1 //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements C++ template argument deduction. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "TreeTransform.h" 14 #include "TypeLocBuilder.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTLambda.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclAccessPair.h" 19 #include "clang/AST/DeclBase.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/DeclarationName.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/NestedNameSpecifier.h" 26 #include "clang/AST/RecursiveASTVisitor.h" 27 #include "clang/AST/TemplateBase.h" 28 #include "clang/AST/TemplateName.h" 29 #include "clang/AST/Type.h" 30 #include "clang/AST/TypeLoc.h" 31 #include "clang/AST/UnresolvedSet.h" 32 #include "clang/Basic/AddressSpaces.h" 33 #include "clang/Basic/ExceptionSpecificationType.h" 34 #include "clang/Basic/LLVM.h" 35 #include "clang/Basic/LangOptions.h" 36 #include "clang/Basic/PartialDiagnostic.h" 37 #include "clang/Basic/SourceLocation.h" 38 #include "clang/Basic/Specifiers.h" 39 #include "clang/Sema/EnterExpressionEvaluationContext.h" 40 #include "clang/Sema/Ownership.h" 41 #include "clang/Sema/Sema.h" 42 #include "clang/Sema/Template.h" 43 #include "clang/Sema/TemplateDeduction.h" 44 #include "llvm/ADT/APInt.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/ArrayRef.h" 47 #include "llvm/ADT/DenseMap.h" 48 #include "llvm/ADT/FoldingSet.h" 49 #include "llvm/ADT/SmallBitVector.h" 50 #include "llvm/ADT/SmallPtrSet.h" 51 #include "llvm/ADT/SmallVector.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <optional> 58 #include <tuple> 59 #include <type_traits> 60 #include <utility> 61 62 namespace clang { 63 64 /// Various flags that control template argument deduction. 65 /// 66 /// These flags can be bitwise-OR'd together. 67 enum TemplateDeductionFlags { 68 /// No template argument deduction flags, which indicates the 69 /// strictest results for template argument deduction (as used for, e.g., 70 /// matching class template partial specializations). 71 TDF_None = 0, 72 73 /// Within template argument deduction from a function call, we are 74 /// matching with a parameter type for which the original parameter was 75 /// a reference. 76 TDF_ParamWithReferenceType = 0x1, 77 78 /// Within template argument deduction from a function call, we 79 /// are matching in a case where we ignore cv-qualifiers. 80 TDF_IgnoreQualifiers = 0x02, 81 82 /// Within template argument deduction from a function call, 83 /// we are matching in a case where we can perform template argument 84 /// deduction from a template-id of a derived class of the argument type. 85 TDF_DerivedClass = 0x04, 86 87 /// Allow non-dependent types to differ, e.g., when performing 88 /// template argument deduction from a function call where conversions 89 /// may apply. 90 TDF_SkipNonDependent = 0x08, 91 92 /// Whether we are performing template argument deduction for 93 /// parameters and arguments in a top-level template argument 94 TDF_TopLevelParameterTypeList = 0x10, 95 96 /// Within template argument deduction from overload resolution per 97 /// C++ [over.over] allow matching function types that are compatible in 98 /// terms of noreturn and default calling convention adjustments, or 99 /// similarly matching a declared template specialization against a 100 /// possible template, per C++ [temp.deduct.decl]. In either case, permit 101 /// deduction where the parameter is a function type that can be converted 102 /// to the argument type. 103 TDF_AllowCompatibleFunctionType = 0x20, 104 105 /// Within template argument deduction for a conversion function, we are 106 /// matching with an argument type for which the original argument was 107 /// a reference. 108 TDF_ArgWithReferenceType = 0x40, 109 }; 110 } 111 112 using namespace clang; 113 using namespace sema; 114 115 /// Compare two APSInts, extending and switching the sign as 116 /// necessary to compare their values regardless of underlying type. 117 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) { 118 if (Y.getBitWidth() > X.getBitWidth()) 119 X = X.extend(Y.getBitWidth()); 120 else if (Y.getBitWidth() < X.getBitWidth()) 121 Y = Y.extend(X.getBitWidth()); 122 123 // If there is a signedness mismatch, correct it. 124 if (X.isSigned() != Y.isSigned()) { 125 // If the signed value is negative, then the values cannot be the same. 126 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative())) 127 return false; 128 129 Y.setIsSigned(true); 130 X.setIsSigned(true); 131 } 132 133 return X == Y; 134 } 135 136 static Sema::TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch( 137 Sema &S, TemplateParameterList *TemplateParams, QualType Param, 138 QualType Arg, TemplateDeductionInfo &Info, 139 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF, 140 bool PartialOrdering = false, bool DeducedFromArrayBound = false); 141 142 static Sema::TemplateDeductionResult 143 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 144 ArrayRef<TemplateArgument> Ps, 145 ArrayRef<TemplateArgument> As, 146 TemplateDeductionInfo &Info, 147 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 148 bool NumberOfArgumentsMustMatch); 149 150 static void MarkUsedTemplateParameters(ASTContext &Ctx, 151 const TemplateArgument &TemplateArg, 152 bool OnlyDeduced, unsigned Depth, 153 llvm::SmallBitVector &Used); 154 155 static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 156 bool OnlyDeduced, unsigned Level, 157 llvm::SmallBitVector &Deduced); 158 159 /// If the given expression is of a form that permits the deduction 160 /// of a non-type template parameter, return the declaration of that 161 /// non-type template parameter. 