1 //===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/ 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===/ 7 // 8 // This file implements C++ template instantiation for declarations. 9 // 10 //===----------------------------------------------------------------------===/ 11 12 #include "TreeTransform.h" 13 #include "clang/AST/ASTConsumer.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTMutationListener.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/DeclVisitor.h" 18 #include "clang/AST/DependentDiagnostic.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/PrettyDeclStackTrace.h" 22 #include "clang/AST/TypeLoc.h" 23 #include "clang/Basic/SourceManager.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Sema/EnterExpressionEvaluationContext.h" 26 #include "clang/Sema/Initialization.h" 27 #include "clang/Sema/Lookup.h" 28 #include "clang/Sema/ScopeInfo.h" 29 #include "clang/Sema/SemaInternal.h" 30 #include "clang/Sema/Template.h" 31 #include "clang/Sema/TemplateInstCallback.h" 32 #include "llvm/Support/TimeProfiler.h" 33 #include <optional> 34 35 using namespace clang; 36 37 static bool isDeclWithinFunction(const Decl *D) { 38 const DeclContext *DC = D->getDeclContext(); 39 if (DC->isFunctionOrMethod()) 40 return true; 41 42 if (DC->isRecord()) 43 return cast<CXXRecordDecl>(DC)->isLocalClass(); 44 45 return false; 46 } 47 48 template<typename DeclT> 49 static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl, 50 const MultiLevelTemplateArgumentList &TemplateArgs) { 51 if (!OldDecl->getQualifierLoc()) 52 return false; 53 54 assert((NewDecl->getFriendObjectKind() || 55 !OldDecl->getLexicalDeclContext()->isDependentContext()) && 56 "non-friend with qualified name defined in dependent context"); 57 Sema::ContextRAII SavedContext( 58 SemaRef, 59 const_cast<DeclContext *>(NewDecl->getFriendObjectKind() 60 ? NewDecl->getLexicalDeclContext() 61 : OldDecl->getLexicalDeclContext())); 62 63 NestedNameSpecifierLoc NewQualifierLoc 64 = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(), 65 TemplateArgs); 66 67 if (!NewQualifierLoc) 68 return true; 69 70 NewDecl->setQualifierInfo(NewQualifierLoc); 71 return false; 72 } 73 74 bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl, 75 DeclaratorDecl *NewDecl) { 76 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); 77 } 78 79 bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl, 80 TagDecl *NewDecl) { 81 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); 82 } 83 84 // Include attribute instantiation code. 85 #include "clang/Sema/AttrTemplateInstantiate.inc" 86 87 static void instantiateDependentAlignedAttr( 88 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 89 const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) { 90 if (Aligned->isAlignmentExpr()) { 91 // The alignment expression is a constant expression. 92 EnterExpressionEvaluationContext Unevaluated( 93 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 94 ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs); 95 if (!Result.isInvalid()) 96 S.AddAlignedAttr(New, *Aligned, Result.getAs<Expr>(), IsPackExpansion); 97 } else { 98 if (TypeSourceInfo *Result = 99 S.SubstType(Aligned->getAlignmentType(), TemplateArgs, 100 Aligned->getLocation(), DeclarationName())) { 101 if (!S.CheckAlignasTypeArgument(Aligned->getSpelling(), Result, 102 Aligned->getLocation(), 103 Result->getTypeLoc().getSourceRange())) 104 S.AddAlignedAttr(New, *Aligned, Result, IsPackExpansion); 105 } 106 } 107 } 108 109 static void instantiateDependentAlignedAttr( 110 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 111 const AlignedAttr *Aligned, Decl *New) { 112 if (!Aligned->isPackExpansion()) { 113 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); 114 return; 115 } 116 117 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 118 if (Aligned->isAlignmentExpr()) 119 S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(), 120 Unexpanded); 121 else 122 S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(), 123 Unexpanded); 124 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); 125 126 // Determine whether we can expand this attribute pack yet. 127 bool Expand = true, RetainExpansion = false; 128 std::optional<unsigned> NumExpansions; 129 // FIXME: Use the actual location of the ellipsis. 130 SourceLocation EllipsisLoc = Aligned->getLocation(); 131 if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(), 132 Unexpanded, TemplateArgs, Expand, 133 RetainExpansion, NumExpansions)) 134 return; 135 136 if (!Expand) { 137 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1); 138 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true); 139 } else { 140 for (unsigned I = 0; I != *NumExpansions; ++I) { 141 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I); 142 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); 143 } 144 } 145 } 146 147 static void instantiateDependentAssumeAlignedAttr( 148 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 149 const AssumeAlignedAttr *Aligned, Decl *New) { 150 // The alignment expression is a constant expression. 151 EnterExpressionEvaluationContext Unevaluated( 152 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 153 154 Expr *E, *OE = nullptr; 155 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); 156 if (Result.isInvalid()) 157 return; 158 E = Result.getAs<Expr>(); 159 160 if (Aligned->getOffset()) { 161 Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs); 162 if (Result.isInvalid()) 163 return; 164 OE = Result.getAs<Expr>(); 165 } 166 167 S.AddAssumeAlignedAttr(New, *Aligned, E, OE); 168 } 169 170 static void instantiateDependentAlignValueAttr( 171 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 172 const AlignValueAttr *Aligned, Decl *New) { 173 // The alignment expression is a constant expression. 174 EnterExpressionEvaluationContext Unevaluated( 175 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 176 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); 177 if (!Result.isInvalid()) 178 S.AddAlignValueAttr(New, *Aligned, Result.getAs<Expr>()); 179 } 180 181 static void instantiateDependentAllocAlignAttr( 182 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 183 const AllocAlignAttr *Align, Decl *New) { 184 Expr *Param = IntegerLiteral::Create( 185 S.getASTContext(), 186 llvm::APInt(64, Align->getParamIndex().getSourceIndex()), 187 S.getASTContext().UnsignedLongLongTy, Align->getLocation()); 188 S.AddAllocAlignAttr(New, *Align, Param); 189 } 190 191 static void instantiateDependentAnnotationAttr( 192 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 193 const AnnotateAttr *Attr, Decl *New) { 194 EnterExpressionEvaluationContext Unevaluated( 195 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 196 197 // If the attribute has delayed arguments it will have to instantiate those 198 // and handle them as new arguments for the attribute. 199 bool HasDelayedArgs = Attr->delayedArgs_size(); 200 201 ArrayRef<Expr *> ArgsToInstantiate = 202 HasDelayedArgs 203 ? ArrayRef<Expr *>{Attr->delayedArgs_begin(), Attr->delayedArgs_end()} 204 : ArrayRef<Expr *>{Attr->args_begin(), Attr->args_end()}; 205 206 SmallVector<Expr *, 4> Args; 207 if (S.SubstExprs(ArgsToInstantiate, 208 /*IsCall=*/false, TemplateArgs, Args)) 209 return; 210 211 StringRef Str = Attr->getAnnotation(); 212 if (HasDelayedArgs) { 213 if (Args.size() < 1) { 214 S.Diag(Attr->getLoc(), diag::err_attribute_too_few_arguments) 215 << Attr << 1; 216 return; 217 } 218 219 if (!S.checkStringLiteralArgumentAttr(*Attr, Args[0], Str)) 220 return; 221 222 llvm::SmallVector<Expr *, 4> ActualArgs; 223 ActualArgs.insert(ActualArgs.begin(), Args.begin() + 1, Args.end()); 224 std::swap(Args, ActualArgs); 225 } 226 S.AddAnnotationAttr(New, *Attr, Str, Args); 227 } 228 229 static Expr *instantiateDependentFunctionAttrCondition( 230 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 231 const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) { 232 Expr *Cond = nullptr; 233 { 234 Sema::ContextRAII SwitchContext(S, New); 235 EnterExpressionEvaluationContext Unevaluated( 236 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 237 ExprResult Result = S.SubstExpr(OldCond, TemplateArgs); 238 if (Result.isInvalid()) 239 return nullptr; 240 Cond = Result.getAs<Expr>(); 241 } 242 if (!Cond->isTypeDependent()) { 243 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); 244 if (Converted.isInvalid()) 245 return nullptr; 246 Cond = Converted.get(); 247 } 248 249 SmallVector<PartialDiagnosticAt, 8> Diags; 250 if (OldCond->isValueDependent() && !Cond->isValueDependent() && 251 !Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) { 252 S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A; 253 for (const auto &P : Diags) 254 S.Diag(P.first, P.second); 255 return nullptr; 256 } 257 return Cond; 258 } 259 260 static void instantiateDependentEnableIfAttr( 261 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 262 const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) { 263 Expr *Cond = instantiateDependentFunctionAttrCondition( 264 S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New); 265 266 if (Cond) 267 New->addAttr(new (S.getASTContext()) EnableIfAttr(S.getASTContext(), *EIA, 268 Cond, EIA->getMessage())); 269 } 270 271 static void instantiateDependentDiagnoseIfAttr( 272 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 273 const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) { 274 Expr *Cond = instantiateDependentFunctionAttrCondition( 275 S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New); 276 277 if (Cond) 278 New->addAttr(new (S.getASTContext()) DiagnoseIfAttr( 279 S.getASTContext(), *DIA, Cond, DIA->getMessage(), 280 DIA->getDiagnosticType(), DIA->getArgDependent(), New)); 281 } 282 283 // Constructs and adds to New a new instance of CUDALaunchBoundsAttr using 284 // template A as the base and arguments from TemplateArgs. 285 static void instantiateDependentCUDALaunchBoundsAttr( 286 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 287 const CUDALaunchBoundsAttr &Attr, Decl *New) { 288 // The alignment expression is a constant expression. 289 EnterExpressionEvaluationContext Unevaluated( 290 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 291 292 ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs); 293 if (Result.isInvalid()) 294 return; 295 Expr *MaxThreads = Result.getAs<Expr>(); 296 297 Expr *MinBlocks = nullptr; 298 if (Attr.getMinBlocks()) { 299 Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs); 300 if (Result.isInvalid()) 301 return; 302 MinBlocks = Result.getAs<Expr>(); 303 } 304 305 S.AddLaunchBoundsAttr(New, Attr, MaxThreads, MinBlocks); 306 } 307 308 static void 309 instantiateDependentModeAttr(Sema &S, 310 const MultiLevelTemplateArgumentList &TemplateArgs, 311 const ModeAttr &Attr, Decl *New) { 312 S.AddModeAttr(New, Attr, Attr.getMode(), 313 /*InInstantiation=*/true); 314 } 315 316 /// Instantiation of 'declare simd' attribute and its arguments. 317 static void instantiateOMPDeclareSimdDeclAttr( 318 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 319 const OMPDeclareSimdDeclAttr &Attr, Decl *New) { 320 // Allow 'this' in clauses with varlists. 321 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New)) 322 New = FTD->getTemplatedDecl(); 323 auto *FD = cast<FunctionDecl>(New); 324 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext()); 325 SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps; 326 SmallVector<unsigned, 4> LinModifiers; 327 328 auto SubstExpr = [&](Expr *E) -> ExprResult { 329 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 330 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 331 Sema::ContextRAII SavedContext(S, FD); 332 LocalInstantiationScope Local(S); 333 if (FD->getNumParams() > PVD->getFunctionScopeIndex()) 334 Local.InstantiatedLocal( 335 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); 336 return S.SubstExpr(E, TemplateArgs); 337 } 338 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(), 339 FD->isCXXInstanceMember()); 340 return S.SubstExpr(E, TemplateArgs); 341 }; 342 343 // Substitute a single OpenMP clause, which is a potentially-evaluated 344 // full-expression. 345 auto Subst = [&](Expr *E) -> ExprResult { 346 EnterExpressionEvaluationContext Evaluated( 347 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 348 ExprResult Res = SubstExpr(E); 349 if (Res.isInvalid()) 350 return Res; 351 return S.ActOnFinishFullExpr(Res.get(), false); 352 }; 353 354 ExprResult Simdlen; 355 if (auto *E = Attr.getSimdlen()) 356 Simdlen = Subst(E); 357 358 if (Attr.uniforms_size() > 0) { 359 for(auto *E : Attr.uniforms()) { 360 ExprResult Inst = Subst(E); 361 if (Inst.isInvalid()) 362 continue; 363 Uniforms.push_back(Inst.get()); 364 } 365 } 366 367 auto AI = Attr.alignments_begin(); 368 for (auto *E : Attr.aligneds()) { 369 ExprResult Inst = Subst(E); 370 if (Inst.isInvalid()) 371 continue; 372 Aligneds.push_back(Inst.get()); 373 Inst = ExprEmpty(); 374 if (*AI) 375 Inst = S.SubstExpr(*AI, TemplateArgs); 376 Alignments.push_back(Inst.get()); 377 ++AI; 378 } 379 380 auto SI = Attr.steps_begin(); 381 for (auto *E : Attr.linears()) { 382 ExprResult Inst = Subst(E); 383 if (Inst.isInvalid()) 384 continue; 385 Linears.push_back(Inst.get()); 386 Inst = ExprEmpty(); 387 if (*SI) 388 Inst = S.SubstExpr(*SI, TemplateArgs); 389 Steps.push_back(Inst.get()); 390 ++SI; 391 } 392 LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end()); 393 (void)S.ActOnOpenMPDeclareSimdDirective( 394 S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(), 395 Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps, 396 Attr.getRange()); 397 } 398 399 /// Instantiation of 'declare variant' attribute and its arguments. 400 static void instantiateOMPDeclareVariantAttr( 401 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 402 const OMPDeclareVariantAttr &Attr, Decl *New) { 403 // Allow 'this' in clauses with varlists. 404 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New)) 405 New = FTD->getTemplatedDecl(); 406 auto *FD = cast<FunctionDecl>(New); 407 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext()); 408 409 auto &&SubstExpr = [FD, ThisContext, &S, &TemplateArgs](Expr *E) { 410 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 411 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 412 Sema::ContextRAII SavedContext(S, FD); 413 LocalInstantiationScope Local(S); 414 if (FD->getNumParams() > PVD->getFunctionScopeIndex()) 415 Local.InstantiatedLocal( 416 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); 417 return S.SubstExpr(E, TemplateArgs); 418 } 419 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(), 420 FD->isCXXInstanceMember()); 421 return S.SubstExpr(E, TemplateArgs); 422 }; 423 424 // Substitute a single OpenMP clause, which is a potentially-evaluated 425 // full-expression. 426 auto &&Subst = [&SubstExpr, &S](Expr *E) { 427 EnterExpressionEvaluationContext Evaluated( 428 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 429 ExprResult Res = SubstExpr(E); 430 if (Res.isInvalid()) 431 return Res; 432 return S.ActOnFinishFullExpr(Res.get(), false); 433 }; 434 435 ExprResult VariantFuncRef; 436 if (Expr *E = Attr.getVariantFuncRef()) { 437 // Do not mark function as is used to prevent its emission if this is the 438 // only place where it is used. 439 EnterExpressionEvaluationContext Unevaluated( 440 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 441 VariantFuncRef = Subst(E); 442 } 443 444 // Copy the template version of the OMPTraitInfo and run substitute on all 445 // score and condition expressiosn. 446 OMPTraitInfo &TI = S.getASTContext().getNewOMPTraitInfo(); 447 TI = *Attr.getTraitInfos(); 448 449 // Try to substitute template parameters in score and condition expressions. 450 auto SubstScoreOrConditionExpr = [&S, Subst](Expr *&E, bool) { 451 if (E) { 452 EnterExpressionEvaluationContext Unevaluated( 453 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 454 ExprResult ER = Subst(E); 455 if (ER.isUsable()) 456 E = ER.get(); 457 else 458 return true; 459 } 460 return false; 461 }; 462 if (TI.anyScoreOrCondition(SubstScoreOrConditionExpr)) 463 return; 464 465 Expr *E = VariantFuncRef.get(); 466 467 // Check function/variant ref for `omp declare variant` but not for `omp 468 // begin declare variant` (which use implicit attributes). 469 std::optional<std::pair<FunctionDecl *, Expr *>> DeclVarData = 470 S.checkOpenMPDeclareVariantFunction(S.ConvertDeclToDeclGroup(New), E, TI, 471 Attr.appendArgs_size(), 472 Attr.getRange()); 473 474 if (!DeclVarData) 475 return; 476 477 E = DeclVarData->second; 478 FD = DeclVarData->first; 479 480 if (auto *VariantDRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) { 481 if (auto *VariantFD = dyn_cast<FunctionDecl>(VariantDRE->getDecl())) { 482 if (auto *VariantFTD = VariantFD->getDescribedFunctionTemplate()) { 483 if (!VariantFTD->isThisDeclarationADefinition()) 484 return; 485 Sema::TentativeAnalysisScope Trap(S); 486 const TemplateArgumentList *TAL = TemplateArgumentList::CreateCopy( 487 S.Context, TemplateArgs.getInnermost()); 488 489 auto *SubstFD = S.InstantiateFunctionDeclaration(VariantFTD, TAL, 490 New->getLocation()); 491 if (!SubstFD) 492 return; 493 QualType NewType = S.Context.mergeFunctionTypes( 494 SubstFD->getType(), FD->getType(), 495 /* OfBlockPointer */ false, 496 /* Unqualified */ false, /* AllowCXX */ true); 497 if (NewType.isNull()) 498 return; 499 S.InstantiateFunctionDefinition( 500 New->getLocation(), SubstFD, /* Recursive */ true, 501 /* DefinitionRequired */ false, /* AtEndOfTU */ false); 502 SubstFD->setInstantiationIsPending(!SubstFD->isDefined()); 503 E = DeclRefExpr::Create(S.Context, NestedNameSpecifierLoc(), 504 SourceLocation(), SubstFD, 505 /* RefersToEnclosingVariableOrCapture */ false, 506 /* NameLoc */ SubstFD->getLocation(), 507 SubstFD->getType(), ExprValueKind::VK_PRValue); 508 } 509 } 510 } 511 512 SmallVector<Expr *, 8> NothingExprs; 513 SmallVector<Expr *, 8> NeedDevicePtrExprs; 514 SmallVector<OMPInteropInfo, 4> AppendArgs; 515 516 for (Expr *E : Attr.adjustArgsNothing()) { 517 ExprResult ER = Subst(E); 518 if (ER.isInvalid()) 519 continue; 520 NothingExprs.push_back(ER.get()); 521 } 522 for (Expr *E : Attr.adjustArgsNeedDevicePtr()) { 523 ExprResult ER = Subst(E); 524 if (ER.isInvalid()) 525 continue; 526 NeedDevicePtrExprs.push_back(ER.get()); 527 } 528 for (OMPInteropInfo &II : Attr.appendArgs()) { 529 // When prefer_type is implemented for append_args handle them here too. 530 AppendArgs.emplace_back(II.IsTarget, II.IsTargetSync); 531 } 532 533 S.ActOnOpenMPDeclareVariantDirective( 534 FD, E, TI, NothingExprs, NeedDevicePtrExprs, AppendArgs, SourceLocation(), 535 SourceLocation(), Attr.getRange()); 536 } 537 538 static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr( 539 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 540 const AMDGPUFlatWorkGroupSizeAttr &Attr, Decl *New) { 541 // Both min and max expression are constant expressions. 542 EnterExpressionEvaluationContext Unevaluated( 543 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 544 545 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs); 546 if (Result.isInvalid()) 547 return; 548 Expr *MinExpr = Result.getAs<Expr>(); 549 550 Result = S.SubstExpr(Attr.getMax(), TemplateArgs); 551 if (Result.isInvalid()) 552 return; 553 Expr *MaxExpr = Result.getAs<Expr>(); 554 555 S.addAMDGPUFlatWorkGroupSizeAttr(New, Attr, MinExpr, MaxExpr); 556 } 557 558 static ExplicitSpecifier 559 instantiateExplicitSpecifier(Sema &S, 560 const MultiLevelTemplateArgumentList &TemplateArgs, 561 ExplicitSpecifier ES, FunctionDecl *New) { 562 if (!ES.getExpr()) 563 return ES; 564 Expr *OldCond = ES.getExpr(); 565 Expr *Cond = nullptr; 566 { 567 EnterExpressionEvaluationContext Unevaluated( 568 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 569 ExprResult SubstResult = S.SubstExpr(OldCond, TemplateArgs); 570 if (SubstResult.isInvalid()) { 571 return ExplicitSpecifier::Invalid(); 572 } 573 Cond = SubstResult.get(); 574 } 575 ExplicitSpecifier Result(Cond, ES.getKind()); 576 if (!Cond->isTypeDependent()) 577 S.tryResolveExplicitSpecifier(Result); 578 return Result; 579 } 580 581 static void instantiateDependentAMDGPUWavesPerEUAttr( 582 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 583 const AMDGPUWavesPerEUAttr &Attr, Decl *New) { 584 // Both min and max expression are constant expressions. 585 EnterExpressionEvaluationContext Unevaluated( 586 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 587 588 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs); 589 if (Result.isInvalid()) 590 return; 591 Expr *MinExpr = Result.getAs<Expr>(); 592 593 Expr *MaxExpr = nullptr; 594 if (auto Max = Attr.getMax()) { 595 Result = S.SubstExpr(Max, TemplateArgs); 596 if (Result.isInvalid()) 597 return; 598 MaxExpr = Result.getAs<Expr>(); 599 } 600 601 S.addAMDGPUWavesPerEUAttr(New, Attr, MinExpr, MaxExpr); 602 } 603 604 // This doesn't take any template parameters, but we have a custom action that 605 // needs to happen when the kernel itself is instantiated. We need to run the 606 // ItaniumMangler to mark the names required to name this kernel. 607 static void instantiateDependentSYCLKernelAttr( 608 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 609 const SYCLKernelAttr &Attr, Decl *New) { 610 New->addAttr(Attr.clone(S.getASTContext())); 611 } 612 613 /// Determine whether the attribute A might be relevant to the declaration D. 614 /// If not, we can skip instantiating it. The attribute may or may not have 615 /// been instantiated yet. 616 static bool isRelevantAttr(Sema &S, const Decl *D, const Attr *A) { 617 // 'preferred_name' is only relevant to the matching specialization of the 618 // template. 619 if (const auto *PNA = dyn_cast<PreferredNameAttr>(A)) { 620 QualType T = PNA->getTypedefType(); 621 const auto *RD = cast<CXXRecordDecl>(D); 622 if (!T->isDependentType() && !RD->isDependentContext() && 623 !declaresSameEntity(T->getAsCXXRecordDecl(), RD)) 624 return false; 625 for (const auto *ExistingPNA : D->specific_attrs<PreferredNameAttr>()) 626 if (S.Context.hasSameType(ExistingPNA->getTypedefType(), 627 PNA->getTypedefType())) 628 return false; 629 return true; 630 } 631 632 if (const auto *BA = dyn_cast<BuiltinAttr>(A)) { 633 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 634 switch (BA->getID()) { 635 case Builtin::BIforward: 636 // Do not treat 'std::forward' as a builtin if it takes an rvalue reference 637 // type and returns an lvalue reference type. The library implementation 638 // will produce an error in this case; don't get in its way. 639 if (FD && FD->getNumParams() >= 1 && 640 FD->getParamDecl(0)->getType()->isRValueReferenceType() && 641 FD->getReturnType()->isLValueReferenceType()) { 642 return false; 643 } 644 [[fallthrough]]; 645 case Builtin::BImove: 646 case Builtin::BImove_if_noexcept: 647 // HACK: Super-old versions of libc++ (3.1 and earlier) provide 648 // std::forward and std::move overloads that sometimes return by value 649 // instead of by reference when building in C++98 mode. Don't treat such 650 // cases as builtins. 651 if (FD && !FD->getReturnType()->isReferenceType()) 652 return false; 653 break; 654 } 655 } 656 657 return true; 658 } 659 660 void Sema::InstantiateAttrsForDecl( 661 const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl, 662 Decl *New, LateInstantiatedAttrVec *LateAttrs, 663 LocalInstantiationScope *OuterMostScope) { 664 if (NamedDecl *ND = dyn_cast<NamedDecl>(New)) { 665 // FIXME: This function is called multiple times for the same template 666 // specialization. We should only instantiate attributes that were added 667 // since the previous instantiation. 668 for (const auto *TmplAttr : Tmpl->attrs()) { 669 if (!isRelevantAttr(*this, New, TmplAttr)) 670 continue; 671 672 // FIXME: If any of the special case versions from InstantiateAttrs become 673 // applicable to template declaration, we'll need to add them here. 674 CXXThisScopeRAII ThisScope( 675 *this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()), 676 Qualifiers(), ND->isCXXInstanceMember()); 677 678 Attr *NewAttr = sema::instantiateTemplateAttributeForDecl( 679 TmplAttr, Context, *this, TemplateArgs); 680 if (NewAttr && isRelevantAttr(*this, New, NewAttr)) 681 New->addAttr(NewAttr); 682 } 683 } 684 } 685 686 static Sema::RetainOwnershipKind 687 attrToRetainOwnershipKind(const Attr *A) { 688 switch (A->getKind()) { 689 case clang::attr::CFConsumed: 690 return Sema::RetainOwnershipKind::CF; 691 case clang::attr::OSConsumed: 692 return Sema::RetainOwnershipKind::OS; 693 case clang::attr::NSConsumed: 694 return Sema::RetainOwnershipKind::NS; 695 default: 696 llvm_unreachable("Wrong argument supplied"); 697 } 698 } 699 700 void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, 701 const Decl *Tmpl, Decl *New, 702 LateInstantiatedAttrVec *LateAttrs, 703 LocalInstantiationScope *OuterMostScope) { 704 for (const auto *TmplAttr : Tmpl->attrs()) { 705 if (!isRelevantAttr(*this, New, TmplAttr)) 706 continue; 707 708 // FIXME: This should be generalized to more than just the AlignedAttr. 709 const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr); 710 if (Aligned && Aligned->isAlignmentDependent()) { 711 instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New); 712 continue; 713 } 714 715 if (const auto *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr)) { 716 instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New); 717 continue; 718 } 719 720 if (const auto *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr)) { 721 instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New); 722 continue; 723 } 724 725 if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) { 726 instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New); 727 continue; 728 } 729 730 if (const auto *Annotate = dyn_cast<AnnotateAttr>(TmplAttr)) { 731 instantiateDependentAnnotationAttr(*this, TemplateArgs, Annotate, New); 732 continue; 733 } 734 735 if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) { 736 instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl, 737 cast<FunctionDecl>(New)); 738 continue; 739 } 740 741 if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) { 742 instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl, 743 cast<FunctionDecl>(New)); 744 continue; 745 } 746 747 if (const auto *CUDALaunchBounds = 748 dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) { 749 instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs, 750 *CUDALaunchBounds, New); 751 continue; 752 } 753 754 if (const auto *Mode = dyn_cast<ModeAttr>(TmplAttr)) { 755 instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New); 756 continue; 757 } 758 759 if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) { 760 instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New); 761 continue; 762 } 763 764 if (const auto *OMPAttr = dyn_cast<OMPDeclareVariantAttr>(TmplAttr)) { 765 instantiateOMPDeclareVariantAttr(*this, TemplateArgs, *OMPAttr, New); 766 continue; 767 } 768 769 if (const auto *AMDGPUFlatWorkGroupSize = 770 dyn_cast<AMDGPUFlatWorkGroupSizeAttr>(TmplAttr)) { 771 instantiateDependentAMDGPUFlatWorkGroupSizeAttr( 772 *this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New); 773 } 774 775 if (const auto *AMDGPUFlatWorkGroupSize = 776 dyn_cast<AMDGPUWavesPerEUAttr>(TmplAttr)) { 777 instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs, 778 *AMDGPUFlatWorkGroupSize, New); 779 } 780 781 // Existing DLL attribute on the instantiation takes precedence. 782 if (TmplAttr->getKind() == attr::DLLExport || 783 TmplAttr->getKind() == attr::DLLImport) { 784 if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) { 785 continue; 786 } 787 } 788 789 if (const auto *ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) { 790 AddParameterABIAttr(New, *ABIAttr, ABIAttr->getABI()); 791 continue; 792 } 793 794 if (isa<NSConsumedAttr>(TmplAttr) || isa<OSConsumedAttr>(TmplAttr) || 795 isa<CFConsumedAttr>(TmplAttr)) { 796 AddXConsumedAttr(New, *TmplAttr, attrToRetainOwnershipKind(TmplAttr), 797 /*template instantiation=*/true); 798 continue; 799 } 800 801 if (auto *A = dyn_cast<PointerAttr>(TmplAttr)) { 802 if (!New->hasAttr<PointerAttr>()) 803 New->addAttr(A->clone(Context)); 804 continue; 805 } 806 807 if (auto *A = dyn_cast<OwnerAttr>(TmplAttr)) { 808 if (!New->hasAttr<OwnerAttr>()) 809 New->addAttr(A->clone(Context)); 810 continue; 811 } 812 813 if (auto *A = dyn_cast<SYCLKernelAttr>(TmplAttr)) { 814 instantiateDependentSYCLKernelAttr(*this, TemplateArgs, *A, New); 815 continue; 816 } 817 818 assert(!TmplAttr->isPackExpansion()); 819 if (TmplAttr->isLateParsed() && LateAttrs) { 820 // Late parsed attributes must be instantiated and attached after the 821 // enclosing class has been instantiated. See Sema::InstantiateClass. 822 LocalInstantiationScope *Saved = nullptr; 823 if (CurrentInstantiationScope) 824 Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope); 825 LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New)); 826 } else { 827 // Allow 'this' within late-parsed attributes. 828 auto *ND = cast<NamedDecl>(New); 829 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()); 830 CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(), 831 ND->isCXXInstanceMember()); 832 833 Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context, 834 *this, TemplateArgs); 835 if (NewAttr && isRelevantAttr(*this, New, TmplAttr)) 836 New->addAttr(NewAttr); 837 } 838 } 839 } 840 841 /// Update instantiation attributes after template was late parsed. 842 /// 843 /// Some attributes are evaluated based on the body of template. If it is 844 /// late parsed, such attributes cannot be evaluated when declaration is 845 /// instantiated. This function is used to update instantiation attributes when 846 /// template definition is ready. 847 void Sema::updateAttrsForLateParsedTemplate(const Decl *Pattern, Decl *Inst) { 848 for (const auto *Attr : Pattern->attrs()) { 849 if (auto *A = dyn_cast<StrictFPAttr>(Attr)) { 850 if (!Inst->hasAttr<StrictFPAttr>()) 851 Inst->addAttr(A->clone(getASTContext())); 852 continue; 853 } 854 } 855 } 856 857 /// In the MS ABI, we need to instantiate default arguments of dllexported 858 /// default constructors along with the constructor definition. This allows IR 859 /// gen to emit a constructor closure which calls the default constructor with 860 /// its default arguments. 861 void Sema::InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor) { 862 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() && 863 Ctor->isDefaultConstructor()); 864 unsigned NumParams = Ctor->getNumParams(); 865 if (NumParams == 0) 866 return; 867 DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>(); 868 if (!Attr) 869 return; 870 for (unsigned I = 0; I != NumParams; ++I) { 871 (void)CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor, 872 Ctor->getParamDecl(I)); 873 CleanupVarDeclMarking(); 874 } 875 } 876 877 /// Get the previous declaration of a declaration for the purposes of template 878 /// instantiation. If this finds a previous declaration, then the previous 879 /// declaration of the instantiation of D should be an instantiation of the 880 /// result of this function. 