1 //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements C++ template argument deduction. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Sema/TemplateDeduction.h" 14 #include "TreeTransform.h" 15 #include "TypeLocBuilder.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/DeclAccessPair.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/NestedNameSpecifier.h" 27 #include "clang/AST/RecursiveASTVisitor.h" 28 #include "clang/AST/TemplateBase.h" 29 #include "clang/AST/TemplateName.h" 30 #include "clang/AST/Type.h" 31 #include "clang/AST/TypeLoc.h" 32 #include "clang/AST/UnresolvedSet.h" 33 #include "clang/Basic/AddressSpaces.h" 34 #include "clang/Basic/ExceptionSpecificationType.h" 35 #include "clang/Basic/LLVM.h" 36 #include "clang/Basic/LangOptions.h" 37 #include "clang/Basic/PartialDiagnostic.h" 38 #include "clang/Basic/SourceLocation.h" 39 #include "clang/Basic/Specifiers.h" 40 #include "clang/Sema/Ownership.h" 41 #include "clang/Sema/Sema.h" 42 #include "clang/Sema/Template.h" 43 #include "llvm/ADT/APInt.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/ArrayRef.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/FoldingSet.h" 48 #include "llvm/ADT/Optional.h" 49 #include "llvm/ADT/SmallBitVector.h" 50 #include "llvm/ADT/SmallPtrSet.h" 51 #include "llvm/ADT/SmallVector.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <tuple> 58 #include <utility> 59 60 namespace clang { 61 62 /// Various flags that control template argument deduction. 63 /// 64 /// These flags can be bitwise-OR'd together. 65 enum TemplateDeductionFlags { 66 /// No template argument deduction flags, which indicates the 67 /// strictest results for template argument deduction (as used for, e.g., 68 /// matching class template partial specializations). 69 TDF_None = 0, 70 71 /// Within template argument deduction from a function call, we are 72 /// matching with a parameter type for which the original parameter was 73 /// a reference. 74 TDF_ParamWithReferenceType = 0x1, 75 76 /// Within template argument deduction from a function call, we 77 /// are matching in a case where we ignore cv-qualifiers. 78 TDF_IgnoreQualifiers = 0x02, 79 80 /// Within template argument deduction from a function call, 81 /// we are matching in a case where we can perform template argument 82 /// deduction from a template-id of a derived class of the argument type. 83 TDF_DerivedClass = 0x04, 84 85 /// Allow non-dependent types to differ, e.g., when performing 86 /// template argument deduction from a function call where conversions 87 /// may apply. 88 TDF_SkipNonDependent = 0x08, 89 90 /// Whether we are performing template argument deduction for 91 /// parameters and arguments in a top-level template argument 92 TDF_TopLevelParameterTypeList = 0x10, 93 94 /// Within template argument deduction from overload resolution per 95 /// C++ [over.over] allow matching function types that are compatible in 96 /// terms of noreturn and default calling convention adjustments, or 97 /// similarly matching a declared template specialization against a 98 /// possible template, per C++ [temp.deduct.decl]. In either case, permit 99 /// deduction where the parameter is a function type that can be converted 100 /// to the argument type. 101 TDF_AllowCompatibleFunctionType = 0x20, 102 103 /// Within template argument deduction for a conversion function, we are 104 /// matching with an argument type for which the original argument was 105 /// a reference. 106 TDF_ArgWithReferenceType = 0x40, 107 }; 108 } 109 110 using namespace clang; 111 using namespace sema; 112 113 /// Compare two APSInts, extending and switching the sign as 114 /// necessary to compare their values regardless of underlying type. 115 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) { 116 if (Y.getBitWidth() > X.getBitWidth()) 117 X = X.extend(Y.getBitWidth()); 118 else if (Y.getBitWidth() < X.getBitWidth()) 119 Y = Y.extend(X.getBitWidth()); 120 121 // If there is a signedness mismatch, correct it. 122 if (X.isSigned() != Y.isSigned()) { 123 // If the signed value is negative, then the values cannot be the same. 124 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative())) 125 return false; 126 127 Y.setIsSigned(true); 128 X.setIsSigned(true); 129 } 130 131 return X == Y; 132 } 133 134 static Sema::TemplateDeductionResult 135 DeduceTemplateArguments(Sema &S, 136 TemplateParameterList *TemplateParams, 137 const TemplateArgument &Param, 138 TemplateArgument Arg, 139 TemplateDeductionInfo &Info, 140 SmallVectorImpl<DeducedTemplateArgument> &Deduced); 141 142 static Sema::TemplateDeductionResult 143 DeduceTemplateArgumentsByTypeMatch(Sema &S, 144 TemplateParameterList *TemplateParams, 145 QualType Param, 146 QualType Arg, 147 TemplateDeductionInfo &Info, 148 SmallVectorImpl<DeducedTemplateArgument> & 149 Deduced, 150 unsigned TDF, 151 bool PartialOrdering = false, 152 bool DeducedFromArrayBound = false); 153 154 static Sema::TemplateDeductionResult 155 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 156 ArrayRef<TemplateArgument> Params, 157 ArrayRef<TemplateArgument> Args, 158 TemplateDeductionInfo &Info, 159 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 160 bool NumberOfArgumentsMustMatch); 161 162 static void MarkUsedTemplateParameters(ASTContext &Ctx, 163 const TemplateArgument &TemplateArg, 164 bool OnlyDeduced, unsigned Depth, 165 llvm::SmallBitVector &Used); 166 167 static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 168 bool OnlyDeduced, unsigned Level, 169 llvm::SmallBitVector &Deduced); 170 171 /// If the given expression is of a form that permits the deduction 172 /// of a non-type template parameter, return the declaration of that 173 /// non-type template parameter. 174 static NonTypeTemplateParmDecl * 175 getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) { 176 // If we are within an alias template, the expression may have undergone 177 // any number of parameter substitutions already. 178 while (true) { 179 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E)) 180 E = IC->getSubExpr(); 181 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) 182 E = CE->getSubExpr(); 183 else if (SubstNonTypeTemplateParmExpr *Subst = 184 dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 185 E = Subst->getReplacement(); 186 else 187 break; 188 } 189 190 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 191 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) 192 if (NTTP->getDepth() == Info.getDeducedDepth()) 193 return NTTP; 194 195 return nullptr; 196 } 197 198 /// Determine whether two declaration pointers refer to the same 199 /// declaration. 200 static bool isSameDeclaration(Decl *X, Decl *Y) { 201 if (NamedDecl *NX = dyn_cast<NamedDecl>(X)) 202 X = NX->getUnderlyingDecl(); 203 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y)) 204 Y = NY->getUnderlyingDecl(); 205 206 return X->getCanonicalDecl() == Y->getCanonicalDecl(); 207 } 208 209 /// Verify that the given, deduced template arguments are compatible. 210 /// 211 /// \returns The deduced template argument, or a NULL template argument if 212 /// the deduced template arguments were incompatible. 213 static DeducedTemplateArgument 214 checkDeducedTemplateArguments(ASTContext &Context, 215 const DeducedTemplateArgument &X, 216 const DeducedTemplateArgument &Y) { 217 // We have no deduction for one or both of the arguments; they're compatible. 218 if (X.isNull()) 219 return Y; 220 if (Y.isNull()) 221 return X; 222 223 // If we have two non-type template argument values deduced for the same 224 // parameter, they must both match the type of the parameter, and thus must 225 // match each other's type. As we're only keeping one of them, we must check 226 // for that now. The exception is that if either was deduced from an array 227 // bound, the type is permitted to differ. 228 if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) { 229 QualType XType = X.getNonTypeTemplateArgumentType(); 230 if (!XType.isNull()) { 231 QualType YType = Y.getNonTypeTemplateArgumentType(); 232 if (YType.isNull() || !Context.hasSameType(XType, YType)) 233 return DeducedTemplateArgument(); 234 } 235 } 236 237 switch (X.getKind()) { 238 case TemplateArgument::Null: 239 llvm_unreachable("Non-deduced template arguments handled above"); 240 241 case TemplateArgument::Type: 242 // If two template type arguments have the same type, they're compatible. 243 if (Y.getKind() == TemplateArgument::Type && 244 Context.hasSameType(X.getAsType(), Y.getAsType())) 245 return X; 246 247 // If one of the two arguments was deduced from an array bound, the other 248 // supersedes it. 249 if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound()) 250 return X.wasDeducedFromArrayBound() ? Y : X; 251 252 // The arguments are not compatible. 253 return DeducedTemplateArgument(); 254 255 case TemplateArgument::Integral: 256 // If we deduced a constant in one case and either a dependent expression or 257 // declaration in another case, keep the integral constant. 258 // If both are integral constants with the same value, keep that value. 259 if (Y.getKind() == TemplateArgument::Expression || 260 Y.getKind() == TemplateArgument::Declaration || 261 (Y.getKind() == TemplateArgument::Integral && 262 hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()))) 263 return X.wasDeducedFromArrayBound() ? Y : X; 264 265 // All other combinations are incompatible. 266 return DeducedTemplateArgument(); 267 268 case TemplateArgument::Template: 269 if (Y.getKind() == TemplateArgument::Template && 270 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate())) 271 return X; 272 273 // All other combinations are incompatible. 274 return DeducedTemplateArgument(); 275 276 case TemplateArgument::TemplateExpansion: 277 if (Y.getKind() == TemplateArgument::TemplateExpansion && 278 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(), 279 Y.getAsTemplateOrTemplatePattern())) 280 return X; 281 282 // All other combinations are incompatible. 283 return DeducedTemplateArgument(); 284 285 case TemplateArgument::Expression: { 286 if (Y.getKind() != TemplateArgument::Expression) 287 return checkDeducedTemplateArguments(Context, Y, X); 288 289 // Compare the expressions for equality 290 llvm::FoldingSetNodeID ID1, ID2; 291 X.getAsExpr()->Profile(ID1, Context, true); 292 Y.getAsExpr()->Profile(ID2, Context, true); 293 if (ID1 == ID2) 294 return X.wasDeducedFromArrayBound() ? Y : X; 295 296 // Differing dependent expressions are incompatible. 297 return DeducedTemplateArgument(); 298 } 299 300 case TemplateArgument::Declaration: 301 assert(!X.wasDeducedFromArrayBound()); 302 303 // If we deduced a declaration and a dependent expression, keep the 304 // declaration. 305 if (Y.getKind() == TemplateArgument::Expression) 306 return X; 307 308 // If we deduced a declaration and an integral constant, keep the 309 // integral constant and whichever type did not come from an array 310 // bound. 311 if (Y.getKind() == TemplateArgument::Integral) { 312 if (Y.wasDeducedFromArrayBound()) 313 return TemplateArgument(Context, Y.getAsIntegral(), 314 X.getParamTypeForDecl()); 315 return Y; 316 } 317 318 // If we deduced two declarations, make sure that they refer to the 319 // same declaration. 320 if (Y.getKind() == TemplateArgument::Declaration && 321 isSameDeclaration(X.getAsDecl(), Y.getAsDecl())) 322 return X; 323 324 // All other combinations are incompatible. 325 return DeducedTemplateArgument(); 326 327 case TemplateArgument::NullPtr: 328 // If we deduced a null pointer and a dependent expression, keep the 329 // null pointer. 330 if (Y.getKind() == TemplateArgument::Expression) 331 return X; 332 333 // If we deduced a null pointer and an integral constant, keep the 334 // integral constant. 335 if (Y.getKind() == TemplateArgument::Integral) 336 return Y; 337 338 // If we deduced two null pointers, they are the same. 339 if (Y.getKind() == TemplateArgument::NullPtr) 340 return X; 341 342 // All other combinations are incompatible. 343 return DeducedTemplateArgument(); 344 345 case TemplateArgument::Pack: { 346 if (Y.getKind() != TemplateArgument::Pack || 347 X.pack_size() != Y.pack_size()) 348 return DeducedTemplateArgument(); 349 350 llvm::SmallVector<TemplateArgument, 8> NewPack; 351 for (TemplateArgument::pack_iterator XA = X.pack_begin(), 352 XAEnd = X.pack_end(), 353 YA = Y.pack_begin(); 354 XA != XAEnd; ++XA, ++YA) { 355 TemplateArgument Merged = checkDeducedTemplateArguments( 356 Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), 357 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())); 358 if (Merged.isNull()) 359 return DeducedTemplateArgument(); 360 NewPack.push_back(Merged); 361 } 362 363 return DeducedTemplateArgument( 364 TemplateArgument::CreatePackCopy(Context, NewPack), 365 X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound()); 366 } 367 } 368 369 llvm_unreachable("Invalid TemplateArgument Kind!"); 370 } 371 372 /// Deduce the value of the given non-type template parameter 373 /// as the given deduced template argument. All non-type template parameter 374 /// deduction is funneled through here. 375 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 376 Sema &S, TemplateParameterList *TemplateParams, 377 NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced, 378 QualType ValueType, TemplateDeductionInfo &Info, 379 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 380 assert(NTTP->getDepth() == Info.getDeducedDepth() && 381 "deducing non-type template argument with wrong depth"); 382 383 DeducedTemplateArgument Result = checkDeducedTemplateArguments( 384 S.Context, Deduced[NTTP->getIndex()], NewDeduced); 385 if (Result.isNull()) { 386 Info.Param = NTTP; 387 Info.FirstArg = Deduced[NTTP->getIndex()]; 388 Info.SecondArg = NewDeduced; 389 return Sema::TDK_Inconsistent; 390 } 391 392 Deduced[NTTP->getIndex()] = Result; 393 if (!S.getLangOpts().CPlusPlus17) 394 return Sema::TDK_Success; 395 396 if (NTTP->isExpandedParameterPack()) 397 // FIXME: We may still need to deduce parts of the type here! But we 398 // don't have any way to find which slice of the type to use, and the 399 // type stored on the NTTP itself is nonsense. Perhaps the type of an 400 // expanded NTTP should be a pack expansion type? 401 return Sema::TDK_Success; 402 403 // Get the type of the parameter for deduction. If it's a (dependent) array 404 // or function type, we will not have decayed it yet, so do that now. 405 QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType()); 406 if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType)) 407 ParamType = Expansion->getPattern(); 408 409 // FIXME: It's not clear how deduction of a parameter of reference 410 // type from an argument (of non-reference type) should be performed. 411 // For now, we just remove reference types from both sides and let 412 // the final check for matching types sort out the mess. 413 return DeduceTemplateArgumentsByTypeMatch( 414 S, TemplateParams, ParamType.getNonReferenceType(), 415 ValueType.getNonReferenceType(), Info, Deduced, TDF_SkipNonDependent, 416 /*PartialOrdering=*/false, 417 /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound()); 418 } 419 420 /// Deduce the value of the given non-type template parameter 421 /// from the given integral constant. 422 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 423 Sema &S, TemplateParameterList *TemplateParams, 424 NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value, 425 QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info, 426 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 427 return DeduceNonTypeTemplateArgument( 428 S, TemplateParams, NTTP, 429 DeducedTemplateArgument(S.Context, Value, ValueType, 430 DeducedFromArrayBound), 431 ValueType, Info, Deduced); 432 } 433 434 /// Deduce the value of the given non-type template parameter 435 /// from the given null pointer template argument type. 436 static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument( 437 Sema &S, TemplateParameterList *TemplateParams, 438 NonTypeTemplateParmDecl *NTTP, QualType NullPtrType, 439 TemplateDeductionInfo &Info, 440 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 441 Expr *Value = 442 S.ImpCastExprToType(new (S.Context) CXXNullPtrLiteralExpr( 443 S.Context.NullPtrTy, NTTP->getLocation()), 444 NullPtrType, CK_NullToPointer) 445 .get(); 446 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 447 DeducedTemplateArgument(Value), 448 Value->getType(), Info, Deduced); 449 } 450 451 /// Deduce the value of the given non-type template parameter 452 /// from the given type- or value-dependent expression. 453 /// 454 /// \returns true if deduction succeeded, false otherwise. 455 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 456 Sema &S, TemplateParameterList *TemplateParams, 457 NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info, 458 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 459 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 460 DeducedTemplateArgument(Value), 461 Value->getType(), Info, Deduced); 462 } 463 464 /// Deduce the value of the given non-type template parameter 465 /// from the given declaration. 466 /// 467 /// \returns true if deduction succeeded, false otherwise. 468 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 469 Sema &S, TemplateParameterList *TemplateParams, 470 NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T, 471 TemplateDeductionInfo &Info, 472 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 473 D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; 474 TemplateArgument New(D, T); 475 return DeduceNonTypeTemplateArgument( 476 S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced); 477 } 478 479 static Sema::TemplateDeductionResult 480 DeduceTemplateArguments(Sema &S, 481 TemplateParameterList *TemplateParams, 482 TemplateName Param, 483 TemplateName Arg, 484 TemplateDeductionInfo &Info, 485 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 486 TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); 487 if (!ParamDecl) { 488 // The parameter type is dependent and is not a template template parameter, 489 // so there is nothing that we can deduce. 490 return Sema::TDK_Success; 491 } 492 493 if (TemplateTemplateParmDecl *TempParam 494 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) { 495 // If we're not deducing at this depth, there's nothing to deduce. 496 if (TempParam->getDepth() != Info.getDeducedDepth()) 497 return Sema::TDK_Success; 498 499 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg)); 500 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 501 Deduced[TempParam->getIndex()], 502 NewDeduced); 503 if (Result.isNull()) { 504 Info.Param = TempParam; 505 Info.FirstArg = Deduced[TempParam->getIndex()]; 506 Info.SecondArg = NewDeduced; 507 return Sema::TDK_Inconsistent; 508 } 509 510 Deduced[TempParam->getIndex()] = Result; 511 return Sema::TDK_Success; 512 } 513 514 // Verify that the two template names are equivalent. 515 if (S.Context.hasSameTemplateName(Param, Arg)) 516 return Sema::TDK_Success; 517 518 // Mismatch of non-dependent template parameter to argument. 519 Info.FirstArg = TemplateArgument(Param); 520 Info.SecondArg = TemplateArgument(Arg); 521 return Sema::TDK_NonDeducedMismatch; 522 } 523 524 /// Deduce the template arguments by comparing the template parameter 525 /// type (which is a template-id) with the template argument type. 526 /// 527 /// \param S the Sema 528 /// 529 /// \param TemplateParams the template parameters that we are deducing 530 /// 531 /// \param Param the parameter type 532 /// 533 /// \param Arg the argument type 534 /// 535 /// \param Info information about the template argument deduction itself 536 /// 537 /// \param Deduced the deduced template arguments 538 /// 539 /// \returns the result of template argument deduction so far. Note that a 540 /// "success" result means that template argument deduction has not yet failed, 541 /// but it may still fail, later, for other reasons. 542 static Sema::TemplateDeductionResult 543 DeduceTemplateArguments(Sema &S, 544 TemplateParameterList *TemplateParams, 545 const TemplateSpecializationType *Param, 546 QualType Arg, 547 TemplateDeductionInfo &Info, 548 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 549 assert(Arg.isCanonical() && "Argument type must be canonical"); 550 551 // Treat an injected-class-name as its underlying template-id. 552 if (auto *Injected = dyn_cast<InjectedClassNameType>(Arg)) 553 Arg = Injected->getInjectedSpecializationType(); 554 555 // Check whether the template argument is a dependent template-id. 556 if (const TemplateSpecializationType *SpecArg 557 = dyn_cast<TemplateSpecializationType>(Arg)) { 558 // Perform template argument deduction for the template name. 559 if (Sema::TemplateDeductionResult Result 560 = DeduceTemplateArguments(S, TemplateParams, 561 Param->getTemplateName(), 562 SpecArg->getTemplateName(), 563 Info, Deduced)) 564 return Result; 565 566 567 // Perform template argument deduction on each template 568 // argument. Ignore any missing/extra arguments, since they could be 569 // filled in by default arguments. 570 return DeduceTemplateArguments(S, TemplateParams, 571 Param->template_arguments(), 572 SpecArg->template_arguments(), Info, Deduced, 573 /*NumberOfArgumentsMustMatch=*/false); 574 } 575 576 // If the argument type is a class template specialization, we 577 // perform template argument deduction using its template 578 // arguments. 579 const RecordType *RecordArg = dyn_cast<RecordType>(Arg); 580 if (!RecordArg) { 581 Info.FirstArg = TemplateArgument(QualType(Param, 0)); 582 Info.SecondArg = TemplateArgument(Arg); 583 return Sema::TDK_NonDeducedMismatch; 584 } 585 586 ClassTemplateSpecializationDecl *SpecArg 587 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl()); 588 if (!SpecArg) { 589 Info.FirstArg = TemplateArgument(QualType(Param, 0)); 590 Info.SecondArg = TemplateArgument(Arg); 591 return Sema::TDK_NonDeducedMismatch; 592 } 593 594 // Perform template argument deduction for the template name. 595 if (Sema::TemplateDeductionResult Result 596 = DeduceTemplateArguments(S, 597 TemplateParams, 598 Param->getTemplateName(), 599 TemplateName(SpecArg->getSpecializedTemplate()), 600 Info, Deduced)) 601 return Result; 602 603 // Perform template argument deduction for the template arguments. 604 return DeduceTemplateArguments(S, TemplateParams, Param->template_arguments(), 605 SpecArg->getTemplateArgs().asArray(), Info, 606 Deduced, /*NumberOfArgumentsMustMatch=*/true); 607 } 608 609 /// Determines whether the given type is an opaque type that 610 /// might be more qualified when instantiated. 611 static bool IsPossiblyOpaquelyQualifiedType(QualType T) { 612 switch (T->getTypeClass()) { 613 case Type::TypeOfExpr: 614 case Type::TypeOf: 615 case Type::DependentName: 616 case Type::Decltype: 617 case Type::UnresolvedUsing: 618 case Type::TemplateTypeParm: 619 return true; 620 621 case Type::ConstantArray: 622 case Type::IncompleteArray: 623 case Type::VariableArray: 624 case Type::DependentSizedArray: 625 return IsPossiblyOpaquelyQualifiedType( 626 cast<ArrayType>(T)->getElementType()); 627 628 default: 629 return false; 630 } 631 } 632 633 /// Helper function to build a TemplateParameter when we don't 634 /// know its type statically. 635 static TemplateParameter makeTemplateParameter(Decl *D) { 636 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D)) 637 return TemplateParameter(TTP); 638 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) 639 return TemplateParameter(NTTP); 640 641 return TemplateParameter(cast<TemplateTemplateParmDecl>(D)); 642 } 643 644 /// If \p Param is an expanded parameter pack, get the number of expansions. 645 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 646 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 647 if (TTP->isExpandedParameterPack()) 648 return TTP->getNumExpansionParameters(); 649 650 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) 651 if (NTTP->isExpandedParameterPack()) 652 return NTTP->getNumExpansionTypes(); 653 654 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) 655 if (TTP->isExpandedParameterPack()) 656 return TTP->getNumExpansionTemplateParameters(); 657 658 return None; 659 } 660 661 /// A pack that we're currently deducing. 662 struct clang::DeducedPack { 663 // The index of the pack. 664 unsigned Index; 665 666 // The old value of the pack before we started deducing it. 667 DeducedTemplateArgument Saved; 668 669 // A deferred value of this pack from an inner deduction, that couldn't be 670 // deduced because this deduction hadn't happened yet. 671 DeducedTemplateArgument DeferredDeduction; 672 673 // The new value of the pack. 674 SmallVector<DeducedTemplateArgument, 4> New; 675 676 // The outer deduction for this pack, if any. 677 DeducedPack *Outer = nullptr; 678 679 DeducedPack(unsigned Index) : Index(Index) {} 680 }; 681 682 namespace { 683 684 /// A scope in which we're performing pack deduction. 685 class PackDeductionScope { 686 public: 687 /// Prepare to deduce the packs named within Pattern. 688 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 689 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 690 TemplateDeductionInfo &Info, TemplateArgument Pattern) 691 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { 692 unsigned NumNamedPacks = addPacks(Pattern); 693 finishConstruction(NumNamedPacks); 694 } 695 696 /// Prepare to directly deduce arguments of the parameter with index \p Index. 697 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 698 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 699 TemplateDeductionInfo &Info, unsigned Index) 700 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { 701 addPack(Index); 702 finishConstruction(1); 703 } 704 705 private: 706 void addPack(unsigned Index) { 707 // Save the deduced template argument for the parameter pack expanded 708 // by this pack expansion, then clear out the deduction. 709 DeducedPack Pack(Index); 710 Pack.Saved = Deduced[Index]; 711 Deduced[Index] = TemplateArgument(); 712 713 // FIXME: What if we encounter multiple packs with different numbers of 714 // pre-expanded expansions? (This should already have been diagnosed 715 // during substitution.) 716 if (Optional<unsigned> ExpandedPackExpansions = 717 getExpandedPackSize(TemplateParams->getParam(Index))) 718 FixedNumExpansions = ExpandedPackExpansions; 719 720 Packs.push_back(Pack); 721 } 722 723 unsigned addPacks(TemplateArgument Pattern) { 724 // Compute the set of template parameter indices that correspond to 725 // parameter packs expanded by the pack expansion. 726 llvm::SmallBitVector SawIndices(TemplateParams->size()); 727 llvm::SmallVector<TemplateArgument, 4> ExtraDeductions; 728 729 auto AddPack = [&](unsigned Index) { 730 if (SawIndices[Index]) 731 return; 732 SawIndices[Index] = true; 733 addPack(Index); 734 735 // Deducing a parameter pack that is a pack expansion also constrains the 736 // packs appearing in that parameter to have the same deduced arity. Also, 737 // in C++17 onwards, deducing a non-type template parameter deduces its 738 // type, so we need to collect the pending deduced values for those packs. 739 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>( 740 TemplateParams->getParam(Index))) { 741 if (auto *Expansion = dyn_cast<PackExpansionType>(NTTP->getType())) 742 ExtraDeductions.push_back(Expansion->getPattern()); 743 } 744 // FIXME: Also collect the unexpanded packs in any type and template 745 // parameter packs that are pack expansions. 746 }; 747 748 auto Collect = [&](TemplateArgument Pattern) { 749 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 750 S.collectUnexpandedParameterPacks(Pattern, Unexpanded); 751 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { 752 unsigned Depth, Index; 753 std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); 754 if (Depth == Info.getDeducedDepth()) 755 AddPack(Index); 756 } 757 }; 758 759 // Look for unexpanded packs in the pattern. 760 Collect(Pattern); 761 assert(!Packs.empty() && "Pack expansion without unexpanded packs?"); 762 763 unsigned NumNamedPacks = Packs.size(); 764 765 // Also look for unexpanded packs that are indirectly deduced by deducing 766 // the sizes of the packs in this pattern. 767 while (!ExtraDeductions.empty()) 768 Collect(ExtraDeductions.pop_back_val()); 769 770 return NumNamedPacks; 771 } 772 773 void finishConstruction(unsigned NumNamedPacks) { 774 // Dig out the partially-substituted pack, if there is one. 775 const TemplateArgument *PartialPackArgs = nullptr; 776 unsigned NumPartialPackArgs = 0; 777 std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u); 778 if (auto *Scope = S.CurrentInstantiationScope) 779 if (auto *Partial = Scope->getPartiallySubstitutedPack( 780 &PartialPackArgs, &NumPartialPackArgs)) 781 PartialPackDepthIndex = getDepthAndIndex(Partial); 782 783 // This pack expansion will have been partially or fully expanded if 784 // it only names explicitly-specified parameter packs (including the 785 // partially-substituted one, if any). 