362 TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New, 4363 CXXMethodDecl *Tmpl) { 4364 if (InitFunctionInstantiation(New, Tmpl)) 4365 return true; 4366 4367 if (isa<CXXDestructorDecl>(New) && SemaRef.getLangOpts().CPlusPlus11) 4368 SemaRef.AdjustDestructorExceptionSpec(cast<CXXDestructorDecl>(New)); 4369 4370 New->setAccess(Tmpl->getAccess()); 4371 if (Tmpl->isVirtualAsWritten()) 4372 New->setVirtualAsWritten(true); 4373 4374 // FIXME: New needs a pointer to Tmpl 4375 return false; 4376 } 4377 4378 bool TemplateDeclInstantiator::SubstDefaultedFunction(FunctionDecl *New, 4379 FunctionDecl *Tmpl) { 4380 // Transfer across any unqualified lookups. 4381 if (auto *DFI = Tmpl->getDefaultedFunctionInfo()) { 4382 SmallVector<DeclAccessPair, 32> Lookups; 4383 Lookups.reserve(DFI->getUnqualifiedLookups().size()); 4384 bool AnyChanged = false; 4385 for (DeclAccessPair DA : DFI->getUnqualifiedLookups()) { 4386 NamedDecl *D = SemaRef.FindInstantiatedDecl(New->getLocation(), 4387 DA.getDecl(), TemplateArgs); 4388 if (!D) 4389 return true; 4390 AnyChanged |= (D != DA.getDecl()); 4391 Lookups.push_back(DeclAccessPair::make(D, DA.getAccess())); 4392 } 4393 4394 // It's unlikely that substitution will change any declarations. Don't 4395 // store an unnecessary copy in that case. 4396 New->setDefaultedFunctionInfo( 4397 AnyChanged ? FunctionDecl::DefaultedFunctionInfo::Create( 4398 SemaRef.Context, Lookups) 4399 : DFI); 4400 } 4401 4402 SemaRef.SetDeclDefaulted(New, Tmpl->getLocation()); 4403 return false; 4404 } 4405 4406 /// Instantiate (or find existing instantiation of) a function template with a 4407 /// given set of template arguments. 4408 /// 4409 /// Usually this should not be used, and template argument deduction should be 4410 /// used in its place. 4411 FunctionDecl * 4412 Sema::InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD, 4413 const TemplateArgumentList *Args, 4414 SourceLocation Loc) { 4415 FunctionDecl *FD = FTD->getTemplatedDecl(); 4416 4417 sema::TemplateDeductionInfo Info(Loc); 4418 InstantiatingTemplate Inst( 4419 *this, Loc, FTD, Args->asArray(), 4420 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); 4421 if (Inst.isInvalid()) 4422 return nullptr; 4423 4424 ContextRAII SavedContext(*this, FD); 4425 MultiLevelTemplateArgumentList MArgs(*Args); 4426 4427 return cast_or_null<FunctionDecl>(SubstDecl(FD, FD->getParent(), MArgs)); 4428 } 4429 4430 /// In the MS ABI, we need to instantiate default arguments of dllexported 4431 /// default constructors along with the constructor definition. This allows IR 4432 /// gen to emit a constructor closure which calls the default constructor with 4433 /// its default arguments. 4434 static void InstantiateDefaultCtorDefaultArgs(Sema &S, 4435 CXXConstructorDecl *Ctor) { 4436 assert(S.Context.getTargetInfo().getCXXABI().isMicrosoft() && 4437 Ctor->isDefaultConstructor()); 4438 unsigned NumParams = Ctor->getNumParams(); 4439 if (NumParams == 0) 4440 return; 4441 DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>(); 4442 if (!Attr) 4443 return; 4444 for (unsigned I = 0; I != NumParams; ++I) { 4445 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor, 4446 Ctor->getParamDecl(I)); 4447 S.DiscardCleanupsInEvaluationContext(); 4448 } 4449 } 4450 4451 /// Instantiate the definition of the given function from its 4452 /// template. 4453 /// 4454 /// \param PointOfInstantiation the point at which the instantiation was 4455 /// required. Note that this is not precisely a "point of instantiation" 4456 /// for the function, but it's close. 4457 /// 4458 /// \param Function the already-instantiated declaration of a 4459 /// function template specialization or member function of a class template 4460 /// specialization. 4461 /// 4462 /// \param Recursive if true, recursively instantiates any functions that 4463 /// are required by this instantiation. 4464 /// 4465 /// \param DefinitionRequired if true, then we are performing an explicit 4466 /// instantiation where the body of the function is required. Complain if 4467 /// there is no such body. 4468 void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, 4469 FunctionDecl *Function, 4470 bool Recursive, 4471 bool DefinitionRequired, 4472 bool AtEndOfTU) { 4473 if (Function->isInvalidDecl() || Function->isDefined() || 4474 isa<CXXDeductionGuideDecl>(Function)) 4475 return; 4476 4477 // Never instantiate an explicit specialization except if it is a class scope 4478 // explicit specialization. 4479 TemplateSpecializationKind TSK = 4480 Function->getTemplateSpecializationKindForInstantiation(); 4481 if (TSK == TSK_ExplicitSpecialization) 4482 return; 4483 4484 // Find the function body that we'll be substituting. 4485 const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern(); 4486 assert(PatternDecl && "instantiating a non-template"); 4487 4488 const FunctionDecl *PatternDef = PatternDecl->getDefinition(); 4489 Stmt *Pattern = nullptr; 4490 if (PatternDef) { 4491 Pattern = PatternDef->getBody(PatternDef); 4492 PatternDecl = PatternDef; 4493 if (PatternDef->willHaveBody()) 4494 PatternDef = nullptr; 4495 } 4496 4497 // FIXME: We need to track the instantiation stack in order to know which 4498 // definitions should be visible within this instantiation. 4499 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function, 4500 Function->getInstantiatedFromMemberFunction(), 4501 PatternDecl, PatternDef, TSK, 4502 /*Complain*/DefinitionRequired)) { 4503 if (DefinitionRequired) 4504 Function->setInvalidDecl(); 4505 else if (TSK == TSK_ExplicitInstantiationDefinition) { 4506 // Try again at the end of the translation unit (at which point a 4507 // definition will be required). 4508 assert(!Recursive); 4509 Function->setInstantiationIsPending(true); 4510 PendingInstantiations.push_back( 4511 std::make_pair(Function, PointOfInstantiation)); 4512 } else if (TSK == TSK_ImplicitInstantiation) { 4513 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && 4514 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) { 4515 Diag(PointOfInstantiation, diag::warn_func_template_missing) 4516 << Function; 4517 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); 4518 if (getLangOpts().CPlusPlus11) 4519 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) 4520 << Function; 4521 } 4522 } 4523 4524 return; 4525 } 4526 4527 // Postpone late parsed template instantiations. 4528 if (PatternDecl->isLateTemplateParsed() && 4529 !LateTemplateParser) { 4530 Function->setInstantiationIsPending(true); 4531 LateParsedInstantiations.push_back( 4532 std::make_pair(Function, PointOfInstantiation)); 4533 return; 4534 } 4535 4536 llvm::TimeTraceScope TimeScope("InstantiateFunction", [&]() { 4537 std::string Name; 4538 llvm::raw_string_ostream OS(Name); 4539 Function->getNameForDiagnostic(OS, getPrintingPolicy(), 4540 /*Qualified=*/true); 4541 return Name; 4542 }); 4543 4544 // If we're performing recursive template instantiation, create our own 4545 // queue of pending implicit instantiations that we will instantiate later, 4546 // while we're still within our own instantiation context. 4547 // This has to happen before LateTemplateParser below is called, so that 4548 // it marks vtables used in late parsed templates as used. 4549 GlobalEagerInstantiationScope GlobalInstantiations(*this, 4550 /*Enabled=*/Recursive); 4551 LocalEagerInstantiationScope LocalInstantiations(*this); 4552 4553 // Call the LateTemplateParser callback if there is a need to late parse 4554 // a templated function definition. 4555 if (!Pattern && PatternDecl->isLateTemplateParsed() && 4556 LateTemplateParser) { 4557 // FIXME: Optimize to allow individual templates to be deserialized. 