1 //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements C++ template argument deduction. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Sema/TemplateDeduction.h" 14 #include "TreeTransform.h" 15 #include "TypeLocBuilder.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/DeclAccessPair.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/NestedNameSpecifier.h" 27 #include "clang/AST/RecursiveASTVisitor.h" 28 #include "clang/AST/TemplateBase.h" 29 #include "clang/AST/TemplateName.h" 30 #include "clang/AST/Type.h" 31 #include "clang/AST/TypeLoc.h" 32 #include "clang/AST/UnresolvedSet.h" 33 #include "clang/Basic/AddressSpaces.h" 34 #include "clang/Basic/ExceptionSpecificationType.h" 35 #include "clang/Basic/LLVM.h" 36 #include "clang/Basic/LangOptions.h" 37 #include "clang/Basic/PartialDiagnostic.h" 38 #include "clang/Basic/SourceLocation.h" 39 #include "clang/Basic/Specifiers.h" 40 #include "clang/Sema/Ownership.h" 41 #include "clang/Sema/Sema.h" 42 #include "clang/Sema/Template.h" 43 #include "llvm/ADT/APInt.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/ArrayRef.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/FoldingSet.h" 48 #include "llvm/ADT/Optional.h" 49 #include "llvm/ADT/SmallBitVector.h" 50 #include "llvm/ADT/SmallPtrSet.h" 51 #include "llvm/ADT/SmallVector.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <tuple> 58 #include <utility> 59 60 namespace clang { 61 62 /// Various flags that control template argument deduction. 63 /// 64 /// These flags can be bitwise-OR'd together. 65 enum TemplateDeductionFlags { 66 /// No template argument deduction flags, which indicates the 67 /// strictest results for template argument deduction (as used for, e.g., 68 /// matching class template partial specializations). 69 TDF_None = 0, 70 71 /// Within template argument deduction from a function call, we are 72 /// matching with a parameter type for which the original parameter was 73 /// a reference. 74 TDF_ParamWithReferenceType = 0x1, 75 76 /// Within template argument deduction from a function call, we 77 /// are matching in a case where we ignore cv-qualifiers. 78 TDF_IgnoreQualifiers = 0x02, 79 80 /// Within template argument deduction from a function call, 81 /// we are matching in a case where we can perform template argument 82 /// deduction from a template-id of a derived class of the argument type. 83 TDF_DerivedClass = 0x04, 84 85 /// Allow non-dependent types to differ, e.g., when performing 86 /// template argument deduction from a function call where conversions 87 /// may apply. 88 TDF_SkipNonDependent = 0x08, 89 90 /// Whether we are performing template argument deduction for 91 /// parameters and arguments in a top-level template argument 92 TDF_TopLevelParameterTypeList = 0x10, 93 94 /// Within template argument deduction from overload resolution per 95 /// C++ [over.over] allow matching function types that are compatible in 96 /// terms of noreturn and default calling convention adjustments, or 97 /// similarly matching a declared template specialization against a 98 /// possible template, per C++ [temp.deduct.decl]. In either case, permit 99 /// deduction where the parameter is a function type that can be converted 100 /// to the argument type. 101 TDF_AllowCompatibleFunctionType = 0x20, 102 103 /// Within template argument deduction for a conversion function, we are 104 /// matching with an argument type for which the original argument was 105 /// a reference. 106 TDF_ArgWithReferenceType = 0x40, 107 }; 108 } 109 110 using namespace clang; 111 using namespace sema; 112 113 /// Compare two APSInts, extending and switching the sign as 114 /// necessary to compare their values regardless of underlying type. 115 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) { 116 if (Y.getBitWidth() > X.getBitWidth()) 117 X = X.extend(Y.getBitWidth()); 118 else if (Y.getBitWidth() < X.getBitWidth()) 119 Y = Y.extend(X.getBitWidth()); 120 121 // If there is a signedness mismatch, correct it. 122 if (X.isSigned() != Y.isSigned()) { 123 // If the signed value is negative, then the values cannot be the same. 124 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative())) 125 return false; 126 127 Y.setIsSigned(true); 128 X.setIsSigned(true); 129 } 130 131 return X == Y; 132 } 133 134 static Sema::TemplateDeductionResult 135 DeduceTemplateArguments(Sema &S, 136 TemplateParameterList *TemplateParams, 137 const TemplateArgument &Param, 138 TemplateArgument Arg, 139 TemplateDeductionInfo &Info, 140 SmallVectorImpl<DeducedTemplateArgument> &Deduced); 141 142 static Sema::TemplateDeductionResult 143 DeduceTemplateArgumentsByTypeMatch(Sema &S, 144 TemplateParameterList *TemplateParams, 145 QualType Param, 146 QualType Arg, 147 TemplateDeductionInfo &Info, 148 SmallVectorImpl<DeducedTemplateArgument> & 149 Deduced, 150 unsigned TDF, 151 bool PartialOrdering = false, 152 bool DeducedFromArrayBound = false); 153 154 static Sema::TemplateDeductionResult 155 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 156 ArrayRef<TemplateArgument> Params, 157 ArrayRef<TemplateArgument> Args, 158 TemplateDeductionInfo &Info, 159 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 160 bool NumberOfArgumentsMustMatch); 161 162 static void MarkUsedTemplateParameters(ASTContext &Ctx, 163 const TemplateArgument &TemplateArg, 164 bool OnlyDeduced, unsigned Depth, 165 llvm::SmallBitVector &Used); 166 167 static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 168 bool OnlyDeduced, unsigned Level, 169 llvm::SmallBitVector &Deduced); 170 171 /// If the given expression is of a form that permits the deduction 172 /// of a non-type template parameter, return the declaration of that 173 /// non-type template parameter. 174 static NonTypeTemplateParmDecl * 175 getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) { 176 // If we are within an alias template, the expression may have undergone 177 // any number of parameter substitutions already. 178 while (true) { 179 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E)) 180 E = IC->getSubExpr(); 181 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) 182 E = CE->getSubExpr(); 183 else if (SubstNonTypeTemplateParmExpr *Subst = 184 dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 185 E = Subst->getReplacement(); 186 else 187 break; 188 } 189 190 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 191 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) 192 if (NTTP->getDepth() == Info.getDeducedDepth()) 193 return NTTP; 194 195 return nullptr; 196 } 197 198 /// Determine whether two declaration pointers refer to the same 199 /// declaration. 200 static bool isSameDeclaration(Decl *X, Decl *Y) { 201 if (NamedDecl *NX = dyn_cast<NamedDecl>(X)) 202 X = NX->getUnderlyingDecl(); 203 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y)) 204 Y = NY->getUnderlyingDecl(); 205 206 return X->getCanonicalDecl() == Y->getCanonicalDecl(); 207 } 208 209 /// Verify that the given, deduced template arguments are compatible. 210 /// 211 /// \returns The deduced template argument, or a NULL template argument if 212 /// the deduced template arguments were incompatible. 213 static DeducedTemplateArgument 214 checkDeducedTemplateArguments(ASTContext &Context, 215 const DeducedTemplateArgument &X, 216 const DeducedTemplateArgument &Y) { 217 // We have no deduction for one or both of the arguments; they're compatible. 218 if (X.isNull()) 219 return Y; 220 if (Y.isNull()) 221 return X; 222 223 // If we have two non-type template argument values deduced for the same 224 // parameter, they must both match the type of the parameter, and thus must 225 // match each other's type. As we're only keeping one of them, we must check 226 // for that now. The exception is that if either was deduced from an array 227 // bound, the type is permitted to differ. 228 if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) { 229 QualType XType = X.getNonTypeTemplateArgumentType(); 230 if (!XType.isNull()) { 231 QualType YType = Y.getNonTypeTemplateArgumentType(); 232 if (YType.isNull() || !Context.hasSameType(XType, YType)) 233 return DeducedTemplateArgument(); 234 } 235 } 236 237 switch (X.getKind()) { 238 case TemplateArgument::Null: 239 llvm_unreachable("Non-deduced template arguments handled above"); 240 241 case TemplateArgument::Type: 242 // If two template type arguments have the same type, they're compatible. 243 if (Y.getKind() == TemplateArgument::Type && 244 Context.hasSameType(X.getAsType(), Y.getAsType())) 245 return X; 246 247 // If one of the two arguments was deduced from an array bound, the other 248 // supersedes it. 249 if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound()) 250 return X.wasDeducedFromArrayBound() ? Y : X; 251 252 // The arguments are not compatible. 253 return DeducedTemplateArgument(); 254 255 case TemplateArgument::Integral: 256 // If we deduced a constant in one case and either a dependent expression or 257 // declaration in another case, keep the integral constant. 258 // If both are integral constants with the same value, keep that value. 259 if (Y.getKind() == TemplateArgument::Expression || 260 Y.getKind() == TemplateArgument::Declaration || 261 (Y.getKind() == TemplateArgument::Integral && 262 hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()))) 263 return X.wasDeducedFromArrayBound() ? Y : X; 264 265 // All other combinations are incompatible. 266 return DeducedTemplateArgument(); 267 268 case TemplateArgument::Template: 269 if (Y.getKind() == TemplateArgument::Template && 270 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate())) 271 return X; 272 273 // All other combinations are incompatible. 274 return DeducedTemplateArgument(); 275 276 case TemplateArgument::TemplateExpansion: 277 if (Y.getKind() == TemplateArgument::TemplateExpansion && 278 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(), 279 Y.getAsTemplateOrTemplatePattern())) 280 return X; 281 282 // All other combinations are incompatible. 283 return DeducedTemplateArgument(); 284 285 case TemplateArgument::Expression: { 286 if (Y.getKind() != TemplateArgument::Expression) 287 return checkDeducedTemplateArguments(Context, Y, X); 288 289 // Compare the expressions for equality 290 llvm::FoldingSetNodeID ID1, ID2; 291 X.getAsExpr()->Profile(ID1, Context, true); 292 Y.getAsExpr()->Profile(ID2, Context, true); 293 if (ID1 == ID2) 294 return X.wasDeducedFromArrayBound() ? Y : X; 295 296 // Differing dependent expressions are incompatible. 297 return DeducedTemplateArgument(); 298 } 299 300 case TemplateArgument::Declaration: 301 assert(!X.wasDeducedFromArrayBound()); 302 303 // If we deduced a declaration and a dependent expression, keep the 304 // declaration. 305 if (Y.getKind() == TemplateArgument::Expression) 306 return X; 307 308 // If we deduced a declaration and an integral constant, keep the 309 // integral constant and whichever type did not come from an array 310 // bound. 311 if (Y.getKind() == TemplateArgument::Integral) { 312 if (Y.wasDeducedFromArrayBound()) 313 return TemplateArgument(Context, Y.getAsIntegral(), 314 X.getParamTypeForDecl()); 315 return Y; 316 } 317 318 // If we deduced two declarations, make sure that they refer to the 319 // same declaration. 320 if (Y.getKind() == TemplateArgument::Declaration && 321 isSameDeclaration(X.getAsDecl(), Y.getAsDecl())) 322 return X; 323 324 // All other combinations are incompatible. 325 return DeducedTemplateArgument(); 326 327 case TemplateArgument::NullPtr: 328 // If we deduced a null pointer and a dependent expression, keep the 329 // null pointer. 330 if (Y.getKind() == TemplateArgument::Expression) 331 return X; 332 333 // If we deduced a null pointer and an integral constant, keep the 334 // integral constant. 335 if (Y.getKind() == TemplateArgument::Integral) 336 return Y; 337 338 // If we deduced two null pointers, they are the same. 339 if (Y.getKind() == TemplateArgument::NullPtr) 340 return X; 341 342 // All other combinations are incompatible. 343 return DeducedTemplateArgument(); 344 345 case TemplateArgument::Pack: { 346 if (Y.getKind() != TemplateArgument::Pack || 347 X.pack_size() != Y.pack_size()) 348 return DeducedTemplateArgument(); 349 350 llvm::SmallVector<TemplateArgument, 8> NewPack; 351 for (TemplateArgument::pack_iterator XA = X.pack_begin(), 352 XAEnd = X.pack_end(), 353 YA = Y.pack_begin(); 354 XA != XAEnd; ++XA, ++YA) { 355 TemplateArgument Merged = checkDeducedTemplateArguments( 356 Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), 357 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())); 358 if (Merged.isNull() && !(XA->isNull() && YA->isNull())) 359 return DeducedTemplateArgument(); 360 NewPack.push_back(Merged); 361 } 362 363 return DeducedTemplateArgument( 364 TemplateArgument::CreatePackCopy(Context, NewPack), 365 X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound()); 366 } 367 } 368 369 llvm_unreachable("Invalid TemplateArgument Kind!"); 370 } 371 372 /// Deduce the value of the given non-type template parameter 373 /// as the given deduced template argument. All non-type template parameter 374 /// deduction is funneled through here. 375 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 376 Sema &S, TemplateParameterList *TemplateParams, 377 NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced, 378 QualType ValueType, TemplateDeductionInfo &Info, 379 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 380 assert(NTTP->getDepth() == Info.getDeducedDepth() && 381 "deducing non-type template argument with wrong depth"); 382 383 DeducedTemplateArgument Result = checkDeducedTemplateArguments( 384 S.Context, Deduced[NTTP->getIndex()], NewDeduced); 385 if (Result.isNull()) { 386 Info.Param = NTTP; 387 Info.FirstArg = Deduced[NTTP->getIndex()]; 388 Info.SecondArg = NewDeduced; 389 return Sema::TDK_Inconsistent; 390 } 391 392 Deduced[NTTP->getIndex()] = Result; 393 if (!S.getLangOpts().CPlusPlus17) 394 return Sema::TDK_Success; 395 396 if (NTTP->isExpandedParameterPack()) 397 // FIXME: We may still need to deduce parts of the type here! But we 398 // don't have any way to find which slice of the type to use, and the 399 // type stored on the NTTP itself is nonsense. Perhaps the type of an 400 // expanded NTTP should be a pack expansion type? 401 return Sema::TDK_Success; 402 403 // Get the type of the parameter for deduction. If it's a (dependent) array 404 // or function type, we will not have decayed it yet, so do that now. 405 QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType()); 406 if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType)) 407 ParamType = Expansion->getPattern(); 408 409 // FIXME: It's not clear how deduction of a parameter of reference 410 // type from an argument (of non-reference type) should be performed. 411 // For now, we just remove reference types from both sides and let 412 // the final check for matching types sort out the mess. 413 return DeduceTemplateArgumentsByTypeMatch( 414 S, TemplateParams, ParamType.getNonReferenceType(), 415 ValueType.getNonReferenceType(), Info, Deduced, TDF_SkipNonDependent, 416 /*PartialOrdering=*/false, 417 /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound()); 418 } 419 420 /// Deduce the value of the given non-type template parameter 421 /// from the given integral constant. 422 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 423 Sema &S, TemplateParameterList *TemplateParams, 424 NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value, 425 QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info, 426 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 427 return DeduceNonTypeTemplateArgument( 428 S, TemplateParams, NTTP, 429 DeducedTemplateArgument(S.Context, Value, ValueType, 430 DeducedFromArrayBound), 431 ValueType, Info, Deduced); 432 } 433 434 /// Deduce the value of the given non-type template parameter 435 /// from the given null pointer template argument type. 436 static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument( 437 Sema &S, TemplateParameterList *TemplateParams, 438 NonTypeTemplateParmDecl *NTTP, QualType NullPtrType, 439 TemplateDeductionInfo &Info, 440 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 441 Expr *Value = 442 S.ImpCastExprToType(new (S.Context) CXXNullPtrLiteralExpr( 443 S.Context.NullPtrTy, NTTP->getLocation()), 444 NullPtrType, CK_NullToPointer) 445 .get(); 446 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 447 DeducedTemplateArgument(Value), 448 Value->getType(), Info, Deduced); 449 } 450 451 /// Deduce the value of the given non-type template parameter 452 /// from the given type- or value-dependent expression. 453 /// 454 /// \returns true if deduction succeeded, false otherwise. 455 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 456 Sema &S, TemplateParameterList *TemplateParams, 457 NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info, 458 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 459 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 460 DeducedTemplateArgument(Value), 461 Value->getType(), Info, Deduced); 462 } 463 464 /// Deduce the value of the given non-type template parameter 465 /// from the given declaration. 466 /// 467 /// \returns true if deduction succeeded, false otherwise. 468 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 469 Sema &S, TemplateParameterList *TemplateParams, 470 NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T, 471 TemplateDeductionInfo &Info, 472 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 473 D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; 474 TemplateArgument New(D, T); 475 return DeduceNonTypeTemplateArgument( 476 S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced); 477 } 478 479 static Sema::TemplateDeductionResult 480 DeduceTemplateArguments(Sema &S, 481 TemplateParameterList *TemplateParams, 482 TemplateName Param, 483 TemplateName Arg, 484 TemplateDeductionInfo &Info, 485 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 486 TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); 487 if (!ParamDecl) { 488 // The parameter type is dependent and is not a template template parameter, 489 // so there is nothing that we can deduce. 490 return Sema::TDK_Success; 491 } 492 493 if (TemplateTemplateParmDecl *TempParam 494 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) { 495 // If we're not deducing at this depth, there's nothing to deduce. 496 if (TempParam->getDepth() != Info.getDeducedDepth()) 497 return Sema::TDK_Success; 498 499 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg)); 500 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 501 Deduced[TempParam->getIndex()], 502 NewDeduced); 503 if (Result.isNull()) { 504 Info.Param = TempParam; 505 Info.FirstArg = Deduced[TempParam->getIndex()]; 506 Info.SecondArg = NewDeduced; 507 return Sema::TDK_Inconsistent; 508 } 509 510 Deduced[TempParam->getIndex()] = Result; 511 return Sema::TDK_Success; 512 } 513 514 // Verify that the two template names are equivalent. 515 if (S.Context.hasSameTemplateName(Param, Arg)) 516 return Sema::TDK_Success; 517 518 // Mismatch of non-dependent template parameter to argument. 519 Info.FirstArg = TemplateArgument(Param); 520 Info.SecondArg = TemplateArgument(Arg); 521 return Sema::TDK_NonDeducedMismatch; 522 } 523 524 /// Deduce the template arguments by comparing the template parameter 525 /// type (which is a template-id) with the template argument type. 526 /// 527 /// \param S the Sema 528 /// 529 /// \param TemplateParams the template parameters that we are deducing 530 /// 531 /// \param Param the parameter type 532 /// 533 /// \param Arg the argument type 534 /// 535 /// \param Info information about the template argument deduction itself 536 /// 537 /// \param Deduced the deduced template arguments 538 /// 539 /// \returns the result of template argument deduction so far. Note that a 540 /// "success" result means that template argument deduction has not yet failed, 541 /// but it may still fail, later, for other reasons. 542 static Sema::TemplateDeductionResult 543 DeduceTemplateArguments(Sema &S, 544 TemplateParameterList *TemplateParams, 545 const TemplateSpecializationType *Param, 546 QualType Arg, 547 TemplateDeductionInfo &Info, 548 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 549 assert(Arg.isCanonical() && "Argument type must be canonical"); 550 551 // Treat an injected-class-name as its underlying template-id. 552 if (auto *Injected = dyn_cast<InjectedClassNameType>(Arg)) 553 Arg = Injected->getInjectedSpecializationType(); 554 555 // Check whether the template argument is a dependent template-id. 556 if (const TemplateSpecializationType *SpecArg 557 = dyn_cast<TemplateSpecializationType>(Arg)) { 558 // Perform template argument deduction for the template name. 559 if (Sema::TemplateDeductionResult Result 560 = DeduceTemplateArguments(S, TemplateParams, 561 Param->getTemplateName(), 562 SpecArg->getTemplateName(), 563 Info, Deduced)) 564 return Result; 565 566 567 // Perform template argument deduction on each template 568 // argument. Ignore any missing/extra arguments, since they could be 569 // filled in by default arguments. 570 return DeduceTemplateArguments(S, TemplateParams, 571 Param->template_arguments(), 572 SpecArg->template_arguments(), Info, Deduced, 573 /*NumberOfArgumentsMustMatch=*/false); 574 } 575 576 // If the argument type is a class template specialization, we 577 // perform template argument deduction using its template 578 // arguments. 579 const RecordType *RecordArg = dyn_cast<RecordType>(Arg); 580 if (!RecordArg) { 581 Info.FirstArg = TemplateArgument(QualType(Param, 0)); 582 Info.SecondArg = TemplateArgument(Arg); 583 return Sema::TDK_NonDeducedMismatch; 584 } 585 586 ClassTemplateSpecializationDecl *SpecArg 587 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl()); 588 if (!SpecArg) { 589 Info.FirstArg = TemplateArgument(QualType(Param, 0)); 590 Info.SecondArg = TemplateArgument(Arg); 591 return Sema::TDK_NonDeducedMismatch; 592 } 593 594 // Perform template argument deduction for the template name. 595 if (Sema::TemplateDeductionResult Result 596 = DeduceTemplateArguments(S, 597 TemplateParams, 598 Param->getTemplateName(), 599 TemplateName(SpecArg->getSpecializedTemplate()), 600 Info, Deduced)) 601 return Result; 602 603 // Perform template argument deduction for the template arguments. 604 return DeduceTemplateArguments(S, TemplateParams, Param->template_arguments(), 605 SpecArg->getTemplateArgs().asArray(), Info, 606 Deduced, /*NumberOfArgumentsMustMatch=*/true); 607 } 608 609 /// Determines whether the given type is an opaque type that 610 /// might be more qualified when instantiated. 611 static bool IsPossiblyOpaquelyQualifiedType(QualType T) { 612 switch (T->getTypeClass()) { 613 case Type::TypeOfExpr: 614 case Type::TypeOf: 615 case Type::DependentName: 616 case Type::Decltype: 617 case Type::UnresolvedUsing: 618 case Type::TemplateTypeParm: 619 return true; 620 621 case Type::ConstantArray: 622 case Type::IncompleteArray: 623 case Type::VariableArray: 624 case Type::DependentSizedArray: 625 return IsPossiblyOpaquelyQualifiedType( 626 cast<ArrayType>(T)->getElementType()); 627 628 default: 629 return false; 630 } 631 } 632 633 /// Helper function to build a TemplateParameter when we don't 634 /// know its type statically. 635 static TemplateParameter makeTemplateParameter(Decl *D) { 636 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D)) 637 return TemplateParameter(TTP); 638 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) 639 return TemplateParameter(NTTP); 640 641 return TemplateParameter(cast<TemplateTemplateParmDecl>(D)); 642 } 643 644 /// If \p Param is an expanded parameter pack, get the number of expansions. 645 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 646 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 647 if (TTP->isExpandedParameterPack()) 648 return TTP->getNumExpansionParameters(); 649 650 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) 651 if (NTTP->isExpandedParameterPack()) 652 return NTTP->getNumExpansionTypes(); 653 654 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) 655 if (TTP->isExpandedParameterPack()) 656 return TTP->getNumExpansionTemplateParameters(); 657 658 return None; 659 } 660 661 /// A pack that we're currently deducing. 662 struct clang::DeducedPack { 663 // The index of the pack. 664 unsigned Index; 665 666 // The old value of the pack before we started deducing it. 667 DeducedTemplateArgument Saved; 668 669 // A deferred value of this pack from an inner deduction, that couldn't be 670 // deduced because this deduction hadn't happened yet. 671 DeducedTemplateArgument DeferredDeduction; 672 673 // The new value of the pack. 674 SmallVector<DeducedTemplateArgument, 4> New; 675 676 // The outer deduction for this pack, if any. 677 DeducedPack *Outer = nullptr; 678 679 DeducedPack(unsigned Index) : Index(Index) {} 680 }; 681 682 namespace { 683 684 /// A scope in which we're performing pack deduction. 685 class PackDeductionScope { 686 public: 687 /// Prepare to deduce the packs named within Pattern. 688 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 689 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 690 TemplateDeductionInfo &Info, TemplateArgument Pattern) 691 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { 692 unsigned NumNamedPacks = addPacks(Pattern); 693 finishConstruction(NumNamedPacks); 694 } 695 696 /// Prepare to directly deduce arguments of the parameter with index \p Index. 697 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 698 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 699 TemplateDeductionInfo &Info, unsigned Index) 700 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { 701 addPack(Index); 702 finishConstruction(1); 703 } 704 705 private: 706 void addPack(unsigned Index) { 707 // Save the deduced template argument for the parameter pack expanded 708 // by this pack expansion, then clear out the deduction. 709 DeducedPack Pack(Index); 710 Pack.Saved = Deduced[Index]; 711 Deduced[Index] = TemplateArgument(); 712 713 // FIXME: What if we encounter multiple packs with different numbers of 714 // pre-expanded expansions? (This should already have been diagnosed 715 // during substitution.) 716 if (Optional<unsigned> ExpandedPackExpansions = 717 getExpandedPackSize(TemplateParams->getParam(Index))) 718 FixedNumExpansions = ExpandedPackExpansions; 719 720 Packs.push_back(Pack); 721 } 722 723 unsigned addPacks(TemplateArgument Pattern) { 724 // Compute the set of template parameter indices that correspond to 725 // parameter packs expanded by the pack expansion. 726 llvm::SmallBitVector SawIndices(TemplateParams->size()); 727 llvm::SmallVector<TemplateArgument, 4> ExtraDeductions; 728 729 auto AddPack = [&](unsigned Index) { 730 if (SawIndices[Index]) 731 return; 732 SawIndices[Index] = true; 733 addPack(Index); 734 735 // Deducing a parameter pack that is a pack expansion also constrains the 736 // packs appearing in that parameter to have the same deduced arity. Also, 737 // in C++17 onwards, deducing a non-type template parameter deduces its 738 // type, so we need to collect the pending deduced values for those packs. 739 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>( 740 TemplateParams->getParam(Index))) { 741 if (!NTTP->isExpandedParameterPack()) 742 if (auto *Expansion = dyn_cast<PackExpansionType>(NTTP->getType())) 743 ExtraDeductions.push_back(Expansion->getPattern()); 744 } 745 // FIXME: Also collect the unexpanded packs in any type and template 746 // parameter packs that are pack expansions. 747 }; 748 749 auto Collect = [&](TemplateArgument Pattern) { 750 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 751 S.collectUnexpandedParameterPacks(Pattern, Unexpanded); 752 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { 753 unsigned Depth, Index; 754 std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); 755 if (Depth == Info.getDeducedDepth()) 756 AddPack(Index); 757 } 758 }; 759 760 // Look for unexpanded packs in the pattern. 761 Collect(Pattern); 762 assert(!Packs.empty() && "Pack expansion without unexpanded packs?"); 763 764 unsigned NumNamedPacks = Packs.size(); 765 766 // Also look for unexpanded packs that are indirectly deduced by deducing 767 // the sizes of the packs in this pattern. 768 while (!ExtraDeductions.empty()) 769 Collect(ExtraDeductions.pop_back_val()); 770 771 return NumNamedPacks; 772 } 773 774 void finishConstruction(unsigned NumNamedPacks) { 775 // Dig out the partially-substituted pack, if there is one. 776 const TemplateArgument *PartialPackArgs = nullptr; 777 unsigned NumPartialPackArgs = 0; 778 std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u); 779 if (auto *Scope = S.CurrentInstantiationScope) 780 if (auto *Partial = Scope->getPartiallySubstitutedPack( 781 &PartialPackArgs, &NumPartialPackArgs)) 782 PartialPackDepthIndex = getDepthAndIndex(Partial); 783 784 // This pack expansion will have been partially or fully expanded if 785 // it only names explicitly-specified parameter packs (including the 786 // partially-substituted one, if any). 787 bool IsExpanded = true; 788 for (unsigned I = 0; I != NumNamedPacks; ++I) { 789 if (Packs[I].Index >= Info.getNumExplicitArgs()) { 790 IsExpanded = false; 791 IsPartiallyExpanded = false; 792 break; 793 } 794 if (PartialPackDepthIndex == 795 std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) { 796 IsPartiallyExpanded = true; 797 } 798 } 799 800 // Skip over the pack elements that were expanded into separate arguments. 801 // If we partially expanded, this is the number of partial arguments. 