xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaTemplateDeduction.cpp (revision 56e766af41cd68310f5583bb893b13c006fcb44f)
1 //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements C++ template argument deduction.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/TemplateDeduction.h"
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclAccessPair.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/RecursiveASTVisitor.h"
28 #include "clang/AST/TemplateBase.h"
29 #include "clang/AST/TemplateName.h"
30 #include "clang/AST/Type.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/AST/UnresolvedSet.h"
33 #include "clang/Basic/AddressSpaces.h"
34 #include "clang/Basic/ExceptionSpecificationType.h"
35 #include "clang/Basic/LLVM.h"
36 #include "clang/Basic/LangOptions.h"
37 #include "clang/Basic/PartialDiagnostic.h"
38 #include "clang/Basic/SourceLocation.h"
39 #include "clang/Basic/Specifiers.h"
40 #include "clang/Sema/Ownership.h"
41 #include "clang/Sema/Sema.h"
42 #include "clang/Sema/Template.h"
43 #include "llvm/ADT/APInt.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/FoldingSet.h"
48 #include "llvm/ADT/Optional.h"
49 #include "llvm/ADT/SmallBitVector.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallVector.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <tuple>
58 #include <utility>
59 
60 namespace clang {
61 
62   /// Various flags that control template argument deduction.
63   ///
64   /// These flags can be bitwise-OR'd together.
65   enum TemplateDeductionFlags {
66     /// No template argument deduction flags, which indicates the
67     /// strictest results for template argument deduction (as used for, e.g.,
68     /// matching class template partial specializations).
69     TDF_None = 0,
70 
71     /// Within template argument deduction from a function call, we are
72     /// matching with a parameter type for which the original parameter was
73     /// a reference.
74     TDF_ParamWithReferenceType = 0x1,
75 
76     /// Within template argument deduction from a function call, we
77     /// are matching in a case where we ignore cv-qualifiers.
78     TDF_IgnoreQualifiers = 0x02,
79 
80     /// Within template argument deduction from a function call,
81     /// we are matching in a case where we can perform template argument
82     /// deduction from a template-id of a derived class of the argument type.
83     TDF_DerivedClass = 0x04,
84 
85     /// Allow non-dependent types to differ, e.g., when performing
86     /// template argument deduction from a function call where conversions
87     /// may apply.
88     TDF_SkipNonDependent = 0x08,
89 
90     /// Whether we are performing template argument deduction for
91     /// parameters and arguments in a top-level template argument
92     TDF_TopLevelParameterTypeList = 0x10,
93 
94     /// Within template argument deduction from overload resolution per
95     /// C++ [over.over] allow matching function types that are compatible in
96     /// terms of noreturn and default calling convention adjustments, or
97     /// similarly matching a declared template specialization against a
98     /// possible template, per C++ [temp.deduct.decl]. In either case, permit
99     /// deduction where the parameter is a function type that can be converted
100     /// to the argument type.
101     TDF_AllowCompatibleFunctionType = 0x20,
102 
103     /// Within template argument deduction for a conversion function, we are
104     /// matching with an argument type for which the original argument was
105     /// a reference.
106     TDF_ArgWithReferenceType = 0x40,
107   };
108 }
109 
110 using namespace clang;
111 using namespace sema;
112 
113 /// Compare two APSInts, extending and switching the sign as
114 /// necessary to compare their values regardless of underlying type.
115 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
116   if (Y.getBitWidth() > X.getBitWidth())
117     X = X.extend(Y.getBitWidth());
118   else if (Y.getBitWidth() < X.getBitWidth())
119     Y = Y.extend(X.getBitWidth());
120 
121   // If there is a signedness mismatch, correct it.
122   if (X.isSigned() != Y.isSigned()) {
123     // If the signed value is negative, then the values cannot be the same.
124     if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
125       return false;
126 
127     Y.setIsSigned(true);
128     X.setIsSigned(true);
129   }
130 
131   return X == Y;
132 }
133 
134 static Sema::TemplateDeductionResult
135 DeduceTemplateArguments(Sema &S,
136                         TemplateParameterList *TemplateParams,
137                         const TemplateArgument &Param,
138                         TemplateArgument Arg,
139                         TemplateDeductionInfo &Info,
140                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
141 
142 static Sema::TemplateDeductionResult
143 DeduceTemplateArgumentsByTypeMatch(Sema &S,
144                                    TemplateParameterList *TemplateParams,
145                                    QualType Param,
146                                    QualType Arg,
147                                    TemplateDeductionInfo &Info,
148                                    SmallVectorImpl<DeducedTemplateArgument> &
149                                                       Deduced,
150                                    unsigned TDF,
151                                    bool PartialOrdering = false,
152                                    bool DeducedFromArrayBound = false);
153 
154 static Sema::TemplateDeductionResult
155 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
156                         ArrayRef<TemplateArgument> Params,
157                         ArrayRef<TemplateArgument> Args,
158                         TemplateDeductionInfo &Info,
159                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
160                         bool NumberOfArgumentsMustMatch);
161 
162 static void MarkUsedTemplateParameters(ASTContext &Ctx,
163                                        const TemplateArgument &TemplateArg,
164                                        bool OnlyDeduced, unsigned Depth,
165                                        llvm::SmallBitVector &Used);
166 
167 static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
168                                        bool OnlyDeduced, unsigned Level,
169                                        llvm::SmallBitVector &Deduced);
170 
171 /// If the given expression is of a form that permits the deduction
172 /// of a non-type template parameter, return the declaration of that
173 /// non-type template parameter.
174 static NonTypeTemplateParmDecl *
175 getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) {
176   // If we are within an alias template, the expression may have undergone
177   // any number of parameter substitutions already.
178   while (true) {
179     if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
180       E = IC->getSubExpr();
181     else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E))
182       E = CE->getSubExpr();
183     else if (SubstNonTypeTemplateParmExpr *Subst =
184                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
185       E = Subst->getReplacement();
186     else
187       break;
188   }
189 
190   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
191     if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()))
192       if (NTTP->getDepth() == Info.getDeducedDepth())
193         return NTTP;
194 
195   return nullptr;
196 }
197 
198 /// Determine whether two declaration pointers refer to the same
199 /// declaration.
200 static bool isSameDeclaration(Decl *X, Decl *Y) {
201   if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
202     X = NX->getUnderlyingDecl();
203   if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
204     Y = NY->getUnderlyingDecl();
205 
206   return X->getCanonicalDecl() == Y->getCanonicalDecl();
207 }
208 
209 /// Verify that the given, deduced template arguments are compatible.
210 ///
211 /// \returns The deduced template argument, or a NULL template argument if
212 /// the deduced template arguments were incompatible.
213 static DeducedTemplateArgument
214 checkDeducedTemplateArguments(ASTContext &Context,
215                               const DeducedTemplateArgument &X,
216                               const DeducedTemplateArgument &Y) {
217   // We have no deduction for one or both of the arguments; they're compatible.
218   if (X.isNull())
219     return Y;
220   if (Y.isNull())
221     return X;
222 
223   // If we have two non-type template argument values deduced for the same
224   // parameter, they must both match the type of the parameter, and thus must
225   // match each other's type. As we're only keeping one of them, we must check
226   // for that now. The exception is that if either was deduced from an array
227   // bound, the type is permitted to differ.
228   if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) {
229     QualType XType = X.getNonTypeTemplateArgumentType();
230     if (!XType.isNull()) {
231       QualType YType = Y.getNonTypeTemplateArgumentType();
232       if (YType.isNull() || !Context.hasSameType(XType, YType))
233         return DeducedTemplateArgument();
234     }
235   }
236 
237   switch (X.getKind()) {
238   case TemplateArgument::Null:
239     llvm_unreachable("Non-deduced template arguments handled above");
240 
241   case TemplateArgument::Type:
242     // If two template type arguments have the same type, they're compatible.
243     if (Y.getKind() == TemplateArgument::Type &&
244         Context.hasSameType(X.getAsType(), Y.getAsType()))
245       return X;
246 
247     // If one of the two arguments was deduced from an array bound, the other
248     // supersedes it.
249     if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound())
250       return X.wasDeducedFromArrayBound() ? Y : X;
251 
252     // The arguments are not compatible.
253     return DeducedTemplateArgument();
254 
255   case TemplateArgument::Integral:
256     // If we deduced a constant in one case and either a dependent expression or
257     // declaration in another case, keep the integral constant.
258     // If both are integral constants with the same value, keep that value.
259     if (Y.getKind() == TemplateArgument::Expression ||
260         Y.getKind() == TemplateArgument::Declaration ||
261         (Y.getKind() == TemplateArgument::Integral &&
262          hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
263       return X.wasDeducedFromArrayBound() ? Y : X;
264 
265     // All other combinations are incompatible.
266     return DeducedTemplateArgument();
267 
268   case TemplateArgument::Template:
269     if (Y.getKind() == TemplateArgument::Template &&
270         Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
271       return X;
272 
273     // All other combinations are incompatible.
274     return DeducedTemplateArgument();
275 
276   case TemplateArgument::TemplateExpansion:
277     if (Y.getKind() == TemplateArgument::TemplateExpansion &&
278         Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
279                                     Y.getAsTemplateOrTemplatePattern()))
280       return X;
281 
282     // All other combinations are incompatible.
283     return DeducedTemplateArgument();
284 
285   case TemplateArgument::Expression: {
286     if (Y.getKind() != TemplateArgument::Expression)
287       return checkDeducedTemplateArguments(Context, Y, X);
288 
289     // Compare the expressions for equality
290     llvm::FoldingSetNodeID ID1, ID2;
291     X.getAsExpr()->Profile(ID1, Context, true);
292     Y.getAsExpr()->Profile(ID2, Context, true);
293     if (ID1 == ID2)
294       return X.wasDeducedFromArrayBound() ? Y : X;
295 
296     // Differing dependent expressions are incompatible.
297     return DeducedTemplateArgument();
298   }
299 
300   case TemplateArgument::Declaration:
301     assert(!X.wasDeducedFromArrayBound());
302 
303     // If we deduced a declaration and a dependent expression, keep the
304     // declaration.
305     if (Y.getKind() == TemplateArgument::Expression)
306       return X;
307 
308     // If we deduced a declaration and an integral constant, keep the
309     // integral constant and whichever type did not come from an array
310     // bound.
311     if (Y.getKind() == TemplateArgument::Integral) {
312       if (Y.wasDeducedFromArrayBound())
313         return TemplateArgument(Context, Y.getAsIntegral(),
314                                 X.getParamTypeForDecl());
315       return Y;
316     }
317 
318     // If we deduced two declarations, make sure that they refer to the
319     // same declaration.
320     if (Y.getKind() == TemplateArgument::Declaration &&
321         isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
322       return X;
323 
324     // All other combinations are incompatible.
325     return DeducedTemplateArgument();
326 
327   case TemplateArgument::NullPtr:
328     // If we deduced a null pointer and a dependent expression, keep the
329     // null pointer.
330     if (Y.getKind() == TemplateArgument::Expression)
331       return X;
332 
333     // If we deduced a null pointer and an integral constant, keep the
334     // integral constant.
335     if (Y.getKind() == TemplateArgument::Integral)
336       return Y;
337 
338     // If we deduced two null pointers, they are the same.
339     if (Y.getKind() == TemplateArgument::NullPtr)
340       return X;
341 
342     // All other combinations are incompatible.
343     return DeducedTemplateArgument();
344 
345   case TemplateArgument::Pack: {
346     if (Y.getKind() != TemplateArgument::Pack ||
347         X.pack_size() != Y.pack_size())
348       return DeducedTemplateArgument();
349 
350     llvm::SmallVector<TemplateArgument, 8> NewPack;
351     for (TemplateArgument::pack_iterator XA = X.pack_begin(),
352                                       XAEnd = X.pack_end(),
353                                          YA = Y.pack_begin();
354          XA != XAEnd; ++XA, ++YA) {
355       TemplateArgument Merged = checkDeducedTemplateArguments(
356           Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
357           DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()));
358       if (Merged.isNull())
359         return DeducedTemplateArgument();
360       NewPack.push_back(Merged);
361     }
362 
363     return DeducedTemplateArgument(
364         TemplateArgument::CreatePackCopy(Context, NewPack),
365         X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound());
366   }
367   }
368 
369   llvm_unreachable("Invalid TemplateArgument Kind!");
370 }
371 
372 /// Deduce the value of the given non-type template parameter
373 /// as the given deduced template argument. All non-type template parameter
374 /// deduction is funneled through here.
375 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
376     Sema &S, TemplateParameterList *TemplateParams,
377     NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced,
378     QualType ValueType, TemplateDeductionInfo &Info,
379     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
380   assert(NTTP->getDepth() == Info.getDeducedDepth() &&
381          "deducing non-type template argument with wrong depth");
382 
383   DeducedTemplateArgument Result = checkDeducedTemplateArguments(
384       S.Context, Deduced[NTTP->getIndex()], NewDeduced);
385   if (Result.isNull()) {
386     Info.Param = NTTP;
387     Info.FirstArg = Deduced[NTTP->getIndex()];
388     Info.SecondArg = NewDeduced;
389     return Sema::TDK_Inconsistent;
390   }
391 
392   Deduced[NTTP->getIndex()] = Result;
393   if (!S.getLangOpts().CPlusPlus17)
394     return Sema::TDK_Success;
395 
396   if (NTTP->isExpandedParameterPack())
397     // FIXME: We may still need to deduce parts of the type here! But we
398     // don't have any way to find which slice of the type to use, and the
399     // type stored on the NTTP itself is nonsense. Perhaps the type of an
400     // expanded NTTP should be a pack expansion type?
401     return Sema::TDK_Success;
402 
403   // Get the type of the parameter for deduction. If it's a (dependent) array
404   // or function type, we will not have decayed it yet, so do that now.
405   QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType());
406   if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType))
407     ParamType = Expansion->getPattern();
408 
409   // FIXME: It's not clear how deduction of a parameter of reference
410   // type from an argument (of non-reference type) should be performed.
411   // For now, we just remove reference types from both sides and let
412   // the final check for matching types sort out the mess.
413   return DeduceTemplateArgumentsByTypeMatch(
414       S, TemplateParams, ParamType.getNonReferenceType(),
415       ValueType.getNonReferenceType(), Info, Deduced, TDF_SkipNonDependent,
416       /*PartialOrdering=*/false,
417       /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound());
418 }
419 
420 /// Deduce the value of the given non-type template parameter
421 /// from the given integral constant.
422 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
423     Sema &S, TemplateParameterList *TemplateParams,
424     NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value,
425     QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info,
426     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
427   return DeduceNonTypeTemplateArgument(
428       S, TemplateParams, NTTP,
429       DeducedTemplateArgument(S.Context, Value, ValueType,
430                               DeducedFromArrayBound),
431       ValueType, Info, Deduced);
432 }
433 
434 /// Deduce the value of the given non-type template parameter
435 /// from the given null pointer template argument type.
436 static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument(
437     Sema &S, TemplateParameterList *TemplateParams,
438     NonTypeTemplateParmDecl *NTTP, QualType NullPtrType,
439     TemplateDeductionInfo &Info,
440     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
441   Expr *Value =
442       S.ImpCastExprToType(new (S.Context) CXXNullPtrLiteralExpr(
443                               S.Context.NullPtrTy, NTTP->getLocation()),
444                           NullPtrType, CK_NullToPointer)
445           .get();
446   return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
447                                        DeducedTemplateArgument(Value),
448                                        Value->getType(), Info, Deduced);
449 }
450 
451 /// Deduce the value of the given non-type template parameter
452 /// from the given type- or value-dependent expression.
453 ///
454 /// \returns true if deduction succeeded, false otherwise.
455 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
456     Sema &S, TemplateParameterList *TemplateParams,
457     NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info,
458     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
459   return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
460                                        DeducedTemplateArgument(Value),
461                                        Value->getType(), Info, Deduced);
462 }
463 
464 /// Deduce the value of the given non-type template parameter
465 /// from the given declaration.
466 ///
467 /// \returns true if deduction succeeded, false otherwise.
468 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
469     Sema &S, TemplateParameterList *TemplateParams,
470     NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T,
471     TemplateDeductionInfo &Info,
472     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
473   D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
474   TemplateArgument New(D, T);
475   return DeduceNonTypeTemplateArgument(
476       S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced);
477 }
478 
479 static Sema::TemplateDeductionResult
480 DeduceTemplateArguments(Sema &S,
481                         TemplateParameterList *TemplateParams,
482                         TemplateName Param,
483                         TemplateName Arg,
484                         TemplateDeductionInfo &Info,
485                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
486   TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
487   if (!ParamDecl) {
488     // The parameter type is dependent and is not a template template parameter,
489     // so there is nothing that we can deduce.
490     return Sema::TDK_Success;
491   }
492 
493   if (TemplateTemplateParmDecl *TempParam
494         = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
495     // If we're not deducing at this depth, there's nothing to deduce.
496     if (TempParam->getDepth() != Info.getDeducedDepth())
497       return Sema::TDK_Success;
498 
499     DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
500     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
501                                                  Deduced[TempParam->getIndex()],
502                                                                    NewDeduced);
503     if (Result.isNull()) {
504       Info.Param = TempParam;
505       Info.FirstArg = Deduced[TempParam->getIndex()];
506       Info.SecondArg = NewDeduced;
507       return Sema::TDK_Inconsistent;
508     }
509 
510     Deduced[TempParam->getIndex()] = Result;
511     return Sema::TDK_Success;
512   }
513 
514   // Verify that the two template names are equivalent.
515   if (S.Context.hasSameTemplateName(Param, Arg))
516     return Sema::TDK_Success;
517 
518   // Mismatch of non-dependent template parameter to argument.
519   Info.FirstArg = TemplateArgument(Param);
520   Info.SecondArg = TemplateArgument(Arg);
521   return Sema::TDK_NonDeducedMismatch;
522 }
523 
524 /// Deduce the template arguments by comparing the template parameter
525 /// type (which is a template-id) with the template argument type.
526 ///
527 /// \param S the Sema
528 ///
529 /// \param TemplateParams the template parameters that we are deducing
530 ///
531 /// \param Param the parameter type
532 ///
533 /// \param Arg the argument type
534 ///
535 /// \param Info information about the template argument deduction itself
536 ///
537 /// \param Deduced the deduced template arguments
538 ///
539 /// \returns the result of template argument deduction so far. Note that a
540 /// "success" result means that template argument deduction has not yet failed,
541 /// but it may still fail, later, for other reasons.
542 static Sema::TemplateDeductionResult
543 DeduceTemplateArguments(Sema &S,
544                         TemplateParameterList *TemplateParams,
545                         const TemplateSpecializationType *Param,
546                         QualType Arg,
547                         TemplateDeductionInfo &Info,
548                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
549   assert(Arg.isCanonical() && "Argument type must be canonical");
550 
551   // Treat an injected-class-name as its underlying template-id.
552   if (auto *Injected = dyn_cast<InjectedClassNameType>(Arg))
553     Arg = Injected->getInjectedSpecializationType();
554 
555   // Check whether the template argument is a dependent template-id.
556   if (const TemplateSpecializationType *SpecArg
557         = dyn_cast<TemplateSpecializationType>(Arg)) {
558     // Perform template argument deduction for the template name.
559     if (Sema::TemplateDeductionResult Result
560           = DeduceTemplateArguments(S, TemplateParams,
561                                     Param->getTemplateName(),
562                                     SpecArg->getTemplateName(),
563                                     Info, Deduced))
564       return Result;
565 
566 
567     // Perform template argument deduction on each template
568     // argument. Ignore any missing/extra arguments, since they could be
569     // filled in by default arguments.
570     return DeduceTemplateArguments(S, TemplateParams,
571                                    Param->template_arguments(),
572                                    SpecArg->template_arguments(), Info, Deduced,
573                                    /*NumberOfArgumentsMustMatch=*/false);
574   }
575 
576   // If the argument type is a class template specialization, we
577   // perform template argument deduction using its template
578   // arguments.
579   const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
580   if (!RecordArg) {
581     Info.FirstArg = TemplateArgument(QualType(Param, 0));
582     Info.SecondArg = TemplateArgument(Arg);
583     return Sema::TDK_NonDeducedMismatch;
584   }
585 
586   ClassTemplateSpecializationDecl *SpecArg
587     = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
588   if (!SpecArg) {
589     Info.FirstArg = TemplateArgument(QualType(Param, 0));
590     Info.SecondArg = TemplateArgument(Arg);
591     return Sema::TDK_NonDeducedMismatch;
592   }
593 
594   // Perform template argument deduction for the template name.
595   if (Sema::TemplateDeductionResult Result
596         = DeduceTemplateArguments(S,
597                                   TemplateParams,
598                                   Param->getTemplateName(),
599                                TemplateName(SpecArg->getSpecializedTemplate()),
600                                   Info, Deduced))
601     return Result;
602 
603   // Perform template argument deduction for the template arguments.
604   return DeduceTemplateArguments(S, TemplateParams, Param->template_arguments(),
605                                  SpecArg->getTemplateArgs().asArray(), Info,
606                                  Deduced, /*NumberOfArgumentsMustMatch=*/true);
607 }
608 
609 /// Determines whether the given type is an opaque type that
610 /// might be more qualified when instantiated.
611 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
612   switch (T->getTypeClass()) {
613   case Type::TypeOfExpr:
614   case Type::TypeOf:
615   case Type::DependentName:
616   case Type::Decltype:
617   case Type::UnresolvedUsing:
618   case Type::TemplateTypeParm:
619     return true;
620 
621   case Type::ConstantArray:
622   case Type::IncompleteArray:
623   case Type::VariableArray:
624   case Type::DependentSizedArray:
625     return IsPossiblyOpaquelyQualifiedType(
626                                       cast<ArrayType>(T)->getElementType());
627 
628   default:
629     return false;
630   }
631 }
632 
633 /// Helper function to build a TemplateParameter when we don't
634 /// know its type statically.
635 static TemplateParameter makeTemplateParameter(Decl *D) {
636   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
637     return TemplateParameter(TTP);
638   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
639     return TemplateParameter(NTTP);
640 
641   return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
642 }
643 
644 /// If \p Param is an expanded parameter pack, get the number of expansions.
645 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
646   if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
647     if (TTP->isExpandedParameterPack())
648       return TTP->getNumExpansionParameters();
649 
650   if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param))
651     if (NTTP->isExpandedParameterPack())
652       return NTTP->getNumExpansionTypes();
653 
654   if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param))
655     if (TTP->isExpandedParameterPack())
656       return TTP->getNumExpansionTemplateParameters();
657 
658   return None;
659 }
660 
661 /// A pack that we're currently deducing.
662 struct clang::DeducedPack {
663   // The index of the pack.
664   unsigned Index;
665 
666   // The old value of the pack before we started deducing it.
667   DeducedTemplateArgument Saved;
668 
669   // A deferred value of this pack from an inner deduction, that couldn't be
670   // deduced because this deduction hadn't happened yet.
671   DeducedTemplateArgument DeferredDeduction;
672 
673   // The new value of the pack.
674   SmallVector<DeducedTemplateArgument, 4> New;
675 
676   // The outer deduction for this pack, if any.
677   DeducedPack *Outer = nullptr;
678 
679   DeducedPack(unsigned Index) : Index(Index) {}
680 };
681 
682 namespace {
683 
684 /// A scope in which we're performing pack deduction.
685 class PackDeductionScope {
686 public:
687   /// Prepare to deduce the packs named within Pattern.
688   PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
689                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
690                      TemplateDeductionInfo &Info, TemplateArgument Pattern)
691       : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
692     unsigned NumNamedPacks = addPacks(Pattern);
693     finishConstruction(NumNamedPacks);
694   }
695 
696   /// Prepare to directly deduce arguments of the parameter with index \p Index.
697   PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
698                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
699                      TemplateDeductionInfo &Info, unsigned Index)
700       : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
701     addPack(Index);
702     finishConstruction(1);
703   }
704 
705 private:
706   void addPack(unsigned Index) {
707     // Save the deduced template argument for the parameter pack expanded
708     // by this pack expansion, then clear out the deduction.
709     DeducedPack Pack(Index);
710     Pack.Saved = Deduced[Index];
711     Deduced[Index] = TemplateArgument();
712 
713     // FIXME: What if we encounter multiple packs with different numbers of
714     // pre-expanded expansions? (This should already have been diagnosed
715     // during substitution.)
716     if (Optional<unsigned> ExpandedPackExpansions =
717             getExpandedPackSize(TemplateParams->getParam(Index)))
718       FixedNumExpansions = ExpandedPackExpansions;
719 
720     Packs.push_back(Pack);
721   }
722 
723   unsigned addPacks(TemplateArgument Pattern) {
724     // Compute the set of template parameter indices that correspond to
725     // parameter packs expanded by the pack expansion.
726     llvm::SmallBitVector SawIndices(TemplateParams->size());
727     llvm::SmallVector<TemplateArgument, 4> ExtraDeductions;
728 
729     auto AddPack = [&](unsigned Index) {
730       if (SawIndices[Index])
731         return;
732       SawIndices[Index] = true;
733       addPack(Index);
734 
735       // Deducing a parameter pack that is a pack expansion also constrains the
736       // packs appearing in that parameter to have the same deduced arity. Also,
737       // in C++17 onwards, deducing a non-type template parameter deduces its
738       // type, so we need to collect the pending deduced values for those packs.
739       if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(
740               TemplateParams->getParam(Index))) {
741         if (auto *Expansion = dyn_cast<PackExpansionType>(NTTP->getType()))
742           ExtraDeductions.push_back(Expansion->getPattern());
743       }
744       // FIXME: Also collect the unexpanded packs in any type and template
745       // parameter packs that are pack expansions.
746     };
747 
748     auto Collect = [&](TemplateArgument Pattern) {
749       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
750       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
751       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
752         unsigned Depth, Index;
753         std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
754         if (Depth == Info.getDeducedDepth())
755           AddPack(Index);
756       }
757     };
758 
759     // Look for unexpanded packs in the pattern.
760     Collect(Pattern);
761     assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
762 
763     unsigned NumNamedPacks = Packs.size();
764 
765     // Also look for unexpanded packs that are indirectly deduced by deducing
766     // the sizes of the packs in this pattern.
767     while (!ExtraDeductions.empty())
768       Collect(ExtraDeductions.pop_back_val());
769 
770     return NumNamedPacks;
771   }
772 
773   void finishConstruction(unsigned NumNamedPacks) {
774     // Dig out the partially-substituted pack, if there is one.
775     const TemplateArgument *PartialPackArgs = nullptr;
776     unsigned NumPartialPackArgs = 0;
777     std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u);
778     if (auto *Scope = S.CurrentInstantiationScope)
779       if (auto *Partial = Scope->getPartiallySubstitutedPack(
780               &PartialPackArgs, &NumPartialPackArgs))
781         PartialPackDepthIndex = getDepthAndIndex(Partial);
782 
783     // This pack expansion will have been partially or fully expanded if
784     // it only names explicitly-specified parameter packs (including the
785     // partially-substituted one, if any).
786     bool IsExpanded = true;
787     for (unsigned I = 0; I != NumNamedPacks; ++I) {
788       if (Packs[I].Index >= Info.getNumExplicitArgs()) {
789         IsExpanded = false;
790         IsPartiallyExpanded = false;
791         break;
792       }
793       if (PartialPackDepthIndex ==
794             std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) {
795         IsPartiallyExpanded = true;
796       }
797     }
798 
799     // Skip over the pack elements that were expanded into separate arguments.
800     // If we partially expanded, this is the number of partial arguments.
801     if (IsPartiallyExpanded)
802       PackElements += NumPartialPackArgs;
803     else if (IsExpanded)
804       PackElements += *FixedNumExpansions;
805 
806     for (auto &Pack : Packs) {
807       if (Info.PendingDeducedPacks.size() > Pack.Index)
808         Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
809       else
810         Info.PendingDeducedPacks.resize(Pack.Index + 1);
811       Info.PendingDeducedPacks[Pack.Index] = &Pack;
812 
813       if (PartialPackDepthIndex ==
814             std::make_pair(Info.getDeducedDepth(), Pack.Index)) {
815         Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs);
816         // We pre-populate the deduced value of the partially-substituted
817         // pack with the specified value. This is not entirely correct: the
818         // value is supposed to have been substituted, not deduced, but the
819         // cases where this is observable require an exact type match anyway.
