1 //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements C++ template argument deduction. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Sema/TemplateDeduction.h" 14 #include "TreeTransform.h" 15 #include "TypeLocBuilder.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/DeclAccessPair.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/NestedNameSpecifier.h" 27 #include "clang/AST/TemplateBase.h" 28 #include "clang/AST/TemplateName.h" 29 #include "clang/AST/Type.h" 30 #include "clang/AST/TypeLoc.h" 31 #include "clang/AST/UnresolvedSet.h" 32 #include "clang/Basic/AddressSpaces.h" 33 #include "clang/Basic/ExceptionSpecificationType.h" 34 #include "clang/Basic/LLVM.h" 35 #include "clang/Basic/LangOptions.h" 36 #include "clang/Basic/PartialDiagnostic.h" 37 #include "clang/Basic/SourceLocation.h" 38 #include "clang/Basic/Specifiers.h" 39 #include "clang/Sema/Ownership.h" 40 #include "clang/Sema/Sema.h" 41 #include "clang/Sema/Template.h" 42 #include "llvm/ADT/APInt.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/ArrayRef.h" 45 #include "llvm/ADT/DenseMap.h" 46 #include "llvm/ADT/FoldingSet.h" 47 #include "llvm/ADT/Optional.h" 48 #include "llvm/ADT/SmallBitVector.h" 49 #include "llvm/ADT/SmallPtrSet.h" 50 #include "llvm/ADT/SmallVector.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <tuple> 57 #include <utility> 58 59 namespace clang { 60 61 /// Various flags that control template argument deduction. 62 /// 63 /// These flags can be bitwise-OR'd together. 64 enum TemplateDeductionFlags { 65 /// No template argument deduction flags, which indicates the 66 /// strictest results for template argument deduction (as used for, e.g., 67 /// matching class template partial specializations). 68 TDF_None = 0, 69 70 /// Within template argument deduction from a function call, we are 71 /// matching with a parameter type for which the original parameter was 72 /// a reference. 73 TDF_ParamWithReferenceType = 0x1, 74 75 /// Within template argument deduction from a function call, we 76 /// are matching in a case where we ignore cv-qualifiers. 77 TDF_IgnoreQualifiers = 0x02, 78 79 /// Within template argument deduction from a function call, 80 /// we are matching in a case where we can perform template argument 81 /// deduction from a template-id of a derived class of the argument type. 82 TDF_DerivedClass = 0x04, 83 84 /// Allow non-dependent types to differ, e.g., when performing 85 /// template argument deduction from a function call where conversions 86 /// may apply. 87 TDF_SkipNonDependent = 0x08, 88 89 /// Whether we are performing template argument deduction for 90 /// parameters and arguments in a top-level template argument 91 TDF_TopLevelParameterTypeList = 0x10, 92 93 /// Within template argument deduction from overload resolution per 94 /// C++ [over.over] allow matching function types that are compatible in 95 /// terms of noreturn and default calling convention adjustments, or 96 /// similarly matching a declared template specialization against a 97 /// possible template, per C++ [temp.deduct.decl]. In either case, permit 98 /// deduction where the parameter is a function type that can be converted 99 /// to the argument type. 100 TDF_AllowCompatibleFunctionType = 0x20, 101 102 /// Within template argument deduction for a conversion function, we are 103 /// matching with an argument type for which the original argument was 104 /// a reference. 105 TDF_ArgWithReferenceType = 0x40, 106 }; 107 } 108 109 using namespace clang; 110 using namespace sema; 111 112 /// Compare two APSInts, extending and switching the sign as 113 /// necessary to compare their values regardless of underlying type. 114 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) { 115 if (Y.getBitWidth() > X.getBitWidth()) 116 X = X.extend(Y.getBitWidth()); 117 else if (Y.getBitWidth() < X.getBitWidth()) 118 Y = Y.extend(X.getBitWidth()); 119 120 // If there is a signedness mismatch, correct it. 121 if (X.isSigned() != Y.isSigned()) { 122 // If the signed value is negative, then the values cannot be the same. 123 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative())) 124 return false; 125 126 Y.setIsSigned(true); 127 X.setIsSigned(true); 128 } 129 130 return X == Y; 131 } 132 133 static Sema::TemplateDeductionResult 134 DeduceTemplateArguments(Sema &S, 135 TemplateParameterList *TemplateParams, 136 const TemplateArgument &Param, 137 TemplateArgument Arg, 138 TemplateDeductionInfo &Info, 139 SmallVectorImpl<DeducedTemplateArgument> &Deduced); 140 141 static Sema::TemplateDeductionResult 142 DeduceTemplateArgumentsByTypeMatch(Sema &S, 143 TemplateParameterList *TemplateParams, 144 QualType Param, 145 QualType Arg, 146 TemplateDeductionInfo &Info, 147 SmallVectorImpl<DeducedTemplateArgument> & 148 Deduced, 149 unsigned TDF, 150 bool PartialOrdering = false, 151 bool DeducedFromArrayBound = false); 152 153 static Sema::TemplateDeductionResult 154 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 155 ArrayRef<TemplateArgument> Params, 156 ArrayRef<TemplateArgument> Args, 157 TemplateDeductionInfo &Info, 158 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 159 bool NumberOfArgumentsMustMatch); 160 161 static void MarkUsedTemplateParameters(ASTContext &Ctx, 162 const TemplateArgument &TemplateArg, 163 bool OnlyDeduced, unsigned Depth, 164 llvm::SmallBitVector &Used); 165 166 static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 167 bool OnlyDeduced, unsigned Level, 168 llvm::SmallBitVector &Deduced); 169 170 /// If the given expression is of a form that permits the deduction 171 /// of a non-type template parameter, return the declaration of that 172 /// non-type template parameter. 173 static NonTypeTemplateParmDecl * 174 getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) { 175 // If we are within an alias template, the expression may have undergone 176 // any number of parameter substitutions already. 177 while (true) { 178 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E)) 179 E = IC->getSubExpr(); 180 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) 181 E = CE->getSubExpr(); 182 else if (SubstNonTypeTemplateParmExpr *Subst = 183 dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 184 E = Subst->getReplacement(); 185 else 186 break; 187 } 188 189 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 190 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) 191 if (NTTP->getDepth() == Info.getDeducedDepth()) 192 return NTTP; 193 194 return nullptr; 195 } 196 197 /// Determine whether two declaration pointers refer to the same 198 /// declaration. 199 static bool isSameDeclaration(Decl *X, Decl *Y) { 200 if (NamedDecl *NX = dyn_cast<NamedDecl>(X)) 201 X = NX->getUnderlyingDecl(); 202 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y)) 203 Y = NY->getUnderlyingDecl(); 204 205 return X->getCanonicalDecl() == Y->getCanonicalDecl(); 206 } 207 208 /// Verify that the given, deduced template arguments are compatible. 209 /// 210 /// \returns The deduced template argument, or a NULL template argument if 211 /// the deduced template arguments were incompatible. 212 static DeducedTemplateArgument 213 checkDeducedTemplateArguments(ASTContext &Context, 214 const DeducedTemplateArgument &X, 215 const DeducedTemplateArgument &Y) { 216 // We have no deduction for one or both of the arguments; they're compatible. 217 if (X.isNull()) 218 return Y; 219 if (Y.isNull()) 220 return X; 221 222 // If we have two non-type template argument values deduced for the same 223 // parameter, they must both match the type of the parameter, and thus must 224 // match each other's type. As we're only keeping one of them, we must check 225 // for that now. The exception is that if either was deduced from an array 226 // bound, the type is permitted to differ. 227 if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) { 228 QualType XType = X.getNonTypeTemplateArgumentType(); 229 if (!XType.isNull()) { 230 QualType YType = Y.getNonTypeTemplateArgumentType(); 231 if (YType.isNull() || !Context.hasSameType(XType, YType)) 232 return DeducedTemplateArgument(); 233 } 234 } 235 236 switch (X.getKind()) { 237 case TemplateArgument::Null: 238 llvm_unreachable("Non-deduced template arguments handled above"); 239 240 case TemplateArgument::Type: 241 // If two template type arguments have the same type, they're compatible. 242 if (Y.getKind() == TemplateArgument::Type && 243 Context.hasSameType(X.getAsType(), Y.getAsType())) 244 return X; 245 246 // If one of the two arguments was deduced from an array bound, the other 247 // supersedes it. 248 if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound()) 249 return X.wasDeducedFromArrayBound() ? Y : X; 250 251 // The arguments are not compatible. 252 return DeducedTemplateArgument(); 253 254 case TemplateArgument::Integral: 255 // If we deduced a constant in one case and either a dependent expression or 256 // declaration in another case, keep the integral constant. 257 // If both are integral constants with the same value, keep that value. 258 if (Y.getKind() == TemplateArgument::Expression || 259 Y.getKind() == TemplateArgument::Declaration || 260 (Y.getKind() == TemplateArgument::Integral && 261 hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()))) 262 return X.wasDeducedFromArrayBound() ? Y : X; 263 264 // All other combinations are incompatible. 265 return DeducedTemplateArgument(); 266 267 case TemplateArgument::Template: 268 if (Y.getKind() == TemplateArgument::Template && 269 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate())) 270 return X; 271 272 // All other combinations are incompatible. 273 return DeducedTemplateArgument(); 274 275 case TemplateArgument::TemplateExpansion: 276 if (Y.getKind() == TemplateArgument::TemplateExpansion && 277 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(), 278 Y.getAsTemplateOrTemplatePattern())) 279 return X; 280 281 // All other combinations are incompatible. 282 return DeducedTemplateArgument(); 283 284 case TemplateArgument::Expression: { 285 if (Y.getKind() != TemplateArgument::Expression) 286 return checkDeducedTemplateArguments(Context, Y, X); 287 288 // Compare the expressions for equality 289 llvm::FoldingSetNodeID ID1, ID2; 290 X.getAsExpr()->Profile(ID1, Context, true); 291 Y.getAsExpr()->Profile(ID2, Context, true); 292 if (ID1 == ID2) 293 return X.wasDeducedFromArrayBound() ? Y : X; 294 295 // Differing dependent expressions are incompatible. 296 return DeducedTemplateArgument(); 297 } 298 299 case TemplateArgument::Declaration: 300 assert(!X.wasDeducedFromArrayBound()); 301 302 // If we deduced a declaration and a dependent expression, keep the 303 // declaration. 304 if (Y.getKind() == TemplateArgument::Expression) 305 return X; 306 307 // If we deduced a declaration and an integral constant, keep the 308 // integral constant and whichever type did not come from an array 309 // bound. 310 if (Y.getKind() == TemplateArgument::Integral) { 311 if (Y.wasDeducedFromArrayBound()) 312 return TemplateArgument(Context, Y.getAsIntegral(), 313 X.getParamTypeForDecl()); 314 return Y; 315 } 316 317 // If we deduced two declarations, make sure that they refer to the 318 // same declaration. 319 if (Y.getKind() == TemplateArgument::Declaration && 320 isSameDeclaration(X.getAsDecl(), Y.getAsDecl())) 321 return X; 322 323 // All other combinations are incompatible. 324 return DeducedTemplateArgument(); 325 326 case TemplateArgument::NullPtr: 327 // If we deduced a null pointer and a dependent expression, keep the 328 // null pointer. 329 if (Y.getKind() == TemplateArgument::Expression) 330 return X; 331 332 // If we deduced a null pointer and an integral constant, keep the 333 // integral constant. 334 if (Y.getKind() == TemplateArgument::Integral) 335 return Y; 336 337 // If we deduced two null pointers, they are the same. 338 if (Y.getKind() == TemplateArgument::NullPtr) 339 return X; 340 341 // All other combinations are incompatible. 342 return DeducedTemplateArgument(); 343 344 case TemplateArgument::Pack: { 345 if (Y.getKind() != TemplateArgument::Pack || 346 X.pack_size() != Y.pack_size()) 347 return DeducedTemplateArgument(); 348 349 llvm::SmallVector<TemplateArgument, 8> NewPack; 350 for (TemplateArgument::pack_iterator XA = X.pack_begin(), 351 XAEnd = X.pack_end(), 352 YA = Y.pack_begin(); 353 XA != XAEnd; ++XA, ++YA) { 354 TemplateArgument Merged = checkDeducedTemplateArguments( 355 Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), 356 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())); 357 if (Merged.isNull()) 358 return DeducedTemplateArgument(); 359 NewPack.push_back(Merged); 360 } 361 362 return DeducedTemplateArgument( 363 TemplateArgument::CreatePackCopy(Context, NewPack), 364 X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound()); 365 } 366 } 367 368 llvm_unreachable("Invalid TemplateArgument Kind!"); 369 } 370 371 /// Deduce the value of the given non-type template parameter 372 /// as the given deduced template argument. All non-type template parameter 373 /// deduction is funneled through here. 374 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 375 Sema &S, TemplateParameterList *TemplateParams, 376 NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced, 377 QualType ValueType, TemplateDeductionInfo &Info, 378 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 379 assert(NTTP->getDepth() == Info.getDeducedDepth() && 380 "deducing non-type template argument with wrong depth"); 381 382 DeducedTemplateArgument Result = checkDeducedTemplateArguments( 383 S.Context, Deduced[NTTP->getIndex()], NewDeduced); 384 if (Result.isNull()) { 385 Info.Param = NTTP; 386 Info.FirstArg = Deduced[NTTP->getIndex()]; 387 Info.SecondArg = NewDeduced; 388 return Sema::TDK_Inconsistent; 389 } 390 391 Deduced[NTTP->getIndex()] = Result; 392 if (!S.getLangOpts().CPlusPlus17) 393 return Sema::TDK_Success; 394 395 if (NTTP->isExpandedParameterPack()) 396 // FIXME: We may still need to deduce parts of the type here! But we 397 // don't have any way to find which slice of the type to use, and the 398 // type stored on the NTTP itself is nonsense. Perhaps the type of an 399 // expanded NTTP should be a pack expansion type? 400 return Sema::TDK_Success; 401 402 // Get the type of the parameter for deduction. If it's a (dependent) array 403 // or function type, we will not have decayed it yet, so do that now. 404 QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType()); 405 if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType)) 406 ParamType = Expansion->getPattern(); 407 408 // FIXME: It's not clear how deduction of a parameter of reference 409 // type from an argument (of non-reference type) should be performed. 410 // For now, we just remove reference types from both sides and let 411 // the final check for matching types sort out the mess. 412 return DeduceTemplateArgumentsByTypeMatch( 413 S, TemplateParams, ParamType.getNonReferenceType(), 414 ValueType.getNonReferenceType(), Info, Deduced, TDF_SkipNonDependent, 415 /*PartialOrdering=*/false, 416 /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound()); 417 } 418 419 /// Deduce the value of the given non-type template parameter 420 /// from the given integral constant. 421 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 422 Sema &S, TemplateParameterList *TemplateParams, 423 NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value, 424 QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info, 425 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 426 return DeduceNonTypeTemplateArgument( 427 S, TemplateParams, NTTP, 428 DeducedTemplateArgument(S.Context, Value, ValueType, 429 DeducedFromArrayBound), 430 ValueType, Info, Deduced); 431 } 432 433 /// Deduce the value of the given non-type template parameter 434 /// from the given null pointer template argument type. 435 static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument( 436 Sema &S, TemplateParameterList *TemplateParams, 437 NonTypeTemplateParmDecl *NTTP, QualType NullPtrType, 438 TemplateDeductionInfo &Info, 439 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 440 Expr *Value = 441 S.ImpCastExprToType(new (S.Context) CXXNullPtrLiteralExpr( 442 S.Context.NullPtrTy, NTTP->getLocation()), 443 NullPtrType, CK_NullToPointer) 444 .get(); 445 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 446 DeducedTemplateArgument(Value), 447 Value->getType(), Info, Deduced); 448 } 449 450 /// Deduce the value of the given non-type template parameter 451 /// from the given type- or value-dependent expression. 452 /// 453 /// \returns true if deduction succeeded, false otherwise. 454 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 455 Sema &S, TemplateParameterList *TemplateParams, 456 NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info, 457 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 458 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 459 DeducedTemplateArgument(Value), 460 Value->getType(), Info, Deduced); 461 } 462 463 /// Deduce the value of the given non-type template parameter 464 /// from the given declaration. 465 /// 466 /// \returns true if deduction succeeded, false otherwise. 467 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 468 Sema &S, TemplateParameterList *TemplateParams, 469 NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T, 470 TemplateDeductionInfo &Info, 471 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 472 D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; 473 TemplateArgument New(D, T); 474 return DeduceNonTypeTemplateArgument( 475 S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced); 476 } 477 478 static Sema::TemplateDeductionResult 479 DeduceTemplateArguments(Sema &S, 480 TemplateParameterList *TemplateParams, 481 TemplateName Param, 482 TemplateName Arg, 483 TemplateDeductionInfo &Info, 484 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 485 TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); 486 if (!ParamDecl) { 487 // The parameter type is dependent and is not a template template parameter, 488 // so there is nothing that we can deduce. 489 return Sema::TDK_Success; 490 } 491 492 if (TemplateTemplateParmDecl *TempParam 493 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) { 494 // If we're not deducing at this depth, there's nothing to deduce. 495 if (TempParam->getDepth() != Info.getDeducedDepth()) 496 return Sema::TDK_Success; 497 498 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg)); 499 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 500 Deduced[TempParam->getIndex()], 501 NewDeduced); 502 if (Result.isNull()) { 503 Info.Param = TempParam; 504 Info.FirstArg = Deduced[TempParam->getIndex()]; 505 Info.SecondArg = NewDeduced; 506 return Sema::TDK_Inconsistent; 507 } 508 509 Deduced[TempParam->getIndex()] = Result; 510 return Sema::TDK_Success; 511 } 512 513 // Verify that the two template names are equivalent. 514 if (S.Context.hasSameTemplateName(Param, Arg)) 515 return Sema::TDK_Success; 516 517 // Mismatch of non-dependent template parameter to argument. 518 Info.FirstArg = TemplateArgument(Param); 519 Info.SecondArg = TemplateArgument(Arg); 520 return Sema::TDK_NonDeducedMismatch; 521 } 522 523 /// Deduce the template arguments by comparing the template parameter 524 /// type (which is a template-id) with the template argument type. 525 /// 526 /// \param S the Sema 527 /// 528 /// \param TemplateParams the template parameters that we are deducing 529 /// 530 /// \param Param the parameter type 531 /// 532 /// \param Arg the argument type 533 /// 534 /// \param Info information about the template argument deduction itself 535 /// 536 /// \param Deduced the deduced template arguments 537 /// 538 /// \returns the result of template argument deduction so far. Note that a 539 /// "success" result means that template argument deduction has not yet failed, 540 /// but it may still fail, later, for other reasons. 541 static Sema::TemplateDeductionResult 542 DeduceTemplateArguments(Sema &S, 543 TemplateParameterList *TemplateParams, 544 const TemplateSpecializationType *Param, 545 QualType Arg, 546 TemplateDeductionInfo &Info, 547 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 548 assert(Arg.isCanonical() && "Argument type must be canonical"); 549 550 // Treat an injected-class-name as its underlying template-id. 551 if (auto *Injected = dyn_cast<InjectedClassNameType>(Arg)) 552 Arg = Injected->getInjectedSpecializationType(); 553 554 // Check whether the template argument is a dependent template-id. 555 if (const TemplateSpecializationType *SpecArg 556 = dyn_cast<TemplateSpecializationType>(Arg)) { 557 // Perform template argument deduction for the template name. 558 if (Sema::TemplateDeductionResult Result 559 = DeduceTemplateArguments(S, TemplateParams, 560 Param->getTemplateName(), 561 SpecArg->getTemplateName(), 562 Info, Deduced)) 563 return Result; 564 565 566 // Perform template argument deduction on each template 567 // argument. Ignore any missing/extra arguments, since they could be 568 // filled in by default arguments. 569 return DeduceTemplateArguments(S, TemplateParams, 570 Param->template_arguments(), 571 SpecArg->template_arguments(), Info, Deduced, 572 /*NumberOfArgumentsMustMatch=*/false); 573 } 574 575 // If the argument type is a class template specialization, we 576 // perform template argument deduction using its template 577 // arguments. 578 const RecordType *RecordArg = dyn_cast<RecordType>(Arg); 579 if (!RecordArg) { 580 Info.FirstArg = TemplateArgument(QualType(Param, 0)); 581 Info.SecondArg = TemplateArgument(Arg); 582 return Sema::TDK_NonDeducedMismatch; 583 } 584 585 ClassTemplateSpecializationDecl *SpecArg 586 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl()); 587 if (!SpecArg) { 588 Info.FirstArg = TemplateArgument(QualType(Param, 0)); 589 Info.SecondArg = TemplateArgument(Arg); 590 return Sema::TDK_NonDeducedMismatch; 591 } 592 593 // Perform template argument deduction for the template name. 594 if (Sema::TemplateDeductionResult Result 595 = DeduceTemplateArguments(S, 596 TemplateParams, 597 Param->getTemplateName(), 598 TemplateName(SpecArg->getSpecializedTemplate()), 599 Info, Deduced)) 600 return Result; 601 602 // Perform template argument deduction for the template arguments. 603 return DeduceTemplateArguments(S, TemplateParams, Param->template_arguments(), 604 SpecArg->getTemplateArgs().asArray(), Info, 605 Deduced, /*NumberOfArgumentsMustMatch=*/true); 606 } 607 608 /// Determines whether the given type is an opaque type that 609 /// might be more qualified when instantiated. 610 static bool IsPossiblyOpaquelyQualifiedType(QualType T) { 611 switch (T->getTypeClass()) { 612 case Type::TypeOfExpr: 613 case Type::TypeOf: 614 case Type::DependentName: 615 case Type::Decltype: 616 case Type::UnresolvedUsing: 617 case Type::TemplateTypeParm: 618 return true; 619 620 case Type::ConstantArray: 621 case Type::IncompleteArray: 622 case Type::VariableArray: 623 case Type::DependentSizedArray: 624 return IsPossiblyOpaquelyQualifiedType( 625 cast<ArrayType>(T)->getElementType()); 626 627 default: 628 return false; 629 } 630 } 631 632 /// Helper function to build a TemplateParameter when we don't 633 /// know its type statically. 634 static TemplateParameter makeTemplateParameter(Decl *D) { 635 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D)) 636 return TemplateParameter(TTP); 637 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) 638 return TemplateParameter(NTTP); 639 640 return TemplateParameter(cast<TemplateTemplateParmDecl>(D)); 641 } 642 643 /// If \p Param is an expanded parameter pack, get the number of expansions. 644 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 645 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) 646 if (NTTP->isExpandedParameterPack()) 647 return NTTP->getNumExpansionTypes(); 648 649 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) 650 if (TTP->isExpandedParameterPack()) 651 return TTP->getNumExpansionTemplateParameters(); 652 653 return None; 654 } 655 656 /// A pack that we're currently deducing. 657 struct clang::DeducedPack { 658 // The index of the pack. 659 unsigned Index; 660 661 // The old value of the pack before we started deducing it. 662 DeducedTemplateArgument Saved; 663 664 // A deferred value of this pack from an inner deduction, that couldn't be 665 // deduced because this deduction hadn't happened yet. 666 DeducedTemplateArgument DeferredDeduction; 667 668 // The new value of the pack. 669 SmallVector<DeducedTemplateArgument, 4> New; 670 671 // The outer deduction for this pack, if any. 672 DeducedPack *Outer = nullptr; 673 674 DeducedPack(unsigned Index) : Index(Index) {} 675 }; 676 677 namespace { 678 679 /// A scope in which we're performing pack deduction. 680 class PackDeductionScope { 681 public: 682 /// Prepare to deduce the packs named within Pattern. 683 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 684 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 685 TemplateDeductionInfo &Info, TemplateArgument Pattern) 686 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { 687 unsigned NumNamedPacks = addPacks(Pattern); 688 finishConstruction(NumNamedPacks); 689 } 690 691 /// Prepare to directly deduce arguments of the parameter with index \p Index. 692 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 693 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 694 TemplateDeductionInfo &Info, unsigned Index) 695 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { 696 addPack(Index); 697 finishConstruction(1); 698 } 699 700 private: 701 void addPack(unsigned Index) { 702 // Save the deduced template argument for the parameter pack expanded 703 // by this pack expansion, then clear out the deduction. 704 DeducedPack Pack(Index); 705 Pack.Saved = Deduced[Index]; 706 Deduced[Index] = TemplateArgument(); 707 708 // FIXME: What if we encounter multiple packs with different numbers of 709 // pre-expanded expansions? (This should already have been diagnosed 710 // during substitution.) 711 if (Optional<unsigned> ExpandedPackExpansions = 712 getExpandedPackSize(TemplateParams->getParam(Index))) 713 FixedNumExpansions = ExpandedPackExpansions; 714 715 Packs.push_back(Pack); 716 } 717 718 unsigned addPacks(TemplateArgument Pattern) { 719 // Compute the set of template parameter indices that correspond to 720 // parameter packs expanded by the pack expansion. 721 llvm::SmallBitVector SawIndices(TemplateParams->size()); 722 723 auto AddPack = [&](unsigned Index) { 724 if (SawIndices[Index]) 725 return; 726 SawIndices[Index] = true; 727 addPack(Index); 728 }; 729 730 // First look for unexpanded packs in the pattern. 