162 static const NonTypeTemplateParmDecl * 163 getDeducedParameterFromExpr(const Expr *E, unsigned Depth) { 164 // If we are within an alias template, the expression may have undergone 165 // any number of parameter substitutions already. 166 while (true) { 167 if (const auto *IC = dyn_cast<ImplicitCastExpr>(E)) 168 E = IC->getSubExpr(); 169 else if (const auto *CE = dyn_cast<ConstantExpr>(E)) 170 E = CE->getSubExpr(); 171 else if (const auto *Subst = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 172 E = Subst->getReplacement(); 173 else if (const auto *CCE = dyn_cast<CXXConstructExpr>(E)) { 174 // Look through implicit copy construction from an lvalue of the same type. 175 if (CCE->getParenOrBraceRange().isValid()) 176 break; 177 // Note, there could be default arguments. 178 assert(CCE->getNumArgs() >= 1 && "implicit construct expr should have 1 arg"); 179 E = CCE->getArg(0); 180 } else 181 break; 182 } 183 184 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 185 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) 186 if (NTTP->getDepth() == Depth) 187 return NTTP; 188 189 return nullptr; 190 } 191 192 static const NonTypeTemplateParmDecl * 193 getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) { 194 return getDeducedParameterFromExpr(E, Info.getDeducedDepth()); 195 } 196 197 /// Determine whether two declaration pointers refer to the same 198 /// declaration. 199 static bool isSameDeclaration(Decl *X, Decl *Y) { 200 if (NamedDecl *NX = dyn_cast<NamedDecl>(X)) 201 X = NX->getUnderlyingDecl(); 202 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y)) 203 Y = NY->getUnderlyingDecl(); 204 205 return X->getCanonicalDecl() == Y->getCanonicalDecl(); 206 } 207 208 /// Verify that the given, deduced template arguments are compatible. 209 /// 210 /// \returns The deduced template argument, or a NULL template argument if 211 /// the deduced template arguments were incompatible. 212 static DeducedTemplateArgument 213 checkDeducedTemplateArguments(ASTContext &Context, 214 const DeducedTemplateArgument &X, 215 const DeducedTemplateArgument &Y, 216 bool AggregateCandidateDeduction = false) { 217 // We have no deduction for one or both of the arguments; they're compatible. 218 if (X.isNull()) 219 return Y; 220 if (Y.isNull()) 221 return X; 222 223 // If we have two non-type template argument values deduced for the same 224 // parameter, they must both match the type of the parameter, and thus must 225 // match each other's type. As we're only keeping one of them, we must check 226 // for that now. The exception is that if either was deduced from an array 227 // bound, the type is permitted to differ. 228 if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) { 229 QualType XType = X.getNonTypeTemplateArgumentType(); 230 if (!XType.isNull()) { 231 QualType YType = Y.getNonTypeTemplateArgumentType(); 232 if (YType.isNull() || !Context.hasSameType(XType, YType)) 233 return DeducedTemplateArgument(); 234 } 235 } 236 237 switch (X.getKind()) { 238 case TemplateArgument::Null: 239 llvm_unreachable("Non-deduced template arguments handled above"); 240 241 case TemplateArgument::Type: { 242 // If two template type arguments have the same type, they're compatible. 243 QualType TX = X.getAsType(), TY = Y.getAsType(); 244 if (Y.getKind() == TemplateArgument::Type && Context.hasSameType(TX, TY)) 245 return DeducedTemplateArgument(Context.getCommonSugaredType(TX, TY), 246 X.wasDeducedFromArrayBound() || 247 Y.wasDeducedFromArrayBound()); 248 249 // If one of the two arguments was deduced from an array bound, the other 250 // supersedes it. 251 if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound()) 252 return X.wasDeducedFromArrayBound() ? Y : X; 253 254 // The arguments are not compatible. 255 return DeducedTemplateArgument(); 256 } 257 258 case TemplateArgument::Integral: 259 // If we deduced a constant in one case and either a dependent expression or 260 // declaration in another case, keep the integral constant. 261 // If both are integral constants with the same value, keep that value. 262 if (Y.getKind() == TemplateArgument::Expression || 263 Y.getKind() == TemplateArgument::Declaration || 264 (Y.getKind() == TemplateArgument::Integral && 265 hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()))) 266 return X.wasDeducedFromArrayBound() ? Y : X; 267 268 // All other combinations are incompatible. 269 return DeducedTemplateArgument(); 270 271 case TemplateArgument::StructuralValue: 272 // If we deduced a value and a dependent expression, keep the value. 273 if (Y.getKind() == TemplateArgument::Expression || 274 (Y.getKind() == TemplateArgument::StructuralValue && 275 X.structurallyEquals(Y))) 276 return X; 277 278 // All other combinations are incompatible. 279 return DeducedTemplateArgument(); 280 281 case TemplateArgument::Template: 282 if (Y.getKind() == TemplateArgument::Template && 283 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate())) 284 return X; 285 286 // All other combinations are incompatible. 287 return DeducedTemplateArgument(); 288 289 case TemplateArgument::TemplateExpansion: 290 if (Y.getKind() == TemplateArgument::TemplateExpansion && 291 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(), 292 Y.getAsTemplateOrTemplatePattern())) 293 return X; 294 295 // All other combinations are incompatible. 296 return DeducedTemplateArgument(); 297 298 case TemplateArgument::Expression: { 299 if (Y.getKind() != TemplateArgument::Expression) 300 return checkDeducedTemplateArguments(Context, Y, X); 301 302 // Compare the expressions for equality 303 llvm::FoldingSetNodeID ID1, ID2; 304 X.getAsExpr()->Profile(ID1, Context, true); 305 Y.getAsExpr()->Profile(ID2, Context, true); 306 if (ID1 == ID2) 307 return X.wasDeducedFromArrayBound() ? Y : X; 308 309 // Differing dependent expressions are incompatible. 