4558 if (PatternDecl->isFromASTFile()) 4559 ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap); 4560 4561 auto LPTIter = LateParsedTemplateMap.find(PatternDecl); 4562 assert(LPTIter != LateParsedTemplateMap.end() && 4563 "missing LateParsedTemplate"); 4564 LateTemplateParser(OpaqueParser, *LPTIter->second); 4565 Pattern = PatternDecl->getBody(PatternDecl); 4566 } 4567 4568 // Note, we should never try to instantiate a deleted function template. 4569 assert((Pattern || PatternDecl->isDefaulted() || 4570 PatternDecl->hasSkippedBody()) && 4571 "unexpected kind of function template definition"); 4572 4573 // C++1y [temp.explicit]p10: 4574 // Except for inline functions, declarations with types deduced from their 4575 // initializer or return value, and class template specializations, other 4576 // explicit instantiation declarations have the effect of suppressing the 4577 // implicit instantiation of the entity to which they refer. 4578 if (TSK == TSK_ExplicitInstantiationDeclaration && 4579 !PatternDecl->isInlined() && 4580 !PatternDecl->getReturnType()->getContainedAutoType()) 4581 return; 4582 4583 if (PatternDecl->isInlined()) { 4584 // Function, and all later redeclarations of it (from imported modules, 4585 // for instance), are now implicitly inline. 4586 for (auto *D = Function->getMostRecentDecl(); /**/; 4587 D = D->getPreviousDecl()) { 4588 D->setImplicitlyInline(); 4589 if (D == Function) 4590 break; 4591 } 4592 } 4593 4594 InstantiatingTemplate Inst(*this, PointOfInstantiation, Function); 4595 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 4596 return; 4597 PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(), 4598 "instantiating function definition"); 4599 4600 // The instantiation is visible here, even if it was first declared in an 4601 // unimported module. 4602 Function->setVisibleDespiteOwningModule(); 4603 4604 // Copy the inner loc start from the pattern. 4605 Function->setInnerLocStart(PatternDecl->getInnerLocStart()); 4606 4607 EnterExpressionEvaluationContext EvalContext( 4608 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 4609 4610 // Introduce a new scope where local variable instantiations will be 4611 // recorded, unless we're actually a member function within a local 4612 // class, in which case we need to merge our results with the parent 4613 // scope (of the enclosing function). 4614 bool MergeWithParentScope = false; 4615 if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext())) 4616 MergeWithParentScope = Rec->isLocalClass(); 4617 4618 LocalInstantiationScope Scope(*this, MergeWithParentScope); 4619 4620 if (PatternDecl->isDefaulted()) 4621 SetDeclDefaulted(Function, PatternDecl->getLocation()); 4622 else { 4623 MultiLevelTemplateArgumentList TemplateArgs = 4624 getTemplateInstantiationArgs(Function, nullptr, false, PatternDecl); 4625 4626 // Substitute into the qualifier; we can get a substitution failure here 4627 // through evil use of alias templates. 4628 // FIXME: Is CurContext correct for this? Should we go to the (instantiation 4629 // of the) lexical context of the pattern? 4630 SubstQualifier(*this, PatternDecl, Function, TemplateArgs); 4631 4632 ActOnStartOfFunctionDef(nullptr, Function); 4633 4634 // Enter the scope of this instantiation. We don't use 4635 // PushDeclContext because we don't have a scope. 4636 Sema::ContextRAII savedContext(*this, Function); 4637 4638 if (addInstantiatedParametersToScope(*this, Function, PatternDecl, Scope, 4639 TemplateArgs)) 4640 return; 4641 4642 StmtResult Body; 4643 if (PatternDecl->hasSkippedBody()) { 4644 ActOnSkippedFunctionBody(Function); 4645 Body = nullptr; 4646 } else { 4647 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Function)) { 4648 // If this is a constructor, instantiate the member initializers. 4649 InstantiateMemInitializers(Ctor, cast<CXXConstructorDecl>(PatternDecl), 4650 TemplateArgs); 4651 4652 // If this is an MS ABI dllexport default constructor, instantiate any 4653 // default arguments. 4654 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 4655 Ctor->isDefaultConstructor()) { 4656 InstantiateDefaultCtorDefaultArgs(*this, Ctor); 4657 } 4658 } 4659 4660 // Instantiate the function body. 4661 Body = SubstStmt(Pattern, TemplateArgs); 4662 4663 if (Body.isInvalid()) 4664 Function->setInvalidDecl(); 4665 } 4666 // FIXME: finishing the function body while in an expression evaluation 4667 // context seems wrong. Investigate more. 4668 ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true); 4669 4670 PerformDependentDiagnostics(PatternDecl, TemplateArgs); 4671 4672 if (auto *Listener = getASTMutationListener()) 4673 Listener->FunctionDefinitionInstantiated(Function); 4674 4675 savedContext.pop(); 4676 } 4677 4678 DeclGroupRef DG(Function); 4679 Consumer.HandleTopLevelDecl(DG); 4680 4681 // This class may have local implicit instantiations that need to be 4682 // instantiation within this scope. 4683 LocalInstantiations.perform(); 4684 Scope.Exit(); 4685 GlobalInstantiations.perform(); 4686 } 4687 4688 VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation( 4689 VarTemplateDecl *VarTemplate, VarDecl *FromVar, 4690 const TemplateArgumentList &TemplateArgList, 4691 const TemplateArgumentListInfo &TemplateArgsInfo, 4692 SmallVectorImpl<TemplateArgument> &Converted, 4693 SourceLocation PointOfInstantiation, void *InsertPos, 4694 LateInstantiatedAttrVec *LateAttrs, 4695 LocalInstantiationScope *StartingScope) { 4696 if (FromVar->isInvalidDecl()) 4697 return nullptr; 4698 4699 InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar); 4700 if (Inst.isInvalid()) 4701 return nullptr; 4702 4703 MultiLevelTemplateArgumentList TemplateArgLists; 4704 TemplateArgLists.addOuterTemplateArguments(&TemplateArgList); 4705 4706 // Instantiate the first declaration of the variable template: for a partial 4707 // specialization of a static data member template, the first declaration may 4708 // or may not be the declaration in the class; if it's in the class, we want 4709 // to instantiate a member in the class (a declaration), and if it's outside, 4710 // we want to instantiate a definition. 4711 // 4712 // If we're instantiating an explicitly-specialized member template or member 4713 // partial specialization, don't do this. The member specialization completely 4714 // replaces the original declaration in this case. 4715 bool IsMemberSpec = false; 4716 if (VarTemplatePartialSpecializationDecl *PartialSpec = 4717 dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar)) 4718 IsMemberSpec = PartialSpec->isMemberSpecialization(); 4719 else if (VarTemplateDecl *FromTemplate = FromVar->getDescribedVarTemplate()) 4720 IsMemberSpec = FromTemplate->isMemberSpecialization(); 4721 if (!IsMemberSpec) 4722 FromVar = FromVar->getFirstDecl(); 4723 4724 MultiLevelTemplateArgumentList MultiLevelList(TemplateArgList); 4725 TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(), 4726 MultiLevelList); 4727 4728 // TODO: Set LateAttrs and StartingScope ... 4729 4730 return cast_or_null<VarTemplateSpecializationDecl>( 4731 Instantiator.VisitVarTemplateSpecializationDecl( 4732 VarTemplate, FromVar, InsertPos, TemplateArgsInfo, Converted)); 4733 } 4734 4735 /// Instantiates a variable template specialization by completing it 4736 /// with appropriate type information and initializer. 4737 VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl( 4738 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl, 4739 const MultiLevelTemplateArgumentList &TemplateArgs) { 4740 assert(PatternDecl->isThisDeclarationADefinition() && 4741 "don't have a definition to instantiate from"); 4742 4743 // Do substitution on the type of the declaration 4744 TypeSourceInfo *DI = 4745 SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs, 4746 PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName()); 4747 if (!DI) 4748 return nullptr; 4749 4750 // Update the type of this variable template specialization. 