731 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 732 S.collectUnexpandedParameterPacks(Pattern, Unexpanded); 733 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { 734 unsigned Depth, Index; 735 std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); 736 if (Depth == Info.getDeducedDepth()) 737 AddPack(Index); 738 } 739 assert(!Packs.empty() && "Pack expansion without unexpanded packs?"); 740 741 unsigned NumNamedPacks = Packs.size(); 742 743 // We can also have deduced template parameters that do not actually 744 // appear in the pattern, but can be deduced by it (the type of a non-type 745 // template parameter pack, in particular). These won't have prevented us 746 // from partially expanding the pack. 747 llvm::SmallBitVector Used(TemplateParams->size()); 748 MarkUsedTemplateParameters(S.Context, Pattern, /*OnlyDeduced*/true, 749 Info.getDeducedDepth(), Used); 750 for (int Index = Used.find_first(); Index != -1; 751 Index = Used.find_next(Index)) 752 if (TemplateParams->getParam(Index)->isParameterPack()) 753 AddPack(Index); 754 755 return NumNamedPacks; 756 } 757 758 void finishConstruction(unsigned NumNamedPacks) { 759 // Dig out the partially-substituted pack, if there is one. 760 const TemplateArgument *PartialPackArgs = nullptr; 761 unsigned NumPartialPackArgs = 0; 762 std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u); 763 if (auto *Scope = S.CurrentInstantiationScope) 764 if (auto *Partial = Scope->getPartiallySubstitutedPack( 765 &PartialPackArgs, &NumPartialPackArgs)) 766 PartialPackDepthIndex = getDepthAndIndex(Partial); 767 768 // This pack expansion will have been partially or fully expanded if 769 // it only names explicitly-specified parameter packs (including the 770 // partially-substituted one, if any). 771 bool IsExpanded = true; 772 for (unsigned I = 0; I != NumNamedPacks; ++I) { 773 if (Packs[I].Index >= Info.getNumExplicitArgs()) { 774 IsExpanded = false; 775 IsPartiallyExpanded = false; 776 break; 777 } 778 if (PartialPackDepthIndex == 779 std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) { 780 IsPartiallyExpanded = true; 781 } 782 } 783 784 // Skip over the pack elements that were expanded into separate arguments. 785 // If we partially expanded, this is the number of partial arguments. 786 if (IsPartiallyExpanded) 787 PackElements += NumPartialPackArgs; 788 else if (IsExpanded) 789 PackElements += *FixedNumExpansions; 790 791 for (auto &Pack : Packs) { 792 if (Info.PendingDeducedPacks.size() > Pack.Index) 793 Pack.Outer = Info.PendingDeducedPacks[Pack.Index]; 794 else 795 Info.PendingDeducedPacks.resize(Pack.Index + 1); 796 Info.PendingDeducedPacks[Pack.Index] = &Pack; 797 798 if (PartialPackDepthIndex == 799 std::make_pair(Info.getDeducedDepth(), Pack.Index)) { 800 Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs); 801 // We pre-populate the deduced value of the partially-substituted 802 // pack with the specified value. This is not entirely correct: the 803 // value is supposed to have been substituted, not deduced, but the 804 // cases where this is observable require an exact type match anyway. 805 // 806 // FIXME: If we could represent a "depth i, index j, pack elem k" 807 // parameter, we could substitute the partially-substituted pack 808 // everywhere and avoid this. 809 if (!IsPartiallyExpanded) 810 Deduced[Pack.Index] = Pack.New[PackElements]; 811 } 812 } 813 } 814 815 public: 816 ~PackDeductionScope() { 817 for (auto &Pack : Packs) 818 Info.PendingDeducedPacks[Pack.Index] = Pack.Outer; 819 } 820 821 /// Determine whether this pack has already been partially expanded into a 822 /// sequence of (prior) function parameters / template arguments. 823 bool isPartiallyExpanded() { return IsPartiallyExpanded; } 824 825 /// Determine whether this pack expansion scope has a known, fixed arity. 826 /// This happens if it involves a pack from an outer template that has 827 /// (notionally) already been expanded. 828 bool hasFixedArity() { return FixedNumExpansions.hasValue(); } 829 830 /// Determine whether the next element of the argument is still part of this 831 /// pack. This is the case unless the pack is already expanded to a fixed 832 /// length. 833 bool hasNextElement() { 834 return !FixedNumExpansions || *FixedNumExpansions > PackElements; 835 } 836 837 /// Move to deducing the next element in each pack that is being deduced. 838 void nextPackElement() { 839 // Capture the deduced template arguments for each parameter pack expanded 840 // by this pack expansion, add them to the list of arguments we've deduced 841 // for that pack, then clear out the deduced argument. 842 for (auto &Pack : Packs) { 843 DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index]; 844 if (!Pack.New.empty() || !DeducedArg.isNull()) { 845 while (Pack.New.size() < PackElements) 846 Pack.New.push_back(DeducedTemplateArgument()); 847 if (Pack.New.size() == PackElements) 848 Pack.New.push_back(DeducedArg); 849 else 850 Pack.New[PackElements] = DeducedArg; 851 DeducedArg = Pack.New.size() > PackElements + 1 852 ? Pack.New[PackElements + 1] 853 : DeducedTemplateArgument(); 854 } 855 } 856 ++PackElements; 857 } 858 859 /// Finish template argument deduction for a set of argument packs, 860 /// producing the argument packs and checking for consistency with prior 861 /// deductions. 862 Sema::TemplateDeductionResult 863 finish(bool TreatNoDeductionsAsNonDeduced = true) { 864 // Build argument packs for each of the parameter packs expanded by this 865 // pack expansion. 866 for (auto &Pack : Packs) { 867 // Put back the old value for this pack. 868 Deduced[Pack.Index] = Pack.Saved; 869 870 // If we are deducing the size of this pack even if we didn't deduce any 871 // values for it, then make sure we build a pack of the right size. 872 // FIXME: Should we always deduce the size, even if the pack appears in 873 // a non-deduced context? 874 if (!TreatNoDeductionsAsNonDeduced) 875 Pack.New.resize(PackElements); 876 877 // Build or find a new value for this pack. 878 DeducedTemplateArgument NewPack; 879 if (PackElements && Pack.New.empty()) { 880 if (Pack.DeferredDeduction.isNull()) { 881 // We were not able to deduce anything for this parameter pack 882 // (because it only appeared in non-deduced contexts), so just 883 // restore the saved argument pack. 884 continue; 885 } 886 887 NewPack = Pack.DeferredDeduction; 888 Pack.DeferredDeduction = TemplateArgument(); 889 } else if (Pack.New.empty()) { 890 // If we deduced an empty argument pack, create it now. 891 NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack()); 892 } else { 893 TemplateArgument *ArgumentPack = 894 new (S.Context) TemplateArgument[Pack.New.size()]; 895 std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack); 896 NewPack = DeducedTemplateArgument( 897 TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())), 898 // FIXME: This is wrong, it's possible that some pack elements are 899 // deduced from an array bound and others are not: 900 // template<typename ...T, T ...V> void g(const T (&...p)[V]); 901 // g({1, 2, 3}, {{}, {}}); 902 // ... should deduce T = {int, size_t (from array bound)}. 903 Pack.New[0].wasDeducedFromArrayBound()); 904 } 905 906 // Pick where we're going to put the merged pack. 907 DeducedTemplateArgument *Loc; 908 if (Pack.Outer) { 909 if (Pack.Outer->DeferredDeduction.isNull()) { 910 // Defer checking this pack until we have a complete pack to compare 911 // it against. 912 Pack.Outer->DeferredDeduction = NewPack; 913 continue; 914 } 915 Loc = &Pack.Outer->DeferredDeduction; 916 } else { 917 Loc = &Deduced[Pack.Index]; 918 } 919 920 // Check the new pack matches any previous value. 921 DeducedTemplateArgument OldPack = *Loc; 922 DeducedTemplateArgument Result = 923 checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 924 925 // If we deferred a deduction of this pack, check that one now too. 926 if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) { 927 OldPack = Result; 928 NewPack = Pack.DeferredDeduction; 929 Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 930 } 931 932 NamedDecl *Param = TemplateParams->getParam(Pack.Index); 933 if (Result.isNull()) { 934 Info.Param = makeTemplateParameter(Param); 935 Info.FirstArg = OldPack; 936 Info.SecondArg = NewPack; 937 return Sema::TDK_Inconsistent; 938 } 939 940 // If we have a pre-expanded pack and we didn't deduce enough elements 941 // for it, fail deduction. 942 if (Optional<unsigned> Expansions = getExpandedPackSize(Param)) { 943 if (*Expansions != PackElements) { 944 Info.Param = makeTemplateParameter(Param); 945 Info.FirstArg = Result; 946 return Sema::TDK_IncompletePack; 947 } 948 } 949 950 *Loc = Result; 951 } 952 953 return Sema::TDK_Success; 954 } 955 956 private: 957 Sema &S; 958 TemplateParameterList *TemplateParams; 959 SmallVectorImpl<DeducedTemplateArgument> &Deduced; 960 TemplateDeductionInfo &Info; 961 unsigned PackElements = 0; 962 bool IsPartiallyExpanded = false; 963 /// The number of expansions, if we have a fully-expanded pack in this scope. 964 Optional<unsigned> FixedNumExpansions; 965 966 SmallVector<DeducedPack, 2> Packs; 967 }; 968 969 } // namespace 970 971 /// Deduce the template arguments by comparing the list of parameter 972 /// types to the list of argument types, as in the parameter-type-lists of 973 /// function types (C++ [temp.deduct.type]p10). 974 /// 975 /// \param S The semantic analysis object within which we are deducing 976 /// 977 /// \param TemplateParams The template parameters that we are deducing 978 /// 979 /// \param Params The list of parameter types 980 /// 981 /// \param NumParams The number of types in \c Params 982 /// 983 /// \param Args The list of argument types 984 /// 985 /// \param NumArgs The number of types in \c Args 986 /// 987 /// \param Info information about the template argument deduction itself 988 /// 989 /// \param Deduced the deduced template arguments 990 /// 991 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 992 /// how template argument deduction is performed. 993 /// 994 /// \param PartialOrdering If true, we are performing template argument 995 /// deduction for during partial ordering for a call 996 /// (C++0x [temp.deduct.partial]). 997 /// 998 /// \returns the result of template argument deduction so far. Note that a 999 /// "success" result means that template argument deduction has not yet failed, 1000 /// but it may still fail, later, for other reasons. 1001 static Sema::TemplateDeductionResult 1002 DeduceTemplateArguments(Sema &S, 1003 TemplateParameterList *TemplateParams, 1004 const QualType *Params, unsigned NumParams, 1005 const QualType *Args, unsigned NumArgs, 1006 TemplateDeductionInfo &Info, 1007 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 1008 unsigned TDF, 1009 bool PartialOrdering = false) { 1010 // C++0x [temp.deduct.type]p10: 1011 // Similarly, if P has a form that contains (T), then each parameter type 1012 // Pi of the respective parameter-type- list of P is compared with the 1013 // corresponding parameter type Ai of the corresponding parameter-type-list 1014 // of A. [...] 1015 unsigned ArgIdx = 0, ParamIdx = 0; 1016 for (; ParamIdx != NumParams; ++ParamIdx) { 1017 // Check argument types. 1018 const PackExpansionType *Expansion 1019 = dyn_cast<PackExpansionType>(Params[ParamIdx]); 1020 if (!Expansion) { 1021 // Simple case: compare the parameter and argument types at this point. 1022 1023 // Make sure we have an argument. 1024 if (ArgIdx >= NumArgs) 1025 return Sema::TDK_MiscellaneousDeductionFailure; 1026 1027 if (isa<PackExpansionType>(Args[ArgIdx])) { 1028 // C++0x [temp.deduct.type]p22: 1029 // If the original function parameter associated with A is a function 1030 // parameter pack and the function parameter associated with P is not 1031 // a function parameter pack, then template argument deduction fails. 1032 return Sema::TDK_MiscellaneousDeductionFailure; 1033 } 1034 1035 if (Sema::TemplateDeductionResult Result 1036 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1037 Params[ParamIdx], Args[ArgIdx], 1038 Info, Deduced, TDF, 1039 PartialOrdering)) 1040 return Result; 1041 1042 ++ArgIdx; 1043 continue; 1044 } 1045 1046 // C++0x [temp.deduct.type]p10: 1047 // If the parameter-declaration corresponding to Pi is a function 1048 // parameter pack, then the type of its declarator- id is compared with 1049 // each remaining parameter type in the parameter-type-list of A. Each 1050 // comparison deduces template arguments for subsequent positions in the 1051 // template parameter packs expanded by the function parameter pack. 1052 1053 QualType Pattern = Expansion->getPattern(); 1054 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 1055 1056 // A pack scope with fixed arity is not really a pack any more, so is not 1057 // a non-deduced context. 1058 if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) { 1059 for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) { 1060 // Deduce template arguments from the pattern. 1061 if (Sema::TemplateDeductionResult Result 1062 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern, 1063 Args[ArgIdx], Info, Deduced, 1064 TDF, PartialOrdering)) 1065 return Result; 1066 1067 PackScope.nextPackElement(); 1068 } 1069 } else { 1070 // C++0x [temp.deduct.type]p5: 1071 // The non-deduced contexts are: 1072 // - A function parameter pack that does not occur at the end of the 1073 // parameter-declaration-clause. 1074 // 1075 // FIXME: There is no wording to say what we should do in this case. We 1076 // choose to resolve this by applying the same rule that is applied for a 1077 // function call: that is, deduce all contained packs to their 1078 // explicitly-specified values (or to <> if there is no such value). 1079 // 1080 // This is seemingly-arbitrarily different from the case of a template-id 1081 // with a non-trailing pack-expansion in its arguments, which renders the 1082 // entire template-argument-list a non-deduced context. 1083 1084 // If the parameter type contains an explicitly-specified pack that we 1085 // could not expand, skip the number of parameters notionally created 1086 // by the expansion. 1087 Optional<unsigned> NumExpansions = Expansion->getNumExpansions(); 1088 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 1089 for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs; 1090 ++I, ++ArgIdx) 1091 PackScope.nextPackElement(); 1092 } 1093 } 1094 1095 // Build argument packs for each of the parameter packs expanded by this 1096 // pack expansion. 1097 if (auto Result = PackScope.finish()) 1098 return Result; 1099 } 1100 1101 // Make sure we don't have any extra arguments. 1102 if (ArgIdx < NumArgs) 1103 return Sema::TDK_MiscellaneousDeductionFailure; 1104 1105 return Sema::TDK_Success; 1106 } 1107 1108 /// Determine whether the parameter has qualifiers that the argument 1109 /// lacks. Put another way, determine whether there is no way to add 1110 /// a deduced set of qualifiers to the ParamType that would result in 1111 /// its qualifiers matching those of the ArgType. 1112 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, 1113 QualType ArgType) { 1114 Qualifiers ParamQs = ParamType.getQualifiers(); 1115 Qualifiers ArgQs = ArgType.getQualifiers(); 1116 1117 if (ParamQs == ArgQs) 1118 return false; 1119 1120 // Mismatched (but not missing) Objective-C GC attributes. 1121 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && 1122 ParamQs.hasObjCGCAttr()) 1123 return true; 1124 1125 // Mismatched (but not missing) address spaces. 1126 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && 1127 ParamQs.hasAddressSpace()) 1128 return true; 1129 1130 // Mismatched (but not missing) Objective-C lifetime qualifiers. 1131 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && 1132 ParamQs.hasObjCLifetime()) 1133 return true; 1134 1135 // CVR qualifiers inconsistent or a superset. 1136 return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0; 1137 } 1138 1139 /// Compare types for equality with respect to possibly compatible 1140 /// function types (noreturn adjustment, implicit calling conventions). If any 1141 /// of parameter and argument is not a function, just perform type comparison. 1142 /// 1143 /// \param Param the template parameter type. 1144 /// 1145 /// \param Arg the argument type. 1146 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param, 1147 CanQualType Arg) { 1148 const FunctionType *ParamFunction = Param->getAs<FunctionType>(), 1149 *ArgFunction = Arg->getAs<FunctionType>(); 1150 1151 // Just compare if not functions. 1152 if (!ParamFunction || !ArgFunction) 1153 return Param == Arg; 1154 1155 // Noreturn and noexcept adjustment. 1156 QualType AdjustedParam; 1157 if (IsFunctionConversion(Param, Arg, AdjustedParam)) 1158 return Arg == Context.getCanonicalType(AdjustedParam); 1159 1160 // FIXME: Compatible calling conventions. 1161 1162 return Param == Arg; 1163 } 1164 1165 /// Get the index of the first template parameter that was originally from the 1166 /// innermost template-parameter-list. This is 0 except when we concatenate 1167 /// the template parameter lists of a class template and a constructor template 1168 /// when forming an implicit deduction guide. 1169 static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) { 1170 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl()); 1171 if (!Guide || !Guide->isImplicit()) 1172 return 0; 1173 return Guide->getDeducedTemplate()->getTemplateParameters()->size(); 1174 } 1175 1176 /// Determine whether a type denotes a forwarding reference. 1177 static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) { 1178 // C++1z [temp.deduct.call]p3: 1179 // A forwarding reference is an rvalue reference to a cv-unqualified 1180 // template parameter that does not represent a template parameter of a 1181 // class template. 1182 if (auto *ParamRef = Param->getAs<RValueReferenceType>()) { 1183 if (ParamRef->getPointeeType().getQualifiers()) 1184 return false; 1185 auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>(); 1186 return TypeParm && TypeParm->getIndex() >= FirstInnerIndex; 1187 } 1188 return false; 1189 } 1190 1191 /// Deduce the template arguments by comparing the parameter type and 1192 /// the argument type (C++ [temp.deduct.type]). 1193 /// 1194 /// \param S the semantic analysis object within which we are deducing 1195 /// 1196 /// \param TemplateParams the template parameters that we are deducing 1197 /// 1198 /// \param ParamIn the parameter type 1199 /// 1200 /// \param ArgIn the argument type 1201 /// 1202 /// \param Info information about the template argument deduction itself 1203 /// 1204 /// \param Deduced the deduced template arguments 1205 /// 1206 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 1207 /// how template argument deduction is performed. 1208 /// 1209 /// \param PartialOrdering Whether we're performing template argument deduction 1210 /// in the context of partial ordering (C++0x [temp.deduct.partial]). 1211 /// 1212 /// \returns the result of template argument deduction so far. Note that a 1213 /// "success" result means that template argument deduction has not yet failed, 1214 /// but it may still fail, later, for other reasons. 1215 static Sema::TemplateDeductionResult 1216 DeduceTemplateArgumentsByTypeMatch(Sema &S, 1217 TemplateParameterList *TemplateParams, 1218 QualType ParamIn, QualType ArgIn, 1219 TemplateDeductionInfo &Info, 1220 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 1221 unsigned TDF, 1222 bool PartialOrdering, 1223 bool DeducedFromArrayBound) { 1224 // We only want to look at the canonical types, since typedefs and 1225 // sugar are not part of template argument deduction. 1226 QualType Param = S.Context.getCanonicalType(ParamIn); 1227 QualType Arg = S.Context.getCanonicalType(ArgIn); 1228 1229 // If the argument type is a pack expansion, look at its pattern. 1230 // This isn't explicitly called out 1231 if (const PackExpansionType *ArgExpansion 1232 = dyn_cast<PackExpansionType>(Arg)) 1233 Arg = ArgExpansion->getPattern(); 1234 1235 if (PartialOrdering) { 1236 // C++11 [temp.deduct.partial]p5: 1237 // Before the partial ordering is done, certain transformations are 1238 // performed on the types used for partial ordering: 1239 // - If P is a reference type, P is replaced by the type referred to. 1240 const ReferenceType *ParamRef = Param->getAs<ReferenceType>(); 1241 if (ParamRef) 1242 Param = ParamRef->getPointeeType(); 1243 1244 // - If A is a reference type, A is replaced by the type referred to. 1245 const ReferenceType *ArgRef = Arg->getAs<ReferenceType>(); 1246 if (ArgRef) 1247 Arg = ArgRef->getPointeeType(); 1248 1249 if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) { 1250 // C++11 [temp.deduct.partial]p9: 1251 // If, for a given type, deduction succeeds in both directions (i.e., 1252 // the types are identical after the transformations above) and both 1253 // P and A were reference types [...]: 1254 // - if [one type] was an lvalue reference and [the other type] was 1255 // not, [the other type] is not considered to be at least as 1256 // specialized as [the first type] 1257 // - if [one type] is more cv-qualified than [the other type], 1258 // [the other type] is not considered to be at least as specialized 1259 // as [the first type] 1260 // Objective-C ARC adds: 1261 // - [one type] has non-trivial lifetime, [the other type] has 1262 // __unsafe_unretained lifetime, and the types are otherwise 1263 // identical 1264 // 1265 // A is "considered to be at least as specialized" as P iff deduction 1266 // succeeds, so we model this as a deduction failure. Note that 1267 // [the first type] is P and [the other type] is A here; the standard 1268 // gets this backwards. 1269 Qualifiers ParamQuals = Param.getQualifiers(); 1270 Qualifiers ArgQuals = Arg.getQualifiers(); 1271 if ((ParamRef->isLValueReferenceType() && 1272 !ArgRef->isLValueReferenceType()) || 1273 ParamQuals.isStrictSupersetOf(ArgQuals) || 1274 (ParamQuals.hasNonTrivialObjCLifetime() && 1275 ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone && 1276 ParamQuals.withoutObjCLifetime() == 1277 ArgQuals.withoutObjCLifetime())) { 1278 Info.FirstArg = TemplateArgument(ParamIn); 1279 Info.SecondArg = TemplateArgument(ArgIn); 1280 return Sema::TDK_NonDeducedMismatch; 1281 } 1282 } 1283 1284 // C++11 [temp.deduct.partial]p7: 1285 // Remove any top-level cv-qualifiers: 1286 // - If P is a cv-qualified type, P is replaced by the cv-unqualified 1287 // version of P. 1288 Param = Param.getUnqualifiedType(); 1289 // - If A is a cv-qualified type, A is replaced by the cv-unqualified 1290 // version of A. 1291 Arg = Arg.getUnqualifiedType(); 1292 } else { 1293 // C++0x [temp.deduct.call]p4 bullet 1: 1294 // - If the original P is a reference type, the deduced A (i.e., the type 1295 // referred to by the reference) can be more cv-qualified than the 1296 // transformed A. 1297 if (TDF & TDF_ParamWithReferenceType) { 1298 Qualifiers Quals; 1299 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals); 1300 Quals.setCVRQualifiers(Quals.getCVRQualifiers() & 1301 Arg.getCVRQualifiers()); 1302 Param = S.Context.getQualifiedType(UnqualParam, Quals); 1303 } 1304 1305 if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) { 1306 // C++0x [temp.deduct.type]p10: 1307 // If P and A are function types that originated from deduction when 1308 // taking the address of a function template (14.8.2.2) or when deducing 1309 // template arguments from a function declaration (14.8.2.6) and Pi and 1310 // Ai are parameters of the top-level parameter-type-list of P and A, 1311 // respectively, Pi is adjusted if it is a forwarding reference and Ai 1312 // is an lvalue reference, in 1313 // which case the type of Pi is changed to be the template parameter 1314 // type (i.e., T&& is changed to simply T). [ Note: As a result, when 1315 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be 1316 // deduced as X&. - end note ] 1317 TDF &= ~TDF_TopLevelParameterTypeList; 1318 if (isForwardingReference(Param, 0) && Arg->isLValueReferenceType()) 1319 Param = Param->getPointeeType(); 1320 } 1321 } 1322 1323 // C++ [temp.deduct.type]p9: 1324 // A template type argument T, a template template argument TT or a 1325 // template non-type argument i can be deduced if P and A have one of 1326 // the following forms: 1327 // 1328 // T 1329 // cv-list T 1330 if (const TemplateTypeParmType *TemplateTypeParm 1331 = Param->getAs<TemplateTypeParmType>()) { 1332 // Just skip any attempts to deduce from a placeholder type or a parameter 1333 // at a different depth. 1334 if (Arg->isPlaceholderType() || 1335 Info.getDeducedDepth() != TemplateTypeParm->getDepth()) 1336 return Sema::TDK_Success; 1337 1338 unsigned Index = TemplateTypeParm->getIndex(); 1339 bool RecanonicalizeArg = false; 1340 1341 // If the argument type is an array type, move the qualifiers up to the 1342 // top level, so they can be matched with the qualifiers on the parameter. 1343 if (isa<ArrayType>(Arg)) { 1344 Qualifiers Quals; 1345 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals); 1346 if (Quals) { 1347 Arg = S.Context.getQualifiedType(Arg, Quals); 1348 RecanonicalizeArg = true; 1349 } 1350 } 1351 1352 // The argument type can not be less qualified than the parameter 1353 // type. 1354 if (!(TDF & TDF_IgnoreQualifiers) && 1355 hasInconsistentOrSupersetQualifiersOf(Param, Arg)) { 1356 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1357 Info.FirstArg = TemplateArgument(Param); 1358 Info.SecondArg = TemplateArgument(Arg); 1359 return Sema::TDK_Underqualified; 1360 } 1361 1362 // Do not match a function type with a cv-qualified type. 1363 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584 1364 if (Arg->isFunctionType() && Param.hasQualifiers()) { 1365 return Sema::TDK_NonDeducedMismatch; 1366 } 1367 1368 assert(TemplateTypeParm->getDepth() == Info.getDeducedDepth() && 1369 "saw template type parameter with wrong depth"); 1370 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function"); 1371 QualType DeducedType = Arg; 1372 1373 // Remove any qualifiers on the parameter from the deduced type. 1374 // We checked the qualifiers for consistency above. 1375 Qualifiers DeducedQs = DeducedType.getQualifiers(); 1376 Qualifiers ParamQs = Param.getQualifiers(); 1377 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers()); 1378 if (ParamQs.hasObjCGCAttr()) 1379 DeducedQs.removeObjCGCAttr(); 1380 if (ParamQs.hasAddressSpace()) 1381 DeducedQs.removeAddressSpace(); 1382 if (ParamQs.hasObjCLifetime()) 1383 DeducedQs.removeObjCLifetime(); 1384 1385 // Objective-C ARC: 1386 // If template deduction would produce a lifetime qualifier on a type 1387 // that is not a lifetime type, template argument deduction fails. 1388 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() && 1389 !DeducedType->isDependentType()) { 1390 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1391 Info.FirstArg = TemplateArgument(Param); 1392 Info.SecondArg = TemplateArgument(Arg); 1393 return Sema::TDK_Underqualified; 1394 } 1395 1396 // Objective-C ARC: 1397 // If template deduction would produce an argument type with lifetime type 1398 // but no lifetime qualifier, the __strong lifetime qualifier is inferred. 1399 if (S.getLangOpts().ObjCAutoRefCount && 1400 DeducedType->isObjCLifetimeType() && 1401 !DeducedQs.hasObjCLifetime()) 1402 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); 1403 1404 DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), 1405 DeducedQs); 1406 1407 if (RecanonicalizeArg) 1408 DeducedType = S.Context.getCanonicalType(DeducedType); 1409 1410 DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound); 1411 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 1412 Deduced[Index], 1413 NewDeduced); 1414 if (Result.isNull()) { 1415 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1416 Info.FirstArg = Deduced[Index]; 1417 Info.SecondArg = NewDeduced; 1418 return Sema::TDK_Inconsistent; 1419 } 1420 1421 Deduced[Index] = Result; 1422 return Sema::TDK_Success; 1423 } 1424 1425 // Set up the template argument deduction information for a failure. 1426 Info.FirstArg = TemplateArgument(ParamIn); 1427 Info.SecondArg = TemplateArgument(ArgIn); 1428 1429 // If the parameter is an already-substituted template parameter 1430 // pack, do nothing: we don't know which of its arguments to look 1431 // at, so we have to wait until all of the parameter packs in this 1432 // expansion have arguments. 