1 //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements C++ template argument deduction. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Sema/TemplateDeduction.h" 14 #include "TreeTransform.h" 15 #include "TypeLocBuilder.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/DeclAccessPair.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/NestedNameSpecifier.h" 27 #include "clang/AST/RecursiveASTVisitor.h" 28 #include "clang/AST/TemplateBase.h" 29 #include "clang/AST/TemplateName.h" 30 #include "clang/AST/Type.h" 31 #include "clang/AST/TypeLoc.h" 32 #include "clang/AST/UnresolvedSet.h" 33 #include "clang/Basic/AddressSpaces.h" 34 #include "clang/Basic/ExceptionSpecificationType.h" 35 #include "clang/Basic/LLVM.h" 36 #include "clang/Basic/LangOptions.h" 37 #include "clang/Basic/PartialDiagnostic.h" 38 #include "clang/Basic/SourceLocation.h" 39 #include "clang/Basic/Specifiers.h" 40 #include "clang/Sema/Ownership.h" 41 #include "clang/Sema/Sema.h" 42 #include "clang/Sema/Template.h" 43 #include "llvm/ADT/APInt.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/ArrayRef.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/FoldingSet.h" 48 #include "llvm/ADT/SmallBitVector.h" 49 #include "llvm/ADT/SmallPtrSet.h" 50 #include "llvm/ADT/SmallVector.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <optional> 57 #include <tuple> 58 #include <type_traits> 59 #include <utility> 60 61 namespace clang { 62 63 /// Various flags that control template argument deduction. 64 /// 65 /// These flags can be bitwise-OR'd together. 66 enum TemplateDeductionFlags { 67 /// No template argument deduction flags, which indicates the 68 /// strictest results for template argument deduction (as used for, e.g., 69 /// matching class template partial specializations). 70 TDF_None = 0, 71 72 /// Within template argument deduction from a function call, we are 73 /// matching with a parameter type for which the original parameter was 74 /// a reference. 75 TDF_ParamWithReferenceType = 0x1, 76 77 /// Within template argument deduction from a function call, we 78 /// are matching in a case where we ignore cv-qualifiers. 79 TDF_IgnoreQualifiers = 0x02, 80 81 /// Within template argument deduction from a function call, 82 /// we are matching in a case where we can perform template argument 83 /// deduction from a template-id of a derived class of the argument type. 84 TDF_DerivedClass = 0x04, 85 86 /// Allow non-dependent types to differ, e.g., when performing 87 /// template argument deduction from a function call where conversions 88 /// may apply. 89 TDF_SkipNonDependent = 0x08, 90 91 /// Whether we are performing template argument deduction for 92 /// parameters and arguments in a top-level template argument 93 TDF_TopLevelParameterTypeList = 0x10, 94 95 /// Within template argument deduction from overload resolution per 96 /// C++ [over.over] allow matching function types that are compatible in 97 /// terms of noreturn and default calling convention adjustments, or 98 /// similarly matching a declared template specialization against a 99 /// possible template, per C++ [temp.deduct.decl]. In either case, permit 100 /// deduction where the parameter is a function type that can be converted 101 /// to the argument type. 102 TDF_AllowCompatibleFunctionType = 0x20, 103 104 /// Within template argument deduction for a conversion function, we are 105 /// matching with an argument type for which the original argument was 106 /// a reference. 107 TDF_ArgWithReferenceType = 0x40, 108 }; 109 } 110 111 using namespace clang; 112 using namespace sema; 113 114 /// Compare two APSInts, extending and switching the sign as 115 /// necessary to compare their values regardless of underlying type. 116 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) { 117 if (Y.getBitWidth() > X.getBitWidth()) 118 X = X.extend(Y.getBitWidth()); 119 else if (Y.getBitWidth() < X.getBitWidth()) 120 Y = Y.extend(X.getBitWidth()); 121 122 // If there is a signedness mismatch, correct it. 123 if (X.isSigned() != Y.isSigned()) { 124 // If the signed value is negative, then the values cannot be the same. 125 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative())) 126 return false; 127 128 Y.setIsSigned(true); 129 X.setIsSigned(true); 130 } 131 132 return X == Y; 133 } 134 135 static Sema::TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch( 136 Sema &S, TemplateParameterList *TemplateParams, QualType Param, 137 QualType Arg, TemplateDeductionInfo &Info, 138 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF, 139 bool PartialOrdering = false, bool DeducedFromArrayBound = false); 140 141 static Sema::TemplateDeductionResult 142 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 143 ArrayRef<TemplateArgument> Ps, 144 ArrayRef<TemplateArgument> As, 145 TemplateDeductionInfo &Info, 146 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 147 bool NumberOfArgumentsMustMatch); 148 149 static void MarkUsedTemplateParameters(ASTContext &Ctx, 150 const TemplateArgument &TemplateArg, 151 bool OnlyDeduced, unsigned Depth, 152 llvm::SmallBitVector &Used); 153 154 static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 155 bool OnlyDeduced, unsigned Level, 156 llvm::SmallBitVector &Deduced); 157 158 /// If the given expression is of a form that permits the deduction 159 /// of a non-type template parameter, return the declaration of that 160 /// non-type template parameter. 161 static const NonTypeTemplateParmDecl * 162 getDeducedParameterFromExpr(const Expr *E, unsigned Depth) { 163 // If we are within an alias template, the expression may have undergone 164 // any number of parameter substitutions already. 165 while (true) { 166 if (const auto *IC = dyn_cast<ImplicitCastExpr>(E)) 167 E = IC->getSubExpr(); 168 else if (const auto *CE = dyn_cast<ConstantExpr>(E)) 169 E = CE->getSubExpr(); 170 else if (const auto *Subst = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 171 E = Subst->getReplacement(); 172 else if (const auto *CCE = dyn_cast<CXXConstructExpr>(E)) { 173 // Look through implicit copy construction from an lvalue of the same type. 174 if (CCE->getParenOrBraceRange().isValid()) 175 break; 176 // Note, there could be default arguments. 177 assert(CCE->getNumArgs() >= 1 && "implicit construct expr should have 1 arg"); 178 E = CCE->getArg(0); 179 } else 180 break; 181 } 182 183 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 184 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) 185 if (NTTP->getDepth() == Depth) 186 return NTTP; 187 188 return nullptr; 189 } 190 191 static const NonTypeTemplateParmDecl * 192 getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) { 193 return getDeducedParameterFromExpr(E, Info.getDeducedDepth()); 194 } 195 196 /// Determine whether two declaration pointers refer to the same 197 /// declaration. 198 static bool isSameDeclaration(Decl *X, Decl *Y) { 199 if (NamedDecl *NX = dyn_cast<NamedDecl>(X)) 200 X = NX->getUnderlyingDecl(); 201 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y)) 202 Y = NY->getUnderlyingDecl(); 203 204 return X->getCanonicalDecl() == Y->getCanonicalDecl(); 205 } 206 207 /// Verify that the given, deduced template arguments are compatible. 208 /// 209 /// \returns The deduced template argument, or a NULL template argument if 210 /// the deduced template arguments were incompatible. 211 static DeducedTemplateArgument 212 checkDeducedTemplateArguments(ASTContext &Context, 213 const DeducedTemplateArgument &X, 214 const DeducedTemplateArgument &Y) { 215 // We have no deduction for one or both of the arguments; they're compatible. 216 if (X.isNull()) 217 return Y; 218 if (Y.isNull()) 219 return X; 220 221 // If we have two non-type template argument values deduced for the same 222 // parameter, they must both match the type of the parameter, and thus must 223 // match each other's type. As we're only keeping one of them, we must check 224 // for that now. The exception is that if either was deduced from an array 225 // bound, the type is permitted to differ. 226 if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) { 227 QualType XType = X.getNonTypeTemplateArgumentType(); 228 if (!XType.isNull()) { 229 QualType YType = Y.getNonTypeTemplateArgumentType(); 230 if (YType.isNull() || !Context.hasSameType(XType, YType)) 231 return DeducedTemplateArgument(); 232 } 233 } 234 235 switch (X.getKind()) { 236 case TemplateArgument::Null: 237 llvm_unreachable("Non-deduced template arguments handled above"); 238 239 case TemplateArgument::Type: { 240 // If two template type arguments have the same type, they're compatible. 241 QualType TX = X.getAsType(), TY = Y.getAsType(); 242 if (Y.getKind() == TemplateArgument::Type && Context.hasSameType(TX, TY)) 243 return DeducedTemplateArgument(Context.getCommonSugaredType(TX, TY), 244 X.wasDeducedFromArrayBound() || 245 Y.wasDeducedFromArrayBound()); 246 247 // If one of the two arguments was deduced from an array bound, the other 248 // supersedes it. 249 if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound()) 250 return X.wasDeducedFromArrayBound() ? Y : X; 251 252 // The arguments are not compatible. 253 return DeducedTemplateArgument(); 254 } 255 256 case TemplateArgument::Integral: 257 // If we deduced a constant in one case and either a dependent expression or 258 // declaration in another case, keep the integral constant. 259 // If both are integral constants with the same value, keep that value. 260 if (Y.getKind() == TemplateArgument::Expression || 261 Y.getKind() == TemplateArgument::Declaration || 262 (Y.getKind() == TemplateArgument::Integral && 263 hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()))) 264 return X.wasDeducedFromArrayBound() ? Y : X; 265 266 // All other combinations are incompatible. 267 return DeducedTemplateArgument(); 268 269 case TemplateArgument::Template: 270 if (Y.getKind() == TemplateArgument::Template && 271 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate())) 272 return X; 273 274 // All other combinations are incompatible. 275 return DeducedTemplateArgument(); 276 277 case TemplateArgument::TemplateExpansion: 278 if (Y.getKind() == TemplateArgument::TemplateExpansion && 279 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(), 280 Y.getAsTemplateOrTemplatePattern())) 281 return X; 282 283 // All other combinations are incompatible. 284 return DeducedTemplateArgument(); 285 286 case TemplateArgument::Expression: { 287 if (Y.getKind() != TemplateArgument::Expression) 288 return checkDeducedTemplateArguments(Context, Y, X); 289 290 // Compare the expressions for equality 291 llvm::FoldingSetNodeID ID1, ID2; 292 X.getAsExpr()->Profile(ID1, Context, true); 293 Y.getAsExpr()->Profile(ID2, Context, true); 294 if (ID1 == ID2) 295 return X.wasDeducedFromArrayBound() ? Y : X; 296 297 // Differing dependent expressions are incompatible. 298 return DeducedTemplateArgument(); 299 } 300 301 case TemplateArgument::Declaration: 302 assert(!X.wasDeducedFromArrayBound()); 303 304 // If we deduced a declaration and a dependent expression, keep the 305 // declaration. 306 if (Y.getKind() == TemplateArgument::Expression) 307 return X; 308 309 // If we deduced a declaration and an integral constant, keep the 310 // integral constant and whichever type did not come from an array 311 // bound. 312 if (Y.getKind() == TemplateArgument::Integral) { 313 if (Y.wasDeducedFromArrayBound()) 314 return TemplateArgument(Context, Y.getAsIntegral(), 315 X.getParamTypeForDecl()); 316 return Y; 317 } 318 319 // If we deduced two declarations, make sure that they refer to the 320 // same declaration. 321 if (Y.getKind() == TemplateArgument::Declaration && 322 isSameDeclaration(X.getAsDecl(), Y.getAsDecl())) 323 return X; 324 325 // All other combinations are incompatible. 326 return DeducedTemplateArgument(); 327 328 case TemplateArgument::NullPtr: 329 // If we deduced a null pointer and a dependent expression, keep the 330 // null pointer. 331 if (Y.getKind() == TemplateArgument::Expression) 332 return TemplateArgument(Context.getCommonSugaredType( 333 X.getNullPtrType(), Y.getAsExpr()->getType()), 334 true); 335 336 // If we deduced a null pointer and an integral constant, keep the 337 // integral constant. 338 if (Y.getKind() == TemplateArgument::Integral) 339 return Y; 340 341 // If we deduced two null pointers, they are the same. 342 if (Y.getKind() == TemplateArgument::NullPtr) 343 return TemplateArgument( 344 Context.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()), 345 true); 346 347 // All other combinations are incompatible. 348 return DeducedTemplateArgument(); 349 350 case TemplateArgument::Pack: { 351 if (Y.getKind() != TemplateArgument::Pack || 352 X.pack_size() != Y.pack_size()) 353 return DeducedTemplateArgument(); 354 355 llvm::SmallVector<TemplateArgument, 8> NewPack; 356 for (TemplateArgument::pack_iterator XA = X.pack_begin(), 357 XAEnd = X.pack_end(), 358 YA = Y.pack_begin(); 359 XA != XAEnd; ++XA, ++YA) { 360 TemplateArgument Merged = checkDeducedTemplateArguments( 361 Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), 362 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())); 363 if (Merged.isNull() && !(XA->isNull() && YA->isNull())) 364 return DeducedTemplateArgument(); 365 NewPack.push_back(Merged); 366 } 367 368 return DeducedTemplateArgument( 369 TemplateArgument::CreatePackCopy(Context, NewPack), 370 X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound()); 371 } 372 } 373 374 llvm_unreachable("Invalid TemplateArgument Kind!"); 375 } 376 377 /// Deduce the value of the given non-type template parameter 378 /// as the given deduced template argument. All non-type template parameter 379 /// deduction is funneled through here. 380 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 381 Sema &S, TemplateParameterList *TemplateParams, 382 const NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced, 383 QualType ValueType, TemplateDeductionInfo &Info, 384 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 385 assert(NTTP->getDepth() == Info.getDeducedDepth() && 386 "deducing non-type template argument with wrong depth"); 387 388 DeducedTemplateArgument Result = checkDeducedTemplateArguments( 389 S.Context, Deduced[NTTP->getIndex()], NewDeduced); 390 if (Result.isNull()) { 391 Info.Param = const_cast<NonTypeTemplateParmDecl*>(NTTP); 392 Info.FirstArg = Deduced[NTTP->getIndex()]; 393 Info.SecondArg = NewDeduced; 394 return Sema::TDK_Inconsistent; 395 } 396 397 Deduced[NTTP->getIndex()] = Result; 398 if (!S.getLangOpts().CPlusPlus17) 399 return Sema::TDK_Success; 400 401 if (NTTP->isExpandedParameterPack()) 402 // FIXME: We may still need to deduce parts of the type here! But we 403 // don't have any way to find which slice of the type to use, and the 404 // type stored on the NTTP itself is nonsense. Perhaps the type of an 405 // expanded NTTP should be a pack expansion type? 406 return Sema::TDK_Success; 407 408 // Get the type of the parameter for deduction. If it's a (dependent) array 409 // or function type, we will not have decayed it yet, so do that now. 410 QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType()); 411 if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType)) 412 ParamType = Expansion->getPattern(); 413 414 // FIXME: It's not clear how deduction of a parameter of reference 415 // type from an argument (of non-reference type) should be performed. 416 // For now, we just remove reference types from both sides and let 417 // the final check for matching types sort out the mess. 418 ValueType = ValueType.getNonReferenceType(); 419 if (ParamType->isReferenceType()) 420 ParamType = ParamType.getNonReferenceType(); 421 else 422 // Top-level cv-qualifiers are irrelevant for a non-reference type. 423 ValueType = ValueType.getUnqualifiedType(); 424 425 return DeduceTemplateArgumentsByTypeMatch( 426 S, TemplateParams, ParamType, ValueType, Info, Deduced, 427 TDF_SkipNonDependent, /*PartialOrdering=*/false, 428 /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound()); 429 } 430 431 /// Deduce the value of the given non-type template parameter 432 /// from the given integral constant. 433 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 434 Sema &S, TemplateParameterList *TemplateParams, 435 const NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value, 436 QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info, 437 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 438 return DeduceNonTypeTemplateArgument( 439 S, TemplateParams, NTTP, 440 DeducedTemplateArgument(S.Context, Value, ValueType, 441 DeducedFromArrayBound), 442 ValueType, Info, Deduced); 443 } 444 445 /// Deduce the value of the given non-type template parameter 446 /// from the given null pointer template argument type. 447 static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument( 448 Sema &S, TemplateParameterList *TemplateParams, 449 const NonTypeTemplateParmDecl *NTTP, QualType NullPtrType, 450 TemplateDeductionInfo &Info, 451 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 452 Expr *Value = S.ImpCastExprToType( 453 new (S.Context) CXXNullPtrLiteralExpr(S.Context.NullPtrTy, 454 NTTP->getLocation()), 455 NullPtrType, 456 NullPtrType->isMemberPointerType() ? CK_NullToMemberPointer 457 : CK_NullToPointer) 458 .get(); 459 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 460 DeducedTemplateArgument(Value), 461 Value->getType(), Info, Deduced); 462 } 463 464 /// Deduce the value of the given non-type template parameter 465 /// from the given type- or value-dependent expression. 466 /// 467 /// \returns true if deduction succeeded, false otherwise. 468 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 469 Sema &S, TemplateParameterList *TemplateParams, 470 const NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info, 471 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 472 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 473 DeducedTemplateArgument(Value), 474 Value->getType(), Info, Deduced); 475 } 476 477 /// Deduce the value of the given non-type template parameter 478 /// from the given declaration. 479 /// 480 /// \returns true if deduction succeeded, false otherwise. 481 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 482 Sema &S, TemplateParameterList *TemplateParams, 483 const NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T, 484 TemplateDeductionInfo &Info, 485 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 486 D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; 487 TemplateArgument New(D, T); 488 return DeduceNonTypeTemplateArgument( 489 S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced); 490 } 491 492 static Sema::TemplateDeductionResult 493 DeduceTemplateArguments(Sema &S, 494 TemplateParameterList *TemplateParams, 495 TemplateName Param, 496 TemplateName Arg, 497 TemplateDeductionInfo &Info, 498 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 499 TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); 500 if (!ParamDecl) { 501 // The parameter type is dependent and is not a template template parameter, 502 // so there is nothing that we can deduce. 503 return Sema::TDK_Success; 504 } 505 506 if (TemplateTemplateParmDecl *TempParam 507 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) { 508 // If we're not deducing at this depth, there's nothing to deduce. 509 if (TempParam->getDepth() != Info.getDeducedDepth()) 510 return Sema::TDK_Success; 511 512 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg)); 513 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 514 Deduced[TempParam->getIndex()], 515 NewDeduced); 516 if (Result.isNull()) { 517 Info.Param = TempParam; 518 Info.FirstArg = Deduced[TempParam->getIndex()]; 519 Info.SecondArg = NewDeduced; 520 return Sema::TDK_Inconsistent; 521 } 522 523 Deduced[TempParam->getIndex()] = Result; 524 return Sema::TDK_Success; 525 } 526 527 // Verify that the two template names are equivalent. 528 if (S.Context.hasSameTemplateName(Param, Arg)) 529 return Sema::TDK_Success; 530 531 // Mismatch of non-dependent template parameter to argument. 532 Info.FirstArg = TemplateArgument(Param); 533 Info.SecondArg = TemplateArgument(Arg); 534 return Sema::TDK_NonDeducedMismatch; 535 } 536 537 /// Deduce the template arguments by comparing the template parameter 538 /// type (which is a template-id) with the template argument type. 539 /// 540 /// \param S the Sema 541 /// 542 /// \param TemplateParams the template parameters that we are deducing 543 /// 544 /// \param P the parameter type 545 /// 546 /// \param A the argument type 547 /// 548 /// \param Info information about the template argument deduction itself 549 /// 550 /// \param Deduced the deduced template arguments 551 /// 552 /// \returns the result of template argument deduction so far. Note that a 553 /// "success" result means that template argument deduction has not yet failed, 554 /// but it may still fail, later, for other reasons. 555 static Sema::TemplateDeductionResult 556 DeduceTemplateSpecArguments(Sema &S, TemplateParameterList *TemplateParams, 557 const QualType P, QualType A, 558 TemplateDeductionInfo &Info, 559 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 560 QualType UP = P; 561 if (const auto *IP = P->getAs<InjectedClassNameType>()) 562 UP = IP->getInjectedSpecializationType(); 563 // FIXME: Try to preserve type sugar here, which is hard 564 // because of the unresolved template arguments. 565 const auto *TP = UP.getCanonicalType()->castAs<TemplateSpecializationType>(); 566 TemplateName TNP = TP->getTemplateName(); 567 568 // If the parameter is an alias template, there is nothing to deduce. 569 if (const auto *TD = TNP.getAsTemplateDecl(); TD && TD->isTypeAlias()) 570 return Sema::TDK_Success; 571 572 ArrayRef<TemplateArgument> PResolved = TP->template_arguments(); 573 574 QualType UA = A; 575 // Treat an injected-class-name as its underlying template-id. 576 if (const auto *Injected = A->getAs<InjectedClassNameType>()) 577 UA = Injected->getInjectedSpecializationType(); 578 579 // Check whether the template argument is a dependent template-id. 580 // FIXME: Should not lose sugar here. 581 if (const auto *SA = 582 dyn_cast<TemplateSpecializationType>(UA.getCanonicalType())) { 583 TemplateName TNA = SA->getTemplateName(); 584 585 // If the argument is an alias template, there is nothing to deduce. 586 if (const auto *TD = TNA.getAsTemplateDecl(); TD && TD->isTypeAlias()) 587 return Sema::TDK_Success; 588 589 // Perform template argument deduction for the template name. 590 if (auto Result = 591 DeduceTemplateArguments(S, TemplateParams, TNP, TNA, Info, Deduced)) 592 return Result; 593 // Perform template argument deduction on each template 594 // argument. Ignore any missing/extra arguments, since they could be 595 // filled in by default arguments. 596 return DeduceTemplateArguments(S, TemplateParams, PResolved, 597 SA->template_arguments(), Info, Deduced, 598 /*NumberOfArgumentsMustMatch=*/false); 599 } 600 601 // If the argument type is a class template specialization, we 602 // perform template argument deduction using its template 603 // arguments. 604 const auto *RA = UA->getAs<RecordType>(); 605 const auto *SA = 606 RA ? dyn_cast<ClassTemplateSpecializationDecl>(RA->getDecl()) : nullptr; 607 if (!SA) { 608 Info.FirstArg = TemplateArgument(P); 609 Info.SecondArg = TemplateArgument(A); 610 return Sema::TDK_NonDeducedMismatch; 611 } 612 613 // Perform template argument deduction for the template name. 614 if (auto Result = DeduceTemplateArguments( 615 S, TemplateParams, TP->getTemplateName(), 616 TemplateName(SA->getSpecializedTemplate()), Info, Deduced)) 617 return Result; 618 619 // Perform template argument deduction for the template arguments. 620 return DeduceTemplateArguments(S, TemplateParams, PResolved, 621 SA->getTemplateArgs().asArray(), Info, Deduced, 622 /*NumberOfArgumentsMustMatch=*/true); 623 } 624 625 static bool IsPossiblyOpaquelyQualifiedTypeInternal(const Type *T) { 626 assert(T->isCanonicalUnqualified()); 627 628 switch (T->getTypeClass()) { 629 case Type::TypeOfExpr: 630 case Type::TypeOf: 631 case Type::DependentName: 632 case Type::Decltype: 633 case Type::UnresolvedUsing: 634 case Type::TemplateTypeParm: 635 return true; 636 637 case Type::ConstantArray: 638 case Type::IncompleteArray: 639 case Type::VariableArray: 640 case Type::DependentSizedArray: 641 return IsPossiblyOpaquelyQualifiedTypeInternal( 642 cast<ArrayType>(T)->getElementType().getTypePtr()); 643 644 default: 645 return false; 646 } 647 } 648 649 /// Determines whether the given type is an opaque type that 650 /// might be more qualified when instantiated. 651 static bool IsPossiblyOpaquelyQualifiedType(QualType T) { 652 return IsPossiblyOpaquelyQualifiedTypeInternal( 653 T->getCanonicalTypeInternal().getTypePtr()); 654 } 655 656 /// Helper function to build a TemplateParameter when we don't 657 /// know its type statically. 658 static TemplateParameter makeTemplateParameter(Decl *D) { 659 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D)) 660 return TemplateParameter(TTP); 661 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) 662 return TemplateParameter(NTTP); 663 664 return TemplateParameter(cast<TemplateTemplateParmDecl>(D)); 665 } 666 667 /// A pack that we're currently deducing. 668 struct clang::DeducedPack { 669 // The index of the pack. 670 unsigned Index; 671 672 // The old value of the pack before we started deducing it. 673 DeducedTemplateArgument Saved; 674 675 // A deferred value of this pack from an inner deduction, that couldn't be 676 // deduced because this deduction hadn't happened yet. 677 DeducedTemplateArgument DeferredDeduction; 678 679 // The new value of the pack. 680 SmallVector<DeducedTemplateArgument, 4> New; 681 682 // The outer deduction for this pack, if any. 683 DeducedPack *Outer = nullptr; 684 685 DeducedPack(unsigned Index) : Index(Index) {} 686 }; 687 688 namespace { 689 690 /// A scope in which we're performing pack deduction. 691 class PackDeductionScope { 692 public: 693 /// Prepare to deduce the packs named within Pattern. 694 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 695 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 696 TemplateDeductionInfo &Info, TemplateArgument Pattern) 697 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { 698 unsigned NumNamedPacks = addPacks(Pattern); 699 finishConstruction(NumNamedPacks); 700 } 701 702 /// Prepare to directly deduce arguments of the parameter with index \p Index. 703 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 704 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 705 TemplateDeductionInfo &Info, unsigned Index) 706 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { 707 addPack(Index); 708 finishConstruction(1); 709 } 710 711 private: 712 void addPack(unsigned Index) { 713 // Save the deduced template argument for the parameter pack expanded 714 // by this pack expansion, then clear out the deduction. 715 DeducedPack Pack(Index); 716 Pack.Saved = Deduced[Index]; 717 Deduced[Index] = TemplateArgument(); 718 719 // FIXME: What if we encounter multiple packs with different numbers of 720 // pre-expanded expansions? (This should already have been diagnosed 721 // during substitution.) 722 if (std::optional<unsigned> ExpandedPackExpansions = 723 getExpandedPackSize(TemplateParams->getParam(Index))) 724 FixedNumExpansions = ExpandedPackExpansions; 725 726 Packs.push_back(Pack); 727 } 728 729 unsigned addPacks(TemplateArgument Pattern) { 730 // Compute the set of template parameter indices that correspond to 731 // parameter packs expanded by the pack expansion. 732 llvm::SmallBitVector SawIndices(TemplateParams->size()); 733 llvm::SmallVector<TemplateArgument, 4> ExtraDeductions; 734 735 auto AddPack = [&](unsigned Index) { 736 if (SawIndices[Index]) 737 return; 738 SawIndices[Index] = true; 739 addPack(Index); 740 741 // Deducing a parameter pack that is a pack expansion also constrains the 742 // packs appearing in that parameter to have the same deduced arity. Also, 743 // in C++17 onwards, deducing a non-type template parameter deduces its 744 // type, so we need to collect the pending deduced values for those packs. 745 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>( 746 TemplateParams->getParam(Index))) { 747 if (!NTTP->isExpandedParameterPack()) 748 if (auto *Expansion = dyn_cast<PackExpansionType>(NTTP->getType())) 749 ExtraDeductions.push_back(Expansion->getPattern()); 750 } 751 // FIXME: Also collect the unexpanded packs in any type and template 752 // parameter packs that are pack expansions. 753 }; 754 755 auto Collect = [&](TemplateArgument Pattern) { 756 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 757 S.collectUnexpandedParameterPacks(Pattern, Unexpanded); 758 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { 759 unsigned Depth, Index; 760 std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); 761 if (Depth == Info.getDeducedDepth()) 762 AddPack(Index); 763 } 764 }; 765 766 // Look for unexpanded packs in the pattern. 767 Collect(Pattern); 768 assert(!Packs.empty() && "Pack expansion without unexpanded packs?"); 769 770 unsigned NumNamedPacks = Packs.size(); 771 772 // Also look for unexpanded packs that are indirectly deduced by deducing 773 // the sizes of the packs in this pattern. 774 while (!ExtraDeductions.empty()) 775 Collect(ExtraDeductions.pop_back_val()); 776 777 return NumNamedPacks; 778 } 779 780 void finishConstruction(unsigned NumNamedPacks) { 781 // Dig out the partially-substituted pack, if there is one. 782 const TemplateArgument *PartialPackArgs = nullptr; 783 unsigned NumPartialPackArgs = 0; 784 std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u); 785 if (auto *Scope = S.CurrentInstantiationScope) 786 if (auto *Partial = Scope->getPartiallySubstitutedPack( 787 &PartialPackArgs, &NumPartialPackArgs)) 788 PartialPackDepthIndex = getDepthAndIndex(Partial); 789 790 // This pack expansion will have been partially or fully expanded if 791 // it only names explicitly-specified parameter packs (including the 792 // partially-substituted one, if any). 793 bool IsExpanded = true; 794 for (unsigned I = 0; I != NumNamedPacks; ++I) { 795 if (Packs[I].Index >= Info.getNumExplicitArgs()) { 796 IsExpanded = false; 797 IsPartiallyExpanded = false; 798 break; 799 } 800 if (PartialPackDepthIndex == 801 std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) { 802 IsPartiallyExpanded = true; 803 } 804 } 805 806 // Skip over the pack elements that were expanded into separate arguments. 807 // If we partially expanded, this is the number of partial arguments. 