310 return DeducedTemplateArgument(); 311 } 312 313 case TemplateArgument::Declaration: 314 assert(!X.wasDeducedFromArrayBound()); 315 316 // If we deduced a declaration and a dependent expression, keep the 317 // declaration. 318 if (Y.getKind() == TemplateArgument::Expression) 319 return X; 320 321 // If we deduced a declaration and an integral constant, keep the 322 // integral constant and whichever type did not come from an array 323 // bound. 324 if (Y.getKind() == TemplateArgument::Integral) { 325 if (Y.wasDeducedFromArrayBound()) 326 return TemplateArgument(Context, Y.getAsIntegral(), 327 X.getParamTypeForDecl()); 328 return Y; 329 } 330 331 // If we deduced two declarations, make sure that they refer to the 332 // same declaration. 333 if (Y.getKind() == TemplateArgument::Declaration && 334 isSameDeclaration(X.getAsDecl(), Y.getAsDecl())) 335 return X; 336 337 // All other combinations are incompatible. 338 return DeducedTemplateArgument(); 339 340 case TemplateArgument::NullPtr: 341 // If we deduced a null pointer and a dependent expression, keep the 342 // null pointer. 343 if (Y.getKind() == TemplateArgument::Expression) 344 return TemplateArgument(Context.getCommonSugaredType( 345 X.getNullPtrType(), Y.getAsExpr()->getType()), 346 true); 347 348 // If we deduced a null pointer and an integral constant, keep the 349 // integral constant. 350 if (Y.getKind() == TemplateArgument::Integral) 351 return Y; 352 353 // If we deduced two null pointers, they are the same. 354 if (Y.getKind() == TemplateArgument::NullPtr) 355 return TemplateArgument( 356 Context.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()), 357 true); 358 359 // All other combinations are incompatible. 360 return DeducedTemplateArgument(); 361 362 case TemplateArgument::Pack: { 363 if (Y.getKind() != TemplateArgument::Pack || 364 (!AggregateCandidateDeduction && X.pack_size() != Y.pack_size())) 365 return DeducedTemplateArgument(); 366 367 llvm::SmallVector<TemplateArgument, 8> NewPack; 368 for (TemplateArgument::pack_iterator 369 XA = X.pack_begin(), 370 XAEnd = X.pack_end(), YA = Y.pack_begin(), YAEnd = Y.pack_end(); 371 XA != XAEnd; ++XA, ++YA) { 372 if (YA != YAEnd) { 373 TemplateArgument Merged = checkDeducedTemplateArguments( 374 Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), 375 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())); 376 if (Merged.isNull() && !(XA->isNull() && YA->isNull())) 377 return DeducedTemplateArgument(); 378 NewPack.push_back(Merged); 379 } else { 380 NewPack.push_back(*XA); 381 } 382 } 383 384 return DeducedTemplateArgument( 385 TemplateArgument::CreatePackCopy(Context, NewPack), 386 X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound()); 387 } 388 } 389 390 llvm_unreachable("Invalid TemplateArgument Kind!"); 391 } 392 393 /// Deduce the value of the given non-type template parameter 394 /// as the given deduced template argument. All non-type template parameter 395 /// deduction is funneled through here. 396 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 397 Sema &S, TemplateParameterList *TemplateParams, 398 const NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced, 399 QualType ValueType, TemplateDeductionInfo &Info, 400 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 401 assert(NTTP->getDepth() == Info.getDeducedDepth() && 402 "deducing non-type template argument with wrong depth"); 403 404 DeducedTemplateArgument Result = checkDeducedTemplateArguments( 405 S.Context, Deduced[NTTP->getIndex()], NewDeduced); 406 if (Result.isNull()) { 407 Info.Param = const_cast<NonTypeTemplateParmDecl*>(NTTP); 408 Info.FirstArg = Deduced[NTTP->getIndex()]; 409 Info.SecondArg = NewDeduced; 410 return Sema::TDK_Inconsistent; 411 } 412 413 Deduced[NTTP->getIndex()] = Result; 414 if (!S.getLangOpts().CPlusPlus17) 415 return Sema::TDK_Success; 416 417 if (NTTP->isExpandedParameterPack()) 418 // FIXME: We may still need to deduce parts of the type here! But we 419 // don't have any way to find which slice of the type to use, and the 420 // type stored on the NTTP itself is nonsense. Perhaps the type of an 421 // expanded NTTP should be a pack expansion type? 422 return Sema::TDK_Success; 423 424 // Get the type of the parameter for deduction. If it's a (dependent) array 425 // or function type, we will not have decayed it yet, so do that now. 426 QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType()); 427 if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType)) 428 ParamType = Expansion->getPattern(); 429 430 // FIXME: It's not clear how deduction of a parameter of reference 431 // type from an argument (of non-reference type) should be performed. 432 // For now, we just remove reference types from both sides and let 433 // the final check for matching types sort out the mess. 434 ValueType = ValueType.getNonReferenceType(); 435 if (ParamType->isReferenceType()) 436 ParamType = ParamType.getNonReferenceType(); 437 else 438 // Top-level cv-qualifiers are irrelevant for a non-reference type. 439 ValueType = ValueType.getUnqualifiedType(); 440 441 return DeduceTemplateArgumentsByTypeMatch( 442 S, TemplateParams, ParamType, ValueType, Info, Deduced, 443 TDF_SkipNonDependent, /*PartialOrdering=*/false, 444 /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound()); 445 } 446 447 /// Deduce the value of the given non-type template parameter 448 /// from the given integral constant. 