1433 if (isa<SubstTemplateTypeParmPackType>(Param)) 1434 return Sema::TDK_Success; 1435 1436 // Check the cv-qualifiers on the parameter and argument types. 1437 CanQualType CanParam = S.Context.getCanonicalType(Param); 1438 CanQualType CanArg = S.Context.getCanonicalType(Arg); 1439 if (!(TDF & TDF_IgnoreQualifiers)) { 1440 if (TDF & TDF_ParamWithReferenceType) { 1441 if (hasInconsistentOrSupersetQualifiersOf(Param, Arg)) 1442 return Sema::TDK_NonDeducedMismatch; 1443 } else if (TDF & TDF_ArgWithReferenceType) { 1444 // C++ [temp.deduct.conv]p4: 1445 // If the original A is a reference type, A can be more cv-qualified 1446 // than the deduced A 1447 if (!Arg.getQualifiers().compatiblyIncludes(Param.getQualifiers())) 1448 return Sema::TDK_NonDeducedMismatch; 1449 1450 // Strip out all extra qualifiers from the argument to figure out the 1451 // type we're converting to, prior to the qualification conversion. 1452 Qualifiers Quals; 1453 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals); 1454 Arg = S.Context.getQualifiedType(Arg, Param.getQualifiers()); 1455 } else if (!IsPossiblyOpaquelyQualifiedType(Param)) { 1456 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers()) 1457 return Sema::TDK_NonDeducedMismatch; 1458 } 1459 1460 // If the parameter type is not dependent, there is nothing to deduce. 1461 if (!Param->isDependentType()) { 1462 if (!(TDF & TDF_SkipNonDependent)) { 1463 bool NonDeduced = 1464 (TDF & TDF_AllowCompatibleFunctionType) 1465 ? !S.isSameOrCompatibleFunctionType(CanParam, CanArg) 1466 : Param != Arg; 1467 if (NonDeduced) { 1468 return Sema::TDK_NonDeducedMismatch; 1469 } 1470 } 1471 return Sema::TDK_Success; 1472 } 1473 } else if (!Param->isDependentType()) { 1474 CanQualType ParamUnqualType = CanParam.getUnqualifiedType(), 1475 ArgUnqualType = CanArg.getUnqualifiedType(); 1476 bool Success = 1477 (TDF & TDF_AllowCompatibleFunctionType) 1478 ? S.isSameOrCompatibleFunctionType(ParamUnqualType, ArgUnqualType) 1479 : ParamUnqualType == ArgUnqualType; 1480 if (Success) 1481 return Sema::TDK_Success; 1482 } 1483 1484 switch (Param->getTypeClass()) { 1485 // Non-canonical types cannot appear here. 1486 #define NON_CANONICAL_TYPE(Class, Base) \ 1487 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); 1488 #define TYPE(Class, Base) 1489 #include "clang/AST/TypeNodes.inc" 1490 1491 case Type::TemplateTypeParm: 1492 case Type::SubstTemplateTypeParmPack: 1493 llvm_unreachable("Type nodes handled above"); 1494 1495 // These types cannot be dependent, so simply check whether the types are 1496 // the same. 1497 case Type::Builtin: 1498 case Type::VariableArray: 1499 case Type::Vector: 1500 case Type::FunctionNoProto: 1501 case Type::Record: 1502 case Type::Enum: 1503 case Type::ObjCObject: 1504 case Type::ObjCInterface: 1505 case Type::ObjCObjectPointer: 1506 if (TDF & TDF_SkipNonDependent) 1507 return Sema::TDK_Success; 1508 1509 if (TDF & TDF_IgnoreQualifiers) { 1510 Param = Param.getUnqualifiedType(); 1511 Arg = Arg.getUnqualifiedType(); 1512 } 1513 1514 return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch; 1515 1516 // _Complex T [placeholder extension] 1517 case Type::Complex: 1518 if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>()) 1519 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1520 cast<ComplexType>(Param)->getElementType(), 1521 ComplexArg->getElementType(), 1522 Info, Deduced, TDF); 1523 1524 return Sema::TDK_NonDeducedMismatch; 1525 1526 // _Atomic T [extension] 1527 case Type::Atomic: 1528 if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>()) 1529 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1530 cast<AtomicType>(Param)->getValueType(), 1531 AtomicArg->getValueType(), 1532 Info, Deduced, TDF); 1533 1534 return Sema::TDK_NonDeducedMismatch; 1535 1536 // T * 1537 case Type::Pointer: { 1538 QualType PointeeType; 1539 if (const PointerType *PointerArg = Arg->getAs<PointerType>()) { 1540 PointeeType = PointerArg->getPointeeType(); 1541 } else if (const ObjCObjectPointerType *PointerArg 1542 = Arg->getAs<ObjCObjectPointerType>()) { 1543 PointeeType = PointerArg->getPointeeType(); 1544 } else { 1545 return Sema::TDK_NonDeducedMismatch; 1546 } 1547 1548 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass); 1549 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1550 cast<PointerType>(Param)->getPointeeType(), 1551 PointeeType, 1552 Info, Deduced, SubTDF); 1553 } 1554 1555 // T & 1556 case Type::LValueReference: { 1557 const LValueReferenceType *ReferenceArg = 1558 Arg->getAs<LValueReferenceType>(); 1559 if (!ReferenceArg) 1560 return Sema::TDK_NonDeducedMismatch; 1561 1562 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1563 cast<LValueReferenceType>(Param)->getPointeeType(), 1564 ReferenceArg->getPointeeType(), Info, Deduced, 0); 1565 } 1566 1567 // T && [C++0x] 1568 case Type::RValueReference: { 1569 const RValueReferenceType *ReferenceArg = 1570 Arg->getAs<RValueReferenceType>(); 1571 if (!ReferenceArg) 1572 return Sema::TDK_NonDeducedMismatch; 1573 1574 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1575 cast<RValueReferenceType>(Param)->getPointeeType(), 1576 ReferenceArg->getPointeeType(), 1577 Info, Deduced, 0); 1578 } 1579 1580 // T [] (implied, but not stated explicitly) 1581 case Type::IncompleteArray: { 1582 const IncompleteArrayType *IncompleteArrayArg = 1583 S.Context.getAsIncompleteArrayType(Arg); 1584 if (!IncompleteArrayArg) 1585 return Sema::TDK_NonDeducedMismatch; 1586 1587 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1588 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1589 S.Context.getAsIncompleteArrayType(Param)->getElementType(), 1590 IncompleteArrayArg->getElementType(), 1591 Info, Deduced, SubTDF); 1592 } 1593 1594 // T [integer-constant] 1595 case Type::ConstantArray: { 1596 const ConstantArrayType *ConstantArrayArg = 1597 S.Context.getAsConstantArrayType(Arg); 1598 if (!ConstantArrayArg) 1599 return Sema::TDK_NonDeducedMismatch; 1600 1601 const ConstantArrayType *ConstantArrayParm = 1602 S.Context.getAsConstantArrayType(Param); 1603 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize()) 1604 return Sema::TDK_NonDeducedMismatch; 1605 1606 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1607 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1608 ConstantArrayParm->getElementType(), 1609 ConstantArrayArg->getElementType(), 1610 Info, Deduced, SubTDF); 1611 } 1612 1613 // type [i] 1614 case Type::DependentSizedArray: { 1615 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg); 1616 if (!ArrayArg) 1617 return Sema::TDK_NonDeducedMismatch; 1618 1619 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1620 1621 // Check the element type of the arrays 1622 const DependentSizedArrayType *DependentArrayParm 1623 = S.Context.getAsDependentSizedArrayType(Param); 1624 if (Sema::TemplateDeductionResult Result 1625 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1626 DependentArrayParm->getElementType(), 1627 ArrayArg->getElementType(), 1628 Info, Deduced, SubTDF)) 1629 return Result; 1630 1631 // Determine the array bound is something we can deduce. 1632 NonTypeTemplateParmDecl *NTTP 1633 = getDeducedParameterFromExpr(Info, DependentArrayParm->getSizeExpr()); 1634 if (!NTTP) 1635 return Sema::TDK_Success; 1636 1637 // We can perform template argument deduction for the given non-type 1638 // template parameter. 1639 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1640 "saw non-type template parameter with wrong depth"); 1641 if (const ConstantArrayType *ConstantArrayArg 1642 = dyn_cast<ConstantArrayType>(ArrayArg)) { 1643 llvm::APSInt Size(ConstantArrayArg->getSize()); 1644 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, Size, 1645 S.Context.getSizeType(), 1646 /*ArrayBound=*/true, 1647 Info, Deduced); 1648 } 1649 if (const DependentSizedArrayType *DependentArrayArg 1650 = dyn_cast<DependentSizedArrayType>(ArrayArg)) 1651 if (DependentArrayArg->getSizeExpr()) 1652 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 1653 DependentArrayArg->getSizeExpr(), 1654 Info, Deduced); 1655 1656 // Incomplete type does not match a dependently-sized array type 1657 return Sema::TDK_NonDeducedMismatch; 1658 } 1659 1660 // type(*)(T) 1661 // T(*)() 1662 // T(*)(T) 1663 case Type::FunctionProto: { 1664 unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList; 1665 const FunctionProtoType *FunctionProtoArg = 1666 dyn_cast<FunctionProtoType>(Arg); 1667 if (!FunctionProtoArg) 1668 return Sema::TDK_NonDeducedMismatch; 1669 1670 const FunctionProtoType *FunctionProtoParam = 1671 cast<FunctionProtoType>(Param); 1672 1673 if (FunctionProtoParam->getMethodQuals() 1674 != FunctionProtoArg->getMethodQuals() || 1675 FunctionProtoParam->getRefQualifier() 1676 != FunctionProtoArg->getRefQualifier() || 1677 FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic()) 1678 return Sema::TDK_NonDeducedMismatch; 1679 1680 // Check return types. 1681 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1682 S, TemplateParams, FunctionProtoParam->getReturnType(), 1683 FunctionProtoArg->getReturnType(), Info, Deduced, 0)) 1684 return Result; 1685 1686 // Check parameter types. 1687 if (auto Result = DeduceTemplateArguments( 1688 S, TemplateParams, FunctionProtoParam->param_type_begin(), 1689 FunctionProtoParam->getNumParams(), 1690 FunctionProtoArg->param_type_begin(), 1691 FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF)) 1692 return Result; 1693 1694 if (TDF & TDF_AllowCompatibleFunctionType) 1695 return Sema::TDK_Success; 1696 1697 // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit 1698 // deducing through the noexcept-specifier if it's part of the canonical 1699 // type. libstdc++ relies on this. 1700 Expr *NoexceptExpr = FunctionProtoParam->getNoexceptExpr(); 1701 if (NonTypeTemplateParmDecl *NTTP = 1702 NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr) 1703 : nullptr) { 1704 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1705 "saw non-type template parameter with wrong depth"); 1706 1707 llvm::APSInt Noexcept(1); 1708 switch (FunctionProtoArg->canThrow()) { 1709 case CT_Cannot: 1710 Noexcept = 1; 1711 LLVM_FALLTHROUGH; 1712 1713 case CT_Can: 1714 // We give E in noexcept(E) the "deduced from array bound" treatment. 1715 // FIXME: Should we? 1716 return DeduceNonTypeTemplateArgument( 1717 S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy, 1718 /*ArrayBound*/true, Info, Deduced); 1719 1720 case CT_Dependent: 1721 if (Expr *ArgNoexceptExpr = FunctionProtoArg->getNoexceptExpr()) 1722 return DeduceNonTypeTemplateArgument( 1723 S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced); 1724 // Can't deduce anything from throw(T...). 1725 break; 1726 } 1727 } 1728 // FIXME: Detect non-deduced exception specification mismatches? 1729 // 1730 // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow 1731 // top-level differences in noexcept-specifications. 1732 1733 return Sema::TDK_Success; 1734 } 1735 1736 case Type::InjectedClassName: 1737 // Treat a template's injected-class-name as if the template 1738 // specialization type had been used. 1739 Param = cast<InjectedClassNameType>(Param) 1740 ->getInjectedSpecializationType(); 1741 assert(isa<TemplateSpecializationType>(Param) && 1742 "injected class name is not a template specialization type"); 1743 LLVM_FALLTHROUGH; 1744 1745 // template-name<T> (where template-name refers to a class template) 1746 // template-name<i> 1747 // TT<T> 1748 // TT<i> 1749 // TT<> 1750 case Type::TemplateSpecialization: { 1751 const TemplateSpecializationType *SpecParam = 1752 cast<TemplateSpecializationType>(Param); 1753 1754 // When Arg cannot be a derived class, we can just try to deduce template 1755 // arguments from the template-id. 1756 const RecordType *RecordT = Arg->getAs<RecordType>(); 1757 if (!(TDF & TDF_DerivedClass) || !RecordT) 1758 return DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, Info, 1759 Deduced); 1760 1761 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(), 1762 Deduced.end()); 1763 1764 Sema::TemplateDeductionResult Result = DeduceTemplateArguments( 1765 S, TemplateParams, SpecParam, Arg, Info, Deduced); 1766 1767 if (Result == Sema::TDK_Success) 1768 return Result; 1769 1770 // We cannot inspect base classes as part of deduction when the type 1771 // is incomplete, so either instantiate any templates necessary to 1772 // complete the type, or skip over it if it cannot be completed. 1773 if (!S.isCompleteType(Info.getLocation(), Arg)) 1774 return Result; 1775 1776 // C++14 [temp.deduct.call] p4b3: 1777 // If P is a class and P has the form simple-template-id, then the 1778 // transformed A can be a derived class of the deduced A. Likewise if 1779 // P is a pointer to a class of the form simple-template-id, the 1780 // transformed A can be a pointer to a derived class pointed to by the 1781 // deduced A. 1782 // 1783 // These alternatives are considered only if type deduction would 1784 // otherwise fail. If they yield more than one possible deduced A, the 1785 // type deduction fails. 1786 1787 // Reset the incorrectly deduced argument from above. 1788 Deduced = DeducedOrig; 1789 1790 // Use data recursion to crawl through the list of base classes. 1791 // Visited contains the set of nodes we have already visited, while 1792 // ToVisit is our stack of records that we still need to visit. 1793 llvm::SmallPtrSet<const RecordType *, 8> Visited; 1794 SmallVector<const RecordType *, 8> ToVisit; 1795 ToVisit.push_back(RecordT); 1796 bool Successful = false; 1797 SmallVector<DeducedTemplateArgument, 8> SuccessfulDeduced; 1798 while (!ToVisit.empty()) { 1799 // Retrieve the next class in the inheritance hierarchy. 1800 const RecordType *NextT = ToVisit.pop_back_val(); 1801 1802 // If we have already seen this type, skip it. 1803 if (!Visited.insert(NextT).second) 1804 continue; 1805 1806 // If this is a base class, try to perform template argument 1807 // deduction from it. 1808 if (NextT != RecordT) { 1809 TemplateDeductionInfo BaseInfo(Info.getLocation()); 1810 Sema::TemplateDeductionResult BaseResult = 1811 DeduceTemplateArguments(S, TemplateParams, SpecParam, 1812 QualType(NextT, 0), BaseInfo, Deduced); 1813 1814 // If template argument deduction for this base was successful, 1815 // note that we had some success. Otherwise, ignore any deductions 1816 // from this base class. 1817 if (BaseResult == Sema::TDK_Success) { 1818 // If we've already seen some success, then deduction fails due to 1819 // an ambiguity (temp.deduct.call p5). 1820 if (Successful) 1821 return Sema::TDK_MiscellaneousDeductionFailure; 1822 1823 Successful = true; 1824 std::swap(SuccessfulDeduced, Deduced); 1825 1826 Info.Param = BaseInfo.Param; 1827 Info.FirstArg = BaseInfo.FirstArg; 1828 Info.SecondArg = BaseInfo.SecondArg; 1829 } 1830 1831 Deduced = DeducedOrig; 1832 } 1833 1834 // Visit base classes 1835 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl()); 1836 for (const auto &Base : Next->bases()) { 1837 assert(Base.getType()->isRecordType() && 1838 "Base class that isn't a record?"); 1839 ToVisit.push_back(Base.getType()->getAs<RecordType>()); 1840 } 1841 } 1842 1843 if (Successful) { 1844 std::swap(SuccessfulDeduced, Deduced); 1845 return Sema::TDK_Success; 1846 } 1847 1848 return Result; 1849 } 1850 1851 // T type::* 1852 // T T::* 1853 // T (type::*)() 1854 // type (T::*)() 1855 // type (type::*)(T) 1856 // type (T::*)(T) 1857 // T (type::*)(T) 1858 // T (T::*)() 1859 // T (T::*)(T) 1860 case Type::MemberPointer: { 1861 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param); 1862 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg); 1863 if (!MemPtrArg) 1864 return Sema::TDK_NonDeducedMismatch; 1865 1866 QualType ParamPointeeType = MemPtrParam->getPointeeType(); 1867 if (ParamPointeeType->isFunctionType()) 1868 S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true, 1869 /*IsCtorOrDtor=*/false, Info.getLocation()); 1870 QualType ArgPointeeType = MemPtrArg->getPointeeType(); 1871 if (ArgPointeeType->isFunctionType()) 1872 S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true, 1873 /*IsCtorOrDtor=*/false, Info.getLocation()); 1874 1875 if (Sema::TemplateDeductionResult Result 1876 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1877 ParamPointeeType, 1878 ArgPointeeType, 1879 Info, Deduced, 1880 TDF & TDF_IgnoreQualifiers)) 1881 return Result; 1882 1883 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1884 QualType(MemPtrParam->getClass(), 0), 1885 QualType(MemPtrArg->getClass(), 0), 1886 Info, Deduced, 1887 TDF & TDF_IgnoreQualifiers); 1888 } 1889 1890 // (clang extension) 1891 // 1892 // type(^)(T) 1893 // T(^)() 1894 // T(^)(T) 1895 case Type::BlockPointer: { 1896 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param); 1897 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg); 1898 1899 if (!BlockPtrArg) 1900 return Sema::TDK_NonDeducedMismatch; 1901 1902 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1903 BlockPtrParam->getPointeeType(), 1904 BlockPtrArg->getPointeeType(), 1905 Info, Deduced, 0); 1906 } 1907 1908 // (clang extension) 1909 // 1910 // T __attribute__(((ext_vector_type(<integral constant>)))) 1911 case Type::ExtVector: { 1912 const ExtVectorType *VectorParam = cast<ExtVectorType>(Param); 1913 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { 1914 // Make sure that the vectors have the same number of elements. 1915 if (VectorParam->getNumElements() != VectorArg->getNumElements()) 1916 return Sema::TDK_NonDeducedMismatch; 1917 1918 // Perform deduction on the element types. 1919 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1920 VectorParam->getElementType(), 1921 VectorArg->getElementType(), 1922 Info, Deduced, TDF); 1923 } 1924 1925 if (const DependentSizedExtVectorType *VectorArg 1926 = dyn_cast<DependentSizedExtVectorType>(Arg)) { 1927 // We can't check the number of elements, since the argument has a 1928 // dependent number of elements. This can only occur during partial 1929 // ordering. 1930 1931 // Perform deduction on the element types. 1932 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1933 VectorParam->getElementType(), 1934 VectorArg->getElementType(), 1935 Info, Deduced, TDF); 1936 } 1937 1938 return Sema::TDK_NonDeducedMismatch; 1939 } 1940 1941 case Type::DependentVector: { 1942 const auto *VectorParam = cast<DependentVectorType>(Param); 1943 1944 if (const auto *VectorArg = dyn_cast<VectorType>(Arg)) { 1945 // Perform deduction on the element types. 1946 if (Sema::TemplateDeductionResult Result = 1947 DeduceTemplateArgumentsByTypeMatch( 1948 S, TemplateParams, VectorParam->getElementType(), 1949 VectorArg->getElementType(), Info, Deduced, TDF)) 1950 return Result; 1951 1952 // Perform deduction on the vector size, if we can. 1953 NonTypeTemplateParmDecl *NTTP = 1954 getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); 1955 if (!NTTP) 1956 return Sema::TDK_Success; 1957 1958 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 1959 ArgSize = VectorArg->getNumElements(); 1960 // Note that we use the "array bound" rules here; just like in that 1961 // case, we don't have any particular type for the vector size, but 1962 // we can provide one if necessary. 1963 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 1964 S.Context.UnsignedIntTy, true, 1965 Info, Deduced); 1966 } 1967 1968 if (const auto *VectorArg = dyn_cast<DependentVectorType>(Arg)) { 1969 // Perform deduction on the element types. 1970 if (Sema::TemplateDeductionResult Result = 1971 DeduceTemplateArgumentsByTypeMatch( 1972 S, TemplateParams, VectorParam->getElementType(), 1973 VectorArg->getElementType(), Info, Deduced, TDF)) 1974 return Result; 1975 1976 // Perform deduction on the vector size, if we can. 1977 NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( 1978 Info, VectorParam->getSizeExpr()); 1979 if (!NTTP) 1980 return Sema::TDK_Success; 1981 1982 return DeduceNonTypeTemplateArgument( 1983 S, TemplateParams, NTTP, VectorArg->getSizeExpr(), Info, Deduced); 1984 } 1985 1986 return Sema::TDK_NonDeducedMismatch; 1987 } 1988 1989 // (clang extension) 1990 // 1991 // T __attribute__(((ext_vector_type(N)))) 1992 case Type::DependentSizedExtVector: { 1993 const DependentSizedExtVectorType *VectorParam 1994 = cast<DependentSizedExtVectorType>(Param); 1995 1996 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { 1997 // Perform deduction on the element types. 1998 if (Sema::TemplateDeductionResult Result 1999 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 2000 VectorParam->getElementType(), 2001 VectorArg->getElementType(), 2002 Info, Deduced, TDF)) 2003 return Result; 2004 2005 // Perform deduction on the vector size, if we can. 2006 NonTypeTemplateParmDecl *NTTP 2007 = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); 2008 if (!NTTP) 2009 return Sema::TDK_Success; 2010 2011 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 2012 ArgSize = VectorArg->getNumElements(); 2013 // Note that we use the "array bound" rules here; just like in that 2014 // case, we don't have any particular type for the vector size, but 2015 // we can provide one if necessary. 2016 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 2017 S.Context.IntTy, true, Info, 2018 Deduced); 2019 } 2020 2021 if (const DependentSizedExtVectorType *VectorArg 2022 = dyn_cast<DependentSizedExtVectorType>(Arg)) { 2023 // Perform deduction on the element types. 2024 if (Sema::TemplateDeductionResult Result 2025 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 2026 VectorParam->getElementType(), 2027 VectorArg->getElementType(), 2028 Info, Deduced, TDF)) 2029 return Result; 2030 2031 // Perform deduction on the vector size, if we can. 2032 NonTypeTemplateParmDecl *NTTP 2033 = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); 2034 if (!NTTP) 2035 return Sema::TDK_Success; 2036 2037 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2038 VectorArg->getSizeExpr(), 2039 Info, Deduced); 2040 } 2041 2042 return Sema::TDK_NonDeducedMismatch; 2043 } 2044 2045 // (clang extension) 2046 // 2047 // T __attribute__(((address_space(N)))) 2048 case Type::DependentAddressSpace: { 2049 const DependentAddressSpaceType *AddressSpaceParam = 2050 cast<DependentAddressSpaceType>(Param); 2051 2052 if (const DependentAddressSpaceType *AddressSpaceArg = 2053 dyn_cast<DependentAddressSpaceType>(Arg)) { 2054 // Perform deduction on the pointer type. 2055 if (Sema::TemplateDeductionResult Result = 2056 DeduceTemplateArgumentsByTypeMatch( 2057 S, TemplateParams, AddressSpaceParam->getPointeeType(), 2058 AddressSpaceArg->getPointeeType(), Info, Deduced, TDF)) 2059 return Result; 2060 2061 // Perform deduction on the address space, if we can. 2062 NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( 2063 Info, AddressSpaceParam->getAddrSpaceExpr()); 2064 if (!NTTP) 2065 return Sema::TDK_Success; 2066 2067 return DeduceNonTypeTemplateArgument( 2068 S, TemplateParams, NTTP, AddressSpaceArg->getAddrSpaceExpr(), Info, 2069 Deduced); 2070 } 2071 2072 if (isTargetAddressSpace(Arg.getAddressSpace())) { 2073 llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy), 2074 false); 2075 ArgAddressSpace = toTargetAddressSpace(Arg.getAddressSpace()); 2076 2077 // Perform deduction on the pointer types. 2078 if (Sema::TemplateDeductionResult Result = 2079 DeduceTemplateArgumentsByTypeMatch( 2080 S, TemplateParams, AddressSpaceParam->getPointeeType(), 2081 S.Context.removeAddrSpaceQualType(Arg), Info, Deduced, TDF)) 2082 return Result; 2083 2084 // Perform deduction on the address space, if we can. 2085 NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( 2086 Info, AddressSpaceParam->getAddrSpaceExpr()); 2087 if (!NTTP) 2088 return Sema::TDK_Success; 2089 2090 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2091 ArgAddressSpace, S.Context.IntTy, 2092 true, Info, Deduced); 2093 } 2094 2095 return Sema::TDK_NonDeducedMismatch; 2096 } 2097 2098 case Type::TypeOfExpr: 2099 case Type::TypeOf: 2100 case Type::DependentName: 2101 case Type::UnresolvedUsing: 2102 case Type::Decltype: 2103 case Type::UnaryTransform: 2104 case Type::Auto: 2105 case Type::DeducedTemplateSpecialization: 2106 case Type::DependentTemplateSpecialization: 2107 case Type::PackExpansion: 2108 case Type::Pipe: 2109 // No template argument deduction for these types 2110 return Sema::TDK_Success; 2111 } 2112 2113 llvm_unreachable("Invalid Type Class!"); 2114 } 2115 2116 static Sema::TemplateDeductionResult 2117 DeduceTemplateArguments(Sema &S, 2118 TemplateParameterList *TemplateParams, 2119 const TemplateArgument &Param, 2120 TemplateArgument Arg, 2121 TemplateDeductionInfo &Info, 2122 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2123 // If the template argument is a pack expansion, perform template argument 2124 // deduction against the pattern of that expansion. This only occurs during 2125 // partial ordering. 2126 if (Arg.isPackExpansion()) 2127 Arg = Arg.getPackExpansionPattern(); 2128 2129 switch (Param.getKind()) { 2130 case TemplateArgument::Null: 2131 llvm_unreachable("Null template argument in parameter list"); 2132 2133 case TemplateArgument::Type: 2134 if (Arg.getKind() == TemplateArgument::Type) 2135 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 2136 Param.getAsType(), 2137 Arg.getAsType(), 2138 Info, Deduced, 0); 2139 Info.FirstArg = Param; 2140 Info.SecondArg = Arg; 2141 return Sema::TDK_NonDeducedMismatch; 2142 2143 case TemplateArgument::Template: 2144 if (Arg.getKind() == TemplateArgument::Template) 2145 return DeduceTemplateArguments(S, TemplateParams, 2146 Param.getAsTemplate(), 2147 Arg.getAsTemplate(), Info, Deduced); 2148 Info.FirstArg = Param; 2149 Info.SecondArg = Arg; 2150 return Sema::TDK_NonDeducedMismatch; 2151 2152 case TemplateArgument::TemplateExpansion: 2153 llvm_unreachable("caller should handle pack expansions"); 2154 2155 case TemplateArgument::Declaration: 2156 if (Arg.getKind() == TemplateArgument::Declaration && 2157 isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl())) 2158 return Sema::TDK_Success; 2159 2160 Info.FirstArg = Param; 2161 Info.SecondArg = Arg; 2162 return Sema::TDK_NonDeducedMismatch; 2163 2164 case TemplateArgument::NullPtr: 2165 if (Arg.getKind() == TemplateArgument::NullPtr && 2166 S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType())) 2167 return Sema::TDK_Success; 2168 2169 Info.FirstArg = Param; 2170 Info.SecondArg = Arg; 2171 return Sema::TDK_NonDeducedMismatch; 2172 2173 case TemplateArgument::Integral: 2174 if (Arg.getKind() == TemplateArgument::Integral) { 2175 if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral())) 2176 return Sema::TDK_Success; 2177 2178 Info.FirstArg = Param; 2179 Info.SecondArg = Arg; 2180 return Sema::TDK_NonDeducedMismatch; 2181 } 2182 2183 if (Arg.getKind() == TemplateArgument::Expression) { 2184 Info.FirstArg = Param; 2185 Info.SecondArg = Arg; 2186 return Sema::TDK_NonDeducedMismatch; 2187 } 2188 2189 Info.FirstArg = Param; 2190 Info.SecondArg = Arg; 2191 return Sema::TDK_NonDeducedMismatch; 2192 2193 case TemplateArgument::Expression: 2194 if (NonTypeTemplateParmDecl *NTTP 2195 = getDeducedParameterFromExpr(Info, Param.getAsExpr())) { 2196 if (Arg.getKind() == TemplateArgument::Integral) 2197 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2198 Arg.getAsIntegral(), 2199 Arg.getIntegralType(), 2200 /*ArrayBound=*/false, 2201 Info, Deduced); 2202 if (Arg.getKind() == TemplateArgument::NullPtr) 2203 return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP, 2204 Arg.getNullPtrType(), 2205 Info, Deduced); 2206 if (Arg.getKind() == TemplateArgument::Expression) 2207 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2208 Arg.getAsExpr(), Info, Deduced); 2209 if (Arg.getKind() == TemplateArgument::Declaration) 2210 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2211 Arg.getAsDecl(), 2212 Arg.getParamTypeForDecl(), 2213 Info, Deduced); 2214 2215 Info.FirstArg = Param; 2216 Info.SecondArg = Arg; 2217 return Sema::TDK_NonDeducedMismatch; 2218 } 2219 2220 // Can't deduce anything, but that's okay. 2221 return Sema::TDK_Success; 2222 2223 case TemplateArgument::Pack: 2224 llvm_unreachable("Argument packs should be expanded by the caller!"); 2225 } 2226 2227 llvm_unreachable("Invalid TemplateArgument Kind!"); 2228 } 2229 2230 /// Determine whether there is a template argument to be used for 2231 /// deduction. 