4751 VarSpec->setType(DI->getType()); 4752 4753 // Convert the declaration into a definition now. 4754 VarSpec->setCompleteDefinition(); 4755 4756 // Instantiate the initializer. 4757 InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs); 4758 4759 return VarSpec; 4760 } 4761 4762 /// BuildVariableInstantiation - Used after a new variable has been created. 4763 /// Sets basic variable data and decides whether to postpone the 4764 /// variable instantiation. 4765 void Sema::BuildVariableInstantiation( 4766 VarDecl *NewVar, VarDecl *OldVar, 4767 const MultiLevelTemplateArgumentList &TemplateArgs, 4768 LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner, 4769 LocalInstantiationScope *StartingScope, 4770 bool InstantiatingVarTemplate, 4771 VarTemplateSpecializationDecl *PrevDeclForVarTemplateSpecialization) { 4772 // Instantiating a partial specialization to produce a partial 4773 // specialization. 4774 bool InstantiatingVarTemplatePartialSpec = 4775 isa<VarTemplatePartialSpecializationDecl>(OldVar) && 4776 isa<VarTemplatePartialSpecializationDecl>(NewVar); 4777 // Instantiating from a variable template (or partial specialization) to 4778 // produce a variable template specialization. 4779 bool InstantiatingSpecFromTemplate = 4780 isa<VarTemplateSpecializationDecl>(NewVar) && 4781 (OldVar->getDescribedVarTemplate() || 4782 isa<VarTemplatePartialSpecializationDecl>(OldVar)); 4783 4784 // If we are instantiating a local extern declaration, the 4785 // instantiation belongs lexically to the containing function. 4786 // If we are instantiating a static data member defined 4787 // out-of-line, the instantiation will have the same lexical 4788 // context (which will be a namespace scope) as the template. 4789 if (OldVar->isLocalExternDecl()) { 4790 NewVar->setLocalExternDecl(); 4791 NewVar->setLexicalDeclContext(Owner); 4792 } else if (OldVar->isOutOfLine()) 4793 NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext()); 4794 NewVar->setTSCSpec(OldVar->getTSCSpec()); 4795 NewVar->setInitStyle(OldVar->getInitStyle()); 4796 NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl()); 4797 NewVar->setObjCForDecl(OldVar->isObjCForDecl()); 4798 NewVar->setConstexpr(OldVar->isConstexpr()); 4799 NewVar->setInitCapture(OldVar->isInitCapture()); 4800 NewVar->setPreviousDeclInSameBlockScope( 4801 OldVar->isPreviousDeclInSameBlockScope()); 4802 NewVar->setAccess(OldVar->getAccess()); 4803 4804 if (!OldVar->isStaticDataMember()) { 4805 if (OldVar->isUsed(false)) 4806 NewVar->setIsUsed(); 4807 NewVar->setReferenced(OldVar->isReferenced()); 4808 } 4809 4810 InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope); 4811 4812 LookupResult Previous( 4813 *this, NewVar->getDeclName(), NewVar->getLocation(), 4814 NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage 4815 : Sema::LookupOrdinaryName, 4816 NewVar->isLocalExternDecl() ? Sema::ForExternalRedeclaration 4817 : forRedeclarationInCurContext()); 4818 4819 if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() && 4820 (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() || 4821 OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) { 4822 // We have a previous declaration. Use that one, so we merge with the 4823 // right type. 4824 if (NamedDecl *NewPrev = FindInstantiatedDecl( 4825 NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs)) 4826 Previous.addDecl(NewPrev); 4827 } else if (!isa<VarTemplateSpecializationDecl>(NewVar) && 4828 OldVar->hasLinkage()) { 4829 LookupQualifiedName(Previous, NewVar->getDeclContext(), false); 4830 } else if (PrevDeclForVarTemplateSpecialization) { 4831 Previous.addDecl(PrevDeclForVarTemplateSpecialization); 4832 } 4833 CheckVariableDeclaration(NewVar, Previous); 4834 4835 if (!InstantiatingVarTemplate) { 4836 NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar); 4837 if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl()) 4838 NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar); 4839 } 4840 4841 if (!OldVar->isOutOfLine()) { 4842 if (NewVar->getDeclContext()->isFunctionOrMethod()) 4843 CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar); 4844 } 4845 4846 // Link instantiations of static data members back to the template from 4847 // which they were instantiated. 4848 // 4849 // Don't do this when instantiating a template (we link the template itself 4850 // back in that case) nor when instantiating a static data member template 4851 // (that's not a member specialization). 4852 if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate && 4853 !InstantiatingSpecFromTemplate) 4854 NewVar->setInstantiationOfStaticDataMember(OldVar, 4855 TSK_ImplicitInstantiation); 4856 4857 // If the pattern is an (in-class) explicit specialization, then the result 4858 // is also an explicit specialization. 4859 if (VarTemplateSpecializationDecl *OldVTSD = 4860 dyn_cast<VarTemplateSpecializationDecl>(OldVar)) { 4861 if (OldVTSD->getSpecializationKind() == TSK_ExplicitSpecialization && 4862 !isa<VarTemplatePartialSpecializationDecl>(OldVTSD)) 4863 cast<VarTemplateSpecializationDecl>(NewVar)->setSpecializationKind( 4864 TSK_ExplicitSpecialization); 4865 } 4866 4867 // Forward the mangling number from the template to the instantiated decl. 4868 Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar)); 4869 Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar)); 4870 4871 // Figure out whether to eagerly instantiate the initializer. 4872 if (InstantiatingVarTemplate || InstantiatingVarTemplatePartialSpec) { 4873 // We're producing a template. Don't instantiate the initializer yet. 4874 } else if (NewVar->getType()->isUndeducedType()) { 4875 // We need the type to complete the declaration of the variable. 4876 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); 4877 } else if (InstantiatingSpecFromTemplate || 4878 (OldVar->isInline() && OldVar->isThisDeclarationADefinition() && 4879 !NewVar->isThisDeclarationADefinition())) { 4880 // Delay instantiation of the initializer for variable template 4881 // specializations or inline static data members until a definition of the 4882 // variable is needed. 4883 } else { 4884 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); 4885 } 4886 4887 // Diagnose unused local variables with dependent types, where the diagnostic 4888 // will have been deferred. 4889 if (!NewVar->isInvalidDecl() && 4890 NewVar->getDeclContext()->isFunctionOrMethod() && 4891 OldVar->getType()->isDependentType()) 4892 DiagnoseUnusedDecl(NewVar); 4893 } 4894 4895 /// Instantiate the initializer of a variable. 4896 void Sema::InstantiateVariableInitializer( 4897 VarDecl *Var, VarDecl *OldVar, 4898 const MultiLevelTemplateArgumentList &TemplateArgs) { 4899 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 4900 L->VariableDefinitionInstantiated(Var); 4901 4902 // We propagate the 'inline' flag with the initializer, because it 4903 // would otherwise imply that the variable is a definition for a 4904 // non-static data member. 4905 if (OldVar->isInlineSpecified()) 4906 Var->setInlineSpecified(); 4907 else if (OldVar->isInline()) 4908 Var->setImplicitlyInline(); 4909 4910 if (OldVar->getInit()) { 4911 EnterExpressionEvaluationContext Evaluated( 4912 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var); 4913 4914 // Instantiate the initializer. 4915 ExprResult Init; 4916 4917 { 4918 ContextRAII SwitchContext(*this, Var->getDeclContext()); 4919 Init = SubstInitializer(OldVar->getInit(), TemplateArgs, 4920 OldVar->getInitStyle() == VarDecl::CallInit); 4921 } 4922 4923 if (!Init.isInvalid()) { 4924 Expr *InitExpr = Init.get(); 4925 4926 if (Var->hasAttr<DLLImportAttr>() && 4927 (!InitExpr || 4928 !InitExpr->isConstantInitializer(getASTContext(), false))) { 4929 // Do not dynamically initialize dllimport variables. 