881 template<typename DeclT> 882 static DeclT *getPreviousDeclForInstantiation(DeclT *D) { 883 DeclT *Result = D->getPreviousDecl(); 884 885 // If the declaration is within a class, and the previous declaration was 886 // merged from a different definition of that class, then we don't have a 887 // previous declaration for the purpose of template instantiation. 888 if (Result && isa<CXXRecordDecl>(D->getDeclContext()) && 889 D->getLexicalDeclContext() != Result->getLexicalDeclContext()) 890 return nullptr; 891 892 return Result; 893 } 894 895 Decl * 896 TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) { 897 llvm_unreachable("Translation units cannot be instantiated"); 898 } 899 900 Decl *TemplateDeclInstantiator::VisitHLSLBufferDecl(HLSLBufferDecl *Decl) { 901 llvm_unreachable("HLSL buffer declarations cannot be instantiated"); 902 } 903 904 Decl * 905 TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) { 906 llvm_unreachable("pragma comment cannot be instantiated"); 907 } 908 909 Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl( 910 PragmaDetectMismatchDecl *D) { 911 llvm_unreachable("pragma comment cannot be instantiated"); 912 } 913 914 Decl * 915 TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) { 916 llvm_unreachable("extern \"C\" context cannot be instantiated"); 917 } 918 919 Decl *TemplateDeclInstantiator::VisitMSGuidDecl(MSGuidDecl *D) { 920 llvm_unreachable("GUID declaration cannot be instantiated"); 921 } 922 923 Decl *TemplateDeclInstantiator::VisitUnnamedGlobalConstantDecl( 924 UnnamedGlobalConstantDecl *D) { 925 llvm_unreachable("UnnamedGlobalConstantDecl cannot be instantiated"); 926 } 927 928 Decl *TemplateDeclInstantiator::VisitTemplateParamObjectDecl( 929 TemplateParamObjectDecl *D) { 930 llvm_unreachable("template parameter objects cannot be instantiated"); 931 } 932 933 Decl * 934 TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) { 935 LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(), 936 D->getIdentifier()); 937 Owner->addDecl(Inst); 938 return Inst; 939 } 940 941 Decl * 942 TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) { 943 llvm_unreachable("Namespaces cannot be instantiated"); 944 } 945 946 Decl * 947 TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { 948 NamespaceAliasDecl *Inst 949 = NamespaceAliasDecl::Create(SemaRef.Context, Owner, 950 D->getNamespaceLoc(), 951 D->getAliasLoc(), 952 D->getIdentifier(), 953 D->getQualifierLoc(), 954 D->getTargetNameLoc(), 955 D->getNamespace()); 956 Owner->addDecl(Inst); 957 return Inst; 958 } 959 960 Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D, 961 bool IsTypeAlias) { 962 bool Invalid = false; 963 TypeSourceInfo *DI = D->getTypeSourceInfo(); 964 if (DI->getType()->isInstantiationDependentType() || 965 DI->getType()->isVariablyModifiedType()) { 966 DI = SemaRef.SubstType(DI, TemplateArgs, 967 D->getLocation(), D->getDeclName()); 968 if (!DI) { 969 Invalid = true; 970 DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy); 971 } 972 } else { 973 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 974 } 975 976 // HACK: 2012-10-23 g++ has a bug where it gets the value kind of ?: wrong. 977 // libstdc++ relies upon this bug in its implementation of common_type. If we 978 // happen to be processing that implementation, fake up the g++ ?: 979 // semantics. See LWG issue 2141 for more information on the bug. The bugs 980 // are fixed in g++ and libstdc++ 4.9.0 (2014-04-22). 981 const DecltypeType *DT = DI->getType()->getAs<DecltypeType>(); 982 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext()); 983 if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) && 984 DT->isReferenceType() && 985 RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() && 986 RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") && 987 D->getIdentifier() && D->getIdentifier()->isStr("type") && 988 SemaRef.getSourceManager().isInSystemHeader(D->getBeginLoc())) 989 // Fold it to the (non-reference) type which g++ would have produced. 990 DI = SemaRef.Context.getTrivialTypeSourceInfo( 991 DI->getType().getNonReferenceType()); 992 993 // Create the new typedef 994 TypedefNameDecl *Typedef; 995 if (IsTypeAlias) 996 Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 997 D->getLocation(), D->getIdentifier(), DI); 998 else 999 Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 1000 D->getLocation(), D->getIdentifier(), DI); 1001 if (Invalid) 1002 Typedef->setInvalidDecl(); 1003 1004 // If the old typedef was the name for linkage purposes of an anonymous 1005 // tag decl, re-establish that relationship for the new typedef. 1006 if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) { 1007 TagDecl *oldTag = oldTagType->getDecl(); 1008 if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) { 1009 TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl(); 1010 assert(!newTag->hasNameForLinkage()); 1011 newTag->setTypedefNameForAnonDecl(Typedef); 1012 } 1013 } 1014 1015 if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) { 1016 NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev, 1017 TemplateArgs); 1018 if (!InstPrev) 1019 return nullptr; 1020 1021 TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev); 1022 1023 // If the typedef types are not identical, reject them. 1024 SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef); 1025 1026 Typedef->setPreviousDecl(InstPrevTypedef); 1027 } 1028 1029 SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef); 1030 1031 if (D->getUnderlyingType()->getAs<DependentNameType>()) 1032 SemaRef.inferGslPointerAttribute(Typedef); 1033 1034 Typedef->setAccess(D->getAccess()); 1035 Typedef->setReferenced(D->isReferenced()); 1036 1037 return Typedef; 1038 } 1039 1040 Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) { 1041 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false); 1042 if (Typedef) 1043 Owner->addDecl(Typedef); 1044 return Typedef; 1045 } 1046 1047 Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) { 1048 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true); 1049 if (Typedef) 1050 Owner->addDecl(Typedef); 1051 return Typedef; 1052 } 1053 1054 Decl * 1055 TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) { 1056 // Create a local instantiation scope for this type alias template, which 1057 // will contain the instantiations of the template parameters. 1058 LocalInstantiationScope Scope(SemaRef); 1059 1060 TemplateParameterList *TempParams = D->getTemplateParameters(); 1061 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1062 if (!InstParams) 1063 return nullptr; 1064 1065 TypeAliasDecl *Pattern = D->getTemplatedDecl(); 1066 1067 TypeAliasTemplateDecl *PrevAliasTemplate = nullptr; 1068 if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) { 1069 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1070 if (!Found.empty()) { 1071 PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front()); 1072 } 1073 } 1074 1075 TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>( 1076 InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true)); 1077 if (!AliasInst) 1078 return nullptr; 1079 1080 TypeAliasTemplateDecl *Inst 1081 = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(), 1082 D->getDeclName(), InstParams, AliasInst); 1083 AliasInst->setDescribedAliasTemplate(Inst); 1084 if (PrevAliasTemplate) 1085 Inst->setPreviousDecl(PrevAliasTemplate); 1086 1087 Inst->setAccess(D->getAccess()); 1088 1089 if (!PrevAliasTemplate) 1090 Inst->setInstantiatedFromMemberTemplate(D); 1091 1092 Owner->addDecl(Inst); 1093 1094 return Inst; 1095 } 1096 1097 Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) { 1098 auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(), 1099 D->getIdentifier()); 1100 NewBD->setReferenced(D->isReferenced()); 1101 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD); 1102 return NewBD; 1103 } 1104 1105 Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) { 1106 // Transform the bindings first. 1107 SmallVector<BindingDecl*, 16> NewBindings; 1108 for (auto *OldBD : D->bindings()) 1109 NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD))); 1110 ArrayRef<BindingDecl*> NewBindingArray = NewBindings; 1111 1112 auto *NewDD = cast_or_null<DecompositionDecl>( 1113 VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray)); 1114 1115 if (!NewDD || NewDD->isInvalidDecl()) 1116 for (auto *NewBD : NewBindings) 1117 NewBD->setInvalidDecl(); 1118 1119 return NewDD; 1120 } 1121 1122 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) { 1123 return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false); 1124 } 1125 1126 Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D, 1127 bool InstantiatingVarTemplate, 1128 ArrayRef<BindingDecl*> *Bindings) { 1129 1130 // Do substitution on the type of the declaration 1131 TypeSourceInfo *DI = SemaRef.SubstType( 1132 D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(), 1133 D->getDeclName(), /*AllowDeducedTST*/true); 1134 if (!DI) 1135 return nullptr; 1136 1137 if (DI->getType()->isFunctionType()) { 1138 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) 1139 << D->isStaticDataMember() << DI->getType(); 1140 return nullptr; 1141 } 1142 1143 DeclContext *DC = Owner; 1144 if (D->isLocalExternDecl()) 1145 SemaRef.adjustContextForLocalExternDecl(DC); 1146 1147 // Build the instantiated declaration. 1148 VarDecl *Var; 1149 if (Bindings) 1150 Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), 1151 D->getLocation(), DI->getType(), DI, 1152 D->getStorageClass(), *Bindings); 1153 else 1154 Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), 1155 D->getLocation(), D->getIdentifier(), DI->getType(), 1156 DI, D->getStorageClass()); 1157 1158 // In ARC, infer 'retaining' for variables of retainable type. 1159 if (SemaRef.getLangOpts().ObjCAutoRefCount && 1160 SemaRef.inferObjCARCLifetime(Var)) 1161 Var->setInvalidDecl(); 1162 1163 if (SemaRef.getLangOpts().OpenCL) 1164 SemaRef.deduceOpenCLAddressSpace(Var); 1165 1166 // Substitute the nested name specifier, if any. 1167 if (SubstQualifier(D, Var)) 1168 return nullptr; 1169 1170 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, 1171 StartingScope, InstantiatingVarTemplate); 1172 if (D->isNRVOVariable() && !Var->isInvalidDecl()) { 1173 QualType RT; 1174 if (auto *F = dyn_cast<FunctionDecl>(DC)) 1175 RT = F->getReturnType(); 1176 else if (isa<BlockDecl>(DC)) 1177 RT = cast<FunctionType>(SemaRef.getCurBlock()->FunctionType) 1178 ->getReturnType(); 1179 else 1180 llvm_unreachable("Unknown context type"); 1181 1182 // This is the last chance we have of checking copy elision eligibility 1183 // for functions in dependent contexts. The sema actions for building 1184 // the return statement during template instantiation will have no effect 1185 // regarding copy elision, since NRVO propagation runs on the scope exit 1186 // actions, and these are not run on instantiation. 1187 // This might run through some VarDecls which were returned from non-taken 1188 // 'if constexpr' branches, and these will end up being constructed on the 1189 // return slot even if they will never be returned, as a sort of accidental 1190 // 'optimization'. Notably, functions with 'auto' return types won't have it 1191 // deduced by this point. Coupled with the limitation described 1192 // previously, this makes it very hard to support copy elision for these. 1193 Sema::NamedReturnInfo Info = SemaRef.getNamedReturnInfo(Var); 1194 bool NRVO = SemaRef.getCopyElisionCandidate(Info, RT) != nullptr; 1195 Var->setNRVOVariable(NRVO); 1196 } 1197 1198 Var->setImplicit(D->isImplicit()); 1199 1200 if (Var->isStaticLocal()) 1201 SemaRef.CheckStaticLocalForDllExport(Var); 1202 1203 if (Var->getTLSKind()) 1204 SemaRef.CheckThreadLocalForLargeAlignment(Var); 1205 1206 return Var; 1207 } 1208 1209 Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) { 1210 AccessSpecDecl* AD 1211 = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner, 1212 D->getAccessSpecifierLoc(), D->getColonLoc()); 1213 Owner->addHiddenDecl(AD); 1214 return AD; 1215 } 1216 1217 Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) { 1218 bool Invalid = false; 1219 TypeSourceInfo *DI = D->getTypeSourceInfo(); 1220 if (DI->getType()->isInstantiationDependentType() || 1221 DI->getType()->isVariablyModifiedType()) { 1222 DI = SemaRef.SubstType(DI, TemplateArgs, 1223 D->getLocation(), D->getDeclName()); 1224 if (!DI) { 1225 DI = D->getTypeSourceInfo(); 1226 Invalid = true; 1227 } else if (DI->getType()->isFunctionType()) { 1228 // C++ [temp.arg.type]p3: 1229 // If a declaration acquires a function type through a type 1230 // dependent on a template-parameter and this causes a 1231 // declaration that does not use the syntactic form of a 1232 // function declarator to have function type, the program is 1233 // ill-formed. 1234 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) 1235 << DI->getType(); 1236 Invalid = true; 1237 } 1238 } else { 1239 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 1240 } 1241 1242 Expr *BitWidth = D->getBitWidth(); 1243 if (Invalid) 1244 BitWidth = nullptr; 1245 else if (BitWidth) { 1246 // The bit-width expression is a constant expression. 1247 EnterExpressionEvaluationContext Unevaluated( 1248 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1249 1250 ExprResult InstantiatedBitWidth 1251 = SemaRef.SubstExpr(BitWidth, TemplateArgs); 1252 if (InstantiatedBitWidth.isInvalid()) { 1253 Invalid = true; 1254 BitWidth = nullptr; 1255 } else 1256 BitWidth = InstantiatedBitWidth.getAs<Expr>(); 1257 } 1258 1259 FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(), 1260 DI->getType(), DI, 1261 cast<RecordDecl>(Owner), 1262 D->getLocation(), 1263 D->isMutable(), 1264 BitWidth, 1265 D->getInClassInitStyle(), 1266 D->getInnerLocStart(), 1267 D->getAccess(), 1268 nullptr); 1269 if (!Field) { 1270 cast<Decl>(Owner)->setInvalidDecl(); 1271 return nullptr; 1272 } 1273 1274 SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope); 1275 1276 if (Field->hasAttrs()) 1277 SemaRef.CheckAlignasUnderalignment(Field); 1278 1279 if (Invalid) 1280 Field->setInvalidDecl(); 1281 1282 if (!Field->getDeclName()) { 1283 // Keep track of where this decl came from. 1284 SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D); 1285 } 1286 if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) { 1287 if (Parent->isAnonymousStructOrUnion() && 1288 Parent->getRedeclContext()->isFunctionOrMethod()) 1289 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field); 1290 } 1291 1292 Field->setImplicit(D->isImplicit()); 1293 Field->setAccess(D->getAccess()); 1294 Owner->addDecl(Field); 1295 1296 return Field; 1297 } 1298 1299 Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) { 1300 bool Invalid = false; 1301 TypeSourceInfo *DI = D->getTypeSourceInfo(); 1302 1303 if (DI->getType()->isVariablyModifiedType()) { 1304 SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified) 1305 << D; 1306 Invalid = true; 1307 } else if (DI->getType()->isInstantiationDependentType()) { 1308 DI = SemaRef.SubstType(DI, TemplateArgs, 1309 D->getLocation(), D->getDeclName()); 1310 if (!DI) { 1311 DI = D->getTypeSourceInfo(); 1312 Invalid = true; 1313 } else if (DI->getType()->isFunctionType()) { 1314 // C++ [temp.arg.type]p3: 1315 // If a declaration acquires a function type through a type 1316 // dependent on a template-parameter and this causes a 1317 // declaration that does not use the syntactic form of a 1318 // function declarator to have function type, the program is 1319 // ill-formed. 1320 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) 1321 << DI->getType(); 1322 Invalid = true; 1323 } 1324 } else { 1325 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 1326 } 1327 1328 MSPropertyDecl *Property = MSPropertyDecl::Create( 1329 SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(), 1330 DI, D->getBeginLoc(), D->getGetterId(), D->getSetterId()); 1331 1332 SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs, 1333 StartingScope); 1334 1335 if (Invalid) 1336 Property->setInvalidDecl(); 1337 1338 Property->setAccess(D->getAccess()); 1339 Owner->addDecl(Property); 1340 1341 return Property; 1342 } 1343 1344 Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) { 1345 NamedDecl **NamedChain = 1346 new (SemaRef.Context)NamedDecl*[D->getChainingSize()]; 1347 1348 int i = 0; 1349 for (auto *PI : D->chain()) { 1350 NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI, 1351 TemplateArgs); 1352 if (!Next) 1353 return nullptr; 1354 1355 NamedChain[i++] = Next; 1356 } 1357 1358 QualType T = cast<FieldDecl>(NamedChain[i-1])->getType(); 1359 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( 1360 SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T, 1361 {NamedChain, D->getChainingSize()}); 1362 1363 for (const auto *Attr : D->attrs()) 1364 IndirectField->addAttr(Attr->clone(SemaRef.Context)); 1365 1366 IndirectField->setImplicit(D->isImplicit()); 1367 IndirectField->setAccess(D->getAccess()); 1368 Owner->addDecl(IndirectField); 1369 return IndirectField; 1370 } 1371 1372 Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) { 1373 // Handle friend type expressions by simply substituting template 1374 // parameters into the pattern type and checking the result. 1375 if (TypeSourceInfo *Ty = D->getFriendType()) { 1376 TypeSourceInfo *InstTy; 1377 // If this is an unsupported friend, don't bother substituting template 1378 // arguments into it. The actual type referred to won't be used by any 1379 // parts of Clang, and may not be valid for instantiating. Just use the 1380 // same info for the instantiated friend. 1381 if (D->isUnsupportedFriend()) { 1382 InstTy = Ty; 1383 } else { 1384 InstTy = SemaRef.SubstType(Ty, TemplateArgs, 1385 D->getLocation(), DeclarationName()); 1386 } 1387 if (!InstTy) 1388 return nullptr; 1389 1390 FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getBeginLoc(), 1391 D->getFriendLoc(), InstTy); 1392 if (!FD) 1393 return nullptr; 1394 1395 FD->setAccess(AS_public); 1396 FD->setUnsupportedFriend(D->isUnsupportedFriend()); 1397 Owner->addDecl(FD); 1398 return FD; 1399 } 1400 1401 NamedDecl *ND = D->getFriendDecl(); 1402 assert(ND && "friend decl must be a decl or a type!"); 1403 1404 // All of the Visit implementations for the various potential friend 1405 // declarations have to be carefully written to work for friend 1406 // objects, with the most important detail being that the target 1407 // decl should almost certainly not be placed in Owner. 1408 Decl *NewND = Visit(ND); 1409 if (!NewND) return nullptr; 1410 1411 FriendDecl *FD = 1412 FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(), 1413 cast<NamedDecl>(NewND), D->getFriendLoc()); 1414 FD->setAccess(AS_public); 1415 FD->setUnsupportedFriend(D->isUnsupportedFriend()); 1416 Owner->addDecl(FD); 1417 return FD; 1418 } 1419 1420 Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) { 1421 Expr *AssertExpr = D->getAssertExpr(); 1422 1423 // The expression in a static assertion is a constant expression. 1424 EnterExpressionEvaluationContext Unevaluated( 1425 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1426 1427 ExprResult InstantiatedAssertExpr 1428 = SemaRef.SubstExpr(AssertExpr, TemplateArgs); 1429 if (InstantiatedAssertExpr.isInvalid()) 1430 return nullptr; 1431 1432 ExprResult InstantiatedMessageExpr = 1433 SemaRef.SubstExpr(D->getMessage(), TemplateArgs); 1434 if (InstantiatedMessageExpr.isInvalid()) 1435 return nullptr; 1436 1437 return SemaRef.BuildStaticAssertDeclaration( 1438 D->getLocation(), InstantiatedAssertExpr.get(), 1439 InstantiatedMessageExpr.get(), D->getRParenLoc(), D->isFailed()); 1440 } 1441 1442 Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) { 1443 EnumDecl *PrevDecl = nullptr; 1444 if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { 1445 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), 1446 PatternPrev, 1447 TemplateArgs); 1448 if (!Prev) return nullptr; 1449 PrevDecl = cast<EnumDecl>(Prev); 1450 } 1451 1452 EnumDecl *Enum = 1453 EnumDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(), 1454 D->getLocation(), D->getIdentifier(), PrevDecl, 1455 D->isScoped(), D->isScopedUsingClassTag(), D->isFixed()); 1456 if (D->isFixed()) { 1457 if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) { 1458 // If we have type source information for the underlying type, it means it 1459 // has been explicitly set by the user. Perform substitution on it before 1460 // moving on. 1461 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 1462 TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc, 1463 DeclarationName()); 1464 if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI)) 1465 Enum->setIntegerType(SemaRef.Context.IntTy); 1466 else 1467 Enum->setIntegerTypeSourceInfo(NewTI); 1468 } else { 1469 assert(!D->getIntegerType()->isDependentType() 1470 && "Dependent type without type source info"); 1471 Enum->setIntegerType(D->getIntegerType()); 1472 } 1473 } 1474 1475 SemaRef.InstantiateAttrs(TemplateArgs, D, Enum); 1476 1477 Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation); 1478 Enum->setAccess(D->getAccess()); 1479 // Forward the mangling number from the template to the instantiated decl. 1480 SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D)); 1481 // See if the old tag was defined along with a declarator. 1482 // If it did, mark the new tag as being associated with that declarator. 1483 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) 1484 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD); 1485 // See if the old tag was defined along with a typedef. 1486 // If it did, mark the new tag as being associated with that typedef. 1487 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) 1488 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND); 1489 if (SubstQualifier(D, Enum)) return nullptr; 1490 Owner->addDecl(Enum); 1491 1492 EnumDecl *Def = D->getDefinition(); 1493 if (Def && Def != D) { 1494 // If this is an out-of-line definition of an enum member template, check 1495 // that the underlying types match in the instantiation of both 1496 // declarations. 1497 if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) { 1498 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 1499 QualType DefnUnderlying = 1500 SemaRef.SubstType(TI->getType(), TemplateArgs, 1501 UnderlyingLoc, DeclarationName()); 1502 SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(), 1503 DefnUnderlying, /*IsFixed=*/true, Enum); 1504 } 1505 } 1506 1507 // C++11 [temp.inst]p1: The implicit instantiation of a class template 1508 // specialization causes the implicit instantiation of the declarations, but 1509 // not the definitions of scoped member enumerations. 1510 // 1511 // DR1484 clarifies that enumeration definitions inside of a template 1512 // declaration aren't considered entities that can be separately instantiated 1513 // from the rest of the entity they are declared inside of. 1514 if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) { 1515 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum); 1516 InstantiateEnumDefinition(Enum, Def); 1517 } 1518 1519 return Enum; 1520 } 1521 1522 void TemplateDeclInstantiator::InstantiateEnumDefinition( 1523 EnumDecl *Enum, EnumDecl *Pattern) { 1524 Enum->startDefinition(); 1525 1526 // Update the location to refer to the definition. 1527 Enum->setLocation(Pattern->getLocation()); 1528 1529 SmallVector<Decl*, 4> Enumerators; 1530 1531 EnumConstantDecl *LastEnumConst = nullptr; 1532 for (auto *EC : Pattern->enumerators()) { 1533 // The specified value for the enumerator. 1534 ExprResult Value((Expr *)nullptr); 1535 if (Expr *UninstValue = EC->getInitExpr()) { 1536 // The enumerator's value expression is a constant expression. 1537 EnterExpressionEvaluationContext Unevaluated( 1538 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 1539 1540 Value = SemaRef.SubstExpr(UninstValue, TemplateArgs); 1541 } 1542 1543 // Drop the initial value and continue. 1544 bool isInvalid = false; 1545 if (Value.isInvalid()) { 1546 Value = nullptr; 1547 isInvalid = true; 1548 } 1549 1550 EnumConstantDecl *EnumConst 1551 = SemaRef.CheckEnumConstant(Enum, LastEnumConst, 1552 EC->getLocation(), EC->getIdentifier(), 1553 Value.get()); 1554 1555 if (isInvalid) { 1556 if (EnumConst) 1557 EnumConst->setInvalidDecl(); 1558 Enum->setInvalidDecl(); 1559 } 1560 1561 if (EnumConst) { 1562 SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst); 1563 1564 EnumConst->setAccess(Enum->getAccess()); 1565 Enum->addDecl(EnumConst); 1566 Enumerators.push_back(EnumConst); 1567 LastEnumConst = EnumConst; 1568 1569 if (Pattern->getDeclContext()->isFunctionOrMethod() && 1570 !Enum->isScoped()) { 1571 // If the enumeration is within a function or method, record the enum 1572 // constant as a local. 1573 SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst); 1574 } 1575 } 1576 } 1577 1578 SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum, 1579 Enumerators, nullptr, ParsedAttributesView()); 1580 } 1581 1582 Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) { 1583 llvm_unreachable("EnumConstantDecls can only occur within EnumDecls."); 1584 } 1585 1586 Decl * 1587 TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) { 1588 llvm_unreachable("BuiltinTemplateDecls cannot be instantiated."); 1589 } 1590 1591 Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) { 1592 bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 1593 1594 // Create a local instantiation scope for this class template, which 1595 // will contain the instantiations of the template parameters. 1596 LocalInstantiationScope Scope(SemaRef); 1597 TemplateParameterList *TempParams = D->getTemplateParameters(); 1598 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1599 if (!InstParams) 1600 return nullptr; 1601 1602 CXXRecordDecl *Pattern = D->getTemplatedDecl(); 1603 1604 // Instantiate the qualifier. We have to do this first in case 1605 // we're a friend declaration, because if we are then we need to put 1606 // the new declaration in the appropriate context. 1607 NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc(); 1608 if (QualifierLoc) { 1609 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 1610 TemplateArgs); 1611 if (!QualifierLoc) 1612 return nullptr; 1613 } 1614 1615 CXXRecordDecl *PrevDecl = nullptr; 1616 ClassTemplateDecl *PrevClassTemplate = nullptr; 1617 1618 if (!isFriend && getPreviousDeclForInstantiation(Pattern)) { 1619 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1620 if (!Found.empty()) { 1621 PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front()); 1622 if (PrevClassTemplate) 1623 PrevDecl = PrevClassTemplate->getTemplatedDecl(); 1624 } 1625 } 1626 1627 // If this isn't a friend, then it's a member template, in which 1628 // case we just want to build the instantiation in the 1629 // specialization. If it is a friend, we want to build it in 1630 // the appropriate context. 1631 DeclContext *DC = Owner; 1632 if (isFriend) { 1633 if (QualifierLoc) { 1634 CXXScopeSpec SS; 1635 SS.Adopt(QualifierLoc); 1636 DC = SemaRef.computeDeclContext(SS); 1637 if (!DC) return nullptr; 1638 } else { 1639 DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(), 1640 Pattern->getDeclContext(), 1641 TemplateArgs); 1642 } 1643 1644 // Look for a previous declaration of the template in the owning 1645 // context. 1646 LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(), 1647 Sema::LookupOrdinaryName, 1648 SemaRef.forRedeclarationInCurContext()); 1649 SemaRef.LookupQualifiedName(R, DC); 1650 1651 if (R.isSingleResult()) { 1652 PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>(); 1653 if (PrevClassTemplate) 1654 PrevDecl = PrevClassTemplate->getTemplatedDecl(); 1655 } 1656 1657 if (!PrevClassTemplate && QualifierLoc) { 1658 SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope) 1659 << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC 1660 << QualifierLoc.getSourceRange(); 1661 return nullptr; 1662 } 1663 } 1664 1665 CXXRecordDecl *RecordInst = CXXRecordDecl::Create( 1666 SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getBeginLoc(), 1667 Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl, 1668 /*DelayTypeCreation=*/true); 1669 if (QualifierLoc) 1670 RecordInst->setQualifierInfo(QualifierLoc); 1671 1672 SemaRef.InstantiateAttrsForDecl(TemplateArgs, Pattern, RecordInst, LateAttrs, 1673 StartingScope); 1674 1675 ClassTemplateDecl *Inst 1676 = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(), 1677 D->getIdentifier(), InstParams, RecordInst); 1678 RecordInst->setDescribedClassTemplate(Inst); 1679 1680 if (isFriend) { 1681 assert(!Owner->isDependentContext()); 1682 Inst->setLexicalDeclContext(Owner); 1683 RecordInst->setLexicalDeclContext(Owner); 1684 1685 if (PrevClassTemplate) { 1686 Inst->setCommonPtr(PrevClassTemplate->getCommonPtr()); 1687 RecordInst->setTypeForDecl( 1688 PrevClassTemplate->getTemplatedDecl()->getTypeForDecl()); 1689 const ClassTemplateDecl *MostRecentPrevCT = 1690 PrevClassTemplate->getMostRecentDecl(); 1691 TemplateParameterList *PrevParams = 1692 MostRecentPrevCT->getTemplateParameters(); 1693 1694 // Make sure the parameter lists match. 1695 if (!SemaRef.TemplateParameterListsAreEqual( 1696 RecordInst, InstParams, MostRecentPrevCT->getTemplatedDecl(), 1697 PrevParams, true, Sema::TPL_TemplateMatch)) 1698 return nullptr; 1699 1700 // Do some additional validation, then merge default arguments 1701 // from the existing declarations. 1702 if (SemaRef.CheckTemplateParameterList(InstParams, PrevParams, 1703 Sema::TPC_ClassTemplate)) 1704 return nullptr; 1705 1706 Inst->setAccess(PrevClassTemplate->getAccess()); 1707 } else { 1708 Inst->setAccess(D->getAccess()); 1709 } 1710 1711 Inst->setObjectOfFriendDecl(); 1712 // TODO: do we want to track the instantiation progeny of this 1713 // friend target decl? 1714 } else { 1715 Inst->setAccess(D->getAccess()); 1716 if (!PrevClassTemplate) 1717 Inst->setInstantiatedFromMemberTemplate(D); 1718 } 1719 1720 Inst->setPreviousDecl(PrevClassTemplate); 1721 1722 // Trigger creation of the type for the instantiation. 1723 SemaRef.Context.getInjectedClassNameType( 1724 RecordInst, Inst->getInjectedClassNameSpecialization()); 1725 1726 // Finish handling of friends. 1727 if (isFriend) { 1728 DC->makeDeclVisibleInContext(Inst); 1729 return Inst; 1730 } 1731 1732 if (D->isOutOfLine()) { 1733 Inst->setLexicalDeclContext(D->getLexicalDeclContext()); 1734 RecordInst->setLexicalDeclContext(D->getLexicalDeclContext()); 1735 } 1736 1737 Owner->addDecl(Inst); 1738 1739 if (!PrevClassTemplate) { 1740 // Queue up any out-of-line partial specializations of this member 1741 // class template; the client will force their instantiation once 1742 // the enclosing class has been instantiated. 