2232 /// 2233 /// This routine "expands" argument packs in-place, overriding its input 2234 /// parameters so that \c Args[ArgIdx] will be the available template argument. 2235 /// 2236 /// \returns true if there is another template argument (which will be at 2237 /// \c Args[ArgIdx]), false otherwise. 2238 static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args, 2239 unsigned &ArgIdx) { 2240 if (ArgIdx == Args.size()) 2241 return false; 2242 2243 const TemplateArgument &Arg = Args[ArgIdx]; 2244 if (Arg.getKind() != TemplateArgument::Pack) 2245 return true; 2246 2247 assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?"); 2248 Args = Arg.pack_elements(); 2249 ArgIdx = 0; 2250 return ArgIdx < Args.size(); 2251 } 2252 2253 /// Determine whether the given set of template arguments has a pack 2254 /// expansion that is not the last template argument. 2255 static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) { 2256 bool FoundPackExpansion = false; 2257 for (const auto &A : Args) { 2258 if (FoundPackExpansion) 2259 return true; 2260 2261 if (A.getKind() == TemplateArgument::Pack) 2262 return hasPackExpansionBeforeEnd(A.pack_elements()); 2263 2264 // FIXME: If this is a fixed-arity pack expansion from an outer level of 2265 // templates, it should not be treated as a pack expansion. 2266 if (A.isPackExpansion()) 2267 FoundPackExpansion = true; 2268 } 2269 2270 return false; 2271 } 2272 2273 static Sema::TemplateDeductionResult 2274 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 2275 ArrayRef<TemplateArgument> Params, 2276 ArrayRef<TemplateArgument> Args, 2277 TemplateDeductionInfo &Info, 2278 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2279 bool NumberOfArgumentsMustMatch) { 2280 // C++0x [temp.deduct.type]p9: 2281 // If the template argument list of P contains a pack expansion that is not 2282 // the last template argument, the entire template argument list is a 2283 // non-deduced context. 2284 if (hasPackExpansionBeforeEnd(Params)) 2285 return Sema::TDK_Success; 2286 2287 // C++0x [temp.deduct.type]p9: 2288 // If P has a form that contains <T> or <i>, then each argument Pi of the 2289 // respective template argument list P is compared with the corresponding 2290 // argument Ai of the corresponding template argument list of A. 2291 unsigned ArgIdx = 0, ParamIdx = 0; 2292 for (; hasTemplateArgumentForDeduction(Params, ParamIdx); ++ParamIdx) { 2293 if (!Params[ParamIdx].isPackExpansion()) { 2294 // The simple case: deduce template arguments by matching Pi and Ai. 2295 2296 // Check whether we have enough arguments. 2297 if (!hasTemplateArgumentForDeduction(Args, ArgIdx)) 2298 return NumberOfArgumentsMustMatch 2299 ? Sema::TDK_MiscellaneousDeductionFailure 2300 : Sema::TDK_Success; 2301 2302 // C++1z [temp.deduct.type]p9: 2303 // During partial ordering, if Ai was originally a pack expansion [and] 2304 // Pi is not a pack expansion, template argument deduction fails. 2305 if (Args[ArgIdx].isPackExpansion()) 2306 return Sema::TDK_MiscellaneousDeductionFailure; 2307 2308 // Perform deduction for this Pi/Ai pair. 2309 if (Sema::TemplateDeductionResult Result 2310 = DeduceTemplateArguments(S, TemplateParams, 2311 Params[ParamIdx], Args[ArgIdx], 2312 Info, Deduced)) 2313 return Result; 2314 2315 // Move to the next argument. 2316 ++ArgIdx; 2317 continue; 2318 } 2319 2320 // The parameter is a pack expansion. 2321 2322 // C++0x [temp.deduct.type]p9: 2323 // If Pi is a pack expansion, then the pattern of Pi is compared with 2324 // each remaining argument in the template argument list of A. Each 2325 // comparison deduces template arguments for subsequent positions in the 2326 // template parameter packs expanded by Pi. 2327 TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern(); 2328 2329 // Prepare to deduce the packs within the pattern. 2330 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 2331 2332 // Keep track of the deduced template arguments for each parameter pack 2333 // expanded by this pack expansion (the outer index) and for each 2334 // template argument (the inner SmallVectors). 2335 for (; hasTemplateArgumentForDeduction(Args, ArgIdx) && 2336 PackScope.hasNextElement(); 2337 ++ArgIdx) { 2338 // Deduce template arguments from the pattern. 2339 if (Sema::TemplateDeductionResult Result 2340 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx], 2341 Info, Deduced)) 2342 return Result; 2343 2344 PackScope.nextPackElement(); 2345 } 2346 2347 // Build argument packs for each of the parameter packs expanded by this 2348 // pack expansion. 2349 if (auto Result = PackScope.finish()) 2350 return Result; 2351 } 2352 2353 return Sema::TDK_Success; 2354 } 2355 2356 static Sema::TemplateDeductionResult 2357 DeduceTemplateArguments(Sema &S, 2358 TemplateParameterList *TemplateParams, 2359 const TemplateArgumentList &ParamList, 2360 const TemplateArgumentList &ArgList, 2361 TemplateDeductionInfo &Info, 2362 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2363 return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(), 2364 ArgList.asArray(), Info, Deduced, 2365 /*NumberOfArgumentsMustMatch*/false); 2366 } 2367 2368 /// Determine whether two template arguments are the same. 2369 static bool isSameTemplateArg(ASTContext &Context, 2370 TemplateArgument X, 2371 const TemplateArgument &Y, 2372 bool PackExpansionMatchesPack = false) { 2373 // If we're checking deduced arguments (X) against original arguments (Y), 2374 // we will have flattened packs to non-expansions in X. 2375 if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion()) 2376 X = X.getPackExpansionPattern(); 2377 2378 if (X.getKind() != Y.getKind()) 2379 return false; 2380 2381 switch (X.getKind()) { 2382 case TemplateArgument::Null: 2383 llvm_unreachable("Comparing NULL template argument"); 2384 2385 case TemplateArgument::Type: 2386 return Context.getCanonicalType(X.getAsType()) == 2387 Context.getCanonicalType(Y.getAsType()); 2388 2389 case TemplateArgument::Declaration: 2390 return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()); 2391 2392 case TemplateArgument::NullPtr: 2393 return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()); 2394 2395 case TemplateArgument::Template: 2396 case TemplateArgument::TemplateExpansion: 2397 return Context.getCanonicalTemplateName( 2398 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() == 2399 Context.getCanonicalTemplateName( 2400 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer(); 2401 2402 case TemplateArgument::Integral: 2403 return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()); 2404 2405 case TemplateArgument::Expression: { 2406 llvm::FoldingSetNodeID XID, YID; 2407 X.getAsExpr()->Profile(XID, Context, true); 2408 Y.getAsExpr()->Profile(YID, Context, true); 2409 return XID == YID; 2410 } 2411 2412 case TemplateArgument::Pack: 2413 if (X.pack_size() != Y.pack_size()) 2414 return false; 2415 2416 for (TemplateArgument::pack_iterator XP = X.pack_begin(), 2417 XPEnd = X.pack_end(), 2418 YP = Y.pack_begin(); 2419 XP != XPEnd; ++XP, ++YP) 2420 if (!isSameTemplateArg(Context, *XP, *YP, PackExpansionMatchesPack)) 2421 return false; 2422 2423 return true; 2424 } 2425 2426 llvm_unreachable("Invalid TemplateArgument Kind!"); 2427 } 2428 2429 /// Allocate a TemplateArgumentLoc where all locations have 2430 /// been initialized to the given location. 2431 /// 2432 /// \param Arg The template argument we are producing template argument 2433 /// location information for. 2434 /// 2435 /// \param NTTPType For a declaration template argument, the type of 2436 /// the non-type template parameter that corresponds to this template 2437 /// argument. Can be null if no type sugar is available to add to the 2438 /// type from the template argument. 2439 /// 2440 /// \param Loc The source location to use for the resulting template 2441 /// argument. 2442 TemplateArgumentLoc 2443 Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, 2444 QualType NTTPType, SourceLocation Loc) { 2445 switch (Arg.getKind()) { 2446 case TemplateArgument::Null: 2447 llvm_unreachable("Can't get a NULL template argument here"); 2448 2449 case TemplateArgument::Type: 2450 return TemplateArgumentLoc( 2451 Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); 2452 2453 case TemplateArgument::Declaration: { 2454 if (NTTPType.isNull()) 2455 NTTPType = Arg.getParamTypeForDecl(); 2456 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2457 .getAs<Expr>(); 2458 return TemplateArgumentLoc(TemplateArgument(E), E); 2459 } 2460 2461 case TemplateArgument::NullPtr: { 2462 if (NTTPType.isNull()) 2463 NTTPType = Arg.getNullPtrType(); 2464 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2465 .getAs<Expr>(); 2466 return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true), 2467 E); 2468 } 2469 2470 case TemplateArgument::Integral: { 2471 Expr *E = 2472 BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>(); 2473 return TemplateArgumentLoc(TemplateArgument(E), E); 2474 } 2475 2476 case TemplateArgument::Template: 2477 case TemplateArgument::TemplateExpansion: { 2478 NestedNameSpecifierLocBuilder Builder; 2479 TemplateName Template = Arg.getAsTemplate(); 2480 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) 2481 Builder.MakeTrivial(Context, DTN->getQualifier(), Loc); 2482 else if (QualifiedTemplateName *QTN = 2483 Template.getAsQualifiedTemplateName()) 2484 Builder.MakeTrivial(Context, QTN->getQualifier(), Loc); 2485 2486 if (Arg.getKind() == TemplateArgument::Template) 2487 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context), 2488 Loc); 2489 2490 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context), 2491 Loc, Loc); 2492 } 2493 2494 case TemplateArgument::Expression: 2495 return TemplateArgumentLoc(Arg, Arg.getAsExpr()); 2496 2497 case TemplateArgument::Pack: 2498 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); 2499 } 2500 2501 llvm_unreachable("Invalid TemplateArgument Kind!"); 2502 } 2503 2504 /// Convert the given deduced template argument and add it to the set of 2505 /// fully-converted template arguments. 2506 static bool 2507 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param, 2508 DeducedTemplateArgument Arg, 2509 NamedDecl *Template, 2510 TemplateDeductionInfo &Info, 2511 bool IsDeduced, 2512 SmallVectorImpl<TemplateArgument> &Output) { 2513 auto ConvertArg = [&](DeducedTemplateArgument Arg, 2514 unsigned ArgumentPackIndex) { 2515 // Convert the deduced template argument into a template 2516 // argument that we can check, almost as if the user had written 2517 // the template argument explicitly. 2518 TemplateArgumentLoc ArgLoc = 2519 S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation()); 2520 2521 // Check the template argument, converting it as necessary. 2522 return S.CheckTemplateArgument( 2523 Param, ArgLoc, Template, Template->getLocation(), 2524 Template->getSourceRange().getEnd(), ArgumentPackIndex, Output, 2525 IsDeduced 2526 ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound 2527 : Sema::CTAK_Deduced) 2528 : Sema::CTAK_Specified); 2529 }; 2530 2531 if (Arg.getKind() == TemplateArgument::Pack) { 2532 // This is a template argument pack, so check each of its arguments against 2533 // the template parameter. 2534 SmallVector<TemplateArgument, 2> PackedArgsBuilder; 2535 for (const auto &P : Arg.pack_elements()) { 2536 // When converting the deduced template argument, append it to the 2537 // general output list. We need to do this so that the template argument 2538 // checking logic has all of the prior template arguments available. 2539 DeducedTemplateArgument InnerArg(P); 2540 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); 2541 assert(InnerArg.getKind() != TemplateArgument::Pack && 2542 "deduced nested pack"); 2543 if (P.isNull()) { 2544 // We deduced arguments for some elements of this pack, but not for 2545 // all of them. This happens if we get a conditionally-non-deduced 2546 // context in a pack expansion (such as an overload set in one of the 2547 // arguments). 2548 S.Diag(Param->getLocation(), 2549 diag::err_template_arg_deduced_incomplete_pack) 2550 << Arg << Param; 2551 return true; 2552 } 2553 if (ConvertArg(InnerArg, PackedArgsBuilder.size())) 2554 return true; 2555 2556 // Move the converted template argument into our argument pack. 2557 PackedArgsBuilder.push_back(Output.pop_back_val()); 2558 } 2559 2560 // If the pack is empty, we still need to substitute into the parameter 2561 // itself, in case that substitution fails. 2562 if (PackedArgsBuilder.empty()) { 2563 LocalInstantiationScope Scope(S); 2564 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Output); 2565 MultiLevelTemplateArgumentList Args(TemplateArgs); 2566 2567 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2568 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2569 NTTP, Output, 2570 Template->getSourceRange()); 2571 if (Inst.isInvalid() || 2572 S.SubstType(NTTP->getType(), Args, NTTP->getLocation(), 2573 NTTP->getDeclName()).isNull()) 2574 return true; 2575 } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) { 2576 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2577 TTP, Output, 2578 Template->getSourceRange()); 2579 if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args)) 2580 return true; 2581 } 2582 // For type parameters, no substitution is ever required. 2583 } 2584 2585 // Create the resulting argument pack. 2586 Output.push_back( 2587 TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder)); 2588 return false; 2589 } 2590 2591 return ConvertArg(Arg, 0); 2592 } 2593 2594 // FIXME: This should not be a template, but 2595 // ClassTemplatePartialSpecializationDecl sadly does not derive from 2596 // TemplateDecl. 2597 template<typename TemplateDeclT> 2598 static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments( 2599 Sema &S, TemplateDeclT *Template, bool IsDeduced, 2600 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2601 TemplateDeductionInfo &Info, SmallVectorImpl<TemplateArgument> &Builder, 2602 LocalInstantiationScope *CurrentInstantiationScope = nullptr, 2603 unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) { 2604 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2605 2606 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2607 NamedDecl *Param = TemplateParams->getParam(I); 2608 2609 // C++0x [temp.arg.explicit]p3: 2610 // A trailing template parameter pack (14.5.3) not otherwise deduced will 2611 // be deduced to an empty sequence of template arguments. 2612 // FIXME: Where did the word "trailing" come from? 2613 if (Deduced[I].isNull() && Param->isTemplateParameterPack()) { 2614 if (auto Result = PackDeductionScope(S, TemplateParams, Deduced, Info, I) 2615 .finish(/*TreatNoDeductionsAsNonDeduced*/false)) 2616 return Result; 2617 } 2618 2619 if (!Deduced[I].isNull()) { 2620 if (I < NumAlreadyConverted) { 2621 // We may have had explicitly-specified template arguments for a 2622 // template parameter pack (that may or may not have been extended 2623 // via additional deduced arguments). 2624 if (Param->isParameterPack() && CurrentInstantiationScope && 2625 CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) { 2626 // Forget the partially-substituted pack; its substitution is now 2627 // complete. 2628 CurrentInstantiationScope->ResetPartiallySubstitutedPack(); 2629 // We still need to check the argument in case it was extended by 2630 // deduction. 2631 } else { 2632 // We have already fully type-checked and converted this 2633 // argument, because it was explicitly-specified. Just record the 2634 // presence of this argument. 2635 Builder.push_back(Deduced[I]); 2636 continue; 2637 } 2638 } 2639 2640 // We may have deduced this argument, so it still needs to be 2641 // checked and converted. 2642 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info, 2643 IsDeduced, Builder)) { 2644 Info.Param = makeTemplateParameter(Param); 2645 // FIXME: These template arguments are temporary. Free them! 2646 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); 2647 return Sema::TDK_SubstitutionFailure; 2648 } 2649 2650 continue; 2651 } 2652 2653 // Substitute into the default template argument, if available. 2654 bool HasDefaultArg = false; 2655 TemplateDecl *TD = dyn_cast<TemplateDecl>(Template); 2656 if (!TD) { 2657 assert(isa<ClassTemplatePartialSpecializationDecl>(Template) || 2658 isa<VarTemplatePartialSpecializationDecl>(Template)); 2659 return Sema::TDK_Incomplete; 2660 } 2661 2662 TemplateArgumentLoc DefArg = S.SubstDefaultTemplateArgumentIfAvailable( 2663 TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, Builder, 2664 HasDefaultArg); 2665 2666 // If there was no default argument, deduction is incomplete. 2667 if (DefArg.getArgument().isNull()) { 2668 Info.Param = makeTemplateParameter( 2669 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2670 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); 2671 if (PartialOverloading) break; 2672 2673 return HasDefaultArg ? Sema::TDK_SubstitutionFailure 2674 : Sema::TDK_Incomplete; 2675 } 2676 2677 // Check whether we can actually use the default argument. 2678 if (S.CheckTemplateArgument(Param, DefArg, TD, TD->getLocation(), 2679 TD->getSourceRange().getEnd(), 0, Builder, 2680 Sema::CTAK_Specified)) { 2681 Info.Param = makeTemplateParameter( 2682 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2683 // FIXME: These template arguments are temporary. Free them! 2684 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); 2685 return Sema::TDK_SubstitutionFailure; 2686 } 2687 2688 // If we get here, we successfully used the default template argument. 2689 } 2690 2691 return Sema::TDK_Success; 2692 } 2693 2694 static DeclContext *getAsDeclContextOrEnclosing(Decl *D) { 2695 if (auto *DC = dyn_cast<DeclContext>(D)) 2696 return DC; 2697 return D->getDeclContext(); 2698 } 2699 2700 template<typename T> struct IsPartialSpecialization { 2701 static constexpr bool value = false; 2702 }; 2703 template<> 2704 struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> { 2705 static constexpr bool value = true; 2706 }; 2707 template<> 2708 struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> { 2709 static constexpr bool value = true; 2710 }; 2711 2712 /// Complete template argument deduction for a partial specialization. 2713 template <typename T> 2714 static typename std::enable_if<IsPartialSpecialization<T>::value, 2715 Sema::TemplateDeductionResult>::type 2716 FinishTemplateArgumentDeduction( 2717 Sema &S, T *Partial, bool IsPartialOrdering, 2718 const TemplateArgumentList &TemplateArgs, 2719 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2720 TemplateDeductionInfo &Info) { 2721 // Unevaluated SFINAE context. 2722 EnterExpressionEvaluationContext Unevaluated( 2723 S, Sema::ExpressionEvaluationContext::Unevaluated); 2724 Sema::SFINAETrap Trap(S); 2725 2726 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial)); 2727 2728 // C++ [temp.deduct.type]p2: 2729 // [...] or if any template argument remains neither deduced nor 2730 // explicitly specified, template argument deduction fails. 2731 SmallVector<TemplateArgument, 4> Builder; 2732 if (auto Result = ConvertDeducedTemplateArguments( 2733 S, Partial, IsPartialOrdering, Deduced, Info, Builder)) 2734 return Result; 2735 2736 // Form the template argument list from the deduced template arguments. 2737 TemplateArgumentList *DeducedArgumentList 2738 = TemplateArgumentList::CreateCopy(S.Context, Builder); 2739 2740 Info.reset(DeducedArgumentList); 2741 2742 // Substitute the deduced template arguments into the template 2743 // arguments of the class template partial specialization, and 2744 // verify that the instantiated template arguments are both valid 2745 // and are equivalent to the template arguments originally provided 2746 // to the class template. 2747 LocalInstantiationScope InstScope(S); 2748 auto *Template = Partial->getSpecializedTemplate(); 2749 const ASTTemplateArgumentListInfo *PartialTemplArgInfo = 2750 Partial->getTemplateArgsAsWritten(); 2751 const TemplateArgumentLoc *PartialTemplateArgs = 2752 PartialTemplArgInfo->getTemplateArgs(); 2753 2754 TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc, 2755 PartialTemplArgInfo->RAngleLoc); 2756 2757 if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs, 2758 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) { 2759 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; 2760 if (ParamIdx >= Partial->getTemplateParameters()->size()) 2761 ParamIdx = Partial->getTemplateParameters()->size() - 1; 2762 2763 Decl *Param = const_cast<NamedDecl *>( 2764 Partial->getTemplateParameters()->getParam(ParamIdx)); 2765 Info.Param = makeTemplateParameter(Param); 2766 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument(); 2767 return Sema::TDK_SubstitutionFailure; 2768 } 2769 2770 SmallVector<TemplateArgument, 4> ConvertedInstArgs; 2771 if (S.CheckTemplateArgumentList(Template, Partial->getLocation(), InstArgs, 2772 false, ConvertedInstArgs)) 2773 return Sema::TDK_SubstitutionFailure; 2774 2775 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2776 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 2777 TemplateArgument InstArg = ConvertedInstArgs.data()[I]; 2778 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) { 2779 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 2780 Info.FirstArg = TemplateArgs[I]; 2781 Info.SecondArg = InstArg; 2782 return Sema::TDK_NonDeducedMismatch; 2783 } 2784 } 2785 2786 if (Trap.hasErrorOccurred()) 2787 return Sema::TDK_SubstitutionFailure; 2788 2789 return Sema::TDK_Success; 2790 } 2791 2792 /// Complete template argument deduction for a class or variable template, 2793 /// when partial ordering against a partial specialization. 2794 // FIXME: Factor out duplication with partial specialization version above. 2795 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction( 2796 Sema &S, TemplateDecl *Template, bool PartialOrdering, 2797 const TemplateArgumentList &TemplateArgs, 2798 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2799 TemplateDeductionInfo &Info) { 2800 // Unevaluated SFINAE context. 2801 EnterExpressionEvaluationContext Unevaluated( 2802 S, Sema::ExpressionEvaluationContext::Unevaluated); 2803 Sema::SFINAETrap Trap(S); 2804 2805 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template)); 2806 2807 // C++ [temp.deduct.type]p2: 2808 // [...] or if any template argument remains neither deduced nor 2809 // explicitly specified, template argument deduction fails. 2810 SmallVector<TemplateArgument, 4> Builder; 2811 if (auto Result = ConvertDeducedTemplateArguments( 2812 S, Template, /*IsDeduced*/PartialOrdering, Deduced, Info, Builder)) 2813 return Result; 2814 2815 // Check that we produced the correct argument list. 2816 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2817 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 2818 TemplateArgument InstArg = Builder[I]; 2819 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, 2820 /*PackExpansionMatchesPack*/true)) { 2821 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 2822 Info.FirstArg = TemplateArgs[I]; 2823 Info.SecondArg = InstArg; 2824 return Sema::TDK_NonDeducedMismatch; 2825 } 2826 } 2827 2828 if (Trap.hasErrorOccurred()) 2829 return Sema::TDK_SubstitutionFailure; 2830 2831 return Sema::TDK_Success; 2832 } 2833 2834 2835 /// Perform template argument deduction to determine whether 2836 /// the given template arguments match the given class template 2837 /// partial specialization per C++ [temp.class.spec.match]. 2838 Sema::TemplateDeductionResult 2839 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, 2840 const TemplateArgumentList &TemplateArgs, 2841 TemplateDeductionInfo &Info) { 2842 if (Partial->isInvalidDecl()) 2843 return TDK_Invalid; 2844 2845 // C++ [temp.class.spec.match]p2: 2846 // A partial specialization matches a given actual template 2847 // argument list if the template arguments of the partial 2848 // specialization can be deduced from the actual template argument 2849 // list (14.8.2). 2850 2851 // Unevaluated SFINAE context. 2852 EnterExpressionEvaluationContext Unevaluated( 2853 *this, Sema::ExpressionEvaluationContext::Unevaluated); 2854 SFINAETrap Trap(*this); 2855 2856 SmallVector<DeducedTemplateArgument, 4> Deduced; 2857 Deduced.resize(Partial->getTemplateParameters()->size()); 2858 if (TemplateDeductionResult Result 2859 = ::DeduceTemplateArguments(*this, 2860 Partial->getTemplateParameters(), 2861 Partial->getTemplateArgs(), 2862 TemplateArgs, Info, Deduced)) 2863 return Result; 2864 2865 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 2866 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 2867 Info); 2868 if (Inst.isInvalid()) 2869 return TDK_InstantiationDepth; 2870 2871 if (Trap.hasErrorOccurred()) 2872 return Sema::TDK_SubstitutionFailure; 2873 2874 return ::FinishTemplateArgumentDeduction( 2875 *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info); 2876 } 2877 2878 /// Perform template argument deduction to determine whether 2879 /// the given template arguments match the given variable template 2880 /// partial specialization per C++ [temp.class.spec.match]. 2881 Sema::TemplateDeductionResult 2882 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, 2883 const TemplateArgumentList &TemplateArgs, 2884 TemplateDeductionInfo &Info) { 2885 if (Partial->isInvalidDecl()) 2886 return TDK_Invalid; 2887 2888 // C++ [temp.class.spec.match]p2: 2889 // A partial specialization matches a given actual template 2890 // argument list if the template arguments of the partial 2891 // specialization can be deduced from the actual template argument 2892 // list (14.8.2). 2893 2894 // Unevaluated SFINAE context. 2895 EnterExpressionEvaluationContext Unevaluated( 2896 *this, Sema::ExpressionEvaluationContext::Unevaluated); 2897 SFINAETrap Trap(*this); 2898 2899 SmallVector<DeducedTemplateArgument, 4> Deduced; 2900 Deduced.resize(Partial->getTemplateParameters()->size()); 2901 if (TemplateDeductionResult Result = ::DeduceTemplateArguments( 2902 *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(), 2903 TemplateArgs, Info, Deduced)) 2904 return Result; 2905 2906 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 2907 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 2908 Info); 2909 if (Inst.isInvalid()) 2910 return TDK_InstantiationDepth; 2911 2912 if (Trap.hasErrorOccurred()) 2913 return Sema::TDK_SubstitutionFailure; 2914 2915 return ::FinishTemplateArgumentDeduction( 2916 *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info); 2917 } 2918 2919 /// Determine whether the given type T is a simple-template-id type. 2920 static bool isSimpleTemplateIdType(QualType T) { 2921 if (const TemplateSpecializationType *Spec 2922 = T->getAs<TemplateSpecializationType>()) 2923 return Spec->getTemplateName().getAsTemplateDecl() != nullptr; 2924 2925 // C++17 [temp.local]p2: 2926 // the injected-class-name [...] is equivalent to the template-name followed 2927 // by the template-arguments of the class template specialization or partial 2928 // specialization enclosed in <> 2929 // ... which means it's equivalent to a simple-template-id. 2930 // 2931 // This only arises during class template argument deduction for a copy 2932 // deduction candidate, where it permits slicing. 