802 if (IsPartiallyExpanded) 803 PackElements += NumPartialPackArgs; 804 else if (IsExpanded) 805 PackElements += *FixedNumExpansions; 806 807 for (auto &Pack : Packs) { 808 if (Info.PendingDeducedPacks.size() > Pack.Index) 809 Pack.Outer = Info.PendingDeducedPacks[Pack.Index]; 810 else 811 Info.PendingDeducedPacks.resize(Pack.Index + 1); 812 Info.PendingDeducedPacks[Pack.Index] = &Pack; 813 814 if (PartialPackDepthIndex == 815 std::make_pair(Info.getDeducedDepth(), Pack.Index)) { 816 Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs); 817 // We pre-populate the deduced value of the partially-substituted 818 // pack with the specified value. This is not entirely correct: the 819 // value is supposed to have been substituted, not deduced, but the 820 // cases where this is observable require an exact type match anyway. 821 // 822 // FIXME: If we could represent a "depth i, index j, pack elem k" 823 // parameter, we could substitute the partially-substituted pack 824 // everywhere and avoid this. 825 if (!IsPartiallyExpanded) 826 Deduced[Pack.Index] = Pack.New[PackElements]; 827 } 828 } 829 } 830 831 public: 832 ~PackDeductionScope() { 833 for (auto &Pack : Packs) 834 Info.PendingDeducedPacks[Pack.Index] = Pack.Outer; 835 } 836 837 /// Determine whether this pack has already been partially expanded into a 838 /// sequence of (prior) function parameters / template arguments. 839 bool isPartiallyExpanded() { return IsPartiallyExpanded; } 840 841 /// Determine whether this pack expansion scope has a known, fixed arity. 842 /// This happens if it involves a pack from an outer template that has 843 /// (notionally) already been expanded. 844 bool hasFixedArity() { return FixedNumExpansions.hasValue(); } 845 846 /// Determine whether the next element of the argument is still part of this 847 /// pack. This is the case unless the pack is already expanded to a fixed 848 /// length. 849 bool hasNextElement() { 850 return !FixedNumExpansions || *FixedNumExpansions > PackElements; 851 } 852 853 /// Move to deducing the next element in each pack that is being deduced. 854 void nextPackElement() { 855 // Capture the deduced template arguments for each parameter pack expanded 856 // by this pack expansion, add them to the list of arguments we've deduced 857 // for that pack, then clear out the deduced argument. 858 for (auto &Pack : Packs) { 859 DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index]; 860 if (!Pack.New.empty() || !DeducedArg.isNull()) { 861 while (Pack.New.size() < PackElements) 862 Pack.New.push_back(DeducedTemplateArgument()); 863 if (Pack.New.size() == PackElements) 864 Pack.New.push_back(DeducedArg); 865 else 866 Pack.New[PackElements] = DeducedArg; 867 DeducedArg = Pack.New.size() > PackElements + 1 868 ? Pack.New[PackElements + 1] 869 : DeducedTemplateArgument(); 870 } 871 } 872 ++PackElements; 873 } 874 875 /// Finish template argument deduction for a set of argument packs, 876 /// producing the argument packs and checking for consistency with prior 877 /// deductions. 878 Sema::TemplateDeductionResult finish() { 879 // Build argument packs for each of the parameter packs expanded by this 880 // pack expansion. 881 for (auto &Pack : Packs) { 882 // Put back the old value for this pack. 883 Deduced[Pack.Index] = Pack.Saved; 884 885 // Always make sure the size of this pack is correct, even if we didn't 886 // deduce any values for it. 887 // 888 // FIXME: This isn't required by the normative wording, but substitution 889 // and post-substitution checking will always fail if the arity of any 890 // pack is not equal to the number of elements we processed. (Either that 891 // or something else has gone *very* wrong.) We're permitted to skip any 892 // hard errors from those follow-on steps by the intent (but not the 893 // wording) of C++ [temp.inst]p8: 894 // 895 // If the function selected by overload resolution can be determined 896 // without instantiating a class template definition, it is unspecified 897 // whether that instantiation actually takes place 898 Pack.New.resize(PackElements); 899 900 // Build or find a new value for this pack. 901 DeducedTemplateArgument NewPack; 902 if (Pack.New.empty()) { 903 // If we deduced an empty argument pack, create it now. 904 NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack()); 905 } else { 906 TemplateArgument *ArgumentPack = 907 new (S.Context) TemplateArgument[Pack.New.size()]; 908 std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack); 909 NewPack = DeducedTemplateArgument( 910 TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())), 911 // FIXME: This is wrong, it's possible that some pack elements are 912 // deduced from an array bound and others are not: 913 // template<typename ...T, T ...V> void g(const T (&...p)[V]); 914 // g({1, 2, 3}, {{}, {}}); 915 // ... should deduce T = {int, size_t (from array bound)}. 916 Pack.New[0].wasDeducedFromArrayBound()); 917 } 918 919 // Pick where we're going to put the merged pack. 920 DeducedTemplateArgument *Loc; 921 if (Pack.Outer) { 922 if (Pack.Outer->DeferredDeduction.isNull()) { 923 // Defer checking this pack until we have a complete pack to compare 924 // it against. 925 Pack.Outer->DeferredDeduction = NewPack; 926 continue; 927 } 928 Loc = &Pack.Outer->DeferredDeduction; 929 } else { 930 Loc = &Deduced[Pack.Index]; 931 } 932 933 // Check the new pack matches any previous value. 934 DeducedTemplateArgument OldPack = *Loc; 935 DeducedTemplateArgument Result = 936 checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 937 938 // If we deferred a deduction of this pack, check that one now too. 939 if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) { 940 OldPack = Result; 941 NewPack = Pack.DeferredDeduction; 942 Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 943 } 944 945 NamedDecl *Param = TemplateParams->getParam(Pack.Index); 946 if (Result.isNull()) { 947 Info.Param = makeTemplateParameter(Param); 948 Info.FirstArg = OldPack; 949 Info.SecondArg = NewPack; 950 return Sema::TDK_Inconsistent; 951 } 952 953 // If we have a pre-expanded pack and we didn't deduce enough elements 954 // for it, fail deduction. 955 if (Optional<unsigned> Expansions = getExpandedPackSize(Param)) { 956 if (*Expansions != PackElements) { 957 Info.Param = makeTemplateParameter(Param); 958 Info.FirstArg = Result; 959 return Sema::TDK_IncompletePack; 960 } 961 } 962 963 *Loc = Result; 964 } 965 966 return Sema::TDK_Success; 967 } 968 969 private: 970 Sema &S; 971 TemplateParameterList *TemplateParams; 972 SmallVectorImpl<DeducedTemplateArgument> &Deduced; 973 TemplateDeductionInfo &Info; 974 unsigned PackElements = 0; 975 bool IsPartiallyExpanded = false; 976 /// The number of expansions, if we have a fully-expanded pack in this scope. 977 Optional<unsigned> FixedNumExpansions; 978 979 SmallVector<DeducedPack, 2> Packs; 980 }; 981 982 } // namespace 983 984 /// Deduce the template arguments by comparing the list of parameter 985 /// types to the list of argument types, as in the parameter-type-lists of 986 /// function types (C++ [temp.deduct.type]p10). 987 /// 988 /// \param S The semantic analysis object within which we are deducing 989 /// 990 /// \param TemplateParams The template parameters that we are deducing 991 /// 992 /// \param Params The list of parameter types 993 /// 994 /// \param NumParams The number of types in \c Params 995 /// 996 /// \param Args The list of argument types 997 /// 998 /// \param NumArgs The number of types in \c Args 999 /// 1000 /// \param Info information about the template argument deduction itself 1001 /// 1002 /// \param Deduced the deduced template arguments 1003 /// 1004 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 1005 /// how template argument deduction is performed. 1006 /// 1007 /// \param PartialOrdering If true, we are performing template argument 1008 /// deduction for during partial ordering for a call 1009 /// (C++0x [temp.deduct.partial]). 1010 /// 1011 /// \returns the result of template argument deduction so far. Note that a 1012 /// "success" result means that template argument deduction has not yet failed, 1013 /// but it may still fail, later, for other reasons. 1014 static Sema::TemplateDeductionResult 1015 DeduceTemplateArguments(Sema &S, 1016 TemplateParameterList *TemplateParams, 1017 const QualType *Params, unsigned NumParams, 1018 const QualType *Args, unsigned NumArgs, 1019 TemplateDeductionInfo &Info, 1020 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 1021 unsigned TDF, 1022 bool PartialOrdering = false) { 1023 // C++0x [temp.deduct.type]p10: 1024 // Similarly, if P has a form that contains (T), then each parameter type 1025 // Pi of the respective parameter-type- list of P is compared with the 1026 // corresponding parameter type Ai of the corresponding parameter-type-list 1027 // of A. [...] 1028 unsigned ArgIdx = 0, ParamIdx = 0; 1029 for (; ParamIdx != NumParams; ++ParamIdx) { 1030 // Check argument types. 1031 const PackExpansionType *Expansion 1032 = dyn_cast<PackExpansionType>(Params[ParamIdx]); 1033 if (!Expansion) { 1034 // Simple case: compare the parameter and argument types at this point. 1035 1036 // Make sure we have an argument. 1037 if (ArgIdx >= NumArgs) 1038 return Sema::TDK_MiscellaneousDeductionFailure; 1039 1040 if (isa<PackExpansionType>(Args[ArgIdx])) { 1041 // C++0x [temp.deduct.type]p22: 1042 // If the original function parameter associated with A is a function 1043 // parameter pack and the function parameter associated with P is not 1044 // a function parameter pack, then template argument deduction fails. 1045 return Sema::TDK_MiscellaneousDeductionFailure; 1046 } 1047 1048 if (Sema::TemplateDeductionResult Result 1049 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1050 Params[ParamIdx], Args[ArgIdx], 1051 Info, Deduced, TDF, 1052 PartialOrdering)) 1053 return Result; 1054 1055 ++ArgIdx; 1056 continue; 1057 } 1058 1059 // C++0x [temp.deduct.type]p10: 1060 // If the parameter-declaration corresponding to Pi is a function 1061 // parameter pack, then the type of its declarator- id is compared with 1062 // each remaining parameter type in the parameter-type-list of A. Each 1063 // comparison deduces template arguments for subsequent positions in the 1064 // template parameter packs expanded by the function parameter pack. 1065 1066 QualType Pattern = Expansion->getPattern(); 1067 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 1068 1069 // A pack scope with fixed arity is not really a pack any more, so is not 1070 // a non-deduced context. 1071 if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) { 1072 for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) { 1073 // Deduce template arguments from the pattern. 1074 if (Sema::TemplateDeductionResult Result 1075 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern, 1076 Args[ArgIdx], Info, Deduced, 1077 TDF, PartialOrdering)) 1078 return Result; 1079 1080 PackScope.nextPackElement(); 1081 } 1082 } else { 1083 // C++0x [temp.deduct.type]p5: 1084 // The non-deduced contexts are: 1085 // - A function parameter pack that does not occur at the end of the 1086 // parameter-declaration-clause. 1087 // 1088 // FIXME: There is no wording to say what we should do in this case. We 1089 // choose to resolve this by applying the same rule that is applied for a 1090 // function call: that is, deduce all contained packs to their 1091 // explicitly-specified values (or to <> if there is no such value). 1092 // 1093 // This is seemingly-arbitrarily different from the case of a template-id 1094 // with a non-trailing pack-expansion in its arguments, which renders the 1095 // entire template-argument-list a non-deduced context. 1096 1097 // If the parameter type contains an explicitly-specified pack that we 1098 // could not expand, skip the number of parameters notionally created 1099 // by the expansion. 1100 Optional<unsigned> NumExpansions = Expansion->getNumExpansions(); 1101 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 1102 for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs; 1103 ++I, ++ArgIdx) 1104 PackScope.nextPackElement(); 1105 } 1106 } 1107 1108 // Build argument packs for each of the parameter packs expanded by this 1109 // pack expansion. 1110 if (auto Result = PackScope.finish()) 1111 return Result; 1112 } 1113 1114 // Make sure we don't have any extra arguments. 1115 if (ArgIdx < NumArgs) 1116 return Sema::TDK_MiscellaneousDeductionFailure; 1117 1118 return Sema::TDK_Success; 1119 } 1120 1121 /// Determine whether the parameter has qualifiers that the argument 1122 /// lacks. Put another way, determine whether there is no way to add 1123 /// a deduced set of qualifiers to the ParamType that would result in 1124 /// its qualifiers matching those of the ArgType. 1125 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, 1126 QualType ArgType) { 1127 Qualifiers ParamQs = ParamType.getQualifiers(); 1128 Qualifiers ArgQs = ArgType.getQualifiers(); 1129 1130 if (ParamQs == ArgQs) 1131 return false; 1132 1133 // Mismatched (but not missing) Objective-C GC attributes. 1134 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && 1135 ParamQs.hasObjCGCAttr()) 1136 return true; 1137 1138 // Mismatched (but not missing) address spaces. 1139 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && 1140 ParamQs.hasAddressSpace()) 1141 return true; 1142 1143 // Mismatched (but not missing) Objective-C lifetime qualifiers. 1144 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && 1145 ParamQs.hasObjCLifetime()) 1146 return true; 1147 1148 // CVR qualifiers inconsistent or a superset. 1149 return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0; 1150 } 1151 1152 /// Compare types for equality with respect to possibly compatible 1153 /// function types (noreturn adjustment, implicit calling conventions). If any 1154 /// of parameter and argument is not a function, just perform type comparison. 1155 /// 1156 /// \param Param the template parameter type. 1157 /// 1158 /// \param Arg the argument type. 1159 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param, 1160 CanQualType Arg) { 1161 const FunctionType *ParamFunction = Param->getAs<FunctionType>(), 1162 *ArgFunction = Arg->getAs<FunctionType>(); 1163 1164 // Just compare if not functions. 1165 if (!ParamFunction || !ArgFunction) 1166 return Param == Arg; 1167 1168 // Noreturn and noexcept adjustment. 1169 QualType AdjustedParam; 1170 if (IsFunctionConversion(Param, Arg, AdjustedParam)) 1171 return Arg == Context.getCanonicalType(AdjustedParam); 1172 1173 // FIXME: Compatible calling conventions. 1174 1175 return Param == Arg; 1176 } 1177 1178 /// Get the index of the first template parameter that was originally from the 1179 /// innermost template-parameter-list. This is 0 except when we concatenate 1180 /// the template parameter lists of a class template and a constructor template 1181 /// when forming an implicit deduction guide. 1182 static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) { 1183 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl()); 1184 if (!Guide || !Guide->isImplicit()) 1185 return 0; 1186 return Guide->getDeducedTemplate()->getTemplateParameters()->size(); 1187 } 1188 1189 /// Determine whether a type denotes a forwarding reference. 1190 static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) { 1191 // C++1z [temp.deduct.call]p3: 1192 // A forwarding reference is an rvalue reference to a cv-unqualified 1193 // template parameter that does not represent a template parameter of a 1194 // class template. 1195 if (auto *ParamRef = Param->getAs<RValueReferenceType>()) { 1196 if (ParamRef->getPointeeType().getQualifiers()) 1197 return false; 1198 auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>(); 1199 return TypeParm && TypeParm->getIndex() >= FirstInnerIndex; 1200 } 1201 return false; 1202 } 1203 1204 /// Deduce the template arguments by comparing the parameter type and 1205 /// the argument type (C++ [temp.deduct.type]). 1206 /// 1207 /// \param S the semantic analysis object within which we are deducing 1208 /// 1209 /// \param TemplateParams the template parameters that we are deducing 1210 /// 1211 /// \param ParamIn the parameter type 1212 /// 1213 /// \param ArgIn the argument type 1214 /// 1215 /// \param Info information about the template argument deduction itself 1216 /// 1217 /// \param Deduced the deduced template arguments 1218 /// 1219 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 1220 /// how template argument deduction is performed. 1221 /// 1222 /// \param PartialOrdering Whether we're performing template argument deduction 1223 /// in the context of partial ordering (C++0x [temp.deduct.partial]). 1224 /// 1225 /// \returns the result of template argument deduction so far. Note that a 1226 /// "success" result means that template argument deduction has not yet failed, 1227 /// but it may still fail, later, for other reasons. 1228 static Sema::TemplateDeductionResult 1229 DeduceTemplateArgumentsByTypeMatch(Sema &S, 1230 TemplateParameterList *TemplateParams, 1231 QualType ParamIn, QualType ArgIn, 1232 TemplateDeductionInfo &Info, 1233 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 1234 unsigned TDF, 1235 bool PartialOrdering, 1236 bool DeducedFromArrayBound) { 1237 // We only want to look at the canonical types, since typedefs and 1238 // sugar are not part of template argument deduction. 1239 QualType Param = S.Context.getCanonicalType(ParamIn); 1240 QualType Arg = S.Context.getCanonicalType(ArgIn); 1241 1242 // If the argument type is a pack expansion, look at its pattern. 1243 // This isn't explicitly called out 1244 if (const PackExpansionType *ArgExpansion 1245 = dyn_cast<PackExpansionType>(Arg)) 1246 Arg = ArgExpansion->getPattern(); 1247 1248 if (PartialOrdering) { 1249 // C++11 [temp.deduct.partial]p5: 1250 // Before the partial ordering is done, certain transformations are 1251 // performed on the types used for partial ordering: 1252 // - If P is a reference type, P is replaced by the type referred to. 1253 const ReferenceType *ParamRef = Param->getAs<ReferenceType>(); 1254 if (ParamRef) 1255 Param = ParamRef->getPointeeType(); 1256 1257 // - If A is a reference type, A is replaced by the type referred to. 1258 const ReferenceType *ArgRef = Arg->getAs<ReferenceType>(); 1259 if (ArgRef) 1260 Arg = ArgRef->getPointeeType(); 1261 1262 if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) { 1263 // C++11 [temp.deduct.partial]p9: 1264 // If, for a given type, deduction succeeds in both directions (i.e., 1265 // the types are identical after the transformations above) and both 1266 // P and A were reference types [...]: 1267 // - if [one type] was an lvalue reference and [the other type] was 1268 // not, [the other type] is not considered to be at least as 1269 // specialized as [the first type] 1270 // - if [one type] is more cv-qualified than [the other type], 1271 // [the other type] is not considered to be at least as specialized 1272 // as [the first type] 1273 // Objective-C ARC adds: 1274 // - [one type] has non-trivial lifetime, [the other type] has 1275 // __unsafe_unretained lifetime, and the types are otherwise 1276 // identical 1277 // 1278 // A is "considered to be at least as specialized" as P iff deduction 1279 // succeeds, so we model this as a deduction failure. Note that 1280 // [the first type] is P and [the other type] is A here; the standard 1281 // gets this backwards. 1282 Qualifiers ParamQuals = Param.getQualifiers(); 1283 Qualifiers ArgQuals = Arg.getQualifiers(); 1284 if ((ParamRef->isLValueReferenceType() && 1285 !ArgRef->isLValueReferenceType()) || 1286 ParamQuals.isStrictSupersetOf(ArgQuals) || 1287 (ParamQuals.hasNonTrivialObjCLifetime() && 1288 ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone && 1289 ParamQuals.withoutObjCLifetime() == 1290 ArgQuals.withoutObjCLifetime())) { 1291 Info.FirstArg = TemplateArgument(ParamIn); 1292 Info.SecondArg = TemplateArgument(ArgIn); 1293 return Sema::TDK_NonDeducedMismatch; 1294 } 1295 } 1296 1297 // C++11 [temp.deduct.partial]p7: 1298 // Remove any top-level cv-qualifiers: 1299 // - If P is a cv-qualified type, P is replaced by the cv-unqualified 1300 // version of P. 1301 Param = Param.getUnqualifiedType(); 1302 // - If A is a cv-qualified type, A is replaced by the cv-unqualified 1303 // version of A. 1304 Arg = Arg.getUnqualifiedType(); 1305 } else { 1306 // C++0x [temp.deduct.call]p4 bullet 1: 1307 // - If the original P is a reference type, the deduced A (i.e., the type 1308 // referred to by the reference) can be more cv-qualified than the 1309 // transformed A. 1310 if (TDF & TDF_ParamWithReferenceType) { 1311 Qualifiers Quals; 1312 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals); 1313 Quals.setCVRQualifiers(Quals.getCVRQualifiers() & 1314 Arg.getCVRQualifiers()); 1315 Param = S.Context.getQualifiedType(UnqualParam, Quals); 1316 } 1317 1318 if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) { 1319 // C++0x [temp.deduct.type]p10: 1320 // If P and A are function types that originated from deduction when 1321 // taking the address of a function template (14.8.2.2) or when deducing 1322 // template arguments from a function declaration (14.8.2.6) and Pi and 1323 // Ai are parameters of the top-level parameter-type-list of P and A, 1324 // respectively, Pi is adjusted if it is a forwarding reference and Ai 1325 // is an lvalue reference, in 1326 // which case the type of Pi is changed to be the template parameter 1327 // type (i.e., T&& is changed to simply T). [ Note: As a result, when 1328 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be 1329 // deduced as X&. - end note ] 1330 TDF &= ~TDF_TopLevelParameterTypeList; 1331 if (isForwardingReference(Param, 0) && Arg->isLValueReferenceType()) 1332 Param = Param->getPointeeType(); 1333 } 1334 } 1335 1336 // C++ [temp.deduct.type]p9: 1337 // A template type argument T, a template template argument TT or a 1338 // template non-type argument i can be deduced if P and A have one of 1339 // the following forms: 1340 // 1341 // T 1342 // cv-list T 1343 if (const TemplateTypeParmType *TemplateTypeParm 1344 = Param->getAs<TemplateTypeParmType>()) { 1345 // Just skip any attempts to deduce from a placeholder type or a parameter 1346 // at a different depth. 1347 if (Arg->isPlaceholderType() || 1348 Info.getDeducedDepth() != TemplateTypeParm->getDepth()) 1349 return Sema::TDK_Success; 1350 1351 unsigned Index = TemplateTypeParm->getIndex(); 1352 bool RecanonicalizeArg = false; 1353 1354 // If the argument type is an array type, move the qualifiers up to the 1355 // top level, so they can be matched with the qualifiers on the parameter. 1356 if (isa<ArrayType>(Arg)) { 1357 Qualifiers Quals; 1358 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals); 1359 if (Quals) { 1360 Arg = S.Context.getQualifiedType(Arg, Quals); 1361 RecanonicalizeArg = true; 1362 } 1363 } 1364 1365 // The argument type can not be less qualified than the parameter 1366 // type. 1367 if (!(TDF & TDF_IgnoreQualifiers) && 1368 hasInconsistentOrSupersetQualifiersOf(Param, Arg)) { 1369 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1370 Info.FirstArg = TemplateArgument(Param); 1371 Info.SecondArg = TemplateArgument(Arg); 1372 return Sema::TDK_Underqualified; 1373 } 1374 1375 // Do not match a function type with a cv-qualified type. 1376 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584 1377 if (Arg->isFunctionType() && Param.hasQualifiers()) { 1378 return Sema::TDK_NonDeducedMismatch; 1379 } 1380 1381 assert(TemplateTypeParm->getDepth() == Info.getDeducedDepth() && 1382 "saw template type parameter with wrong depth"); 1383 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function"); 1384 QualType DeducedType = Arg; 1385 1386 // Remove any qualifiers on the parameter from the deduced type. 1387 // We checked the qualifiers for consistency above. 1388 Qualifiers DeducedQs = DeducedType.getQualifiers(); 1389 Qualifiers ParamQs = Param.getQualifiers(); 1390 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers()); 1391 if (ParamQs.hasObjCGCAttr()) 1392 DeducedQs.removeObjCGCAttr(); 1393 if (ParamQs.hasAddressSpace()) 1394 DeducedQs.removeAddressSpace(); 1395 if (ParamQs.hasObjCLifetime()) 1396 DeducedQs.removeObjCLifetime(); 1397 1398 // Objective-C ARC: 1399 // If template deduction would produce a lifetime qualifier on a type 1400 // that is not a lifetime type, template argument deduction fails. 1401 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() && 1402 !DeducedType->isDependentType()) { 1403 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1404 Info.FirstArg = TemplateArgument(Param); 1405 Info.SecondArg = TemplateArgument(Arg); 1406 return Sema::TDK_Underqualified; 1407 } 1408 1409 // Objective-C ARC: 1410 // If template deduction would produce an argument type with lifetime type 1411 // but no lifetime qualifier, the __strong lifetime qualifier is inferred. 1412 if (S.getLangOpts().ObjCAutoRefCount && 1413 DeducedType->isObjCLifetimeType() && 1414 !DeducedQs.hasObjCLifetime()) 1415 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); 1416 1417 DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), 1418 DeducedQs); 1419 1420 if (RecanonicalizeArg) 1421 DeducedType = S.Context.getCanonicalType(DeducedType); 1422 1423 DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound); 1424 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 1425 Deduced[Index], 1426 NewDeduced); 1427 if (Result.isNull()) { 1428 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1429 Info.FirstArg = Deduced[Index]; 1430 Info.SecondArg = NewDeduced; 1431 return Sema::TDK_Inconsistent; 1432 } 1433 1434 Deduced[Index] = Result; 1435 return Sema::TDK_Success; 1436 } 1437 1438 // Set up the template argument deduction information for a failure. 1439 Info.FirstArg = TemplateArgument(ParamIn); 1440 Info.SecondArg = TemplateArgument(ArgIn); 1441 1442 // If the parameter is an already-substituted template parameter 1443 // pack, do nothing: we don't know which of its arguments to look 1444 // at, so we have to wait until all of the parameter packs in this 1445 // expansion have arguments. 1446 if (isa<SubstTemplateTypeParmPackType>(Param)) 1447 return Sema::TDK_Success; 1448 1449 // Check the cv-qualifiers on the parameter and argument types. 1450 CanQualType CanParam = S.Context.getCanonicalType(Param); 1451 CanQualType CanArg = S.Context.getCanonicalType(Arg); 1452 if (!(TDF & TDF_IgnoreQualifiers)) { 1453 if (TDF & TDF_ParamWithReferenceType) { 1454 if (hasInconsistentOrSupersetQualifiersOf(Param, Arg)) 1455 return Sema::TDK_NonDeducedMismatch; 1456 } else if (TDF & TDF_ArgWithReferenceType) { 1457 // C++ [temp.deduct.conv]p4: 1458 // If the original A is a reference type, A can be more cv-qualified 1459 // than the deduced A 1460 if (!Arg.getQualifiers().compatiblyIncludes(Param.getQualifiers())) 1461 return Sema::TDK_NonDeducedMismatch; 1462 1463 // Strip out all extra qualifiers from the argument to figure out the 1464 // type we're converting to, prior to the qualification conversion. 1465 Qualifiers Quals; 1466 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals); 1467 Arg = S.Context.getQualifiedType(Arg, Param.getQualifiers()); 1468 } else if (!IsPossiblyOpaquelyQualifiedType(Param)) { 1469 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers()) 1470 return Sema::TDK_NonDeducedMismatch; 1471 } 1472 1473 // If the parameter type is not dependent, there is nothing to deduce. 1474 if (!Param->isDependentType()) { 1475 if (!