4930 } else if (InitExpr) { 4931 bool DirectInit = OldVar->isDirectInit(); 4932 AddInitializerToDecl(Var, InitExpr, DirectInit); 4933 } else 4934 ActOnUninitializedDecl(Var); 4935 } else { 4936 // FIXME: Not too happy about invalidating the declaration 4937 // because of a bogus initializer. 4938 Var->setInvalidDecl(); 4939 } 4940 } else { 4941 // `inline` variables are a definition and declaration all in one; we won't 4942 // pick up an initializer from anywhere else. 4943 if (Var->isStaticDataMember() && !Var->isInline()) { 4944 if (!Var->isOutOfLine()) 4945 return; 4946 4947 // If the declaration inside the class had an initializer, don't add 4948 // another one to the out-of-line definition. 4949 if (OldVar->getFirstDecl()->hasInit()) 4950 return; 4951 } 4952 4953 // We'll add an initializer to a for-range declaration later. 4954 if (Var->isCXXForRangeDecl() || Var->isObjCForDecl()) 4955 return; 4956 4957 ActOnUninitializedDecl(Var); 4958 } 4959 4960 if (getLangOpts().CUDA) 4961 checkAllowedCUDAInitializer(Var); 4962 } 4963 4964 /// Instantiate the definition of the given variable from its 4965 /// template. 4966 /// 4967 /// \param PointOfInstantiation the point at which the instantiation was 4968 /// required. Note that this is not precisely a "point of instantiation" 4969 /// for the variable, but it's close. 4970 /// 4971 /// \param Var the already-instantiated declaration of a templated variable. 4972 /// 4973 /// \param Recursive if true, recursively instantiates any functions that 4974 /// are required by this instantiation. 4975 /// 4976 /// \param DefinitionRequired if true, then we are performing an explicit 4977 /// instantiation where a definition of the variable is required. Complain 4978 /// if there is no such definition. 4979 void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation, 4980 VarDecl *Var, bool Recursive, 4981 bool DefinitionRequired, bool AtEndOfTU) { 4982 if (Var->isInvalidDecl()) 4983 return; 4984 4985 // Never instantiate an explicitly-specialized entity. 4986 TemplateSpecializationKind TSK = 4987 Var->getTemplateSpecializationKindForInstantiation(); 4988 if (TSK == TSK_ExplicitSpecialization) 4989 return; 4990 4991 // Find the pattern and the arguments to substitute into it. 4992 VarDecl *PatternDecl = Var->getTemplateInstantiationPattern(); 4993 assert(PatternDecl && "no pattern for templated variable"); 4994 MultiLevelTemplateArgumentList TemplateArgs = 4995 getTemplateInstantiationArgs(Var); 4996 4997 VarTemplateSpecializationDecl *VarSpec = 4998 dyn_cast<VarTemplateSpecializationDecl>(Var); 4999 if (VarSpec) { 5000 // If this is a variable template specialization, make sure that it is 5001 // non-dependent. 5002 bool InstantiationDependent = false; 5003 assert(!TemplateSpecializationType::anyDependentTemplateArguments( 5004 VarSpec->getTemplateArgsInfo(), InstantiationDependent) && 5005 "Only instantiate variable template specializations that are " 5006 "not type-dependent"); 5007 (void)InstantiationDependent; 5008 5009 // If this is a static data member template, there might be an 5010 // uninstantiated initializer on the declaration. If so, instantiate 5011 // it now. 5012 // 5013 // FIXME: This largely duplicates what we would do below. The difference 5014 // is that along this path we may instantiate an initializer from an 5015 // in-class declaration of the template and instantiate the definition 5016 // from a separate out-of-class definition. 5017 if (PatternDecl->isStaticDataMember() && 5018 (PatternDecl = PatternDecl->getFirstDecl())->hasInit() && 5019 !Var->hasInit()) { 5020 // FIXME: Factor out the duplicated instantiation context setup/tear down 5021 // code here. 5022 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); 5023 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 5024 return; 5025 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 5026 "instantiating variable initializer"); 5027 5028 // The instantiation is visible here, even if it was first declared in an 5029 // unimported module. 5030 Var->setVisibleDespiteOwningModule(); 5031 5032 // If we're performing recursive template instantiation, create our own 5033 // queue of pending implicit instantiations that we will instantiate 5034 // later, while we're still within our own instantiation context. 5035 GlobalEagerInstantiationScope GlobalInstantiations(*this, 5036 /*Enabled=*/Recursive); 5037 LocalInstantiationScope Local(*this); 5038 LocalEagerInstantiationScope LocalInstantiations(*this); 5039 5040 // Enter the scope of this instantiation. We don't use 5041 // PushDeclContext because we don't have a scope. 5042 ContextRAII PreviousContext(*this, Var->getDeclContext()); 5043 InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs); 5044 PreviousContext.pop(); 5045 5046 // This variable may have local implicit instantiations that need to be 5047 // instantiated within this scope. 5048 LocalInstantiations.perform(); 5049 Local.Exit(); 5050 GlobalInstantiations.perform(); 5051 } 5052 } else { 5053 assert(Var->isStaticDataMember() && PatternDecl->isStaticDataMember() && 5054 "not a static data member?"); 5055 } 5056 5057 VarDecl *Def = PatternDecl->getDefinition(getASTContext()); 5058 5059 // If we don't have a definition of the variable template, we won't perform 5060 // any instantiation. Rather, we rely on the user to instantiate this 5061 // definition (or provide a specialization for it) in another translation 5062 // unit. 5063 if (!Def && !DefinitionRequired) { 5064 if (TSK == TSK_ExplicitInstantiationDefinition) { 5065 PendingInstantiations.push_back( 5066 std::make_pair(Var, PointOfInstantiation)); 5067 } else if (TSK == TSK_ImplicitInstantiation) { 5068 // Warn about missing definition at the end of translation unit. 5069 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && 5070 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) { 5071 Diag(PointOfInstantiation, diag::warn_var_template_missing) 5072 << Var; 5073 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); 5074 if (getLangOpts().CPlusPlus11) 5075 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var; 5076 } 5077 return; 5078 } 5079 } 5080 5081 // FIXME: We need to track the instantiation stack in order to know which 5082 // definitions should be visible within this instantiation. 5083 // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember(). 5084 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var, 5085 /*InstantiatedFromMember*/false, 5086 PatternDecl, Def, TSK, 5087 /*Complain*/DefinitionRequired)) 5088 return; 5089 5090 // C++11 [temp.explicit]p10: 5091 // Except for inline functions, const variables of literal types, variables 5092 // of reference types, [...] explicit instantiation declarations 5093 // have the effect of suppressing the implicit instantiation of the entity 5094 // to which they refer. 5095 // 5096 // FIXME: That's not exactly the same as "might be usable in constant 5097 // expressions", which only allows constexpr variables and const integral 5098 // types, not arbitrary const literal types. 5099 if (TSK == TSK_ExplicitInstantiationDeclaration && 5100 !Var->mightBeUsableInConstantExpressions(getASTContext())) 5101 return; 5102 5103 // Make sure to pass the instantiated variable to the consumer at the end. 5104 struct PassToConsumerRAII { 5105 ASTConsumer &Consumer; 5106 VarDecl *Var; 5107 5108 PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var) 5109 : Consumer(Consumer), Var(Var) { } 5110 5111 ~PassToConsumerRAII() { 5112 Consumer.HandleCXXStaticMemberVarInstantiation(Var); 5113 } 5114 } PassToConsumerRAII(Consumer, Var); 5115 5116 // If we already have a definition, we're done. 5117 if (VarDecl *Def = Var->getDefinition()) { 5118 // We may be explicitly instantiating something we've already implicitly 5119 // instantiated. 