2933 if (T->getAs<InjectedClassNameType>()) 2934 return true; 2935 2936 return false; 2937 } 2938 2939 /// Substitute the explicitly-provided template arguments into the 2940 /// given function template according to C++ [temp.arg.explicit]. 2941 /// 2942 /// \param FunctionTemplate the function template into which the explicit 2943 /// template arguments will be substituted. 2944 /// 2945 /// \param ExplicitTemplateArgs the explicitly-specified template 2946 /// arguments. 2947 /// 2948 /// \param Deduced the deduced template arguments, which will be populated 2949 /// with the converted and checked explicit template arguments. 2950 /// 2951 /// \param ParamTypes will be populated with the instantiated function 2952 /// parameters. 2953 /// 2954 /// \param FunctionType if non-NULL, the result type of the function template 2955 /// will also be instantiated and the pointed-to value will be updated with 2956 /// the instantiated function type. 2957 /// 2958 /// \param Info if substitution fails for any reason, this object will be 2959 /// populated with more information about the failure. 2960 /// 2961 /// \returns TDK_Success if substitution was successful, or some failure 2962 /// condition. 2963 Sema::TemplateDeductionResult 2964 Sema::SubstituteExplicitTemplateArguments( 2965 FunctionTemplateDecl *FunctionTemplate, 2966 TemplateArgumentListInfo &ExplicitTemplateArgs, 2967 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2968 SmallVectorImpl<QualType> &ParamTypes, 2969 QualType *FunctionType, 2970 TemplateDeductionInfo &Info) { 2971 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 2972 TemplateParameterList *TemplateParams 2973 = FunctionTemplate->getTemplateParameters(); 2974 2975 if (ExplicitTemplateArgs.size() == 0) { 2976 // No arguments to substitute; just copy over the parameter types and 2977 // fill in the function type. 2978 for (auto P : Function->parameters()) 2979 ParamTypes.push_back(P->getType()); 2980 2981 if (FunctionType) 2982 *FunctionType = Function->getType(); 2983 return TDK_Success; 2984 } 2985 2986 // Unevaluated SFINAE context. 2987 EnterExpressionEvaluationContext Unevaluated( 2988 *this, Sema::ExpressionEvaluationContext::Unevaluated); 2989 SFINAETrap Trap(*this); 2990 2991 // C++ [temp.arg.explicit]p3: 2992 // Template arguments that are present shall be specified in the 2993 // declaration order of their corresponding template-parameters. The 2994 // template argument list shall not specify more template-arguments than 2995 // there are corresponding template-parameters. 2996 SmallVector<TemplateArgument, 4> Builder; 2997 2998 // Enter a new template instantiation context where we check the 2999 // explicitly-specified template arguments against this function template, 3000 // and then substitute them into the function parameter types. 3001 SmallVector<TemplateArgument, 4> DeducedArgs; 3002 InstantiatingTemplate Inst( 3003 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3004 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); 3005 if (Inst.isInvalid()) 3006 return TDK_InstantiationDepth; 3007 3008 if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(), 3009 ExplicitTemplateArgs, true, Builder, false) || 3010 Trap.hasErrorOccurred()) { 3011 unsigned Index = Builder.size(); 3012 if (Index >= TemplateParams->size()) 3013 return TDK_SubstitutionFailure; 3014 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index)); 3015 return TDK_InvalidExplicitArguments; 3016 } 3017 3018 // Form the template argument list from the explicitly-specified 3019 // template arguments. 3020 TemplateArgumentList *ExplicitArgumentList 3021 = TemplateArgumentList::CreateCopy(Context, Builder); 3022 Info.setExplicitArgs(ExplicitArgumentList); 3023 3024 // Template argument deduction and the final substitution should be 3025 // done in the context of the templated declaration. Explicit 3026 // argument substitution, on the other hand, needs to happen in the 3027 // calling context. 3028 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3029 3030 // If we deduced template arguments for a template parameter pack, 3031 // note that the template argument pack is partially substituted and record 3032 // the explicit template arguments. They'll be used as part of deduction 3033 // for this template parameter pack. 3034 unsigned PartiallySubstitutedPackIndex = -1u; 3035 if (!Builder.empty()) { 3036 const TemplateArgument &Arg = Builder.back(); 3037 if (Arg.getKind() == TemplateArgument::Pack) { 3038 auto *Param = TemplateParams->getParam(Builder.size() - 1); 3039 // If this is a fully-saturated fixed-size pack, it should be 3040 // fully-substituted, not partially-substituted. 3041 Optional<unsigned> Expansions = getExpandedPackSize(Param); 3042 if (!Expansions || Arg.pack_size() < *Expansions) { 3043 PartiallySubstitutedPackIndex = Builder.size() - 1; 3044 CurrentInstantiationScope->SetPartiallySubstitutedPack( 3045 Param, Arg.pack_begin(), Arg.pack_size()); 3046 } 3047 } 3048 } 3049 3050 const FunctionProtoType *Proto 3051 = Function->getType()->getAs<FunctionProtoType>(); 3052 assert(Proto && "Function template does not have a prototype?"); 3053 3054 // Isolate our substituted parameters from our caller. 3055 LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true); 3056 3057 ExtParameterInfoBuilder ExtParamInfos; 3058 3059 // Instantiate the types of each of the function parameters given the 3060 // explicitly-specified template arguments. If the function has a trailing 3061 // return type, substitute it after the arguments to ensure we substitute 3062 // in lexical order. 3063 if (Proto->hasTrailingReturn()) { 3064 if (SubstParmTypes(Function->getLocation(), Function->parameters(), 3065 Proto->getExtParameterInfosOrNull(), 3066 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 3067 ParamTypes, /*params*/ nullptr, ExtParamInfos)) 3068 return TDK_SubstitutionFailure; 3069 } 3070 3071 // Instantiate the return type. 3072 QualType ResultType; 3073 { 3074 // C++11 [expr.prim.general]p3: 3075 // If a declaration declares a member function or member function 3076 // template of a class X, the expression this is a prvalue of type 3077 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq 3078 // and the end of the function-definition, member-declarator, or 3079 // declarator. 3080 Qualifiers ThisTypeQuals; 3081 CXXRecordDecl *ThisContext = nullptr; 3082 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3083 ThisContext = Method->getParent(); 3084 ThisTypeQuals = Method->getMethodQualifiers(); 3085 } 3086 3087 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals, 3088 getLangOpts().CPlusPlus11); 3089 3090 ResultType = 3091 SubstType(Proto->getReturnType(), 3092 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 3093 Function->getTypeSpecStartLoc(), Function->getDeclName()); 3094 if (ResultType.isNull() || Trap.hasErrorOccurred()) 3095 return TDK_SubstitutionFailure; 3096 // CUDA: Kernel function must have 'void' return type. 3097 if (getLangOpts().CUDA) 3098 if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) { 3099 Diag(Function->getLocation(), diag::err_kern_type_not_void_return) 3100 << Function->getType() << Function->getSourceRange(); 3101 return TDK_SubstitutionFailure; 3102 } 3103 } 3104 3105 // Instantiate the types of each of the function parameters given the 3106 // explicitly-specified template arguments if we didn't do so earlier. 3107 if (!Proto->hasTrailingReturn() && 3108 SubstParmTypes(Function->getLocation(), Function->parameters(), 3109 Proto->getExtParameterInfosOrNull(), 3110 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 3111 ParamTypes, /*params*/ nullptr, ExtParamInfos)) 3112 return TDK_SubstitutionFailure; 3113 3114 if (FunctionType) { 3115 auto EPI = Proto->getExtProtoInfo(); 3116 EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size()); 3117 3118 // In C++1z onwards, exception specifications are part of the function type, 3119 // so substitution into the type must also substitute into the exception 3120 // specification. 3121 SmallVector<QualType, 4> ExceptionStorage; 3122 if (getLangOpts().CPlusPlus17 && 3123 SubstExceptionSpec( 3124 Function->getLocation(), EPI.ExceptionSpec, ExceptionStorage, 3125 MultiLevelTemplateArgumentList(*ExplicitArgumentList))) 3126 return TDK_SubstitutionFailure; 3127 3128 *FunctionType = BuildFunctionType(ResultType, ParamTypes, 3129 Function->getLocation(), 3130 Function->getDeclName(), 3131 EPI); 3132 if (FunctionType->isNull() || Trap.hasErrorOccurred()) 3133 return TDK_SubstitutionFailure; 3134 } 3135 3136 // C++ [temp.arg.explicit]p2: 3137 // Trailing template arguments that can be deduced (14.8.2) may be 3138 // omitted from the list of explicit template-arguments. If all of the 3139 // template arguments can be deduced, they may all be omitted; in this 3140 // case, the empty template argument list <> itself may also be omitted. 3141 // 3142 // Take all of the explicitly-specified arguments and put them into 3143 // the set of deduced template arguments. The partially-substituted 3144 // parameter pack, however, will be set to NULL since the deduction 3145 // mechanism handles the partially-substituted argument pack directly. 3146 Deduced.reserve(TemplateParams->size()); 3147 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) { 3148 const TemplateArgument &Arg = ExplicitArgumentList->get(I); 3149 if (I == PartiallySubstitutedPackIndex) 3150 Deduced.push_back(DeducedTemplateArgument()); 3151 else 3152 Deduced.push_back(Arg); 3153 } 3154 3155 return TDK_Success; 3156 } 3157 3158 /// Check whether the deduced argument type for a call to a function 3159 /// template matches the actual argument type per C++ [temp.deduct.call]p4. 3160 static Sema::TemplateDeductionResult 3161 CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info, 3162 Sema::OriginalCallArg OriginalArg, 3163 QualType DeducedA) { 3164 ASTContext &Context = S.Context; 3165 3166 auto Failed = [&]() -> Sema::TemplateDeductionResult { 3167 Info.FirstArg = TemplateArgument(DeducedA); 3168 Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType); 3169 Info.CallArgIndex = OriginalArg.ArgIdx; 3170 return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested 3171 : Sema::TDK_DeducedMismatch; 3172 }; 3173 3174 QualType A = OriginalArg.OriginalArgType; 3175 QualType OriginalParamType = OriginalArg.OriginalParamType; 3176 3177 // Check for type equality (top-level cv-qualifiers are ignored). 3178 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3179 return Sema::TDK_Success; 3180 3181 // Strip off references on the argument types; they aren't needed for 3182 // the following checks. 3183 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>()) 3184 DeducedA = DeducedARef->getPointeeType(); 3185 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) 3186 A = ARef->getPointeeType(); 3187 3188 // C++ [temp.deduct.call]p4: 3189 // [...] However, there are three cases that allow a difference: 3190 // - If the original P is a reference type, the deduced A (i.e., the 3191 // type referred to by the reference) can be more cv-qualified than 3192 // the transformed A. 3193 if (const ReferenceType *OriginalParamRef 3194 = OriginalParamType->getAs<ReferenceType>()) { 3195 // We don't want to keep the reference around any more. 3196 OriginalParamType = OriginalParamRef->getPointeeType(); 3197 3198 // FIXME: Resolve core issue (no number yet): if the original P is a 3199 // reference type and the transformed A is function type "noexcept F", 3200 // the deduced A can be F. 3201 QualType Tmp; 3202 if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp)) 3203 return Sema::TDK_Success; 3204 3205 Qualifiers AQuals = A.getQualifiers(); 3206 Qualifiers DeducedAQuals = DeducedA.getQualifiers(); 3207 3208 // Under Objective-C++ ARC, the deduced type may have implicitly 3209 // been given strong or (when dealing with a const reference) 3210 // unsafe_unretained lifetime. If so, update the original 3211 // qualifiers to include this lifetime. 3212 if (S.getLangOpts().ObjCAutoRefCount && 3213 ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong && 3214 AQuals.getObjCLifetime() == Qualifiers::OCL_None) || 3215 (DeducedAQuals.hasConst() && 3216 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) { 3217 AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime()); 3218 } 3219 3220 if (AQuals == DeducedAQuals) { 3221 // Qualifiers match; there's nothing to do. 3222 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) { 3223 return Failed(); 3224 } else { 3225 // Qualifiers are compatible, so have the argument type adopt the 3226 // deduced argument type's qualifiers as if we had performed the 3227 // qualification conversion. 3228 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals); 3229 } 3230 } 3231 3232 // - The transformed A can be another pointer or pointer to member 3233 // type that can be converted to the deduced A via a function pointer 3234 // conversion and/or a qualification conversion. 3235 // 3236 // Also allow conversions which merely strip __attribute__((noreturn)) from 3237 // function types (recursively). 3238 bool ObjCLifetimeConversion = false; 3239 QualType ResultTy; 3240 if ((A->isAnyPointerType() || A->isMemberPointerType()) && 3241 (S.IsQualificationConversion(A, DeducedA, false, 3242 ObjCLifetimeConversion) || 3243 S.IsFunctionConversion(A, DeducedA, ResultTy))) 3244 return Sema::TDK_Success; 3245 3246 // - If P is a class and P has the form simple-template-id, then the 3247 // transformed A can be a derived class of the deduced A. [...] 3248 // [...] Likewise, if P is a pointer to a class of the form 3249 // simple-template-id, the transformed A can be a pointer to a 3250 // derived class pointed to by the deduced A. 3251 if (const PointerType *OriginalParamPtr 3252 = OriginalParamType->getAs<PointerType>()) { 3253 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) { 3254 if (const PointerType *APtr = A->getAs<PointerType>()) { 3255 if (A->getPointeeType()->isRecordType()) { 3256 OriginalParamType = OriginalParamPtr->getPointeeType(); 3257 DeducedA = DeducedAPtr->getPointeeType(); 3258 A = APtr->getPointeeType(); 3259 } 3260 } 3261 } 3262 } 3263 3264 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3265 return Sema::TDK_Success; 3266 3267 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) && 3268 S.IsDerivedFrom(Info.getLocation(), A, DeducedA)) 3269 return Sema::TDK_Success; 3270 3271 return Failed(); 3272 } 3273 3274 /// Find the pack index for a particular parameter index in an instantiation of 3275 /// a function template with specific arguments. 3276 /// 3277 /// \return The pack index for whichever pack produced this parameter, or -1 3278 /// if this was not produced by a parameter. Intended to be used as the 3279 /// ArgumentPackSubstitutionIndex for further substitutions. 3280 // FIXME: We should track this in OriginalCallArgs so we don't need to 3281 // reconstruct it here. 3282 static unsigned getPackIndexForParam(Sema &S, 3283 FunctionTemplateDecl *FunctionTemplate, 3284 const MultiLevelTemplateArgumentList &Args, 3285 unsigned ParamIdx) { 3286 unsigned Idx = 0; 3287 for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) { 3288 if (PD->isParameterPack()) { 3289 unsigned NumExpansions = 3290 S.getNumArgumentsInExpansion(PD->getType(), Args).getValueOr(1); 3291 if (Idx + NumExpansions > ParamIdx) 3292 return ParamIdx - Idx; 3293 Idx += NumExpansions; 3294 } else { 3295 if (Idx == ParamIdx) 3296 return -1; // Not a pack expansion 3297 ++Idx; 3298 } 3299 } 3300 3301 llvm_unreachable("parameter index would not be produced from template"); 3302 } 3303 3304 /// Finish template argument deduction for a function template, 3305 /// checking the deduced template arguments for completeness and forming 3306 /// the function template specialization. 3307 /// 3308 /// \param OriginalCallArgs If non-NULL, the original call arguments against 3309 /// which the deduced argument types should be compared. 3310 Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction( 3311 FunctionTemplateDecl *FunctionTemplate, 3312 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3313 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, 3314 TemplateDeductionInfo &Info, 3315 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs, 3316 bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) { 3317 // Unevaluated SFINAE context. 3318 EnterExpressionEvaluationContext Unevaluated( 3319 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3320 SFINAETrap Trap(*this); 3321 3322 // Enter a new template instantiation context while we instantiate the 3323 // actual function declaration. 3324 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3325 InstantiatingTemplate Inst( 3326 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3327 CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); 3328 if (Inst.isInvalid()) 3329 return TDK_InstantiationDepth; 3330 3331 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3332 3333 // C++ [temp.deduct.type]p2: 3334 // [...] or if any template argument remains neither deduced nor 3335 // explicitly specified, template argument deduction fails. 3336 SmallVector<TemplateArgument, 4> Builder; 3337 if (auto Result = ConvertDeducedTemplateArguments( 3338 *this, FunctionTemplate, /*IsDeduced*/true, Deduced, Info, Builder, 3339 CurrentInstantiationScope, NumExplicitlySpecified, 3340 PartialOverloading)) 3341 return Result; 3342 3343 // C++ [temp.deduct.call]p10: [DR1391] 3344 // If deduction succeeds for all parameters that contain 3345 // template-parameters that participate in template argument deduction, 3346 // and all template arguments are explicitly specified, deduced, or 3347 // obtained from default template arguments, remaining parameters are then 3348 // compared with the corresponding arguments. For each remaining parameter 3349 // P with a type that was non-dependent before substitution of any 3350 // explicitly-specified template arguments, if the corresponding argument 3351 // A cannot be implicitly converted to P, deduction fails. 3352 if (CheckNonDependent()) 3353 return TDK_NonDependentConversionFailure; 3354 3355 // Form the template argument list from the deduced template arguments. 3356 TemplateArgumentList *DeducedArgumentList 3357 = TemplateArgumentList::CreateCopy(Context, Builder); 3358 Info.reset(DeducedArgumentList); 3359 3360 // Substitute the deduced template arguments into the function template 3361 // declaration to produce the function template specialization. 3362 DeclContext *Owner = FunctionTemplate->getDeclContext(); 3363 if (FunctionTemplate->getFriendObjectKind()) 3364 Owner = FunctionTemplate->getLexicalDeclContext(); 3365 MultiLevelTemplateArgumentList SubstArgs(*DeducedArgumentList); 3366 Specialization = cast_or_null<FunctionDecl>( 3367 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, SubstArgs)); 3368 if (!Specialization || Specialization->isInvalidDecl()) 3369 return TDK_SubstitutionFailure; 3370 3371 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() == 3372 FunctionTemplate->getCanonicalDecl()); 3373 3374 // If the template argument list is owned by the function template 3375 // specialization, release it. 3376 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList && 3377 !Trap.hasErrorOccurred()) 3378 Info.take(); 3379 3380 // There may have been an error that did not prevent us from constructing a 3381 // declaration. Mark the declaration invalid and return with a substitution 3382 // failure. 3383 if (Trap.hasErrorOccurred()) { 3384 Specialization->setInvalidDecl(true); 3385 return TDK_SubstitutionFailure; 3386 } 3387 3388 if (OriginalCallArgs) { 3389 // C++ [temp.deduct.call]p4: 3390 // In general, the deduction process attempts to find template argument 3391 // values that will make the deduced A identical to A (after the type A 3392 // is transformed as described above). [...] 3393 llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes; 3394 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) { 3395 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I]; 3396 3397 auto ParamIdx = OriginalArg.ArgIdx; 3398 if (ParamIdx >= Specialization->getNumParams()) 3399 // FIXME: This presumably means a pack ended up smaller than we 3400 // expected while deducing. Should this not result in deduction 3401 // failure? Can it even happen? 3402 continue; 3403 3404 QualType DeducedA; 3405 if (!OriginalArg.DecomposedParam) { 3406 // P is one of the function parameters, just look up its substituted 3407 // type. 3408 DeducedA = Specialization->getParamDecl(ParamIdx)->getType(); 3409 } else { 3410 // P is a decomposed element of a parameter corresponding to a 3411 // braced-init-list argument. Substitute back into P to find the 3412 // deduced A. 3413 QualType &CacheEntry = 3414 DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}]; 3415 if (CacheEntry.isNull()) { 3416 ArgumentPackSubstitutionIndexRAII PackIndex( 3417 *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs, 3418 ParamIdx)); 3419 CacheEntry = 3420 SubstType(OriginalArg.OriginalParamType, SubstArgs, 3421 Specialization->getTypeSpecStartLoc(), 3422 Specialization->getDeclName()); 3423 } 3424 DeducedA = CacheEntry; 3425 } 3426 3427 if (auto TDK = 3428 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) 3429 return TDK; 3430 } 3431 } 3432 3433 // If we suppressed any diagnostics while performing template argument 3434 // deduction, and if we haven't already instantiated this declaration, 3435 // keep track of these diagnostics. They'll be emitted if this specialization 3436 // is actually used. 3437 if (Info.diag_begin() != Info.diag_end()) { 3438 SuppressedDiagnosticsMap::iterator 3439 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl()); 3440 if (Pos == SuppressedDiagnostics.end()) 3441 SuppressedDiagnostics[Specialization->getCanonicalDecl()] 3442 .append(Info.diag_begin(), Info.diag_end()); 3443 } 3444 3445 return TDK_Success; 3446 } 3447 3448 /// Gets the type of a function for template-argument-deducton 3449 /// purposes when it's considered as part of an overload set. 3450 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R, 3451 FunctionDecl *Fn) { 3452 // We may need to deduce the return type of the function now. 3453 if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() && 3454 S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false)) 3455 return {}; 3456 3457 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 3458 if (Method->isInstance()) { 3459 // An instance method that's referenced in a form that doesn't 3460 // look like a member pointer is just invalid. 3461 if (!R.HasFormOfMemberPointer) 3462 return {}; 3463 3464 return S.Context.getMemberPointerType(Fn->getType(), 3465 S.Context.getTypeDeclType(Method->getParent()).getTypePtr()); 3466 } 3467 3468 if (!R.IsAddressOfOperand) return Fn->getType(); 3469 return S.Context.getPointerType(Fn->getType()); 3470 } 3471 3472 /// Apply the deduction rules for overload sets. 3473 /// 3474 /// \return the null type if this argument should be treated as an 3475 /// undeduced context 3476 static QualType 3477 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, 3478 Expr *Arg, QualType ParamType, 3479 bool ParamWasReference) { 3480 3481 OverloadExpr::FindResult R = OverloadExpr::find(Arg); 3482 3483 OverloadExpr *Ovl = R.Expression; 3484 3485 // C++0x [temp.deduct.call]p4 3486 unsigned TDF = 0; 3487 if (ParamWasReference) 3488 TDF |= TDF_ParamWithReferenceType; 3489 if (R.IsAddressOfOperand) 3490 TDF |= TDF_IgnoreQualifiers; 3491 3492 // C++0x [temp.deduct.call]p6: 3493 // When P is a function type, pointer to function type, or pointer 3494 // to member function type: 3495 3496 if (!ParamType->isFunctionType() && 3497 !ParamType->isFunctionPointerType() && 3498 !ParamType->isMemberFunctionPointerType()) { 3499 if (Ovl->hasExplicitTemplateArgs()) { 3500 // But we can still look for an explicit specialization. 3501 if (FunctionDecl *ExplicitSpec 3502 = S.ResolveSingleFunctionTemplateSpecialization(Ovl)) 3503 return GetTypeOfFunction(S, R, ExplicitSpec); 3504 } 3505 3506 DeclAccessPair DAP; 3507 if (FunctionDecl *Viable = 3508 S.resolveAddressOfOnlyViableOverloadCandidate(Arg, DAP)) 3509 return GetTypeOfFunction(S, R, Viable); 3510 3511 return {}; 3512 } 3513 3514 // Gather the explicit template arguments, if any. 3515 TemplateArgumentListInfo ExplicitTemplateArgs; 3516 if (Ovl->hasExplicitTemplateArgs()) 3517 Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); 3518 QualType Match; 3519 for (UnresolvedSetIterator I = Ovl->decls_begin(), 3520 E = Ovl->decls_end(); I != E; ++I) { 3521 NamedDecl *D = (*I)->getUnderlyingDecl(); 3522 3523 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) { 3524 // - If the argument is an overload set containing one or more 3525 // function templates, the parameter is treated as a 3526 // non-deduced context. 3527 if (!Ovl->hasExplicitTemplateArgs()) 3528 return {}; 3529 3530 // Otherwise, see if we can resolve a function type 3531 FunctionDecl *Specialization = nullptr; 3532 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3533 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs, 3534 Specialization, Info)) 3535 continue; 3536 3537 D = Specialization; 3538 } 3539 3540 FunctionDecl *Fn = cast<FunctionDecl>(D); 3541 QualType ArgType = GetTypeOfFunction(S, R, Fn); 3542 if (ArgType.isNull()) continue; 3543 3544 // Function-to-pointer conversion. 3545 if (!ParamWasReference && ParamType->isPointerType() && 3546 ArgType->isFunctionType()) 3547 ArgType = S.Context.getPointerType(ArgType); 3548 3549 // - If the argument is an overload set (not containing function 3550 // templates), trial argument deduction is attempted using each 3551 // of the members of the set. If deduction succeeds for only one 3552 // of the overload set members, that member is used as the 3553 // argument value for the deduction. If deduction succeeds for 3554 // more than one member of the overload set the parameter is 3555 // treated as a non-deduced context. 3556 3557 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2: 3558 // Type deduction is done independently for each P/A pair, and 3559 // the deduced template argument values are then combined. 3560 // So we do not reject deductions which were made elsewhere. 3561 SmallVector<DeducedTemplateArgument, 8> 3562 Deduced(TemplateParams->size()); 3563 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3564 Sema::TemplateDeductionResult Result 3565 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 3566 ArgType, Info, Deduced, TDF); 3567 if (Result) continue; 3568 if (!Match.isNull()) 3569 return {}; 3570 Match = ArgType; 3571 } 3572 3573 return Match; 3574 } 3575 3576 /// Perform the adjustments to the parameter and argument types 3577 /// described in C++ [temp.deduct.call]. 3578 /// 3579 /// \returns true if the caller should not attempt to perform any template 3580 /// argument deduction based on this P/A pair because the argument is an 3581 /// overloaded function set that could not be resolved. 