(TDF & TDF_SkipNonDependent)) { 1476 bool NonDeduced = 1477 (TDF & TDF_AllowCompatibleFunctionType) 1478 ? !S.isSameOrCompatibleFunctionType(CanParam, CanArg) 1479 : Param != Arg; 1480 if (NonDeduced) { 1481 return Sema::TDK_NonDeducedMismatch; 1482 } 1483 } 1484 return Sema::TDK_Success; 1485 } 1486 } else if (!Param->isDependentType()) { 1487 CanQualType ParamUnqualType = CanParam.getUnqualifiedType(), 1488 ArgUnqualType = CanArg.getUnqualifiedType(); 1489 bool Success = 1490 (TDF & TDF_AllowCompatibleFunctionType) 1491 ? S.isSameOrCompatibleFunctionType(ParamUnqualType, ArgUnqualType) 1492 : ParamUnqualType == ArgUnqualType; 1493 if (Success) 1494 return Sema::TDK_Success; 1495 } 1496 1497 switch (Param->getTypeClass()) { 1498 // Non-canonical types cannot appear here. 1499 #define NON_CANONICAL_TYPE(Class, Base) \ 1500 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); 1501 #define TYPE(Class, Base) 1502 #include "clang/AST/TypeNodes.inc" 1503 1504 case Type::TemplateTypeParm: 1505 case Type::SubstTemplateTypeParmPack: 1506 llvm_unreachable("Type nodes handled above"); 1507 1508 // These types cannot be dependent, so simply check whether the types are 1509 // the same. 1510 case Type::Builtin: 1511 case Type::VariableArray: 1512 case Type::Vector: 1513 case Type::FunctionNoProto: 1514 case Type::Record: 1515 case Type::Enum: 1516 case Type::ObjCObject: 1517 case Type::ObjCInterface: 1518 case Type::ObjCObjectPointer: 1519 case Type::ExtInt: 1520 if (TDF & TDF_SkipNonDependent) 1521 return Sema::TDK_Success; 1522 1523 if (TDF & TDF_IgnoreQualifiers) { 1524 Param = Param.getUnqualifiedType(); 1525 Arg = Arg.getUnqualifiedType(); 1526 } 1527 1528 return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch; 1529 1530 // _Complex T [placeholder extension] 1531 case Type::Complex: 1532 if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>()) 1533 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1534 cast<ComplexType>(Param)->getElementType(), 1535 ComplexArg->getElementType(), 1536 Info, Deduced, TDF); 1537 1538 return Sema::TDK_NonDeducedMismatch; 1539 1540 // _Atomic T [extension] 1541 case Type::Atomic: 1542 if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>()) 1543 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1544 cast<AtomicType>(Param)->getValueType(), 1545 AtomicArg->getValueType(), 1546 Info, Deduced, TDF); 1547 1548 return Sema::TDK_NonDeducedMismatch; 1549 1550 // T * 1551 case Type::Pointer: { 1552 QualType PointeeType; 1553 if (const PointerType *PointerArg = Arg->getAs<PointerType>()) { 1554 PointeeType = PointerArg->getPointeeType(); 1555 } else if (const ObjCObjectPointerType *PointerArg 1556 = Arg->getAs<ObjCObjectPointerType>()) { 1557 PointeeType = PointerArg->getPointeeType(); 1558 } else { 1559 return Sema::TDK_NonDeducedMismatch; 1560 } 1561 1562 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass); 1563 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1564 cast<PointerType>(Param)->getPointeeType(), 1565 PointeeType, 1566 Info, Deduced, SubTDF); 1567 } 1568 1569 // T & 1570 case Type::LValueReference: { 1571 const LValueReferenceType *ReferenceArg = 1572 Arg->getAs<LValueReferenceType>(); 1573 if (!ReferenceArg) 1574 return Sema::TDK_NonDeducedMismatch; 1575 1576 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1577 cast<LValueReferenceType>(Param)->getPointeeType(), 1578 ReferenceArg->getPointeeType(), Info, Deduced, 0); 1579 } 1580 1581 // T && [C++0x] 1582 case Type::RValueReference: { 1583 const RValueReferenceType *ReferenceArg = 1584 Arg->getAs<RValueReferenceType>(); 1585 if (!ReferenceArg) 1586 return Sema::TDK_NonDeducedMismatch; 1587 1588 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1589 cast<RValueReferenceType>(Param)->getPointeeType(), 1590 ReferenceArg->getPointeeType(), 1591 Info, Deduced, 0); 1592 } 1593 1594 // T [] (implied, but not stated explicitly) 1595 case Type::IncompleteArray: { 1596 const IncompleteArrayType *IncompleteArrayArg = 1597 S.Context.getAsIncompleteArrayType(Arg); 1598 if (!IncompleteArrayArg) 1599 return Sema::TDK_NonDeducedMismatch; 1600 1601 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1602 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1603 S.Context.getAsIncompleteArrayType(Param)->getElementType(), 1604 IncompleteArrayArg->getElementType(), 1605 Info, Deduced, SubTDF); 1606 } 1607 1608 // T [integer-constant] 1609 case Type::ConstantArray: { 1610 const ConstantArrayType *ConstantArrayArg = 1611 S.Context.getAsConstantArrayType(Arg); 1612 if (!ConstantArrayArg) 1613 return Sema::TDK_NonDeducedMismatch; 1614 1615 const ConstantArrayType *ConstantArrayParm = 1616 S.Context.getAsConstantArrayType(Param); 1617 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize()) 1618 return Sema::TDK_NonDeducedMismatch; 1619 1620 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1621 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1622 ConstantArrayParm->getElementType(), 1623 ConstantArrayArg->getElementType(), 1624 Info, Deduced, SubTDF); 1625 } 1626 1627 // type [i] 1628 case Type::DependentSizedArray: { 1629 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg); 1630 if (!ArrayArg) 1631 return Sema::TDK_NonDeducedMismatch; 1632 1633 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1634 1635 // Check the element type of the arrays 1636 const DependentSizedArrayType *DependentArrayParm 1637 = S.Context.getAsDependentSizedArrayType(Param); 1638 if (Sema::TemplateDeductionResult Result 1639 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1640 DependentArrayParm->getElementType(), 1641 ArrayArg->getElementType(), 1642 Info, Deduced, SubTDF)) 1643 return Result; 1644 1645 // Determine the array bound is something we can deduce. 1646 NonTypeTemplateParmDecl *NTTP 1647 = getDeducedParameterFromExpr(Info, DependentArrayParm->getSizeExpr()); 1648 if (!NTTP) 1649 return Sema::TDK_Success; 1650 1651 // We can perform template argument deduction for the given non-type 1652 // template parameter. 1653 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1654 "saw non-type template parameter with wrong depth"); 1655 if (const ConstantArrayType *ConstantArrayArg 1656 = dyn_cast<ConstantArrayType>(ArrayArg)) { 1657 llvm::APSInt Size(ConstantArrayArg->getSize()); 1658 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, Size, 1659 S.Context.getSizeType(), 1660 /*ArrayBound=*/true, 1661 Info, Deduced); 1662 } 1663 if (const DependentSizedArrayType *DependentArrayArg 1664 = dyn_cast<DependentSizedArrayType>(ArrayArg)) 1665 if (DependentArrayArg->getSizeExpr()) 1666 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 1667 DependentArrayArg->getSizeExpr(), 1668 Info, Deduced); 1669 1670 // Incomplete type does not match a dependently-sized array type 1671 return Sema::TDK_NonDeducedMismatch; 1672 } 1673 1674 // type(*)(T) 1675 // T(*)() 1676 // T(*)(T) 1677 case Type::FunctionProto: { 1678 unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList; 1679 const FunctionProtoType *FunctionProtoArg = 1680 dyn_cast<FunctionProtoType>(Arg); 1681 if (!FunctionProtoArg) 1682 return Sema::TDK_NonDeducedMismatch; 1683 1684 const FunctionProtoType *FunctionProtoParam = 1685 cast<FunctionProtoType>(Param); 1686 1687 if (FunctionProtoParam->getMethodQuals() 1688 != FunctionProtoArg->getMethodQuals() || 1689 FunctionProtoParam->getRefQualifier() 1690 != FunctionProtoArg->getRefQualifier() || 1691 FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic()) 1692 return Sema::TDK_NonDeducedMismatch; 1693 1694 // Check return types. 1695 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1696 S, TemplateParams, FunctionProtoParam->getReturnType(), 1697 FunctionProtoArg->getReturnType(), Info, Deduced, 0)) 1698 return Result; 1699 1700 // Check parameter types. 1701 if (auto Result = DeduceTemplateArguments( 1702 S, TemplateParams, FunctionProtoParam->param_type_begin(), 1703 FunctionProtoParam->getNumParams(), 1704 FunctionProtoArg->param_type_begin(), 1705 FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF)) 1706 return Result; 1707 1708 if (TDF & TDF_AllowCompatibleFunctionType) 1709 return Sema::TDK_Success; 1710 1711 // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit 1712 // deducing through the noexcept-specifier if it's part of the canonical 1713 // type. libstdc++ relies on this. 1714 Expr *NoexceptExpr = FunctionProtoParam->getNoexceptExpr(); 1715 if (NonTypeTemplateParmDecl *NTTP = 1716 NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr) 1717 : nullptr) { 1718 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1719 "saw non-type template parameter with wrong depth"); 1720 1721 llvm::APSInt Noexcept(1); 1722 switch (FunctionProtoArg->canThrow()) { 1723 case CT_Cannot: 1724 Noexcept = 1; 1725 LLVM_FALLTHROUGH; 1726 1727 case CT_Can: 1728 // We give E in noexcept(E) the "deduced from array bound" treatment. 1729 // FIXME: Should we? 1730 return DeduceNonTypeTemplateArgument( 1731 S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy, 1732 /*ArrayBound*/true, Info, Deduced); 1733 1734 case CT_Dependent: 1735 if (Expr *ArgNoexceptExpr = FunctionProtoArg->getNoexceptExpr()) 1736 return DeduceNonTypeTemplateArgument( 1737 S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced); 1738 // Can't deduce anything from throw(T...). 1739 break; 1740 } 1741 } 1742 // FIXME: Detect non-deduced exception specification mismatches? 1743 // 1744 // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow 1745 // top-level differences in noexcept-specifications. 1746 1747 return Sema::TDK_Success; 1748 } 1749 1750 case Type::InjectedClassName: 1751 // Treat a template's injected-class-name as if the template 1752 // specialization type had been used. 1753 Param = cast<InjectedClassNameType>(Param) 1754 ->getInjectedSpecializationType(); 1755 assert(isa<TemplateSpecializationType>(Param) && 1756 "injected class name is not a template specialization type"); 1757 LLVM_FALLTHROUGH; 1758 1759 // template-name<T> (where template-name refers to a class template) 1760 // template-name<i> 1761 // TT<T> 1762 // TT<i> 1763 // TT<> 1764 case Type::TemplateSpecialization: { 1765 const TemplateSpecializationType *SpecParam = 1766 cast<TemplateSpecializationType>(Param); 1767 1768 // When Arg cannot be a derived class, we can just try to deduce template 1769 // arguments from the template-id. 1770 const RecordType *RecordT = Arg->getAs<RecordType>(); 1771 if (!(TDF & TDF_DerivedClass) || !RecordT) 1772 return DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, Info, 1773 Deduced); 1774 1775 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(), 1776 Deduced.end()); 1777 1778 Sema::TemplateDeductionResult Result = DeduceTemplateArguments( 1779 S, TemplateParams, SpecParam, Arg, Info, Deduced); 1780 1781 if (Result == Sema::TDK_Success) 1782 return Result; 1783 1784 // We cannot inspect base classes as part of deduction when the type 1785 // is incomplete, so either instantiate any templates necessary to 1786 // complete the type, or skip over it if it cannot be completed. 1787 if (!S.isCompleteType(Info.getLocation(), Arg)) 1788 return Result; 1789 1790 // C++14 [temp.deduct.call] p4b3: 1791 // If P is a class and P has the form simple-template-id, then the 1792 // transformed A can be a derived class of the deduced A. Likewise if 1793 // P is a pointer to a class of the form simple-template-id, the 1794 // transformed A can be a pointer to a derived class pointed to by the 1795 // deduced A. 1796 // 1797 // These alternatives are considered only if type deduction would 1798 // otherwise fail. If they yield more than one possible deduced A, the 1799 // type deduction fails. 1800 1801 // Reset the incorrectly deduced argument from above. 1802 Deduced = DeducedOrig; 1803 1804 // Use data recursion to crawl through the list of base classes. 1805 // Visited contains the set of nodes we have already visited, while 1806 // ToVisit is our stack of records that we still need to visit. 1807 llvm::SmallPtrSet<const RecordType *, 8> Visited; 1808 SmallVector<const RecordType *, 8> ToVisit; 1809 ToVisit.push_back(RecordT); 1810 bool Successful = false; 1811 SmallVector<DeducedTemplateArgument, 8> SuccessfulDeduced; 1812 while (!ToVisit.empty()) { 1813 // Retrieve the next class in the inheritance hierarchy. 1814 const RecordType *NextT = ToVisit.pop_back_val(); 1815 1816 // If we have already seen this type, skip it. 1817 if (!Visited.insert(NextT).second) 1818 continue; 1819 1820 // If this is a base class, try to perform template argument 1821 // deduction from it. 1822 if (NextT != RecordT) { 1823 TemplateDeductionInfo BaseInfo(TemplateDeductionInfo::ForBase, Info); 1824 Sema::TemplateDeductionResult BaseResult = 1825 DeduceTemplateArguments(S, TemplateParams, SpecParam, 1826 QualType(NextT, 0), BaseInfo, Deduced); 1827 1828 // If template argument deduction for this base was successful, 1829 // note that we had some success. Otherwise, ignore any deductions 1830 // from this base class. 1831 if (BaseResult == Sema::TDK_Success) { 1832 // If we've already seen some success, then deduction fails due to 1833 // an ambiguity (temp.deduct.call p5). 1834 if (Successful) 1835 return Sema::TDK_MiscellaneousDeductionFailure; 1836 1837 Successful = true; 1838 std::swap(SuccessfulDeduced, Deduced); 1839 1840 Info.Param = BaseInfo.Param; 1841 Info.FirstArg = BaseInfo.FirstArg; 1842 Info.SecondArg = BaseInfo.SecondArg; 1843 } 1844 1845 Deduced = DeducedOrig; 1846 } 1847 1848 // Visit base classes 1849 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl()); 1850 for (const auto &Base : Next->bases()) { 1851 assert(Base.getType()->isRecordType() && 1852 "Base class that isn't a record?"); 1853 ToVisit.push_back(Base.getType()->getAs<RecordType>()); 1854 } 1855 } 1856 1857 if (Successful) { 1858 std::swap(SuccessfulDeduced, Deduced); 1859 return Sema::TDK_Success; 1860 } 1861 1862 return Result; 1863 } 1864 1865 // T type::* 1866 // T T::* 1867 // T (type::*)() 1868 // type (T::*)() 1869 // type (type::*)(T) 1870 // type (T::*)(T) 1871 // T (type::*)(T) 1872 // T (T::*)() 1873 // T (T::*)(T) 1874 case Type::MemberPointer: { 1875 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param); 1876 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg); 1877 if (!MemPtrArg) 1878 return Sema::TDK_NonDeducedMismatch; 1879 1880 QualType ParamPointeeType = MemPtrParam->getPointeeType(); 1881 if (ParamPointeeType->isFunctionType()) 1882 S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true, 1883 /*IsCtorOrDtor=*/false, Info.getLocation()); 1884 QualType ArgPointeeType = MemPtrArg->getPointeeType(); 1885 if (ArgPointeeType->isFunctionType()) 1886 S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true, 1887 /*IsCtorOrDtor=*/false, Info.getLocation()); 1888 1889 if (Sema::TemplateDeductionResult Result 1890 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1891 ParamPointeeType, 1892 ArgPointeeType, 1893 Info, Deduced, 1894 TDF & TDF_IgnoreQualifiers)) 1895 return Result; 1896 1897 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1898 QualType(MemPtrParam->getClass(), 0), 1899 QualType(MemPtrArg->getClass(), 0), 1900 Info, Deduced, 1901 TDF & TDF_IgnoreQualifiers); 1902 } 1903 1904 // (clang extension) 1905 // 1906 // type(^)(T) 1907 // T(^)() 1908 // T(^)(T) 1909 case Type::BlockPointer: { 1910 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param); 1911 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg); 1912 1913 if (!BlockPtrArg) 1914 return Sema::TDK_NonDeducedMismatch; 1915 1916 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1917 BlockPtrParam->getPointeeType(), 1918 BlockPtrArg->getPointeeType(), 1919 Info, Deduced, 0); 1920 } 1921 1922 // (clang extension) 1923 // 1924 // T __attribute__(((ext_vector_type(<integral constant>)))) 1925 case Type::ExtVector: { 1926 const ExtVectorType *VectorParam = cast<ExtVectorType>(Param); 1927 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { 1928 // Make sure that the vectors have the same number of elements. 1929 if (VectorParam->getNumElements() != VectorArg->getNumElements()) 1930 return Sema::TDK_NonDeducedMismatch; 1931 1932 // Perform deduction on the element types. 1933 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1934 VectorParam->getElementType(), 1935 VectorArg->getElementType(), 1936 Info, Deduced, TDF); 1937 } 1938 1939 if (const DependentSizedExtVectorType *VectorArg 1940 = dyn_cast<DependentSizedExtVectorType>(Arg)) { 1941 // We can't check the number of elements, since the argument has a 1942 // dependent number of elements. This can only occur during partial 1943 // ordering. 1944 1945 // Perform deduction on the element types. 1946 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1947 VectorParam->getElementType(), 1948 VectorArg->getElementType(), 1949 Info, Deduced, TDF); 1950 } 1951 1952 return Sema::TDK_NonDeducedMismatch; 1953 } 1954 1955 case Type::DependentVector: { 1956 const auto *VectorParam = cast<DependentVectorType>(Param); 1957 1958 if (const auto *VectorArg = dyn_cast<VectorType>(Arg)) { 1959 // Perform deduction on the element types. 1960 if (Sema::TemplateDeductionResult Result = 1961 DeduceTemplateArgumentsByTypeMatch( 1962 S, TemplateParams, VectorParam->getElementType(), 1963 VectorArg->getElementType(), Info, Deduced, TDF)) 1964 return Result; 1965 1966 // Perform deduction on the vector size, if we can. 1967 NonTypeTemplateParmDecl *NTTP = 1968 getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); 1969 if (!NTTP) 1970 return Sema::TDK_Success; 1971 1972 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 1973 ArgSize = VectorArg->getNumElements(); 1974 // Note that we use the "array bound" rules here; just like in that 1975 // case, we don't have any particular type for the vector size, but 1976 // we can provide one if necessary. 1977 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 1978 S.Context.UnsignedIntTy, true, 1979 Info, Deduced); 1980 } 1981 1982 if (const auto *VectorArg = dyn_cast<DependentVectorType>(Arg)) { 1983 // Perform deduction on the element types. 1984 if (Sema::TemplateDeductionResult Result = 1985 DeduceTemplateArgumentsByTypeMatch( 1986 S, TemplateParams, VectorParam->getElementType(), 1987 VectorArg->getElementType(), Info, Deduced, TDF)) 1988 return Result; 1989 1990 // Perform deduction on the vector size, if we can. 1991 NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( 1992 Info, VectorParam->getSizeExpr()); 1993 if (!NTTP) 1994 return Sema::TDK_Success; 1995 1996 return DeduceNonTypeTemplateArgument( 1997 S, TemplateParams, NTTP, VectorArg->getSizeExpr(), Info, Deduced); 1998 } 1999 2000 return Sema::TDK_NonDeducedMismatch; 2001 } 2002 2003 // (clang extension) 2004 // 2005 // T __attribute__(((ext_vector_type(N)))) 2006 case Type::DependentSizedExtVector: { 2007 const DependentSizedExtVectorType *VectorParam 2008 = cast<DependentSizedExtVectorType>(Param); 2009 2010 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { 2011 // Perform deduction on the element types. 2012 if (Sema::TemplateDeductionResult Result 2013 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 2014 VectorParam->getElementType(), 2015 VectorArg->getElementType(), 2016 Info, Deduced, TDF)) 2017 return Result; 2018 2019 // Perform deduction on the vector size, if we can. 2020 NonTypeTemplateParmDecl *NTTP 2021 = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); 2022 if (!NTTP) 2023 return Sema::TDK_Success; 2024 2025 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 2026 ArgSize = VectorArg->getNumElements(); 2027 // Note that we use the "array bound" rules here; just like in that 2028 // case, we don't have any particular type for the vector size, but 2029 // we can provide one if necessary. 2030 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 2031 S.Context.IntTy, true, Info, 2032 Deduced); 2033 } 2034 2035 if (const DependentSizedExtVectorType *VectorArg 2036 = dyn_cast<DependentSizedExtVectorType>(Arg)) { 2037 // Perform deduction on the element types. 2038 if (Sema::TemplateDeductionResult Result 2039 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 2040 VectorParam->getElementType(), 2041 VectorArg->getElementType(), 2042 Info, Deduced, TDF)) 2043 return Result; 2044 2045 // Perform deduction on the vector size, if we can. 2046 NonTypeTemplateParmDecl *NTTP 2047 = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); 2048 if (!NTTP) 2049 return Sema::TDK_Success; 2050 2051 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2052 VectorArg->getSizeExpr(), 2053 Info, Deduced); 2054 } 2055 2056 return Sema::TDK_NonDeducedMismatch; 2057 } 2058 2059 // (clang extension) 2060 // 2061 // T __attribute__((matrix_type(<integral constant>, 2062 // <integral constant>))) 2063 case Type::ConstantMatrix: { 2064 const ConstantMatrixType *MatrixArg = dyn_cast<ConstantMatrixType>(Arg); 2065 if (!MatrixArg) 2066 return Sema::TDK_NonDeducedMismatch; 2067 2068 const ConstantMatrixType *MatrixParam = cast<ConstantMatrixType>(Param); 2069 // Check that the dimensions are the same 2070 if (MatrixParam->getNumRows() != MatrixArg->getNumRows() || 2071 MatrixParam->getNumColumns() != MatrixArg->getNumColumns()) { 2072 return Sema::TDK_NonDeducedMismatch; 2073 } 2074 // Perform deduction on element types. 2075 return DeduceTemplateArgumentsByTypeMatch( 2076 S, TemplateParams, MatrixParam->getElementType(), 2077 MatrixArg->getElementType(), Info, Deduced, TDF); 2078 } 2079 2080 case Type::DependentSizedMatrix: { 2081 const MatrixType *MatrixArg = dyn_cast<MatrixType>(Arg); 2082 if (!MatrixArg) 2083 return Sema::TDK_NonDeducedMismatch; 2084 2085 // Check the element type of the matrixes. 2086 const DependentSizedMatrixType *MatrixParam = 2087 cast<DependentSizedMatrixType>(Param); 2088 if (Sema::TemplateDeductionResult Result = 2089 DeduceTemplateArgumentsByTypeMatch( 2090 S, TemplateParams, MatrixParam->getElementType(), 2091 MatrixArg->getElementType(), Info, Deduced, TDF)) 2092 return Result; 2093 2094 // Try to deduce a matrix dimension. 2095 auto DeduceMatrixArg = 2096 [&S, &Info, &Deduced, &TemplateParams]( 2097 Expr *ParamExpr, const MatrixType *Arg, 2098 unsigned (ConstantMatrixType::*GetArgDimension)() const, 2099 Expr *(DependentSizedMatrixType::*GetArgDimensionExpr)() const) { 2100 const auto *ArgConstMatrix = dyn_cast<ConstantMatrixType>(Arg); 2101 const auto *ArgDepMatrix = dyn_cast<DependentSizedMatrixType>(Arg); 2102 if (!ParamExpr->isValueDependent()) { 2103 llvm::APSInt ParamConst( 2104 S.Context.getTypeSize(S.Context.getSizeType())); 2105 if (!ParamExpr->isIntegerConstantExpr(ParamConst, S.Context)) 2106 return Sema::TDK_NonDeducedMismatch; 2107 2108 if (ArgConstMatrix) { 2109 if ((ArgConstMatrix->*GetArgDimension)() == ParamConst) 2110 return Sema::TDK_Success; 2111 return Sema::TDK_NonDeducedMismatch; 2112 } 2113 2114 Expr *ArgExpr = (ArgDepMatrix->*GetArgDimensionExpr)(); 2115 llvm::APSInt ArgConst( 2116 S.Context.getTypeSize(S.Context.getSizeType())); 2117 if (!ArgExpr->isValueDependent() && 2118 ArgExpr->isIntegerConstantExpr(ArgConst, S.Context) && 2119 ArgConst == ParamConst) 2120 return Sema::TDK_Success; 2121 return Sema::TDK_NonDeducedMismatch; 2122 } 2123 2124 NonTypeTemplateParmDecl *NTTP = 2125 getDeducedParameterFromExpr(Info, ParamExpr); 2126 if (!NTTP) 2127 return Sema::TDK_Success; 2128 2129 if (ArgConstMatrix) { 2130 llvm::APSInt ArgConst( 2131 S.Context.getTypeSize(S.Context.getSizeType())); 2132 ArgConst = (ArgConstMatrix->*GetArgDimension)(); 2133 return DeduceNonTypeTemplateArgument( 2134 S, TemplateParams, NTTP, ArgConst, S.Context.getSizeType(), 2135 /*ArrayBound=*/true, Info, Deduced); 2136 } 2137 2138 return DeduceNonTypeTemplateArgument( 2139 S, TemplateParams, NTTP, (ArgDepMatrix->*GetArgDimensionExpr)(), 2140 Info, Deduced); 2141 }; 2142 2143 auto Result = DeduceMatrixArg(MatrixParam->getRowExpr(), MatrixArg, 2144 &ConstantMatrixType::getNumRows, 2145 &DependentSizedMatrixType::getRowExpr); 2146 if (Result) 2147 return Result; 2148 2149 return DeduceMatrixArg(MatrixParam->getColumnExpr(), MatrixArg, 2150 &ConstantMatrixType::getNumColumns, 2151 &DependentSizedMatrixType::getColumnExpr); 2152 } 2153 2154 // (clang extension) 2155 // 2156 // T __attribute__(((address_space(N)))) 2157 case Type::DependentAddressSpace: { 2158 const DependentAddressSpaceType *AddressSpaceParam = 2159 cast<DependentAddressSpaceType>(Param); 2160 2161 if (const DependentAddressSpaceType *AddressSpaceArg = 2162 dyn_cast<DependentAddressSpaceType>(Arg)) { 2163 // Perform deduction on the pointer type. 2164 if (Sema::TemplateDeductionResult Result = 2165 DeduceTemplateArgumentsByTypeMatch( 2166 S, TemplateParams, AddressSpaceParam->getPointeeType(), 2167 AddressSpaceArg->getPointeeType(), Info, Deduced, TDF)) 2168 return Result; 2169 2170 // Perform deduction on the address space, if we can. 2171 NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( 2172 Info, AddressSpaceParam->getAddrSpaceExpr()); 2173 if (!NTTP) 2174 return Sema::TDK_Success; 2175 2176 return DeduceNonTypeTemplateArgument( 2177 S, TemplateParams, NTTP, AddressSpaceArg->getAddrSpaceExpr(), Info, 2178 Deduced); 2179 } 2180 2181 if (isTargetAddressSpace(Arg.getAddressSpace())) { 2182 llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy), 2183 false); 2184 ArgAddressSpace = toTargetAddressSpace(Arg.getAddressSpace()); 2185 2186 // Perform deduction on the pointer types. 2187 if (Sema::TemplateDeductionResult Result = 2188 DeduceTemplateArgumentsByTypeMatch( 2189 S, TemplateParams, AddressSpaceParam->getPointeeType(), 2190 S.Context.removeAddrSpaceQualType(Arg), Info, Deduced, TDF)) 2191 return Result; 2192 2193 // Perform deduction on the address space, if we can. 2194 NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( 2195 Info, AddressSpaceParam->getAddrSpaceExpr()); 2196 if (!NTTP) 2197 return Sema::TDK_Success; 2198 2199 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2200 ArgAddressSpace, S.Context.IntTy, 2201 true, Info, Deduced); 2202 } 2203 2204 return Sema::TDK_NonDeducedMismatch; 2205 } 2206 case Type::DependentExtInt: { 2207 const auto *IntParam = cast<DependentExtIntType>(Param); 2208 2209 if (const auto *IntArg = dyn_cast<ExtIntType>(Arg)){ 2210 if (IntParam->isUnsigned() != IntArg->isUnsigned()) 2211 return Sema::TDK_NonDeducedMismatch; 2212 2213 NonTypeTemplateParmDecl *NTTP = 2214 getDeducedParameterFromExpr(Info, IntParam->getNumBitsExpr()); 2215 if (!NTTP) 2216 return Sema::TDK_Success; 2217 2218 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 2219 ArgSize = IntArg->getNumBits(); 2220 2221 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 2222 S.Context.IntTy, true, Info, 2223 Deduced); 2224 } 2225 2226 if (const auto *IntArg = dyn_cast<DependentExtIntType>(Arg)) { 2227 if (IntParam->isUnsigned() != IntArg->isUnsigned()) 2228 return Sema::TDK_NonDeducedMismatch; 2229 return Sema::TDK_Success; 2230 } 2231 return Sema::TDK_NonDeducedMismatch; 2232 } 2233 2234 case Type::TypeOfExpr: 2235 case Type::TypeOf: 2236 case Type::DependentName: 2237 case Type::UnresolvedUsing: 2238 case Type::Decltype: 2239 case Type::UnaryTransform: 2240 case Type::Auto: 2241 case Type::DeducedTemplateSpecialization: 2242 case Type::DependentTemplateSpecialization: 2243 case Type::PackExpansion: 2244 case Type::Pipe: 2245 // No template argument deduction for these types 2246 return Sema::TDK_Success; 2247 } 2248 2249 llvm_unreachable("Invalid Type Class!"); 2250 } 2251 2252 static Sema::TemplateDeductionResult 2253 DeduceTemplateArguments(Sema &S, 2254 TemplateParameterList *TemplateParams, 2255 const TemplateArgument &Param, 2256 TemplateArgument Arg, 2257 TemplateDeductionInfo &Info, 2258 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2259 // If the template argument is a pack expansion, perform template argument 2260 // deduction against the pattern of that expansion. This only occurs during 2261 // partial ordering. 2262 if (Arg.isPackExpansion()) 2263 Arg = Arg.getPackExpansionPattern(); 2264 2265 switch (Param.getKind()) { 2266 case TemplateArgument::Null: 2267 llvm_unreachable("Null template argument in parameter list"); 2268 2269 case TemplateArgument::Type: 2270 if (Arg.getKind() == TemplateArgument::Type) 2271 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 2272 Param.getAsType(), 2273 Arg.getAsType(), 2274 Info, Deduced, 0); 2275 Info.FirstArg = Param; 2276 Info.SecondArg = Arg; 2277 return Sema::TDK_NonDeducedMismatch; 2278 2279 case TemplateArgument::Template: 2280 if (Arg.getKind() == TemplateArgument::Template) 2281 return DeduceTemplateArguments(S, TemplateParams, 2282 Param.getAsTemplate(), 2283 Arg.getAsTemplate(), Info, Deduced); 2284 Info.FirstArg = Param; 2285 Info.SecondArg = Arg; 2286 return Sema::TDK_NonDeducedMismatch; 2287 2288 case TemplateArgument::TemplateExpansion: 2289 llvm_unreachable("caller should handle pack expansions"); 2290 2291 case TemplateArgument::Declaration: 2292 if (Arg.getKind() == TemplateArgument::Declaration && 2293 isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl())) 2294 return Sema::TDK_Success; 2295 2296 Info.FirstArg = Param; 2297 Info.SecondArg = Arg; 2298 return Sema::TDK_NonDeducedMismatch; 2299 2300 case TemplateArgument::NullPtr: 2301 if (Arg.getKind() == TemplateArgument::NullPtr && 2302 S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType())) 2303 return Sema::TDK_Success; 2304 2305 Info.FirstArg = Param; 2306 Info.SecondArg = Arg; 2307 return Sema::TDK_NonDeducedMismatch; 2308 2309 case TemplateArgument::Integral: 2310 if (Arg.getKind() == TemplateArgument::Integral) { 2311 if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral())) 2312 return Sema::TDK_Success; 2313 2314 Info.FirstArg = Param; 2315 Info.SecondArg = Arg; 2316 return Sema::TDK_NonDeducedMismatch; 2317 } 2318 2319 if (Arg.getKind() == TemplateArgument::Expression) { 2320 Info.FirstArg = Param; 2321 Info.SecondArg = Arg; 2322 return Sema::TDK_NonDeducedMismatch; 2323 } 2324 2325 Info.FirstArg = Param; 2326 Info.SecondArg = Arg; 2327 return Sema::TDK_NonDeducedMismatch; 2328 2329 case TemplateArgument::Expression: 2330 if (NonTypeTemplateParmDecl *NTTP 2331 = getDeducedParameterFromExpr(Info, Param.getAsExpr())) { 2332 if (Arg.getKind() == TemplateArgument::Integral) 2333 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2334 Arg.getAsIntegral(), 2335 Arg.getIntegralType(), 2336 /*ArrayBound=*/false, 2337 Info, Deduced); 2338 if (Arg.getKind() == TemplateArgument::NullPtr) 2339 return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP, 2340 Arg.getNullPtrType(), 2341 Info, Deduced); 2342 if (Arg.getKind() == TemplateArgument::Expression) 2343 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2344 Arg.getAsExpr(), Info, Deduced); 2345 if (Arg.getKind() == TemplateArgument::Declaration) 2346 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2347 Arg.getAsDecl(), 2348 Arg.getParamTypeForDecl(), 2349 Info, Deduced); 2350 2351 Info.FirstArg = Param; 2352 Info.SecondArg = Arg; 2353 return Sema::TDK_NonDeducedMismatch; 2354 } 2355 2356 // Can't deduce anything, but that's okay. 2357 return Sema::TDK_Success; 2358 2359 case TemplateArgument::Pack: 2360 llvm_unreachable("Argument packs should be expanded by the caller!"); 2361 } 2362 2363 llvm_unreachable("Invalid TemplateArgument Kind!"); 2364 } 2365 2366 /// Determine whether there is a template argument to be used for 2367 /// deduction. 2368 /// 2369 /// This routine "expands" argument packs in-place, overriding its input 2370 /// parameters so that \c Args[ArgIdx] will be the available template argument. 2371 /// 2372 /// \returns true if there is another template argument (which will be at 2373 /// \c Args[ArgIdx]), false otherwise. 