449 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 450 Sema &S, TemplateParameterList *TemplateParams, 451 const NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value, 452 QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info, 453 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 454 return DeduceNonTypeTemplateArgument( 455 S, TemplateParams, NTTP, 456 DeducedTemplateArgument(S.Context, Value, ValueType, 457 DeducedFromArrayBound), 458 ValueType, Info, Deduced); 459 } 460 461 /// Deduce the value of the given non-type template parameter 462 /// from the given null pointer template argument type. 463 static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument( 464 Sema &S, TemplateParameterList *TemplateParams, 465 const NonTypeTemplateParmDecl *NTTP, QualType NullPtrType, 466 TemplateDeductionInfo &Info, 467 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 468 Expr *Value = S.ImpCastExprToType( 469 new (S.Context) CXXNullPtrLiteralExpr(S.Context.NullPtrTy, 470 NTTP->getLocation()), 471 NullPtrType, 472 NullPtrType->isMemberPointerType() ? CK_NullToMemberPointer 473 : CK_NullToPointer) 474 .get(); 475 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 476 DeducedTemplateArgument(Value), 477 Value->getType(), Info, Deduced); 478 } 479 480 /// Deduce the value of the given non-type template parameter 481 /// from the given type- or value-dependent expression. 482 /// 483 /// \returns true if deduction succeeded, false otherwise. 484 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 485 Sema &S, TemplateParameterList *TemplateParams, 486 const NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info, 487 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 488 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 489 DeducedTemplateArgument(Value), 490 Value->getType(), Info, Deduced); 491 } 492 493 /// Deduce the value of the given non-type template parameter 494 /// from the given declaration. 495 /// 496 /// \returns true if deduction succeeded, false otherwise. 497 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 498 Sema &S, TemplateParameterList *TemplateParams, 499 const NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T, 500 TemplateDeductionInfo &Info, 501 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 502 D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; 503 TemplateArgument New(D, T); 504 return DeduceNonTypeTemplateArgument( 505 S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced); 506 } 507 508 static Sema::TemplateDeductionResult 509 DeduceTemplateArguments(Sema &S, 510 TemplateParameterList *TemplateParams, 511 TemplateName Param, 512 TemplateName Arg, 513 TemplateDeductionInfo &Info, 514 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 515 TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); 516 if (!ParamDecl) { 517 // The parameter type is dependent and is not a template template parameter, 518 // so there is nothing that we can deduce. 519 return Sema::TDK_Success; 520 } 521 522 if (TemplateTemplateParmDecl *TempParam 523 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) { 524 // If we're not deducing at this depth, there's nothing to deduce. 525 if (TempParam->getDepth() != Info.getDeducedDepth()) 526 return Sema::TDK_Success; 527 528 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg)); 529 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 530 Deduced[TempParam->getIndex()], 531 NewDeduced); 532 if (Result.isNull()) { 533 Info.Param = TempParam; 534 Info.FirstArg = Deduced[TempParam->getIndex()]; 535 Info.SecondArg = NewDeduced; 536 return Sema::TDK_Inconsistent; 537 } 538 539 Deduced[TempParam->getIndex()] = Result; 540 return Sema::TDK_Success; 541 } 542 543 // Verify that the two template names are equivalent. 544 if (S.Context.hasSameTemplateName(Param, Arg)) 545 return Sema::TDK_Success; 546 547 // Mismatch of non-dependent template parameter to argument. 548 Info.FirstArg = TemplateArgument(Param); 549 Info.SecondArg = TemplateArgument(Arg); 550 return Sema::TDK_NonDeducedMismatch; 551 } 552 553 /// Deduce the template arguments by comparing the template parameter 554 /// type (which is a template-id) with the template argument type. 555 /// 556 /// \param S the Sema 557 /// 558 /// \param TemplateParams the template parameters that we are deducing 559 /// 560 /// \param P the parameter type 561 /// 562 /// \param A the argument type 563 /// 564 /// \param Info information about the template argument deduction itself 565 /// 566 /// \param Deduced the deduced template arguments 567 /// 568 /// \returns the result of template argument deduction so far. Note that a 569 /// "success" result means that template argument deduction has not yet failed, 570 /// but it may still fail, later, for other reasons. 571 static Sema::TemplateDeductionResult 572 DeduceTemplateSpecArguments(Sema &S, TemplateParameterList *TemplateParams, 573 const QualType P, QualType A, 574 TemplateDeductionInfo &Info, 575 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 576 QualType UP = P; 577 if (const auto *IP = P->getAs<InjectedClassNameType>()) 578 UP = IP->getInjectedSpecializationType(); 579 // FIXME: Try to preserve type sugar here, which is hard 580 // because of the unresolved template arguments. 581 const auto *TP = UP.getCanonicalType()->castAs<TemplateSpecializationType>(); 582 TemplateName TNP = TP->getTemplateName(); 583 584 // If the parameter is an alias template, there is nothing to deduce. 585 if (const auto *TD = TNP.getAsTemplateDecl(); TD && TD->isTypeAlias()) 586 return Sema::TDK_Success; 587 588 ArrayRef<TemplateArgument> PResolved = TP->template_arguments(); 589 590 QualType UA = A; 591 // Treat an injected-class-name as its underlying template-id. 592 if (const auto *Injected = A->getAs<InjectedClassNameType>()) 593 UA = Injected->getInjectedSpecializationType(); 594 595 // Check whether the template argument is a dependent template-id. 596 // FIXME: Should not lose sugar here. 597 if (const auto *SA = 598 dyn_cast<TemplateSpecializationType>(UA.getCanonicalType())) { 599 TemplateName TNA = SA->getTemplateName(); 600 601 // If the argument is an alias template, there is nothing to deduce. 