3582 static bool AdjustFunctionParmAndArgTypesForDeduction( 3583 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3584 QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF) { 3585 // C++0x [temp.deduct.call]p3: 3586 // If P is a cv-qualified type, the top level cv-qualifiers of P's type 3587 // are ignored for type deduction. 3588 if (ParamType.hasQualifiers()) 3589 ParamType = ParamType.getUnqualifiedType(); 3590 3591 // [...] If P is a reference type, the type referred to by P is 3592 // used for type deduction. 3593 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>(); 3594 if (ParamRefType) 3595 ParamType = ParamRefType->getPointeeType(); 3596 3597 // Overload sets usually make this parameter an undeduced context, 3598 // but there are sometimes special circumstances. Typically 3599 // involving a template-id-expr. 3600 if (ArgType == S.Context.OverloadTy) { 3601 ArgType = ResolveOverloadForDeduction(S, TemplateParams, 3602 Arg, ParamType, 3603 ParamRefType != nullptr); 3604 if (ArgType.isNull()) 3605 return true; 3606 } 3607 3608 if (ParamRefType) { 3609 // If the argument has incomplete array type, try to complete its type. 3610 if (ArgType->isIncompleteArrayType()) { 3611 S.completeExprArrayBound(Arg); 3612 ArgType = Arg->getType(); 3613 } 3614 3615 // C++1z [temp.deduct.call]p3: 3616 // If P is a forwarding reference and the argument is an lvalue, the type 3617 // "lvalue reference to A" is used in place of A for type deduction. 3618 if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) && 3619 Arg->isLValue()) 3620 ArgType = S.Context.getLValueReferenceType(ArgType); 3621 } else { 3622 // C++ [temp.deduct.call]p2: 3623 // If P is not a reference type: 3624 // - If A is an array type, the pointer type produced by the 3625 // array-to-pointer standard conversion (4.2) is used in place of 3626 // A for type deduction; otherwise, 3627 if (ArgType->isArrayType()) 3628 ArgType = S.Context.getArrayDecayedType(ArgType); 3629 // - If A is a function type, the pointer type produced by the 3630 // function-to-pointer standard conversion (4.3) is used in place 3631 // of A for type deduction; otherwise, 3632 else if (ArgType->isFunctionType()) 3633 ArgType = S.Context.getPointerType(ArgType); 3634 else { 3635 // - If A is a cv-qualified type, the top level cv-qualifiers of A's 3636 // type are ignored for type deduction. 3637 ArgType = ArgType.getUnqualifiedType(); 3638 } 3639 } 3640 3641 // C++0x [temp.deduct.call]p4: 3642 // In general, the deduction process attempts to find template argument 3643 // values that will make the deduced A identical to A (after the type A 3644 // is transformed as described above). [...] 3645 TDF = TDF_SkipNonDependent; 3646 3647 // - If the original P is a reference type, the deduced A (i.e., the 3648 // type referred to by the reference) can be more cv-qualified than 3649 // the transformed A. 3650 if (ParamRefType) 3651 TDF |= TDF_ParamWithReferenceType; 3652 // - The transformed A can be another pointer or pointer to member 3653 // type that can be converted to the deduced A via a qualification 3654 // conversion (4.4). 3655 if (ArgType->isPointerType() || ArgType->isMemberPointerType() || 3656 ArgType->isObjCObjectPointerType()) 3657 TDF |= TDF_IgnoreQualifiers; 3658 // - If P is a class and P has the form simple-template-id, then the 3659 // transformed A can be a derived class of the deduced A. Likewise, 3660 // if P is a pointer to a class of the form simple-template-id, the 3661 // transformed A can be a pointer to a derived class pointed to by 3662 // the deduced A. 3663 if (isSimpleTemplateIdType(ParamType) || 3664 (isa<PointerType>(ParamType) && 3665 isSimpleTemplateIdType( 3666 ParamType->getAs<PointerType>()->getPointeeType()))) 3667 TDF |= TDF_DerivedClass; 3668 3669 return false; 3670 } 3671 3672 static bool 3673 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, 3674 QualType T); 3675 3676 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 3677 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3678 QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, 3679 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3680 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 3681 bool DecomposedParam, unsigned ArgIdx, unsigned TDF); 3682 3683 /// Attempt template argument deduction from an initializer list 3684 /// deemed to be an argument in a function call. 3685 static Sema::TemplateDeductionResult DeduceFromInitializerList( 3686 Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType, 3687 InitListExpr *ILE, TemplateDeductionInfo &Info, 3688 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3689 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx, 3690 unsigned TDF) { 3691 // C++ [temp.deduct.call]p1: (CWG 1591) 3692 // If removing references and cv-qualifiers from P gives 3693 // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is 3694 // a non-empty initializer list, then deduction is performed instead for 3695 // each element of the initializer list, taking P0 as a function template 3696 // parameter type and the initializer element as its argument 3697 // 3698 // We've already removed references and cv-qualifiers here. 3699 if (!ILE->getNumInits()) 3700 return Sema::TDK_Success; 3701 3702 QualType ElTy; 3703 auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType); 3704 if (ArrTy) 3705 ElTy = ArrTy->getElementType(); 3706 else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) { 3707 // Otherwise, an initializer list argument causes the parameter to be 3708 // considered a non-deduced context 3709 return Sema::TDK_Success; 3710 } 3711 3712 // Resolving a core issue: a braced-init-list containing any designators is 3713 // a non-deduced context. 3714 for (Expr *E : ILE->inits()) 3715 if (isa<DesignatedInitExpr>(E)) 3716 return Sema::TDK_Success; 3717 3718 // Deduction only needs to be done for dependent types. 3719 if (ElTy->isDependentType()) { 3720 for (Expr *E : ILE->inits()) { 3721 if (auto Result = DeduceTemplateArgumentsFromCallArgument( 3722 S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true, 3723 ArgIdx, TDF)) 3724 return Result; 3725 } 3726 } 3727 3728 // in the P0[N] case, if N is a non-type template parameter, N is deduced 3729 // from the length of the initializer list. 3730 if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) { 3731 // Determine the array bound is something we can deduce. 3732 if (NonTypeTemplateParmDecl *NTTP = 3733 getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) { 3734 // We can perform template argument deduction for the given non-type 3735 // template parameter. 3736 // C++ [temp.deduct.type]p13: 3737 // The type of N in the type T[N] is std::size_t. 3738 QualType T = S.Context.getSizeType(); 3739 llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits()); 3740 if (auto Result = DeduceNonTypeTemplateArgument( 3741 S, TemplateParams, NTTP, llvm::APSInt(Size), T, 3742 /*ArrayBound=*/true, Info, Deduced)) 3743 return Result; 3744 } 3745 } 3746 3747 return Sema::TDK_Success; 3748 } 3749 3750 /// Perform template argument deduction per [temp.deduct.call] for a 3751 /// single parameter / argument pair. 3752 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 3753 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3754 QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, 3755 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3756 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 3757 bool DecomposedParam, unsigned ArgIdx, unsigned TDF) { 3758 QualType ArgType = Arg->getType(); 3759 QualType OrigParamType = ParamType; 3760 3761 // If P is a reference type [...] 3762 // If P is a cv-qualified type [...] 3763 if (AdjustFunctionParmAndArgTypesForDeduction( 3764 S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF)) 3765 return Sema::TDK_Success; 3766 3767 // If [...] the argument is a non-empty initializer list [...] 3768 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) 3769 return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info, 3770 Deduced, OriginalCallArgs, ArgIdx, TDF); 3771 3772 // [...] the deduction process attempts to find template argument values 3773 // that will make the deduced A identical to A 3774 // 3775 // Keep track of the argument type and corresponding parameter index, 3776 // so we can check for compatibility between the deduced A and A. 3777 OriginalCallArgs.push_back( 3778 Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType)); 3779 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 3780 ArgType, Info, Deduced, TDF); 3781 } 3782 3783 /// Perform template argument deduction from a function call 3784 /// (C++ [temp.deduct.call]). 3785 /// 3786 /// \param FunctionTemplate the function template for which we are performing 3787 /// template argument deduction. 3788 /// 3789 /// \param ExplicitTemplateArgs the explicit template arguments provided 3790 /// for this call. 3791 /// 3792 /// \param Args the function call arguments 3793 /// 3794 /// \param Specialization if template argument deduction was successful, 3795 /// this will be set to the function template specialization produced by 3796 /// template argument deduction. 3797 /// 3798 /// \param Info the argument will be updated to provide additional information 3799 /// about template argument deduction. 3800 /// 3801 /// \param CheckNonDependent A callback to invoke to check conversions for 3802 /// non-dependent parameters, between deduction and substitution, per DR1391. 3803 /// If this returns true, substitution will be skipped and we return 3804 /// TDK_NonDependentConversionFailure. The callback is passed the parameter 3805 /// types (after substituting explicit template arguments). 3806 /// 3807 /// \returns the result of template argument deduction. 3808 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 3809 FunctionTemplateDecl *FunctionTemplate, 3810 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 3811 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 3812 bool PartialOverloading, 3813 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) { 3814 if (FunctionTemplate->isInvalidDecl()) 3815 return TDK_Invalid; 3816 3817 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 3818 unsigned NumParams = Function->getNumParams(); 3819 3820 unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate); 3821 3822 // C++ [temp.deduct.call]p1: 3823 // Template argument deduction is done by comparing each function template 3824 // parameter type (call it P) with the type of the corresponding argument 3825 // of the call (call it A) as described below. 3826 if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading) 3827 return TDK_TooFewArguments; 3828 else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) { 3829 const auto *Proto = Function->getType()->castAs<FunctionProtoType>(); 3830 if (Proto->isTemplateVariadic()) 3831 /* Do nothing */; 3832 else if (!Proto->isVariadic()) 3833 return TDK_TooManyArguments; 3834 } 3835 3836 // The types of the parameters from which we will perform template argument 3837 // deduction. 3838 LocalInstantiationScope InstScope(*this); 3839 TemplateParameterList *TemplateParams 3840 = FunctionTemplate->getTemplateParameters(); 3841 SmallVector<DeducedTemplateArgument, 4> Deduced; 3842 SmallVector<QualType, 8> ParamTypes; 3843 unsigned NumExplicitlySpecified = 0; 3844 if (ExplicitTemplateArgs) { 3845 TemplateDeductionResult Result = 3846 SubstituteExplicitTemplateArguments(FunctionTemplate, 3847 *ExplicitTemplateArgs, 3848 Deduced, 3849 ParamTypes, 3850 nullptr, 3851 Info); 3852 if (Result) 3853 return Result; 3854 3855 NumExplicitlySpecified = Deduced.size(); 3856 } else { 3857 // Just fill in the parameter types from the function declaration. 3858 for (unsigned I = 0; I != NumParams; ++I) 3859 ParamTypes.push_back(Function->getParamDecl(I)->getType()); 3860 } 3861 3862 SmallVector<OriginalCallArg, 8> OriginalCallArgs; 3863 3864 // Deduce an argument of type ParamType from an expression with index ArgIdx. 3865 auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) { 3866 // C++ [demp.deduct.call]p1: (DR1391) 3867 // Template argument deduction is done by comparing each function template 3868 // parameter that contains template-parameters that participate in 3869 // template argument deduction ... 3870 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) 3871 return Sema::TDK_Success; 3872 3873 // ... with the type of the corresponding argument 3874 return DeduceTemplateArgumentsFromCallArgument( 3875 *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced, 3876 OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0); 3877 }; 3878 3879 // Deduce template arguments from the function parameters. 3880 Deduced.resize(TemplateParams->size()); 3881 SmallVector<QualType, 8> ParamTypesForArgChecking; 3882 for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0; 3883 ParamIdx != NumParamTypes; ++ParamIdx) { 3884 QualType ParamType = ParamTypes[ParamIdx]; 3885 3886 const PackExpansionType *ParamExpansion = 3887 dyn_cast<PackExpansionType>(ParamType); 3888 if (!ParamExpansion) { 3889 // Simple case: matching a function parameter to a function argument. 3890 if (ArgIdx >= Args.size()) 3891 break; 3892 3893 ParamTypesForArgChecking.push_back(ParamType); 3894 if (auto Result = DeduceCallArgument(ParamType, ArgIdx++)) 3895 return Result; 3896 3897 continue; 3898 } 3899 3900 QualType ParamPattern = ParamExpansion->getPattern(); 3901 PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info, 3902 ParamPattern); 3903 3904 // C++0x [temp.deduct.call]p1: 3905 // For a function parameter pack that occurs at the end of the 3906 // parameter-declaration-list, the type A of each remaining argument of 3907 // the call is compared with the type P of the declarator-id of the 3908 // function parameter pack. Each comparison deduces template arguments 3909 // for subsequent positions in the template parameter packs expanded by 3910 // the function parameter pack. When a function parameter pack appears 3911 // in a non-deduced context [not at the end of the list], the type of 3912 // that parameter pack is never deduced. 3913 // 3914 // FIXME: The above rule allows the size of the parameter pack to change 3915 // after we skip it (in the non-deduced case). That makes no sense, so 3916 // we instead notionally deduce the pack against N arguments, where N is 3917 // the length of the explicitly-specified pack if it's expanded by the 3918 // parameter pack and 0 otherwise, and we treat each deduction as a 3919 // non-deduced context. 3920 if (ParamIdx + 1 == NumParamTypes || PackScope.hasFixedArity()) { 3921 for (; ArgIdx < Args.size() && PackScope.hasNextElement(); 3922 PackScope.nextPackElement(), ++ArgIdx) { 3923 ParamTypesForArgChecking.push_back(ParamPattern); 3924 if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx)) 3925 return Result; 3926 } 3927 } else { 3928 // If the parameter type contains an explicitly-specified pack that we 3929 // could not expand, skip the number of parameters notionally created 3930 // by the expansion. 3931 Optional<unsigned> NumExpansions = ParamExpansion->getNumExpansions(); 3932 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 3933 for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size(); 3934 ++I, ++ArgIdx) { 3935 ParamTypesForArgChecking.push_back(ParamPattern); 3936 // FIXME: Should we add OriginalCallArgs for these? What if the 3937 // corresponding argument is a list? 3938 PackScope.nextPackElement(); 3939 } 3940 } 3941 } 3942 3943 // Build argument packs for each of the parameter packs expanded by this 3944 // pack expansion. 3945 if (auto Result = PackScope.finish()) 3946 return Result; 3947 } 3948 3949 // Capture the context in which the function call is made. This is the context 3950 // that is needed when the accessibility of template arguments is checked. 3951 DeclContext *CallingCtx = CurContext; 3952 3953 return FinishTemplateArgumentDeduction( 3954 FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info, 3955 &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() { 3956 ContextRAII SavedContext(*this, CallingCtx); 3957 return CheckNonDependent(ParamTypesForArgChecking); 3958 }); 3959 } 3960 3961 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType, 3962 QualType FunctionType, 3963 bool AdjustExceptionSpec) { 3964 if (ArgFunctionType.isNull()) 3965 return ArgFunctionType; 3966 3967 const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>(); 3968 const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>(); 3969 FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo(); 3970 bool Rebuild = false; 3971 3972 CallingConv CC = FunctionTypeP->getCallConv(); 3973 if (EPI.ExtInfo.getCC() != CC) { 3974 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC); 3975 Rebuild = true; 3976 } 3977 3978 bool NoReturn = FunctionTypeP->getNoReturnAttr(); 3979 if (EPI.ExtInfo.getNoReturn() != NoReturn) { 3980 EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn); 3981 Rebuild = true; 3982 } 3983 3984 if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() || 3985 ArgFunctionTypeP->hasExceptionSpec())) { 3986 EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec; 3987 Rebuild = true; 3988 } 3989 3990 if (!Rebuild) 3991 return ArgFunctionType; 3992 3993 return Context.getFunctionType(ArgFunctionTypeP->getReturnType(), 3994 ArgFunctionTypeP->getParamTypes(), EPI); 3995 } 3996 3997 /// Deduce template arguments when taking the address of a function 3998 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to 3999 /// a template. 4000 /// 4001 /// \param FunctionTemplate the function template for which we are performing 4002 /// template argument deduction. 4003 /// 4004 /// \param ExplicitTemplateArgs the explicitly-specified template 4005 /// arguments. 4006 /// 4007 /// \param ArgFunctionType the function type that will be used as the 4008 /// "argument" type (A) when performing template argument deduction from the 4009 /// function template's function type. This type may be NULL, if there is no 4010 /// argument type to compare against, in C++0x [temp.arg.explicit]p3. 4011 /// 4012 /// \param Specialization if template argument deduction was successful, 4013 /// this will be set to the function template specialization produced by 4014 /// template argument deduction. 4015 /// 4016 /// \param Info the argument will be updated to provide additional information 4017 /// about template argument deduction. 4018 /// 4019 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4020 /// the address of a function template per [temp.deduct.funcaddr] and 4021 /// [over.over]. If \c false, we are looking up a function template 4022 /// specialization based on its signature, per [temp.deduct.decl]. 4023 /// 4024 /// \returns the result of template argument deduction. 4025 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4026 FunctionTemplateDecl *FunctionTemplate, 4027 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, 4028 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4029 bool IsAddressOfFunction) { 4030 if (FunctionTemplate->isInvalidDecl()) 4031 return TDK_Invalid; 4032 4033 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 4034 TemplateParameterList *TemplateParams 4035 = FunctionTemplate->getTemplateParameters(); 4036 QualType FunctionType = Function->getType(); 4037 4038 // Substitute any explicit template arguments. 4039 LocalInstantiationScope InstScope(*this); 4040 SmallVector<DeducedTemplateArgument, 4> Deduced; 4041 unsigned NumExplicitlySpecified = 0; 4042 SmallVector<QualType, 4> ParamTypes; 4043 if (ExplicitTemplateArgs) { 4044 if (TemplateDeductionResult Result 4045 = SubstituteExplicitTemplateArguments(FunctionTemplate, 4046 *ExplicitTemplateArgs, 4047 Deduced, ParamTypes, 4048 &FunctionType, Info)) 4049 return Result; 4050 4051 NumExplicitlySpecified = Deduced.size(); 4052 } 4053 4054 // When taking the address of a function, we require convertibility of 4055 // the resulting function type. Otherwise, we allow arbitrary mismatches 4056 // of calling convention and noreturn. 4057 if (!IsAddressOfFunction) 4058 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType, 4059 /*AdjustExceptionSpec*/false); 4060 4061 // Unevaluated SFINAE context. 4062 EnterExpressionEvaluationContext Unevaluated( 4063 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4064 SFINAETrap Trap(*this); 4065 4066 Deduced.resize(TemplateParams->size()); 4067 4068 // If the function has a deduced return type, substitute it for a dependent 4069 // type so that we treat it as a non-deduced context in what follows. If we 4070 // are looking up by signature, the signature type should also have a deduced 4071 // return type, which we instead expect to exactly match. 4072 bool HasDeducedReturnType = false; 4073 if (getLangOpts().CPlusPlus14 && IsAddressOfFunction && 4074 Function->getReturnType()->getContainedAutoType()) { 4075 FunctionType = SubstAutoType(FunctionType, Context.DependentTy); 4076 HasDeducedReturnType = true; 4077 } 4078 4079 if (!ArgFunctionType.isNull()) { 4080 unsigned TDF = 4081 TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType; 4082 // Deduce template arguments from the function type. 4083 if (TemplateDeductionResult Result 4084 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4085 FunctionType, ArgFunctionType, 4086 Info, Deduced, TDF)) 4087 return Result; 4088 } 4089 4090 if (TemplateDeductionResult Result 4091 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 4092 NumExplicitlySpecified, 4093 Specialization, Info)) 4094 return Result; 4095 4096 // If the function has a deduced return type, deduce it now, so we can check 4097 // that the deduced function type matches the requested type. 4098 if (HasDeducedReturnType && 4099 Specialization->getReturnType()->isUndeducedType() && 4100 DeduceReturnType(Specialization, Info.getLocation(), false)) 4101 return TDK_MiscellaneousDeductionFailure; 4102 4103 // If the function has a dependent exception specification, resolve it now, 4104 // so we can check that the exception specification matches. 4105 auto *SpecializationFPT = 4106 Specialization->getType()->castAs<FunctionProtoType>(); 4107 if (getLangOpts().CPlusPlus17 && 4108 isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) && 4109 !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT)) 4110 return TDK_MiscellaneousDeductionFailure; 4111 4112 // Adjust the exception specification of the argument to match the 4113 // substituted and resolved type we just formed. (Calling convention and 4114 // noreturn can't be dependent, so we don't actually need this for them 4115 // right now.) 4116 QualType SpecializationType = Specialization->getType(); 4117 if (!IsAddressOfFunction) 4118 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType, 4119 /*AdjustExceptionSpec*/true); 4120 4121 // If the requested function type does not match the actual type of the 4122 // specialization with respect to arguments of compatible pointer to function 4123 // types, template argument deduction fails. 4124 if (!ArgFunctionType.isNull()) { 4125 if (IsAddressOfFunction && 4126 !isSameOrCompatibleFunctionType( 4127 Context.getCanonicalType(SpecializationType), 4128 Context.getCanonicalType(ArgFunctionType))) 4129 return TDK_MiscellaneousDeductionFailure; 4130 4131 if (!IsAddressOfFunction && 4132 !Context.hasSameType(SpecializationType, ArgFunctionType)) 4133 return TDK_MiscellaneousDeductionFailure; 4134 } 4135 4136 return TDK_Success; 4137 } 4138 4139 /// Deduce template arguments for a templated conversion 4140 /// function (C++ [temp.deduct.conv]) and, if successful, produce a 4141 /// conversion function template specialization. 4142 Sema::TemplateDeductionResult 4143 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate, 4144 QualType ToType, 4145 CXXConversionDecl *&Specialization, 4146 TemplateDeductionInfo &Info) { 4147 if (ConversionTemplate->isInvalidDecl()) 4148 return TDK_Invalid; 4149 4150 CXXConversionDecl *ConversionGeneric 4151 = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl()); 4152 4153 QualType FromType = ConversionGeneric->getConversionType(); 4154 4155 // Canonicalize the types for deduction. 4156 QualType P = Context.getCanonicalType(FromType); 4157 QualType A = Context.getCanonicalType(ToType); 4158 4159 // C++0x [temp.deduct.conv]p2: 4160 // If P is a reference type, the type referred to by P is used for 4161 // type deduction. 4162 if (const ReferenceType *PRef = P->getAs<ReferenceType>()) 4163 P = PRef->getPointeeType(); 4164 4165 // C++0x [temp.deduct.conv]p4: 4166 // [...] If A is a reference type, the type referred to by A is used 4167 // for type deduction. 4168 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) { 4169 A = ARef->getPointeeType(); 4170 // We work around a defect in the standard here: cv-qualifiers are also 4171 // removed from P and A in this case, unless P was a reference type. This 4172 // seems to mostly match what other compilers are doing. 4173 if (!FromType->getAs<ReferenceType>()) { 4174 A = A.getUnqualifiedType(); 4175 P = P.getUnqualifiedType(); 4176 } 4177 4178 // C++ [temp.deduct.conv]p3: 4179 // 4180 // If A is not a reference type: 4181 } else { 4182 assert(!A->isReferenceType() && "Reference types were handled above"); 4183 4184 // - If P is an array type, the pointer type produced by the 4185 // array-to-pointer standard conversion (4.2) is used in place 4186 // of P for type deduction; otherwise, 4187 if (P->isArrayType()) 4188 P = Context.getArrayDecayedType(P); 4189 // - If P is a function type, the pointer type produced by the 4190 // function-to-pointer standard conversion (4.3) is used in 4191 // place of P for type deduction; otherwise, 4192 else if (P->isFunctionType()) 4193 P = Context.getPointerType(P); 4194 // - If P is a cv-qualified type, the top level cv-qualifiers of 4195 // P's type are ignored for type deduction. 4196 else 4197 P = P.getUnqualifiedType(); 4198 4199 // C++0x [temp.deduct.conv]p4: 4200 // If A is a cv-qualified type, the top level cv-qualifiers of A's 4201 // type are ignored for type deduction. If A is a reference type, the type 4202 // referred to by A is used for type deduction. 4203 A = A.getUnqualifiedType(); 4204 } 4205 4206 // Unevaluated SFINAE context. 4207 EnterExpressionEvaluationContext Unevaluated( 4208 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4209 SFINAETrap Trap(*this); 4210 4211 // C++ [temp.deduct.conv]p1: 4212 // Template argument deduction is done by comparing the return 4213 // type of the template conversion function (call it P) with the 4214 // type that is required as the result of the conversion (call it 4215 // A) as described in 14.8.2.4. 4216 TemplateParameterList *TemplateParams 4217 = ConversionTemplate->getTemplateParameters(); 4218 SmallVector<DeducedTemplateArgument, 4> Deduced; 4219 Deduced.resize(TemplateParams->size()); 4220 4221 // C++0x [temp.deduct.conv]p4: 4222 // In general, the deduction process attempts to find template 4223 // argument values that will make the deduced A identical to 4224 // A. However, there are two cases that allow a difference: 4225 unsigned TDF = 0; 4226 // - If the original A is a reference type, A can be more 4227 // cv-qualified than the deduced A (i.e., the type referred to 4228 // by the reference) 4229 if (ToType->isReferenceType()) 4230 TDF |= TDF_ArgWithReferenceType; 4231 // - The deduced A can be another pointer or pointer to member 4232 // type that can be converted to A via a qualification 4233 // conversion. 4234 // 4235 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when 4236 // both P and A are pointers or member pointers. In this case, we 4237 // just ignore cv-qualifiers completely). 