2374 static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args, 2375 unsigned &ArgIdx) { 2376 if (ArgIdx == Args.size()) 2377 return false; 2378 2379 const TemplateArgument &Arg = Args[ArgIdx]; 2380 if (Arg.getKind() != TemplateArgument::Pack) 2381 return true; 2382 2383 assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?"); 2384 Args = Arg.pack_elements(); 2385 ArgIdx = 0; 2386 return ArgIdx < Args.size(); 2387 } 2388 2389 /// Determine whether the given set of template arguments has a pack 2390 /// expansion that is not the last template argument. 2391 static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) { 2392 bool FoundPackExpansion = false; 2393 for (const auto &A : Args) { 2394 if (FoundPackExpansion) 2395 return true; 2396 2397 if (A.getKind() == TemplateArgument::Pack) 2398 return hasPackExpansionBeforeEnd(A.pack_elements()); 2399 2400 // FIXME: If this is a fixed-arity pack expansion from an outer level of 2401 // templates, it should not be treated as a pack expansion. 2402 if (A.isPackExpansion()) 2403 FoundPackExpansion = true; 2404 } 2405 2406 return false; 2407 } 2408 2409 static Sema::TemplateDeductionResult 2410 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 2411 ArrayRef<TemplateArgument> Params, 2412 ArrayRef<TemplateArgument> Args, 2413 TemplateDeductionInfo &Info, 2414 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2415 bool NumberOfArgumentsMustMatch) { 2416 // C++0x [temp.deduct.type]p9: 2417 // If the template argument list of P contains a pack expansion that is not 2418 // the last template argument, the entire template argument list is a 2419 // non-deduced context. 2420 if (hasPackExpansionBeforeEnd(Params)) 2421 return Sema::TDK_Success; 2422 2423 // C++0x [temp.deduct.type]p9: 2424 // If P has a form that contains <T> or <i>, then each argument Pi of the 2425 // respective template argument list P is compared with the corresponding 2426 // argument Ai of the corresponding template argument list of A. 2427 unsigned ArgIdx = 0, ParamIdx = 0; 2428 for (; hasTemplateArgumentForDeduction(Params, ParamIdx); ++ParamIdx) { 2429 if (!Params[ParamIdx].isPackExpansion()) { 2430 // The simple case: deduce template arguments by matching Pi and Ai. 2431 2432 // Check whether we have enough arguments. 2433 if (!hasTemplateArgumentForDeduction(Args, ArgIdx)) 2434 return NumberOfArgumentsMustMatch 2435 ? Sema::TDK_MiscellaneousDeductionFailure 2436 : Sema::TDK_Success; 2437 2438 // C++1z [temp.deduct.type]p9: 2439 // During partial ordering, if Ai was originally a pack expansion [and] 2440 // Pi is not a pack expansion, template argument deduction fails. 2441 if (Args[ArgIdx].isPackExpansion()) 2442 return Sema::TDK_MiscellaneousDeductionFailure; 2443 2444 // Perform deduction for this Pi/Ai pair. 2445 if (Sema::TemplateDeductionResult Result 2446 = DeduceTemplateArguments(S, TemplateParams, 2447 Params[ParamIdx], Args[ArgIdx], 2448 Info, Deduced)) 2449 return Result; 2450 2451 // Move to the next argument. 2452 ++ArgIdx; 2453 continue; 2454 } 2455 2456 // The parameter is a pack expansion. 2457 2458 // C++0x [temp.deduct.type]p9: 2459 // If Pi is a pack expansion, then the pattern of Pi is compared with 2460 // each remaining argument in the template argument list of A. Each 2461 // comparison deduces template arguments for subsequent positions in the 2462 // template parameter packs expanded by Pi. 2463 TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern(); 2464 2465 // Prepare to deduce the packs within the pattern. 2466 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 2467 2468 // Keep track of the deduced template arguments for each parameter pack 2469 // expanded by this pack expansion (the outer index) and for each 2470 // template argument (the inner SmallVectors). 2471 for (; hasTemplateArgumentForDeduction(Args, ArgIdx) && 2472 PackScope.hasNextElement(); 2473 ++ArgIdx) { 2474 // Deduce template arguments from the pattern. 2475 if (Sema::TemplateDeductionResult Result 2476 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx], 2477 Info, Deduced)) 2478 return Result; 2479 2480 PackScope.nextPackElement(); 2481 } 2482 2483 // Build argument packs for each of the parameter packs expanded by this 2484 // pack expansion. 2485 if (auto Result = PackScope.finish()) 2486 return Result; 2487 } 2488 2489 return Sema::TDK_Success; 2490 } 2491 2492 static Sema::TemplateDeductionResult 2493 DeduceTemplateArguments(Sema &S, 2494 TemplateParameterList *TemplateParams, 2495 const TemplateArgumentList &ParamList, 2496 const TemplateArgumentList &ArgList, 2497 TemplateDeductionInfo &Info, 2498 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2499 return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(), 2500 ArgList.asArray(), Info, Deduced, 2501 /*NumberOfArgumentsMustMatch*/false); 2502 } 2503 2504 /// Determine whether two template arguments are the same. 2505 static bool isSameTemplateArg(ASTContext &Context, 2506 TemplateArgument X, 2507 const TemplateArgument &Y, 2508 bool PackExpansionMatchesPack = false) { 2509 // If we're checking deduced arguments (X) against original arguments (Y), 2510 // we will have flattened packs to non-expansions in X. 2511 if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion()) 2512 X = X.getPackExpansionPattern(); 2513 2514 if (X.getKind() != Y.getKind()) 2515 return false; 2516 2517 switch (X.getKind()) { 2518 case TemplateArgument::Null: 2519 llvm_unreachable("Comparing NULL template argument"); 2520 2521 case TemplateArgument::Type: 2522 return Context.getCanonicalType(X.getAsType()) == 2523 Context.getCanonicalType(Y.getAsType()); 2524 2525 case TemplateArgument::Declaration: 2526 return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()); 2527 2528 case TemplateArgument::NullPtr: 2529 return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()); 2530 2531 case TemplateArgument::Template: 2532 case TemplateArgument::TemplateExpansion: 2533 return Context.getCanonicalTemplateName( 2534 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() == 2535 Context.getCanonicalTemplateName( 2536 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer(); 2537 2538 case TemplateArgument::Integral: 2539 return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()); 2540 2541 case TemplateArgument::Expression: { 2542 llvm::FoldingSetNodeID XID, YID; 2543 X.getAsExpr()->Profile(XID, Context, true); 2544 Y.getAsExpr()->Profile(YID, Context, true); 2545 return XID == YID; 2546 } 2547 2548 case TemplateArgument::Pack: 2549 if (X.pack_size() != Y.pack_size()) 2550 return false; 2551 2552 for (TemplateArgument::pack_iterator XP = X.pack_begin(), 2553 XPEnd = X.pack_end(), 2554 YP = Y.pack_begin(); 2555 XP != XPEnd; ++XP, ++YP) 2556 if (!isSameTemplateArg(Context, *XP, *YP, PackExpansionMatchesPack)) 2557 return false; 2558 2559 return true; 2560 } 2561 2562 llvm_unreachable("Invalid TemplateArgument Kind!"); 2563 } 2564 2565 /// Allocate a TemplateArgumentLoc where all locations have 2566 /// been initialized to the given location. 2567 /// 2568 /// \param Arg The template argument we are producing template argument 2569 /// location information for. 2570 /// 2571 /// \param NTTPType For a declaration template argument, the type of 2572 /// the non-type template parameter that corresponds to this template 2573 /// argument. Can be null if no type sugar is available to add to the 2574 /// type from the template argument. 2575 /// 2576 /// \param Loc The source location to use for the resulting template 2577 /// argument. 2578 TemplateArgumentLoc 2579 Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, 2580 QualType NTTPType, SourceLocation Loc) { 2581 switch (Arg.getKind()) { 2582 case TemplateArgument::Null: 2583 llvm_unreachable("Can't get a NULL template argument here"); 2584 2585 case TemplateArgument::Type: 2586 return TemplateArgumentLoc( 2587 Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); 2588 2589 case TemplateArgument::Declaration: { 2590 if (NTTPType.isNull()) 2591 NTTPType = Arg.getParamTypeForDecl(); 2592 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2593 .getAs<Expr>(); 2594 return TemplateArgumentLoc(TemplateArgument(E), E); 2595 } 2596 2597 case TemplateArgument::NullPtr: { 2598 if (NTTPType.isNull()) 2599 NTTPType = Arg.getNullPtrType(); 2600 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2601 .getAs<Expr>(); 2602 return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true), 2603 E); 2604 } 2605 2606 case TemplateArgument::Integral: { 2607 Expr *E = 2608 BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>(); 2609 return TemplateArgumentLoc(TemplateArgument(E), E); 2610 } 2611 2612 case TemplateArgument::Template: 2613 case TemplateArgument::TemplateExpansion: { 2614 NestedNameSpecifierLocBuilder Builder; 2615 TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); 2616 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) 2617 Builder.MakeTrivial(Context, DTN->getQualifier(), Loc); 2618 else if (QualifiedTemplateName *QTN = 2619 Template.getAsQualifiedTemplateName()) 2620 Builder.MakeTrivial(Context, QTN->getQualifier(), Loc); 2621 2622 if (Arg.getKind() == TemplateArgument::Template) 2623 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context), 2624 Loc); 2625 2626 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context), 2627 Loc, Loc); 2628 } 2629 2630 case TemplateArgument::Expression: 2631 return TemplateArgumentLoc(Arg, Arg.getAsExpr()); 2632 2633 case TemplateArgument::Pack: 2634 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); 2635 } 2636 2637 llvm_unreachable("Invalid TemplateArgument Kind!"); 2638 } 2639 2640 TemplateArgumentLoc 2641 Sema::getIdentityTemplateArgumentLoc(NamedDecl *TemplateParm, 2642 SourceLocation Location) { 2643 return getTrivialTemplateArgumentLoc( 2644 Context.getInjectedTemplateArg(TemplateParm), QualType(), Location); 2645 } 2646 2647 /// Convert the given deduced template argument and add it to the set of 2648 /// fully-converted template arguments. 2649 static bool 2650 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param, 2651 DeducedTemplateArgument Arg, 2652 NamedDecl *Template, 2653 TemplateDeductionInfo &Info, 2654 bool IsDeduced, 2655 SmallVectorImpl<TemplateArgument> &Output) { 2656 auto ConvertArg = [&](DeducedTemplateArgument Arg, 2657 unsigned ArgumentPackIndex) { 2658 // Convert the deduced template argument into a template 2659 // argument that we can check, almost as if the user had written 2660 // the template argument explicitly. 2661 TemplateArgumentLoc ArgLoc = 2662 S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation()); 2663 2664 // Check the template argument, converting it as necessary. 2665 return S.CheckTemplateArgument( 2666 Param, ArgLoc, Template, Template->getLocation(), 2667 Template->getSourceRange().getEnd(), ArgumentPackIndex, Output, 2668 IsDeduced 2669 ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound 2670 : Sema::CTAK_Deduced) 2671 : Sema::CTAK_Specified); 2672 }; 2673 2674 if (Arg.getKind() == TemplateArgument::Pack) { 2675 // This is a template argument pack, so check each of its arguments against 2676 // the template parameter. 2677 SmallVector<TemplateArgument, 2> PackedArgsBuilder; 2678 for (const auto &P : Arg.pack_elements()) { 2679 // When converting the deduced template argument, append it to the 2680 // general output list. We need to do this so that the template argument 2681 // checking logic has all of the prior template arguments available. 2682 DeducedTemplateArgument InnerArg(P); 2683 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); 2684 assert(InnerArg.getKind() != TemplateArgument::Pack && 2685 "deduced nested pack"); 2686 if (P.isNull()) { 2687 // We deduced arguments for some elements of this pack, but not for 2688 // all of them. This happens if we get a conditionally-non-deduced 2689 // context in a pack expansion (such as an overload set in one of the 2690 // arguments). 2691 S.Diag(Param->getLocation(), 2692 diag::err_template_arg_deduced_incomplete_pack) 2693 << Arg << Param; 2694 return true; 2695 } 2696 if (ConvertArg(InnerArg, PackedArgsBuilder.size())) 2697 return true; 2698 2699 // Move the converted template argument into our argument pack. 2700 PackedArgsBuilder.push_back(Output.pop_back_val()); 2701 } 2702 2703 // If the pack is empty, we still need to substitute into the parameter 2704 // itself, in case that substitution fails. 2705 if (PackedArgsBuilder.empty()) { 2706 LocalInstantiationScope Scope(S); 2707 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Output); 2708 MultiLevelTemplateArgumentList Args(TemplateArgs); 2709 2710 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2711 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2712 NTTP, Output, 2713 Template->getSourceRange()); 2714 if (Inst.isInvalid() || 2715 S.SubstType(NTTP->getType(), Args, NTTP->getLocation(), 2716 NTTP->getDeclName()).isNull()) 2717 return true; 2718 } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) { 2719 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2720 TTP, Output, 2721 Template->getSourceRange()); 2722 if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args)) 2723 return true; 2724 } 2725 // For type parameters, no substitution is ever required. 2726 } 2727 2728 // Create the resulting argument pack. 2729 Output.push_back( 2730 TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder)); 2731 return false; 2732 } 2733 2734 return ConvertArg(Arg, 0); 2735 } 2736 2737 // FIXME: This should not be a template, but 2738 // ClassTemplatePartialSpecializationDecl sadly does not derive from 2739 // TemplateDecl. 2740 template<typename TemplateDeclT> 2741 static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments( 2742 Sema &S, TemplateDeclT *Template, bool IsDeduced, 2743 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2744 TemplateDeductionInfo &Info, SmallVectorImpl<TemplateArgument> &Builder, 2745 LocalInstantiationScope *CurrentInstantiationScope = nullptr, 2746 unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) { 2747 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2748 2749 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2750 NamedDecl *Param = TemplateParams->getParam(I); 2751 2752 // C++0x [temp.arg.explicit]p3: 2753 // A trailing template parameter pack (14.5.3) not otherwise deduced will 2754 // be deduced to an empty sequence of template arguments. 2755 // FIXME: Where did the word "trailing" come from? 2756 if (Deduced[I].isNull() && Param->isTemplateParameterPack()) { 2757 if (auto Result = 2758 PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish()) 2759 return Result; 2760 } 2761 2762 if (!Deduced[I].isNull()) { 2763 if (I < NumAlreadyConverted) { 2764 // We may have had explicitly-specified template arguments for a 2765 // template parameter pack (that may or may not have been extended 2766 // via additional deduced arguments). 2767 if (Param->isParameterPack() && CurrentInstantiationScope && 2768 CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) { 2769 // Forget the partially-substituted pack; its substitution is now 2770 // complete. 2771 CurrentInstantiationScope->ResetPartiallySubstitutedPack(); 2772 // We still need to check the argument in case it was extended by 2773 // deduction. 2774 } else { 2775 // We have already fully type-checked and converted this 2776 // argument, because it was explicitly-specified. Just record the 2777 // presence of this argument. 2778 Builder.push_back(Deduced[I]); 2779 continue; 2780 } 2781 } 2782 2783 // We may have deduced this argument, so it still needs to be 2784 // checked and converted. 2785 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info, 2786 IsDeduced, Builder)) { 2787 Info.Param = makeTemplateParameter(Param); 2788 // FIXME: These template arguments are temporary. Free them! 2789 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); 2790 return Sema::TDK_SubstitutionFailure; 2791 } 2792 2793 continue; 2794 } 2795 2796 // Substitute into the default template argument, if available. 2797 bool HasDefaultArg = false; 2798 TemplateDecl *TD = dyn_cast<TemplateDecl>(Template); 2799 if (!TD) { 2800 assert(isa<ClassTemplatePartialSpecializationDecl>(Template) || 2801 isa<VarTemplatePartialSpecializationDecl>(Template)); 2802 return Sema::TDK_Incomplete; 2803 } 2804 2805 TemplateArgumentLoc DefArg = S.SubstDefaultTemplateArgumentIfAvailable( 2806 TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, Builder, 2807 HasDefaultArg); 2808 2809 // If there was no default argument, deduction is incomplete. 2810 if (DefArg.getArgument().isNull()) { 2811 Info.Param = makeTemplateParameter( 2812 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2813 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); 2814 if (PartialOverloading) break; 2815 2816 return HasDefaultArg ? Sema::TDK_SubstitutionFailure 2817 : Sema::TDK_Incomplete; 2818 } 2819 2820 // Check whether we can actually use the default argument. 2821 if (S.CheckTemplateArgument(Param, DefArg, TD, TD->getLocation(), 2822 TD->getSourceRange().getEnd(), 0, Builder, 2823 Sema::CTAK_Specified)) { 2824 Info.Param = makeTemplateParameter( 2825 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2826 // FIXME: These template arguments are temporary. Free them! 2827 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); 2828 return Sema::TDK_SubstitutionFailure; 2829 } 2830 2831 // If we get here, we successfully used the default template argument. 2832 } 2833 2834 return Sema::TDK_Success; 2835 } 2836 2837 static DeclContext *getAsDeclContextOrEnclosing(Decl *D) { 2838 if (auto *DC = dyn_cast<DeclContext>(D)) 2839 return DC; 2840 return D->getDeclContext(); 2841 } 2842 2843 template<typename T> struct IsPartialSpecialization { 2844 static constexpr bool value = false; 2845 }; 2846 template<> 2847 struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> { 2848 static constexpr bool value = true; 2849 }; 2850 template<> 2851 struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> { 2852 static constexpr bool value = true; 2853 }; 2854 2855 template<typename TemplateDeclT> 2856 static Sema::TemplateDeductionResult 2857 CheckDeducedArgumentConstraints(Sema& S, TemplateDeclT *Template, 2858 ArrayRef<TemplateArgument> DeducedArgs, 2859 TemplateDeductionInfo& Info) { 2860 llvm::SmallVector<const Expr *, 3> AssociatedConstraints; 2861 Template->getAssociatedConstraints(AssociatedConstraints); 2862 if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints, 2863 DeducedArgs, Info.getLocation(), 2864 Info.AssociatedConstraintsSatisfaction) || 2865 !Info.AssociatedConstraintsSatisfaction.IsSatisfied) { 2866 Info.reset(TemplateArgumentList::CreateCopy(S.Context, DeducedArgs)); 2867 return Sema::TDK_ConstraintsNotSatisfied; 2868 } 2869 return Sema::TDK_Success; 2870 } 2871 2872 /// Complete template argument deduction for a partial specialization. 2873 template <typename T> 2874 static std::enable_if_t<IsPartialSpecialization<T>::value, 2875 Sema::TemplateDeductionResult> 2876 FinishTemplateArgumentDeduction( 2877 Sema &S, T *Partial, bool IsPartialOrdering, 2878 const TemplateArgumentList &TemplateArgs, 2879 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2880 TemplateDeductionInfo &Info) { 2881 // Unevaluated SFINAE context. 2882 EnterExpressionEvaluationContext Unevaluated( 2883 S, Sema::ExpressionEvaluationContext::Unevaluated); 2884 Sema::SFINAETrap Trap(S); 2885 2886 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial)); 2887 2888 // C++ [temp.deduct.type]p2: 2889 // [...] or if any template argument remains neither deduced nor 2890 // explicitly specified, template argument deduction fails. 2891 SmallVector<TemplateArgument, 4> Builder; 2892 if (auto Result = ConvertDeducedTemplateArguments( 2893 S, Partial, IsPartialOrdering, Deduced, Info, Builder)) 2894 return Result; 2895 2896 // Form the template argument list from the deduced template arguments. 2897 TemplateArgumentList *DeducedArgumentList 2898 = TemplateArgumentList::CreateCopy(S.Context, Builder); 2899 2900 Info.reset(DeducedArgumentList); 2901 2902 // Substitute the deduced template arguments into the template 2903 // arguments of the class template partial specialization, and 2904 // verify that the instantiated template arguments are both valid 2905 // and are equivalent to the template arguments originally provided 2906 // to the class template. 2907 LocalInstantiationScope InstScope(S); 2908 auto *Template = Partial->getSpecializedTemplate(); 2909 const ASTTemplateArgumentListInfo *PartialTemplArgInfo = 2910 Partial->getTemplateArgsAsWritten(); 2911 const TemplateArgumentLoc *PartialTemplateArgs = 2912 PartialTemplArgInfo->getTemplateArgs(); 2913 2914 TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc, 2915 PartialTemplArgInfo->RAngleLoc); 2916 2917 if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs, 2918 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) { 2919 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; 2920 if (ParamIdx >= Partial->getTemplateParameters()->size()) 2921 ParamIdx = Partial->getTemplateParameters()->size() - 1; 2922 2923 Decl *Param = const_cast<NamedDecl *>( 2924 Partial->getTemplateParameters()->getParam(ParamIdx)); 2925 Info.Param = makeTemplateParameter(Param); 2926 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument(); 2927 return Sema::TDK_SubstitutionFailure; 2928 } 2929 2930 bool ConstraintsNotSatisfied; 2931 SmallVector<TemplateArgument, 4> ConvertedInstArgs; 2932 if (S.CheckTemplateArgumentList(Template, Partial->getLocation(), InstArgs, 2933 false, ConvertedInstArgs, 2934 /*UpdateArgsWithConversions=*/true, 2935 &ConstraintsNotSatisfied)) 2936 return ConstraintsNotSatisfied ? Sema::TDK_ConstraintsNotSatisfied : 2937 Sema::TDK_SubstitutionFailure; 2938 2939 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2940 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 2941 TemplateArgument InstArg = ConvertedInstArgs.data()[I]; 2942 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) { 2943 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 2944 Info.FirstArg = TemplateArgs[I]; 2945 Info.SecondArg = InstArg; 2946 return Sema::TDK_NonDeducedMismatch; 2947 } 2948 } 2949 2950 if (Trap.hasErrorOccurred()) 2951 return Sema::TDK_SubstitutionFailure; 2952 2953 if (auto Result = CheckDeducedArgumentConstraints(S, Partial, Builder, Info)) 2954 return Result; 2955 2956 return Sema::TDK_Success; 2957 } 2958 2959 /// Complete template argument deduction for a class or variable template, 2960 /// when partial ordering against a partial specialization. 2961 // FIXME: Factor out duplication with partial specialization version above. 2962 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction( 2963 Sema &S, TemplateDecl *Template, bool PartialOrdering, 2964 const TemplateArgumentList &TemplateArgs, 2965 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2966 TemplateDeductionInfo &Info) { 2967 // Unevaluated SFINAE context. 2968 EnterExpressionEvaluationContext Unevaluated( 2969 S, Sema::ExpressionEvaluationContext::Unevaluated); 2970 Sema::SFINAETrap Trap(S); 2971 2972 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template)); 2973 2974 // C++ [temp.deduct.type]p2: 2975 // [...] or if any template argument remains neither deduced nor 2976 // explicitly specified, template argument deduction fails. 2977 SmallVector<TemplateArgument, 4> Builder; 2978 if (auto Result = ConvertDeducedTemplateArguments( 2979 S, Template, /*IsDeduced*/PartialOrdering, Deduced, Info, Builder)) 2980 return Result; 2981 2982 // Check that we produced the correct argument list. 2983 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2984 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 2985 TemplateArgument InstArg = Builder[I]; 2986 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, 2987 /*PackExpansionMatchesPack*/true)) { 2988 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 2989 Info.FirstArg = TemplateArgs[I]; 2990 Info.SecondArg = InstArg; 2991 return Sema::TDK_NonDeducedMismatch; 2992 } 2993 } 2994 2995 if (Trap.hasErrorOccurred()) 2996 return Sema::TDK_SubstitutionFailure; 2997 2998 if (auto Result = CheckDeducedArgumentConstraints(S, Template, Builder, 2999 Info)) 3000 return Result; 3001 3002 return Sema::TDK_Success; 3003 } 3004 3005 /// Perform template argument deduction to determine whether 3006 /// the given template arguments match the given class template 3007 /// partial specialization per C++ [temp.class.spec.match]. 3008 Sema::TemplateDeductionResult 3009 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, 3010 const TemplateArgumentList &TemplateArgs, 3011 TemplateDeductionInfo &Info) { 3012 if (Partial->isInvalidDecl()) 3013 return TDK_Invalid; 3014 3015 // C++ [temp.class.spec.match]p2: 3016 // A partial specialization matches a given actual template 3017 // argument list if the template arguments of the partial 3018 // specialization can be deduced from the actual template argument 3019 // list (14.8.2). 3020 3021 // Unevaluated SFINAE context. 3022 EnterExpressionEvaluationContext Unevaluated( 3023 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3024 SFINAETrap Trap(*this); 3025 3026 SmallVector<DeducedTemplateArgument, 4> Deduced; 3027 Deduced.resize(Partial->getTemplateParameters()->size()); 3028 if (TemplateDeductionResult Result 3029 = ::DeduceTemplateArguments(*this, 3030 Partial->getTemplateParameters(), 3031 Partial->getTemplateArgs(), 3032 TemplateArgs, Info, Deduced)) 3033 return Result; 3034 3035 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3036 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 3037 Info); 3038 if (Inst.isInvalid()) 3039 return TDK_InstantiationDepth; 3040 3041 if (Trap.hasErrorOccurred()) 3042 return Sema::TDK_SubstitutionFailure; 3043 3044 TemplateDeductionResult Result; 3045 runWithSufficientStackSpace(Info.getLocation(), [&] { 3046 Result = ::FinishTemplateArgumentDeduction(*this, Partial, 3047 /*IsPartialOrdering=*/false, 3048 TemplateArgs, Deduced, Info); 3049 }); 3050 return Result; 3051 } 3052 3053 /// Perform template argument deduction to determine whether 3054 /// the given template arguments match the given variable template 3055 /// partial specialization per C++ [temp.class.spec.match]. 3056 Sema::TemplateDeductionResult 3057 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, 3058 const TemplateArgumentList &TemplateArgs, 3059 TemplateDeductionInfo &Info) { 3060 if (Partial->isInvalidDecl()) 3061 return TDK_Invalid; 3062 3063 // C++ [temp.class.spec.match]p2: 3064 // A partial specialization matches a given actual template 3065 // argument list if the template arguments of the partial 3066 // specialization can be deduced from the actual template argument 3067 // list (14.8.2). 3068 3069 // Unevaluated SFINAE context. 3070 EnterExpressionEvaluationContext Unevaluated( 3071 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3072 SFINAETrap Trap(*this); 3073 3074 SmallVector<DeducedTemplateArgument, 4> Deduced; 3075 Deduced.resize(Partial->getTemplateParameters()->size()); 3076 if (TemplateDeductionResult Result = ::DeduceTemplateArguments( 3077 *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(), 3078 TemplateArgs, Info, Deduced)) 3079 return Result; 3080 3081 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3082 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 3083 Info); 3084 if (Inst.isInvalid()) 3085 return TDK_InstantiationDepth; 3086 3087 if (Trap.hasErrorOccurred()) 3088 return Sema::TDK_SubstitutionFailure; 3089 3090 TemplateDeductionResult Result; 3091 runWithSufficientStackSpace(Info.getLocation(), [&] { 3092 Result = ::FinishTemplateArgumentDeduction(*this, Partial, 3093 /*IsPartialOrdering=*/false, 3094 TemplateArgs, Deduced, Info); 3095 }); 3096 return Result; 3097 } 3098 3099 /// Determine whether the given type T is a simple-template-id type. 3100 static bool isSimpleTemplateIdType(QualType T) { 3101 if (const TemplateSpecializationType *Spec 3102 = T->getAs<TemplateSpecializationType>()) 3103 return Spec->getTemplateName().getAsTemplateDecl() != nullptr; 3104 3105 // C++17 [temp.local]p2: 3106 // the injected-class-name [...] is equivalent to the template-name followed 3107 // by the template-arguments of the class template specialization or partial 3108 // specialization enclosed in <> 3109 // ... which means it's equivalent to a simple-template-id. 3110 // 3111 // This only arises during class template argument deduction for a copy 3112 // deduction candidate, where it permits slicing. 3113 if (T->getAs<InjectedClassNameType>()) 3114 return true; 3115 3116 return false; 3117 } 3118 3119 /// Substitute the explicitly-provided template arguments into the 3120 /// given function template according to C++ [temp.arg.explicit]. 3121 /// 3122 /// \param FunctionTemplate the function template into which the explicit 3123 /// template arguments will be substituted. 3124 /// 3125 /// \param ExplicitTemplateArgs the explicitly-specified template 3126 /// arguments. 3127 /// 3128 /// \param Deduced the deduced template arguments, which will be populated 3129 /// with the converted and checked explicit template arguments. 3130 /// 3131 /// \param ParamTypes will be populated with the instantiated function 3132 /// parameters. 3133 /// 3134 /// \param FunctionType if non-NULL, the result type of the function template 3135 /// will also be instantiated and the pointed-to value will be updated with 3136 /// the instantiated function type. 3137 /// 3138 /// \param Info if substitution fails for any reason, this object will be 3139 /// populated with more information about the failure. 3140 /// 3141 /// \returns TDK_Success if substitution was successful, or some failure 3142 /// condition. 