786 bool IsExpanded = true; 787 for (unsigned I = 0; I != NumNamedPacks; ++I) { 788 if (Packs[I].Index >= Info.getNumExplicitArgs()) { 789 IsExpanded = false; 790 IsPartiallyExpanded = false; 791 break; 792 } 793 if (PartialPackDepthIndex == 794 std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) { 795 IsPartiallyExpanded = true; 796 } 797 } 798 799 // Skip over the pack elements that were expanded into separate arguments. 800 // If we partially expanded, this is the number of partial arguments. 801 if (IsPartiallyExpanded) 802 PackElements += NumPartialPackArgs; 803 else if (IsExpanded) 804 PackElements += *FixedNumExpansions; 805 806 for (auto &Pack : Packs) { 807 if (Info.PendingDeducedPacks.size() > Pack.Index) 808 Pack.Outer = Info.PendingDeducedPacks[Pack.Index]; 809 else 810 Info.PendingDeducedPacks.resize(Pack.Index + 1); 811 Info.PendingDeducedPacks[Pack.Index] = &Pack; 812 813 if (PartialPackDepthIndex == 814 std::make_pair(Info.getDeducedDepth(), Pack.Index)) { 815 Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs); 816 // We pre-populate the deduced value of the partially-substituted 817 // pack with the specified value. This is not entirely correct: the 818 // value is supposed to have been substituted, not deduced, but the 819 // cases where this is observable require an exact type match anyway. 820 // 821 // FIXME: If we could represent a "depth i, index j, pack elem k" 822 // parameter, we could substitute the partially-substituted pack 823 // everywhere and avoid this. 824 if (!IsPartiallyExpanded) 825 Deduced[Pack.Index] = Pack.New[PackElements]; 826 } 827 } 828 } 829 830 public: 831 ~PackDeductionScope() { 832 for (auto &Pack : Packs) 833 Info.PendingDeducedPacks[Pack.Index] = Pack.Outer; 834 } 835 836 /// Determine whether this pack has already been partially expanded into a 837 /// sequence of (prior) function parameters / template arguments. 838 bool isPartiallyExpanded() { return IsPartiallyExpanded; } 839 840 /// Determine whether this pack expansion scope has a known, fixed arity. 841 /// This happens if it involves a pack from an outer template that has 842 /// (notionally) already been expanded. 843 bool hasFixedArity() { return FixedNumExpansions.hasValue(); } 844 845 /// Determine whether the next element of the argument is still part of this 846 /// pack. This is the case unless the pack is already expanded to a fixed 847 /// length. 848 bool hasNextElement() { 849 return !FixedNumExpansions || *FixedNumExpansions > PackElements; 850 } 851 852 /// Move to deducing the next element in each pack that is being deduced. 853 void nextPackElement() { 854 // Capture the deduced template arguments for each parameter pack expanded 855 // by this pack expansion, add them to the list of arguments we've deduced 856 // for that pack, then clear out the deduced argument. 857 for (auto &Pack : Packs) { 858 DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index]; 859 if (!Pack.New.empty() || !DeducedArg.isNull()) { 860 while (Pack.New.size() < PackElements) 861 Pack.New.push_back(DeducedTemplateArgument()); 862 if (Pack.New.size() == PackElements) 863 Pack.New.push_back(DeducedArg); 864 else 865 Pack.New[PackElements] = DeducedArg; 866 DeducedArg = Pack.New.size() > PackElements + 1 867 ? Pack.New[PackElements + 1] 868 : DeducedTemplateArgument(); 869 } 870 } 871 ++PackElements; 872 } 873 874 /// Finish template argument deduction for a set of argument packs, 875 /// producing the argument packs and checking for consistency with prior 876 /// deductions. 877 Sema::TemplateDeductionResult finish() { 878 // Build argument packs for each of the parameter packs expanded by this 879 // pack expansion. 880 for (auto &Pack : Packs) { 881 // Put back the old value for this pack. 882 Deduced[Pack.Index] = Pack.Saved; 883 884 // Always make sure the size of this pack is correct, even if we didn't 885 // deduce any values for it. 886 // 887 // FIXME: This isn't required by the normative wording, but substitution 888 // and post-substitution checking will always fail if the arity of any 889 // pack is not equal to the number of elements we processed. (Either that 890 // or something else has gone *very* wrong.) We're permitted to skip any 891 // hard errors from those follow-on steps by the intent (but not the 892 // wording) of C++ [temp.inst]p8: 893 // 894 // If the function selected by overload resolution can be determined 895 // without instantiating a class template definition, it is unspecified 896 // whether that instantiation actually takes place 897 Pack.New.resize(PackElements); 898 899 // Build or find a new value for this pack. 900 DeducedTemplateArgument NewPack; 901 if (Pack.New.empty()) { 902 // If we deduced an empty argument pack, create it now. 903 NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack()); 904 } else { 905 TemplateArgument *ArgumentPack = 906 new (S.Context) TemplateArgument[Pack.New.size()]; 907 std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack); 908 NewPack = DeducedTemplateArgument( 909 TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())), 910 // FIXME: This is wrong, it's possible that some pack elements are 911 // deduced from an array bound and others are not: 912 // template<typename ...T, T ...V> void g(const T (&...p)[V]); 913 // g({1, 2, 3}, {{}, {}}); 914 // ... should deduce T = {int, size_t (from array bound)}. 915 Pack.New[0].wasDeducedFromArrayBound()); 916 } 917 918 // Pick where we're going to put the merged pack. 919 DeducedTemplateArgument *Loc; 920 if (Pack.Outer) { 921 if (Pack.Outer->DeferredDeduction.isNull()) { 922 // Defer checking this pack until we have a complete pack to compare 923 // it against. 924 Pack.Outer->DeferredDeduction = NewPack; 925 continue; 926 } 927 Loc = &Pack.Outer->DeferredDeduction; 928 } else { 929 Loc = &Deduced[Pack.Index]; 930 } 931 932 // Check the new pack matches any previous value. 933 DeducedTemplateArgument OldPack = *Loc; 934 DeducedTemplateArgument Result = 935 checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 936 937 // If we deferred a deduction of this pack, check that one now too. 938 if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) { 939 OldPack = Result; 940 NewPack = Pack.DeferredDeduction; 941 Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 942 } 943 944 NamedDecl *Param = TemplateParams->getParam(Pack.Index); 945 if (Result.isNull()) { 946 Info.Param = makeTemplateParameter(Param); 947 Info.FirstArg = OldPack; 948 Info.SecondArg = NewPack; 949 return Sema::TDK_Inconsistent; 950 } 951 952 // If we have a pre-expanded pack and we didn't deduce enough elements 953 // for it, fail deduction. 954 if (Optional<unsigned> Expansions = getExpandedPackSize(Param)) { 955 if (*Expansions != PackElements) { 956 Info.Param = makeTemplateParameter(Param); 957 Info.FirstArg = Result; 958 return Sema::TDK_IncompletePack; 959 } 960 } 961 962 *Loc = Result; 963 } 964 965 return Sema::TDK_Success; 966 } 967 968 private: 969 Sema &S; 970 TemplateParameterList *TemplateParams; 971 SmallVectorImpl<DeducedTemplateArgument> &Deduced; 972 TemplateDeductionInfo &Info; 973 unsigned PackElements = 0; 974 bool IsPartiallyExpanded = false; 975 /// The number of expansions, if we have a fully-expanded pack in this scope. 976 Optional<unsigned> FixedNumExpansions; 977 978 SmallVector<DeducedPack, 2> Packs; 979 }; 980 981 } // namespace 982 983 /// Deduce the template arguments by comparing the list of parameter 984 /// types to the list of argument types, as in the parameter-type-lists of 985 /// function types (C++ [temp.deduct.type]p10). 986 /// 987 /// \param S The semantic analysis object within which we are deducing 988 /// 989 /// \param TemplateParams The template parameters that we are deducing 990 /// 991 /// \param Params The list of parameter types 992 /// 993 /// \param NumParams The number of types in \c Params 994 /// 995 /// \param Args The list of argument types 996 /// 997 /// \param NumArgs The number of types in \c Args 998 /// 999 /// \param Info information about the template argument deduction itself 1000 /// 1001 /// \param Deduced the deduced template arguments 1002 /// 1003 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 1004 /// how template argument deduction is performed. 1005 /// 1006 /// \param PartialOrdering If true, we are performing template argument 1007 /// deduction for during partial ordering for a call 1008 /// (C++0x [temp.deduct.partial]). 1009 /// 1010 /// \returns the result of template argument deduction so far. Note that a 1011 /// "success" result means that template argument deduction has not yet failed, 1012 /// but it may still fail, later, for other reasons. 1013 static Sema::TemplateDeductionResult 1014 DeduceTemplateArguments(Sema &S, 1015 TemplateParameterList *TemplateParams, 1016 const QualType *Params, unsigned NumParams, 1017 const QualType *Args, unsigned NumArgs, 1018 TemplateDeductionInfo &Info, 1019 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 1020 unsigned TDF, 1021 bool PartialOrdering = false) { 1022 // C++0x [temp.deduct.type]p10: 1023 // Similarly, if P has a form that contains (T), then each parameter type 1024 // Pi of the respective parameter-type- list of P is compared with the 1025 // corresponding parameter type Ai of the corresponding parameter-type-list 1026 // of A. [...] 1027 unsigned ArgIdx = 0, ParamIdx = 0; 1028 for (; ParamIdx != NumParams; ++ParamIdx) { 1029 // Check argument types. 1030 const PackExpansionType *Expansion 1031 = dyn_cast<PackExpansionType>(Params[ParamIdx]); 1032 if (!Expansion) { 1033 // Simple case: compare the parameter and argument types at this point. 1034 1035 // Make sure we have an argument. 1036 if (ArgIdx >= NumArgs) 1037 return Sema::TDK_MiscellaneousDeductionFailure; 1038 1039 if (isa<PackExpansionType>(Args[ArgIdx])) { 1040 // C++0x [temp.deduct.type]p22: 1041 // If the original function parameter associated with A is a function 1042 // parameter pack and the function parameter associated with P is not 1043 // a function parameter pack, then template argument deduction fails. 1044 return Sema::TDK_MiscellaneousDeductionFailure; 1045 } 1046 1047 if (Sema::TemplateDeductionResult Result 1048 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1049 Params[ParamIdx], Args[ArgIdx], 1050 Info, Deduced, TDF, 1051 PartialOrdering)) 1052 return Result; 1053 1054 ++ArgIdx; 1055 continue; 1056 } 1057 1058 // C++0x [temp.deduct.type]p10: 1059 // If the parameter-declaration corresponding to Pi is a function 1060 // parameter pack, then the type of its declarator- id is compared with 1061 // each remaining parameter type in the parameter-type-list of A. Each 1062 // comparison deduces template arguments for subsequent positions in the 1063 // template parameter packs expanded by the function parameter pack. 1064 1065 QualType Pattern = Expansion->getPattern(); 1066 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 1067 1068 // A pack scope with fixed arity is not really a pack any more, so is not 1069 // a non-deduced context. 1070 if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) { 1071 for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) { 1072 // Deduce template arguments from the pattern. 1073 if (Sema::TemplateDeductionResult Result 1074 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern, 1075 Args[ArgIdx], Info, Deduced, 1076 TDF, PartialOrdering)) 1077 return Result; 1078 1079 PackScope.nextPackElement(); 1080 } 1081 } else { 1082 // C++0x [temp.deduct.type]p5: 1083 // The non-deduced contexts are: 1084 // - A function parameter pack that does not occur at the end of the 1085 // parameter-declaration-clause. 1086 // 1087 // FIXME: There is no wording to say what we should do in this case. We 1088 // choose to resolve this by applying the same rule that is applied for a 1089 // function call: that is, deduce all contained packs to their 1090 // explicitly-specified values (or to <> if there is no such value). 1091 // 1092 // This is seemingly-arbitrarily different from the case of a template-id 1093 // with a non-trailing pack-expansion in its arguments, which renders the 1094 // entire template-argument-list a non-deduced context. 1095 1096 // If the parameter type contains an explicitly-specified pack that we 1097 // could not expand, skip the number of parameters notionally created 1098 // by the expansion. 1099 Optional<unsigned> NumExpansions = Expansion->getNumExpansions(); 1100 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 1101 for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs; 1102 ++I, ++ArgIdx) 1103 PackScope.nextPackElement(); 1104 } 1105 } 1106 1107 // Build argument packs for each of the parameter packs expanded by this 1108 // pack expansion. 1109 if (auto Result = PackScope.finish()) 1110 return Result; 1111 } 1112 1113 // Make sure we don't have any extra arguments. 1114 if (ArgIdx < NumArgs) 1115 return Sema::TDK_MiscellaneousDeductionFailure; 1116 1117 return Sema::TDK_Success; 1118 } 1119 1120 /// Determine whether the parameter has qualifiers that the argument 1121 /// lacks. Put another way, determine whether there is no way to add 1122 /// a deduced set of qualifiers to the ParamType that would result in 1123 /// its qualifiers matching those of the ArgType. 1124 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, 1125 QualType ArgType) { 1126 Qualifiers ParamQs = ParamType.getQualifiers(); 1127 Qualifiers ArgQs = ArgType.getQualifiers(); 1128 1129 if (ParamQs == ArgQs) 1130 return false; 1131 1132 // Mismatched (but not missing) Objective-C GC attributes. 1133 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && 1134 ParamQs.hasObjCGCAttr()) 1135 return true; 1136 1137 // Mismatched (but not missing) address spaces. 1138 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && 1139 ParamQs.hasAddressSpace()) 1140 return true; 1141 1142 // Mismatched (but not missing) Objective-C lifetime qualifiers. 1143 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && 1144 ParamQs.hasObjCLifetime()) 1145 return true; 1146 1147 // CVR qualifiers inconsistent or a superset. 1148 return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0; 1149 } 1150 1151 /// Compare types for equality with respect to possibly compatible 1152 /// function types (noreturn adjustment, implicit calling conventions). If any 1153 /// of parameter and argument is not a function, just perform type comparison. 1154 /// 1155 /// \param Param the template parameter type. 1156 /// 1157 /// \param Arg the argument type. 1158 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param, 1159 CanQualType Arg) { 1160 const FunctionType *ParamFunction = Param->getAs<FunctionType>(), 1161 *ArgFunction = Arg->getAs<FunctionType>(); 1162 1163 // Just compare if not functions. 1164 if (!ParamFunction || !ArgFunction) 1165 return Param == Arg; 1166 1167 // Noreturn and noexcept adjustment. 1168 QualType AdjustedParam; 1169 if (IsFunctionConversion(Param, Arg, AdjustedParam)) 1170 return Arg == Context.getCanonicalType(AdjustedParam); 1171 1172 // FIXME: Compatible calling conventions. 1173 1174 return Param == Arg; 1175 } 1176 1177 /// Get the index of the first template parameter that was originally from the 1178 /// innermost template-parameter-list. This is 0 except when we concatenate 1179 /// the template parameter lists of a class template and a constructor template 1180 /// when forming an implicit deduction guide. 1181 static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) { 1182 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl()); 1183 if (!Guide || !Guide->isImplicit()) 1184 return 0; 1185 return Guide->getDeducedTemplate()->getTemplateParameters()->size(); 1186 } 1187 1188 /// Determine whether a type denotes a forwarding reference. 1189 static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) { 1190 // C++1z [temp.deduct.call]p3: 1191 // A forwarding reference is an rvalue reference to a cv-unqualified 1192 // template parameter that does not represent a template parameter of a 1193 // class template. 1194 if (auto *ParamRef = Param->getAs<RValueReferenceType>()) { 1195 if (ParamRef->getPointeeType().getQualifiers()) 1196 return false; 1197 auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>(); 1198 return TypeParm && TypeParm->getIndex() >= FirstInnerIndex; 1199 } 1200 return false; 1201 } 1202 1203 /// Deduce the template arguments by comparing the parameter type and 1204 /// the argument type (C++ [temp.deduct.type]). 1205 /// 1206 /// \param S the semantic analysis object within which we are deducing 1207 /// 1208 /// \param TemplateParams the template parameters that we are deducing 1209 /// 1210 /// \param ParamIn the parameter type 1211 /// 1212 /// \param ArgIn the argument type 1213 /// 1214 /// \param Info information about the template argument deduction itself 1215 /// 1216 /// \param Deduced the deduced template arguments 1217 /// 1218 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 1219 /// how template argument deduction is performed. 1220 /// 1221 /// \param PartialOrdering Whether we're performing template argument deduction 1222 /// in the context of partial ordering (C++0x [temp.deduct.partial]). 1223 /// 1224 /// \returns the result of template argument deduction so far. Note that a 1225 /// "success" result means that template argument deduction has not yet failed, 1226 /// but it may still fail, later, for other reasons. 1227 static Sema::TemplateDeductionResult 1228 DeduceTemplateArgumentsByTypeMatch(Sema &S, 1229 TemplateParameterList *TemplateParams, 1230 QualType ParamIn, QualType ArgIn, 1231 TemplateDeductionInfo &Info, 1232 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 1233 unsigned TDF, 1234 bool PartialOrdering, 1235 bool DeducedFromArrayBound) { 1236 // We only want to look at the canonical types, since typedefs and 1237 // sugar are not part of template argument deduction. 1238 QualType Param = S.Context.getCanonicalType(ParamIn); 1239 QualType Arg = S.Context.getCanonicalType(ArgIn); 1240 1241 // If the argument type is a pack expansion, look at its pattern. 1242 // This isn't explicitly called out 1243 if (const PackExpansionType *ArgExpansion 1244 = dyn_cast<PackExpansionType>(Arg)) 1245 Arg = ArgExpansion->getPattern(); 1246 1247 if (PartialOrdering) { 1248 // C++11 [temp.deduct.partial]p5: 1249 // Before the partial ordering is done, certain transformations are 1250 // performed on the types used for partial ordering: 1251 // - If P is a reference type, P is replaced by the type referred to. 1252 const ReferenceType *ParamRef = Param->getAs<ReferenceType>(); 1253 if (ParamRef) 1254 Param = ParamRef->getPointeeType(); 1255 1256 // - If A is a reference type, A is replaced by the type referred to. 1257 const ReferenceType *ArgRef = Arg->getAs<ReferenceType>(); 1258 if (ArgRef) 1259 Arg = ArgRef->getPointeeType(); 1260 1261 if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) { 1262 // C++11 [temp.deduct.partial]p9: 1263 // If, for a given type, deduction succeeds in both directions (i.e., 1264 // the types are identical after the transformations above) and both 1265 // P and A were reference types [...]: 1266 // - if [one type] was an lvalue reference and [the other type] was 1267 // not, [the other type] is not considered to be at least as 1268 // specialized as [the first type] 1269 // - if [one type] is more cv-qualified than [the other type], 1270 // [the other type] is not considered to be at least as specialized 1271 // as [the first type] 1272 // Objective-C ARC adds: 1273 // - [one type] has non-trivial lifetime, [the other type] has 1274 // __unsafe_unretained lifetime, and the types are otherwise 1275 // identical 1276 // 1277 // A is "considered to be at least as specialized" as P iff deduction 1278 // succeeds, so we model this as a deduction failure. Note that 1279 // [the first type] is P and [the other type] is A here; the standard 1280 // gets this backwards. 1281 Qualifiers ParamQuals = Param.getQualifiers(); 1282 Qualifiers ArgQuals = Arg.getQualifiers(); 1283 if ((ParamRef->isLValueReferenceType() && 1284 !ArgRef->isLValueReferenceType()) || 1285 ParamQuals.isStrictSupersetOf(ArgQuals) || 1286 (ParamQuals.hasNonTrivialObjCLifetime() && 1287 ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone && 1288 ParamQuals.withoutObjCLifetime() == 1289 ArgQuals.withoutObjCLifetime())) { 1290 Info.FirstArg = TemplateArgument(ParamIn); 1291 Info.SecondArg = TemplateArgument(ArgIn); 1292 return Sema::TDK_NonDeducedMismatch; 1293 } 1294 } 1295 1296 // C++11 [temp.deduct.partial]p7: 1297 // Remove any top-level cv-qualifiers: 1298 // - If P is a cv-qualified type, P is replaced by the cv-unqualified 1299 // version of P. 1300 Param = Param.getUnqualifiedType(); 1301 // - If A is a cv-qualified type, A is replaced by the cv-unqualified 1302 // version of A. 1303 Arg = Arg.getUnqualifiedType(); 1304 } else { 1305 // C++0x [temp.deduct.call]p4 bullet 1: 1306 // - If the original P is a reference type, the deduced A (i.e., the type 1307 // referred to by the reference) can be more cv-qualified than the 1308 // transformed A. 1309 if (TDF & TDF_ParamWithReferenceType) { 1310 Qualifiers Quals; 1311 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals); 1312 Quals.setCVRQualifiers(Quals.getCVRQualifiers() & 1313 Arg.getCVRQualifiers()); 1314 Param = S.Context.getQualifiedType(UnqualParam, Quals); 1315 } 1316 1317 if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) { 1318 // C++0x [temp.deduct.type]p10: 1319 // If P and A are function types that originated from deduction when 1320 // taking the address of a function template (14.8.2.2) or when deducing 1321 // template arguments from a function declaration (14.8.2.6) and Pi and 1322 // Ai are parameters of the top-level parameter-type-list of P and A, 1323 // respectively, Pi is adjusted if it is a forwarding reference and Ai 1324 // is an lvalue reference, in 1325 // which case the type of Pi is changed to be the template parameter 1326 // type (i.e., T&& is changed to simply T). [ Note: As a result, when 1327 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be 1328 // deduced as X&. - end note ] 1329 TDF &= ~TDF_TopLevelParameterTypeList; 1330 if (isForwardingReference(Param, 0) && Arg->isLValueReferenceType()) 1331 Param = Param->getPointeeType(); 1332 } 1333 } 1334 1335 // C++ [temp.deduct.type]p9: 1336 // A template type argument T, a template template argument TT or a 1337 // template non-type argument i can be deduced if P and A have one of 1338 // the following forms: 1339 // 1340 // T 1341 // cv-list T 1342 if (const TemplateTypeParmType *TemplateTypeParm 1343 = Param->getAs<TemplateTypeParmType>()) { 1344 // Just skip any attempts to deduce from a placeholder type or a parameter 1345 // at a different depth. 1346 if (Arg->isPlaceholderType() || 1347 Info.getDeducedDepth() != TemplateTypeParm->getDepth()) 1348 return Sema::TDK_Success; 1349 1350 unsigned Index = TemplateTypeParm->getIndex(); 1351 bool RecanonicalizeArg = false; 1352 1353 // If the argument type is an array type, move the qualifiers up to the 1354 // top level, so they can be matched with the qualifiers on the parameter. 1355 if (isa<ArrayType>(Arg)) { 1356 Qualifiers Quals; 1357 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals); 1358 if (Quals) { 1359 Arg = S.Context.getQualifiedType(Arg, Quals); 1360 RecanonicalizeArg = true; 1361 } 1362 } 1363 1364 // The argument type can not be less qualified than the parameter 1365 // type. 1366 if (!(TDF & TDF_IgnoreQualifiers) && 1367 hasInconsistentOrSupersetQualifiersOf(Param, Arg)) { 1368 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1369 Info.FirstArg = TemplateArgument(Param); 1370 Info.SecondArg = TemplateArgument(Arg); 1371 return Sema::TDK_Underqualified; 1372 } 1373 1374 // Do not match a function type with a cv-qualified type. 1375 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584 1376 if (Arg->isFunctionType() && Param.hasQualifiers()) { 1377 return Sema::TDK_NonDeducedMismatch; 1378 } 1379 1380 assert(TemplateTypeParm->getDepth() == Info.getDeducedDepth() && 1381 "saw template type parameter with wrong depth"); 1382 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function"); 1383 QualType DeducedType = Arg; 1384 1385 // Remove any qualifiers on the parameter from the deduced type. 1386 // We checked the qualifiers for consistency above. 1387 Qualifiers DeducedQs = DeducedType.getQualifiers(); 1388 Qualifiers ParamQs = Param.getQualifiers(); 1389 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers()); 1390 if (ParamQs.hasObjCGCAttr()) 1391 DeducedQs.removeObjCGCAttr(); 1392 if (ParamQs.hasAddressSpace()) 1393 DeducedQs.removeAddressSpace(); 1394 if (ParamQs.hasObjCLifetime()) 1395 DeducedQs.removeObjCLifetime(); 1396 1397 // Objective-C ARC: 1398 // If template deduction would produce a lifetime qualifier on a type 1399 // that is not a lifetime type, template argument deduction fails. 1400 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() && 1401 !DeducedType->isDependentType()) { 1402 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1403 Info.FirstArg = TemplateArgument(Param); 1404 Info.SecondArg = TemplateArgument(Arg); 1405 return Sema::TDK_Underqualified; 1406 } 1407 1408 // Objective-C ARC: 1409 // If template deduction would produce an argument type with lifetime type 1410 // but no lifetime qualifier, the __strong lifetime qualifier is inferred. 1411 if (S.getLangOpts().ObjCAutoRefCount && 1412 DeducedType->isObjCLifetimeType() && 1413 !DeducedQs.hasObjCLifetime()) 1414 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); 1415 1416 DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), 1417 DeducedQs); 1418 1419 if (RecanonicalizeArg) 1420 DeducedType = S.Context.getCanonicalType(DeducedType); 1421 1422 DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound); 1423 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 1424 Deduced[Index], 1425 NewDeduced); 1426 if (Result.isNull()) { 1427 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1428 Info.FirstArg = Deduced[Index]; 1429 Info.SecondArg = NewDeduced; 1430 return Sema::TDK_Inconsistent; 1431 } 1432 1433 Deduced[Index] = Result; 1434 return Sema::TDK_Success; 1435 } 1436 1437 // Set up the template argument deduction information for a failure. 1438 Info.FirstArg = TemplateArgument(ParamIn); 1439 Info.SecondArg = TemplateArgument(ArgIn); 1440 1441 // If the parameter is an already-substituted template parameter 1442 // pack, do nothing: we don't know which of its arguments to look 1443 // at, so we have to wait until all of the parameter packs in this 1444 // expansion have arguments. 1445 if (isa<SubstTemplateTypeParmPackType>(Param)) 1446 return Sema::TDK_Success; 1447 1448 // Check the cv-qualifiers on the parameter and argument types. 1449 CanQualType CanParam = S.Context.getCanonicalType(Param); 1450 CanQualType CanArg = S.Context.getCanonicalType(Arg); 1451 if (!(TDF & TDF_IgnoreQualifiers)) { 1452 if (TDF & TDF_ParamWithReferenceType) { 1453 if (hasInconsistentOrSupersetQualifiersOf(Param, Arg)) 1454 return Sema::TDK_NonDeducedMismatch; 1455 } else if (TDF & TDF_ArgWithReferenceType) { 1456 // C++ [temp.deduct.conv]p4: 1457 // If the original A is a reference type, A can be more cv-qualified 1458 // than the deduced A 1459 if (!Arg.getQualifiers().compatiblyIncludes(Param.getQualifiers())) 1460 return Sema::TDK_NonDeducedMismatch; 1461 1462 // Strip out all extra qualifiers from the argument to figure out the 1463 // type we're converting to, prior to the qualification conversion. 1464 Qualifiers Quals; 1465 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals); 1466 Arg = S.Context.getQualifiedType(Arg, Param.getQualifiers()); 1467 } else if (!IsPossiblyOpaquelyQualifiedType(Param)) { 1468 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers()) 1469 return Sema::TDK_NonDeducedMismatch; 1470 } 1471 1472 // If the parameter type is not dependent, there is nothing to deduce. 1473 if (!Param->isDependentType()) { 1474 if (!