808 if (IsPartiallyExpanded) 809 PackElements += NumPartialPackArgs; 810 else if (IsExpanded) 811 PackElements += *FixedNumExpansions; 812 813 for (auto &Pack : Packs) { 814 if (Info.PendingDeducedPacks.size() > Pack.Index) 815 Pack.Outer = Info.PendingDeducedPacks[Pack.Index]; 816 else 817 Info.PendingDeducedPacks.resize(Pack.Index + 1); 818 Info.PendingDeducedPacks[Pack.Index] = &Pack; 819 820 if (PartialPackDepthIndex == 821 std::make_pair(Info.getDeducedDepth(), Pack.Index)) { 822 Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs); 823 // We pre-populate the deduced value of the partially-substituted 824 // pack with the specified value. This is not entirely correct: the 825 // value is supposed to have been substituted, not deduced, but the 826 // cases where this is observable require an exact type match anyway. 827 // 828 // FIXME: If we could represent a "depth i, index j, pack elem k" 829 // parameter, we could substitute the partially-substituted pack 830 // everywhere and avoid this. 831 if (!IsPartiallyExpanded) 832 Deduced[Pack.Index] = Pack.New[PackElements]; 833 } 834 } 835 } 836 837 public: 838 ~PackDeductionScope() { 839 for (auto &Pack : Packs) 840 Info.PendingDeducedPacks[Pack.Index] = Pack.Outer; 841 } 842 843 /// Determine whether this pack has already been partially expanded into a 844 /// sequence of (prior) function parameters / template arguments. 845 bool isPartiallyExpanded() { return IsPartiallyExpanded; } 846 847 /// Determine whether this pack expansion scope has a known, fixed arity. 848 /// This happens if it involves a pack from an outer template that has 849 /// (notionally) already been expanded. 850 bool hasFixedArity() { return FixedNumExpansions.has_value(); } 851 852 /// Determine whether the next element of the argument is still part of this 853 /// pack. This is the case unless the pack is already expanded to a fixed 854 /// length. 855 bool hasNextElement() { 856 return !FixedNumExpansions || *FixedNumExpansions > PackElements; 857 } 858 859 /// Move to deducing the next element in each pack that is being deduced. 860 void nextPackElement() { 861 // Capture the deduced template arguments for each parameter pack expanded 862 // by this pack expansion, add them to the list of arguments we've deduced 863 // for that pack, then clear out the deduced argument. 864 for (auto &Pack : Packs) { 865 DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index]; 866 if (!Pack.New.empty() || !DeducedArg.isNull()) { 867 while (Pack.New.size() < PackElements) 868 Pack.New.push_back(DeducedTemplateArgument()); 869 if (Pack.New.size() == PackElements) 870 Pack.New.push_back(DeducedArg); 871 else 872 Pack.New[PackElements] = DeducedArg; 873 DeducedArg = Pack.New.size() > PackElements + 1 874 ? Pack.New[PackElements + 1] 875 : DeducedTemplateArgument(); 876 } 877 } 878 ++PackElements; 879 } 880 881 /// Finish template argument deduction for a set of argument packs, 882 /// producing the argument packs and checking for consistency with prior 883 /// deductions. 884 Sema::TemplateDeductionResult finish() { 885 // Build argument packs for each of the parameter packs expanded by this 886 // pack expansion. 887 for (auto &Pack : Packs) { 888 // Put back the old value for this pack. 889 Deduced[Pack.Index] = Pack.Saved; 890 891 // Always make sure the size of this pack is correct, even if we didn't 892 // deduce any values for it. 893 // 894 // FIXME: This isn't required by the normative wording, but substitution 895 // and post-substitution checking will always fail if the arity of any 896 // pack is not equal to the number of elements we processed. (Either that 897 // or something else has gone *very* wrong.) We're permitted to skip any 898 // hard errors from those follow-on steps by the intent (but not the 899 // wording) of C++ [temp.inst]p8: 900 // 901 // If the function selected by overload resolution can be determined 902 // without instantiating a class template definition, it is unspecified 903 // whether that instantiation actually takes place 904 Pack.New.resize(PackElements); 905 906 // Build or find a new value for this pack. 907 DeducedTemplateArgument NewPack; 908 if (Pack.New.empty()) { 909 // If we deduced an empty argument pack, create it now. 910 NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack()); 911 } else { 912 TemplateArgument *ArgumentPack = 913 new (S.Context) TemplateArgument[Pack.New.size()]; 914 std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack); 915 NewPack = DeducedTemplateArgument( 916 TemplateArgument(llvm::ArrayRef(ArgumentPack, Pack.New.size())), 917 // FIXME: This is wrong, it's possible that some pack elements are 918 // deduced from an array bound and others are not: 919 // template<typename ...T, T ...V> void g(const T (&...p)[V]); 920 // g({1, 2, 3}, {{}, {}}); 921 // ... should deduce T = {int, size_t (from array bound)}. 922 Pack.New[0].wasDeducedFromArrayBound()); 923 } 924 925 // Pick where we're going to put the merged pack. 926 DeducedTemplateArgument *Loc; 927 if (Pack.Outer) { 928 if (Pack.Outer->DeferredDeduction.isNull()) { 929 // Defer checking this pack until we have a complete pack to compare 930 // it against. 931 Pack.Outer->DeferredDeduction = NewPack; 932 continue; 933 } 934 Loc = &Pack.Outer->DeferredDeduction; 935 } else { 936 Loc = &Deduced[Pack.Index]; 937 } 938 939 // Check the new pack matches any previous value. 940 DeducedTemplateArgument OldPack = *Loc; 941 DeducedTemplateArgument Result = 942 checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 943 944 // If we deferred a deduction of this pack, check that one now too. 945 if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) { 946 OldPack = Result; 947 NewPack = Pack.DeferredDeduction; 948 Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 949 } 950 951 NamedDecl *Param = TemplateParams->getParam(Pack.Index); 952 if (Result.isNull()) { 953 Info.Param = makeTemplateParameter(Param); 954 Info.FirstArg = OldPack; 955 Info.SecondArg = NewPack; 956 return Sema::TDK_Inconsistent; 957 } 958 959 // If we have a pre-expanded pack and we didn't deduce enough elements 960 // for it, fail deduction. 961 if (std::optional<unsigned> Expansions = getExpandedPackSize(Param)) { 962 if (*Expansions != PackElements) { 963 Info.Param = makeTemplateParameter(Param); 964 Info.FirstArg = Result; 965 return Sema::TDK_IncompletePack; 966 } 967 } 968 969 *Loc = Result; 970 } 971 972 return Sema::TDK_Success; 973 } 974 975 private: 976 Sema &S; 977 TemplateParameterList *TemplateParams; 978 SmallVectorImpl<DeducedTemplateArgument> &Deduced; 979 TemplateDeductionInfo &Info; 980 unsigned PackElements = 0; 981 bool IsPartiallyExpanded = false; 982 /// The number of expansions, if we have a fully-expanded pack in this scope. 983 std::optional<unsigned> FixedNumExpansions; 984 985 SmallVector<DeducedPack, 2> Packs; 986 }; 987 988 } // namespace 989 990 /// Deduce the template arguments by comparing the list of parameter 991 /// types to the list of argument types, as in the parameter-type-lists of 992 /// function types (C++ [temp.deduct.type]p10). 993 /// 994 /// \param S The semantic analysis object within which we are deducing 995 /// 996 /// \param TemplateParams The template parameters that we are deducing 997 /// 998 /// \param Params The list of parameter types 999 /// 1000 /// \param NumParams The number of types in \c Params 1001 /// 1002 /// \param Args The list of argument types 1003 /// 1004 /// \param NumArgs The number of types in \c Args 1005 /// 1006 /// \param Info information about the template argument deduction itself 1007 /// 1008 /// \param Deduced the deduced template arguments 1009 /// 1010 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 1011 /// how template argument deduction is performed. 1012 /// 1013 /// \param PartialOrdering If true, we are performing template argument 1014 /// deduction for during partial ordering for a call 1015 /// (C++0x [temp.deduct.partial]). 1016 /// 1017 /// \returns the result of template argument deduction so far. Note that a 1018 /// "success" result means that template argument deduction has not yet failed, 1019 /// but it may still fail, later, for other reasons. 1020 static Sema::TemplateDeductionResult 1021 DeduceTemplateArguments(Sema &S, 1022 TemplateParameterList *TemplateParams, 1023 const QualType *Params, unsigned NumParams, 1024 const QualType *Args, unsigned NumArgs, 1025 TemplateDeductionInfo &Info, 1026 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 1027 unsigned TDF, 1028 bool PartialOrdering = false) { 1029 // C++0x [temp.deduct.type]p10: 1030 // Similarly, if P has a form that contains (T), then each parameter type 1031 // Pi of the respective parameter-type- list of P is compared with the 1032 // corresponding parameter type Ai of the corresponding parameter-type-list 1033 // of A. [...] 1034 unsigned ArgIdx = 0, ParamIdx = 0; 1035 for (; ParamIdx != NumParams; ++ParamIdx) { 1036 // Check argument types. 1037 const PackExpansionType *Expansion 1038 = dyn_cast<PackExpansionType>(Params[ParamIdx]); 1039 if (!Expansion) { 1040 // Simple case: compare the parameter and argument types at this point. 1041 1042 // Make sure we have an argument. 1043 if (ArgIdx >= NumArgs) 1044 return Sema::TDK_MiscellaneousDeductionFailure; 1045 1046 if (isa<PackExpansionType>(Args[ArgIdx])) { 1047 // C++0x [temp.deduct.type]p22: 1048 // If the original function parameter associated with A is a function 1049 // parameter pack and the function parameter associated with P is not 1050 // a function parameter pack, then template argument deduction fails. 1051 return Sema::TDK_MiscellaneousDeductionFailure; 1052 } 1053 1054 if (Sema::TemplateDeductionResult Result = 1055 DeduceTemplateArgumentsByTypeMatch( 1056 S, TemplateParams, Params[ParamIdx].getUnqualifiedType(), 1057 Args[ArgIdx].getUnqualifiedType(), Info, Deduced, TDF, 1058 PartialOrdering, 1059 /*DeducedFromArrayBound=*/false)) 1060 return Result; 1061 1062 ++ArgIdx; 1063 continue; 1064 } 1065 1066 // C++0x [temp.deduct.type]p10: 1067 // If the parameter-declaration corresponding to Pi is a function 1068 // parameter pack, then the type of its declarator- id is compared with 1069 // each remaining parameter type in the parameter-type-list of A. Each 1070 // comparison deduces template arguments for subsequent positions in the 1071 // template parameter packs expanded by the function parameter pack. 1072 1073 QualType Pattern = Expansion->getPattern(); 1074 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 1075 1076 // A pack scope with fixed arity is not really a pack any more, so is not 1077 // a non-deduced context. 1078 if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) { 1079 for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) { 1080 // Deduce template arguments from the pattern. 1081 if (Sema::TemplateDeductionResult Result = 1082 DeduceTemplateArgumentsByTypeMatch( 1083 S, TemplateParams, Pattern.getUnqualifiedType(), 1084 Args[ArgIdx].getUnqualifiedType(), Info, Deduced, TDF, 1085 PartialOrdering, /*DeducedFromArrayBound=*/false)) 1086 return Result; 1087 1088 PackScope.nextPackElement(); 1089 } 1090 } else { 1091 // C++0x [temp.deduct.type]p5: 1092 // The non-deduced contexts are: 1093 // - A function parameter pack that does not occur at the end of the 1094 // parameter-declaration-clause. 1095 // 1096 // FIXME: There is no wording to say what we should do in this case. We 1097 // choose to resolve this by applying the same rule that is applied for a 1098 // function call: that is, deduce all contained packs to their 1099 // explicitly-specified values (or to <> if there is no such value). 1100 // 1101 // This is seemingly-arbitrarily different from the case of a template-id 1102 // with a non-trailing pack-expansion in its arguments, which renders the 1103 // entire template-argument-list a non-deduced context. 1104 1105 // If the parameter type contains an explicitly-specified pack that we 1106 // could not expand, skip the number of parameters notionally created 1107 // by the expansion. 1108 std::optional<unsigned> NumExpansions = Expansion->getNumExpansions(); 1109 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 1110 for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs; 1111 ++I, ++ArgIdx) 1112 PackScope.nextPackElement(); 1113 } 1114 } 1115 1116 // Build argument packs for each of the parameter packs expanded by this 1117 // pack expansion. 1118 if (auto Result = PackScope.finish()) 1119 return Result; 1120 } 1121 1122 // DR692, DR1395 1123 // C++0x [temp.deduct.type]p10: 1124 // If the parameter-declaration corresponding to P_i ... 1125 // During partial ordering, if Ai was originally a function parameter pack: 1126 // - if P does not contain a function parameter type corresponding to Ai then 1127 // Ai is ignored; 1128 if (PartialOrdering && ArgIdx + 1 == NumArgs && 1129 isa<PackExpansionType>(Args[ArgIdx])) 1130 return Sema::TDK_Success; 1131 1132 // Make sure we don't have any extra arguments. 1133 if (ArgIdx < NumArgs) 1134 return Sema::TDK_MiscellaneousDeductionFailure; 1135 1136 return Sema::TDK_Success; 1137 } 1138 1139 /// Determine whether the parameter has qualifiers that the argument 1140 /// lacks. Put another way, determine whether there is no way to add 1141 /// a deduced set of qualifiers to the ParamType that would result in 1142 /// its qualifiers matching those of the ArgType. 1143 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, 1144 QualType ArgType) { 1145 Qualifiers ParamQs = ParamType.getQualifiers(); 1146 Qualifiers ArgQs = ArgType.getQualifiers(); 1147 1148 if (ParamQs == ArgQs) 1149 return false; 1150 1151 // Mismatched (but not missing) Objective-C GC attributes. 1152 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && 1153 ParamQs.hasObjCGCAttr()) 1154 return true; 1155 1156 // Mismatched (but not missing) address spaces. 1157 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && 1158 ParamQs.hasAddressSpace()) 1159 return true; 1160 1161 // Mismatched (but not missing) Objective-C lifetime qualifiers. 1162 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && 1163 ParamQs.hasObjCLifetime()) 1164 return true; 1165 1166 // CVR qualifiers inconsistent or a superset. 1167 return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0; 1168 } 1169 1170 /// Compare types for equality with respect to possibly compatible 1171 /// function types (noreturn adjustment, implicit calling conventions). If any 1172 /// of parameter and argument is not a function, just perform type comparison. 1173 /// 1174 /// \param P the template parameter type. 1175 /// 1176 /// \param A the argument type. 1177 bool Sema::isSameOrCompatibleFunctionType(QualType P, QualType A) { 1178 const FunctionType *PF = P->getAs<FunctionType>(), 1179 *AF = A->getAs<FunctionType>(); 1180 1181 // Just compare if not functions. 1182 if (!PF || !AF) 1183 return Context.hasSameType(P, A); 1184 1185 // Noreturn and noexcept adjustment. 1186 QualType AdjustedParam; 1187 if (IsFunctionConversion(P, A, AdjustedParam)) 1188 return Context.hasSameType(AdjustedParam, A); 1189 1190 // FIXME: Compatible calling conventions. 1191 1192 return Context.hasSameType(P, A); 1193 } 1194 1195 /// Get the index of the first template parameter that was originally from the 1196 /// innermost template-parameter-list. This is 0 except when we concatenate 1197 /// the template parameter lists of a class template and a constructor template 1198 /// when forming an implicit deduction guide. 1199 static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) { 1200 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl()); 1201 if (!Guide || !Guide->isImplicit()) 1202 return 0; 1203 return Guide->getDeducedTemplate()->getTemplateParameters()->size(); 1204 } 1205 1206 /// Determine whether a type denotes a forwarding reference. 1207 static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) { 1208 // C++1z [temp.deduct.call]p3: 1209 // A forwarding reference is an rvalue reference to a cv-unqualified 1210 // template parameter that does not represent a template parameter of a 1211 // class template. 1212 if (auto *ParamRef = Param->getAs<RValueReferenceType>()) { 1213 if (ParamRef->getPointeeType().getQualifiers()) 1214 return false; 1215 auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>(); 1216 return TypeParm && TypeParm->getIndex() >= FirstInnerIndex; 1217 } 1218 return false; 1219 } 1220 1221 static CXXRecordDecl *getCanonicalRD(QualType T) { 1222 return cast<CXXRecordDecl>( 1223 T->castAs<RecordType>()->getDecl()->getCanonicalDecl()); 1224 } 1225 1226 /// Attempt to deduce the template arguments by checking the base types 1227 /// according to (C++20 [temp.deduct.call] p4b3. 1228 /// 1229 /// \param S the semantic analysis object within which we are deducing. 1230 /// 1231 /// \param RD the top level record object we are deducing against. 1232 /// 1233 /// \param TemplateParams the template parameters that we are deducing. 1234 /// 1235 /// \param P the template specialization parameter type. 1236 /// 1237 /// \param Info information about the template argument deduction itself. 1238 /// 1239 /// \param Deduced the deduced template arguments. 1240 /// 1241 /// \returns the result of template argument deduction with the bases. "invalid" 1242 /// means no matches, "success" found a single item, and the 1243 /// "MiscellaneousDeductionFailure" result happens when the match is ambiguous. 1244 static Sema::TemplateDeductionResult 1245 DeduceTemplateBases(Sema &S, const CXXRecordDecl *RD, 1246 TemplateParameterList *TemplateParams, QualType P, 1247 TemplateDeductionInfo &Info, 1248 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 1249 // C++14 [temp.deduct.call] p4b3: 1250 // If P is a class and P has the form simple-template-id, then the 1251 // transformed A can be a derived class of the deduced A. Likewise if 1252 // P is a pointer to a class of the form simple-template-id, the 1253 // transformed A can be a pointer to a derived class pointed to by the 1254 // deduced A. However, if there is a class C that is a (direct or 1255 // indirect) base class of D and derived (directly or indirectly) from a 1256 // class B and that would be a valid deduced A, the deduced A cannot be 1257 // B or pointer to B, respectively. 1258 // 1259 // These alternatives are considered only if type deduction would 1260 // otherwise fail. If they yield more than one possible deduced A, the 1261 // type deduction fails. 1262 1263 // Use a breadth-first search through the bases to collect the set of 1264 // successful matches. Visited contains the set of nodes we have already 1265 // visited, while ToVisit is our stack of records that we still need to 1266 // visit. Matches contains a list of matches that have yet to be 1267 // disqualified. 1268 llvm::SmallPtrSet<const CXXRecordDecl *, 8> Visited; 1269 SmallVector<QualType, 8> ToVisit; 1270 // We iterate over this later, so we have to use MapVector to ensure 1271 // determinism. 1272 llvm::MapVector<const CXXRecordDecl *, 1273 SmallVector<DeducedTemplateArgument, 8>> 1274 Matches; 1275 1276 auto AddBases = [&Visited, &ToVisit](const CXXRecordDecl *RD) { 1277 for (const auto &Base : RD->bases()) { 1278 QualType T = Base.getType(); 1279 assert(T->isRecordType() && "Base class that isn't a record?"); 1280 if (Visited.insert(::getCanonicalRD(T)).second) 1281 ToVisit.push_back(T); 1282 } 1283 }; 1284 1285 // Set up the loop by adding all the bases. 1286 AddBases(RD); 1287 1288 // Search each path of bases until we either run into a successful match 1289 // (where all bases of it are invalid), or we run out of bases. 1290 while (!ToVisit.empty()) { 1291 QualType NextT = ToVisit.pop_back_val(); 1292 1293 SmallVector<DeducedTemplateArgument, 8> DeducedCopy(Deduced.begin(), 1294 Deduced.end()); 1295 TemplateDeductionInfo BaseInfo(TemplateDeductionInfo::ForBase, Info); 1296 Sema::TemplateDeductionResult BaseResult = DeduceTemplateSpecArguments( 1297 S, TemplateParams, P, NextT, BaseInfo, DeducedCopy); 1298 1299 // If this was a successful deduction, add it to the list of matches, 1300 // otherwise we need to continue searching its bases. 1301 const CXXRecordDecl *RD = ::getCanonicalRD(NextT); 1302 if (BaseResult == Sema::TDK_Success) 1303 Matches.insert({RD, DeducedCopy}); 1304 else 1305 AddBases(RD); 1306 } 1307 1308 // At this point, 'Matches' contains a list of seemingly valid bases, however 1309 // in the event that we have more than 1 match, it is possible that the base 1310 // of one of the matches might be disqualified for being a base of another 1311 // valid match. We can count on cyclical instantiations being invalid to 1312 // simplify the disqualifications. That is, if A & B are both matches, and B 1313 // inherits from A (disqualifying A), we know that A cannot inherit from B. 1314 if (Matches.size() > 1) { 1315 Visited.clear(); 1316 for (const auto &Match : Matches) 1317 AddBases(Match.first); 1318 1319 // We can give up once we have a single item (or have run out of things to 1320 // search) since cyclical inheritance isn't valid. 1321 while (Matches.size() > 1 && !ToVisit.empty()) { 1322 const CXXRecordDecl *RD = ::getCanonicalRD(ToVisit.pop_back_val()); 1323 Matches.erase(RD); 1324 1325 // Always add all bases, since the inheritance tree can contain 1326 // disqualifications for multiple matches. 1327 AddBases(RD); 1328 } 1329 } 1330 1331 if (Matches.empty()) 1332 return Sema::TDK_Invalid; 1333 if (Matches.size() > 1) 1334 return Sema::TDK_MiscellaneousDeductionFailure; 1335 1336 std::swap(Matches.front().second, Deduced); 1337 return Sema::TDK_Success; 1338 } 1339 1340 /// Deduce the template arguments by comparing the parameter type and 1341 /// the argument type (C++ [temp.deduct.type]). 1342 /// 1343 /// \param S the semantic analysis object within which we are deducing 1344 /// 1345 /// \param TemplateParams the template parameters that we are deducing 1346 /// 1347 /// \param P the parameter type 1348 /// 1349 /// \param A the argument type 1350 /// 1351 /// \param Info information about the template argument deduction itself 1352 /// 1353 /// \param Deduced the deduced template arguments 1354 /// 1355 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 1356 /// how template argument deduction is performed. 1357 /// 1358 /// \param PartialOrdering Whether we're performing template argument deduction 1359 /// in the context of partial ordering (C++0x [temp.deduct.partial]). 1360 /// 1361 /// \returns the result of template argument deduction so far. Note that a 1362 /// "success" result means that template argument deduction has not yet failed, 1363 /// but it may still fail, later, for other reasons. 1364 static Sema::TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch( 1365 Sema &S, TemplateParameterList *TemplateParams, QualType P, QualType A, 1366 TemplateDeductionInfo &Info, 1367 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF, 1368 bool PartialOrdering, bool DeducedFromArrayBound) { 1369 1370 // If the argument type is a pack expansion, look at its pattern. 1371 // This isn't explicitly called out 1372 if (const auto *AExp = dyn_cast<PackExpansionType>(A)) 1373 A = AExp->getPattern(); 1374 assert(!isa<PackExpansionType>(A.getCanonicalType())); 1375 1376 if (PartialOrdering) { 1377 // C++11 [temp.deduct.partial]p5: 1378 // Before the partial ordering is done, certain transformations are 1379 // performed on the types used for partial ordering: 1380 // - If P is a reference type, P is replaced by the type referred to. 1381 const ReferenceType *PRef = P->getAs<ReferenceType>(); 1382 if (PRef) 1383 P = PRef->getPointeeType(); 1384 1385 // - If A is a reference type, A is replaced by the type referred to. 1386 const ReferenceType *ARef = A->getAs<ReferenceType>(); 1387 if (ARef) 1388 A = A->getPointeeType(); 1389 1390 if (PRef && ARef && S.Context.hasSameUnqualifiedType(P, A)) { 1391 // C++11 [temp.deduct.partial]p9: 1392 // If, for a given type, deduction succeeds in both directions (i.e., 1393 // the types are identical after the transformations above) and both 1394 // P and A were reference types [...]: 1395 // - if [one type] was an lvalue reference and [the other type] was 1396 // not, [the other type] is not considered to be at least as 1397 // specialized as [the first type] 1398 // - if [one type] is more cv-qualified than [the other type], 1399 // [the other type] is not considered to be at least as specialized 1400 // as [the first type] 1401 // Objective-C ARC adds: 1402 // - [one type] has non-trivial lifetime, [the other type] has 1403 // __unsafe_unretained lifetime, and the types are otherwise 1404 // identical 1405 // 1406 // A is "considered to be at least as specialized" as P iff deduction 1407 // succeeds, so we model this as a deduction failure. Note that 1408 // [the first type] is P and [the other type] is A here; the standard 1409 // gets this backwards. 1410 Qualifiers PQuals = P.getQualifiers(), AQuals = A.getQualifiers(); 1411 if ((PRef->isLValueReferenceType() && !ARef->isLValueReferenceType()) || 1412 PQuals.isStrictSupersetOf(AQuals) || 1413 (PQuals.hasNonTrivialObjCLifetime() && 1414 AQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone && 1415 PQuals.withoutObjCLifetime() == AQuals.withoutObjCLifetime())) { 1416 Info.FirstArg = TemplateArgument(P); 1417 Info.SecondArg = TemplateArgument(A); 1418 return Sema::TDK_NonDeducedMismatch; 1419 } 1420 } 1421 Qualifiers DiscardedQuals; 1422 // C++11 [temp.deduct.partial]p7: 1423 // Remove any top-level cv-qualifiers: 1424 // - If P is a cv-qualified type, P is replaced by the cv-unqualified 1425 // version of P. 1426 P = S.Context.getUnqualifiedArrayType(P, DiscardedQuals); 1427 // - If A is a cv-qualified type, A is replaced by the cv-unqualified 1428 // version of A. 1429 A = S.Context.getUnqualifiedArrayType(A, DiscardedQuals); 1430 } else { 1431 // C++0x [temp.deduct.call]p4 bullet 1: 1432 // - If the original P is a reference type, the deduced A (i.e., the type 1433 // referred to by the reference) can be more cv-qualified than the 1434 // transformed A. 1435 if (TDF & TDF_ParamWithReferenceType) { 1436 Qualifiers Quals; 1437 QualType UnqualP = S.Context.getUnqualifiedArrayType(P, Quals); 1438 Quals.setCVRQualifiers(Quals.getCVRQualifiers() & A.getCVRQualifiers()); 1439 P = S.Context.getQualifiedType(UnqualP, Quals); 1440 } 1441 1442 if ((TDF & TDF_TopLevelParameterTypeList) && !P->isFunctionType()) { 1443 // C++0x [temp.deduct.type]p10: 1444 // If P and A are function types that originated from deduction when 1445 // taking the address of a function template (14.8.2.2) or when deducing 1446 // template arguments from a function declaration (14.8.2.6) and Pi and 1447 // Ai are parameters of the top-level parameter-type-list of P and A, 1448 // respectively, Pi is adjusted if it is a forwarding reference and Ai 1449 // is an lvalue reference, in 1450 // which case the type of Pi is changed to be the template parameter 1451 // type (i.e., T&& is changed to simply T). [ Note: As a result, when 1452 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be 1453 // deduced as X&. - end note ] 1454 TDF &= ~TDF_TopLevelParameterTypeList; 1455 if (isForwardingReference(P, /*FirstInnerIndex=*/0) && 1456 A->isLValueReferenceType()) 1457 P = P->getPointeeType(); 1458 } 1459 } 1460 1461 // C++ [temp.deduct.type]p9: 1462 // A template type argument T, a template template argument TT or a 1463 // template non-type argument i can be deduced if P and A have one of 1464 // the following forms: 1465 // 1466 // T 1467 // cv-list T 1468 if (const auto *TTP = P->getAs<TemplateTypeParmType>()) { 1469 // Just skip any attempts to deduce from a placeholder type or a parameter 1470 // at a different depth. 1471 if (A->isPlaceholderType() || Info.getDeducedDepth() != TTP->getDepth()) 1472 return Sema::TDK_Success; 1473 1474 unsigned Index = TTP->getIndex(); 1475 1476 // If the argument type is an array type, move the qualifiers up to the 1477 // top level, so they can be matched with the qualifiers on the parameter. 1478 if (A->isArrayType()) { 1479 Qualifiers Quals; 1480 A = S.Context.getUnqualifiedArrayType(A, Quals); 1481 if (Quals) 1482 A = S.Context.getQualifiedType(A, Quals); 1483 } 1484 1485 // The argument type can not be less qualified than the parameter 1486 // type. 1487 if (!(TDF & TDF_IgnoreQualifiers) && 1488 hasInconsistentOrSupersetQualifiersOf(P, A)) { 1489 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1490 Info.FirstArg = TemplateArgument(P); 1491 Info.SecondArg = TemplateArgument(A); 1492 return Sema::TDK_Underqualified; 1493 } 1494 1495 // Do not match a function type with a cv-qualified type. 1496 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584 1497 if (A->isFunctionType() && P.hasQualifiers()) 1498 return Sema::TDK_NonDeducedMismatch; 1499 1500 assert(TTP->getDepth() == Info.getDeducedDepth() && 1501 "saw template type parameter with wrong depth"); 1502 assert(A->getCanonicalTypeInternal() != S.Context.OverloadTy && 1503 "Unresolved overloaded function"); 1504 QualType DeducedType = A; 1505 1506 // Remove any qualifiers on the parameter from the deduced type. 1507 // We checked the qualifiers for consistency above. 1508 Qualifiers DeducedQs = DeducedType.getQualifiers(); 1509 Qualifiers ParamQs = P.getQualifiers(); 1510 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers()); 1511 if (ParamQs.hasObjCGCAttr()) 1512 DeducedQs.removeObjCGCAttr(); 1513 if (ParamQs.hasAddressSpace()) 1514 DeducedQs.removeAddressSpace(); 1515 if (ParamQs.hasObjCLifetime()) 1516 DeducedQs.removeObjCLifetime(); 1517 1518 // Objective-C ARC: 1519 // If template deduction would produce a lifetime qualifier on a type 1520 // that is not a lifetime type, template argument deduction fails. 1521 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() && 1522 !DeducedType->isDependentType()) { 1523 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1524 Info.FirstArg = TemplateArgument(P); 1525 Info.SecondArg = TemplateArgument(A); 1526 return Sema::TDK_Underqualified; 1527 } 1528 1529 // Objective-C ARC: 1530 // If template deduction would produce an argument type with lifetime type 1531 // but no lifetime qualifier, the __strong lifetime qualifier is inferred. 1532 if (S.getLangOpts().ObjCAutoRefCount && DeducedType->isObjCLifetimeType() && 1533 !DeducedQs.hasObjCLifetime()) 1534 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); 1535 1536 DeducedType = 1537 S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), DeducedQs); 1538 1539 DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound); 1540 DeducedTemplateArgument Result = 1541 checkDeducedTemplateArguments(S.Context, Deduced[Index], NewDeduced); 1542 if (Result.isNull()) { 1543 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1544 Info.FirstArg = Deduced[Index]; 1545 Info.SecondArg = NewDeduced; 1546 return Sema::TDK_Inconsistent; 1547 } 1548 1549 Deduced[Index] = Result; 1550 return Sema::TDK_Success; 1551 } 1552 1553 // Set up the template argument deduction information for a failure. 1554 Info.FirstArg = TemplateArgument(P); 1555 Info.SecondArg = TemplateArgument(A); 1556 1557 // If the parameter is an already-substituted template parameter 1558 // pack, do nothing: we don't know which of its arguments to look 1559 // at, so we have to wait until all of the parameter packs in this 1560 // expansion have arguments. 