1743 SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs; 1744 D->getPartialSpecializations(PartialSpecs); 1745 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) 1746 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) 1747 OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I])); 1748 } 1749 1750 return Inst; 1751 } 1752 1753 Decl * 1754 TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl( 1755 ClassTemplatePartialSpecializationDecl *D) { 1756 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); 1757 1758 // Lookup the already-instantiated declaration in the instantiation 1759 // of the class template and return that. 1760 DeclContext::lookup_result Found 1761 = Owner->lookup(ClassTemplate->getDeclName()); 1762 if (Found.empty()) 1763 return nullptr; 1764 1765 ClassTemplateDecl *InstClassTemplate 1766 = dyn_cast<ClassTemplateDecl>(Found.front()); 1767 if (!InstClassTemplate) 1768 return nullptr; 1769 1770 if (ClassTemplatePartialSpecializationDecl *Result 1771 = InstClassTemplate->findPartialSpecInstantiatedFromMember(D)) 1772 return Result; 1773 1774 return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D); 1775 } 1776 1777 Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) { 1778 assert(D->getTemplatedDecl()->isStaticDataMember() && 1779 "Only static data member templates are allowed."); 1780 1781 // Create a local instantiation scope for this variable template, which 1782 // will contain the instantiations of the template parameters. 1783 LocalInstantiationScope Scope(SemaRef); 1784 TemplateParameterList *TempParams = D->getTemplateParameters(); 1785 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1786 if (!InstParams) 1787 return nullptr; 1788 1789 VarDecl *Pattern = D->getTemplatedDecl(); 1790 VarTemplateDecl *PrevVarTemplate = nullptr; 1791 1792 if (getPreviousDeclForInstantiation(Pattern)) { 1793 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1794 if (!Found.empty()) 1795 PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); 1796 } 1797 1798 VarDecl *VarInst = 1799 cast_or_null<VarDecl>(VisitVarDecl(Pattern, 1800 /*InstantiatingVarTemplate=*/true)); 1801 if (!VarInst) return nullptr; 1802 1803 DeclContext *DC = Owner; 1804 1805 VarTemplateDecl *Inst = VarTemplateDecl::Create( 1806 SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams, 1807 VarInst); 1808 VarInst->setDescribedVarTemplate(Inst); 1809 Inst->setPreviousDecl(PrevVarTemplate); 1810 1811 Inst->setAccess(D->getAccess()); 1812 if (!PrevVarTemplate) 1813 Inst->setInstantiatedFromMemberTemplate(D); 1814 1815 if (D->isOutOfLine()) { 1816 Inst->setLexicalDeclContext(D->getLexicalDeclContext()); 1817 VarInst->setLexicalDeclContext(D->getLexicalDeclContext()); 1818 } 1819 1820 Owner->addDecl(Inst); 1821 1822 if (!PrevVarTemplate) { 1823 // Queue up any out-of-line partial specializations of this member 1824 // variable template; the client will force their instantiation once 1825 // the enclosing class has been instantiated. 1826 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 1827 D->getPartialSpecializations(PartialSpecs); 1828 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) 1829 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) 1830 OutOfLineVarPartialSpecs.push_back( 1831 std::make_pair(Inst, PartialSpecs[I])); 1832 } 1833 1834 return Inst; 1835 } 1836 1837 Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl( 1838 VarTemplatePartialSpecializationDecl *D) { 1839 assert(D->isStaticDataMember() && 1840 "Only static data member templates are allowed."); 1841 1842 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); 1843 1844 // Lookup the already-instantiated declaration and return that. 1845 DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName()); 1846 assert(!Found.empty() && "Instantiation found nothing?"); 1847 1848 VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); 1849 assert(InstVarTemplate && "Instantiation did not find a variable template?"); 1850 1851 if (VarTemplatePartialSpecializationDecl *Result = 1852 InstVarTemplate->findPartialSpecInstantiatedFromMember(D)) 1853 return Result; 1854 1855 return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D); 1856 } 1857 1858 Decl * 1859 TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { 1860 // Create a local instantiation scope for this function template, which 1861 // will contain the instantiations of the template parameters and then get 1862 // merged with the local instantiation scope for the function template 1863 // itself. 1864 LocalInstantiationScope Scope(SemaRef); 1865 Sema::ConstraintEvalRAII<TemplateDeclInstantiator> RAII(*this); 1866 1867 TemplateParameterList *TempParams = D->getTemplateParameters(); 1868 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1869 if (!InstParams) 1870 return nullptr; 1871 1872 FunctionDecl *Instantiated = nullptr; 1873 if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl())) 1874 Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod, 1875 InstParams)); 1876 else 1877 Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl( 1878 D->getTemplatedDecl(), 1879 InstParams)); 1880 1881 if (!Instantiated) 1882 return nullptr; 1883 1884 // Link the instantiated function template declaration to the function 1885 // template from which it was instantiated. 1886 FunctionTemplateDecl *InstTemplate 1887 = Instantiated->getDescribedFunctionTemplate(); 1888 InstTemplate->setAccess(D->getAccess()); 1889 assert(InstTemplate && 1890 "VisitFunctionDecl/CXXMethodDecl didn't create a template!"); 1891 1892 bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None); 1893 1894 // Link the instantiation back to the pattern *unless* this is a 1895 // non-definition friend declaration. 1896 if (!InstTemplate->getInstantiatedFromMemberTemplate() && 1897 !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition())) 1898 InstTemplate->setInstantiatedFromMemberTemplate(D); 1899 1900 // Make declarations visible in the appropriate context. 1901 if (!isFriend) { 1902 Owner->addDecl(InstTemplate); 1903 } else if (InstTemplate->getDeclContext()->isRecord() && 1904 !getPreviousDeclForInstantiation(D)) { 1905 SemaRef.CheckFriendAccess(InstTemplate); 1906 } 1907 1908 return InstTemplate; 1909 } 1910 1911 Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) { 1912 CXXRecordDecl *PrevDecl = nullptr; 1913 if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { 1914 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), 1915 PatternPrev, 1916 TemplateArgs); 1917 if (!Prev) return nullptr; 1918 PrevDecl = cast<CXXRecordDecl>(Prev); 1919 } 1920 1921 CXXRecordDecl *Record = nullptr; 1922 bool IsInjectedClassName = D->isInjectedClassName(); 1923 if (D->isLambda()) 1924 Record = CXXRecordDecl::CreateLambda( 1925 SemaRef.Context, Owner, D->getLambdaTypeInfo(), D->getLocation(), 1926 D->getLambdaDependencyKind(), D->isGenericLambda(), 1927 D->getLambdaCaptureDefault()); 1928 else 1929 Record = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner, 1930 D->getBeginLoc(), D->getLocation(), 1931 D->getIdentifier(), PrevDecl, 1932 /*DelayTypeCreation=*/IsInjectedClassName); 1933 // Link the type of the injected-class-name to that of the outer class. 1934 if (IsInjectedClassName) 1935 (void)SemaRef.Context.getTypeDeclType(Record, cast<CXXRecordDecl>(Owner)); 1936 1937 // Substitute the nested name specifier, if any. 1938 if (SubstQualifier(D, Record)) 1939 return nullptr; 1940 1941 SemaRef.InstantiateAttrsForDecl(TemplateArgs, D, Record, LateAttrs, 1942 StartingScope); 1943 1944 Record->setImplicit(D->isImplicit()); 1945 // FIXME: Check against AS_none is an ugly hack to work around the issue that 1946 // the tag decls introduced by friend class declarations don't have an access 1947 // specifier. Remove once this area of the code gets sorted out. 1948 if (D->getAccess() != AS_none) 1949 Record->setAccess(D->getAccess()); 1950 if (!IsInjectedClassName) 1951 Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); 1952 1953 // If the original function was part of a friend declaration, 1954 // inherit its namespace state. 1955 if (D->getFriendObjectKind()) 1956 Record->setObjectOfFriendDecl(); 1957 1958 // Make sure that anonymous structs and unions are recorded. 1959 if (D->isAnonymousStructOrUnion()) 1960 Record->setAnonymousStructOrUnion(true); 1961 1962 if (D->isLocalClass()) 1963 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record); 1964 1965 // Forward the mangling number from the template to the instantiated decl. 1966 SemaRef.Context.setManglingNumber(Record, 1967 SemaRef.Context.getManglingNumber(D)); 1968 1969 // See if the old tag was defined along with a declarator. 1970 // If it did, mark the new tag as being associated with that declarator. 1971 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) 1972 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD); 1973 1974 // See if the old tag was defined along with a typedef. 1975 // If it did, mark the new tag as being associated with that typedef. 1976 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) 1977 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND); 1978 1979 Owner->addDecl(Record); 1980 1981 // DR1484 clarifies that the members of a local class are instantiated as part 1982 // of the instantiation of their enclosing entity. 1983 if (D->isCompleteDefinition() && D->isLocalClass()) { 1984 Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef); 1985 1986 SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs, 1987 TSK_ImplicitInstantiation, 1988 /*Complain=*/true); 1989 1990 // For nested local classes, we will instantiate the members when we 1991 // reach the end of the outermost (non-nested) local class. 1992 if (!D->isCXXClassMember()) 1993 SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs, 1994 TSK_ImplicitInstantiation); 1995 1996 // This class may have local implicit instantiations that need to be 1997 // performed within this scope. 1998 LocalInstantiations.perform(); 1999 } 2000 2001 SemaRef.DiagnoseUnusedNestedTypedefs(Record); 2002 2003 if (IsInjectedClassName) 2004 assert(Record->isInjectedClassName() && "Broken injected-class-name"); 2005 2006 return Record; 2007 } 2008 2009 /// Adjust the given function type for an instantiation of the 2010 /// given declaration, to cope with modifications to the function's type that 2011 /// aren't reflected in the type-source information. 2012 /// 2013 /// \param D The declaration we're instantiating. 2014 /// \param TInfo The already-instantiated type. 2015 static QualType adjustFunctionTypeForInstantiation(ASTContext &Context, 2016 FunctionDecl *D, 2017 TypeSourceInfo *TInfo) { 2018 const FunctionProtoType *OrigFunc 2019 = D->getType()->castAs<FunctionProtoType>(); 2020 const FunctionProtoType *NewFunc 2021 = TInfo->getType()->castAs<FunctionProtoType>(); 2022 if (OrigFunc->getExtInfo() == NewFunc->getExtInfo()) 2023 return TInfo->getType(); 2024 2025 FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo(); 2026 NewEPI.ExtInfo = OrigFunc->getExtInfo(); 2027 return Context.getFunctionType(NewFunc->getReturnType(), 2028 NewFunc->getParamTypes(), NewEPI); 2029 } 2030 2031 /// Normal class members are of more specific types and therefore 2032 /// don't make it here. This function serves three purposes: 2033 /// 1) instantiating function templates 2034 /// 2) substituting friend and local function declarations 2035 /// 3) substituting deduction guide declarations for nested class templates 2036 Decl *TemplateDeclInstantiator::VisitFunctionDecl( 2037 FunctionDecl *D, TemplateParameterList *TemplateParams, 2038 RewriteKind FunctionRewriteKind) { 2039 // Check whether there is already a function template specialization for 2040 // this declaration. 2041 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); 2042 if (FunctionTemplate && !TemplateParams) { 2043 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2044 2045 void *InsertPos = nullptr; 2046 FunctionDecl *SpecFunc 2047 = FunctionTemplate->findSpecialization(Innermost, InsertPos); 2048 2049 // If we already have a function template specialization, return it. 2050 if (SpecFunc) 2051 return SpecFunc; 2052 } 2053 2054 bool isFriend; 2055 if (FunctionTemplate) 2056 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); 2057 else 2058 isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 2059 2060 bool MergeWithParentScope = (TemplateParams != nullptr) || 2061 Owner->isFunctionOrMethod() || 2062 !(isa<Decl>(Owner) && 2063 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); 2064 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); 2065 2066 ExplicitSpecifier InstantiatedExplicitSpecifier; 2067 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) { 2068 InstantiatedExplicitSpecifier = instantiateExplicitSpecifier( 2069 SemaRef, TemplateArgs, DGuide->getExplicitSpecifier(), DGuide); 2070 if (InstantiatedExplicitSpecifier.isInvalid()) 2071 return nullptr; 2072 } 2073 2074 SmallVector<ParmVarDecl *, 4> Params; 2075 TypeSourceInfo *TInfo = SubstFunctionType(D, Params); 2076 if (!TInfo) 2077 return nullptr; 2078 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); 2079 2080 if (TemplateParams && TemplateParams->size()) { 2081 auto *LastParam = 2082 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back()); 2083 if (LastParam && LastParam->isImplicit() && 2084 LastParam->hasTypeConstraint()) { 2085 // In abbreviated templates, the type-constraints of invented template 2086 // type parameters are instantiated with the function type, invalidating 2087 // the TemplateParameterList which relied on the template type parameter 2088 // not having a type constraint. Recreate the TemplateParameterList with 2089 // the updated parameter list. 2090 TemplateParams = TemplateParameterList::Create( 2091 SemaRef.Context, TemplateParams->getTemplateLoc(), 2092 TemplateParams->getLAngleLoc(), TemplateParams->asArray(), 2093 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause()); 2094 } 2095 } 2096 2097 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); 2098 if (QualifierLoc) { 2099 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2100 TemplateArgs); 2101 if (!QualifierLoc) 2102 return nullptr; 2103 } 2104 2105 Expr *TrailingRequiresClause = D->getTrailingRequiresClause(); 2106 2107 // If we're instantiating a local function declaration, put the result 2108 // in the enclosing namespace; otherwise we need to find the instantiated 2109 // context. 2110 DeclContext *DC; 2111 if (D->isLocalExternDecl()) { 2112 DC = Owner; 2113 SemaRef.adjustContextForLocalExternDecl(DC); 2114 } else if (isFriend && QualifierLoc) { 2115 CXXScopeSpec SS; 2116 SS.Adopt(QualifierLoc); 2117 DC = SemaRef.computeDeclContext(SS); 2118 if (!DC) return nullptr; 2119 } else { 2120 DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), 2121 TemplateArgs); 2122 } 2123 2124 DeclarationNameInfo NameInfo 2125 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 2126 2127 if (FunctionRewriteKind != RewriteKind::None) 2128 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo); 2129 2130 FunctionDecl *Function; 2131 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) { 2132 Function = CXXDeductionGuideDecl::Create( 2133 SemaRef.Context, DC, D->getInnerLocStart(), 2134 InstantiatedExplicitSpecifier, NameInfo, T, TInfo, 2135 D->getSourceRange().getEnd(), /*Ctor=*/nullptr, 2136 DGuide->getDeductionCandidateKind()); 2137 Function->setAccess(D->getAccess()); 2138 } else { 2139 Function = FunctionDecl::Create( 2140 SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo, 2141 D->getCanonicalDecl()->getStorageClass(), D->UsesFPIntrin(), 2142 D->isInlineSpecified(), D->hasWrittenPrototype(), D->getConstexprKind(), 2143 TrailingRequiresClause); 2144 Function->setFriendConstraintRefersToEnclosingTemplate( 2145 D->FriendConstraintRefersToEnclosingTemplate()); 2146 Function->setRangeEnd(D->getSourceRange().getEnd()); 2147 } 2148 2149 if (D->isInlined()) 2150 Function->setImplicitlyInline(); 2151 2152 if (QualifierLoc) 2153 Function->setQualifierInfo(QualifierLoc); 2154 2155 if (D->isLocalExternDecl()) 2156 Function->setLocalExternDecl(); 2157 2158 DeclContext *LexicalDC = Owner; 2159 if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) { 2160 assert(D->getDeclContext()->isFileContext()); 2161 LexicalDC = D->getDeclContext(); 2162 } 2163 else if (D->isLocalExternDecl()) { 2164 LexicalDC = SemaRef.CurContext; 2165 } 2166 2167 Function->setLexicalDeclContext(LexicalDC); 2168 2169 // Attach the parameters 2170 for (unsigned P = 0; P < Params.size(); ++P) 2171 if (Params[P]) 2172 Params[P]->setOwningFunction(Function); 2173 Function->setParams(Params); 2174 2175 if (TrailingRequiresClause) 2176 Function->setTrailingRequiresClause(TrailingRequiresClause); 2177 2178 if (TemplateParams) { 2179 // Our resulting instantiation is actually a function template, since we 2180 // are substituting only the outer template parameters. For example, given 2181 // 2182 // template<typename T> 2183 // struct X { 2184 // template<typename U> friend void f(T, U); 2185 // }; 2186 // 2187 // X<int> x; 2188 // 2189 // We are instantiating the friend function template "f" within X<int>, 2190 // which means substituting int for T, but leaving "f" as a friend function 2191 // template. 2192 // Build the function template itself. 2193 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC, 2194 Function->getLocation(), 2195 Function->getDeclName(), 2196 TemplateParams, Function); 2197 Function->setDescribedFunctionTemplate(FunctionTemplate); 2198 2199 FunctionTemplate->setLexicalDeclContext(LexicalDC); 2200 2201 if (isFriend && D->isThisDeclarationADefinition()) { 2202 FunctionTemplate->setInstantiatedFromMemberTemplate( 2203 D->getDescribedFunctionTemplate()); 2204 } 2205 } else if (FunctionTemplate) { 2206 // Record this function template specialization. 2207 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2208 Function->setFunctionTemplateSpecialization(FunctionTemplate, 2209 TemplateArgumentList::CreateCopy(SemaRef.Context, 2210 Innermost), 2211 /*InsertPos=*/nullptr); 2212 } else if (isFriend && D->isThisDeclarationADefinition()) { 2213 // Do not connect the friend to the template unless it's actually a 2214 // definition. We don't want non-template functions to be marked as being 2215 // template instantiations. 2216 Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); 2217 } else if (!isFriend) { 2218 // If this is not a function template, and this is not a friend (that is, 2219 // this is a locally declared function), save the instantiation relationship 2220 // for the purposes of constraint instantiation. 2221 Function->setInstantiatedFromDecl(D); 2222 } 2223 2224 if (isFriend) { 2225 Function->setObjectOfFriendDecl(); 2226 if (FunctionTemplateDecl *FT = Function->getDescribedFunctionTemplate()) 2227 FT->setObjectOfFriendDecl(); 2228 } 2229 2230 if (InitFunctionInstantiation(Function, D)) 2231 Function->setInvalidDecl(); 2232 2233 bool IsExplicitSpecialization = false; 2234 2235 LookupResult Previous( 2236 SemaRef, Function->getDeclName(), SourceLocation(), 2237 D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage 2238 : Sema::LookupOrdinaryName, 2239 D->isLocalExternDecl() ? Sema::ForExternalRedeclaration 2240 : SemaRef.forRedeclarationInCurContext()); 2241 2242 if (DependentFunctionTemplateSpecializationInfo *Info 2243 = D->getDependentSpecializationInfo()) { 2244 assert(isFriend && "non-friend has dependent specialization info?"); 2245 2246 // Instantiate the explicit template arguments. 2247 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), 2248 Info->getRAngleLoc()); 2249 if (SemaRef.SubstTemplateArguments(Info->arguments(), TemplateArgs, 2250 ExplicitArgs)) 2251 return nullptr; 2252 2253 // Map the candidate templates to their instantiations. 2254 for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) { 2255 Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(), 2256 Info->getTemplate(I), 2257 TemplateArgs); 2258 if (!Temp) return nullptr; 2259 2260 Previous.addDecl(cast<FunctionTemplateDecl>(Temp)); 2261 } 2262 2263 if (SemaRef.CheckFunctionTemplateSpecialization(Function, 2264 &ExplicitArgs, 2265 Previous)) 2266 Function->setInvalidDecl(); 2267 2268 IsExplicitSpecialization = true; 2269 } else if (const ASTTemplateArgumentListInfo *Info = 2270 D->getTemplateSpecializationArgsAsWritten()) { 2271 // The name of this function was written as a template-id. 2272 SemaRef.LookupQualifiedName(Previous, DC); 2273 2274 // Instantiate the explicit template arguments. 2275 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), 2276 Info->getRAngleLoc()); 2277 if (SemaRef.SubstTemplateArguments(Info->arguments(), TemplateArgs, 2278 ExplicitArgs)) 2279 return nullptr; 2280 2281 if (SemaRef.CheckFunctionTemplateSpecialization(Function, 2282 &ExplicitArgs, 2283 Previous)) 2284 Function->setInvalidDecl(); 2285 2286 IsExplicitSpecialization = true; 2287 } else if (TemplateParams || !FunctionTemplate) { 2288 // Look only into the namespace where the friend would be declared to 2289 // find a previous declaration. This is the innermost enclosing namespace, 2290 // as described in ActOnFriendFunctionDecl. 2291 SemaRef.LookupQualifiedName(Previous, DC->getRedeclContext()); 2292 2293 // In C++, the previous declaration we find might be a tag type 2294 // (class or enum). In this case, the new declaration will hide the 2295 // tag type. Note that this does not apply if we're declaring a 2296 // typedef (C++ [dcl.typedef]p4). 2297 if (Previous.isSingleTagDecl()) 2298 Previous.clear(); 2299 2300 // Filter out previous declarations that don't match the scope. The only 2301 // effect this has is to remove declarations found in inline namespaces 2302 // for friend declarations with unqualified names. 2303 if (isFriend && !QualifierLoc) { 2304 SemaRef.FilterLookupForScope(Previous, DC, /*Scope=*/ nullptr, 2305 /*ConsiderLinkage=*/ true, 2306 QualifierLoc.hasQualifier()); 2307 } 2308 } 2309 2310 // Per [temp.inst], default arguments in function declarations at local scope 2311 // are instantiated along with the enclosing declaration. For example: 2312 // 2313 // template<typename T> 2314 // void ft() { 2315 // void f(int = []{ return T::value; }()); 2316 // } 2317 // template void ft<int>(); // error: type 'int' cannot be used prior 2318 // to '::' because it has no members 2319 // 2320 // The error is issued during instantiation of ft<int>() because substitution 2321 // into the default argument fails; the default argument is instantiated even 2322 // though it is never used. 2323 if (Function->isLocalExternDecl()) { 2324 for (ParmVarDecl *PVD : Function->parameters()) { 2325 if (!PVD->hasDefaultArg()) 2326 continue; 2327 if (SemaRef.SubstDefaultArgument(D->getInnerLocStart(), PVD, TemplateArgs)) { 2328 // If substitution fails, the default argument is set to a 2329 // RecoveryExpr that wraps the uninstantiated default argument so 2330 // that downstream diagnostics are omitted. 2331 Expr *UninstExpr = PVD->getUninstantiatedDefaultArg(); 2332 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr( 2333 UninstExpr->getBeginLoc(), UninstExpr->getEndLoc(), 2334 { UninstExpr }, UninstExpr->getType()); 2335 if (ErrorResult.isUsable()) 2336 PVD->setDefaultArg(ErrorResult.get()); 2337 } 2338 } 2339 } 2340 2341 SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous, 2342 IsExplicitSpecialization, 2343 Function->isThisDeclarationADefinition()); 2344 2345 // Check the template parameter list against the previous declaration. The 2346 // goal here is to pick up default arguments added since the friend was 2347 // declared; we know the template parameter lists match, since otherwise 2348 // we would not have picked this template as the previous declaration. 2349 if (isFriend && TemplateParams && FunctionTemplate->getPreviousDecl()) { 2350 SemaRef.CheckTemplateParameterList( 2351 TemplateParams, 2352 FunctionTemplate->getPreviousDecl()->getTemplateParameters(), 2353 Function->isThisDeclarationADefinition() 2354 ? Sema::TPC_FriendFunctionTemplateDefinition 2355 : Sema::TPC_FriendFunctionTemplate); 2356 } 2357 2358 // If we're introducing a friend definition after the first use, trigger 2359 // instantiation. 2360 // FIXME: If this is a friend function template definition, we should check 2361 // to see if any specializations have been used. 2362 if (isFriend && D->isThisDeclarationADefinition() && Function->isUsed(false)) { 2363 if (MemberSpecializationInfo *MSInfo = 2364 Function->getMemberSpecializationInfo()) { 2365 if (MSInfo->getPointOfInstantiation().isInvalid()) { 2366 SourceLocation Loc = D->getLocation(); // FIXME 2367 MSInfo->setPointOfInstantiation(Loc); 2368 SemaRef.PendingLocalImplicitInstantiations.push_back( 2369 std::make_pair(Function, Loc)); 2370 } 2371 } 2372 } 2373 2374 if (D->isExplicitlyDefaulted()) { 2375 if (SubstDefaultedFunction(Function, D)) 2376 return nullptr; 2377 } 2378 if (D->isDeleted()) 2379 SemaRef.SetDeclDeleted(Function, D->getLocation()); 2380 2381 NamedDecl *PrincipalDecl = 2382 (TemplateParams ? cast<NamedDecl>(FunctionTemplate) : Function); 2383 2384 // If this declaration lives in a different context from its lexical context, 2385 // add it to the corresponding lookup table. 2386 if (isFriend || 2387 (Function->isLocalExternDecl() && !Function->getPreviousDecl())) 2388 DC->makeDeclVisibleInContext(PrincipalDecl); 2389 2390 if (Function->isOverloadedOperator() && !DC->isRecord() && 2391 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) 2392 PrincipalDecl->setNonMemberOperator(); 2393 2394 return Function; 2395 } 2396 2397 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl( 2398 CXXMethodDecl *D, TemplateParameterList *TemplateParams, 2399 std::optional<const ASTTemplateArgumentListInfo *> 2400 ClassScopeSpecializationArgs, 2401 RewriteKind FunctionRewriteKind) { 2402 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); 2403 if (FunctionTemplate && !TemplateParams) { 2404 // We are creating a function template specialization from a function 2405 // template. Check whether there is already a function template 2406 // specialization for this particular set of template arguments. 2407 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2408 2409 void *InsertPos = nullptr; 2410 FunctionDecl *SpecFunc 2411 = FunctionTemplate->findSpecialization(Innermost, InsertPos); 2412 2413 // If we already have a function template specialization, return it. 2414 if (SpecFunc) 2415 return SpecFunc; 2416 } 2417 2418 bool isFriend; 2419 if (FunctionTemplate) 2420 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); 2421 else 2422 isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 2423 2424 bool MergeWithParentScope = (TemplateParams != nullptr) || 2425 !(isa<Decl>(Owner) && 2426 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); 2427 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); 2428 2429 // Instantiate enclosing template arguments for friends. 2430 SmallVector<TemplateParameterList *, 4> TempParamLists; 2431 unsigned NumTempParamLists = 0; 2432 if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) { 2433 TempParamLists.resize(NumTempParamLists); 2434 for (unsigned I = 0; I != NumTempParamLists; ++I) { 2435 TemplateParameterList *TempParams = D->getTemplateParameterList(I); 2436 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 2437 if (!InstParams) 2438 return nullptr; 2439 TempParamLists[I] = InstParams; 2440 } 2441 } 2442 2443 ExplicitSpecifier InstantiatedExplicitSpecifier = 2444 instantiateExplicitSpecifier(SemaRef, TemplateArgs, 2445 ExplicitSpecifier::getFromDecl(D), D); 2446 if (InstantiatedExplicitSpecifier.isInvalid()) 2447 return nullptr; 2448 2449 // Implicit destructors/constructors created for local classes in 2450 // DeclareImplicit* (see SemaDeclCXX.cpp) might not have an associated TSI. 2451 // Unfortunately there isn't enough context in those functions to 2452 // conditionally populate the TSI without breaking non-template related use 2453 // cases. Populate TSIs prior to calling SubstFunctionType to make sure we get 2454 // a proper transformation. 2455 if (cast<CXXRecordDecl>(D->getParent())->isLambda() && 2456 !D->getTypeSourceInfo() && 2457 isa<CXXConstructorDecl, CXXDestructorDecl>(D)) { 2458 TypeSourceInfo *TSI = 2459 SemaRef.Context.getTrivialTypeSourceInfo(D->getType()); 2460 D->setTypeSourceInfo(TSI); 2461 } 2462 2463 SmallVector<ParmVarDecl *, 4> Params; 2464 TypeSourceInfo *TInfo = SubstFunctionType(D, Params); 2465 if (!TInfo) 2466 return nullptr; 2467 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); 2468 2469 if (TemplateParams && TemplateParams->size()) { 2470 auto *LastParam = 2471 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back()); 2472 if (LastParam && LastParam->isImplicit() && 2473 LastParam->hasTypeConstraint()) { 2474 // In abbreviated templates, the type-constraints of invented template 2475 // type parameters are instantiated with the function type, invalidating 2476 // the TemplateParameterList which relied on the template type parameter 2477 // not having a type constraint. Recreate the TemplateParameterList with 2478 // the updated parameter list. 2479 TemplateParams = TemplateParameterList::Create( 2480 SemaRef.Context, TemplateParams->getTemplateLoc(), 2481 TemplateParams->getLAngleLoc(), TemplateParams->asArray(), 2482 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause()); 2483 } 2484 } 2485 2486 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); 2487 if (QualifierLoc) { 2488 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2489 TemplateArgs); 2490 if (!QualifierLoc) 2491 return nullptr; 2492 } 2493 2494 DeclContext *DC = Owner; 2495 if (isFriend) { 2496 if (QualifierLoc) { 2497 CXXScopeSpec SS; 2498 SS.Adopt(QualifierLoc); 2499 DC = SemaRef.computeDeclContext(SS); 2500 2501 if (DC && SemaRef.RequireCompleteDeclContext(SS, DC)) 2502 return nullptr; 2503 } else { 2504 DC = SemaRef.FindInstantiatedContext(D->getLocation(), 2505 D->getDeclContext(), 2506 TemplateArgs); 2507 } 2508 if (!DC) return nullptr; 2509 } 2510 2511 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 2512 Expr *TrailingRequiresClause = D->getTrailingRequiresClause(); 2513 2514 DeclarationNameInfo NameInfo 2515 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 2516 2517 if (FunctionRewriteKind != RewriteKind::None) 2518 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo); 2519 2520 // Build the instantiated method declaration. 