(TDF & TDF_SkipNonDependent)) { 1475 bool NonDeduced = 1476 (TDF & TDF_AllowCompatibleFunctionType) 1477 ? !S.isSameOrCompatibleFunctionType(CanParam, CanArg) 1478 : Param != Arg; 1479 if (NonDeduced) { 1480 return Sema::TDK_NonDeducedMismatch; 1481 } 1482 } 1483 return Sema::TDK_Success; 1484 } 1485 } else if (!Param->isDependentType()) { 1486 CanQualType ParamUnqualType = CanParam.getUnqualifiedType(), 1487 ArgUnqualType = CanArg.getUnqualifiedType(); 1488 bool Success = 1489 (TDF & TDF_AllowCompatibleFunctionType) 1490 ? S.isSameOrCompatibleFunctionType(ParamUnqualType, ArgUnqualType) 1491 : ParamUnqualType == ArgUnqualType; 1492 if (Success) 1493 return Sema::TDK_Success; 1494 } 1495 1496 switch (Param->getTypeClass()) { 1497 // Non-canonical types cannot appear here. 1498 #define NON_CANONICAL_TYPE(Class, Base) \ 1499 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); 1500 #define TYPE(Class, Base) 1501 #include "clang/AST/TypeNodes.inc" 1502 1503 case Type::TemplateTypeParm: 1504 case Type::SubstTemplateTypeParmPack: 1505 llvm_unreachable("Type nodes handled above"); 1506 1507 // These types cannot be dependent, so simply check whether the types are 1508 // the same. 1509 case Type::Builtin: 1510 case Type::VariableArray: 1511 case Type::Vector: 1512 case Type::FunctionNoProto: 1513 case Type::Record: 1514 case Type::Enum: 1515 case Type::ObjCObject: 1516 case Type::ObjCInterface: 1517 case Type::ObjCObjectPointer: 1518 if (TDF & TDF_SkipNonDependent) 1519 return Sema::TDK_Success; 1520 1521 if (TDF & TDF_IgnoreQualifiers) { 1522 Param = Param.getUnqualifiedType(); 1523 Arg = Arg.getUnqualifiedType(); 1524 } 1525 1526 return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch; 1527 1528 // _Complex T [placeholder extension] 1529 case Type::Complex: 1530 if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>()) 1531 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1532 cast<ComplexType>(Param)->getElementType(), 1533 ComplexArg->getElementType(), 1534 Info, Deduced, TDF); 1535 1536 return Sema::TDK_NonDeducedMismatch; 1537 1538 // _Atomic T [extension] 1539 case Type::Atomic: 1540 if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>()) 1541 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1542 cast<AtomicType>(Param)->getValueType(), 1543 AtomicArg->getValueType(), 1544 Info, Deduced, TDF); 1545 1546 return Sema::TDK_NonDeducedMismatch; 1547 1548 // T * 1549 case Type::Pointer: { 1550 QualType PointeeType; 1551 if (const PointerType *PointerArg = Arg->getAs<PointerType>()) { 1552 PointeeType = PointerArg->getPointeeType(); 1553 } else if (const ObjCObjectPointerType *PointerArg 1554 = Arg->getAs<ObjCObjectPointerType>()) { 1555 PointeeType = PointerArg->getPointeeType(); 1556 } else { 1557 return Sema::TDK_NonDeducedMismatch; 1558 } 1559 1560 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass); 1561 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1562 cast<PointerType>(Param)->getPointeeType(), 1563 PointeeType, 1564 Info, Deduced, SubTDF); 1565 } 1566 1567 // T & 1568 case Type::LValueReference: { 1569 const LValueReferenceType *ReferenceArg = 1570 Arg->getAs<LValueReferenceType>(); 1571 if (!ReferenceArg) 1572 return Sema::TDK_NonDeducedMismatch; 1573 1574 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1575 cast<LValueReferenceType>(Param)->getPointeeType(), 1576 ReferenceArg->getPointeeType(), Info, Deduced, 0); 1577 } 1578 1579 // T && [C++0x] 1580 case Type::RValueReference: { 1581 const RValueReferenceType *ReferenceArg = 1582 Arg->getAs<RValueReferenceType>(); 1583 if (!ReferenceArg) 1584 return Sema::TDK_NonDeducedMismatch; 1585 1586 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1587 cast<RValueReferenceType>(Param)->getPointeeType(), 1588 ReferenceArg->getPointeeType(), 1589 Info, Deduced, 0); 1590 } 1591 1592 // T [] (implied, but not stated explicitly) 1593 case Type::IncompleteArray: { 1594 const IncompleteArrayType *IncompleteArrayArg = 1595 S.Context.getAsIncompleteArrayType(Arg); 1596 if (!IncompleteArrayArg) 1597 return Sema::TDK_NonDeducedMismatch; 1598 1599 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1600 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1601 S.Context.getAsIncompleteArrayType(Param)->getElementType(), 1602 IncompleteArrayArg->getElementType(), 1603 Info, Deduced, SubTDF); 1604 } 1605 1606 // T [integer-constant] 1607 case Type::ConstantArray: { 1608 const ConstantArrayType *ConstantArrayArg = 1609 S.Context.getAsConstantArrayType(Arg); 1610 if (!ConstantArrayArg) 1611 return Sema::TDK_NonDeducedMismatch; 1612 1613 const ConstantArrayType *ConstantArrayParm = 1614 S.Context.getAsConstantArrayType(Param); 1615 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize()) 1616 return Sema::TDK_NonDeducedMismatch; 1617 1618 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1619 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1620 ConstantArrayParm->getElementType(), 1621 ConstantArrayArg->getElementType(), 1622 Info, Deduced, SubTDF); 1623 } 1624 1625 // type [i] 1626 case Type::DependentSizedArray: { 1627 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg); 1628 if (!ArrayArg) 1629 return Sema::TDK_NonDeducedMismatch; 1630 1631 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1632 1633 // Check the element type of the arrays 1634 const DependentSizedArrayType *DependentArrayParm 1635 = S.Context.getAsDependentSizedArrayType(Param); 1636 if (Sema::TemplateDeductionResult Result 1637 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1638 DependentArrayParm->getElementType(), 1639 ArrayArg->getElementType(), 1640 Info, Deduced, SubTDF)) 1641 return Result; 1642 1643 // Determine the array bound is something we can deduce. 1644 NonTypeTemplateParmDecl *NTTP 1645 = getDeducedParameterFromExpr(Info, DependentArrayParm->getSizeExpr()); 1646 if (!NTTP) 1647 return Sema::TDK_Success; 1648 1649 // We can perform template argument deduction for the given non-type 1650 // template parameter. 1651 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1652 "saw non-type template parameter with wrong depth"); 1653 if (const ConstantArrayType *ConstantArrayArg 1654 = dyn_cast<ConstantArrayType>(ArrayArg)) { 1655 llvm::APSInt Size(ConstantArrayArg->getSize()); 1656 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, Size, 1657 S.Context.getSizeType(), 1658 /*ArrayBound=*/true, 1659 Info, Deduced); 1660 } 1661 if (const DependentSizedArrayType *DependentArrayArg 1662 = dyn_cast<DependentSizedArrayType>(ArrayArg)) 1663 if (DependentArrayArg->getSizeExpr()) 1664 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 1665 DependentArrayArg->getSizeExpr(), 1666 Info, Deduced); 1667 1668 // Incomplete type does not match a dependently-sized array type 1669 return Sema::TDK_NonDeducedMismatch; 1670 } 1671 1672 // type(*)(T) 1673 // T(*)() 1674 // T(*)(T) 1675 case Type::FunctionProto: { 1676 unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList; 1677 const FunctionProtoType *FunctionProtoArg = 1678 dyn_cast<FunctionProtoType>(Arg); 1679 if (!FunctionProtoArg) 1680 return Sema::TDK_NonDeducedMismatch; 1681 1682 const FunctionProtoType *FunctionProtoParam = 1683 cast<FunctionProtoType>(Param); 1684 1685 if (FunctionProtoParam->getMethodQuals() 1686 != FunctionProtoArg->getMethodQuals() || 1687 FunctionProtoParam->getRefQualifier() 1688 != FunctionProtoArg->getRefQualifier() || 1689 FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic()) 1690 return Sema::TDK_NonDeducedMismatch; 1691 1692 // Check return types. 1693 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1694 S, TemplateParams, FunctionProtoParam->getReturnType(), 1695 FunctionProtoArg->getReturnType(), Info, Deduced, 0)) 1696 return Result; 1697 1698 // Check parameter types. 1699 if (auto Result = DeduceTemplateArguments( 1700 S, TemplateParams, FunctionProtoParam->param_type_begin(), 1701 FunctionProtoParam->getNumParams(), 1702 FunctionProtoArg->param_type_begin(), 1703 FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF)) 1704 return Result; 1705 1706 if (TDF & TDF_AllowCompatibleFunctionType) 1707 return Sema::TDK_Success; 1708 1709 // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit 1710 // deducing through the noexcept-specifier if it's part of the canonical 1711 // type. libstdc++ relies on this. 1712 Expr *NoexceptExpr = FunctionProtoParam->getNoexceptExpr(); 1713 if (NonTypeTemplateParmDecl *NTTP = 1714 NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr) 1715 : nullptr) { 1716 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1717 "saw non-type template parameter with wrong depth"); 1718 1719 llvm::APSInt Noexcept(1); 1720 switch (FunctionProtoArg->canThrow()) { 1721 case CT_Cannot: 1722 Noexcept = 1; 1723 LLVM_FALLTHROUGH; 1724 1725 case CT_Can: 1726 // We give E in noexcept(E) the "deduced from array bound" treatment. 1727 // FIXME: Should we? 1728 return DeduceNonTypeTemplateArgument( 1729 S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy, 1730 /*ArrayBound*/true, Info, Deduced); 1731 1732 case CT_Dependent: 1733 if (Expr *ArgNoexceptExpr = FunctionProtoArg->getNoexceptExpr()) 1734 return DeduceNonTypeTemplateArgument( 1735 S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced); 1736 // Can't deduce anything from throw(T...). 1737 break; 1738 } 1739 } 1740 // FIXME: Detect non-deduced exception specification mismatches? 1741 // 1742 // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow 1743 // top-level differences in noexcept-specifications. 1744 1745 return Sema::TDK_Success; 1746 } 1747 1748 case Type::InjectedClassName: 1749 // Treat a template's injected-class-name as if the template 1750 // specialization type had been used. 1751 Param = cast<InjectedClassNameType>(Param) 1752 ->getInjectedSpecializationType(); 1753 assert(isa<TemplateSpecializationType>(Param) && 1754 "injected class name is not a template specialization type"); 1755 LLVM_FALLTHROUGH; 1756 1757 // template-name<T> (where template-name refers to a class template) 1758 // template-name<i> 1759 // TT<T> 1760 // TT<i> 1761 // TT<> 1762 case Type::TemplateSpecialization: { 1763 const TemplateSpecializationType *SpecParam = 1764 cast<TemplateSpecializationType>(Param); 1765 1766 // When Arg cannot be a derived class, we can just try to deduce template 1767 // arguments from the template-id. 1768 const RecordType *RecordT = Arg->getAs<RecordType>(); 1769 if (!(TDF & TDF_DerivedClass) || !RecordT) 1770 return DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, Info, 1771 Deduced); 1772 1773 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(), 1774 Deduced.end()); 1775 1776 Sema::TemplateDeductionResult Result = DeduceTemplateArguments( 1777 S, TemplateParams, SpecParam, Arg, Info, Deduced); 1778 1779 if (Result == Sema::TDK_Success) 1780 return Result; 1781 1782 // We cannot inspect base classes as part of deduction when the type 1783 // is incomplete, so either instantiate any templates necessary to 1784 // complete the type, or skip over it if it cannot be completed. 1785 if (!S.isCompleteType(Info.getLocation(), Arg)) 1786 return Result; 1787 1788 // C++14 [temp.deduct.call] p4b3: 1789 // If P is a class and P has the form simple-template-id, then the 1790 // transformed A can be a derived class of the deduced A. Likewise if 1791 // P is a pointer to a class of the form simple-template-id, the 1792 // transformed A can be a pointer to a derived class pointed to by the 1793 // deduced A. 1794 // 1795 // These alternatives are considered only if type deduction would 1796 // otherwise fail. If they yield more than one possible deduced A, the 1797 // type deduction fails. 1798 1799 // Reset the incorrectly deduced argument from above. 1800 Deduced = DeducedOrig; 1801 1802 // Use data recursion to crawl through the list of base classes. 1803 // Visited contains the set of nodes we have already visited, while 1804 // ToVisit is our stack of records that we still need to visit. 1805 llvm::SmallPtrSet<const RecordType *, 8> Visited; 1806 SmallVector<const RecordType *, 8> ToVisit; 1807 ToVisit.push_back(RecordT); 1808 bool Successful = false; 1809 SmallVector<DeducedTemplateArgument, 8> SuccessfulDeduced; 1810 while (!ToVisit.empty()) { 1811 // Retrieve the next class in the inheritance hierarchy. 1812 const RecordType *NextT = ToVisit.pop_back_val(); 1813 1814 // If we have already seen this type, skip it. 1815 if (!Visited.insert(NextT).second) 1816 continue; 1817 1818 // If this is a base class, try to perform template argument 1819 // deduction from it. 1820 if (NextT != RecordT) { 1821 TemplateDeductionInfo BaseInfo(Info.getLocation()); 1822 Sema::TemplateDeductionResult BaseResult = 1823 DeduceTemplateArguments(S, TemplateParams, SpecParam, 1824 QualType(NextT, 0), BaseInfo, Deduced); 1825 1826 // If template argument deduction for this base was successful, 1827 // note that we had some success. Otherwise, ignore any deductions 1828 // from this base class. 1829 if (BaseResult == Sema::TDK_Success) { 1830 // If we've already seen some success, then deduction fails due to 1831 // an ambiguity (temp.deduct.call p5). 1832 if (Successful) 1833 return Sema::TDK_MiscellaneousDeductionFailure; 1834 1835 Successful = true; 1836 std::swap(SuccessfulDeduced, Deduced); 1837 1838 Info.Param = BaseInfo.Param; 1839 Info.FirstArg = BaseInfo.FirstArg; 1840 Info.SecondArg = BaseInfo.SecondArg; 1841 } 1842 1843 Deduced = DeducedOrig; 1844 } 1845 1846 // Visit base classes 1847 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl()); 1848 for (const auto &Base : Next->bases()) { 1849 assert(Base.getType()->isRecordType() && 1850 "Base class that isn't a record?"); 1851 ToVisit.push_back(Base.getType()->getAs<RecordType>()); 1852 } 1853 } 1854 1855 if (Successful) { 1856 std::swap(SuccessfulDeduced, Deduced); 1857 return Sema::TDK_Success; 1858 } 1859 1860 return Result; 1861 } 1862 1863 // T type::* 1864 // T T::* 1865 // T (type::*)() 1866 // type (T::*)() 1867 // type (type::*)(T) 1868 // type (T::*)(T) 1869 // T (type::*)(T) 1870 // T (T::*)() 1871 // T (T::*)(T) 1872 case Type::MemberPointer: { 1873 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param); 1874 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg); 1875 if (!MemPtrArg) 1876 return Sema::TDK_NonDeducedMismatch; 1877 1878 QualType ParamPointeeType = MemPtrParam->getPointeeType(); 1879 if (ParamPointeeType->isFunctionType()) 1880 S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true, 1881 /*IsCtorOrDtor=*/false, Info.getLocation()); 1882 QualType ArgPointeeType = MemPtrArg->getPointeeType(); 1883 if (ArgPointeeType->isFunctionType()) 1884 S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true, 1885 /*IsCtorOrDtor=*/false, Info.getLocation()); 1886 1887 if (Sema::TemplateDeductionResult Result 1888 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1889 ParamPointeeType, 1890 ArgPointeeType, 1891 Info, Deduced, 1892 TDF & TDF_IgnoreQualifiers)) 1893 return Result; 1894 1895 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1896 QualType(MemPtrParam->getClass(), 0), 1897 QualType(MemPtrArg->getClass(), 0), 1898 Info, Deduced, 1899 TDF & TDF_IgnoreQualifiers); 1900 } 1901 1902 // (clang extension) 1903 // 1904 // type(^)(T) 1905 // T(^)() 1906 // T(^)(T) 1907 case Type::BlockPointer: { 1908 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param); 1909 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg); 1910 1911 if (!BlockPtrArg) 1912 return Sema::TDK_NonDeducedMismatch; 1913 1914 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1915 BlockPtrParam->getPointeeType(), 1916 BlockPtrArg->getPointeeType(), 1917 Info, Deduced, 0); 1918 } 1919 1920 // (clang extension) 1921 // 1922 // T __attribute__(((ext_vector_type(<integral constant>)))) 1923 case Type::ExtVector: { 1924 const ExtVectorType *VectorParam = cast<ExtVectorType>(Param); 1925 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { 1926 // Make sure that the vectors have the same number of elements. 1927 if (VectorParam->getNumElements() != VectorArg->getNumElements()) 1928 return Sema::TDK_NonDeducedMismatch; 1929 1930 // Perform deduction on the element types. 1931 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1932 VectorParam->getElementType(), 1933 VectorArg->getElementType(), 1934 Info, Deduced, TDF); 1935 } 1936 1937 if (const DependentSizedExtVectorType *VectorArg 1938 = dyn_cast<DependentSizedExtVectorType>(Arg)) { 1939 // We can't check the number of elements, since the argument has a 1940 // dependent number of elements. This can only occur during partial 1941 // ordering. 1942 1943 // Perform deduction on the element types. 1944 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1945 VectorParam->getElementType(), 1946 VectorArg->getElementType(), 1947 Info, Deduced, TDF); 1948 } 1949 1950 return Sema::TDK_NonDeducedMismatch; 1951 } 1952 1953 case Type::DependentVector: { 1954 const auto *VectorParam = cast<DependentVectorType>(Param); 1955 1956 if (const auto *VectorArg = dyn_cast<VectorType>(Arg)) { 1957 // Perform deduction on the element types. 1958 if (Sema::TemplateDeductionResult Result = 1959 DeduceTemplateArgumentsByTypeMatch( 1960 S, TemplateParams, VectorParam->getElementType(), 1961 VectorArg->getElementType(), Info, Deduced, TDF)) 1962 return Result; 1963 1964 // Perform deduction on the vector size, if we can. 1965 NonTypeTemplateParmDecl *NTTP = 1966 getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); 1967 if (!NTTP) 1968 return Sema::TDK_Success; 1969 1970 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 1971 ArgSize = VectorArg->getNumElements(); 1972 // Note that we use the "array bound" rules here; just like in that 1973 // case, we don't have any particular type for the vector size, but 1974 // we can provide one if necessary. 1975 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 1976 S.Context.UnsignedIntTy, true, 1977 Info, Deduced); 1978 } 1979 1980 if (const auto *VectorArg = dyn_cast<DependentVectorType>(Arg)) { 1981 // Perform deduction on the element types. 1982 if (Sema::TemplateDeductionResult Result = 1983 DeduceTemplateArgumentsByTypeMatch( 1984 S, TemplateParams, VectorParam->getElementType(), 1985 VectorArg->getElementType(), Info, Deduced, TDF)) 1986 return Result; 1987 1988 // Perform deduction on the vector size, if we can. 1989 NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( 1990 Info, VectorParam->getSizeExpr()); 1991 if (!NTTP) 1992 return Sema::TDK_Success; 1993 1994 return DeduceNonTypeTemplateArgument( 1995 S, TemplateParams, NTTP, VectorArg->getSizeExpr(), Info, Deduced); 1996 } 1997 1998 return Sema::TDK_NonDeducedMismatch; 1999 } 2000 2001 // (clang extension) 2002 // 2003 // T __attribute__(((ext_vector_type(N)))) 2004 case Type::DependentSizedExtVector: { 2005 const DependentSizedExtVectorType *VectorParam 2006 = cast<DependentSizedExtVectorType>(Param); 2007 2008 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { 2009 // Perform deduction on the element types. 2010 if (Sema::TemplateDeductionResult Result 2011 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 2012 VectorParam->getElementType(), 2013 VectorArg->getElementType(), 2014 Info, Deduced, TDF)) 2015 return Result; 2016 2017 // Perform deduction on the vector size, if we can. 2018 NonTypeTemplateParmDecl *NTTP 2019 = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); 2020 if (!NTTP) 2021 return Sema::TDK_Success; 2022 2023 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 2024 ArgSize = VectorArg->getNumElements(); 2025 // Note that we use the "array bound" rules here; just like in that 2026 // case, we don't have any particular type for the vector size, but 2027 // we can provide one if necessary. 2028 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 2029 S.Context.IntTy, true, Info, 2030 Deduced); 2031 } 2032 2033 if (const DependentSizedExtVectorType *VectorArg 2034 = dyn_cast<DependentSizedExtVectorType>(Arg)) { 2035 // Perform deduction on the element types. 2036 if (Sema::TemplateDeductionResult Result 2037 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 2038 VectorParam->getElementType(), 2039 VectorArg->getElementType(), 2040 Info, Deduced, TDF)) 2041 return Result; 2042 2043 // Perform deduction on the vector size, if we can. 2044 NonTypeTemplateParmDecl *NTTP 2045 = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr()); 2046 if (!NTTP) 2047 return Sema::TDK_Success; 2048 2049 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2050 VectorArg->getSizeExpr(), 2051 Info, Deduced); 2052 } 2053 2054 return Sema::TDK_NonDeducedMismatch; 2055 } 2056 2057 // (clang extension) 2058 // 2059 // T __attribute__(((address_space(N)))) 2060 case Type::DependentAddressSpace: { 2061 const DependentAddressSpaceType *AddressSpaceParam = 2062 cast<DependentAddressSpaceType>(Param); 2063 2064 if (const DependentAddressSpaceType *AddressSpaceArg = 2065 dyn_cast<DependentAddressSpaceType>(Arg)) { 2066 // Perform deduction on the pointer type. 2067 if (Sema::TemplateDeductionResult Result = 2068 DeduceTemplateArgumentsByTypeMatch( 2069 S, TemplateParams, AddressSpaceParam->getPointeeType(), 2070 AddressSpaceArg->getPointeeType(), Info, Deduced, TDF)) 2071 return Result; 2072 2073 // Perform deduction on the address space, if we can. 2074 NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( 2075 Info, AddressSpaceParam->getAddrSpaceExpr()); 2076 if (!NTTP) 2077 return Sema::TDK_Success; 2078 2079 return DeduceNonTypeTemplateArgument( 2080 S, TemplateParams, NTTP, AddressSpaceArg->getAddrSpaceExpr(), Info, 2081 Deduced); 2082 } 2083 2084 if (isTargetAddressSpace(Arg.getAddressSpace())) { 2085 llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy), 2086 false); 2087 ArgAddressSpace = toTargetAddressSpace(Arg.getAddressSpace()); 2088 2089 // Perform deduction on the pointer types. 2090 if (Sema::TemplateDeductionResult Result = 2091 DeduceTemplateArgumentsByTypeMatch( 2092 S, TemplateParams, AddressSpaceParam->getPointeeType(), 2093 S.Context.removeAddrSpaceQualType(Arg), Info, Deduced, TDF)) 2094 return Result; 2095 2096 // Perform deduction on the address space, if we can. 2097 NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr( 2098 Info, AddressSpaceParam->getAddrSpaceExpr()); 2099 if (!NTTP) 2100 return Sema::TDK_Success; 2101 2102 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2103 ArgAddressSpace, S.Context.IntTy, 2104 true, Info, Deduced); 2105 } 2106 2107 return Sema::TDK_NonDeducedMismatch; 2108 } 2109 2110 case Type::TypeOfExpr: 2111 case Type::TypeOf: 2112 case Type::DependentName: 2113 case Type::UnresolvedUsing: 2114 case Type::Decltype: 2115 case Type::UnaryTransform: 2116 case Type::Auto: 2117 case Type::DeducedTemplateSpecialization: 2118 case Type::DependentTemplateSpecialization: 2119 case Type::PackExpansion: 2120 case Type::Pipe: 2121 // No template argument deduction for these types 2122 return Sema::TDK_Success; 2123 } 2124 2125 llvm_unreachable("Invalid Type Class!"); 2126 } 2127 2128 static Sema::TemplateDeductionResult 2129 DeduceTemplateArguments(Sema &S, 2130 TemplateParameterList *TemplateParams, 2131 const TemplateArgument &Param, 2132 TemplateArgument Arg, 2133 TemplateDeductionInfo &Info, 2134 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2135 // If the template argument is a pack expansion, perform template argument 2136 // deduction against the pattern of that expansion. This only occurs during 2137 // partial ordering. 2138 if (Arg.isPackExpansion()) 2139 Arg = Arg.getPackExpansionPattern(); 2140 2141 switch (Param.getKind()) { 2142 case TemplateArgument::Null: 2143 llvm_unreachable("Null template argument in parameter list"); 2144 2145 case TemplateArgument::Type: 2146 if (Arg.getKind() == TemplateArgument::Type) 2147 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 2148 Param.getAsType(), 2149 Arg.getAsType(), 2150 Info, Deduced, 0); 2151 Info.FirstArg = Param; 2152 Info.SecondArg = Arg; 2153 return Sema::TDK_NonDeducedMismatch; 2154 2155 case TemplateArgument::Template: 2156 if (Arg.getKind() == TemplateArgument::Template) 2157 return DeduceTemplateArguments(S, TemplateParams, 2158 Param.getAsTemplate(), 2159 Arg.getAsTemplate(), Info, Deduced); 2160 Info.FirstArg = Param; 2161 Info.SecondArg = Arg; 2162 return Sema::TDK_NonDeducedMismatch; 2163 2164 case TemplateArgument::TemplateExpansion: 2165 llvm_unreachable("caller should handle pack expansions"); 2166 2167 case TemplateArgument::Declaration: 2168 if (Arg.getKind() == TemplateArgument::Declaration && 2169 isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl())) 2170 return Sema::TDK_Success; 2171 2172 Info.FirstArg = Param; 2173 Info.SecondArg = Arg; 2174 return Sema::TDK_NonDeducedMismatch; 2175 2176 case TemplateArgument::NullPtr: 2177 if (Arg.getKind() == TemplateArgument::NullPtr && 2178 S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType())) 2179 return Sema::TDK_Success; 2180 2181 Info.FirstArg = Param; 2182 Info.SecondArg = Arg; 2183 return Sema::TDK_NonDeducedMismatch; 2184 2185 case TemplateArgument::Integral: 2186 if (Arg.getKind() == TemplateArgument::Integral) { 2187 if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral())) 2188 return Sema::TDK_Success; 2189 2190 Info.FirstArg = Param; 2191 Info.SecondArg = Arg; 2192 return Sema::TDK_NonDeducedMismatch; 2193 } 2194 2195 if (Arg.getKind() == TemplateArgument::Expression) { 2196 Info.FirstArg = Param; 2197 Info.SecondArg = Arg; 2198 return Sema::TDK_NonDeducedMismatch; 2199 } 2200 2201 Info.FirstArg = Param; 2202 Info.SecondArg = Arg; 2203 return Sema::TDK_NonDeducedMismatch; 2204 2205 case TemplateArgument::Expression: 2206 if (NonTypeTemplateParmDecl *NTTP 2207 = getDeducedParameterFromExpr(Info, Param.getAsExpr())) { 2208 if (Arg.getKind() == TemplateArgument::Integral) 2209 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2210 Arg.getAsIntegral(), 2211 Arg.getIntegralType(), 2212 /*ArrayBound=*/false, 2213 Info, Deduced); 2214 if (Arg.getKind() == TemplateArgument::NullPtr) 2215 return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP, 2216 Arg.getNullPtrType(), 2217 Info, Deduced); 2218 if (Arg.getKind() == TemplateArgument::Expression) 2219 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2220 Arg.getAsExpr(), Info, Deduced); 2221 if (Arg.getKind() == TemplateArgument::Declaration) 2222 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2223 Arg.getAsDecl(), 2224 Arg.getParamTypeForDecl(), 2225 Info, Deduced); 2226 2227 Info.FirstArg = Param; 2228 Info.SecondArg = Arg; 2229 return Sema::TDK_NonDeducedMismatch; 2230 } 2231 2232 // Can't deduce anything, but that's okay. 2233 return Sema::TDK_Success; 2234 2235 case TemplateArgument::Pack: 2236 llvm_unreachable("Argument packs should be expanded by the caller!"); 2237 } 2238 2239 llvm_unreachable("Invalid TemplateArgument Kind!"); 2240 } 2241 2242 /// Determine whether there is a template argument to be used for 2243 /// deduction. 2244 /// 2245 /// This routine "expands" argument packs in-place, overriding its input 2246 /// parameters so that \c Args[ArgIdx] will be the available template argument. 2247 /// 2248 /// \returns true if there is another template argument (which will be at 2249 /// \c Args[ArgIdx]), false otherwise. 2250 static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args, 2251 unsigned &ArgIdx) { 2252 if (ArgIdx == Args.size()) 2253 return false; 2254 2255 const TemplateArgument &Arg = Args[ArgIdx]; 2256 if (Arg.getKind() != TemplateArgument::Pack) 2257 return true; 2258 2259 assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?"); 2260 Args = Arg.pack_elements(); 2261 ArgIdx = 0; 2262 return ArgIdx < Args.size(); 2263 } 2264 2265 /// Determine whether the given set of template arguments has a pack 2266 /// expansion that is not the last template argument. 2267 static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) { 2268 bool FoundPackExpansion = false; 2269 for (const auto &A : Args) { 2270 if (FoundPackExpansion) 2271 return true; 2272 2273 if (A.getKind() == TemplateArgument::Pack) 2274 return hasPackExpansionBeforeEnd(A.pack_elements()); 2275 2276 // FIXME: If this is a fixed-arity pack expansion from an outer level of 2277 // templates, it should not be treated as a pack expansion. 2278 if (A.isPackExpansion()) 2279 FoundPackExpansion = true; 2280 } 2281 2282 return false; 2283 } 2284 2285 static Sema::TemplateDeductionResult 2286 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 2287 ArrayRef<TemplateArgument> Params, 2288 ArrayRef<TemplateArgument> Args, 2289 TemplateDeductionInfo &Info, 2290 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2291 bool NumberOfArgumentsMustMatch) { 2292 // C++0x [temp.deduct.type]p9: 2293 // If the template argument list of P contains a pack expansion that is not 2294 // the last template argument, the entire template argument list is a 2295 // non-deduced context. 2296 if (hasPackExpansionBeforeEnd(Params)) 2297 return Sema::TDK_Success; 2298 2299 // C++0x [temp.deduct.type]p9: 2300 // If P has a form that contains <T> or <i>, then each argument Pi of the 2301 // respective template argument list P is compared with the corresponding 2302 // argument Ai of the corresponding template argument list of A. 2303 unsigned ArgIdx = 0, ParamIdx = 0; 2304 for (; hasTemplateArgumentForDeduction(Params, ParamIdx); ++ParamIdx) { 2305 if (!Params[ParamIdx].isPackExpansion()) { 2306 // The simple case: deduce template arguments by matching Pi and Ai. 2307 2308 // Check whether we have enough arguments. 