1561 if (P->getAs<SubstTemplateTypeParmPackType>()) 1562 return Sema::TDK_Success; 1563 1564 // Check the cv-qualifiers on the parameter and argument types. 1565 if (!(TDF & TDF_IgnoreQualifiers)) { 1566 if (TDF & TDF_ParamWithReferenceType) { 1567 if (hasInconsistentOrSupersetQualifiersOf(P, A)) 1568 return Sema::TDK_NonDeducedMismatch; 1569 } else if (TDF & TDF_ArgWithReferenceType) { 1570 // C++ [temp.deduct.conv]p4: 1571 // If the original A is a reference type, A can be more cv-qualified 1572 // than the deduced A 1573 if (!A.getQualifiers().compatiblyIncludes(P.getQualifiers())) 1574 return Sema::TDK_NonDeducedMismatch; 1575 1576 // Strip out all extra qualifiers from the argument to figure out the 1577 // type we're converting to, prior to the qualification conversion. 1578 Qualifiers Quals; 1579 A = S.Context.getUnqualifiedArrayType(A, Quals); 1580 A = S.Context.getQualifiedType(A, P.getQualifiers()); 1581 } else if (!IsPossiblyOpaquelyQualifiedType(P)) { 1582 if (P.getCVRQualifiers() != A.getCVRQualifiers()) 1583 return Sema::TDK_NonDeducedMismatch; 1584 } 1585 } 1586 1587 // If the parameter type is not dependent, there is nothing to deduce. 1588 if (!P->isDependentType()) { 1589 if (TDF & TDF_SkipNonDependent) 1590 return Sema::TDK_Success; 1591 if ((TDF & TDF_IgnoreQualifiers) ? S.Context.hasSameUnqualifiedType(P, A) 1592 : S.Context.hasSameType(P, A)) 1593 return Sema::TDK_Success; 1594 if (TDF & TDF_AllowCompatibleFunctionType && 1595 S.isSameOrCompatibleFunctionType(P, A)) 1596 return Sema::TDK_Success; 1597 if (!(TDF & TDF_IgnoreQualifiers)) 1598 return Sema::TDK_NonDeducedMismatch; 1599 // Otherwise, when ignoring qualifiers, the types not having the same 1600 // unqualified type does not mean they do not match, so in this case we 1601 // must keep going and analyze with a non-dependent parameter type. 1602 } 1603 1604 switch (P.getCanonicalType()->getTypeClass()) { 1605 // Non-canonical types cannot appear here. 1606 #define NON_CANONICAL_TYPE(Class, Base) \ 1607 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); 1608 #define TYPE(Class, Base) 1609 #include "clang/AST/TypeNodes.inc" 1610 1611 case Type::TemplateTypeParm: 1612 case Type::SubstTemplateTypeParmPack: 1613 llvm_unreachable("Type nodes handled above"); 1614 1615 case Type::Auto: 1616 // FIXME: Implement deduction in dependent case. 1617 if (P->isDependentType()) 1618 return Sema::TDK_Success; 1619 [[fallthrough]]; 1620 case Type::Builtin: 1621 case Type::VariableArray: 1622 case Type::Vector: 1623 case Type::FunctionNoProto: 1624 case Type::Record: 1625 case Type::Enum: 1626 case Type::ObjCObject: 1627 case Type::ObjCInterface: 1628 case Type::ObjCObjectPointer: 1629 case Type::BitInt: 1630 return (TDF & TDF_SkipNonDependent) || 1631 ((TDF & TDF_IgnoreQualifiers) 1632 ? S.Context.hasSameUnqualifiedType(P, A) 1633 : S.Context.hasSameType(P, A)) 1634 ? Sema::TDK_Success 1635 : Sema::TDK_NonDeducedMismatch; 1636 1637 // _Complex T [placeholder extension] 1638 case Type::Complex: { 1639 const auto *CP = P->castAs<ComplexType>(), *CA = A->getAs<ComplexType>(); 1640 if (!CA) 1641 return Sema::TDK_NonDeducedMismatch; 1642 return DeduceTemplateArgumentsByTypeMatch( 1643 S, TemplateParams, CP->getElementType(), CA->getElementType(), Info, 1644 Deduced, TDF); 1645 } 1646 1647 // _Atomic T [extension] 1648 case Type::Atomic: { 1649 const auto *PA = P->castAs<AtomicType>(), *AA = A->getAs<AtomicType>(); 1650 if (!AA) 1651 return Sema::TDK_NonDeducedMismatch; 1652 return DeduceTemplateArgumentsByTypeMatch( 1653 S, TemplateParams, PA->getValueType(), AA->getValueType(), Info, 1654 Deduced, TDF); 1655 } 1656 1657 // T * 1658 case Type::Pointer: { 1659 QualType PointeeType; 1660 if (const auto *PA = A->getAs<PointerType>()) { 1661 PointeeType = PA->getPointeeType(); 1662 } else if (const auto *PA = A->getAs<ObjCObjectPointerType>()) { 1663 PointeeType = PA->getPointeeType(); 1664 } else { 1665 return Sema::TDK_NonDeducedMismatch; 1666 } 1667 return DeduceTemplateArgumentsByTypeMatch( 1668 S, TemplateParams, P->castAs<PointerType>()->getPointeeType(), 1669 PointeeType, Info, Deduced, 1670 TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass)); 1671 } 1672 1673 // T & 1674 case Type::LValueReference: { 1675 const auto *RP = P->castAs<LValueReferenceType>(), 1676 *RA = A->getAs<LValueReferenceType>(); 1677 if (!RA) 1678 return Sema::TDK_NonDeducedMismatch; 1679 1680 return DeduceTemplateArgumentsByTypeMatch( 1681 S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info, 1682 Deduced, 0); 1683 } 1684 1685 // T && [C++0x] 1686 case Type::RValueReference: { 1687 const auto *RP = P->castAs<RValueReferenceType>(), 1688 *RA = A->getAs<RValueReferenceType>(); 1689 if (!RA) 1690 return Sema::TDK_NonDeducedMismatch; 1691 1692 return DeduceTemplateArgumentsByTypeMatch( 1693 S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info, 1694 Deduced, 0); 1695 } 1696 1697 // T [] (implied, but not stated explicitly) 1698 case Type::IncompleteArray: { 1699 const auto *IAA = S.Context.getAsIncompleteArrayType(A); 1700 if (!IAA) 1701 return Sema::TDK_NonDeducedMismatch; 1702 1703 return DeduceTemplateArgumentsByTypeMatch( 1704 S, TemplateParams, 1705 S.Context.getAsIncompleteArrayType(P)->getElementType(), 1706 IAA->getElementType(), Info, Deduced, TDF & TDF_IgnoreQualifiers); 1707 } 1708 1709 // T [integer-constant] 1710 case Type::ConstantArray: { 1711 const auto *CAA = S.Context.getAsConstantArrayType(A), 1712 *CAP = S.Context.getAsConstantArrayType(P); 1713 assert(CAP); 1714 if (!CAA || CAA->getSize() != CAP->getSize()) 1715 return Sema::TDK_NonDeducedMismatch; 1716 1717 return DeduceTemplateArgumentsByTypeMatch( 1718 S, TemplateParams, CAP->getElementType(), CAA->getElementType(), Info, 1719 Deduced, TDF & TDF_IgnoreQualifiers); 1720 } 1721 1722 // type [i] 1723 case Type::DependentSizedArray: { 1724 const auto *AA = S.Context.getAsArrayType(A); 1725 if (!AA) 1726 return Sema::TDK_NonDeducedMismatch; 1727 1728 // Check the element type of the arrays 1729 const auto *DAP = S.Context.getAsDependentSizedArrayType(P); 1730 assert(DAP); 1731 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1732 S, TemplateParams, DAP->getElementType(), AA->getElementType(), 1733 Info, Deduced, TDF & TDF_IgnoreQualifiers)) 1734 return Result; 1735 1736 // Determine the array bound is something we can deduce. 1737 const NonTypeTemplateParmDecl *NTTP = 1738 getDeducedParameterFromExpr(Info, DAP->getSizeExpr()); 1739 if (!NTTP) 1740 return Sema::TDK_Success; 1741 1742 // We can perform template argument deduction for the given non-type 1743 // template parameter. 1744 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1745 "saw non-type template parameter with wrong depth"); 1746 if (const auto *CAA = dyn_cast<ConstantArrayType>(AA)) { 1747 llvm::APSInt Size(CAA->getSize()); 1748 return DeduceNonTypeTemplateArgument( 1749 S, TemplateParams, NTTP, Size, S.Context.getSizeType(), 1750 /*ArrayBound=*/true, Info, Deduced); 1751 } 1752 if (const auto *DAA = dyn_cast<DependentSizedArrayType>(AA)) 1753 if (DAA->getSizeExpr()) 1754 return DeduceNonTypeTemplateArgument( 1755 S, TemplateParams, NTTP, DAA->getSizeExpr(), Info, Deduced); 1756 1757 // Incomplete type does not match a dependently-sized array type 1758 return Sema::TDK_NonDeducedMismatch; 1759 } 1760 1761 // type(*)(T) 1762 // T(*)() 1763 // T(*)(T) 1764 case Type::FunctionProto: { 1765 const auto *FPP = P->castAs<FunctionProtoType>(), 1766 *FPA = A->getAs<FunctionProtoType>(); 1767 if (!FPA) 1768 return Sema::TDK_NonDeducedMismatch; 1769 1770 if (FPP->getMethodQuals() != FPA->getMethodQuals() || 1771 FPP->getRefQualifier() != FPA->getRefQualifier() || 1772 FPP->isVariadic() != FPA->isVariadic()) 1773 return Sema::TDK_NonDeducedMismatch; 1774 1775 // Check return types. 1776 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1777 S, TemplateParams, FPP->getReturnType(), FPA->getReturnType(), 1778 Info, Deduced, 0, 1779 /*PartialOrdering=*/false, 1780 /*DeducedFromArrayBound=*/false)) 1781 return Result; 1782 1783 // Check parameter types. 1784 if (auto Result = DeduceTemplateArguments( 1785 S, TemplateParams, FPP->param_type_begin(), FPP->getNumParams(), 1786 FPA->param_type_begin(), FPA->getNumParams(), Info, Deduced, 1787 TDF & TDF_TopLevelParameterTypeList, PartialOrdering)) 1788 return Result; 1789 1790 if (TDF & TDF_AllowCompatibleFunctionType) 1791 return Sema::TDK_Success; 1792 1793 // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit 1794 // deducing through the noexcept-specifier if it's part of the canonical 1795 // type. libstdc++ relies on this. 1796 Expr *NoexceptExpr = FPP->getNoexceptExpr(); 1797 if (const NonTypeTemplateParmDecl *NTTP = 1798 NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr) 1799 : nullptr) { 1800 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1801 "saw non-type template parameter with wrong depth"); 1802 1803 llvm::APSInt Noexcept(1); 1804 switch (FPA->canThrow()) { 1805 case CT_Cannot: 1806 Noexcept = 1; 1807 [[fallthrough]]; 1808 1809 case CT_Can: 1810 // We give E in noexcept(E) the "deduced from array bound" treatment. 1811 // FIXME: Should we? 1812 return DeduceNonTypeTemplateArgument( 1813 S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy, 1814 /*DeducedFromArrayBound=*/true, Info, Deduced); 1815 1816 case CT_Dependent: 1817 if (Expr *ArgNoexceptExpr = FPA->getNoexceptExpr()) 1818 return DeduceNonTypeTemplateArgument( 1819 S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced); 1820 // Can't deduce anything from throw(T...). 1821 break; 1822 } 1823 } 1824 // FIXME: Detect non-deduced exception specification mismatches? 1825 // 1826 // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow 1827 // top-level differences in noexcept-specifications. 1828 1829 return Sema::TDK_Success; 1830 } 1831 1832 case Type::InjectedClassName: 1833 // Treat a template's injected-class-name as if the template 1834 // specialization type had been used. 1835 1836 // template-name<T> (where template-name refers to a class template) 1837 // template-name<i> 1838 // TT<T> 1839 // TT<i> 1840 // TT<> 1841 case Type::TemplateSpecialization: { 1842 // When Arg cannot be a derived class, we can just try to deduce template 1843 // arguments from the template-id. 1844 if (!(TDF & TDF_DerivedClass) || !A->isRecordType()) 1845 return DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info, 1846 Deduced); 1847 1848 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(), 1849 Deduced.end()); 1850 1851 auto Result = 1852 DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info, Deduced); 1853 if (Result == Sema::TDK_Success) 1854 return Result; 1855 1856 // We cannot inspect base classes as part of deduction when the type 1857 // is incomplete, so either instantiate any templates necessary to 1858 // complete the type, or skip over it if it cannot be completed. 1859 if (!S.isCompleteType(Info.getLocation(), A)) 1860 return Result; 1861 1862 // Reset the incorrectly deduced argument from above. 1863 Deduced = DeducedOrig; 1864 1865 // Check bases according to C++14 [temp.deduct.call] p4b3: 1866 auto BaseResult = DeduceTemplateBases(S, getCanonicalRD(A), 1867 TemplateParams, P, Info, Deduced); 1868 return BaseResult != Sema::TDK_Invalid ? BaseResult : Result; 1869 } 1870 1871 // T type::* 1872 // T T::* 1873 // T (type::*)() 1874 // type (T::*)() 1875 // type (type::*)(T) 1876 // type (T::*)(T) 1877 // T (type::*)(T) 1878 // T (T::*)() 1879 // T (T::*)(T) 1880 case Type::MemberPointer: { 1881 const auto *MPP = P->castAs<MemberPointerType>(), 1882 *MPA = A->getAs<MemberPointerType>(); 1883 if (!MPA) 1884 return Sema::TDK_NonDeducedMismatch; 1885 1886 QualType PPT = MPP->getPointeeType(); 1887 if (PPT->isFunctionType()) 1888 S.adjustMemberFunctionCC(PPT, /*IsStatic=*/true, 1889 /*IsCtorOrDtor=*/false, Info.getLocation()); 1890 QualType APT = MPA->getPointeeType(); 1891 if (APT->isFunctionType()) 1892 S.adjustMemberFunctionCC(APT, /*IsStatic=*/true, 1893 /*IsCtorOrDtor=*/false, Info.getLocation()); 1894 1895 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1896 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1897 S, TemplateParams, PPT, APT, Info, Deduced, SubTDF)) 1898 return Result; 1899 return DeduceTemplateArgumentsByTypeMatch( 1900 S, TemplateParams, QualType(MPP->getClass(), 0), 1901 QualType(MPA->getClass(), 0), Info, Deduced, SubTDF); 1902 } 1903 1904 // (clang extension) 1905 // 1906 // type(^)(T) 1907 // T(^)() 1908 // T(^)(T) 1909 case Type::BlockPointer: { 1910 const auto *BPP = P->castAs<BlockPointerType>(), 1911 *BPA = A->getAs<BlockPointerType>(); 1912 if (!BPA) 1913 return Sema::TDK_NonDeducedMismatch; 1914 return DeduceTemplateArgumentsByTypeMatch( 1915 S, TemplateParams, BPP->getPointeeType(), BPA->getPointeeType(), Info, 1916 Deduced, 0); 1917 } 1918 1919 // (clang extension) 1920 // 1921 // T __attribute__(((ext_vector_type(<integral constant>)))) 1922 case Type::ExtVector: { 1923 const auto *VP = P->castAs<ExtVectorType>(); 1924 QualType ElementType; 1925 if (const auto *VA = A->getAs<ExtVectorType>()) { 1926 // Make sure that the vectors have the same number of elements. 1927 if (VP->getNumElements() != VA->getNumElements()) 1928 return Sema::TDK_NonDeducedMismatch; 1929 ElementType = VA->getElementType(); 1930 } else if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) { 1931 // We can't check the number of elements, since the argument has a 1932 // dependent number of elements. This can only occur during partial 1933 // ordering. 1934 ElementType = VA->getElementType(); 1935 } else { 1936 return Sema::TDK_NonDeducedMismatch; 1937 } 1938 // Perform deduction on the element types. 1939 return DeduceTemplateArgumentsByTypeMatch( 1940 S, TemplateParams, VP->getElementType(), ElementType, Info, Deduced, 1941 TDF); 1942 } 1943 1944 case Type::DependentVector: { 1945 const auto *VP = P->castAs<DependentVectorType>(); 1946 1947 if (const auto *VA = A->getAs<VectorType>()) { 1948 // Perform deduction on the element types. 1949 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1950 S, TemplateParams, VP->getElementType(), VA->getElementType(), 1951 Info, Deduced, TDF)) 1952 return Result; 1953 1954 // Perform deduction on the vector size, if we can. 1955 const NonTypeTemplateParmDecl *NTTP = 1956 getDeducedParameterFromExpr(Info, VP->getSizeExpr()); 1957 if (!NTTP) 1958 return Sema::TDK_Success; 1959 1960 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 1961 ArgSize = VA->getNumElements(); 1962 // Note that we use the "array bound" rules here; just like in that 1963 // case, we don't have any particular type for the vector size, but 1964 // we can provide one if necessary. 1965 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 1966 S.Context.UnsignedIntTy, true, 1967 Info, Deduced); 1968 } 1969 1970 if (const auto *VA = A->getAs<DependentVectorType>()) { 1971 // Perform deduction on the element types. 1972 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1973 S, TemplateParams, VP->getElementType(), VA->getElementType(), 1974 Info, Deduced, TDF)) 1975 return Result; 1976 1977 // Perform deduction on the vector size, if we can. 1978 const NonTypeTemplateParmDecl *NTTP = 1979 getDeducedParameterFromExpr(Info, VP->getSizeExpr()); 1980 if (!NTTP) 1981 return Sema::TDK_Success; 1982 1983 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 1984 VA->getSizeExpr(), Info, Deduced); 1985 } 1986 1987 return Sema::TDK_NonDeducedMismatch; 1988 } 1989 1990 // (clang extension) 1991 // 1992 // T __attribute__(((ext_vector_type(N)))) 1993 case Type::DependentSizedExtVector: { 1994 const auto *VP = P->castAs<DependentSizedExtVectorType>(); 1995 1996 if (const auto *VA = A->getAs<ExtVectorType>()) { 1997 // Perform deduction on the element types. 1998 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1999 S, TemplateParams, VP->getElementType(), VA->getElementType(), 2000 Info, Deduced, TDF)) 2001 return Result; 2002 2003 // Perform deduction on the vector size, if we can. 2004 const NonTypeTemplateParmDecl *NTTP = 2005 getDeducedParameterFromExpr(Info, VP->getSizeExpr()); 2006 if (!NTTP) 2007 return Sema::TDK_Success; 2008 2009 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 2010 ArgSize = VA->getNumElements(); 2011 // Note that we use the "array bound" rules here; just like in that 2012 // case, we don't have any particular type for the vector size, but 2013 // we can provide one if necessary. 2014 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 2015 S.Context.IntTy, true, Info, 2016 Deduced); 2017 } 2018 2019 if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) { 2020 // Perform deduction on the element types. 2021 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 2022 S, TemplateParams, VP->getElementType(), VA->getElementType(), 2023 Info, Deduced, TDF)) 2024 return Result; 2025 2026 // Perform deduction on the vector size, if we can. 2027 const NonTypeTemplateParmDecl *NTTP = 2028 getDeducedParameterFromExpr(Info, VP->getSizeExpr()); 2029 if (!NTTP) 2030 return Sema::TDK_Success; 2031 2032 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2033 VA->getSizeExpr(), Info, Deduced); 2034 } 2035 2036 return Sema::TDK_NonDeducedMismatch; 2037 } 2038 2039 // (clang extension) 2040 // 2041 // T __attribute__((matrix_type(<integral constant>, 2042 // <integral constant>))) 2043 case Type::ConstantMatrix: { 2044 const auto *MP = P->castAs<ConstantMatrixType>(), 2045 *MA = A->getAs<ConstantMatrixType>(); 2046 if (!MA) 2047 return Sema::TDK_NonDeducedMismatch; 2048 2049 // Check that the dimensions are the same 2050 if (MP->getNumRows() != MA->getNumRows() || 2051 MP->getNumColumns() != MA->getNumColumns()) { 2052 return Sema::TDK_NonDeducedMismatch; 2053 } 2054 // Perform deduction on element types. 2055 return DeduceTemplateArgumentsByTypeMatch( 2056 S, TemplateParams, MP->getElementType(), MA->getElementType(), Info, 2057 Deduced, TDF); 2058 } 2059 2060 case Type::DependentSizedMatrix: { 2061 const auto *MP = P->castAs<DependentSizedMatrixType>(); 2062 const auto *MA = A->getAs<MatrixType>(); 2063 if (!MA) 2064 return Sema::TDK_NonDeducedMismatch; 2065 2066 // Check the element type of the matrixes. 2067 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 2068 S, TemplateParams, MP->getElementType(), MA->getElementType(), 2069 Info, Deduced, TDF)) 2070 return Result; 2071 2072 // Try to deduce a matrix dimension. 2073 auto DeduceMatrixArg = 2074 [&S, &Info, &Deduced, &TemplateParams]( 2075 Expr *ParamExpr, const MatrixType *A, 2076 unsigned (ConstantMatrixType::*GetArgDimension)() const, 2077 Expr *(DependentSizedMatrixType::*GetArgDimensionExpr)() const) { 2078 const auto *ACM = dyn_cast<ConstantMatrixType>(A); 2079 const auto *ADM = dyn_cast<DependentSizedMatrixType>(A); 2080 if (!ParamExpr->isValueDependent()) { 2081 std::optional<llvm::APSInt> ParamConst = 2082 ParamExpr->getIntegerConstantExpr(S.Context); 2083 if (!ParamConst) 2084 return Sema::TDK_NonDeducedMismatch; 2085 2086 if (ACM) { 2087 if ((ACM->*GetArgDimension)() == *ParamConst) 2088 return Sema::TDK_Success; 2089 return Sema::TDK_NonDeducedMismatch; 2090 } 2091 2092 Expr *ArgExpr = (ADM->*GetArgDimensionExpr)(); 2093 if (std::optional<llvm::APSInt> ArgConst = 2094 ArgExpr->getIntegerConstantExpr(S.Context)) 2095 if (*ArgConst == *ParamConst) 2096 return Sema::TDK_Success; 2097 return Sema::TDK_NonDeducedMismatch; 2098 } 2099 2100 const NonTypeTemplateParmDecl *NTTP = 2101 getDeducedParameterFromExpr(Info, ParamExpr); 2102 if (!NTTP) 2103 return Sema::TDK_Success; 2104 2105 if (ACM) { 2106 llvm::APSInt ArgConst( 2107 S.Context.getTypeSize(S.Context.getSizeType())); 2108 ArgConst = (ACM->*GetArgDimension)(); 2109 return DeduceNonTypeTemplateArgument( 2110 S, TemplateParams, NTTP, ArgConst, S.Context.getSizeType(), 2111 /*ArrayBound=*/true, Info, Deduced); 2112 } 2113 2114 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2115 (ADM->*GetArgDimensionExpr)(), 2116 Info, Deduced); 2117 }; 2118 2119 if (auto Result = DeduceMatrixArg(MP->getRowExpr(), MA, 2120 &ConstantMatrixType::getNumRows, 2121 &DependentSizedMatrixType::getRowExpr)) 2122 return Result; 2123 2124 return DeduceMatrixArg(MP->getColumnExpr(), MA, 2125 &ConstantMatrixType::getNumColumns, 2126 &DependentSizedMatrixType::getColumnExpr); 2127 } 2128 2129 // (clang extension) 2130 // 2131 // T __attribute__(((address_space(N)))) 2132 case Type::DependentAddressSpace: { 2133 const auto *ASP = P->castAs<DependentAddressSpaceType>(); 2134 2135 if (const auto *ASA = A->getAs<DependentAddressSpaceType>()) { 2136 // Perform deduction on the pointer type. 2137 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 2138 S, TemplateParams, ASP->getPointeeType(), ASA->getPointeeType(), 2139 Info, Deduced, TDF)) 2140 return Result; 2141 2142 // Perform deduction on the address space, if we can. 2143 const NonTypeTemplateParmDecl *NTTP = 2144 getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr()); 2145 if (!NTTP) 2146 return Sema::TDK_Success; 2147 2148 return DeduceNonTypeTemplateArgument( 2149 S, TemplateParams, NTTP, ASA->getAddrSpaceExpr(), Info, Deduced); 2150 } 2151 2152 if (isTargetAddressSpace(A.getAddressSpace())) { 2153 llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy), 2154 false); 2155 ArgAddressSpace = toTargetAddressSpace(A.getAddressSpace()); 2156 2157 // Perform deduction on the pointer types. 2158 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 2159 S, TemplateParams, ASP->getPointeeType(), 2160 S.Context.removeAddrSpaceQualType(A), Info, Deduced, TDF)) 2161 return Result; 2162 2163 // Perform deduction on the address space, if we can. 2164 const NonTypeTemplateParmDecl *NTTP = 2165 getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr()); 2166 if (!NTTP) 2167 return Sema::TDK_Success; 2168 2169 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2170 ArgAddressSpace, S.Context.IntTy, 2171 true, Info, Deduced); 2172 } 2173 2174 return Sema::TDK_NonDeducedMismatch; 2175 } 2176 case Type::DependentBitInt: { 2177 const auto *IP = P->castAs<DependentBitIntType>(); 2178 2179 if (const auto *IA = A->getAs<BitIntType>()) { 2180 if (IP->isUnsigned() != IA->isUnsigned()) 2181 return Sema::TDK_NonDeducedMismatch; 2182 2183 const NonTypeTemplateParmDecl *NTTP = 2184 getDeducedParameterFromExpr(Info, IP->getNumBitsExpr()); 2185 if (!NTTP) 2186 return Sema::TDK_Success; 2187 2188 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 2189 ArgSize = IA->getNumBits(); 2190 2191 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 2192 S.Context.IntTy, true, Info, 2193 Deduced); 2194 } 2195 2196 if (const auto *IA = A->getAs<DependentBitIntType>()) { 2197 if (IP->isUnsigned() != IA->isUnsigned()) 2198 return Sema::TDK_NonDeducedMismatch; 2199 return Sema::TDK_Success; 2200 } 2201 2202 return Sema::TDK_NonDeducedMismatch; 2203 } 2204 2205 case Type::TypeOfExpr: 2206 case Type::TypeOf: 2207 case Type::DependentName: 2208 case Type::UnresolvedUsing: 2209 case Type::Decltype: 2210 case Type::UnaryTransform: 2211 case Type::DeducedTemplateSpecialization: 2212 case Type::DependentTemplateSpecialization: 2213 case Type::PackExpansion: 2214 case Type::Pipe: 2215 // No template argument deduction for these types 2216 return Sema::TDK_Success; 2217 } 2218 2219 llvm_unreachable("Invalid Type Class!"); 2220 } 2221 2222 static Sema::TemplateDeductionResult 2223 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 2224 const TemplateArgument &P, TemplateArgument A, 2225 TemplateDeductionInfo &Info, 2226 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2227 // If the template argument is a pack expansion, perform template argument 2228 // deduction against the pattern of that expansion. This only occurs during 2229 // partial ordering. 2230 if (A.isPackExpansion()) 2231 A = A.getPackExpansionPattern(); 2232 2233 switch (P.getKind()) { 2234 case TemplateArgument::Null: 2235 llvm_unreachable("Null template argument in parameter list"); 2236 2237 case TemplateArgument::Type: 2238 if (A.getKind() == TemplateArgument::Type) 2239 return DeduceTemplateArgumentsByTypeMatch( 2240 S, TemplateParams, P.getAsType(), A.getAsType(), Info, Deduced, 0); 2241 Info.FirstArg = P; 2242 Info.SecondArg = A; 2243 return Sema::TDK_NonDeducedMismatch; 2244 2245 case TemplateArgument::Template: 2246 if (A.getKind() == TemplateArgument::Template) 2247 return DeduceTemplateArguments(S, TemplateParams, P.getAsTemplate(), 2248 A.getAsTemplate(), Info, Deduced); 2249 Info.FirstArg = P; 2250 Info.SecondArg = A; 2251 return Sema::TDK_NonDeducedMismatch; 2252 2253 case TemplateArgument::TemplateExpansion: 2254 llvm_unreachable("caller should handle pack expansions"); 2255 2256 case TemplateArgument::Declaration: 2257 if (A.getKind() == TemplateArgument::Declaration && 2258 isSameDeclaration(P.getAsDecl(), A.getAsDecl())) 2259 return Sema::TDK_Success; 2260 2261 Info.FirstArg = P; 2262 Info.SecondArg = A; 2263 return Sema::TDK_NonDeducedMismatch; 2264 2265 case TemplateArgument::NullPtr: 2266 if (A.getKind() == TemplateArgument::NullPtr && 2267 S.Context.hasSameType(P.getNullPtrType(), A.getNullPtrType())) 2268 return Sema::TDK_Success; 2269 2270 Info.FirstArg = P; 2271 Info.SecondArg = A; 2272 return Sema::TDK_NonDeducedMismatch; 2273 2274 case TemplateArgument::Integral: 2275 if (A.getKind() == TemplateArgument::Integral) { 2276 if (hasSameExtendedValue(P.getAsIntegral(), A.getAsIntegral())) 2277 return Sema::TDK_Success; 2278 } 2279 Info.FirstArg = P; 2280 Info.SecondArg = A; 2281 return Sema::TDK_NonDeducedMismatch; 2282 2283 case TemplateArgument::Expression: 2284 if (const NonTypeTemplateParmDecl *NTTP = 2285 getDeducedParameterFromExpr(Info, P.getAsExpr())) { 2286 if (A.getKind() == TemplateArgument::Integral) 2287 return DeduceNonTypeTemplateArgument( 2288 S, TemplateParams, NTTP, A.getAsIntegral(), A.getIntegralType(), 2289 /*ArrayBound=*/false, Info, Deduced); 2290 if (A.getKind() == TemplateArgument::NullPtr) 2291 return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP, 2292 A.getNullPtrType(), Info, Deduced); 2293 if (A.getKind() == TemplateArgument::Expression) 2294 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2295 A.getAsExpr(), Info, Deduced); 2296 if (A.getKind() == TemplateArgument::Declaration) 2297 return DeduceNonTypeTemplateArgument( 2298 S, TemplateParams, NTTP, A.getAsDecl(), A.getParamTypeForDecl(), 2299 Info, Deduced); 2300 2301 Info.FirstArg = P; 2302 Info.SecondArg = A; 2303 return Sema::TDK_NonDeducedMismatch; 2304 } 2305 2306 // Can't deduce anything, but that's okay. 2307 return Sema::TDK_Success; 2308 case TemplateArgument::Pack: 2309 llvm_unreachable("Argument packs should be expanded by the caller!"); 2310 } 2311 2312 llvm_unreachable("Invalid TemplateArgument Kind!"); 2313 } 2314 2315 /// Determine whether there is a template argument to be used for 2316 /// deduction. 2317 /// 2318 /// This routine "expands" argument packs in-place, overriding its input 2319 /// parameters so that \c Args[ArgIdx] will be the available template argument. 2320 /// 2321 /// \returns true if there is another template argument (which will be at 2322 /// \c Args[ArgIdx]), false otherwise. 2323 static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args, 2324 unsigned &ArgIdx) { 2325 if (ArgIdx == Args.size()) 2326 return false; 2327 2328 const TemplateArgument &Arg = Args[ArgIdx]; 2329 if (Arg.getKind() != TemplateArgument::Pack) 2330 return true; 2331 2332 assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?"); 2333 Args = Arg.pack_elements(); 2334 ArgIdx = 0; 2335 return ArgIdx < Args.size(); 2336 } 2337 2338 /// Determine whether the given set of template arguments has a pack 2339 /// expansion that is not the last template argument. 2340 static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) { 2341 bool FoundPackExpansion = false; 2342 for (const auto &A : Args) { 2343 if (FoundPackExpansion) 2344 return true; 2345 2346 if (A.getKind() == TemplateArgument::Pack) 2347 return hasPackExpansionBeforeEnd(A.pack_elements()); 2348 2349 // FIXME: If this is a fixed-arity pack expansion from an outer level of 2350 // templates, it should not be treated as a pack expansion. 2351 if (A.isPackExpansion()) 2352 FoundPackExpansion = true; 2353 } 2354 2355 return false; 2356 } 2357 2358 static Sema::TemplateDeductionResult 2359 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 2360 ArrayRef<TemplateArgument> Ps, 2361 ArrayRef<TemplateArgument> As, 2362 TemplateDeductionInfo &Info, 2363 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2364 bool NumberOfArgumentsMustMatch) { 2365 // C++0x [temp.deduct.type]p9: 2366 // If the template argument list of P contains a pack expansion that is not 2367 // the last template argument, the entire template argument list is a 2368 // non-deduced context. 2369 if (hasPackExpansionBeforeEnd(Ps)) 2370 return Sema::TDK_Success; 2371 2372 // C++0x [temp.deduct.type]p9: 2373 // If P has a form that contains <T> or <i>, then each argument Pi of the 2374 // respective template argument list P is compared with the corresponding 2375 // argument Ai of the corresponding template argument list of A. 2376 unsigned ArgIdx = 0, ParamIdx = 0; 2377 for (; hasTemplateArgumentForDeduction(Ps, ParamIdx); ++ParamIdx) { 2378 const TemplateArgument &P = Ps[ParamIdx]; 2379 if (!P.isPackExpansion()) { 2380 // The simple case: deduce template arguments by matching Pi and Ai. 2381 2382 // Check whether we have enough arguments. 2383 if (!hasTemplateArgumentForDeduction(As, ArgIdx)) 2384 return NumberOfArgumentsMustMatch 2385 ? Sema::TDK_MiscellaneousDeductionFailure 2386 : Sema::TDK_Success; 2387 2388 // C++1z [temp.deduct.type]p9: 2389 // During partial ordering, if Ai was originally a pack expansion [and] 2390 // Pi is not a pack expansion, template argument deduction fails. 2391 if (As[ArgIdx].isPackExpansion()) 2392 return Sema::TDK_MiscellaneousDeductionFailure; 2393 2394 // Perform deduction for this Pi/Ai pair. 2395 if (auto Result = DeduceTemplateArguments(S, TemplateParams, P, 2396 As[ArgIdx], Info, Deduced)) 2397 return Result; 2398 2399 // Move to the next argument. 2400 ++ArgIdx; 2401 continue; 2402 } 2403 2404 // The parameter is a pack expansion. 2405 2406 // C++0x [temp.deduct.type]p9: 2407 // If Pi is a pack expansion, then the pattern of Pi is compared with 2408 // each remaining argument in the template argument list of A. Each 2409 // comparison deduces template arguments for subsequent positions in the 2410 // template parameter packs expanded by Pi. 2411 TemplateArgument Pattern = P.getPackExpansionPattern(); 2412 2413 // Prepare to deduce the packs within the pattern. 2414 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 2415 2416 // Keep track of the deduced template arguments for each parameter pack 2417 // expanded by this pack expansion (the outer index) and for each 2418 // template argument (the inner SmallVectors). 2419 for (; hasTemplateArgumentForDeduction(As, ArgIdx) && 2420 PackScope.hasNextElement(); 2421 ++ArgIdx) { 2422 // Deduce template arguments from the pattern. 