4238 if ((P->isPointerType() && A->isPointerType()) || 4239 (P->isMemberPointerType() && A->isMemberPointerType())) 4240 TDF |= TDF_IgnoreQualifiers; 4241 if (TemplateDeductionResult Result 4242 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4243 P, A, Info, Deduced, TDF)) 4244 return Result; 4245 4246 // Create an Instantiation Scope for finalizing the operator. 4247 LocalInstantiationScope InstScope(*this); 4248 // Finish template argument deduction. 4249 FunctionDecl *ConversionSpecialized = nullptr; 4250 TemplateDeductionResult Result 4251 = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0, 4252 ConversionSpecialized, Info); 4253 Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized); 4254 return Result; 4255 } 4256 4257 /// Deduce template arguments for a function template when there is 4258 /// nothing to deduce against (C++0x [temp.arg.explicit]p3). 4259 /// 4260 /// \param FunctionTemplate the function template for which we are performing 4261 /// template argument deduction. 4262 /// 4263 /// \param ExplicitTemplateArgs the explicitly-specified template 4264 /// arguments. 4265 /// 4266 /// \param Specialization if template argument deduction was successful, 4267 /// this will be set to the function template specialization produced by 4268 /// template argument deduction. 4269 /// 4270 /// \param Info the argument will be updated to provide additional information 4271 /// about template argument deduction. 4272 /// 4273 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4274 /// the address of a function template in a context where we do not have a 4275 /// target type, per [over.over]. If \c false, we are looking up a function 4276 /// template specialization based on its signature, which only happens when 4277 /// deducing a function parameter type from an argument that is a template-id 4278 /// naming a function template specialization. 4279 /// 4280 /// \returns the result of template argument deduction. 4281 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4282 FunctionTemplateDecl *FunctionTemplate, 4283 TemplateArgumentListInfo *ExplicitTemplateArgs, 4284 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4285 bool IsAddressOfFunction) { 4286 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 4287 QualType(), Specialization, Info, 4288 IsAddressOfFunction); 4289 } 4290 4291 namespace { 4292 struct DependentAuto { bool IsPack; }; 4293 4294 /// Substitute the 'auto' specifier or deduced template specialization type 4295 /// specifier within a type for a given replacement type. 4296 class SubstituteDeducedTypeTransform : 4297 public TreeTransform<SubstituteDeducedTypeTransform> { 4298 QualType Replacement; 4299 bool ReplacementIsPack; 4300 bool UseTypeSugar; 4301 4302 public: 4303 SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA) 4304 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), Replacement(), 4305 ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {} 4306 4307 SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement, 4308 bool UseTypeSugar = true) 4309 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), 4310 Replacement(Replacement), ReplacementIsPack(false), 4311 UseTypeSugar(UseTypeSugar) {} 4312 4313 QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) { 4314 assert(isa<TemplateTypeParmType>(Replacement) && 4315 "unexpected unsugared replacement kind"); 4316 QualType Result = Replacement; 4317 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result); 4318 NewTL.setNameLoc(TL.getNameLoc()); 4319 return Result; 4320 } 4321 4322 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { 4323 // If we're building the type pattern to deduce against, don't wrap the 4324 // substituted type in an AutoType. Certain template deduction rules 4325 // apply only when a template type parameter appears directly (and not if 4326 // the parameter is found through desugaring). For instance: 4327 // auto &&lref = lvalue; 4328 // must transform into "rvalue reference to T" not "rvalue reference to 4329 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply. 4330 // 4331 // FIXME: Is this still necessary? 4332 if (!UseTypeSugar) 4333 return TransformDesugared(TLB, TL); 4334 4335 QualType Result = SemaRef.Context.getAutoType( 4336 Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(), 4337 ReplacementIsPack); 4338 auto NewTL = TLB.push<AutoTypeLoc>(Result); 4339 NewTL.setNameLoc(TL.getNameLoc()); 4340 return Result; 4341 } 4342 4343 QualType TransformDeducedTemplateSpecializationType( 4344 TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) { 4345 if (!UseTypeSugar) 4346 return TransformDesugared(TLB, TL); 4347 4348 QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType( 4349 TL.getTypePtr()->getTemplateName(), 4350 Replacement, Replacement.isNull()); 4351 auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result); 4352 NewTL.setNameLoc(TL.getNameLoc()); 4353 return Result; 4354 } 4355 4356 ExprResult TransformLambdaExpr(LambdaExpr *E) { 4357 // Lambdas never need to be transformed. 4358 return E; 4359 } 4360 4361 QualType Apply(TypeLoc TL) { 4362 // Create some scratch storage for the transformed type locations. 4363 // FIXME: We're just going to throw this information away. Don't build it. 4364 TypeLocBuilder TLB; 4365 TLB.reserve(TL.getFullDataSize()); 4366 return TransformType(TLB, TL); 4367 } 4368 }; 4369 4370 } // namespace 4371 4372 Sema::DeduceAutoResult 4373 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result, 4374 Optional<unsigned> DependentDeductionDepth) { 4375 return DeduceAutoType(Type->getTypeLoc(), Init, Result, 4376 DependentDeductionDepth); 4377 } 4378 4379 /// Attempt to produce an informative diagostic explaining why auto deduction 4380 /// failed. 4381 /// \return \c true if diagnosed, \c false if not. 4382 static bool diagnoseAutoDeductionFailure(Sema &S, 4383 Sema::TemplateDeductionResult TDK, 4384 TemplateDeductionInfo &Info, 4385 ArrayRef<SourceRange> Ranges) { 4386 switch (TDK) { 4387 case Sema::TDK_Inconsistent: { 4388 // Inconsistent deduction means we were deducing from an initializer list. 4389 auto D = S.Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction); 4390 D << Info.FirstArg << Info.SecondArg; 4391 for (auto R : Ranges) 4392 D << R; 4393 return true; 4394 } 4395 4396 // FIXME: Are there other cases for which a custom diagnostic is more useful 4397 // than the basic "types don't match" diagnostic? 4398 4399 default: 4400 return false; 4401 } 4402 } 4403 4404 /// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6) 4405 /// 4406 /// Note that this is done even if the initializer is dependent. (This is 4407 /// necessary to support partial ordering of templates using 'auto'.) 4408 /// A dependent type will be produced when deducing from a dependent type. 4409 /// 4410 /// \param Type the type pattern using the auto type-specifier. 4411 /// \param Init the initializer for the variable whose type is to be deduced. 4412 /// \param Result if type deduction was successful, this will be set to the 4413 /// deduced type. 4414 /// \param DependentDeductionDepth Set if we should permit deduction in 4415 /// dependent cases. This is necessary for template partial ordering with 4416 /// 'auto' template parameters. The value specified is the template 4417 /// parameter depth at which we should perform 'auto' deduction. 4418 Sema::DeduceAutoResult 4419 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result, 4420 Optional<unsigned> DependentDeductionDepth) { 4421 if (Init->getType()->isNonOverloadPlaceholderType()) { 4422 ExprResult NonPlaceholder = CheckPlaceholderExpr(Init); 4423 if (NonPlaceholder.isInvalid()) 4424 return DAR_FailedAlreadyDiagnosed; 4425 Init = NonPlaceholder.get(); 4426 } 4427 4428 DependentAuto DependentResult = { 4429 /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()}; 4430 4431 if (!DependentDeductionDepth && 4432 (Type.getType()->isDependentType() || Init->isTypeDependent())) { 4433 Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4434 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4435 return DAR_Succeeded; 4436 } 4437 4438 // Find the depth of template parameter to synthesize. 4439 unsigned Depth = DependentDeductionDepth.getValueOr(0); 4440 4441 // If this is a 'decltype(auto)' specifier, do the decltype dance. 4442 // Since 'decltype(auto)' can only occur at the top of the type, we 4443 // don't need to go digging for it. 4444 if (const AutoType *AT = Type.getType()->getAs<AutoType>()) { 4445 if (AT->isDecltypeAuto()) { 4446 if (isa<InitListExpr>(Init)) { 4447 Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list); 4448 return DAR_FailedAlreadyDiagnosed; 4449 } 4450 4451 ExprResult ER = CheckPlaceholderExpr(Init); 4452 if (ER.isInvalid()) 4453 return DAR_FailedAlreadyDiagnosed; 4454 Init = ER.get(); 4455 QualType Deduced = BuildDecltypeType(Init, Init->getBeginLoc(), false); 4456 if (Deduced.isNull()) 4457 return DAR_FailedAlreadyDiagnosed; 4458 // FIXME: Support a non-canonical deduced type for 'auto'. 4459 Deduced = Context.getCanonicalType(Deduced); 4460 Result = SubstituteDeducedTypeTransform(*this, Deduced).Apply(Type); 4461 if (Result.isNull()) 4462 return DAR_FailedAlreadyDiagnosed; 4463 return DAR_Succeeded; 4464 } else if (!getLangOpts().CPlusPlus) { 4465 if (isa<InitListExpr>(Init)) { 4466 Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c); 4467 return DAR_FailedAlreadyDiagnosed; 4468 } 4469 } 4470 } 4471 4472 SourceLocation Loc = Init->getExprLoc(); 4473 4474 LocalInstantiationScope InstScope(*this); 4475 4476 // Build template<class TemplParam> void Func(FuncParam); 4477 TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create( 4478 Context, nullptr, SourceLocation(), Loc, Depth, 0, nullptr, false, false); 4479 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0); 4480 NamedDecl *TemplParamPtr = TemplParam; 4481 FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt( 4482 Loc, Loc, TemplParamPtr, Loc, nullptr); 4483 4484 QualType FuncParam = 4485 SubstituteDeducedTypeTransform(*this, TemplArg, /*UseTypeSugar*/false) 4486 .Apply(Type); 4487 assert(!FuncParam.isNull() && 4488 "substituting template parameter for 'auto' failed"); 4489 4490 // Deduce type of TemplParam in Func(Init) 4491 SmallVector<DeducedTemplateArgument, 1> Deduced; 4492 Deduced.resize(1); 4493 4494 TemplateDeductionInfo Info(Loc, Depth); 4495 4496 // If deduction failed, don't diagnose if the initializer is dependent; it 4497 // might acquire a matching type in the instantiation. 4498 auto DeductionFailed = [&](TemplateDeductionResult TDK, 4499 ArrayRef<SourceRange> Ranges) -> DeduceAutoResult { 4500 if (Init->isTypeDependent()) { 4501 Result = 4502 SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4503 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4504 return DAR_Succeeded; 4505 } 4506 if (diagnoseAutoDeductionFailure(*this, TDK, Info, Ranges)) 4507 return DAR_FailedAlreadyDiagnosed; 4508 return DAR_Failed; 4509 }; 4510 4511 SmallVector<OriginalCallArg, 4> OriginalCallArgs; 4512 4513 InitListExpr *InitList = dyn_cast<InitListExpr>(Init); 4514 if (InitList) { 4515 // Notionally, we substitute std::initializer_list<T> for 'auto' and deduce 4516 // against that. Such deduction only succeeds if removing cv-qualifiers and 4517 // references results in std::initializer_list<T>. 4518 if (!Type.getType().getNonReferenceType()->getAs<AutoType>()) 4519 return DAR_Failed; 4520 4521 // Resolving a core issue: a braced-init-list containing any designators is 4522 // a non-deduced context. 4523 for (Expr *E : InitList->inits()) 4524 if (isa<DesignatedInitExpr>(E)) 4525 return DAR_Failed; 4526 4527 SourceRange DeducedFromInitRange; 4528 for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) { 4529 Expr *Init = InitList->getInit(i); 4530 4531 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 4532 *this, TemplateParamsSt.get(), 0, TemplArg, Init, 4533 Info, Deduced, OriginalCallArgs, /*Decomposed*/ true, 4534 /*ArgIdx*/ 0, /*TDF*/ 0)) 4535 return DeductionFailed(TDK, {DeducedFromInitRange, 4536 Init->getSourceRange()}); 4537 4538 if (DeducedFromInitRange.isInvalid() && 4539 Deduced[0].getKind() != TemplateArgument::Null) 4540 DeducedFromInitRange = Init->getSourceRange(); 4541 } 4542 } else { 4543 if (!getLangOpts().CPlusPlus && Init->refersToBitField()) { 4544 Diag(Loc, diag::err_auto_bitfield); 4545 return DAR_FailedAlreadyDiagnosed; 4546 } 4547 4548 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 4549 *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced, 4550 OriginalCallArgs, /*Decomposed*/ false, /*ArgIdx*/ 0, /*TDF*/ 0)) 4551 return DeductionFailed(TDK, {}); 4552 } 4553 4554 // Could be null if somehow 'auto' appears in a non-deduced context. 4555 if (Deduced[0].getKind() != TemplateArgument::Type) 4556 return DeductionFailed(TDK_Incomplete, {}); 4557 4558 QualType DeducedType = Deduced[0].getAsType(); 4559 4560 if (InitList) { 4561 DeducedType = BuildStdInitializerList(DeducedType, Loc); 4562 if (DeducedType.isNull()) 4563 return DAR_FailedAlreadyDiagnosed; 4564 } 4565 4566 Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type); 4567 if (Result.isNull()) 4568 return DAR_FailedAlreadyDiagnosed; 4569 4570 // Check that the deduced argument type is compatible with the original 4571 // argument type per C++ [temp.deduct.call]p4. 4572 QualType DeducedA = InitList ? Deduced[0].getAsType() : Result; 4573 for (const OriginalCallArg &OriginalArg : OriginalCallArgs) { 4574 assert((bool)InitList == OriginalArg.DecomposedParam && 4575 "decomposed non-init-list in auto deduction?"); 4576 if (auto TDK = 4577 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) { 4578 Result = QualType(); 4579 return DeductionFailed(TDK, {}); 4580 } 4581 } 4582 4583 return DAR_Succeeded; 4584 } 4585 4586 QualType Sema::SubstAutoType(QualType TypeWithAuto, 4587 QualType TypeToReplaceAuto) { 4588 if (TypeToReplaceAuto->isDependentType()) 4589 return SubstituteDeducedTypeTransform( 4590 *this, DependentAuto{ 4591 TypeToReplaceAuto->containsUnexpandedParameterPack()}) 4592 .TransformType(TypeWithAuto); 4593 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 4594 .TransformType(TypeWithAuto); 4595 } 4596 4597 TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, 4598 QualType TypeToReplaceAuto) { 4599 if (TypeToReplaceAuto->isDependentType()) 4600 return SubstituteDeducedTypeTransform( 4601 *this, 4602 DependentAuto{ 4603 TypeToReplaceAuto->containsUnexpandedParameterPack()}) 4604 .TransformType(TypeWithAuto); 4605 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 4606 .TransformType(TypeWithAuto); 4607 } 4608 4609 QualType Sema::ReplaceAutoType(QualType TypeWithAuto, 4610 QualType TypeToReplaceAuto) { 4611 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, 4612 /*UseTypeSugar*/ false) 4613 .TransformType(TypeWithAuto); 4614 } 4615 4616 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) { 4617 if (isa<InitListExpr>(Init)) 4618 Diag(VDecl->getLocation(), 4619 VDecl->isInitCapture() 4620 ? diag::err_init_capture_deduction_failure_from_init_list 4621 : diag::err_auto_var_deduction_failure_from_init_list) 4622 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange(); 4623 else 4624 Diag(VDecl->getLocation(), 4625 VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure 4626 : diag::err_auto_var_deduction_failure) 4627 << VDecl->getDeclName() << VDecl->getType() << Init->getType() 4628 << Init->getSourceRange(); 4629 } 4630 4631 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, 4632 bool Diagnose) { 4633 assert(FD->getReturnType()->isUndeducedType()); 4634 4635 // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)' 4636 // within the return type from the call operator's type. 4637 if (isLambdaConversionOperator(FD)) { 4638 CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent(); 4639 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 4640 4641 // For a generic lambda, instantiate the call operator if needed. 4642 if (auto *Args = FD->getTemplateSpecializationArgs()) { 4643 CallOp = InstantiateFunctionDeclaration( 4644 CallOp->getDescribedFunctionTemplate(), Args, Loc); 4645 if (!CallOp || CallOp->isInvalidDecl()) 4646 return true; 4647 4648 // We might need to deduce the return type by instantiating the definition 4649 // of the operator() function. 4650 if (CallOp->getReturnType()->isUndeducedType()) { 4651 runWithSufficientStackSpace(Loc, [&] { 4652 InstantiateFunctionDefinition(Loc, CallOp); 4653 }); 4654 } 4655 } 4656 4657 if (CallOp->isInvalidDecl()) 4658 return true; 4659 assert(!CallOp->getReturnType()->isUndeducedType() && 4660 "failed to deduce lambda return type"); 4661 4662 // Build the new return type from scratch. 4663 QualType RetType = getLambdaConversionFunctionResultType( 4664 CallOp->getType()->castAs<FunctionProtoType>()); 4665 if (FD->getReturnType()->getAs<PointerType>()) 4666 RetType = Context.getPointerType(RetType); 4667 else { 4668 assert(FD->getReturnType()->getAs<BlockPointerType>()); 4669 RetType = Context.getBlockPointerType(RetType); 4670 } 4671 Context.adjustDeducedFunctionResultType(FD, RetType); 4672 return false; 4673 } 4674 4675 if (FD->getTemplateInstantiationPattern()) { 4676 runWithSufficientStackSpace(Loc, [&] { 4677 InstantiateFunctionDefinition(Loc, FD); 4678 }); 4679 } 4680 4681 bool StillUndeduced = FD->getReturnType()->isUndeducedType(); 4682 if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) { 4683 Diag(Loc, diag::err_auto_fn_used_before_defined) << FD; 4684 Diag(FD->getLocation(), diag::note_callee_decl) << FD; 4685 } 4686 4687 return StillUndeduced; 4688 } 4689 4690 /// If this is a non-static member function, 4691 static void 4692 AddImplicitObjectParameterType(ASTContext &Context, 4693 CXXMethodDecl *Method, 4694 SmallVectorImpl<QualType> &ArgTypes) { 4695 // C++11 [temp.func.order]p3: 4696 // [...] The new parameter is of type "reference to cv A," where cv are 4697 // the cv-qualifiers of the function template (if any) and A is 4698 // the class of which the function template is a member. 4699 // 4700 // The standard doesn't say explicitly, but we pick the appropriate kind of 4701 // reference type based on [over.match.funcs]p4. 4702 QualType ArgTy = Context.getTypeDeclType(Method->getParent()); 4703 ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers()); 4704 if (Method->getRefQualifier() == RQ_RValue) 4705 ArgTy = Context.getRValueReferenceType(ArgTy); 4706 else 4707 ArgTy = Context.getLValueReferenceType(ArgTy); 4708 ArgTypes.push_back(ArgTy); 4709 } 4710 4711 /// Determine whether the function template \p FT1 is at least as 4712 /// specialized as \p FT2. 4713 static bool isAtLeastAsSpecializedAs(Sema &S, 4714 SourceLocation Loc, 4715 FunctionTemplateDecl *FT1, 4716 FunctionTemplateDecl *FT2, 4717 TemplatePartialOrderingContext TPOC, 4718 unsigned NumCallArguments1) { 4719 FunctionDecl *FD1 = FT1->getTemplatedDecl(); 4720 FunctionDecl *FD2 = FT2->getTemplatedDecl(); 4721 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>(); 4722 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>(); 4723 4724 assert(Proto1 && Proto2 && "Function templates must have prototypes"); 4725 TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); 4726 SmallVector<DeducedTemplateArgument, 4> Deduced; 4727 Deduced.resize(TemplateParams->size()); 4728 4729 // C++0x [temp.deduct.partial]p3: 4730 // The types used to determine the ordering depend on the context in which 4731 // the partial ordering is done: 4732 TemplateDeductionInfo Info(Loc); 4733 SmallVector<QualType, 4> Args2; 4734 switch (TPOC) { 4735 case TPOC_Call: { 4736 // - In the context of a function call, the function parameter types are 4737 // used. 4738 CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1); 4739 CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2); 4740 4741 // C++11 [temp.func.order]p3: 4742 // [...] If only one of the function templates is a non-static 4743 // member, that function template is considered to have a new 4744 // first parameter inserted in its function parameter list. The 4745 // new parameter is of type "reference to cv A," where cv are 4746 // the cv-qualifiers of the function template (if any) and A is 4747 // the class of which the function template is a member. 4748 // 4749 // Note that we interpret this to mean "if one of the function 4750 // templates is a non-static member and the other is a non-member"; 4751 // otherwise, the ordering rules for static functions against non-static 4752 // functions don't make any sense. 4753 // 4754 // C++98/03 doesn't have this provision but we've extended DR532 to cover 4755 // it as wording was broken prior to it. 4756 SmallVector<QualType, 4> Args1; 4757 4758 unsigned NumComparedArguments = NumCallArguments1; 4759 4760 if (!Method2 && Method1 && !Method1->isStatic()) { 4761 // Compare 'this' from Method1 against first parameter from Method2. 4762 AddImplicitObjectParameterType(S.Context, Method1, Args1); 4763 ++NumComparedArguments; 4764 } else if (!Method1 && Method2 && !Method2->isStatic()) { 4765 // Compare 'this' from Method2 against first parameter from Method1. 4766 AddImplicitObjectParameterType(S.Context, Method2, Args2); 4767 } 4768 4769 Args1.insert(Args1.end(), Proto1->param_type_begin(), 4770 Proto1->param_type_end()); 4771 Args2.insert(Args2.end(), Proto2->param_type_begin(), 4772 Proto2->param_type_end()); 4773 4774 // C++ [temp.func.order]p5: 4775 // The presence of unused ellipsis and default arguments has no effect on 4776 // the partial ordering of function templates. 4777 if (Args1.size() > NumComparedArguments) 4778 Args1.resize(NumComparedArguments); 4779 if (Args2.size() > NumComparedArguments) 4780 Args2.resize(NumComparedArguments); 4781 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(), 4782 Args1.data(), Args1.size(), Info, Deduced, 4783 TDF_None, /*PartialOrdering=*/true)) 4784 return false; 4785 4786 break; 4787 } 4788 4789 case TPOC_Conversion: 4790 // - In the context of a call to a conversion operator, the return types 4791 // of the conversion function templates are used. 4792 if (DeduceTemplateArgumentsByTypeMatch( 4793 S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(), 4794 Info, Deduced, TDF_None, 4795 /*PartialOrdering=*/true)) 4796 return false; 4797 break; 4798 4799 case TPOC_Other: 4800 // - In other contexts (14.6.6.2) the function template's function type 4801 // is used. 4802 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 4803 FD2->getType(), FD1->getType(), 4804 Info, Deduced, TDF_None, 4805 /*PartialOrdering=*/true)) 4806 return false; 4807 break; 4808 } 4809 4810 // C++0x [temp.deduct.partial]p11: 4811 // In most cases, all template parameters must have values in order for 4812 // deduction to succeed, but for partial ordering purposes a template 4813 // parameter may remain without a value provided it is not used in the 4814 // types being used for partial ordering. [ Note: a template parameter used 4815 // in a non-deduced context is considered used. -end note] 4816 unsigned ArgIdx = 0, NumArgs = Deduced.size(); 4817 for (; ArgIdx != NumArgs; ++ArgIdx) 4818 if (Deduced[ArgIdx].isNull()) 4819 break; 4820 4821 // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need 4822 // to substitute the deduced arguments back into the template and check that 4823 // we get the right type. 4824 4825 if (ArgIdx == NumArgs) { 4826 // All template arguments were deduced. FT1 is at least as specialized 4827 // as FT2. 4828 return true; 4829 } 4830 4831 // Figure out which template parameters were used. 4832 llvm::SmallBitVector UsedParameters(TemplateParams->size()); 4833 switch (TPOC) { 4834 case TPOC_Call: 4835 for (unsigned I = 0, N = Args2.size(); I != N; ++I) 4836 ::MarkUsedTemplateParameters(S.Context, Args2[I], false, 4837 TemplateParams->getDepth(), 4838 UsedParameters); 4839 break; 4840 4841 case TPOC_Conversion: 4842 ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false, 4843 TemplateParams->getDepth(), UsedParameters); 4844 break; 4845 4846 case TPOC_Other: 4847 ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false, 4848 TemplateParams->getDepth(), 4849 UsedParameters); 4850 break; 4851 } 4852 4853 for (; ArgIdx != NumArgs; ++ArgIdx) 4854 // If this argument had no value deduced but was used in one of the types 4855 // used for partial ordering, then deduction fails. 4856 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) 4857 return false; 4858 4859 return true; 4860 } 4861 4862 /// Determine whether this a function template whose parameter-type-list 4863 /// ends with a function parameter pack. 4864 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) { 4865 FunctionDecl *Function = FunTmpl->getTemplatedDecl(); 4866 unsigned NumParams = Function->getNumParams(); 4867 if (NumParams == 0) 4868 return false; 4869 4870 ParmVarDecl *Last = Function->getParamDecl(NumParams - 1); 4871 if (!Last->isParameterPack()) 4872 return false; 4873 4874 // Make sure that no previous parameter is a parameter pack. 4875 while (--NumParams > 0) { 4876 if (Function->getParamDecl(NumParams - 1)->isParameterPack()) 4877 return false; 4878 } 4879 4880 return true; 4881 } 4882 4883 /// Returns the more specialized function template according 4884 /// to the rules of function template partial ordering (C++ [temp.func.order]). 4885 /// 4886 /// \param FT1 the first function template 4887 /// 4888 /// \param FT2 the second function template 4889 /// 4890 /// \param TPOC the context in which we are performing partial ordering of 4891 /// function templates. 4892 /// 4893 /// \param NumCallArguments1 The number of arguments in the call to FT1, used 4894 /// only when \c TPOC is \c TPOC_Call. 4895 /// 4896 /// \param NumCallArguments2 The number of arguments in the call to FT2, used 4897 /// only when \c TPOC is \c TPOC_Call. 4898 /// 4899 /// \returns the more specialized function template. If neither 4900 /// template is more specialized, returns NULL. 4901 FunctionTemplateDecl * 4902 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, 4903 FunctionTemplateDecl *FT2, 4904 SourceLocation Loc, 4905 TemplatePartialOrderingContext TPOC, 4906 unsigned NumCallArguments1, 4907 unsigned NumCallArguments2) { 4908 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 4909 NumCallArguments1); 4910 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, 4911 NumCallArguments2); 4912 4913 if (Better1 != Better2) // We have a clear winner 4914 return Better1 ? FT1 : FT2; 4915 4916 if (!Better1 && !Better2) // Neither is better than the other 4917 return nullptr; 4918 4919 // FIXME: This mimics what GCC implements, but doesn't match up with the 4920 // proposed resolution for core issue 692. This area needs to be sorted out, 4921 // but for now we attempt to maintain compatibility. 4922 bool Variadic1 = isVariadicFunctionTemplate(FT1); 4923 bool Variadic2 = isVariadicFunctionTemplate(FT2); 4924 if (Variadic1 != Variadic2) 4925 return Variadic1? FT2 : FT1; 4926 4927 return nullptr; 4928 } 4929 4930 /// Determine if the two templates are equivalent. 4931 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) { 4932 if (T1 == T2) 4933 return true; 4934 4935 if (!T1 || !T2) 4936 return false; 4937 4938 return T1->getCanonicalDecl() == T2->getCanonicalDecl(); 4939 } 4940 4941 /// Retrieve the most specialized of the given function template 4942 /// specializations. 4943 /// 4944 /// \param SpecBegin the start iterator of the function template 4945 /// specializations that we will be comparing. 4946 /// 4947 /// \param SpecEnd the end iterator of the function template 4948 /// specializations, paired with \p SpecBegin. 