3143 Sema::TemplateDeductionResult 3144 Sema::SubstituteExplicitTemplateArguments( 3145 FunctionTemplateDecl *FunctionTemplate, 3146 TemplateArgumentListInfo &ExplicitTemplateArgs, 3147 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3148 SmallVectorImpl<QualType> &ParamTypes, 3149 QualType *FunctionType, 3150 TemplateDeductionInfo &Info) { 3151 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 3152 TemplateParameterList *TemplateParams 3153 = FunctionTemplate->getTemplateParameters(); 3154 3155 if (ExplicitTemplateArgs.size() == 0) { 3156 // No arguments to substitute; just copy over the parameter types and 3157 // fill in the function type. 3158 for (auto P : Function->parameters()) 3159 ParamTypes.push_back(P->getType()); 3160 3161 if (FunctionType) 3162 *FunctionType = Function->getType(); 3163 return TDK_Success; 3164 } 3165 3166 // Unevaluated SFINAE context. 3167 EnterExpressionEvaluationContext Unevaluated( 3168 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3169 SFINAETrap Trap(*this); 3170 3171 // C++ [temp.arg.explicit]p3: 3172 // Template arguments that are present shall be specified in the 3173 // declaration order of their corresponding template-parameters. The 3174 // template argument list shall not specify more template-arguments than 3175 // there are corresponding template-parameters. 3176 SmallVector<TemplateArgument, 4> Builder; 3177 3178 // Enter a new template instantiation context where we check the 3179 // explicitly-specified template arguments against this function template, 3180 // and then substitute them into the function parameter types. 3181 SmallVector<TemplateArgument, 4> DeducedArgs; 3182 InstantiatingTemplate Inst( 3183 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3184 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); 3185 if (Inst.isInvalid()) 3186 return TDK_InstantiationDepth; 3187 3188 if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(), 3189 ExplicitTemplateArgs, true, Builder, false) || 3190 Trap.hasErrorOccurred()) { 3191 unsigned Index = Builder.size(); 3192 if (Index >= TemplateParams->size()) 3193 return TDK_SubstitutionFailure; 3194 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index)); 3195 return TDK_InvalidExplicitArguments; 3196 } 3197 3198 // Form the template argument list from the explicitly-specified 3199 // template arguments. 3200 TemplateArgumentList *ExplicitArgumentList 3201 = TemplateArgumentList::CreateCopy(Context, Builder); 3202 Info.setExplicitArgs(ExplicitArgumentList); 3203 3204 // Template argument deduction and the final substitution should be 3205 // done in the context of the templated declaration. Explicit 3206 // argument substitution, on the other hand, needs to happen in the 3207 // calling context. 3208 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3209 3210 // If we deduced template arguments for a template parameter pack, 3211 // note that the template argument pack is partially substituted and record 3212 // the explicit template arguments. They'll be used as part of deduction 3213 // for this template parameter pack. 3214 unsigned PartiallySubstitutedPackIndex = -1u; 3215 if (!Builder.empty()) { 3216 const TemplateArgument &Arg = Builder.back(); 3217 if (Arg.getKind() == TemplateArgument::Pack) { 3218 auto *Param = TemplateParams->getParam(Builder.size() - 1); 3219 // If this is a fully-saturated fixed-size pack, it should be 3220 // fully-substituted, not partially-substituted. 3221 Optional<unsigned> Expansions = getExpandedPackSize(Param); 3222 if (!Expansions || Arg.pack_size() < *Expansions) { 3223 PartiallySubstitutedPackIndex = Builder.size() - 1; 3224 CurrentInstantiationScope->SetPartiallySubstitutedPack( 3225 Param, Arg.pack_begin(), Arg.pack_size()); 3226 } 3227 } 3228 } 3229 3230 const FunctionProtoType *Proto 3231 = Function->getType()->getAs<FunctionProtoType>(); 3232 assert(Proto && "Function template does not have a prototype?"); 3233 3234 // Isolate our substituted parameters from our caller. 3235 LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true); 3236 3237 ExtParameterInfoBuilder ExtParamInfos; 3238 3239 // Instantiate the types of each of the function parameters given the 3240 // explicitly-specified template arguments. If the function has a trailing 3241 // return type, substitute it after the arguments to ensure we substitute 3242 // in lexical order. 3243 if (Proto->hasTrailingReturn()) { 3244 if (SubstParmTypes(Function->getLocation(), Function->parameters(), 3245 Proto->getExtParameterInfosOrNull(), 3246 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 3247 ParamTypes, /*params*/ nullptr, ExtParamInfos)) 3248 return TDK_SubstitutionFailure; 3249 } 3250 3251 // Instantiate the return type. 3252 QualType ResultType; 3253 { 3254 // C++11 [expr.prim.general]p3: 3255 // If a declaration declares a member function or member function 3256 // template of a class X, the expression this is a prvalue of type 3257 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq 3258 // and the end of the function-definition, member-declarator, or 3259 // declarator. 3260 Qualifiers ThisTypeQuals; 3261 CXXRecordDecl *ThisContext = nullptr; 3262 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3263 ThisContext = Method->getParent(); 3264 ThisTypeQuals = Method->getMethodQualifiers(); 3265 } 3266 3267 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals, 3268 getLangOpts().CPlusPlus11); 3269 3270 ResultType = 3271 SubstType(Proto->getReturnType(), 3272 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 3273 Function->getTypeSpecStartLoc(), Function->getDeclName()); 3274 if (ResultType.isNull() || Trap.hasErrorOccurred()) 3275 return TDK_SubstitutionFailure; 3276 // CUDA: Kernel function must have 'void' return type. 3277 if (getLangOpts().CUDA) 3278 if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) { 3279 Diag(Function->getLocation(), diag::err_kern_type_not_void_return) 3280 << Function->getType() << Function->getSourceRange(); 3281 return TDK_SubstitutionFailure; 3282 } 3283 } 3284 3285 // Instantiate the types of each of the function parameters given the 3286 // explicitly-specified template arguments if we didn't do so earlier. 3287 if (!Proto->hasTrailingReturn() && 3288 SubstParmTypes(Function->getLocation(), Function->parameters(), 3289 Proto->getExtParameterInfosOrNull(), 3290 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 3291 ParamTypes, /*params*/ nullptr, ExtParamInfos)) 3292 return TDK_SubstitutionFailure; 3293 3294 if (FunctionType) { 3295 auto EPI = Proto->getExtProtoInfo(); 3296 EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size()); 3297 3298 // In C++1z onwards, exception specifications are part of the function type, 3299 // so substitution into the type must also substitute into the exception 3300 // specification. 3301 SmallVector<QualType, 4> ExceptionStorage; 3302 if (getLangOpts().CPlusPlus17 && 3303 SubstExceptionSpec( 3304 Function->getLocation(), EPI.ExceptionSpec, ExceptionStorage, 3305 MultiLevelTemplateArgumentList(*ExplicitArgumentList))) 3306 return TDK_SubstitutionFailure; 3307 3308 *FunctionType = BuildFunctionType(ResultType, ParamTypes, 3309 Function->getLocation(), 3310 Function->getDeclName(), 3311 EPI); 3312 if (FunctionType->isNull() || Trap.hasErrorOccurred()) 3313 return TDK_SubstitutionFailure; 3314 } 3315 3316 // C++ [temp.arg.explicit]p2: 3317 // Trailing template arguments that can be deduced (14.8.2) may be 3318 // omitted from the list of explicit template-arguments. If all of the 3319 // template arguments can be deduced, they may all be omitted; in this 3320 // case, the empty template argument list <> itself may also be omitted. 3321 // 3322 // Take all of the explicitly-specified arguments and put them into 3323 // the set of deduced template arguments. The partially-substituted 3324 // parameter pack, however, will be set to NULL since the deduction 3325 // mechanism handles the partially-substituted argument pack directly. 3326 Deduced.reserve(TemplateParams->size()); 3327 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) { 3328 const TemplateArgument &Arg = ExplicitArgumentList->get(I); 3329 if (I == PartiallySubstitutedPackIndex) 3330 Deduced.push_back(DeducedTemplateArgument()); 3331 else 3332 Deduced.push_back(Arg); 3333 } 3334 3335 return TDK_Success; 3336 } 3337 3338 /// Check whether the deduced argument type for a call to a function 3339 /// template matches the actual argument type per C++ [temp.deduct.call]p4. 3340 static Sema::TemplateDeductionResult 3341 CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info, 3342 Sema::OriginalCallArg OriginalArg, 3343 QualType DeducedA) { 3344 ASTContext &Context = S.Context; 3345 3346 auto Failed = [&]() -> Sema::TemplateDeductionResult { 3347 Info.FirstArg = TemplateArgument(DeducedA); 3348 Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType); 3349 Info.CallArgIndex = OriginalArg.ArgIdx; 3350 return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested 3351 : Sema::TDK_DeducedMismatch; 3352 }; 3353 3354 QualType A = OriginalArg.OriginalArgType; 3355 QualType OriginalParamType = OriginalArg.OriginalParamType; 3356 3357 // Check for type equality (top-level cv-qualifiers are ignored). 3358 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3359 return Sema::TDK_Success; 3360 3361 // Strip off references on the argument types; they aren't needed for 3362 // the following checks. 3363 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>()) 3364 DeducedA = DeducedARef->getPointeeType(); 3365 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) 3366 A = ARef->getPointeeType(); 3367 3368 // C++ [temp.deduct.call]p4: 3369 // [...] However, there are three cases that allow a difference: 3370 // - If the original P is a reference type, the deduced A (i.e., the 3371 // type referred to by the reference) can be more cv-qualified than 3372 // the transformed A. 3373 if (const ReferenceType *OriginalParamRef 3374 = OriginalParamType->getAs<ReferenceType>()) { 3375 // We don't want to keep the reference around any more. 3376 OriginalParamType = OriginalParamRef->getPointeeType(); 3377 3378 // FIXME: Resolve core issue (no number yet): if the original P is a 3379 // reference type and the transformed A is function type "noexcept F", 3380 // the deduced A can be F. 3381 QualType Tmp; 3382 if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp)) 3383 return Sema::TDK_Success; 3384 3385 Qualifiers AQuals = A.getQualifiers(); 3386 Qualifiers DeducedAQuals = DeducedA.getQualifiers(); 3387 3388 // Under Objective-C++ ARC, the deduced type may have implicitly 3389 // been given strong or (when dealing with a const reference) 3390 // unsafe_unretained lifetime. If so, update the original 3391 // qualifiers to include this lifetime. 3392 if (S.getLangOpts().ObjCAutoRefCount && 3393 ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong && 3394 AQuals.getObjCLifetime() == Qualifiers::OCL_None) || 3395 (DeducedAQuals.hasConst() && 3396 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) { 3397 AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime()); 3398 } 3399 3400 if (AQuals == DeducedAQuals) { 3401 // Qualifiers match; there's nothing to do. 3402 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) { 3403 return Failed(); 3404 } else { 3405 // Qualifiers are compatible, so have the argument type adopt the 3406 // deduced argument type's qualifiers as if we had performed the 3407 // qualification conversion. 3408 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals); 3409 } 3410 } 3411 3412 // - The transformed A can be another pointer or pointer to member 3413 // type that can be converted to the deduced A via a function pointer 3414 // conversion and/or a qualification conversion. 3415 // 3416 // Also allow conversions which merely strip __attribute__((noreturn)) from 3417 // function types (recursively). 3418 bool ObjCLifetimeConversion = false; 3419 QualType ResultTy; 3420 if ((A->isAnyPointerType() || A->isMemberPointerType()) && 3421 (S.IsQualificationConversion(A, DeducedA, false, 3422 ObjCLifetimeConversion) || 3423 S.IsFunctionConversion(A, DeducedA, ResultTy))) 3424 return Sema::TDK_Success; 3425 3426 // - If P is a class and P has the form simple-template-id, then the 3427 // transformed A can be a derived class of the deduced A. [...] 3428 // [...] Likewise, if P is a pointer to a class of the form 3429 // simple-template-id, the transformed A can be a pointer to a 3430 // derived class pointed to by the deduced A. 3431 if (const PointerType *OriginalParamPtr 3432 = OriginalParamType->getAs<PointerType>()) { 3433 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) { 3434 if (const PointerType *APtr = A->getAs<PointerType>()) { 3435 if (A->getPointeeType()->isRecordType()) { 3436 OriginalParamType = OriginalParamPtr->getPointeeType(); 3437 DeducedA = DeducedAPtr->getPointeeType(); 3438 A = APtr->getPointeeType(); 3439 } 3440 } 3441 } 3442 } 3443 3444 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3445 return Sema::TDK_Success; 3446 3447 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) && 3448 S.IsDerivedFrom(Info.getLocation(), A, DeducedA)) 3449 return Sema::TDK_Success; 3450 3451 return Failed(); 3452 } 3453 3454 /// Find the pack index for a particular parameter index in an instantiation of 3455 /// a function template with specific arguments. 3456 /// 3457 /// \return The pack index for whichever pack produced this parameter, or -1 3458 /// if this was not produced by a parameter. Intended to be used as the 3459 /// ArgumentPackSubstitutionIndex for further substitutions. 3460 // FIXME: We should track this in OriginalCallArgs so we don't need to 3461 // reconstruct it here. 3462 static unsigned getPackIndexForParam(Sema &S, 3463 FunctionTemplateDecl *FunctionTemplate, 3464 const MultiLevelTemplateArgumentList &Args, 3465 unsigned ParamIdx) { 3466 unsigned Idx = 0; 3467 for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) { 3468 if (PD->isParameterPack()) { 3469 unsigned NumExpansions = 3470 S.getNumArgumentsInExpansion(PD->getType(), Args).getValueOr(1); 3471 if (Idx + NumExpansions > ParamIdx) 3472 return ParamIdx - Idx; 3473 Idx += NumExpansions; 3474 } else { 3475 if (Idx == ParamIdx) 3476 return -1; // Not a pack expansion 3477 ++Idx; 3478 } 3479 } 3480 3481 llvm_unreachable("parameter index would not be produced from template"); 3482 } 3483 3484 /// Finish template argument deduction for a function template, 3485 /// checking the deduced template arguments for completeness and forming 3486 /// the function template specialization. 3487 /// 3488 /// \param OriginalCallArgs If non-NULL, the original call arguments against 3489 /// which the deduced argument types should be compared. 3490 Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction( 3491 FunctionTemplateDecl *FunctionTemplate, 3492 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3493 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, 3494 TemplateDeductionInfo &Info, 3495 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs, 3496 bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) { 3497 // Unevaluated SFINAE context. 3498 EnterExpressionEvaluationContext Unevaluated( 3499 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3500 SFINAETrap Trap(*this); 3501 3502 // Enter a new template instantiation context while we instantiate the 3503 // actual function declaration. 3504 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3505 InstantiatingTemplate Inst( 3506 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3507 CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); 3508 if (Inst.isInvalid()) 3509 return TDK_InstantiationDepth; 3510 3511 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3512 3513 // C++ [temp.deduct.type]p2: 3514 // [...] or if any template argument remains neither deduced nor 3515 // explicitly specified, template argument deduction fails. 3516 SmallVector<TemplateArgument, 4> Builder; 3517 if (auto Result = ConvertDeducedTemplateArguments( 3518 *this, FunctionTemplate, /*IsDeduced*/true, Deduced, Info, Builder, 3519 CurrentInstantiationScope, NumExplicitlySpecified, 3520 PartialOverloading)) 3521 return Result; 3522 3523 // C++ [temp.deduct.call]p10: [DR1391] 3524 // If deduction succeeds for all parameters that contain 3525 // template-parameters that participate in template argument deduction, 3526 // and all template arguments are explicitly specified, deduced, or 3527 // obtained from default template arguments, remaining parameters are then 3528 // compared with the corresponding arguments. For each remaining parameter 3529 // P with a type that was non-dependent before substitution of any 3530 // explicitly-specified template arguments, if the corresponding argument 3531 // A cannot be implicitly converted to P, deduction fails. 3532 if (CheckNonDependent()) 3533 return TDK_NonDependentConversionFailure; 3534 3535 // Form the template argument list from the deduced template arguments. 3536 TemplateArgumentList *DeducedArgumentList 3537 = TemplateArgumentList::CreateCopy(Context, Builder); 3538 Info.reset(DeducedArgumentList); 3539 3540 // Substitute the deduced template arguments into the function template 3541 // declaration to produce the function template specialization. 3542 DeclContext *Owner = FunctionTemplate->getDeclContext(); 3543 if (FunctionTemplate->getFriendObjectKind()) 3544 Owner = FunctionTemplate->getLexicalDeclContext(); 3545 MultiLevelTemplateArgumentList SubstArgs(*DeducedArgumentList); 3546 Specialization = cast_or_null<FunctionDecl>( 3547 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, SubstArgs)); 3548 if (!Specialization || Specialization->isInvalidDecl()) 3549 return TDK_SubstitutionFailure; 3550 3551 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() == 3552 FunctionTemplate->getCanonicalDecl()); 3553 3554 // If the template argument list is owned by the function template 3555 // specialization, release it. 3556 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList && 3557 !Trap.hasErrorOccurred()) 3558 Info.take(); 3559 3560 // There may have been an error that did not prevent us from constructing a 3561 // declaration. Mark the declaration invalid and return with a substitution 3562 // failure. 3563 if (Trap.hasErrorOccurred()) { 3564 Specialization->setInvalidDecl(true); 3565 return TDK_SubstitutionFailure; 3566 } 3567 3568 // C++2a [temp.deduct]p5 3569 // [...] When all template arguments have been deduced [...] all uses of 3570 // template parameters [...] are replaced with the corresponding deduced 3571 // or default argument values. 3572 // [...] If the function template has associated constraints 3573 // ([temp.constr.decl]), those constraints are checked for satisfaction 3574 // ([temp.constr.constr]). If the constraints are not satisfied, type 3575 // deduction fails. 3576 if (!PartialOverloading || 3577 (Builder.size() == FunctionTemplate->getTemplateParameters()->size())) { 3578 if (CheckInstantiatedFunctionTemplateConstraints(Info.getLocation(), 3579 Specialization, Builder, Info.AssociatedConstraintsSatisfaction)) 3580 return TDK_MiscellaneousDeductionFailure; 3581 3582 if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) { 3583 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder)); 3584 return TDK_ConstraintsNotSatisfied; 3585 } 3586 } 3587 3588 if (OriginalCallArgs) { 3589 // C++ [temp.deduct.call]p4: 3590 // In general, the deduction process attempts to find template argument 3591 // values that will make the deduced A identical to A (after the type A 3592 // is transformed as described above). [...] 3593 llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes; 3594 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) { 3595 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I]; 3596 3597 auto ParamIdx = OriginalArg.ArgIdx; 3598 if (ParamIdx >= Specialization->getNumParams()) 3599 // FIXME: This presumably means a pack ended up smaller than we 3600 // expected while deducing. Should this not result in deduction 3601 // failure? Can it even happen? 3602 continue; 3603 3604 QualType DeducedA; 3605 if (!OriginalArg.DecomposedParam) { 3606 // P is one of the function parameters, just look up its substituted 3607 // type. 3608 DeducedA = Specialization->getParamDecl(ParamIdx)->getType(); 3609 } else { 3610 // P is a decomposed element of a parameter corresponding to a 3611 // braced-init-list argument. Substitute back into P to find the 3612 // deduced A. 3613 QualType &CacheEntry = 3614 DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}]; 3615 if (CacheEntry.isNull()) { 3616 ArgumentPackSubstitutionIndexRAII PackIndex( 3617 *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs, 3618 ParamIdx)); 3619 CacheEntry = 3620 SubstType(OriginalArg.OriginalParamType, SubstArgs, 3621 Specialization->getTypeSpecStartLoc(), 3622 Specialization->getDeclName()); 3623 } 3624 DeducedA = CacheEntry; 3625 } 3626 3627 if (auto TDK = 3628 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) 3629 return TDK; 3630 } 3631 } 3632 3633 // If we suppressed any diagnostics while performing template argument 3634 // deduction, and if we haven't already instantiated this declaration, 3635 // keep track of these diagnostics. They'll be emitted if this specialization 3636 // is actually used. 3637 if (Info.diag_begin() != Info.diag_end()) { 3638 SuppressedDiagnosticsMap::iterator 3639 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl()); 3640 if (Pos == SuppressedDiagnostics.end()) 3641 SuppressedDiagnostics[Specialization->getCanonicalDecl()] 3642 .append(Info.diag_begin(), Info.diag_end()); 3643 } 3644 3645 return TDK_Success; 3646 } 3647 3648 /// Gets the type of a function for template-argument-deducton 3649 /// purposes when it's considered as part of an overload set. 3650 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R, 3651 FunctionDecl *Fn) { 3652 // We may need to deduce the return type of the function now. 3653 if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() && 3654 S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false)) 3655 return {}; 3656 3657 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 3658 if (Method->isInstance()) { 3659 // An instance method that's referenced in a form that doesn't 3660 // look like a member pointer is just invalid. 3661 if (!R.HasFormOfMemberPointer) 3662 return {}; 3663 3664 return S.Context.getMemberPointerType(Fn->getType(), 3665 S.Context.getTypeDeclType(Method->getParent()).getTypePtr()); 3666 } 3667 3668 if (!R.IsAddressOfOperand) return Fn->getType(); 3669 return S.Context.getPointerType(Fn->getType()); 3670 } 3671 3672 /// Apply the deduction rules for overload sets. 3673 /// 3674 /// \return the null type if this argument should be treated as an 3675 /// undeduced context 3676 static QualType 3677 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, 3678 Expr *Arg, QualType ParamType, 3679 bool ParamWasReference) { 3680 3681 OverloadExpr::FindResult R = OverloadExpr::find(Arg); 3682 3683 OverloadExpr *Ovl = R.Expression; 3684 3685 // C++0x [temp.deduct.call]p4 3686 unsigned TDF = 0; 3687 if (ParamWasReference) 3688 TDF |= TDF_ParamWithReferenceType; 3689 if (R.IsAddressOfOperand) 3690 TDF |= TDF_IgnoreQualifiers; 3691 3692 // C++0x [temp.deduct.call]p6: 3693 // When P is a function type, pointer to function type, or pointer 3694 // to member function type: 3695 3696 if (!ParamType->isFunctionType() && 3697 !ParamType->isFunctionPointerType() && 3698 !ParamType->isMemberFunctionPointerType()) { 3699 if (Ovl->hasExplicitTemplateArgs()) { 3700 // But we can still look for an explicit specialization. 3701 if (FunctionDecl *ExplicitSpec 3702 = S.ResolveSingleFunctionTemplateSpecialization(Ovl)) 3703 return GetTypeOfFunction(S, R, ExplicitSpec); 3704 } 3705 3706 DeclAccessPair DAP; 3707 if (FunctionDecl *Viable = 3708 S.resolveAddressOfSingleOverloadCandidate(Arg, DAP)) 3709 return GetTypeOfFunction(S, R, Viable); 3710 3711 return {}; 3712 } 3713 3714 // Gather the explicit template arguments, if any. 3715 TemplateArgumentListInfo ExplicitTemplateArgs; 3716 if (Ovl->hasExplicitTemplateArgs()) 3717 Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); 3718 QualType Match; 3719 for (UnresolvedSetIterator I = Ovl->decls_begin(), 3720 E = Ovl->decls_end(); I != E; ++I) { 3721 NamedDecl *D = (*I)->getUnderlyingDecl(); 3722 3723 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) { 3724 // - If the argument is an overload set containing one or more 3725 // function templates, the parameter is treated as a 3726 // non-deduced context. 3727 if (!Ovl->hasExplicitTemplateArgs()) 3728 return {}; 3729 3730 // Otherwise, see if we can resolve a function type 3731 FunctionDecl *Specialization = nullptr; 3732 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3733 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs, 3734 Specialization, Info)) 3735 continue; 3736 3737 D = Specialization; 3738 } 3739 3740 FunctionDecl *Fn = cast<FunctionDecl>(D); 3741 QualType ArgType = GetTypeOfFunction(S, R, Fn); 3742 if (ArgType.isNull()) continue; 3743 3744 // Function-to-pointer conversion. 3745 if (!ParamWasReference && ParamType->isPointerType() && 3746 ArgType->isFunctionType()) 3747 ArgType = S.Context.getPointerType(ArgType); 3748 3749 // - If the argument is an overload set (not containing function 3750 // templates), trial argument deduction is attempted using each 3751 // of the members of the set. If deduction succeeds for only one 3752 // of the overload set members, that member is used as the 3753 // argument value for the deduction. If deduction succeeds for 3754 // more than one member of the overload set the parameter is 3755 // treated as a non-deduced context. 3756 3757 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2: 3758 // Type deduction is done independently for each P/A pair, and 3759 // the deduced template argument values are then combined. 3760 // So we do not reject deductions which were made elsewhere. 3761 SmallVector<DeducedTemplateArgument, 8> 3762 Deduced(TemplateParams->size()); 3763 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3764 Sema::TemplateDeductionResult Result 3765 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 3766 ArgType, Info, Deduced, TDF); 3767 if (Result) continue; 3768 if (!Match.isNull()) 3769 return {}; 3770 Match = ArgType; 3771 } 3772 3773 return Match; 3774 } 3775 3776 /// Perform the adjustments to the parameter and argument types 3777 /// described in C++ [temp.deduct.call]. 3778 /// 3779 /// \returns true if the caller should not attempt to perform any template 3780 /// argument deduction based on this P/A pair because the argument is an 3781 /// overloaded function set that could not be resolved. 3782 static bool AdjustFunctionParmAndArgTypesForDeduction( 3783 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3784 QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF) { 3785 // C++0x [temp.deduct.call]p3: 3786 // If P is a cv-qualified type, the top level cv-qualifiers of P's type 3787 // are ignored for type deduction. 3788 if (ParamType.hasQualifiers()) 3789 ParamType = ParamType.getUnqualifiedType(); 3790 3791 // [...] If P is a reference type, the type referred to by P is 3792 // used for type deduction. 3793 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>(); 3794 if (ParamRefType) 3795 ParamType = ParamRefType->getPointeeType(); 3796 3797 // Overload sets usually make this parameter an undeduced context, 3798 // but there are sometimes special circumstances. Typically 3799 // involving a template-id-expr. 3800 if (ArgType == S.Context.OverloadTy) { 3801 ArgType = ResolveOverloadForDeduction(S, TemplateParams, 3802 Arg, ParamType, 3803 ParamRefType != nullptr); 3804 if (ArgType.isNull()) 3805 return true; 3806 } 3807 3808 if (ParamRefType) { 3809 // If the argument has incomplete array type, try to complete its type. 3810 if (ArgType->isIncompleteArrayType()) { 3811 S.completeExprArrayBound(Arg); 3812 ArgType = Arg->getType(); 3813 } 3814 3815 // C++1z [temp.deduct.call]p3: 3816 // If P is a forwarding reference and the argument is an lvalue, the type 3817 // "lvalue reference to A" is used in place of A for type deduction. 3818 if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) && 3819 Arg->isLValue()) 3820 ArgType = S.Context.getLValueReferenceType(ArgType); 3821 } else { 3822 // C++ [temp.deduct.call]p2: 3823 // If P is not a reference type: 3824 // - If A is an array type, the pointer type produced by the 3825 // array-to-pointer standard conversion (4.2) is used in place of 3826 // A for type deduction; otherwise, 3827 if (ArgType->isArrayType()) 3828 ArgType = S.Context.getArrayDecayedType(ArgType); 3829 // - If A is a function type, the pointer type produced by the 3830 // function-to-pointer standard conversion (4.3) is used in place 3831 // of A for type deduction; otherwise, 3832 else if (ArgType->isFunctionType()) 3833 ArgType = S.Context.getPointerType(ArgType); 3834 else { 3835 // - If A is a cv-qualified type, the top level cv-qualifiers of A's 3836 // type are ignored for type deduction. 3837 ArgType = ArgType.getUnqualifiedType(); 3838 } 3839 } 3840 3841 // C++0x [temp.deduct.call]p4: 3842 // In general, the deduction process attempts to find template argument 3843 // values that will make the deduced A identical to A (after the type A 3844 // is transformed as described above). [...] 3845 TDF = TDF_SkipNonDependent; 3846 3847 // - If the original P is a reference type, the deduced A (i.e., the 3848 // type referred to by the reference) can be more cv-qualified than 3849 // the transformed A. 3850 if (ParamRefType) 3851 TDF |= TDF_ParamWithReferenceType; 3852 // - The transformed A can be another pointer or pointer to member 3853 // type that can be converted to the deduced A via a qualification 3854 // conversion (4.4). 