2423 if (auto Result = DeduceTemplateArguments(S, TemplateParams, Pattern, 2424 As[ArgIdx], Info, Deduced)) 2425 return Result; 2426 2427 PackScope.nextPackElement(); 2428 } 2429 2430 // Build argument packs for each of the parameter packs expanded by this 2431 // pack expansion. 2432 if (auto Result = PackScope.finish()) 2433 return Result; 2434 } 2435 2436 return Sema::TDK_Success; 2437 } 2438 2439 static Sema::TemplateDeductionResult 2440 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 2441 const TemplateArgumentList &ParamList, 2442 const TemplateArgumentList &ArgList, 2443 TemplateDeductionInfo &Info, 2444 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2445 return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(), 2446 ArgList.asArray(), Info, Deduced, 2447 /*NumberOfArgumentsMustMatch=*/false); 2448 } 2449 2450 /// Determine whether two template arguments are the same. 2451 static bool isSameTemplateArg(ASTContext &Context, 2452 TemplateArgument X, 2453 const TemplateArgument &Y, 2454 bool PartialOrdering, 2455 bool PackExpansionMatchesPack = false) { 2456 // If we're checking deduced arguments (X) against original arguments (Y), 2457 // we will have flattened packs to non-expansions in X. 2458 if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion()) 2459 X = X.getPackExpansionPattern(); 2460 2461 if (X.getKind() != Y.getKind()) 2462 return false; 2463 2464 switch (X.getKind()) { 2465 case TemplateArgument::Null: 2466 llvm_unreachable("Comparing NULL template argument"); 2467 2468 case TemplateArgument::Type: 2469 return Context.getCanonicalType(X.getAsType()) == 2470 Context.getCanonicalType(Y.getAsType()); 2471 2472 case TemplateArgument::Declaration: 2473 return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()); 2474 2475 case TemplateArgument::NullPtr: 2476 return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()); 2477 2478 case TemplateArgument::Template: 2479 case TemplateArgument::TemplateExpansion: 2480 return Context.getCanonicalTemplateName( 2481 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() == 2482 Context.getCanonicalTemplateName( 2483 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer(); 2484 2485 case TemplateArgument::Integral: 2486 return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()); 2487 2488 case TemplateArgument::Expression: { 2489 llvm::FoldingSetNodeID XID, YID; 2490 X.getAsExpr()->Profile(XID, Context, true); 2491 Y.getAsExpr()->Profile(YID, Context, true); 2492 return XID == YID; 2493 } 2494 2495 case TemplateArgument::Pack: { 2496 unsigned PackIterationSize = X.pack_size(); 2497 if (X.pack_size() != Y.pack_size()) { 2498 if (!PartialOrdering) 2499 return false; 2500 2501 // C++0x [temp.deduct.type]p9: 2502 // During partial ordering, if Ai was originally a pack expansion: 2503 // - if P does not contain a template argument corresponding to Ai 2504 // then Ai is ignored; 2505 bool XHasMoreArg = X.pack_size() > Y.pack_size(); 2506 if (!(XHasMoreArg && X.pack_elements().back().isPackExpansion()) && 2507 !(!XHasMoreArg && Y.pack_elements().back().isPackExpansion())) 2508 return false; 2509 2510 if (XHasMoreArg) 2511 PackIterationSize = Y.pack_size(); 2512 } 2513 2514 ArrayRef<TemplateArgument> XP = X.pack_elements(); 2515 ArrayRef<TemplateArgument> YP = Y.pack_elements(); 2516 for (unsigned i = 0; i < PackIterationSize; ++i) 2517 if (!isSameTemplateArg(Context, XP[i], YP[i], PartialOrdering, 2518 PackExpansionMatchesPack)) 2519 return false; 2520 return true; 2521 } 2522 } 2523 2524 llvm_unreachable("Invalid TemplateArgument Kind!"); 2525 } 2526 2527 /// Allocate a TemplateArgumentLoc where all locations have 2528 /// been initialized to the given location. 2529 /// 2530 /// \param Arg The template argument we are producing template argument 2531 /// location information for. 2532 /// 2533 /// \param NTTPType For a declaration template argument, the type of 2534 /// the non-type template parameter that corresponds to this template 2535 /// argument. Can be null if no type sugar is available to add to the 2536 /// type from the template argument. 2537 /// 2538 /// \param Loc The source location to use for the resulting template 2539 /// argument. 2540 TemplateArgumentLoc 2541 Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, 2542 QualType NTTPType, SourceLocation Loc) { 2543 switch (Arg.getKind()) { 2544 case TemplateArgument::Null: 2545 llvm_unreachable("Can't get a NULL template argument here"); 2546 2547 case TemplateArgument::Type: 2548 return TemplateArgumentLoc( 2549 Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); 2550 2551 case TemplateArgument::Declaration: { 2552 if (NTTPType.isNull()) 2553 NTTPType = Arg.getParamTypeForDecl(); 2554 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2555 .getAs<Expr>(); 2556 return TemplateArgumentLoc(TemplateArgument(E), E); 2557 } 2558 2559 case TemplateArgument::NullPtr: { 2560 if (NTTPType.isNull()) 2561 NTTPType = Arg.getNullPtrType(); 2562 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2563 .getAs<Expr>(); 2564 return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true), 2565 E); 2566 } 2567 2568 case TemplateArgument::Integral: { 2569 Expr *E = 2570 BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>(); 2571 return TemplateArgumentLoc(TemplateArgument(E), E); 2572 } 2573 2574 case TemplateArgument::Template: 2575 case TemplateArgument::TemplateExpansion: { 2576 NestedNameSpecifierLocBuilder Builder; 2577 TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); 2578 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) 2579 Builder.MakeTrivial(Context, DTN->getQualifier(), Loc); 2580 else if (QualifiedTemplateName *QTN = 2581 Template.getAsQualifiedTemplateName()) 2582 Builder.MakeTrivial(Context, QTN->getQualifier(), Loc); 2583 2584 if (Arg.getKind() == TemplateArgument::Template) 2585 return TemplateArgumentLoc(Context, Arg, 2586 Builder.getWithLocInContext(Context), Loc); 2587 2588 return TemplateArgumentLoc( 2589 Context, Arg, Builder.getWithLocInContext(Context), Loc, Loc); 2590 } 2591 2592 case TemplateArgument::Expression: 2593 return TemplateArgumentLoc(Arg, Arg.getAsExpr()); 2594 2595 case TemplateArgument::Pack: 2596 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); 2597 } 2598 2599 llvm_unreachable("Invalid TemplateArgument Kind!"); 2600 } 2601 2602 TemplateArgumentLoc 2603 Sema::getIdentityTemplateArgumentLoc(NamedDecl *TemplateParm, 2604 SourceLocation Location) { 2605 return getTrivialTemplateArgumentLoc( 2606 Context.getInjectedTemplateArg(TemplateParm), QualType(), Location); 2607 } 2608 2609 /// Convert the given deduced template argument and add it to the set of 2610 /// fully-converted template arguments. 2611 static bool ConvertDeducedTemplateArgument( 2612 Sema &S, NamedDecl *Param, DeducedTemplateArgument Arg, NamedDecl *Template, 2613 TemplateDeductionInfo &Info, bool IsDeduced, 2614 SmallVectorImpl<TemplateArgument> &SugaredOutput, 2615 SmallVectorImpl<TemplateArgument> &CanonicalOutput) { 2616 auto ConvertArg = [&](DeducedTemplateArgument Arg, 2617 unsigned ArgumentPackIndex) { 2618 // Convert the deduced template argument into a template 2619 // argument that we can check, almost as if the user had written 2620 // the template argument explicitly. 2621 TemplateArgumentLoc ArgLoc = 2622 S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation()); 2623 2624 // Check the template argument, converting it as necessary. 2625 return S.CheckTemplateArgument( 2626 Param, ArgLoc, Template, Template->getLocation(), 2627 Template->getSourceRange().getEnd(), ArgumentPackIndex, SugaredOutput, 2628 CanonicalOutput, 2629 IsDeduced 2630 ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound 2631 : Sema::CTAK_Deduced) 2632 : Sema::CTAK_Specified); 2633 }; 2634 2635 if (Arg.getKind() == TemplateArgument::Pack) { 2636 // This is a template argument pack, so check each of its arguments against 2637 // the template parameter. 2638 SmallVector<TemplateArgument, 2> SugaredPackedArgsBuilder, 2639 CanonicalPackedArgsBuilder; 2640 for (const auto &P : Arg.pack_elements()) { 2641 // When converting the deduced template argument, append it to the 2642 // general output list. We need to do this so that the template argument 2643 // checking logic has all of the prior template arguments available. 2644 DeducedTemplateArgument InnerArg(P); 2645 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); 2646 assert(InnerArg.getKind() != TemplateArgument::Pack && 2647 "deduced nested pack"); 2648 if (P.isNull()) { 2649 // We deduced arguments for some elements of this pack, but not for 2650 // all of them. This happens if we get a conditionally-non-deduced 2651 // context in a pack expansion (such as an overload set in one of the 2652 // arguments). 2653 S.Diag(Param->getLocation(), 2654 diag::err_template_arg_deduced_incomplete_pack) 2655 << Arg << Param; 2656 return true; 2657 } 2658 if (ConvertArg(InnerArg, SugaredPackedArgsBuilder.size())) 2659 return true; 2660 2661 // Move the converted template argument into our argument pack. 2662 SugaredPackedArgsBuilder.push_back(SugaredOutput.pop_back_val()); 2663 CanonicalPackedArgsBuilder.push_back(CanonicalOutput.pop_back_val()); 2664 } 2665 2666 // If the pack is empty, we still need to substitute into the parameter 2667 // itself, in case that substitution fails. 2668 if (SugaredPackedArgsBuilder.empty()) { 2669 LocalInstantiationScope Scope(S); 2670 MultiLevelTemplateArgumentList Args(Template, SugaredOutput, 2671 /*Final=*/true); 2672 2673 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2674 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2675 NTTP, SugaredOutput, 2676 Template->getSourceRange()); 2677 if (Inst.isInvalid() || 2678 S.SubstType(NTTP->getType(), Args, NTTP->getLocation(), 2679 NTTP->getDeclName()).isNull()) 2680 return true; 2681 } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) { 2682 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2683 TTP, SugaredOutput, 2684 Template->getSourceRange()); 2685 if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args)) 2686 return true; 2687 } 2688 // For type parameters, no substitution is ever required. 2689 } 2690 2691 // Create the resulting argument pack. 2692 SugaredOutput.push_back( 2693 TemplateArgument::CreatePackCopy(S.Context, SugaredPackedArgsBuilder)); 2694 CanonicalOutput.push_back(TemplateArgument::CreatePackCopy( 2695 S.Context, CanonicalPackedArgsBuilder)); 2696 return false; 2697 } 2698 2699 return ConvertArg(Arg, 0); 2700 } 2701 2702 // FIXME: This should not be a template, but 2703 // ClassTemplatePartialSpecializationDecl sadly does not derive from 2704 // TemplateDecl. 2705 template <typename TemplateDeclT> 2706 static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments( 2707 Sema &S, TemplateDeclT *Template, bool IsDeduced, 2708 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2709 TemplateDeductionInfo &Info, 2710 SmallVectorImpl<TemplateArgument> &SugaredBuilder, 2711 SmallVectorImpl<TemplateArgument> &CanonicalBuilder, 2712 LocalInstantiationScope *CurrentInstantiationScope = nullptr, 2713 unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) { 2714 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2715 2716 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2717 NamedDecl *Param = TemplateParams->getParam(I); 2718 2719 // C++0x [temp.arg.explicit]p3: 2720 // A trailing template parameter pack (14.5.3) not otherwise deduced will 2721 // be deduced to an empty sequence of template arguments. 2722 // FIXME: Where did the word "trailing" come from? 2723 if (Deduced[I].isNull() && Param->isTemplateParameterPack()) { 2724 if (auto Result = 2725 PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish()) 2726 return Result; 2727 } 2728 2729 if (!Deduced[I].isNull()) { 2730 if (I < NumAlreadyConverted) { 2731 // We may have had explicitly-specified template arguments for a 2732 // template parameter pack (that may or may not have been extended 2733 // via additional deduced arguments). 2734 if (Param->isParameterPack() && CurrentInstantiationScope && 2735 CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) { 2736 // Forget the partially-substituted pack; its substitution is now 2737 // complete. 2738 CurrentInstantiationScope->ResetPartiallySubstitutedPack(); 2739 // We still need to check the argument in case it was extended by 2740 // deduction. 2741 } else { 2742 // We have already fully type-checked and converted this 2743 // argument, because it was explicitly-specified. Just record the 2744 // presence of this argument. 2745 SugaredBuilder.push_back(Deduced[I]); 2746 CanonicalBuilder.push_back( 2747 S.Context.getCanonicalTemplateArgument(Deduced[I])); 2748 continue; 2749 } 2750 } 2751 2752 // We may have deduced this argument, so it still needs to be 2753 // checked and converted. 2754 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info, 2755 IsDeduced, SugaredBuilder, 2756 CanonicalBuilder)) { 2757 Info.Param = makeTemplateParameter(Param); 2758 // FIXME: These template arguments are temporary. Free them! 2759 Info.reset( 2760 TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder), 2761 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder)); 2762 return Sema::TDK_SubstitutionFailure; 2763 } 2764 2765 continue; 2766 } 2767 2768 // Substitute into the default template argument, if available. 2769 bool HasDefaultArg = false; 2770 TemplateDecl *TD = dyn_cast<TemplateDecl>(Template); 2771 if (!TD) { 2772 assert(isa<ClassTemplatePartialSpecializationDecl>(Template) || 2773 isa<VarTemplatePartialSpecializationDecl>(Template)); 2774 return Sema::TDK_Incomplete; 2775 } 2776 2777 TemplateArgumentLoc DefArg; 2778 { 2779 Qualifiers ThisTypeQuals; 2780 CXXRecordDecl *ThisContext = nullptr; 2781 if (auto *Rec = dyn_cast<CXXRecordDecl>(TD->getDeclContext())) 2782 if (Rec->isLambda()) 2783 if (auto *Method = dyn_cast<CXXMethodDecl>(Rec->getDeclContext())) { 2784 ThisContext = Method->getParent(); 2785 ThisTypeQuals = Method->getMethodQualifiers(); 2786 } 2787 2788 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, ThisTypeQuals, 2789 S.getLangOpts().CPlusPlus17); 2790 2791 DefArg = S.SubstDefaultTemplateArgumentIfAvailable( 2792 TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, 2793 SugaredBuilder, CanonicalBuilder, HasDefaultArg); 2794 } 2795 2796 // If there was no default argument, deduction is incomplete. 2797 if (DefArg.getArgument().isNull()) { 2798 Info.Param = makeTemplateParameter( 2799 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2800 Info.reset(TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder), 2801 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder)); 2802 if (PartialOverloading) break; 2803 2804 return HasDefaultArg ? Sema::TDK_SubstitutionFailure 2805 : Sema::TDK_Incomplete; 2806 } 2807 2808 // Check whether we can actually use the default argument. 2809 if (S.CheckTemplateArgument( 2810 Param, DefArg, TD, TD->getLocation(), TD->getSourceRange().getEnd(), 2811 0, SugaredBuilder, CanonicalBuilder, Sema::CTAK_Specified)) { 2812 Info.Param = makeTemplateParameter( 2813 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2814 // FIXME: These template arguments are temporary. Free them! 2815 Info.reset(TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder), 2816 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder)); 2817 return Sema::TDK_SubstitutionFailure; 2818 } 2819 2820 // If we get here, we successfully used the default template argument. 2821 } 2822 2823 return Sema::TDK_Success; 2824 } 2825 2826 static DeclContext *getAsDeclContextOrEnclosing(Decl *D) { 2827 if (auto *DC = dyn_cast<DeclContext>(D)) 2828 return DC; 2829 return D->getDeclContext(); 2830 } 2831 2832 template<typename T> struct IsPartialSpecialization { 2833 static constexpr bool value = false; 2834 }; 2835 template<> 2836 struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> { 2837 static constexpr bool value = true; 2838 }; 2839 template<> 2840 struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> { 2841 static constexpr bool value = true; 2842 }; 2843 template <typename TemplateDeclT> 2844 static bool DeducedArgsNeedReplacement(TemplateDeclT *Template) { 2845 return false; 2846 } 2847 template <> 2848 bool DeducedArgsNeedReplacement<VarTemplatePartialSpecializationDecl>( 2849 VarTemplatePartialSpecializationDecl *Spec) { 2850 return !Spec->isClassScopeExplicitSpecialization(); 2851 } 2852 template <> 2853 bool DeducedArgsNeedReplacement<ClassTemplatePartialSpecializationDecl>( 2854 ClassTemplatePartialSpecializationDecl *Spec) { 2855 return !Spec->isClassScopeExplicitSpecialization(); 2856 } 2857 2858 template <typename TemplateDeclT> 2859 static Sema::TemplateDeductionResult 2860 CheckDeducedArgumentConstraints(Sema &S, TemplateDeclT *Template, 2861 ArrayRef<TemplateArgument> SugaredDeducedArgs, 2862 ArrayRef<TemplateArgument> CanonicalDeducedArgs, 2863 TemplateDeductionInfo &Info) { 2864 llvm::SmallVector<const Expr *, 3> AssociatedConstraints; 2865 Template->getAssociatedConstraints(AssociatedConstraints); 2866 2867 bool NeedsReplacement = DeducedArgsNeedReplacement(Template); 2868 TemplateArgumentList DeducedTAL{TemplateArgumentList::OnStack, 2869 CanonicalDeducedArgs}; 2870 2871 MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs( 2872 Template, /*Final=*/false, 2873 /*InnerMost=*/NeedsReplacement ? nullptr : &DeducedTAL, 2874 /*RelativeToPrimary=*/true, /*Pattern=*/ 2875 nullptr, /*ForConstraintInstantiation=*/true); 2876 2877 // getTemplateInstantiationArgs picks up the non-deduced version of the 2878 // template args when this is a variable template partial specialization and 2879 // not class-scope explicit specialization, so replace with Deduced Args 2880 // instead of adding to inner-most. 2881 if (NeedsReplacement) 2882 MLTAL.replaceInnermostTemplateArguments(CanonicalDeducedArgs); 2883 2884 if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints, MLTAL, 2885 Info.getLocation(), 2886 Info.AssociatedConstraintsSatisfaction) || 2887 !Info.AssociatedConstraintsSatisfaction.IsSatisfied) { 2888 Info.reset( 2889 TemplateArgumentList::CreateCopy(S.Context, SugaredDeducedArgs), 2890 TemplateArgumentList::CreateCopy(S.Context, CanonicalDeducedArgs)); 2891 return Sema::TDK_ConstraintsNotSatisfied; 2892 } 2893 return Sema::TDK_Success; 2894 } 2895 2896 /// Complete template argument deduction for a partial specialization. 2897 template <typename T> 2898 static std::enable_if_t<IsPartialSpecialization<T>::value, 2899 Sema::TemplateDeductionResult> 2900 FinishTemplateArgumentDeduction( 2901 Sema &S, T *Partial, bool IsPartialOrdering, 2902 const TemplateArgumentList &TemplateArgs, 2903 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2904 TemplateDeductionInfo &Info) { 2905 // Unevaluated SFINAE context. 2906 EnterExpressionEvaluationContext Unevaluated( 2907 S, Sema::ExpressionEvaluationContext::Unevaluated); 2908 Sema::SFINAETrap Trap(S); 2909 2910 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial)); 2911 2912 // C++ [temp.deduct.type]p2: 2913 // [...] or if any template argument remains neither deduced nor 2914 // explicitly specified, template argument deduction fails. 2915 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder; 2916 if (auto Result = ConvertDeducedTemplateArguments( 2917 S, Partial, IsPartialOrdering, Deduced, Info, SugaredBuilder, 2918 CanonicalBuilder)) 2919 return Result; 2920 2921 // Form the template argument list from the deduced template arguments. 2922 TemplateArgumentList *SugaredDeducedArgumentList = 2923 TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder); 2924 TemplateArgumentList *CanonicalDeducedArgumentList = 2925 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder); 2926 2927 Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList); 2928 2929 // Substitute the deduced template arguments into the template 2930 // arguments of the class template partial specialization, and 2931 // verify that the instantiated template arguments are both valid 2932 // and are equivalent to the template arguments originally provided 2933 // to the class template. 2934 LocalInstantiationScope InstScope(S); 2935 auto *Template = Partial->getSpecializedTemplate(); 2936 const ASTTemplateArgumentListInfo *PartialTemplArgInfo = 2937 Partial->getTemplateArgsAsWritten(); 2938 2939 TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc, 2940 PartialTemplArgInfo->RAngleLoc); 2941 2942 if (S.SubstTemplateArguments(PartialTemplArgInfo->arguments(), 2943 MultiLevelTemplateArgumentList(Partial, 2944 SugaredBuilder, 2945 /*Final=*/true), 2946 InstArgs)) { 2947 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; 2948 if (ParamIdx >= Partial->getTemplateParameters()->size()) 2949 ParamIdx = Partial->getTemplateParameters()->size() - 1; 2950 2951 Decl *Param = const_cast<NamedDecl *>( 2952 Partial->getTemplateParameters()->getParam(ParamIdx)); 2953 Info.Param = makeTemplateParameter(Param); 2954 Info.FirstArg = (*PartialTemplArgInfo)[ArgIdx].getArgument(); 2955 return Sema::TDK_SubstitutionFailure; 2956 } 2957 2958 bool ConstraintsNotSatisfied; 2959 SmallVector<TemplateArgument, 4> SugaredConvertedInstArgs, 2960 CanonicalConvertedInstArgs; 2961 if (S.CheckTemplateArgumentList( 2962 Template, Partial->getLocation(), InstArgs, false, 2963 SugaredConvertedInstArgs, CanonicalConvertedInstArgs, 2964 /*UpdateArgsWithConversions=*/true, &ConstraintsNotSatisfied)) 2965 return ConstraintsNotSatisfied ? Sema::TDK_ConstraintsNotSatisfied 2966 : Sema::TDK_SubstitutionFailure; 2967 2968 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2969 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 2970 TemplateArgument InstArg = SugaredConvertedInstArgs.data()[I]; 2971 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, 2972 IsPartialOrdering)) { 2973 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 2974 Info.FirstArg = TemplateArgs[I]; 2975 Info.SecondArg = InstArg; 2976 return Sema::TDK_NonDeducedMismatch; 2977 } 2978 } 2979 2980 if (Trap.hasErrorOccurred()) 2981 return Sema::TDK_SubstitutionFailure; 2982 2983 if (auto Result = CheckDeducedArgumentConstraints(S, Partial, SugaredBuilder, 2984 CanonicalBuilder, Info)) 2985 return Result; 2986 2987 return Sema::TDK_Success; 2988 } 2989 2990 /// Complete template argument deduction for a class or variable template, 2991 /// when partial ordering against a partial specialization. 2992 // FIXME: Factor out duplication with partial specialization version above. 2993 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction( 2994 Sema &S, TemplateDecl *Template, bool PartialOrdering, 2995 const TemplateArgumentList &TemplateArgs, 2996 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2997 TemplateDeductionInfo &Info) { 2998 // Unevaluated SFINAE context. 2999 EnterExpressionEvaluationContext Unevaluated( 3000 S, Sema::ExpressionEvaluationContext::Unevaluated); 3001 Sema::SFINAETrap Trap(S); 3002 3003 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template)); 3004 3005 // C++ [temp.deduct.type]p2: 3006 // [...] or if any template argument remains neither deduced nor 3007 // explicitly specified, template argument deduction fails. 3008 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder; 3009 if (auto Result = ConvertDeducedTemplateArguments( 3010 S, Template, /*IsDeduced*/ PartialOrdering, Deduced, Info, 3011 SugaredBuilder, CanonicalBuilder, 3012 /*CurrentInstantiationScope=*/nullptr, 3013 /*NumAlreadyConverted=*/0U, /*PartialOverloading=*/false)) 3014 return Result; 3015 3016 // Check that we produced the correct argument list. 3017 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 3018 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 3019 TemplateArgument InstArg = CanonicalBuilder[I]; 3020 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, PartialOrdering, 3021 /*PackExpansionMatchesPack=*/true)) { 3022 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 3023 Info.FirstArg = TemplateArgs[I]; 3024 Info.SecondArg = InstArg; 3025 return Sema::TDK_NonDeducedMismatch; 3026 } 3027 } 3028 3029 if (Trap.hasErrorOccurred()) 3030 return Sema::TDK_SubstitutionFailure; 3031 3032 if (auto Result = CheckDeducedArgumentConstraints(S, Template, SugaredBuilder, 3033 CanonicalBuilder, Info)) 3034 return Result; 3035 3036 return Sema::TDK_Success; 3037 } 3038 3039 /// Perform template argument deduction to determine whether 3040 /// the given template arguments match the given class template 3041 /// partial specialization per C++ [temp.class.spec.match]. 3042 Sema::TemplateDeductionResult 3043 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, 3044 const TemplateArgumentList &TemplateArgs, 3045 TemplateDeductionInfo &Info) { 3046 if (Partial->isInvalidDecl()) 3047 return TDK_Invalid; 3048 3049 // C++ [temp.class.spec.match]p2: 3050 // A partial specialization matches a given actual template 3051 // argument list if the template arguments of the partial 3052 // specialization can be deduced from the actual template argument 3053 // list (14.8.2). 3054 3055 // Unevaluated SFINAE context. 3056 EnterExpressionEvaluationContext Unevaluated( 3057 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3058 SFINAETrap Trap(*this); 3059 3060 // This deduction has no relation to any outer instantiation we might be 3061 // performing. 3062 LocalInstantiationScope InstantiationScope(*this); 3063 3064 SmallVector<DeducedTemplateArgument, 4> Deduced; 3065 Deduced.resize(Partial->getTemplateParameters()->size()); 3066 if (TemplateDeductionResult Result 3067 = ::DeduceTemplateArguments(*this, 3068 Partial->getTemplateParameters(), 3069 Partial->getTemplateArgs(), 3070 TemplateArgs, Info, Deduced)) 3071 return Result; 3072 3073 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3074 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 3075 Info); 3076 if (Inst.isInvalid()) 3077 return TDK_InstantiationDepth; 3078 3079 if (Trap.hasErrorOccurred()) 3080 return Sema::TDK_SubstitutionFailure; 3081 3082 TemplateDeductionResult Result; 3083 runWithSufficientStackSpace(Info.getLocation(), [&] { 3084 Result = ::FinishTemplateArgumentDeduction(*this, Partial, 3085 /*IsPartialOrdering=*/false, 3086 TemplateArgs, Deduced, Info); 3087 }); 3088 return Result; 3089 } 3090 3091 /// Perform template argument deduction to determine whether 3092 /// the given template arguments match the given variable template 3093 /// partial specialization per C++ [temp.class.spec.match]. 3094 Sema::TemplateDeductionResult 3095 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, 3096 const TemplateArgumentList &TemplateArgs, 3097 TemplateDeductionInfo &Info) { 3098 if (Partial->isInvalidDecl()) 3099 return TDK_Invalid; 3100 3101 // C++ [temp.class.spec.match]p2: 3102 // A partial specialization matches a given actual template 3103 // argument list if the template arguments of the partial 3104 // specialization can be deduced from the actual template argument 3105 // list (14.8.2). 3106 3107 // Unevaluated SFINAE context. 3108 EnterExpressionEvaluationContext Unevaluated( 3109 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3110 SFINAETrap Trap(*this); 3111 3112 // This deduction has no relation to any outer instantiation we might be 3113 // performing. 3114 LocalInstantiationScope InstantiationScope(*this); 3115 3116 SmallVector<DeducedTemplateArgument, 4> Deduced; 3117 Deduced.resize(Partial->getTemplateParameters()->size()); 3118 if (TemplateDeductionResult Result = ::DeduceTemplateArguments( 3119 *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(), 3120 TemplateArgs, Info, Deduced)) 3121 return Result; 3122 3123 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3124 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 3125 Info); 3126 if (Inst.isInvalid()) 3127 return TDK_InstantiationDepth; 3128 3129 if (Trap.hasErrorOccurred()) 3130 return Sema::TDK_SubstitutionFailure; 3131 3132 TemplateDeductionResult Result; 3133 runWithSufficientStackSpace(Info.getLocation(), [&] { 3134 Result = ::FinishTemplateArgumentDeduction(*this, Partial, 3135 /*IsPartialOrdering=*/false, 3136 TemplateArgs, Deduced, Info); 3137 }); 3138 return Result; 3139 } 3140 3141 /// Determine whether the given type T is a simple-template-id type. 3142 static bool isSimpleTemplateIdType(QualType T) { 3143 if (const TemplateSpecializationType *Spec 3144 = T->getAs<TemplateSpecializationType>()) 3145 return Spec->getTemplateName().getAsTemplateDecl() != nullptr; 3146 3147 // C++17 [temp.local]p2: 3148 // the injected-class-name [...] is equivalent to the template-name followed 3149 // by the template-arguments of the class template specialization or partial 3150 // specialization enclosed in <> 3151 // ... which means it's equivalent to a simple-template-id. 3152 // 3153 // This only arises during class template argument deduction for a copy 3154 // deduction candidate, where it permits slicing. 3155 if (T->getAs<InjectedClassNameType>()) 3156 return true; 3157 3158 return false; 3159 } 3160 3161 /// Substitute the explicitly-provided template arguments into the 3162 /// given function template according to C++ [temp.arg.explicit]. 3163 /// 3164 /// \param FunctionTemplate the function template into which the explicit 3165 /// template arguments will be substituted. 3166 /// 3167 /// \param ExplicitTemplateArgs the explicitly-specified template 3168 /// arguments. 3169 /// 3170 /// \param Deduced the deduced template arguments, which will be populated 3171 /// with the converted and checked explicit template arguments. 3172 /// 3173 /// \param ParamTypes will be populated with the instantiated function 3174 /// parameters. 3175 /// 3176 /// \param FunctionType if non-NULL, the result type of the function template 3177 /// will also be instantiated and the pointed-to value will be updated with 3178 /// the instantiated function type. 3179 /// 3180 /// \param Info if substitution fails for any reason, this object will be 3181 /// populated with more information about the failure. 3182 /// 3183 /// \returns TDK_Success if substitution was successful, or some failure 3184 /// condition. 3185 Sema::TemplateDeductionResult Sema::SubstituteExplicitTemplateArguments( 3186 FunctionTemplateDecl *FunctionTemplate, 3187 TemplateArgumentListInfo &ExplicitTemplateArgs, 3188 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3189 SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType, 3190 TemplateDeductionInfo &Info) { 3191 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 3192 TemplateParameterList *TemplateParams 3193 = FunctionTemplate->getTemplateParameters(); 3194 3195 if (ExplicitTemplateArgs.size() == 0) { 3196 // No arguments to substitute; just copy over the parameter types and 3197 // fill in the function type. 3198 for (auto *P : Function->parameters()) 3199 ParamTypes.push_back(P->getType()); 3200 3201 if (FunctionType) 3202 *FunctionType = Function->getType(); 3203 return TDK_Success; 3204 } 3205 3206 // Unevaluated SFINAE context. 