820         //
821         // FIXME: If we could represent a "depth i, index j, pack elem k"
822         // parameter, we could substitute the partially-substituted pack
823         // everywhere and avoid this.
824         if (!IsPartiallyExpanded)
825           Deduced[Pack.Index] = Pack.New[PackElements];
826       }
827     }
828   }
829 
830 public:
831   ~PackDeductionScope() {
832     for (auto &Pack : Packs)
833       Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
834   }
835 
836   /// Determine whether this pack has already been partially expanded into a
837   /// sequence of (prior) function parameters / template arguments.
838   bool isPartiallyExpanded() { return IsPartiallyExpanded; }
839 
840   /// Determine whether this pack expansion scope has a known, fixed arity.
841   /// This happens if it involves a pack from an outer template that has
842   /// (notionally) already been expanded.
843   bool hasFixedArity() { return FixedNumExpansions.hasValue(); }
844 
845   /// Determine whether the next element of the argument is still part of this
846   /// pack. This is the case unless the pack is already expanded to a fixed
847   /// length.
848   bool hasNextElement() {
849     return !FixedNumExpansions || *FixedNumExpansions > PackElements;
850   }
851 
852   /// Move to deducing the next element in each pack that is being deduced.
853   void nextPackElement() {
854     // Capture the deduced template arguments for each parameter pack expanded
855     // by this pack expansion, add them to the list of arguments we've deduced
856     // for that pack, then clear out the deduced argument.
857     for (auto &Pack : Packs) {
858       DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
859       if (!Pack.New.empty() || !DeducedArg.isNull()) {
860         while (Pack.New.size() < PackElements)
861           Pack.New.push_back(DeducedTemplateArgument());
862         if (Pack.New.size() == PackElements)
863           Pack.New.push_back(DeducedArg);
864         else
865           Pack.New[PackElements] = DeducedArg;
866         DeducedArg = Pack.New.size() > PackElements + 1
867                          ? Pack.New[PackElements + 1]
868                          : DeducedTemplateArgument();
869       }
870     }
871     ++PackElements;
872   }
873 
874   /// Finish template argument deduction for a set of argument packs,
875   /// producing the argument packs and checking for consistency with prior
876   /// deductions.
877   Sema::TemplateDeductionResult finish() {
878     // Build argument packs for each of the parameter packs expanded by this
879     // pack expansion.
880     for (auto &Pack : Packs) {
881       // Put back the old value for this pack.
882       Deduced[Pack.Index] = Pack.Saved;
883 
884       // Always make sure the size of this pack is correct, even if we didn't
885       // deduce any values for it.
886       //
887       // FIXME: This isn't required by the normative wording, but substitution
888       // and post-substitution checking will always fail if the arity of any
889       // pack is not equal to the number of elements we processed. (Either that
890       // or something else has gone *very* wrong.) We're permitted to skip any
891       // hard errors from those follow-on steps by the intent (but not the
892       // wording) of C++ [temp.inst]p8:
893       //
894       //   If the function selected by overload resolution can be determined
895       //   without instantiating a class template definition, it is unspecified
896       //   whether that instantiation actually takes place
897       Pack.New.resize(PackElements);
898 
899       // Build or find a new value for this pack.
900       DeducedTemplateArgument NewPack;
901       if (Pack.New.empty()) {
902         // If we deduced an empty argument pack, create it now.
903         NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
904       } else {
905         TemplateArgument *ArgumentPack =
906             new (S.Context) TemplateArgument[Pack.New.size()];
907         std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
908         NewPack = DeducedTemplateArgument(
909             TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())),
910             // FIXME: This is wrong, it's possible that some pack elements are
911             // deduced from an array bound and others are not:
912             //   template<typename ...T, T ...V> void g(const T (&...p)[V]);
913             //   g({1, 2, 3}, {{}, {}});
914             // ... should deduce T = {int, size_t (from array bound)}.
915             Pack.New[0].wasDeducedFromArrayBound());
916       }
917 
918       // Pick where we're going to put the merged pack.
919       DeducedTemplateArgument *Loc;
920       if (Pack.Outer) {
921         if (Pack.Outer->DeferredDeduction.isNull()) {
922           // Defer checking this pack until we have a complete pack to compare
923           // it against.
924           Pack.Outer->DeferredDeduction = NewPack;
925           continue;
926         }
927         Loc = &Pack.Outer->DeferredDeduction;
928       } else {
929         Loc = &Deduced[Pack.Index];
930       }
931 
932       // Check the new pack matches any previous value.
933       DeducedTemplateArgument OldPack = *Loc;
934       DeducedTemplateArgument Result =
935           checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
936 
937       // If we deferred a deduction of this pack, check that one now too.
938       if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
939         OldPack = Result;
940         NewPack = Pack.DeferredDeduction;
941         Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
942       }
943 
944       NamedDecl *Param = TemplateParams->getParam(Pack.Index);
945       if (Result.isNull()) {
946         Info.Param = makeTemplateParameter(Param);
947         Info.FirstArg = OldPack;
948         Info.SecondArg = NewPack;
949         return Sema::TDK_Inconsistent;
950       }
951 
952       // If we have a pre-expanded pack and we didn't deduce enough elements
953       // for it, fail deduction.
954       if (Optional<unsigned> Expansions = getExpandedPackSize(Param)) {
955         if (*Expansions != PackElements) {
956           Info.Param = makeTemplateParameter(Param);
957           Info.FirstArg = Result;
958           return Sema::TDK_IncompletePack;
959         }
960       }
961 
962       *Loc = Result;
963     }
964 
965     return Sema::TDK_Success;
966   }
967 
968 private:
969   Sema &S;
970   TemplateParameterList *TemplateParams;
971   SmallVectorImpl<DeducedTemplateArgument> &Deduced;
972   TemplateDeductionInfo &Info;
973   unsigned PackElements = 0;
974   bool IsPartiallyExpanded = false;
975   /// The number of expansions, if we have a fully-expanded pack in this scope.
976   Optional<unsigned> FixedNumExpansions;
977 
978   SmallVector<DeducedPack, 2> Packs;
979 };
980 
981 } // namespace
982 
983 /// Deduce the template arguments by comparing the list of parameter
984 /// types to the list of argument types, as in the parameter-type-lists of
985 /// function types (C++ [temp.deduct.type]p10).
986 ///
987 /// \param S The semantic analysis object within which we are deducing
988 ///
989 /// \param TemplateParams The template parameters that we are deducing
990 ///
991 /// \param Params The list of parameter types
992 ///
993 /// \param NumParams The number of types in \c Params
994 ///
995 /// \param Args The list of argument types
996 ///
997 /// \param NumArgs The number of types in \c Args
998 ///
999 /// \param Info information about the template argument deduction itself
1000 ///
1001 /// \param Deduced the deduced template arguments
1002 ///
1003 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
1004 /// how template argument deduction is performed.
1005 ///
1006 /// \param PartialOrdering If true, we are performing template argument
1007 /// deduction for during partial ordering for a call
1008 /// (C++0x [temp.deduct.partial]).
1009 ///
1010 /// \returns the result of template argument deduction so far. Note that a
1011 /// "success" result means that template argument deduction has not yet failed,
1012 /// but it may still fail, later, for other reasons.
1013 static Sema::TemplateDeductionResult
1014 DeduceTemplateArguments(Sema &S,
1015                         TemplateParameterList *TemplateParams,
1016                         const QualType *Params, unsigned NumParams,
1017                         const QualType *Args, unsigned NumArgs,
1018                         TemplateDeductionInfo &Info,
1019                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1020                         unsigned TDF,
1021                         bool PartialOrdering = false) {
1022   // C++0x [temp.deduct.type]p10:
1023   //   Similarly, if P has a form that contains (T), then each parameter type
1024   //   Pi of the respective parameter-type- list of P is compared with the
1025   //   corresponding parameter type Ai of the corresponding parameter-type-list
1026   //   of A. [...]
1027   unsigned ArgIdx = 0, ParamIdx = 0;
1028   for (; ParamIdx != NumParams; ++ParamIdx) {
1029     // Check argument types.
1030     const PackExpansionType *Expansion
1031                                 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
1032     if (!Expansion) {
1033       // Simple case: compare the parameter and argument types at this point.
1034 
1035       // Make sure we have an argument.
1036       if (ArgIdx >= NumArgs)
1037         return Sema::TDK_MiscellaneousDeductionFailure;
1038 
1039       if (isa<PackExpansionType>(Args[ArgIdx])) {
1040         // C++0x [temp.deduct.type]p22:
1041         //   If the original function parameter associated with A is a function
1042         //   parameter pack and the function parameter associated with P is not
1043         //   a function parameter pack, then template argument deduction fails.
1044         return Sema::TDK_MiscellaneousDeductionFailure;
1045       }
1046 
1047       if (Sema::TemplateDeductionResult Result
1048             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1049                                                  Params[ParamIdx], Args[ArgIdx],
1050                                                  Info, Deduced, TDF,
1051                                                  PartialOrdering))
1052         return Result;
1053 
1054       ++ArgIdx;
1055       continue;
1056     }
1057 
1058     // C++0x [temp.deduct.type]p10:
1059     //   If the parameter-declaration corresponding to Pi is a function
1060     //   parameter pack, then the type of its declarator- id is compared with
1061     //   each remaining parameter type in the parameter-type-list of A. Each
1062     //   comparison deduces template arguments for subsequent positions in the
1063     //   template parameter packs expanded by the function parameter pack.
1064 
1065     QualType Pattern = Expansion->getPattern();
1066     PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
1067 
1068     // A pack scope with fixed arity is not really a pack any more, so is not
1069     // a non-deduced context.
1070     if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) {
1071       for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) {
1072         // Deduce template arguments from the pattern.
1073         if (Sema::TemplateDeductionResult Result
1074               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
1075                                                    Args[ArgIdx], Info, Deduced,
1076                                                    TDF, PartialOrdering))
1077           return Result;
1078 
1079         PackScope.nextPackElement();
1080       }
1081     } else {
1082       // C++0x [temp.deduct.type]p5:
1083       //   The non-deduced contexts are:
1084       //     - A function parameter pack that does not occur at the end of the
1085       //       parameter-declaration-clause.
1086       //
1087       // FIXME: There is no wording to say what we should do in this case. We
1088       // choose to resolve this by applying the same rule that is applied for a
1089       // function call: that is, deduce all contained packs to their
1090       // explicitly-specified values (or to <> if there is no such value).
1091       //
1092       // This is seemingly-arbitrarily different from the case of a template-id
1093       // with a non-trailing pack-expansion in its arguments, which renders the
1094       // entire template-argument-list a non-deduced context.
1095 
1096       // If the parameter type contains an explicitly-specified pack that we
1097       // could not expand, skip the number of parameters notionally created
1098       // by the expansion.
1099       Optional<unsigned> NumExpansions = Expansion->getNumExpansions();
1100       if (NumExpansions && !PackScope.isPartiallyExpanded()) {
1101         for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs;
1102              ++I, ++ArgIdx)
1103           PackScope.nextPackElement();
1104       }
1105     }
1106 
1107     // Build argument packs for each of the parameter packs expanded by this
1108     // pack expansion.
1109     if (auto Result = PackScope.finish())
1110       return Result;
1111   }
1112 
1113   // Make sure we don't have any extra arguments.
1114   if (ArgIdx < NumArgs)
1115     return Sema::TDK_MiscellaneousDeductionFailure;
1116 
1117   return Sema::TDK_Success;
1118 }
1119 
1120 /// Determine whether the parameter has qualifiers that the argument
1121 /// lacks. Put another way, determine whether there is no way to add
1122 /// a deduced set of qualifiers to the ParamType that would result in
1123 /// its qualifiers matching those of the ArgType.
1124 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
1125                                                   QualType ArgType) {
1126   Qualifiers ParamQs = ParamType.getQualifiers();
1127   Qualifiers ArgQs = ArgType.getQualifiers();
1128 
1129   if (ParamQs == ArgQs)
1130     return false;
1131 
1132   // Mismatched (but not missing) Objective-C GC attributes.
1133   if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
1134       ParamQs.hasObjCGCAttr())
1135     return true;
1136 
1137   // Mismatched (but not missing) address spaces.
1138   if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
1139       ParamQs.hasAddressSpace())
1140     return true;
1141 
1142   // Mismatched (but not missing) Objective-C lifetime qualifiers.
1143   if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
1144       ParamQs.hasObjCLifetime())
1145     return true;
1146 
1147   // CVR qualifiers inconsistent or a superset.
1148   return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0;
1149 }
1150 
1151 /// Compare types for equality with respect to possibly compatible
1152 /// function types (noreturn adjustment, implicit calling conventions). If any
1153 /// of parameter and argument is not a function, just perform type comparison.
1154 ///
1155 /// \param Param the template parameter type.
1156 ///
1157 /// \param Arg the argument type.
1158 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
1159                                           CanQualType Arg) {
1160   const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
1161                      *ArgFunction   = Arg->getAs<FunctionType>();
1162 
1163   // Just compare if not functions.
1164   if (!ParamFunction || !ArgFunction)
1165     return Param == Arg;
1166 
1167   // Noreturn and noexcept adjustment.
1168   QualType AdjustedParam;
1169   if (IsFunctionConversion(Param, Arg, AdjustedParam))
1170     return Arg == Context.getCanonicalType(AdjustedParam);
1171 
1172   // FIXME: Compatible calling conventions.
1173 
1174   return Param == Arg;
1175 }
1176 
1177 /// Get the index of the first template parameter that was originally from the
1178 /// innermost template-parameter-list. This is 0 except when we concatenate
1179 /// the template parameter lists of a class template and a constructor template
1180 /// when forming an implicit deduction guide.
1181 static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) {
1182   auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl());
1183   if (!Guide || !Guide->isImplicit())
1184     return 0;
1185   return Guide->getDeducedTemplate()->getTemplateParameters()->size();
1186 }
1187 
1188 /// Determine whether a type denotes a forwarding reference.
1189 static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) {
1190   // C++1z [temp.deduct.call]p3:
1191   //   A forwarding reference is an rvalue reference to a cv-unqualified
1192   //   template parameter that does not represent a template parameter of a
1193   //   class template.
1194   if (auto *ParamRef = Param->getAs<RValueReferenceType>()) {
1195     if (ParamRef->getPointeeType().getQualifiers())
1196       return false;
1197     auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>();
1198     return TypeParm && TypeParm->getIndex() >= FirstInnerIndex;
1199   }
1200   return false;
1201 }
1202 
1203 /// Deduce the template arguments by comparing the parameter type and
1204 /// the argument type (C++ [temp.deduct.type]).
1205 ///
1206 /// \param S the semantic analysis object within which we are deducing
1207 ///
1208 /// \param TemplateParams the template parameters that we are deducing
1209 ///
1210 /// \param ParamIn the parameter type
1211 ///
1212 /// \param ArgIn the argument type
1213 ///
1214 /// \param Info information about the template argument deduction itself
1215 ///
1216 /// \param Deduced the deduced template arguments
1217 ///
1218 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
1219 /// how template argument deduction is performed.
1220 ///
1221 /// \param PartialOrdering Whether we're performing template argument deduction
1222 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
1223 ///
1224 /// \returns the result of template argument deduction so far. Note that a
1225 /// "success" result means that template argument deduction has not yet failed,
1226 /// but it may still fail, later, for other reasons.
1227 static Sema::TemplateDeductionResult
1228 DeduceTemplateArgumentsByTypeMatch(Sema &S,
1229                                    TemplateParameterList *TemplateParams,
1230                                    QualType ParamIn, QualType ArgIn,
1231                                    TemplateDeductionInfo &Info,
1232                             SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1233                                    unsigned TDF,
1234                                    bool PartialOrdering,
1235                                    bool DeducedFromArrayBound) {
1236   // We only want to look at the canonical types, since typedefs and
1237   // sugar are not part of template argument deduction.
1238   QualType Param = S.Context.getCanonicalType(ParamIn);
1239   QualType Arg = S.Context.getCanonicalType(ArgIn);
1240 
1241   // If the argument type is a pack expansion, look at its pattern.
1242   // This isn't explicitly called out
1243   if (const PackExpansionType *ArgExpansion
1244                                             = dyn_cast<PackExpansionType>(Arg))
1245     Arg = ArgExpansion->getPattern();
1246 
1247   if (PartialOrdering) {
1248     // C++11 [temp.deduct.partial]p5:
1249     //   Before the partial ordering is done, certain transformations are
1250     //   performed on the types used for partial ordering:
1251     //     - If P is a reference type, P is replaced by the type referred to.
1252     const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
1253     if (ParamRef)
1254       Param = ParamRef->getPointeeType();
1255 
1256     //     - If A is a reference type, A is replaced by the type referred to.
1257     const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
1258     if (ArgRef)
1259       Arg = ArgRef->getPointeeType();
1260 
1261     if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) {
1262       // C++11 [temp.deduct.partial]p9:
1263       //   If, for a given type, deduction succeeds in both directions (i.e.,
1264       //   the types are identical after the transformations above) and both
1265       //   P and A were reference types [...]:
1266       //     - if [one type] was an lvalue reference and [the other type] was
1267       //       not, [the other type] is not considered to be at least as
1268       //       specialized as [the first type]
1269       //     - if [one type] is more cv-qualified than [the other type],
1270       //       [the other type] is not considered to be at least as specialized
1271       //       as [the first type]
1272       // Objective-C ARC adds:
1273       //     - [one type] has non-trivial lifetime, [the other type] has
1274       //       __unsafe_unretained lifetime, and the types are otherwise
1275       //       identical
1276       //
1277       // A is "considered to be at least as specialized" as P iff deduction
1278       // succeeds, so we model this as a deduction failure. Note that
1279       // [the first type] is P and [the other type] is A here; the standard
1280       // gets this backwards.
1281       Qualifiers ParamQuals = Param.getQualifiers();
1282       Qualifiers ArgQuals = Arg.getQualifiers();
1283       if ((ParamRef->isLValueReferenceType() &&
1284            !ArgRef->isLValueReferenceType()) ||
1285           ParamQuals.isStrictSupersetOf(ArgQuals) ||
1286           (ParamQuals.hasNonTrivialObjCLifetime() &&
1287            ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
1288            ParamQuals.withoutObjCLifetime() ==
1289                ArgQuals.withoutObjCLifetime())) {
1290         Info.FirstArg = TemplateArgument(ParamIn);
1291         Info.SecondArg = TemplateArgument(ArgIn);
1292         return Sema::TDK_NonDeducedMismatch;
1293       }
1294     }
1295 
1296     // C++11 [temp.deduct.partial]p7:
1297     //   Remove any top-level cv-qualifiers:
1298     //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
1299     //       version of P.
1300     Param = Param.getUnqualifiedType();
1301     //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
1302     //       version of A.
1303     Arg = Arg.getUnqualifiedType();
1304   } else {
1305     // C++0x [temp.deduct.call]p4 bullet 1:
1306     //   - If the original P is a reference type, the deduced A (i.e., the type
1307     //     referred to by the reference) can be more cv-qualified than the
1308     //     transformed A.
1309     if (TDF & TDF_ParamWithReferenceType) {
1310       Qualifiers Quals;
1311       QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
1312       Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
1313                              Arg.getCVRQualifiers());
1314       Param = S.Context.getQualifiedType(UnqualParam, Quals);
1315     }
1316 
1317     if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
1318       // C++0x [temp.deduct.type]p10:
1319       //   If P and A are function types that originated from deduction when
1320       //   taking the address of a function template (14.8.2.2) or when deducing
1321       //   template arguments from a function declaration (14.8.2.6) and Pi and
1322       //   Ai are parameters of the top-level parameter-type-list of P and A,
1323       //   respectively, Pi is adjusted if it is a forwarding reference and Ai
1324       //   is an lvalue reference, in
1325       //   which case the type of Pi is changed to be the template parameter
1326       //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
1327       //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
1328       //   deduced as X&. - end note ]
1329       TDF &= ~TDF_TopLevelParameterTypeList;
1330       if (isForwardingReference(Param, 0) && Arg->isLValueReferenceType())
1331         Param = Param->getPointeeType();
1332     }
1333   }
1334 
1335   // C++ [temp.deduct.type]p9:
1336   //   A template type argument T, a template template argument TT or a
1337   //   template non-type argument i can be deduced if P and A have one of
1338   //   the following forms:
1339   //
1340   //     T
1341   //     cv-list T
1342   if (const TemplateTypeParmType *TemplateTypeParm
1343         = Param->getAs<TemplateTypeParmType>()) {
1344     // Just skip any attempts to deduce from a placeholder type or a parameter
1345     // at a different depth.
1346     if (Arg->isPlaceholderType() ||
1347         Info.getDeducedDepth() != TemplateTypeParm->getDepth())
1348       return Sema::TDK_Success;
1349 
1350     unsigned Index = TemplateTypeParm->getIndex();
1351     bool RecanonicalizeArg = false;
1352 
1353     // If the argument type is an array type, move the qualifiers up to the
1354     // top level, so they can be matched with the qualifiers on the parameter.
1355     if (isa<ArrayType>(Arg)) {
1356       Qualifiers Quals;
1357       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1358       if (Quals) {
1359         Arg = S.Context.getQualifiedType(Arg, Quals);
1360         RecanonicalizeArg = true;
1361       }
1362     }
1363 
1364     // The argument type can not be less qualified than the parameter
1365     // type.
1366     if (!(TDF & TDF_IgnoreQualifiers) &&
1367         hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
1368       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1369       Info.FirstArg = TemplateArgument(Param);
1370       Info.SecondArg = TemplateArgument(Arg);
1371       return Sema::TDK_Underqualified;
1372     }
1373 
1374     // Do not match a function type with a cv-qualified type.
1375     // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584
1376     if (Arg->isFunctionType() && Param.hasQualifiers()) {
1377       return Sema::TDK_NonDeducedMismatch;
1378     }
1379 
1380     assert(TemplateTypeParm->getDepth() == Info.getDeducedDepth() &&
1381            "saw template type parameter with wrong depth");
1382     assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1383     QualType DeducedType = Arg;
1384 
1385     // Remove any qualifiers on the parameter from the deduced type.
1386     // We checked the qualifiers for consistency above.
1387     Qualifiers DeducedQs = DeducedType.getQualifiers();
1388     Qualifiers ParamQs = Param.getQualifiers();
1389     DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1390     if (ParamQs.hasObjCGCAttr())
1391       DeducedQs.removeObjCGCAttr();
1392     if (ParamQs.hasAddressSpace())
1393       DeducedQs.removeAddressSpace();
1394     if (ParamQs.hasObjCLifetime())
1395       DeducedQs.removeObjCLifetime();
1396 
1397     // Objective-C ARC:
1398     //   If template deduction would produce a lifetime qualifier on a type
1399     //   that is not a lifetime type, template argument deduction fails.
1400     if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1401         !DeducedType->isDependentType()) {
1402       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1403       Info.FirstArg = TemplateArgument(Param);
1404       Info.SecondArg = TemplateArgument(Arg);
1405       return Sema::TDK_Underqualified;
1406     }
1407 
1408     // Objective-C ARC:
1409     //   If template deduction would produce an argument type with lifetime type
1410     //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1411     if (S.getLangOpts().ObjCAutoRefCount &&
1412         DeducedType->isObjCLifetimeType() &&
1413         !DeducedQs.hasObjCLifetime())
1414       DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1415 
1416     DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1417                                              DeducedQs);
1418 
1419     if (RecanonicalizeArg)
1420       DeducedType = S.Context.getCanonicalType(DeducedType);
1421 
1422     DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound);
1423     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1424                                                                  Deduced[Index],
1425                                                                    NewDeduced);
1426     if (Result.isNull()) {
1427       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1428       Info.FirstArg = Deduced[Index];
1429       Info.SecondArg = NewDeduced;
1430       return Sema::TDK_Inconsistent;
1431     }
1432 
1433     Deduced[Index] = Result;
1434     return Sema::TDK_Success;
1435   }
1436 
1437   // Set up the template argument deduction information for a failure.
1438   Info.FirstArg = TemplateArgument(ParamIn);
1439   Info.SecondArg = TemplateArgument(ArgIn);
1440 
1441   // If the parameter is an already-substituted template parameter
1442   // pack, do nothing: we don't know which of its arguments to look
1443   // at, so we have to wait until all of the parameter packs in this
1444   // expansion have arguments.
1445   if (isa<SubstTemplateTypeParmPackType>(Param))
1446     return Sema::TDK_Success;
1447 
1448   // Check the cv-qualifiers on the parameter and argument types.
1449   CanQualType CanParam = S.Context.getCanonicalType(Param);
1450   CanQualType CanArg = S.Context.getCanonicalType(Arg);
1451   if (!(TDF & TDF_IgnoreQualifiers)) {
1452     if (TDF & TDF_ParamWithReferenceType) {
1453       if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1454         return Sema::TDK_NonDeducedMismatch;
1455     } else if (TDF & TDF_ArgWithReferenceType) {
1456       // C++ [temp.deduct.conv]p4:
1457       //   If the original A is a reference type, A can be more cv-qualified
1458       //   than the deduced A
1459       if (!Arg.getQualifiers().compatiblyIncludes(Param.getQualifiers()))
1460         return Sema::TDK_NonDeducedMismatch;
1461 
1462       // Strip out all extra qualifiers from the argument to figure out the
1463       // type we're converting to, prior to the qualification conversion.
1464       Qualifiers Quals;
1465       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1466       Arg = S.Context.getQualifiedType(Arg, Param.getQualifiers());
1467     } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1468       if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1469         return Sema::TDK_NonDeducedMismatch;
1470     }
1471 
1472     // If the parameter type is not dependent, there is nothing to deduce.
1473     if (!Param->isDependentType()) {
1474       if (!(TDF & TDF_SkipNonDependent)) {
1475         bool NonDeduced =
1476             (TDF & TDF_AllowCompatibleFunctionType)
1477                 ? !S.isSameOrCompatibleFunctionType(CanParam, CanArg)
1478                 : Param != Arg;
1479         if (NonDeduced) {
1480           return Sema::TDK_NonDeducedMismatch;
1481         }
1482       }
1483       return Sema::TDK_Success;
1484     }
1485   } else if (!Param->isDependentType()) {
1486     CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
1487                 ArgUnqualType = CanArg.getUnqualifiedType();
1488     bool Success =
1489         (TDF & TDF_AllowCompatibleFunctionType)
1490             ? S.isSameOrCompatibleFunctionType(ParamUnqualType, ArgUnqualType)
1491             : ParamUnqualType == ArgUnqualType;
1492     if (Success)
1493       return Sema::TDK_Success;
1494   }
1495 
1496   switch (Param->getTypeClass()) {
1497     // Non-canonical types cannot appear here.
1498 #define NON_CANONICAL_TYPE(Class, Base) \
1499   case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1500 #define TYPE(Class, Base)
1501 #include "clang/AST/TypeNodes.inc"
1502 
1503     case Type::TemplateTypeParm:
1504     case Type::SubstTemplateTypeParmPack:
1505       llvm_unreachable("Type nodes handled above");
1506 
1507     // These types cannot be dependent, so simply check whether the types are
1508     // the same.