3855 if (ArgType->isPointerType() || ArgType->isMemberPointerType() || 3856 ArgType->isObjCObjectPointerType()) 3857 TDF |= TDF_IgnoreQualifiers; 3858 // - If P is a class and P has the form simple-template-id, then the 3859 // transformed A can be a derived class of the deduced A. Likewise, 3860 // if P is a pointer to a class of the form simple-template-id, the 3861 // transformed A can be a pointer to a derived class pointed to by 3862 // the deduced A. 3863 if (isSimpleTemplateIdType(ParamType) || 3864 (isa<PointerType>(ParamType) && 3865 isSimpleTemplateIdType( 3866 ParamType->getAs<PointerType>()->getPointeeType()))) 3867 TDF |= TDF_DerivedClass; 3868 3869 return false; 3870 } 3871 3872 static bool 3873 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, 3874 QualType T); 3875 3876 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 3877 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3878 QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, 3879 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3880 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 3881 bool DecomposedParam, unsigned ArgIdx, unsigned TDF); 3882 3883 /// Attempt template argument deduction from an initializer list 3884 /// deemed to be an argument in a function call. 3885 static Sema::TemplateDeductionResult DeduceFromInitializerList( 3886 Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType, 3887 InitListExpr *ILE, TemplateDeductionInfo &Info, 3888 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3889 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx, 3890 unsigned TDF) { 3891 // C++ [temp.deduct.call]p1: (CWG 1591) 3892 // If removing references and cv-qualifiers from P gives 3893 // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is 3894 // a non-empty initializer list, then deduction is performed instead for 3895 // each element of the initializer list, taking P0 as a function template 3896 // parameter type and the initializer element as its argument 3897 // 3898 // We've already removed references and cv-qualifiers here. 3899 if (!ILE->getNumInits()) 3900 return Sema::TDK_Success; 3901 3902 QualType ElTy; 3903 auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType); 3904 if (ArrTy) 3905 ElTy = ArrTy->getElementType(); 3906 else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) { 3907 // Otherwise, an initializer list argument causes the parameter to be 3908 // considered a non-deduced context 3909 return Sema::TDK_Success; 3910 } 3911 3912 // Resolving a core issue: a braced-init-list containing any designators is 3913 // a non-deduced context. 3914 for (Expr *E : ILE->inits()) 3915 if (isa<DesignatedInitExpr>(E)) 3916 return Sema::TDK_Success; 3917 3918 // Deduction only needs to be done for dependent types. 3919 if (ElTy->isDependentType()) { 3920 for (Expr *E : ILE->inits()) { 3921 if (auto Result = DeduceTemplateArgumentsFromCallArgument( 3922 S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true, 3923 ArgIdx, TDF)) 3924 return Result; 3925 } 3926 } 3927 3928 // in the P0[N] case, if N is a non-type template parameter, N is deduced 3929 // from the length of the initializer list. 3930 if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) { 3931 // Determine the array bound is something we can deduce. 3932 if (NonTypeTemplateParmDecl *NTTP = 3933 getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) { 3934 // We can perform template argument deduction for the given non-type 3935 // template parameter. 3936 // C++ [temp.deduct.type]p13: 3937 // The type of N in the type T[N] is std::size_t. 3938 QualType T = S.Context.getSizeType(); 3939 llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits()); 3940 if (auto Result = DeduceNonTypeTemplateArgument( 3941 S, TemplateParams, NTTP, llvm::APSInt(Size), T, 3942 /*ArrayBound=*/true, Info, Deduced)) 3943 return Result; 3944 } 3945 } 3946 3947 return Sema::TDK_Success; 3948 } 3949 3950 /// Perform template argument deduction per [temp.deduct.call] for a 3951 /// single parameter / argument pair. 3952 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 3953 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3954 QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, 3955 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3956 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 3957 bool DecomposedParam, unsigned ArgIdx, unsigned TDF) { 3958 QualType ArgType = Arg->getType(); 3959 QualType OrigParamType = ParamType; 3960 3961 // If P is a reference type [...] 3962 // If P is a cv-qualified type [...] 3963 if (AdjustFunctionParmAndArgTypesForDeduction( 3964 S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF)) 3965 return Sema::TDK_Success; 3966 3967 // If [...] the argument is a non-empty initializer list [...] 3968 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) 3969 return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info, 3970 Deduced, OriginalCallArgs, ArgIdx, TDF); 3971 3972 // [...] the deduction process attempts to find template argument values 3973 // that will make the deduced A identical to A 3974 // 3975 // Keep track of the argument type and corresponding parameter index, 3976 // so we can check for compatibility between the deduced A and A. 3977 OriginalCallArgs.push_back( 3978 Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType)); 3979 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 3980 ArgType, Info, Deduced, TDF); 3981 } 3982 3983 /// Perform template argument deduction from a function call 3984 /// (C++ [temp.deduct.call]). 3985 /// 3986 /// \param FunctionTemplate the function template for which we are performing 3987 /// template argument deduction. 3988 /// 3989 /// \param ExplicitTemplateArgs the explicit template arguments provided 3990 /// for this call. 3991 /// 3992 /// \param Args the function call arguments 3993 /// 3994 /// \param Specialization if template argument deduction was successful, 3995 /// this will be set to the function template specialization produced by 3996 /// template argument deduction. 3997 /// 3998 /// \param Info the argument will be updated to provide additional information 3999 /// about template argument deduction. 4000 /// 4001 /// \param CheckNonDependent A callback to invoke to check conversions for 4002 /// non-dependent parameters, between deduction and substitution, per DR1391. 4003 /// If this returns true, substitution will be skipped and we return 4004 /// TDK_NonDependentConversionFailure. The callback is passed the parameter 4005 /// types (after substituting explicit template arguments). 4006 /// 4007 /// \returns the result of template argument deduction. 4008 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4009 FunctionTemplateDecl *FunctionTemplate, 4010 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 4011 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4012 bool PartialOverloading, 4013 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) { 4014 if (FunctionTemplate->isInvalidDecl()) 4015 return TDK_Invalid; 4016 4017 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 4018 unsigned NumParams = Function->getNumParams(); 4019 4020 unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate); 4021 4022 // C++ [temp.deduct.call]p1: 4023 // Template argument deduction is done by comparing each function template 4024 // parameter type (call it P) with the type of the corresponding argument 4025 // of the call (call it A) as described below. 4026 if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading) 4027 return TDK_TooFewArguments; 4028 else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) { 4029 const auto *Proto = Function->getType()->castAs<FunctionProtoType>(); 4030 if (Proto->isTemplateVariadic()) 4031 /* Do nothing */; 4032 else if (!Proto->isVariadic()) 4033 return TDK_TooManyArguments; 4034 } 4035 4036 // The types of the parameters from which we will perform template argument 4037 // deduction. 4038 LocalInstantiationScope InstScope(*this); 4039 TemplateParameterList *TemplateParams 4040 = FunctionTemplate->getTemplateParameters(); 4041 SmallVector<DeducedTemplateArgument, 4> Deduced; 4042 SmallVector<QualType, 8> ParamTypes; 4043 unsigned NumExplicitlySpecified = 0; 4044 if (ExplicitTemplateArgs) { 4045 TemplateDeductionResult Result; 4046 runWithSufficientStackSpace(Info.getLocation(), [&] { 4047 Result = SubstituteExplicitTemplateArguments( 4048 FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, nullptr, 4049 Info); 4050 }); 4051 if (Result) 4052 return Result; 4053 4054 NumExplicitlySpecified = Deduced.size(); 4055 } else { 4056 // Just fill in the parameter types from the function declaration. 4057 for (unsigned I = 0; I != NumParams; ++I) 4058 ParamTypes.push_back(Function->getParamDecl(I)->getType()); 4059 } 4060 4061 SmallVector<OriginalCallArg, 8> OriginalCallArgs; 4062 4063 // Deduce an argument of type ParamType from an expression with index ArgIdx. 4064 auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) { 4065 // C++ [demp.deduct.call]p1: (DR1391) 4066 // Template argument deduction is done by comparing each function template 4067 // parameter that contains template-parameters that participate in 4068 // template argument deduction ... 4069 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) 4070 return Sema::TDK_Success; 4071 4072 // ... with the type of the corresponding argument 4073 return DeduceTemplateArgumentsFromCallArgument( 4074 *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced, 4075 OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0); 4076 }; 4077 4078 // Deduce template arguments from the function parameters. 4079 Deduced.resize(TemplateParams->size()); 4080 SmallVector<QualType, 8> ParamTypesForArgChecking; 4081 for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0; 4082 ParamIdx != NumParamTypes; ++ParamIdx) { 4083 QualType ParamType = ParamTypes[ParamIdx]; 4084 4085 const PackExpansionType *ParamExpansion = 4086 dyn_cast<PackExpansionType>(ParamType); 4087 if (!ParamExpansion) { 4088 // Simple case: matching a function parameter to a function argument. 4089 if (ArgIdx >= Args.size()) 4090 break; 4091 4092 ParamTypesForArgChecking.push_back(ParamType); 4093 if (auto Result = DeduceCallArgument(ParamType, ArgIdx++)) 4094 return Result; 4095 4096 continue; 4097 } 4098 4099 QualType ParamPattern = ParamExpansion->getPattern(); 4100 PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info, 4101 ParamPattern); 4102 4103 // C++0x [temp.deduct.call]p1: 4104 // For a function parameter pack that occurs at the end of the 4105 // parameter-declaration-list, the type A of each remaining argument of 4106 // the call is compared with the type P of the declarator-id of the 4107 // function parameter pack. Each comparison deduces template arguments 4108 // for subsequent positions in the template parameter packs expanded by 4109 // the function parameter pack. When a function parameter pack appears 4110 // in a non-deduced context [not at the end of the list], the type of 4111 // that parameter pack is never deduced. 4112 // 4113 // FIXME: The above rule allows the size of the parameter pack to change 4114 // after we skip it (in the non-deduced case). That makes no sense, so 4115 // we instead notionally deduce the pack against N arguments, where N is 4116 // the length of the explicitly-specified pack if it's expanded by the 4117 // parameter pack and 0 otherwise, and we treat each deduction as a 4118 // non-deduced context. 4119 if (ParamIdx + 1 == NumParamTypes || PackScope.hasFixedArity()) { 4120 for (; ArgIdx < Args.size() && PackScope.hasNextElement(); 4121 PackScope.nextPackElement(), ++ArgIdx) { 4122 ParamTypesForArgChecking.push_back(ParamPattern); 4123 if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx)) 4124 return Result; 4125 } 4126 } else { 4127 // If the parameter type contains an explicitly-specified pack that we 4128 // could not expand, skip the number of parameters notionally created 4129 // by the expansion. 4130 Optional<unsigned> NumExpansions = ParamExpansion->getNumExpansions(); 4131 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 4132 for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size(); 4133 ++I, ++ArgIdx) { 4134 ParamTypesForArgChecking.push_back(ParamPattern); 4135 // FIXME: Should we add OriginalCallArgs for these? What if the 4136 // corresponding argument is a list? 4137 PackScope.nextPackElement(); 4138 } 4139 } 4140 } 4141 4142 // Build argument packs for each of the parameter packs expanded by this 4143 // pack expansion. 4144 if (auto Result = PackScope.finish()) 4145 return Result; 4146 } 4147 4148 // Capture the context in which the function call is made. This is the context 4149 // that is needed when the accessibility of template arguments is checked. 4150 DeclContext *CallingCtx = CurContext; 4151 4152 TemplateDeductionResult Result; 4153 runWithSufficientStackSpace(Info.getLocation(), [&] { 4154 Result = FinishTemplateArgumentDeduction( 4155 FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info, 4156 &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() { 4157 ContextRAII SavedContext(*this, CallingCtx); 4158 return CheckNonDependent(ParamTypesForArgChecking); 4159 }); 4160 }); 4161 return Result; 4162 } 4163 4164 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType, 4165 QualType FunctionType, 4166 bool AdjustExceptionSpec) { 4167 if (ArgFunctionType.isNull()) 4168 return ArgFunctionType; 4169 4170 const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>(); 4171 const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>(); 4172 FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo(); 4173 bool Rebuild = false; 4174 4175 CallingConv CC = FunctionTypeP->getCallConv(); 4176 if (EPI.ExtInfo.getCC() != CC) { 4177 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC); 4178 Rebuild = true; 4179 } 4180 4181 bool NoReturn = FunctionTypeP->getNoReturnAttr(); 4182 if (EPI.ExtInfo.getNoReturn() != NoReturn) { 4183 EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn); 4184 Rebuild = true; 4185 } 4186 4187 if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() || 4188 ArgFunctionTypeP->hasExceptionSpec())) { 4189 EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec; 4190 Rebuild = true; 4191 } 4192 4193 if (!Rebuild) 4194 return ArgFunctionType; 4195 4196 return Context.getFunctionType(ArgFunctionTypeP->getReturnType(), 4197 ArgFunctionTypeP->getParamTypes(), EPI); 4198 } 4199 4200 /// Deduce template arguments when taking the address of a function 4201 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to 4202 /// a template. 4203 /// 4204 /// \param FunctionTemplate the function template for which we are performing 4205 /// template argument deduction. 4206 /// 4207 /// \param ExplicitTemplateArgs the explicitly-specified template 4208 /// arguments. 4209 /// 4210 /// \param ArgFunctionType the function type that will be used as the 4211 /// "argument" type (A) when performing template argument deduction from the 4212 /// function template's function type. This type may be NULL, if there is no 4213 /// argument type to compare against, in C++0x [temp.arg.explicit]p3. 4214 /// 4215 /// \param Specialization if template argument deduction was successful, 4216 /// this will be set to the function template specialization produced by 4217 /// template argument deduction. 4218 /// 4219 /// \param Info the argument will be updated to provide additional information 4220 /// about template argument deduction. 4221 /// 4222 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4223 /// the address of a function template per [temp.deduct.funcaddr] and 4224 /// [over.over]. If \c false, we are looking up a function template 4225 /// specialization based on its signature, per [temp.deduct.decl]. 4226 /// 4227 /// \returns the result of template argument deduction. 4228 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4229 FunctionTemplateDecl *FunctionTemplate, 4230 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, 4231 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4232 bool IsAddressOfFunction) { 4233 if (FunctionTemplate->isInvalidDecl()) 4234 return TDK_Invalid; 4235 4236 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 4237 TemplateParameterList *TemplateParams 4238 = FunctionTemplate->getTemplateParameters(); 4239 QualType FunctionType = Function->getType(); 4240 4241 // Substitute any explicit template arguments. 4242 LocalInstantiationScope InstScope(*this); 4243 SmallVector<DeducedTemplateArgument, 4> Deduced; 4244 unsigned NumExplicitlySpecified = 0; 4245 SmallVector<QualType, 4> ParamTypes; 4246 if (ExplicitTemplateArgs) { 4247 TemplateDeductionResult Result; 4248 runWithSufficientStackSpace(Info.getLocation(), [&] { 4249 Result = SubstituteExplicitTemplateArguments( 4250 FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, 4251 &FunctionType, Info); 4252 }); 4253 if (Result) 4254 return Result; 4255 4256 NumExplicitlySpecified = Deduced.size(); 4257 } 4258 4259 // When taking the address of a function, we require convertibility of 4260 // the resulting function type. Otherwise, we allow arbitrary mismatches 4261 // of calling convention and noreturn. 4262 if (!IsAddressOfFunction) 4263 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType, 4264 /*AdjustExceptionSpec*/false); 4265 4266 // Unevaluated SFINAE context. 4267 EnterExpressionEvaluationContext Unevaluated( 4268 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4269 SFINAETrap Trap(*this); 4270 4271 Deduced.resize(TemplateParams->size()); 4272 4273 // If the function has a deduced return type, substitute it for a dependent 4274 // type so that we treat it as a non-deduced context in what follows. If we 4275 // are looking up by signature, the signature type should also have a deduced 4276 // return type, which we instead expect to exactly match. 4277 bool HasDeducedReturnType = false; 4278 if (getLangOpts().CPlusPlus14 && IsAddressOfFunction && 4279 Function->getReturnType()->getContainedAutoType()) { 4280 FunctionType = SubstAutoType(FunctionType, Context.DependentTy); 4281 HasDeducedReturnType = true; 4282 } 4283 4284 if (!ArgFunctionType.isNull()) { 4285 unsigned TDF = 4286 TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType; 4287 // Deduce template arguments from the function type. 4288 if (TemplateDeductionResult Result 4289 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4290 FunctionType, ArgFunctionType, 4291 Info, Deduced, TDF)) 4292 return Result; 4293 } 4294 4295 TemplateDeductionResult Result; 4296 runWithSufficientStackSpace(Info.getLocation(), [&] { 4297 Result = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 4298 NumExplicitlySpecified, 4299 Specialization, Info); 4300 }); 4301 if (Result) 4302 return Result; 4303 4304 // If the function has a deduced return type, deduce it now, so we can check 4305 // that the deduced function type matches the requested type. 4306 if (HasDeducedReturnType && 4307 Specialization->getReturnType()->isUndeducedType() && 4308 DeduceReturnType(Specialization, Info.getLocation(), false)) 4309 return TDK_MiscellaneousDeductionFailure; 4310 4311 // If the function has a dependent exception specification, resolve it now, 4312 // so we can check that the exception specification matches. 4313 auto *SpecializationFPT = 4314 Specialization->getType()->castAs<FunctionProtoType>(); 4315 if (getLangOpts().CPlusPlus17 && 4316 isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) && 4317 !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT)) 4318 return TDK_MiscellaneousDeductionFailure; 4319 4320 // Adjust the exception specification of the argument to match the 4321 // substituted and resolved type we just formed. (Calling convention and 4322 // noreturn can't be dependent, so we don't actually need this for them 4323 // right now.) 4324 QualType SpecializationType = Specialization->getType(); 4325 if (!IsAddressOfFunction) 4326 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType, 4327 /*AdjustExceptionSpec*/true); 4328 4329 // If the requested function type does not match the actual type of the 4330 // specialization with respect to arguments of compatible pointer to function 4331 // types, template argument deduction fails. 4332 if (!ArgFunctionType.isNull()) { 4333 if (IsAddressOfFunction && 4334 !isSameOrCompatibleFunctionType( 4335 Context.getCanonicalType(SpecializationType), 4336 Context.getCanonicalType(ArgFunctionType))) 4337 return TDK_MiscellaneousDeductionFailure; 4338 4339 if (!IsAddressOfFunction && 4340 !Context.hasSameType(SpecializationType, ArgFunctionType)) 4341 return TDK_MiscellaneousDeductionFailure; 4342 } 4343 4344 return TDK_Success; 4345 } 4346 4347 /// Deduce template arguments for a templated conversion 4348 /// function (C++ [temp.deduct.conv]) and, if successful, produce a 4349 /// conversion function template specialization. 4350 Sema::TemplateDeductionResult 4351 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate, 4352 QualType ToType, 4353 CXXConversionDecl *&Specialization, 4354 TemplateDeductionInfo &Info) { 4355 if (ConversionTemplate->isInvalidDecl()) 4356 return TDK_Invalid; 4357 4358 CXXConversionDecl *ConversionGeneric 4359 = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl()); 4360 4361 QualType FromType = ConversionGeneric->getConversionType(); 4362 4363 // Canonicalize the types for deduction. 4364 QualType P = Context.getCanonicalType(FromType); 4365 QualType A = Context.getCanonicalType(ToType); 4366 4367 // C++0x [temp.deduct.conv]p2: 4368 // If P is a reference type, the type referred to by P is used for 4369 // type deduction. 4370 if (const ReferenceType *PRef = P->getAs<ReferenceType>()) 4371 P = PRef->getPointeeType(); 4372 4373 // C++0x [temp.deduct.conv]p4: 4374 // [...] If A is a reference type, the type referred to by A is used 4375 // for type deduction. 4376 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) { 4377 A = ARef->getPointeeType(); 4378 // We work around a defect in the standard here: cv-qualifiers are also 4379 // removed from P and A in this case, unless P was a reference type. This 4380 // seems to mostly match what other compilers are doing. 4381 if (!FromType->getAs<ReferenceType>()) { 4382 A = A.getUnqualifiedType(); 4383 P = P.getUnqualifiedType(); 4384 } 4385 4386 // C++ [temp.deduct.conv]p3: 4387 // 4388 // If A is not a reference type: 4389 } else { 4390 assert(!A->isReferenceType() && "Reference types were handled above"); 4391 4392 // - If P is an array type, the pointer type produced by the 4393 // array-to-pointer standard conversion (4.2) is used in place 4394 // of P for type deduction; otherwise, 4395 if (P->isArrayType()) 4396 P = Context.getArrayDecayedType(P); 4397 // - If P is a function type, the pointer type produced by the 4398 // function-to-pointer standard conversion (4.3) is used in 4399 // place of P for type deduction; otherwise, 4400 else if (P->isFunctionType()) 4401 P = Context.getPointerType(P); 4402 // - If P is a cv-qualified type, the top level cv-qualifiers of 4403 // P's type are ignored for type deduction. 4404 else 4405 P = P.getUnqualifiedType(); 4406 4407 // C++0x [temp.deduct.conv]p4: 4408 // If A is a cv-qualified type, the top level cv-qualifiers of A's 4409 // type are ignored for type deduction. If A is a reference type, the type 4410 // referred to by A is used for type deduction. 4411 A = A.getUnqualifiedType(); 4412 } 4413 4414 // Unevaluated SFINAE context. 4415 EnterExpressionEvaluationContext Unevaluated( 4416 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4417 SFINAETrap Trap(*this); 4418 4419 // C++ [temp.deduct.conv]p1: 4420 // Template argument deduction is done by comparing the return 4421 // type of the template conversion function (call it P) with the 4422 // type that is required as the result of the conversion (call it 4423 // A) as described in 14.8.2.4. 4424 TemplateParameterList *TemplateParams 4425 = ConversionTemplate->getTemplateParameters(); 4426 SmallVector<DeducedTemplateArgument, 4> Deduced; 4427 Deduced.resize(TemplateParams->size()); 4428 4429 // C++0x [temp.deduct.conv]p4: 4430 // In general, the deduction process attempts to find template 4431 // argument values that will make the deduced A identical to 4432 // A. However, there are two cases that allow a difference: 4433 unsigned TDF = 0; 4434 // - If the original A is a reference type, A can be more 4435 // cv-qualified than the deduced A (i.e., the type referred to 4436 // by the reference) 4437 if (ToType->isReferenceType()) 4438 TDF |= TDF_ArgWithReferenceType; 4439 // - The deduced A can be another pointer or pointer to member 4440 // type that can be converted to A via a qualification 4441 // conversion. 4442 // 4443 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when 4444 // both P and A are pointers or member pointers. In this case, we 4445 // just ignore cv-qualifiers completely). 4446 if ((P->isPointerType() && A->isPointerType()) || 4447 (P->isMemberPointerType() && A->isMemberPointerType())) 4448 TDF |= TDF_IgnoreQualifiers; 4449 if (TemplateDeductionResult Result 4450 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4451 P, A, Info, Deduced, TDF)) 4452 return Result; 4453 4454 // Create an Instantiation Scope for finalizing the operator. 4455 LocalInstantiationScope InstScope(*this); 4456 // Finish template argument deduction. 4457 FunctionDecl *ConversionSpecialized = nullptr; 4458 TemplateDeductionResult Result; 4459 runWithSufficientStackSpace(Info.getLocation(), [&] { 4460 Result = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0, 4461 ConversionSpecialized, Info); 4462 }); 4463 Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized); 4464 return Result; 4465 } 4466 4467 /// Deduce template arguments for a function template when there is 4468 /// nothing to deduce against (C++0x [temp.arg.explicit]p3). 4469 /// 4470 /// \param FunctionTemplate the function template for which we are performing 4471 /// template argument deduction. 4472 /// 4473 /// \param ExplicitTemplateArgs the explicitly-specified template 4474 /// arguments. 4475 /// 4476 /// \param Specialization if template argument deduction was successful, 4477 /// this will be set to the function template specialization produced by 4478 /// template argument deduction. 4479 /// 4480 /// \param Info the argument will be updated to provide additional information 4481 /// about template argument deduction. 4482 /// 4483 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4484 /// the address of a function template in a context where we do not have a 4485 /// target type, per [over.over]. If \c false, we are looking up a function 4486 /// template specialization based on its signature, which only happens when 4487 /// deducing a function parameter type from an argument that is a template-id 4488 /// naming a function template specialization. 4489 /// 4490 /// \returns the result of template argument deduction. 4491 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4492 FunctionTemplateDecl *FunctionTemplate, 4493 TemplateArgumentListInfo *ExplicitTemplateArgs, 4494 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4495 bool IsAddressOfFunction) { 4496 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 4497 QualType(), Specialization, Info, 4498 IsAddressOfFunction); 4499 } 4500 4501 namespace { 4502 struct DependentAuto { bool IsPack; }; 4503 4504 /// Substitute the 'auto' specifier or deduced template specialization type 4505 /// specifier within a type for a given replacement type. 4506 class SubstituteDeducedTypeTransform : 4507 public TreeTransform<SubstituteDeducedTypeTransform> { 4508 QualType Replacement; 4509 bool ReplacementIsPack; 4510 bool UseTypeSugar; 4511 4512 public: 4513 SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA) 4514 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), Replacement(), 4515 ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {} 4516 4517 SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement, 4518 bool UseTypeSugar = true) 4519 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), 4520 Replacement(Replacement), ReplacementIsPack(false), 4521 UseTypeSugar(UseTypeSugar) {} 4522 4523 QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) { 4524 assert(isa<TemplateTypeParmType>(Replacement) && 4525 "unexpected unsugared replacement kind"); 4526 QualType Result = Replacement; 4527 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result); 4528 NewTL.setNameLoc(TL.getNameLoc()); 4529 return Result; 4530 } 4531 4532 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { 4533 // If we're building the type pattern to deduce against, don't wrap the 4534 // substituted type in an AutoType. Certain template deduction rules 4535 // apply only when a template type parameter appears directly (and not if 4536 // the parameter is found through desugaring). For instance: 4537 // auto &&lref = lvalue; 4538 // must transform into "rvalue reference to T" not "rvalue reference to 4539 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply. 4540 // 4541 // FIXME: Is this still necessary? 