4949 /// 4950 /// \param Loc the location where the ambiguity or no-specializations 4951 /// diagnostic should occur. 4952 /// 4953 /// \param NoneDiag partial diagnostic used to diagnose cases where there are 4954 /// no matching candidates. 4955 /// 4956 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one 4957 /// occurs. 4958 /// 4959 /// \param CandidateDiag partial diagnostic used for each function template 4960 /// specialization that is a candidate in the ambiguous ordering. One parameter 4961 /// in this diagnostic should be unbound, which will correspond to the string 4962 /// describing the template arguments for the function template specialization. 4963 /// 4964 /// \returns the most specialized function template specialization, if 4965 /// found. Otherwise, returns SpecEnd. 4966 UnresolvedSetIterator Sema::getMostSpecialized( 4967 UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd, 4968 TemplateSpecCandidateSet &FailedCandidates, 4969 SourceLocation Loc, const PartialDiagnostic &NoneDiag, 4970 const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, 4971 bool Complain, QualType TargetType) { 4972 if (SpecBegin == SpecEnd) { 4973 if (Complain) { 4974 Diag(Loc, NoneDiag); 4975 FailedCandidates.NoteCandidates(*this, Loc); 4976 } 4977 return SpecEnd; 4978 } 4979 4980 if (SpecBegin + 1 == SpecEnd) 4981 return SpecBegin; 4982 4983 // Find the function template that is better than all of the templates it 4984 // has been compared to. 4985 UnresolvedSetIterator Best = SpecBegin; 4986 FunctionTemplateDecl *BestTemplate 4987 = cast<FunctionDecl>(*Best)->getPrimaryTemplate(); 4988 assert(BestTemplate && "Not a function template specialization?"); 4989 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) { 4990 FunctionTemplateDecl *Challenger 4991 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 4992 assert(Challenger && "Not a function template specialization?"); 4993 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 4994 Loc, TPOC_Other, 0, 0), 4995 Challenger)) { 4996 Best = I; 4997 BestTemplate = Challenger; 4998 } 4999 } 5000 5001 // Make sure that the "best" function template is more specialized than all 5002 // of the others. 5003 bool Ambiguous = false; 5004 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 5005 FunctionTemplateDecl *Challenger 5006 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 5007 if (I != Best && 5008 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 5009 Loc, TPOC_Other, 0, 0), 5010 BestTemplate)) { 5011 Ambiguous = true; 5012 break; 5013 } 5014 } 5015 5016 if (!Ambiguous) { 5017 // We found an answer. Return it. 5018 return Best; 5019 } 5020 5021 // Diagnose the ambiguity. 5022 if (Complain) { 5023 Diag(Loc, AmbigDiag); 5024 5025 // FIXME: Can we order the candidates in some sane way? 5026 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 5027 PartialDiagnostic PD = CandidateDiag; 5028 const auto *FD = cast<FunctionDecl>(*I); 5029 PD << FD << getTemplateArgumentBindingsText( 5030 FD->getPrimaryTemplate()->getTemplateParameters(), 5031 *FD->getTemplateSpecializationArgs()); 5032 if (!TargetType.isNull()) 5033 HandleFunctionTypeMismatch(PD, FD->getType(), TargetType); 5034 Diag((*I)->getLocation(), PD); 5035 } 5036 } 5037 5038 return SpecEnd; 5039 } 5040 5041 /// Determine whether one partial specialization, P1, is at least as 5042 /// specialized than another, P2. 5043 /// 5044 /// \tparam TemplateLikeDecl The kind of P2, which must be a 5045 /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl. 5046 /// \param T1 The injected-class-name of P1 (faked for a variable template). 5047 /// \param T2 The injected-class-name of P2 (faked for a variable template). 5048 template<typename TemplateLikeDecl> 5049 static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2, 5050 TemplateLikeDecl *P2, 5051 TemplateDeductionInfo &Info) { 5052 // C++ [temp.class.order]p1: 5053 // For two class template partial specializations, the first is at least as 5054 // specialized as the second if, given the following rewrite to two 5055 // function templates, the first function template is at least as 5056 // specialized as the second according to the ordering rules for function 5057 // templates (14.6.6.2): 5058 // - the first function template has the same template parameters as the 5059 // first partial specialization and has a single function parameter 5060 // whose type is a class template specialization with the template 5061 // arguments of the first partial specialization, and 5062 // - the second function template has the same template parameters as the 5063 // second partial specialization and has a single function parameter 5064 // whose type is a class template specialization with the template 5065 // arguments of the second partial specialization. 5066 // 5067 // Rather than synthesize function templates, we merely perform the 5068 // equivalent partial ordering by performing deduction directly on 5069 // the template arguments of the class template partial 5070 // specializations. This computation is slightly simpler than the 5071 // general problem of function template partial ordering, because 5072 // class template partial specializations are more constrained. We 5073 // know that every template parameter is deducible from the class 5074 // template partial specialization's template arguments, for 5075 // example. 5076 SmallVector<DeducedTemplateArgument, 4> Deduced; 5077 5078 // Determine whether P1 is at least as specialized as P2. 5079 Deduced.resize(P2->getTemplateParameters()->size()); 5080 if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(), 5081 T2, T1, Info, Deduced, TDF_None, 5082 /*PartialOrdering=*/true)) 5083 return false; 5084 5085 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), 5086 Deduced.end()); 5087 Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs, 5088 Info); 5089 auto *TST1 = T1->castAs<TemplateSpecializationType>(); 5090 if (FinishTemplateArgumentDeduction( 5091 S, P2, /*IsPartialOrdering=*/true, 5092 TemplateArgumentList(TemplateArgumentList::OnStack, 5093 TST1->template_arguments()), 5094 Deduced, Info)) 5095 return false; 5096 5097 return true; 5098 } 5099 5100 /// Returns the more specialized class template partial specialization 5101 /// according to the rules of partial ordering of class template partial 5102 /// specializations (C++ [temp.class.order]). 5103 /// 5104 /// \param PS1 the first class template partial specialization 5105 /// 5106 /// \param PS2 the second class template partial specialization 5107 /// 5108 /// \returns the more specialized class template partial specialization. If 5109 /// neither partial specialization is more specialized, returns NULL. 5110 ClassTemplatePartialSpecializationDecl * 5111 Sema::getMoreSpecializedPartialSpecialization( 5112 ClassTemplatePartialSpecializationDecl *PS1, 5113 ClassTemplatePartialSpecializationDecl *PS2, 5114 SourceLocation Loc) { 5115 QualType PT1 = PS1->getInjectedSpecializationType(); 5116 QualType PT2 = PS2->getInjectedSpecializationType(); 5117 5118 TemplateDeductionInfo Info(Loc); 5119 bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info); 5120 bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info); 5121 5122 if (Better1 == Better2) 5123 return nullptr; 5124 5125 return Better1 ? PS1 : PS2; 5126 } 5127 5128 bool Sema::isMoreSpecializedThanPrimary( 5129 ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5130 ClassTemplateDecl *Primary = Spec->getSpecializedTemplate(); 5131 QualType PrimaryT = Primary->getInjectedClassNameSpecialization(); 5132 QualType PartialT = Spec->getInjectedSpecializationType(); 5133 if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info)) 5134 return false; 5135 if (isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) { 5136 Info.clearSFINAEDiagnostic(); 5137 return false; 5138 } 5139 return true; 5140 } 5141 5142 VarTemplatePartialSpecializationDecl * 5143 Sema::getMoreSpecializedPartialSpecialization( 5144 VarTemplatePartialSpecializationDecl *PS1, 5145 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) { 5146 // Pretend the variable template specializations are class template 5147 // specializations and form a fake injected class name type for comparison. 5148 assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() && 5149 "the partial specializations being compared should specialize" 5150 " the same template."); 5151 TemplateName Name(PS1->getSpecializedTemplate()); 5152 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5153 QualType PT1 = Context.getTemplateSpecializationType( 5154 CanonTemplate, PS1->getTemplateArgs().asArray()); 5155 QualType PT2 = Context.getTemplateSpecializationType( 5156 CanonTemplate, PS2->getTemplateArgs().asArray()); 5157 5158 TemplateDeductionInfo Info(Loc); 5159 bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info); 5160 bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info); 5161 5162 if (Better1 == Better2) 5163 return nullptr; 5164 5165 return Better1 ? PS1 : PS2; 5166 } 5167 5168 bool Sema::isMoreSpecializedThanPrimary( 5169 VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5170 TemplateDecl *Primary = Spec->getSpecializedTemplate(); 5171 // FIXME: Cache the injected template arguments rather than recomputing 5172 // them for each partial specialization. 5173 SmallVector<TemplateArgument, 8> PrimaryArgs; 5174 Context.getInjectedTemplateArgs(Primary->getTemplateParameters(), 5175 PrimaryArgs); 5176 5177 TemplateName CanonTemplate = 5178 Context.getCanonicalTemplateName(TemplateName(Primary)); 5179 QualType PrimaryT = Context.getTemplateSpecializationType( 5180 CanonTemplate, PrimaryArgs); 5181 QualType PartialT = Context.getTemplateSpecializationType( 5182 CanonTemplate, Spec->getTemplateArgs().asArray()); 5183 if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info)) 5184 return false; 5185 if (isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) { 5186 Info.clearSFINAEDiagnostic(); 5187 return false; 5188 } 5189 return true; 5190 } 5191 5192 bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs( 5193 TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) { 5194 // C++1z [temp.arg.template]p4: (DR 150) 5195 // A template template-parameter P is at least as specialized as a 5196 // template template-argument A if, given the following rewrite to two 5197 // function templates... 5198 5199 // Rather than synthesize function templates, we merely perform the 5200 // equivalent partial ordering by performing deduction directly on 5201 // the template parameter lists of the template template parameters. 5202 // 5203 // Given an invented class template X with the template parameter list of 5204 // A (including default arguments): 5205 TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg)); 5206 TemplateParameterList *A = AArg->getTemplateParameters(); 5207 5208 // - Each function template has a single function parameter whose type is 5209 // a specialization of X with template arguments corresponding to the 5210 // template parameters from the respective function template 5211 SmallVector<TemplateArgument, 8> AArgs; 5212 Context.getInjectedTemplateArgs(A, AArgs); 5213 5214 // Check P's arguments against A's parameter list. This will fill in default 5215 // template arguments as needed. AArgs are already correct by construction. 5216 // We can't just use CheckTemplateIdType because that will expand alias 5217 // templates. 5218 SmallVector<TemplateArgument, 4> PArgs; 5219 { 5220 SFINAETrap Trap(*this); 5221 5222 Context.getInjectedTemplateArgs(P, PArgs); 5223 TemplateArgumentListInfo PArgList(P->getLAngleLoc(), P->getRAngleLoc()); 5224 for (unsigned I = 0, N = P->size(); I != N; ++I) { 5225 // Unwrap packs that getInjectedTemplateArgs wrapped around pack 5226 // expansions, to form an "as written" argument list. 5227 TemplateArgument Arg = PArgs[I]; 5228 if (Arg.getKind() == TemplateArgument::Pack) { 5229 assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion()); 5230 Arg = *Arg.pack_begin(); 5231 } 5232 PArgList.addArgument(getTrivialTemplateArgumentLoc( 5233 Arg, QualType(), P->getParam(I)->getLocation())); 5234 } 5235 PArgs.clear(); 5236 5237 // C++1z [temp.arg.template]p3: 5238 // If the rewrite produces an invalid type, then P is not at least as 5239 // specialized as A. 5240 if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, PArgs) || 5241 Trap.hasErrorOccurred()) 5242 return false; 5243 } 5244 5245 QualType AType = Context.getTemplateSpecializationType(X, AArgs); 5246 QualType PType = Context.getTemplateSpecializationType(X, PArgs); 5247 5248 // ... the function template corresponding to P is at least as specialized 5249 // as the function template corresponding to A according to the partial 5250 // ordering rules for function templates. 5251 TemplateDeductionInfo Info(Loc, A->getDepth()); 5252 return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info); 5253 } 5254 5255 /// Mark the template parameters that are used by the given 5256 /// expression. 5257 static void 5258 MarkUsedTemplateParameters(ASTContext &Ctx, 5259 const Expr *E, 5260 bool OnlyDeduced, 5261 unsigned Depth, 5262 llvm::SmallBitVector &Used) { 5263 // We can deduce from a pack expansion. 5264 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E)) 5265 E = Expansion->getPattern(); 5266 5267 // Skip through any implicit casts we added while type-checking, and any 5268 // substitutions performed by template alias expansion. 5269 while (true) { 5270 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 5271 E = ICE->getSubExpr(); 5272 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) 5273 E = CE->getSubExpr(); 5274 else if (const SubstNonTypeTemplateParmExpr *Subst = 5275 dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 5276 E = Subst->getReplacement(); 5277 else 5278 break; 5279 } 5280 5281 // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to 5282 // find other occurrences of template parameters. 5283 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 5284 if (!DRE) 5285 return; 5286 5287 const NonTypeTemplateParmDecl *NTTP 5288 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 5289 if (!NTTP) 5290 return; 5291 5292 if (NTTP->getDepth() == Depth) 5293 Used[NTTP->getIndex()] = true; 5294 5295 // In C++17 mode, additional arguments may be deduced from the type of a 5296 // non-type argument. 5297 if (Ctx.getLangOpts().CPlusPlus17) 5298 MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used); 5299 } 5300 5301 /// Mark the template parameters that are used by the given 5302 /// nested name specifier. 5303 static void 5304 MarkUsedTemplateParameters(ASTContext &Ctx, 5305 NestedNameSpecifier *NNS, 5306 bool OnlyDeduced, 5307 unsigned Depth, 5308 llvm::SmallBitVector &Used) { 5309 if (!NNS) 5310 return; 5311 5312 MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth, 5313 Used); 5314 MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0), 5315 OnlyDeduced, Depth, Used); 5316 } 5317 5318 /// Mark the template parameters that are used by the given 5319 /// template name. 5320 static void 5321 MarkUsedTemplateParameters(ASTContext &Ctx, 5322 TemplateName Name, 5323 bool OnlyDeduced, 5324 unsigned Depth, 5325 llvm::SmallBitVector &Used) { 5326 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 5327 if (TemplateTemplateParmDecl *TTP 5328 = dyn_cast<TemplateTemplateParmDecl>(Template)) { 5329 if (TTP->getDepth() == Depth) 5330 Used[TTP->getIndex()] = true; 5331 } 5332 return; 5333 } 5334 5335 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) 5336 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced, 5337 Depth, Used); 5338 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) 5339 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced, 5340 Depth, Used); 5341 } 5342 5343 /// Mark the template parameters that are used by the given 5344 /// type. 5345 static void 5346 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 5347 bool OnlyDeduced, 5348 unsigned Depth, 5349 llvm::SmallBitVector &Used) { 5350 if (T.isNull()) 5351 return; 5352 5353 // Non-dependent types have nothing deducible 5354 if (!T->isDependentType()) 5355 return; 5356 5357 T = Ctx.getCanonicalType(T); 5358 switch (T->getTypeClass()) { 5359 case Type::Pointer: 5360 MarkUsedTemplateParameters(Ctx, 5361 cast<PointerType>(T)->getPointeeType(), 5362 OnlyDeduced, 5363 Depth, 5364 Used); 5365 break; 5366 5367 case Type::BlockPointer: 5368 MarkUsedTemplateParameters(Ctx, 5369 cast<BlockPointerType>(T)->getPointeeType(), 5370 OnlyDeduced, 5371 Depth, 5372 Used); 5373 break; 5374 5375 case Type::LValueReference: 5376 case Type::RValueReference: 5377 MarkUsedTemplateParameters(Ctx, 5378 cast<ReferenceType>(T)->getPointeeType(), 5379 OnlyDeduced, 5380 Depth, 5381 Used); 5382 break; 5383 5384 case Type::MemberPointer: { 5385 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr()); 5386 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced, 5387 Depth, Used); 5388 MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0), 5389 OnlyDeduced, Depth, Used); 5390 break; 5391 } 5392 5393 case Type::DependentSizedArray: 5394 MarkUsedTemplateParameters(Ctx, 5395 cast<DependentSizedArrayType>(T)->getSizeExpr(), 5396 OnlyDeduced, Depth, Used); 5397 // Fall through to check the element type 5398 LLVM_FALLTHROUGH; 5399 5400 case Type::ConstantArray: 5401 case Type::IncompleteArray: 5402 MarkUsedTemplateParameters(Ctx, 5403 cast<ArrayType>(T)->getElementType(), 5404 OnlyDeduced, Depth, Used); 5405 break; 5406 5407 case Type::Vector: 5408 case Type::ExtVector: 5409 MarkUsedTemplateParameters(Ctx, 5410 cast<VectorType>(T)->getElementType(), 5411 OnlyDeduced, Depth, Used); 5412 break; 5413 5414 case Type::DependentVector: { 5415 const auto *VecType = cast<DependentVectorType>(T); 5416 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 5417 Depth, Used); 5418 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth, 5419 Used); 5420 break; 5421 } 5422 case Type::DependentSizedExtVector: { 5423 const DependentSizedExtVectorType *VecType 5424 = cast<DependentSizedExtVectorType>(T); 5425 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 5426 Depth, Used); 5427 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, 5428 Depth, Used); 5429 break; 5430 } 5431 5432 case Type::DependentAddressSpace: { 5433 const DependentAddressSpaceType *DependentASType = 5434 cast<DependentAddressSpaceType>(T); 5435 MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(), 5436 OnlyDeduced, Depth, Used); 5437 MarkUsedTemplateParameters(Ctx, 5438 DependentASType->getAddrSpaceExpr(), 5439 OnlyDeduced, Depth, Used); 5440 break; 5441 } 5442 5443 case Type::FunctionProto: { 5444 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 5445 MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth, 5446 Used); 5447 for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) { 5448 // C++17 [temp.deduct.type]p5: 5449 // The non-deduced contexts are: [...] 5450 // -- A function parameter pack that does not occur at the end of the 5451 // parameter-declaration-list. 5452 if (!OnlyDeduced || I + 1 == N || 5453 !Proto->getParamType(I)->getAs<PackExpansionType>()) { 5454 MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced, 5455 Depth, Used); 5456 } else { 5457 // FIXME: C++17 [temp.deduct.call]p1: 5458 // When a function parameter pack appears in a non-deduced context, 5459 // the type of that pack is never deduced. 5460 // 5461 // We should also track a set of "never deduced" parameters, and 5462 // subtract that from the list of deduced parameters after marking. 5463 } 5464 } 5465 if (auto *E = Proto->getNoexceptExpr()) 5466 MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used); 5467 break; 5468 } 5469 5470 case Type::TemplateTypeParm: { 5471 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T); 5472 if (TTP->getDepth() == Depth) 5473 Used[TTP->getIndex()] = true; 5474 break; 5475 } 5476 5477 case Type::SubstTemplateTypeParmPack: { 5478 const SubstTemplateTypeParmPackType *Subst 5479 = cast<SubstTemplateTypeParmPackType>(T); 5480 MarkUsedTemplateParameters(Ctx, 5481 QualType(Subst->getReplacedParameter(), 0), 5482 OnlyDeduced, Depth, Used); 5483 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(), 5484 OnlyDeduced, Depth, Used); 5485 break; 5486 } 5487 5488 case Type::InjectedClassName: 5489 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType(); 5490 LLVM_FALLTHROUGH; 5491 5492 case Type::TemplateSpecialization: { 5493 const TemplateSpecializationType *Spec 5494 = cast<TemplateSpecializationType>(T); 5495 MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced, 5496 Depth, Used); 5497 5498 // C++0x [temp.deduct.type]p9: 5499 // If the template argument list of P contains a pack expansion that is 5500 // not the last template argument, the entire template argument list is a 5501 // non-deduced context. 5502 if (OnlyDeduced && 5503 hasPackExpansionBeforeEnd(Spec->template_arguments())) 5504 break; 5505 5506 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) 5507 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, 5508 Used); 5509 break; 5510 } 5511 5512 case Type::Complex: 5513 if (!OnlyDeduced) 5514 MarkUsedTemplateParameters(Ctx, 5515 cast<ComplexType>(T)->getElementType(), 5516 OnlyDeduced, Depth, Used); 5517 break; 5518 5519 case Type::Atomic: 5520 if (!OnlyDeduced) 5521 MarkUsedTemplateParameters(Ctx, 5522 cast<AtomicType>(T)->getValueType(), 5523 OnlyDeduced, Depth, Used); 5524 break; 5525 5526 case Type::DependentName: 5527 if (!OnlyDeduced) 5528 MarkUsedTemplateParameters(Ctx, 5529 cast<DependentNameType>(T)->getQualifier(), 5530 OnlyDeduced, Depth, Used); 5531 break; 5532 5533 case Type::DependentTemplateSpecialization: { 5534 // C++14 [temp.deduct.type]p5: 5535 // The non-deduced contexts are: 5536 // -- The nested-name-specifier of a type that was specified using a 5537 // qualified-id 5538 // 5539 // C++14 [temp.deduct.type]p6: 5540 // When a type name is specified in a way that includes a non-deduced 5541 // context, all of the types that comprise that type name are also 5542 // non-deduced. 5543 if (OnlyDeduced) 5544 break; 5545 5546 const DependentTemplateSpecializationType *Spec 5547 = cast<DependentTemplateSpecializationType>(T); 5548 5549 MarkUsedTemplateParameters(Ctx, Spec->getQualifier(), 5550 OnlyDeduced, Depth, Used); 5551 5552 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) 5553 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, 5554 Used); 5555 break; 5556 } 5557 5558 case Type::TypeOf: 5559 if (!OnlyDeduced) 5560 MarkUsedTemplateParameters(Ctx, 5561 cast<TypeOfType>(T)->getUnderlyingType(), 5562 OnlyDeduced, Depth, Used); 5563 break; 5564 5565 case Type::TypeOfExpr: 5566 if (!OnlyDeduced) 5567 MarkUsedTemplateParameters(Ctx, 5568 cast<TypeOfExprType>(T)->getUnderlyingExpr(), 5569 OnlyDeduced, Depth, Used); 5570 break; 5571 5572 case Type::Decltype: 5573 if (!OnlyDeduced) 5574 MarkUsedTemplateParameters(Ctx, 5575 cast<DecltypeType>(T)->getUnderlyingExpr(), 5576 OnlyDeduced, Depth, Used); 5577 break; 5578 5579 case Type::UnaryTransform: 5580 if (!OnlyDeduced) 5581 MarkUsedTemplateParameters(Ctx, 5582 cast<UnaryTransformType>(T)->getUnderlyingType(), 5583 OnlyDeduced, Depth, Used); 5584 break; 5585 5586 case Type::PackExpansion: 5587 MarkUsedTemplateParameters(Ctx, 5588 cast<PackExpansionType>(T)->getPattern(), 5589 OnlyDeduced, Depth, Used); 5590 break; 5591 5592 case Type::Auto: 5593 case Type::DeducedTemplateSpecialization: 5594 MarkUsedTemplateParameters(Ctx, 5595 cast<DeducedType>(T)->getDeducedType(), 5596 OnlyDeduced, Depth, Used); 5597 break; 5598 5599 // None of these types have any template parameters in them. 5600 case Type::Builtin: 5601 case Type::VariableArray: 5602 case Type::FunctionNoProto: 5603 case Type::Record: 5604 case Type::Enum: 5605 case Type::ObjCInterface: 5606 case Type::ObjCObject: 5607 case Type::ObjCObjectPointer: 5608 case Type::UnresolvedUsing: 5609 case Type::Pipe: 5610 #define TYPE(Class, Base) 5611 #define ABSTRACT_TYPE(Class, Base) 5612 #define DEPENDENT_TYPE(Class, Base) 5613 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 5614 #include "clang/AST/TypeNodes.inc" 5615 break; 5616 } 5617 } 5618 5619 /// Mark the template parameters that are used by this 5620 /// template argument. 5621 static void 5622 MarkUsedTemplateParameters(ASTContext &Ctx, 5623 const TemplateArgument &TemplateArg, 5624 bool OnlyDeduced, 5625 unsigned Depth, 5626 llvm::SmallBitVector &Used) { 5627 switch (TemplateArg.getKind()) { 5628 case TemplateArgument::Null: 5629 case TemplateArgument::Integral: 5630 case TemplateArgument::Declaration: 5631 break; 5632 5633 case TemplateArgument::NullPtr: 5634 MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced, 5635 Depth, Used); 5636 break; 5637 5638 case TemplateArgument::Type: 5639 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced, 5640 Depth, Used); 5641 break; 5642 5643 case TemplateArgument::Template: 5644 case TemplateArgument::TemplateExpansion: 5645 MarkUsedTemplateParameters(Ctx, 5646 TemplateArg.getAsTemplateOrTemplatePattern(), 5647 OnlyDeduced, Depth, Used); 5648 break; 5649 5650 case TemplateArgument::Expression: 5651 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced, 5652 Depth, Used); 5653 break; 5654 5655 case TemplateArgument::Pack: 5656 for (const auto &P : TemplateArg.pack_elements()) 5657 MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used); 5658 break; 5659 } 5660 } 5661 5662 /// Mark which template parameters can be deduced from a given 5663 /// template argument list. 5664 /// 5665 /// \param TemplateArgs the template argument list from which template 5666 /// parameters will be deduced. 5667 /// 5668 /// \param Used a bit vector whose elements will be set to \c true 5669 /// to indicate when the corresponding template parameter will be 5670 /// deduced. 5671 void 5672 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, 5673 bool OnlyDeduced, unsigned Depth, 5674 llvm::SmallBitVector &Used) { 5675 // C++0x [temp.deduct.type]p9: 5676 // If the template argument list of P contains a pack expansion that is not 5677 // the last template argument, the entire template argument list is a 5678 // non-deduced context. 5679 if (OnlyDeduced && 5680 hasPackExpansionBeforeEnd(TemplateArgs.asArray())) 5681 return; 5682 5683 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5684 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced, 5685 Depth, Used); 5686 } 5687 5688 /// Marks all of the template parameters that will be deduced by a 5689 /// call to the given function template. 5690 void Sema::MarkDeducedTemplateParameters( 5691 ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, 5692 llvm::SmallBitVector &Deduced) { 5693 TemplateParameterList *TemplateParams 5694 = FunctionTemplate->getTemplateParameters(); 5695 Deduced.clear(); 5696 Deduced.resize(TemplateParams->size()); 5697 5698 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 5699 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) 5700 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(), 5701 true, TemplateParams->getDepth(), Deduced); 5702 } 5703 5704 bool hasDeducibleTemplateParameters(Sema &S, 5705 FunctionTemplateDecl *FunctionTemplate, 5706 QualType T) { 5707 if (!T->isDependentType()) 5708 return false; 5709 5710 TemplateParameterList *TemplateParams 5711 = FunctionTemplate->getTemplateParameters(); 5712 llvm::SmallBitVector Deduced(TemplateParams->size()); 5713 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(), 5714 Deduced); 5715 5716 return Deduced.any(); 5717 } 5718