602 if (const auto *TD = TNA.getAsTemplateDecl(); TD && TD->isTypeAlias()) 603 return Sema::TDK_Success; 604 605 // Perform template argument deduction for the template name. 606 if (auto Result = 607 DeduceTemplateArguments(S, TemplateParams, TNP, TNA, Info, Deduced)) 608 return Result; 609 // Perform template argument deduction on each template 610 // argument. Ignore any missing/extra arguments, since they could be 611 // filled in by default arguments. 612 return DeduceTemplateArguments(S, TemplateParams, PResolved, 613 SA->template_arguments(), Info, Deduced, 614 /*NumberOfArgumentsMustMatch=*/false); 615 } 616 617 // If the argument type is a class template specialization, we 618 // perform template argument deduction using its template 619 // arguments. 620 const auto *RA = UA->getAs<RecordType>(); 621 const auto *SA = 622 RA ? dyn_cast<ClassTemplateSpecializationDecl>(RA->getDecl()) : nullptr; 623 if (!SA) { 624 Info.FirstArg = TemplateArgument(P); 625 Info.SecondArg = TemplateArgument(A); 626 return Sema::TDK_NonDeducedMismatch; 627 } 628 629 // Perform template argument deduction for the template name. 630 if (auto Result = DeduceTemplateArguments( 631 S, TemplateParams, TP->getTemplateName(), 632 TemplateName(SA->getSpecializedTemplate()), Info, Deduced)) 633 return Result; 634 635 // Perform template argument deduction for the template arguments. 636 return DeduceTemplateArguments(S, TemplateParams, PResolved, 637 SA->getTemplateArgs().asArray(), Info, Deduced, 638 /*NumberOfArgumentsMustMatch=*/true); 639 } 640 641 static bool IsPossiblyOpaquelyQualifiedTypeInternal(const Type *T) { 642 assert(T->isCanonicalUnqualified()); 643 644 switch (T->getTypeClass()) { 645 case Type::TypeOfExpr: 646 case Type::TypeOf: 647 case Type::DependentName: 648 case Type::Decltype: 649 case Type::UnresolvedUsing: 650 case Type::TemplateTypeParm: 651 return true; 652 653 case Type::ConstantArray: 654 case Type::IncompleteArray: 655 case Type::VariableArray: 656 case Type::DependentSizedArray: 657 return IsPossiblyOpaquelyQualifiedTypeInternal( 658 cast<ArrayType>(T)->getElementType().getTypePtr()); 659 660 default: 661 return false; 662 } 663 } 664 665 /// Determines whether the given type is an opaque type that 666 /// might be more qualified when instantiated. 667 static bool IsPossiblyOpaquelyQualifiedType(QualType T) { 668 return IsPossiblyOpaquelyQualifiedTypeInternal( 669 T->getCanonicalTypeInternal().getTypePtr()); 670 } 671 672 /// Helper function to build a TemplateParameter when we don't 673 /// know its type statically. 674 static TemplateParameter makeTemplateParameter(Decl *D) { 675 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D)) 676 return TemplateParameter(TTP); 677 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) 678 return TemplateParameter(NTTP); 679 680 return TemplateParameter(cast<TemplateTemplateParmDecl>(D)); 681 } 682 683 /// A pack that we're currently deducing. 684 struct clang::DeducedPack { 685 // The index of the pack. 686 unsigned Index; 687 688 // The old value of the pack before we started deducing it. 689 DeducedTemplateArgument Saved; 690 691 // A deferred value of this pack from an inner deduction, that couldn't be 692 // deduced because this deduction hadn't happened yet. 693 DeducedTemplateArgument DeferredDeduction; 694 695 // The new value of the pack. 696 SmallVector<DeducedTemplateArgument, 4> New; 697 698 // The outer deduction for this pack, if any. 699 DeducedPack *Outer = nullptr; 700 701 DeducedPack(unsigned Index) : Index(Index) {} 702 }; 703 704 namespace { 705 706 /// A scope in which we're performing pack deduction. 707 class PackDeductionScope { 708 public: 709 /// Prepare to deduce the packs named within Pattern. 710 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 711 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 712 TemplateDeductionInfo &Info, TemplateArgument Pattern, 713 bool DeducePackIfNotAlreadyDeduced = false) 714 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info), 715 DeducePackIfNotAlreadyDeduced(DeducePackIfNotAlreadyDeduced){ 716 unsigned NumNamedPacks = addPacks(Pattern); 717 finishConstruction(NumNamedPacks); 718 } 719 720 /// Prepare to directly deduce arguments of the parameter with index \p Index. 721 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 722 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 723 TemplateDeductionInfo &Info, unsigned Index) 724 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { 725 addPack(Index); 726 finishConstruction(1); 727 } 728 729 private: 730 void addPack(unsigned Index) { 731 // Save the deduced template argument for the parameter pack expanded 732 // by this pack expansion, then clear out the deduction. 733 DeducedPack Pack(Index); 734 Pack.Saved = Deduced[Index]; 735 Deduced[Index] = TemplateArgument(); 736 737 // FIXME: What if we encounter multiple packs with different numbers of 738 // pre-expanded expansions? (This should already have been diagnosed 739 // during substitution.) 740 if (std::optional<unsigned> ExpandedPackExpansions = 741 getExpandedPackSize(TemplateParams->getParam(Index))) 742 FixedNumExpansions = ExpandedPackExpansions; 743 744 Packs.push_back(Pack); 745 } 746 747 unsigned addPacks(TemplateArgument Pattern) { 748 // Compute the set of template parameter indices that correspond to 749 // parameter packs expanded by the pack expansion. 