5120 Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(), 5121 PointOfInstantiation); 5122 return; 5123 } 5124 5125 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); 5126 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 5127 return; 5128 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 5129 "instantiating variable definition"); 5130 5131 // If we're performing recursive template instantiation, create our own 5132 // queue of pending implicit instantiations that we will instantiate later, 5133 // while we're still within our own instantiation context. 5134 GlobalEagerInstantiationScope GlobalInstantiations(*this, 5135 /*Enabled=*/Recursive); 5136 5137 // Enter the scope of this instantiation. We don't use 5138 // PushDeclContext because we don't have a scope. 5139 ContextRAII PreviousContext(*this, Var->getDeclContext()); 5140 LocalInstantiationScope Local(*this); 5141 5142 LocalEagerInstantiationScope LocalInstantiations(*this); 5143 5144 VarDecl *OldVar = Var; 5145 if (Def->isStaticDataMember() && !Def->isOutOfLine()) { 5146 // We're instantiating an inline static data member whose definition was 5147 // provided inside the class. 5148 InstantiateVariableInitializer(Var, Def, TemplateArgs); 5149 } else if (!VarSpec) { 5150 Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(), 5151 TemplateArgs)); 5152 } else if (Var->isStaticDataMember() && 5153 Var->getLexicalDeclContext()->isRecord()) { 5154 // We need to instantiate the definition of a static data member template, 5155 // and all we have is the in-class declaration of it. Instantiate a separate 5156 // declaration of the definition. 5157 TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(), 5158 TemplateArgs); 5159 Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl( 5160 VarSpec->getSpecializedTemplate(), Def, nullptr, 5161 VarSpec->getTemplateArgsInfo(), VarSpec->getTemplateArgs().asArray())); 5162 if (Var) { 5163 llvm::PointerUnion<VarTemplateDecl *, 5164 VarTemplatePartialSpecializationDecl *> PatternPtr = 5165 VarSpec->getSpecializedTemplateOrPartial(); 5166 if (VarTemplatePartialSpecializationDecl *Partial = 5167 PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>()) 5168 cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf( 5169 Partial, &VarSpec->getTemplateInstantiationArgs()); 5170 5171 // Merge the definition with the declaration. 5172 LookupResult R(*this, Var->getDeclName(), Var->getLocation(), 5173 LookupOrdinaryName, forRedeclarationInCurContext()); 5174 R.addDecl(OldVar); 5175 MergeVarDecl(Var, R); 5176 5177 // Attach the initializer. 5178 InstantiateVariableInitializer(Var, Def, TemplateArgs); 5179 } 5180 } else 5181 // Complete the existing variable's definition with an appropriately 5182 // substituted type and initializer. 5183 Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs); 5184 5185 PreviousContext.pop(); 5186 5187 if (Var) { 5188 PassToConsumerRAII.Var = Var; 5189 Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(), 5190 OldVar->getPointOfInstantiation()); 5191 } 5192 5193 // This variable may have local implicit instantiations that need to be 5194 // instantiated within this scope. 5195 LocalInstantiations.perform(); 5196 Local.Exit(); 5197 GlobalInstantiations.perform(); 5198 } 5199 5200 void 5201 Sema::InstantiateMemInitializers(CXXConstructorDecl *New, 5202 const CXXConstructorDecl *Tmpl, 5203 const MultiLevelTemplateArgumentList &TemplateArgs) { 5204 5205 SmallVector<CXXCtorInitializer*, 4> NewInits; 5206 bool AnyErrors = Tmpl->isInvalidDecl(); 5207 5208 // Instantiate all the initializers. 5209 for (const auto *Init : Tmpl->inits()) { 5210 // Only instantiate written initializers, let Sema re-construct implicit 5211 // ones. 5212 if (!Init->isWritten()) 5213 continue; 5214 5215 SourceLocation EllipsisLoc; 5216 5217 if (Init->isPackExpansion()) { 5218 // This is a pack expansion. We should expand it now. 5219 TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc(); 5220 SmallVector<UnexpandedParameterPack, 4> Unexpanded; 5221 collectUnexpandedParameterPacks(BaseTL, Unexpanded); 5222 collectUnexpandedParameterPacks(Init->getInit(), Unexpanded); 5223 bool ShouldExpand = false; 5224 bool RetainExpansion = false; 5225 Optional<unsigned> NumExpansions; 5226 if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(), 5227 BaseTL.getSourceRange(), 5228 Unexpanded, 5229 TemplateArgs, ShouldExpand, 5230 RetainExpansion, 5231 NumExpansions)) { 5232 AnyErrors = true; 5233 New->setInvalidDecl(); 5234 continue; 5235 } 5236 assert(ShouldExpand && "Partial instantiation of base initializer?"); 5237 5238 // Loop over all of the arguments in the argument pack(s), 5239 for (unsigned I = 0; I != *NumExpansions; ++I) { 5240 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I); 5241 5242 // Instantiate the initializer. 5243 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, 5244 /*CXXDirectInit=*/true); 5245 if (TempInit.isInvalid()) { 5246 AnyErrors = true; 5247 break; 5248 } 5249 5250 // Instantiate the base type. 5251 TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(), 5252 TemplateArgs, 5253 Init->getSourceLocation(), 5254 New->getDeclName()); 5255 if (!BaseTInfo) { 5256 AnyErrors = true; 5257 break; 5258 } 5259 5260 // Build the initializer. 5261 MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(), 5262 BaseTInfo, TempInit.get(), 5263 New->getParent(), 5264 SourceLocation()); 5265 if (NewInit.isInvalid()) { 5266 AnyErrors = true; 5267 break; 5268 } 5269 5270 NewInits.push_back(NewInit.get()); 5271 } 5272 5273 continue; 5274 } 5275 5276 // Instantiate the initializer. 5277 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, 5278 /*CXXDirectInit=*/true); 5279 if (TempInit.isInvalid()) { 5280 AnyErrors = true; 5281 continue; 5282 } 5283 5284 MemInitResult NewInit; 5285 if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) { 5286 TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(), 5287 TemplateArgs, 5288 Init->getSourceLocation(), 5289 New->getDeclName()); 5290 if (!TInfo) { 5291 AnyErrors = true; 5292 New->setInvalidDecl(); 5293 continue; 5294 } 5295 5296 if (Init->isBaseInitializer()) 5297 NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(), 5298 New->getParent(), EllipsisLoc); 5299 else 5300 NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(), 5301 cast<CXXRecordDecl>(CurContext->getParent())); 5302 } else if (Init->isMemberInitializer()) { 5303 FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl( 5304 Init->getMemberLocation(), 5305 Init->getMember(), 5306 TemplateArgs)); 5307 if (!Member) { 5308 AnyErrors = true; 5309 New->setInvalidDecl(); 5310 continue; 5311 } 5312 5313 NewInit = BuildMemberInitializer(Member, TempInit.get(), 5314 Init->getSourceLocation()); 5315 } else if (Init->isIndirectMemberInitializer()) { 5316 IndirectFieldDecl *IndirectMember = 5317 cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl( 5318 Init->getMemberLocation(), 5319 Init->getIndirectMember(), TemplateArgs)); 5320 5321 if (!IndirectMember) { 5322 AnyErrors = true; 5323 New->setInvalidDecl(); 5324 continue; 5325 } 5326 5327 NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(), 5328 Init->getSourceLocation()); 5329 } 5330 5331 if (NewInit.isInvalid()) { 5332 AnyErrors = true; 5333 New->setInvalidDecl(); 5334 } else { 5335 NewInits.push_back(NewInit.get()); 5336 } 5337 } 5338 5339 // Assign all the initializers to the new constructor. 