2309 if (!hasTemplateArgumentForDeduction(Args, ArgIdx)) 2310 return NumberOfArgumentsMustMatch 2311 ? Sema::TDK_MiscellaneousDeductionFailure 2312 : Sema::TDK_Success; 2313 2314 // C++1z [temp.deduct.type]p9: 2315 // During partial ordering, if Ai was originally a pack expansion [and] 2316 // Pi is not a pack expansion, template argument deduction fails. 2317 if (Args[ArgIdx].isPackExpansion()) 2318 return Sema::TDK_MiscellaneousDeductionFailure; 2319 2320 // Perform deduction for this Pi/Ai pair. 2321 if (Sema::TemplateDeductionResult Result 2322 = DeduceTemplateArguments(S, TemplateParams, 2323 Params[ParamIdx], Args[ArgIdx], 2324 Info, Deduced)) 2325 return Result; 2326 2327 // Move to the next argument. 2328 ++ArgIdx; 2329 continue; 2330 } 2331 2332 // The parameter is a pack expansion. 2333 2334 // C++0x [temp.deduct.type]p9: 2335 // If Pi is a pack expansion, then the pattern of Pi is compared with 2336 // each remaining argument in the template argument list of A. Each 2337 // comparison deduces template arguments for subsequent positions in the 2338 // template parameter packs expanded by Pi. 2339 TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern(); 2340 2341 // Prepare to deduce the packs within the pattern. 2342 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 2343 2344 // Keep track of the deduced template arguments for each parameter pack 2345 // expanded by this pack expansion (the outer index) and for each 2346 // template argument (the inner SmallVectors). 2347 for (; hasTemplateArgumentForDeduction(Args, ArgIdx) && 2348 PackScope.hasNextElement(); 2349 ++ArgIdx) { 2350 // Deduce template arguments from the pattern. 2351 if (Sema::TemplateDeductionResult Result 2352 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx], 2353 Info, Deduced)) 2354 return Result; 2355 2356 PackScope.nextPackElement(); 2357 } 2358 2359 // Build argument packs for each of the parameter packs expanded by this 2360 // pack expansion. 2361 if (auto Result = PackScope.finish()) 2362 return Result; 2363 } 2364 2365 return Sema::TDK_Success; 2366 } 2367 2368 static Sema::TemplateDeductionResult 2369 DeduceTemplateArguments(Sema &S, 2370 TemplateParameterList *TemplateParams, 2371 const TemplateArgumentList &ParamList, 2372 const TemplateArgumentList &ArgList, 2373 TemplateDeductionInfo &Info, 2374 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2375 return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(), 2376 ArgList.asArray(), Info, Deduced, 2377 /*NumberOfArgumentsMustMatch*/false); 2378 } 2379 2380 /// Determine whether two template arguments are the same. 2381 static bool isSameTemplateArg(ASTContext &Context, 2382 TemplateArgument X, 2383 const TemplateArgument &Y, 2384 bool PackExpansionMatchesPack = false) { 2385 // If we're checking deduced arguments (X) against original arguments (Y), 2386 // we will have flattened packs to non-expansions in X. 2387 if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion()) 2388 X = X.getPackExpansionPattern(); 2389 2390 if (X.getKind() != Y.getKind()) 2391 return false; 2392 2393 switch (X.getKind()) { 2394 case TemplateArgument::Null: 2395 llvm_unreachable("Comparing NULL template argument"); 2396 2397 case TemplateArgument::Type: 2398 return Context.getCanonicalType(X.getAsType()) == 2399 Context.getCanonicalType(Y.getAsType()); 2400 2401 case TemplateArgument::Declaration: 2402 return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()); 2403 2404 case TemplateArgument::NullPtr: 2405 return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()); 2406 2407 case TemplateArgument::Template: 2408 case TemplateArgument::TemplateExpansion: 2409 return Context.getCanonicalTemplateName( 2410 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() == 2411 Context.getCanonicalTemplateName( 2412 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer(); 2413 2414 case TemplateArgument::Integral: 2415 return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()); 2416 2417 case TemplateArgument::Expression: { 2418 llvm::FoldingSetNodeID XID, YID; 2419 X.getAsExpr()->Profile(XID, Context, true); 2420 Y.getAsExpr()->Profile(YID, Context, true); 2421 return XID == YID; 2422 } 2423 2424 case TemplateArgument::Pack: 2425 if (X.pack_size() != Y.pack_size()) 2426 return false; 2427 2428 for (TemplateArgument::pack_iterator XP = X.pack_begin(), 2429 XPEnd = X.pack_end(), 2430 YP = Y.pack_begin(); 2431 XP != XPEnd; ++XP, ++YP) 2432 if (!isSameTemplateArg(Context, *XP, *YP, PackExpansionMatchesPack)) 2433 return false; 2434 2435 return true; 2436 } 2437 2438 llvm_unreachable("Invalid TemplateArgument Kind!"); 2439 } 2440 2441 /// Allocate a TemplateArgumentLoc where all locations have 2442 /// been initialized to the given location. 2443 /// 2444 /// \param Arg The template argument we are producing template argument 2445 /// location information for. 2446 /// 2447 /// \param NTTPType For a declaration template argument, the type of 2448 /// the non-type template parameter that corresponds to this template 2449 /// argument. Can be null if no type sugar is available to add to the 2450 /// type from the template argument. 2451 /// 2452 /// \param Loc The source location to use for the resulting template 2453 /// argument. 2454 TemplateArgumentLoc 2455 Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, 2456 QualType NTTPType, SourceLocation Loc) { 2457 switch (Arg.getKind()) { 2458 case TemplateArgument::Null: 2459 llvm_unreachable("Can't get a NULL template argument here"); 2460 2461 case TemplateArgument::Type: 2462 return TemplateArgumentLoc( 2463 Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); 2464 2465 case TemplateArgument::Declaration: { 2466 if (NTTPType.isNull()) 2467 NTTPType = Arg.getParamTypeForDecl(); 2468 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2469 .getAs<Expr>(); 2470 return TemplateArgumentLoc(TemplateArgument(E), E); 2471 } 2472 2473 case TemplateArgument::NullPtr: { 2474 if (NTTPType.isNull()) 2475 NTTPType = Arg.getNullPtrType(); 2476 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2477 .getAs<Expr>(); 2478 return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true), 2479 E); 2480 } 2481 2482 case TemplateArgument::Integral: { 2483 Expr *E = 2484 BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>(); 2485 return TemplateArgumentLoc(TemplateArgument(E), E); 2486 } 2487 2488 case TemplateArgument::Template: 2489 case TemplateArgument::TemplateExpansion: { 2490 NestedNameSpecifierLocBuilder Builder; 2491 TemplateName Template = Arg.getAsTemplate(); 2492 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) 2493 Builder.MakeTrivial(Context, DTN->getQualifier(), Loc); 2494 else if (QualifiedTemplateName *QTN = 2495 Template.getAsQualifiedTemplateName()) 2496 Builder.MakeTrivial(Context, QTN->getQualifier(), Loc); 2497 2498 if (Arg.getKind() == TemplateArgument::Template) 2499 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context), 2500 Loc); 2501 2502 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context), 2503 Loc, Loc); 2504 } 2505 2506 case TemplateArgument::Expression: 2507 return TemplateArgumentLoc(Arg, Arg.getAsExpr()); 2508 2509 case TemplateArgument::Pack: 2510 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); 2511 } 2512 2513 llvm_unreachable("Invalid TemplateArgument Kind!"); 2514 } 2515 2516 TemplateArgumentLoc 2517 Sema::getIdentityTemplateArgumentLoc(Decl *TemplateParm, 2518 SourceLocation Location) { 2519 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParm)) 2520 return getTrivialTemplateArgumentLoc( 2521 TemplateArgument( 2522 Context.getTemplateTypeParmType(TTP->getDepth(), TTP->getIndex(), 2523 TTP->isParameterPack(), TTP)), 2524 QualType(), Location.isValid() ? Location : TTP->getLocation()); 2525 else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParm)) 2526 return getTrivialTemplateArgumentLoc(TemplateArgument(TemplateName(TTP)), 2527 QualType(), 2528 Location.isValid() ? Location : 2529 TTP->getLocation()); 2530 auto *NTTP = cast<NonTypeTemplateParmDecl>(TemplateParm); 2531 CXXScopeSpec SS; 2532 DeclarationNameInfo Info(NTTP->getDeclName(), 2533 Location.isValid() ? Location : NTTP->getLocation()); 2534 Expr *E = BuildDeclarationNameExpr(SS, Info, NTTP).get(); 2535 return getTrivialTemplateArgumentLoc(TemplateArgument(E), NTTP->getType(), 2536 Location.isValid() ? Location : 2537 NTTP->getLocation()); 2538 } 2539 2540 /// Convert the given deduced template argument and add it to the set of 2541 /// fully-converted template arguments. 2542 static bool 2543 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param, 2544 DeducedTemplateArgument Arg, 2545 NamedDecl *Template, 2546 TemplateDeductionInfo &Info, 2547 bool IsDeduced, 2548 SmallVectorImpl<TemplateArgument> &Output) { 2549 auto ConvertArg = [&](DeducedTemplateArgument Arg, 2550 unsigned ArgumentPackIndex) { 2551 // Convert the deduced template argument into a template 2552 // argument that we can check, almost as if the user had written 2553 // the template argument explicitly. 2554 TemplateArgumentLoc ArgLoc = 2555 S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation()); 2556 2557 // Check the template argument, converting it as necessary. 2558 return S.CheckTemplateArgument( 2559 Param, ArgLoc, Template, Template->getLocation(), 2560 Template->getSourceRange().getEnd(), ArgumentPackIndex, Output, 2561 IsDeduced 2562 ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound 2563 : Sema::CTAK_Deduced) 2564 : Sema::CTAK_Specified); 2565 }; 2566 2567 if (Arg.getKind() == TemplateArgument::Pack) { 2568 // This is a template argument pack, so check each of its arguments against 2569 // the template parameter. 2570 SmallVector<TemplateArgument, 2> PackedArgsBuilder; 2571 for (const auto &P : Arg.pack_elements()) { 2572 // When converting the deduced template argument, append it to the 2573 // general output list. We need to do this so that the template argument 2574 // checking logic has all of the prior template arguments available. 2575 DeducedTemplateArgument InnerArg(P); 2576 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); 2577 assert(InnerArg.getKind() != TemplateArgument::Pack && 2578 "deduced nested pack"); 2579 if (P.isNull()) { 2580 // We deduced arguments for some elements of this pack, but not for 2581 // all of them. This happens if we get a conditionally-non-deduced 2582 // context in a pack expansion (such as an overload set in one of the 2583 // arguments). 2584 S.Diag(Param->getLocation(), 2585 diag::err_template_arg_deduced_incomplete_pack) 2586 << Arg << Param; 2587 return true; 2588 } 2589 if (ConvertArg(InnerArg, PackedArgsBuilder.size())) 2590 return true; 2591 2592 // Move the converted template argument into our argument pack. 2593 PackedArgsBuilder.push_back(Output.pop_back_val()); 2594 } 2595 2596 // If the pack is empty, we still need to substitute into the parameter 2597 // itself, in case that substitution fails. 2598 if (PackedArgsBuilder.empty()) { 2599 LocalInstantiationScope Scope(S); 2600 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Output); 2601 MultiLevelTemplateArgumentList Args(TemplateArgs); 2602 2603 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2604 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2605 NTTP, Output, 2606 Template->getSourceRange()); 2607 if (Inst.isInvalid() || 2608 S.SubstType(NTTP->getType(), Args, NTTP->getLocation(), 2609 NTTP->getDeclName()).isNull()) 2610 return true; 2611 } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) { 2612 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2613 TTP, Output, 2614 Template->getSourceRange()); 2615 if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args)) 2616 return true; 2617 } 2618 // For type parameters, no substitution is ever required. 2619 } 2620 2621 // Create the resulting argument pack. 2622 Output.push_back( 2623 TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder)); 2624 return false; 2625 } 2626 2627 return ConvertArg(Arg, 0); 2628 } 2629 2630 // FIXME: This should not be a template, but 2631 // ClassTemplatePartialSpecializationDecl sadly does not derive from 2632 // TemplateDecl. 2633 template<typename TemplateDeclT> 2634 static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments( 2635 Sema &S, TemplateDeclT *Template, bool IsDeduced, 2636 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2637 TemplateDeductionInfo &Info, SmallVectorImpl<TemplateArgument> &Builder, 2638 LocalInstantiationScope *CurrentInstantiationScope = nullptr, 2639 unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) { 2640 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2641 2642 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2643 NamedDecl *Param = TemplateParams->getParam(I); 2644 2645 // C++0x [temp.arg.explicit]p3: 2646 // A trailing template parameter pack (14.5.3) not otherwise deduced will 2647 // be deduced to an empty sequence of template arguments. 2648 // FIXME: Where did the word "trailing" come from? 2649 if (Deduced[I].isNull() && Param->isTemplateParameterPack()) { 2650 if (auto Result = 2651 PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish()) 2652 return Result; 2653 } 2654 2655 if (!Deduced[I].isNull()) { 2656 if (I < NumAlreadyConverted) { 2657 // We may have had explicitly-specified template arguments for a 2658 // template parameter pack (that may or may not have been extended 2659 // via additional deduced arguments). 2660 if (Param->isParameterPack() && CurrentInstantiationScope && 2661 CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) { 2662 // Forget the partially-substituted pack; its substitution is now 2663 // complete. 2664 CurrentInstantiationScope->ResetPartiallySubstitutedPack(); 2665 // We still need to check the argument in case it was extended by 2666 // deduction. 2667 } else { 2668 // We have already fully type-checked and converted this 2669 // argument, because it was explicitly-specified. Just record the 2670 // presence of this argument. 2671 Builder.push_back(Deduced[I]); 2672 continue; 2673 } 2674 } 2675 2676 // We may have deduced this argument, so it still needs to be 2677 // checked and converted. 2678 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info, 2679 IsDeduced, Builder)) { 2680 Info.Param = makeTemplateParameter(Param); 2681 // FIXME: These template arguments are temporary. Free them! 2682 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); 2683 return Sema::TDK_SubstitutionFailure; 2684 } 2685 2686 continue; 2687 } 2688 2689 // Substitute into the default template argument, if available. 2690 bool HasDefaultArg = false; 2691 TemplateDecl *TD = dyn_cast<TemplateDecl>(Template); 2692 if (!TD) { 2693 assert(isa<ClassTemplatePartialSpecializationDecl>(Template) || 2694 isa<VarTemplatePartialSpecializationDecl>(Template)); 2695 return Sema::TDK_Incomplete; 2696 } 2697 2698 TemplateArgumentLoc DefArg = S.SubstDefaultTemplateArgumentIfAvailable( 2699 TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, Builder, 2700 HasDefaultArg); 2701 2702 // If there was no default argument, deduction is incomplete. 2703 if (DefArg.getArgument().isNull()) { 2704 Info.Param = makeTemplateParameter( 2705 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2706 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); 2707 if (PartialOverloading) break; 2708 2709 return HasDefaultArg ? Sema::TDK_SubstitutionFailure 2710 : Sema::TDK_Incomplete; 2711 } 2712 2713 // Check whether we can actually use the default argument. 2714 if (S.CheckTemplateArgument(Param, DefArg, TD, TD->getLocation(), 2715 TD->getSourceRange().getEnd(), 0, Builder, 2716 Sema::CTAK_Specified)) { 2717 Info.Param = makeTemplateParameter( 2718 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2719 // FIXME: These template arguments are temporary. Free them! 2720 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); 2721 return Sema::TDK_SubstitutionFailure; 2722 } 2723 2724 // If we get here, we successfully used the default template argument. 2725 } 2726 2727 return Sema::TDK_Success; 2728 } 2729 2730 static DeclContext *getAsDeclContextOrEnclosing(Decl *D) { 2731 if (auto *DC = dyn_cast<DeclContext>(D)) 2732 return DC; 2733 return D->getDeclContext(); 2734 } 2735 2736 template<typename T> struct IsPartialSpecialization { 2737 static constexpr bool value = false; 2738 }; 2739 template<> 2740 struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> { 2741 static constexpr bool value = true; 2742 }; 2743 template<> 2744 struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> { 2745 static constexpr bool value = true; 2746 }; 2747 2748 template<typename TemplateDeclT> 2749 static Sema::TemplateDeductionResult 2750 CheckDeducedArgumentConstraints(Sema& S, TemplateDeclT *Template, 2751 ArrayRef<TemplateArgument> DeducedArgs, 2752 TemplateDeductionInfo& Info) { 2753 llvm::SmallVector<const Expr *, 3> AssociatedConstraints; 2754 Template->getAssociatedConstraints(AssociatedConstraints); 2755 if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints, 2756 DeducedArgs, Info.getLocation(), 2757 Info.AssociatedConstraintsSatisfaction) || 2758 !Info.AssociatedConstraintsSatisfaction.IsSatisfied) { 2759 Info.reset(TemplateArgumentList::CreateCopy(S.Context, DeducedArgs)); 2760 return Sema::TDK_ConstraintsNotSatisfied; 2761 } 2762 return Sema::TDK_Success; 2763 } 2764 2765 /// Complete template argument deduction for a partial specialization. 2766 template <typename T> 2767 static typename std::enable_if<IsPartialSpecialization<T>::value, 2768 Sema::TemplateDeductionResult>::type 2769 FinishTemplateArgumentDeduction( 2770 Sema &S, T *Partial, bool IsPartialOrdering, 2771 const TemplateArgumentList &TemplateArgs, 2772 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2773 TemplateDeductionInfo &Info) { 2774 // Unevaluated SFINAE context. 2775 EnterExpressionEvaluationContext Unevaluated( 2776 S, Sema::ExpressionEvaluationContext::Unevaluated); 2777 Sema::SFINAETrap Trap(S); 2778 2779 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial)); 2780 2781 // C++ [temp.deduct.type]p2: 2782 // [...] or if any template argument remains neither deduced nor 2783 // explicitly specified, template argument deduction fails. 2784 SmallVector<TemplateArgument, 4> Builder; 2785 if (auto Result = ConvertDeducedTemplateArguments( 2786 S, Partial, IsPartialOrdering, Deduced, Info, Builder)) 2787 return Result; 2788 2789 // Form the template argument list from the deduced template arguments. 2790 TemplateArgumentList *DeducedArgumentList 2791 = TemplateArgumentList::CreateCopy(S.Context, Builder); 2792 2793 Info.reset(DeducedArgumentList); 2794 2795 // Substitute the deduced template arguments into the template 2796 // arguments of the class template partial specialization, and 2797 // verify that the instantiated template arguments are both valid 2798 // and are equivalent to the template arguments originally provided 2799 // to the class template. 2800 LocalInstantiationScope InstScope(S); 2801 auto *Template = Partial->getSpecializedTemplate(); 2802 const ASTTemplateArgumentListInfo *PartialTemplArgInfo = 2803 Partial->getTemplateArgsAsWritten(); 2804 const TemplateArgumentLoc *PartialTemplateArgs = 2805 PartialTemplArgInfo->getTemplateArgs(); 2806 2807 TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc, 2808 PartialTemplArgInfo->RAngleLoc); 2809 2810 if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs, 2811 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) { 2812 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; 2813 if (ParamIdx >= Partial->getTemplateParameters()->size()) 2814 ParamIdx = Partial->getTemplateParameters()->size() - 1; 2815 2816 Decl *Param = const_cast<NamedDecl *>( 2817 Partial->getTemplateParameters()->getParam(ParamIdx)); 2818 Info.Param = makeTemplateParameter(Param); 2819 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument(); 2820 return Sema::TDK_SubstitutionFailure; 2821 } 2822 2823 bool ConstraintsNotSatisfied; 2824 SmallVector<TemplateArgument, 4> ConvertedInstArgs; 2825 if (S.CheckTemplateArgumentList(Template, Partial->getLocation(), InstArgs, 2826 false, ConvertedInstArgs, 2827 /*UpdateArgsWithConversions=*/true, 2828 &ConstraintsNotSatisfied)) 2829 return ConstraintsNotSatisfied ? Sema::TDK_ConstraintsNotSatisfied : 2830 Sema::TDK_SubstitutionFailure; 2831 2832 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2833 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 2834 TemplateArgument InstArg = ConvertedInstArgs.data()[I]; 2835 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) { 2836 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 2837 Info.FirstArg = TemplateArgs[I]; 2838 Info.SecondArg = InstArg; 2839 return Sema::TDK_NonDeducedMismatch; 2840 } 2841 } 2842 2843 if (Trap.hasErrorOccurred()) 2844 return Sema::TDK_SubstitutionFailure; 2845 2846 if (auto Result = CheckDeducedArgumentConstraints(S, Partial, Builder, Info)) 2847 return Result; 2848 2849 return Sema::TDK_Success; 2850 } 2851 2852 /// Complete template argument deduction for a class or variable template, 2853 /// when partial ordering against a partial specialization. 2854 // FIXME: Factor out duplication with partial specialization version above. 2855 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction( 2856 Sema &S, TemplateDecl *Template, bool PartialOrdering, 2857 const TemplateArgumentList &TemplateArgs, 2858 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2859 TemplateDeductionInfo &Info) { 2860 // Unevaluated SFINAE context. 2861 EnterExpressionEvaluationContext Unevaluated( 2862 S, Sema::ExpressionEvaluationContext::Unevaluated); 2863 Sema::SFINAETrap Trap(S); 2864 2865 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template)); 2866 2867 // C++ [temp.deduct.type]p2: 2868 // [...] or if any template argument remains neither deduced nor 2869 // explicitly specified, template argument deduction fails. 2870 SmallVector<TemplateArgument, 4> Builder; 2871 if (auto Result = ConvertDeducedTemplateArguments( 2872 S, Template, /*IsDeduced*/PartialOrdering, Deduced, Info, Builder)) 2873 return Result; 2874 2875 // Check that we produced the correct argument list. 2876 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2877 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 2878 TemplateArgument InstArg = Builder[I]; 2879 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, 2880 /*PackExpansionMatchesPack*/true)) { 2881 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 2882 Info.FirstArg = TemplateArgs[I]; 2883 Info.SecondArg = InstArg; 2884 return Sema::TDK_NonDeducedMismatch; 2885 } 2886 } 2887 2888 if (Trap.hasErrorOccurred()) 2889 return Sema::TDK_SubstitutionFailure; 2890 2891 if (auto Result = CheckDeducedArgumentConstraints(S, Template, Builder, 2892 Info)) 2893 return Result; 2894 2895 return Sema::TDK_Success; 2896 } 2897 2898 /// Perform template argument deduction to determine whether 2899 /// the given template arguments match the given class template 2900 /// partial specialization per C++ [temp.class.spec.match]. 2901 Sema::TemplateDeductionResult 2902 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, 2903 const TemplateArgumentList &TemplateArgs, 2904 TemplateDeductionInfo &Info) { 2905 if (Partial->isInvalidDecl()) 2906 return TDK_Invalid; 2907 2908 // C++ [temp.class.spec.match]p2: 2909 // A partial specialization matches a given actual template 2910 // argument list if the template arguments of the partial 2911 // specialization can be deduced from the actual template argument 2912 // list (14.8.2). 2913 2914 // Unevaluated SFINAE context. 2915 EnterExpressionEvaluationContext Unevaluated( 2916 *this, Sema::ExpressionEvaluationContext::Unevaluated); 2917 SFINAETrap Trap(*this); 2918 2919 SmallVector<DeducedTemplateArgument, 4> Deduced; 2920 Deduced.resize(Partial->getTemplateParameters()->size()); 2921 if (TemplateDeductionResult Result 2922 = ::DeduceTemplateArguments(*this, 2923 Partial->getTemplateParameters(), 2924 Partial->getTemplateArgs(), 2925 TemplateArgs, Info, Deduced)) 2926 return Result; 2927 2928 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 2929 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 2930 Info); 2931 if (Inst.isInvalid()) 2932 return TDK_InstantiationDepth; 2933 2934 if (Trap.hasErrorOccurred()) 2935 return Sema::TDK_SubstitutionFailure; 2936 2937 return ::FinishTemplateArgumentDeduction( 2938 *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info); 2939 } 2940 2941 /// Perform template argument deduction to determine whether 2942 /// the given template arguments match the given variable template 2943 /// partial specialization per C++ [temp.class.spec.match]. 2944 Sema::TemplateDeductionResult 2945 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, 2946 const TemplateArgumentList &TemplateArgs, 2947 TemplateDeductionInfo &Info) { 2948 if (Partial->isInvalidDecl()) 2949 return TDK_Invalid; 2950 2951 // C++ [temp.class.spec.match]p2: 2952 // A partial specialization matches a given actual template 2953 // argument list if the template arguments of the partial 2954 // specialization can be deduced from the actual template argument 2955 // list (14.8.2). 2956 2957 // Unevaluated SFINAE context. 2958 EnterExpressionEvaluationContext Unevaluated( 2959 *this, Sema::ExpressionEvaluationContext::Unevaluated); 2960 SFINAETrap Trap(*this); 2961 2962 SmallVector<DeducedTemplateArgument, 4> Deduced; 2963 Deduced.resize(Partial->getTemplateParameters()->size()); 2964 if (TemplateDeductionResult Result = ::DeduceTemplateArguments( 2965 *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(), 2966 TemplateArgs, Info, Deduced)) 2967 return Result; 2968 2969 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 2970 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 2971 Info); 2972 if (Inst.isInvalid()) 2973 return TDK_InstantiationDepth; 2974 2975 if (Trap.hasErrorOccurred()) 2976 return Sema::TDK_SubstitutionFailure; 2977 2978 return ::FinishTemplateArgumentDeduction( 2979 *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info); 2980 } 2981 2982 /// Determine whether the given type T is a simple-template-id type. 2983 static bool isSimpleTemplateIdType(QualType T) { 2984 if (const TemplateSpecializationType *Spec 2985 = T->getAs<TemplateSpecializationType>()) 2986 return Spec->getTemplateName().getAsTemplateDecl() != nullptr; 2987 2988 // C++17 [temp.local]p2: 2989 // the injected-class-name [...] is equivalent to the template-name followed 2990 // by the template-arguments of the class template specialization or partial 2991 // specialization enclosed in <> 2992 // ... which means it's equivalent to a simple-template-id. 2993 // 2994 // This only arises during class template argument deduction for a copy 2995 // deduction candidate, where it permits slicing. 2996 if (T->getAs<InjectedClassNameType>()) 2997 return true; 2998 2999 return false; 3000 } 3001 3002 /// Substitute the explicitly-provided template arguments into the 3003 /// given function template according to C++ [temp.arg.explicit]. 3004 /// 3005 /// \param FunctionTemplate the function template into which the explicit 3006 /// template arguments will be substituted. 3007 /// 3008 /// \param ExplicitTemplateArgs the explicitly-specified template 3009 /// arguments. 3010 /// 3011 /// \param Deduced the deduced template arguments, which will be populated 3012 /// with the converted and checked explicit template arguments. 3013 /// 3014 /// \param ParamTypes will be populated with the instantiated function 3015 /// parameters. 3016 /// 3017 /// \param FunctionType if non-NULL, the result type of the function template 3018 /// will also be instantiated and the pointed-to value will be updated with 3019 /// the instantiated function type. 3020 /// 3021 /// \param Info if substitution fails for any reason, this object will be 3022 /// populated with more information about the failure. 3023 /// 3024 /// \returns TDK_Success if substitution was successful, or some failure 3025 /// condition. 3026 Sema::TemplateDeductionResult 3027 Sema::SubstituteExplicitTemplateArguments( 3028 FunctionTemplateDecl *FunctionTemplate, 3029 TemplateArgumentListInfo &ExplicitTemplateArgs, 3030 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3031 SmallVectorImpl<QualType> &ParamTypes, 3032 QualType *FunctionType, 3033 TemplateDeductionInfo &Info) { 3034 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 3035 TemplateParameterList *TemplateParams 3036 = FunctionTemplate->getTemplateParameters(); 3037 3038 if (ExplicitTemplateArgs.size() == 0) { 3039 // No arguments to substitute; just copy over the parameter types and 3040 // fill in the function type. 3041 for (auto P : Function->parameters()) 3042 ParamTypes.push_back(P->getType()); 3043 3044 if (FunctionType) 3045 *FunctionType = Function->getType(); 3046 return TDK_Success; 3047 } 3048 3049 // Unevaluated SFINAE context. 