750 llvm::SmallBitVector SawIndices(TemplateParams->size()); 751 llvm::SmallVector<TemplateArgument, 4> ExtraDeductions; 752 753 auto AddPack = [&](unsigned Index) { 754 if (SawIndices[Index]) 755 return; 756 SawIndices[Index] = true; 757 addPack(Index); 758 759 // Deducing a parameter pack that is a pack expansion also constrains the 760 // packs appearing in that parameter to have the same deduced arity. Also, 761 // in C++17 onwards, deducing a non-type template parameter deduces its 762 // type, so we need to collect the pending deduced values for those packs. 763 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>( 764 TemplateParams->getParam(Index))) { 765 if (!NTTP->isExpandedParameterPack()) 766 if (auto *Expansion = dyn_cast<PackExpansionType>(NTTP->getType())) 767 ExtraDeductions.push_back(Expansion->getPattern()); 768 } 769 // FIXME: Also collect the unexpanded packs in any type and template 770 // parameter packs that are pack expansions. 771 }; 772 773 auto Collect = [&](TemplateArgument Pattern) { 774 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 775 S.collectUnexpandedParameterPacks(Pattern, Unexpanded); 776 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { 777 unsigned Depth, Index; 778 std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); 779 if (Depth == Info.getDeducedDepth()) 780 AddPack(Index); 781 } 782 }; 783 784 // Look for unexpanded packs in the pattern. 785 Collect(Pattern); 786 assert(!Packs.empty() && "Pack expansion without unexpanded packs?"); 787 788 unsigned NumNamedPacks = Packs.size(); 789 790 // Also look for unexpanded packs that are indirectly deduced by deducing 791 // the sizes of the packs in this pattern. 792 while (!ExtraDeductions.empty()) 793 Collect(ExtraDeductions.pop_back_val()); 794 795 return NumNamedPacks; 796 } 797 798 void finishConstruction(unsigned NumNamedPacks) { 799 // Dig out the partially-substituted pack, if there is one. 800 const TemplateArgument *PartialPackArgs = nullptr; 801 unsigned NumPartialPackArgs = 0; 802 std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u); 803 if (auto *Scope = S.CurrentInstantiationScope) 804 if (auto *Partial = Scope->getPartiallySubstitutedPack( 805 &PartialPackArgs, &NumPartialPackArgs)) 806 PartialPackDepthIndex = getDepthAndIndex(Partial); 807 808 // This pack expansion will have been partially or fully expanded if 809 // it only names explicitly-specified parameter packs (including the 810 // partially-substituted one, if any). 811 bool IsExpanded = true; 812 for (unsigned I = 0; I != NumNamedPacks; ++I) { 813 if (Packs[I].Index >= Info.getNumExplicitArgs()) { 814 IsExpanded = false; 815 IsPartiallyExpanded = false; 816 break; 817 } 818 if (PartialPackDepthIndex == 819 std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) { 820 IsPartiallyExpanded = true; 821 } 822 } 823 824 // Skip over the pack elements that were expanded into separate arguments. 825 // If we partially expanded, this is the number of partial arguments. 826 if (IsPartiallyExpanded) 827 PackElements += NumPartialPackArgs; 828 else if (IsExpanded) 829 PackElements += *FixedNumExpansions; 830 831 for (auto &Pack : Packs) { 832 if (Info.PendingDeducedPacks.size() > Pack.Index) 833 Pack.Outer = Info.PendingDeducedPacks[Pack.Index]; 834 else 835 Info.PendingDeducedPacks.resize(Pack.Index + 1); 836 Info.PendingDeducedPacks[Pack.Index] = &Pack; 837 838 if (PartialPackDepthIndex == 839 std::make_pair(Info.getDeducedDepth(), Pack.Index)) { 840 Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs); 841 // We pre-populate the deduced value of the partially-substituted 842 // pack with the specified value. This is not entirely correct: the 843 // value is supposed to have been substituted, not deduced, but the 844 // cases where this is observable require an exact type match anyway. 845 // 846 // FIXME: If we could represent a "depth i, index j, pack elem k" 847 // parameter, we could substitute the partially-substituted pack 848 // everywhere and avoid this. 849 if (!IsPartiallyExpanded) 850 Deduced[Pack.Index] = Pack.New[PackElements]; 851 } 852 } 853 } 854 855 public: 856 ~PackDeductionScope() { 857 for (auto &Pack : Packs) 858 Info.PendingDeducedPacks[Pack.Index] = Pack.Outer; 859 } 860 861 /// Determine whether this pack has already been partially expanded into a 862 /// sequence of (prior) function parameters / template arguments. 863 bool isPartiallyExpanded() { return IsPartiallyExpanded; } 864 865 /// Determine whether this pack expansion scope has a known, fixed arity. 866 /// This happens if it involves a pack from an outer template that has 867 /// (notionally) already been expanded. 868 bool hasFixedArity() { return FixedNumExpansions.has_value(); } 869 870 /// Determine whether the next element of the argument is still part of this 871 /// pack. This is the case unless the pack is already expanded to a fixed 872 /// length. 873 bool hasNextElement() { 874 return !FixedNumExpansions || *FixedNumExpansions > PackElements; 875 } 876 877 /// Move to deducing the next element in each pack that is being deduced. 878 void nextPackElement() { 879 // Capture the deduced template arguments for each parameter pack expanded 880 // by this pack expansion, add them to the list of arguments we've deduced 881 // for that pack, then clear out the deduced argument. 