2521 CXXMethodDecl *Method = nullptr; 2522 2523 SourceLocation StartLoc = D->getInnerLocStart(); 2524 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 2525 Method = CXXConstructorDecl::Create( 2526 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2527 InstantiatedExplicitSpecifier, Constructor->UsesFPIntrin(), 2528 Constructor->isInlineSpecified(), false, 2529 Constructor->getConstexprKind(), InheritedConstructor(), 2530 TrailingRequiresClause); 2531 Method->setRangeEnd(Constructor->getEndLoc()); 2532 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { 2533 Method = CXXDestructorDecl::Create( 2534 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2535 Destructor->UsesFPIntrin(), Destructor->isInlineSpecified(), false, 2536 Destructor->getConstexprKind(), TrailingRequiresClause); 2537 Method->setIneligibleOrNotSelected(true); 2538 Method->setRangeEnd(Destructor->getEndLoc()); 2539 Method->setDeclName(SemaRef.Context.DeclarationNames.getCXXDestructorName( 2540 SemaRef.Context.getCanonicalType( 2541 SemaRef.Context.getTypeDeclType(Record)))); 2542 } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { 2543 Method = CXXConversionDecl::Create( 2544 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, 2545 Conversion->UsesFPIntrin(), Conversion->isInlineSpecified(), 2546 InstantiatedExplicitSpecifier, Conversion->getConstexprKind(), 2547 Conversion->getEndLoc(), TrailingRequiresClause); 2548 } else { 2549 StorageClass SC = D->isStatic() ? SC_Static : SC_None; 2550 Method = CXXMethodDecl::Create( 2551 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, SC, 2552 D->UsesFPIntrin(), D->isInlineSpecified(), D->getConstexprKind(), 2553 D->getEndLoc(), TrailingRequiresClause); 2554 } 2555 2556 if (D->isInlined()) 2557 Method->setImplicitlyInline(); 2558 2559 if (QualifierLoc) 2560 Method->setQualifierInfo(QualifierLoc); 2561 2562 if (TemplateParams) { 2563 // Our resulting instantiation is actually a function template, since we 2564 // are substituting only the outer template parameters. For example, given 2565 // 2566 // template<typename T> 2567 // struct X { 2568 // template<typename U> void f(T, U); 2569 // }; 2570 // 2571 // X<int> x; 2572 // 2573 // We are instantiating the member template "f" within X<int>, which means 2574 // substituting int for T, but leaving "f" as a member function template. 2575 // Build the function template itself. 2576 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record, 2577 Method->getLocation(), 2578 Method->getDeclName(), 2579 TemplateParams, Method); 2580 if (isFriend) { 2581 FunctionTemplate->setLexicalDeclContext(Owner); 2582 FunctionTemplate->setObjectOfFriendDecl(); 2583 } else if (D->isOutOfLine()) 2584 FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext()); 2585 Method->setDescribedFunctionTemplate(FunctionTemplate); 2586 } else if (FunctionTemplate) { 2587 // Record this function template specialization. 2588 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 2589 Method->setFunctionTemplateSpecialization(FunctionTemplate, 2590 TemplateArgumentList::CreateCopy(SemaRef.Context, 2591 Innermost), 2592 /*InsertPos=*/nullptr); 2593 } else if (!isFriend) { 2594 // Record that this is an instantiation of a member function. 2595 Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); 2596 } 2597 2598 // If we are instantiating a member function defined 2599 // out-of-line, the instantiation will have the same lexical 2600 // context (which will be a namespace scope) as the template. 2601 if (isFriend) { 2602 if (NumTempParamLists) 2603 Method->setTemplateParameterListsInfo( 2604 SemaRef.Context, 2605 llvm::ArrayRef(TempParamLists.data(), NumTempParamLists)); 2606 2607 Method->setLexicalDeclContext(Owner); 2608 Method->setObjectOfFriendDecl(); 2609 } else if (D->isOutOfLine()) 2610 Method->setLexicalDeclContext(D->getLexicalDeclContext()); 2611 2612 // Attach the parameters 2613 for (unsigned P = 0; P < Params.size(); ++P) 2614 Params[P]->setOwningFunction(Method); 2615 Method->setParams(Params); 2616 2617 if (InitMethodInstantiation(Method, D)) 2618 Method->setInvalidDecl(); 2619 2620 LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName, 2621 Sema::ForExternalRedeclaration); 2622 2623 bool IsExplicitSpecialization = false; 2624 2625 // If the name of this function was written as a template-id, instantiate 2626 // the explicit template arguments. 2627 if (DependentFunctionTemplateSpecializationInfo *Info 2628 = D->getDependentSpecializationInfo()) { 2629 assert(isFriend && "non-friend has dependent specialization info?"); 2630 2631 // Instantiate the explicit template arguments. 2632 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), 2633 Info->getRAngleLoc()); 2634 if (SemaRef.SubstTemplateArguments(Info->arguments(), TemplateArgs, 2635 ExplicitArgs)) 2636 return nullptr; 2637 2638 // Map the candidate templates to their instantiations. 2639 for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) { 2640 Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(), 2641 Info->getTemplate(I), 2642 TemplateArgs); 2643 if (!Temp) return nullptr; 2644 2645 Previous.addDecl(cast<FunctionTemplateDecl>(Temp)); 2646 } 2647 2648 if (SemaRef.CheckFunctionTemplateSpecialization(Method, 2649 &ExplicitArgs, 2650 Previous)) 2651 Method->setInvalidDecl(); 2652 2653 IsExplicitSpecialization = true; 2654 } else if (const ASTTemplateArgumentListInfo *Info = 2655 ClassScopeSpecializationArgs.value_or( 2656 D->getTemplateSpecializationArgsAsWritten())) { 2657 SemaRef.LookupQualifiedName(Previous, DC); 2658 2659 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), 2660 Info->getRAngleLoc()); 2661 if (SemaRef.SubstTemplateArguments(Info->arguments(), TemplateArgs, 2662 ExplicitArgs)) 2663 return nullptr; 2664 2665 if (SemaRef.CheckFunctionTemplateSpecialization(Method, 2666 &ExplicitArgs, 2667 Previous)) 2668 Method->setInvalidDecl(); 2669 2670 IsExplicitSpecialization = true; 2671 } else if (ClassScopeSpecializationArgs) { 2672 // Class-scope explicit specialization written without explicit template 2673 // arguments. 2674 SemaRef.LookupQualifiedName(Previous, DC); 2675 if (SemaRef.CheckFunctionTemplateSpecialization(Method, nullptr, Previous)) 2676 Method->setInvalidDecl(); 2677 2678 IsExplicitSpecialization = true; 2679 } else if (!FunctionTemplate || TemplateParams || isFriend) { 2680 SemaRef.LookupQualifiedName(Previous, Record); 2681 2682 // In C++, the previous declaration we find might be a tag type 2683 // (class or enum). In this case, the new declaration will hide the 2684 // tag type. Note that this does not apply if we're declaring a 2685 // typedef (C++ [dcl.typedef]p4). 2686 if (Previous.isSingleTagDecl()) 2687 Previous.clear(); 2688 } 2689 2690 // Per [temp.inst], default arguments in member functions of local classes 2691 // are instantiated along with the member function declaration. For example: 2692 // 2693 // template<typename T> 2694 // void ft() { 2695 // struct lc { 2696 // int operator()(int p = []{ return T::value; }()); 2697 // }; 2698 // } 2699 // template void ft<int>(); // error: type 'int' cannot be used prior 2700 // to '::'because it has no members 2701 // 2702 // The error is issued during instantiation of ft<int>()::lc::operator() 2703 // because substitution into the default argument fails; the default argument 2704 // is instantiated even though it is never used. 2705 if (D->isInLocalScopeForInstantiation()) { 2706 for (unsigned P = 0; P < Params.size(); ++P) { 2707 if (!Params[P]->hasDefaultArg()) 2708 continue; 2709 if (SemaRef.SubstDefaultArgument(StartLoc, Params[P], TemplateArgs)) { 2710 // If substitution fails, the default argument is set to a 2711 // RecoveryExpr that wraps the uninstantiated default argument so 2712 // that downstream diagnostics are omitted. 2713 Expr *UninstExpr = Params[P]->getUninstantiatedDefaultArg(); 2714 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr( 2715 UninstExpr->getBeginLoc(), UninstExpr->getEndLoc(), 2716 { UninstExpr }, UninstExpr->getType()); 2717 if (ErrorResult.isUsable()) 2718 Params[P]->setDefaultArg(ErrorResult.get()); 2719 } 2720 } 2721 } 2722 2723 SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous, 2724 IsExplicitSpecialization, 2725 Method->isThisDeclarationADefinition()); 2726 2727 if (D->isPure()) 2728 SemaRef.CheckPureMethod(Method, SourceRange()); 2729 2730 // Propagate access. For a non-friend declaration, the access is 2731 // whatever we're propagating from. For a friend, it should be the 2732 // previous declaration we just found. 2733 if (isFriend && Method->getPreviousDecl()) 2734 Method->setAccess(Method->getPreviousDecl()->getAccess()); 2735 else 2736 Method->setAccess(D->getAccess()); 2737 if (FunctionTemplate) 2738 FunctionTemplate->setAccess(Method->getAccess()); 2739 2740 SemaRef.CheckOverrideControl(Method); 2741 2742 // If a function is defined as defaulted or deleted, mark it as such now. 2743 if (D->isExplicitlyDefaulted()) { 2744 if (SubstDefaultedFunction(Method, D)) 2745 return nullptr; 2746 } 2747 if (D->isDeletedAsWritten()) 2748 SemaRef.SetDeclDeleted(Method, Method->getLocation()); 2749 2750 // If this is an explicit specialization, mark the implicitly-instantiated 2751 // template specialization as being an explicit specialization too. 2752 // FIXME: Is this necessary? 2753 if (IsExplicitSpecialization && !isFriend) 2754 SemaRef.CompleteMemberSpecialization(Method, Previous); 2755 2756 // If the method is a special member function, we need to mark it as 2757 // ineligible so that Owner->addDecl() won't mark the class as non trivial. 2758 // At the end of the class instantiation, we calculate eligibility again and 2759 // then we adjust trivility if needed. 2760 // We need this check to happen only after the method parameters are set, 2761 // because being e.g. a copy constructor depends on the instantiated 2762 // arguments. 2763 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Method)) { 2764 if (Constructor->isDefaultConstructor() || 2765 Constructor->isCopyOrMoveConstructor()) 2766 Method->setIneligibleOrNotSelected(true); 2767 } else if (Method->isCopyAssignmentOperator() || 2768 Method->isMoveAssignmentOperator()) { 2769 Method->setIneligibleOrNotSelected(true); 2770 } 2771 2772 // If there's a function template, let our caller handle it. 2773 if (FunctionTemplate) { 2774 // do nothing 2775 2776 // Don't hide a (potentially) valid declaration with an invalid one. 2777 } else if (Method->isInvalidDecl() && !Previous.empty()) { 2778 // do nothing 2779 2780 // Otherwise, check access to friends and make them visible. 2781 } else if (isFriend) { 2782 // We only need to re-check access for methods which we didn't 2783 // manage to match during parsing. 2784 if (!D->getPreviousDecl()) 2785 SemaRef.CheckFriendAccess(Method); 2786 2787 Record->makeDeclVisibleInContext(Method); 2788 2789 // Otherwise, add the declaration. We don't need to do this for 2790 // class-scope specializations because we'll have matched them with 2791 // the appropriate template. 2792 } else { 2793 Owner->addDecl(Method); 2794 } 2795 2796 // PR17480: Honor the used attribute to instantiate member function 2797 // definitions 2798 if (Method->hasAttr<UsedAttr>()) { 2799 if (const auto *A = dyn_cast<CXXRecordDecl>(Owner)) { 2800 SourceLocation Loc; 2801 if (const MemberSpecializationInfo *MSInfo = 2802 A->getMemberSpecializationInfo()) 2803 Loc = MSInfo->getPointOfInstantiation(); 2804 else if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(A)) 2805 Loc = Spec->getPointOfInstantiation(); 2806 SemaRef.MarkFunctionReferenced(Loc, Method); 2807 } 2808 } 2809 2810 return Method; 2811 } 2812 2813 Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) { 2814 return VisitCXXMethodDecl(D); 2815 } 2816 2817 Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) { 2818 return VisitCXXMethodDecl(D); 2819 } 2820 2821 Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) { 2822 return VisitCXXMethodDecl(D); 2823 } 2824 2825 Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) { 2826 return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, 2827 std::nullopt, 2828 /*ExpectParameterPack=*/false); 2829 } 2830 2831 Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl( 2832 TemplateTypeParmDecl *D) { 2833 assert(D->getTypeForDecl()->isTemplateTypeParmType()); 2834 2835 std::optional<unsigned> NumExpanded; 2836 2837 if (const TypeConstraint *TC = D->getTypeConstraint()) { 2838 if (D->isPackExpansion() && !D->isExpandedParameterPack()) { 2839 assert(TC->getTemplateArgsAsWritten() && 2840 "type parameter can only be an expansion when explicit arguments " 2841 "are specified"); 2842 // The template type parameter pack's type is a pack expansion of types. 2843 // Determine whether we need to expand this parameter pack into separate 2844 // types. 2845 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 2846 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) 2847 SemaRef.collectUnexpandedParameterPacks(ArgLoc, Unexpanded); 2848 2849 // Determine whether the set of unexpanded parameter packs can and should 2850 // be expanded. 2851 bool Expand = true; 2852 bool RetainExpansion = false; 2853 if (SemaRef.CheckParameterPacksForExpansion( 2854 cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint()) 2855 ->getEllipsisLoc(), 2856 SourceRange(TC->getConceptNameLoc(), 2857 TC->hasExplicitTemplateArgs() ? 2858 TC->getTemplateArgsAsWritten()->getRAngleLoc() : 2859 TC->getConceptNameInfo().getEndLoc()), 2860 Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpanded)) 2861 return nullptr; 2862 } 2863 } 2864 2865 TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create( 2866 SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(), 2867 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(), 2868 D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack(), 2869 D->hasTypeConstraint(), NumExpanded); 2870 2871 Inst->setAccess(AS_public); 2872 Inst->setImplicit(D->isImplicit()); 2873 if (auto *TC = D->getTypeConstraint()) { 2874 if (!D->isImplicit()) { 2875 // Invented template parameter type constraints will be instantiated 2876 // with the corresponding auto-typed parameter as it might reference 2877 // other parameters. 2878 if (SemaRef.SubstTypeConstraint(Inst, TC, TemplateArgs, 2879 EvaluateConstraints)) 2880 return nullptr; 2881 } 2882 } 2883 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 2884 TypeSourceInfo *InstantiatedDefaultArg = 2885 SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs, 2886 D->getDefaultArgumentLoc(), D->getDeclName()); 2887 if (InstantiatedDefaultArg) 2888 Inst->setDefaultArgument(InstantiatedDefaultArg); 2889 } 2890 2891 // Introduce this template parameter's instantiation into the instantiation 2892 // scope. 2893 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst); 2894 2895 return Inst; 2896 } 2897 2898 Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl( 2899 NonTypeTemplateParmDecl *D) { 2900 // Substitute into the type of the non-type template parameter. 2901 TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc(); 2902 SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten; 2903 SmallVector<QualType, 4> ExpandedParameterPackTypes; 2904 bool IsExpandedParameterPack = false; 2905 TypeSourceInfo *DI; 2906 QualType T; 2907 bool Invalid = false; 2908 2909 if (D->isExpandedParameterPack()) { 2910 // The non-type template parameter pack is an already-expanded pack 2911 // expansion of types. Substitute into each of the expanded types. 2912 ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes()); 2913 ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes()); 2914 for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) { 2915 TypeSourceInfo *NewDI = 2916 SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs, 2917 D->getLocation(), D->getDeclName()); 2918 if (!NewDI) 2919 return nullptr; 2920 2921 QualType NewT = 2922 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); 2923 if (NewT.isNull()) 2924 return nullptr; 2925 2926 ExpandedParameterPackTypesAsWritten.push_back(NewDI); 2927 ExpandedParameterPackTypes.push_back(NewT); 2928 } 2929 2930 IsExpandedParameterPack = true; 2931 DI = D->getTypeSourceInfo(); 2932 T = DI->getType(); 2933 } else if (D->isPackExpansion()) { 2934 // The non-type template parameter pack's type is a pack expansion of types. 2935 // Determine whether we need to expand this parameter pack into separate 2936 // types. 2937 PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>(); 2938 TypeLoc Pattern = Expansion.getPatternLoc(); 2939 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 2940 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); 2941 2942 // Determine whether the set of unexpanded parameter packs can and should 2943 // be expanded. 2944 bool Expand = true; 2945 bool RetainExpansion = false; 2946 std::optional<unsigned> OrigNumExpansions = 2947 Expansion.getTypePtr()->getNumExpansions(); 2948 std::optional<unsigned> NumExpansions = OrigNumExpansions; 2949 if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(), 2950 Pattern.getSourceRange(), 2951 Unexpanded, 2952 TemplateArgs, 2953 Expand, RetainExpansion, 2954 NumExpansions)) 2955 return nullptr; 2956 2957 if (Expand) { 2958 for (unsigned I = 0; I != *NumExpansions; ++I) { 2959 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 2960 TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs, 2961 D->getLocation(), 2962 D->getDeclName()); 2963 if (!NewDI) 2964 return nullptr; 2965 2966 QualType NewT = 2967 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation()); 2968 if (NewT.isNull()) 2969 return nullptr; 2970 2971 ExpandedParameterPackTypesAsWritten.push_back(NewDI); 2972 ExpandedParameterPackTypes.push_back(NewT); 2973 } 2974 2975 // Note that we have an expanded parameter pack. The "type" of this 2976 // expanded parameter pack is the original expansion type, but callers 2977 // will end up using the expanded parameter pack types for type-checking. 2978 IsExpandedParameterPack = true; 2979 DI = D->getTypeSourceInfo(); 2980 T = DI->getType(); 2981 } else { 2982 // We cannot fully expand the pack expansion now, so substitute into the 2983 // pattern and create a new pack expansion type. 2984 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 2985 TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs, 2986 D->getLocation(), 2987 D->getDeclName()); 2988 if (!NewPattern) 2989 return nullptr; 2990 2991 SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation()); 2992 DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(), 2993 NumExpansions); 2994 if (!DI) 2995 return nullptr; 2996 2997 T = DI->getType(); 2998 } 2999 } else { 3000 // Simple case: substitution into a parameter that is not a parameter pack. 3001 DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, 3002 D->getLocation(), D->getDeclName()); 3003 if (!DI) 3004 return nullptr; 3005 3006 // Check that this type is acceptable for a non-type template parameter. 3007 T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation()); 3008 if (T.isNull()) { 3009 T = SemaRef.Context.IntTy; 3010 Invalid = true; 3011 } 3012 } 3013 3014 NonTypeTemplateParmDecl *Param; 3015 if (IsExpandedParameterPack) 3016 Param = NonTypeTemplateParmDecl::Create( 3017 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 3018 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3019 D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes, 3020 ExpandedParameterPackTypesAsWritten); 3021 else 3022 Param = NonTypeTemplateParmDecl::Create( 3023 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 3024 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3025 D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI); 3026 3027 if (AutoTypeLoc AutoLoc = DI->getTypeLoc().getContainedAutoTypeLoc()) 3028 if (AutoLoc.isConstrained()) 3029 // Note: We attach the uninstantiated constriant here, so that it can be 3030 // instantiated relative to the top level, like all our other constraints. 3031 if (SemaRef.AttachTypeConstraint( 3032 AutoLoc, Param, D, 3033 IsExpandedParameterPack 3034 ? DI->getTypeLoc().getAs<PackExpansionTypeLoc>() 3035 .getEllipsisLoc() 3036 : SourceLocation())) 3037 Invalid = true; 3038 3039 Param->setAccess(AS_public); 3040 Param->setImplicit(D->isImplicit()); 3041 if (Invalid) 3042 Param->setInvalidDecl(); 3043 3044 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 3045 EnterExpressionEvaluationContext ConstantEvaluated( 3046 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 3047 ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs); 3048 if (!Value.isInvalid()) 3049 Param->setDefaultArgument(Value.get()); 3050 } 3051 3052 // Introduce this template parameter's instantiation into the instantiation 3053 // scope. 3054 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); 3055 return Param; 3056 } 3057 3058 static void collectUnexpandedParameterPacks( 3059 Sema &S, 3060 TemplateParameterList *Params, 3061 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) { 3062 for (const auto &P : *Params) { 3063 if (P->isTemplateParameterPack()) 3064 continue; 3065 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) 3066 S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(), 3067 Unexpanded); 3068 if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P)) 3069 collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(), 3070 Unexpanded); 3071 } 3072 } 3073 3074 Decl * 3075 TemplateDeclInstantiator::VisitTemplateTemplateParmDecl( 3076 TemplateTemplateParmDecl *D) { 3077 // Instantiate the template parameter list of the template template parameter. 3078 TemplateParameterList *TempParams = D->getTemplateParameters(); 3079 TemplateParameterList *InstParams; 3080 SmallVector<TemplateParameterList*, 8> ExpandedParams; 3081 3082 bool IsExpandedParameterPack = false; 3083 3084 if (D->isExpandedParameterPack()) { 3085 // The template template parameter pack is an already-expanded pack 3086 // expansion of template parameters. Substitute into each of the expanded 3087 // parameters. 3088 ExpandedParams.reserve(D->getNumExpansionTemplateParameters()); 3089 for (unsigned I = 0, N = D->getNumExpansionTemplateParameters(); 3090 I != N; ++I) { 3091 LocalInstantiationScope Scope(SemaRef); 3092 TemplateParameterList *Expansion = 3093 SubstTemplateParams(D->getExpansionTemplateParameters(I)); 3094 if (!Expansion) 3095 return nullptr; 3096 ExpandedParams.push_back(Expansion); 3097 } 3098 3099 IsExpandedParameterPack = true; 3100 InstParams = TempParams; 3101 } else if (D->isPackExpansion()) { 3102 // The template template parameter pack expands to a pack of template 3103 // template parameters. Determine whether we need to expand this parameter 3104 // pack into separate parameters. 3105 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 3106 collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(), 3107 Unexpanded); 3108 3109 // Determine whether the set of unexpanded parameter packs can and should 3110 // be expanded. 3111 bool Expand = true; 3112 bool RetainExpansion = false; 3113 std::optional<unsigned> NumExpansions; 3114 if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(), 3115 TempParams->getSourceRange(), 3116 Unexpanded, 3117 TemplateArgs, 3118 Expand, RetainExpansion, 3119 NumExpansions)) 3120 return nullptr; 3121 3122 if (Expand) { 3123 for (unsigned I = 0; I != *NumExpansions; ++I) { 3124 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 3125 LocalInstantiationScope Scope(SemaRef); 3126 TemplateParameterList *Expansion = SubstTemplateParams(TempParams); 3127 if (!Expansion) 3128 return nullptr; 3129 ExpandedParams.push_back(Expansion); 3130 } 3131 3132 // Note that we have an expanded parameter pack. The "type" of this 3133 // expanded parameter pack is the original expansion type, but callers 3134 // will end up using the expanded parameter pack types for type-checking. 3135 IsExpandedParameterPack = true; 3136 InstParams = TempParams; 3137 } else { 3138 // We cannot fully expand the pack expansion now, so just substitute 3139 // into the pattern. 3140 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 3141 3142 LocalInstantiationScope Scope(SemaRef); 3143 InstParams = SubstTemplateParams(TempParams); 3144 if (!InstParams) 3145 return nullptr; 3146 } 3147 } else { 3148 // Perform the actual substitution of template parameters within a new, 3149 // local instantiation scope. 3150 LocalInstantiationScope Scope(SemaRef); 3151 InstParams = SubstTemplateParams(TempParams); 3152 if (!InstParams) 3153 return nullptr; 3154 } 3155 3156 // Build the template template parameter. 3157 TemplateTemplateParmDecl *Param; 3158 if (IsExpandedParameterPack) 3159 Param = TemplateTemplateParmDecl::Create( 3160 SemaRef.Context, Owner, D->getLocation(), 3161 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3162 D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams); 3163 else 3164 Param = TemplateTemplateParmDecl::Create( 3165 SemaRef.Context, Owner, D->getLocation(), 3166 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), 3167 D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams); 3168 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 3169 NestedNameSpecifierLoc QualifierLoc = 3170 D->getDefaultArgument().getTemplateQualifierLoc(); 3171 QualifierLoc = 3172 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); 3173 TemplateName TName = SemaRef.SubstTemplateName( 3174 QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(), 3175 D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs); 3176 if (!TName.isNull()) 3177 Param->setDefaultArgument( 3178 SemaRef.Context, 3179 TemplateArgumentLoc(SemaRef.Context, TemplateArgument(TName), 3180 D->getDefaultArgument().getTemplateQualifierLoc(), 3181 D->getDefaultArgument().getTemplateNameLoc())); 3182 } 3183 Param->setAccess(AS_public); 3184 Param->setImplicit(D->isImplicit()); 3185 3186 // Introduce this template parameter's instantiation into the instantiation 3187 // scope. 3188 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); 3189 3190 return Param; 3191 } 3192 3193 Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { 3194 // Using directives are never dependent (and never contain any types or 3195 // expressions), so they require no explicit instantiation work. 3196 3197 UsingDirectiveDecl *Inst 3198 = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(), 3199 D->getNamespaceKeyLocation(), 3200 D->getQualifierLoc(), 3201 D->getIdentLocation(), 3202 D->getNominatedNamespace(), 3203 D->getCommonAncestor()); 3204 3205 // Add the using directive to its declaration context 3206 // only if this is not a function or method. 3207 if (!Owner->isFunctionOrMethod()) 3208 Owner->addDecl(Inst); 3209 3210 return Inst; 3211 } 3212 3213 Decl *TemplateDeclInstantiator::VisitBaseUsingDecls(BaseUsingDecl *D, 3214 BaseUsingDecl *Inst, 3215 LookupResult *Lookup) { 3216 3217 bool isFunctionScope = Owner->isFunctionOrMethod(); 3218 3219 for (auto *Shadow : D->shadows()) { 3220 // FIXME: UsingShadowDecl doesn't preserve its immediate target, so 3221 // reconstruct it in the case where it matters. Hm, can we extract it from 3222 // the DeclSpec when parsing and save it in the UsingDecl itself? 3223 NamedDecl *OldTarget = Shadow->getTargetDecl(); 3224 if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Shadow)) 3225 if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl()) 3226 OldTarget = BaseShadow; 3227 3228 NamedDecl *InstTarget = nullptr; 3229 if (auto *EmptyD = 3230 dyn_cast<UnresolvedUsingIfExistsDecl>(Shadow->getTargetDecl())) { 3231 InstTarget = UnresolvedUsingIfExistsDecl::Create( 3232 SemaRef.Context, Owner, EmptyD->getLocation(), EmptyD->getDeclName()); 3233 } else { 3234 InstTarget = cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl( 3235 Shadow->getLocation(), OldTarget, TemplateArgs)); 3236 } 3237 if (!InstTarget) 3238 return nullptr; 3239 3240 UsingShadowDecl *PrevDecl = nullptr; 3241 if (Lookup && 3242 SemaRef.CheckUsingShadowDecl(Inst, InstTarget, *Lookup, PrevDecl)) 3243 continue; 3244 3245 if (UsingShadowDecl *OldPrev = getPreviousDeclForInstantiation(Shadow)) 3246 PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl( 3247 Shadow->getLocation(), OldPrev, TemplateArgs)); 3248 3249 UsingShadowDecl *InstShadow = SemaRef.BuildUsingShadowDecl( 3250 /*Scope*/ nullptr, Inst, InstTarget, PrevDecl); 3251 SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow); 3252 3253 if (isFunctionScope) 3254 SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow); 3255 } 3256 3257 return Inst; 3258 } 3259 3260 Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) { 3261 3262 // The nested name specifier may be dependent, for example 3263 // template <typename T> struct t { 3264 // struct s1 { T f1(); }; 3265 // struct s2 : s1 { using s1::f1; }; 3266 // }; 3267 // template struct t<int>; 3268 // Here, in using s1::f1, s1 refers to t<T>::s1; 3269 // we need to substitute for t<int>::s1. 3270 NestedNameSpecifierLoc QualifierLoc 3271 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), 3272 TemplateArgs); 3273 if (!QualifierLoc) 3274 return nullptr; 3275 3276 // For an inheriting constructor declaration, the name of the using 3277 // declaration is the name of a constructor in this class, not in the 3278 // base class. 3279 DeclarationNameInfo NameInfo = D->getNameInfo(); 3280 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) 3281 if (auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.CurContext)) 3282 NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName( 3283 SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD)))); 3284 3285 // We only need to do redeclaration lookups if we're in a class scope (in 3286 // fact, it's not really even possible in non-class scopes). 3287 bool CheckRedeclaration = Owner->isRecord(); 3288 LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName, 3289 Sema::ForVisibleRedeclaration); 3290 3291 UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner, 3292 D->getUsingLoc(), 3293 QualifierLoc, 3294 NameInfo, 3295 D->hasTypename()); 3296 3297 CXXScopeSpec SS; 3298 SS.Adopt(QualifierLoc); 3299 if (CheckRedeclaration) { 3300 Prev.setHideTags(false); 3301 SemaRef.LookupQualifiedName(Prev, Owner); 3302 3303 // Check for invalid redeclarations. 