3050 EnterExpressionEvaluationContext Unevaluated( 3051 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3052 SFINAETrap Trap(*this); 3053 3054 // C++ [temp.arg.explicit]p3: 3055 // Template arguments that are present shall be specified in the 3056 // declaration order of their corresponding template-parameters. The 3057 // template argument list shall not specify more template-arguments than 3058 // there are corresponding template-parameters. 3059 SmallVector<TemplateArgument, 4> Builder; 3060 3061 // Enter a new template instantiation context where we check the 3062 // explicitly-specified template arguments against this function template, 3063 // and then substitute them into the function parameter types. 3064 SmallVector<TemplateArgument, 4> DeducedArgs; 3065 InstantiatingTemplate Inst( 3066 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3067 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); 3068 if (Inst.isInvalid()) 3069 return TDK_InstantiationDepth; 3070 3071 if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(), 3072 ExplicitTemplateArgs, true, Builder, false) || 3073 Trap.hasErrorOccurred()) { 3074 unsigned Index = Builder.size(); 3075 if (Index >= TemplateParams->size()) 3076 return TDK_SubstitutionFailure; 3077 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index)); 3078 return TDK_InvalidExplicitArguments; 3079 } 3080 3081 // Form the template argument list from the explicitly-specified 3082 // template arguments. 3083 TemplateArgumentList *ExplicitArgumentList 3084 = TemplateArgumentList::CreateCopy(Context, Builder); 3085 Info.setExplicitArgs(ExplicitArgumentList); 3086 3087 // Template argument deduction and the final substitution should be 3088 // done in the context of the templated declaration. Explicit 3089 // argument substitution, on the other hand, needs to happen in the 3090 // calling context. 3091 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3092 3093 // If we deduced template arguments for a template parameter pack, 3094 // note that the template argument pack is partially substituted and record 3095 // the explicit template arguments. They'll be used as part of deduction 3096 // for this template parameter pack. 3097 unsigned PartiallySubstitutedPackIndex = -1u; 3098 if (!Builder.empty()) { 3099 const TemplateArgument &Arg = Builder.back(); 3100 if (Arg.getKind() == TemplateArgument::Pack) { 3101 auto *Param = TemplateParams->getParam(Builder.size() - 1); 3102 // If this is a fully-saturated fixed-size pack, it should be 3103 // fully-substituted, not partially-substituted. 3104 Optional<unsigned> Expansions = getExpandedPackSize(Param); 3105 if (!Expansions || Arg.pack_size() < *Expansions) { 3106 PartiallySubstitutedPackIndex = Builder.size() - 1; 3107 CurrentInstantiationScope->SetPartiallySubstitutedPack( 3108 Param, Arg.pack_begin(), Arg.pack_size()); 3109 } 3110 } 3111 } 3112 3113 const FunctionProtoType *Proto 3114 = Function->getType()->getAs<FunctionProtoType>(); 3115 assert(Proto && "Function template does not have a prototype?"); 3116 3117 // Isolate our substituted parameters from our caller. 3118 LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true); 3119 3120 ExtParameterInfoBuilder ExtParamInfos; 3121 3122 // Instantiate the types of each of the function parameters given the 3123 // explicitly-specified template arguments. If the function has a trailing 3124 // return type, substitute it after the arguments to ensure we substitute 3125 // in lexical order. 3126 if (Proto->hasTrailingReturn()) { 3127 if (SubstParmTypes(Function->getLocation(), Function->parameters(), 3128 Proto->getExtParameterInfosOrNull(), 3129 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 3130 ParamTypes, /*params*/ nullptr, ExtParamInfos)) 3131 return TDK_SubstitutionFailure; 3132 } 3133 3134 // Instantiate the return type. 3135 QualType ResultType; 3136 { 3137 // C++11 [expr.prim.general]p3: 3138 // If a declaration declares a member function or member function 3139 // template of a class X, the expression this is a prvalue of type 3140 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq 3141 // and the end of the function-definition, member-declarator, or 3142 // declarator. 3143 Qualifiers ThisTypeQuals; 3144 CXXRecordDecl *ThisContext = nullptr; 3145 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3146 ThisContext = Method->getParent(); 3147 ThisTypeQuals = Method->getMethodQualifiers(); 3148 } 3149 3150 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals, 3151 getLangOpts().CPlusPlus11); 3152 3153 ResultType = 3154 SubstType(Proto->getReturnType(), 3155 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 3156 Function->getTypeSpecStartLoc(), Function->getDeclName()); 3157 if (ResultType.isNull() || Trap.hasErrorOccurred()) 3158 return TDK_SubstitutionFailure; 3159 // CUDA: Kernel function must have 'void' return type. 3160 if (getLangOpts().CUDA) 3161 if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) { 3162 Diag(Function->getLocation(), diag::err_kern_type_not_void_return) 3163 << Function->getType() << Function->getSourceRange(); 3164 return TDK_SubstitutionFailure; 3165 } 3166 } 3167 3168 // Instantiate the types of each of the function parameters given the 3169 // explicitly-specified template arguments if we didn't do so earlier. 3170 if (!Proto->hasTrailingReturn() && 3171 SubstParmTypes(Function->getLocation(), Function->parameters(), 3172 Proto->getExtParameterInfosOrNull(), 3173 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 3174 ParamTypes, /*params*/ nullptr, ExtParamInfos)) 3175 return TDK_SubstitutionFailure; 3176 3177 if (FunctionType) { 3178 auto EPI = Proto->getExtProtoInfo(); 3179 EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size()); 3180 3181 // In C++1z onwards, exception specifications are part of the function type, 3182 // so substitution into the type must also substitute into the exception 3183 // specification. 3184 SmallVector<QualType, 4> ExceptionStorage; 3185 if (getLangOpts().CPlusPlus17 && 3186 SubstExceptionSpec( 3187 Function->getLocation(), EPI.ExceptionSpec, ExceptionStorage, 3188 MultiLevelTemplateArgumentList(*ExplicitArgumentList))) 3189 return TDK_SubstitutionFailure; 3190 3191 *FunctionType = BuildFunctionType(ResultType, ParamTypes, 3192 Function->getLocation(), 3193 Function->getDeclName(), 3194 EPI); 3195 if (FunctionType->isNull() || Trap.hasErrorOccurred()) 3196 return TDK_SubstitutionFailure; 3197 } 3198 3199 // C++ [temp.arg.explicit]p2: 3200 // Trailing template arguments that can be deduced (14.8.2) may be 3201 // omitted from the list of explicit template-arguments. If all of the 3202 // template arguments can be deduced, they may all be omitted; in this 3203 // case, the empty template argument list <> itself may also be omitted. 3204 // 3205 // Take all of the explicitly-specified arguments and put them into 3206 // the set of deduced template arguments. The partially-substituted 3207 // parameter pack, however, will be set to NULL since the deduction 3208 // mechanism handles the partially-substituted argument pack directly. 3209 Deduced.reserve(TemplateParams->size()); 3210 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) { 3211 const TemplateArgument &Arg = ExplicitArgumentList->get(I); 3212 if (I == PartiallySubstitutedPackIndex) 3213 Deduced.push_back(DeducedTemplateArgument()); 3214 else 3215 Deduced.push_back(Arg); 3216 } 3217 3218 return TDK_Success; 3219 } 3220 3221 /// Check whether the deduced argument type for a call to a function 3222 /// template matches the actual argument type per C++ [temp.deduct.call]p4. 3223 static Sema::TemplateDeductionResult 3224 CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info, 3225 Sema::OriginalCallArg OriginalArg, 3226 QualType DeducedA) { 3227 ASTContext &Context = S.Context; 3228 3229 auto Failed = [&]() -> Sema::TemplateDeductionResult { 3230 Info.FirstArg = TemplateArgument(DeducedA); 3231 Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType); 3232 Info.CallArgIndex = OriginalArg.ArgIdx; 3233 return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested 3234 : Sema::TDK_DeducedMismatch; 3235 }; 3236 3237 QualType A = OriginalArg.OriginalArgType; 3238 QualType OriginalParamType = OriginalArg.OriginalParamType; 3239 3240 // Check for type equality (top-level cv-qualifiers are ignored). 3241 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3242 return Sema::TDK_Success; 3243 3244 // Strip off references on the argument types; they aren't needed for 3245 // the following checks. 3246 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>()) 3247 DeducedA = DeducedARef->getPointeeType(); 3248 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) 3249 A = ARef->getPointeeType(); 3250 3251 // C++ [temp.deduct.call]p4: 3252 // [...] However, there are three cases that allow a difference: 3253 // - If the original P is a reference type, the deduced A (i.e., the 3254 // type referred to by the reference) can be more cv-qualified than 3255 // the transformed A. 3256 if (const ReferenceType *OriginalParamRef 3257 = OriginalParamType->getAs<ReferenceType>()) { 3258 // We don't want to keep the reference around any more. 3259 OriginalParamType = OriginalParamRef->getPointeeType(); 3260 3261 // FIXME: Resolve core issue (no number yet): if the original P is a 3262 // reference type and the transformed A is function type "noexcept F", 3263 // the deduced A can be F. 3264 QualType Tmp; 3265 if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp)) 3266 return Sema::TDK_Success; 3267 3268 Qualifiers AQuals = A.getQualifiers(); 3269 Qualifiers DeducedAQuals = DeducedA.getQualifiers(); 3270 3271 // Under Objective-C++ ARC, the deduced type may have implicitly 3272 // been given strong or (when dealing with a const reference) 3273 // unsafe_unretained lifetime. If so, update the original 3274 // qualifiers to include this lifetime. 3275 if (S.getLangOpts().ObjCAutoRefCount && 3276 ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong && 3277 AQuals.getObjCLifetime() == Qualifiers::OCL_None) || 3278 (DeducedAQuals.hasConst() && 3279 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) { 3280 AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime()); 3281 } 3282 3283 if (AQuals == DeducedAQuals) { 3284 // Qualifiers match; there's nothing to do. 3285 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) { 3286 return Failed(); 3287 } else { 3288 // Qualifiers are compatible, so have the argument type adopt the 3289 // deduced argument type's qualifiers as if we had performed the 3290 // qualification conversion. 3291 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals); 3292 } 3293 } 3294 3295 // - The transformed A can be another pointer or pointer to member 3296 // type that can be converted to the deduced A via a function pointer 3297 // conversion and/or a qualification conversion. 3298 // 3299 // Also allow conversions which merely strip __attribute__((noreturn)) from 3300 // function types (recursively). 3301 bool ObjCLifetimeConversion = false; 3302 QualType ResultTy; 3303 if ((A->isAnyPointerType() || A->isMemberPointerType()) && 3304 (S.IsQualificationConversion(A, DeducedA, false, 3305 ObjCLifetimeConversion) || 3306 S.IsFunctionConversion(A, DeducedA, ResultTy))) 3307 return Sema::TDK_Success; 3308 3309 // - If P is a class and P has the form simple-template-id, then the 3310 // transformed A can be a derived class of the deduced A. [...] 3311 // [...] Likewise, if P is a pointer to a class of the form 3312 // simple-template-id, the transformed A can be a pointer to a 3313 // derived class pointed to by the deduced A. 3314 if (const PointerType *OriginalParamPtr 3315 = OriginalParamType->getAs<PointerType>()) { 3316 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) { 3317 if (const PointerType *APtr = A->getAs<PointerType>()) { 3318 if (A->getPointeeType()->isRecordType()) { 3319 OriginalParamType = OriginalParamPtr->getPointeeType(); 3320 DeducedA = DeducedAPtr->getPointeeType(); 3321 A = APtr->getPointeeType(); 3322 } 3323 } 3324 } 3325 } 3326 3327 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3328 return Sema::TDK_Success; 3329 3330 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) && 3331 S.IsDerivedFrom(Info.getLocation(), A, DeducedA)) 3332 return Sema::TDK_Success; 3333 3334 return Failed(); 3335 } 3336 3337 /// Find the pack index for a particular parameter index in an instantiation of 3338 /// a function template with specific arguments. 3339 /// 3340 /// \return The pack index for whichever pack produced this parameter, or -1 3341 /// if this was not produced by a parameter. Intended to be used as the 3342 /// ArgumentPackSubstitutionIndex for further substitutions. 3343 // FIXME: We should track this in OriginalCallArgs so we don't need to 3344 // reconstruct it here. 3345 static unsigned getPackIndexForParam(Sema &S, 3346 FunctionTemplateDecl *FunctionTemplate, 3347 const MultiLevelTemplateArgumentList &Args, 3348 unsigned ParamIdx) { 3349 unsigned Idx = 0; 3350 for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) { 3351 if (PD->isParameterPack()) { 3352 unsigned NumExpansions = 3353 S.getNumArgumentsInExpansion(PD->getType(), Args).getValueOr(1); 3354 if (Idx + NumExpansions > ParamIdx) 3355 return ParamIdx - Idx; 3356 Idx += NumExpansions; 3357 } else { 3358 if (Idx == ParamIdx) 3359 return -1; // Not a pack expansion 3360 ++Idx; 3361 } 3362 } 3363 3364 llvm_unreachable("parameter index would not be produced from template"); 3365 } 3366 3367 /// Finish template argument deduction for a function template, 3368 /// checking the deduced template arguments for completeness and forming 3369 /// the function template specialization. 3370 /// 3371 /// \param OriginalCallArgs If non-NULL, the original call arguments against 3372 /// which the deduced argument types should be compared. 3373 Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction( 3374 FunctionTemplateDecl *FunctionTemplate, 3375 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3376 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, 3377 TemplateDeductionInfo &Info, 3378 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs, 3379 bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) { 3380 // Unevaluated SFINAE context. 3381 EnterExpressionEvaluationContext Unevaluated( 3382 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3383 SFINAETrap Trap(*this); 3384 3385 // Enter a new template instantiation context while we instantiate the 3386 // actual function declaration. 3387 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3388 InstantiatingTemplate Inst( 3389 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3390 CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); 3391 if (Inst.isInvalid()) 3392 return TDK_InstantiationDepth; 3393 3394 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3395 3396 // C++ [temp.deduct.type]p2: 3397 // [...] or if any template argument remains neither deduced nor 3398 // explicitly specified, template argument deduction fails. 3399 SmallVector<TemplateArgument, 4> Builder; 3400 if (auto Result = ConvertDeducedTemplateArguments( 3401 *this, FunctionTemplate, /*IsDeduced*/true, Deduced, Info, Builder, 3402 CurrentInstantiationScope, NumExplicitlySpecified, 3403 PartialOverloading)) 3404 return Result; 3405 3406 // C++ [temp.deduct.call]p10: [DR1391] 3407 // If deduction succeeds for all parameters that contain 3408 // template-parameters that participate in template argument deduction, 3409 // and all template arguments are explicitly specified, deduced, or 3410 // obtained from default template arguments, remaining parameters are then 3411 // compared with the corresponding arguments. For each remaining parameter 3412 // P with a type that was non-dependent before substitution of any 3413 // explicitly-specified template arguments, if the corresponding argument 3414 // A cannot be implicitly converted to P, deduction fails. 3415 if (CheckNonDependent()) 3416 return TDK_NonDependentConversionFailure; 3417 3418 // Form the template argument list from the deduced template arguments. 3419 TemplateArgumentList *DeducedArgumentList 3420 = TemplateArgumentList::CreateCopy(Context, Builder); 3421 Info.reset(DeducedArgumentList); 3422 3423 // Substitute the deduced template arguments into the function template 3424 // declaration to produce the function template specialization. 3425 DeclContext *Owner = FunctionTemplate->getDeclContext(); 3426 if (FunctionTemplate->getFriendObjectKind()) 3427 Owner = FunctionTemplate->getLexicalDeclContext(); 3428 MultiLevelTemplateArgumentList SubstArgs(*DeducedArgumentList); 3429 Specialization = cast_or_null<FunctionDecl>( 3430 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, SubstArgs)); 3431 if (!Specialization || Specialization->isInvalidDecl()) 3432 return TDK_SubstitutionFailure; 3433 3434 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() == 3435 FunctionTemplate->getCanonicalDecl()); 3436 3437 // If the template argument list is owned by the function template 3438 // specialization, release it. 3439 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList && 3440 !Trap.hasErrorOccurred()) 3441 Info.take(); 3442 3443 // There may have been an error that did not prevent us from constructing a 3444 // declaration. Mark the declaration invalid and return with a substitution 3445 // failure. 3446 if (Trap.hasErrorOccurred()) { 3447 Specialization->setInvalidDecl(true); 3448 return TDK_SubstitutionFailure; 3449 } 3450 3451 // C++2a [temp.deduct]p5 3452 // [...] When all template arguments have been deduced [...] all uses of 3453 // template parameters [...] are replaced with the corresponding deduced 3454 // or default argument values. 3455 // [...] If the function template has associated constraints 3456 // ([temp.constr.decl]), those constraints are checked for satisfaction 3457 // ([temp.constr.constr]). If the constraints are not satisfied, type 3458 // deduction fails. 3459 if (CheckInstantiatedFunctionTemplateConstraints(Info.getLocation(), 3460 Specialization, Builder, Info.AssociatedConstraintsSatisfaction)) 3461 return TDK_MiscellaneousDeductionFailure; 3462 3463 if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) { 3464 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder)); 3465 return TDK_ConstraintsNotSatisfied; 3466 } 3467 3468 if (OriginalCallArgs) { 3469 // C++ [temp.deduct.call]p4: 3470 // In general, the deduction process attempts to find template argument 3471 // values that will make the deduced A identical to A (after the type A 3472 // is transformed as described above). [...] 3473 llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes; 3474 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) { 3475 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I]; 3476 3477 auto ParamIdx = OriginalArg.ArgIdx; 3478 if (ParamIdx >= Specialization->getNumParams()) 3479 // FIXME: This presumably means a pack ended up smaller than we 3480 // expected while deducing. Should this not result in deduction 3481 // failure? Can it even happen? 3482 continue; 3483 3484 QualType DeducedA; 3485 if (!OriginalArg.DecomposedParam) { 3486 // P is one of the function parameters, just look up its substituted 3487 // type. 3488 DeducedA = Specialization->getParamDecl(ParamIdx)->getType(); 3489 } else { 3490 // P is a decomposed element of a parameter corresponding to a 3491 // braced-init-list argument. Substitute back into P to find the 3492 // deduced A. 3493 QualType &CacheEntry = 3494 DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}]; 3495 if (CacheEntry.isNull()) { 3496 ArgumentPackSubstitutionIndexRAII PackIndex( 3497 *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs, 3498 ParamIdx)); 3499 CacheEntry = 3500 SubstType(OriginalArg.OriginalParamType, SubstArgs, 3501 Specialization->getTypeSpecStartLoc(), 3502 Specialization->getDeclName()); 3503 } 3504 DeducedA = CacheEntry; 3505 } 3506 3507 if (auto TDK = 3508 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) 3509 return TDK; 3510 } 3511 } 3512 3513 // If we suppressed any diagnostics while performing template argument 3514 // deduction, and if we haven't already instantiated this declaration, 3515 // keep track of these diagnostics. They'll be emitted if this specialization 3516 // is actually used. 3517 if (Info.diag_begin() != Info.diag_end()) { 3518 SuppressedDiagnosticsMap::iterator 3519 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl()); 3520 if (Pos == SuppressedDiagnostics.end()) 3521 SuppressedDiagnostics[Specialization->getCanonicalDecl()] 3522 .append(Info.diag_begin(), Info.diag_end()); 3523 } 3524 3525 return TDK_Success; 3526 } 3527 3528 /// Gets the type of a function for template-argument-deducton 3529 /// purposes when it's considered as part of an overload set. 3530 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R, 3531 FunctionDecl *Fn) { 3532 // We may need to deduce the return type of the function now. 3533 if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() && 3534 S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false)) 3535 return {}; 3536 3537 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 3538 if (Method->isInstance()) { 3539 // An instance method that's referenced in a form that doesn't 3540 // look like a member pointer is just invalid. 3541 if (!R.HasFormOfMemberPointer) 3542 return {}; 3543 3544 return S.Context.getMemberPointerType(Fn->getType(), 3545 S.Context.getTypeDeclType(Method->getParent()).getTypePtr()); 3546 } 3547 3548 if (!R.IsAddressOfOperand) return Fn->getType(); 3549 return S.Context.getPointerType(Fn->getType()); 3550 } 3551 3552 /// Apply the deduction rules for overload sets. 3553 /// 3554 /// \return the null type if this argument should be treated as an 3555 /// undeduced context 3556 static QualType 3557 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, 3558 Expr *Arg, QualType ParamType, 3559 bool ParamWasReference) { 3560 3561 OverloadExpr::FindResult R = OverloadExpr::find(Arg); 3562 3563 OverloadExpr *Ovl = R.Expression; 3564 3565 // C++0x [temp.deduct.call]p4 3566 unsigned TDF = 0; 3567 if (ParamWasReference) 3568 TDF |= TDF_ParamWithReferenceType; 3569 if (R.IsAddressOfOperand) 3570 TDF |= TDF_IgnoreQualifiers; 3571 3572 // C++0x [temp.deduct.call]p6: 3573 // When P is a function type, pointer to function type, or pointer 3574 // to member function type: 3575 3576 if (!ParamType->isFunctionType() && 3577 !ParamType->isFunctionPointerType() && 3578 !ParamType->isMemberFunctionPointerType()) { 3579 if (Ovl->hasExplicitTemplateArgs()) { 3580 // But we can still look for an explicit specialization. 3581 if (FunctionDecl *ExplicitSpec 3582 = S.ResolveSingleFunctionTemplateSpecialization(Ovl)) 3583 return GetTypeOfFunction(S, R, ExplicitSpec); 3584 } 3585 3586 DeclAccessPair DAP; 3587 if (FunctionDecl *Viable = 3588 S.resolveAddressOfSingleOverloadCandidate(Arg, DAP)) 3589 return GetTypeOfFunction(S, R, Viable); 3590 3591 return {}; 3592 } 3593 3594 // Gather the explicit template arguments, if any. 3595 TemplateArgumentListInfo ExplicitTemplateArgs; 3596 if (Ovl->hasExplicitTemplateArgs()) 3597 Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); 3598 QualType Match; 3599 for (UnresolvedSetIterator I = Ovl->decls_begin(), 3600 E = Ovl->decls_end(); I != E; ++I) { 3601 NamedDecl *D = (*I)->getUnderlyingDecl(); 3602 3603 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) { 3604 // - If the argument is an overload set containing one or more 3605 // function templates, the parameter is treated as a 3606 // non-deduced context. 3607 if (!Ovl->hasExplicitTemplateArgs()) 3608 return {}; 3609 3610 // Otherwise, see if we can resolve a function type 3611 FunctionDecl *Specialization = nullptr; 3612 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3613 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs, 3614 Specialization, Info)) 3615 continue; 3616 3617 D = Specialization; 3618 } 3619 3620 FunctionDecl *Fn = cast<FunctionDecl>(D); 3621 QualType ArgType = GetTypeOfFunction(S, R, Fn); 3622 if (ArgType.isNull()) continue; 3623 3624 // Function-to-pointer conversion. 3625 if (!ParamWasReference && ParamType->isPointerType() && 3626 ArgType->isFunctionType()) 3627 ArgType = S.Context.getPointerType(ArgType); 3628 3629 // - If the argument is an overload set (not containing function 3630 // templates), trial argument deduction is attempted using each 3631 // of the members of the set. If deduction succeeds for only one 3632 // of the overload set members, that member is used as the 3633 // argument value for the deduction. If deduction succeeds for 3634 // more than one member of the overload set the parameter is 3635 // treated as a non-deduced context. 3636 3637 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2: 3638 // Type deduction is done independently for each P/A pair, and 3639 // the deduced template argument values are then combined. 3640 // So we do not reject deductions which were made elsewhere. 3641 SmallVector<DeducedTemplateArgument, 8> 3642 Deduced(TemplateParams->size()); 3643 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3644 Sema::TemplateDeductionResult Result 3645 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 3646 ArgType, Info, Deduced, TDF); 3647 if (Result) continue; 3648 if (!Match.isNull()) 3649 return {}; 3650 Match = ArgType; 3651 } 3652 3653 return Match; 3654 } 3655 3656 /// Perform the adjustments to the parameter and argument types 3657 /// described in C++ [temp.deduct.call]. 3658 /// 3659 /// \returns true if the caller should not attempt to perform any template 3660 /// argument deduction based on this P/A pair because the argument is an 3661 /// overloaded function set that could not be resolved. 3662 static bool AdjustFunctionParmAndArgTypesForDeduction( 3663 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3664 QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF) { 3665 // C++0x [temp.deduct.call]p3: 3666 // If P is a cv-qualified type, the top level cv-qualifiers of P's type 3667 // are ignored for type deduction. 3668 if (ParamType.hasQualifiers()) 3669 ParamType = ParamType.getUnqualifiedType(); 3670 3671 // [...] If P is a reference type, the type referred to by P is 3672 // used for type deduction. 3673 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>(); 3674 if (ParamRefType) 3675 ParamType = ParamRefType->getPointeeType(); 3676 3677 // Overload sets usually make this parameter an undeduced context, 3678 // but there are sometimes special circumstances. Typically 3679 // involving a template-id-expr. 3680 if (ArgType == S.Context.OverloadTy) { 3681 ArgType = ResolveOverloadForDeduction(S, TemplateParams, 3682 Arg, ParamType, 3683 ParamRefType != nullptr); 3684 if (ArgType.isNull()) 3685 return true; 3686 } 3687 3688 if (ParamRefType) { 3689 // If the argument has incomplete array type, try to complete its type. 3690 if (ArgType->isIncompleteArrayType()) { 3691 S.completeExprArrayBound(Arg); 3692 ArgType = Arg->getType(); 3693 } 3694 3695 // C++1z [temp.deduct.call]p3: 3696 // If P is a forwarding reference and the argument is an lvalue, the type 3697 // "lvalue reference to A" is used in place of A for type deduction. 3698 if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) && 3699 Arg->isLValue()) 3700 ArgType = S.Context.getLValueReferenceType(ArgType); 3701 } else { 3702 // C++ [temp.deduct.call]p2: 3703 // If P is not a reference type: 3704 // - If A is an array type, the pointer type produced by the 3705 // array-to-pointer standard conversion (4.2) is used in place of 3706 // A for type deduction; otherwise, 3707 if (ArgType->isArrayType()) 3708 ArgType = S.Context.getArrayDecayedType(ArgType); 3709 // - If A is a function type, the pointer type produced by the 3710 // function-to-pointer standard conversion (4.3) is used in place 3711 // of A for type deduction; otherwise, 3712 else if (ArgType->isFunctionType()) 3713 ArgType = S.Context.getPointerType(ArgType); 3714 else { 3715 // - If A is a cv-qualified type, the top level cv-qualifiers of A's 3716 // type are ignored for type deduction. 3717 ArgType = ArgType.getUnqualifiedType(); 3718 } 3719 } 3720 3721 // C++0x [temp.deduct.call]p4: 3722 // In general, the deduction process attempts to find template argument 3723 // values that will make the deduced A identical to A (after the type A 3724 // is transformed as described above). [...] 3725 TDF = TDF_SkipNonDependent; 3726 3727 // - If the original P is a reference type, the deduced A (i.e., the 3728 // type referred to by the reference) can be more cv-qualified than 3729 // the transformed A. 3730 if (ParamRefType) 3731 TDF |= TDF_ParamWithReferenceType; 3732 // - The transformed A can be another pointer or pointer to member 3733 // type that can be converted to the deduced A via a qualification 3734 // conversion (4.4). 