882 for (auto &Pack : Packs) { 883 DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index]; 884 if (!Pack.New.empty() || !DeducedArg.isNull()) { 885 while (Pack.New.size() < PackElements) 886 Pack.New.push_back(DeducedTemplateArgument()); 887 if (Pack.New.size() == PackElements) 888 Pack.New.push_back(DeducedArg); 889 else 890 Pack.New[PackElements] = DeducedArg; 891 DeducedArg = Pack.New.size() > PackElements + 1 892 ? Pack.New[PackElements + 1] 893 : DeducedTemplateArgument(); 894 } 895 } 896 ++PackElements; 897 } 898 899 /// Finish template argument deduction for a set of argument packs, 900 /// producing the argument packs and checking for consistency with prior 901 /// deductions. 902 Sema::TemplateDeductionResult finish() { 903 // Build argument packs for each of the parameter packs expanded by this 904 // pack expansion. 905 for (auto &Pack : Packs) { 906 // Put back the old value for this pack. 907 Deduced[Pack.Index] = Pack.Saved; 908 909 // Always make sure the size of this pack is correct, even if we didn't 910 // deduce any values for it. 911 // 912 // FIXME: This isn't required by the normative wording, but substitution 913 // and post-substitution checking will always fail if the arity of any 914 // pack is not equal to the number of elements we processed. (Either that 915 // or something else has gone *very* wrong.) We're permitted to skip any 916 // hard errors from those follow-on steps by the intent (but not the 917 // wording) of C++ [temp.inst]p8: 918 // 919 // If the function selected by overload resolution can be determined 920 // without instantiating a class template definition, it is unspecified 921 // whether that instantiation actually takes place 922 Pack.New.resize(PackElements); 923 924 // Build or find a new value for this pack. 925 DeducedTemplateArgument NewPack; 926 if (Pack.New.empty()) { 927 // If we deduced an empty argument pack, create it now. 928 NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack()); 929 } else { 930 TemplateArgument *ArgumentPack = 931 new (S.Context) TemplateArgument[Pack.New.size()]; 932 std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack); 933 NewPack = DeducedTemplateArgument( 934 TemplateArgument(llvm::ArrayRef(ArgumentPack, Pack.New.size())), 935 // FIXME: This is wrong, it's possible that some pack elements are 936 // deduced from an array bound and others are not: 937 // template<typename ...T, T ...V> void g(const T (&...p)[V]); 938 // g({1, 2, 3}, {{}, {}}); 939 // ... should deduce T = {int, size_t (from array bound)}. 940 Pack.New[0].wasDeducedFromArrayBound()); 941 } 942 943 // Pick where we're going to put the merged pack. 944 DeducedTemplateArgument *Loc; 945 if (Pack.Outer) { 946 if (Pack.Outer->DeferredDeduction.isNull()) { 947 // Defer checking this pack until we have a complete pack to compare 948 // it against. 949 Pack.Outer->DeferredDeduction = NewPack; 950 continue; 951 } 952 Loc = &Pack.Outer->DeferredDeduction; 953 } else { 954 Loc = &Deduced[Pack.Index]; 955 } 956 957 // Check the new pack matches any previous value. 958 DeducedTemplateArgument OldPack = *Loc; 959 DeducedTemplateArgument Result = checkDeducedTemplateArguments( 960 S.Context, OldPack, NewPack, DeducePackIfNotAlreadyDeduced); 961 962 Info.AggregateDeductionCandidateHasMismatchedArity = 963 OldPack.getKind() == TemplateArgument::Pack && 964 NewPack.getKind() == TemplateArgument::Pack && 965 OldPack.pack_size() != NewPack.pack_size() && !Result.isNull(); 966 967 // If we deferred a deduction of this pack, check that one now too. 968 if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) { 969 OldPack = Result; 970 NewPack = Pack.DeferredDeduction; 971 Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 972 } 973 974 NamedDecl *Param = TemplateParams->getParam(Pack.Index); 975 if (Result.isNull()) { 976 Info.Param = makeTemplateParameter(Param); 977 Info.FirstArg = OldPack; 978 Info.SecondArg = NewPack; 979 return Sema::TDK_Inconsistent; 980 } 981 982 // If we have a pre-expanded pack and we didn't deduce enough elements 983 // for it, fail deduction. 984 if (std::optional<unsigned> Expansions = getExpandedPackSize(Param)) { 985 if (*Expansions != PackElements) { 986 Info.Param = makeTemplateParameter(Param); 987 Info.FirstArg = Result; 988 return Sema::TDK_IncompletePack; 989 } 990 } 991 992 *Loc = Result; 993 } 994 995 return Sema::TDK_Success; 996 } 997 998 private: 999 Sema &S; 1000 TemplateParameterList *TemplateParams; 1001 SmallVectorImpl<DeducedTemplateArgument> &Deduced; 1002 TemplateDeductionInfo &Info; 1003 unsigned PackElements = 0; 1004 bool IsPartiallyExpanded = false; 1005 bool DeducePackIfNotAlreadyDeduced = false; 1006 /// The number of expansions, if we have a fully-expanded pack in this scope. 1007 std::optional<unsigned> FixedNumExpansions; 1008 1009 SmallVector<DeducedPack, 2> Packs; 1010 }; 1011 1012 } // namespace 1013 1014 /// Deduce the template arguments by comparing the list of parameter 1015 /// types to the list of argument types, as in the parameter-type-lists of 1016 /// function types (C++ [temp.deduct.type]p10). 1017 /// 1018 /// \param S The semantic analysis object within which we are deducing 1019 /// 1020 /// \param TemplateParams The template parameters that we are deducing 1021 /// 1022 /// \param Params The list of parameter types 1023 /// 1024 /// \param NumParams The number of types in \c Params 1025 /// 1026 /// \param Args The list of argument types 1027 /// 1028 /// \param NumArgs The number of types in \c Args 1029 /// 1030 /// \param Info information about the template argument deduction itself 1031 /// 1032 /// \param Deduced the deduced template arguments 1033 /// 1034 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 1035 /// how template argument deduction is performed. 1036 /// 1037 /// \param PartialOrdering If true, we are performing template argument 1038 /// deduction for during partial ordering for a call 1039 /// (C++0x [temp.deduct.partial]). 