1509     case Type::Builtin:
1510     case Type::VariableArray:
1511     case Type::Vector:
1512     case Type::FunctionNoProto:
1513     case Type::Record:
1514     case Type::Enum:
1515     case Type::ObjCObject:
1516     case Type::ObjCInterface:
1517     case Type::ObjCObjectPointer:
1518       if (TDF & TDF_SkipNonDependent)
1519         return Sema::TDK_Success;
1520 
1521       if (TDF & TDF_IgnoreQualifiers) {
1522         Param = Param.getUnqualifiedType();
1523         Arg = Arg.getUnqualifiedType();
1524       }
1525 
1526       return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1527 
1528     //     _Complex T   [placeholder extension]
1529     case Type::Complex:
1530       if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1531         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1532                                     cast<ComplexType>(Param)->getElementType(),
1533                                     ComplexArg->getElementType(),
1534                                     Info, Deduced, TDF);
1535 
1536       return Sema::TDK_NonDeducedMismatch;
1537 
1538     //     _Atomic T   [extension]
1539     case Type::Atomic:
1540       if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1541         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1542                                        cast<AtomicType>(Param)->getValueType(),
1543                                        AtomicArg->getValueType(),
1544                                        Info, Deduced, TDF);
1545 
1546       return Sema::TDK_NonDeducedMismatch;
1547 
1548     //     T *
1549     case Type::Pointer: {
1550       QualType PointeeType;
1551       if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1552         PointeeType = PointerArg->getPointeeType();
1553       } else if (const ObjCObjectPointerType *PointerArg
1554                    = Arg->getAs<ObjCObjectPointerType>()) {
1555         PointeeType = PointerArg->getPointeeType();
1556       } else {
1557         return Sema::TDK_NonDeducedMismatch;
1558       }
1559 
1560       unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1561       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1562                                      cast<PointerType>(Param)->getPointeeType(),
1563                                      PointeeType,
1564                                      Info, Deduced, SubTDF);
1565     }
1566 
1567     //     T &
1568     case Type::LValueReference: {
1569       const LValueReferenceType *ReferenceArg =
1570           Arg->getAs<LValueReferenceType>();
1571       if (!ReferenceArg)
1572         return Sema::TDK_NonDeducedMismatch;
1573 
1574       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1575                            cast<LValueReferenceType>(Param)->getPointeeType(),
1576                            ReferenceArg->getPointeeType(), Info, Deduced, 0);
1577     }
1578 
1579     //     T && [C++0x]
1580     case Type::RValueReference: {
1581       const RValueReferenceType *ReferenceArg =
1582           Arg->getAs<RValueReferenceType>();
1583       if (!ReferenceArg)
1584         return Sema::TDK_NonDeducedMismatch;
1585 
1586       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1587                              cast<RValueReferenceType>(Param)->getPointeeType(),
1588                              ReferenceArg->getPointeeType(),
1589                              Info, Deduced, 0);
1590     }
1591 
1592     //     T [] (implied, but not stated explicitly)
1593     case Type::IncompleteArray: {
1594       const IncompleteArrayType *IncompleteArrayArg =
1595         S.Context.getAsIncompleteArrayType(Arg);
1596       if (!IncompleteArrayArg)
1597         return Sema::TDK_NonDeducedMismatch;
1598 
1599       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1600       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1601                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1602                     IncompleteArrayArg->getElementType(),
1603                     Info, Deduced, SubTDF);
1604     }
1605 
1606     //     T [integer-constant]
1607     case Type::ConstantArray: {
1608       const ConstantArrayType *ConstantArrayArg =
1609         S.Context.getAsConstantArrayType(Arg);
1610       if (!ConstantArrayArg)
1611         return Sema::TDK_NonDeducedMismatch;
1612 
1613       const ConstantArrayType *ConstantArrayParm =
1614         S.Context.getAsConstantArrayType(Param);
1615       if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1616         return Sema::TDK_NonDeducedMismatch;
1617 
1618       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1619       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1620                                            ConstantArrayParm->getElementType(),
1621                                            ConstantArrayArg->getElementType(),
1622                                            Info, Deduced, SubTDF);
1623     }
1624 
1625     //     type [i]
1626     case Type::DependentSizedArray: {
1627       const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1628       if (!ArrayArg)
1629         return Sema::TDK_NonDeducedMismatch;
1630 
1631       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1632 
1633       // Check the element type of the arrays
1634       const DependentSizedArrayType *DependentArrayParm
1635         = S.Context.getAsDependentSizedArrayType(Param);
1636       if (Sema::TemplateDeductionResult Result
1637             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1638                                           DependentArrayParm->getElementType(),
1639                                           ArrayArg->getElementType(),
1640                                           Info, Deduced, SubTDF))
1641         return Result;
1642 
1643       // Determine the array bound is something we can deduce.
1644       NonTypeTemplateParmDecl *NTTP
1645         = getDeducedParameterFromExpr(Info, DependentArrayParm->getSizeExpr());
1646       if (!NTTP)
1647         return Sema::TDK_Success;
1648 
1649       // We can perform template argument deduction for the given non-type
1650       // template parameter.
1651       assert(NTTP->getDepth() == Info.getDeducedDepth() &&
1652              "saw non-type template parameter with wrong depth");
1653       if (const ConstantArrayType *ConstantArrayArg
1654             = dyn_cast<ConstantArrayType>(ArrayArg)) {
1655         llvm::APSInt Size(ConstantArrayArg->getSize());
1656         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, Size,
1657                                              S.Context.getSizeType(),
1658                                              /*ArrayBound=*/true,
1659                                              Info, Deduced);
1660       }
1661       if (const DependentSizedArrayType *DependentArrayArg
1662             = dyn_cast<DependentSizedArrayType>(ArrayArg))
1663         if (DependentArrayArg->getSizeExpr())
1664           return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
1665                                                DependentArrayArg->getSizeExpr(),
1666                                                Info, Deduced);
1667 
1668       // Incomplete type does not match a dependently-sized array type
1669       return Sema::TDK_NonDeducedMismatch;
1670     }
1671 
1672     //     type(*)(T)
1673     //     T(*)()
1674     //     T(*)(T)
1675     case Type::FunctionProto: {
1676       unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1677       const FunctionProtoType *FunctionProtoArg =
1678         dyn_cast<FunctionProtoType>(Arg);
1679       if (!FunctionProtoArg)
1680         return Sema::TDK_NonDeducedMismatch;
1681 
1682       const FunctionProtoType *FunctionProtoParam =
1683         cast<FunctionProtoType>(Param);
1684 
1685       if (FunctionProtoParam->getMethodQuals()
1686             != FunctionProtoArg->getMethodQuals() ||
1687           FunctionProtoParam->getRefQualifier()
1688             != FunctionProtoArg->getRefQualifier() ||
1689           FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1690         return Sema::TDK_NonDeducedMismatch;
1691 
1692       // Check return types.
1693       if (auto Result = DeduceTemplateArgumentsByTypeMatch(
1694               S, TemplateParams, FunctionProtoParam->getReturnType(),
1695               FunctionProtoArg->getReturnType(), Info, Deduced, 0))
1696         return Result;
1697 
1698       // Check parameter types.
1699       if (auto Result = DeduceTemplateArguments(
1700               S, TemplateParams, FunctionProtoParam->param_type_begin(),
1701               FunctionProtoParam->getNumParams(),
1702               FunctionProtoArg->param_type_begin(),
1703               FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF))
1704         return Result;
1705 
1706       if (TDF & TDF_AllowCompatibleFunctionType)
1707         return Sema::TDK_Success;
1708 
1709       // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit
1710       // deducing through the noexcept-specifier if it's part of the canonical
1711       // type. libstdc++ relies on this.
1712       Expr *NoexceptExpr = FunctionProtoParam->getNoexceptExpr();
1713       if (NonTypeTemplateParmDecl *NTTP =
1714           NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr)
1715                        : nullptr) {
1716         assert(NTTP->getDepth() == Info.getDeducedDepth() &&
1717                "saw non-type template parameter with wrong depth");
1718 
1719         llvm::APSInt Noexcept(1);
1720         switch (FunctionProtoArg->canThrow()) {
1721         case CT_Cannot:
1722           Noexcept = 1;
1723           LLVM_FALLTHROUGH;
1724 
1725         case CT_Can:
1726           // We give E in noexcept(E) the "deduced from array bound" treatment.
1727           // FIXME: Should we?
1728           return DeduceNonTypeTemplateArgument(
1729               S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy,
1730               /*ArrayBound*/true, Info, Deduced);
1731 
1732         case CT_Dependent:
1733           if (Expr *ArgNoexceptExpr = FunctionProtoArg->getNoexceptExpr())
1734             return DeduceNonTypeTemplateArgument(
1735                 S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced);
1736           // Can't deduce anything from throw(T...).
1737           break;
1738         }
1739       }
1740       // FIXME: Detect non-deduced exception specification mismatches?
1741       //
1742       // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow
1743       // top-level differences in noexcept-specifications.
1744 
1745       return Sema::TDK_Success;
1746     }
1747 
1748     case Type::InjectedClassName:
1749       // Treat a template's injected-class-name as if the template
1750       // specialization type had been used.
1751       Param = cast<InjectedClassNameType>(Param)
1752         ->getInjectedSpecializationType();
1753       assert(isa<TemplateSpecializationType>(Param) &&
1754              "injected class name is not a template specialization type");
1755       LLVM_FALLTHROUGH;
1756 
1757     //     template-name<T> (where template-name refers to a class template)
1758     //     template-name<i>
1759     //     TT<T>
1760     //     TT<i>
1761     //     TT<>
1762     case Type::TemplateSpecialization: {
1763       const TemplateSpecializationType *SpecParam =
1764           cast<TemplateSpecializationType>(Param);
1765 
1766       // When Arg cannot be a derived class, we can just try to deduce template
1767       // arguments from the template-id.
1768       const RecordType *RecordT = Arg->getAs<RecordType>();
1769       if (!(TDF & TDF_DerivedClass) || !RecordT)
1770         return DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, Info,
1771                                        Deduced);
1772 
1773       SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1774                                                           Deduced.end());
1775 
1776       Sema::TemplateDeductionResult Result = DeduceTemplateArguments(
1777           S, TemplateParams, SpecParam, Arg, Info, Deduced);
1778 
1779       if (Result == Sema::TDK_Success)
1780         return Result;
1781 
1782       // We cannot inspect base classes as part of deduction when the type
1783       // is incomplete, so either instantiate any templates necessary to
1784       // complete the type, or skip over it if it cannot be completed.
1785       if (!S.isCompleteType(Info.getLocation(), Arg))
1786         return Result;
1787 
1788       // C++14 [temp.deduct.call] p4b3:
1789       //   If P is a class and P has the form simple-template-id, then the
1790       //   transformed A can be a derived class of the deduced A. Likewise if
1791       //   P is a pointer to a class of the form simple-template-id, the
1792       //   transformed A can be a pointer to a derived class pointed to by the
1793       //   deduced A.
1794       //
1795       //   These alternatives are considered only if type deduction would
1796       //   otherwise fail. If they yield more than one possible deduced A, the
1797       //   type deduction fails.
1798 
1799       // Reset the incorrectly deduced argument from above.
1800       Deduced = DeducedOrig;
1801 
1802       // Use data recursion to crawl through the list of base classes.
1803       // Visited contains the set of nodes we have already visited, while
1804       // ToVisit is our stack of records that we still need to visit.
1805       llvm::SmallPtrSet<const RecordType *, 8> Visited;
1806       SmallVector<const RecordType *, 8> ToVisit;
1807       ToVisit.push_back(RecordT);
1808       bool Successful = false;
1809       SmallVector<DeducedTemplateArgument, 8> SuccessfulDeduced;
1810       while (!ToVisit.empty()) {
1811         // Retrieve the next class in the inheritance hierarchy.
1812         const RecordType *NextT = ToVisit.pop_back_val();
1813 
1814         // If we have already seen this type, skip it.
1815         if (!Visited.insert(NextT).second)
1816           continue;
1817 
1818         // If this is a base class, try to perform template argument
1819         // deduction from it.
1820         if (NextT != RecordT) {
1821           TemplateDeductionInfo BaseInfo(Info.getLocation());
1822           Sema::TemplateDeductionResult BaseResult =
1823               DeduceTemplateArguments(S, TemplateParams, SpecParam,
1824                                       QualType(NextT, 0), BaseInfo, Deduced);
1825 
1826           // If template argument deduction for this base was successful,
1827           // note that we had some success. Otherwise, ignore any deductions
1828           // from this base class.
1829           if (BaseResult == Sema::TDK_Success) {
1830             // If we've already seen some success, then deduction fails due to
1831             // an ambiguity (temp.deduct.call p5).
1832             if (Successful)
1833               return Sema::TDK_MiscellaneousDeductionFailure;
1834 
1835             Successful = true;
1836             std::swap(SuccessfulDeduced, Deduced);
1837 
1838             Info.Param = BaseInfo.Param;
1839             Info.FirstArg = BaseInfo.FirstArg;
1840             Info.SecondArg = BaseInfo.SecondArg;
1841           }
1842 
1843           Deduced = DeducedOrig;
1844         }
1845 
1846         // Visit base classes
1847         CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1848         for (const auto &Base : Next->bases()) {
1849           assert(Base.getType()->isRecordType() &&
1850                  "Base class that isn't a record?");
1851           ToVisit.push_back(Base.getType()->getAs<RecordType>());
1852         }
1853       }
1854 
1855       if (Successful) {
1856         std::swap(SuccessfulDeduced, Deduced);
1857         return Sema::TDK_Success;
1858       }
1859 
1860       return Result;
1861     }
1862 
1863     //     T type::*
1864     //     T T::*
1865     //     T (type::*)()
1866     //     type (T::*)()
1867     //     type (type::*)(T)
1868     //     type (T::*)(T)
1869     //     T (type::*)(T)
1870     //     T (T::*)()
1871     //     T (T::*)(T)
1872     case Type::MemberPointer: {
1873       const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1874       const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1875       if (!MemPtrArg)
1876         return Sema::TDK_NonDeducedMismatch;
1877 
1878       QualType ParamPointeeType = MemPtrParam->getPointeeType();
1879       if (ParamPointeeType->isFunctionType())
1880         S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true,
1881                                  /*IsCtorOrDtor=*/false, Info.getLocation());
1882       QualType ArgPointeeType = MemPtrArg->getPointeeType();
1883       if (ArgPointeeType->isFunctionType())
1884         S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true,
1885                                  /*IsCtorOrDtor=*/false, Info.getLocation());
1886 
1887       if (Sema::TemplateDeductionResult Result
1888             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1889                                                  ParamPointeeType,
1890                                                  ArgPointeeType,
1891                                                  Info, Deduced,
1892                                                  TDF & TDF_IgnoreQualifiers))
1893         return Result;
1894 
1895       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1896                                            QualType(MemPtrParam->getClass(), 0),
1897                                            QualType(MemPtrArg->getClass(), 0),
1898                                            Info, Deduced,
1899                                            TDF & TDF_IgnoreQualifiers);
1900     }
1901 
1902     //     (clang extension)
1903     //
1904     //     type(^)(T)
1905     //     T(^)()
1906     //     T(^)(T)
1907     case Type::BlockPointer: {
1908       const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1909       const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1910 
1911       if (!BlockPtrArg)
1912         return Sema::TDK_NonDeducedMismatch;
1913 
1914       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1915                                                 BlockPtrParam->getPointeeType(),
1916                                                 BlockPtrArg->getPointeeType(),
1917                                                 Info, Deduced, 0);
1918     }
1919 
1920     //     (clang extension)
1921     //
1922     //     T __attribute__(((ext_vector_type(<integral constant>))))
1923     case Type::ExtVector: {
1924       const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1925       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1926         // Make sure that the vectors have the same number of elements.
1927         if (VectorParam->getNumElements() != VectorArg->getNumElements())
1928           return Sema::TDK_NonDeducedMismatch;
1929 
1930         // Perform deduction on the element types.
1931         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1932                                                   VectorParam->getElementType(),
1933                                                   VectorArg->getElementType(),
1934                                                   Info, Deduced, TDF);
1935       }
1936 
1937       if (const DependentSizedExtVectorType *VectorArg
1938                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1939         // We can't check the number of elements, since the argument has a
1940         // dependent number of elements. This can only occur during partial
1941         // ordering.
1942 
1943         // Perform deduction on the element types.
1944         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1945                                                   VectorParam->getElementType(),
1946                                                   VectorArg->getElementType(),
1947                                                   Info, Deduced, TDF);
1948       }
1949 
1950       return Sema::TDK_NonDeducedMismatch;
1951     }
1952 
1953     case Type::DependentVector: {
1954       const auto *VectorParam = cast<DependentVectorType>(Param);
1955 
1956       if (const auto *VectorArg = dyn_cast<VectorType>(Arg)) {
1957         // Perform deduction on the element types.
1958         if (Sema::TemplateDeductionResult Result =
1959                 DeduceTemplateArgumentsByTypeMatch(
1960                     S, TemplateParams, VectorParam->getElementType(),
1961                     VectorArg->getElementType(), Info, Deduced, TDF))
1962           return Result;
1963 
1964         // Perform deduction on the vector size, if we can.
1965         NonTypeTemplateParmDecl *NTTP =
1966             getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
1967         if (!NTTP)
1968           return Sema::TDK_Success;
1969 
1970         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1971         ArgSize = VectorArg->getNumElements();
1972         // Note that we use the "array bound" rules here; just like in that
1973         // case, we don't have any particular type for the vector size, but
1974         // we can provide one if necessary.
1975         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
1976                                              S.Context.UnsignedIntTy, true,
1977                                              Info, Deduced);
1978       }
1979 
1980       if (const auto *VectorArg = dyn_cast<DependentVectorType>(Arg)) {
1981         // Perform deduction on the element types.
1982         if (Sema::TemplateDeductionResult Result =
1983                 DeduceTemplateArgumentsByTypeMatch(
1984                     S, TemplateParams, VectorParam->getElementType(),
1985                     VectorArg->getElementType(), Info, Deduced, TDF))
1986           return Result;
1987 
1988         // Perform deduction on the vector size, if we can.
1989         NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
1990             Info, VectorParam->getSizeExpr());
1991         if (!NTTP)
1992           return Sema::TDK_Success;
1993 
1994         return DeduceNonTypeTemplateArgument(
1995             S, TemplateParams, NTTP, VectorArg->getSizeExpr(), Info, Deduced);
1996       }
1997 
1998       return Sema::TDK_NonDeducedMismatch;
1999     }
2000 
2001     //     (clang extension)
2002     //
2003     //     T __attribute__(((ext_vector_type(N))))
2004     case Type::DependentSizedExtVector: {
2005       const DependentSizedExtVectorType *VectorParam
2006         = cast<DependentSizedExtVectorType>(Param);
2007 
2008       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
2009         // Perform deduction on the element types.
2010         if (Sema::TemplateDeductionResult Result
2011               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2012                                                   VectorParam->getElementType(),
2013                                                    VectorArg->getElementType(),
2014                                                    Info, Deduced, TDF))
2015           return Result;
2016 
2017         // Perform deduction on the vector size, if we can.
2018         NonTypeTemplateParmDecl *NTTP
2019           = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
2020         if (!NTTP)
2021           return Sema::TDK_Success;
2022 
2023         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
2024         ArgSize = VectorArg->getNumElements();
2025         // Note that we use the "array bound" rules here; just like in that
2026         // case, we don't have any particular type for the vector size, but
2027         // we can provide one if necessary.
2028         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
2029                                              S.Context.IntTy, true, Info,
2030                                              Deduced);
2031       }
2032 
2033       if (const DependentSizedExtVectorType *VectorArg
2034                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
2035         // Perform deduction on the element types.
2036         if (Sema::TemplateDeductionResult Result
2037             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2038                                                  VectorParam->getElementType(),
2039                                                  VectorArg->getElementType(),
2040                                                  Info, Deduced, TDF))
2041           return Result;
2042 
2043         // Perform deduction on the vector size, if we can.
2044         NonTypeTemplateParmDecl *NTTP
2045           = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
2046         if (!NTTP)
2047           return Sema::TDK_Success;
2048 
2049         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2050                                              VectorArg->getSizeExpr(),
2051                                              Info, Deduced);
2052       }
2053 
2054       return Sema::TDK_NonDeducedMismatch;
2055     }
2056 
2057     //     (clang extension)
2058     //
2059     //     T __attribute__(((address_space(N))))
2060     case Type::DependentAddressSpace: {
2061       const DependentAddressSpaceType *AddressSpaceParam =
2062           cast<DependentAddressSpaceType>(Param);
2063 
2064       if (const DependentAddressSpaceType *AddressSpaceArg =
2065               dyn_cast<DependentAddressSpaceType>(Arg)) {
2066         // Perform deduction on the pointer type.
2067         if (Sema::TemplateDeductionResult Result =
2068                 DeduceTemplateArgumentsByTypeMatch(
2069                     S, TemplateParams, AddressSpaceParam->getPointeeType(),
2070                     AddressSpaceArg->getPointeeType(), Info, Deduced, TDF))
2071           return Result;
2072 
2073         // Perform deduction on the address space, if we can.
2074         NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
2075             Info, AddressSpaceParam->getAddrSpaceExpr());
2076         if (!NTTP)
2077           return Sema::TDK_Success;
2078 
2079         return DeduceNonTypeTemplateArgument(
2080             S, TemplateParams, NTTP, AddressSpaceArg->getAddrSpaceExpr(), Info,
2081             Deduced);
2082       }
2083 
2084       if (isTargetAddressSpace(Arg.getAddressSpace())) {
2085         llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy),
2086                                      false);
2087         ArgAddressSpace = toTargetAddressSpace(Arg.getAddressSpace());
2088 
2089         // Perform deduction on the pointer types.
2090         if (Sema::TemplateDeductionResult Result =
2091                 DeduceTemplateArgumentsByTypeMatch(
2092                     S, TemplateParams, AddressSpaceParam->getPointeeType(),
2093                     S.Context.removeAddrSpaceQualType(Arg), Info, Deduced, TDF))
2094           return Result;
2095 
2096         // Perform deduction on the address space, if we can.
2097         NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
2098             Info, AddressSpaceParam->getAddrSpaceExpr());
2099         if (!NTTP)
2100           return Sema::TDK_Success;
2101 
2102         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2103                                              ArgAddressSpace, S.Context.IntTy,
2104                                              true, Info, Deduced);
2105       }
2106 
2107       return Sema::TDK_NonDeducedMismatch;
2108     }
2109 
2110     case Type::TypeOfExpr:
2111     case Type::TypeOf:
2112     case Type::DependentName:
2113     case Type::UnresolvedUsing:
2114     case Type::Decltype:
2115     case Type::UnaryTransform:
2116     case Type::Auto:
2117     case Type::DeducedTemplateSpecialization:
2118     case Type::DependentTemplateSpecialization:
2119     case Type::PackExpansion:
2120     case Type::Pipe:
2121       // No template argument deduction for these types
2122       return Sema::TDK_Success;
2123   }
2124 
2125   llvm_unreachable("Invalid Type Class!");
2126 }
2127 
2128 static Sema::TemplateDeductionResult
2129 DeduceTemplateArguments(Sema &S,
2130                         TemplateParameterList *TemplateParams,
2131                         const TemplateArgument &Param,
2132                         TemplateArgument Arg,
2133                         TemplateDeductionInfo &Info,
2134                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
2135   // If the template argument is a pack expansion, perform template argument
2136   // deduction against the pattern of that expansion. This only occurs during
2137   // partial ordering.
2138   if (Arg.isPackExpansion())
2139     Arg = Arg.getPackExpansionPattern();
2140 
2141   switch (Param.getKind()) {
2142   case TemplateArgument::Null:
2143     llvm_unreachable("Null template argument in parameter list");
2144 
2145   case TemplateArgument::Type:
2146     if (Arg.getKind() == TemplateArgument::Type)
2147       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
2148                                                 Param.getAsType(),
2149                                                 Arg.getAsType(),
2150                                                 Info, Deduced, 0);
2151     Info.FirstArg = Param;
2152     Info.SecondArg = Arg;
2153     return Sema::TDK_NonDeducedMismatch;
2154 
2155   case TemplateArgument::Template:
2156     if (Arg.getKind() == TemplateArgument::Template)
2157       return DeduceTemplateArguments(S, TemplateParams,
2158                                      Param.getAsTemplate(),
2159                                      Arg.getAsTemplate(), Info, Deduced);
2160     Info.FirstArg = Param;
2161     Info.SecondArg = Arg;
2162     return Sema::TDK_NonDeducedMismatch;
2163 
2164   case TemplateArgument::TemplateExpansion:
2165     llvm_unreachable("caller should handle pack expansions");
2166 
2167   case TemplateArgument::Declaration:
2168     if (Arg.getKind() == TemplateArgument::Declaration &&
2169         isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
2170       return Sema::TDK_Success;
2171 
2172     Info.FirstArg = Param;
2173     Info.SecondArg = Arg;
2174     return Sema::TDK_NonDeducedMismatch;
2175 
2176   case TemplateArgument::NullPtr:
2177     if (Arg.getKind() == TemplateArgument::NullPtr &&
2178         S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
2179       return Sema::TDK_Success;
2180 
2181     Info.FirstArg = Param;
2182     Info.SecondArg = Arg;
2183     return Sema::TDK_NonDeducedMismatch;
2184 
2185   case TemplateArgument::Integral:
2186     if (Arg.getKind() == TemplateArgument::Integral) {
2187       if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
2188         return Sema::TDK_Success;
2189 
2190       Info.FirstArg = Param;
2191       Info.SecondArg = Arg;
2192       return Sema::TDK_NonDeducedMismatch;
2193     }
2194 
2195     if (Arg.getKind() == TemplateArgument::Expression) {
2196       Info.FirstArg = Param;
2197       Info.SecondArg = Arg;
2198       return Sema::TDK_NonDeducedMismatch;
2199     }
2200 
2201     Info.FirstArg = Param;
2202     Info.SecondArg = Arg;
2203     return Sema::TDK_NonDeducedMismatch;
2204 
2205   case TemplateArgument::Expression:
2206     if (NonTypeTemplateParmDecl *NTTP
2207           = getDeducedParameterFromExpr(Info, Param.getAsExpr())) {
2208       if (Arg.getKind() == TemplateArgument::Integral)
2209         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2210                                              Arg.getAsIntegral(),
2211                                              Arg.getIntegralType(),
2212                                              /*ArrayBound=*/false,
2213                                              Info, Deduced);
2214       if (Arg.getKind() == TemplateArgument::NullPtr)
2215         return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP,
2216                                              Arg.getNullPtrType(),
2217                                              Info, Deduced);
2218       if (Arg.getKind() == TemplateArgument::Expression)
2219         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2220                                              Arg.getAsExpr(), Info, Deduced);
2221       if (Arg.getKind() == TemplateArgument::Declaration)
2222         return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2223                                              Arg.getAsDecl(),
2224                                              Arg.getParamTypeForDecl(),
2225                                              Info, Deduced);
2226 
2227       Info.FirstArg = Param;
2228       Info.SecondArg = Arg;
2229       return Sema::TDK_NonDeducedMismatch;
2230     }
2231 
2232     // Can't deduce anything, but that's okay.
2233     return Sema::TDK_Success;
2234 
2235   case TemplateArgument::Pack:
2236     llvm_unreachable("Argument packs should be expanded by the caller!");
2237   }
2238 
2239   llvm_unreachable("Invalid TemplateArgument Kind!");
2240 }
2241 
2242 /// Determine whether there is a template argument to be used for
2243 /// deduction.
2244 ///
2245 /// This routine "expands" argument packs in-place, overriding its input
2246 /// parameters so that \c Args[ArgIdx] will be the available template argument.
2247 ///
2248 /// \returns true if there is another template argument (which will be at
2249 /// \c Args[ArgIdx]), false otherwise.
2250 static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args,
2251                                             unsigned &ArgIdx) {
2252   if (ArgIdx == Args.size())
2253     return false;
2254 
2255   const TemplateArgument &Arg = Args[ArgIdx];
2256   if (Arg.getKind() != TemplateArgument::Pack)
2257     return true;
2258 
2259   assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?");
2260   Args = Arg.pack_elements();
2261   ArgIdx = 0;
2262   return ArgIdx < Args.size();
2263 }
2264 
2265 /// Determine whether the given set of template arguments has a pack
2266 /// expansion that is not the last template argument.
2267 static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) {
2268   bool FoundPackExpansion = false;
2269   for (const auto &A : Args) {
2270     if (FoundPackExpansion)
2271       return true;
2272 
2273     if (A.getKind() == TemplateArgument::Pack)
2274       return hasPackExpansionBeforeEnd(A.pack_elements());
2275 
2276     // FIXME: If this is a fixed-arity pack expansion from an outer level of
2277     // templates, it should not be treated as a pack expansion.
2278     if (A.isPackExpansion())
2279       FoundPackExpansion = true;
2280   }
2281 
2282   return false;
2283 }
2284 
2285 static Sema::TemplateDeductionResult
2286 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
2287                         ArrayRef<TemplateArgument> Params,
2288                         ArrayRef<TemplateArgument> Args,
2289                         TemplateDeductionInfo &Info,
2290                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2291                         bool NumberOfArgumentsMustMatch) {
2292   // C++0x [temp.deduct.type]p9:
2293   //   If the template argument list of P contains a pack expansion that is not
2294   //   the last template argument, the entire template argument list is a
2295   //   non-deduced context.
2296   if (hasPackExpansionBeforeEnd(Params))
2297     return Sema::TDK_Success;
2298 
2299   // C++0x [temp.deduct.type]p9:
2300   //   If P has a form that contains <T> or <i>, then each argument Pi of the
2301   //   respective template argument list P is compared with the corresponding
2302   //   argument Ai of the corresponding template argument list of A.