3304 if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(), 3305 D->hasTypename(), SS, 3306 D->getLocation(), Prev)) 3307 NewUD->setInvalidDecl(); 3308 } 3309 3310 if (!NewUD->isInvalidDecl() && 3311 SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(), SS, 3312 NameInfo, D->getLocation(), nullptr, D)) 3313 NewUD->setInvalidDecl(); 3314 3315 SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D); 3316 NewUD->setAccess(D->getAccess()); 3317 Owner->addDecl(NewUD); 3318 3319 // Don't process the shadow decls for an invalid decl. 3320 if (NewUD->isInvalidDecl()) 3321 return NewUD; 3322 3323 // If the using scope was dependent, or we had dependent bases, we need to 3324 // recheck the inheritance 3325 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) 3326 SemaRef.CheckInheritingConstructorUsingDecl(NewUD); 3327 3328 return VisitBaseUsingDecls(D, NewUD, CheckRedeclaration ? &Prev : nullptr); 3329 } 3330 3331 Decl *TemplateDeclInstantiator::VisitUsingEnumDecl(UsingEnumDecl *D) { 3332 // Cannot be a dependent type, but still could be an instantiation 3333 EnumDecl *EnumD = cast_or_null<EnumDecl>(SemaRef.FindInstantiatedDecl( 3334 D->getLocation(), D->getEnumDecl(), TemplateArgs)); 3335 3336 if (SemaRef.RequireCompleteEnumDecl(EnumD, EnumD->getLocation())) 3337 return nullptr; 3338 3339 TypeSourceInfo *TSI = SemaRef.SubstType(D->getEnumType(), TemplateArgs, 3340 D->getLocation(), D->getDeclName()); 3341 UsingEnumDecl *NewUD = 3342 UsingEnumDecl::Create(SemaRef.Context, Owner, D->getUsingLoc(), 3343 D->getEnumLoc(), D->getLocation(), TSI); 3344 3345 SemaRef.Context.setInstantiatedFromUsingEnumDecl(NewUD, D); 3346 NewUD->setAccess(D->getAccess()); 3347 Owner->addDecl(NewUD); 3348 3349 // Don't process the shadow decls for an invalid decl. 3350 if (NewUD->isInvalidDecl()) 3351 return NewUD; 3352 3353 // We don't have to recheck for duplication of the UsingEnumDecl itself, as it 3354 // cannot be dependent, and will therefore have been checked during template 3355 // definition. 3356 3357 return VisitBaseUsingDecls(D, NewUD, nullptr); 3358 } 3359 3360 Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) { 3361 // Ignore these; we handle them in bulk when processing the UsingDecl. 3362 return nullptr; 3363 } 3364 3365 Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl( 3366 ConstructorUsingShadowDecl *D) { 3367 // Ignore these; we handle them in bulk when processing the UsingDecl. 3368 return nullptr; 3369 } 3370 3371 template <typename T> 3372 Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl( 3373 T *D, bool InstantiatingPackElement) { 3374 // If this is a pack expansion, expand it now. 3375 if (D->isPackExpansion() && !InstantiatingPackElement) { 3376 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 3377 SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded); 3378 SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded); 3379 3380 // Determine whether the set of unexpanded parameter packs can and should 3381 // be expanded. 3382 bool Expand = true; 3383 bool RetainExpansion = false; 3384 std::optional<unsigned> NumExpansions; 3385 if (SemaRef.CheckParameterPacksForExpansion( 3386 D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs, 3387 Expand, RetainExpansion, NumExpansions)) 3388 return nullptr; 3389 3390 // This declaration cannot appear within a function template signature, 3391 // so we can't have a partial argument list for a parameter pack. 3392 assert(!RetainExpansion && 3393 "should never need to retain an expansion for UsingPackDecl"); 3394 3395 if (!Expand) { 3396 // We cannot fully expand the pack expansion now, so substitute into the 3397 // pattern and create a new pack expansion. 3398 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 3399 return instantiateUnresolvedUsingDecl(D, true); 3400 } 3401 3402 // Within a function, we don't have any normal way to check for conflicts 3403 // between shadow declarations from different using declarations in the 3404 // same pack expansion, but this is always ill-formed because all expansions 3405 // must produce (conflicting) enumerators. 3406 // 3407 // Sadly we can't just reject this in the template definition because it 3408 // could be valid if the pack is empty or has exactly one expansion. 3409 if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) { 3410 SemaRef.Diag(D->getEllipsisLoc(), 3411 diag::err_using_decl_redeclaration_expansion); 3412 return nullptr; 3413 } 3414 3415 // Instantiate the slices of this pack and build a UsingPackDecl. 3416 SmallVector<NamedDecl*, 8> Expansions; 3417 for (unsigned I = 0; I != *NumExpansions; ++I) { 3418 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 3419 Decl *Slice = instantiateUnresolvedUsingDecl(D, true); 3420 if (!Slice) 3421 return nullptr; 3422 // Note that we can still get unresolved using declarations here, if we 3423 // had arguments for all packs but the pattern also contained other 3424 // template arguments (this only happens during partial substitution, eg 3425 // into the body of a generic lambda in a function template). 3426 Expansions.push_back(cast<NamedDecl>(Slice)); 3427 } 3428 3429 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); 3430 if (isDeclWithinFunction(D)) 3431 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); 3432 return NewD; 3433 } 3434 3435 UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D); 3436 SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation(); 3437 3438 NestedNameSpecifierLoc QualifierLoc 3439 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), 3440 TemplateArgs); 3441 if (!QualifierLoc) 3442 return nullptr; 3443 3444 CXXScopeSpec SS; 3445 SS.Adopt(QualifierLoc); 3446 3447 DeclarationNameInfo NameInfo 3448 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 3449 3450 // Produce a pack expansion only if we're not instantiating a particular 3451 // slice of a pack expansion. 3452 bool InstantiatingSlice = D->getEllipsisLoc().isValid() && 3453 SemaRef.ArgumentPackSubstitutionIndex != -1; 3454 SourceLocation EllipsisLoc = 3455 InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc(); 3456 3457 bool IsUsingIfExists = D->template hasAttr<UsingIfExistsAttr>(); 3458 NamedDecl *UD = SemaRef.BuildUsingDeclaration( 3459 /*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(), 3460 /*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc, 3461 ParsedAttributesView(), 3462 /*IsInstantiation*/ true, IsUsingIfExists); 3463 if (UD) { 3464 SemaRef.InstantiateAttrs(TemplateArgs, D, UD); 3465 SemaRef.Context.setInstantiatedFromUsingDecl(UD, D); 3466 } 3467 3468 return UD; 3469 } 3470 3471 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl( 3472 UnresolvedUsingTypenameDecl *D) { 3473 return instantiateUnresolvedUsingDecl(D); 3474 } 3475 3476 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl( 3477 UnresolvedUsingValueDecl *D) { 3478 return instantiateUnresolvedUsingDecl(D); 3479 } 3480 3481 Decl *TemplateDeclInstantiator::VisitUnresolvedUsingIfExistsDecl( 3482 UnresolvedUsingIfExistsDecl *D) { 3483 llvm_unreachable("referring to unresolved decl out of UsingShadowDecl"); 3484 } 3485 3486 Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) { 3487 SmallVector<NamedDecl*, 8> Expansions; 3488 for (auto *UD : D->expansions()) { 3489 if (NamedDecl *NewUD = 3490 SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs)) 3491 Expansions.push_back(NewUD); 3492 else 3493 return nullptr; 3494 } 3495 3496 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions); 3497 if (isDeclWithinFunction(D)) 3498 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD); 3499 return NewD; 3500 } 3501 3502 Decl *TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl( 3503 ClassScopeFunctionSpecializationDecl *Decl) { 3504 CXXMethodDecl *OldFD = Decl->getSpecialization(); 3505 return cast_or_null<CXXMethodDecl>( 3506 VisitCXXMethodDecl(OldFD, nullptr, Decl->getTemplateArgsAsWritten())); 3507 } 3508 3509 Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl( 3510 OMPThreadPrivateDecl *D) { 3511 SmallVector<Expr *, 5> Vars; 3512 for (auto *I : D->varlists()) { 3513 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); 3514 assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr"); 3515 Vars.push_back(Var); 3516 } 3517 3518 OMPThreadPrivateDecl *TD = 3519 SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars); 3520 3521 TD->setAccess(AS_public); 3522 Owner->addDecl(TD); 3523 3524 return TD; 3525 } 3526 3527 Decl *TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl *D) { 3528 SmallVector<Expr *, 5> Vars; 3529 for (auto *I : D->varlists()) { 3530 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); 3531 assert(isa<DeclRefExpr>(Var) && "allocate arg is not a DeclRefExpr"); 3532 Vars.push_back(Var); 3533 } 3534 SmallVector<OMPClause *, 4> Clauses; 3535 // Copy map clauses from the original mapper. 3536 for (OMPClause *C : D->clauselists()) { 3537 OMPClause *IC = nullptr; 3538 if (auto *AC = dyn_cast<OMPAllocatorClause>(C)) { 3539 ExprResult NewE = SemaRef.SubstExpr(AC->getAllocator(), TemplateArgs); 3540 if (!NewE.isUsable()) 3541 continue; 3542 IC = SemaRef.ActOnOpenMPAllocatorClause( 3543 NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc()); 3544 } else if (auto *AC = dyn_cast<OMPAlignClause>(C)) { 3545 ExprResult NewE = SemaRef.SubstExpr(AC->getAlignment(), TemplateArgs); 3546 if (!NewE.isUsable()) 3547 continue; 3548 IC = SemaRef.ActOnOpenMPAlignClause(NewE.get(), AC->getBeginLoc(), 3549 AC->getLParenLoc(), AC->getEndLoc()); 3550 // If align clause value ends up being invalid, this can end up null. 3551 if (!IC) 3552 continue; 3553 } 3554 Clauses.push_back(IC); 3555 } 3556 3557 Sema::DeclGroupPtrTy Res = SemaRef.ActOnOpenMPAllocateDirective( 3558 D->getLocation(), Vars, Clauses, Owner); 3559 if (Res.get().isNull()) 3560 return nullptr; 3561 return Res.get().getSingleDecl(); 3562 } 3563 3564 Decl *TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl *D) { 3565 llvm_unreachable( 3566 "Requires directive cannot be instantiated within a dependent context"); 3567 } 3568 3569 Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl( 3570 OMPDeclareReductionDecl *D) { 3571 // Instantiate type and check if it is allowed. 3572 const bool RequiresInstantiation = 3573 D->getType()->isDependentType() || 3574 D->getType()->isInstantiationDependentType() || 3575 D->getType()->containsUnexpandedParameterPack(); 3576 QualType SubstReductionType; 3577 if (RequiresInstantiation) { 3578 SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType( 3579 D->getLocation(), 3580 ParsedType::make(SemaRef.SubstType( 3581 D->getType(), TemplateArgs, D->getLocation(), DeclarationName()))); 3582 } else { 3583 SubstReductionType = D->getType(); 3584 } 3585 if (SubstReductionType.isNull()) 3586 return nullptr; 3587 Expr *Combiner = D->getCombiner(); 3588 Expr *Init = D->getInitializer(); 3589 bool IsCorrect = true; 3590 // Create instantiated copy. 3591 std::pair<QualType, SourceLocation> ReductionTypes[] = { 3592 std::make_pair(SubstReductionType, D->getLocation())}; 3593 auto *PrevDeclInScope = D->getPrevDeclInScope(); 3594 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { 3595 PrevDeclInScope = cast<OMPDeclareReductionDecl>( 3596 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope) 3597 ->get<Decl *>()); 3598 } 3599 auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart( 3600 /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(), 3601 PrevDeclInScope); 3602 auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl()); 3603 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD); 3604 Expr *SubstCombiner = nullptr; 3605 Expr *SubstInitializer = nullptr; 3606 // Combiners instantiation sequence. 3607 if (Combiner) { 3608 SemaRef.ActOnOpenMPDeclareReductionCombinerStart( 3609 /*S=*/nullptr, NewDRD); 3610 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3611 cast<DeclRefExpr>(D->getCombinerIn())->getDecl(), 3612 cast<DeclRefExpr>(NewDRD->getCombinerIn())->getDecl()); 3613 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3614 cast<DeclRefExpr>(D->getCombinerOut())->getDecl(), 3615 cast<DeclRefExpr>(NewDRD->getCombinerOut())->getDecl()); 3616 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner); 3617 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(), 3618 ThisContext); 3619 SubstCombiner = SemaRef.SubstExpr(Combiner, TemplateArgs).get(); 3620 SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, SubstCombiner); 3621 } 3622 // Initializers instantiation sequence. 3623 if (Init) { 3624 VarDecl *OmpPrivParm = SemaRef.ActOnOpenMPDeclareReductionInitializerStart( 3625 /*S=*/nullptr, NewDRD); 3626 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3627 cast<DeclRefExpr>(D->getInitOrig())->getDecl(), 3628 cast<DeclRefExpr>(NewDRD->getInitOrig())->getDecl()); 3629 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3630 cast<DeclRefExpr>(D->getInitPriv())->getDecl(), 3631 cast<DeclRefExpr>(NewDRD->getInitPriv())->getDecl()); 3632 if (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit) { 3633 SubstInitializer = SemaRef.SubstExpr(Init, TemplateArgs).get(); 3634 } else { 3635 auto *OldPrivParm = 3636 cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()); 3637 IsCorrect = IsCorrect && OldPrivParm->hasInit(); 3638 if (IsCorrect) 3639 SemaRef.InstantiateVariableInitializer(OmpPrivParm, OldPrivParm, 3640 TemplateArgs); 3641 } 3642 SemaRef.ActOnOpenMPDeclareReductionInitializerEnd(NewDRD, SubstInitializer, 3643 OmpPrivParm); 3644 } 3645 IsCorrect = IsCorrect && SubstCombiner && 3646 (!Init || 3647 (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit && 3648 SubstInitializer) || 3649 (D->getInitializerKind() != OMPDeclareReductionDecl::CallInit && 3650 !SubstInitializer)); 3651 3652 (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd( 3653 /*S=*/nullptr, DRD, IsCorrect && !D->isInvalidDecl()); 3654 3655 return NewDRD; 3656 } 3657 3658 Decl * 3659 TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) { 3660 // Instantiate type and check if it is allowed. 3661 const bool RequiresInstantiation = 3662 D->getType()->isDependentType() || 3663 D->getType()->isInstantiationDependentType() || 3664 D->getType()->containsUnexpandedParameterPack(); 3665 QualType SubstMapperTy; 3666 DeclarationName VN = D->getVarName(); 3667 if (RequiresInstantiation) { 3668 SubstMapperTy = SemaRef.ActOnOpenMPDeclareMapperType( 3669 D->getLocation(), 3670 ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs, 3671 D->getLocation(), VN))); 3672 } else { 3673 SubstMapperTy = D->getType(); 3674 } 3675 if (SubstMapperTy.isNull()) 3676 return nullptr; 3677 // Create an instantiated copy of mapper. 3678 auto *PrevDeclInScope = D->getPrevDeclInScope(); 3679 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { 3680 PrevDeclInScope = cast<OMPDeclareMapperDecl>( 3681 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope) 3682 ->get<Decl *>()); 3683 } 3684 bool IsCorrect = true; 3685 SmallVector<OMPClause *, 6> Clauses; 3686 // Instantiate the mapper variable. 3687 DeclarationNameInfo DirName; 3688 SemaRef.StartOpenMPDSABlock(llvm::omp::OMPD_declare_mapper, DirName, 3689 /*S=*/nullptr, 3690 (*D->clauselist_begin())->getBeginLoc()); 3691 ExprResult MapperVarRef = SemaRef.ActOnOpenMPDeclareMapperDirectiveVarDecl( 3692 /*S=*/nullptr, SubstMapperTy, D->getLocation(), VN); 3693 SemaRef.CurrentInstantiationScope->InstantiatedLocal( 3694 cast<DeclRefExpr>(D->getMapperVarRef())->getDecl(), 3695 cast<DeclRefExpr>(MapperVarRef.get())->getDecl()); 3696 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner); 3697 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(), 3698 ThisContext); 3699 // Instantiate map clauses. 3700 for (OMPClause *C : D->clauselists()) { 3701 auto *OldC = cast<OMPMapClause>(C); 3702 SmallVector<Expr *, 4> NewVars; 3703 for (Expr *OE : OldC->varlists()) { 3704 Expr *NE = SemaRef.SubstExpr(OE, TemplateArgs).get(); 3705 if (!NE) { 3706 IsCorrect = false; 3707 break; 3708 } 3709 NewVars.push_back(NE); 3710 } 3711 if (!IsCorrect) 3712 break; 3713 NestedNameSpecifierLoc NewQualifierLoc = 3714 SemaRef.SubstNestedNameSpecifierLoc(OldC->getMapperQualifierLoc(), 3715 TemplateArgs); 3716 CXXScopeSpec SS; 3717 SS.Adopt(NewQualifierLoc); 3718 DeclarationNameInfo NewNameInfo = 3719 SemaRef.SubstDeclarationNameInfo(OldC->getMapperIdInfo(), TemplateArgs); 3720 OMPVarListLocTy Locs(OldC->getBeginLoc(), OldC->getLParenLoc(), 3721 OldC->getEndLoc()); 3722 OMPClause *NewC = SemaRef.ActOnOpenMPMapClause( 3723 OldC->getIteratorModifier(), OldC->getMapTypeModifiers(), 3724 OldC->getMapTypeModifiersLoc(), SS, NewNameInfo, OldC->getMapType(), 3725 OldC->isImplicitMapType(), OldC->getMapLoc(), OldC->getColonLoc(), 3726 NewVars, Locs); 3727 Clauses.push_back(NewC); 3728 } 3729 SemaRef.EndOpenMPDSABlock(nullptr); 3730 if (!IsCorrect) 3731 return nullptr; 3732 Sema::DeclGroupPtrTy DG = SemaRef.ActOnOpenMPDeclareMapperDirective( 3733 /*S=*/nullptr, Owner, D->getDeclName(), SubstMapperTy, D->getLocation(), 3734 VN, D->getAccess(), MapperVarRef.get(), Clauses, PrevDeclInScope); 3735 Decl *NewDMD = DG.get().getSingleDecl(); 3736 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDMD); 3737 return NewDMD; 3738 } 3739 3740 Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl( 3741 OMPCapturedExprDecl * /*D*/) { 3742 llvm_unreachable("Should not be met in templates"); 3743 } 3744 3745 Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) { 3746 return VisitFunctionDecl(D, nullptr); 3747 } 3748 3749 Decl * 3750 TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) { 3751 Decl *Inst = VisitFunctionDecl(D, nullptr); 3752 if (Inst && !D->getDescribedFunctionTemplate()) 3753 Owner->addDecl(Inst); 3754 return Inst; 3755 } 3756 3757 Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) { 3758 return VisitCXXMethodDecl(D, nullptr); 3759 } 3760 3761 Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) { 3762 llvm_unreachable("There are only CXXRecordDecls in C++"); 3763 } 3764 3765 Decl * 3766 TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl( 3767 ClassTemplateSpecializationDecl *D) { 3768 // As a MS extension, we permit class-scope explicit specialization 3769 // of member class templates. 3770 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); 3771 assert(ClassTemplate->getDeclContext()->isRecord() && 3772 D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 3773 "can only instantiate an explicit specialization " 3774 "for a member class template"); 3775 3776 // Lookup the already-instantiated declaration in the instantiation 3777 // of the class template. 3778 ClassTemplateDecl *InstClassTemplate = 3779 cast_or_null<ClassTemplateDecl>(SemaRef.FindInstantiatedDecl( 3780 D->getLocation(), ClassTemplate, TemplateArgs)); 3781 if (!InstClassTemplate) 3782 return nullptr; 3783 3784 // Substitute into the template arguments of the class template explicit 3785 // specialization. 3786 TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc(). 3787 castAs<TemplateSpecializationTypeLoc>(); 3788 TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(), 3789 Loc.getRAngleLoc()); 3790 SmallVector<TemplateArgumentLoc, 4> ArgLocs; 3791 for (unsigned I = 0; I != Loc.getNumArgs(); ++I) 3792 ArgLocs.push_back(Loc.getArgLoc(I)); 3793 if (SemaRef.SubstTemplateArguments(ArgLocs, TemplateArgs, InstTemplateArgs)) 3794 return nullptr; 3795 3796 // Check that the template argument list is well-formed for this 3797 // class template. 3798 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 3799 if (SemaRef.CheckTemplateArgumentList(InstClassTemplate, D->getLocation(), 3800 InstTemplateArgs, false, 3801 SugaredConverted, CanonicalConverted, 3802 /*UpdateArgsWithConversions=*/true)) 3803 return nullptr; 3804 3805 // Figure out where to insert this class template explicit specialization 3806 // in the member template's set of class template explicit specializations. 3807 void *InsertPos = nullptr; 3808 ClassTemplateSpecializationDecl *PrevDecl = 3809 InstClassTemplate->findSpecialization(CanonicalConverted, InsertPos); 3810 3811 // Check whether we've already seen a conflicting instantiation of this 3812 // declaration (for instance, if there was a prior implicit instantiation). 3813 bool Ignored; 3814 if (PrevDecl && 3815 SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(), 3816 D->getSpecializationKind(), 3817 PrevDecl, 3818 PrevDecl->getSpecializationKind(), 3819 PrevDecl->getPointOfInstantiation(), 3820 Ignored)) 3821 return nullptr; 3822 3823 // If PrevDecl was a definition and D is also a definition, diagnose. 3824 // This happens in cases like: 3825 // 3826 // template<typename T, typename U> 3827 // struct Outer { 3828 // template<typename X> struct Inner; 3829 // template<> struct Inner<T> {}; 3830 // template<> struct Inner<U> {}; 3831 // }; 3832 // 3833 // Outer<int, int> outer; // error: the explicit specializations of Inner 3834 // // have the same signature. 3835 if (PrevDecl && PrevDecl->getDefinition() && 3836 D->isThisDeclarationADefinition()) { 3837 SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl; 3838 SemaRef.Diag(PrevDecl->getDefinition()->getLocation(), 3839 diag::note_previous_definition); 3840 return nullptr; 3841 } 3842 3843 // Create the class template partial specialization declaration. 3844 ClassTemplateSpecializationDecl *InstD = 3845 ClassTemplateSpecializationDecl::Create( 3846 SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(), 3847 D->getLocation(), InstClassTemplate, CanonicalConverted, PrevDecl); 3848 3849 // Add this partial specialization to the set of class template partial 3850 // specializations. 3851 if (!PrevDecl) 3852 InstClassTemplate->AddSpecialization(InstD, InsertPos); 3853 3854 // Substitute the nested name specifier, if any. 3855 if (SubstQualifier(D, InstD)) 3856 return nullptr; 3857 3858 // Build the canonical type that describes the converted template 3859 // arguments of the class template explicit specialization. 3860 QualType CanonType = SemaRef.Context.getTemplateSpecializationType( 3861 TemplateName(InstClassTemplate), CanonicalConverted, 3862 SemaRef.Context.getRecordType(InstD)); 3863 3864 // Build the fully-sugared type for this class template 3865 // specialization as the user wrote in the specialization 3866 // itself. This means that we'll pretty-print the type retrieved 3867 // from the specialization's declaration the way that the user 3868 // actually wrote the specialization, rather than formatting the 3869 // name based on the "canonical" representation used to store the 3870 // template arguments in the specialization. 3871 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( 3872 TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs, 3873 CanonType); 3874 3875 InstD->setAccess(D->getAccess()); 3876 InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); 3877 InstD->setSpecializationKind(D->getSpecializationKind()); 3878 InstD->setTypeAsWritten(WrittenTy); 3879 InstD->setExternLoc(D->getExternLoc()); 3880 InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc()); 3881 3882 Owner->addDecl(InstD); 3883 3884 // Instantiate the members of the class-scope explicit specialization eagerly. 3885 // We don't have support for lazy instantiation of an explicit specialization 3886 // yet, and MSVC eagerly instantiates in this case. 3887 // FIXME: This is wrong in standard C++. 3888 if (D->isThisDeclarationADefinition() && 3889 SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs, 3890 TSK_ImplicitInstantiation, 3891 /*Complain=*/true)) 3892 return nullptr; 3893 3894 return InstD; 3895 } 3896 3897 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( 3898 VarTemplateSpecializationDecl *D) { 3899 3900 TemplateArgumentListInfo VarTemplateArgsInfo; 3901 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); 3902 assert(VarTemplate && 3903 "A template specialization without specialized template?"); 3904 3905 VarTemplateDecl *InstVarTemplate = 3906 cast_or_null<VarTemplateDecl>(SemaRef.FindInstantiatedDecl( 3907 D->getLocation(), VarTemplate, TemplateArgs)); 3908 if (!InstVarTemplate) 3909 return nullptr; 3910 3911 // Substitute the current template arguments. 3912 if (const ASTTemplateArgumentListInfo *TemplateArgsInfo = 3913 D->getTemplateArgsInfo()) { 3914 VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo->getLAngleLoc()); 3915 VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo->getRAngleLoc()); 3916 3917 if (SemaRef.SubstTemplateArguments(TemplateArgsInfo->arguments(), 3918 TemplateArgs, VarTemplateArgsInfo)) 3919 return nullptr; 3920 } 3921 3922 // Check that the template argument list is well-formed for this template. 3923 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 3924 if (SemaRef.CheckTemplateArgumentList(InstVarTemplate, D->getLocation(), 3925 VarTemplateArgsInfo, false, 3926 SugaredConverted, CanonicalConverted, 3927 /*UpdateArgsWithConversions=*/true)) 3928 return nullptr; 3929 3930 // Check whether we've already seen a declaration of this specialization. 3931 void *InsertPos = nullptr; 3932 VarTemplateSpecializationDecl *PrevDecl = 3933 InstVarTemplate->findSpecialization(CanonicalConverted, InsertPos); 3934 3935 // Check whether we've already seen a conflicting instantiation of this 3936 // declaration (for instance, if there was a prior implicit instantiation). 3937 bool Ignored; 3938 if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl( 3939 D->getLocation(), D->getSpecializationKind(), PrevDecl, 3940 PrevDecl->getSpecializationKind(), 3941 PrevDecl->getPointOfInstantiation(), Ignored)) 3942 return nullptr; 3943 3944 return VisitVarTemplateSpecializationDecl( 3945 InstVarTemplate, D, VarTemplateArgsInfo, CanonicalConverted, PrevDecl); 3946 } 3947 3948 Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( 3949 VarTemplateDecl *VarTemplate, VarDecl *D, 3950 const TemplateArgumentListInfo &TemplateArgsInfo, 3951 ArrayRef<TemplateArgument> Converted, 3952 VarTemplateSpecializationDecl *PrevDecl) { 3953 3954 // Do substitution on the type of the declaration 3955 TypeSourceInfo *DI = 3956 SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, 3957 D->getTypeSpecStartLoc(), D->getDeclName()); 3958 if (!DI) 3959 return nullptr; 3960 3961 if (DI->getType()->isFunctionType()) { 3962 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) 3963 << D->isStaticDataMember() << DI->getType(); 3964 return nullptr; 3965 } 3966 3967 // Build the instantiated declaration 3968 VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create( 3969 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 3970 VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted); 3971 Var->setTemplateArgsInfo(TemplateArgsInfo); 3972 if (!PrevDecl) { 3973 void *InsertPos = nullptr; 3974 VarTemplate->findSpecialization(Converted, InsertPos); 3975 VarTemplate->AddSpecialization(Var, InsertPos); 3976 } 3977 3978 if (SemaRef.getLangOpts().OpenCL) 3979 SemaRef.deduceOpenCLAddressSpace(Var); 3980 3981 // Substitute the nested name specifier, if any. 3982 if (SubstQualifier(D, Var)) 3983 return nullptr; 3984 3985 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, 3986 StartingScope, false, PrevDecl); 3987 3988 return Var; 3989 } 3990 3991 Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) { 3992 llvm_unreachable("@defs is not supported in Objective-C++"); 3993 } 3994 3995 Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) { 3996 // FIXME: We need to be able to instantiate FriendTemplateDecls. 3997 unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID( 3998 DiagnosticsEngine::Error, 3999 "cannot instantiate %0 yet"); 4000 SemaRef.Diag(D->getLocation(), DiagID) 4001 << D->getDeclKindName(); 4002 4003 return nullptr; 4004 } 4005 4006 Decl *TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl *D) { 4007 llvm_unreachable("Concept definitions cannot reside inside a template"); 4008 } 4009 4010 Decl *TemplateDeclInstantiator::VisitImplicitConceptSpecializationDecl( 4011 ImplicitConceptSpecializationDecl *D) { 4012 llvm_unreachable("Concept specializations cannot reside inside a template"); 4013 } 4014 4015 Decl * 4016 TemplateDeclInstantiator::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) { 4017 return RequiresExprBodyDecl::Create(SemaRef.Context, D->getDeclContext(), 4018 D->getBeginLoc()); 4019 } 4020 4021 Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) { 4022 llvm_unreachable("Unexpected decl"); 4023 } 4024 4025 Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner, 4026 const MultiLevelTemplateArgumentList &TemplateArgs) { 4027 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); 4028 if (D->isInvalidDecl()) 4029 return nullptr; 4030 4031 Decl *SubstD; 4032 runWithSufficientStackSpace(D->getLocation(), [&] { 4033 SubstD = Instantiator.Visit(D); 4034 }); 4035 return SubstD; 4036 } 4037 4038 void TemplateDeclInstantiator::adjustForRewrite(RewriteKind RK, 4039 FunctionDecl *Orig, QualType &T, 4040 TypeSourceInfo *&TInfo, 4041 DeclarationNameInfo &NameInfo) { 4042 assert(RK == RewriteKind::RewriteSpaceshipAsEqualEqual); 4043 4044 // C++2a [class.compare.default]p3: 4045 // the return type is replaced with bool 4046 auto *FPT = T->castAs<FunctionProtoType>(); 4047 T = SemaRef.Context.getFunctionType( 4048 SemaRef.Context.BoolTy, FPT->getParamTypes(), FPT->getExtProtoInfo()); 4049 4050 // Update the return type in the source info too. The most straightforward 4051 // way is to create new TypeSourceInfo for the new type. Use the location of 4052 // the '= default' as the location of the new type. 4053 // 4054 // FIXME: Set the correct return type when we initially transform the type, 4055 // rather than delaying it to now. 4056 TypeSourceInfo *NewTInfo = 4057 SemaRef.Context.getTrivialTypeSourceInfo(T, Orig->getEndLoc()); 4058 auto OldLoc = TInfo->getTypeLoc().getAsAdjusted<FunctionProtoTypeLoc>(); 4059 assert(OldLoc && "type of function is not a function type?"); 4060 auto NewLoc = NewTInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>(); 4061 for (unsigned I = 0, N = OldLoc.getNumParams(); I != N; ++I) 4062 NewLoc.setParam(I, OldLoc.getParam(I)); 4063 TInfo = NewTInfo; 4064 4065 // and the declarator-id is replaced with operator== 4066 NameInfo.setName( 4067 SemaRef.Context.DeclarationNames.getCXXOperatorName(OO_EqualEqual)); 4068 } 4069 4070 FunctionDecl *Sema::SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD, 4071 FunctionDecl *Spaceship) { 4072 if (Spaceship->isInvalidDecl()) 4073 return nullptr; 4074 4075 // C++2a [class.compare.default]p3: 4076 // an == operator function is declared implicitly [...] with the same 4077 // access and function-definition and in the same class scope as the 4078 // three-way comparison operator function 4079 MultiLevelTemplateArgumentList NoTemplateArgs; 4080 NoTemplateArgs.setKind(TemplateSubstitutionKind::Rewrite); 4081 NoTemplateArgs.addOuterRetainedLevels(RD->getTemplateDepth()); 4082 TemplateDeclInstantiator Instantiator(*this, RD, NoTemplateArgs); 4083 Decl *R; 4084 if (auto *MD = dyn_cast<CXXMethodDecl>(Spaceship)) { 4085 R = Instantiator.VisitCXXMethodDecl( 4086 MD, nullptr, std::nullopt, 4087 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual); 4088 } else { 4089 assert(Spaceship->getFriendObjectKind() && 4090 "defaulted spaceship is neither a member nor a friend"); 4091 4092 R = Instantiator.VisitFunctionDecl( 4093 Spaceship, nullptr, 4094 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual); 4095 if (!R) 4096 return nullptr; 4097 4098 FriendDecl *FD = 4099 FriendDecl::Create(Context, RD, Spaceship->getLocation(), 4100 cast<NamedDecl>(R), Spaceship->getBeginLoc()); 4101 FD->setAccess(AS_public); 4102 RD->addDecl(FD); 4103 } 4104 return cast_or_null<FunctionDecl>(R); 4105 } 4106 4107 /// Instantiates a nested template parameter list in the current 4108 /// instantiation context. 