5340 ActOnMemInitializers(New, 5341 /*FIXME: ColonLoc */ 5342 SourceLocation(), 5343 NewInits, 5344 AnyErrors); 5345 } 5346 5347 // TODO: this could be templated if the various decl types used the 5348 // same method name. 5349 static bool isInstantiationOf(ClassTemplateDecl *Pattern, 5350 ClassTemplateDecl *Instance) { 5351 Pattern = Pattern->getCanonicalDecl(); 5352 5353 do { 5354 Instance = Instance->getCanonicalDecl(); 5355 if (Pattern == Instance) return true; 5356 Instance = Instance->getInstantiatedFromMemberTemplate(); 5357 } while (Instance); 5358 5359 return false; 5360 } 5361 5362 static bool isInstantiationOf(FunctionTemplateDecl *Pattern, 5363 FunctionTemplateDecl *Instance) { 5364 Pattern = Pattern->getCanonicalDecl(); 5365 5366 do { 5367 Instance = Instance->getCanonicalDecl(); 5368 if (Pattern == Instance) return true; 5369 Instance = Instance->getInstantiatedFromMemberTemplate(); 5370 } while (Instance); 5371 5372 return false; 5373 } 5374 5375 static bool 5376 isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern, 5377 ClassTemplatePartialSpecializationDecl *Instance) { 5378 Pattern 5379 = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl()); 5380 do { 5381 Instance = cast<ClassTemplatePartialSpecializationDecl>( 5382 Instance->getCanonicalDecl()); 5383 if (Pattern == Instance) 5384 return true; 5385 Instance = Instance->getInstantiatedFromMember(); 5386 } while (Instance); 5387 5388 return false; 5389 } 5390 5391 static bool isInstantiationOf(CXXRecordDecl *Pattern, 5392 CXXRecordDecl *Instance) { 5393 Pattern = Pattern->getCanonicalDecl(); 5394 5395 do { 5396 Instance = Instance->getCanonicalDecl(); 5397 if (Pattern == Instance) return true; 5398 Instance = Instance->getInstantiatedFromMemberClass(); 5399 } while (Instance); 5400 5401 return false; 5402 } 5403 5404 static bool isInstantiationOf(FunctionDecl *Pattern, 5405 FunctionDecl *Instance) { 5406 Pattern = Pattern->getCanonicalDecl(); 5407 5408 do { 5409 Instance = Instance->getCanonicalDecl(); 5410 if (Pattern == Instance) return true; 5411 Instance = Instance->getInstantiatedFromMemberFunction(); 5412 } while (Instance); 5413 5414 return false; 5415 } 5416 5417 static bool isInstantiationOf(EnumDecl *Pattern, 5418 EnumDecl *Instance) { 5419 Pattern = Pattern->getCanonicalDecl(); 5420 5421 do { 5422 Instance = Instance->getCanonicalDecl(); 5423 if (Pattern == Instance) return true; 5424 Instance = Instance->getInstantiatedFromMemberEnum(); 5425 } while (Instance); 5426 5427 return false; 5428 } 5429 5430 static bool isInstantiationOf(UsingShadowDecl *Pattern, 5431 UsingShadowDecl *Instance, 5432 ASTContext &C) { 5433 return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance), 5434 Pattern); 5435 } 5436 5437 static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance, 5438 ASTContext &C) { 5439 return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern); 5440 } 5441 5442 template<typename T> 5443 static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other, 5444 ASTContext &Ctx) { 5445 // An unresolved using declaration can instantiate to an unresolved using 5446 // declaration, or to a using declaration or a using declaration pack. 5447 // 5448 // Multiple declarations can claim to be instantiated from an unresolved 5449 // using declaration if it's a pack expansion. We want the UsingPackDecl 5450 // in that case, not the individual UsingDecls within the pack. 5451 bool OtherIsPackExpansion; 5452 NamedDecl *OtherFrom; 5453 if (auto *OtherUUD = dyn_cast<T>(Other)) { 5454 OtherIsPackExpansion = OtherUUD->isPackExpansion(); 5455 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD); 5456 } else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Other)) { 5457 OtherIsPackExpansion = true; 5458 OtherFrom = OtherUPD->getInstantiatedFromUsingDecl(); 5459 } else if (auto *OtherUD = dyn_cast<UsingDecl>(Other)) { 5460 OtherIsPackExpansion = false; 5461 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD); 5462 } else { 5463 return false; 5464 } 5465 return Pattern->isPackExpansion() == OtherIsPackExpansion && 5466 declaresSameEntity(OtherFrom, Pattern); 5467 } 5468 5469 static bool isInstantiationOfStaticDataMember(VarDecl *Pattern, 5470 VarDecl *Instance) { 5471 assert(Instance->isStaticDataMember()); 5472 5473 Pattern = Pattern->getCanonicalDecl(); 5474 5475 do { 5476 Instance = Instance->getCanonicalDecl(); 5477 if (Pattern == Instance) return true; 5478 Instance = Instance->getInstantiatedFromStaticDataMember(); 5479 } while (Instance); 5480 5481 return false; 5482 } 5483 5484 // Other is the prospective instantiation 5485 // D is the prospective pattern 5486 static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) { 5487 if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D)) 5488 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); 5489 5490 if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(D)) 5491 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); 5492 5493 if (D->getKind() != Other->getKind()) 5494 return false; 5495 5496 if (auto *Record = dyn_cast<CXXRecordDecl>(Other)) 5497 return isInstantiationOf(cast<CXXRecordDecl>(D), Record); 5498 5499 if (auto *Function = dyn_cast<FunctionDecl>(Other)) 5500 return isInstantiationOf(cast<FunctionDecl>(D), Function); 5501 5502 if (auto *Enum = dyn_cast<EnumDecl>(Other)) 5503 return isInstantiationOf(cast<EnumDecl>(D), Enum); 5504 5505 if (auto *Var = dyn_cast<VarDecl>(Other)) 5506 if (Var->isStaticDataMember()) 5507 return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var); 5508 5509 if (auto *Temp = dyn_cast<ClassTemplateDecl>(Other)) 5510 return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp); 5511 5512 if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Other)) 5513 return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp); 5514 5515 if (auto *PartialSpec = 5516 dyn_cast<ClassTemplatePartialSpecializationDecl>(Other)) 5517 return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D), 5518 PartialSpec); 5519 5520 if (auto *Field = dyn_cast<FieldDecl>(Other)) { 5521 if (!Field->getDeclName()) { 5522 // This is an unnamed field. 5523 return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field), 5524 cast<FieldDecl>(D)); 5525 } 5526 } 5527 5528 if (auto *Using = dyn_cast<UsingDecl>(Other)) 5529 return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx); 5530 5531 if (auto *Shadow = dyn_cast<UsingShadowDecl>(Other)) 5532 return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx); 5533 5534 return D->getDeclName() && 5535 D->getDeclName() == cast<NamedDecl>(Other)->getDeclName(); 5536 } 5537 5538 template<typename ForwardIterator> 5539 static NamedDecl *findInstantiationOf(ASTContext &Ctx, 5540 NamedDecl *D, 5541 ForwardIterator first, 5542 ForwardIterator last) { 5543 for (; first != last; ++first) 5544 if (isInstantiationOf(Ctx, D, *first)) 5545 return cast<NamedDecl>(*first); 5546 5547 return nullptr; 5548 } 5549 5550 /// Finds the instantiation of the given declaration context 5551 /// within the current instantiation. 5552 /// 5553 /// \returns NULL if there was an error 5554 DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC, 5555 const MultiLevelTemplateArgumentList &TemplateArgs) { 5556 if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) { 5557 Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true); 5558 return cast_or_null<DeclContext>(ID); 5559 } else return DC; 5560 } 5561 5562 /// Find the instantiation of the given declaration within the 5563 /// current instantiation. 5564 /// 5565 /// This routine is intended to be used when \p D is a declaration 5566 /// referenced from within a template, that needs to mapped into the 5567 /// corresponding declaration within an instantiation. For example, 5568 /// given: 5569 /// 5570 /// \code 5571 /// template<typename T> 5572 /// struct X { 5573 /// enum Kind { 5574 /// KnownValue = sizeof(T) 5575 /// }; 5576 /// 5577 /// bool getKind() const { return KnownValue; } 5578 /// }; 5579 /// 5580 /// template struct X<int>; 5581 /// \endcode 5582 /// 5583 /// In the instantiation of X<int>::getKind(), we need to map the \p 5584 /// EnumConstantDecl for \p KnownValue (which refers to 5585 /// X<T>::<Kind>::KnownValue) to its instantiation (X<int>::<Kind>::KnownValue). 5586 /// \p FindInstantiatedDecl performs this mapping from within the instantiation 5587 /// of X<int>. 