2303   unsigned ArgIdx = 0, ParamIdx = 0;
2304   for (; hasTemplateArgumentForDeduction(Params, ParamIdx); ++ParamIdx) {
2305     if (!Params[ParamIdx].isPackExpansion()) {
2306       // The simple case: deduce template arguments by matching Pi and Ai.
2307 
2308       // Check whether we have enough arguments.
2309       if (!hasTemplateArgumentForDeduction(Args, ArgIdx))
2310         return NumberOfArgumentsMustMatch
2311                    ? Sema::TDK_MiscellaneousDeductionFailure
2312                    : Sema::TDK_Success;
2313 
2314       // C++1z [temp.deduct.type]p9:
2315       //   During partial ordering, if Ai was originally a pack expansion [and]
2316       //   Pi is not a pack expansion, template argument deduction fails.
2317       if (Args[ArgIdx].isPackExpansion())
2318         return Sema::TDK_MiscellaneousDeductionFailure;
2319 
2320       // Perform deduction for this Pi/Ai pair.
2321       if (Sema::TemplateDeductionResult Result
2322             = DeduceTemplateArguments(S, TemplateParams,
2323                                       Params[ParamIdx], Args[ArgIdx],
2324                                       Info, Deduced))
2325         return Result;
2326 
2327       // Move to the next argument.
2328       ++ArgIdx;
2329       continue;
2330     }
2331 
2332     // The parameter is a pack expansion.
2333 
2334     // C++0x [temp.deduct.type]p9:
2335     //   If Pi is a pack expansion, then the pattern of Pi is compared with
2336     //   each remaining argument in the template argument list of A. Each
2337     //   comparison deduces template arguments for subsequent positions in the
2338     //   template parameter packs expanded by Pi.
2339     TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
2340 
2341     // Prepare to deduce the packs within the pattern.
2342     PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
2343 
2344     // Keep track of the deduced template arguments for each parameter pack
2345     // expanded by this pack expansion (the outer index) and for each
2346     // template argument (the inner SmallVectors).
2347     for (; hasTemplateArgumentForDeduction(Args, ArgIdx) &&
2348            PackScope.hasNextElement();
2349          ++ArgIdx) {
2350       // Deduce template arguments from the pattern.
2351       if (Sema::TemplateDeductionResult Result
2352             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
2353                                       Info, Deduced))
2354         return Result;
2355 
2356       PackScope.nextPackElement();
2357     }
2358 
2359     // Build argument packs for each of the parameter packs expanded by this
2360     // pack expansion.
2361     if (auto Result = PackScope.finish())
2362       return Result;
2363   }
2364 
2365   return Sema::TDK_Success;
2366 }
2367 
2368 static Sema::TemplateDeductionResult
2369 DeduceTemplateArguments(Sema &S,
2370                         TemplateParameterList *TemplateParams,
2371                         const TemplateArgumentList &ParamList,
2372                         const TemplateArgumentList &ArgList,
2373                         TemplateDeductionInfo &Info,
2374                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
2375   return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(),
2376                                  ArgList.asArray(), Info, Deduced,
2377                                  /*NumberOfArgumentsMustMatch*/false);
2378 }
2379 
2380 /// Determine whether two template arguments are the same.
2381 static bool isSameTemplateArg(ASTContext &Context,
2382                               TemplateArgument X,
2383                               const TemplateArgument &Y,
2384                               bool PackExpansionMatchesPack = false) {
2385   // If we're checking deduced arguments (X) against original arguments (Y),
2386   // we will have flattened packs to non-expansions in X.
2387   if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion())
2388     X = X.getPackExpansionPattern();
2389 
2390   if (X.getKind() != Y.getKind())
2391     return false;
2392 
2393   switch (X.getKind()) {
2394     case TemplateArgument::Null:
2395       llvm_unreachable("Comparing NULL template argument");
2396 
2397     case TemplateArgument::Type:
2398       return Context.getCanonicalType(X.getAsType()) ==
2399              Context.getCanonicalType(Y.getAsType());
2400 
2401     case TemplateArgument::Declaration:
2402       return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
2403 
2404     case TemplateArgument::NullPtr:
2405       return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
2406 
2407     case TemplateArgument::Template:
2408     case TemplateArgument::TemplateExpansion:
2409       return Context.getCanonicalTemplateName(
2410                     X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
2411              Context.getCanonicalTemplateName(
2412                     Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
2413 
2414     case TemplateArgument::Integral:
2415       return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral());
2416 
2417     case TemplateArgument::Expression: {
2418       llvm::FoldingSetNodeID XID, YID;
2419       X.getAsExpr()->Profile(XID, Context, true);
2420       Y.getAsExpr()->Profile(YID, Context, true);
2421       return XID == YID;
2422     }
2423 
2424     case TemplateArgument::Pack:
2425       if (X.pack_size() != Y.pack_size())
2426         return false;
2427 
2428       for (TemplateArgument::pack_iterator XP = X.pack_begin(),
2429                                         XPEnd = X.pack_end(),
2430                                            YP = Y.pack_begin();
2431            XP != XPEnd; ++XP, ++YP)
2432         if (!isSameTemplateArg(Context, *XP, *YP, PackExpansionMatchesPack))
2433           return false;
2434 
2435       return true;
2436   }
2437 
2438   llvm_unreachable("Invalid TemplateArgument Kind!");
2439 }
2440 
2441 /// Allocate a TemplateArgumentLoc where all locations have
2442 /// been initialized to the given location.
2443 ///
2444 /// \param Arg The template argument we are producing template argument
2445 /// location information for.
2446 ///
2447 /// \param NTTPType For a declaration template argument, the type of
2448 /// the non-type template parameter that corresponds to this template
2449 /// argument. Can be null if no type sugar is available to add to the
2450 /// type from the template argument.
2451 ///
2452 /// \param Loc The source location to use for the resulting template
2453 /// argument.
2454 TemplateArgumentLoc
2455 Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
2456                                     QualType NTTPType, SourceLocation Loc) {
2457   switch (Arg.getKind()) {
2458   case TemplateArgument::Null:
2459     llvm_unreachable("Can't get a NULL template argument here");
2460 
2461   case TemplateArgument::Type:
2462     return TemplateArgumentLoc(
2463         Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
2464 
2465   case TemplateArgument::Declaration: {
2466     if (NTTPType.isNull())
2467       NTTPType = Arg.getParamTypeForDecl();
2468     Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2469                   .getAs<Expr>();
2470     return TemplateArgumentLoc(TemplateArgument(E), E);
2471   }
2472 
2473   case TemplateArgument::NullPtr: {
2474     if (NTTPType.isNull())
2475       NTTPType = Arg.getNullPtrType();
2476     Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2477                   .getAs<Expr>();
2478     return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
2479                                E);
2480   }
2481 
2482   case TemplateArgument::Integral: {
2483     Expr *E =
2484         BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
2485     return TemplateArgumentLoc(TemplateArgument(E), E);
2486   }
2487 
2488     case TemplateArgument::Template:
2489     case TemplateArgument::TemplateExpansion: {
2490       NestedNameSpecifierLocBuilder Builder;
2491       TemplateName Template = Arg.getAsTemplate();
2492       if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
2493         Builder.MakeTrivial(Context, DTN->getQualifier(), Loc);
2494       else if (QualifiedTemplateName *QTN =
2495                    Template.getAsQualifiedTemplateName())
2496         Builder.MakeTrivial(Context, QTN->getQualifier(), Loc);
2497 
2498       if (Arg.getKind() == TemplateArgument::Template)
2499         return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context),
2500                                    Loc);
2501 
2502       return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context),
2503                                  Loc, Loc);
2504     }
2505 
2506   case TemplateArgument::Expression:
2507     return TemplateArgumentLoc(Arg, Arg.getAsExpr());
2508 
2509   case TemplateArgument::Pack:
2510     return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
2511   }
2512 
2513   llvm_unreachable("Invalid TemplateArgument Kind!");
2514 }
2515 
2516 TemplateArgumentLoc
2517 Sema::getIdentityTemplateArgumentLoc(Decl *TemplateParm,
2518                                      SourceLocation Location) {
2519   if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParm))
2520     return getTrivialTemplateArgumentLoc(
2521         TemplateArgument(
2522             Context.getTemplateTypeParmType(TTP->getDepth(), TTP->getIndex(),
2523                                             TTP->isParameterPack(), TTP)),
2524         QualType(), Location.isValid() ? Location : TTP->getLocation());
2525   else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParm))
2526     return getTrivialTemplateArgumentLoc(TemplateArgument(TemplateName(TTP)),
2527                                          QualType(),
2528                                          Location.isValid() ? Location :
2529                                          TTP->getLocation());
2530   auto *NTTP = cast<NonTypeTemplateParmDecl>(TemplateParm);
2531   CXXScopeSpec SS;
2532   DeclarationNameInfo Info(NTTP->getDeclName(),
2533                            Location.isValid() ? Location : NTTP->getLocation());
2534   Expr *E = BuildDeclarationNameExpr(SS, Info, NTTP).get();
2535   return getTrivialTemplateArgumentLoc(TemplateArgument(E), NTTP->getType(),
2536                                        Location.isValid() ? Location :
2537                                        NTTP->getLocation());
2538 }
2539 
2540 /// Convert the given deduced template argument and add it to the set of
2541 /// fully-converted template arguments.
2542 static bool
2543 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
2544                                DeducedTemplateArgument Arg,
2545                                NamedDecl *Template,
2546                                TemplateDeductionInfo &Info,
2547                                bool IsDeduced,
2548                                SmallVectorImpl<TemplateArgument> &Output) {
2549   auto ConvertArg = [&](DeducedTemplateArgument Arg,
2550                         unsigned ArgumentPackIndex) {
2551     // Convert the deduced template argument into a template
2552     // argument that we can check, almost as if the user had written
2553     // the template argument explicitly.
2554     TemplateArgumentLoc ArgLoc =
2555         S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation());
2556 
2557     // Check the template argument, converting it as necessary.
2558     return S.CheckTemplateArgument(
2559         Param, ArgLoc, Template, Template->getLocation(),
2560         Template->getSourceRange().getEnd(), ArgumentPackIndex, Output,
2561         IsDeduced
2562             ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound
2563                                               : Sema::CTAK_Deduced)
2564             : Sema::CTAK_Specified);
2565   };
2566 
2567   if (Arg.getKind() == TemplateArgument::Pack) {
2568     // This is a template argument pack, so check each of its arguments against
2569     // the template parameter.
2570     SmallVector<TemplateArgument, 2> PackedArgsBuilder;
2571     for (const auto &P : Arg.pack_elements()) {
2572       // When converting the deduced template argument, append it to the
2573       // general output list. We need to do this so that the template argument
2574       // checking logic has all of the prior template arguments available.
2575       DeducedTemplateArgument InnerArg(P);
2576       InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
2577       assert(InnerArg.getKind() != TemplateArgument::Pack &&
2578              "deduced nested pack");
2579       if (P.isNull()) {
2580         // We deduced arguments for some elements of this pack, but not for
2581         // all of them. This happens if we get a conditionally-non-deduced
2582         // context in a pack expansion (such as an overload set in one of the
2583         // arguments).
2584         S.Diag(Param->getLocation(),
2585                diag::err_template_arg_deduced_incomplete_pack)
2586           << Arg << Param;
2587         return true;
2588       }
2589       if (ConvertArg(InnerArg, PackedArgsBuilder.size()))
2590         return true;
2591 
2592       // Move the converted template argument into our argument pack.
2593       PackedArgsBuilder.push_back(Output.pop_back_val());
2594     }
2595 
2596     // If the pack is empty, we still need to substitute into the parameter
2597     // itself, in case that substitution fails.
2598     if (PackedArgsBuilder.empty()) {
2599       LocalInstantiationScope Scope(S);
2600       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Output);
2601       MultiLevelTemplateArgumentList Args(TemplateArgs);
2602 
2603       if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2604         Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
2605                                          NTTP, Output,
2606                                          Template->getSourceRange());
2607         if (Inst.isInvalid() ||
2608             S.SubstType(NTTP->getType(), Args, NTTP->getLocation(),
2609                         NTTP->getDeclName()).isNull())
2610           return true;
2611       } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) {
2612         Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
2613                                          TTP, Output,
2614                                          Template->getSourceRange());
2615         if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args))
2616           return true;
2617       }
2618       // For type parameters, no substitution is ever required.
2619     }
2620 
2621     // Create the resulting argument pack.
2622     Output.push_back(
2623         TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder));
2624     return false;
2625   }
2626 
2627   return ConvertArg(Arg, 0);
2628 }
2629 
2630 // FIXME: This should not be a template, but
2631 // ClassTemplatePartialSpecializationDecl sadly does not derive from
2632 // TemplateDecl.
2633 template<typename TemplateDeclT>
2634 static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments(
2635     Sema &S, TemplateDeclT *Template, bool IsDeduced,
2636     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2637     TemplateDeductionInfo &Info, SmallVectorImpl<TemplateArgument> &Builder,
2638     LocalInstantiationScope *CurrentInstantiationScope = nullptr,
2639     unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) {
2640   TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2641 
2642   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2643     NamedDecl *Param = TemplateParams->getParam(I);
2644 
2645     // C++0x [temp.arg.explicit]p3:
2646     //    A trailing template parameter pack (14.5.3) not otherwise deduced will
2647     //    be deduced to an empty sequence of template arguments.
2648     // FIXME: Where did the word "trailing" come from?
2649     if (Deduced[I].isNull() && Param->isTemplateParameterPack()) {
2650       if (auto Result =
2651               PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish())
2652         return Result;
2653     }
2654 
2655     if (!Deduced[I].isNull()) {
2656       if (I < NumAlreadyConverted) {
2657         // We may have had explicitly-specified template arguments for a
2658         // template parameter pack (that may or may not have been extended
2659         // via additional deduced arguments).
2660         if (Param->isParameterPack() && CurrentInstantiationScope &&
2661             CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) {
2662           // Forget the partially-substituted pack; its substitution is now
2663           // complete.
2664           CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2665           // We still need to check the argument in case it was extended by
2666           // deduction.
2667         } else {
2668           // We have already fully type-checked and converted this
2669           // argument, because it was explicitly-specified. Just record the
2670           // presence of this argument.
2671           Builder.push_back(Deduced[I]);
2672           continue;
2673         }
2674       }
2675 
2676       // We may have deduced this argument, so it still needs to be
2677       // checked and converted.
2678       if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info,
2679                                          IsDeduced, Builder)) {
2680         Info.Param = makeTemplateParameter(Param);
2681         // FIXME: These template arguments are temporary. Free them!
2682         Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
2683         return Sema::TDK_SubstitutionFailure;
2684       }
2685 
2686       continue;
2687     }
2688 
2689     // Substitute into the default template argument, if available.
2690     bool HasDefaultArg = false;
2691     TemplateDecl *TD = dyn_cast<TemplateDecl>(Template);
2692     if (!TD) {
2693       assert(isa<ClassTemplatePartialSpecializationDecl>(Template) ||
2694              isa<VarTemplatePartialSpecializationDecl>(Template));
2695       return Sema::TDK_Incomplete;
2696     }
2697 
2698     TemplateArgumentLoc DefArg = S.SubstDefaultTemplateArgumentIfAvailable(
2699         TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, Builder,
2700         HasDefaultArg);
2701 
2702     // If there was no default argument, deduction is incomplete.
2703     if (DefArg.getArgument().isNull()) {
2704       Info.Param = makeTemplateParameter(
2705           const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2706       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
2707       if (PartialOverloading) break;
2708 
2709       return HasDefaultArg ? Sema::TDK_SubstitutionFailure
2710                            : Sema::TDK_Incomplete;
2711     }
2712 
2713     // Check whether we can actually use the default argument.
2714     if (S.CheckTemplateArgument(Param, DefArg, TD, TD->getLocation(),
2715                                 TD->getSourceRange().getEnd(), 0, Builder,
2716                                 Sema::CTAK_Specified)) {
2717       Info.Param = makeTemplateParameter(
2718                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2719       // FIXME: These template arguments are temporary. Free them!
2720       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
2721       return Sema::TDK_SubstitutionFailure;
2722     }
2723 
2724     // If we get here, we successfully used the default template argument.
2725   }
2726 
2727   return Sema::TDK_Success;
2728 }
2729 
2730 static DeclContext *getAsDeclContextOrEnclosing(Decl *D) {
2731   if (auto *DC = dyn_cast<DeclContext>(D))
2732     return DC;
2733   return D->getDeclContext();
2734 }
2735 
2736 template<typename T> struct IsPartialSpecialization {
2737   static constexpr bool value = false;
2738 };
2739 template<>
2740 struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> {
2741   static constexpr bool value = true;
2742 };
2743 template<>
2744 struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> {
2745   static constexpr bool value = true;
2746 };
2747 
2748 template<typename TemplateDeclT>
2749 static Sema::TemplateDeductionResult
2750 CheckDeducedArgumentConstraints(Sema& S, TemplateDeclT *Template,
2751                                 ArrayRef<TemplateArgument> DeducedArgs,
2752                                 TemplateDeductionInfo& Info) {
2753   llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
2754   Template->getAssociatedConstraints(AssociatedConstraints);
2755   if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints,
2756                                     DeducedArgs, Info.getLocation(),
2757                                     Info.AssociatedConstraintsSatisfaction) ||
2758       !Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
2759     Info.reset(TemplateArgumentList::CreateCopy(S.Context, DeducedArgs));
2760     return Sema::TDK_ConstraintsNotSatisfied;
2761   }
2762   return Sema::TDK_Success;
2763 }
2764 
2765 /// Complete template argument deduction for a partial specialization.
2766 template <typename T>
2767 static typename std::enable_if<IsPartialSpecialization<T>::value,
2768                                Sema::TemplateDeductionResult>::type
2769 FinishTemplateArgumentDeduction(
2770     Sema &S, T *Partial, bool IsPartialOrdering,
2771     const TemplateArgumentList &TemplateArgs,
2772     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2773     TemplateDeductionInfo &Info) {
2774   // Unevaluated SFINAE context.
2775   EnterExpressionEvaluationContext Unevaluated(
2776       S, Sema::ExpressionEvaluationContext::Unevaluated);
2777   Sema::SFINAETrap Trap(S);
2778 
2779   Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial));
2780 
2781   // C++ [temp.deduct.type]p2:
2782   //   [...] or if any template argument remains neither deduced nor
2783   //   explicitly specified, template argument deduction fails.
2784   SmallVector<TemplateArgument, 4> Builder;
2785   if (auto Result = ConvertDeducedTemplateArguments(
2786           S, Partial, IsPartialOrdering, Deduced, Info, Builder))
2787     return Result;
2788 
2789   // Form the template argument list from the deduced template arguments.
2790   TemplateArgumentList *DeducedArgumentList
2791     = TemplateArgumentList::CreateCopy(S.Context, Builder);
2792 
2793   Info.reset(DeducedArgumentList);
2794 
2795   // Substitute the deduced template arguments into the template
2796   // arguments of the class template partial specialization, and
2797   // verify that the instantiated template arguments are both valid
2798   // and are equivalent to the template arguments originally provided
2799   // to the class template.
2800   LocalInstantiationScope InstScope(S);
2801   auto *Template = Partial->getSpecializedTemplate();
2802   const ASTTemplateArgumentListInfo *PartialTemplArgInfo =
2803       Partial->getTemplateArgsAsWritten();
2804   const TemplateArgumentLoc *PartialTemplateArgs =
2805       PartialTemplArgInfo->getTemplateArgs();
2806 
2807   TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
2808                                     PartialTemplArgInfo->RAngleLoc);
2809 
2810   if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
2811               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2812     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2813     if (ParamIdx >= Partial->getTemplateParameters()->size())
2814       ParamIdx = Partial->getTemplateParameters()->size() - 1;
2815 
2816     Decl *Param = const_cast<NamedDecl *>(
2817         Partial->getTemplateParameters()->getParam(ParamIdx));
2818     Info.Param = makeTemplateParameter(Param);
2819     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2820     return Sema::TDK_SubstitutionFailure;
2821   }
2822 
2823   bool ConstraintsNotSatisfied;
2824   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2825   if (S.CheckTemplateArgumentList(Template, Partial->getLocation(), InstArgs,
2826                                   false, ConvertedInstArgs,
2827                                   /*UpdateArgsWithConversions=*/true,
2828                                   &ConstraintsNotSatisfied))
2829     return ConstraintsNotSatisfied ? Sema::TDK_ConstraintsNotSatisfied :
2830                                      Sema::TDK_SubstitutionFailure;
2831 
2832   TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2833   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2834     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2835     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2836       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2837       Info.FirstArg = TemplateArgs[I];
2838       Info.SecondArg = InstArg;
2839       return Sema::TDK_NonDeducedMismatch;
2840     }
2841   }
2842 
2843   if (Trap.hasErrorOccurred())
2844     return Sema::TDK_SubstitutionFailure;
2845 
2846   if (auto Result = CheckDeducedArgumentConstraints(S, Partial, Builder, Info))
2847     return Result;
2848 
2849   return Sema::TDK_Success;
2850 }
2851 
2852 /// Complete template argument deduction for a class or variable template,
2853 /// when partial ordering against a partial specialization.
2854 // FIXME: Factor out duplication with partial specialization version above.
2855 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
2856     Sema &S, TemplateDecl *Template, bool PartialOrdering,
2857     const TemplateArgumentList &TemplateArgs,
2858     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2859     TemplateDeductionInfo &Info) {
2860   // Unevaluated SFINAE context.
2861   EnterExpressionEvaluationContext Unevaluated(
2862       S, Sema::ExpressionEvaluationContext::Unevaluated);
2863   Sema::SFINAETrap Trap(S);
2864 
2865   Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template));
2866 
2867   // C++ [temp.deduct.type]p2:
2868   //   [...] or if any template argument remains neither deduced nor
2869   //   explicitly specified, template argument deduction fails.
2870   SmallVector<TemplateArgument, 4> Builder;
2871   if (auto Result = ConvertDeducedTemplateArguments(
2872           S, Template, /*IsDeduced*/PartialOrdering, Deduced, Info, Builder))
2873     return Result;
2874 
2875   // Check that we produced the correct argument list.
2876   TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2877   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2878     TemplateArgument InstArg = Builder[I];
2879     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg,
2880                            /*PackExpansionMatchesPack*/true)) {
2881       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2882       Info.FirstArg = TemplateArgs[I];
2883       Info.SecondArg = InstArg;
2884       return Sema::TDK_NonDeducedMismatch;
2885     }
2886   }
2887 
2888   if (Trap.hasErrorOccurred())
2889     return Sema::TDK_SubstitutionFailure;
2890 
2891   if (auto Result = CheckDeducedArgumentConstraints(S, Template, Builder,
2892                                                     Info))
2893     return Result;
2894 
2895   return Sema::TDK_Success;
2896 }
2897 
2898 /// Perform template argument deduction to determine whether
2899 /// the given template arguments match the given class template
2900 /// partial specialization per C++ [temp.class.spec.match].
2901 Sema::TemplateDeductionResult
2902 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2903                               const TemplateArgumentList &TemplateArgs,
2904                               TemplateDeductionInfo &Info) {
2905   if (Partial->isInvalidDecl())
2906     return TDK_Invalid;
2907 
2908   // C++ [temp.class.spec.match]p2:
2909   //   A partial specialization matches a given actual template
2910   //   argument list if the template arguments of the partial
2911   //   specialization can be deduced from the actual template argument
2912   //   list (14.8.2).
2913 
2914   // Unevaluated SFINAE context.
2915   EnterExpressionEvaluationContext Unevaluated(
2916       *this, Sema::ExpressionEvaluationContext::Unevaluated);
2917   SFINAETrap Trap(*this);
2918 
2919   SmallVector<DeducedTemplateArgument, 4> Deduced;
2920   Deduced.resize(Partial->getTemplateParameters()->size());
2921   if (TemplateDeductionResult Result
2922         = ::DeduceTemplateArguments(*this,
2923                                     Partial->getTemplateParameters(),
2924                                     Partial->getTemplateArgs(),
2925                                     TemplateArgs, Info, Deduced))
2926     return Result;
2927 
2928   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2929   InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
2930                              Info);
2931   if (Inst.isInvalid())
2932     return TDK_InstantiationDepth;
2933 
2934   if (Trap.hasErrorOccurred())
2935     return Sema::TDK_SubstitutionFailure;
2936 
2937   return ::FinishTemplateArgumentDeduction(
2938       *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info);
2939 }
2940 
2941 /// Perform template argument deduction to determine whether
2942 /// the given template arguments match the given variable template
2943 /// partial specialization per C++ [temp.class.spec.match].
2944 Sema::TemplateDeductionResult
2945 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
2946                               const TemplateArgumentList &TemplateArgs,
2947                               TemplateDeductionInfo &Info) {
2948   if (Partial->isInvalidDecl())
2949     return TDK_Invalid;
2950 
2951   // C++ [temp.class.spec.match]p2:
2952   //   A partial specialization matches a given actual template
2953   //   argument list if the template arguments of the partial
2954   //   specialization can be deduced from the actual template argument
2955   //   list (14.8.2).
2956 
2957   // Unevaluated SFINAE context.
2958   EnterExpressionEvaluationContext Unevaluated(
2959       *this, Sema::ExpressionEvaluationContext::Unevaluated);
2960   SFINAETrap Trap(*this);
2961 
2962   SmallVector<DeducedTemplateArgument, 4> Deduced;
2963   Deduced.resize(Partial->getTemplateParameters()->size());
2964   if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
2965           *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
2966           TemplateArgs, Info, Deduced))
2967     return Result;
2968 
2969   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2970   InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
2971                              Info);
2972   if (Inst.isInvalid())
2973     return TDK_InstantiationDepth;
2974 
2975   if (Trap.hasErrorOccurred())
2976     return Sema::TDK_SubstitutionFailure;
2977 
2978   return ::FinishTemplateArgumentDeduction(
2979       *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info);
2980 }
2981 
2982 /// Determine whether the given type T is a simple-template-id type.
2983 static bool isSimpleTemplateIdType(QualType T) {
2984   if (const TemplateSpecializationType *Spec
2985         = T->getAs<TemplateSpecializationType>())
2986     return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
2987 
2988   // C++17 [temp.local]p2:
2989   //   the injected-class-name [...] is equivalent to the template-name followed
2990   //   by the template-arguments of the class template specialization or partial
2991   //   specialization enclosed in <>
2992   // ... which means it's equivalent to a simple-template-id.
2993   //
2994   // This only arises during class template argument deduction for a copy
2995   // deduction candidate, where it permits slicing.
2996   if (T->getAs<InjectedClassNameType>())
2997     return true;
2998 
2999   return false;
3000 }
3001 
3002 /// Substitute the explicitly-provided template arguments into the
3003 /// given function template according to C++ [temp.arg.explicit].
3004 ///
3005 /// \param FunctionTemplate the function template into which the explicit
3006 /// template arguments will be substituted.
3007 ///
3008 /// \param ExplicitTemplateArgs the explicitly-specified template
3009 /// arguments.
3010 ///
3011 /// \param Deduced the deduced template arguments, which will be populated
3012 /// with the converted and checked explicit template arguments.
3013 ///
3014 /// \param ParamTypes will be populated with the instantiated function
3015 /// parameters.
3016 ///
3017 /// \param FunctionType if non-NULL, the result type of the function template
3018 /// will also be instantiated and the pointed-to value will be updated with
3019 /// the instantiated function type.
3020 ///
3021 /// \param Info if substitution fails for any reason, this object will be
3022 /// populated with more information about the failure.
3023 ///
3024 /// \returns TDK_Success if substitution was successful, or some failure
3025 /// condition.
3026 Sema::TemplateDeductionResult
3027 Sema::SubstituteExplicitTemplateArguments(
3028                                       FunctionTemplateDecl *FunctionTemplate,
3029                                TemplateArgumentListInfo &ExplicitTemplateArgs,
3030                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3031                                  SmallVectorImpl<QualType> &ParamTypes,
3032                                           QualType *FunctionType,
3033                                           TemplateDeductionInfo &Info) {
3034   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3035   TemplateParameterList *TemplateParams
3036     = FunctionTemplate->getTemplateParameters();
3037 
3038   if (ExplicitTemplateArgs.size() == 0) {
3039     // No arguments to substitute; just copy over the parameter types and
3040     // fill in the function type.