3207 EnterExpressionEvaluationContext Unevaluated( 3208 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3209 SFINAETrap Trap(*this); 3210 3211 // C++ [temp.arg.explicit]p3: 3212 // Template arguments that are present shall be specified in the 3213 // declaration order of their corresponding template-parameters. The 3214 // template argument list shall not specify more template-arguments than 3215 // there are corresponding template-parameters. 3216 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder; 3217 3218 // Enter a new template instantiation context where we check the 3219 // explicitly-specified template arguments against this function template, 3220 // and then substitute them into the function parameter types. 3221 SmallVector<TemplateArgument, 4> DeducedArgs; 3222 InstantiatingTemplate Inst( 3223 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3224 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); 3225 if (Inst.isInvalid()) 3226 return TDK_InstantiationDepth; 3227 3228 if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(), 3229 ExplicitTemplateArgs, true, SugaredBuilder, 3230 CanonicalBuilder, 3231 /*UpdateArgsWithConversions=*/false) || 3232 Trap.hasErrorOccurred()) { 3233 unsigned Index = SugaredBuilder.size(); 3234 if (Index >= TemplateParams->size()) 3235 return TDK_SubstitutionFailure; 3236 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index)); 3237 return TDK_InvalidExplicitArguments; 3238 } 3239 3240 // Form the template argument list from the explicitly-specified 3241 // template arguments. 3242 TemplateArgumentList *SugaredExplicitArgumentList = 3243 TemplateArgumentList::CreateCopy(Context, SugaredBuilder); 3244 TemplateArgumentList *CanonicalExplicitArgumentList = 3245 TemplateArgumentList::CreateCopy(Context, CanonicalBuilder); 3246 Info.setExplicitArgs(SugaredExplicitArgumentList, 3247 CanonicalExplicitArgumentList); 3248 3249 // Template argument deduction and the final substitution should be 3250 // done in the context of the templated declaration. Explicit 3251 // argument substitution, on the other hand, needs to happen in the 3252 // calling context. 3253 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3254 3255 // If we deduced template arguments for a template parameter pack, 3256 // note that the template argument pack is partially substituted and record 3257 // the explicit template arguments. They'll be used as part of deduction 3258 // for this template parameter pack. 3259 unsigned PartiallySubstitutedPackIndex = -1u; 3260 if (!CanonicalBuilder.empty()) { 3261 const TemplateArgument &Arg = CanonicalBuilder.back(); 3262 if (Arg.getKind() == TemplateArgument::Pack) { 3263 auto *Param = TemplateParams->getParam(CanonicalBuilder.size() - 1); 3264 // If this is a fully-saturated fixed-size pack, it should be 3265 // fully-substituted, not partially-substituted. 3266 std::optional<unsigned> Expansions = getExpandedPackSize(Param); 3267 if (!Expansions || Arg.pack_size() < *Expansions) { 3268 PartiallySubstitutedPackIndex = CanonicalBuilder.size() - 1; 3269 CurrentInstantiationScope->SetPartiallySubstitutedPack( 3270 Param, Arg.pack_begin(), Arg.pack_size()); 3271 } 3272 } 3273 } 3274 3275 const FunctionProtoType *Proto 3276 = Function->getType()->getAs<FunctionProtoType>(); 3277 assert(Proto && "Function template does not have a prototype?"); 3278 3279 // Isolate our substituted parameters from our caller. 3280 LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true); 3281 3282 ExtParameterInfoBuilder ExtParamInfos; 3283 3284 MultiLevelTemplateArgumentList MLTAL(FunctionTemplate, 3285 SugaredExplicitArgumentList->asArray(), 3286 /*Final=*/true); 3287 3288 // Instantiate the types of each of the function parameters given the 3289 // explicitly-specified template arguments. If the function has a trailing 3290 // return type, substitute it after the arguments to ensure we substitute 3291 // in lexical order. 3292 if (Proto->hasTrailingReturn()) { 3293 if (SubstParmTypes(Function->getLocation(), Function->parameters(), 3294 Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes, 3295 /*params=*/nullptr, ExtParamInfos)) 3296 return TDK_SubstitutionFailure; 3297 } 3298 3299 // Instantiate the return type. 3300 QualType ResultType; 3301 { 3302 // C++11 [expr.prim.general]p3: 3303 // If a declaration declares a member function or member function 3304 // template of a class X, the expression this is a prvalue of type 3305 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq 3306 // and the end of the function-definition, member-declarator, or 3307 // declarator. 3308 Qualifiers ThisTypeQuals; 3309 CXXRecordDecl *ThisContext = nullptr; 3310 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3311 ThisContext = Method->getParent(); 3312 ThisTypeQuals = Method->getMethodQualifiers(); 3313 } 3314 3315 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals, 3316 getLangOpts().CPlusPlus11); 3317 3318 ResultType = 3319 SubstType(Proto->getReturnType(), MLTAL, 3320 Function->getTypeSpecStartLoc(), Function->getDeclName()); 3321 if (ResultType.isNull() || Trap.hasErrorOccurred()) 3322 return TDK_SubstitutionFailure; 3323 // CUDA: Kernel function must have 'void' return type. 3324 if (getLangOpts().CUDA) 3325 if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) { 3326 Diag(Function->getLocation(), diag::err_kern_type_not_void_return) 3327 << Function->getType() << Function->getSourceRange(); 3328 return TDK_SubstitutionFailure; 3329 } 3330 } 3331 3332 // Instantiate the types of each of the function parameters given the 3333 // explicitly-specified template arguments if we didn't do so earlier. 3334 if (!Proto->hasTrailingReturn() && 3335 SubstParmTypes(Function->getLocation(), Function->parameters(), 3336 Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes, 3337 /*params*/ nullptr, ExtParamInfos)) 3338 return TDK_SubstitutionFailure; 3339 3340 if (FunctionType) { 3341 auto EPI = Proto->getExtProtoInfo(); 3342 EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size()); 3343 3344 // In C++1z onwards, exception specifications are part of the function type, 3345 // so substitution into the type must also substitute into the exception 3346 // specification. 3347 SmallVector<QualType, 4> ExceptionStorage; 3348 if (getLangOpts().CPlusPlus17 && 3349 SubstExceptionSpec(Function->getLocation(), EPI.ExceptionSpec, 3350 ExceptionStorage, MLTAL)) 3351 return TDK_SubstitutionFailure; 3352 3353 *FunctionType = BuildFunctionType(ResultType, ParamTypes, 3354 Function->getLocation(), 3355 Function->getDeclName(), 3356 EPI); 3357 if (FunctionType->isNull() || Trap.hasErrorOccurred()) 3358 return TDK_SubstitutionFailure; 3359 } 3360 3361 // C++ [temp.arg.explicit]p2: 3362 // Trailing template arguments that can be deduced (14.8.2) may be 3363 // omitted from the list of explicit template-arguments. If all of the 3364 // template arguments can be deduced, they may all be omitted; in this 3365 // case, the empty template argument list <> itself may also be omitted. 3366 // 3367 // Take all of the explicitly-specified arguments and put them into 3368 // the set of deduced template arguments. The partially-substituted 3369 // parameter pack, however, will be set to NULL since the deduction 3370 // mechanism handles the partially-substituted argument pack directly. 3371 Deduced.reserve(TemplateParams->size()); 3372 for (unsigned I = 0, N = SugaredExplicitArgumentList->size(); I != N; ++I) { 3373 const TemplateArgument &Arg = SugaredExplicitArgumentList->get(I); 3374 if (I == PartiallySubstitutedPackIndex) 3375 Deduced.push_back(DeducedTemplateArgument()); 3376 else 3377 Deduced.push_back(Arg); 3378 } 3379 3380 return TDK_Success; 3381 } 3382 3383 /// Check whether the deduced argument type for a call to a function 3384 /// template matches the actual argument type per C++ [temp.deduct.call]p4. 3385 static Sema::TemplateDeductionResult 3386 CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info, 3387 Sema::OriginalCallArg OriginalArg, 3388 QualType DeducedA) { 3389 ASTContext &Context = S.Context; 3390 3391 auto Failed = [&]() -> Sema::TemplateDeductionResult { 3392 Info.FirstArg = TemplateArgument(DeducedA); 3393 Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType); 3394 Info.CallArgIndex = OriginalArg.ArgIdx; 3395 return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested 3396 : Sema::TDK_DeducedMismatch; 3397 }; 3398 3399 QualType A = OriginalArg.OriginalArgType; 3400 QualType OriginalParamType = OriginalArg.OriginalParamType; 3401 3402 // Check for type equality (top-level cv-qualifiers are ignored). 3403 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3404 return Sema::TDK_Success; 3405 3406 // Strip off references on the argument types; they aren't needed for 3407 // the following checks. 3408 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>()) 3409 DeducedA = DeducedARef->getPointeeType(); 3410 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) 3411 A = ARef->getPointeeType(); 3412 3413 // C++ [temp.deduct.call]p4: 3414 // [...] However, there are three cases that allow a difference: 3415 // - If the original P is a reference type, the deduced A (i.e., the 3416 // type referred to by the reference) can be more cv-qualified than 3417 // the transformed A. 3418 if (const ReferenceType *OriginalParamRef 3419 = OriginalParamType->getAs<ReferenceType>()) { 3420 // We don't want to keep the reference around any more. 3421 OriginalParamType = OriginalParamRef->getPointeeType(); 3422 3423 // FIXME: Resolve core issue (no number yet): if the original P is a 3424 // reference type and the transformed A is function type "noexcept F", 3425 // the deduced A can be F. 3426 QualType Tmp; 3427 if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp)) 3428 return Sema::TDK_Success; 3429 3430 Qualifiers AQuals = A.getQualifiers(); 3431 Qualifiers DeducedAQuals = DeducedA.getQualifiers(); 3432 3433 // Under Objective-C++ ARC, the deduced type may have implicitly 3434 // been given strong or (when dealing with a const reference) 3435 // unsafe_unretained lifetime. If so, update the original 3436 // qualifiers to include this lifetime. 3437 if (S.getLangOpts().ObjCAutoRefCount && 3438 ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong && 3439 AQuals.getObjCLifetime() == Qualifiers::OCL_None) || 3440 (DeducedAQuals.hasConst() && 3441 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) { 3442 AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime()); 3443 } 3444 3445 if (AQuals == DeducedAQuals) { 3446 // Qualifiers match; there's nothing to do. 3447 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) { 3448 return Failed(); 3449 } else { 3450 // Qualifiers are compatible, so have the argument type adopt the 3451 // deduced argument type's qualifiers as if we had performed the 3452 // qualification conversion. 3453 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals); 3454 } 3455 } 3456 3457 // - The transformed A can be another pointer or pointer to member 3458 // type that can be converted to the deduced A via a function pointer 3459 // conversion and/or a qualification conversion. 3460 // 3461 // Also allow conversions which merely strip __attribute__((noreturn)) from 3462 // function types (recursively). 3463 bool ObjCLifetimeConversion = false; 3464 QualType ResultTy; 3465 if ((A->isAnyPointerType() || A->isMemberPointerType()) && 3466 (S.IsQualificationConversion(A, DeducedA, false, 3467 ObjCLifetimeConversion) || 3468 S.IsFunctionConversion(A, DeducedA, ResultTy))) 3469 return Sema::TDK_Success; 3470 3471 // - If P is a class and P has the form simple-template-id, then the 3472 // transformed A can be a derived class of the deduced A. [...] 3473 // [...] Likewise, if P is a pointer to a class of the form 3474 // simple-template-id, the transformed A can be a pointer to a 3475 // derived class pointed to by the deduced A. 3476 if (const PointerType *OriginalParamPtr 3477 = OriginalParamType->getAs<PointerType>()) { 3478 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) { 3479 if (const PointerType *APtr = A->getAs<PointerType>()) { 3480 if (A->getPointeeType()->isRecordType()) { 3481 OriginalParamType = OriginalParamPtr->getPointeeType(); 3482 DeducedA = DeducedAPtr->getPointeeType(); 3483 A = APtr->getPointeeType(); 3484 } 3485 } 3486 } 3487 } 3488 3489 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3490 return Sema::TDK_Success; 3491 3492 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) && 3493 S.IsDerivedFrom(Info.getLocation(), A, DeducedA)) 3494 return Sema::TDK_Success; 3495 3496 return Failed(); 3497 } 3498 3499 /// Find the pack index for a particular parameter index in an instantiation of 3500 /// a function template with specific arguments. 3501 /// 3502 /// \return The pack index for whichever pack produced this parameter, or -1 3503 /// if this was not produced by a parameter. Intended to be used as the 3504 /// ArgumentPackSubstitutionIndex for further substitutions. 3505 // FIXME: We should track this in OriginalCallArgs so we don't need to 3506 // reconstruct it here. 3507 static unsigned getPackIndexForParam(Sema &S, 3508 FunctionTemplateDecl *FunctionTemplate, 3509 const MultiLevelTemplateArgumentList &Args, 3510 unsigned ParamIdx) { 3511 unsigned Idx = 0; 3512 for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) { 3513 if (PD->isParameterPack()) { 3514 unsigned NumExpansions = 3515 S.getNumArgumentsInExpansion(PD->getType(), Args).value_or(1); 3516 if (Idx + NumExpansions > ParamIdx) 3517 return ParamIdx - Idx; 3518 Idx += NumExpansions; 3519 } else { 3520 if (Idx == ParamIdx) 3521 return -1; // Not a pack expansion 3522 ++Idx; 3523 } 3524 } 3525 3526 llvm_unreachable("parameter index would not be produced from template"); 3527 } 3528 3529 /// Finish template argument deduction for a function template, 3530 /// checking the deduced template arguments for completeness and forming 3531 /// the function template specialization. 3532 /// 3533 /// \param OriginalCallArgs If non-NULL, the original call arguments against 3534 /// which the deduced argument types should be compared. 3535 Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction( 3536 FunctionTemplateDecl *FunctionTemplate, 3537 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3538 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, 3539 TemplateDeductionInfo &Info, 3540 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs, 3541 bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) { 3542 // Unevaluated SFINAE context. 3543 EnterExpressionEvaluationContext Unevaluated( 3544 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3545 SFINAETrap Trap(*this); 3546 3547 // Enter a new template instantiation context while we instantiate the 3548 // actual function declaration. 3549 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3550 InstantiatingTemplate Inst( 3551 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3552 CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); 3553 if (Inst.isInvalid()) 3554 return TDK_InstantiationDepth; 3555 3556 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3557 3558 // C++ [temp.deduct.type]p2: 3559 // [...] or if any template argument remains neither deduced nor 3560 // explicitly specified, template argument deduction fails. 3561 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder; 3562 if (auto Result = ConvertDeducedTemplateArguments( 3563 *this, FunctionTemplate, /*IsDeduced*/ true, Deduced, Info, 3564 SugaredBuilder, CanonicalBuilder, CurrentInstantiationScope, 3565 NumExplicitlySpecified, PartialOverloading)) 3566 return Result; 3567 3568 // C++ [temp.deduct.call]p10: [DR1391] 3569 // If deduction succeeds for all parameters that contain 3570 // template-parameters that participate in template argument deduction, 3571 // and all template arguments are explicitly specified, deduced, or 3572 // obtained from default template arguments, remaining parameters are then 3573 // compared with the corresponding arguments. For each remaining parameter 3574 // P with a type that was non-dependent before substitution of any 3575 // explicitly-specified template arguments, if the corresponding argument 3576 // A cannot be implicitly converted to P, deduction fails. 3577 if (CheckNonDependent()) 3578 return TDK_NonDependentConversionFailure; 3579 3580 // Form the template argument list from the deduced template arguments. 3581 TemplateArgumentList *SugaredDeducedArgumentList = 3582 TemplateArgumentList::CreateCopy(Context, SugaredBuilder); 3583 TemplateArgumentList *CanonicalDeducedArgumentList = 3584 TemplateArgumentList::CreateCopy(Context, CanonicalBuilder); 3585 Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList); 3586 3587 // Substitute the deduced template arguments into the function template 3588 // declaration to produce the function template specialization. 3589 DeclContext *Owner = FunctionTemplate->getDeclContext(); 3590 if (FunctionTemplate->getFriendObjectKind()) 3591 Owner = FunctionTemplate->getLexicalDeclContext(); 3592 MultiLevelTemplateArgumentList SubstArgs( 3593 FunctionTemplate, CanonicalDeducedArgumentList->asArray(), 3594 /*Final=*/false); 3595 Specialization = cast_or_null<FunctionDecl>( 3596 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, SubstArgs)); 3597 if (!Specialization || Specialization->isInvalidDecl()) 3598 return TDK_SubstitutionFailure; 3599 3600 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() == 3601 FunctionTemplate->getCanonicalDecl()); 3602 3603 // If the template argument list is owned by the function template 3604 // specialization, release it. 3605 if (Specialization->getTemplateSpecializationArgs() == 3606 CanonicalDeducedArgumentList && 3607 !Trap.hasErrorOccurred()) 3608 Info.takeCanonical(); 3609 3610 // There may have been an error that did not prevent us from constructing a 3611 // declaration. Mark the declaration invalid and return with a substitution 3612 // failure. 3613 if (Trap.hasErrorOccurred()) { 3614 Specialization->setInvalidDecl(true); 3615 return TDK_SubstitutionFailure; 3616 } 3617 3618 // C++2a [temp.deduct]p5 3619 // [...] When all template arguments have been deduced [...] all uses of 3620 // template parameters [...] are replaced with the corresponding deduced 3621 // or default argument values. 3622 // [...] If the function template has associated constraints 3623 // ([temp.constr.decl]), those constraints are checked for satisfaction 3624 // ([temp.constr.constr]). If the constraints are not satisfied, type 3625 // deduction fails. 3626 if (!PartialOverloading || 3627 (CanonicalBuilder.size() == 3628 FunctionTemplate->getTemplateParameters()->size())) { 3629 if (CheckInstantiatedFunctionTemplateConstraints( 3630 Info.getLocation(), Specialization, CanonicalBuilder, 3631 Info.AssociatedConstraintsSatisfaction)) 3632 return TDK_MiscellaneousDeductionFailure; 3633 3634 if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) { 3635 Info.reset(Info.takeSugared(), 3636 TemplateArgumentList::CreateCopy(Context, CanonicalBuilder)); 3637 return TDK_ConstraintsNotSatisfied; 3638 } 3639 } 3640 3641 if (OriginalCallArgs) { 3642 // C++ [temp.deduct.call]p4: 3643 // In general, the deduction process attempts to find template argument 3644 // values that will make the deduced A identical to A (after the type A 3645 // is transformed as described above). [...] 3646 llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes; 3647 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) { 3648 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I]; 3649 3650 auto ParamIdx = OriginalArg.ArgIdx; 3651 if (ParamIdx >= Specialization->getNumParams()) 3652 // FIXME: This presumably means a pack ended up smaller than we 3653 // expected while deducing. Should this not result in deduction 3654 // failure? Can it even happen? 3655 continue; 3656 3657 QualType DeducedA; 3658 if (!OriginalArg.DecomposedParam) { 3659 // P is one of the function parameters, just look up its substituted 3660 // type. 3661 DeducedA = Specialization->getParamDecl(ParamIdx)->getType(); 3662 } else { 3663 // P is a decomposed element of a parameter corresponding to a 3664 // braced-init-list argument. Substitute back into P to find the 3665 // deduced A. 3666 QualType &CacheEntry = 3667 DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}]; 3668 if (CacheEntry.isNull()) { 3669 ArgumentPackSubstitutionIndexRAII PackIndex( 3670 *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs, 3671 ParamIdx)); 3672 CacheEntry = 3673 SubstType(OriginalArg.OriginalParamType, SubstArgs, 3674 Specialization->getTypeSpecStartLoc(), 3675 Specialization->getDeclName()); 3676 } 3677 DeducedA = CacheEntry; 3678 } 3679 3680 if (auto TDK = 3681 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) 3682 return TDK; 3683 } 3684 } 3685 3686 // If we suppressed any diagnostics while performing template argument 3687 // deduction, and if we haven't already instantiated this declaration, 3688 // keep track of these diagnostics. They'll be emitted if this specialization 3689 // is actually used. 3690 if (Info.diag_begin() != Info.diag_end()) { 3691 SuppressedDiagnosticsMap::iterator 3692 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl()); 3693 if (Pos == SuppressedDiagnostics.end()) 3694 SuppressedDiagnostics[Specialization->getCanonicalDecl()] 3695 .append(Info.diag_begin(), Info.diag_end()); 3696 } 3697 3698 return TDK_Success; 3699 } 3700 3701 /// Gets the type of a function for template-argument-deducton 3702 /// purposes when it's considered as part of an overload set. 3703 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R, 3704 FunctionDecl *Fn) { 3705 // We may need to deduce the return type of the function now. 3706 if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() && 3707 S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false)) 3708 return {}; 3709 3710 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 3711 if (Method->isInstance()) { 3712 // An instance method that's referenced in a form that doesn't 3713 // look like a member pointer is just invalid. 3714 if (!R.HasFormOfMemberPointer) 3715 return {}; 3716 3717 return S.Context.getMemberPointerType(Fn->getType(), 3718 S.Context.getTypeDeclType(Method->getParent()).getTypePtr()); 3719 } 3720 3721 if (!R.IsAddressOfOperand) return Fn->getType(); 3722 return S.Context.getPointerType(Fn->getType()); 3723 } 3724 3725 /// Apply the deduction rules for overload sets. 3726 /// 3727 /// \return the null type if this argument should be treated as an 3728 /// undeduced context 3729 static QualType 3730 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, 3731 Expr *Arg, QualType ParamType, 3732 bool ParamWasReference) { 3733 3734 OverloadExpr::FindResult R = OverloadExpr::find(Arg); 3735 3736 OverloadExpr *Ovl = R.Expression; 3737 3738 // C++0x [temp.deduct.call]p4 3739 unsigned TDF = 0; 3740 if (ParamWasReference) 3741 TDF |= TDF_ParamWithReferenceType; 3742 if (R.IsAddressOfOperand) 3743 TDF |= TDF_IgnoreQualifiers; 3744 3745 // C++0x [temp.deduct.call]p6: 3746 // When P is a function type, pointer to function type, or pointer 3747 // to member function type: 3748 3749 if (!ParamType->isFunctionType() && 3750 !ParamType->isFunctionPointerType() && 3751 !ParamType->isMemberFunctionPointerType()) { 3752 if (Ovl->hasExplicitTemplateArgs()) { 3753 // But we can still look for an explicit specialization. 3754 if (FunctionDecl *ExplicitSpec 3755 = S.ResolveSingleFunctionTemplateSpecialization(Ovl)) 3756 return GetTypeOfFunction(S, R, ExplicitSpec); 3757 } 3758 3759 DeclAccessPair DAP; 3760 if (FunctionDecl *Viable = 3761 S.resolveAddressOfSingleOverloadCandidate(Arg, DAP)) 3762 return GetTypeOfFunction(S, R, Viable); 3763 3764 return {}; 3765 } 3766 3767 // Gather the explicit template arguments, if any. 3768 TemplateArgumentListInfo ExplicitTemplateArgs; 3769 if (Ovl->hasExplicitTemplateArgs()) 3770 Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); 3771 QualType Match; 3772 for (UnresolvedSetIterator I = Ovl->decls_begin(), 3773 E = Ovl->decls_end(); I != E; ++I) { 3774 NamedDecl *D = (*I)->getUnderlyingDecl(); 3775 3776 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) { 3777 // - If the argument is an overload set containing one or more 3778 // function templates, the parameter is treated as a 3779 // non-deduced context. 3780 if (!Ovl->hasExplicitTemplateArgs()) 3781 return {}; 3782 3783 // Otherwise, see if we can resolve a function type 3784 FunctionDecl *Specialization = nullptr; 3785 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3786 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs, 3787 Specialization, Info)) 3788 continue; 3789 3790 D = Specialization; 3791 } 3792 3793 FunctionDecl *Fn = cast<FunctionDecl>(D); 3794 QualType ArgType = GetTypeOfFunction(S, R, Fn); 3795 if (ArgType.isNull()) continue; 3796 3797 // Function-to-pointer conversion. 3798 if (!ParamWasReference && ParamType->isPointerType() && 3799 ArgType->isFunctionType()) 3800 ArgType = S.Context.getPointerType(ArgType); 3801 3802 // - If the argument is an overload set (not containing function 3803 // templates), trial argument deduction is attempted using each 3804 // of the members of the set. If deduction succeeds for only one 3805 // of the overload set members, that member is used as the 3806 // argument value for the deduction. If deduction succeeds for 3807 // more than one member of the overload set the parameter is 3808 // treated as a non-deduced context. 3809 3810 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2: 3811 // Type deduction is done independently for each P/A pair, and 3812 // the deduced template argument values are then combined. 3813 // So we do not reject deductions which were made elsewhere. 3814 SmallVector<DeducedTemplateArgument, 8> 3815 Deduced(TemplateParams->size()); 3816 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3817 Sema::TemplateDeductionResult Result 3818 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 3819 ArgType, Info, Deduced, TDF); 3820 if (Result) continue; 3821 if (!Match.isNull()) 3822 return {}; 3823 Match = ArgType; 3824 } 3825 3826 return Match; 3827 } 3828 3829 /// Perform the adjustments to the parameter and argument types 3830 /// described in C++ [temp.deduct.call]. 3831 /// 3832 /// \returns true if the caller should not attempt to perform any template 3833 /// argument deduction based on this P/A pair because the argument is an 3834 /// overloaded function set that could not be resolved. 3835 static bool AdjustFunctionParmAndArgTypesForDeduction( 3836 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3837 QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF) { 3838 // C++0x [temp.deduct.call]p3: 3839 // If P is a cv-qualified type, the top level cv-qualifiers of P's type 3840 // are ignored for type deduction. 3841 if (ParamType.hasQualifiers()) 3842 ParamType = ParamType.getUnqualifiedType(); 3843 3844 // [...] If P is a reference type, the type referred to by P is 3845 // used for type deduction. 3846 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>(); 3847 if (ParamRefType) 3848 ParamType = ParamRefType->getPointeeType(); 3849 3850 // Overload sets usually make this parameter an undeduced context, 3851 // but there are sometimes special circumstances. Typically 3852 // involving a template-id-expr. 3853 if (ArgType == S.Context.OverloadTy) { 3854 ArgType = ResolveOverloadForDeduction(S, TemplateParams, 3855 Arg, ParamType, 3856 ParamRefType != nullptr); 3857 if (ArgType.isNull()) 3858 return true; 3859 } 3860 3861 if (ParamRefType) { 3862 // If the argument has incomplete array type, try to complete its type. 3863 if (ArgType->isIncompleteArrayType()) 3864 ArgType = S.getCompletedType(Arg); 3865 3866 // C++1z [temp.deduct.call]p3: 3867 // If P is a forwarding reference and the argument is an lvalue, the type 3868 // "lvalue reference to A" is used in place of A for type deduction. 3869 if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) && 3870 Arg->isLValue()) { 3871 if (S.getLangOpts().OpenCL && !ArgType.hasAddressSpace()) 3872 ArgType = S.Context.getAddrSpaceQualType( 3873 ArgType, S.Context.getDefaultOpenCLPointeeAddrSpace()); 3874 ArgType = S.Context.getLValueReferenceType(ArgType); 3875 } 3876 } else { 3877 // C++ [temp.deduct.call]p2: 3878 // If P is not a reference type: 3879 // - If A is an array type, the pointer type produced by the 3880 // array-to-pointer standard conversion (4.2) is used in place of 3881 // A for type deduction; otherwise, 3882 // - If A is a function type, the pointer type produced by the 3883 // function-to-pointer standard conversion (4.3) is used in place 3884 // of A for type deduction; otherwise, 3885 if (ArgType->canDecayToPointerType()) 3886 ArgType = S.Context.getDecayedType(ArgType); 3887 else { 3888 // - If A is a cv-qualified type, the top level cv-qualifiers of A's 3889 // type are ignored for type deduction. 3890 ArgType = ArgType.getUnqualifiedType(); 3891 } 3892 } 3893 3894 // C++0x [temp.deduct.call]p4: 3895 // In general, the deduction process attempts to find template argument 3896 // values that will make the deduced A identical to A (after the type A 3897 // is transformed as described above). [...] 3898 TDF = TDF_SkipNonDependent; 3899 3900 // - If the original P is a reference type, the deduced A (i.e., the 3901 // type referred to by the reference) can be more cv-qualified than 3902 // the transformed A. 3903 if (ParamRefType) 3904 TDF |= TDF_ParamWithReferenceType; 3905 // - The transformed A can be another pointer or pointer to member 3906 // type that can be converted to the deduced A via a qualification 3907 // conversion (4.4). 