3735 if (ArgType->isPointerType() || ArgType->isMemberPointerType() || 3736 ArgType->isObjCObjectPointerType()) 3737 TDF |= TDF_IgnoreQualifiers; 3738 // - If P is a class and P has the form simple-template-id, then the 3739 // transformed A can be a derived class of the deduced A. Likewise, 3740 // if P is a pointer to a class of the form simple-template-id, the 3741 // transformed A can be a pointer to a derived class pointed to by 3742 // the deduced A. 3743 if (isSimpleTemplateIdType(ParamType) || 3744 (isa<PointerType>(ParamType) && 3745 isSimpleTemplateIdType( 3746 ParamType->getAs<PointerType>()->getPointeeType()))) 3747 TDF |= TDF_DerivedClass; 3748 3749 return false; 3750 } 3751 3752 static bool 3753 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, 3754 QualType T); 3755 3756 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 3757 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3758 QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, 3759 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3760 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 3761 bool DecomposedParam, unsigned ArgIdx, unsigned TDF); 3762 3763 /// Attempt template argument deduction from an initializer list 3764 /// deemed to be an argument in a function call. 3765 static Sema::TemplateDeductionResult DeduceFromInitializerList( 3766 Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType, 3767 InitListExpr *ILE, TemplateDeductionInfo &Info, 3768 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3769 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx, 3770 unsigned TDF) { 3771 // C++ [temp.deduct.call]p1: (CWG 1591) 3772 // If removing references and cv-qualifiers from P gives 3773 // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is 3774 // a non-empty initializer list, then deduction is performed instead for 3775 // each element of the initializer list, taking P0 as a function template 3776 // parameter type and the initializer element as its argument 3777 // 3778 // We've already removed references and cv-qualifiers here. 3779 if (!ILE->getNumInits()) 3780 return Sema::TDK_Success; 3781 3782 QualType ElTy; 3783 auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType); 3784 if (ArrTy) 3785 ElTy = ArrTy->getElementType(); 3786 else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) { 3787 // Otherwise, an initializer list argument causes the parameter to be 3788 // considered a non-deduced context 3789 return Sema::TDK_Success; 3790 } 3791 3792 // Resolving a core issue: a braced-init-list containing any designators is 3793 // a non-deduced context. 3794 for (Expr *E : ILE->inits()) 3795 if (isa<DesignatedInitExpr>(E)) 3796 return Sema::TDK_Success; 3797 3798 // Deduction only needs to be done for dependent types. 3799 if (ElTy->isDependentType()) { 3800 for (Expr *E : ILE->inits()) { 3801 if (auto Result = DeduceTemplateArgumentsFromCallArgument( 3802 S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true, 3803 ArgIdx, TDF)) 3804 return Result; 3805 } 3806 } 3807 3808 // in the P0[N] case, if N is a non-type template parameter, N is deduced 3809 // from the length of the initializer list. 3810 if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) { 3811 // Determine the array bound is something we can deduce. 3812 if (NonTypeTemplateParmDecl *NTTP = 3813 getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) { 3814 // We can perform template argument deduction for the given non-type 3815 // template parameter. 3816 // C++ [temp.deduct.type]p13: 3817 // The type of N in the type T[N] is std::size_t. 3818 QualType T = S.Context.getSizeType(); 3819 llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits()); 3820 if (auto Result = DeduceNonTypeTemplateArgument( 3821 S, TemplateParams, NTTP, llvm::APSInt(Size), T, 3822 /*ArrayBound=*/true, Info, Deduced)) 3823 return Result; 3824 } 3825 } 3826 3827 return Sema::TDK_Success; 3828 } 3829 3830 /// Perform template argument deduction per [temp.deduct.call] for a 3831 /// single parameter / argument pair. 3832 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 3833 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3834 QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info, 3835 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3836 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 3837 bool DecomposedParam, unsigned ArgIdx, unsigned TDF) { 3838 QualType ArgType = Arg->getType(); 3839 QualType OrigParamType = ParamType; 3840 3841 // If P is a reference type [...] 3842 // If P is a cv-qualified type [...] 3843 if (AdjustFunctionParmAndArgTypesForDeduction( 3844 S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF)) 3845 return Sema::TDK_Success; 3846 3847 // If [...] the argument is a non-empty initializer list [...] 3848 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) 3849 return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info, 3850 Deduced, OriginalCallArgs, ArgIdx, TDF); 3851 3852 // [...] the deduction process attempts to find template argument values 3853 // that will make the deduced A identical to A 3854 // 3855 // Keep track of the argument type and corresponding parameter index, 3856 // so we can check for compatibility between the deduced A and A. 3857 OriginalCallArgs.push_back( 3858 Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType)); 3859 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 3860 ArgType, Info, Deduced, TDF); 3861 } 3862 3863 /// Perform template argument deduction from a function call 3864 /// (C++ [temp.deduct.call]). 3865 /// 3866 /// \param FunctionTemplate the function template for which we are performing 3867 /// template argument deduction. 3868 /// 3869 /// \param ExplicitTemplateArgs the explicit template arguments provided 3870 /// for this call. 3871 /// 3872 /// \param Args the function call arguments 3873 /// 3874 /// \param Specialization if template argument deduction was successful, 3875 /// this will be set to the function template specialization produced by 3876 /// template argument deduction. 3877 /// 3878 /// \param Info the argument will be updated to provide additional information 3879 /// about template argument deduction. 3880 /// 3881 /// \param CheckNonDependent A callback to invoke to check conversions for 3882 /// non-dependent parameters, between deduction and substitution, per DR1391. 3883 /// If this returns true, substitution will be skipped and we return 3884 /// TDK_NonDependentConversionFailure. The callback is passed the parameter 3885 /// types (after substituting explicit template arguments). 3886 /// 3887 /// \returns the result of template argument deduction. 3888 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 3889 FunctionTemplateDecl *FunctionTemplate, 3890 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 3891 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 3892 bool PartialOverloading, 3893 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) { 3894 if (FunctionTemplate->isInvalidDecl()) 3895 return TDK_Invalid; 3896 3897 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 3898 unsigned NumParams = Function->getNumParams(); 3899 3900 unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate); 3901 3902 // C++ [temp.deduct.call]p1: 3903 // Template argument deduction is done by comparing each function template 3904 // parameter type (call it P) with the type of the corresponding argument 3905 // of the call (call it A) as described below. 3906 if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading) 3907 return TDK_TooFewArguments; 3908 else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) { 3909 const auto *Proto = Function->getType()->castAs<FunctionProtoType>(); 3910 if (Proto->isTemplateVariadic()) 3911 /* Do nothing */; 3912 else if (!Proto->isVariadic()) 3913 return TDK_TooManyArguments; 3914 } 3915 3916 // The types of the parameters from which we will perform template argument 3917 // deduction. 3918 LocalInstantiationScope InstScope(*this); 3919 TemplateParameterList *TemplateParams 3920 = FunctionTemplate->getTemplateParameters(); 3921 SmallVector<DeducedTemplateArgument, 4> Deduced; 3922 SmallVector<QualType, 8> ParamTypes; 3923 unsigned NumExplicitlySpecified = 0; 3924 if (ExplicitTemplateArgs) { 3925 TemplateDeductionResult Result = 3926 SubstituteExplicitTemplateArguments(FunctionTemplate, 3927 *ExplicitTemplateArgs, 3928 Deduced, 3929 ParamTypes, 3930 nullptr, 3931 Info); 3932 if (Result) 3933 return Result; 3934 3935 NumExplicitlySpecified = Deduced.size(); 3936 } else { 3937 // Just fill in the parameter types from the function declaration. 3938 for (unsigned I = 0; I != NumParams; ++I) 3939 ParamTypes.push_back(Function->getParamDecl(I)->getType()); 3940 } 3941 3942 SmallVector<OriginalCallArg, 8> OriginalCallArgs; 3943 3944 // Deduce an argument of type ParamType from an expression with index ArgIdx. 3945 auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) { 3946 // C++ [demp.deduct.call]p1: (DR1391) 3947 // Template argument deduction is done by comparing each function template 3948 // parameter that contains template-parameters that participate in 3949 // template argument deduction ... 3950 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) 3951 return Sema::TDK_Success; 3952 3953 // ... with the type of the corresponding argument 3954 return DeduceTemplateArgumentsFromCallArgument( 3955 *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced, 3956 OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0); 3957 }; 3958 3959 // Deduce template arguments from the function parameters. 3960 Deduced.resize(TemplateParams->size()); 3961 SmallVector<QualType, 8> ParamTypesForArgChecking; 3962 for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0; 3963 ParamIdx != NumParamTypes; ++ParamIdx) { 3964 QualType ParamType = ParamTypes[ParamIdx]; 3965 3966 const PackExpansionType *ParamExpansion = 3967 dyn_cast<PackExpansionType>(ParamType); 3968 if (!ParamExpansion) { 3969 // Simple case: matching a function parameter to a function argument. 3970 if (ArgIdx >= Args.size()) 3971 break; 3972 3973 ParamTypesForArgChecking.push_back(ParamType); 3974 if (auto Result = DeduceCallArgument(ParamType, ArgIdx++)) 3975 return Result; 3976 3977 continue; 3978 } 3979 3980 QualType ParamPattern = ParamExpansion->getPattern(); 3981 PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info, 3982 ParamPattern); 3983 3984 // C++0x [temp.deduct.call]p1: 3985 // For a function parameter pack that occurs at the end of the 3986 // parameter-declaration-list, the type A of each remaining argument of 3987 // the call is compared with the type P of the declarator-id of the 3988 // function parameter pack. Each comparison deduces template arguments 3989 // for subsequent positions in the template parameter packs expanded by 3990 // the function parameter pack. When a function parameter pack appears 3991 // in a non-deduced context [not at the end of the list], the type of 3992 // that parameter pack is never deduced. 3993 // 3994 // FIXME: The above rule allows the size of the parameter pack to change 3995 // after we skip it (in the non-deduced case). That makes no sense, so 3996 // we instead notionally deduce the pack against N arguments, where N is 3997 // the length of the explicitly-specified pack if it's expanded by the 3998 // parameter pack and 0 otherwise, and we treat each deduction as a 3999 // non-deduced context. 4000 if (ParamIdx + 1 == NumParamTypes || PackScope.hasFixedArity()) { 4001 for (; ArgIdx < Args.size() && PackScope.hasNextElement(); 4002 PackScope.nextPackElement(), ++ArgIdx) { 4003 ParamTypesForArgChecking.push_back(ParamPattern); 4004 if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx)) 4005 return Result; 4006 } 4007 } else { 4008 // If the parameter type contains an explicitly-specified pack that we 4009 // could not expand, skip the number of parameters notionally created 4010 // by the expansion. 4011 Optional<unsigned> NumExpansions = ParamExpansion->getNumExpansions(); 4012 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 4013 for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size(); 4014 ++I, ++ArgIdx) { 4015 ParamTypesForArgChecking.push_back(ParamPattern); 4016 // FIXME: Should we add OriginalCallArgs for these? What if the 4017 // corresponding argument is a list? 4018 PackScope.nextPackElement(); 4019 } 4020 } 4021 } 4022 4023 // Build argument packs for each of the parameter packs expanded by this 4024 // pack expansion. 4025 if (auto Result = PackScope.finish()) 4026 return Result; 4027 } 4028 4029 // Capture the context in which the function call is made. This is the context 4030 // that is needed when the accessibility of template arguments is checked. 4031 DeclContext *CallingCtx = CurContext; 4032 4033 return FinishTemplateArgumentDeduction( 4034 FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info, 4035 &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() { 4036 ContextRAII SavedContext(*this, CallingCtx); 4037 return CheckNonDependent(ParamTypesForArgChecking); 4038 }); 4039 } 4040 4041 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType, 4042 QualType FunctionType, 4043 bool AdjustExceptionSpec) { 4044 if (ArgFunctionType.isNull()) 4045 return ArgFunctionType; 4046 4047 const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>(); 4048 const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>(); 4049 FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo(); 4050 bool Rebuild = false; 4051 4052 CallingConv CC = FunctionTypeP->getCallConv(); 4053 if (EPI.ExtInfo.getCC() != CC) { 4054 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC); 4055 Rebuild = true; 4056 } 4057 4058 bool NoReturn = FunctionTypeP->getNoReturnAttr(); 4059 if (EPI.ExtInfo.getNoReturn() != NoReturn) { 4060 EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn); 4061 Rebuild = true; 4062 } 4063 4064 if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() || 4065 ArgFunctionTypeP->hasExceptionSpec())) { 4066 EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec; 4067 Rebuild = true; 4068 } 4069 4070 if (!Rebuild) 4071 return ArgFunctionType; 4072 4073 return Context.getFunctionType(ArgFunctionTypeP->getReturnType(), 4074 ArgFunctionTypeP->getParamTypes(), EPI); 4075 } 4076 4077 /// Deduce template arguments when taking the address of a function 4078 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to 4079 /// a template. 4080 /// 4081 /// \param FunctionTemplate the function template for which we are performing 4082 /// template argument deduction. 4083 /// 4084 /// \param ExplicitTemplateArgs the explicitly-specified template 4085 /// arguments. 4086 /// 4087 /// \param ArgFunctionType the function type that will be used as the 4088 /// "argument" type (A) when performing template argument deduction from the 4089 /// function template's function type. This type may be NULL, if there is no 4090 /// argument type to compare against, in C++0x [temp.arg.explicit]p3. 4091 /// 4092 /// \param Specialization if template argument deduction was successful, 4093 /// this will be set to the function template specialization produced by 4094 /// template argument deduction. 4095 /// 4096 /// \param Info the argument will be updated to provide additional information 4097 /// about template argument deduction. 4098 /// 4099 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4100 /// the address of a function template per [temp.deduct.funcaddr] and 4101 /// [over.over]. If \c false, we are looking up a function template 4102 /// specialization based on its signature, per [temp.deduct.decl]. 4103 /// 4104 /// \returns the result of template argument deduction. 4105 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4106 FunctionTemplateDecl *FunctionTemplate, 4107 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, 4108 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4109 bool IsAddressOfFunction) { 4110 if (FunctionTemplate->isInvalidDecl()) 4111 return TDK_Invalid; 4112 4113 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 4114 TemplateParameterList *TemplateParams 4115 = FunctionTemplate->getTemplateParameters(); 4116 QualType FunctionType = Function->getType(); 4117 4118 // Substitute any explicit template arguments. 4119 LocalInstantiationScope InstScope(*this); 4120 SmallVector<DeducedTemplateArgument, 4> Deduced; 4121 unsigned NumExplicitlySpecified = 0; 4122 SmallVector<QualType, 4> ParamTypes; 4123 if (ExplicitTemplateArgs) { 4124 if (TemplateDeductionResult Result 4125 = SubstituteExplicitTemplateArguments(FunctionTemplate, 4126 *ExplicitTemplateArgs, 4127 Deduced, ParamTypes, 4128 &FunctionType, Info)) 4129 return Result; 4130 4131 NumExplicitlySpecified = Deduced.size(); 4132 } 4133 4134 // When taking the address of a function, we require convertibility of 4135 // the resulting function type. Otherwise, we allow arbitrary mismatches 4136 // of calling convention and noreturn. 4137 if (!IsAddressOfFunction) 4138 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType, 4139 /*AdjustExceptionSpec*/false); 4140 4141 // Unevaluated SFINAE context. 4142 EnterExpressionEvaluationContext Unevaluated( 4143 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4144 SFINAETrap Trap(*this); 4145 4146 Deduced.resize(TemplateParams->size()); 4147 4148 // If the function has a deduced return type, substitute it for a dependent 4149 // type so that we treat it as a non-deduced context in what follows. If we 4150 // are looking up by signature, the signature type should also have a deduced 4151 // return type, which we instead expect to exactly match. 4152 bool HasDeducedReturnType = false; 4153 if (getLangOpts().CPlusPlus14 && IsAddressOfFunction && 4154 Function->getReturnType()->getContainedAutoType()) { 4155 FunctionType = SubstAutoType(FunctionType, Context.DependentTy); 4156 HasDeducedReturnType = true; 4157 } 4158 4159 if (!ArgFunctionType.isNull()) { 4160 unsigned TDF = 4161 TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType; 4162 // Deduce template arguments from the function type. 4163 if (TemplateDeductionResult Result 4164 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4165 FunctionType, ArgFunctionType, 4166 Info, Deduced, TDF)) 4167 return Result; 4168 } 4169 4170 if (TemplateDeductionResult Result 4171 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 4172 NumExplicitlySpecified, 4173 Specialization, Info)) 4174 return Result; 4175 4176 // If the function has a deduced return type, deduce it now, so we can check 4177 // that the deduced function type matches the requested type. 4178 if (HasDeducedReturnType && 4179 Specialization->getReturnType()->isUndeducedType() && 4180 DeduceReturnType(Specialization, Info.getLocation(), false)) 4181 return TDK_MiscellaneousDeductionFailure; 4182 4183 // If the function has a dependent exception specification, resolve it now, 4184 // so we can check that the exception specification matches. 4185 auto *SpecializationFPT = 4186 Specialization->getType()->castAs<FunctionProtoType>(); 4187 if (getLangOpts().CPlusPlus17 && 4188 isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) && 4189 !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT)) 4190 return TDK_MiscellaneousDeductionFailure; 4191 4192 // Adjust the exception specification of the argument to match the 4193 // substituted and resolved type we just formed. (Calling convention and 4194 // noreturn can't be dependent, so we don't actually need this for them 4195 // right now.) 4196 QualType SpecializationType = Specialization->getType(); 4197 if (!IsAddressOfFunction) 4198 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType, 4199 /*AdjustExceptionSpec*/true); 4200 4201 // If the requested function type does not match the actual type of the 4202 // specialization with respect to arguments of compatible pointer to function 4203 // types, template argument deduction fails. 4204 if (!ArgFunctionType.isNull()) { 4205 if (IsAddressOfFunction && 4206 !isSameOrCompatibleFunctionType( 4207 Context.getCanonicalType(SpecializationType), 4208 Context.getCanonicalType(ArgFunctionType))) 4209 return TDK_MiscellaneousDeductionFailure; 4210 4211 if (!IsAddressOfFunction && 4212 !Context.hasSameType(SpecializationType, ArgFunctionType)) 4213 return TDK_MiscellaneousDeductionFailure; 4214 } 4215 4216 return TDK_Success; 4217 } 4218 4219 /// Deduce template arguments for a templated conversion 4220 /// function (C++ [temp.deduct.conv]) and, if successful, produce a 4221 /// conversion function template specialization. 4222 Sema::TemplateDeductionResult 4223 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate, 4224 QualType ToType, 4225 CXXConversionDecl *&Specialization, 4226 TemplateDeductionInfo &Info) { 4227 if (ConversionTemplate->isInvalidDecl()) 4228 return TDK_Invalid; 4229 4230 CXXConversionDecl *ConversionGeneric 4231 = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl()); 4232 4233 QualType FromType = ConversionGeneric->getConversionType(); 4234 4235 // Canonicalize the types for deduction. 4236 QualType P = Context.getCanonicalType(FromType); 4237 QualType A = Context.getCanonicalType(ToType); 4238 4239 // C++0x [temp.deduct.conv]p2: 4240 // If P is a reference type, the type referred to by P is used for 4241 // type deduction. 4242 if (const ReferenceType *PRef = P->getAs<ReferenceType>()) 4243 P = PRef->getPointeeType(); 4244 4245 // C++0x [temp.deduct.conv]p4: 4246 // [...] If A is a reference type, the type referred to by A is used 4247 // for type deduction. 4248 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) { 4249 A = ARef->getPointeeType(); 4250 // We work around a defect in the standard here: cv-qualifiers are also 4251 // removed from P and A in this case, unless P was a reference type. This 4252 // seems to mostly match what other compilers are doing. 4253 if (!FromType->getAs<ReferenceType>()) { 4254 A = A.getUnqualifiedType(); 4255 P = P.getUnqualifiedType(); 4256 } 4257 4258 // C++ [temp.deduct.conv]p3: 4259 // 4260 // If A is not a reference type: 4261 } else { 4262 assert(!A->isReferenceType() && "Reference types were handled above"); 4263 4264 // - If P is an array type, the pointer type produced by the 4265 // array-to-pointer standard conversion (4.2) is used in place 4266 // of P for type deduction; otherwise, 4267 if (P->isArrayType()) 4268 P = Context.getArrayDecayedType(P); 4269 // - If P is a function type, the pointer type produced by the 4270 // function-to-pointer standard conversion (4.3) is used in 4271 // place of P for type deduction; otherwise, 4272 else if (P->isFunctionType()) 4273 P = Context.getPointerType(P); 4274 // - If P is a cv-qualified type, the top level cv-qualifiers of 4275 // P's type are ignored for type deduction. 4276 else 4277 P = P.getUnqualifiedType(); 4278 4279 // C++0x [temp.deduct.conv]p4: 4280 // If A is a cv-qualified type, the top level cv-qualifiers of A's 4281 // type are ignored for type deduction. If A is a reference type, the type 4282 // referred to by A is used for type deduction. 4283 A = A.getUnqualifiedType(); 4284 } 4285 4286 // Unevaluated SFINAE context. 4287 EnterExpressionEvaluationContext Unevaluated( 4288 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4289 SFINAETrap Trap(*this); 4290 4291 // C++ [temp.deduct.conv]p1: 4292 // Template argument deduction is done by comparing the return 4293 // type of the template conversion function (call it P) with the 4294 // type that is required as the result of the conversion (call it 4295 // A) as described in 14.8.2.4. 4296 TemplateParameterList *TemplateParams 4297 = ConversionTemplate->getTemplateParameters(); 4298 SmallVector<DeducedTemplateArgument, 4> Deduced; 4299 Deduced.resize(TemplateParams->size()); 4300 4301 // C++0x [temp.deduct.conv]p4: 4302 // In general, the deduction process attempts to find template 4303 // argument values that will make the deduced A identical to 4304 // A. However, there are two cases that allow a difference: 4305 unsigned TDF = 0; 4306 // - If the original A is a reference type, A can be more 4307 // cv-qualified than the deduced A (i.e., the type referred to 4308 // by the reference) 4309 if (ToType->isReferenceType()) 4310 TDF |= TDF_ArgWithReferenceType; 4311 // - The deduced A can be another pointer or pointer to member 4312 // type that can be converted to A via a qualification 4313 // conversion. 4314 // 4315 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when 4316 // both P and A are pointers or member pointers. In this case, we 4317 // just ignore cv-qualifiers completely). 4318 if ((P->isPointerType() && A->isPointerType()) || 4319 (P->isMemberPointerType() && A->isMemberPointerType())) 4320 TDF |= TDF_IgnoreQualifiers; 4321 if (TemplateDeductionResult Result 4322 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4323 P, A, Info, Deduced, TDF)) 4324 return Result; 4325 4326 // Create an Instantiation Scope for finalizing the operator. 4327 LocalInstantiationScope InstScope(*this); 4328 // Finish template argument deduction. 4329 FunctionDecl *ConversionSpecialized = nullptr; 4330 TemplateDeductionResult Result 4331 = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0, 4332 ConversionSpecialized, Info); 4333 Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized); 4334 return Result; 4335 } 4336 4337 /// Deduce template arguments for a function template when there is 4338 /// nothing to deduce against (C++0x [temp.arg.explicit]p3). 4339 /// 4340 /// \param FunctionTemplate the function template for which we are performing 4341 /// template argument deduction. 4342 /// 4343 /// \param ExplicitTemplateArgs the explicitly-specified template 4344 /// arguments. 4345 /// 4346 /// \param Specialization if template argument deduction was successful, 4347 /// this will be set to the function template specialization produced by 4348 /// template argument deduction. 4349 /// 4350 /// \param Info the argument will be updated to provide additional information 4351 /// about template argument deduction. 4352 /// 4353 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4354 /// the address of a function template in a context where we do not have a 4355 /// target type, per [over.over]. If \c false, we are looking up a function 4356 /// template specialization based on its signature, which only happens when 4357 /// deducing a function parameter type from an argument that is a template-id 4358 /// naming a function template specialization. 4359 /// 4360 /// \returns the result of template argument deduction. 4361 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4362 FunctionTemplateDecl *FunctionTemplate, 4363 TemplateArgumentListInfo *ExplicitTemplateArgs, 4364 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4365 bool IsAddressOfFunction) { 4366 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 4367 QualType(), Specialization, Info, 4368 IsAddressOfFunction); 4369 } 4370 4371 namespace { 4372 struct DependentAuto { bool IsPack; }; 4373 4374 /// Substitute the 'auto' specifier or deduced template specialization type 4375 /// specifier within a type for a given replacement type. 4376 class SubstituteDeducedTypeTransform : 4377 public TreeTransform<SubstituteDeducedTypeTransform> { 4378 QualType Replacement; 4379 bool ReplacementIsPack; 4380 bool UseTypeSugar; 4381 4382 public: 4383 SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA) 4384 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), Replacement(), 4385 ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {} 4386 4387 SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement, 4388 bool UseTypeSugar = true) 4389 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), 4390 Replacement(Replacement), ReplacementIsPack(false), 4391 UseTypeSugar(UseTypeSugar) {} 4392 4393 QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) { 4394 assert(isa<TemplateTypeParmType>(Replacement) && 4395 "unexpected unsugared replacement kind"); 4396 QualType Result = Replacement; 4397 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result); 4398 NewTL.setNameLoc(TL.getNameLoc()); 4399 return Result; 4400 } 4401 4402 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { 4403 // If we're building the type pattern to deduce against, don't wrap the 4404 // substituted type in an AutoType. Certain template deduction rules 4405 // apply only when a template type parameter appears directly (and not if 4406 // the parameter is found through desugaring). For instance: 4407 // auto &&lref = lvalue; 4408 // must transform into "rvalue reference to T" not "rvalue reference to 4409 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply. 4410 // 4411 // FIXME: Is this still necessary? 