3041     for (auto P : Function->parameters())
3042       ParamTypes.push_back(P->getType());
3043 
3044     if (FunctionType)
3045       *FunctionType = Function->getType();
3046     return TDK_Success;
3047   }
3048 
3049   // Unevaluated SFINAE context.
3050   EnterExpressionEvaluationContext Unevaluated(
3051       *this, Sema::ExpressionEvaluationContext::Unevaluated);
3052   SFINAETrap Trap(*this);
3053 
3054   // C++ [temp.arg.explicit]p3:
3055   //   Template arguments that are present shall be specified in the
3056   //   declaration order of their corresponding template-parameters. The
3057   //   template argument list shall not specify more template-arguments than
3058   //   there are corresponding template-parameters.
3059   SmallVector<TemplateArgument, 4> Builder;
3060 
3061   // Enter a new template instantiation context where we check the
3062   // explicitly-specified template arguments against this function template,
3063   // and then substitute them into the function parameter types.
3064   SmallVector<TemplateArgument, 4> DeducedArgs;
3065   InstantiatingTemplate Inst(
3066       *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3067       CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
3068   if (Inst.isInvalid())
3069     return TDK_InstantiationDepth;
3070 
3071   if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(),
3072                                 ExplicitTemplateArgs, true, Builder, false) ||
3073       Trap.hasErrorOccurred()) {
3074     unsigned Index = Builder.size();
3075     if (Index >= TemplateParams->size())
3076       return TDK_SubstitutionFailure;
3077     Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
3078     return TDK_InvalidExplicitArguments;
3079   }
3080 
3081   // Form the template argument list from the explicitly-specified
3082   // template arguments.
3083   TemplateArgumentList *ExplicitArgumentList
3084     = TemplateArgumentList::CreateCopy(Context, Builder);
3085   Info.setExplicitArgs(ExplicitArgumentList);
3086 
3087   // Template argument deduction and the final substitution should be
3088   // done in the context of the templated declaration.  Explicit
3089   // argument substitution, on the other hand, needs to happen in the
3090   // calling context.
3091   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3092 
3093   // If we deduced template arguments for a template parameter pack,
3094   // note that the template argument pack is partially substituted and record
3095   // the explicit template arguments. They'll be used as part of deduction
3096   // for this template parameter pack.
3097   unsigned PartiallySubstitutedPackIndex = -1u;
3098   if (!Builder.empty()) {
3099     const TemplateArgument &Arg = Builder.back();
3100     if (Arg.getKind() == TemplateArgument::Pack) {
3101       auto *Param = TemplateParams->getParam(Builder.size() - 1);
3102       // If this is a fully-saturated fixed-size pack, it should be
3103       // fully-substituted, not partially-substituted.
3104       Optional<unsigned> Expansions = getExpandedPackSize(Param);
3105       if (!Expansions || Arg.pack_size() < *Expansions) {
3106         PartiallySubstitutedPackIndex = Builder.size() - 1;
3107         CurrentInstantiationScope->SetPartiallySubstitutedPack(
3108             Param, Arg.pack_begin(), Arg.pack_size());
3109       }
3110     }
3111   }
3112 
3113   const FunctionProtoType *Proto
3114     = Function->getType()->getAs<FunctionProtoType>();
3115   assert(Proto && "Function template does not have a prototype?");
3116 
3117   // Isolate our substituted parameters from our caller.
3118   LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
3119 
3120   ExtParameterInfoBuilder ExtParamInfos;
3121 
3122   // Instantiate the types of each of the function parameters given the
3123   // explicitly-specified template arguments. If the function has a trailing
3124   // return type, substitute it after the arguments to ensure we substitute
3125   // in lexical order.
3126   if (Proto->hasTrailingReturn()) {
3127     if (SubstParmTypes(Function->getLocation(), Function->parameters(),
3128                        Proto->getExtParameterInfosOrNull(),
3129                        MultiLevelTemplateArgumentList(*ExplicitArgumentList),
3130                        ParamTypes, /*params*/ nullptr, ExtParamInfos))
3131       return TDK_SubstitutionFailure;
3132   }
3133 
3134   // Instantiate the return type.
3135   QualType ResultType;
3136   {
3137     // C++11 [expr.prim.general]p3:
3138     //   If a declaration declares a member function or member function
3139     //   template of a class X, the expression this is a prvalue of type
3140     //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
3141     //   and the end of the function-definition, member-declarator, or
3142     //   declarator.
3143     Qualifiers ThisTypeQuals;
3144     CXXRecordDecl *ThisContext = nullptr;
3145     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3146       ThisContext = Method->getParent();
3147       ThisTypeQuals = Method->getMethodQualifiers();
3148     }
3149 
3150     CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
3151                                getLangOpts().CPlusPlus11);
3152 
3153     ResultType =
3154         SubstType(Proto->getReturnType(),
3155                   MultiLevelTemplateArgumentList(*ExplicitArgumentList),
3156                   Function->getTypeSpecStartLoc(), Function->getDeclName());
3157     if (ResultType.isNull() || Trap.hasErrorOccurred())
3158       return TDK_SubstitutionFailure;
3159     // CUDA: Kernel function must have 'void' return type.
3160     if (getLangOpts().CUDA)
3161       if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) {
3162         Diag(Function->getLocation(), diag::err_kern_type_not_void_return)
3163             << Function->getType() << Function->getSourceRange();
3164         return TDK_SubstitutionFailure;
3165       }
3166   }
3167 
3168   // Instantiate the types of each of the function parameters given the
3169   // explicitly-specified template arguments if we didn't do so earlier.
3170   if (!Proto->hasTrailingReturn() &&
3171       SubstParmTypes(Function->getLocation(), Function->parameters(),
3172                      Proto->getExtParameterInfosOrNull(),
3173                      MultiLevelTemplateArgumentList(*ExplicitArgumentList),
3174                      ParamTypes, /*params*/ nullptr, ExtParamInfos))
3175     return TDK_SubstitutionFailure;
3176 
3177   if (FunctionType) {
3178     auto EPI = Proto->getExtProtoInfo();
3179     EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size());
3180 
3181     // In C++1z onwards, exception specifications are part of the function type,
3182     // so substitution into the type must also substitute into the exception
3183     // specification.
3184     SmallVector<QualType, 4> ExceptionStorage;
3185     if (getLangOpts().CPlusPlus17 &&
3186         SubstExceptionSpec(
3187             Function->getLocation(), EPI.ExceptionSpec, ExceptionStorage,
3188             MultiLevelTemplateArgumentList(*ExplicitArgumentList)))
3189       return TDK_SubstitutionFailure;
3190 
3191     *FunctionType = BuildFunctionType(ResultType, ParamTypes,
3192                                       Function->getLocation(),
3193                                       Function->getDeclName(),
3194                                       EPI);
3195     if (FunctionType->isNull() || Trap.hasErrorOccurred())
3196       return TDK_SubstitutionFailure;
3197   }
3198 
3199   // C++ [temp.arg.explicit]p2:
3200   //   Trailing template arguments that can be deduced (14.8.2) may be
3201   //   omitted from the list of explicit template-arguments. If all of the
3202   //   template arguments can be deduced, they may all be omitted; in this
3203   //   case, the empty template argument list <> itself may also be omitted.
3204   //
3205   // Take all of the explicitly-specified arguments and put them into
3206   // the set of deduced template arguments. The partially-substituted
3207   // parameter pack, however, will be set to NULL since the deduction
3208   // mechanism handles the partially-substituted argument pack directly.
3209   Deduced.reserve(TemplateParams->size());
3210   for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
3211     const TemplateArgument &Arg = ExplicitArgumentList->get(I);
3212     if (I == PartiallySubstitutedPackIndex)
3213       Deduced.push_back(DeducedTemplateArgument());
3214     else
3215       Deduced.push_back(Arg);
3216   }
3217 
3218   return TDK_Success;
3219 }
3220 
3221 /// Check whether the deduced argument type for a call to a function
3222 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
3223 static Sema::TemplateDeductionResult
3224 CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info,
3225                               Sema::OriginalCallArg OriginalArg,
3226                               QualType DeducedA) {
3227   ASTContext &Context = S.Context;
3228 
3229   auto Failed = [&]() -> Sema::TemplateDeductionResult {
3230     Info.FirstArg = TemplateArgument(DeducedA);
3231     Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType);
3232     Info.CallArgIndex = OriginalArg.ArgIdx;
3233     return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested
3234                                        : Sema::TDK_DeducedMismatch;
3235   };
3236 
3237   QualType A = OriginalArg.OriginalArgType;
3238   QualType OriginalParamType = OriginalArg.OriginalParamType;
3239 
3240   // Check for type equality (top-level cv-qualifiers are ignored).
3241   if (Context.hasSameUnqualifiedType(A, DeducedA))
3242     return Sema::TDK_Success;
3243 
3244   // Strip off references on the argument types; they aren't needed for
3245   // the following checks.
3246   if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
3247     DeducedA = DeducedARef->getPointeeType();
3248   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3249     A = ARef->getPointeeType();
3250 
3251   // C++ [temp.deduct.call]p4:
3252   //   [...] However, there are three cases that allow a difference:
3253   //     - If the original P is a reference type, the deduced A (i.e., the
3254   //       type referred to by the reference) can be more cv-qualified than
3255   //       the transformed A.
3256   if (const ReferenceType *OriginalParamRef
3257       = OriginalParamType->getAs<ReferenceType>()) {
3258     // We don't want to keep the reference around any more.
3259     OriginalParamType = OriginalParamRef->getPointeeType();
3260 
3261     // FIXME: Resolve core issue (no number yet): if the original P is a
3262     // reference type and the transformed A is function type "noexcept F",
3263     // the deduced A can be F.
3264     QualType Tmp;
3265     if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp))
3266       return Sema::TDK_Success;
3267 
3268     Qualifiers AQuals = A.getQualifiers();
3269     Qualifiers DeducedAQuals = DeducedA.getQualifiers();
3270 
3271     // Under Objective-C++ ARC, the deduced type may have implicitly
3272     // been given strong or (when dealing with a const reference)
3273     // unsafe_unretained lifetime. If so, update the original
3274     // qualifiers to include this lifetime.
3275     if (S.getLangOpts().ObjCAutoRefCount &&
3276         ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
3277           AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
3278          (DeducedAQuals.hasConst() &&
3279           DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
3280       AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
3281     }
3282 
3283     if (AQuals == DeducedAQuals) {
3284       // Qualifiers match; there's nothing to do.
3285     } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
3286       return Failed();
3287     } else {
3288       // Qualifiers are compatible, so have the argument type adopt the
3289       // deduced argument type's qualifiers as if we had performed the
3290       // qualification conversion.
3291       A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
3292     }
3293   }
3294 
3295   //    - The transformed A can be another pointer or pointer to member
3296   //      type that can be converted to the deduced A via a function pointer
3297   //      conversion and/or a qualification conversion.
3298   //
3299   // Also allow conversions which merely strip __attribute__((noreturn)) from
3300   // function types (recursively).
3301   bool ObjCLifetimeConversion = false;
3302   QualType ResultTy;
3303   if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
3304       (S.IsQualificationConversion(A, DeducedA, false,
3305                                    ObjCLifetimeConversion) ||
3306        S.IsFunctionConversion(A, DeducedA, ResultTy)))
3307     return Sema::TDK_Success;
3308 
3309   //    - If P is a class and P has the form simple-template-id, then the
3310   //      transformed A can be a derived class of the deduced A. [...]
3311   //     [...] Likewise, if P is a pointer to a class of the form
3312   //      simple-template-id, the transformed A can be a pointer to a
3313   //      derived class pointed to by the deduced A.
3314   if (const PointerType *OriginalParamPtr
3315       = OriginalParamType->getAs<PointerType>()) {
3316     if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
3317       if (const PointerType *APtr = A->getAs<PointerType>()) {
3318         if (A->getPointeeType()->isRecordType()) {
3319           OriginalParamType = OriginalParamPtr->getPointeeType();
3320           DeducedA = DeducedAPtr->getPointeeType();
3321           A = APtr->getPointeeType();
3322         }
3323       }
3324     }
3325   }
3326 
3327   if (Context.hasSameUnqualifiedType(A, DeducedA))
3328     return Sema::TDK_Success;
3329 
3330   if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
3331       S.IsDerivedFrom(Info.getLocation(), A, DeducedA))
3332     return Sema::TDK_Success;
3333 
3334   return Failed();
3335 }
3336 
3337 /// Find the pack index for a particular parameter index in an instantiation of
3338 /// a function template with specific arguments.
3339 ///
3340 /// \return The pack index for whichever pack produced this parameter, or -1
3341 ///         if this was not produced by a parameter. Intended to be used as the
3342 ///         ArgumentPackSubstitutionIndex for further substitutions.
3343 // FIXME: We should track this in OriginalCallArgs so we don't need to
3344 // reconstruct it here.
3345 static unsigned getPackIndexForParam(Sema &S,
3346                                      FunctionTemplateDecl *FunctionTemplate,
3347                                      const MultiLevelTemplateArgumentList &Args,
3348                                      unsigned ParamIdx) {
3349   unsigned Idx = 0;
3350   for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) {
3351     if (PD->isParameterPack()) {
3352       unsigned NumExpansions =
3353           S.getNumArgumentsInExpansion(PD->getType(), Args).getValueOr(1);
3354       if (Idx + NumExpansions > ParamIdx)
3355         return ParamIdx - Idx;
3356       Idx += NumExpansions;
3357     } else {
3358       if (Idx == ParamIdx)
3359         return -1; // Not a pack expansion
3360       ++Idx;
3361     }
3362   }
3363 
3364   llvm_unreachable("parameter index would not be produced from template");
3365 }
3366 
3367 /// Finish template argument deduction for a function template,
3368 /// checking the deduced template arguments for completeness and forming
3369 /// the function template specialization.
3370 ///
3371 /// \param OriginalCallArgs If non-NULL, the original call arguments against
3372 /// which the deduced argument types should be compared.
3373 Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction(
3374     FunctionTemplateDecl *FunctionTemplate,
3375     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3376     unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
3377     TemplateDeductionInfo &Info,
3378     SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
3379     bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) {
3380   // Unevaluated SFINAE context.
3381   EnterExpressionEvaluationContext Unevaluated(
3382       *this, Sema::ExpressionEvaluationContext::Unevaluated);
3383   SFINAETrap Trap(*this);
3384 
3385   // Enter a new template instantiation context while we instantiate the
3386   // actual function declaration.
3387   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3388   InstantiatingTemplate Inst(
3389       *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3390       CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info);
3391   if (Inst.isInvalid())
3392     return TDK_InstantiationDepth;
3393 
3394   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3395 
3396   // C++ [temp.deduct.type]p2:
3397   //   [...] or if any template argument remains neither deduced nor
3398   //   explicitly specified, template argument deduction fails.
3399   SmallVector<TemplateArgument, 4> Builder;
3400   if (auto Result = ConvertDeducedTemplateArguments(
3401           *this, FunctionTemplate, /*IsDeduced*/true, Deduced, Info, Builder,
3402           CurrentInstantiationScope, NumExplicitlySpecified,
3403           PartialOverloading))
3404     return Result;
3405 
3406   // C++ [temp.deduct.call]p10: [DR1391]
3407   //   If deduction succeeds for all parameters that contain
3408   //   template-parameters that participate in template argument deduction,
3409   //   and all template arguments are explicitly specified, deduced, or
3410   //   obtained from default template arguments, remaining parameters are then
3411   //   compared with the corresponding arguments. For each remaining parameter
3412   //   P with a type that was non-dependent before substitution of any
3413   //   explicitly-specified template arguments, if the corresponding argument
3414   //   A cannot be implicitly converted to P, deduction fails.
3415   if (CheckNonDependent())
3416     return TDK_NonDependentConversionFailure;
3417 
3418   // Form the template argument list from the deduced template arguments.
3419   TemplateArgumentList *DeducedArgumentList
3420     = TemplateArgumentList::CreateCopy(Context, Builder);
3421   Info.reset(DeducedArgumentList);
3422 
3423   // Substitute the deduced template arguments into the function template
3424   // declaration to produce the function template specialization.
3425   DeclContext *Owner = FunctionTemplate->getDeclContext();
3426   if (FunctionTemplate->getFriendObjectKind())
3427     Owner = FunctionTemplate->getLexicalDeclContext();
3428   MultiLevelTemplateArgumentList SubstArgs(*DeducedArgumentList);
3429   Specialization = cast_or_null<FunctionDecl>(
3430       SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, SubstArgs));
3431   if (!Specialization || Specialization->isInvalidDecl())
3432     return TDK_SubstitutionFailure;
3433 
3434   assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
3435          FunctionTemplate->getCanonicalDecl());
3436 
3437   // If the template argument list is owned by the function template
3438   // specialization, release it.
3439   if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
3440       !Trap.hasErrorOccurred())
3441     Info.take();
3442 
3443   // There may have been an error that did not prevent us from constructing a
3444   // declaration. Mark the declaration invalid and return with a substitution
3445   // failure.
3446   if (Trap.hasErrorOccurred()) {
3447     Specialization->setInvalidDecl(true);
3448     return TDK_SubstitutionFailure;
3449   }
3450 
3451   // C++2a [temp.deduct]p5
3452   //   [...] When all template arguments have been deduced [...] all uses of
3453   //   template parameters [...] are replaced with the corresponding deduced
3454   //   or default argument values.
3455   //   [...] If the function template has associated constraints
3456   //   ([temp.constr.decl]), those constraints are checked for satisfaction
3457   //   ([temp.constr.constr]). If the constraints are not satisfied, type
3458   //   deduction fails.
3459   if (CheckInstantiatedFunctionTemplateConstraints(Info.getLocation(),
3460           Specialization, Builder, Info.AssociatedConstraintsSatisfaction))
3461     return TDK_MiscellaneousDeductionFailure;
3462 
3463   if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
3464     Info.reset(TemplateArgumentList::CreateCopy(Context, Builder));
3465     return TDK_ConstraintsNotSatisfied;
3466   }
3467 
3468   if (OriginalCallArgs) {
3469     // C++ [temp.deduct.call]p4:
3470     //   In general, the deduction process attempts to find template argument
3471     //   values that will make the deduced A identical to A (after the type A
3472     //   is transformed as described above). [...]
3473     llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes;
3474     for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
3475       OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
3476 
3477       auto ParamIdx = OriginalArg.ArgIdx;
3478       if (ParamIdx >= Specialization->getNumParams())
3479         // FIXME: This presumably means a pack ended up smaller than we
3480         // expected while deducing. Should this not result in deduction
3481         // failure? Can it even happen?
3482         continue;
3483 
3484       QualType DeducedA;
3485       if (!OriginalArg.DecomposedParam) {
3486         // P is one of the function parameters, just look up its substituted
3487         // type.
3488         DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
3489       } else {
3490         // P is a decomposed element of a parameter corresponding to a
3491         // braced-init-list argument. Substitute back into P to find the
3492         // deduced A.
3493         QualType &CacheEntry =
3494             DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}];
3495         if (CacheEntry.isNull()) {
3496           ArgumentPackSubstitutionIndexRAII PackIndex(
3497               *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs,
3498                                           ParamIdx));
3499           CacheEntry =
3500               SubstType(OriginalArg.OriginalParamType, SubstArgs,
3501                         Specialization->getTypeSpecStartLoc(),
3502                         Specialization->getDeclName());
3503         }
3504         DeducedA = CacheEntry;
3505       }
3506 
3507       if (auto TDK =
3508               CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA))
3509         return TDK;
3510     }
3511   }
3512 
3513   // If we suppressed any diagnostics while performing template argument
3514   // deduction, and if we haven't already instantiated this declaration,
3515   // keep track of these diagnostics. They'll be emitted if this specialization
3516   // is actually used.
3517   if (Info.diag_begin() != Info.diag_end()) {
3518     SuppressedDiagnosticsMap::iterator
3519       Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
3520     if (Pos == SuppressedDiagnostics.end())
3521         SuppressedDiagnostics[Specialization->getCanonicalDecl()]
3522           .append(Info.diag_begin(), Info.diag_end());
3523   }
3524 
3525   return TDK_Success;
3526 }
3527 
3528 /// Gets the type of a function for template-argument-deducton
3529 /// purposes when it's considered as part of an overload set.
3530 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
3531                                   FunctionDecl *Fn) {
3532   // We may need to deduce the return type of the function now.
3533   if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
3534       S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
3535     return {};
3536 
3537   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
3538     if (Method->isInstance()) {
3539       // An instance method that's referenced in a form that doesn't
3540       // look like a member pointer is just invalid.
3541       if (!R.HasFormOfMemberPointer)
3542         return {};
3543 
3544       return S.Context.getMemberPointerType(Fn->getType(),
3545                S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
3546     }
3547 
3548   if (!R.IsAddressOfOperand) return Fn->getType();
3549   return S.Context.getPointerType(Fn->getType());
3550 }
3551 
3552 /// Apply the deduction rules for overload sets.
3553 ///
3554 /// \return the null type if this argument should be treated as an
3555 /// undeduced context
3556 static QualType
3557 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
3558                             Expr *Arg, QualType ParamType,
3559                             bool ParamWasReference) {
3560 
3561   OverloadExpr::FindResult R = OverloadExpr::find(Arg);
3562 
3563   OverloadExpr *Ovl = R.Expression;
3564 
3565   // C++0x [temp.deduct.call]p4
3566   unsigned TDF = 0;
3567   if (ParamWasReference)
3568     TDF |= TDF_ParamWithReferenceType;
3569   if (R.IsAddressOfOperand)
3570     TDF |= TDF_IgnoreQualifiers;
3571 
3572   // C++0x [temp.deduct.call]p6:
3573   //   When P is a function type, pointer to function type, or pointer
3574   //   to member function type:
3575 
3576   if (!ParamType->isFunctionType() &&
3577       !ParamType->isFunctionPointerType() &&
3578       !ParamType->isMemberFunctionPointerType()) {
3579     if (Ovl->hasExplicitTemplateArgs()) {
3580       // But we can still look for an explicit specialization.
3581       if (FunctionDecl *ExplicitSpec
3582             = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
3583         return GetTypeOfFunction(S, R, ExplicitSpec);
3584     }
3585 
3586     DeclAccessPair DAP;
3587     if (FunctionDecl *Viable =
3588             S.resolveAddressOfSingleOverloadCandidate(Arg, DAP))
3589       return GetTypeOfFunction(S, R, Viable);
3590 
3591     return {};
3592   }
3593 
3594   // Gather the explicit template arguments, if any.
3595   TemplateArgumentListInfo ExplicitTemplateArgs;
3596   if (Ovl->hasExplicitTemplateArgs())
3597     Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
3598   QualType Match;
3599   for (UnresolvedSetIterator I = Ovl->decls_begin(),
3600          E = Ovl->decls_end(); I != E; ++I) {
3601     NamedDecl *D = (*I)->getUnderlyingDecl();
3602 
3603     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
3604       //   - If the argument is an overload set containing one or more
3605       //     function templates, the parameter is treated as a
3606       //     non-deduced context.
3607       if (!Ovl->hasExplicitTemplateArgs())
3608         return {};
3609 
3610       // Otherwise, see if we can resolve a function type
3611       FunctionDecl *Specialization = nullptr;
3612       TemplateDeductionInfo Info(Ovl->getNameLoc());
3613       if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
3614                                     Specialization, Info))
3615         continue;
3616 
3617       D = Specialization;
3618     }
3619 
3620     FunctionDecl *Fn = cast<FunctionDecl>(D);
3621     QualType ArgType = GetTypeOfFunction(S, R, Fn);
3622     if (ArgType.isNull()) continue;
3623 
3624     // Function-to-pointer conversion.
3625     if (!ParamWasReference && ParamType->isPointerType() &&
3626         ArgType->isFunctionType())
3627       ArgType = S.Context.getPointerType(ArgType);
3628 
3629     //   - If the argument is an overload set (not containing function
3630     //     templates), trial argument deduction is attempted using each
3631     //     of the members of the set. If deduction succeeds for only one
3632     //     of the overload set members, that member is used as the
3633     //     argument value for the deduction. If deduction succeeds for
3634     //     more than one member of the overload set the parameter is
3635     //     treated as a non-deduced context.
3636 
3637     // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
3638     //   Type deduction is done independently for each P/A pair, and
3639     //   the deduced template argument values are then combined.
3640     // So we do not reject deductions which were made elsewhere.
3641     SmallVector<DeducedTemplateArgument, 8>
3642       Deduced(TemplateParams->size());
3643     TemplateDeductionInfo Info(Ovl->getNameLoc());
3644     Sema::TemplateDeductionResult Result
3645       = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3646                                            ArgType, Info, Deduced, TDF);
3647     if (Result) continue;
3648     if (!Match.isNull())
3649       return {};
3650     Match = ArgType;
3651   }
3652 
3653   return Match;
3654 }
3655 
3656 /// Perform the adjustments to the parameter and argument types
3657 /// described in C++ [temp.deduct.call].
3658 ///
3659 /// \returns true if the caller should not attempt to perform any template
3660 /// argument deduction based on this P/A pair because the argument is an
3661 /// overloaded function set that could not be resolved.
3662 static bool AdjustFunctionParmAndArgTypesForDeduction(
3663     Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3664     QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF) {
3665   // C++0x [temp.deduct.call]p3:
3666   //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
3667   //   are ignored for type deduction.
3668   if (ParamType.hasQualifiers())
3669     ParamType = ParamType.getUnqualifiedType();
3670 
3671   //   [...] If P is a reference type, the type referred to by P is
3672   //   used for type deduction.
3673   const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
3674   if (ParamRefType)
3675     ParamType = ParamRefType->getPointeeType();
3676 
3677   // Overload sets usually make this parameter an undeduced context,
3678   // but there are sometimes special circumstances.  Typically
3679   // involving a template-id-expr.
3680   if (ArgType == S.Context.OverloadTy) {
3681     ArgType = ResolveOverloadForDeduction(S, TemplateParams,
3682                                           Arg, ParamType,
3683                                           ParamRefType != nullptr);
3684     if (ArgType.isNull())
3685       return true;
3686   }
3687 
3688   if (ParamRefType) {
3689     // If the argument has incomplete array type, try to complete its type.
3690     if (ArgType->isIncompleteArrayType()) {
3691       S.completeExprArrayBound(Arg);
3692       ArgType = Arg->getType();
3693     }
3694 
3695     // C++1z [temp.deduct.call]p3:
3696     //   If P is a forwarding reference and the argument is an lvalue, the type
3697     //   "lvalue reference to A" is used in place of A for type deduction.
3698     if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) &&
3699         Arg->isLValue())
3700       ArgType = S.Context.getLValueReferenceType(ArgType);
3701   } else {
3702     // C++ [temp.deduct.call]p2:
3703     //   If P is not a reference type:
3704     //   - If A is an array type, the pointer type produced by the
3705     //     array-to-pointer standard conversion (4.2) is used in place of
3706     //     A for type deduction; otherwise,
3707     if (ArgType->isArrayType())
3708       ArgType = S.Context.getArrayDecayedType(ArgType);
3709     //   - If A is a function type, the pointer type produced by the
3710     //     function-to-pointer standard conversion (4.3) is used in place
3711     //     of A for type deduction; otherwise,
3712     else if (ArgType->isFunctionType())
3713       ArgType = S.Context.getPointerType(ArgType);
3714     else {
3715       // - If A is a cv-qualified type, the top level cv-qualifiers of A's
3716       //   type are ignored for type deduction.
3717       ArgType = ArgType.getUnqualifiedType();
3718     }
3719   }
3720 
3721   // C++0x [temp.deduct.call]p4:
3722   //   In general, the deduction process attempts to find template argument
3723   //   values that will make the deduced A identical to A (after the type A
3724   //   is transformed as described above). [...]
3725   TDF = TDF_SkipNonDependent;
3726 
3727   //     - If the original P is a reference type, the deduced A (i.e., the
3728   //       type referred to by the reference) can be more cv-qualified than
3729   //       the transformed A.
3730   if (ParamRefType)
3731     TDF |= TDF_ParamWithReferenceType;
3732   //     - The transformed A can be another pointer or pointer to member
3733   //       type that can be converted to the deduced A via a qualification
3734   //       conversion (4.4).