4542 if (!UseTypeSugar) 4543 return TransformDesugared(TLB, TL); 4544 4545 QualType Result = SemaRef.Context.getAutoType( 4546 Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(), 4547 ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(), 4548 TL.getTypePtr()->getTypeConstraintArguments()); 4549 auto NewTL = TLB.push<AutoTypeLoc>(Result); 4550 NewTL.copy(TL); 4551 return Result; 4552 } 4553 4554 QualType TransformDeducedTemplateSpecializationType( 4555 TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) { 4556 if (!UseTypeSugar) 4557 return TransformDesugared(TLB, TL); 4558 4559 QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType( 4560 TL.getTypePtr()->getTemplateName(), 4561 Replacement, Replacement.isNull()); 4562 auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result); 4563 NewTL.setNameLoc(TL.getNameLoc()); 4564 return Result; 4565 } 4566 4567 ExprResult TransformLambdaExpr(LambdaExpr *E) { 4568 // Lambdas never need to be transformed. 4569 return E; 4570 } 4571 4572 QualType Apply(TypeLoc TL) { 4573 // Create some scratch storage for the transformed type locations. 4574 // FIXME: We're just going to throw this information away. Don't build it. 4575 TypeLocBuilder TLB; 4576 TLB.reserve(TL.getFullDataSize()); 4577 return TransformType(TLB, TL); 4578 } 4579 }; 4580 4581 } // namespace 4582 4583 Sema::DeduceAutoResult 4584 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result, 4585 Optional<unsigned> DependentDeductionDepth, 4586 bool IgnoreConstraints) { 4587 return DeduceAutoType(Type->getTypeLoc(), Init, Result, 4588 DependentDeductionDepth, IgnoreConstraints); 4589 } 4590 4591 /// Attempt to produce an informative diagostic explaining why auto deduction 4592 /// failed. 4593 /// \return \c true if diagnosed, \c false if not. 4594 static bool diagnoseAutoDeductionFailure(Sema &S, 4595 Sema::TemplateDeductionResult TDK, 4596 TemplateDeductionInfo &Info, 4597 ArrayRef<SourceRange> Ranges) { 4598 switch (TDK) { 4599 case Sema::TDK_Inconsistent: { 4600 // Inconsistent deduction means we were deducing from an initializer list. 4601 auto D = S.Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction); 4602 D << Info.FirstArg << Info.SecondArg; 4603 for (auto R : Ranges) 4604 D << R; 4605 return true; 4606 } 4607 4608 // FIXME: Are there other cases for which a custom diagnostic is more useful 4609 // than the basic "types don't match" diagnostic? 4610 4611 default: 4612 return false; 4613 } 4614 } 4615 4616 static Sema::DeduceAutoResult 4617 CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type, 4618 AutoTypeLoc TypeLoc, QualType Deduced) { 4619 ConstraintSatisfaction Satisfaction; 4620 ConceptDecl *Concept = Type.getTypeConstraintConcept(); 4621 TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(), 4622 TypeLoc.getRAngleLoc()); 4623 TemplateArgs.addArgument( 4624 TemplateArgumentLoc(TemplateArgument(Deduced), 4625 S.Context.getTrivialTypeSourceInfo( 4626 Deduced, TypeLoc.getNameLoc()))); 4627 for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I) 4628 TemplateArgs.addArgument(TypeLoc.getArgLoc(I)); 4629 4630 llvm::SmallVector<TemplateArgument, 4> Converted; 4631 if (S.CheckTemplateArgumentList(Concept, SourceLocation(), TemplateArgs, 4632 /*PartialTemplateArgs=*/false, Converted)) 4633 return Sema::DAR_FailedAlreadyDiagnosed; 4634 if (S.CheckConstraintSatisfaction(Concept, {Concept->getConstraintExpr()}, 4635 Converted, TypeLoc.getLocalSourceRange(), 4636 Satisfaction)) 4637 return Sema::DAR_FailedAlreadyDiagnosed; 4638 if (!Satisfaction.IsSatisfied) { 4639 std::string Buf; 4640 llvm::raw_string_ostream OS(Buf); 4641 OS << "'" << Concept->getName(); 4642 if (TypeLoc.hasExplicitTemplateArgs()) { 4643 OS << "<"; 4644 for (const auto &Arg : Type.getTypeConstraintArguments()) 4645 Arg.print(S.getPrintingPolicy(), OS); 4646 OS << ">"; 4647 } 4648 OS << "'"; 4649 OS.flush(); 4650 S.Diag(TypeLoc.getConceptNameLoc(), 4651 diag::err_placeholder_constraints_not_satisfied) 4652 << Deduced << Buf << TypeLoc.getLocalSourceRange(); 4653 S.DiagnoseUnsatisfiedConstraint(Satisfaction); 4654 return Sema::DAR_FailedAlreadyDiagnosed; 4655 } 4656 return Sema::DAR_Succeeded; 4657 } 4658 4659 /// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6) 4660 /// 4661 /// Note that this is done even if the initializer is dependent. (This is 4662 /// necessary to support partial ordering of templates using 'auto'.) 4663 /// A dependent type will be produced when deducing from a dependent type. 4664 /// 4665 /// \param Type the type pattern using the auto type-specifier. 4666 /// \param Init the initializer for the variable whose type is to be deduced. 4667 /// \param Result if type deduction was successful, this will be set to the 4668 /// deduced type. 4669 /// \param DependentDeductionDepth Set if we should permit deduction in 4670 /// dependent cases. This is necessary for template partial ordering with 4671 /// 'auto' template parameters. The value specified is the template 4672 /// parameter depth at which we should perform 'auto' deduction. 4673 /// \param IgnoreConstraints Set if we should not fail if the deduced type does 4674 /// not satisfy the type-constraint in the auto type. 4675 Sema::DeduceAutoResult 4676 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result, 4677 Optional<unsigned> DependentDeductionDepth, 4678 bool IgnoreConstraints) { 4679 if (Init->containsErrors()) 4680 return DAR_FailedAlreadyDiagnosed; 4681 if (Init->getType()->isNonOverloadPlaceholderType()) { 4682 ExprResult NonPlaceholder = CheckPlaceholderExpr(Init); 4683 if (NonPlaceholder.isInvalid()) 4684 return DAR_FailedAlreadyDiagnosed; 4685 Init = NonPlaceholder.get(); 4686 } 4687 4688 DependentAuto DependentResult = { 4689 /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()}; 4690 4691 if (!DependentDeductionDepth && 4692 (Type.getType()->isDependentType() || Init->isTypeDependent() || 4693 Init->containsUnexpandedParameterPack())) { 4694 Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4695 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4696 return DAR_Succeeded; 4697 } 4698 4699 // Find the depth of template parameter to synthesize. 4700 unsigned Depth = DependentDeductionDepth.getValueOr(0); 4701 4702 // If this is a 'decltype(auto)' specifier, do the decltype dance. 4703 // Since 'decltype(auto)' can only occur at the top of the type, we 4704 // don't need to go digging for it. 4705 if (const AutoType *AT = Type.getType()->getAs<AutoType>()) { 4706 if (AT->isDecltypeAuto()) { 4707 if (isa<InitListExpr>(Init)) { 4708 Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list); 4709 return DAR_FailedAlreadyDiagnosed; 4710 } 4711 4712 ExprResult ER = CheckPlaceholderExpr(Init); 4713 if (ER.isInvalid()) 4714 return DAR_FailedAlreadyDiagnosed; 4715 Init = ER.get(); 4716 QualType Deduced = BuildDecltypeType(Init, Init->getBeginLoc(), false); 4717 if (Deduced.isNull()) 4718 return DAR_FailedAlreadyDiagnosed; 4719 // FIXME: Support a non-canonical deduced type for 'auto'. 4720 Deduced = Context.getCanonicalType(Deduced); 4721 if (AT->isConstrained() && !IgnoreConstraints) { 4722 auto ConstraintsResult = 4723 CheckDeducedPlaceholderConstraints(*this, *AT, 4724 Type.getContainedAutoTypeLoc(), 4725 Deduced); 4726 if (ConstraintsResult != DAR_Succeeded) 4727 return ConstraintsResult; 4728 } 4729 Result = SubstituteDeducedTypeTransform(*this, Deduced).Apply(Type); 4730 if (Result.isNull()) 4731 return DAR_FailedAlreadyDiagnosed; 4732 return DAR_Succeeded; 4733 } else if (!getLangOpts().CPlusPlus) { 4734 if (isa<InitListExpr>(Init)) { 4735 Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c); 4736 return DAR_FailedAlreadyDiagnosed; 4737 } 4738 } 4739 } 4740 4741 SourceLocation Loc = Init->getExprLoc(); 4742 4743 LocalInstantiationScope InstScope(*this); 4744 4745 // Build template<class TemplParam> void Func(FuncParam); 4746 TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create( 4747 Context, nullptr, SourceLocation(), Loc, Depth, 0, nullptr, false, false, 4748 false); 4749 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0); 4750 NamedDecl *TemplParamPtr = TemplParam; 4751 FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt( 4752 Context, Loc, Loc, TemplParamPtr, Loc, nullptr); 4753 4754 QualType FuncParam = 4755 SubstituteDeducedTypeTransform(*this, TemplArg, /*UseTypeSugar*/false) 4756 .Apply(Type); 4757 assert(!FuncParam.isNull() && 4758 "substituting template parameter for 'auto' failed"); 4759 4760 // Deduce type of TemplParam in Func(Init) 4761 SmallVector<DeducedTemplateArgument, 1> Deduced; 4762 Deduced.resize(1); 4763 4764 TemplateDeductionInfo Info(Loc, Depth); 4765 4766 // If deduction failed, don't diagnose if the initializer is dependent; it 4767 // might acquire a matching type in the instantiation. 4768 auto DeductionFailed = [&](TemplateDeductionResult TDK, 4769 ArrayRef<SourceRange> Ranges) -> DeduceAutoResult { 4770 if (Init->isTypeDependent()) { 4771 Result = 4772 SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4773 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4774 return DAR_Succeeded; 4775 } 4776 if (diagnoseAutoDeductionFailure(*this, TDK, Info, Ranges)) 4777 return DAR_FailedAlreadyDiagnosed; 4778 return DAR_Failed; 4779 }; 4780 4781 SmallVector<OriginalCallArg, 4> OriginalCallArgs; 4782 4783 InitListExpr *InitList = dyn_cast<InitListExpr>(Init); 4784 if (InitList) { 4785 // Notionally, we substitute std::initializer_list<T> for 'auto' and deduce 4786 // against that. Such deduction only succeeds if removing cv-qualifiers and 4787 // references results in std::initializer_list<T>. 4788 if (!Type.getType().getNonReferenceType()->getAs<AutoType>()) 4789 return DAR_Failed; 4790 4791 // Resolving a core issue: a braced-init-list containing any designators is 4792 // a non-deduced context. 4793 for (Expr *E : InitList->inits()) 4794 if (isa<DesignatedInitExpr>(E)) 4795 return DAR_Failed; 4796 4797 SourceRange DeducedFromInitRange; 4798 for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) { 4799 Expr *Init = InitList->getInit(i); 4800 4801 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 4802 *this, TemplateParamsSt.get(), 0, TemplArg, Init, 4803 Info, Deduced, OriginalCallArgs, /*Decomposed*/ true, 4804 /*ArgIdx*/ 0, /*TDF*/ 0)) 4805 return DeductionFailed(TDK, {DeducedFromInitRange, 4806 Init->getSourceRange()}); 4807 4808 if (DeducedFromInitRange.isInvalid() && 4809 Deduced[0].getKind() != TemplateArgument::Null) 4810 DeducedFromInitRange = Init->getSourceRange(); 4811 } 4812 } else { 4813 if (!getLangOpts().CPlusPlus && Init->refersToBitField()) { 4814 Diag(Loc, diag::err_auto_bitfield); 4815 return DAR_FailedAlreadyDiagnosed; 4816 } 4817 4818 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 4819 *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced, 4820 OriginalCallArgs, /*Decomposed*/ false, /*ArgIdx*/ 0, /*TDF*/ 0)) 4821 return DeductionFailed(TDK, {}); 4822 } 4823 4824 // Could be null if somehow 'auto' appears in a non-deduced context. 4825 if (Deduced[0].getKind() != TemplateArgument::Type) 4826 return DeductionFailed(TDK_Incomplete, {}); 4827 4828 QualType DeducedType = Deduced[0].getAsType(); 4829 4830 if (InitList) { 4831 DeducedType = BuildStdInitializerList(DeducedType, Loc); 4832 if (DeducedType.isNull()) 4833 return DAR_FailedAlreadyDiagnosed; 4834 } 4835 4836 if (const auto *AT = Type.getType()->getAs<AutoType>()) { 4837 if (AT->isConstrained() && !IgnoreConstraints) { 4838 auto ConstraintsResult = 4839 CheckDeducedPlaceholderConstraints(*this, *AT, 4840 Type.getContainedAutoTypeLoc(), 4841 DeducedType); 4842 if (ConstraintsResult != DAR_Succeeded) 4843 return ConstraintsResult; 4844 } 4845 } 4846 4847 Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type); 4848 if (Result.isNull()) 4849 return DAR_FailedAlreadyDiagnosed; 4850 4851 // Check that the deduced argument type is compatible with the original 4852 // argument type per C++ [temp.deduct.call]p4. 4853 QualType DeducedA = InitList ? Deduced[0].getAsType() : Result; 4854 for (const OriginalCallArg &OriginalArg : OriginalCallArgs) { 4855 assert((bool)InitList == OriginalArg.DecomposedParam && 4856 "decomposed non-init-list in auto deduction?"); 4857 if (auto TDK = 4858 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) { 4859 Result = QualType(); 4860 return DeductionFailed(TDK, {}); 4861 } 4862 } 4863 4864 return DAR_Succeeded; 4865 } 4866 4867 QualType Sema::SubstAutoType(QualType TypeWithAuto, 4868 QualType TypeToReplaceAuto) { 4869 if (TypeToReplaceAuto->isDependentType()) 4870 return SubstituteDeducedTypeTransform( 4871 *this, DependentAuto{ 4872 TypeToReplaceAuto->containsUnexpandedParameterPack()}) 4873 .TransformType(TypeWithAuto); 4874 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 4875 .TransformType(TypeWithAuto); 4876 } 4877 4878 TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, 4879 QualType TypeToReplaceAuto) { 4880 if (TypeToReplaceAuto->isDependentType()) 4881 return SubstituteDeducedTypeTransform( 4882 *this, 4883 DependentAuto{ 4884 TypeToReplaceAuto->containsUnexpandedParameterPack()}) 4885 .TransformType(TypeWithAuto); 4886 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 4887 .TransformType(TypeWithAuto); 4888 } 4889 4890 QualType Sema::ReplaceAutoType(QualType TypeWithAuto, 4891 QualType TypeToReplaceAuto) { 4892 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, 4893 /*UseTypeSugar*/ false) 4894 .TransformType(TypeWithAuto); 4895 } 4896 4897 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) { 4898 if (isa<InitListExpr>(Init)) 4899 Diag(VDecl->getLocation(), 4900 VDecl->isInitCapture() 4901 ? diag::err_init_capture_deduction_failure_from_init_list 4902 : diag::err_auto_var_deduction_failure_from_init_list) 4903 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange(); 4904 else 4905 Diag(VDecl->getLocation(), 4906 VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure 4907 : diag::err_auto_var_deduction_failure) 4908 << VDecl->getDeclName() << VDecl->getType() << Init->getType() 4909 << Init->getSourceRange(); 4910 } 4911 4912 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, 4913 bool Diagnose) { 4914 assert(FD->getReturnType()->isUndeducedType()); 4915 4916 // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)' 4917 // within the return type from the call operator's type. 4918 if (isLambdaConversionOperator(FD)) { 4919 CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent(); 4920 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 4921 4922 // For a generic lambda, instantiate the call operator if needed. 4923 if (auto *Args = FD->getTemplateSpecializationArgs()) { 4924 CallOp = InstantiateFunctionDeclaration( 4925 CallOp->getDescribedFunctionTemplate(), Args, Loc); 4926 if (!CallOp || CallOp->isInvalidDecl()) 4927 return true; 4928 4929 // We might need to deduce the return type by instantiating the definition 4930 // of the operator() function. 4931 if (CallOp->getReturnType()->isUndeducedType()) { 4932 runWithSufficientStackSpace(Loc, [&] { 4933 InstantiateFunctionDefinition(Loc, CallOp); 4934 }); 4935 } 4936 } 4937 4938 if (CallOp->isInvalidDecl()) 4939 return true; 4940 assert(!CallOp->getReturnType()->isUndeducedType() && 4941 "failed to deduce lambda return type"); 4942 4943 // Build the new return type from scratch. 4944 QualType RetType = getLambdaConversionFunctionResultType( 4945 CallOp->getType()->castAs<FunctionProtoType>()); 4946 if (FD->getReturnType()->getAs<PointerType>()) 4947 RetType = Context.getPointerType(RetType); 4948 else { 4949 assert(FD->getReturnType()->getAs<BlockPointerType>()); 4950 RetType = Context.getBlockPointerType(RetType); 4951 } 4952 Context.adjustDeducedFunctionResultType(FD, RetType); 4953 return false; 4954 } 4955 4956 if (FD->getTemplateInstantiationPattern()) { 4957 runWithSufficientStackSpace(Loc, [&] { 4958 InstantiateFunctionDefinition(Loc, FD); 4959 }); 4960 } 4961 4962 bool StillUndeduced = FD->getReturnType()->isUndeducedType(); 4963 if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) { 4964 Diag(Loc, diag::err_auto_fn_used_before_defined) << FD; 4965 Diag(FD->getLocation(), diag::note_callee_decl) << FD; 4966 } 4967 4968 return StillUndeduced; 4969 } 4970 4971 /// If this is a non-static member function, 4972 static void 4973 AddImplicitObjectParameterType(ASTContext &Context, 4974 CXXMethodDecl *Method, 4975 SmallVectorImpl<QualType> &ArgTypes) { 4976 // C++11 [temp.func.order]p3: 4977 // [...] The new parameter is of type "reference to cv A," where cv are 4978 // the cv-qualifiers of the function template (if any) and A is 4979 // the class of which the function template is a member. 4980 // 4981 // The standard doesn't say explicitly, but we pick the appropriate kind of 4982 // reference type based on [over.match.funcs]p4. 4983 QualType ArgTy = Context.getTypeDeclType(Method->getParent()); 4984 ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers()); 4985 if (Method->getRefQualifier() == RQ_RValue) 4986 ArgTy = Context.getRValueReferenceType(ArgTy); 4987 else 4988 ArgTy = Context.getLValueReferenceType(ArgTy); 4989 ArgTypes.push_back(ArgTy); 4990 } 4991 4992 /// Determine whether the function template \p FT1 is at least as 4993 /// specialized as \p FT2. 4994 static bool isAtLeastAsSpecializedAs(Sema &S, 4995 SourceLocation Loc, 4996 FunctionTemplateDecl *FT1, 4997 FunctionTemplateDecl *FT2, 4998 TemplatePartialOrderingContext TPOC, 4999 unsigned NumCallArguments1, 5000 bool Reversed) { 5001 assert(!Reversed || TPOC == TPOC_Call); 5002 5003 FunctionDecl *FD1 = FT1->getTemplatedDecl(); 5004 FunctionDecl *FD2 = FT2->getTemplatedDecl(); 5005 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>(); 5006 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>(); 5007 5008 assert(Proto1 && Proto2 && "Function templates must have prototypes"); 5009 TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); 5010 SmallVector<DeducedTemplateArgument, 4> Deduced; 5011 Deduced.resize(TemplateParams->size()); 5012 5013 // C++0x [temp.deduct.partial]p3: 5014 // The types used to determine the ordering depend on the context in which 5015 // the partial ordering is done: 5016 TemplateDeductionInfo Info(Loc); 5017 SmallVector<QualType, 4> Args2; 5018 switch (TPOC) { 5019 case TPOC_Call: { 5020 // - In the context of a function call, the function parameter types are 5021 // used. 5022 CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1); 5023 CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2); 5024 5025 // C++11 [temp.func.order]p3: 5026 // [...] If only one of the function templates is a non-static 5027 // member, that function template is considered to have a new 5028 // first parameter inserted in its function parameter list. The 5029 // new parameter is of type "reference to cv A," where cv are 5030 // the cv-qualifiers of the function template (if any) and A is 5031 // the class of which the function template is a member. 5032 // 5033 // Note that we interpret this to mean "if one of the function 5034 // templates is a non-static member and the other is a non-member"; 5035 // otherwise, the ordering rules for static functions against non-static 5036 // functions don't make any sense. 5037 // 5038 // C++98/03 doesn't have this provision but we've extended DR532 to cover 5039 // it as wording was broken prior to it. 5040 SmallVector<QualType, 4> Args1; 5041 5042 unsigned NumComparedArguments = NumCallArguments1; 5043 5044 if (!Method2 && Method1 && !Method1->isStatic()) { 5045 // Compare 'this' from Method1 against first parameter from Method2. 5046 AddImplicitObjectParameterType(S.Context, Method1, Args1); 5047 ++NumComparedArguments; 5048 } else if (!Method1 && Method2 && !Method2->isStatic()) { 5049 // Compare 'this' from Method2 against first parameter from Method1. 5050 AddImplicitObjectParameterType(S.Context, Method2, Args2); 5051 } else if (Method1 && Method2 && Reversed) { 5052 // Compare 'this' from Method1 against second parameter from Method2 5053 // and 'this' from Method2 against second parameter from Method1. 5054 AddImplicitObjectParameterType(S.Context, Method1, Args1); 5055 AddImplicitObjectParameterType(S.Context, Method2, Args2); 5056 ++NumComparedArguments; 5057 } 5058 5059 Args1.insert(Args1.end(), Proto1->param_type_begin(), 5060 Proto1->param_type_end()); 5061 Args2.insert(Args2.end(), Proto2->param_type_begin(), 5062 Proto2->param_type_end()); 5063 5064 // C++ [temp.func.order]p5: 5065 // The presence of unused ellipsis and default arguments has no effect on 5066 // the partial ordering of function templates. 5067 if (Args1.size() > NumComparedArguments) 5068 Args1.resize(NumComparedArguments); 5069 if (Args2.size() > NumComparedArguments) 5070 Args2.resize(NumComparedArguments); 5071 if (Reversed) 5072 std::reverse(Args2.begin(), Args2.end()); 5073 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(), 5074 Args1.data(), Args1.size(), Info, Deduced, 5075 TDF_None, /*PartialOrdering=*/true)) 5076 return false; 5077 5078 break; 5079 } 5080 5081 case TPOC_Conversion: 5082 // - In the context of a call to a conversion operator, the return types 5083 // of the conversion function templates are used. 5084 if (DeduceTemplateArgumentsByTypeMatch( 5085 S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(), 5086 Info, Deduced, TDF_None, 5087 /*PartialOrdering=*/true)) 5088 return false; 5089 break; 5090 5091 case TPOC_Other: 5092 // - In other contexts (14.6.6.2) the function template's function type 5093 // is used. 5094 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 5095 FD2->getType(), FD1->getType(), 5096 Info, Deduced, TDF_None, 5097 /*PartialOrdering=*/true)) 5098 return false; 5099 break; 5100 } 5101 5102 // C++0x [temp.deduct.partial]p11: 5103 // In most cases, all template parameters must have values in order for 5104 // deduction to succeed, but for partial ordering purposes a template 5105 // parameter may remain without a value provided it is not used in the 5106 // types being used for partial ordering. [ Note: a template parameter used 5107 // in a non-deduced context is considered used. -end note] 5108 unsigned ArgIdx = 0, NumArgs = Deduced.size(); 5109 for (; ArgIdx != NumArgs; ++ArgIdx) 5110 if (Deduced[ArgIdx].isNull()) 5111 break; 5112 5113 // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need 5114 // to substitute the deduced arguments back into the template and check that 5115 // we get the right type. 5116 5117 if (ArgIdx == NumArgs) { 5118 // All template arguments were deduced. FT1 is at least as specialized 5119 // as FT2. 5120 return true; 5121 } 5122 5123 // Figure out which template parameters were used. 5124 llvm::SmallBitVector UsedParameters(TemplateParams->size()); 5125 switch (TPOC) { 5126 case TPOC_Call: 5127 for (unsigned I = 0, N = Args2.size(); I != N; ++I) 5128 ::MarkUsedTemplateParameters(S.Context, Args2[I], false, 5129 TemplateParams->getDepth(), 5130 UsedParameters); 5131 break; 5132 5133 case TPOC_Conversion: 5134 ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false, 5135 TemplateParams->getDepth(), UsedParameters); 5136 break; 5137 5138 case TPOC_Other: 5139 ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false, 5140 TemplateParams->getDepth(), 5141 UsedParameters); 5142 break; 5143 } 5144 5145 for (; ArgIdx != NumArgs; ++ArgIdx) 5146 // If this argument had no value deduced but was used in one of the types 5147 // used for partial ordering, then deduction fails. 5148 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) 5149 return false; 5150 5151 return true; 5152 } 5153 5154 /// Determine whether this a function template whose parameter-type-list 5155 /// ends with a function parameter pack. 5156 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) { 5157 FunctionDecl *Function = FunTmpl->getTemplatedDecl(); 5158 unsigned NumParams = Function->getNumParams(); 5159 if (NumParams == 0) 5160 return false; 5161 5162 ParmVarDecl *Last = Function->getParamDecl(NumParams - 1); 5163 if (!Last->isParameterPack()) 5164 return false; 5165 5166 // Make sure that no previous parameter is a parameter pack. 5167 while (--NumParams > 0) { 5168 if (Function->getParamDecl(NumParams - 1)->isParameterPack()) 5169 return false; 5170 } 5171 5172 return true; 5173 } 5174 5175 /// Returns the more specialized function template according 5176 /// to the rules of function template partial ordering (C++ [temp.func.order]). 5177 /// 5178 /// \param FT1 the first function template 5179 /// 5180 /// \param FT2 the second function template 5181 /// 5182 /// \param TPOC the context in which we are performing partial ordering of 5183 /// function templates. 5184 /// 5185 /// \param NumCallArguments1 The number of arguments in the call to FT1, used 5186 /// only when \c TPOC is \c TPOC_Call. 5187 /// 5188 /// \param NumCallArguments2 The number of arguments in the call to FT2, used 5189 /// only when \c TPOC is \c TPOC_Call. 5190 /// 5191 /// \param Reversed If \c true, exactly one of FT1 and FT2 is an overload 5192 /// candidate with a reversed parameter order. In this case, the corresponding 5193 /// P/A pairs between FT1 and FT2 are reversed. 5194 /// 5195 /// \returns the more specialized function template. If neither 5196 /// template is more specialized, returns NULL. 5197 FunctionTemplateDecl * 5198 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, 5199 FunctionTemplateDecl *FT2, 5200 SourceLocation Loc, 5201 TemplatePartialOrderingContext TPOC, 5202 unsigned NumCallArguments1, 5203 unsigned NumCallArguments2, 5204 bool Reversed) { 5205 5206 auto JudgeByConstraints = [&] () -> FunctionTemplateDecl * { 5207 llvm::SmallVector<const Expr *, 3> AC1, AC2; 5208 FT1->getAssociatedConstraints(AC1); 5209 FT2->getAssociatedConstraints(AC2); 5210 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 5211 if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1)) 5212 return nullptr; 5213 if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2)) 5214 return nullptr; 5215 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 5216 return nullptr; 5217 return AtLeastAsConstrained1 ? FT1 : FT2; 5218 }; 5219 5220 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 5221 NumCallArguments1, Reversed); 5222 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, 5223 NumCallArguments2, Reversed); 5224 5225 if (Better1 != Better2) // We have a clear winner 5226 return Better1 ? FT1 : FT2; 5227 5228 if (!Better1 && !Better2) // Neither is better than the other 5229 return JudgeByConstraints(); 5230 5231 // FIXME: This mimics what GCC implements, but doesn't match up with the 5232 // proposed resolution for core issue 692. This area needs to be sorted out, 5233 // but for now we attempt to maintain compatibility. 5234 bool Variadic1 = isVariadicFunctionTemplate(FT1); 5235 bool Variadic2 = isVariadicFunctionTemplate(FT2); 5236 if (Variadic1 != Variadic2) 5237 return Variadic1? FT2 : FT1; 5238 5239 return JudgeByConstraints(); 5240 } 5241 5242 /// Determine if the two templates are equivalent. 5243 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) { 5244 if (T1 == T2) 5245 return true; 5246 5247 if (!T1 || !T2) 5248 return false; 5249 5250 return T1->getCanonicalDecl() == T2->getCanonicalDecl(); 5251 } 5252 5253 /// Retrieve the most specialized of the given function template 5254 /// specializations. 5255 /// 5256 /// \param SpecBegin the start iterator of the function template 5257 /// specializations that we will be comparing. 5258 /// 5259 /// \param SpecEnd the end iterator of the function template 5260 /// specializations, paired with \p SpecBegin. 5261 /// 5262 /// \param Loc the location where the ambiguity or no-specializations 5263 /// diagnostic should occur. 5264 /// 5265 /// \param NoneDiag partial diagnostic used to diagnose cases where there are 5266 /// no matching candidates. 5267 /// 5268 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one 5269 /// occurs. 5270 /// 5271 /// \param CandidateDiag partial diagnostic used for each function template 5272 /// specialization that is a candidate in the ambiguous ordering. One parameter 5273 /// in this diagnostic should be unbound, which will correspond to the string 5274 /// describing the template arguments for the function template specialization. 5275 /// 5276 /// \returns the most specialized function template specialization, if 5277 /// found. Otherwise, returns SpecEnd. 5278 UnresolvedSetIterator Sema::getMostSpecialized( 5279 UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd, 5280 TemplateSpecCandidateSet &FailedCandidates, 5281 SourceLocation Loc, const PartialDiagnostic &NoneDiag, 5282 const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, 5283 bool Complain, QualType TargetType) { 5284 if (SpecBegin == SpecEnd) { 5285 if (Complain) { 5286 Diag(Loc, NoneDiag); 5287 FailedCandidates.NoteCandidates(*this, Loc); 5288 } 5289 return SpecEnd; 5290 } 5291 5292 if (SpecBegin + 1 == SpecEnd) 5293 return SpecBegin; 5294 5295 // Find the function template that is better than all of the templates it 5296 // has been compared to. 5297 UnresolvedSetIterator Best = SpecBegin; 5298 FunctionTemplateDecl *BestTemplate 5299 = cast<FunctionDecl>(*Best)->getPrimaryTemplate(); 5300 assert(BestTemplate && "Not a function template specialization?"); 5301 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) { 5302 FunctionTemplateDecl *Challenger 5303 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 5304 assert(Challenger && "Not a function template specialization?"); 5305 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 5306 Loc, TPOC_Other, 0, 0), 5307 Challenger)) { 5308 Best = I; 5309 BestTemplate = Challenger; 5310 } 5311 } 5312 5313 // Make sure that the "best" function template is more specialized than all 5314 // of the others. 5315 bool Ambiguous = false; 5316 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 5317 FunctionTemplateDecl *Challenger 5318 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 5319 if (I != Best && 5320 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 5321 Loc, TPOC_Other, 0, 0), 5322 BestTemplate)) { 5323 Ambiguous = true; 5324 break; 5325 } 5326 } 5327 5328 if (!Ambiguous) { 5329 // We found an answer. Return it. 5330 return Best; 5331 } 5332 5333 // Diagnose the ambiguity. 