4412 if (!UseTypeSugar) 4413 return TransformDesugared(TLB, TL); 4414 4415 QualType Result = SemaRef.Context.getAutoType( 4416 Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(), 4417 ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(), 4418 TL.getTypePtr()->getTypeConstraintArguments()); 4419 auto NewTL = TLB.push<AutoTypeLoc>(Result); 4420 NewTL.copy(TL); 4421 return Result; 4422 } 4423 4424 QualType TransformDeducedTemplateSpecializationType( 4425 TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) { 4426 if (!UseTypeSugar) 4427 return TransformDesugared(TLB, TL); 4428 4429 QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType( 4430 TL.getTypePtr()->getTemplateName(), 4431 Replacement, Replacement.isNull()); 4432 auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result); 4433 NewTL.setNameLoc(TL.getNameLoc()); 4434 return Result; 4435 } 4436 4437 ExprResult TransformLambdaExpr(LambdaExpr *E) { 4438 // Lambdas never need to be transformed. 4439 return E; 4440 } 4441 4442 QualType Apply(TypeLoc TL) { 4443 // Create some scratch storage for the transformed type locations. 4444 // FIXME: We're just going to throw this information away. Don't build it. 4445 TypeLocBuilder TLB; 4446 TLB.reserve(TL.getFullDataSize()); 4447 return TransformType(TLB, TL); 4448 } 4449 }; 4450 4451 } // namespace 4452 4453 Sema::DeduceAutoResult 4454 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result, 4455 Optional<unsigned> DependentDeductionDepth, 4456 bool IgnoreConstraints) { 4457 return DeduceAutoType(Type->getTypeLoc(), Init, Result, 4458 DependentDeductionDepth, IgnoreConstraints); 4459 } 4460 4461 /// Attempt to produce an informative diagostic explaining why auto deduction 4462 /// failed. 4463 /// \return \c true if diagnosed, \c false if not. 4464 static bool diagnoseAutoDeductionFailure(Sema &S, 4465 Sema::TemplateDeductionResult TDK, 4466 TemplateDeductionInfo &Info, 4467 ArrayRef<SourceRange> Ranges) { 4468 switch (TDK) { 4469 case Sema::TDK_Inconsistent: { 4470 // Inconsistent deduction means we were deducing from an initializer list. 4471 auto D = S.Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction); 4472 D << Info.FirstArg << Info.SecondArg; 4473 for (auto R : Ranges) 4474 D << R; 4475 return true; 4476 } 4477 4478 // FIXME: Are there other cases for which a custom diagnostic is more useful 4479 // than the basic "types don't match" diagnostic? 4480 4481 default: 4482 return false; 4483 } 4484 } 4485 4486 static Sema::DeduceAutoResult 4487 CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type, 4488 AutoTypeLoc TypeLoc, QualType Deduced) { 4489 ConstraintSatisfaction Satisfaction; 4490 ConceptDecl *Concept = Type.getTypeConstraintConcept(); 4491 TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(), 4492 TypeLoc.getRAngleLoc()); 4493 TemplateArgs.addArgument( 4494 TemplateArgumentLoc(TemplateArgument(Deduced), 4495 S.Context.getTrivialTypeSourceInfo( 4496 Deduced, TypeLoc.getNameLoc()))); 4497 for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I) 4498 TemplateArgs.addArgument(TypeLoc.getArgLoc(I)); 4499 4500 llvm::SmallVector<TemplateArgument, 4> Converted; 4501 if (S.CheckTemplateArgumentList(Concept, SourceLocation(), TemplateArgs, 4502 /*PartialTemplateArgs=*/false, Converted)) 4503 return Sema::DAR_FailedAlreadyDiagnosed; 4504 if (S.CheckConstraintSatisfaction(Concept, {Concept->getConstraintExpr()}, 4505 Converted, TypeLoc.getLocalSourceRange(), 4506 Satisfaction)) 4507 return Sema::DAR_FailedAlreadyDiagnosed; 4508 if (!Satisfaction.IsSatisfied) { 4509 std::string Buf; 4510 llvm::raw_string_ostream OS(Buf); 4511 OS << "'" << Concept->getName(); 4512 if (TypeLoc.hasExplicitTemplateArgs()) { 4513 OS << "<"; 4514 for (const auto &Arg : Type.getTypeConstraintArguments()) 4515 Arg.print(S.getPrintingPolicy(), OS); 4516 OS << ">"; 4517 } 4518 OS << "'"; 4519 OS.flush(); 4520 S.Diag(TypeLoc.getConceptNameLoc(), 4521 diag::err_placeholder_constraints_not_satisfied) 4522 << Deduced << Buf << TypeLoc.getLocalSourceRange(); 4523 S.DiagnoseUnsatisfiedConstraint(Satisfaction); 4524 return Sema::DAR_FailedAlreadyDiagnosed; 4525 } 4526 return Sema::DAR_Succeeded; 4527 } 4528 4529 /// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6) 4530 /// 4531 /// Note that this is done even if the initializer is dependent. (This is 4532 /// necessary to support partial ordering of templates using 'auto'.) 4533 /// A dependent type will be produced when deducing from a dependent type. 4534 /// 4535 /// \param Type the type pattern using the auto type-specifier. 4536 /// \param Init the initializer for the variable whose type is to be deduced. 4537 /// \param Result if type deduction was successful, this will be set to the 4538 /// deduced type. 4539 /// \param DependentDeductionDepth Set if we should permit deduction in 4540 /// dependent cases. This is necessary for template partial ordering with 4541 /// 'auto' template parameters. The value specified is the template 4542 /// parameter depth at which we should perform 'auto' deduction. 4543 /// \param IgnoreConstraints Set if we should not fail if the deduced type does 4544 /// not satisfy the type-constraint in the auto type. 4545 Sema::DeduceAutoResult 4546 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result, 4547 Optional<unsigned> DependentDeductionDepth, 4548 bool IgnoreConstraints) { 4549 if (Init->getType()->isNonOverloadPlaceholderType()) { 4550 ExprResult NonPlaceholder = CheckPlaceholderExpr(Init); 4551 if (NonPlaceholder.isInvalid()) 4552 return DAR_FailedAlreadyDiagnosed; 4553 Init = NonPlaceholder.get(); 4554 } 4555 4556 DependentAuto DependentResult = { 4557 /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()}; 4558 4559 if (!DependentDeductionDepth && 4560 (Type.getType()->isDependentType() || Init->isTypeDependent() || 4561 Init->containsUnexpandedParameterPack())) { 4562 Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4563 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4564 return DAR_Succeeded; 4565 } 4566 4567 // Find the depth of template parameter to synthesize. 4568 unsigned Depth = DependentDeductionDepth.getValueOr(0); 4569 4570 // If this is a 'decltype(auto)' specifier, do the decltype dance. 4571 // Since 'decltype(auto)' can only occur at the top of the type, we 4572 // don't need to go digging for it. 4573 if (const AutoType *AT = Type.getType()->getAs<AutoType>()) { 4574 if (AT->isDecltypeAuto()) { 4575 if (isa<InitListExpr>(Init)) { 4576 Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list); 4577 return DAR_FailedAlreadyDiagnosed; 4578 } 4579 4580 ExprResult ER = CheckPlaceholderExpr(Init); 4581 if (ER.isInvalid()) 4582 return DAR_FailedAlreadyDiagnosed; 4583 Init = ER.get(); 4584 QualType Deduced = BuildDecltypeType(Init, Init->getBeginLoc(), false); 4585 if (Deduced.isNull()) 4586 return DAR_FailedAlreadyDiagnosed; 4587 // FIXME: Support a non-canonical deduced type for 'auto'. 4588 Deduced = Context.getCanonicalType(Deduced); 4589 if (AT->isConstrained() && !IgnoreConstraints) { 4590 auto ConstraintsResult = 4591 CheckDeducedPlaceholderConstraints(*this, *AT, 4592 Type.getContainedAutoTypeLoc(), 4593 Deduced); 4594 if (ConstraintsResult != DAR_Succeeded) 4595 return ConstraintsResult; 4596 } 4597 Result = SubstituteDeducedTypeTransform(*this, Deduced).Apply(Type); 4598 if (Result.isNull()) 4599 return DAR_FailedAlreadyDiagnosed; 4600 return DAR_Succeeded; 4601 } else if (!getLangOpts().CPlusPlus) { 4602 if (isa<InitListExpr>(Init)) { 4603 Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c); 4604 return DAR_FailedAlreadyDiagnosed; 4605 } 4606 } 4607 } 4608 4609 SourceLocation Loc = Init->getExprLoc(); 4610 4611 LocalInstantiationScope InstScope(*this); 4612 4613 // Build template<class TemplParam> void Func(FuncParam); 4614 TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create( 4615 Context, nullptr, SourceLocation(), Loc, Depth, 0, nullptr, false, false, 4616 false); 4617 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0); 4618 NamedDecl *TemplParamPtr = TemplParam; 4619 FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt( 4620 Context, Loc, Loc, TemplParamPtr, Loc, nullptr); 4621 4622 QualType FuncParam = 4623 SubstituteDeducedTypeTransform(*this, TemplArg, /*UseTypeSugar*/false) 4624 .Apply(Type); 4625 assert(!FuncParam.isNull() && 4626 "substituting template parameter for 'auto' failed"); 4627 4628 // Deduce type of TemplParam in Func(Init) 4629 SmallVector<DeducedTemplateArgument, 1> Deduced; 4630 Deduced.resize(1); 4631 4632 TemplateDeductionInfo Info(Loc, Depth); 4633 4634 // If deduction failed, don't diagnose if the initializer is dependent; it 4635 // might acquire a matching type in the instantiation. 4636 auto DeductionFailed = [&](TemplateDeductionResult TDK, 4637 ArrayRef<SourceRange> Ranges) -> DeduceAutoResult { 4638 if (Init->isTypeDependent()) { 4639 Result = 4640 SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4641 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4642 return DAR_Succeeded; 4643 } 4644 if (diagnoseAutoDeductionFailure(*this, TDK, Info, Ranges)) 4645 return DAR_FailedAlreadyDiagnosed; 4646 return DAR_Failed; 4647 }; 4648 4649 SmallVector<OriginalCallArg, 4> OriginalCallArgs; 4650 4651 InitListExpr *InitList = dyn_cast<InitListExpr>(Init); 4652 if (InitList) { 4653 // Notionally, we substitute std::initializer_list<T> for 'auto' and deduce 4654 // against that. Such deduction only succeeds if removing cv-qualifiers and 4655 // references results in std::initializer_list<T>. 4656 if (!Type.getType().getNonReferenceType()->getAs<AutoType>()) 4657 return DAR_Failed; 4658 4659 // Resolving a core issue: a braced-init-list containing any designators is 4660 // a non-deduced context. 4661 for (Expr *E : InitList->inits()) 4662 if (isa<DesignatedInitExpr>(E)) 4663 return DAR_Failed; 4664 4665 SourceRange DeducedFromInitRange; 4666 for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) { 4667 Expr *Init = InitList->getInit(i); 4668 4669 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 4670 *this, TemplateParamsSt.get(), 0, TemplArg, Init, 4671 Info, Deduced, OriginalCallArgs, /*Decomposed*/ true, 4672 /*ArgIdx*/ 0, /*TDF*/ 0)) 4673 return DeductionFailed(TDK, {DeducedFromInitRange, 4674 Init->getSourceRange()}); 4675 4676 if (DeducedFromInitRange.isInvalid() && 4677 Deduced[0].getKind() != TemplateArgument::Null) 4678 DeducedFromInitRange = Init->getSourceRange(); 4679 } 4680 } else { 4681 if (!getLangOpts().CPlusPlus && Init->refersToBitField()) { 4682 Diag(Loc, diag::err_auto_bitfield); 4683 return DAR_FailedAlreadyDiagnosed; 4684 } 4685 4686 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 4687 *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced, 4688 OriginalCallArgs, /*Decomposed*/ false, /*ArgIdx*/ 0, /*TDF*/ 0)) 4689 return DeductionFailed(TDK, {}); 4690 } 4691 4692 // Could be null if somehow 'auto' appears in a non-deduced context. 4693 if (Deduced[0].getKind() != TemplateArgument::Type) 4694 return DeductionFailed(TDK_Incomplete, {}); 4695 4696 QualType DeducedType = Deduced[0].getAsType(); 4697 4698 if (InitList) { 4699 DeducedType = BuildStdInitializerList(DeducedType, Loc); 4700 if (DeducedType.isNull()) 4701 return DAR_FailedAlreadyDiagnosed; 4702 } 4703 4704 if (const auto *AT = Type.getType()->getAs<AutoType>()) { 4705 if (AT->isConstrained() && !IgnoreConstraints) { 4706 auto ConstraintsResult = 4707 CheckDeducedPlaceholderConstraints(*this, *AT, 4708 Type.getContainedAutoTypeLoc(), 4709 DeducedType); 4710 if (ConstraintsResult != DAR_Succeeded) 4711 return ConstraintsResult; 4712 } 4713 } 4714 4715 Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type); 4716 if (Result.isNull()) 4717 return DAR_FailedAlreadyDiagnosed; 4718 4719 // Check that the deduced argument type is compatible with the original 4720 // argument type per C++ [temp.deduct.call]p4. 4721 QualType DeducedA = InitList ? Deduced[0].getAsType() : Result; 4722 for (const OriginalCallArg &OriginalArg : OriginalCallArgs) { 4723 assert((bool)InitList == OriginalArg.DecomposedParam && 4724 "decomposed non-init-list in auto deduction?"); 4725 if (auto TDK = 4726 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) { 4727 Result = QualType(); 4728 return DeductionFailed(TDK, {}); 4729 } 4730 } 4731 4732 return DAR_Succeeded; 4733 } 4734 4735 QualType Sema::SubstAutoType(QualType TypeWithAuto, 4736 QualType TypeToReplaceAuto) { 4737 if (TypeToReplaceAuto->isDependentType()) 4738 return SubstituteDeducedTypeTransform( 4739 *this, DependentAuto{ 4740 TypeToReplaceAuto->containsUnexpandedParameterPack()}) 4741 .TransformType(TypeWithAuto); 4742 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 4743 .TransformType(TypeWithAuto); 4744 } 4745 4746 TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, 4747 QualType TypeToReplaceAuto) { 4748 if (TypeToReplaceAuto->isDependentType()) 4749 return SubstituteDeducedTypeTransform( 4750 *this, 4751 DependentAuto{ 4752 TypeToReplaceAuto->containsUnexpandedParameterPack()}) 4753 .TransformType(TypeWithAuto); 4754 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 4755 .TransformType(TypeWithAuto); 4756 } 4757 4758 QualType Sema::ReplaceAutoType(QualType TypeWithAuto, 4759 QualType TypeToReplaceAuto) { 4760 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, 4761 /*UseTypeSugar*/ false) 4762 .TransformType(TypeWithAuto); 4763 } 4764 4765 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) { 4766 if (isa<InitListExpr>(Init)) 4767 Diag(VDecl->getLocation(), 4768 VDecl->isInitCapture() 4769 ? diag::err_init_capture_deduction_failure_from_init_list 4770 : diag::err_auto_var_deduction_failure_from_init_list) 4771 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange(); 4772 else 4773 Diag(VDecl->getLocation(), 4774 VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure 4775 : diag::err_auto_var_deduction_failure) 4776 << VDecl->getDeclName() << VDecl->getType() << Init->getType() 4777 << Init->getSourceRange(); 4778 } 4779 4780 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, 4781 bool Diagnose) { 4782 assert(FD->getReturnType()->isUndeducedType()); 4783 4784 // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)' 4785 // within the return type from the call operator's type. 4786 if (isLambdaConversionOperator(FD)) { 4787 CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent(); 4788 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 4789 4790 // For a generic lambda, instantiate the call operator if needed. 4791 if (auto *Args = FD->getTemplateSpecializationArgs()) { 4792 CallOp = InstantiateFunctionDeclaration( 4793 CallOp->getDescribedFunctionTemplate(), Args, Loc); 4794 if (!CallOp || CallOp->isInvalidDecl()) 4795 return true; 4796 4797 // We might need to deduce the return type by instantiating the definition 4798 // of the operator() function. 4799 if (CallOp->getReturnType()->isUndeducedType()) { 4800 runWithSufficientStackSpace(Loc, [&] { 4801 InstantiateFunctionDefinition(Loc, CallOp); 4802 }); 4803 } 4804 } 4805 4806 if (CallOp->isInvalidDecl()) 4807 return true; 4808 assert(!CallOp->getReturnType()->isUndeducedType() && 4809 "failed to deduce lambda return type"); 4810 4811 // Build the new return type from scratch. 4812 QualType RetType = getLambdaConversionFunctionResultType( 4813 CallOp->getType()->castAs<FunctionProtoType>()); 4814 if (FD->getReturnType()->getAs<PointerType>()) 4815 RetType = Context.getPointerType(RetType); 4816 else { 4817 assert(FD->getReturnType()->getAs<BlockPointerType>()); 4818 RetType = Context.getBlockPointerType(RetType); 4819 } 4820 Context.adjustDeducedFunctionResultType(FD, RetType); 4821 return false; 4822 } 4823 4824 if (FD->getTemplateInstantiationPattern()) { 4825 runWithSufficientStackSpace(Loc, [&] { 4826 InstantiateFunctionDefinition(Loc, FD); 4827 }); 4828 } 4829 4830 bool StillUndeduced = FD->getReturnType()->isUndeducedType(); 4831 if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) { 4832 Diag(Loc, diag::err_auto_fn_used_before_defined) << FD; 4833 Diag(FD->getLocation(), diag::note_callee_decl) << FD; 4834 } 4835 4836 return StillUndeduced; 4837 } 4838 4839 /// If this is a non-static member function, 4840 static void 4841 AddImplicitObjectParameterType(ASTContext &Context, 4842 CXXMethodDecl *Method, 4843 SmallVectorImpl<QualType> &ArgTypes) { 4844 // C++11 [temp.func.order]p3: 4845 // [...] The new parameter is of type "reference to cv A," where cv are 4846 // the cv-qualifiers of the function template (if any) and A is 4847 // the class of which the function template is a member. 4848 // 4849 // The standard doesn't say explicitly, but we pick the appropriate kind of 4850 // reference type based on [over.match.funcs]p4. 4851 QualType ArgTy = Context.getTypeDeclType(Method->getParent()); 4852 ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers()); 4853 if (Method->getRefQualifier() == RQ_RValue) 4854 ArgTy = Context.getRValueReferenceType(ArgTy); 4855 else 4856 ArgTy = Context.getLValueReferenceType(ArgTy); 4857 ArgTypes.push_back(ArgTy); 4858 } 4859 4860 /// Determine whether the function template \p FT1 is at least as 4861 /// specialized as \p FT2. 4862 static bool isAtLeastAsSpecializedAs(Sema &S, 4863 SourceLocation Loc, 4864 FunctionTemplateDecl *FT1, 4865 FunctionTemplateDecl *FT2, 4866 TemplatePartialOrderingContext TPOC, 4867 unsigned NumCallArguments1) { 4868 FunctionDecl *FD1 = FT1->getTemplatedDecl(); 4869 FunctionDecl *FD2 = FT2->getTemplatedDecl(); 4870 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>(); 4871 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>(); 4872 4873 assert(Proto1 && Proto2 && "Function templates must have prototypes"); 4874 TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); 4875 SmallVector<DeducedTemplateArgument, 4> Deduced; 4876 Deduced.resize(TemplateParams->size()); 4877 4878 // C++0x [temp.deduct.partial]p3: 4879 // The types used to determine the ordering depend on the context in which 4880 // the partial ordering is done: 4881 TemplateDeductionInfo Info(Loc); 4882 SmallVector<QualType, 4> Args2; 4883 switch (TPOC) { 4884 case TPOC_Call: { 4885 // - In the context of a function call, the function parameter types are 4886 // used. 4887 CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1); 4888 CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2); 4889 4890 // C++11 [temp.func.order]p3: 4891 // [...] If only one of the function templates is a non-static 4892 // member, that function template is considered to have a new 4893 // first parameter inserted in its function parameter list. The 4894 // new parameter is of type "reference to cv A," where cv are 4895 // the cv-qualifiers of the function template (if any) and A is 4896 // the class of which the function template is a member. 4897 // 4898 // Note that we interpret this to mean "if one of the function 4899 // templates is a non-static member and the other is a non-member"; 4900 // otherwise, the ordering rules for static functions against non-static 4901 // functions don't make any sense. 4902 // 4903 // C++98/03 doesn't have this provision but we've extended DR532 to cover 4904 // it as wording was broken prior to it. 4905 SmallVector<QualType, 4> Args1; 4906 4907 unsigned NumComparedArguments = NumCallArguments1; 4908 4909 if (!Method2 && Method1 && !Method1->isStatic()) { 4910 // Compare 'this' from Method1 against first parameter from Method2. 4911 AddImplicitObjectParameterType(S.Context, Method1, Args1); 4912 ++NumComparedArguments; 4913 } else if (!Method1 && Method2 && !Method2->isStatic()) { 4914 // Compare 'this' from Method2 against first parameter from Method1. 4915 AddImplicitObjectParameterType(S.Context, Method2, Args2); 4916 } 4917 4918 Args1.insert(Args1.end(), Proto1->param_type_begin(), 4919 Proto1->param_type_end()); 4920 Args2.insert(Args2.end(), Proto2->param_type_begin(), 4921 Proto2->param_type_end()); 4922 4923 // C++ [temp.func.order]p5: 4924 // The presence of unused ellipsis and default arguments has no effect on 4925 // the partial ordering of function templates. 4926 if (Args1.size() > NumComparedArguments) 4927 Args1.resize(NumComparedArguments); 4928 if (Args2.size() > NumComparedArguments) 4929 Args2.resize(NumComparedArguments); 4930 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(), 4931 Args1.data(), Args1.size(), Info, Deduced, 4932 TDF_None, /*PartialOrdering=*/true)) 4933 return false; 4934 4935 break; 4936 } 4937 4938 case TPOC_Conversion: 4939 // - In the context of a call to a conversion operator, the return types 4940 // of the conversion function templates are used. 4941 if (DeduceTemplateArgumentsByTypeMatch( 4942 S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(), 4943 Info, Deduced, TDF_None, 4944 /*PartialOrdering=*/true)) 4945 return false; 4946 break; 4947 4948 case TPOC_Other: 4949 // - In other contexts (14.6.6.2) the function template's function type 4950 // is used. 4951 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 4952 FD2->getType(), FD1->getType(), 4953 Info, Deduced, TDF_None, 4954 /*PartialOrdering=*/true)) 4955 return false; 4956 break; 4957 } 4958 4959 // C++0x [temp.deduct.partial]p11: 4960 // In most cases, all template parameters must have values in order for 4961 // deduction to succeed, but for partial ordering purposes a template 4962 // parameter may remain without a value provided it is not used in the 4963 // types being used for partial ordering. [ Note: a template parameter used 4964 // in a non-deduced context is considered used. -end note] 4965 unsigned ArgIdx = 0, NumArgs = Deduced.size(); 4966 for (; ArgIdx != NumArgs; ++ArgIdx) 4967 if (Deduced[ArgIdx].isNull()) 4968 break; 4969 4970 // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need 4971 // to substitute the deduced arguments back into the template and check that 4972 // we get the right type. 4973 4974 if (ArgIdx == NumArgs) { 4975 // All template arguments were deduced. FT1 is at least as specialized 4976 // as FT2. 4977 return true; 4978 } 4979 4980 // Figure out which template parameters were used. 4981 llvm::SmallBitVector UsedParameters(TemplateParams->size()); 4982 switch (TPOC) { 4983 case TPOC_Call: 4984 for (unsigned I = 0, N = Args2.size(); I != N; ++I) 4985 ::MarkUsedTemplateParameters(S.Context, Args2[I], false, 4986 TemplateParams->getDepth(), 4987 UsedParameters); 4988 break; 4989 4990 case TPOC_Conversion: 4991 ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false, 4992 TemplateParams->getDepth(), UsedParameters); 4993 break; 4994 4995 case TPOC_Other: 4996 ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false, 4997 TemplateParams->getDepth(), 4998 UsedParameters); 4999 break; 5000 } 5001 5002 for (; ArgIdx != NumArgs; ++ArgIdx) 5003 // If this argument had no value deduced but was used in one of the types 5004 // used for partial ordering, then deduction fails. 5005 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) 5006 return false; 5007 5008 return true; 5009 } 5010 5011 /// Determine whether this a function template whose parameter-type-list 5012 /// ends with a function parameter pack. 5013 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) { 5014 FunctionDecl *Function = FunTmpl->getTemplatedDecl(); 5015 unsigned NumParams = Function->getNumParams(); 5016 if (NumParams == 0) 5017 return false; 5018 5019 ParmVarDecl *Last = Function->getParamDecl(NumParams - 1); 5020 if (!Last->isParameterPack()) 5021 return false; 5022 5023 // Make sure that no previous parameter is a parameter pack. 5024 while (--NumParams > 0) { 5025 if (Function->getParamDecl(NumParams - 1)->isParameterPack()) 5026 return false; 5027 } 5028 5029 return true; 5030 } 5031 5032 /// Returns the more specialized function template according 5033 /// to the rules of function template partial ordering (C++ [temp.func.order]). 5034 /// 5035 /// \param FT1 the first function template 5036 /// 5037 /// \param FT2 the second function template 5038 /// 5039 /// \param TPOC the context in which we are performing partial ordering of 5040 /// function templates. 5041 /// 5042 /// \param NumCallArguments1 The number of arguments in the call to FT1, used 5043 /// only when \c TPOC is \c TPOC_Call. 5044 /// 5045 /// \param NumCallArguments2 The number of arguments in the call to FT2, used 5046 /// only when \c TPOC is \c TPOC_Call. 5047 /// 5048 /// \returns the more specialized function template. If neither 5049 /// template is more specialized, returns NULL. 5050 FunctionTemplateDecl * 5051 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, 5052 FunctionTemplateDecl *FT2, 5053 SourceLocation Loc, 5054 TemplatePartialOrderingContext TPOC, 5055 unsigned NumCallArguments1, 5056 unsigned NumCallArguments2) { 5057 5058 auto JudgeByConstraints = [&] () -> FunctionTemplateDecl * { 5059 llvm::SmallVector<const Expr *, 3> AC1, AC2; 5060 FT1->getAssociatedConstraints(AC1); 5061 FT2->getAssociatedConstraints(AC2); 5062 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 5063 if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1)) 5064 return nullptr; 5065 if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2)) 5066 return nullptr; 5067 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 5068 return nullptr; 5069 return AtLeastAsConstrained1 ? FT1 : FT2; 5070 }; 5071 5072 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 5073 NumCallArguments1); 5074 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, 5075 NumCallArguments2); 5076 5077 if (Better1 != Better2) // We have a clear winner 5078 return Better1 ? FT1 : FT2; 5079 5080 if (!Better1 && !Better2) // Neither is better than the other 5081 return JudgeByConstraints(); 5082 5083 // FIXME: This mimics what GCC implements, but doesn't match up with the 5084 // proposed resolution for core issue 692. This area needs to be sorted out, 5085 // but for now we attempt to maintain compatibility. 5086 bool Variadic1 = isVariadicFunctionTemplate(FT1); 5087 bool Variadic2 = isVariadicFunctionTemplate(FT2); 5088 if (Variadic1 != Variadic2) 5089 return Variadic1? FT2 : FT1; 5090 5091 return JudgeByConstraints(); 5092 } 5093 5094 /// Determine if the two templates are equivalent. 5095 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) { 5096 if (T1 == T2) 5097 return true; 5098 5099 if (!T1 || !T2) 5100 return false; 5101 5102 return T1->getCanonicalDecl() == T2->getCanonicalDecl(); 5103 } 5104 5105 /// Retrieve the most specialized of the given function template 5106 /// specializations. 5107 /// 5108 /// \param SpecBegin the start iterator of the function template 5109 /// specializations that we will be comparing. 5110 /// 5111 /// \param SpecEnd the end iterator of the function template 5112 /// specializations, paired with \p SpecBegin. 5113 /// 5114 /// \param Loc the location where the ambiguity or no-specializations 5115 /// diagnostic should occur. 5116 /// 5117 /// \param NoneDiag partial diagnostic used to diagnose cases where there are 5118 /// no matching candidates. 5119 /// 5120 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one 5121 /// occurs. 5122 /// 5123 /// \param CandidateDiag partial diagnostic used for each function template 5124 /// specialization that is a candidate in the ambiguous ordering. One parameter 5125 /// in this diagnostic should be unbound, which will correspond to the string 5126 /// describing the template arguments for the function template specialization. 5127 /// 5128 /// \returns the most specialized function template specialization, if 5129 /// found. Otherwise, returns SpecEnd. 5130 UnresolvedSetIterator Sema::getMostSpecialized( 5131 UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd, 5132 TemplateSpecCandidateSet &FailedCandidates, 5133 SourceLocation Loc, const PartialDiagnostic &NoneDiag, 5134 const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, 5135 bool Complain, QualType TargetType) { 5136 if (SpecBegin == SpecEnd) { 5137 if (Complain) { 5138 Diag(Loc, NoneDiag); 5139 FailedCandidates.NoteCandidates(*this, Loc); 5140 } 5141 return SpecEnd; 5142 } 5143 5144 if (SpecBegin + 1 == SpecEnd) 5145 return SpecBegin; 5146 5147 // Find the function template that is better than all of the templates it 5148 // has been compared to. 5149 UnresolvedSetIterator Best = SpecBegin; 5150 FunctionTemplateDecl *BestTemplate 5151 = cast<FunctionDecl>(*Best)->getPrimaryTemplate(); 5152 assert(BestTemplate && "Not a function template specialization?"); 5153 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) { 5154 FunctionTemplateDecl *Challenger 5155 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 5156 assert(Challenger && "Not a function template specialization?"); 5157 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 5158 Loc, TPOC_Other, 0, 0), 5159 Challenger)) { 5160 Best = I; 5161 BestTemplate = Challenger; 5162 } 5163 } 5164 5165 // Make sure that the "best" function template is more specialized than all 5166 // of the others. 