3735   if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
3736       ArgType->isObjCObjectPointerType())
3737     TDF |= TDF_IgnoreQualifiers;
3738   //     - If P is a class and P has the form simple-template-id, then the
3739   //       transformed A can be a derived class of the deduced A. Likewise,
3740   //       if P is a pointer to a class of the form simple-template-id, the
3741   //       transformed A can be a pointer to a derived class pointed to by
3742   //       the deduced A.
3743   if (isSimpleTemplateIdType(ParamType) ||
3744       (isa<PointerType>(ParamType) &&
3745        isSimpleTemplateIdType(
3746                               ParamType->getAs<PointerType>()->getPointeeType())))
3747     TDF |= TDF_DerivedClass;
3748 
3749   return false;
3750 }
3751 
3752 static bool
3753 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
3754                                QualType T);
3755 
3756 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
3757     Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3758     QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
3759     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3760     SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
3761     bool DecomposedParam, unsigned ArgIdx, unsigned TDF);
3762 
3763 /// Attempt template argument deduction from an initializer list
3764 ///        deemed to be an argument in a function call.
3765 static Sema::TemplateDeductionResult DeduceFromInitializerList(
3766     Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType,
3767     InitListExpr *ILE, TemplateDeductionInfo &Info,
3768     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3769     SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx,
3770     unsigned TDF) {
3771   // C++ [temp.deduct.call]p1: (CWG 1591)
3772   //   If removing references and cv-qualifiers from P gives
3773   //   std::initializer_list<P0> or P0[N] for some P0 and N and the argument is
3774   //   a non-empty initializer list, then deduction is performed instead for
3775   //   each element of the initializer list, taking P0 as a function template
3776   //   parameter type and the initializer element as its argument
3777   //
3778   // We've already removed references and cv-qualifiers here.
3779   if (!ILE->getNumInits())
3780     return Sema::TDK_Success;
3781 
3782   QualType ElTy;
3783   auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType);
3784   if (ArrTy)
3785     ElTy = ArrTy->getElementType();
3786   else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) {
3787     //   Otherwise, an initializer list argument causes the parameter to be
3788     //   considered a non-deduced context
3789     return Sema::TDK_Success;
3790   }
3791 
3792   // Resolving a core issue: a braced-init-list containing any designators is
3793   // a non-deduced context.
3794   for (Expr *E : ILE->inits())
3795     if (isa<DesignatedInitExpr>(E))
3796       return Sema::TDK_Success;
3797 
3798   // Deduction only needs to be done for dependent types.
3799   if (ElTy->isDependentType()) {
3800     for (Expr *E : ILE->inits()) {
3801       if (auto Result = DeduceTemplateArgumentsFromCallArgument(
3802               S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true,
3803               ArgIdx, TDF))
3804         return Result;
3805     }
3806   }
3807 
3808   //   in the P0[N] case, if N is a non-type template parameter, N is deduced
3809   //   from the length of the initializer list.
3810   if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) {
3811     // Determine the array bound is something we can deduce.
3812     if (NonTypeTemplateParmDecl *NTTP =
3813             getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) {
3814       // We can perform template argument deduction for the given non-type
3815       // template parameter.
3816       // C++ [temp.deduct.type]p13:
3817       //   The type of N in the type T[N] is std::size_t.
3818       QualType T = S.Context.getSizeType();
3819       llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits());
3820       if (auto Result = DeduceNonTypeTemplateArgument(
3821               S, TemplateParams, NTTP, llvm::APSInt(Size), T,
3822               /*ArrayBound=*/true, Info, Deduced))
3823         return Result;
3824     }
3825   }
3826 
3827   return Sema::TDK_Success;
3828 }
3829 
3830 /// Perform template argument deduction per [temp.deduct.call] for a
3831 ///        single parameter / argument pair.
3832 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
3833     Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3834     QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
3835     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3836     SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
3837     bool DecomposedParam, unsigned ArgIdx, unsigned TDF) {
3838   QualType ArgType = Arg->getType();
3839   QualType OrigParamType = ParamType;
3840 
3841   //   If P is a reference type [...]
3842   //   If P is a cv-qualified type [...]
3843   if (AdjustFunctionParmAndArgTypesForDeduction(
3844           S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF))
3845     return Sema::TDK_Success;
3846 
3847   //   If [...] the argument is a non-empty initializer list [...]
3848   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg))
3849     return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info,
3850                                      Deduced, OriginalCallArgs, ArgIdx, TDF);
3851 
3852   //   [...] the deduction process attempts to find template argument values
3853   //   that will make the deduced A identical to A
3854   //
3855   // Keep track of the argument type and corresponding parameter index,
3856   // so we can check for compatibility between the deduced A and A.
3857   OriginalCallArgs.push_back(
3858       Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType));
3859   return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3860                                             ArgType, Info, Deduced, TDF);
3861 }
3862 
3863 /// Perform template argument deduction from a function call
3864 /// (C++ [temp.deduct.call]).
3865 ///
3866 /// \param FunctionTemplate the function template for which we are performing
3867 /// template argument deduction.
3868 ///
3869 /// \param ExplicitTemplateArgs the explicit template arguments provided
3870 /// for this call.
3871 ///
3872 /// \param Args the function call arguments
3873 ///
3874 /// \param Specialization if template argument deduction was successful,
3875 /// this will be set to the function template specialization produced by
3876 /// template argument deduction.
3877 ///
3878 /// \param Info the argument will be updated to provide additional information
3879 /// about template argument deduction.
3880 ///
3881 /// \param CheckNonDependent A callback to invoke to check conversions for
3882 /// non-dependent parameters, between deduction and substitution, per DR1391.
3883 /// If this returns true, substitution will be skipped and we return
3884 /// TDK_NonDependentConversionFailure. The callback is passed the parameter
3885 /// types (after substituting explicit template arguments).
3886 ///
3887 /// \returns the result of template argument deduction.
3888 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
3889     FunctionTemplateDecl *FunctionTemplate,
3890     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
3891     FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
3892     bool PartialOverloading,
3893     llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) {
3894   if (FunctionTemplate->isInvalidDecl())
3895     return TDK_Invalid;
3896 
3897   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3898   unsigned NumParams = Function->getNumParams();
3899 
3900   unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate);
3901 
3902   // C++ [temp.deduct.call]p1:
3903   //   Template argument deduction is done by comparing each function template
3904   //   parameter type (call it P) with the type of the corresponding argument
3905   //   of the call (call it A) as described below.
3906   if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading)
3907     return TDK_TooFewArguments;
3908   else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) {
3909     const auto *Proto = Function->getType()->castAs<FunctionProtoType>();
3910     if (Proto->isTemplateVariadic())
3911       /* Do nothing */;
3912     else if (!Proto->isVariadic())
3913       return TDK_TooManyArguments;
3914   }
3915 
3916   // The types of the parameters from which we will perform template argument
3917   // deduction.
3918   LocalInstantiationScope InstScope(*this);
3919   TemplateParameterList *TemplateParams
3920     = FunctionTemplate->getTemplateParameters();
3921   SmallVector<DeducedTemplateArgument, 4> Deduced;
3922   SmallVector<QualType, 8> ParamTypes;
3923   unsigned NumExplicitlySpecified = 0;
3924   if (ExplicitTemplateArgs) {
3925     TemplateDeductionResult Result =
3926       SubstituteExplicitTemplateArguments(FunctionTemplate,
3927                                           *ExplicitTemplateArgs,
3928                                           Deduced,
3929                                           ParamTypes,
3930                                           nullptr,
3931                                           Info);
3932     if (Result)
3933       return Result;
3934 
3935     NumExplicitlySpecified = Deduced.size();
3936   } else {
3937     // Just fill in the parameter types from the function declaration.
3938     for (unsigned I = 0; I != NumParams; ++I)
3939       ParamTypes.push_back(Function->getParamDecl(I)->getType());
3940   }
3941 
3942   SmallVector<OriginalCallArg, 8> OriginalCallArgs;
3943 
3944   // Deduce an argument of type ParamType from an expression with index ArgIdx.
3945   auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) {
3946     // C++ [demp.deduct.call]p1: (DR1391)
3947     //   Template argument deduction is done by comparing each function template
3948     //   parameter that contains template-parameters that participate in
3949     //   template argument deduction ...
3950     if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3951       return Sema::TDK_Success;
3952 
3953     //   ... with the type of the corresponding argument
3954     return DeduceTemplateArgumentsFromCallArgument(
3955         *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced,
3956         OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0);
3957   };
3958 
3959   // Deduce template arguments from the function parameters.
3960   Deduced.resize(TemplateParams->size());
3961   SmallVector<QualType, 8> ParamTypesForArgChecking;
3962   for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0;
3963        ParamIdx != NumParamTypes; ++ParamIdx) {
3964     QualType ParamType = ParamTypes[ParamIdx];
3965 
3966     const PackExpansionType *ParamExpansion =
3967         dyn_cast<PackExpansionType>(ParamType);
3968     if (!ParamExpansion) {
3969       // Simple case: matching a function parameter to a function argument.
3970       if (ArgIdx >= Args.size())
3971         break;
3972 
3973       ParamTypesForArgChecking.push_back(ParamType);
3974       if (auto Result = DeduceCallArgument(ParamType, ArgIdx++))
3975         return Result;
3976 
3977       continue;
3978     }
3979 
3980     QualType ParamPattern = ParamExpansion->getPattern();
3981     PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
3982                                  ParamPattern);
3983 
3984     // C++0x [temp.deduct.call]p1:
3985     //   For a function parameter pack that occurs at the end of the
3986     //   parameter-declaration-list, the type A of each remaining argument of
3987     //   the call is compared with the type P of the declarator-id of the
3988     //   function parameter pack. Each comparison deduces template arguments
3989     //   for subsequent positions in the template parameter packs expanded by
3990     //   the function parameter pack. When a function parameter pack appears
3991     //   in a non-deduced context [not at the end of the list], the type of
3992     //   that parameter pack is never deduced.
3993     //
3994     // FIXME: The above rule allows the size of the parameter pack to change
3995     // after we skip it (in the non-deduced case). That makes no sense, so
3996     // we instead notionally deduce the pack against N arguments, where N is
3997     // the length of the explicitly-specified pack if it's expanded by the
3998     // parameter pack and 0 otherwise, and we treat each deduction as a
3999     // non-deduced context.
4000     if (ParamIdx + 1 == NumParamTypes || PackScope.hasFixedArity()) {
4001       for (; ArgIdx < Args.size() && PackScope.hasNextElement();
4002            PackScope.nextPackElement(), ++ArgIdx) {
4003         ParamTypesForArgChecking.push_back(ParamPattern);
4004         if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx))
4005           return Result;
4006       }
4007     } else {
4008       // If the parameter type contains an explicitly-specified pack that we
4009       // could not expand, skip the number of parameters notionally created
4010       // by the expansion.
4011       Optional<unsigned> NumExpansions = ParamExpansion->getNumExpansions();
4012       if (NumExpansions && !PackScope.isPartiallyExpanded()) {
4013         for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
4014              ++I, ++ArgIdx) {
4015           ParamTypesForArgChecking.push_back(ParamPattern);
4016           // FIXME: Should we add OriginalCallArgs for these? What if the
4017           // corresponding argument is a list?
4018           PackScope.nextPackElement();
4019         }
4020       }
4021     }
4022 
4023     // Build argument packs for each of the parameter packs expanded by this
4024     // pack expansion.
4025     if (auto Result = PackScope.finish())
4026       return Result;
4027   }
4028 
4029   // Capture the context in which the function call is made. This is the context
4030   // that is needed when the accessibility of template arguments is checked.
4031   DeclContext *CallingCtx = CurContext;
4032 
4033   return FinishTemplateArgumentDeduction(
4034       FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
4035       &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() {
4036         ContextRAII SavedContext(*this, CallingCtx);
4037         return CheckNonDependent(ParamTypesForArgChecking);
4038       });
4039 }
4040 
4041 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
4042                                    QualType FunctionType,
4043                                    bool AdjustExceptionSpec) {
4044   if (ArgFunctionType.isNull())
4045     return ArgFunctionType;
4046 
4047   const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>();
4048   const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>();
4049   FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo();
4050   bool Rebuild = false;
4051 
4052   CallingConv CC = FunctionTypeP->getCallConv();
4053   if (EPI.ExtInfo.getCC() != CC) {
4054     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC);
4055     Rebuild = true;
4056   }
4057 
4058   bool NoReturn = FunctionTypeP->getNoReturnAttr();
4059   if (EPI.ExtInfo.getNoReturn() != NoReturn) {
4060     EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn);
4061     Rebuild = true;
4062   }
4063 
4064   if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() ||
4065                               ArgFunctionTypeP->hasExceptionSpec())) {
4066     EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec;
4067     Rebuild = true;
4068   }
4069 
4070   if (!Rebuild)
4071     return ArgFunctionType;
4072 
4073   return Context.getFunctionType(ArgFunctionTypeP->getReturnType(),
4074                                  ArgFunctionTypeP->getParamTypes(), EPI);
4075 }
4076 
4077 /// Deduce template arguments when taking the address of a function
4078 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
4079 /// a template.
4080 ///
4081 /// \param FunctionTemplate the function template for which we are performing
4082 /// template argument deduction.
4083 ///
4084 /// \param ExplicitTemplateArgs the explicitly-specified template
4085 /// arguments.
4086 ///
4087 /// \param ArgFunctionType the function type that will be used as the
4088 /// "argument" type (A) when performing template argument deduction from the
4089 /// function template's function type. This type may be NULL, if there is no
4090 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
4091 ///
4092 /// \param Specialization if template argument deduction was successful,
4093 /// this will be set to the function template specialization produced by
4094 /// template argument deduction.
4095 ///
4096 /// \param Info the argument will be updated to provide additional information
4097 /// about template argument deduction.
4098 ///
4099 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking
4100 /// the address of a function template per [temp.deduct.funcaddr] and
4101 /// [over.over]. If \c false, we are looking up a function template
4102 /// specialization based on its signature, per [temp.deduct.decl].
4103 ///
4104 /// \returns the result of template argument deduction.
4105 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
4106     FunctionTemplateDecl *FunctionTemplate,
4107     TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType,
4108     FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
4109     bool IsAddressOfFunction) {
4110   if (FunctionTemplate->isInvalidDecl())
4111     return TDK_Invalid;
4112 
4113   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4114   TemplateParameterList *TemplateParams
4115     = FunctionTemplate->getTemplateParameters();
4116   QualType FunctionType = Function->getType();
4117 
4118   // Substitute any explicit template arguments.
4119   LocalInstantiationScope InstScope(*this);
4120   SmallVector<DeducedTemplateArgument, 4> Deduced;
4121   unsigned NumExplicitlySpecified = 0;
4122   SmallVector<QualType, 4> ParamTypes;
4123   if (ExplicitTemplateArgs) {
4124     if (TemplateDeductionResult Result
4125           = SubstituteExplicitTemplateArguments(FunctionTemplate,
4126                                                 *ExplicitTemplateArgs,
4127                                                 Deduced, ParamTypes,
4128                                                 &FunctionType, Info))
4129       return Result;
4130 
4131     NumExplicitlySpecified = Deduced.size();
4132   }
4133 
4134   // When taking the address of a function, we require convertibility of
4135   // the resulting function type. Otherwise, we allow arbitrary mismatches
4136   // of calling convention and noreturn.
4137   if (!IsAddressOfFunction)
4138     ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType,
4139                                           /*AdjustExceptionSpec*/false);
4140 
4141   // Unevaluated SFINAE context.
4142   EnterExpressionEvaluationContext Unevaluated(
4143       *this, Sema::ExpressionEvaluationContext::Unevaluated);
4144   SFINAETrap Trap(*this);
4145 
4146   Deduced.resize(TemplateParams->size());
4147 
4148   // If the function has a deduced return type, substitute it for a dependent
4149   // type so that we treat it as a non-deduced context in what follows. If we
4150   // are looking up by signature, the signature type should also have a deduced
4151   // return type, which we instead expect to exactly match.
4152   bool HasDeducedReturnType = false;
4153   if (getLangOpts().CPlusPlus14 && IsAddressOfFunction &&
4154       Function->getReturnType()->getContainedAutoType()) {
4155     FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
4156     HasDeducedReturnType = true;
4157   }
4158 
4159   if (!ArgFunctionType.isNull()) {
4160     unsigned TDF =
4161         TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType;
4162     // Deduce template arguments from the function type.
4163     if (TemplateDeductionResult Result
4164           = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
4165                                                FunctionType, ArgFunctionType,
4166                                                Info, Deduced, TDF))
4167       return Result;
4168   }
4169 
4170   if (TemplateDeductionResult Result
4171         = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
4172                                           NumExplicitlySpecified,
4173                                           Specialization, Info))
4174     return Result;
4175 
4176   // If the function has a deduced return type, deduce it now, so we can check
4177   // that the deduced function type matches the requested type.
4178   if (HasDeducedReturnType &&
4179       Specialization->getReturnType()->isUndeducedType() &&
4180       DeduceReturnType(Specialization, Info.getLocation(), false))
4181     return TDK_MiscellaneousDeductionFailure;
4182 
4183   // If the function has a dependent exception specification, resolve it now,
4184   // so we can check that the exception specification matches.
4185   auto *SpecializationFPT =
4186       Specialization->getType()->castAs<FunctionProtoType>();
4187   if (getLangOpts().CPlusPlus17 &&
4188       isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) &&
4189       !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT))
4190     return TDK_MiscellaneousDeductionFailure;
4191 
4192   // Adjust the exception specification of the argument to match the
4193   // substituted and resolved type we just formed. (Calling convention and
4194   // noreturn can't be dependent, so we don't actually need this for them
4195   // right now.)
4196   QualType SpecializationType = Specialization->getType();
4197   if (!IsAddressOfFunction)
4198     ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType,
4199                                           /*AdjustExceptionSpec*/true);
4200 
4201   // If the requested function type does not match the actual type of the
4202   // specialization with respect to arguments of compatible pointer to function
4203   // types, template argument deduction fails.
4204   if (!ArgFunctionType.isNull()) {
4205     if (IsAddressOfFunction &&
4206         !isSameOrCompatibleFunctionType(
4207             Context.getCanonicalType(SpecializationType),
4208             Context.getCanonicalType(ArgFunctionType)))
4209       return TDK_MiscellaneousDeductionFailure;
4210 
4211     if (!IsAddressOfFunction &&
4212         !Context.hasSameType(SpecializationType, ArgFunctionType))
4213       return TDK_MiscellaneousDeductionFailure;
4214   }
4215 
4216   return TDK_Success;
4217 }
4218 
4219 /// Deduce template arguments for a templated conversion
4220 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
4221 /// conversion function template specialization.
4222 Sema::TemplateDeductionResult
4223 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
4224                               QualType ToType,
4225                               CXXConversionDecl *&Specialization,
4226                               TemplateDeductionInfo &Info) {
4227   if (ConversionTemplate->isInvalidDecl())
4228     return TDK_Invalid;
4229 
4230   CXXConversionDecl *ConversionGeneric
4231     = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
4232 
4233   QualType FromType = ConversionGeneric->getConversionType();
4234 
4235   // Canonicalize the types for deduction.
4236   QualType P = Context.getCanonicalType(FromType);
4237   QualType A = Context.getCanonicalType(ToType);
4238 
4239   // C++0x [temp.deduct.conv]p2:
4240   //   If P is a reference type, the type referred to by P is used for
4241   //   type deduction.
4242   if (const ReferenceType *PRef = P->getAs<ReferenceType>())
4243     P = PRef->getPointeeType();
4244 
4245   // C++0x [temp.deduct.conv]p4:
4246   //   [...] If A is a reference type, the type referred to by A is used
4247   //   for type deduction.
4248   if (const ReferenceType *ARef = A->getAs<ReferenceType>()) {
4249     A = ARef->getPointeeType();
4250     // We work around a defect in the standard here: cv-qualifiers are also
4251     // removed from P and A in this case, unless P was a reference type. This
4252     // seems to mostly match what other compilers are doing.
4253     if (!FromType->getAs<ReferenceType>()) {
4254       A = A.getUnqualifiedType();
4255       P = P.getUnqualifiedType();
4256     }
4257 
4258   // C++ [temp.deduct.conv]p3:
4259   //
4260   //   If A is not a reference type:
4261   } else {
4262     assert(!A->isReferenceType() && "Reference types were handled above");
4263 
4264     //   - If P is an array type, the pointer type produced by the
4265     //     array-to-pointer standard conversion (4.2) is used in place
4266     //     of P for type deduction; otherwise,
4267     if (P->isArrayType())
4268       P = Context.getArrayDecayedType(P);
4269     //   - If P is a function type, the pointer type produced by the
4270     //     function-to-pointer standard conversion (4.3) is used in
4271     //     place of P for type deduction; otherwise,
4272     else if (P->isFunctionType())
4273       P = Context.getPointerType(P);
4274     //   - If P is a cv-qualified type, the top level cv-qualifiers of
4275     //     P's type are ignored for type deduction.
4276     else
4277       P = P.getUnqualifiedType();
4278 
4279     // C++0x [temp.deduct.conv]p4:
4280     //   If A is a cv-qualified type, the top level cv-qualifiers of A's
4281     //   type are ignored for type deduction. If A is a reference type, the type
4282     //   referred to by A is used for type deduction.
4283     A = A.getUnqualifiedType();
4284   }
4285 
4286   // Unevaluated SFINAE context.
4287   EnterExpressionEvaluationContext Unevaluated(
4288       *this, Sema::ExpressionEvaluationContext::Unevaluated);
4289   SFINAETrap Trap(*this);
4290 
4291   // C++ [temp.deduct.conv]p1:
4292   //   Template argument deduction is done by comparing the return
4293   //   type of the template conversion function (call it P) with the
4294   //   type that is required as the result of the conversion (call it
4295   //   A) as described in 14.8.2.4.
4296   TemplateParameterList *TemplateParams
4297     = ConversionTemplate->getTemplateParameters();
4298   SmallVector<DeducedTemplateArgument, 4> Deduced;
4299   Deduced.resize(TemplateParams->size());
4300 
4301   // C++0x [temp.deduct.conv]p4:
4302   //   In general, the deduction process attempts to find template
4303   //   argument values that will make the deduced A identical to
4304   //   A. However, there are two cases that allow a difference:
4305   unsigned TDF = 0;
4306   //     - If the original A is a reference type, A can be more
4307   //       cv-qualified than the deduced A (i.e., the type referred to
4308   //       by the reference)
4309   if (ToType->isReferenceType())
4310     TDF |= TDF_ArgWithReferenceType;
4311   //     - The deduced A can be another pointer or pointer to member
4312   //       type that can be converted to A via a qualification
4313   //       conversion.
4314   //
4315   // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
4316   // both P and A are pointers or member pointers. In this case, we
4317   // just ignore cv-qualifiers completely).
4318   if ((P->isPointerType() && A->isPointerType()) ||
4319       (P->isMemberPointerType() && A->isMemberPointerType()))
4320     TDF |= TDF_IgnoreQualifiers;
4321   if (TemplateDeductionResult Result
4322         = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
4323                                              P, A, Info, Deduced, TDF))
4324     return Result;
4325 
4326   // Create an Instantiation Scope for finalizing the operator.
4327   LocalInstantiationScope InstScope(*this);
4328   // Finish template argument deduction.
4329   FunctionDecl *ConversionSpecialized = nullptr;
4330   TemplateDeductionResult Result
4331       = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
4332                                         ConversionSpecialized, Info);
4333   Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
4334   return Result;
4335 }
4336 
4337 /// Deduce template arguments for a function template when there is
4338 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
4339 ///
4340 /// \param FunctionTemplate the function template for which we are performing
4341 /// template argument deduction.
4342 ///
4343 /// \param ExplicitTemplateArgs the explicitly-specified template
4344 /// arguments.
4345 ///
4346 /// \param Specialization if template argument deduction was successful,
4347 /// this will be set to the function template specialization produced by
4348 /// template argument deduction.
4349 ///
4350 /// \param Info the argument will be updated to provide additional information
4351 /// about template argument deduction.
4352 ///
4353 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking
4354 /// the address of a function template in a context where we do not have a
4355 /// target type, per [over.over]. If \c false, we are looking up a function
4356 /// template specialization based on its signature, which only happens when
4357 /// deducing a function parameter type from an argument that is a template-id
4358 /// naming a function template specialization.
4359 ///
4360 /// \returns the result of template argument deduction.
4361 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
4362     FunctionTemplateDecl *FunctionTemplate,
4363     TemplateArgumentListInfo *ExplicitTemplateArgs,
4364     FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
4365     bool IsAddressOfFunction) {
4366   return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
4367                                  QualType(), Specialization, Info,
4368                                  IsAddressOfFunction);
4369 }
4370 
4371 namespace {
4372   struct DependentAuto { bool IsPack; };
4373 
4374   /// Substitute the 'auto' specifier or deduced template specialization type
4375   /// specifier within a type for a given replacement type.
4376   class SubstituteDeducedTypeTransform :
4377       public TreeTransform<SubstituteDeducedTypeTransform> {
4378     QualType Replacement;
4379     bool ReplacementIsPack;
4380     bool UseTypeSugar;
4381 
4382   public:
4383     SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA)
4384         : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), Replacement(),
4385           ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {}
4386 
4387     SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement,
4388                                    bool UseTypeSugar = true)
4389         : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
4390           Replacement(Replacement), ReplacementIsPack(false),
4391           UseTypeSugar(UseTypeSugar) {}
4392 
4393     QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) {
4394       assert(isa<TemplateTypeParmType>(Replacement) &&
4395              "unexpected unsugared replacement kind");
4396       QualType Result = Replacement;
4397       TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
4398       NewTL.setNameLoc(TL.getNameLoc());
4399       return Result;
4400     }
4401 
4402     QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
4403       // If we're building the type pattern to deduce against, don't wrap the
4404       // substituted type in an AutoType. Certain template deduction rules
4405       // apply only when a template type parameter appears directly (and not if
4406       // the parameter is found through desugaring). For instance:
4407       //   auto &&lref = lvalue;
4408       // must transform into "rvalue reference to T" not "rvalue reference to
4409       // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
4410       //
4411       // FIXME: Is this still necessary?
4412       if (!UseTypeSugar)
4413         return TransformDesugared(TLB, TL);
4414 
4415       QualType Result = SemaRef.Context.getAutoType(
4416           Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(),
4417           ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(),
4418           TL.getTypePtr()->getTypeConstraintArguments());
4419       auto NewTL = TLB.push<AutoTypeLoc>(Result);
4420       NewTL.copy(TL);
4421       return Result;
4422     }
4423 
4424     QualType TransformDeducedTemplateSpecializationType(
4425         TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
4426       if (!UseTypeSugar)
4427         return TransformDesugared(TLB, TL);
4428 
4429       QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType(
4430           TL.getTypePtr()->getTemplateName(),
4431           Replacement, Replacement.isNull());
4432       auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
4433       NewTL.setNameLoc(TL.getNameLoc());
4434       return Result;
4435     }
4436 
4437     ExprResult TransformLambdaExpr(LambdaExpr *E) {
4438       // Lambdas never need to be transformed.
4439       return E;
4440     }
4441 
4442     QualType Apply(TypeLoc TL) {
4443       // Create some scratch storage for the transformed type locations.
4444       // FIXME: We're just going to throw this information away. Don't build it.
4445       TypeLocBuilder TLB;
4446       TLB.reserve(TL.getFullDataSize());
4447       return TransformType(TLB, TL);
4448     }
4449   };
4450 
4451 } // namespace
4452 
4453 Sema::DeduceAutoResult
4454 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result,
4455                      Optional<unsigned> DependentDeductionDepth,
4456                      bool IgnoreConstraints) {
4457   return DeduceAutoType(Type->getTypeLoc(), Init, Result,
4458                         DependentDeductionDepth, IgnoreConstraints);
4459 }
4460 
4461 /// Attempt to produce an informative diagostic explaining why auto deduction
4462 /// failed.
4463 /// \return \c true if diagnosed, \c false if not.
4464 static bool diagnoseAutoDeductionFailure(Sema &S,
4465                                          Sema::TemplateDeductionResult TDK,
4466                                          TemplateDeductionInfo &Info,
4467                                          ArrayRef<SourceRange> Ranges) {
4468   switch (TDK) {
4469   case Sema::TDK_Inconsistent: {
4470     // Inconsistent deduction means we were deducing from an initializer list.