4109 /// 4110 /// \param L The parameter list to instantiate 4111 /// 4112 /// \returns NULL if there was an error 4113 TemplateParameterList * 4114 TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) { 4115 // Get errors for all the parameters before bailing out. 4116 bool Invalid = false; 4117 4118 unsigned N = L->size(); 4119 typedef SmallVector<NamedDecl *, 8> ParamVector; 4120 ParamVector Params; 4121 Params.reserve(N); 4122 for (auto &P : *L) { 4123 NamedDecl *D = cast_or_null<NamedDecl>(Visit(P)); 4124 Params.push_back(D); 4125 Invalid = Invalid || !D || D->isInvalidDecl(); 4126 } 4127 4128 // Clean up if we had an error. 4129 if (Invalid) 4130 return nullptr; 4131 4132 Expr *InstRequiresClause = L->getRequiresClause(); 4133 4134 TemplateParameterList *InstL 4135 = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(), 4136 L->getLAngleLoc(), Params, 4137 L->getRAngleLoc(), InstRequiresClause); 4138 return InstL; 4139 } 4140 4141 TemplateParameterList * 4142 Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner, 4143 const MultiLevelTemplateArgumentList &TemplateArgs, 4144 bool EvaluateConstraints) { 4145 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); 4146 Instantiator.setEvaluateConstraints(EvaluateConstraints); 4147 return Instantiator.SubstTemplateParams(Params); 4148 } 4149 4150 /// Instantiate the declaration of a class template partial 4151 /// specialization. 4152 /// 4153 /// \param ClassTemplate the (instantiated) class template that is partially 4154 // specialized by the instantiation of \p PartialSpec. 4155 /// 4156 /// \param PartialSpec the (uninstantiated) class template partial 4157 /// specialization that we are instantiating. 4158 /// 4159 /// \returns The instantiated partial specialization, if successful; otherwise, 4160 /// NULL to indicate an error. 4161 ClassTemplatePartialSpecializationDecl * 4162 TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization( 4163 ClassTemplateDecl *ClassTemplate, 4164 ClassTemplatePartialSpecializationDecl *PartialSpec) { 4165 // Create a local instantiation scope for this class template partial 4166 // specialization, which will contain the instantiations of the template 4167 // parameters. 4168 LocalInstantiationScope Scope(SemaRef); 4169 4170 // Substitute into the template parameters of the class template partial 4171 // specialization. 4172 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); 4173 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 4174 if (!InstParams) 4175 return nullptr; 4176 4177 // Substitute into the template arguments of the class template partial 4178 // specialization. 4179 const ASTTemplateArgumentListInfo *TemplArgInfo 4180 = PartialSpec->getTemplateArgsAsWritten(); 4181 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, 4182 TemplArgInfo->RAngleLoc); 4183 if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs, 4184 InstTemplateArgs)) 4185 return nullptr; 4186 4187 // Check that the template argument list is well-formed for this 4188 // class template. 4189 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4190 if (SemaRef.CheckTemplateArgumentList( 4191 ClassTemplate, PartialSpec->getLocation(), InstTemplateArgs, 4192 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted)) 4193 return nullptr; 4194 4195 // Check these arguments are valid for a template partial specialization. 4196 if (SemaRef.CheckTemplatePartialSpecializationArgs( 4197 PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(), 4198 CanonicalConverted)) 4199 return nullptr; 4200 4201 // Figure out where to insert this class template partial specialization 4202 // in the member template's set of class template partial specializations. 4203 void *InsertPos = nullptr; 4204 ClassTemplateSpecializationDecl *PrevDecl = 4205 ClassTemplate->findPartialSpecialization(CanonicalConverted, InstParams, 4206 InsertPos); 4207 4208 // Build the canonical type that describes the converted template 4209 // arguments of the class template partial specialization. 4210 QualType CanonType = SemaRef.Context.getTemplateSpecializationType( 4211 TemplateName(ClassTemplate), CanonicalConverted); 4212 4213 // Build the fully-sugared type for this class template 4214 // specialization as the user wrote in the specialization 4215 // itself. This means that we'll pretty-print the type retrieved 4216 // from the specialization's declaration the way that the user 4217 // actually wrote the specialization, rather than formatting the 4218 // name based on the "canonical" representation used to store the 4219 // template arguments in the specialization. 4220 TypeSourceInfo *WrittenTy 4221 = SemaRef.Context.getTemplateSpecializationTypeInfo( 4222 TemplateName(ClassTemplate), 4223 PartialSpec->getLocation(), 4224 InstTemplateArgs, 4225 CanonType); 4226 4227 if (PrevDecl) { 4228 // We've already seen a partial specialization with the same template 4229 // parameters and template arguments. This can happen, for example, when 4230 // substituting the outer template arguments ends up causing two 4231 // class template partial specializations of a member class template 4232 // to have identical forms, e.g., 4233 // 4234 // template<typename T, typename U> 4235 // struct Outer { 4236 // template<typename X, typename Y> struct Inner; 4237 // template<typename Y> struct Inner<T, Y>; 4238 // template<typename Y> struct Inner<U, Y>; 4239 // }; 4240 // 4241 // Outer<int, int> outer; // error: the partial specializations of Inner 4242 // // have the same signature. 4243 SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared) 4244 << WrittenTy->getType(); 4245 SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here) 4246 << SemaRef.Context.getTypeDeclType(PrevDecl); 4247 return nullptr; 4248 } 4249 4250 4251 // Create the class template partial specialization declaration. 4252 ClassTemplatePartialSpecializationDecl *InstPartialSpec = 4253 ClassTemplatePartialSpecializationDecl::Create( 4254 SemaRef.Context, PartialSpec->getTagKind(), Owner, 4255 PartialSpec->getBeginLoc(), PartialSpec->getLocation(), InstParams, 4256 ClassTemplate, CanonicalConverted, InstTemplateArgs, CanonType, 4257 nullptr); 4258 // Substitute the nested name specifier, if any. 4259 if (SubstQualifier(PartialSpec, InstPartialSpec)) 4260 return nullptr; 4261 4262 InstPartialSpec->setInstantiatedFromMember(PartialSpec); 4263 InstPartialSpec->setTypeAsWritten(WrittenTy); 4264 4265 // Check the completed partial specialization. 4266 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); 4267 4268 // Add this partial specialization to the set of class template partial 4269 // specializations. 4270 ClassTemplate->AddPartialSpecialization(InstPartialSpec, 4271 /*InsertPos=*/nullptr); 4272 return InstPartialSpec; 4273 } 4274 4275 /// Instantiate the declaration of a variable template partial 4276 /// specialization. 4277 /// 4278 /// \param VarTemplate the (instantiated) variable template that is partially 4279 /// specialized by the instantiation of \p PartialSpec. 4280 /// 4281 /// \param PartialSpec the (uninstantiated) variable template partial 4282 /// specialization that we are instantiating. 4283 /// 4284 /// \returns The instantiated partial specialization, if successful; otherwise, 4285 /// NULL to indicate an error. 4286 VarTemplatePartialSpecializationDecl * 4287 TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization( 4288 VarTemplateDecl *VarTemplate, 4289 VarTemplatePartialSpecializationDecl *PartialSpec) { 4290 // Create a local instantiation scope for this variable template partial 4291 // specialization, which will contain the instantiations of the template 4292 // parameters. 4293 LocalInstantiationScope Scope(SemaRef); 4294 4295 // Substitute into the template parameters of the variable template partial 4296 // specialization. 4297 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); 4298 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 4299 if (!InstParams) 4300 return nullptr; 4301 4302 // Substitute into the template arguments of the variable template partial 4303 // specialization. 4304 const ASTTemplateArgumentListInfo *TemplArgInfo 4305 = PartialSpec->getTemplateArgsAsWritten(); 4306 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, 4307 TemplArgInfo->RAngleLoc); 4308 if (SemaRef.SubstTemplateArguments(TemplArgInfo->arguments(), TemplateArgs, 4309 InstTemplateArgs)) 4310 return nullptr; 4311 4312 // Check that the template argument list is well-formed for this 4313 // class template. 4314 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4315 if (SemaRef.CheckTemplateArgumentList( 4316 VarTemplate, PartialSpec->getLocation(), InstTemplateArgs, 4317 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted)) 4318 return nullptr; 4319 4320 // Check these arguments are valid for a template partial specialization. 4321 if (SemaRef.CheckTemplatePartialSpecializationArgs( 4322 PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(), 4323 CanonicalConverted)) 4324 return nullptr; 4325 4326 // Figure out where to insert this variable template partial specialization 4327 // in the member template's set of variable template partial specializations. 4328 void *InsertPos = nullptr; 4329 VarTemplateSpecializationDecl *PrevDecl = 4330 VarTemplate->findPartialSpecialization(CanonicalConverted, InstParams, 4331 InsertPos); 4332 4333 // Build the canonical type that describes the converted template 4334 // arguments of the variable template partial specialization. 4335 QualType CanonType = SemaRef.Context.getTemplateSpecializationType( 4336 TemplateName(VarTemplate), CanonicalConverted); 4337 4338 // Build the fully-sugared type for this variable template 4339 // specialization as the user wrote in the specialization 4340 // itself. This means that we'll pretty-print the type retrieved 4341 // from the specialization's declaration the way that the user 4342 // actually wrote the specialization, rather than formatting the 4343 // name based on the "canonical" representation used to store the 4344 // template arguments in the specialization. 4345 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( 4346 TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs, 4347 CanonType); 4348 4349 if (PrevDecl) { 4350 // We've already seen a partial specialization with the same template 4351 // parameters and template arguments. This can happen, for example, when 4352 // substituting the outer template arguments ends up causing two 4353 // variable template partial specializations of a member variable template 4354 // to have identical forms, e.g., 4355 // 4356 // template<typename T, typename U> 4357 // struct Outer { 4358 // template<typename X, typename Y> pair<X,Y> p; 4359 // template<typename Y> pair<T, Y> p; 4360 // template<typename Y> pair<U, Y> p; 4361 // }; 4362 // 4363 // Outer<int, int> outer; // error: the partial specializations of Inner 4364 // // have the same signature. 4365 SemaRef.Diag(PartialSpec->getLocation(), 4366 diag::err_var_partial_spec_redeclared) 4367 << WrittenTy->getType(); 4368 SemaRef.Diag(PrevDecl->getLocation(), 4369 diag::note_var_prev_partial_spec_here); 4370 return nullptr; 4371 } 4372 4373 // Do substitution on the type of the declaration 4374 TypeSourceInfo *DI = SemaRef.SubstType( 4375 PartialSpec->getTypeSourceInfo(), TemplateArgs, 4376 PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName()); 4377 if (!DI) 4378 return nullptr; 4379 4380 if (DI->getType()->isFunctionType()) { 4381 SemaRef.Diag(PartialSpec->getLocation(), 4382 diag::err_variable_instantiates_to_function) 4383 << PartialSpec->isStaticDataMember() << DI->getType(); 4384 return nullptr; 4385 } 4386 4387 // Create the variable template partial specialization declaration. 4388 VarTemplatePartialSpecializationDecl *InstPartialSpec = 4389 VarTemplatePartialSpecializationDecl::Create( 4390 SemaRef.Context, Owner, PartialSpec->getInnerLocStart(), 4391 PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(), 4392 DI, PartialSpec->getStorageClass(), CanonicalConverted, 4393 InstTemplateArgs); 4394 4395 // Substitute the nested name specifier, if any. 4396 if (SubstQualifier(PartialSpec, InstPartialSpec)) 4397 return nullptr; 4398 4399 InstPartialSpec->setInstantiatedFromMember(PartialSpec); 4400 InstPartialSpec->setTypeAsWritten(WrittenTy); 4401 4402 // Check the completed partial specialization. 4403 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec); 4404 4405 // Add this partial specialization to the set of variable template partial 4406 // specializations. The instantiation of the initializer is not necessary. 4407 VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr); 4408 4409 SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs, 4410 LateAttrs, Owner, StartingScope); 4411 4412 return InstPartialSpec; 4413 } 4414 4415 TypeSourceInfo* 4416 TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D, 4417 SmallVectorImpl<ParmVarDecl *> &Params) { 4418 TypeSourceInfo *OldTInfo = D->getTypeSourceInfo(); 4419 assert(OldTInfo && "substituting function without type source info"); 4420 assert(Params.empty() && "parameter vector is non-empty at start"); 4421 4422 CXXRecordDecl *ThisContext = nullptr; 4423 Qualifiers ThisTypeQuals; 4424 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4425 ThisContext = cast<CXXRecordDecl>(Owner); 4426 ThisTypeQuals = Method->getMethodQualifiers(); 4427 } 4428 4429 TypeSourceInfo *NewTInfo = SemaRef.SubstFunctionDeclType( 4430 OldTInfo, TemplateArgs, D->getTypeSpecStartLoc(), D->getDeclName(), 4431 ThisContext, ThisTypeQuals, EvaluateConstraints); 4432 if (!NewTInfo) 4433 return nullptr; 4434 4435 TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens(); 4436 if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) { 4437 if (NewTInfo != OldTInfo) { 4438 // Get parameters from the new type info. 4439 TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens(); 4440 FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>(); 4441 unsigned NewIdx = 0; 4442 for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams(); 4443 OldIdx != NumOldParams; ++OldIdx) { 4444 ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx); 4445 if (!OldParam) 4446 return nullptr; 4447 4448 LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope; 4449 4450 std::optional<unsigned> NumArgumentsInExpansion; 4451 if (OldParam->isParameterPack()) 4452 NumArgumentsInExpansion = 4453 SemaRef.getNumArgumentsInExpansion(OldParam->getType(), 4454 TemplateArgs); 4455 if (!NumArgumentsInExpansion) { 4456 // Simple case: normal parameter, or a parameter pack that's 4457 // instantiated to a (still-dependent) parameter pack. 4458 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); 4459 Params.push_back(NewParam); 4460 Scope->InstantiatedLocal(OldParam, NewParam); 4461 } else { 4462 // Parameter pack expansion: make the instantiation an argument pack. 4463 Scope->MakeInstantiatedLocalArgPack(OldParam); 4464 for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) { 4465 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); 4466 Params.push_back(NewParam); 4467 Scope->InstantiatedLocalPackArg(OldParam, NewParam); 4468 } 4469 } 4470 } 4471 } else { 4472 // The function type itself was not dependent and therefore no 4473 // substitution occurred. However, we still need to instantiate 4474 // the function parameters themselves. 4475 const FunctionProtoType *OldProto = 4476 cast<FunctionProtoType>(OldProtoLoc.getType()); 4477 for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end; 4478 ++i) { 4479 ParmVarDecl *OldParam = OldProtoLoc.getParam(i); 4480 if (!OldParam) { 4481 Params.push_back(SemaRef.BuildParmVarDeclForTypedef( 4482 D, D->getLocation(), OldProto->getParamType(i))); 4483 continue; 4484 } 4485 4486 ParmVarDecl *Parm = 4487 cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam)); 4488 if (!Parm) 4489 return nullptr; 4490 Params.push_back(Parm); 4491 } 4492 } 4493 } else { 4494 // If the type of this function, after ignoring parentheses, is not 4495 // *directly* a function type, then we're instantiating a function that 4496 // was declared via a typedef or with attributes, e.g., 4497 // 4498 // typedef int functype(int, int); 4499 // functype func; 4500 // int __cdecl meth(int, int); 4501 // 4502 // In this case, we'll just go instantiate the ParmVarDecls that we 4503 // synthesized in the method declaration. 4504 SmallVector<QualType, 4> ParamTypes; 4505 Sema::ExtParameterInfoBuilder ExtParamInfos; 4506 if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr, 4507 TemplateArgs, ParamTypes, &Params, 4508 ExtParamInfos)) 4509 return nullptr; 4510 } 4511 4512 return NewTInfo; 4513 } 4514 4515 /// Introduce the instantiated function parameters into the local 4516 /// instantiation scope, and set the parameter names to those used 4517 /// in the template. 4518 bool Sema::addInstantiatedParametersToScope( 4519 FunctionDecl *Function, const FunctionDecl *PatternDecl, 4520 LocalInstantiationScope &Scope, 4521 const MultiLevelTemplateArgumentList &TemplateArgs) { 4522 unsigned FParamIdx = 0; 4523 for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) { 4524 const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I); 4525 if (!PatternParam->isParameterPack()) { 4526 // Simple case: not a parameter pack. 4527 assert(FParamIdx < Function->getNumParams()); 4528 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); 4529 FunctionParam->setDeclName(PatternParam->getDeclName()); 4530 // If the parameter's type is not dependent, update it to match the type 4531 // in the pattern. They can differ in top-level cv-qualifiers, and we want 4532 // the pattern's type here. If the type is dependent, they can't differ, 4533 // per core issue 1668. Substitute into the type from the pattern, in case 4534 // it's instantiation-dependent. 4535 // FIXME: Updating the type to work around this is at best fragile. 4536 if (!PatternDecl->getType()->isDependentType()) { 4537 QualType T = SubstType(PatternParam->getType(), TemplateArgs, 4538 FunctionParam->getLocation(), 4539 FunctionParam->getDeclName()); 4540 if (T.isNull()) 4541 return true; 4542 FunctionParam->setType(T); 4543 } 4544 4545 Scope.InstantiatedLocal(PatternParam, FunctionParam); 4546 ++FParamIdx; 4547 continue; 4548 } 4549 4550 // Expand the parameter pack. 4551 Scope.MakeInstantiatedLocalArgPack(PatternParam); 4552 std::optional<unsigned> NumArgumentsInExpansion = 4553 getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs); 4554 if (NumArgumentsInExpansion) { 4555 QualType PatternType = 4556 PatternParam->getType()->castAs<PackExpansionType>()->getPattern(); 4557 for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) { 4558 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); 4559 FunctionParam->setDeclName(PatternParam->getDeclName()); 4560 if (!PatternDecl->getType()->isDependentType()) { 4561 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, Arg); 4562 QualType T = 4563 SubstType(PatternType, TemplateArgs, FunctionParam->getLocation(), 4564 FunctionParam->getDeclName()); 4565 if (T.isNull()) 4566 return true; 4567 FunctionParam->setType(T); 4568 } 4569 4570 Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam); 4571 ++FParamIdx; 4572 } 4573 } 4574 } 4575 4576 return false; 4577 } 4578 4579 bool Sema::InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD, 4580 ParmVarDecl *Param) { 4581 assert(Param->hasUninstantiatedDefaultArg()); 4582 4583 // Instantiate the expression. 4584 // 4585 // FIXME: Pass in a correct Pattern argument, otherwise 4586 // getTemplateInstantiationArgs uses the lexical context of FD, e.g. 4587 // 4588 // template<typename T> 4589 // struct A { 4590 // static int FooImpl(); 4591 // 4592 // template<typename Tp> 4593 // // bug: default argument A<T>::FooImpl() is evaluated with 2-level 4594 // // template argument list [[T], [Tp]], should be [[Tp]]. 4595 // friend A<Tp> Foo(int a); 4596 // }; 4597 // 4598 // template<typename T> 4599 // A<T> Foo(int a = A<T>::FooImpl()); 4600 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs( 4601 FD, /*Final=*/false, nullptr, /*RelativeToPrimary=*/true); 4602 4603 if (SubstDefaultArgument(CallLoc, Param, TemplateArgs, /*ForCallExpr*/ true)) 4604 return true; 4605 4606 if (ASTMutationListener *L = getASTMutationListener()) 4607 L->DefaultArgumentInstantiated(Param); 4608 4609 return false; 4610 } 4611 4612 void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation, 4613 FunctionDecl *Decl) { 4614 const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>(); 4615 if (Proto->getExceptionSpecType() != EST_Uninstantiated) 4616 return; 4617 4618 InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl, 4619 InstantiatingTemplate::ExceptionSpecification()); 4620 if (Inst.isInvalid()) { 4621 // We hit the instantiation depth limit. Clear the exception specification 4622 // so that our callers don't have to cope with EST_Uninstantiated. 4623 UpdateExceptionSpec(Decl, EST_None); 4624 return; 4625 } 4626 if (Inst.isAlreadyInstantiating()) { 4627 // This exception specification indirectly depends on itself. Reject. 4628 // FIXME: Corresponding rule in the standard? 4629 Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl; 4630 UpdateExceptionSpec(Decl, EST_None); 4631 return; 4632 } 4633 4634 // Enter the scope of this instantiation. We don't use 4635 // PushDeclContext because we don't have a scope. 4636 Sema::ContextRAII savedContext(*this, Decl); 4637 LocalInstantiationScope Scope(*this); 4638 4639 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs( 4640 Decl, /*Final=*/false, nullptr, /*RelativeToPrimary*/ true); 4641 4642 // FIXME: We can't use getTemplateInstantiationPattern(false) in general 4643 // here, because for a non-defining friend declaration in a class template, 4644 // we don't store enough information to map back to the friend declaration in 4645 // the template. 4646 FunctionDecl *Template = Proto->getExceptionSpecTemplate(); 4647 if (addInstantiatedParametersToScope(Decl, Template, Scope, TemplateArgs)) { 4648 UpdateExceptionSpec(Decl, EST_None); 4649 return; 4650 } 4651 4652 SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(), 4653 TemplateArgs); 4654 } 4655 4656 /// Initializes the common fields of an instantiation function 4657 /// declaration (New) from the corresponding fields of its template (Tmpl). 4658 /// 4659 /// \returns true if there was an error 4660 bool 4661 TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New, 4662 FunctionDecl *Tmpl) { 4663 New->setImplicit(Tmpl->isImplicit()); 4664 4665 // Forward the mangling number from the template to the instantiated decl. 4666 SemaRef.Context.setManglingNumber(New, 4667 SemaRef.Context.getManglingNumber(Tmpl)); 4668 4669 // If we are performing substituting explicitly-specified template arguments 4670 // or deduced template arguments into a function template and we reach this 4671 // point, we are now past the point where SFINAE applies and have committed 4672 // to keeping the new function template specialization. We therefore 4673 // convert the active template instantiation for the function template 4674 // into a template instantiation for this specific function template 4675 // specialization, which is not a SFINAE context, so that we diagnose any 4676 // further errors in the declaration itself. 4677 // 4678 // FIXME: This is a hack. 4679 typedef Sema::CodeSynthesisContext ActiveInstType; 4680 ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back(); 4681 if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution || 4682 ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) { 4683 if (isa<FunctionTemplateDecl>(ActiveInst.Entity)) { 4684 SemaRef.InstantiatingSpecializations.erase( 4685 {ActiveInst.Entity->getCanonicalDecl(), ActiveInst.Kind}); 4686 atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); 4687 ActiveInst.Kind = ActiveInstType::TemplateInstantiation; 4688 ActiveInst.Entity = New; 4689 atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst); 4690 } 4691 } 4692 4693 const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>(); 4694 assert(Proto && "Function template without prototype?"); 4695 4696 if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) { 4697 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 4698 4699 // DR1330: In C++11, defer instantiation of a non-trivial 4700 // exception specification. 4701 // DR1484: Local classes and their members are instantiated along with the 4702 // containing function. 4703 if (SemaRef.getLangOpts().CPlusPlus11 && 4704 EPI.ExceptionSpec.Type != EST_None && 4705 EPI.ExceptionSpec.Type != EST_DynamicNone && 4706 EPI.ExceptionSpec.Type != EST_BasicNoexcept && 4707 !Tmpl->isInLocalScopeForInstantiation()) { 4708 FunctionDecl *ExceptionSpecTemplate = Tmpl; 4709 if (EPI.ExceptionSpec.Type == EST_Uninstantiated) 4710 ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate; 4711 ExceptionSpecificationType NewEST = EST_Uninstantiated; 4712 if (EPI.ExceptionSpec.Type == EST_Unevaluated) 4713 NewEST = EST_Unevaluated; 4714 4715 // Mark the function has having an uninstantiated exception specification. 4716 const FunctionProtoType *NewProto 4717 = New->getType()->getAs<FunctionProtoType>(); 4718 assert(NewProto && "Template instantiation without function prototype?"); 4719 EPI = NewProto->getExtProtoInfo(); 4720 EPI.ExceptionSpec.Type = NewEST; 4721 EPI.ExceptionSpec.SourceDecl = New; 4722 EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate; 4723 New->setType(SemaRef.Context.getFunctionType( 4724 NewProto->getReturnType(), NewProto->getParamTypes(), EPI)); 4725 } else { 4726 Sema::ContextRAII SwitchContext(SemaRef, New); 4727 SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs); 4728 } 4729 } 4730 4731 // Get the definition. Leaves the variable unchanged if undefined. 4732 const FunctionDecl *Definition = Tmpl; 4733 Tmpl->isDefined(Definition); 4734 4735 SemaRef.InstantiateAttrs(TemplateArgs, Definition, New, 4736 LateAttrs, StartingScope); 4737 4738 return false; 4739 } 4740 4741 /// Initializes common fields of an instantiated method 4742 /// declaration (New) from the corresponding fields of its template 4743 /// (Tmpl). 4744 /// 4745 /// \returns true if there was an error 4746 bool 4747 TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New, 4748 CXXMethodDecl *Tmpl) { 4749 if (InitFunctionInstantiation(New, Tmpl)) 4750 return true; 4751 4752 if (isa<CXXDestructorDecl>(New) && SemaRef.getLangOpts().CPlusPlus11) 4753 SemaRef.AdjustDestructorExceptionSpec(cast<CXXDestructorDecl>(New)); 4754 4755 New->setAccess(Tmpl->getAccess()); 4756 if (Tmpl->isVirtualAsWritten()) 4757 New->setVirtualAsWritten(true); 4758 4759 // FIXME: New needs a pointer to Tmpl 4760 return false; 4761 } 4762 4763 bool TemplateDeclInstantiator::SubstDefaultedFunction(FunctionDecl *New, 4764 FunctionDecl *Tmpl) { 4765 // Transfer across any unqualified lookups. 4766 if (auto *DFI = Tmpl->getDefaultedFunctionInfo()) { 4767 SmallVector<DeclAccessPair, 32> Lookups; 4768 Lookups.reserve(DFI->getUnqualifiedLookups().size()); 4769 bool AnyChanged = false; 4770 for (DeclAccessPair DA : DFI->getUnqualifiedLookups()) { 4771 NamedDecl *D = SemaRef.FindInstantiatedDecl(New->getLocation(), 4772 DA.getDecl(), TemplateArgs); 4773 if (!D) 4774 return true; 4775 AnyChanged |= (D != DA.getDecl()); 4776 Lookups.push_back(DeclAccessPair::make(D, DA.getAccess())); 4777 } 4778 4779 // It's unlikely that substitution will change any declarations. Don't 4780 // store an unnecessary copy in that case. 4781 New->setDefaultedFunctionInfo( 4782 AnyChanged ? FunctionDecl::DefaultedFunctionInfo::Create( 4783 SemaRef.Context, Lookups) 4784 : DFI); 4785 } 4786 4787 SemaRef.SetDeclDefaulted(New, Tmpl->getLocation()); 4788 return false; 4789 } 4790 4791 /// Instantiate (or find existing instantiation of) a function template with a 4792 /// given set of template arguments. 4793 /// 4794 /// Usually this should not be used, and template argument deduction should be 4795 /// used in its place. 4796 FunctionDecl * 4797 Sema::InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD, 4798 const TemplateArgumentList *Args, 4799 SourceLocation Loc) { 4800 FunctionDecl *FD = FTD->getTemplatedDecl(); 4801 4802 sema::TemplateDeductionInfo Info(Loc); 4803 InstantiatingTemplate Inst( 4804 *this, Loc, FTD, Args->asArray(), 4805 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); 4806 if (Inst.isInvalid()) 4807 return nullptr; 4808 4809 ContextRAII SavedContext(*this, FD); 4810 MultiLevelTemplateArgumentList MArgs(FTD, Args->asArray(), 4811 /*Final=*/false); 4812 4813 return cast_or_null<FunctionDecl>(SubstDecl(FD, FD->getParent(), MArgs)); 4814 } 4815 4816 /// Instantiate the definition of the given function from its 4817 /// template. 4818 /// 4819 /// \param PointOfInstantiation the point at which the instantiation was 4820 /// required. Note that this is not precisely a "point of instantiation" 4821 /// for the function, but it's close. 4822 /// 4823 /// \param Function the already-instantiated declaration of a 4824 /// function template specialization or member function of a class template 4825 /// specialization. 4826 /// 4827 /// \param Recursive if true, recursively instantiates any functions that 4828 /// are required by this instantiation. 4829 /// 4830 /// \param DefinitionRequired if true, then we are performing an explicit 4831 /// instantiation where the body of the function is required. Complain if 4832 /// there is no such body. 4833 void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, 4834 FunctionDecl *Function, 4835 bool Recursive, 4836 bool DefinitionRequired, 4837 bool AtEndOfTU) { 4838 if (Function->isInvalidDecl() || isa<CXXDeductionGuideDecl>(Function)) 4839 return; 4840 4841 // Never instantiate an explicit specialization except if it is a class scope 4842 // explicit specialization. 4843 TemplateSpecializationKind TSK = 4844 Function->getTemplateSpecializationKindForInstantiation(); 4845 if (TSK == TSK_ExplicitSpecialization) 4846 return; 4847 4848 // Never implicitly instantiate a builtin; we don't actually need a function 4849 // body. 4850 if (Function->getBuiltinID() && TSK == TSK_ImplicitInstantiation && 4851 !DefinitionRequired) 4852 return; 4853 4854 // Don't instantiate a definition if we already have one. 4855 const FunctionDecl *ExistingDefn = nullptr; 4856 if (Function->isDefined(ExistingDefn, 4857 /*CheckForPendingFriendDefinition=*/true)) { 4858 if (ExistingDefn->isThisDeclarationADefinition()) 4859 return; 4860 4861 // If we're asked to instantiate a function whose body comes from an 4862 // instantiated friend declaration, attach the instantiated body to the 4863 // corresponding declaration of the function. 4864 assert(ExistingDefn->isThisDeclarationInstantiatedFromAFriendDefinition()); 4865 Function = const_cast<FunctionDecl*>(ExistingDefn); 4866 } 4867 4868 // Find the function body that we'll be substituting. 