3908 if (ArgType->isPointerType() || ArgType->isMemberPointerType() || 3909 ArgType->isObjCObjectPointerType()) 3910 TDF |= TDF_IgnoreQualifiers; 3911 // - If P is a class and P has the form simple-template-id, then the 3912 // transformed A can be a derived class of the deduced A. Likewise, 3913 // if P is a pointer to a class of the form simple-template-id, the 3914 // transformed A can be a pointer to a derived class pointed to by 3915 // the deduced A. 3916 if (isSimpleTemplateIdType(ParamType) || 3917 (isa<PointerType>(ParamType) && 3918 isSimpleTemplateIdType( 3919 ParamType->castAs<PointerType>()->getPointeeType()))) 3920 TDF |= TDF_DerivedClass; 3921 3922 return false; 3923 } 3924 3925 static bool 3926 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, 3927 QualType T); 3928 3929 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 3930 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3931 QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, 3932 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3933 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 3934 bool DecomposedParam, unsigned ArgIdx, unsigned TDF); 3935 3936 /// Attempt template argument deduction from an initializer list 3937 /// deemed to be an argument in a function call. 3938 static Sema::TemplateDeductionResult DeduceFromInitializerList( 3939 Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType, 3940 InitListExpr *ILE, TemplateDeductionInfo &Info, 3941 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3942 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx, 3943 unsigned TDF) { 3944 // C++ [temp.deduct.call]p1: (CWG 1591) 3945 // If removing references and cv-qualifiers from P gives 3946 // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is 3947 // a non-empty initializer list, then deduction is performed instead for 3948 // each element of the initializer list, taking P0 as a function template 3949 // parameter type and the initializer element as its argument 3950 // 3951 // We've already removed references and cv-qualifiers here. 3952 if (!ILE->getNumInits()) 3953 return Sema::TDK_Success; 3954 3955 QualType ElTy; 3956 auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType); 3957 if (ArrTy) 3958 ElTy = ArrTy->getElementType(); 3959 else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) { 3960 // Otherwise, an initializer list argument causes the parameter to be 3961 // considered a non-deduced context 3962 return Sema::TDK_Success; 3963 } 3964 3965 // Resolving a core issue: a braced-init-list containing any designators is 3966 // a non-deduced context. 3967 for (Expr *E : ILE->inits()) 3968 if (isa<DesignatedInitExpr>(E)) 3969 return Sema::TDK_Success; 3970 3971 // Deduction only needs to be done for dependent types. 3972 if (ElTy->isDependentType()) { 3973 for (Expr *E : ILE->inits()) { 3974 if (auto Result = DeduceTemplateArgumentsFromCallArgument( 3975 S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true, 3976 ArgIdx, TDF)) 3977 return Result; 3978 } 3979 } 3980 3981 // in the P0[N] case, if N is a non-type template parameter, N is deduced 3982 // from the length of the initializer list. 3983 if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) { 3984 // Determine the array bound is something we can deduce. 3985 if (const NonTypeTemplateParmDecl *NTTP = 3986 getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) { 3987 // We can perform template argument deduction for the given non-type 3988 // template parameter. 3989 // C++ [temp.deduct.type]p13: 3990 // The type of N in the type T[N] is std::size_t. 3991 QualType T = S.Context.getSizeType(); 3992 llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits()); 3993 if (auto Result = DeduceNonTypeTemplateArgument( 3994 S, TemplateParams, NTTP, llvm::APSInt(Size), T, 3995 /*ArrayBound=*/true, Info, Deduced)) 3996 return Result; 3997 } 3998 } 3999 4000 return Sema::TDK_Success; 4001 } 4002 4003 /// Perform template argument deduction per [temp.deduct.call] for a 4004 /// single parameter / argument pair. 4005 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 4006 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 4007 QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, 4008 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 4009 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 4010 bool DecomposedParam, unsigned ArgIdx, unsigned TDF) { 4011 QualType ArgType = Arg->getType(); 4012 QualType OrigParamType = ParamType; 4013 4014 // If P is a reference type [...] 4015 // If P is a cv-qualified type [...] 4016 if (AdjustFunctionParmAndArgTypesForDeduction( 4017 S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF)) 4018 return Sema::TDK_Success; 4019 4020 // If [...] the argument is a non-empty initializer list [...] 4021 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) 4022 return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info, 4023 Deduced, OriginalCallArgs, ArgIdx, TDF); 4024 4025 // [...] the deduction process attempts to find template argument values 4026 // that will make the deduced A identical to A 4027 // 4028 // Keep track of the argument type and corresponding parameter index, 4029 // so we can check for compatibility between the deduced A and A. 4030 OriginalCallArgs.push_back( 4031 Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType)); 4032 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 4033 ArgType, Info, Deduced, TDF); 4034 } 4035 4036 /// Perform template argument deduction from a function call 4037 /// (C++ [temp.deduct.call]). 4038 /// 4039 /// \param FunctionTemplate the function template for which we are performing 4040 /// template argument deduction. 4041 /// 4042 /// \param ExplicitTemplateArgs the explicit template arguments provided 4043 /// for this call. 4044 /// 4045 /// \param Args the function call arguments 4046 /// 4047 /// \param Specialization if template argument deduction was successful, 4048 /// this will be set to the function template specialization produced by 4049 /// template argument deduction. 4050 /// 4051 /// \param Info the argument will be updated to provide additional information 4052 /// about template argument deduction. 4053 /// 4054 /// \param CheckNonDependent A callback to invoke to check conversions for 4055 /// non-dependent parameters, between deduction and substitution, per DR1391. 4056 /// If this returns true, substitution will be skipped and we return 4057 /// TDK_NonDependentConversionFailure. The callback is passed the parameter 4058 /// types (after substituting explicit template arguments). 4059 /// 4060 /// \returns the result of template argument deduction. 4061 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4062 FunctionTemplateDecl *FunctionTemplate, 4063 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 4064 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4065 bool PartialOverloading, 4066 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) { 4067 if (FunctionTemplate->isInvalidDecl()) 4068 return TDK_Invalid; 4069 4070 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 4071 unsigned NumParams = Function->getNumParams(); 4072 4073 unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate); 4074 4075 // C++ [temp.deduct.call]p1: 4076 // Template argument deduction is done by comparing each function template 4077 // parameter type (call it P) with the type of the corresponding argument 4078 // of the call (call it A) as described below. 4079 if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading) 4080 return TDK_TooFewArguments; 4081 else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) { 4082 const auto *Proto = Function->getType()->castAs<FunctionProtoType>(); 4083 if (Proto->isTemplateVariadic()) 4084 /* Do nothing */; 4085 else if (!Proto->isVariadic()) 4086 return TDK_TooManyArguments; 4087 } 4088 4089 // The types of the parameters from which we will perform template argument 4090 // deduction. 4091 LocalInstantiationScope InstScope(*this); 4092 TemplateParameterList *TemplateParams 4093 = FunctionTemplate->getTemplateParameters(); 4094 SmallVector<DeducedTemplateArgument, 4> Deduced; 4095 SmallVector<QualType, 8> ParamTypes; 4096 unsigned NumExplicitlySpecified = 0; 4097 if (ExplicitTemplateArgs) { 4098 TemplateDeductionResult Result; 4099 runWithSufficientStackSpace(Info.getLocation(), [&] { 4100 Result = SubstituteExplicitTemplateArguments( 4101 FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, nullptr, 4102 Info); 4103 }); 4104 if (Result) 4105 return Result; 4106 4107 NumExplicitlySpecified = Deduced.size(); 4108 } else { 4109 // Just fill in the parameter types from the function declaration. 4110 for (unsigned I = 0; I != NumParams; ++I) 4111 ParamTypes.push_back(Function->getParamDecl(I)->getType()); 4112 } 4113 4114 SmallVector<OriginalCallArg, 8> OriginalCallArgs; 4115 4116 // Deduce an argument of type ParamType from an expression with index ArgIdx. 4117 auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) { 4118 // C++ [demp.deduct.call]p1: (DR1391) 4119 // Template argument deduction is done by comparing each function template 4120 // parameter that contains template-parameters that participate in 4121 // template argument deduction ... 4122 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) 4123 return Sema::TDK_Success; 4124 4125 // ... with the type of the corresponding argument 4126 return DeduceTemplateArgumentsFromCallArgument( 4127 *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced, 4128 OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0); 4129 }; 4130 4131 // Deduce template arguments from the function parameters. 4132 Deduced.resize(TemplateParams->size()); 4133 SmallVector<QualType, 8> ParamTypesForArgChecking; 4134 for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0; 4135 ParamIdx != NumParamTypes; ++ParamIdx) { 4136 QualType ParamType = ParamTypes[ParamIdx]; 4137 4138 const PackExpansionType *ParamExpansion = 4139 dyn_cast<PackExpansionType>(ParamType); 4140 if (!ParamExpansion) { 4141 // Simple case: matching a function parameter to a function argument. 4142 if (ArgIdx >= Args.size()) 4143 break; 4144 4145 ParamTypesForArgChecking.push_back(ParamType); 4146 if (auto Result = DeduceCallArgument(ParamType, ArgIdx++)) 4147 return Result; 4148 4149 continue; 4150 } 4151 4152 QualType ParamPattern = ParamExpansion->getPattern(); 4153 PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info, 4154 ParamPattern); 4155 4156 // C++0x [temp.deduct.call]p1: 4157 // For a function parameter pack that occurs at the end of the 4158 // parameter-declaration-list, the type A of each remaining argument of 4159 // the call is compared with the type P of the declarator-id of the 4160 // function parameter pack. Each comparison deduces template arguments 4161 // for subsequent positions in the template parameter packs expanded by 4162 // the function parameter pack. When a function parameter pack appears 4163 // in a non-deduced context [not at the end of the list], the type of 4164 // that parameter pack is never deduced. 4165 // 4166 // FIXME: The above rule allows the size of the parameter pack to change 4167 // after we skip it (in the non-deduced case). That makes no sense, so 4168 // we instead notionally deduce the pack against N arguments, where N is 4169 // the length of the explicitly-specified pack if it's expanded by the 4170 // parameter pack and 0 otherwise, and we treat each deduction as a 4171 // non-deduced context. 4172 if (ParamIdx + 1 == NumParamTypes || PackScope.hasFixedArity()) { 4173 for (; ArgIdx < Args.size() && PackScope.hasNextElement(); 4174 PackScope.nextPackElement(), ++ArgIdx) { 4175 ParamTypesForArgChecking.push_back(ParamPattern); 4176 if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx)) 4177 return Result; 4178 } 4179 } else { 4180 // If the parameter type contains an explicitly-specified pack that we 4181 // could not expand, skip the number of parameters notionally created 4182 // by the expansion. 4183 std::optional<unsigned> NumExpansions = 4184 ParamExpansion->getNumExpansions(); 4185 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 4186 for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size(); 4187 ++I, ++ArgIdx) { 4188 ParamTypesForArgChecking.push_back(ParamPattern); 4189 // FIXME: Should we add OriginalCallArgs for these? What if the 4190 // corresponding argument is a list? 4191 PackScope.nextPackElement(); 4192 } 4193 } 4194 } 4195 4196 // Build argument packs for each of the parameter packs expanded by this 4197 // pack expansion. 4198 if (auto Result = PackScope.finish()) 4199 return Result; 4200 } 4201 4202 // Capture the context in which the function call is made. This is the context 4203 // that is needed when the accessibility of template arguments is checked. 4204 DeclContext *CallingCtx = CurContext; 4205 4206 TemplateDeductionResult Result; 4207 runWithSufficientStackSpace(Info.getLocation(), [&] { 4208 Result = FinishTemplateArgumentDeduction( 4209 FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info, 4210 &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() { 4211 ContextRAII SavedContext(*this, CallingCtx); 4212 return CheckNonDependent(ParamTypesForArgChecking); 4213 }); 4214 }); 4215 return Result; 4216 } 4217 4218 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType, 4219 QualType FunctionType, 4220 bool AdjustExceptionSpec) { 4221 if (ArgFunctionType.isNull()) 4222 return ArgFunctionType; 4223 4224 const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>(); 4225 const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>(); 4226 FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo(); 4227 bool Rebuild = false; 4228 4229 CallingConv CC = FunctionTypeP->getCallConv(); 4230 if (EPI.ExtInfo.getCC() != CC) { 4231 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC); 4232 Rebuild = true; 4233 } 4234 4235 bool NoReturn = FunctionTypeP->getNoReturnAttr(); 4236 if (EPI.ExtInfo.getNoReturn() != NoReturn) { 4237 EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn); 4238 Rebuild = true; 4239 } 4240 4241 if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() || 4242 ArgFunctionTypeP->hasExceptionSpec())) { 4243 EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec; 4244 Rebuild = true; 4245 } 4246 4247 if (!Rebuild) 4248 return ArgFunctionType; 4249 4250 return Context.getFunctionType(ArgFunctionTypeP->getReturnType(), 4251 ArgFunctionTypeP->getParamTypes(), EPI); 4252 } 4253 4254 /// Deduce template arguments when taking the address of a function 4255 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to 4256 /// a template. 4257 /// 4258 /// \param FunctionTemplate the function template for which we are performing 4259 /// template argument deduction. 4260 /// 4261 /// \param ExplicitTemplateArgs the explicitly-specified template 4262 /// arguments. 4263 /// 4264 /// \param ArgFunctionType the function type that will be used as the 4265 /// "argument" type (A) when performing template argument deduction from the 4266 /// function template's function type. This type may be NULL, if there is no 4267 /// argument type to compare against, in C++0x [temp.arg.explicit]p3. 4268 /// 4269 /// \param Specialization if template argument deduction was successful, 4270 /// this will be set to the function template specialization produced by 4271 /// template argument deduction. 4272 /// 4273 /// \param Info the argument will be updated to provide additional information 4274 /// about template argument deduction. 4275 /// 4276 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4277 /// the address of a function template per [temp.deduct.funcaddr] and 4278 /// [over.over]. If \c false, we are looking up a function template 4279 /// specialization based on its signature, per [temp.deduct.decl]. 4280 /// 4281 /// \returns the result of template argument deduction. 4282 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4283 FunctionTemplateDecl *FunctionTemplate, 4284 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, 4285 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4286 bool IsAddressOfFunction) { 4287 if (FunctionTemplate->isInvalidDecl()) 4288 return TDK_Invalid; 4289 4290 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 4291 TemplateParameterList *TemplateParams 4292 = FunctionTemplate->getTemplateParameters(); 4293 QualType FunctionType = Function->getType(); 4294 4295 // Substitute any explicit template arguments. 4296 LocalInstantiationScope InstScope(*this); 4297 SmallVector<DeducedTemplateArgument, 4> Deduced; 4298 unsigned NumExplicitlySpecified = 0; 4299 SmallVector<QualType, 4> ParamTypes; 4300 if (ExplicitTemplateArgs) { 4301 TemplateDeductionResult Result; 4302 runWithSufficientStackSpace(Info.getLocation(), [&] { 4303 Result = SubstituteExplicitTemplateArguments( 4304 FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, 4305 &FunctionType, Info); 4306 }); 4307 if (Result) 4308 return Result; 4309 4310 NumExplicitlySpecified = Deduced.size(); 4311 } 4312 4313 // When taking the address of a function, we require convertibility of 4314 // the resulting function type. Otherwise, we allow arbitrary mismatches 4315 // of calling convention and noreturn. 4316 if (!IsAddressOfFunction) 4317 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType, 4318 /*AdjustExceptionSpec*/false); 4319 4320 // Unevaluated SFINAE context. 4321 EnterExpressionEvaluationContext Unevaluated( 4322 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4323 SFINAETrap Trap(*this); 4324 4325 Deduced.resize(TemplateParams->size()); 4326 4327 // If the function has a deduced return type, substitute it for a dependent 4328 // type so that we treat it as a non-deduced context in what follows. If we 4329 // are looking up by signature, the signature type should also have a deduced 4330 // return type, which we instead expect to exactly match. 4331 bool HasDeducedReturnType = false; 4332 if (getLangOpts().CPlusPlus14 && IsAddressOfFunction && 4333 Function->getReturnType()->getContainedAutoType()) { 4334 FunctionType = SubstAutoTypeDependent(FunctionType); 4335 HasDeducedReturnType = true; 4336 } 4337 4338 if (!ArgFunctionType.isNull() && !FunctionType.isNull()) { 4339 unsigned TDF = 4340 TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType; 4341 // Deduce template arguments from the function type. 4342 if (TemplateDeductionResult Result 4343 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4344 FunctionType, ArgFunctionType, 4345 Info, Deduced, TDF)) 4346 return Result; 4347 } 4348 4349 TemplateDeductionResult Result; 4350 runWithSufficientStackSpace(Info.getLocation(), [&] { 4351 Result = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 4352 NumExplicitlySpecified, 4353 Specialization, Info); 4354 }); 4355 if (Result) 4356 return Result; 4357 4358 // If the function has a deduced return type, deduce it now, so we can check 4359 // that the deduced function type matches the requested type. 4360 if (HasDeducedReturnType && 4361 Specialization->getReturnType()->isUndeducedType() && 4362 DeduceReturnType(Specialization, Info.getLocation(), false)) 4363 return TDK_MiscellaneousDeductionFailure; 4364 4365 // If the function has a dependent exception specification, resolve it now, 4366 // so we can check that the exception specification matches. 4367 auto *SpecializationFPT = 4368 Specialization->getType()->castAs<FunctionProtoType>(); 4369 if (getLangOpts().CPlusPlus17 && 4370 isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) && 4371 !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT)) 4372 return TDK_MiscellaneousDeductionFailure; 4373 4374 // Adjust the exception specification of the argument to match the 4375 // substituted and resolved type we just formed. (Calling convention and 4376 // noreturn can't be dependent, so we don't actually need this for them 4377 // right now.) 4378 QualType SpecializationType = Specialization->getType(); 4379 if (!IsAddressOfFunction) 4380 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType, 4381 /*AdjustExceptionSpec*/true); 4382 4383 // If the requested function type does not match the actual type of the 4384 // specialization with respect to arguments of compatible pointer to function 4385 // types, template argument deduction fails. 4386 if (!ArgFunctionType.isNull()) { 4387 if (IsAddressOfFunction && 4388 !isSameOrCompatibleFunctionType( 4389 Context.getCanonicalType(SpecializationType), 4390 Context.getCanonicalType(ArgFunctionType))) 4391 return TDK_MiscellaneousDeductionFailure; 4392 4393 if (!IsAddressOfFunction && 4394 !Context.hasSameType(SpecializationType, ArgFunctionType)) 4395 return TDK_MiscellaneousDeductionFailure; 4396 } 4397 4398 return TDK_Success; 4399 } 4400 4401 /// Deduce template arguments for a templated conversion 4402 /// function (C++ [temp.deduct.conv]) and, if successful, produce a 4403 /// conversion function template specialization. 4404 Sema::TemplateDeductionResult 4405 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate, 4406 QualType ToType, 4407 CXXConversionDecl *&Specialization, 4408 TemplateDeductionInfo &Info) { 4409 if (ConversionTemplate->isInvalidDecl()) 4410 return TDK_Invalid; 4411 4412 CXXConversionDecl *ConversionGeneric 4413 = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl()); 4414 4415 QualType FromType = ConversionGeneric->getConversionType(); 4416 4417 // Canonicalize the types for deduction. 4418 QualType P = Context.getCanonicalType(FromType); 4419 QualType A = Context.getCanonicalType(ToType); 4420 4421 // C++0x [temp.deduct.conv]p2: 4422 // If P is a reference type, the type referred to by P is used for 4423 // type deduction. 4424 if (const ReferenceType *PRef = P->getAs<ReferenceType>()) 4425 P = PRef->getPointeeType(); 4426 4427 // C++0x [temp.deduct.conv]p4: 4428 // [...] If A is a reference type, the type referred to by A is used 4429 // for type deduction. 4430 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) { 4431 A = ARef->getPointeeType(); 4432 // We work around a defect in the standard here: cv-qualifiers are also 4433 // removed from P and A in this case, unless P was a reference type. This 4434 // seems to mostly match what other compilers are doing. 4435 if (!FromType->getAs<ReferenceType>()) { 4436 A = A.getUnqualifiedType(); 4437 P = P.getUnqualifiedType(); 4438 } 4439 4440 // C++ [temp.deduct.conv]p3: 4441 // 4442 // If A is not a reference type: 4443 } else { 4444 assert(!A->isReferenceType() && "Reference types were handled above"); 4445 4446 // - If P is an array type, the pointer type produced by the 4447 // array-to-pointer standard conversion (4.2) is used in place 4448 // of P for type deduction; otherwise, 4449 if (P->isArrayType()) 4450 P = Context.getArrayDecayedType(P); 4451 // - If P is a function type, the pointer type produced by the 4452 // function-to-pointer standard conversion (4.3) is used in 4453 // place of P for type deduction; otherwise, 4454 else if (P->isFunctionType()) 4455 P = Context.getPointerType(P); 4456 // - If P is a cv-qualified type, the top level cv-qualifiers of 4457 // P's type are ignored for type deduction. 4458 else 4459 P = P.getUnqualifiedType(); 4460 4461 // C++0x [temp.deduct.conv]p4: 4462 // If A is a cv-qualified type, the top level cv-qualifiers of A's 4463 // type are ignored for type deduction. If A is a reference type, the type 4464 // referred to by A is used for type deduction. 4465 A = A.getUnqualifiedType(); 4466 } 4467 4468 // Unevaluated SFINAE context. 4469 EnterExpressionEvaluationContext Unevaluated( 4470 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4471 SFINAETrap Trap(*this); 4472 4473 // C++ [temp.deduct.conv]p1: 4474 // Template argument deduction is done by comparing the return 4475 // type of the template conversion function (call it P) with the 4476 // type that is required as the result of the conversion (call it 4477 // A) as described in 14.8.2.4. 4478 TemplateParameterList *TemplateParams 4479 = ConversionTemplate->getTemplateParameters(); 4480 SmallVector<DeducedTemplateArgument, 4> Deduced; 4481 Deduced.resize(TemplateParams->size()); 4482 4483 // C++0x [temp.deduct.conv]p4: 4484 // In general, the deduction process attempts to find template 4485 // argument values that will make the deduced A identical to 4486 // A. However, there are two cases that allow a difference: 4487 unsigned TDF = 0; 4488 // - If the original A is a reference type, A can be more 4489 // cv-qualified than the deduced A (i.e., the type referred to 4490 // by the reference) 4491 if (ToType->isReferenceType()) 4492 TDF |= TDF_ArgWithReferenceType; 4493 // - The deduced A can be another pointer or pointer to member 4494 // type that can be converted to A via a qualification 4495 // conversion. 4496 // 4497 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when 4498 // both P and A are pointers or member pointers. In this case, we 4499 // just ignore cv-qualifiers completely). 4500 if ((P->isPointerType() && A->isPointerType()) || 4501 (P->isMemberPointerType() && A->isMemberPointerType())) 4502 TDF |= TDF_IgnoreQualifiers; 4503 if (TemplateDeductionResult Result 4504 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4505 P, A, Info, Deduced, TDF)) 4506 return Result; 4507 4508 // Create an Instantiation Scope for finalizing the operator. 4509 LocalInstantiationScope InstScope(*this); 4510 // Finish template argument deduction. 4511 FunctionDecl *ConversionSpecialized = nullptr; 4512 TemplateDeductionResult Result; 4513 runWithSufficientStackSpace(Info.getLocation(), [&] { 4514 Result = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0, 4515 ConversionSpecialized, Info); 4516 }); 4517 Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized); 4518 return Result; 4519 } 4520 4521 /// Deduce template arguments for a function template when there is 4522 /// nothing to deduce against (C++0x [temp.arg.explicit]p3). 4523 /// 4524 /// \param FunctionTemplate the function template for which we are performing 4525 /// template argument deduction. 4526 /// 4527 /// \param ExplicitTemplateArgs the explicitly-specified template 4528 /// arguments. 4529 /// 4530 /// \param Specialization if template argument deduction was successful, 4531 /// this will be set to the function template specialization produced by 4532 /// template argument deduction. 4533 /// 4534 /// \param Info the argument will be updated to provide additional information 4535 /// about template argument deduction. 4536 /// 4537 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4538 /// the address of a function template in a context where we do not have a 4539 /// target type, per [over.over]. If \c false, we are looking up a function 4540 /// template specialization based on its signature, which only happens when 4541 /// deducing a function parameter type from an argument that is a template-id 4542 /// naming a function template specialization. 4543 /// 4544 /// \returns the result of template argument deduction. 4545 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4546 FunctionTemplateDecl *FunctionTemplate, 4547 TemplateArgumentListInfo *ExplicitTemplateArgs, 4548 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4549 bool IsAddressOfFunction) { 4550 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 4551 QualType(), Specialization, Info, 4552 IsAddressOfFunction); 4553 } 4554 4555 namespace { 4556 struct DependentAuto { bool IsPack; }; 4557 4558 /// Substitute the 'auto' specifier or deduced template specialization type 4559 /// specifier within a type for a given replacement type. 4560 class SubstituteDeducedTypeTransform : 4561 public TreeTransform<SubstituteDeducedTypeTransform> { 4562 QualType Replacement; 4563 bool ReplacementIsPack; 4564 bool UseTypeSugar; 4565 4566 public: 4567 SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA) 4568 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), 4569 ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {} 4570 4571 SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement, 4572 bool UseTypeSugar = true) 4573 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), 4574 Replacement(Replacement), ReplacementIsPack(false), 4575 UseTypeSugar(UseTypeSugar) {} 4576 4577 QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) { 4578 assert(isa<TemplateTypeParmType>(Replacement) && 4579 "unexpected unsugared replacement kind"); 4580 QualType Result = Replacement; 4581 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result); 4582 NewTL.setNameLoc(TL.getNameLoc()); 4583 return Result; 4584 } 4585 4586 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { 4587 // If we're building the type pattern to deduce against, don't wrap the 4588 // substituted type in an AutoType. Certain template deduction rules 4589 // apply only when a template type parameter appears directly (and not if 4590 // the parameter is found through desugaring). For instance: 4591 // auto &&lref = lvalue; 4592 // must transform into "rvalue reference to T" not "rvalue reference to 4593 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply. 4594 // 4595 // FIXME: Is this still necessary? 4596 if (!UseTypeSugar) 4597 return TransformDesugared(TLB, TL); 4598 4599 QualType Result = SemaRef.Context.getAutoType( 4600 Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(), 4601 ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(), 4602 TL.getTypePtr()->getTypeConstraintArguments()); 4603 auto NewTL = TLB.push<AutoTypeLoc>(Result); 4604 NewTL.copy(TL); 4605 return Result; 4606 } 4607 4608 QualType TransformDeducedTemplateSpecializationType( 4609 TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) { 4610 if (!UseTypeSugar) 4611 return TransformDesugared(TLB, TL); 4612 4613 QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType( 4614 TL.getTypePtr()->getTemplateName(), 4615 Replacement, Replacement.isNull()); 4616 auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result); 4617 NewTL.setNameLoc(TL.getNameLoc()); 4618 return Result; 4619 } 4620 4621 ExprResult TransformLambdaExpr(LambdaExpr *E) { 4622 // Lambdas never need to be transformed. 4623 return E; 4624 } 4625 4626 QualType Apply(TypeLoc TL) { 4627 // Create some scratch storage for the transformed type locations. 4628 // FIXME: We're just going to throw this information away. Don't build it. 4629 TypeLocBuilder TLB; 4630 TLB.reserve(TL.getFullDataSize()); 4631 return TransformType(TLB, TL); 4632 } 4633 }; 4634 4635 } // namespace 4636 4637 static bool CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type, 4638 AutoTypeLoc TypeLoc, 4639 QualType Deduced) { 4640 ConstraintSatisfaction Satisfaction; 4641 ConceptDecl *Concept = Type.getTypeConstraintConcept(); 4642 TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(), 4643 TypeLoc.getRAngleLoc()); 4644 TemplateArgs.addArgument( 4645 TemplateArgumentLoc(TemplateArgument(Deduced), 4646 S.Context.getTrivialTypeSourceInfo( 4647 Deduced, TypeLoc.getNameLoc()))); 4648 for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I) 4649 TemplateArgs.addArgument(TypeLoc.getArgLoc(I)); 4650 4651 llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4652 if (S.CheckTemplateArgumentList(Concept, SourceLocation(), TemplateArgs, 4653 /*PartialTemplateArgs=*/false, 4654 SugaredConverted, CanonicalConverted)) 4655 return true; 4656 MultiLevelTemplateArgumentList MLTAL(Concept, CanonicalConverted, 4657 /*Final=*/false); 4658 if (S.CheckConstraintSatisfaction(Concept, {Concept->getConstraintExpr()}, 4659 MLTAL, TypeLoc.getLocalSourceRange(), 4660 Satisfaction)) 4661 return true; 4662 if (!Satisfaction.IsSatisfied) { 4663 std::string Buf; 4664 llvm::raw_string_ostream OS(Buf); 4665 OS << "'" << Concept->getName(); 4666 if (TypeLoc.hasExplicitTemplateArgs()) { 4667 printTemplateArgumentList( 4668 OS, Type.getTypeConstraintArguments(), S.getPrintingPolicy(), 4669 Type.getTypeConstraintConcept()->getTemplateParameters()); 4670 } 4671 OS << "'"; 4672 OS.flush(); 4673 S.Diag(TypeLoc.getConceptNameLoc(), 4674 diag::err_placeholder_constraints_not_satisfied) 4675 << Deduced << Buf << TypeLoc.getLocalSourceRange(); 4676 S.DiagnoseUnsatisfiedConstraint(Satisfaction); 4677 return true; 4678 } 4679 return false; 4680 } 4681 4682 /// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6) 4683 /// 4684 /// Note that this is done even if the initializer is dependent. (This is 4685 /// necessary to support partial ordering of templates using 'auto'.) 