4471     auto D = S.Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction);
4472     D << Info.FirstArg << Info.SecondArg;
4473     for (auto R : Ranges)
4474       D << R;
4475     return true;
4476   }
4477 
4478   // FIXME: Are there other cases for which a custom diagnostic is more useful
4479   // than the basic "types don't match" diagnostic?
4480 
4481   default:
4482     return false;
4483   }
4484 }
4485 
4486 static Sema::DeduceAutoResult
4487 CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type,
4488                                    AutoTypeLoc TypeLoc, QualType Deduced) {
4489   ConstraintSatisfaction Satisfaction;
4490   ConceptDecl *Concept = Type.getTypeConstraintConcept();
4491   TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(),
4492                                         TypeLoc.getRAngleLoc());
4493   TemplateArgs.addArgument(
4494       TemplateArgumentLoc(TemplateArgument(Deduced),
4495                           S.Context.getTrivialTypeSourceInfo(
4496                               Deduced, TypeLoc.getNameLoc())));
4497   for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I)
4498     TemplateArgs.addArgument(TypeLoc.getArgLoc(I));
4499 
4500   llvm::SmallVector<TemplateArgument, 4> Converted;
4501   if (S.CheckTemplateArgumentList(Concept, SourceLocation(), TemplateArgs,
4502                                   /*PartialTemplateArgs=*/false, Converted))
4503     return Sema::DAR_FailedAlreadyDiagnosed;
4504   if (S.CheckConstraintSatisfaction(Concept, {Concept->getConstraintExpr()},
4505                                     Converted, TypeLoc.getLocalSourceRange(),
4506                                     Satisfaction))
4507     return Sema::DAR_FailedAlreadyDiagnosed;
4508   if (!Satisfaction.IsSatisfied) {
4509     std::string Buf;
4510     llvm::raw_string_ostream OS(Buf);
4511     OS << "'" << Concept->getName();
4512     if (TypeLoc.hasExplicitTemplateArgs()) {
4513       OS << "<";
4514       for (const auto &Arg : Type.getTypeConstraintArguments())
4515         Arg.print(S.getPrintingPolicy(), OS);
4516       OS << ">";
4517     }
4518     OS << "'";
4519     OS.flush();
4520     S.Diag(TypeLoc.getConceptNameLoc(),
4521            diag::err_placeholder_constraints_not_satisfied)
4522          << Deduced << Buf << TypeLoc.getLocalSourceRange();
4523     S.DiagnoseUnsatisfiedConstraint(Satisfaction);
4524     return Sema::DAR_FailedAlreadyDiagnosed;
4525   }
4526   return Sema::DAR_Succeeded;
4527 }
4528 
4529 /// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
4530 ///
4531 /// Note that this is done even if the initializer is dependent. (This is
4532 /// necessary to support partial ordering of templates using 'auto'.)
4533 /// A dependent type will be produced when deducing from a dependent type.
4534 ///
4535 /// \param Type the type pattern using the auto type-specifier.
4536 /// \param Init the initializer for the variable whose type is to be deduced.
4537 /// \param Result if type deduction was successful, this will be set to the
4538 ///        deduced type.
4539 /// \param DependentDeductionDepth Set if we should permit deduction in
4540 ///        dependent cases. This is necessary for template partial ordering with
4541 ///        'auto' template parameters. The value specified is the template
4542 ///        parameter depth at which we should perform 'auto' deduction.
4543 /// \param IgnoreConstraints Set if we should not fail if the deduced type does
4544 ///                          not satisfy the type-constraint in the auto type.
4545 Sema::DeduceAutoResult
4546 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result,
4547                      Optional<unsigned> DependentDeductionDepth,
4548                      bool IgnoreConstraints) {
4549   if (Init->getType()->isNonOverloadPlaceholderType()) {
4550     ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
4551     if (NonPlaceholder.isInvalid())
4552       return DAR_FailedAlreadyDiagnosed;
4553     Init = NonPlaceholder.get();
4554   }
4555 
4556   DependentAuto DependentResult = {
4557       /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()};
4558 
4559   if (!DependentDeductionDepth &&
4560       (Type.getType()->isDependentType() || Init->isTypeDependent() ||
4561        Init->containsUnexpandedParameterPack())) {
4562     Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
4563     assert(!Result.isNull() && "substituting DependentTy can't fail");
4564     return DAR_Succeeded;
4565   }
4566 
4567   // Find the depth of template parameter to synthesize.
4568   unsigned Depth = DependentDeductionDepth.getValueOr(0);
4569 
4570   // If this is a 'decltype(auto)' specifier, do the decltype dance.
4571   // Since 'decltype(auto)' can only occur at the top of the type, we
4572   // don't need to go digging for it.
4573   if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
4574     if (AT->isDecltypeAuto()) {
4575       if (isa<InitListExpr>(Init)) {
4576         Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list);
4577         return DAR_FailedAlreadyDiagnosed;
4578       }
4579 
4580       ExprResult ER = CheckPlaceholderExpr(Init);
4581       if (ER.isInvalid())
4582         return DAR_FailedAlreadyDiagnosed;
4583       Init = ER.get();
4584       QualType Deduced = BuildDecltypeType(Init, Init->getBeginLoc(), false);
4585       if (Deduced.isNull())
4586         return DAR_FailedAlreadyDiagnosed;
4587       // FIXME: Support a non-canonical deduced type for 'auto'.
4588       Deduced = Context.getCanonicalType(Deduced);
4589       if (AT->isConstrained() && !IgnoreConstraints) {
4590         auto ConstraintsResult =
4591             CheckDeducedPlaceholderConstraints(*this, *AT,
4592                                                Type.getContainedAutoTypeLoc(),
4593                                                Deduced);
4594         if (ConstraintsResult != DAR_Succeeded)
4595           return ConstraintsResult;
4596       }
4597       Result = SubstituteDeducedTypeTransform(*this, Deduced).Apply(Type);
4598       if (Result.isNull())
4599         return DAR_FailedAlreadyDiagnosed;
4600       return DAR_Succeeded;
4601     } else if (!getLangOpts().CPlusPlus) {
4602       if (isa<InitListExpr>(Init)) {
4603         Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c);
4604         return DAR_FailedAlreadyDiagnosed;
4605       }
4606     }
4607   }
4608 
4609   SourceLocation Loc = Init->getExprLoc();
4610 
4611   LocalInstantiationScope InstScope(*this);
4612 
4613   // Build template<class TemplParam> void Func(FuncParam);
4614   TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create(
4615       Context, nullptr, SourceLocation(), Loc, Depth, 0, nullptr, false, false,
4616       false);
4617   QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
4618   NamedDecl *TemplParamPtr = TemplParam;
4619   FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt(
4620       Context, Loc, Loc, TemplParamPtr, Loc, nullptr);
4621 
4622   QualType FuncParam =
4623       SubstituteDeducedTypeTransform(*this, TemplArg, /*UseTypeSugar*/false)
4624           .Apply(Type);
4625   assert(!FuncParam.isNull() &&
4626          "substituting template parameter for 'auto' failed");
4627 
4628   // Deduce type of TemplParam in Func(Init)
4629   SmallVector<DeducedTemplateArgument, 1> Deduced;
4630   Deduced.resize(1);
4631 
4632   TemplateDeductionInfo Info(Loc, Depth);
4633 
4634   // If deduction failed, don't diagnose if the initializer is dependent; it
4635   // might acquire a matching type in the instantiation.
4636   auto DeductionFailed = [&](TemplateDeductionResult TDK,
4637                              ArrayRef<SourceRange> Ranges) -> DeduceAutoResult {
4638     if (Init->isTypeDependent()) {
4639       Result =
4640           SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
4641       assert(!Result.isNull() && "substituting DependentTy can't fail");
4642       return DAR_Succeeded;
4643     }
4644     if (diagnoseAutoDeductionFailure(*this, TDK, Info, Ranges))
4645       return DAR_FailedAlreadyDiagnosed;
4646     return DAR_Failed;
4647   };
4648 
4649   SmallVector<OriginalCallArg, 4> OriginalCallArgs;
4650 
4651   InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
4652   if (InitList) {
4653     // Notionally, we substitute std::initializer_list<T> for 'auto' and deduce
4654     // against that. Such deduction only succeeds if removing cv-qualifiers and
4655     // references results in std::initializer_list<T>.
4656     if (!Type.getType().getNonReferenceType()->getAs<AutoType>())
4657       return DAR_Failed;
4658 
4659     // Resolving a core issue: a braced-init-list containing any designators is
4660     // a non-deduced context.
4661     for (Expr *E : InitList->inits())
4662       if (isa<DesignatedInitExpr>(E))
4663         return DAR_Failed;
4664 
4665     SourceRange DeducedFromInitRange;
4666     for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
4667       Expr *Init = InitList->getInit(i);
4668 
4669       if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
4670               *this, TemplateParamsSt.get(), 0, TemplArg, Init,
4671               Info, Deduced, OriginalCallArgs, /*Decomposed*/ true,
4672               /*ArgIdx*/ 0, /*TDF*/ 0))
4673         return DeductionFailed(TDK, {DeducedFromInitRange,
4674                                      Init->getSourceRange()});
4675 
4676       if (DeducedFromInitRange.isInvalid() &&
4677           Deduced[0].getKind() != TemplateArgument::Null)
4678         DeducedFromInitRange = Init->getSourceRange();
4679     }
4680   } else {
4681     if (!getLangOpts().CPlusPlus && Init->refersToBitField()) {
4682       Diag(Loc, diag::err_auto_bitfield);
4683       return DAR_FailedAlreadyDiagnosed;
4684     }
4685 
4686     if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
4687             *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced,
4688             OriginalCallArgs, /*Decomposed*/ false, /*ArgIdx*/ 0, /*TDF*/ 0))
4689       return DeductionFailed(TDK, {});
4690   }
4691 
4692   // Could be null if somehow 'auto' appears in a non-deduced context.
4693   if (Deduced[0].getKind() != TemplateArgument::Type)
4694     return DeductionFailed(TDK_Incomplete, {});
4695 
4696   QualType DeducedType = Deduced[0].getAsType();
4697 
4698   if (InitList) {
4699     DeducedType = BuildStdInitializerList(DeducedType, Loc);
4700     if (DeducedType.isNull())
4701       return DAR_FailedAlreadyDiagnosed;
4702   }
4703 
4704   if (const auto *AT = Type.getType()->getAs<AutoType>()) {
4705     if (AT->isConstrained() && !IgnoreConstraints) {
4706       auto ConstraintsResult =
4707           CheckDeducedPlaceholderConstraints(*this, *AT,
4708                                              Type.getContainedAutoTypeLoc(),
4709                                              DeducedType);
4710       if (ConstraintsResult != DAR_Succeeded)
4711         return ConstraintsResult;
4712     }
4713   }
4714 
4715   Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type);
4716   if (Result.isNull())
4717     return DAR_FailedAlreadyDiagnosed;
4718 
4719   // Check that the deduced argument type is compatible with the original
4720   // argument type per C++ [temp.deduct.call]p4.
4721   QualType DeducedA = InitList ? Deduced[0].getAsType() : Result;
4722   for (const OriginalCallArg &OriginalArg : OriginalCallArgs) {
4723     assert((bool)InitList == OriginalArg.DecomposedParam &&
4724            "decomposed non-init-list in auto deduction?");
4725     if (auto TDK =
4726             CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) {
4727       Result = QualType();
4728       return DeductionFailed(TDK, {});
4729     }
4730   }
4731 
4732   return DAR_Succeeded;
4733 }
4734 
4735 QualType Sema::SubstAutoType(QualType TypeWithAuto,
4736                              QualType TypeToReplaceAuto) {
4737   if (TypeToReplaceAuto->isDependentType())
4738     return SubstituteDeducedTypeTransform(
4739                *this, DependentAuto{
4740                           TypeToReplaceAuto->containsUnexpandedParameterPack()})
4741         .TransformType(TypeWithAuto);
4742   return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
4743       .TransformType(TypeWithAuto);
4744 }
4745 
4746 TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
4747                                               QualType TypeToReplaceAuto) {
4748   if (TypeToReplaceAuto->isDependentType())
4749     return SubstituteDeducedTypeTransform(
4750                *this,
4751                DependentAuto{
4752                    TypeToReplaceAuto->containsUnexpandedParameterPack()})
4753         .TransformType(TypeWithAuto);
4754   return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
4755       .TransformType(TypeWithAuto);
4756 }
4757 
4758 QualType Sema::ReplaceAutoType(QualType TypeWithAuto,
4759                                QualType TypeToReplaceAuto) {
4760   return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
4761                                         /*UseTypeSugar*/ false)
4762       .TransformType(TypeWithAuto);
4763 }
4764 
4765 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
4766   if (isa<InitListExpr>(Init))
4767     Diag(VDecl->getLocation(),
4768          VDecl->isInitCapture()
4769              ? diag::err_init_capture_deduction_failure_from_init_list
4770              : diag::err_auto_var_deduction_failure_from_init_list)
4771       << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
4772   else
4773     Diag(VDecl->getLocation(),
4774          VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
4775                                 : diag::err_auto_var_deduction_failure)
4776       << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4777       << Init->getSourceRange();
4778 }
4779 
4780 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
4781                             bool Diagnose) {
4782   assert(FD->getReturnType()->isUndeducedType());
4783 
4784   // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)'
4785   // within the return type from the call operator's type.
4786   if (isLambdaConversionOperator(FD)) {
4787     CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
4788     FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
4789 
4790     // For a generic lambda, instantiate the call operator if needed.
4791     if (auto *Args = FD->getTemplateSpecializationArgs()) {
4792       CallOp = InstantiateFunctionDeclaration(
4793           CallOp->getDescribedFunctionTemplate(), Args, Loc);
4794       if (!CallOp || CallOp->isInvalidDecl())
4795         return true;
4796 
4797       // We might need to deduce the return type by instantiating the definition
4798       // of the operator() function.
4799       if (CallOp->getReturnType()->isUndeducedType()) {
4800         runWithSufficientStackSpace(Loc, [&] {
4801           InstantiateFunctionDefinition(Loc, CallOp);
4802         });
4803       }
4804     }
4805 
4806     if (CallOp->isInvalidDecl())
4807       return true;
4808     assert(!CallOp->getReturnType()->isUndeducedType() &&
4809            "failed to deduce lambda return type");
4810 
4811     // Build the new return type from scratch.
4812     QualType RetType = getLambdaConversionFunctionResultType(
4813         CallOp->getType()->castAs<FunctionProtoType>());
4814     if (FD->getReturnType()->getAs<PointerType>())
4815       RetType = Context.getPointerType(RetType);
4816     else {
4817       assert(FD->getReturnType()->getAs<BlockPointerType>());
4818       RetType = Context.getBlockPointerType(RetType);
4819     }
4820     Context.adjustDeducedFunctionResultType(FD, RetType);
4821     return false;
4822   }
4823 
4824   if (FD->getTemplateInstantiationPattern()) {
4825     runWithSufficientStackSpace(Loc, [&] {
4826       InstantiateFunctionDefinition(Loc, FD);
4827     });
4828   }
4829 
4830   bool StillUndeduced = FD->getReturnType()->isUndeducedType();
4831   if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
4832     Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
4833     Diag(FD->getLocation(), diag::note_callee_decl) << FD;
4834   }
4835 
4836   return StillUndeduced;
4837 }
4838 
4839 /// If this is a non-static member function,
4840 static void
4841 AddImplicitObjectParameterType(ASTContext &Context,
4842                                CXXMethodDecl *Method,
4843                                SmallVectorImpl<QualType> &ArgTypes) {
4844   // C++11 [temp.func.order]p3:
4845   //   [...] The new parameter is of type "reference to cv A," where cv are
4846   //   the cv-qualifiers of the function template (if any) and A is
4847   //   the class of which the function template is a member.
4848   //
4849   // The standard doesn't say explicitly, but we pick the appropriate kind of
4850   // reference type based on [over.match.funcs]p4.
4851   QualType ArgTy = Context.getTypeDeclType(Method->getParent());
4852   ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers());
4853   if (Method->getRefQualifier() == RQ_RValue)
4854     ArgTy = Context.getRValueReferenceType(ArgTy);
4855   else
4856     ArgTy = Context.getLValueReferenceType(ArgTy);
4857   ArgTypes.push_back(ArgTy);
4858 }
4859 
4860 /// Determine whether the function template \p FT1 is at least as
4861 /// specialized as \p FT2.
4862 static bool isAtLeastAsSpecializedAs(Sema &S,
4863                                      SourceLocation Loc,
4864                                      FunctionTemplateDecl *FT1,
4865                                      FunctionTemplateDecl *FT2,
4866                                      TemplatePartialOrderingContext TPOC,
4867                                      unsigned NumCallArguments1) {
4868   FunctionDecl *FD1 = FT1->getTemplatedDecl();
4869   FunctionDecl *FD2 = FT2->getTemplatedDecl();
4870   const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
4871   const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
4872 
4873   assert(Proto1 && Proto2 && "Function templates must have prototypes");
4874   TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
4875   SmallVector<DeducedTemplateArgument, 4> Deduced;
4876   Deduced.resize(TemplateParams->size());
4877 
4878   // C++0x [temp.deduct.partial]p3:
4879   //   The types used to determine the ordering depend on the context in which
4880   //   the partial ordering is done:
4881   TemplateDeductionInfo Info(Loc);
4882   SmallVector<QualType, 4> Args2;
4883   switch (TPOC) {
4884   case TPOC_Call: {
4885     //   - In the context of a function call, the function parameter types are
4886     //     used.
4887     CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
4888     CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
4889 
4890     // C++11 [temp.func.order]p3:
4891     //   [...] If only one of the function templates is a non-static
4892     //   member, that function template is considered to have a new
4893     //   first parameter inserted in its function parameter list. The
4894     //   new parameter is of type "reference to cv A," where cv are
4895     //   the cv-qualifiers of the function template (if any) and A is
4896     //   the class of which the function template is a member.
4897     //
4898     // Note that we interpret this to mean "if one of the function
4899     // templates is a non-static member and the other is a non-member";
4900     // otherwise, the ordering rules for static functions against non-static
4901     // functions don't make any sense.
4902     //
4903     // C++98/03 doesn't have this provision but we've extended DR532 to cover
4904     // it as wording was broken prior to it.
4905     SmallVector<QualType, 4> Args1;
4906 
4907     unsigned NumComparedArguments = NumCallArguments1;
4908 
4909     if (!Method2 && Method1 && !Method1->isStatic()) {
4910       // Compare 'this' from Method1 against first parameter from Method2.
4911       AddImplicitObjectParameterType(S.Context, Method1, Args1);
4912       ++NumComparedArguments;
4913     } else if (!Method1 && Method2 && !Method2->isStatic()) {
4914       // Compare 'this' from Method2 against first parameter from Method1.
4915       AddImplicitObjectParameterType(S.Context, Method2, Args2);
4916     }
4917 
4918     Args1.insert(Args1.end(), Proto1->param_type_begin(),
4919                  Proto1->param_type_end());
4920     Args2.insert(Args2.end(), Proto2->param_type_begin(),
4921                  Proto2->param_type_end());
4922 
4923     // C++ [temp.func.order]p5:
4924     //   The presence of unused ellipsis and default arguments has no effect on
4925     //   the partial ordering of function templates.
4926     if (Args1.size() > NumComparedArguments)
4927       Args1.resize(NumComparedArguments);
4928     if (Args2.size() > NumComparedArguments)
4929       Args2.resize(NumComparedArguments);
4930     if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
4931                                 Args1.data(), Args1.size(), Info, Deduced,
4932                                 TDF_None, /*PartialOrdering=*/true))
4933       return false;
4934 
4935     break;
4936   }
4937 
4938   case TPOC_Conversion:
4939     //   - In the context of a call to a conversion operator, the return types
4940     //     of the conversion function templates are used.
4941     if (DeduceTemplateArgumentsByTypeMatch(
4942             S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
4943             Info, Deduced, TDF_None,
4944             /*PartialOrdering=*/true))
4945       return false;
4946     break;
4947 
4948   case TPOC_Other:
4949     //   - In other contexts (14.6.6.2) the function template's function type
4950     //     is used.
4951     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
4952                                            FD2->getType(), FD1->getType(),
4953                                            Info, Deduced, TDF_None,
4954                                            /*PartialOrdering=*/true))
4955       return false;
4956     break;
4957   }
4958 
4959   // C++0x [temp.deduct.partial]p11:
4960   //   In most cases, all template parameters must have values in order for
4961   //   deduction to succeed, but for partial ordering purposes a template
4962   //   parameter may remain without a value provided it is not used in the
4963   //   types being used for partial ordering. [ Note: a template parameter used
4964   //   in a non-deduced context is considered used. -end note]
4965   unsigned ArgIdx = 0, NumArgs = Deduced.size();
4966   for (; ArgIdx != NumArgs; ++ArgIdx)
4967     if (Deduced[ArgIdx].isNull())
4968       break;
4969 
4970   // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need
4971   // to substitute the deduced arguments back into the template and check that
4972   // we get the right type.
4973 
4974   if (ArgIdx == NumArgs) {
4975     // All template arguments were deduced. FT1 is at least as specialized
4976     // as FT2.
4977     return true;
4978   }
4979 
4980   // Figure out which template parameters were used.
4981   llvm::SmallBitVector UsedParameters(TemplateParams->size());
4982   switch (TPOC) {
4983   case TPOC_Call:
4984     for (unsigned I = 0, N = Args2.size(); I != N; ++I)
4985       ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
4986                                    TemplateParams->getDepth(),
4987                                    UsedParameters);
4988     break;
4989 
4990   case TPOC_Conversion:
4991     ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
4992                                  TemplateParams->getDepth(), UsedParameters);
4993     break;
4994 
4995   case TPOC_Other:
4996     ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
4997                                  TemplateParams->getDepth(),
4998                                  UsedParameters);
4999     break;
5000   }
5001 
5002   for (; ArgIdx != NumArgs; ++ArgIdx)
5003     // If this argument had no value deduced but was used in one of the types
5004     // used for partial ordering, then deduction fails.
5005     if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
5006       return false;
5007 
5008   return true;
5009 }
5010 
5011 /// Determine whether this a function template whose parameter-type-list
5012 /// ends with a function parameter pack.
5013 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
5014   FunctionDecl *Function = FunTmpl->getTemplatedDecl();
5015   unsigned NumParams = Function->getNumParams();
5016   if (NumParams == 0)
5017     return false;
5018 
5019   ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
5020   if (!Last->isParameterPack())
5021     return false;
5022 
5023   // Make sure that no previous parameter is a parameter pack.
5024   while (--NumParams > 0) {
5025     if (Function->getParamDecl(NumParams - 1)->isParameterPack())
5026       return false;
5027   }
5028 
5029   return true;
5030 }
5031 
5032 /// Returns the more specialized function template according
5033 /// to the rules of function template partial ordering (C++ [temp.func.order]).
5034 ///
5035 /// \param FT1 the first function template
5036 ///
5037 /// \param FT2 the second function template
5038 ///
5039 /// \param TPOC the context in which we are performing partial ordering of
5040 /// function templates.
5041 ///
5042 /// \param NumCallArguments1 The number of arguments in the call to FT1, used
5043 /// only when \c TPOC is \c TPOC_Call.
5044 ///
5045 /// \param NumCallArguments2 The number of arguments in the call to FT2, used
5046 /// only when \c TPOC is \c TPOC_Call.
5047 ///
5048 /// \returns the more specialized function template. If neither
5049 /// template is more specialized, returns NULL.
5050 FunctionTemplateDecl *
5051 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
5052                                  FunctionTemplateDecl *FT2,
5053                                  SourceLocation Loc,
5054                                  TemplatePartialOrderingContext TPOC,
5055                                  unsigned NumCallArguments1,
5056                                  unsigned NumCallArguments2) {
5057 
5058   auto JudgeByConstraints = [&] () -> FunctionTemplateDecl * {
5059     llvm::SmallVector<const Expr *, 3> AC1, AC2;
5060     FT1->getAssociatedConstraints(AC1);
5061     FT2->getAssociatedConstraints(AC2);
5062     bool AtLeastAsConstrained1, AtLeastAsConstrained2;
5063     if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1))
5064       return nullptr;
5065     if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2))
5066       return nullptr;
5067     if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
5068       return nullptr;
5069     return AtLeastAsConstrained1 ? FT1 : FT2;
5070   };
5071 
5072   bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
5073                                           NumCallArguments1);
5074   bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
5075                                           NumCallArguments2);
5076 
5077   if (Better1 != Better2) // We have a clear winner
5078     return Better1 ? FT1 : FT2;
5079 
5080   if (!Better1 && !Better2) // Neither is better than the other
5081     return JudgeByConstraints();
5082 
5083   // FIXME: This mimics what GCC implements, but doesn't match up with the
5084   // proposed resolution for core issue 692. This area needs to be sorted out,
5085   // but for now we attempt to maintain compatibility.
5086   bool Variadic1 = isVariadicFunctionTemplate(FT1);
5087   bool Variadic2 = isVariadicFunctionTemplate(FT2);
5088   if (Variadic1 != Variadic2)
5089     return Variadic1? FT2 : FT1;
5090 
5091   return JudgeByConstraints();
5092 }
5093 
5094 /// Determine if the two templates are equivalent.
5095 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
5096   if (T1 == T2)
5097     return true;
5098 
5099   if (!T1 || !T2)
5100     return false;
5101 
5102   return T1->getCanonicalDecl() == T2->getCanonicalDecl();
5103 }
5104 
5105 /// Retrieve the most specialized of the given function template
5106 /// specializations.
5107 ///
5108 /// \param SpecBegin the start iterator of the function template
5109 /// specializations that we will be comparing.
5110 ///
5111 /// \param SpecEnd the end iterator of the function template
5112 /// specializations, paired with \p SpecBegin.
5113 ///
5114 /// \param Loc the location where the ambiguity or no-specializations
5115 /// diagnostic should occur.
5116 ///
5117 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
5118 /// no matching candidates.
5119 ///
5120 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
5121 /// occurs.
5122 ///
5123 /// \param CandidateDiag partial diagnostic used for each function template
5124 /// specialization that is a candidate in the ambiguous ordering. One parameter
5125 /// in this diagnostic should be unbound, which will correspond to the string
5126 /// describing the template arguments for the function template specialization.
5127 ///
5128 /// \returns the most specialized function template specialization, if
5129 /// found. Otherwise, returns SpecEnd.
5130 UnresolvedSetIterator Sema::getMostSpecialized(
5131     UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
5132     TemplateSpecCandidateSet &FailedCandidates,
5133     SourceLocation Loc, const PartialDiagnostic &NoneDiag,
5134     const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
5135     bool Complain, QualType TargetType) {
5136   if (SpecBegin == SpecEnd) {
5137     if (Complain) {
5138       Diag(Loc, NoneDiag);
5139       FailedCandidates.NoteCandidates(*this, Loc);
5140     }
5141     return SpecEnd;
5142   }
5143 
5144   if (SpecBegin + 1 == SpecEnd)
5145     return SpecBegin;
5146 
5147   // Find the function template that is better than all of the templates it
5148   // has been compared to.
5149   UnresolvedSetIterator Best = SpecBegin;
5150   FunctionTemplateDecl *BestTemplate
5151     = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
5152   assert(BestTemplate && "Not a function template specialization?");
5153   for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
5154     FunctionTemplateDecl *Challenger
5155       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
5156     assert(Challenger && "Not a function template specialization?");
5157     if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
5158                                                   Loc, TPOC_Other, 0, 0),
5159                        Challenger)) {
5160       Best = I;
5161       BestTemplate = Challenger;
5162     }
5163   }
5164 
5165   // Make sure that the "best" function template is more specialized than all
5166   // of the others.
5167   bool Ambiguous = false;
5168   for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
5169     FunctionTemplateDecl *Challenger
5170       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
5171     if (I != Best &&
5172         !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
5173                                                    Loc, TPOC_Other, 0, 0),
5174                         BestTemplate)) {
5175       Ambiguous = true;
5176       break;
5177     }
5178   }
5179 
5180   if (!Ambiguous) {
5181     // We found an answer. Return it.
5182     return Best;
5183   }
5184 
5185   // Diagnose the ambiguity.
5186   if (Complain) {
5187     Diag(Loc, AmbigDiag);
5188 
5189     // FIXME: Can we order the candidates in some sane way?