5334 if (Complain) { 5335 Diag(Loc, AmbigDiag); 5336 5337 // FIXME: Can we order the candidates in some sane way? 5338 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 5339 PartialDiagnostic PD = CandidateDiag; 5340 const auto *FD = cast<FunctionDecl>(*I); 5341 PD << FD << getTemplateArgumentBindingsText( 5342 FD->getPrimaryTemplate()->getTemplateParameters(), 5343 *FD->getTemplateSpecializationArgs()); 5344 if (!TargetType.isNull()) 5345 HandleFunctionTypeMismatch(PD, FD->getType(), TargetType); 5346 Diag((*I)->getLocation(), PD); 5347 } 5348 } 5349 5350 return SpecEnd; 5351 } 5352 5353 /// Determine whether one partial specialization, P1, is at least as 5354 /// specialized than another, P2. 5355 /// 5356 /// \tparam TemplateLikeDecl The kind of P2, which must be a 5357 /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl. 5358 /// \param T1 The injected-class-name of P1 (faked for a variable template). 5359 /// \param T2 The injected-class-name of P2 (faked for a variable template). 5360 template<typename TemplateLikeDecl> 5361 static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2, 5362 TemplateLikeDecl *P2, 5363 TemplateDeductionInfo &Info) { 5364 // C++ [temp.class.order]p1: 5365 // For two class template partial specializations, the first is at least as 5366 // specialized as the second if, given the following rewrite to two 5367 // function templates, the first function template is at least as 5368 // specialized as the second according to the ordering rules for function 5369 // templates (14.6.6.2): 5370 // - the first function template has the same template parameters as the 5371 // first partial specialization and has a single function parameter 5372 // whose type is a class template specialization with the template 5373 // arguments of the first partial specialization, and 5374 // - the second function template has the same template parameters as the 5375 // second partial specialization and has a single function parameter 5376 // whose type is a class template specialization with the template 5377 // arguments of the second partial specialization. 5378 // 5379 // Rather than synthesize function templates, we merely perform the 5380 // equivalent partial ordering by performing deduction directly on 5381 // the template arguments of the class template partial 5382 // specializations. This computation is slightly simpler than the 5383 // general problem of function template partial ordering, because 5384 // class template partial specializations are more constrained. We 5385 // know that every template parameter is deducible from the class 5386 // template partial specialization's template arguments, for 5387 // example. 5388 SmallVector<DeducedTemplateArgument, 4> Deduced; 5389 5390 // Determine whether P1 is at least as specialized as P2. 5391 Deduced.resize(P2->getTemplateParameters()->size()); 5392 if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(), 5393 T2, T1, Info, Deduced, TDF_None, 5394 /*PartialOrdering=*/true)) 5395 return false; 5396 5397 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), 5398 Deduced.end()); 5399 Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs, 5400 Info); 5401 auto *TST1 = T1->castAs<TemplateSpecializationType>(); 5402 bool AtLeastAsSpecialized; 5403 S.runWithSufficientStackSpace(Info.getLocation(), [&] { 5404 AtLeastAsSpecialized = !FinishTemplateArgumentDeduction( 5405 S, P2, /*IsPartialOrdering=*/true, 5406 TemplateArgumentList(TemplateArgumentList::OnStack, 5407 TST1->template_arguments()), 5408 Deduced, Info); 5409 }); 5410 return AtLeastAsSpecialized; 5411 } 5412 5413 /// Returns the more specialized class template partial specialization 5414 /// according to the rules of partial ordering of class template partial 5415 /// specializations (C++ [temp.class.order]). 5416 /// 5417 /// \param PS1 the first class template partial specialization 5418 /// 5419 /// \param PS2 the second class template partial specialization 5420 /// 5421 /// \returns the more specialized class template partial specialization. If 5422 /// neither partial specialization is more specialized, returns NULL. 5423 ClassTemplatePartialSpecializationDecl * 5424 Sema::getMoreSpecializedPartialSpecialization( 5425 ClassTemplatePartialSpecializationDecl *PS1, 5426 ClassTemplatePartialSpecializationDecl *PS2, 5427 SourceLocation Loc) { 5428 QualType PT1 = PS1->getInjectedSpecializationType(); 5429 QualType PT2 = PS2->getInjectedSpecializationType(); 5430 5431 TemplateDeductionInfo Info(Loc); 5432 bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info); 5433 bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info); 5434 5435 if (!Better1 && !Better2) 5436 return nullptr; 5437 if (Better1 && Better2) { 5438 llvm::SmallVector<const Expr *, 3> AC1, AC2; 5439 PS1->getAssociatedConstraints(AC1); 5440 PS2->getAssociatedConstraints(AC2); 5441 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 5442 if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1)) 5443 return nullptr; 5444 if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2)) 5445 return nullptr; 5446 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 5447 return nullptr; 5448 return AtLeastAsConstrained1 ? PS1 : PS2; 5449 } 5450 5451 return Better1 ? PS1 : PS2; 5452 } 5453 5454 bool Sema::isMoreSpecializedThanPrimary( 5455 ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5456 ClassTemplateDecl *Primary = Spec->getSpecializedTemplate(); 5457 QualType PrimaryT = Primary->getInjectedClassNameSpecialization(); 5458 QualType PartialT = Spec->getInjectedSpecializationType(); 5459 if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info)) 5460 return false; 5461 if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) 5462 return true; 5463 Info.clearSFINAEDiagnostic(); 5464 llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC; 5465 Primary->getAssociatedConstraints(PrimaryAC); 5466 Spec->getAssociatedConstraints(SpecAC); 5467 bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec; 5468 if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC, 5469 AtLeastAsConstrainedSpec)) 5470 return false; 5471 if (!AtLeastAsConstrainedSpec) 5472 return false; 5473 if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC, 5474 AtLeastAsConstrainedPrimary)) 5475 return false; 5476 return !AtLeastAsConstrainedPrimary; 5477 } 5478 5479 VarTemplatePartialSpecializationDecl * 5480 Sema::getMoreSpecializedPartialSpecialization( 5481 VarTemplatePartialSpecializationDecl *PS1, 5482 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) { 5483 // Pretend the variable template specializations are class template 5484 // specializations and form a fake injected class name type for comparison. 5485 assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() && 5486 "the partial specializations being compared should specialize" 5487 " the same template."); 5488 TemplateName Name(PS1->getSpecializedTemplate()); 5489 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5490 QualType PT1 = Context.getTemplateSpecializationType( 5491 CanonTemplate, PS1->getTemplateArgs().asArray()); 5492 QualType PT2 = Context.getTemplateSpecializationType( 5493 CanonTemplate, PS2->getTemplateArgs().asArray()); 5494 5495 TemplateDeductionInfo Info(Loc); 5496 bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info); 5497 bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info); 5498 5499 if (!Better1 && !Better2) 5500 return nullptr; 5501 if (Better1 && Better2) { 5502 llvm::SmallVector<const Expr *, 3> AC1, AC2; 5503 PS1->getAssociatedConstraints(AC1); 5504 PS2->getAssociatedConstraints(AC2); 5505 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 5506 if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1)) 5507 return nullptr; 5508 if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2)) 5509 return nullptr; 5510 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 5511 return nullptr; 5512 return AtLeastAsConstrained1 ? PS1 : PS2; 5513 } 5514 5515 return Better1 ? PS1 : PS2; 5516 } 5517 5518 bool Sema::isMoreSpecializedThanPrimary( 5519 VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5520 TemplateDecl *Primary = Spec->getSpecializedTemplate(); 5521 // FIXME: Cache the injected template arguments rather than recomputing 5522 // them for each partial specialization. 5523 SmallVector<TemplateArgument, 8> PrimaryArgs; 5524 Context.getInjectedTemplateArgs(Primary->getTemplateParameters(), 5525 PrimaryArgs); 5526 5527 TemplateName CanonTemplate = 5528 Context.getCanonicalTemplateName(TemplateName(Primary)); 5529 QualType PrimaryT = Context.getTemplateSpecializationType( 5530 CanonTemplate, PrimaryArgs); 5531 QualType PartialT = Context.getTemplateSpecializationType( 5532 CanonTemplate, Spec->getTemplateArgs().asArray()); 5533 5534 if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info)) 5535 return false; 5536 if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) 5537 return true; 5538 Info.clearSFINAEDiagnostic(); 5539 llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC; 5540 Primary->getAssociatedConstraints(PrimaryAC); 5541 Spec->getAssociatedConstraints(SpecAC); 5542 bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec; 5543 if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC, 5544 AtLeastAsConstrainedSpec)) 5545 return false; 5546 if (!AtLeastAsConstrainedSpec) 5547 return false; 5548 if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC, 5549 AtLeastAsConstrainedPrimary)) 5550 return false; 5551 return !AtLeastAsConstrainedPrimary; 5552 } 5553 5554 bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs( 5555 TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) { 5556 // C++1z [temp.arg.template]p4: (DR 150) 5557 // A template template-parameter P is at least as specialized as a 5558 // template template-argument A if, given the following rewrite to two 5559 // function templates... 5560 5561 // Rather than synthesize function templates, we merely perform the 5562 // equivalent partial ordering by performing deduction directly on 5563 // the template parameter lists of the template template parameters. 5564 // 5565 // Given an invented class template X with the template parameter list of 5566 // A (including default arguments): 5567 TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg)); 5568 TemplateParameterList *A = AArg->getTemplateParameters(); 5569 5570 // - Each function template has a single function parameter whose type is 5571 // a specialization of X with template arguments corresponding to the 5572 // template parameters from the respective function template 5573 SmallVector<TemplateArgument, 8> AArgs; 5574 Context.getInjectedTemplateArgs(A, AArgs); 5575 5576 // Check P's arguments against A's parameter list. This will fill in default 5577 // template arguments as needed. AArgs are already correct by construction. 5578 // We can't just use CheckTemplateIdType because that will expand alias 5579 // templates. 5580 SmallVector<TemplateArgument, 4> PArgs; 5581 { 5582 SFINAETrap Trap(*this); 5583 5584 Context.getInjectedTemplateArgs(P, PArgs); 5585 TemplateArgumentListInfo PArgList(P->getLAngleLoc(), 5586 P->getRAngleLoc()); 5587 for (unsigned I = 0, N = P->size(); I != N; ++I) { 5588 // Unwrap packs that getInjectedTemplateArgs wrapped around pack 5589 // expansions, to form an "as written" argument list. 5590 TemplateArgument Arg = PArgs[I]; 5591 if (Arg.getKind() == TemplateArgument::Pack) { 5592 assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion()); 5593 Arg = *Arg.pack_begin(); 5594 } 5595 PArgList.addArgument(getTrivialTemplateArgumentLoc( 5596 Arg, QualType(), P->getParam(I)->getLocation())); 5597 } 5598 PArgs.clear(); 5599 5600 // C++1z [temp.arg.template]p3: 5601 // If the rewrite produces an invalid type, then P is not at least as 5602 // specialized as A. 5603 if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, PArgs) || 5604 Trap.hasErrorOccurred()) 5605 return false; 5606 } 5607 5608 QualType AType = Context.getTemplateSpecializationType(X, AArgs); 5609 QualType PType = Context.getTemplateSpecializationType(X, PArgs); 5610 5611 // ... the function template corresponding to P is at least as specialized 5612 // as the function template corresponding to A according to the partial 5613 // ordering rules for function templates. 5614 TemplateDeductionInfo Info(Loc, A->getDepth()); 5615 return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info); 5616 } 5617 5618 namespace { 5619 struct MarkUsedTemplateParameterVisitor : 5620 RecursiveASTVisitor<MarkUsedTemplateParameterVisitor> { 5621 llvm::SmallBitVector &Used; 5622 unsigned Depth; 5623 5624 MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used, 5625 unsigned Depth) 5626 : Used(Used), Depth(Depth) { } 5627 5628 bool VisitTemplateTypeParmType(TemplateTypeParmType *T) { 5629 if (T->getDepth() == Depth) 5630 Used[T->getIndex()] = true; 5631 return true; 5632 } 5633 5634 bool TraverseTemplateName(TemplateName Template) { 5635 if (auto *TTP = 5636 dyn_cast<TemplateTemplateParmDecl>(Template.getAsTemplateDecl())) 5637 if (TTP->getDepth() == Depth) 5638 Used[TTP->getIndex()] = true; 5639 RecursiveASTVisitor<MarkUsedTemplateParameterVisitor>:: 5640 TraverseTemplateName(Template); 5641 return true; 5642 } 5643 5644 bool VisitDeclRefExpr(DeclRefExpr *E) { 5645 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 5646 if (NTTP->getDepth() == Depth) 5647 Used[NTTP->getIndex()] = true; 5648 return true; 5649 } 5650 }; 5651 } 5652 5653 /// Mark the template parameters that are used by the given 5654 /// expression. 5655 static void 5656 MarkUsedTemplateParameters(ASTContext &Ctx, 5657 const Expr *E, 5658 bool OnlyDeduced, 5659 unsigned Depth, 5660 llvm::SmallBitVector &Used) { 5661 if (!OnlyDeduced) { 5662 MarkUsedTemplateParameterVisitor(Used, Depth) 5663 .TraverseStmt(const_cast<Expr *>(E)); 5664 return; 5665 } 5666 5667 // We can deduce from a pack expansion. 5668 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E)) 5669 E = Expansion->getPattern(); 5670 5671 // Skip through any implicit casts we added while type-checking, and any 5672 // substitutions performed by template alias expansion. 5673 while (true) { 5674 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 5675 E = ICE->getSubExpr(); 5676 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) 5677 E = CE->getSubExpr(); 5678 else if (const SubstNonTypeTemplateParmExpr *Subst = 5679 dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 5680 E = Subst->getReplacement(); 5681 else 5682 break; 5683 } 5684 5685 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 5686 if (!DRE) 5687 return; 5688 5689 const NonTypeTemplateParmDecl *NTTP 5690 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 5691 if (!NTTP) 5692 return; 5693 5694 if (NTTP->getDepth() == Depth) 5695 Used[NTTP->getIndex()] = true; 5696 5697 // In C++17 mode, additional arguments may be deduced from the type of a 5698 // non-type argument. 5699 if (Ctx.getLangOpts().CPlusPlus17) 5700 MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used); 5701 } 5702 5703 /// Mark the template parameters that are used by the given 5704 /// nested name specifier. 5705 static void 5706 MarkUsedTemplateParameters(ASTContext &Ctx, 5707 NestedNameSpecifier *NNS, 5708 bool OnlyDeduced, 5709 unsigned Depth, 5710 llvm::SmallBitVector &Used) { 5711 if (!NNS) 5712 return; 5713 5714 MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth, 5715 Used); 5716 MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0), 5717 OnlyDeduced, Depth, Used); 5718 } 5719 5720 /// Mark the template parameters that are used by the given 5721 /// template name. 5722 static void 5723 MarkUsedTemplateParameters(ASTContext &Ctx, 5724 TemplateName Name, 5725 bool OnlyDeduced, 5726 unsigned Depth, 5727 llvm::SmallBitVector &Used) { 5728 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 5729 if (TemplateTemplateParmDecl *TTP 5730 = dyn_cast<TemplateTemplateParmDecl>(Template)) { 5731 if (TTP->getDepth() == Depth) 5732 Used[TTP->getIndex()] = true; 5733 } 5734 return; 5735 } 5736 5737 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) 5738 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced, 5739 Depth, Used); 5740 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) 5741 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced, 5742 Depth, Used); 5743 } 5744 5745 /// Mark the template parameters that are used by the given 5746 /// type. 5747 static void 5748 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 5749 bool OnlyDeduced, 5750 unsigned Depth, 5751 llvm::SmallBitVector &Used) { 5752 if (T.isNull()) 5753 return; 5754 5755 // Non-dependent types have nothing deducible 5756 if (!T->isDependentType()) 5757 return; 5758 5759 T = Ctx.getCanonicalType(T); 5760 switch (T->getTypeClass()) { 5761 case Type::Pointer: 5762 MarkUsedTemplateParameters(Ctx, 5763 cast<PointerType>(T)->getPointeeType(), 5764 OnlyDeduced, 5765 Depth, 5766 Used); 5767 break; 5768 5769 case Type::BlockPointer: 5770 MarkUsedTemplateParameters(Ctx, 5771 cast<BlockPointerType>(T)->getPointeeType(), 5772 OnlyDeduced, 5773 Depth, 5774 Used); 5775 break; 5776 5777 case Type::LValueReference: 5778 case Type::RValueReference: 5779 MarkUsedTemplateParameters(Ctx, 5780 cast<ReferenceType>(T)->getPointeeType(), 5781 OnlyDeduced, 5782 Depth, 5783 Used); 5784 break; 5785 5786 case Type::MemberPointer: { 5787 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr()); 5788 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced, 5789 Depth, Used); 5790 MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0), 5791 OnlyDeduced, Depth, Used); 5792 break; 5793 } 5794 5795 case Type::DependentSizedArray: 5796 MarkUsedTemplateParameters(Ctx, 5797 cast<DependentSizedArrayType>(T)->getSizeExpr(), 5798 OnlyDeduced, Depth, Used); 5799 // Fall through to check the element type 5800 LLVM_FALLTHROUGH; 5801 5802 case Type::ConstantArray: 5803 case Type::IncompleteArray: 5804 MarkUsedTemplateParameters(Ctx, 5805 cast<ArrayType>(T)->getElementType(), 5806 OnlyDeduced, Depth, Used); 5807 break; 5808 5809 case Type::Vector: 5810 case Type::ExtVector: 5811 MarkUsedTemplateParameters(Ctx, 5812 cast<VectorType>(T)->getElementType(), 5813 OnlyDeduced, Depth, Used); 5814 break; 5815 5816 case Type::DependentVector: { 5817 const auto *VecType = cast<DependentVectorType>(T); 5818 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 5819 Depth, Used); 5820 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth, 5821 Used); 5822 break; 5823 } 5824 case Type::DependentSizedExtVector: { 5825 const DependentSizedExtVectorType *VecType 5826 = cast<DependentSizedExtVectorType>(T); 5827 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 5828 Depth, Used); 5829 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, 5830 Depth, Used); 5831 break; 5832 } 5833 5834 case Type::DependentAddressSpace: { 5835 const DependentAddressSpaceType *DependentASType = 5836 cast<DependentAddressSpaceType>(T); 5837 MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(), 5838 OnlyDeduced, Depth, Used); 5839 MarkUsedTemplateParameters(Ctx, 5840 DependentASType->getAddrSpaceExpr(), 5841 OnlyDeduced, Depth, Used); 5842 break; 5843 } 5844 5845 case Type::ConstantMatrix: { 5846 const ConstantMatrixType *MatType = cast<ConstantMatrixType>(T); 5847 MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced, 5848 Depth, Used); 5849 break; 5850 } 5851 5852 case Type::DependentSizedMatrix: { 5853 const DependentSizedMatrixType *MatType = cast<DependentSizedMatrixType>(T); 5854 MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced, 5855 Depth, Used); 5856 MarkUsedTemplateParameters(Ctx, MatType->getRowExpr(), OnlyDeduced, Depth, 5857 Used); 5858 MarkUsedTemplateParameters(Ctx, MatType->getColumnExpr(), OnlyDeduced, 5859 Depth, Used); 5860 break; 5861 } 5862 5863 case Type::FunctionProto: { 5864 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 5865 MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth, 5866 Used); 5867 for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) { 5868 // C++17 [temp.deduct.type]p5: 5869 // The non-deduced contexts are: [...] 5870 // -- A function parameter pack that does not occur at the end of the 5871 // parameter-declaration-list. 5872 if (!OnlyDeduced || I + 1 == N || 5873 !Proto->getParamType(I)->getAs<PackExpansionType>()) { 5874 MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced, 5875 Depth, Used); 5876 } else { 5877 // FIXME: C++17 [temp.deduct.call]p1: 5878 // When a function parameter pack appears in a non-deduced context, 5879 // the type of that pack is never deduced. 5880 // 5881 // We should also track a set of "never deduced" parameters, and 5882 // subtract that from the list of deduced parameters after marking. 5883 } 5884 } 5885 if (auto *E = Proto->getNoexceptExpr()) 5886 MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used); 5887 break; 5888 } 5889 5890 case Type::TemplateTypeParm: { 5891 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T); 5892 if (TTP->getDepth() == Depth) 5893 Used[TTP->getIndex()] = true; 5894 break; 5895 } 5896 5897 case Type::SubstTemplateTypeParmPack: { 5898 const SubstTemplateTypeParmPackType *Subst 5899 = cast<SubstTemplateTypeParmPackType>(T); 5900 MarkUsedTemplateParameters(Ctx, 5901 QualType(Subst->getReplacedParameter(), 0), 5902 OnlyDeduced, Depth, Used); 5903 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(), 5904 OnlyDeduced, Depth, Used); 5905 break; 5906 } 5907 5908 case Type::InjectedClassName: 5909 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType(); 5910 LLVM_FALLTHROUGH; 5911 5912 case Type::TemplateSpecialization: { 5913 const TemplateSpecializationType *Spec 5914 = cast<TemplateSpecializationType>(T); 5915 MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced, 5916 Depth, Used); 5917 5918 // C++0x [temp.deduct.type]p9: 5919 // If the template argument list of P contains a pack expansion that is 5920 // not the last template argument, the entire template argument list is a 5921 // non-deduced context. 5922 if (OnlyDeduced && 5923 hasPackExpansionBeforeEnd(Spec->template_arguments())) 5924 break; 5925 5926 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) 5927 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, 5928 Used); 5929 break; 5930 } 5931 5932 case Type::Complex: 5933 if (!OnlyDeduced) 5934 MarkUsedTemplateParameters(Ctx, 5935 cast<ComplexType>(T)->getElementType(), 5936 OnlyDeduced, Depth, Used); 5937 break; 5938 5939 case Type::Atomic: 5940 if (!OnlyDeduced) 5941 MarkUsedTemplateParameters(Ctx, 5942 cast<AtomicType>(T)->getValueType(), 5943 OnlyDeduced, Depth, Used); 5944 break; 5945 5946 case Type::DependentName: 5947 if (!OnlyDeduced) 5948 MarkUsedTemplateParameters(Ctx, 5949 cast<DependentNameType>(T)->getQualifier(), 5950 OnlyDeduced, Depth, Used); 5951 break; 5952 5953 case Type::DependentTemplateSpecialization: { 5954 // C++14 [temp.deduct.type]p5: 5955 // The non-deduced contexts are: 5956 // -- The nested-name-specifier of a type that was specified using a 5957 // qualified-id 5958 // 5959 // C++14 [temp.deduct.type]p6: 5960 // When a type name is specified in a way that includes a non-deduced 5961 // context, all of the types that comprise that type name are also 5962 // non-deduced. 5963 if (OnlyDeduced) 5964 break; 5965 5966 const DependentTemplateSpecializationType *Spec 5967 = cast<DependentTemplateSpecializationType>(T); 5968 5969 MarkUsedTemplateParameters(Ctx, Spec->getQualifier(), 5970 OnlyDeduced, Depth, Used); 5971 5972 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) 5973 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, 5974 Used); 5975 break; 5976 } 5977 5978 case Type::TypeOf: 5979 if (!OnlyDeduced) 5980 MarkUsedTemplateParameters(Ctx, 5981 cast<TypeOfType>(T)->getUnderlyingType(), 5982 OnlyDeduced, Depth, Used); 5983 break; 5984 5985 case Type::TypeOfExpr: 5986 if (!OnlyDeduced) 5987 MarkUsedTemplateParameters(Ctx, 5988 cast<TypeOfExprType>(T)->getUnderlyingExpr(), 5989 OnlyDeduced, Depth, Used); 5990 break; 5991 5992 case Type::Decltype: 5993 if (!OnlyDeduced) 5994 MarkUsedTemplateParameters(Ctx, 5995 cast<DecltypeType>(T)->getUnderlyingExpr(), 5996 OnlyDeduced, Depth, Used); 5997 break; 5998 5999 case Type::UnaryTransform: 6000 if (!OnlyDeduced) 6001 MarkUsedTemplateParameters(Ctx, 6002 cast<UnaryTransformType>(T)->getUnderlyingType(), 6003 OnlyDeduced, Depth, Used); 6004 break; 6005 6006 case Type::PackExpansion: 6007 MarkUsedTemplateParameters(Ctx, 6008 cast<PackExpansionType>(T)->getPattern(), 6009 OnlyDeduced, Depth, Used); 6010 break; 6011 6012 case Type::Auto: 6013 case Type::DeducedTemplateSpecialization: 6014 MarkUsedTemplateParameters(Ctx, 6015 cast<DeducedType>(T)->getDeducedType(), 6016 OnlyDeduced, Depth, Used); 6017 break; 6018 case Type::DependentExtInt: 6019 MarkUsedTemplateParameters(Ctx, 6020 cast<DependentExtIntType>(T)->getNumBitsExpr(), 6021 OnlyDeduced, Depth, Used); 6022 break; 6023 6024 // None of these types have any template parameters in them. 6025 case Type::Builtin: 6026 case Type::VariableArray: 6027 case Type::FunctionNoProto: 6028 case Type::Record: 6029 case Type::Enum: 6030 case Type::ObjCInterface: 6031 case Type::ObjCObject: 6032 case Type::ObjCObjectPointer: 6033 case Type::UnresolvedUsing: 6034 case Type::Pipe: 6035 case Type::ExtInt: 6036 #define TYPE(Class, Base) 6037 #define ABSTRACT_TYPE(Class, Base) 6038 #define DEPENDENT_TYPE(Class, Base) 6039 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 6040 #include "clang/AST/TypeNodes.inc" 6041 break; 6042 } 6043 } 6044 6045 /// Mark the template parameters that are used by this 6046 /// template argument. 6047 static void 6048 MarkUsedTemplateParameters(ASTContext &Ctx, 6049 const TemplateArgument &TemplateArg, 6050 bool OnlyDeduced, 6051 unsigned Depth, 6052 llvm::SmallBitVector &Used) { 6053 switch (TemplateArg.getKind()) { 6054 case TemplateArgument::Null: 6055 case TemplateArgument::Integral: 6056 case TemplateArgument::Declaration: 6057 break; 6058 6059 case TemplateArgument::NullPtr: 6060 MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced, 6061 Depth, Used); 6062 break; 6063 6064 case TemplateArgument::Type: 6065 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced, 6066 Depth, Used); 6067 break; 6068 6069 case TemplateArgument::Template: 6070 case TemplateArgument::TemplateExpansion: 6071 MarkUsedTemplateParameters(Ctx, 6072 TemplateArg.getAsTemplateOrTemplatePattern(), 6073 OnlyDeduced, Depth, Used); 6074 break; 6075 6076 case TemplateArgument::Expression: 6077 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced, 6078 Depth, Used); 6079 break; 6080 6081 case TemplateArgument::Pack: 6082 for (const auto &P : TemplateArg.pack_elements()) 6083 MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used); 6084 break; 6085 } 6086 } 6087 6088 /// Mark which template parameters are used in a given expression. 6089 /// 6090 /// \param E the expression from which template parameters will be deduced. 6091 /// 6092 /// \param Used a bit vector whose elements will be set to \c true 6093 /// to indicate when the corresponding template parameter will be 6094 /// deduced. 6095 void 6096 Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced, 6097 unsigned Depth, 6098 llvm::SmallBitVector &Used) { 6099 ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used); 6100 } 6101 6102 /// Mark which template parameters can be deduced from a given 6103 /// template argument list. 6104 /// 6105 /// \param TemplateArgs the template argument list from which template 6106 /// parameters will be deduced. 6107 /// 6108 /// \param Used a bit vector whose elements will be set to \c true 6109 /// to indicate when the corresponding template parameter will be 6110 /// deduced. 6111 void 6112 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, 6113 bool OnlyDeduced, unsigned Depth, 6114 llvm::SmallBitVector &Used) { 6115 // C++0x [temp.deduct.type]p9: 6116 // If the template argument list of P contains a pack expansion that is not 6117 // the last template argument, the entire template argument list is a 6118 // non-deduced context. 6119 if (OnlyDeduced && 6120 hasPackExpansionBeforeEnd(TemplateArgs.asArray())) 6121 return; 6122 6123 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6124 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced, 6125 Depth, Used); 6126 } 6127 6128 /// Marks all of the template parameters that will be deduced by a 6129 /// call to the given function template. 6130 void Sema::MarkDeducedTemplateParameters( 6131 ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, 6132 llvm::SmallBitVector &Deduced) { 6133 TemplateParameterList *TemplateParams 6134 = FunctionTemplate->getTemplateParameters(); 6135 Deduced.clear(); 6136 Deduced.resize(TemplateParams->size()); 6137 6138 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 6139 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) 6140 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(), 6141 true, TemplateParams->getDepth(), Deduced); 6142 } 6143 6144 bool hasDeducibleTemplateParameters(Sema &S, 6145 FunctionTemplateDecl *FunctionTemplate, 6146 QualType T) { 6147 if (!T->isDependentType()) 6148 return false; 6149 6150 TemplateParameterList *TemplateParams 6151 = FunctionTemplate->getTemplateParameters(); 6152 llvm::SmallBitVector Deduced(TemplateParams->size()); 6153 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(), 6154 Deduced); 6155 6156 return Deduced.any(); 6157 } 6158