4686 /// A dependent type will be produced when deducing from a dependent type. 4687 /// 4688 /// \param Type the type pattern using the auto type-specifier. 4689 /// \param Init the initializer for the variable whose type is to be deduced. 4690 /// \param Result if type deduction was successful, this will be set to the 4691 /// deduced type. 4692 /// \param Info the argument will be updated to provide additional information 4693 /// about template argument deduction. 4694 /// \param DependentDeduction Set if we should permit deduction in 4695 /// dependent cases. This is necessary for template partial ordering with 4696 /// 'auto' template parameters. The template parameter depth to be used 4697 /// should be specified in the 'Info' parameter. 4698 /// \param IgnoreConstraints Set if we should not fail if the deduced type does 4699 /// not satisfy the type-constraint in the auto type. 4700 Sema::TemplateDeductionResult Sema::DeduceAutoType(TypeLoc Type, Expr *Init, 4701 QualType &Result, 4702 TemplateDeductionInfo &Info, 4703 bool DependentDeduction, 4704 bool IgnoreConstraints) { 4705 assert(DependentDeduction || Info.getDeducedDepth() == 0); 4706 if (Init->containsErrors()) 4707 return TDK_AlreadyDiagnosed; 4708 4709 const AutoType *AT = Type.getType()->getContainedAutoType(); 4710 assert(AT); 4711 4712 if (Init->getType()->isNonOverloadPlaceholderType() || AT->isDecltypeAuto()) { 4713 ExprResult NonPlaceholder = CheckPlaceholderExpr(Init); 4714 if (NonPlaceholder.isInvalid()) 4715 return TDK_AlreadyDiagnosed; 4716 Init = NonPlaceholder.get(); 4717 } 4718 4719 DependentAuto DependentResult = { 4720 /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()}; 4721 4722 if (!DependentDeduction && 4723 (Type.getType()->isDependentType() || Init->isTypeDependent() || 4724 Init->containsUnexpandedParameterPack())) { 4725 Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4726 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4727 return TDK_Success; 4728 } 4729 4730 auto *InitList = dyn_cast<InitListExpr>(Init); 4731 if (!getLangOpts().CPlusPlus && InitList) { 4732 Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c); 4733 return TDK_AlreadyDiagnosed; 4734 } 4735 4736 // Deduce type of TemplParam in Func(Init) 4737 SmallVector<DeducedTemplateArgument, 1> Deduced; 4738 Deduced.resize(1); 4739 4740 // If deduction failed, don't diagnose if the initializer is dependent; it 4741 // might acquire a matching type in the instantiation. 4742 auto DeductionFailed = [&](TemplateDeductionResult TDK) { 4743 if (Init->isTypeDependent()) { 4744 Result = 4745 SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4746 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4747 return TDK_Success; 4748 } 4749 return TDK; 4750 }; 4751 4752 SmallVector<OriginalCallArg, 4> OriginalCallArgs; 4753 4754 QualType DeducedType; 4755 // If this is a 'decltype(auto)' specifier, do the decltype dance. 4756 if (AT->isDecltypeAuto()) { 4757 if (InitList) { 4758 Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list); 4759 return TDK_AlreadyDiagnosed; 4760 } 4761 4762 DeducedType = getDecltypeForExpr(Init); 4763 assert(!DeducedType.isNull()); 4764 } else { 4765 LocalInstantiationScope InstScope(*this); 4766 4767 // Build template<class TemplParam> void Func(FuncParam); 4768 SourceLocation Loc = Init->getExprLoc(); 4769 TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create( 4770 Context, nullptr, SourceLocation(), Loc, Info.getDeducedDepth(), 0, 4771 nullptr, false, false, false); 4772 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0); 4773 NamedDecl *TemplParamPtr = TemplParam; 4774 FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt( 4775 Context, Loc, Loc, TemplParamPtr, Loc, nullptr); 4776 4777 if (InitList) { 4778 // Notionally, we substitute std::initializer_list<T> for 'auto' and 4779 // deduce against that. Such deduction only succeeds if removing 4780 // cv-qualifiers and references results in std::initializer_list<T>. 4781 if (!Type.getType().getNonReferenceType()->getAs<AutoType>()) 4782 return TDK_Invalid; 4783 4784 SourceRange DeducedFromInitRange; 4785 for (Expr *Init : InitList->inits()) { 4786 // Resolving a core issue: a braced-init-list containing any designators 4787 // is a non-deduced context. 4788 if (isa<DesignatedInitExpr>(Init)) 4789 return TDK_Invalid; 4790 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 4791 *this, TemplateParamsSt.get(), 0, TemplArg, Init, Info, Deduced, 4792 OriginalCallArgs, /*Decomposed=*/true, 4793 /*ArgIdx=*/0, /*TDF=*/0)) { 4794 if (TDK == TDK_Inconsistent) { 4795 Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction) 4796 << Info.FirstArg << Info.SecondArg << DeducedFromInitRange 4797 << Init->getSourceRange(); 4798 return DeductionFailed(TDK_AlreadyDiagnosed); 4799 } 4800 return DeductionFailed(TDK); 4801 } 4802 4803 if (DeducedFromInitRange.isInvalid() && 4804 Deduced[0].getKind() != TemplateArgument::Null) 4805 DeducedFromInitRange = Init->getSourceRange(); 4806 } 4807 } else { 4808 if (!getLangOpts().CPlusPlus && Init->refersToBitField()) { 4809 Diag(Loc, diag::err_auto_bitfield); 4810 return TDK_AlreadyDiagnosed; 4811 } 4812 QualType FuncParam = 4813 SubstituteDeducedTypeTransform(*this, TemplArg).Apply(Type); 4814 assert(!FuncParam.isNull() && 4815 "substituting template parameter for 'auto' failed"); 4816 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 4817 *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced, 4818 OriginalCallArgs, /*Decomposed=*/false, /*ArgIdx=*/0, /*TDF=*/0)) 4819 return DeductionFailed(TDK); 4820 } 4821 4822 // Could be null if somehow 'auto' appears in a non-deduced context. 4823 if (Deduced[0].getKind() != TemplateArgument::Type) 4824 return DeductionFailed(TDK_Incomplete); 4825 DeducedType = Deduced[0].getAsType(); 4826 4827 if (InitList) { 4828 DeducedType = BuildStdInitializerList(DeducedType, Loc); 4829 if (DeducedType.isNull()) 4830 return TDK_AlreadyDiagnosed; 4831 } 4832 } 4833 4834 if (!Result.isNull()) { 4835 if (!Context.hasSameType(DeducedType, Result)) { 4836 Info.FirstArg = Result; 4837 Info.SecondArg = DeducedType; 4838 return DeductionFailed(TDK_Inconsistent); 4839 } 4840 DeducedType = Context.getCommonSugaredType(Result, DeducedType); 4841 } 4842 4843 if (AT->isConstrained() && !IgnoreConstraints && 4844 CheckDeducedPlaceholderConstraints( 4845 *this, *AT, Type.getContainedAutoTypeLoc(), DeducedType)) 4846 return TDK_AlreadyDiagnosed; 4847 4848 Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type); 4849 if (Result.isNull()) 4850 return TDK_AlreadyDiagnosed; 4851 4852 // Check that the deduced argument type is compatible with the original 4853 // argument type per C++ [temp.deduct.call]p4. 4854 QualType DeducedA = InitList ? Deduced[0].getAsType() : Result; 4855 for (const OriginalCallArg &OriginalArg : OriginalCallArgs) { 4856 assert((bool)InitList == OriginalArg.DecomposedParam && 4857 "decomposed non-init-list in auto deduction?"); 4858 if (auto TDK = 4859 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) { 4860 Result = QualType(); 4861 return DeductionFailed(TDK); 4862 } 4863 } 4864 4865 return TDK_Success; 4866 } 4867 4868 QualType Sema::SubstAutoType(QualType TypeWithAuto, 4869 QualType TypeToReplaceAuto) { 4870 assert(TypeToReplaceAuto != Context.DependentTy); 4871 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 4872 .TransformType(TypeWithAuto); 4873 } 4874 4875 TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, 4876 QualType TypeToReplaceAuto) { 4877 assert(TypeToReplaceAuto != Context.DependentTy); 4878 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 4879 .TransformType(TypeWithAuto); 4880 } 4881 4882 QualType Sema::SubstAutoTypeDependent(QualType TypeWithAuto) { 4883 return SubstituteDeducedTypeTransform(*this, DependentAuto{false}) 4884 .TransformType(TypeWithAuto); 4885 } 4886 4887 TypeSourceInfo * 4888 Sema::SubstAutoTypeSourceInfoDependent(TypeSourceInfo *TypeWithAuto) { 4889 return SubstituteDeducedTypeTransform(*this, DependentAuto{false}) 4890 .TransformType(TypeWithAuto); 4891 } 4892 4893 QualType Sema::ReplaceAutoType(QualType TypeWithAuto, 4894 QualType TypeToReplaceAuto) { 4895 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, 4896 /*UseTypeSugar*/ false) 4897 .TransformType(TypeWithAuto); 4898 } 4899 4900 TypeSourceInfo *Sema::ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, 4901 QualType TypeToReplaceAuto) { 4902 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, 4903 /*UseTypeSugar*/ false) 4904 .TransformType(TypeWithAuto); 4905 } 4906 4907 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) { 4908 if (isa<InitListExpr>(Init)) 4909 Diag(VDecl->getLocation(), 4910 VDecl->isInitCapture() 4911 ? diag::err_init_capture_deduction_failure_from_init_list 4912 : diag::err_auto_var_deduction_failure_from_init_list) 4913 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange(); 4914 else 4915 Diag(VDecl->getLocation(), 4916 VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure 4917 : diag::err_auto_var_deduction_failure) 4918 << VDecl->getDeclName() << VDecl->getType() << Init->getType() 4919 << Init->getSourceRange(); 4920 } 4921 4922 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, 4923 bool Diagnose) { 4924 assert(FD->getReturnType()->isUndeducedType()); 4925 4926 // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)' 4927 // within the return type from the call operator's type. 4928 if (isLambdaConversionOperator(FD)) { 4929 CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent(); 4930 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 4931 4932 // For a generic lambda, instantiate the call operator if needed. 4933 if (auto *Args = FD->getTemplateSpecializationArgs()) { 4934 CallOp = InstantiateFunctionDeclaration( 4935 CallOp->getDescribedFunctionTemplate(), Args, Loc); 4936 if (!CallOp || CallOp->isInvalidDecl()) 4937 return true; 4938 4939 // We might need to deduce the return type by instantiating the definition 4940 // of the operator() function. 4941 if (CallOp->getReturnType()->isUndeducedType()) { 4942 runWithSufficientStackSpace(Loc, [&] { 4943 InstantiateFunctionDefinition(Loc, CallOp); 4944 }); 4945 } 4946 } 4947 4948 if (CallOp->isInvalidDecl()) 4949 return true; 4950 assert(!CallOp->getReturnType()->isUndeducedType() && 4951 "failed to deduce lambda return type"); 4952 4953 // Build the new return type from scratch. 4954 CallingConv RetTyCC = FD->getReturnType() 4955 ->getPointeeType() 4956 ->castAs<FunctionType>() 4957 ->getCallConv(); 4958 QualType RetType = getLambdaConversionFunctionResultType( 4959 CallOp->getType()->castAs<FunctionProtoType>(), RetTyCC); 4960 if (FD->getReturnType()->getAs<PointerType>()) 4961 RetType = Context.getPointerType(RetType); 4962 else { 4963 assert(FD->getReturnType()->getAs<BlockPointerType>()); 4964 RetType = Context.getBlockPointerType(RetType); 4965 } 4966 Context.adjustDeducedFunctionResultType(FD, RetType); 4967 return false; 4968 } 4969 4970 if (FD->getTemplateInstantiationPattern()) { 4971 runWithSufficientStackSpace(Loc, [&] { 4972 InstantiateFunctionDefinition(Loc, FD); 4973 }); 4974 } 4975 4976 bool StillUndeduced = FD->getReturnType()->isUndeducedType(); 4977 if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) { 4978 Diag(Loc, diag::err_auto_fn_used_before_defined) << FD; 4979 Diag(FD->getLocation(), diag::note_callee_decl) << FD; 4980 } 4981 4982 return StillUndeduced; 4983 } 4984 4985 /// If this is a non-static member function, 4986 static void 4987 AddImplicitObjectParameterType(ASTContext &Context, 4988 CXXMethodDecl *Method, 4989 SmallVectorImpl<QualType> &ArgTypes) { 4990 // C++11 [temp.func.order]p3: 4991 // [...] The new parameter is of type "reference to cv A," where cv are 4992 // the cv-qualifiers of the function template (if any) and A is 4993 // the class of which the function template is a member. 4994 // 4995 // The standard doesn't say explicitly, but we pick the appropriate kind of 4996 // reference type based on [over.match.funcs]p4. 4997 QualType ArgTy = Context.getTypeDeclType(Method->getParent()); 4998 ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers()); 4999 if (Method->getRefQualifier() == RQ_RValue) 5000 ArgTy = Context.getRValueReferenceType(ArgTy); 5001 else 5002 ArgTy = Context.getLValueReferenceType(ArgTy); 5003 ArgTypes.push_back(ArgTy); 5004 } 5005 5006 /// Determine whether the function template \p FT1 is at least as 5007 /// specialized as \p FT2. 5008 static bool isAtLeastAsSpecializedAs(Sema &S, 5009 SourceLocation Loc, 5010 FunctionTemplateDecl *FT1, 5011 FunctionTemplateDecl *FT2, 5012 TemplatePartialOrderingContext TPOC, 5013 unsigned NumCallArguments1, 5014 bool Reversed) { 5015 assert(!Reversed || TPOC == TPOC_Call); 5016 5017 FunctionDecl *FD1 = FT1->getTemplatedDecl(); 5018 FunctionDecl *FD2 = FT2->getTemplatedDecl(); 5019 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>(); 5020 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>(); 5021 5022 assert(Proto1 && Proto2 && "Function templates must have prototypes"); 5023 TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); 5024 SmallVector<DeducedTemplateArgument, 4> Deduced; 5025 Deduced.resize(TemplateParams->size()); 5026 5027 // C++0x [temp.deduct.partial]p3: 5028 // The types used to determine the ordering depend on the context in which 5029 // the partial ordering is done: 5030 TemplateDeductionInfo Info(Loc); 5031 SmallVector<QualType, 4> Args2; 5032 switch (TPOC) { 5033 case TPOC_Call: { 5034 // - In the context of a function call, the function parameter types are 5035 // used. 5036 CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1); 5037 CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2); 5038 5039 // C++11 [temp.func.order]p3: 5040 // [...] If only one of the function templates is a non-static 5041 // member, that function template is considered to have a new 5042 // first parameter inserted in its function parameter list. The 5043 // new parameter is of type "reference to cv A," where cv are 5044 // the cv-qualifiers of the function template (if any) and A is 5045 // the class of which the function template is a member. 5046 // 5047 // Note that we interpret this to mean "if one of the function 5048 // templates is a non-static member and the other is a non-member"; 5049 // otherwise, the ordering rules for static functions against non-static 5050 // functions don't make any sense. 5051 // 5052 // C++98/03 doesn't have this provision but we've extended DR532 to cover 5053 // it as wording was broken prior to it. 5054 SmallVector<QualType, 4> Args1; 5055 5056 unsigned NumComparedArguments = NumCallArguments1; 5057 5058 if (!Method2 && Method1 && !Method1->isStatic()) { 5059 // Compare 'this' from Method1 against first parameter from Method2. 5060 AddImplicitObjectParameterType(S.Context, Method1, Args1); 5061 ++NumComparedArguments; 5062 } else if (!Method1 && Method2 && !Method2->isStatic()) { 5063 // Compare 'this' from Method2 against first parameter from Method1. 5064 AddImplicitObjectParameterType(S.Context, Method2, Args2); 5065 } else if (Method1 && Method2 && Reversed) { 5066 // Compare 'this' from Method1 against second parameter from Method2 5067 // and 'this' from Method2 against second parameter from Method1. 5068 AddImplicitObjectParameterType(S.Context, Method1, Args1); 5069 AddImplicitObjectParameterType(S.Context, Method2, Args2); 5070 ++NumComparedArguments; 5071 } 5072 5073 Args1.insert(Args1.end(), Proto1->param_type_begin(), 5074 Proto1->param_type_end()); 5075 Args2.insert(Args2.end(), Proto2->param_type_begin(), 5076 Proto2->param_type_end()); 5077 5078 // C++ [temp.func.order]p5: 5079 // The presence of unused ellipsis and default arguments has no effect on 5080 // the partial ordering of function templates. 5081 if (Args1.size() > NumComparedArguments) 5082 Args1.resize(NumComparedArguments); 5083 if (Args2.size() > NumComparedArguments) 5084 Args2.resize(NumComparedArguments); 5085 if (Reversed) 5086 std::reverse(Args2.begin(), Args2.end()); 5087 5088 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(), 5089 Args1.data(), Args1.size(), Info, Deduced, 5090 TDF_None, /*PartialOrdering=*/true)) 5091 return false; 5092 5093 break; 5094 } 5095 5096 case TPOC_Conversion: 5097 // - In the context of a call to a conversion operator, the return types 5098 // of the conversion function templates are used. 5099 if (DeduceTemplateArgumentsByTypeMatch( 5100 S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(), 5101 Info, Deduced, TDF_None, 5102 /*PartialOrdering=*/true)) 5103 return false; 5104 break; 5105 5106 case TPOC_Other: 5107 // - In other contexts (14.6.6.2) the function template's function type 5108 // is used. 5109 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 5110 FD2->getType(), FD1->getType(), 5111 Info, Deduced, TDF_None, 5112 /*PartialOrdering=*/true)) 5113 return false; 5114 break; 5115 } 5116 5117 // C++0x [temp.deduct.partial]p11: 5118 // In most cases, all template parameters must have values in order for 5119 // deduction to succeed, but for partial ordering purposes a template 5120 // parameter may remain without a value provided it is not used in the 5121 // types being used for partial ordering. [ Note: a template parameter used 5122 // in a non-deduced context is considered used. -end note] 5123 unsigned ArgIdx = 0, NumArgs = Deduced.size(); 5124 for (; ArgIdx != NumArgs; ++ArgIdx) 5125 if (Deduced[ArgIdx].isNull()) 5126 break; 5127 5128 // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need 5129 // to substitute the deduced arguments back into the template and check that 5130 // we get the right type. 5131 5132 if (ArgIdx == NumArgs) { 5133 // All template arguments were deduced. FT1 is at least as specialized 5134 // as FT2. 5135 return true; 5136 } 5137 5138 // Figure out which template parameters were used. 5139 llvm::SmallBitVector UsedParameters(TemplateParams->size()); 5140 switch (TPOC) { 5141 case TPOC_Call: 5142 for (unsigned I = 0, N = Args2.size(); I != N; ++I) 5143 ::MarkUsedTemplateParameters(S.Context, Args2[I], false, 5144 TemplateParams->getDepth(), 5145 UsedParameters); 5146 break; 5147 5148 case TPOC_Conversion: 5149 ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false, 5150 TemplateParams->getDepth(), UsedParameters); 5151 break; 5152 5153 case TPOC_Other: 5154 ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false, 5155 TemplateParams->getDepth(), 5156 UsedParameters); 5157 break; 5158 } 5159 5160 for (; ArgIdx != NumArgs; ++ArgIdx) 5161 // If this argument had no value deduced but was used in one of the types 5162 // used for partial ordering, then deduction fails. 5163 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) 5164 return false; 5165 5166 return true; 5167 } 5168 5169 /// Returns the more specialized function template according 5170 /// to the rules of function template partial ordering (C++ [temp.func.order]). 5171 /// 5172 /// \param FT1 the first function template 5173 /// 5174 /// \param FT2 the second function template 5175 /// 5176 /// \param TPOC the context in which we are performing partial ordering of 5177 /// function templates. 5178 /// 5179 /// \param NumCallArguments1 The number of arguments in the call to FT1, used 5180 /// only when \c TPOC is \c TPOC_Call. 5181 /// 5182 /// \param NumCallArguments2 The number of arguments in the call to FT2, used 5183 /// only when \c TPOC is \c TPOC_Call. 5184 /// 5185 /// \param Reversed If \c true, exactly one of FT1 and FT2 is an overload 5186 /// candidate with a reversed parameter order. In this case, the corresponding 5187 /// P/A pairs between FT1 and FT2 are reversed. 5188 /// 5189 /// \returns the more specialized function template. If neither 5190 /// template is more specialized, returns NULL. 5191 FunctionTemplateDecl *Sema::getMoreSpecializedTemplate( 5192 FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc, 5193 TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1, 5194 unsigned NumCallArguments2, bool Reversed) { 5195 5196 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 5197 NumCallArguments1, Reversed); 5198 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, 5199 NumCallArguments2, Reversed); 5200 5201 // C++ [temp.deduct.partial]p10: 5202 // F is more specialized than G if F is at least as specialized as G and G 5203 // is not at least as specialized as F. 5204 if (Better1 != Better2) // We have a clear winner 5205 return Better1 ? FT1 : FT2; 5206 5207 if (!Better1 && !Better2) // Neither is better than the other 5208 return nullptr; 5209 5210 // C++ [temp.deduct.partial]p11: 5211 // ... and if G has a trailing function parameter pack for which F does not 5212 // have a corresponding parameter, and if F does not have a trailing 5213 // function parameter pack, then F is more specialized than G. 5214 FunctionDecl *FD1 = FT1->getTemplatedDecl(); 5215 FunctionDecl *FD2 = FT2->getTemplatedDecl(); 5216 unsigned NumParams1 = FD1->getNumParams(); 5217 unsigned NumParams2 = FD2->getNumParams(); 5218 bool Variadic1 = NumParams1 && FD1->parameters().back()->isParameterPack(); 5219 bool Variadic2 = NumParams2 && FD2->parameters().back()->isParameterPack(); 5220 if (Variadic1 != Variadic2) { 5221 if (Variadic1 && NumParams1 > NumParams2) 5222 return FT2; 5223 if (Variadic2 && NumParams2 > NumParams1) 5224 return FT1; 5225 } 5226 5227 // This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that 5228 // there is no wording or even resolution for this issue. 5229 for (int i = 0, e = std::min(NumParams1, NumParams2); i < e; ++i) { 5230 QualType T1 = FD1->getParamDecl(i)->getType().getCanonicalType(); 5231 QualType T2 = FD2->getParamDecl(i)->getType().getCanonicalType(); 5232 auto *TST1 = dyn_cast<TemplateSpecializationType>(T1); 5233 auto *TST2 = dyn_cast<TemplateSpecializationType>(T2); 5234 if (!TST1 || !TST2) 5235 continue; 5236 const TemplateArgument &TA1 = TST1->template_arguments().back(); 5237 if (TA1.getKind() == TemplateArgument::Pack) { 5238 assert(TST1->template_arguments().size() == 5239 TST2->template_arguments().size()); 5240 const TemplateArgument &TA2 = TST2->template_arguments().back(); 5241 assert(TA2.getKind() == TemplateArgument::Pack); 5242 unsigned PackSize1 = TA1.pack_size(); 5243 unsigned PackSize2 = TA2.pack_size(); 5244 bool IsPackExpansion1 = 5245 PackSize1 && TA1.pack_elements().back().isPackExpansion(); 5246 bool IsPackExpansion2 = 5247 PackSize2 && TA2.pack_elements().back().isPackExpansion(); 5248 if (PackSize1 != PackSize2 && IsPackExpansion1 != IsPackExpansion2) { 5249 if (PackSize1 > PackSize2 && IsPackExpansion1) 5250 return FT2; 5251 if (PackSize1 < PackSize2 && IsPackExpansion2) 5252 return FT1; 5253 } 5254 } 5255 } 5256 5257 if (!Context.getLangOpts().CPlusPlus20) 5258 return nullptr; 5259 5260 // Match GCC on not implementing [temp.func.order]p6.2.1. 5261 5262 // C++20 [temp.func.order]p6: 5263 // If deduction against the other template succeeds for both transformed 5264 // templates, constraints can be considered as follows: 5265 5266 // C++20 [temp.func.order]p6.1: 5267 // If their template-parameter-lists (possibly including template-parameters 5268 // invented for an abbreviated function template ([dcl.fct])) or function 5269 // parameter lists differ in length, neither template is more specialized 5270 // than the other. 5271 TemplateParameterList *TPL1 = FT1->getTemplateParameters(); 5272 TemplateParameterList *TPL2 = FT2->getTemplateParameters(); 5273 if (TPL1->size() != TPL2->size() || NumParams1 != NumParams2) 5274 return nullptr; 5275 5276 // C++20 [temp.func.order]p6.2.2: 5277 // Otherwise, if the corresponding template-parameters of the 5278 // template-parameter-lists are not equivalent ([temp.over.link]) or if the 5279 // function parameters that positionally correspond between the two 5280 // templates are not of the same type, neither template is more specialized 5281 // than the other. 5282 if (!TemplateParameterListsAreEqual( 5283 TPL1, TPL2, false, Sema::TPL_TemplateMatch, SourceLocation(), true)) 5284 return nullptr; 5285 5286 for (unsigned i = 0; i < NumParams1; ++i) 5287 if (!Context.hasSameType(FD1->getParamDecl(i)->getType(), 5288 FD2->getParamDecl(i)->getType())) 5289 return nullptr; 5290 5291 // C++20 [temp.func.order]p6.3: 5292 // Otherwise, if the context in which the partial ordering is done is 5293 // that of a call to a conversion function and the return types of the 5294 // templates are not the same, then neither template is more specialized 5295 // than the other. 5296 if (TPOC == TPOC_Conversion && 5297 !Context.hasSameType(FD1->getReturnType(), FD2->getReturnType())) 5298 return nullptr; 5299 5300 llvm::SmallVector<const Expr *, 3> AC1, AC2; 5301 FT1->getAssociatedConstraints(AC1); 5302 FT2->getAssociatedConstraints(AC2); 5303 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 5304 if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1)) 5305 return nullptr; 5306 if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2)) 5307 return nullptr; 5308 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 5309 return nullptr; 5310 return AtLeastAsConstrained1 ? FT1 : FT2; 5311 } 5312 5313 /// Determine if the two templates are equivalent. 5314 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) { 5315 if (T1 == T2) 5316 return true; 5317 5318 if (!T1 || !T2) 5319 return false; 5320 5321 return T1->getCanonicalDecl() == T2->getCanonicalDecl(); 5322 } 5323 5324 /// Retrieve the most specialized of the given function template 5325 /// specializations. 5326 /// 5327 /// \param SpecBegin the start iterator of the function template 5328 /// specializations that we will be comparing. 5329 /// 5330 /// \param SpecEnd the end iterator of the function template 5331 /// specializations, paired with \p SpecBegin. 5332 /// 5333 /// \param Loc the location where the ambiguity or no-specializations 5334 /// diagnostic should occur. 5335 /// 5336 /// \param NoneDiag partial diagnostic used to diagnose cases where there are 5337 /// no matching candidates. 5338 /// 5339 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one 5340 /// occurs. 5341 /// 5342 /// \param CandidateDiag partial diagnostic used for each function template 5343 /// specialization that is a candidate in the ambiguous ordering. One parameter 5344 /// in this diagnostic should be unbound, which will correspond to the string 5345 /// describing the template arguments for the function template specialization. 5346 /// 5347 /// \returns the most specialized function template specialization, if 5348 /// found. Otherwise, returns SpecEnd. 5349 UnresolvedSetIterator Sema::getMostSpecialized( 5350 UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd, 5351 TemplateSpecCandidateSet &FailedCandidates, 5352 SourceLocation Loc, const PartialDiagnostic &NoneDiag, 5353 const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, 5354 bool Complain, QualType TargetType) { 5355 if (SpecBegin == SpecEnd) { 5356 if (Complain) { 5357 Diag(Loc, NoneDiag); 5358 FailedCandidates.NoteCandidates(*this, Loc); 5359 } 5360 return SpecEnd; 5361 } 5362 5363 if (SpecBegin + 1 == SpecEnd) 5364 return SpecBegin; 5365 5366 // Find the function template that is better than all of the templates it 5367 // has been compared to. 5368 UnresolvedSetIterator Best = SpecBegin; 5369 FunctionTemplateDecl *BestTemplate 5370 = cast<FunctionDecl>(*Best)->getPrimaryTemplate(); 5371 assert(BestTemplate && "Not a function template specialization?"); 5372 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) { 5373 FunctionTemplateDecl *Challenger 5374 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 5375 assert(Challenger && "Not a function template specialization?"); 5376 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 5377 Loc, TPOC_Other, 0, 0), 5378 Challenger)) { 5379 Best = I; 5380 BestTemplate = Challenger; 5381 } 5382 } 5383 5384 // Make sure that the "best" function template is more specialized than all 5385 // of the others. 5386 bool Ambiguous = false; 5387 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 5388 FunctionTemplateDecl *Challenger 5389 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 5390 if (I != Best && 5391 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 5392 Loc, TPOC_Other, 0, 0), 5393 BestTemplate)) { 5394 Ambiguous = true; 5395 break; 5396 } 5397 } 5398 5399 if (!Ambiguous) { 5400 // We found an answer. Return it. 5401 return Best; 5402 } 5403 5404 // Diagnose the ambiguity. 5405 if (Complain) { 5406 Diag(Loc, AmbigDiag); 5407 5408 // FIXME: Can we order the candidates in some sane way? 5409 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 5410 PartialDiagnostic PD = CandidateDiag; 5411 const auto *FD = cast<FunctionDecl>(*I); 5412 PD << FD << getTemplateArgumentBindingsText( 5413 FD->getPrimaryTemplate()->getTemplateParameters(), 5414 *FD->getTemplateSpecializationArgs()); 5415 if (!TargetType.isNull()) 5416 HandleFunctionTypeMismatch(PD, FD->getType(), TargetType); 5417 Diag((*I)->getLocation(), PD); 5418 } 5419 } 5420 5421 return SpecEnd; 5422 } 5423 5424 /// Determine whether one partial specialization, P1, is at least as 5425 /// specialized than another, P2. 5426 /// 5427 /// \tparam TemplateLikeDecl The kind of P2, which must be a 5428 /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl. 5429 /// \param T1 The injected-class-name of P1 (faked for a variable template). 5430 /// \param T2 The injected-class-name of P2 (faked for a variable template). 5431 template<typename TemplateLikeDecl> 5432 static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2, 5433 TemplateLikeDecl *P2, 5434 TemplateDeductionInfo &Info) { 5435 // C++ [temp.class.order]p1: 5436 // For two class template partial specializations, the first is at least as 5437 // specialized as the second if, given the following rewrite to two 5438 // function templates, the first function template is at least as 5439 // specialized as the second according to the ordering rules for function 5440 // templates (14.6.6.2): 5441 // - the first function template has the same template parameters as the 5442 // first partial specialization and has a single function parameter 5443 // whose type is a class template specialization with the template 5444 // arguments of the first partial specialization, and 5445 // - the second function template has the same template parameters as the 5446 // second partial specialization and has a single function parameter 5447 // whose type is a class template specialization with the template 5448 // arguments of the second partial specialization. 