4869 const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern(); 4870 assert(PatternDecl && "instantiating a non-template"); 4871 4872 const FunctionDecl *PatternDef = PatternDecl->getDefinition(); 4873 Stmt *Pattern = nullptr; 4874 if (PatternDef) { 4875 Pattern = PatternDef->getBody(PatternDef); 4876 PatternDecl = PatternDef; 4877 if (PatternDef->willHaveBody()) 4878 PatternDef = nullptr; 4879 } 4880 4881 // FIXME: We need to track the instantiation stack in order to know which 4882 // definitions should be visible within this instantiation. 4883 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function, 4884 Function->getInstantiatedFromMemberFunction(), 4885 PatternDecl, PatternDef, TSK, 4886 /*Complain*/DefinitionRequired)) { 4887 if (DefinitionRequired) 4888 Function->setInvalidDecl(); 4889 else if (TSK == TSK_ExplicitInstantiationDefinition || 4890 (Function->isConstexpr() && !Recursive)) { 4891 // Try again at the end of the translation unit (at which point a 4892 // definition will be required). 4893 assert(!Recursive); 4894 Function->setInstantiationIsPending(true); 4895 PendingInstantiations.push_back( 4896 std::make_pair(Function, PointOfInstantiation)); 4897 } else if (TSK == TSK_ImplicitInstantiation) { 4898 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && 4899 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) { 4900 Diag(PointOfInstantiation, diag::warn_func_template_missing) 4901 << Function; 4902 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); 4903 if (getLangOpts().CPlusPlus11) 4904 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) 4905 << Function; 4906 } 4907 } 4908 4909 return; 4910 } 4911 4912 // Postpone late parsed template instantiations. 4913 if (PatternDecl->isLateTemplateParsed() && 4914 !LateTemplateParser) { 4915 Function->setInstantiationIsPending(true); 4916 LateParsedInstantiations.push_back( 4917 std::make_pair(Function, PointOfInstantiation)); 4918 return; 4919 } 4920 4921 llvm::TimeTraceScope TimeScope("InstantiateFunction", [&]() { 4922 std::string Name; 4923 llvm::raw_string_ostream OS(Name); 4924 Function->getNameForDiagnostic(OS, getPrintingPolicy(), 4925 /*Qualified=*/true); 4926 return Name; 4927 }); 4928 4929 // If we're performing recursive template instantiation, create our own 4930 // queue of pending implicit instantiations that we will instantiate later, 4931 // while we're still within our own instantiation context. 4932 // This has to happen before LateTemplateParser below is called, so that 4933 // it marks vtables used in late parsed templates as used. 4934 GlobalEagerInstantiationScope GlobalInstantiations(*this, 4935 /*Enabled=*/Recursive); 4936 LocalEagerInstantiationScope LocalInstantiations(*this); 4937 4938 // Call the LateTemplateParser callback if there is a need to late parse 4939 // a templated function definition. 4940 if (!Pattern && PatternDecl->isLateTemplateParsed() && 4941 LateTemplateParser) { 4942 // FIXME: Optimize to allow individual templates to be deserialized. 4943 if (PatternDecl->isFromASTFile()) 4944 ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap); 4945 4946 auto LPTIter = LateParsedTemplateMap.find(PatternDecl); 4947 assert(LPTIter != LateParsedTemplateMap.end() && 4948 "missing LateParsedTemplate"); 4949 LateTemplateParser(OpaqueParser, *LPTIter->second); 4950 Pattern = PatternDecl->getBody(PatternDecl); 4951 updateAttrsForLateParsedTemplate(PatternDecl, Function); 4952 } 4953 4954 // Note, we should never try to instantiate a deleted function template. 4955 assert((Pattern || PatternDecl->isDefaulted() || 4956 PatternDecl->hasSkippedBody()) && 4957 "unexpected kind of function template definition"); 4958 4959 // C++1y [temp.explicit]p10: 4960 // Except for inline functions, declarations with types deduced from their 4961 // initializer or return value, and class template specializations, other 4962 // explicit instantiation declarations have the effect of suppressing the 4963 // implicit instantiation of the entity to which they refer. 4964 if (TSK == TSK_ExplicitInstantiationDeclaration && 4965 !PatternDecl->isInlined() && 4966 !PatternDecl->getReturnType()->getContainedAutoType()) 4967 return; 4968 4969 if (PatternDecl->isInlined()) { 4970 // Function, and all later redeclarations of it (from imported modules, 4971 // for instance), are now implicitly inline. 4972 for (auto *D = Function->getMostRecentDecl(); /**/; 4973 D = D->getPreviousDecl()) { 4974 D->setImplicitlyInline(); 4975 if (D == Function) 4976 break; 4977 } 4978 } 4979 4980 InstantiatingTemplate Inst(*this, PointOfInstantiation, Function); 4981 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 4982 return; 4983 PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(), 4984 "instantiating function definition"); 4985 4986 // The instantiation is visible here, even if it was first declared in an 4987 // unimported module. 4988 Function->setVisibleDespiteOwningModule(); 4989 4990 // Copy the inner loc start from the pattern. 4991 Function->setInnerLocStart(PatternDecl->getInnerLocStart()); 4992 4993 EnterExpressionEvaluationContext EvalContext( 4994 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 4995 4996 // Introduce a new scope where local variable instantiations will be 4997 // recorded, unless we're actually a member function within a local 4998 // class, in which case we need to merge our results with the parent 4999 // scope (of the enclosing function). The exception is instantiating 5000 // a function template specialization, since the template to be 5001 // instantiated already has references to locals properly substituted. 5002 bool MergeWithParentScope = false; 5003 if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext())) 5004 MergeWithParentScope = 5005 Rec->isLocalClass() && !Function->isFunctionTemplateSpecialization(); 5006 5007 LocalInstantiationScope Scope(*this, MergeWithParentScope); 5008 auto RebuildTypeSourceInfoForDefaultSpecialMembers = [&]() { 5009 // Special members might get their TypeSourceInfo set up w.r.t the 5010 // PatternDecl context, in which case parameters could still be pointing 5011 // back to the original class, make sure arguments are bound to the 5012 // instantiated record instead. 5013 assert(PatternDecl->isDefaulted() && 5014 "Special member needs to be defaulted"); 5015 auto PatternSM = getDefaultedFunctionKind(PatternDecl).asSpecialMember(); 5016 if (!(PatternSM == Sema::CXXCopyConstructor || 5017 PatternSM == Sema::CXXCopyAssignment || 5018 PatternSM == Sema::CXXMoveConstructor || 5019 PatternSM == Sema::CXXMoveAssignment)) 5020 return; 5021 5022 auto *NewRec = dyn_cast<CXXRecordDecl>(Function->getDeclContext()); 5023 const auto *PatternRec = 5024 dyn_cast<CXXRecordDecl>(PatternDecl->getDeclContext()); 5025 if (!NewRec || !PatternRec) 5026 return; 5027 if (!PatternRec->isLambda()) 5028 return; 5029 5030 struct SpecialMemberTypeInfoRebuilder 5031 : TreeTransform<SpecialMemberTypeInfoRebuilder> { 5032 using Base = TreeTransform<SpecialMemberTypeInfoRebuilder>; 5033 const CXXRecordDecl *OldDecl; 5034 CXXRecordDecl *NewDecl; 5035 5036 SpecialMemberTypeInfoRebuilder(Sema &SemaRef, const CXXRecordDecl *O, 5037 CXXRecordDecl *N) 5038 : TreeTransform(SemaRef), OldDecl(O), NewDecl(N) {} 5039 5040 bool TransformExceptionSpec(SourceLocation Loc, 5041 FunctionProtoType::ExceptionSpecInfo &ESI, 5042 SmallVectorImpl<QualType> &Exceptions, 5043 bool &Changed) { 5044 return false; 5045 } 5046 5047 QualType TransformRecordType(TypeLocBuilder &TLB, RecordTypeLoc TL) { 5048 const RecordType *T = TL.getTypePtr(); 5049 RecordDecl *Record = cast_or_null<RecordDecl>( 5050 getDerived().TransformDecl(TL.getNameLoc(), T->getDecl())); 5051 if (Record != OldDecl) 5052 return Base::TransformRecordType(TLB, TL); 5053 5054 QualType Result = getDerived().RebuildRecordType(NewDecl); 5055 if (Result.isNull()) 5056 return QualType(); 5057 5058 RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result); 5059 NewTL.setNameLoc(TL.getNameLoc()); 5060 return Result; 5061 } 5062 } IR{*this, PatternRec, NewRec}; 5063 5064 TypeSourceInfo *NewSI = IR.TransformType(Function->getTypeSourceInfo()); 5065 Function->setType(NewSI->getType()); 5066 Function->setTypeSourceInfo(NewSI); 5067 5068 ParmVarDecl *Parm = Function->getParamDecl(0); 5069 TypeSourceInfo *NewParmSI = IR.TransformType(Parm->getTypeSourceInfo()); 5070 Parm->setType(NewParmSI->getType()); 5071 Parm->setTypeSourceInfo(NewParmSI); 5072 }; 5073 5074 if (PatternDecl->isDefaulted()) { 5075 RebuildTypeSourceInfoForDefaultSpecialMembers(); 5076 SetDeclDefaulted(Function, PatternDecl->getLocation()); 5077 } else { 5078 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs( 5079 Function, /*Final=*/false, nullptr, false, PatternDecl); 5080 5081 // Substitute into the qualifier; we can get a substitution failure here 5082 // through evil use of alias templates. 5083 // FIXME: Is CurContext correct for this? Should we go to the (instantiation 5084 // of the) lexical context of the pattern? 5085 SubstQualifier(*this, PatternDecl, Function, TemplateArgs); 5086 5087 ActOnStartOfFunctionDef(nullptr, Function); 5088 5089 // Enter the scope of this instantiation. We don't use 5090 // PushDeclContext because we don't have a scope. 5091 Sema::ContextRAII savedContext(*this, Function); 5092 5093 FPFeaturesStateRAII SavedFPFeatures(*this); 5094 CurFPFeatures = FPOptions(getLangOpts()); 5095 FpPragmaStack.CurrentValue = FPOptionsOverride(); 5096 5097 if (addInstantiatedParametersToScope(Function, PatternDecl, Scope, 5098 TemplateArgs)) 5099 return; 5100 5101 StmtResult Body; 5102 if (PatternDecl->hasSkippedBody()) { 5103 ActOnSkippedFunctionBody(Function); 5104 Body = nullptr; 5105 } else { 5106 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Function)) { 5107 // If this is a constructor, instantiate the member initializers. 5108 InstantiateMemInitializers(Ctor, cast<CXXConstructorDecl>(PatternDecl), 5109 TemplateArgs); 5110 5111 // If this is an MS ABI dllexport default constructor, instantiate any 5112 // default arguments. 5113 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 5114 Ctor->isDefaultConstructor()) { 5115 InstantiateDefaultCtorDefaultArgs(Ctor); 5116 } 5117 } 5118 5119 // Instantiate the function body. 5120 Body = SubstStmt(Pattern, TemplateArgs); 5121 5122 if (Body.isInvalid()) 5123 Function->setInvalidDecl(); 5124 } 5125 // FIXME: finishing the function body while in an expression evaluation 5126 // context seems wrong. Investigate more. 5127 ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true); 5128 5129 PerformDependentDiagnostics(PatternDecl, TemplateArgs); 5130 5131 if (auto *Listener = getASTMutationListener()) 5132 Listener->FunctionDefinitionInstantiated(Function); 5133 5134 savedContext.pop(); 5135 } 5136 5137 DeclGroupRef DG(Function); 5138 Consumer.HandleTopLevelDecl(DG); 5139 5140 // This class may have local implicit instantiations that need to be 5141 // instantiation within this scope. 5142 LocalInstantiations.perform(); 5143 Scope.Exit(); 5144 GlobalInstantiations.perform(); 5145 } 5146 5147 VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation( 5148 VarTemplateDecl *VarTemplate, VarDecl *FromVar, 5149 const TemplateArgumentList &TemplateArgList, 5150 const TemplateArgumentListInfo &TemplateArgsInfo, 5151 SmallVectorImpl<TemplateArgument> &Converted, 5152 SourceLocation PointOfInstantiation, LateInstantiatedAttrVec *LateAttrs, 5153 LocalInstantiationScope *StartingScope) { 5154 if (FromVar->isInvalidDecl()) 5155 return nullptr; 5156 5157 InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar); 5158 if (Inst.isInvalid()) 5159 return nullptr; 5160 5161 // Instantiate the first declaration of the variable template: for a partial 5162 // specialization of a static data member template, the first declaration may 5163 // or may not be the declaration in the class; if it's in the class, we want 5164 // to instantiate a member in the class (a declaration), and if it's outside, 5165 // we want to instantiate a definition. 5166 // 5167 // If we're instantiating an explicitly-specialized member template or member 5168 // partial specialization, don't do this. The member specialization completely 5169 // replaces the original declaration in this case. 5170 bool IsMemberSpec = false; 5171 MultiLevelTemplateArgumentList MultiLevelList; 5172 if (auto *PartialSpec = 5173 dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar)) { 5174 IsMemberSpec = PartialSpec->isMemberSpecialization(); 5175 MultiLevelList.addOuterTemplateArguments( 5176 PartialSpec, TemplateArgList.asArray(), /*Final=*/false); 5177 } else { 5178 assert(VarTemplate == FromVar->getDescribedVarTemplate()); 5179 IsMemberSpec = VarTemplate->isMemberSpecialization(); 5180 MultiLevelList.addOuterTemplateArguments( 5181 VarTemplate, TemplateArgList.asArray(), /*Final=*/false); 5182 } 5183 if (!IsMemberSpec) 5184 FromVar = FromVar->getFirstDecl(); 5185 5186 TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(), 5187 MultiLevelList); 5188 5189 // TODO: Set LateAttrs and StartingScope ... 5190 5191 return cast_or_null<VarTemplateSpecializationDecl>( 5192 Instantiator.VisitVarTemplateSpecializationDecl( 5193 VarTemplate, FromVar, TemplateArgsInfo, Converted)); 5194 } 5195 5196 /// Instantiates a variable template specialization by completing it 5197 /// with appropriate type information and initializer. 5198 VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl( 5199 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl, 5200 const MultiLevelTemplateArgumentList &TemplateArgs) { 5201 assert(PatternDecl->isThisDeclarationADefinition() && 5202 "don't have a definition to instantiate from"); 5203 5204 // Do substitution on the type of the declaration 5205 TypeSourceInfo *DI = 5206 SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs, 5207 PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName()); 5208 if (!DI) 5209 return nullptr; 5210 5211 // Update the type of this variable template specialization. 5212 VarSpec->setType(DI->getType()); 5213 5214 // Convert the declaration into a definition now. 5215 VarSpec->setCompleteDefinition(); 5216 5217 // Instantiate the initializer. 5218 InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs); 5219 5220 if (getLangOpts().OpenCL) 5221 deduceOpenCLAddressSpace(VarSpec); 5222 5223 return VarSpec; 5224 } 5225 5226 /// BuildVariableInstantiation - Used after a new variable has been created. 5227 /// Sets basic variable data and decides whether to postpone the 5228 /// variable instantiation. 5229 void Sema::BuildVariableInstantiation( 5230 VarDecl *NewVar, VarDecl *OldVar, 5231 const MultiLevelTemplateArgumentList &TemplateArgs, 5232 LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner, 5233 LocalInstantiationScope *StartingScope, 5234 bool InstantiatingVarTemplate, 5235 VarTemplateSpecializationDecl *PrevDeclForVarTemplateSpecialization) { 5236 // Instantiating a partial specialization to produce a partial 5237 // specialization. 5238 bool InstantiatingVarTemplatePartialSpec = 5239 isa<VarTemplatePartialSpecializationDecl>(OldVar) && 5240 isa<VarTemplatePartialSpecializationDecl>(NewVar); 5241 // Instantiating from a variable template (or partial specialization) to 5242 // produce a variable template specialization. 5243 bool InstantiatingSpecFromTemplate = 5244 isa<VarTemplateSpecializationDecl>(NewVar) && 5245 (OldVar->getDescribedVarTemplate() || 5246 isa<VarTemplatePartialSpecializationDecl>(OldVar)); 5247 5248 // If we are instantiating a local extern declaration, the 5249 // instantiation belongs lexically to the containing function. 5250 // If we are instantiating a static data member defined 5251 // out-of-line, the instantiation will have the same lexical 5252 // context (which will be a namespace scope) as the template. 5253 if (OldVar->isLocalExternDecl()) { 5254 NewVar->setLocalExternDecl(); 5255 NewVar->setLexicalDeclContext(Owner); 5256 } else if (OldVar->isOutOfLine()) 5257 NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext()); 5258 NewVar->setTSCSpec(OldVar->getTSCSpec()); 5259 NewVar->setInitStyle(OldVar->getInitStyle()); 5260 NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl()); 5261 NewVar->setObjCForDecl(OldVar->isObjCForDecl()); 5262 NewVar->setConstexpr(OldVar->isConstexpr()); 5263 NewVar->setInitCapture(OldVar->isInitCapture()); 5264 NewVar->setPreviousDeclInSameBlockScope( 5265 OldVar->isPreviousDeclInSameBlockScope()); 5266 NewVar->setAccess(OldVar->getAccess()); 5267 5268 if (!OldVar->isStaticDataMember()) { 5269 if (OldVar->isUsed(false)) 5270 NewVar->setIsUsed(); 5271 NewVar->setReferenced(OldVar->isReferenced()); 5272 } 5273 5274 InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope); 5275 5276 LookupResult Previous( 5277 *this, NewVar->getDeclName(), NewVar->getLocation(), 5278 NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage 5279 : Sema::LookupOrdinaryName, 5280 NewVar->isLocalExternDecl() ? Sema::ForExternalRedeclaration 5281 : forRedeclarationInCurContext()); 5282 5283 if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() && 5284 (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() || 5285 OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) { 5286 // We have a previous declaration. Use that one, so we merge with the 5287 // right type. 5288 if (NamedDecl *NewPrev = FindInstantiatedDecl( 5289 NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs)) 5290 Previous.addDecl(NewPrev); 5291 } else if (!isa<VarTemplateSpecializationDecl>(NewVar) && 5292 OldVar->hasLinkage()) { 5293 LookupQualifiedName(Previous, NewVar->getDeclContext(), false); 5294 } else if (PrevDeclForVarTemplateSpecialization) { 5295 Previous.addDecl(PrevDeclForVarTemplateSpecialization); 5296 } 5297 CheckVariableDeclaration(NewVar, Previous); 5298 5299 if (!InstantiatingVarTemplate) { 5300 NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar); 5301 if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl()) 5302 NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar); 5303 } 5304 5305 if (!OldVar->isOutOfLine()) { 5306 if (NewVar->getDeclContext()->isFunctionOrMethod()) 5307 CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar); 5308 } 5309 5310 // Link instantiations of static data members back to the template from 5311 // which they were instantiated. 5312 // 5313 // Don't do this when instantiating a template (we link the template itself 5314 // back in that case) nor when instantiating a static data member template 5315 // (that's not a member specialization). 5316 if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate && 5317 !InstantiatingSpecFromTemplate) 5318 NewVar->setInstantiationOfStaticDataMember(OldVar, 5319 TSK_ImplicitInstantiation); 5320 5321 // If the pattern is an (in-class) explicit specialization, then the result 5322 // is also an explicit specialization. 5323 if (VarTemplateSpecializationDecl *OldVTSD = 5324 dyn_cast<VarTemplateSpecializationDecl>(OldVar)) { 5325 if (OldVTSD->getSpecializationKind() == TSK_ExplicitSpecialization && 5326 !isa<VarTemplatePartialSpecializationDecl>(OldVTSD)) 5327 cast<VarTemplateSpecializationDecl>(NewVar)->setSpecializationKind( 5328 TSK_ExplicitSpecialization); 5329 } 5330 5331 // Forward the mangling number from the template to the instantiated decl. 5332 Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar)); 5333 Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar)); 5334 5335 // Figure out whether to eagerly instantiate the initializer. 5336 if (InstantiatingVarTemplate || InstantiatingVarTemplatePartialSpec) { 5337 // We're producing a template. Don't instantiate the initializer yet. 5338 } else if (NewVar->getType()->isUndeducedType()) { 5339 // We need the type to complete the declaration of the variable. 5340 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); 5341 } else if (InstantiatingSpecFromTemplate || 5342 (OldVar->isInline() && OldVar->isThisDeclarationADefinition() && 5343 !NewVar->isThisDeclarationADefinition())) { 5344 // Delay instantiation of the initializer for variable template 5345 // specializations or inline static data members until a definition of the 5346 // variable is needed. 5347 } else { 5348 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); 5349 } 5350 5351 // Diagnose unused local variables with dependent types, where the diagnostic 5352 // will have been deferred. 5353 if (!NewVar->isInvalidDecl() && 5354 NewVar->getDeclContext()->isFunctionOrMethod() && 5355 OldVar->getType()->isDependentType()) 5356 DiagnoseUnusedDecl(NewVar); 5357 } 5358 5359 /// Instantiate the initializer of a variable. 5360 void Sema::InstantiateVariableInitializer( 5361 VarDecl *Var, VarDecl *OldVar, 5362 const MultiLevelTemplateArgumentList &TemplateArgs) { 5363 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 5364 L->VariableDefinitionInstantiated(Var); 5365 5366 // We propagate the 'inline' flag with the initializer, because it 5367 // would otherwise imply that the variable is a definition for a 5368 // non-static data member. 5369 if (OldVar->isInlineSpecified()) 5370 Var->setInlineSpecified(); 5371 else if (OldVar->isInline()) 5372 Var->setImplicitlyInline(); 5373 5374 if (OldVar->getInit()) { 5375 EnterExpressionEvaluationContext Evaluated( 5376 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var); 5377 5378 // Instantiate the initializer. 5379 ExprResult Init; 5380 5381 { 5382 ContextRAII SwitchContext(*this, Var->getDeclContext()); 5383 Init = SubstInitializer(OldVar->getInit(), TemplateArgs, 5384 OldVar->getInitStyle() == VarDecl::CallInit); 5385 } 5386 5387 if (!Init.isInvalid()) { 5388 Expr *InitExpr = Init.get(); 5389 5390 if (Var->hasAttr<DLLImportAttr>() && 5391 (!InitExpr || 5392 !InitExpr->isConstantInitializer(getASTContext(), false))) { 5393 // Do not dynamically initialize dllimport variables. 5394 } else if (InitExpr) { 5395 bool DirectInit = OldVar->isDirectInit(); 5396 AddInitializerToDecl(Var, InitExpr, DirectInit); 5397 } else 5398 ActOnUninitializedDecl(Var); 5399 } else { 5400 // FIXME: Not too happy about invalidating the declaration 5401 // because of a bogus initializer. 5402 Var->setInvalidDecl(); 5403 } 5404 } else { 5405 // `inline` variables are a definition and declaration all in one; we won't 5406 // pick up an initializer from anywhere else. 5407 if (Var->isStaticDataMember() && !Var->isInline()) { 5408 if (!Var->isOutOfLine()) 5409 return; 5410 5411 // If the declaration inside the class had an initializer, don't add 5412 // another one to the out-of-line definition. 5413 if (OldVar->getFirstDecl()->hasInit()) 5414 return; 5415 } 5416 5417 // We'll add an initializer to a for-range declaration later. 5418 if (Var->isCXXForRangeDecl() || Var->isObjCForDecl()) 5419 return; 5420 5421 ActOnUninitializedDecl(Var); 5422 } 5423 5424 if (getLangOpts().CUDA) 5425 checkAllowedCUDAInitializer(Var); 5426 } 5427 5428 /// Instantiate the definition of the given variable from its 5429 /// template. 5430 /// 5431 /// \param PointOfInstantiation the point at which the instantiation was 5432 /// required. Note that this is not precisely a "point of instantiation" 5433 /// for the variable, but it's close. 5434 /// 5435 /// \param Var the already-instantiated declaration of a templated variable. 5436 /// 5437 /// \param Recursive if true, recursively instantiates any functions that 5438 /// are required by this instantiation. 5439 /// 5440 /// \param DefinitionRequired if true, then we are performing an explicit 5441 /// instantiation where a definition of the variable is required. Complain 5442 /// if there is no such definition. 5443 void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation, 5444 VarDecl *Var, bool Recursive, 5445 bool DefinitionRequired, bool AtEndOfTU) { 5446 if (Var->isInvalidDecl()) 5447 return; 5448 5449 // Never instantiate an explicitly-specialized entity. 5450 TemplateSpecializationKind TSK = 5451 Var->getTemplateSpecializationKindForInstantiation(); 5452 if (TSK == TSK_ExplicitSpecialization) 5453 return; 5454 5455 // Find the pattern and the arguments to substitute into it. 5456 VarDecl *PatternDecl = Var->getTemplateInstantiationPattern(); 5457 assert(PatternDecl && "no pattern for templated variable"); 5458 MultiLevelTemplateArgumentList TemplateArgs = 5459 getTemplateInstantiationArgs(Var); 5460 5461 VarTemplateSpecializationDecl *VarSpec = 5462 dyn_cast<VarTemplateSpecializationDecl>(Var); 5463 if (VarSpec) { 5464 // If this is a static data member template, there might be an 5465 // uninstantiated initializer on the declaration. If so, instantiate 5466 // it now. 5467 // 5468 // FIXME: This largely duplicates what we would do below. The difference 5469 // is that along this path we may instantiate an initializer from an 5470 // in-class declaration of the template and instantiate the definition 5471 // from a separate out-of-class definition. 5472 if (PatternDecl->isStaticDataMember() && 5473 (PatternDecl = PatternDecl->getFirstDecl())->hasInit() && 5474 !Var->hasInit()) { 5475 // FIXME: Factor out the duplicated instantiation context setup/tear down 5476 // code here. 5477 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); 5478 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 5479 return; 5480 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 5481 "instantiating variable initializer"); 5482 5483 // The instantiation is visible here, even if it was first declared in an 5484 // unimported module. 5485 Var->setVisibleDespiteOwningModule(); 5486 5487 // If we're performing recursive template instantiation, create our own 5488 // queue of pending implicit instantiations that we will instantiate 5489 // later, while we're still within our own instantiation context. 5490 GlobalEagerInstantiationScope GlobalInstantiations(*this, 5491 /*Enabled=*/Recursive); 5492 LocalInstantiationScope Local(*this); 5493 LocalEagerInstantiationScope LocalInstantiations(*this); 5494 5495 // Enter the scope of this instantiation. We don't use 5496 // PushDeclContext because we don't have a scope. 5497 ContextRAII PreviousContext(*this, Var->getDeclContext()); 5498 InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs); 5499 PreviousContext.pop(); 5500 5501 // This variable may have local implicit instantiations that need to be 5502 // instantiated within this scope. 5503 LocalInstantiations.perform(); 5504 Local.Exit(); 5505 GlobalInstantiations.perform(); 5506 } 5507 } else { 5508 assert(Var->isStaticDataMember() && PatternDecl->isStaticDataMember() && 5509 "not a static data member?"); 5510 } 5511 5512 VarDecl *Def = PatternDecl->getDefinition(getASTContext()); 5513 5514 // If we don't have a definition of the variable template, we won't perform 5515 // any instantiation. Rather, we rely on the user to instantiate this 5516 // definition (or provide a specialization for it) in another translation 5517 // unit. 5518 if (!Def && !DefinitionRequired) { 5519 if (TSK == TSK_ExplicitInstantiationDefinition) { 5520 PendingInstantiations.push_back( 5521 std::make_pair(Var, PointOfInstantiation)); 5522 } else if (TSK == TSK_ImplicitInstantiation) { 5523 // Warn about missing definition at the end of translation unit. 5524 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() && 5525 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) { 5526 Diag(PointOfInstantiation, diag::warn_var_template_missing) 5527 << Var; 5528 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); 5529 if (getLangOpts().CPlusPlus11) 5530 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var; 5531 } 5532 return; 5533 } 5534 } 5535 5536 // FIXME: We need to track the instantiation stack in order to know which 5537 // definitions should be visible within this instantiation. 5538 // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember(). 5539 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var, 5540 /*InstantiatedFromMember*/false, 5541 PatternDecl, Def, TSK, 5542 /*Complain*/DefinitionRequired)) 5543 return; 5544 5545 // C++11 [temp.explicit]p10: 5546 // Except for inline functions, const variables of literal types, variables 5547 // of reference types, [...] explicit instantiation declarations 5548 // have the effect of suppressing the implicit instantiation of the entity 5549 // to which they refer. 5550 // 5551 // FIXME: That's not exactly the same as "might be usable in constant 5552 // expressions", which only allows constexpr variables and const integral 5553 // types, not arbitrary const literal types. 5554 if (TSK == TSK_ExplicitInstantiationDeclaration && 5555 !Var->mightBeUsableInConstantExpressions(getASTContext())) 5556 return; 5557 5558 // Make sure to pass the instantiated variable to the consumer at the end. 5559 struct PassToConsumerRAII { 5560 ASTConsumer &Consumer; 5561 VarDecl *Var; 5562 5563 PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var) 5564 : Consumer(Consumer), Var(Var) { } 5565 5566 ~PassToConsumerRAII() { 5567 Consumer.HandleCXXStaticMemberVarInstantiation(Var); 5568 } 5569 } PassToConsumerRAII(Consumer, Var); 5570 5571 // If we already have a definition, we're done. 5572 if (VarDecl *Def = Var->getDefinition()) { 5573 // We may be explicitly instantiating something we've already implicitly 5574 // instantiated. 5575 Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(), 5576 PointOfInstantiation); 5577 return; 5578 } 5579 5580 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); 5581 if (Inst.isInvalid() || Inst.isAlreadyInstantiating()) 5582 return; 5583 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 5584 "instantiating variable definition"); 5585 5586 // If we're performing recursive template instantiation, create our own 5587 // queue of pending implicit instantiations that we will instantiate later, 5588 // while we're still within our own instantiation context. 5589 GlobalEagerInstantiationScope GlobalInstantiations(*this, 5590 /*Enabled=*/Recursive); 5591 5592 // Enter the scope of this instantiation. We don't use 5593 // PushDeclContext because we don't have a scope. 5594 ContextRAII PreviousContext(*this, Var->getDeclContext()); 5595 LocalInstantiationScope Local(*this); 5596 5597 LocalEagerInstantiationScope LocalInstantiations(*this); 5598 5599 VarDecl *OldVar = Var; 5600 if (Def->isStaticDataMember() && !Def->isOutOfLine()) { 5601 // We're instantiating an inline static data member whose definition was 5602 // provided inside the class. 5603 InstantiateVariableInitializer(Var, Def, TemplateArgs); 5604 } else if (!VarSpec) { 5605 Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(), 5606 TemplateArgs)); 5607 } else if (Var->isStaticDataMember() && 5608 Var->getLexicalDeclContext()->isRecord()) { 5609 // We need to instantiate the definition of a static data member template, 5610 // and all we have is the in-class declaration of it. Instantiate a separate 5611 // declaration of the definition. 