5588 NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, 5589 const MultiLevelTemplateArgumentList &TemplateArgs, 5590 bool FindingInstantiatedContext) { 5591 DeclContext *ParentDC = D->getDeclContext(); 5592 // FIXME: Parmeters of pointer to functions (y below) that are themselves 5593 // parameters (p below) can have their ParentDC set to the translation-unit 5594 // - thus we can not consistently check if the ParentDC of such a parameter 5595 // is Dependent or/and a FunctionOrMethod. 5596 // For e.g. this code, during Template argument deduction tries to 5597 // find an instantiated decl for (T y) when the ParentDC for y is 5598 // the translation unit. 5599 // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {} 5600 // float baz(float(*)()) { return 0.0; } 5601 // Foo(baz); 5602 // The better fix here is perhaps to ensure that a ParmVarDecl, by the time 5603 // it gets here, always has a FunctionOrMethod as its ParentDC?? 5604 // For now: 5605 // - as long as we have a ParmVarDecl whose parent is non-dependent and 5606 // whose type is not instantiation dependent, do nothing to the decl 5607 // - otherwise find its instantiated decl. 5608 if (isa<ParmVarDecl>(D) && !ParentDC->isDependentContext() && 5609 !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType()) 5610 return D; 5611 if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) || 5612 isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) || 5613 ((ParentDC->isFunctionOrMethod() || 5614 isa<OMPDeclareReductionDecl>(ParentDC) || 5615 isa<OMPDeclareMapperDecl>(ParentDC)) && 5616 ParentDC->isDependentContext()) || 5617 (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda())) { 5618 // D is a local of some kind. Look into the map of local 5619 // declarations to their instantiations. 5620 if (CurrentInstantiationScope) { 5621 if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) { 5622 if (Decl *FD = Found->dyn_cast<Decl *>()) 5623 return cast<NamedDecl>(FD); 5624 5625 int PackIdx = ArgumentPackSubstitutionIndex; 5626 assert(PackIdx != -1 && 5627 "found declaration pack but not pack expanding"); 5628 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack; 5629 return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]); 5630 } 5631 } 5632 5633 // If we're performing a partial substitution during template argument 5634 // deduction, we may not have values for template parameters yet. They 5635 // just map to themselves. 5636 if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) || 5637 isa<TemplateTemplateParmDecl>(D)) 5638 return D; 5639 5640 if (D->isInvalidDecl()) 5641 return nullptr; 5642 5643 // Normally this function only searches for already instantiated declaration 5644 // however we have to make an exclusion for local types used before 5645 // definition as in the code: 5646 // 5647 // template<typename T> void f1() { 5648 // void g1(struct x1); 5649 // struct x1 {}; 5650 // } 5651 // 5652 // In this case instantiation of the type of 'g1' requires definition of 5653 // 'x1', which is defined later. Error recovery may produce an enum used 5654 // before definition. In these cases we need to instantiate relevant 5655 // declarations here. 5656 bool NeedInstantiate = false; 5657 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) 5658 NeedInstantiate = RD->isLocalClass(); 5659 else 5660 NeedInstantiate = isa<EnumDecl>(D); 5661 if (NeedInstantiate) { 5662 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); 5663 CurrentInstantiationScope->InstantiatedLocal(D, Inst); 5664 return cast<TypeDecl>(Inst); 5665 } 5666 5667 // If we didn't find the decl, then we must have a label decl that hasn't 5668 // been found yet. Lazily instantiate it and return it now. 5669 assert(isa<LabelDecl>(D)); 5670 5671 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); 5672 assert(Inst && "Failed to instantiate label??"); 5673 5674 CurrentInstantiationScope->InstantiatedLocal(D, Inst); 5675 return cast<LabelDecl>(Inst); 5676 } 5677 5678 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 5679 if (!Record->isDependentContext()) 5680 return D; 5681 5682 // Determine whether this record is the "templated" declaration describing 5683 // a class template or class template partial specialization. 5684 ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate(); 5685 if (ClassTemplate) 5686 ClassTemplate = ClassTemplate->getCanonicalDecl(); 5687 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 5688 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 5689 ClassTemplate = PartialSpec->getSpecializedTemplate()->getCanonicalDecl(); 5690 5691 // Walk the current context to find either the record or an instantiation of 5692 // it. 5693 DeclContext *DC = CurContext; 5694 while (!DC->isFileContext()) { 5695 // If we're performing substitution while we're inside the template 5696 // definition, we'll find our own context. We're done. 5697 if (DC->Equals(Record)) 5698 return Record; 5699 5700 if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) { 5701 // Check whether we're in the process of instantiating a class template 5702 // specialization of the template we're mapping. 5703 if (ClassTemplateSpecializationDecl *InstSpec 5704 = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){ 5705 ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate(); 5706 if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate)) 5707 return InstRecord; 5708 } 5709 5710 // Check whether we're in the process of instantiating a member class. 5711 if (isInstantiationOf(Record, InstRecord)) 5712 return InstRecord; 5713 } 5714 5715 // Move to the outer template scope. 5716 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) { 5717 if (FD->getFriendObjectKind() && FD->getDeclContext()->isFileContext()){ 5718 DC = FD->getLexicalDeclContext(); 5719 continue; 5720 } 5721 // An implicit deduction guide acts as if it's within the class template 5722 // specialization described by its name and first N template params. 5723 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FD); 5724 if (Guide && Guide->isImplicit()) { 5725 TemplateDecl *TD = Guide->getDeducedTemplate(); 5726 // Convert the arguments to an "as-written" list. 5727 TemplateArgumentListInfo Args(Loc, Loc); 5728 for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front( 5729 TD->getTemplateParameters()->size())) { 5730 ArrayRef<TemplateArgument> Unpacked(Arg); 5731 if (Arg.getKind() == TemplateArgument::Pack) 5732 Unpacked = Arg.pack_elements(); 5733 for (TemplateArgument UnpackedArg : Unpacked) 5734 Args.addArgument( 5735 getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc)); 5736 } 5737 QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args); 5738 if (T.isNull()) 5739 return nullptr; 5740 auto *SubstRecord = T->getAsCXXRecordDecl(); 5741 assert(SubstRecord && "class template id not a class type?"); 5742 // Check that this template-id names the primary template and not a 5743 // partial or explicit specialization. (In the latter cases, it's 5744 // meaningless to attempt to find an instantiation of D within the 5745 // specialization.) 5746 // FIXME: The standard doesn't say what should happen here. 5747 if (FindingInstantiatedContext && 5748 usesPartialOrExplicitSpecialization( 5749 Loc, cast<ClassTemplateSpecializationDecl>(SubstRecord))) { 5750 Diag(Loc, diag::err_specialization_not_primary_template) 5751 << T << (SubstRecord->getTemplateSpecializationKind() == 5752 TSK_ExplicitSpecialization); 5753 return nullptr; 5754 } 5755 DC = SubstRecord; 5756 continue; 5757 } 5758 } 5759 5760 DC = DC->getParent(); 5761 } 5762 5763 // Fall through to deal with other dependent record types (e.g., 5764 // anonymous unions in class templates). 