5449 // 5450 // Rather than synthesize function templates, we merely perform the 5451 // equivalent partial ordering by performing deduction directly on 5452 // the template arguments of the class template partial 5453 // specializations. This computation is slightly simpler than the 5454 // general problem of function template partial ordering, because 5455 // class template partial specializations are more constrained. We 5456 // know that every template parameter is deducible from the class 5457 // template partial specialization's template arguments, for 5458 // example. 5459 SmallVector<DeducedTemplateArgument, 4> Deduced; 5460 5461 // Determine whether P1 is at least as specialized as P2. 5462 Deduced.resize(P2->getTemplateParameters()->size()); 5463 if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(), 5464 T2, T1, Info, Deduced, TDF_None, 5465 /*PartialOrdering=*/true)) 5466 return false; 5467 5468 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), 5469 Deduced.end()); 5470 Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs, 5471 Info); 5472 if (Inst.isInvalid()) 5473 return false; 5474 5475 const auto *TST1 = cast<TemplateSpecializationType>(T1); 5476 bool AtLeastAsSpecialized; 5477 S.runWithSufficientStackSpace(Info.getLocation(), [&] { 5478 AtLeastAsSpecialized = !FinishTemplateArgumentDeduction( 5479 S, P2, /*IsPartialOrdering=*/true, 5480 TemplateArgumentList(TemplateArgumentList::OnStack, 5481 TST1->template_arguments()), 5482 Deduced, Info); 5483 }); 5484 return AtLeastAsSpecialized; 5485 } 5486 5487 namespace { 5488 // A dummy class to return nullptr instead of P2 when performing "more 5489 // specialized than primary" check. 5490 struct GetP2 { 5491 template <typename T1, typename T2, 5492 std::enable_if_t<std::is_same_v<T1, T2>, bool> = true> 5493 T2 *operator()(T1 *, T2 *P2) { 5494 return P2; 5495 } 5496 template <typename T1, typename T2, 5497 std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true> 5498 T1 *operator()(T1 *, T2 *) { 5499 return nullptr; 5500 } 5501 }; 5502 5503 // The assumption is that two template argument lists have the same size. 5504 struct TemplateArgumentListAreEqual { 5505 ASTContext &Ctx; 5506 TemplateArgumentListAreEqual(ASTContext &Ctx) : Ctx(Ctx) {} 5507 5508 template <typename T1, typename T2, 5509 std::enable_if_t<std::is_same_v<T1, T2>, bool> = true> 5510 bool operator()(T1 *PS1, T2 *PS2) { 5511 ArrayRef<TemplateArgument> Args1 = PS1->getTemplateArgs().asArray(), 5512 Args2 = PS2->getTemplateArgs().asArray(); 5513 5514 for (unsigned I = 0, E = Args1.size(); I < E; ++I) { 5515 // We use profile, instead of structural comparison of the arguments, 5516 // because canonicalization can't do the right thing for dependent 5517 // expressions. 5518 llvm::FoldingSetNodeID IDA, IDB; 5519 Args1[I].Profile(IDA, Ctx); 5520 Args2[I].Profile(IDB, Ctx); 5521 if (IDA != IDB) 5522 return false; 5523 } 5524 return true; 5525 } 5526 5527 template <typename T1, typename T2, 5528 std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true> 5529 bool operator()(T1 *Spec, T2 *Primary) { 5530 ArrayRef<TemplateArgument> Args1 = Spec->getTemplateArgs().asArray(), 5531 Args2 = Primary->getInjectedTemplateArgs(); 5532 5533 for (unsigned I = 0, E = Args1.size(); I < E; ++I) { 5534 // We use profile, instead of structural comparison of the arguments, 5535 // because canonicalization can't do the right thing for dependent 5536 // expressions. 5537 llvm::FoldingSetNodeID IDA, IDB; 5538 Args1[I].Profile(IDA, Ctx); 5539 // Unlike the specialization arguments, the injected arguments are not 5540 // always canonical. 5541 Ctx.getCanonicalTemplateArgument(Args2[I]).Profile(IDB, Ctx); 5542 if (IDA != IDB) 5543 return false; 5544 } 5545 return true; 5546 } 5547 }; 5548 } // namespace 5549 5550 /// Returns the more specialized template specialization between T1/P1 and 5551 /// T2/P2. 5552 /// - If IsMoreSpecialThanPrimaryCheck is true, T1/P1 is the partial 5553 /// specialization and T2/P2 is the primary template. 5554 /// - otherwise, both T1/P1 and T2/P2 are the partial specialization. 5555 /// 5556 /// \param T1 the type of the first template partial specialization 5557 /// 5558 /// \param T2 if IsMoreSpecialThanPrimaryCheck is true, the type of the second 5559 /// template partial specialization; otherwise, the type of the 5560 /// primary template. 5561 /// 5562 /// \param P1 the first template partial specialization 5563 /// 5564 /// \param P2 if IsMoreSpecialThanPrimaryCheck is true, the second template 5565 /// partial specialization; otherwise, the primary template. 5566 /// 5567 /// \returns - If IsMoreSpecialThanPrimaryCheck is true, returns P1 if P1 is 5568 /// more specialized, returns nullptr if P1 is not more specialized. 5569 /// - otherwise, returns the more specialized template partial 5570 /// specialization. If neither partial specialization is more 5571 /// specialized, returns NULL. 5572 template <typename TemplateLikeDecl, typename PrimaryDel> 5573 static TemplateLikeDecl * 5574 getMoreSpecialized(Sema &S, QualType T1, QualType T2, TemplateLikeDecl *P1, 5575 PrimaryDel *P2, TemplateDeductionInfo &Info) { 5576 constexpr bool IsMoreSpecialThanPrimaryCheck = 5577 !std::is_same_v<TemplateLikeDecl, PrimaryDel>; 5578 5579 bool Better1 = isAtLeastAsSpecializedAs(S, T1, T2, P2, Info); 5580 if (IsMoreSpecialThanPrimaryCheck && !Better1) 5581 return nullptr; 5582 5583 bool Better2 = isAtLeastAsSpecializedAs(S, T2, T1, P1, Info); 5584 if (IsMoreSpecialThanPrimaryCheck && !Better2) 5585 return P1; 5586 5587 // C++ [temp.deduct.partial]p10: 5588 // F is more specialized than G if F is at least as specialized as G and G 5589 // is not at least as specialized as F. 5590 if (Better1 != Better2) // We have a clear winner 5591 return Better1 ? P1 : GetP2()(P1, P2); 5592 5593 if (!Better1 && !Better2) 5594 return nullptr; 5595 5596 // This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that 5597 // there is no wording or even resolution for this issue. 5598 auto *TST1 = cast<TemplateSpecializationType>(T1); 5599 auto *TST2 = cast<TemplateSpecializationType>(T2); 5600 const TemplateArgument &TA1 = TST1->template_arguments().back(); 5601 if (TA1.getKind() == TemplateArgument::Pack) { 5602 assert(TST1->template_arguments().size() == 5603 TST2->template_arguments().size()); 5604 const TemplateArgument &TA2 = TST2->template_arguments().back(); 5605 assert(TA2.getKind() == TemplateArgument::Pack); 5606 unsigned PackSize1 = TA1.pack_size(); 5607 unsigned PackSize2 = TA2.pack_size(); 5608 bool IsPackExpansion1 = 5609 PackSize1 && TA1.pack_elements().back().isPackExpansion(); 5610 bool IsPackExpansion2 = 5611 PackSize2 && TA2.pack_elements().back().isPackExpansion(); 5612 if (PackSize1 != PackSize2 && IsPackExpansion1 != IsPackExpansion2) { 5613 if (PackSize1 > PackSize2 && IsPackExpansion1) 5614 return GetP2()(P1, P2); 5615 if (PackSize1 < PackSize2 && IsPackExpansion2) 5616 return P1; 5617 } 5618 } 5619 5620 if (!S.Context.getLangOpts().CPlusPlus20) 5621 return nullptr; 5622 5623 // Match GCC on not implementing [temp.func.order]p6.2.1. 5624 5625 // C++20 [temp.func.order]p6: 5626 // If deduction against the other template succeeds for both transformed 5627 // templates, constraints can be considered as follows: 5628 5629 TemplateParameterList *TPL1 = P1->getTemplateParameters(); 5630 TemplateParameterList *TPL2 = P2->getTemplateParameters(); 5631 if (TPL1->size() != TPL2->size()) 5632 return nullptr; 5633 5634 // C++20 [temp.func.order]p6.2.2: 5635 // Otherwise, if the corresponding template-parameters of the 5636 // template-parameter-lists are not equivalent ([temp.over.link]) or if the 5637 // function parameters that positionally correspond between the two 5638 // templates are not of the same type, neither template is more specialized 5639 // than the other. 5640 if (!S.TemplateParameterListsAreEqual( 5641 TPL1, TPL2, false, Sema::TPL_TemplateMatch, SourceLocation(), true)) 5642 return nullptr; 5643 5644 if (!TemplateArgumentListAreEqual(S.getASTContext())(P1, P2)) 5645 return nullptr; 5646 5647 llvm::SmallVector<const Expr *, 3> AC1, AC2; 5648 P1->getAssociatedConstraints(AC1); 5649 P2->getAssociatedConstraints(AC2); 5650 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 5651 if (S.IsAtLeastAsConstrained(P1, AC1, P2, AC2, AtLeastAsConstrained1) || 5652 (IsMoreSpecialThanPrimaryCheck && !AtLeastAsConstrained1)) 5653 return nullptr; 5654 if (S.IsAtLeastAsConstrained(P2, AC2, P1, AC1, AtLeastAsConstrained2)) 5655 return nullptr; 5656 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 5657 return nullptr; 5658 return AtLeastAsConstrained1 ? P1 : GetP2()(P1, P2); 5659 } 5660 5661 /// Returns the more specialized class template partial specialization 5662 /// according to the rules of partial ordering of class template partial 5663 /// specializations (C++ [temp.class.order]). 5664 /// 5665 /// \param PS1 the first class template partial specialization 5666 /// 5667 /// \param PS2 the second class template partial specialization 5668 /// 5669 /// \returns the more specialized class template partial specialization. If 5670 /// neither partial specialization is more specialized, returns NULL. 5671 ClassTemplatePartialSpecializationDecl * 5672 Sema::getMoreSpecializedPartialSpecialization( 5673 ClassTemplatePartialSpecializationDecl *PS1, 5674 ClassTemplatePartialSpecializationDecl *PS2, 5675 SourceLocation Loc) { 5676 QualType PT1 = PS1->getInjectedSpecializationType(); 5677 QualType PT2 = PS2->getInjectedSpecializationType(); 5678 5679 TemplateDeductionInfo Info(Loc); 5680 return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info); 5681 } 5682 5683 bool Sema::isMoreSpecializedThanPrimary( 5684 ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5685 ClassTemplateDecl *Primary = Spec->getSpecializedTemplate(); 5686 QualType PrimaryT = Primary->getInjectedClassNameSpecialization(); 5687 QualType PartialT = Spec->getInjectedSpecializationType(); 5688 5689 ClassTemplatePartialSpecializationDecl *MaybeSpec = 5690 getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info); 5691 if (MaybeSpec) 5692 Info.clearSFINAEDiagnostic(); 5693 return MaybeSpec; 5694 } 5695 5696 VarTemplatePartialSpecializationDecl * 5697 Sema::getMoreSpecializedPartialSpecialization( 5698 VarTemplatePartialSpecializationDecl *PS1, 5699 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) { 5700 // Pretend the variable template specializations are class template 5701 // specializations and form a fake injected class name type for comparison. 5702 assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() && 5703 "the partial specializations being compared should specialize" 5704 " the same template."); 5705 TemplateName Name(PS1->getSpecializedTemplate()); 5706 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5707 QualType PT1 = Context.getTemplateSpecializationType( 5708 CanonTemplate, PS1->getTemplateArgs().asArray()); 5709 QualType PT2 = Context.getTemplateSpecializationType( 5710 CanonTemplate, PS2->getTemplateArgs().asArray()); 5711 5712 TemplateDeductionInfo Info(Loc); 5713 return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info); 5714 } 5715 5716 bool Sema::isMoreSpecializedThanPrimary( 5717 VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5718 VarTemplateDecl *Primary = Spec->getSpecializedTemplate(); 5719 TemplateName CanonTemplate = 5720 Context.getCanonicalTemplateName(TemplateName(Primary)); 5721 QualType PrimaryT = Context.getTemplateSpecializationType( 5722 CanonTemplate, Primary->getInjectedTemplateArgs()); 5723 QualType PartialT = Context.getTemplateSpecializationType( 5724 CanonTemplate, Spec->getTemplateArgs().asArray()); 5725 5726 VarTemplatePartialSpecializationDecl *MaybeSpec = 5727 getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info); 5728 if (MaybeSpec) 5729 Info.clearSFINAEDiagnostic(); 5730 return MaybeSpec; 5731 } 5732 5733 bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs( 5734 TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) { 5735 // C++1z [temp.arg.template]p4: (DR 150) 5736 // A template template-parameter P is at least as specialized as a 5737 // template template-argument A if, given the following rewrite to two 5738 // function templates... 5739 5740 // Rather than synthesize function templates, we merely perform the 5741 // equivalent partial ordering by performing deduction directly on 5742 // the template parameter lists of the template template parameters. 5743 // 5744 // Given an invented class template X with the template parameter list of 5745 // A (including default arguments): 5746 TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg)); 5747 TemplateParameterList *A = AArg->getTemplateParameters(); 5748 5749 // - Each function template has a single function parameter whose type is 5750 // a specialization of X with template arguments corresponding to the 5751 // template parameters from the respective function template 5752 SmallVector<TemplateArgument, 8> AArgs; 5753 Context.getInjectedTemplateArgs(A, AArgs); 5754 5755 // Check P's arguments against A's parameter list. This will fill in default 5756 // template arguments as needed. AArgs are already correct by construction. 5757 // We can't just use CheckTemplateIdType because that will expand alias 5758 // templates. 5759 SmallVector<TemplateArgument, 4> PArgs; 5760 { 5761 SFINAETrap Trap(*this); 5762 5763 Context.getInjectedTemplateArgs(P, PArgs); 5764 TemplateArgumentListInfo PArgList(P->getLAngleLoc(), 5765 P->getRAngleLoc()); 5766 for (unsigned I = 0, N = P->size(); I != N; ++I) { 5767 // Unwrap packs that getInjectedTemplateArgs wrapped around pack 5768 // expansions, to form an "as written" argument list. 5769 TemplateArgument Arg = PArgs[I]; 5770 if (Arg.getKind() == TemplateArgument::Pack) { 5771 assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion()); 5772 Arg = *Arg.pack_begin(); 5773 } 5774 PArgList.addArgument(getTrivialTemplateArgumentLoc( 5775 Arg, QualType(), P->getParam(I)->getLocation())); 5776 } 5777 PArgs.clear(); 5778 5779 // C++1z [temp.arg.template]p3: 5780 // If the rewrite produces an invalid type, then P is not at least as 5781 // specialized as A. 5782 SmallVector<TemplateArgument, 4> SugaredPArgs; 5783 if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, SugaredPArgs, 5784 PArgs) || 5785 Trap.hasErrorOccurred()) 5786 return false; 5787 } 5788 5789 QualType AType = Context.getCanonicalTemplateSpecializationType(X, AArgs); 5790 QualType PType = Context.getCanonicalTemplateSpecializationType(X, PArgs); 5791 5792 // ... the function template corresponding to P is at least as specialized 5793 // as the function template corresponding to A according to the partial 5794 // ordering rules for function templates. 5795 TemplateDeductionInfo Info(Loc, A->getDepth()); 5796 return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info); 5797 } 5798 5799 namespace { 5800 struct MarkUsedTemplateParameterVisitor : 5801 RecursiveASTVisitor<MarkUsedTemplateParameterVisitor> { 5802 llvm::SmallBitVector &Used; 5803 unsigned Depth; 5804 5805 MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used, 5806 unsigned Depth) 5807 : Used(Used), Depth(Depth) { } 5808 5809 bool VisitTemplateTypeParmType(TemplateTypeParmType *T) { 5810 if (T->getDepth() == Depth) 5811 Used[T->getIndex()] = true; 5812 return true; 5813 } 5814 5815 bool TraverseTemplateName(TemplateName Template) { 5816 if (auto *TTP = llvm::dyn_cast_or_null<TemplateTemplateParmDecl>( 5817 Template.getAsTemplateDecl())) 5818 if (TTP->getDepth() == Depth) 5819 Used[TTP->getIndex()] = true; 5820 RecursiveASTVisitor<MarkUsedTemplateParameterVisitor>:: 5821 TraverseTemplateName(Template); 5822 return true; 5823 } 5824 5825 bool VisitDeclRefExpr(DeclRefExpr *E) { 5826 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 5827 if (NTTP->getDepth() == Depth) 5828 Used[NTTP->getIndex()] = true; 5829 return true; 5830 } 5831 }; 5832 } 5833 5834 /// Mark the template parameters that are used by the given 5835 /// expression. 5836 static void 5837 MarkUsedTemplateParameters(ASTContext &Ctx, 5838 const Expr *E, 5839 bool OnlyDeduced, 5840 unsigned Depth, 5841 llvm::SmallBitVector &Used) { 5842 if (!OnlyDeduced) { 5843 MarkUsedTemplateParameterVisitor(Used, Depth) 5844 .TraverseStmt(const_cast<Expr *>(E)); 5845 return; 5846 } 5847 5848 // We can deduce from a pack expansion. 5849 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E)) 5850 E = Expansion->getPattern(); 5851 5852 const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(E, Depth); 5853 if (!NTTP) 5854 return; 5855 5856 if (NTTP->getDepth() == Depth) 5857 Used[NTTP->getIndex()] = true; 5858 5859 // In C++17 mode, additional arguments may be deduced from the type of a 5860 // non-type argument. 5861 if (Ctx.getLangOpts().CPlusPlus17) 5862 MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used); 5863 } 5864 5865 /// Mark the template parameters that are used by the given 5866 /// nested name specifier. 5867 static void 5868 MarkUsedTemplateParameters(ASTContext &Ctx, 5869 NestedNameSpecifier *NNS, 5870 bool OnlyDeduced, 5871 unsigned Depth, 5872 llvm::SmallBitVector &Used) { 5873 if (!NNS) 5874 return; 5875 5876 MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth, 5877 Used); 5878 MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0), 5879 OnlyDeduced, Depth, Used); 5880 } 5881 5882 /// Mark the template parameters that are used by the given 5883 /// template name. 5884 static void 5885 MarkUsedTemplateParameters(ASTContext &Ctx, 5886 TemplateName Name, 5887 bool OnlyDeduced, 5888 unsigned Depth, 5889 llvm::SmallBitVector &Used) { 5890 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 5891 if (TemplateTemplateParmDecl *TTP 5892 = dyn_cast<TemplateTemplateParmDecl>(Template)) { 5893 if (TTP->getDepth() == Depth) 5894 Used[TTP->getIndex()] = true; 5895 } 5896 return; 5897 } 5898 5899 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) 5900 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced, 5901 Depth, Used); 5902 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) 5903 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced, 5904 Depth, Used); 5905 } 5906 5907 /// Mark the template parameters that are used by the given 5908 /// type. 5909 static void 5910 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 5911 bool OnlyDeduced, 5912 unsigned Depth, 5913 llvm::SmallBitVector &Used) { 5914 if (T.isNull()) 5915 return; 5916 5917 // Non-dependent types have nothing deducible 5918 if (!T->isDependentType()) 5919 return; 5920 5921 T = Ctx.getCanonicalType(T); 5922 switch (T->getTypeClass()) { 5923 case Type::Pointer: 5924 MarkUsedTemplateParameters(Ctx, 5925 cast<PointerType>(T)->getPointeeType(), 5926 OnlyDeduced, 5927 Depth, 5928 Used); 5929 break; 5930 5931 case Type::BlockPointer: 5932 MarkUsedTemplateParameters(Ctx, 5933 cast<BlockPointerType>(T)->getPointeeType(), 5934 OnlyDeduced, 5935 Depth, 5936 Used); 5937 break; 5938 5939 case Type::LValueReference: 5940 case Type::RValueReference: 5941 MarkUsedTemplateParameters(Ctx, 5942 cast<ReferenceType>(T)->getPointeeType(), 5943 OnlyDeduced, 5944 Depth, 5945 Used); 5946 break; 5947 5948 case Type::MemberPointer: { 5949 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr()); 5950 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced, 5951 Depth, Used); 5952 MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0), 5953 OnlyDeduced, Depth, Used); 5954 break; 5955 } 5956 5957 case Type::DependentSizedArray: 5958 MarkUsedTemplateParameters(Ctx, 5959 cast<DependentSizedArrayType>(T)->getSizeExpr(), 5960 OnlyDeduced, Depth, Used); 5961 // Fall through to check the element type 5962 [[fallthrough]]; 5963 5964 case Type::ConstantArray: 5965 case Type::IncompleteArray: 5966 MarkUsedTemplateParameters(Ctx, 5967 cast<ArrayType>(T)->getElementType(), 5968 OnlyDeduced, Depth, Used); 5969 break; 5970 5971 case Type::Vector: 5972 case Type::ExtVector: 5973 MarkUsedTemplateParameters(Ctx, 5974 cast<VectorType>(T)->getElementType(), 5975 OnlyDeduced, Depth, Used); 5976 break; 5977 5978 case Type::DependentVector: { 5979 const auto *VecType = cast<DependentVectorType>(T); 5980 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 5981 Depth, Used); 5982 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth, 5983 Used); 5984 break; 5985 } 5986 case Type::DependentSizedExtVector: { 5987 const DependentSizedExtVectorType *VecType 5988 = cast<DependentSizedExtVectorType>(T); 5989 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 5990 Depth, Used); 5991 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, 5992 Depth, Used); 5993 break; 5994 } 5995 5996 case Type::DependentAddressSpace: { 5997 const DependentAddressSpaceType *DependentASType = 5998 cast<DependentAddressSpaceType>(T); 5999 MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(), 6000 OnlyDeduced, Depth, Used); 6001 MarkUsedTemplateParameters(Ctx, 6002 DependentASType->getAddrSpaceExpr(), 6003 OnlyDeduced, Depth, Used); 6004 break; 6005 } 6006 6007 case Type::ConstantMatrix: { 6008 const ConstantMatrixType *MatType = cast<ConstantMatrixType>(T); 6009 MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced, 6010 Depth, Used); 6011 break; 6012 } 6013 6014 case Type::DependentSizedMatrix: { 6015 const DependentSizedMatrixType *MatType = cast<DependentSizedMatrixType>(T); 6016 MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced, 6017 Depth, Used); 6018 MarkUsedTemplateParameters(Ctx, MatType->getRowExpr(), OnlyDeduced, Depth, 6019 Used); 6020 MarkUsedTemplateParameters(Ctx, MatType->getColumnExpr(), OnlyDeduced, 6021 Depth, Used); 6022 break; 6023 } 6024 6025 case Type::FunctionProto: { 6026 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 6027 MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth, 6028 Used); 6029 for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) { 6030 // C++17 [temp.deduct.type]p5: 6031 // The non-deduced contexts are: [...] 6032 // -- A function parameter pack that does not occur at the end of the 6033 // parameter-declaration-list. 6034 if (!OnlyDeduced || I + 1 == N || 6035 !Proto->getParamType(I)->getAs<PackExpansionType>()) { 6036 MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced, 6037 Depth, Used); 6038 } else { 6039 // FIXME: C++17 [temp.deduct.call]p1: 6040 // When a function parameter pack appears in a non-deduced context, 6041 // the type of that pack is never deduced. 6042 // 6043 // We should also track a set of "never deduced" parameters, and 6044 // subtract that from the list of deduced parameters after marking. 6045 } 6046 } 6047 if (auto *E = Proto->getNoexceptExpr()) 6048 MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used); 6049 break; 6050 } 6051 6052 case Type::TemplateTypeParm: { 6053 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T); 6054 if (TTP->getDepth() == Depth) 6055 Used[TTP->getIndex()] = true; 6056 break; 6057 } 6058 6059 case Type::SubstTemplateTypeParmPack: { 6060 const SubstTemplateTypeParmPackType *Subst 6061 = cast<SubstTemplateTypeParmPackType>(T); 6062 if (Subst->getReplacedParameter()->getDepth() == Depth) 6063 Used[Subst->getIndex()] = true; 6064 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(), 6065 OnlyDeduced, Depth, Used); 6066 break; 6067 } 6068 6069 case Type::InjectedClassName: 6070 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType(); 6071 [[fallthrough]]; 6072 6073 case Type::TemplateSpecialization: { 6074 const TemplateSpecializationType *Spec 6075 = cast<TemplateSpecializationType>(T); 6076 MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced, 6077 Depth, Used); 6078 6079 // C++0x [temp.deduct.type]p9: 6080 // If the template argument list of P contains a pack expansion that is 6081 // not the last template argument, the entire template argument list is a 6082 // non-deduced context. 6083 if (OnlyDeduced && 6084 hasPackExpansionBeforeEnd(Spec->template_arguments())) 6085 break; 6086 6087 for (const auto &Arg : Spec->template_arguments()) 6088 MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used); 6089 break; 6090 } 6091 6092 case Type::Complex: 6093 if (!OnlyDeduced) 6094 MarkUsedTemplateParameters(Ctx, 6095 cast<ComplexType>(T)->getElementType(), 6096 OnlyDeduced, Depth, Used); 6097 break; 6098 6099 case Type::Atomic: 6100 if (!OnlyDeduced) 6101 MarkUsedTemplateParameters(Ctx, 6102 cast<AtomicType>(T)->getValueType(), 6103 OnlyDeduced, Depth, Used); 6104 break; 6105 6106 case Type::DependentName: 6107 if (!OnlyDeduced) 6108 MarkUsedTemplateParameters(Ctx, 6109 cast<DependentNameType>(T)->getQualifier(), 6110 OnlyDeduced, Depth, Used); 6111 break; 6112 6113 case Type::DependentTemplateSpecialization: { 6114 // C++14 [temp.deduct.type]p5: 6115 // The non-deduced contexts are: 6116 // -- The nested-name-specifier of a type that was specified using a 6117 // qualified-id 6118 // 6119 // C++14 [temp.deduct.type]p6: 6120 // When a type name is specified in a way that includes a non-deduced 6121 // context, all of the types that comprise that type name are also 6122 // non-deduced. 6123 if (OnlyDeduced) 6124 break; 6125 6126 const DependentTemplateSpecializationType *Spec 6127 = cast<DependentTemplateSpecializationType>(T); 6128 6129 MarkUsedTemplateParameters(Ctx, Spec->getQualifier(), 6130 OnlyDeduced, Depth, Used); 6131 6132 for (const auto &Arg : Spec->template_arguments()) 6133 MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used); 6134 break; 6135 } 6136 6137 case Type::TypeOf: 6138 if (!OnlyDeduced) 6139 MarkUsedTemplateParameters(Ctx, cast<TypeOfType>(T)->getUnmodifiedType(), 6140 OnlyDeduced, Depth, Used); 6141 break; 6142 6143 case Type::TypeOfExpr: 6144 if (!OnlyDeduced) 6145 MarkUsedTemplateParameters(Ctx, 6146 cast<TypeOfExprType>(T)->getUnderlyingExpr(), 6147 OnlyDeduced, Depth, Used); 6148 break; 6149 6150 case Type::Decltype: 6151 if (!OnlyDeduced) 6152 MarkUsedTemplateParameters(Ctx, 6153 cast<DecltypeType>(T)->getUnderlyingExpr(), 6154 OnlyDeduced, Depth, Used); 6155 break; 6156 6157 case Type::UnaryTransform: 6158 if (!OnlyDeduced) 6159 MarkUsedTemplateParameters(Ctx, 6160 cast<UnaryTransformType>(T)->getUnderlyingType(), 6161 OnlyDeduced, Depth, Used); 6162 break; 6163 6164 case Type::PackExpansion: 6165 MarkUsedTemplateParameters(Ctx, 6166 cast<PackExpansionType>(T)->getPattern(), 6167 OnlyDeduced, Depth, Used); 6168 break; 6169 6170 case Type::Auto: 6171 case Type::DeducedTemplateSpecialization: 6172 MarkUsedTemplateParameters(Ctx, 6173 cast<DeducedType>(T)->getDeducedType(), 6174 OnlyDeduced, Depth, Used); 6175 break; 6176 case Type::DependentBitInt: 6177 MarkUsedTemplateParameters(Ctx, 6178 cast<DependentBitIntType>(T)->getNumBitsExpr(), 6179 OnlyDeduced, Depth, Used); 6180 break; 6181 6182 // None of these types have any template parameters in them. 6183 case Type::Builtin: 6184 case Type::VariableArray: 6185 case Type::FunctionNoProto: 6186 case Type::Record: 6187 case Type::Enum: 6188 case Type::ObjCInterface: 6189 case Type::ObjCObject: 6190 case Type::ObjCObjectPointer: 6191 case Type::UnresolvedUsing: 6192 case Type::Pipe: 6193 case Type::BitInt: 6194 #define TYPE(Class, Base) 6195 #define ABSTRACT_TYPE(Class, Base) 6196 #define DEPENDENT_TYPE(Class, Base) 6197 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 6198 #include "clang/AST/TypeNodes.inc" 6199 break; 6200 } 6201 } 6202 6203 /// Mark the template parameters that are used by this 6204 /// template argument. 6205 static void 6206 MarkUsedTemplateParameters(ASTContext &Ctx, 6207 const TemplateArgument &TemplateArg, 6208 bool OnlyDeduced, 6209 unsigned Depth, 6210 llvm::SmallBitVector &Used) { 6211 switch (TemplateArg.getKind()) { 6212 case TemplateArgument::Null: 6213 case TemplateArgument::Integral: 6214 case TemplateArgument::Declaration: 6215 break; 6216 6217 case TemplateArgument::NullPtr: 6218 MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced, 6219 Depth, Used); 6220 break; 6221 6222 case TemplateArgument::Type: 6223 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced, 6224 Depth, Used); 6225 break; 6226 6227 case TemplateArgument::Template: 6228 case TemplateArgument::TemplateExpansion: 6229 MarkUsedTemplateParameters(Ctx, 6230 TemplateArg.getAsTemplateOrTemplatePattern(), 6231 OnlyDeduced, Depth, Used); 6232 break; 6233 6234 case TemplateArgument::Expression: 6235 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced, 6236 Depth, Used); 6237 break; 6238 6239 case TemplateArgument::Pack: 6240 for (const auto &P : TemplateArg.pack_elements()) 6241 MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used); 6242 break; 6243 } 6244 } 6245 6246 /// Mark which template parameters are used in a given expression. 6247 /// 6248 /// \param E the expression from which template parameters will be deduced. 6249 /// 6250 /// \param Used a bit vector whose elements will be set to \c true 6251 /// to indicate when the corresponding template parameter will be 6252 /// deduced. 6253 void 6254 Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced, 6255 unsigned Depth, 6256 llvm::SmallBitVector &Used) { 6257 ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used); 6258 } 6259 6260 /// Mark which template parameters can be deduced from a given 6261 /// template argument list. 6262 /// 6263 /// \param TemplateArgs the template argument list from which template 6264 /// parameters will be deduced. 6265 /// 6266 /// \param Used a bit vector whose elements will be set to \c true 6267 /// to indicate when the corresponding template parameter will be 6268 /// deduced. 6269 void 6270 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, 6271 bool OnlyDeduced, unsigned Depth, 6272 llvm::SmallBitVector &Used) { 6273 // C++0x [temp.deduct.type]p9: 6274 // If the template argument list of P contains a pack expansion that is not 6275 // the last template argument, the entire template argument list is a 6276 // non-deduced context. 6277 if (OnlyDeduced && 6278 hasPackExpansionBeforeEnd(TemplateArgs.asArray())) 6279 return; 6280 6281 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6282 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced, 6283 Depth, Used); 6284 } 6285 6286 /// Marks all of the template parameters that will be deduced by a 6287 /// call to the given function template. 6288 void Sema::MarkDeducedTemplateParameters( 6289 ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, 6290 llvm::SmallBitVector &Deduced) { 6291 TemplateParameterList *TemplateParams 6292 = FunctionTemplate->getTemplateParameters(); 6293 Deduced.clear(); 6294 Deduced.resize(TemplateParams->size()); 6295 6296 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 6297 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) 6298 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(), 6299 true, TemplateParams->getDepth(), Deduced); 6300 } 6301 6302 bool hasDeducibleTemplateParameters(Sema &S, 6303 FunctionTemplateDecl *FunctionTemplate, 6304 QualType T) { 6305 if (!T->isDependentType()) 6306 return false; 6307 6308 TemplateParameterList *TemplateParams 6309 = FunctionTemplate->getTemplateParameters(); 6310 llvm::SmallBitVector Deduced(TemplateParams->size()); 6311 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(), 6312 Deduced); 6313 6314 return Deduced.any(); 6315 } 6316