5190     for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
5191       PartialDiagnostic PD = CandidateDiag;
5192       const auto *FD = cast<FunctionDecl>(*I);
5193       PD << FD << getTemplateArgumentBindingsText(
5194                       FD->getPrimaryTemplate()->getTemplateParameters(),
5195                       *FD->getTemplateSpecializationArgs());
5196       if (!TargetType.isNull())
5197         HandleFunctionTypeMismatch(PD, FD->getType(), TargetType);
5198       Diag((*I)->getLocation(), PD);
5199     }
5200   }
5201 
5202   return SpecEnd;
5203 }
5204 
5205 /// Determine whether one partial specialization, P1, is at least as
5206 /// specialized than another, P2.
5207 ///
5208 /// \tparam TemplateLikeDecl The kind of P2, which must be a
5209 /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl.
5210 /// \param T1 The injected-class-name of P1 (faked for a variable template).
5211 /// \param T2 The injected-class-name of P2 (faked for a variable template).
5212 template<typename TemplateLikeDecl>
5213 static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2,
5214                                      TemplateLikeDecl *P2,
5215                                      TemplateDeductionInfo &Info) {
5216   // C++ [temp.class.order]p1:
5217   //   For two class template partial specializations, the first is at least as
5218   //   specialized as the second if, given the following rewrite to two
5219   //   function templates, the first function template is at least as
5220   //   specialized as the second according to the ordering rules for function
5221   //   templates (14.6.6.2):
5222   //     - the first function template has the same template parameters as the
5223   //       first partial specialization and has a single function parameter
5224   //       whose type is a class template specialization with the template
5225   //       arguments of the first partial specialization, and
5226   //     - the second function template has the same template parameters as the
5227   //       second partial specialization and has a single function parameter
5228   //       whose type is a class template specialization with the template
5229   //       arguments of the second partial specialization.
5230   //
5231   // Rather than synthesize function templates, we merely perform the
5232   // equivalent partial ordering by performing deduction directly on
5233   // the template arguments of the class template partial
5234   // specializations. This computation is slightly simpler than the
5235   // general problem of function template partial ordering, because
5236   // class template partial specializations are more constrained. We
5237   // know that every template parameter is deducible from the class
5238   // template partial specialization's template arguments, for
5239   // example.
5240   SmallVector<DeducedTemplateArgument, 4> Deduced;
5241 
5242   // Determine whether P1 is at least as specialized as P2.
5243   Deduced.resize(P2->getTemplateParameters()->size());
5244   if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(),
5245                                          T2, T1, Info, Deduced, TDF_None,
5246                                          /*PartialOrdering=*/true))
5247     return false;
5248 
5249   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
5250                                                Deduced.end());
5251   Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs,
5252                                    Info);
5253   auto *TST1 = T1->castAs<TemplateSpecializationType>();
5254   if (FinishTemplateArgumentDeduction(
5255           S, P2, /*IsPartialOrdering=*/true,
5256           TemplateArgumentList(TemplateArgumentList::OnStack,
5257                                TST1->template_arguments()),
5258           Deduced, Info))
5259     return false;
5260 
5261   return true;
5262 }
5263 
5264 /// Returns the more specialized class template partial specialization
5265 /// according to the rules of partial ordering of class template partial
5266 /// specializations (C++ [temp.class.order]).
5267 ///
5268 /// \param PS1 the first class template partial specialization
5269 ///
5270 /// \param PS2 the second class template partial specialization
5271 ///
5272 /// \returns the more specialized class template partial specialization. If
5273 /// neither partial specialization is more specialized, returns NULL.
5274 ClassTemplatePartialSpecializationDecl *
5275 Sema::getMoreSpecializedPartialSpecialization(
5276                                   ClassTemplatePartialSpecializationDecl *PS1,
5277                                   ClassTemplatePartialSpecializationDecl *PS2,
5278                                               SourceLocation Loc) {
5279   QualType PT1 = PS1->getInjectedSpecializationType();
5280   QualType PT2 = PS2->getInjectedSpecializationType();
5281 
5282   TemplateDeductionInfo Info(Loc);
5283   bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info);
5284   bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info);
5285 
5286   if (!Better1 && !Better2)
5287       return nullptr;
5288   if (Better1 && Better2) {
5289     llvm::SmallVector<const Expr *, 3> AC1, AC2;
5290     PS1->getAssociatedConstraints(AC1);
5291     PS2->getAssociatedConstraints(AC2);
5292     bool AtLeastAsConstrained1, AtLeastAsConstrained2;
5293     if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1))
5294       return nullptr;
5295     if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2))
5296       return nullptr;
5297     if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
5298       return nullptr;
5299     return AtLeastAsConstrained1 ? PS1 : PS2;
5300   }
5301 
5302   return Better1 ? PS1 : PS2;
5303 }
5304 
5305 bool Sema::isMoreSpecializedThanPrimary(
5306     ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
5307   ClassTemplateDecl *Primary = Spec->getSpecializedTemplate();
5308   QualType PrimaryT = Primary->getInjectedClassNameSpecialization();
5309   QualType PartialT = Spec->getInjectedSpecializationType();
5310   if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info))
5311     return false;
5312   if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info))
5313     return true;
5314   Info.clearSFINAEDiagnostic();
5315   llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC;
5316   Primary->getAssociatedConstraints(PrimaryAC);
5317   Spec->getAssociatedConstraints(SpecAC);
5318   bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec;
5319   if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC,
5320                              AtLeastAsConstrainedSpec))
5321     return false;
5322   if (!AtLeastAsConstrainedSpec)
5323     return false;
5324   if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC,
5325                              AtLeastAsConstrainedPrimary))
5326     return false;
5327   return !AtLeastAsConstrainedPrimary;
5328 }
5329 
5330 VarTemplatePartialSpecializationDecl *
5331 Sema::getMoreSpecializedPartialSpecialization(
5332     VarTemplatePartialSpecializationDecl *PS1,
5333     VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
5334   // Pretend the variable template specializations are class template
5335   // specializations and form a fake injected class name type for comparison.
5336   assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
5337          "the partial specializations being compared should specialize"
5338          " the same template.");
5339   TemplateName Name(PS1->getSpecializedTemplate());
5340   TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5341   QualType PT1 = Context.getTemplateSpecializationType(
5342       CanonTemplate, PS1->getTemplateArgs().asArray());
5343   QualType PT2 = Context.getTemplateSpecializationType(
5344       CanonTemplate, PS2->getTemplateArgs().asArray());
5345 
5346   TemplateDeductionInfo Info(Loc);
5347   bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info);
5348   bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info);
5349 
5350   if (!Better1 && !Better2)
5351     return nullptr;
5352   if (Better1 && Better2) {
5353     llvm::SmallVector<const Expr *, 3> AC1, AC2;
5354     PS1->getAssociatedConstraints(AC1);
5355     PS2->getAssociatedConstraints(AC2);
5356     bool AtLeastAsConstrained1, AtLeastAsConstrained2;
5357     if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1))
5358       return nullptr;
5359     if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2))
5360       return nullptr;
5361     if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
5362       return nullptr;
5363     return AtLeastAsConstrained1 ? PS1 : PS2;
5364   }
5365 
5366   return Better1 ? PS1 : PS2;
5367 }
5368 
5369 bool Sema::isMoreSpecializedThanPrimary(
5370     VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
5371   TemplateDecl *Primary = Spec->getSpecializedTemplate();
5372   // FIXME: Cache the injected template arguments rather than recomputing
5373   // them for each partial specialization.
5374   SmallVector<TemplateArgument, 8> PrimaryArgs;
5375   Context.getInjectedTemplateArgs(Primary->getTemplateParameters(),
5376                                   PrimaryArgs);
5377 
5378   TemplateName CanonTemplate =
5379       Context.getCanonicalTemplateName(TemplateName(Primary));
5380   QualType PrimaryT = Context.getTemplateSpecializationType(
5381       CanonTemplate, PrimaryArgs);
5382   QualType PartialT = Context.getTemplateSpecializationType(
5383       CanonTemplate, Spec->getTemplateArgs().asArray());
5384 
5385   if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info))
5386     return false;
5387   if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info))
5388     return true;
5389   Info.clearSFINAEDiagnostic();
5390   llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC;
5391   Primary->getAssociatedConstraints(PrimaryAC);
5392   Spec->getAssociatedConstraints(SpecAC);
5393   bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec;
5394   if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC,
5395                              AtLeastAsConstrainedSpec))
5396     return false;
5397   if (!AtLeastAsConstrainedSpec)
5398     return false;
5399   if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC,
5400                              AtLeastAsConstrainedPrimary))
5401     return false;
5402   return !AtLeastAsConstrainedPrimary;
5403 }
5404 
5405 bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs(
5406      TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) {
5407   // C++1z [temp.arg.template]p4: (DR 150)
5408   //   A template template-parameter P is at least as specialized as a
5409   //   template template-argument A if, given the following rewrite to two
5410   //   function templates...
5411 
5412   // Rather than synthesize function templates, we merely perform the
5413   // equivalent partial ordering by performing deduction directly on
5414   // the template parameter lists of the template template parameters.
5415   //
5416   //   Given an invented class template X with the template parameter list of
5417   //   A (including default arguments):
5418   TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg));
5419   TemplateParameterList *A = AArg->getTemplateParameters();
5420 
5421   //    - Each function template has a single function parameter whose type is
5422   //      a specialization of X with template arguments corresponding to the
5423   //      template parameters from the respective function template
5424   SmallVector<TemplateArgument, 8> AArgs;
5425   Context.getInjectedTemplateArgs(A, AArgs);
5426 
5427   // Check P's arguments against A's parameter list. This will fill in default
5428   // template arguments as needed. AArgs are already correct by construction.
5429   // We can't just use CheckTemplateIdType because that will expand alias
5430   // templates.
5431   SmallVector<TemplateArgument, 4> PArgs;
5432   {
5433     SFINAETrap Trap(*this);
5434 
5435     Context.getInjectedTemplateArgs(P, PArgs);
5436     TemplateArgumentListInfo PArgList(P->getLAngleLoc(),
5437                                       P->getRAngleLoc());
5438     for (unsigned I = 0, N = P->size(); I != N; ++I) {
5439       // Unwrap packs that getInjectedTemplateArgs wrapped around pack
5440       // expansions, to form an "as written" argument list.
5441       TemplateArgument Arg = PArgs[I];
5442       if (Arg.getKind() == TemplateArgument::Pack) {
5443         assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion());
5444         Arg = *Arg.pack_begin();
5445       }
5446       PArgList.addArgument(getTrivialTemplateArgumentLoc(
5447           Arg, QualType(), P->getParam(I)->getLocation()));
5448     }
5449     PArgs.clear();
5450 
5451     // C++1z [temp.arg.template]p3:
5452     //   If the rewrite produces an invalid type, then P is not at least as
5453     //   specialized as A.
5454     if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, PArgs) ||
5455         Trap.hasErrorOccurred())
5456       return false;
5457   }
5458 
5459   QualType AType = Context.getTemplateSpecializationType(X, AArgs);
5460   QualType PType = Context.getTemplateSpecializationType(X, PArgs);
5461 
5462   //   ... the function template corresponding to P is at least as specialized
5463   //   as the function template corresponding to A according to the partial
5464   //   ordering rules for function templates.
5465   TemplateDeductionInfo Info(Loc, A->getDepth());
5466   return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info);
5467 }
5468 
5469 namespace {
5470 struct MarkUsedTemplateParameterVisitor :
5471     RecursiveASTVisitor<MarkUsedTemplateParameterVisitor> {
5472   llvm::SmallBitVector &Used;
5473   unsigned Depth;
5474 
5475   MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used,
5476                                    unsigned Depth)
5477       : Used(Used), Depth(Depth) { }
5478 
5479   bool VisitTemplateTypeParmType(TemplateTypeParmType *T) {
5480     if (T->getDepth() == Depth)
5481       Used[T->getIndex()] = true;
5482     return true;
5483   }
5484 
5485   bool TraverseTemplateName(TemplateName Template) {
5486     if (auto *TTP =
5487             dyn_cast<TemplateTemplateParmDecl>(Template.getAsTemplateDecl()))
5488       if (TTP->getDepth() == Depth)
5489         Used[TTP->getIndex()] = true;
5490     RecursiveASTVisitor<MarkUsedTemplateParameterVisitor>::
5491         TraverseTemplateName(Template);
5492     return true;
5493   }
5494 
5495   bool VisitDeclRefExpr(DeclRefExpr *E) {
5496     if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
5497       if (NTTP->getDepth() == Depth)
5498         Used[NTTP->getIndex()] = true;
5499     return true;
5500   }
5501 };
5502 }
5503 
5504 /// Mark the template parameters that are used by the given
5505 /// expression.
5506 static void
5507 MarkUsedTemplateParameters(ASTContext &Ctx,
5508                            const Expr *E,
5509                            bool OnlyDeduced,
5510                            unsigned Depth,
5511                            llvm::SmallBitVector &Used) {
5512   if (!OnlyDeduced) {
5513     MarkUsedTemplateParameterVisitor(Used, Depth)
5514         .TraverseStmt(const_cast<Expr *>(E));
5515     return;
5516   }
5517 
5518   // We can deduce from a pack expansion.
5519   if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
5520     E = Expansion->getPattern();
5521 
5522   // Skip through any implicit casts we added while type-checking, and any
5523   // substitutions performed by template alias expansion.
5524   while (true) {
5525     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
5526       E = ICE->getSubExpr();
5527     else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(E))
5528       E = CE->getSubExpr();
5529     else if (const SubstNonTypeTemplateParmExpr *Subst =
5530                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
5531       E = Subst->getReplacement();
5532     else
5533       break;
5534   }
5535 
5536   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
5537   if (!DRE)
5538     return;
5539 
5540   const NonTypeTemplateParmDecl *NTTP
5541     = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
5542   if (!NTTP)
5543     return;
5544 
5545   if (NTTP->getDepth() == Depth)
5546     Used[NTTP->getIndex()] = true;
5547 
5548   // In C++17 mode, additional arguments may be deduced from the type of a
5549   // non-type argument.
5550   if (Ctx.getLangOpts().CPlusPlus17)
5551     MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used);
5552 }
5553 
5554 /// Mark the template parameters that are used by the given
5555 /// nested name specifier.
5556 static void
5557 MarkUsedTemplateParameters(ASTContext &Ctx,
5558                            NestedNameSpecifier *NNS,
5559                            bool OnlyDeduced,
5560                            unsigned Depth,
5561                            llvm::SmallBitVector &Used) {
5562   if (!NNS)
5563     return;
5564 
5565   MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
5566                              Used);
5567   MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
5568                              OnlyDeduced, Depth, Used);
5569 }
5570 
5571 /// Mark the template parameters that are used by the given
5572 /// template name.
5573 static void
5574 MarkUsedTemplateParameters(ASTContext &Ctx,
5575                            TemplateName Name,
5576                            bool OnlyDeduced,
5577                            unsigned Depth,
5578                            llvm::SmallBitVector &Used) {
5579   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
5580     if (TemplateTemplateParmDecl *TTP
5581           = dyn_cast<TemplateTemplateParmDecl>(Template)) {
5582       if (TTP->getDepth() == Depth)
5583         Used[TTP->getIndex()] = true;
5584     }
5585     return;
5586   }
5587 
5588   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
5589     MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
5590                                Depth, Used);
5591   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
5592     MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
5593                                Depth, Used);
5594 }
5595 
5596 /// Mark the template parameters that are used by the given
5597 /// type.
5598 static void
5599 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
5600                            bool OnlyDeduced,
5601                            unsigned Depth,
5602                            llvm::SmallBitVector &Used) {
5603   if (T.isNull())
5604     return;
5605 
5606   // Non-dependent types have nothing deducible
5607   if (!T->isDependentType())
5608     return;
5609 
5610   T = Ctx.getCanonicalType(T);
5611   switch (T->getTypeClass()) {
5612   case Type::Pointer:
5613     MarkUsedTemplateParameters(Ctx,
5614                                cast<PointerType>(T)->getPointeeType(),
5615                                OnlyDeduced,
5616                                Depth,
5617                                Used);
5618     break;
5619 
5620   case Type::BlockPointer:
5621     MarkUsedTemplateParameters(Ctx,
5622                                cast<BlockPointerType>(T)->getPointeeType(),
5623                                OnlyDeduced,
5624                                Depth,
5625                                Used);
5626     break;
5627 
5628   case Type::LValueReference:
5629   case Type::RValueReference:
5630     MarkUsedTemplateParameters(Ctx,
5631                                cast<ReferenceType>(T)->getPointeeType(),
5632                                OnlyDeduced,
5633                                Depth,
5634                                Used);
5635     break;
5636 
5637   case Type::MemberPointer: {
5638     const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
5639     MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
5640                                Depth, Used);
5641     MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
5642                                OnlyDeduced, Depth, Used);
5643     break;
5644   }
5645 
5646   case Type::DependentSizedArray:
5647     MarkUsedTemplateParameters(Ctx,
5648                                cast<DependentSizedArrayType>(T)->getSizeExpr(),
5649                                OnlyDeduced, Depth, Used);
5650     // Fall through to check the element type
5651     LLVM_FALLTHROUGH;
5652 
5653   case Type::ConstantArray:
5654   case Type::IncompleteArray:
5655     MarkUsedTemplateParameters(Ctx,
5656                                cast<ArrayType>(T)->getElementType(),
5657                                OnlyDeduced, Depth, Used);
5658     break;
5659 
5660   case Type::Vector:
5661   case Type::ExtVector:
5662     MarkUsedTemplateParameters(Ctx,
5663                                cast<VectorType>(T)->getElementType(),
5664                                OnlyDeduced, Depth, Used);
5665     break;
5666 
5667   case Type::DependentVector: {
5668     const auto *VecType = cast<DependentVectorType>(T);
5669     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
5670                                Depth, Used);
5671     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth,
5672                                Used);
5673     break;
5674   }
5675   case Type::DependentSizedExtVector: {
5676     const DependentSizedExtVectorType *VecType
5677       = cast<DependentSizedExtVectorType>(T);
5678     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
5679                                Depth, Used);
5680     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
5681                                Depth, Used);
5682     break;
5683   }
5684 
5685   case Type::DependentAddressSpace: {
5686     const DependentAddressSpaceType *DependentASType =
5687         cast<DependentAddressSpaceType>(T);
5688     MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(),
5689                                OnlyDeduced, Depth, Used);
5690     MarkUsedTemplateParameters(Ctx,
5691                                DependentASType->getAddrSpaceExpr(),
5692                                OnlyDeduced, Depth, Used);
5693     break;
5694   }
5695 
5696   case Type::FunctionProto: {
5697     const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
5698     MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
5699                                Used);
5700     for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) {
5701       // C++17 [temp.deduct.type]p5:
5702       //   The non-deduced contexts are: [...]
5703       //   -- A function parameter pack that does not occur at the end of the
5704       //      parameter-declaration-list.
5705       if (!OnlyDeduced || I + 1 == N ||
5706           !Proto->getParamType(I)->getAs<PackExpansionType>()) {
5707         MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
5708                                    Depth, Used);
5709       } else {
5710         // FIXME: C++17 [temp.deduct.call]p1:
5711         //   When a function parameter pack appears in a non-deduced context,
5712         //   the type of that pack is never deduced.
5713         //
5714         // We should also track a set of "never deduced" parameters, and
5715         // subtract that from the list of deduced parameters after marking.
5716       }
5717     }
5718     if (auto *E = Proto->getNoexceptExpr())
5719       MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used);
5720     break;
5721   }
5722 
5723   case Type::TemplateTypeParm: {
5724     const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
5725     if (TTP->getDepth() == Depth)
5726       Used[TTP->getIndex()] = true;
5727     break;
5728   }
5729 
5730   case Type::SubstTemplateTypeParmPack: {
5731     const SubstTemplateTypeParmPackType *Subst
5732       = cast<SubstTemplateTypeParmPackType>(T);
5733     MarkUsedTemplateParameters(Ctx,
5734                                QualType(Subst->getReplacedParameter(), 0),
5735                                OnlyDeduced, Depth, Used);
5736     MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
5737                                OnlyDeduced, Depth, Used);
5738     break;
5739   }
5740 
5741   case Type::InjectedClassName:
5742     T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
5743     LLVM_FALLTHROUGH;
5744 
5745   case Type::TemplateSpecialization: {
5746     const TemplateSpecializationType *Spec
5747       = cast<TemplateSpecializationType>(T);
5748     MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
5749                                Depth, Used);
5750 
5751     // C++0x [temp.deduct.type]p9:
5752     //   If the template argument list of P contains a pack expansion that is
5753     //   not the last template argument, the entire template argument list is a
5754     //   non-deduced context.
5755     if (OnlyDeduced &&
5756         hasPackExpansionBeforeEnd(Spec->template_arguments()))
5757       break;
5758 
5759     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
5760       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
5761                                  Used);
5762     break;
5763   }
5764 
5765   case Type::Complex:
5766     if (!OnlyDeduced)
5767       MarkUsedTemplateParameters(Ctx,
5768                                  cast<ComplexType>(T)->getElementType(),
5769                                  OnlyDeduced, Depth, Used);
5770     break;
5771 
5772   case Type::Atomic:
5773     if (!OnlyDeduced)
5774       MarkUsedTemplateParameters(Ctx,
5775                                  cast<AtomicType>(T)->getValueType(),
5776                                  OnlyDeduced, Depth, Used);
5777     break;
5778 
5779   case Type::DependentName:
5780     if (!OnlyDeduced)
5781       MarkUsedTemplateParameters(Ctx,
5782                                  cast<DependentNameType>(T)->getQualifier(),
5783                                  OnlyDeduced, Depth, Used);
5784     break;
5785 
5786   case Type::DependentTemplateSpecialization: {
5787     // C++14 [temp.deduct.type]p5:
5788     //   The non-deduced contexts are:
5789     //     -- The nested-name-specifier of a type that was specified using a
5790     //        qualified-id
5791     //
5792     // C++14 [temp.deduct.type]p6:
5793     //   When a type name is specified in a way that includes a non-deduced
5794     //   context, all of the types that comprise that type name are also
5795     //   non-deduced.
5796     if (OnlyDeduced)
5797       break;
5798 
5799     const DependentTemplateSpecializationType *Spec
5800       = cast<DependentTemplateSpecializationType>(T);
5801 
5802     MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
5803                                OnlyDeduced, Depth, Used);
5804 
5805     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
5806       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
5807                                  Used);
5808     break;
5809   }
5810 
5811   case Type::TypeOf:
5812     if (!OnlyDeduced)
5813       MarkUsedTemplateParameters(Ctx,
5814                                  cast<TypeOfType>(T)->getUnderlyingType(),
5815                                  OnlyDeduced, Depth, Used);
5816     break;
5817 
5818   case Type::TypeOfExpr:
5819     if (!OnlyDeduced)
5820       MarkUsedTemplateParameters(Ctx,
5821                                  cast<TypeOfExprType>(T)->getUnderlyingExpr(),
5822                                  OnlyDeduced, Depth, Used);
5823     break;
5824 
5825   case Type::Decltype:
5826     if (!OnlyDeduced)
5827       MarkUsedTemplateParameters(Ctx,
5828                                  cast<DecltypeType>(T)->getUnderlyingExpr(),
5829                                  OnlyDeduced, Depth, Used);
5830     break;
5831 
5832   case Type::UnaryTransform:
5833     if (!OnlyDeduced)
5834       MarkUsedTemplateParameters(Ctx,
5835                                  cast<UnaryTransformType>(T)->getUnderlyingType(),
5836                                  OnlyDeduced, Depth, Used);
5837     break;
5838 
5839   case Type::PackExpansion:
5840     MarkUsedTemplateParameters(Ctx,
5841                                cast<PackExpansionType>(T)->getPattern(),
5842                                OnlyDeduced, Depth, Used);
5843     break;
5844 
5845   case Type::Auto:
5846   case Type::DeducedTemplateSpecialization:
5847     MarkUsedTemplateParameters(Ctx,
5848                                cast<DeducedType>(T)->getDeducedType(),
5849                                OnlyDeduced, Depth, Used);
5850     break;
5851 
5852   // None of these types have any template parameters in them.
5853   case Type::Builtin:
5854   case Type::VariableArray:
5855   case Type::FunctionNoProto:
5856   case Type::Record:
5857   case Type::Enum:
5858   case Type::ObjCInterface:
5859   case Type::ObjCObject:
5860   case Type::ObjCObjectPointer:
5861   case Type::UnresolvedUsing:
5862   case Type::Pipe:
5863 #define TYPE(Class, Base)
5864 #define ABSTRACT_TYPE(Class, Base)
5865 #define DEPENDENT_TYPE(Class, Base)
5866 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5867 #include "clang/AST/TypeNodes.inc"
5868     break;
5869   }
5870 }
5871 
5872 /// Mark the template parameters that are used by this
5873 /// template argument.
5874 static void
5875 MarkUsedTemplateParameters(ASTContext &Ctx,
5876                            const TemplateArgument &TemplateArg,
5877                            bool OnlyDeduced,
5878                            unsigned Depth,
5879                            llvm::SmallBitVector &Used) {
5880   switch (TemplateArg.getKind()) {
5881   case TemplateArgument::Null:
5882   case TemplateArgument::Integral:
5883   case TemplateArgument::Declaration:
5884     break;
5885 
5886   case TemplateArgument::NullPtr:
5887     MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
5888                                Depth, Used);
5889     break;
5890 
5891   case TemplateArgument::Type:
5892     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
5893                                Depth, Used);
5894     break;
5895 
5896   case TemplateArgument::Template:
5897   case TemplateArgument::TemplateExpansion:
5898     MarkUsedTemplateParameters(Ctx,
5899                                TemplateArg.getAsTemplateOrTemplatePattern(),
5900                                OnlyDeduced, Depth, Used);
5901     break;
5902 
5903   case TemplateArgument::Expression:
5904     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
5905                                Depth, Used);
5906     break;
5907 
5908   case TemplateArgument::Pack:
5909     for (const auto &P : TemplateArg.pack_elements())
5910       MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
5911     break;
5912   }
5913 }
5914 
5915 /// Mark which template parameters are used in a given expression.
5916 ///
5917 /// \param E the expression from which template parameters will be deduced.
5918 ///
5919 /// \param Used a bit vector whose elements will be set to \c true
5920 /// to indicate when the corresponding template parameter will be
5921 /// deduced.
5922 void
5923 Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
5924                                  unsigned Depth,
5925                                  llvm::SmallBitVector &Used) {
5926   ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used);
5927 }
5928 
5929 /// Mark which template parameters can be deduced from a given
5930 /// template argument list.
5931 ///
5932 /// \param TemplateArgs the template argument list from which template
5933 /// parameters will be deduced.
5934 ///
5935 /// \param Used a bit vector whose elements will be set to \c true
5936 /// to indicate when the corresponding template parameter will be
5937 /// deduced.
5938 void
5939 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
5940                                  bool OnlyDeduced, unsigned Depth,
5941                                  llvm::SmallBitVector &Used) {
5942   // C++0x [temp.deduct.type]p9:
5943   //   If the template argument list of P contains a pack expansion that is not
5944   //   the last template argument, the entire template argument list is a
5945   //   non-deduced context.
5946   if (OnlyDeduced &&
5947       hasPackExpansionBeforeEnd(TemplateArgs.asArray()))
5948     return;
5949 
5950   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5951     ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
5952                                  Depth, Used);
5953 }
5954 
5955 /// Marks all of the template parameters that will be deduced by a
5956 /// call to the given function template.
5957 void Sema::MarkDeducedTemplateParameters(
5958     ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
5959     llvm::SmallBitVector &Deduced) {
5960   TemplateParameterList *TemplateParams
5961     = FunctionTemplate->getTemplateParameters();
5962   Deduced.clear();
5963   Deduced.resize(TemplateParams->size());
5964 
5965   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
5966   for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
5967     ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
5968                                  true, TemplateParams->getDepth(), Deduced);
5969 }
5970 
5971 bool hasDeducibleTemplateParameters(Sema &S,
5972                                     FunctionTemplateDecl *FunctionTemplate,
5973                                     QualType T) {
5974   if (!T->isDependentType())
5975     return false;
5976 
5977   TemplateParameterList *TemplateParams
5978     = FunctionTemplate->getTemplateParameters();
5979   llvm::SmallBitVector Deduced(TemplateParams->size());
5980   ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
5981                                Deduced);
5982 
5983   return Deduced.any();
5984 }
5985