5612 TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(), 5613 TemplateArgs); 5614 5615 TemplateArgumentListInfo TemplateArgInfo; 5616 if (const ASTTemplateArgumentListInfo *ArgInfo = 5617 VarSpec->getTemplateArgsInfo()) { 5618 TemplateArgInfo.setLAngleLoc(ArgInfo->getLAngleLoc()); 5619 TemplateArgInfo.setRAngleLoc(ArgInfo->getRAngleLoc()); 5620 for (const TemplateArgumentLoc &Arg : ArgInfo->arguments()) 5621 TemplateArgInfo.addArgument(Arg); 5622 } 5623 5624 Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl( 5625 VarSpec->getSpecializedTemplate(), Def, TemplateArgInfo, 5626 VarSpec->getTemplateArgs().asArray(), VarSpec)); 5627 if (Var) { 5628 llvm::PointerUnion<VarTemplateDecl *, 5629 VarTemplatePartialSpecializationDecl *> PatternPtr = 5630 VarSpec->getSpecializedTemplateOrPartial(); 5631 if (VarTemplatePartialSpecializationDecl *Partial = 5632 PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>()) 5633 cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf( 5634 Partial, &VarSpec->getTemplateInstantiationArgs()); 5635 5636 // Attach the initializer. 5637 InstantiateVariableInitializer(Var, Def, TemplateArgs); 5638 } 5639 } else 5640 // Complete the existing variable's definition with an appropriately 5641 // substituted type and initializer. 5642 Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs); 5643 5644 PreviousContext.pop(); 5645 5646 if (Var) { 5647 PassToConsumerRAII.Var = Var; 5648 Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(), 5649 OldVar->getPointOfInstantiation()); 5650 } 5651 5652 // This variable may have local implicit instantiations that need to be 5653 // instantiated within this scope. 5654 LocalInstantiations.perform(); 5655 Local.Exit(); 5656 GlobalInstantiations.perform(); 5657 } 5658 5659 void 5660 Sema::InstantiateMemInitializers(CXXConstructorDecl *New, 5661 const CXXConstructorDecl *Tmpl, 5662 const MultiLevelTemplateArgumentList &TemplateArgs) { 5663 5664 SmallVector<CXXCtorInitializer*, 4> NewInits; 5665 bool AnyErrors = Tmpl->isInvalidDecl(); 5666 5667 // Instantiate all the initializers. 5668 for (const auto *Init : Tmpl->inits()) { 5669 // Only instantiate written initializers, let Sema re-construct implicit 5670 // ones. 5671 if (!Init->isWritten()) 5672 continue; 5673 5674 SourceLocation EllipsisLoc; 5675 5676 if (Init->isPackExpansion()) { 5677 // This is a pack expansion. We should expand it now. 5678 TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc(); 5679 SmallVector<UnexpandedParameterPack, 4> Unexpanded; 5680 collectUnexpandedParameterPacks(BaseTL, Unexpanded); 5681 collectUnexpandedParameterPacks(Init->getInit(), Unexpanded); 5682 bool ShouldExpand = false; 5683 bool RetainExpansion = false; 5684 std::optional<unsigned> NumExpansions; 5685 if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(), 5686 BaseTL.getSourceRange(), 5687 Unexpanded, 5688 TemplateArgs, ShouldExpand, 5689 RetainExpansion, 5690 NumExpansions)) { 5691 AnyErrors = true; 5692 New->setInvalidDecl(); 5693 continue; 5694 } 5695 assert(ShouldExpand && "Partial instantiation of base initializer?"); 5696 5697 // Loop over all of the arguments in the argument pack(s), 5698 for (unsigned I = 0; I != *NumExpansions; ++I) { 5699 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I); 5700 5701 // Instantiate the initializer. 5702 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, 5703 /*CXXDirectInit=*/true); 5704 if (TempInit.isInvalid()) { 5705 AnyErrors = true; 5706 break; 5707 } 5708 5709 // Instantiate the base type. 5710 TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(), 5711 TemplateArgs, 5712 Init->getSourceLocation(), 5713 New->getDeclName()); 5714 if (!BaseTInfo) { 5715 AnyErrors = true; 5716 break; 5717 } 5718 5719 // Build the initializer. 5720 MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(), 5721 BaseTInfo, TempInit.get(), 5722 New->getParent(), 5723 SourceLocation()); 5724 if (NewInit.isInvalid()) { 5725 AnyErrors = true; 5726 break; 5727 } 5728 5729 NewInits.push_back(NewInit.get()); 5730 } 5731 5732 continue; 5733 } 5734 5735 // Instantiate the initializer. 5736 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, 5737 /*CXXDirectInit=*/true); 5738 if (TempInit.isInvalid()) { 5739 AnyErrors = true; 5740 continue; 5741 } 5742 5743 MemInitResult NewInit; 5744 if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) { 5745 TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(), 5746 TemplateArgs, 5747 Init->getSourceLocation(), 5748 New->getDeclName()); 5749 if (!TInfo) { 5750 AnyErrors = true; 5751 New->setInvalidDecl(); 5752 continue; 5753 } 5754 5755 if (Init->isBaseInitializer()) 5756 NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(), 5757 New->getParent(), EllipsisLoc); 5758 else 5759 NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(), 5760 cast<CXXRecordDecl>(CurContext->getParent())); 5761 } else if (Init->isMemberInitializer()) { 5762 FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl( 5763 Init->getMemberLocation(), 5764 Init->getMember(), 5765 TemplateArgs)); 5766 if (!Member) { 5767 AnyErrors = true; 5768 New->setInvalidDecl(); 5769 continue; 5770 } 5771 5772 NewInit = BuildMemberInitializer(Member, TempInit.get(), 5773 Init->getSourceLocation()); 5774 } else if (Init->isIndirectMemberInitializer()) { 5775 IndirectFieldDecl *IndirectMember = 5776 cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl( 5777 Init->getMemberLocation(), 5778 Init->getIndirectMember(), TemplateArgs)); 5779 5780 if (!IndirectMember) { 5781 AnyErrors = true; 5782 New->setInvalidDecl(); 5783 continue; 5784 } 5785 5786 NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(), 5787 Init->getSourceLocation()); 5788 } 5789 5790 if (NewInit.isInvalid()) { 5791 AnyErrors = true; 5792 New->setInvalidDecl(); 5793 } else { 5794 NewInits.push_back(NewInit.get()); 5795 } 5796 } 5797 5798 // Assign all the initializers to the new constructor. 5799 ActOnMemInitializers(New, 5800 /*FIXME: ColonLoc */ 5801 SourceLocation(), 5802 NewInits, 5803 AnyErrors); 5804 } 5805 5806 // TODO: this could be templated if the various decl types used the 5807 // same method name. 5808 static bool isInstantiationOf(ClassTemplateDecl *Pattern, 5809 ClassTemplateDecl *Instance) { 5810 Pattern = Pattern->getCanonicalDecl(); 5811 5812 do { 5813 Instance = Instance->getCanonicalDecl(); 5814 if (Pattern == Instance) return true; 5815 Instance = Instance->getInstantiatedFromMemberTemplate(); 5816 } while (Instance); 5817 5818 return false; 5819 } 5820 5821 static bool isInstantiationOf(FunctionTemplateDecl *Pattern, 5822 FunctionTemplateDecl *Instance) { 5823 Pattern = Pattern->getCanonicalDecl(); 5824 5825 do { 5826 Instance = Instance->getCanonicalDecl(); 5827 if (Pattern == Instance) return true; 5828 Instance = Instance->getInstantiatedFromMemberTemplate(); 5829 } while (Instance); 5830 5831 return false; 5832 } 5833 5834 static bool 5835 isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern, 5836 ClassTemplatePartialSpecializationDecl *Instance) { 5837 Pattern 5838 = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl()); 5839 do { 5840 Instance = cast<ClassTemplatePartialSpecializationDecl>( 5841 Instance->getCanonicalDecl()); 5842 if (Pattern == Instance) 5843 return true; 5844 Instance = Instance->getInstantiatedFromMember(); 5845 } while (Instance); 5846 5847 return false; 5848 } 5849 5850 static bool isInstantiationOf(CXXRecordDecl *Pattern, 5851 CXXRecordDecl *Instance) { 5852 Pattern = Pattern->getCanonicalDecl(); 5853 5854 do { 5855 Instance = Instance->getCanonicalDecl(); 5856 if (Pattern == Instance) return true; 5857 Instance = Instance->getInstantiatedFromMemberClass(); 5858 } while (Instance); 5859 5860 return false; 5861 } 5862 5863 static bool isInstantiationOf(FunctionDecl *Pattern, 5864 FunctionDecl *Instance) { 5865 Pattern = Pattern->getCanonicalDecl(); 5866 5867 do { 5868 Instance = Instance->getCanonicalDecl(); 5869 if (Pattern == Instance) return true; 5870 Instance = Instance->getInstantiatedFromMemberFunction(); 5871 } while (Instance); 5872 5873 return false; 5874 } 5875 5876 static bool isInstantiationOf(EnumDecl *Pattern, 5877 EnumDecl *Instance) { 5878 Pattern = Pattern->getCanonicalDecl(); 5879 5880 do { 5881 Instance = Instance->getCanonicalDecl(); 5882 if (Pattern == Instance) return true; 5883 Instance = Instance->getInstantiatedFromMemberEnum(); 5884 } while (Instance); 5885 5886 return false; 5887 } 5888 5889 static bool isInstantiationOf(UsingShadowDecl *Pattern, 5890 UsingShadowDecl *Instance, 5891 ASTContext &C) { 5892 return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance), 5893 Pattern); 5894 } 5895 5896 static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance, 5897 ASTContext &C) { 5898 return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern); 5899 } 5900 5901 template<typename T> 5902 static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other, 5903 ASTContext &Ctx) { 5904 // An unresolved using declaration can instantiate to an unresolved using 5905 // declaration, or to a using declaration or a using declaration pack. 5906 // 5907 // Multiple declarations can claim to be instantiated from an unresolved 5908 // using declaration if it's a pack expansion. We want the UsingPackDecl 5909 // in that case, not the individual UsingDecls within the pack. 5910 bool OtherIsPackExpansion; 5911 NamedDecl *OtherFrom; 5912 if (auto *OtherUUD = dyn_cast<T>(Other)) { 5913 OtherIsPackExpansion = OtherUUD->isPackExpansion(); 5914 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD); 5915 } else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Other)) { 5916 OtherIsPackExpansion = true; 5917 OtherFrom = OtherUPD->getInstantiatedFromUsingDecl(); 5918 } else if (auto *OtherUD = dyn_cast<UsingDecl>(Other)) { 5919 OtherIsPackExpansion = false; 5920 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD); 5921 } else { 5922 return false; 5923 } 5924 return Pattern->isPackExpansion() == OtherIsPackExpansion && 5925 declaresSameEntity(OtherFrom, Pattern); 5926 } 5927 5928 static bool isInstantiationOfStaticDataMember(VarDecl *Pattern, 5929 VarDecl *Instance) { 5930 assert(Instance->isStaticDataMember()); 5931 5932 Pattern = Pattern->getCanonicalDecl(); 5933 5934 do { 5935 Instance = Instance->getCanonicalDecl(); 5936 if (Pattern == Instance) return true; 5937 Instance = Instance->getInstantiatedFromStaticDataMember(); 5938 } while (Instance); 5939 5940 return false; 5941 } 5942 5943 // Other is the prospective instantiation 5944 // D is the prospective pattern 5945 static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) { 5946 if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D)) 5947 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); 5948 5949 if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(D)) 5950 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx); 5951 5952 if (D->getKind() != Other->getKind()) 5953 return false; 5954 5955 if (auto *Record = dyn_cast<CXXRecordDecl>(Other)) 5956 return isInstantiationOf(cast<CXXRecordDecl>(D), Record); 5957 5958 if (auto *Function = dyn_cast<FunctionDecl>(Other)) 5959 return isInstantiationOf(cast<FunctionDecl>(D), Function); 5960 5961 if (auto *Enum = dyn_cast<EnumDecl>(Other)) 5962 return isInstantiationOf(cast<EnumDecl>(D), Enum); 5963 5964 if (auto *Var = dyn_cast<VarDecl>(Other)) 5965 if (Var->isStaticDataMember()) 5966 return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var); 5967 5968 if (auto *Temp = dyn_cast<ClassTemplateDecl>(Other)) 5969 return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp); 5970 5971 if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Other)) 5972 return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp); 5973 5974 if (auto *PartialSpec = 5975 dyn_cast<ClassTemplatePartialSpecializationDecl>(Other)) 5976 return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D), 5977 PartialSpec); 5978 5979 if (auto *Field = dyn_cast<FieldDecl>(Other)) { 5980 if (!Field->getDeclName()) { 5981 // This is an unnamed field. 5982 return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field), 5983 cast<FieldDecl>(D)); 5984 } 5985 } 5986 5987 if (auto *Using = dyn_cast<UsingDecl>(Other)) 5988 return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx); 5989 5990 if (auto *Shadow = dyn_cast<UsingShadowDecl>(Other)) 5991 return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx); 5992 5993 return D->getDeclName() && 5994 D->getDeclName() == cast<NamedDecl>(Other)->getDeclName(); 5995 } 5996 5997 template<typename ForwardIterator> 5998 static NamedDecl *findInstantiationOf(ASTContext &Ctx, 5999 NamedDecl *D, 6000 ForwardIterator first, 6001 ForwardIterator last) { 6002 for (; first != last; ++first) 6003 if (isInstantiationOf(Ctx, D, *first)) 6004 return cast<NamedDecl>(*first); 6005 6006 return nullptr; 6007 } 6008 6009 /// Finds the instantiation of the given declaration context 6010 /// within the current instantiation. 6011 /// 6012 /// \returns NULL if there was an error 6013 DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC, 6014 const MultiLevelTemplateArgumentList &TemplateArgs) { 6015 if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) { 6016 Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true); 6017 return cast_or_null<DeclContext>(ID); 6018 } else return DC; 6019 } 6020 6021 /// Determine whether the given context is dependent on template parameters at 6022 /// level \p Level or below. 6023 /// 6024 /// Sometimes we only substitute an inner set of template arguments and leave 6025 /// the outer templates alone. In such cases, contexts dependent only on the 6026 /// outer levels are not effectively dependent. 6027 static bool isDependentContextAtLevel(DeclContext *DC, unsigned Level) { 6028 if (!DC->isDependentContext()) 6029 return false; 6030 if (!Level) 6031 return true; 6032 return cast<Decl>(DC)->getTemplateDepth() > Level; 6033 } 6034 6035 /// Find the instantiation of the given declaration within the 6036 /// current instantiation. 6037 /// 6038 /// This routine is intended to be used when \p D is a declaration 6039 /// referenced from within a template, that needs to mapped into the 6040 /// corresponding declaration within an instantiation. For example, 6041 /// given: 6042 /// 6043 /// \code 6044 /// template<typename T> 6045 /// struct X { 6046 /// enum Kind { 6047 /// KnownValue = sizeof(T) 6048 /// }; 6049 /// 6050 /// bool getKind() const { return KnownValue; } 6051 /// }; 6052 /// 6053 /// template struct X<int>; 6054 /// \endcode 6055 /// 6056 /// In the instantiation of X<int>::getKind(), we need to map the \p 6057 /// EnumConstantDecl for \p KnownValue (which refers to 6058 /// X<T>::<Kind>::KnownValue) to its instantiation (X<int>::<Kind>::KnownValue). 6059 /// \p FindInstantiatedDecl performs this mapping from within the instantiation 6060 /// of X<int>. 6061 NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, 6062 const MultiLevelTemplateArgumentList &TemplateArgs, 6063 bool FindingInstantiatedContext) { 6064 DeclContext *ParentDC = D->getDeclContext(); 6065 // Determine whether our parent context depends on any of the template 6066 // arguments we're currently substituting. 6067 bool ParentDependsOnArgs = isDependentContextAtLevel( 6068 ParentDC, TemplateArgs.getNumRetainedOuterLevels()); 6069 // FIXME: Parameters of pointer to functions (y below) that are themselves 6070 // parameters (p below) can have their ParentDC set to the translation-unit 6071 // - thus we can not consistently check if the ParentDC of such a parameter 6072 // is Dependent or/and a FunctionOrMethod. 6073 // For e.g. this code, during Template argument deduction tries to 6074 // find an instantiated decl for (T y) when the ParentDC for y is 6075 // the translation unit. 6076 // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {} 6077 // float baz(float(*)()) { return 0.0; } 6078 // Foo(baz); 6079 // The better fix here is perhaps to ensure that a ParmVarDecl, by the time 6080 // it gets here, always has a FunctionOrMethod as its ParentDC?? 6081 // For now: 6082 // - as long as we have a ParmVarDecl whose parent is non-dependent and 6083 // whose type is not instantiation dependent, do nothing to the decl 6084 // - otherwise find its instantiated decl. 6085 if (isa<ParmVarDecl>(D) && !ParentDependsOnArgs && 6086 !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType()) 6087 return D; 6088 if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) || 6089 isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) || 6090 (ParentDependsOnArgs && (ParentDC->isFunctionOrMethod() || 6091 isa<OMPDeclareReductionDecl>(ParentDC) || 6092 isa<OMPDeclareMapperDecl>(ParentDC))) || 6093 (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda() && 6094 cast<CXXRecordDecl>(D)->getTemplateDepth() > 6095 TemplateArgs.getNumRetainedOuterLevels())) { 6096 // D is a local of some kind. Look into the map of local 6097 // declarations to their instantiations. 6098 if (CurrentInstantiationScope) { 6099 if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) { 6100 if (Decl *FD = Found->dyn_cast<Decl *>()) 6101 return cast<NamedDecl>(FD); 6102 6103 int PackIdx = ArgumentPackSubstitutionIndex; 6104 assert(PackIdx != -1 && 6105 "found declaration pack but not pack expanding"); 6106 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack; 6107 return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]); 6108 } 6109 } 6110 6111 // If we're performing a partial substitution during template argument 6112 // deduction, we may not have values for template parameters yet. They 6113 // just map to themselves. 6114 if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) || 6115 isa<TemplateTemplateParmDecl>(D)) 6116 return D; 6117 6118 if (D->isInvalidDecl()) 6119 return nullptr; 6120 6121 // Normally this function only searches for already instantiated declaration 6122 // however we have to make an exclusion for local types used before 6123 // definition as in the code: 6124 // 6125 // template<typename T> void f1() { 6126 // void g1(struct x1); 6127 // struct x1 {}; 6128 // } 6129 // 6130 // In this case instantiation of the type of 'g1' requires definition of 6131 // 'x1', which is defined later. Error recovery may produce an enum used 6132 // before definition. In these cases we need to instantiate relevant 6133 // declarations here. 6134 bool NeedInstantiate = false; 6135 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) 6136 NeedInstantiate = RD->isLocalClass(); 6137 else if (isa<TypedefNameDecl>(D) && 6138 isa<CXXDeductionGuideDecl>(D->getDeclContext())) 6139 NeedInstantiate = true; 6140 else 6141 NeedInstantiate = isa<EnumDecl>(D); 6142 if (NeedInstantiate) { 6143 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); 6144 CurrentInstantiationScope->InstantiatedLocal(D, Inst); 6145 return cast<TypeDecl>(Inst); 6146 } 6147 6148 // If we didn't find the decl, then we must have a label decl that hasn't 6149 // been found yet. Lazily instantiate it and return it now. 6150 assert(isa<LabelDecl>(D)); 6151 6152 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); 6153 assert(Inst && "Failed to instantiate label??"); 6154 6155 CurrentInstantiationScope->InstantiatedLocal(D, Inst); 6156 return cast<LabelDecl>(Inst); 6157 } 6158 6159 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 6160 if (!Record->isDependentContext()) 6161 return D; 6162 6163 // Determine whether this record is the "templated" declaration describing 6164 // a class template or class template partial specialization. 6165 ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate(); 6166 if (ClassTemplate) 6167 ClassTemplate = ClassTemplate->getCanonicalDecl(); 6168 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 6169 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 6170 ClassTemplate = PartialSpec->getSpecializedTemplate()->getCanonicalDecl(); 6171 6172 // Walk the current context to find either the record or an instantiation of 6173 // it. 6174 DeclContext *DC = CurContext; 6175 while (!DC->isFileContext()) { 6176 // If we're performing substitution while we're inside the template 6177 // definition, we'll find our own context. We're done. 6178 if (DC->Equals(Record)) 6179 return Record; 6180 6181 if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) { 6182 // Check whether we're in the process of instantiating a class template 6183 // specialization of the template we're mapping. 6184 if (ClassTemplateSpecializationDecl *InstSpec 6185 = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){ 6186 ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate(); 6187 if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate)) 6188 return InstRecord; 6189 } 6190 6191 // Check whether we're in the process of instantiating a member class. 6192 if (isInstantiationOf(Record, InstRecord)) 6193 return InstRecord; 6194 } 6195 6196 // Move to the outer template scope. 6197 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) { 6198 if (FD->getFriendObjectKind() && 6199 FD->getNonTransparentDeclContext()->isFileContext()) { 6200 DC = FD->getLexicalDeclContext(); 6201 continue; 6202 } 6203 // An implicit deduction guide acts as if it's within the class template 6204 // specialization described by its name and first N template params. 6205 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FD); 6206 if (Guide && Guide->isImplicit()) { 6207 TemplateDecl *TD = Guide->getDeducedTemplate(); 6208 // Convert the arguments to an "as-written" list. 6209 TemplateArgumentListInfo Args(Loc, Loc); 6210 for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front( 6211 TD->getTemplateParameters()->size())) { 6212 ArrayRef<TemplateArgument> Unpacked(Arg); 6213 if (Arg.getKind() == TemplateArgument::Pack) 6214 Unpacked = Arg.pack_elements(); 6215 for (TemplateArgument UnpackedArg : Unpacked) 6216 Args.addArgument( 6217 getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc)); 6218 } 6219 QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args); 6220 if (T.isNull()) 6221 return nullptr; 6222 auto *SubstRecord = T->getAsCXXRecordDecl(); 6223 assert(SubstRecord && "class template id not a class type?"); 6224 // Check that this template-id names the primary template and not a 6225 // partial or explicit specialization. (In the latter cases, it's 6226 // meaningless to attempt to find an instantiation of D within the 6227 // specialization.) 6228 // FIXME: The standard doesn't say what should happen here. 6229 if (FindingInstantiatedContext && 6230 usesPartialOrExplicitSpecialization( 6231 Loc, cast<ClassTemplateSpecializationDecl>(SubstRecord))) { 6232 Diag(Loc, diag::err_specialization_not_primary_template) 6233 << T << (SubstRecord->getTemplateSpecializationKind() == 6234 TSK_ExplicitSpecialization); 6235 return nullptr; 6236 } 6237 DC = SubstRecord; 6238 continue; 6239 } 6240 } 6241 6242 DC = DC->getParent(); 6243 } 6244 6245 // Fall through to deal with other dependent record types (e.g., 6246 // anonymous unions in class templates). 6247 } 6248 6249 if (!ParentDependsOnArgs) 6250 return D; 6251 6252 ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs); 6253 if (!ParentDC) 6254 return nullptr; 6255 6256 if (ParentDC != D->getDeclContext()) { 6257 // We performed some kind of instantiation in the parent context, 6258 // so now we need to look into the instantiated parent context to 6259 // find the instantiation of the declaration D. 6260 6261 // If our context used to be dependent, we may need to instantiate 6262 // it before performing lookup into that context. 6263 bool IsBeingInstantiated = false; 6264 if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) { 6265 if (!Spec->isDependentContext()) { 6266 QualType T = Context.getTypeDeclType(Spec); 6267 const RecordType *Tag = T->getAs<RecordType>(); 6268 assert(Tag && "type of non-dependent record is not a RecordType"); 6269 if (Tag->isBeingDefined()) 6270 IsBeingInstantiated = true; 6271 if (!Tag->isBeingDefined() && 6272 RequireCompleteType(Loc, T, diag::err_incomplete_type)) 6273 return nullptr; 6274 6275 ParentDC = Tag->getDecl(); 6276 } 6277 } 6278 6279 NamedDecl *Result = nullptr; 6280 // FIXME: If the name is a dependent name, this lookup won't necessarily 6281 // find it. Does that ever matter? 6282 if (auto Name = D->getDeclName()) { 6283 DeclarationNameInfo NameInfo(Name, D->getLocation()); 6284 DeclarationNameInfo NewNameInfo = 6285 SubstDeclarationNameInfo(NameInfo, TemplateArgs); 6286 Name = NewNameInfo.getName(); 6287 if (!Name) 6288 return nullptr; 6289 DeclContext::lookup_result Found = ParentDC->lookup(Name); 6290 6291 Result = findInstantiationOf(Context, D, Found.begin(), Found.end()); 6292 } else { 6293 // Since we don't have a name for the entity we're looking for, 6294 // our only option is to walk through all of the declarations to 6295 // find that name. This will occur in a few cases: 6296 // 6297 // - anonymous struct/union within a template 6298 // - unnamed class/struct/union/enum within a template 6299 // 6300 // FIXME: Find a better way to find these instantiations! 6301 Result = findInstantiationOf(Context, D, 6302 ParentDC->decls_begin(), 6303 ParentDC->decls_end()); 6304 } 6305 6306 if (!Result) { 6307 if (isa<UsingShadowDecl>(D)) { 6308 // UsingShadowDecls can instantiate to nothing because of using hiding. 6309 } else if (hasUncompilableErrorOccurred()) { 6310 // We've already complained about some ill-formed code, so most likely 6311 // this declaration failed to instantiate. There's no point in 6312 // complaining further, since this is normal in invalid code. 6313 // FIXME: Use more fine-grained 'invalid' tracking for this. 6314 } else if (IsBeingInstantiated) { 6315 // The class in which this member exists is currently being 6316 // instantiated, and we haven't gotten around to instantiating this 6317 // member yet. This can happen when the code uses forward declarations 6318 // of member classes, and introduces ordering dependencies via 6319 // template instantiation. 6320 Diag(Loc, diag::err_member_not_yet_instantiated) 6321 << D->getDeclName() 6322 << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC)); 6323 Diag(D->getLocation(), diag::note_non_instantiated_member_here); 6324 } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) { 6325 // This enumeration constant was found when the template was defined, 6326 // but can't be found in the instantiation. This can happen if an 6327 // unscoped enumeration member is explicitly specialized. 6328 EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext()); 6329 EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum, 6330 TemplateArgs)); 6331 assert(Spec->getTemplateSpecializationKind() == 6332 TSK_ExplicitSpecialization); 6333 Diag(Loc, diag::err_enumerator_does_not_exist) 6334 << D->getDeclName() 6335 << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext())); 6336 Diag(Spec->getLocation(), diag::note_enum_specialized_here) 6337 << Context.getTypeDeclType(Spec); 6338 } else { 6339 // We should have found something, but didn't. 6340 llvm_unreachable("Unable to find instantiation of declaration!"); 6341 } 6342 } 6343 6344 D = Result; 6345 } 6346 6347 return D; 6348 } 6349 6350 /// Performs template instantiation for all implicit template 6351 /// instantiations we have seen until this point. 6352 void Sema::PerformPendingInstantiations(bool LocalOnly) { 6353 std::deque<PendingImplicitInstantiation> delayedPCHInstantiations; 6354 while (!PendingLocalImplicitInstantiations.empty() || 6355 (!LocalOnly && !PendingInstantiations.empty())) { 6356 PendingImplicitInstantiation Inst; 6357 6358 if (PendingLocalImplicitInstantiations.empty()) { 6359 Inst = PendingInstantiations.front(); 6360 PendingInstantiations.pop_front(); 6361 } else { 6362 Inst = PendingLocalImplicitInstantiations.front(); 6363 PendingLocalImplicitInstantiations.pop_front(); 6364 } 6365 6366 // Instantiate function definitions 6367 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) { 6368 bool DefinitionRequired = Function->getTemplateSpecializationKind() == 6369 TSK_ExplicitInstantiationDefinition; 6370 if (Function->isMultiVersion()) { 6371 getASTContext().forEachMultiversionedFunctionVersion( 6372 Function, [this, Inst, DefinitionRequired](FunctionDecl *CurFD) { 6373 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, CurFD, true, 6374 DefinitionRequired, true); 6375 if (CurFD->isDefined()) 6376 CurFD->setInstantiationIsPending(false); 6377 }); 6378 } else { 6379 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, Function, true, 6380 DefinitionRequired, true); 6381 if (Function->isDefined()) 6382 Function->setInstantiationIsPending(false); 6383 } 6384 // Definition of a PCH-ed template declaration may be available only in the TU. 6385 if (!LocalOnly && LangOpts.PCHInstantiateTemplates && 6386 TUKind == TU_Prefix && Function->instantiationIsPending()) 6387 delayedPCHInstantiations.push_back(Inst); 6388 continue; 6389 } 6390 6391 // Instantiate variable definitions 6392 VarDecl *Var = cast<VarDecl>(Inst.first); 6393 6394 assert((Var->isStaticDataMember() || 6395 isa<VarTemplateSpecializationDecl>(Var)) && 6396 "Not a static data member, nor a variable template" 6397 " specialization?"); 6398 6399 // Don't try to instantiate declarations if the most recent redeclaration 6400 // is invalid. 6401 if (Var->getMostRecentDecl()->isInvalidDecl()) 6402 continue; 6403 6404 // Check if the most recent declaration has changed the specialization kind 6405 // and removed the need for implicit instantiation. 6406 switch (Var->getMostRecentDecl() 6407 ->getTemplateSpecializationKindForInstantiation()) { 6408 case TSK_Undeclared: 6409 llvm_unreachable("Cannot instantitiate an undeclared specialization."); 6410 case TSK_ExplicitInstantiationDeclaration: 6411 case TSK_ExplicitSpecialization: 6412 continue; // No longer need to instantiate this type. 6413 case TSK_ExplicitInstantiationDefinition: 6414 // We only need an instantiation if the pending instantiation *is* the 6415 // explicit instantiation. 6416 if (Var != Var->getMostRecentDecl()) 6417 continue; 6418 break; 6419 case TSK_ImplicitInstantiation: 6420 break; 6421 } 6422 6423 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(), 6424 "instantiating variable definition"); 6425 bool DefinitionRequired = Var->getTemplateSpecializationKind() == 6426 TSK_ExplicitInstantiationDefinition; 6427 6428 // Instantiate static data member definitions or variable template 6429 // specializations. 6430 InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true, 6431 DefinitionRequired, true); 6432 } 6433 6434 if (!LocalOnly && LangOpts.PCHInstantiateTemplates) 6435 PendingInstantiations.swap(delayedPCHInstantiations); 6436 } 6437 6438 void Sema::PerformDependentDiagnostics(const DeclContext *Pattern, 6439 const MultiLevelTemplateArgumentList &TemplateArgs) { 6440 for (auto *DD : Pattern->ddiags()) { 6441 switch (DD->getKind()) { 6442 case DependentDiagnostic::Access: 6443 HandleDependentAccessCheck(*DD, TemplateArgs); 6444 break; 6445 } 6446 } 6447 } 6448