5765 } 5766 5767 if (!ParentDC->isDependentContext()) 5768 return D; 5769 5770 ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs); 5771 if (!ParentDC) 5772 return nullptr; 5773 5774 if (ParentDC != D->getDeclContext()) { 5775 // We performed some kind of instantiation in the parent context, 5776 // so now we need to look into the instantiated parent context to 5777 // find the instantiation of the declaration D. 5778 5779 // If our context used to be dependent, we may need to instantiate 5780 // it before performing lookup into that context. 5781 bool IsBeingInstantiated = false; 5782 if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) { 5783 if (!Spec->isDependentContext()) { 5784 QualType T = Context.getTypeDeclType(Spec); 5785 const RecordType *Tag = T->getAs<RecordType>(); 5786 assert(Tag && "type of non-dependent record is not a RecordType"); 5787 if (Tag->isBeingDefined()) 5788 IsBeingInstantiated = true; 5789 if (!Tag->isBeingDefined() && 5790 RequireCompleteType(Loc, T, diag::err_incomplete_type)) 5791 return nullptr; 5792 5793 ParentDC = Tag->getDecl(); 5794 } 5795 } 5796 5797 NamedDecl *Result = nullptr; 5798 // FIXME: If the name is a dependent name, this lookup won't necessarily 5799 // find it. Does that ever matter? 5800 if (auto Name = D->getDeclName()) { 5801 DeclarationNameInfo NameInfo(Name, D->getLocation()); 5802 DeclarationNameInfo NewNameInfo = 5803 SubstDeclarationNameInfo(NameInfo, TemplateArgs); 5804 Name = NewNameInfo.getName(); 5805 if (!Name) 5806 return nullptr; 5807 DeclContext::lookup_result Found = ParentDC->lookup(Name); 5808 5809 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(D)) { 5810 VarTemplateDecl *Templ = cast_or_null<VarTemplateDecl>( 5811 findInstantiationOf(Context, VTSD->getSpecializedTemplate(), 5812 Found.begin(), Found.end())); 5813 if (!Templ) 5814 return nullptr; 5815 Result = getVarTemplateSpecialization( 5816 Templ, &VTSD->getTemplateArgsInfo(), NewNameInfo, SourceLocation()); 5817 } else 5818 Result = findInstantiationOf(Context, D, Found.begin(), Found.end()); 5819 } else { 5820 // Since we don't have a name for the entity we're looking for, 5821 // our only option is to walk through all of the declarations to 5822 // find that name. This will occur in a few cases: 5823 // 5824 // - anonymous struct/union within a template 5825 // - unnamed class/struct/union/enum within a template 5826 // 5827 // FIXME: Find a better way to find these instantiations! 5828 Result = findInstantiationOf(Context, D, 5829 ParentDC->decls_begin(), 5830 ParentDC->decls_end()); 5831 } 5832 5833 if (!Result) { 5834 if (isa<UsingShadowDecl>(D)) { 5835 // UsingShadowDecls can instantiate to nothing because of using hiding. 5836 } else if (Diags.hasErrorOccurred()) { 5837 // We've already complained about something, so most likely this 5838 // declaration failed to instantiate. There's no point in complaining 5839 // further, since this is normal in invalid code. 5840 } else if (IsBeingInstantiated) { 5841 // The class in which this member exists is currently being 5842 // instantiated, and we haven't gotten around to instantiating this 5843 // member yet. This can happen when the code uses forward declarations 5844 // of member classes, and introduces ordering dependencies via 5845 // template instantiation. 5846 Diag(Loc, diag::err_member_not_yet_instantiated) 5847 << D->getDeclName() 5848 << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC)); 5849 Diag(D->getLocation(), diag::note_non_instantiated_member_here); 5850 } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) { 5851 // This enumeration constant was found when the template was defined, 5852 // but can't be found in the instantiation. This can happen if an 5853 // unscoped enumeration member is explicitly specialized. 5854 EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext()); 5855 EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum, 5856 TemplateArgs)); 5857 assert(Spec->getTemplateSpecializationKind() == 5858 TSK_ExplicitSpecialization); 5859 Diag(Loc, diag::err_enumerator_does_not_exist) 5860 << D->getDeclName() 5861 << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext())); 5862 Diag(Spec->getLocation(), diag::note_enum_specialized_here) 5863 << Context.getTypeDeclType(Spec); 5864 } else { 5865 // We should have found something, but didn't. 5866 llvm_unreachable("Unable to find instantiation of declaration!"); 5867 } 5868 } 5869 5870 D = Result; 5871 } 5872 5873 return D; 5874 } 5875 5876 /// Performs template instantiation for all implicit template 5877 /// instantiations we have seen until this point. 5878 void Sema::PerformPendingInstantiations(bool LocalOnly) { 5879 while (!PendingLocalImplicitInstantiations.empty() || 5880 (!LocalOnly && !PendingInstantiations.empty())) { 5881 PendingImplicitInstantiation Inst; 5882 5883 if (PendingLocalImplicitInstantiations.empty()) { 5884 Inst = PendingInstantiations.front(); 5885 PendingInstantiations.pop_front(); 5886 } else { 5887 Inst = PendingLocalImplicitInstantiations.front(); 5888 PendingLocalImplicitInstantiations.pop_front(); 5889 } 5890 5891 // Instantiate function definitions 5892 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) { 5893 bool DefinitionRequired = Function->getTemplateSpecializationKind() == 5894 TSK_ExplicitInstantiationDefinition; 5895 if (Function->isMultiVersion()) { 5896 getASTContext().forEachMultiversionedFunctionVersion( 5897 Function, [this, Inst, DefinitionRequired](FunctionDecl *CurFD) { 5898 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, CurFD, true, 5899 DefinitionRequired, true); 5900 if (CurFD->isDefined()) 5901 CurFD->setInstantiationIsPending(false); 5902 }); 5903 } else { 5904 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, Function, true, 5905 DefinitionRequired, true); 5906 if (Function->isDefined()) 5907 Function->setInstantiationIsPending(false); 5908 } 5909 continue; 5910 } 5911 5912 // Instantiate variable definitions 5913 VarDecl *Var = cast<VarDecl>(Inst.first); 5914 5915 assert((Var->isStaticDataMember() || 5916 isa<VarTemplateSpecializationDecl>(Var)) && 5917 "Not a static data member, nor a variable template" 5918 " specialization?"); 5919 5920 // Don't try to instantiate declarations if the most recent redeclaration 5921 // is invalid. 5922 if (Var->getMostRecentDecl()->isInvalidDecl()) 5923 continue; 5924 5925 // Check if the most recent declaration has changed the specialization kind 5926 // and removed the need for implicit instantiation. 5927 switch (Var->getMostRecentDecl() 5928 ->getTemplateSpecializationKindForInstantiation()) { 5929 case TSK_Undeclared: 5930 llvm_unreachable("Cannot instantitiate an undeclared specialization."); 5931 case TSK_ExplicitInstantiationDeclaration: 5932 case TSK_ExplicitSpecialization: 5933 continue; // No longer need to instantiate this type. 5934 case TSK_ExplicitInstantiationDefinition: 5935 // We only need an instantiation if the pending instantiation *is* the 5936 // explicit instantiation. 5937 if (Var != Var->getMostRecentDecl()) 5938 continue; 5939 break; 5940 case TSK_ImplicitInstantiation: 5941 break; 5942 } 5943 5944 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 5945 "instantiating variable definition"); 5946 bool DefinitionRequired = Var->getTemplateSpecializationKind() == 5947 TSK_ExplicitInstantiationDefinition; 5948 5949 // Instantiate static data member definitions or variable template 5950 // specializations. 5951 InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true, 5952 DefinitionRequired, true); 5953 } 5954 } 5955 5956 void Sema::PerformDependentDiagnostics(const DeclContext *Pattern, 5957 const MultiLevelTemplateArgumentList &TemplateArgs) { 5958 for (auto DD : Pattern->ddiags()) { 5959 switch (DD->getKind()) { 5960 case DependentDiagnostic::Access: 5961 HandleDependentAccessCheck(*DD, TemplateArgs); 5962 break; 5963 } 5964 } 5965 } 5966