5167 bool Ambiguous = false; 5168 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 5169 FunctionTemplateDecl *Challenger 5170 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 5171 if (I != Best && 5172 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 5173 Loc, TPOC_Other, 0, 0), 5174 BestTemplate)) { 5175 Ambiguous = true; 5176 break; 5177 } 5178 } 5179 5180 if (!Ambiguous) { 5181 // We found an answer. Return it. 5182 return Best; 5183 } 5184 5185 // Diagnose the ambiguity. 5186 if (Complain) { 5187 Diag(Loc, AmbigDiag); 5188 5189 // FIXME: Can we order the candidates in some sane way? 5190 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 5191 PartialDiagnostic PD = CandidateDiag; 5192 const auto *FD = cast<FunctionDecl>(*I); 5193 PD << FD << getTemplateArgumentBindingsText( 5194 FD->getPrimaryTemplate()->getTemplateParameters(), 5195 *FD->getTemplateSpecializationArgs()); 5196 if (!TargetType.isNull()) 5197 HandleFunctionTypeMismatch(PD, FD->getType(), TargetType); 5198 Diag((*I)->getLocation(), PD); 5199 } 5200 } 5201 5202 return SpecEnd; 5203 } 5204 5205 /// Determine whether one partial specialization, P1, is at least as 5206 /// specialized than another, P2. 5207 /// 5208 /// \tparam TemplateLikeDecl The kind of P2, which must be a 5209 /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl. 5210 /// \param T1 The injected-class-name of P1 (faked for a variable template). 5211 /// \param T2 The injected-class-name of P2 (faked for a variable template). 5212 template<typename TemplateLikeDecl> 5213 static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2, 5214 TemplateLikeDecl *P2, 5215 TemplateDeductionInfo &Info) { 5216 // C++ [temp.class.order]p1: 5217 // For two class template partial specializations, the first is at least as 5218 // specialized as the second if, given the following rewrite to two 5219 // function templates, the first function template is at least as 5220 // specialized as the second according to the ordering rules for function 5221 // templates (14.6.6.2): 5222 // - the first function template has the same template parameters as the 5223 // first partial specialization and has a single function parameter 5224 // whose type is a class template specialization with the template 5225 // arguments of the first partial specialization, and 5226 // - the second function template has the same template parameters as the 5227 // second partial specialization and has a single function parameter 5228 // whose type is a class template specialization with the template 5229 // arguments of the second partial specialization. 5230 // 5231 // Rather than synthesize function templates, we merely perform the 5232 // equivalent partial ordering by performing deduction directly on 5233 // the template arguments of the class template partial 5234 // specializations. This computation is slightly simpler than the 5235 // general problem of function template partial ordering, because 5236 // class template partial specializations are more constrained. We 5237 // know that every template parameter is deducible from the class 5238 // template partial specialization's template arguments, for 5239 // example. 5240 SmallVector<DeducedTemplateArgument, 4> Deduced; 5241 5242 // Determine whether P1 is at least as specialized as P2. 5243 Deduced.resize(P2->getTemplateParameters()->size()); 5244 if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(), 5245 T2, T1, Info, Deduced, TDF_None, 5246 /*PartialOrdering=*/true)) 5247 return false; 5248 5249 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), 5250 Deduced.end()); 5251 Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs, 5252 Info); 5253 auto *TST1 = T1->castAs<TemplateSpecializationType>(); 5254 if (FinishTemplateArgumentDeduction( 5255 S, P2, /*IsPartialOrdering=*/true, 5256 TemplateArgumentList(TemplateArgumentList::OnStack, 5257 TST1->template_arguments()), 5258 Deduced, Info)) 5259 return false; 5260 5261 return true; 5262 } 5263 5264 /// Returns the more specialized class template partial specialization 5265 /// according to the rules of partial ordering of class template partial 5266 /// specializations (C++ [temp.class.order]). 5267 /// 5268 /// \param PS1 the first class template partial specialization 5269 /// 5270 /// \param PS2 the second class template partial specialization 5271 /// 5272 /// \returns the more specialized class template partial specialization. If 5273 /// neither partial specialization is more specialized, returns NULL. 5274 ClassTemplatePartialSpecializationDecl * 5275 Sema::getMoreSpecializedPartialSpecialization( 5276 ClassTemplatePartialSpecializationDecl *PS1, 5277 ClassTemplatePartialSpecializationDecl *PS2, 5278 SourceLocation Loc) { 5279 QualType PT1 = PS1->getInjectedSpecializationType(); 5280 QualType PT2 = PS2->getInjectedSpecializationType(); 5281 5282 TemplateDeductionInfo Info(Loc); 5283 bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info); 5284 bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info); 5285 5286 if (!Better1 && !Better2) 5287 return nullptr; 5288 if (Better1 && Better2) { 5289 llvm::SmallVector<const Expr *, 3> AC1, AC2; 5290 PS1->getAssociatedConstraints(AC1); 5291 PS2->getAssociatedConstraints(AC2); 5292 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 5293 if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1)) 5294 return nullptr; 5295 if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2)) 5296 return nullptr; 5297 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 5298 return nullptr; 5299 return AtLeastAsConstrained1 ? PS1 : PS2; 5300 } 5301 5302 return Better1 ? PS1 : PS2; 5303 } 5304 5305 bool Sema::isMoreSpecializedThanPrimary( 5306 ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5307 ClassTemplateDecl *Primary = Spec->getSpecializedTemplate(); 5308 QualType PrimaryT = Primary->getInjectedClassNameSpecialization(); 5309 QualType PartialT = Spec->getInjectedSpecializationType(); 5310 if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info)) 5311 return false; 5312 if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) 5313 return true; 5314 Info.clearSFINAEDiagnostic(); 5315 llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC; 5316 Primary->getAssociatedConstraints(PrimaryAC); 5317 Spec->getAssociatedConstraints(SpecAC); 5318 bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec; 5319 if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC, 5320 AtLeastAsConstrainedSpec)) 5321 return false; 5322 if (!AtLeastAsConstrainedSpec) 5323 return false; 5324 if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC, 5325 AtLeastAsConstrainedPrimary)) 5326 return false; 5327 return !AtLeastAsConstrainedPrimary; 5328 } 5329 5330 VarTemplatePartialSpecializationDecl * 5331 Sema::getMoreSpecializedPartialSpecialization( 5332 VarTemplatePartialSpecializationDecl *PS1, 5333 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) { 5334 // Pretend the variable template specializations are class template 5335 // specializations and form a fake injected class name type for comparison. 5336 assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() && 5337 "the partial specializations being compared should specialize" 5338 " the same template."); 5339 TemplateName Name(PS1->getSpecializedTemplate()); 5340 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5341 QualType PT1 = Context.getTemplateSpecializationType( 5342 CanonTemplate, PS1->getTemplateArgs().asArray()); 5343 QualType PT2 = Context.getTemplateSpecializationType( 5344 CanonTemplate, PS2->getTemplateArgs().asArray()); 5345 5346 TemplateDeductionInfo Info(Loc); 5347 bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info); 5348 bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info); 5349 5350 if (!Better1 && !Better2) 5351 return nullptr; 5352 if (Better1 && Better2) { 5353 llvm::SmallVector<const Expr *, 3> AC1, AC2; 5354 PS1->getAssociatedConstraints(AC1); 5355 PS2->getAssociatedConstraints(AC2); 5356 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 5357 if (IsAtLeastAsConstrained(PS1, AC1, PS2, AC2, AtLeastAsConstrained1)) 5358 return nullptr; 5359 if (IsAtLeastAsConstrained(PS2, AC2, PS1, AC1, AtLeastAsConstrained2)) 5360 return nullptr; 5361 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 5362 return nullptr; 5363 return AtLeastAsConstrained1 ? PS1 : PS2; 5364 } 5365 5366 return Better1 ? PS1 : PS2; 5367 } 5368 5369 bool Sema::isMoreSpecializedThanPrimary( 5370 VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5371 TemplateDecl *Primary = Spec->getSpecializedTemplate(); 5372 // FIXME: Cache the injected template arguments rather than recomputing 5373 // them for each partial specialization. 5374 SmallVector<TemplateArgument, 8> PrimaryArgs; 5375 Context.getInjectedTemplateArgs(Primary->getTemplateParameters(), 5376 PrimaryArgs); 5377 5378 TemplateName CanonTemplate = 5379 Context.getCanonicalTemplateName(TemplateName(Primary)); 5380 QualType PrimaryT = Context.getTemplateSpecializationType( 5381 CanonTemplate, PrimaryArgs); 5382 QualType PartialT = Context.getTemplateSpecializationType( 5383 CanonTemplate, Spec->getTemplateArgs().asArray()); 5384 5385 if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info)) 5386 return false; 5387 if (!isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) 5388 return true; 5389 Info.clearSFINAEDiagnostic(); 5390 llvm::SmallVector<const Expr *, 3> PrimaryAC, SpecAC; 5391 Primary->getAssociatedConstraints(PrimaryAC); 5392 Spec->getAssociatedConstraints(SpecAC); 5393 bool AtLeastAsConstrainedPrimary, AtLeastAsConstrainedSpec; 5394 if (IsAtLeastAsConstrained(Spec, SpecAC, Primary, PrimaryAC, 5395 AtLeastAsConstrainedSpec)) 5396 return false; 5397 if (!AtLeastAsConstrainedSpec) 5398 return false; 5399 if (IsAtLeastAsConstrained(Primary, PrimaryAC, Spec, SpecAC, 5400 AtLeastAsConstrainedPrimary)) 5401 return false; 5402 return !AtLeastAsConstrainedPrimary; 5403 } 5404 5405 bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs( 5406 TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) { 5407 // C++1z [temp.arg.template]p4: (DR 150) 5408 // A template template-parameter P is at least as specialized as a 5409 // template template-argument A if, given the following rewrite to two 5410 // function templates... 5411 5412 // Rather than synthesize function templates, we merely perform the 5413 // equivalent partial ordering by performing deduction directly on 5414 // the template parameter lists of the template template parameters. 5415 // 5416 // Given an invented class template X with the template parameter list of 5417 // A (including default arguments): 5418 TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg)); 5419 TemplateParameterList *A = AArg->getTemplateParameters(); 5420 5421 // - Each function template has a single function parameter whose type is 5422 // a specialization of X with template arguments corresponding to the 5423 // template parameters from the respective function template 5424 SmallVector<TemplateArgument, 8> AArgs; 5425 Context.getInjectedTemplateArgs(A, AArgs); 5426 5427 // Check P's arguments against A's parameter list. This will fill in default 5428 // template arguments as needed. AArgs are already correct by construction. 5429 // We can't just use CheckTemplateIdType because that will expand alias 5430 // templates. 5431 SmallVector<TemplateArgument, 4> PArgs; 5432 { 5433 SFINAETrap Trap(*this); 5434 5435 Context.getInjectedTemplateArgs(P, PArgs); 5436 TemplateArgumentListInfo PArgList(P->getLAngleLoc(), 5437 P->getRAngleLoc()); 5438 for (unsigned I = 0, N = P->size(); I != N; ++I) { 5439 // Unwrap packs that getInjectedTemplateArgs wrapped around pack 5440 // expansions, to form an "as written" argument list. 5441 TemplateArgument Arg = PArgs[I]; 5442 if (Arg.getKind() == TemplateArgument::Pack) { 5443 assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion()); 5444 Arg = *Arg.pack_begin(); 5445 } 5446 PArgList.addArgument(getTrivialTemplateArgumentLoc( 5447 Arg, QualType(), P->getParam(I)->getLocation())); 5448 } 5449 PArgs.clear(); 5450 5451 // C++1z [temp.arg.template]p3: 5452 // If the rewrite produces an invalid type, then P is not at least as 5453 // specialized as A. 5454 if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, PArgs) || 5455 Trap.hasErrorOccurred()) 5456 return false; 5457 } 5458 5459 QualType AType = Context.getTemplateSpecializationType(X, AArgs); 5460 QualType PType = Context.getTemplateSpecializationType(X, PArgs); 5461 5462 // ... the function template corresponding to P is at least as specialized 5463 // as the function template corresponding to A according to the partial 5464 // ordering rules for function templates. 5465 TemplateDeductionInfo Info(Loc, A->getDepth()); 5466 return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info); 5467 } 5468 5469 namespace { 5470 struct MarkUsedTemplateParameterVisitor : 5471 RecursiveASTVisitor<MarkUsedTemplateParameterVisitor> { 5472 llvm::SmallBitVector &Used; 5473 unsigned Depth; 5474 5475 MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used, 5476 unsigned Depth) 5477 : Used(Used), Depth(Depth) { } 5478 5479 bool VisitTemplateTypeParmType(TemplateTypeParmType *T) { 5480 if (T->getDepth() == Depth) 5481 Used[T->getIndex()] = true; 5482 return true; 5483 } 5484 5485 bool TraverseTemplateName(TemplateName Template) { 5486 if (auto *TTP = 5487 dyn_cast<TemplateTemplateParmDecl>(Template.getAsTemplateDecl())) 5488 if (TTP->getDepth() == Depth) 5489 Used[TTP->getIndex()] = true; 5490 RecursiveASTVisitor<MarkUsedTemplateParameterVisitor>:: 5491 TraverseTemplateName(Template); 5492 return true; 5493 } 5494 5495 bool VisitDeclRefExpr(DeclRefExpr *E) { 5496 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 5497 if (NTTP->getDepth() == Depth) 5498 Used[NTTP->getIndex()] = true; 5499 return true; 5500 } 5501 }; 5502 } 5503 5504 /// Mark the template parameters that are used by the given 5505 /// expression. 5506 static void 5507 MarkUsedTemplateParameters(ASTContext &Ctx, 5508 const Expr *E, 5509 bool OnlyDeduced, 5510 unsigned Depth, 5511 llvm::SmallBitVector &Used) { 5512 if (!OnlyDeduced) { 5513 MarkUsedTemplateParameterVisitor(Used, Depth) 5514 .TraverseStmt(const_cast<Expr *>(E)); 5515 return; 5516 } 5517 5518 // We can deduce from a pack expansion. 5519 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E)) 5520 E = Expansion->getPattern(); 5521 5522 // Skip through any implicit casts we added while type-checking, and any 5523 // substitutions performed by template alias expansion. 5524 while (true) { 5525 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 5526 E = ICE->getSubExpr(); 5527 else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) 5528 E = CE->getSubExpr(); 5529 else if (const SubstNonTypeTemplateParmExpr *Subst = 5530 dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 5531 E = Subst->getReplacement(); 5532 else 5533 break; 5534 } 5535 5536 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 5537 if (!DRE) 5538 return; 5539 5540 const NonTypeTemplateParmDecl *NTTP 5541 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 5542 if (!NTTP) 5543 return; 5544 5545 if (NTTP->getDepth() == Depth) 5546 Used[NTTP->getIndex()] = true; 5547 5548 // In C++17 mode, additional arguments may be deduced from the type of a 5549 // non-type argument. 5550 if (Ctx.getLangOpts().CPlusPlus17) 5551 MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used); 5552 } 5553 5554 /// Mark the template parameters that are used by the given 5555 /// nested name specifier. 5556 static void 5557 MarkUsedTemplateParameters(ASTContext &Ctx, 5558 NestedNameSpecifier *NNS, 5559 bool OnlyDeduced, 5560 unsigned Depth, 5561 llvm::SmallBitVector &Used) { 5562 if (!NNS) 5563 return; 5564 5565 MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth, 5566 Used); 5567 MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0), 5568 OnlyDeduced, Depth, Used); 5569 } 5570 5571 /// Mark the template parameters that are used by the given 5572 /// template name. 5573 static void 5574 MarkUsedTemplateParameters(ASTContext &Ctx, 5575 TemplateName Name, 5576 bool OnlyDeduced, 5577 unsigned Depth, 5578 llvm::SmallBitVector &Used) { 5579 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 5580 if (TemplateTemplateParmDecl *TTP 5581 = dyn_cast<TemplateTemplateParmDecl>(Template)) { 5582 if (TTP->getDepth() == Depth) 5583 Used[TTP->getIndex()] = true; 5584 } 5585 return; 5586 } 5587 5588 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) 5589 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced, 5590 Depth, Used); 5591 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) 5592 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced, 5593 Depth, Used); 5594 } 5595 5596 /// Mark the template parameters that are used by the given 5597 /// type. 5598 static void 5599 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 5600 bool OnlyDeduced, 5601 unsigned Depth, 5602 llvm::SmallBitVector &Used) { 5603 if (T.isNull()) 5604 return; 5605 5606 // Non-dependent types have nothing deducible 5607 if (!T->isDependentType()) 5608 return; 5609 5610 T = Ctx.getCanonicalType(T); 5611 switch (T->getTypeClass()) { 5612 case Type::Pointer: 5613 MarkUsedTemplateParameters(Ctx, 5614 cast<PointerType>(T)->getPointeeType(), 5615 OnlyDeduced, 5616 Depth, 5617 Used); 5618 break; 5619 5620 case Type::BlockPointer: 5621 MarkUsedTemplateParameters(Ctx, 5622 cast<BlockPointerType>(T)->getPointeeType(), 5623 OnlyDeduced, 5624 Depth, 5625 Used); 5626 break; 5627 5628 case Type::LValueReference: 5629 case Type::RValueReference: 5630 MarkUsedTemplateParameters(Ctx, 5631 cast<ReferenceType>(T)->getPointeeType(), 5632 OnlyDeduced, 5633 Depth, 5634 Used); 5635 break; 5636 5637 case Type::MemberPointer: { 5638 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr()); 5639 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced, 5640 Depth, Used); 5641 MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0), 5642 OnlyDeduced, Depth, Used); 5643 break; 5644 } 5645 5646 case Type::DependentSizedArray: 5647 MarkUsedTemplateParameters(Ctx, 5648 cast<DependentSizedArrayType>(T)->getSizeExpr(), 5649 OnlyDeduced, Depth, Used); 5650 // Fall through to check the element type 5651 LLVM_FALLTHROUGH; 5652 5653 case Type::ConstantArray: 5654 case Type::IncompleteArray: 5655 MarkUsedTemplateParameters(Ctx, 5656 cast<ArrayType>(T)->getElementType(), 5657 OnlyDeduced, Depth, Used); 5658 break; 5659 5660 case Type::Vector: 5661 case Type::ExtVector: 5662 MarkUsedTemplateParameters(Ctx, 5663 cast<VectorType>(T)->getElementType(), 5664 OnlyDeduced, Depth, Used); 5665 break; 5666 5667 case Type::DependentVector: { 5668 const auto *VecType = cast<DependentVectorType>(T); 5669 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 5670 Depth, Used); 5671 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth, 5672 Used); 5673 break; 5674 } 5675 case Type::DependentSizedExtVector: { 5676 const DependentSizedExtVectorType *VecType 5677 = cast<DependentSizedExtVectorType>(T); 5678 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 5679 Depth, Used); 5680 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, 5681 Depth, Used); 5682 break; 5683 } 5684 5685 case Type::DependentAddressSpace: { 5686 const DependentAddressSpaceType *DependentASType = 5687 cast<DependentAddressSpaceType>(T); 5688 MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(), 5689 OnlyDeduced, Depth, Used); 5690 MarkUsedTemplateParameters(Ctx, 5691 DependentASType->getAddrSpaceExpr(), 5692 OnlyDeduced, Depth, Used); 5693 break; 5694 } 5695 5696 case Type::FunctionProto: { 5697 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 5698 MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth, 5699 Used); 5700 for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) { 5701 // C++17 [temp.deduct.type]p5: 5702 // The non-deduced contexts are: [...] 5703 // -- A function parameter pack that does not occur at the end of the 5704 // parameter-declaration-list. 5705 if (!OnlyDeduced || I + 1 == N || 5706 !Proto->getParamType(I)->getAs<PackExpansionType>()) { 5707 MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced, 5708 Depth, Used); 5709 } else { 5710 // FIXME: C++17 [temp.deduct.call]p1: 5711 // When a function parameter pack appears in a non-deduced context, 5712 // the type of that pack is never deduced. 5713 // 5714 // We should also track a set of "never deduced" parameters, and 5715 // subtract that from the list of deduced parameters after marking. 5716 } 5717 } 5718 if (auto *E = Proto->getNoexceptExpr()) 5719 MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used); 5720 break; 5721 } 5722 5723 case Type::TemplateTypeParm: { 5724 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T); 5725 if (TTP->getDepth() == Depth) 5726 Used[TTP->getIndex()] = true; 5727 break; 5728 } 5729 5730 case Type::SubstTemplateTypeParmPack: { 5731 const SubstTemplateTypeParmPackType *Subst 5732 = cast<SubstTemplateTypeParmPackType>(T); 5733 MarkUsedTemplateParameters(Ctx, 5734 QualType(Subst->getReplacedParameter(), 0), 5735 OnlyDeduced, Depth, Used); 5736 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(), 5737 OnlyDeduced, Depth, Used); 5738 break; 5739 } 5740 5741 case Type::InjectedClassName: 5742 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType(); 5743 LLVM_FALLTHROUGH; 5744 5745 case Type::TemplateSpecialization: { 5746 const TemplateSpecializationType *Spec 5747 = cast<TemplateSpecializationType>(T); 5748 MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced, 5749 Depth, Used); 5750 5751 // C++0x [temp.deduct.type]p9: 5752 // If the template argument list of P contains a pack expansion that is 5753 // not the last template argument, the entire template argument list is a 5754 // non-deduced context. 5755 if (OnlyDeduced && 5756 hasPackExpansionBeforeEnd(Spec->template_arguments())) 5757 break; 5758 5759 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) 5760 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, 5761 Used); 5762 break; 5763 } 5764 5765 case Type::Complex: 5766 if (!OnlyDeduced) 5767 MarkUsedTemplateParameters(Ctx, 5768 cast<ComplexType>(T)->getElementType(), 5769 OnlyDeduced, Depth, Used); 5770 break; 5771 5772 case Type::Atomic: 5773 if (!OnlyDeduced) 5774 MarkUsedTemplateParameters(Ctx, 5775 cast<AtomicType>(T)->getValueType(), 5776 OnlyDeduced, Depth, Used); 5777 break; 5778 5779 case Type::DependentName: 5780 if (!OnlyDeduced) 5781 MarkUsedTemplateParameters(Ctx, 5782 cast<DependentNameType>(T)->getQualifier(), 5783 OnlyDeduced, Depth, Used); 5784 break; 5785 5786 case Type::DependentTemplateSpecialization: { 5787 // C++14 [temp.deduct.type]p5: 5788 // The non-deduced contexts are: 5789 // -- The nested-name-specifier of a type that was specified using a 5790 // qualified-id 5791 // 5792 // C++14 [temp.deduct.type]p6: 5793 // When a type name is specified in a way that includes a non-deduced 5794 // context, all of the types that comprise that type name are also 5795 // non-deduced. 5796 if (OnlyDeduced) 5797 break; 5798 5799 const DependentTemplateSpecializationType *Spec 5800 = cast<DependentTemplateSpecializationType>(T); 5801 5802 MarkUsedTemplateParameters(Ctx, Spec->getQualifier(), 5803 OnlyDeduced, Depth, Used); 5804 5805 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) 5806 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, 5807 Used); 5808 break; 5809 } 5810 5811 case Type::TypeOf: 5812 if (!OnlyDeduced) 5813 MarkUsedTemplateParameters(Ctx, 5814 cast<TypeOfType>(T)->getUnderlyingType(), 5815 OnlyDeduced, Depth, Used); 5816 break; 5817 5818 case Type::TypeOfExpr: 5819 if (!OnlyDeduced) 5820 MarkUsedTemplateParameters(Ctx, 5821 cast<TypeOfExprType>(T)->getUnderlyingExpr(), 5822 OnlyDeduced, Depth, Used); 5823 break; 5824 5825 case Type::Decltype: 5826 if (!OnlyDeduced) 5827 MarkUsedTemplateParameters(Ctx, 5828 cast<DecltypeType>(T)->getUnderlyingExpr(), 5829 OnlyDeduced, Depth, Used); 5830 break; 5831 5832 case Type::UnaryTransform: 5833 if (!OnlyDeduced) 5834 MarkUsedTemplateParameters(Ctx, 5835 cast<UnaryTransformType>(T)->getUnderlyingType(), 5836 OnlyDeduced, Depth, Used); 5837 break; 5838 5839 case Type::PackExpansion: 5840 MarkUsedTemplateParameters(Ctx, 5841 cast<PackExpansionType>(T)->getPattern(), 5842 OnlyDeduced, Depth, Used); 5843 break; 5844 5845 case Type::Auto: 5846 case Type::DeducedTemplateSpecialization: 5847 MarkUsedTemplateParameters(Ctx, 5848 cast<DeducedType>(T)->getDeducedType(), 5849 OnlyDeduced, Depth, Used); 5850 break; 5851 5852 // None of these types have any template parameters in them. 5853 case Type::Builtin: 5854 case Type::VariableArray: 5855 case Type::FunctionNoProto: 5856 case Type::Record: 5857 case Type::Enum: 5858 case Type::ObjCInterface: 5859 case Type::ObjCObject: 5860 case Type::ObjCObjectPointer: 5861 case Type::UnresolvedUsing: 5862 case Type::Pipe: 5863 #define TYPE(Class, Base) 5864 #define ABSTRACT_TYPE(Class, Base) 5865 #define DEPENDENT_TYPE(Class, Base) 5866 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 5867 #include "clang/AST/TypeNodes.inc" 5868 break; 5869 } 5870 } 5871 5872 /// Mark the template parameters that are used by this 5873 /// template argument. 5874 static void 5875 MarkUsedTemplateParameters(ASTContext &Ctx, 5876 const TemplateArgument &TemplateArg, 5877 bool OnlyDeduced, 5878 unsigned Depth, 5879 llvm::SmallBitVector &Used) { 5880 switch (TemplateArg.getKind()) { 5881 case TemplateArgument::Null: 5882 case TemplateArgument::Integral: 5883 case TemplateArgument::Declaration: 5884 break; 5885 5886 case TemplateArgument::NullPtr: 5887 MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced, 5888 Depth, Used); 5889 break; 5890 5891 case TemplateArgument::Type: 5892 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced, 5893 Depth, Used); 5894 break; 5895 5896 case TemplateArgument::Template: 5897 case TemplateArgument::TemplateExpansion: 5898 MarkUsedTemplateParameters(Ctx, 5899 TemplateArg.getAsTemplateOrTemplatePattern(), 5900 OnlyDeduced, Depth, Used); 5901 break; 5902 5903 case TemplateArgument::Expression: 5904 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced, 5905 Depth, Used); 5906 break; 5907 5908 case TemplateArgument::Pack: 5909 for (const auto &P : TemplateArg.pack_elements()) 5910 MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used); 5911 break; 5912 } 5913 } 5914 5915 /// Mark which template parameters are used in a given expression. 5916 /// 5917 /// \param E the expression from which template parameters will be deduced. 5918 /// 5919 /// \param Used a bit vector whose elements will be set to \c true 5920 /// to indicate when the corresponding template parameter will be 5921 /// deduced. 5922 void 5923 Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced, 5924 unsigned Depth, 5925 llvm::SmallBitVector &Used) { 5926 ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used); 5927 } 5928 5929 /// Mark which template parameters can be deduced from a given 5930 /// template argument list. 5931 /// 5932 /// \param TemplateArgs the template argument list from which template 5933 /// parameters will be deduced. 5934 /// 5935 /// \param Used a bit vector whose elements will be set to \c true 5936 /// to indicate when the corresponding template parameter will be 5937 /// deduced. 5938 void 5939 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, 5940 bool OnlyDeduced, unsigned Depth, 5941 llvm::SmallBitVector &Used) { 5942 // C++0x [temp.deduct.type]p9: 5943 // If the template argument list of P contains a pack expansion that is not 5944 // the last template argument, the entire template argument list is a 5945 // non-deduced context. 5946 if (OnlyDeduced && 5947 hasPackExpansionBeforeEnd(TemplateArgs.asArray())) 5948 return; 5949 5950 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5951 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced, 5952 Depth, Used); 5953 } 5954 5955 /// Marks all of the template parameters that will be deduced by a 5956 /// call to the given function template. 5957 void Sema::MarkDeducedTemplateParameters( 5958 ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, 5959 llvm::SmallBitVector &Deduced) { 5960 TemplateParameterList *TemplateParams 5961 = FunctionTemplate->getTemplateParameters(); 5962 Deduced.clear(); 5963 Deduced.resize(TemplateParams->size()); 5964 5965 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 5966 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) 5967 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(), 5968 true, TemplateParams->getDepth(), Deduced); 5969 } 5970 5971 bool hasDeducibleTemplateParameters(Sema &S, 5972 FunctionTemplateDecl *FunctionTemplate, 5973 QualType T) { 5974 if (!T->isDependentType()) 5975 return false; 5976 5977 TemplateParameterList *TemplateParams 5978 = FunctionTemplate->getTemplateParameters(); 5979 llvm::SmallBitVector Deduced(TemplateParams->size()); 5980 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(), 5981 Deduced); 5982 5983 return Deduced.any(); 5984 } 5985