1040 /// 1041 /// \returns the result of template argument deduction so far. Note that a 1042 /// "success" result means that template argument deduction has not yet failed, 1043 /// but it may still fail, later, for other reasons. 1044 static Sema::TemplateDeductionResult 1045 DeduceTemplateArguments(Sema &S, 1046 TemplateParameterList *TemplateParams, 1047 const QualType *Params, unsigned NumParams, 1048 const QualType *Args, unsigned NumArgs, 1049 TemplateDeductionInfo &Info, 1050 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 1051 unsigned TDF, 1052 bool PartialOrdering = false) { 1053 // C++0x [temp.deduct.type]p10: 1054 // Similarly, if P has a form that contains (T), then each parameter type 1055 // Pi of the respective parameter-type- list of P is compared with the 1056 // corresponding parameter type Ai of the corresponding parameter-type-list 1057 // of A. [...] 1058 unsigned ArgIdx = 0, ParamIdx = 0; 1059 for (; ParamIdx != NumParams; ++ParamIdx) { 1060 // Check argument types. 1061 const PackExpansionType *Expansion 1062 = dyn_cast<PackExpansionType>(Params[ParamIdx]); 1063 if (!Expansion) { 1064 // Simple case: compare the parameter and argument types at this point. 1065 1066 // Make sure we have an argument. 1067 if (ArgIdx >= NumArgs) 1068 return Sema::TDK_MiscellaneousDeductionFailure; 1069 1070 if (isa<PackExpansionType>(Args[ArgIdx])) { 1071 // C++0x [temp.deduct.type]p22: 1072 // If the original function parameter associated with A is a function 1073 // parameter pack and the function parameter associated with P is not 1074 // a function parameter pack, then template argument deduction fails. 1075 return Sema::TDK_MiscellaneousDeductionFailure; 1076 } 1077 1078 if (Sema::TemplateDeductionResult Result = 1079 DeduceTemplateArgumentsByTypeMatch( 1080 S, TemplateParams, Params[ParamIdx].getUnqualifiedType(), 1081 Args[ArgIdx].getUnqualifiedType(), Info, Deduced, TDF, 1082 PartialOrdering, 1083 /*DeducedFromArrayBound=*/false)) 1084 return Result; 1085 1086 ++ArgIdx; 1087 continue; 1088 } 1089 1090 // C++0x [temp.deduct.type]p10: 1091 // If the parameter-declaration corresponding to Pi is a function 1092 // parameter pack, then the type of its declarator- id is compared with 1093 // each remaining parameter type in the parameter-type-list of A. Each 1094 // comparison deduces template arguments for subsequent positions in the 1095 // template parameter packs expanded by the function parameter pack. 1096 1097 QualType Pattern = Expansion->getPattern(); 1098 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 1099 1100 // A pack scope with fixed arity is not really a pack any more, so is not 1101 // a non-deduced context. 1102 if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) { 1103 for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) { 1104 // Deduce template arguments from the pattern. 1105 if (Sema::TemplateDeductionResult Result = 1106 DeduceTemplateArgumentsByTypeMatch( 1107 S, TemplateParams, Pattern.getUnqualifiedType(), 1108 Args[ArgIdx].getUnqualifiedType(), Info, Deduced, TDF, 1109 PartialOrdering, /*DeducedFromArrayBound=*/false)) 1110 return Result; 1111 1112 PackScope.nextPackElement(); 1113 } 1114 } else { 1115 // C++0x [temp.deduct.type]p5: 1116 // The non-deduced contexts are: 1117 // - A function parameter pack that does not occur at the end of the 1118 // parameter-declaration-clause. 1119 // 1120 // FIXME: There is no wording to say what we should do in this case. We 1121 // choose to resolve this by applying the same rule that is applied for a 1122 // function call: that is, deduce all contained packs to their 1123 // explicitly-specified values (or to <> if there is no such value). 1124 // 1125 // This is seemingly-arbitrarily different from the case of a template-id 1126 // with a non-trailing pack-expansion in its arguments, which renders the 1127 // entire template-argument-list a non-deduced context. 1128 1129 // If the parameter type contains an explicitly-specified pack that we 1130 // could not expand, skip the number of parameters notionally created 1131 // by the expansion. 1132 std::optional<unsigned> NumExpansions = Expansion->getNumExpansions(); 1133 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 1134 for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs; 1135 ++I, ++ArgIdx) 1136 PackScope.nextPackElement(); 1137 } 1138 } 1139 1140 // Build argument packs for each of the parameter packs expanded by this 1141 // pack expansion. 1142 if (auto Result = PackScope.finish()) 1143 return Result; 1144 } 1145 1146 // DR692, DR1395 1147 // C++0x [temp.deduct.type]p10: 1148 // If the parameter-declaration corresponding to P_i ... 1149 // During partial ordering, if Ai was originally a function parameter pack: 1150 // - if P does not contain a function parameter type corresponding to Ai then 1151 // Ai is ignored; 1152 if (PartialOrdering && ArgIdx + 1 == NumArgs && 1153 isa<PackExpansionType>(Args[ArgIdx])) 1154 return Sema::TDK_Success; 1155 1156 // Make sure we don't have any extra arguments. 1157 if (ArgIdx < NumArgs) 1158 return Sema::TDK_MiscellaneousDeductionFailure; 1159 1160 return Sema::TDK_Success; 1161 } 1162 1163 /// Determine whether the parameter has qualifiers that the argument 1164 /// lacks. Put another way, determine whether there is no way to add 1165 /// a deduced set of qualifiers to the ParamType that would result in 1166 /// its qualifiers matching those of the ArgType. 1167 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, 1168 QualType ArgType) { 1169 Qualifiers ParamQs = ParamType.getQualifiers(); 1170 Qualifiers ArgQs = ArgType.getQualifiers(); 1171 1172 if (ParamQs == ArgQs) 1173 return false; 1174 1175 // Mismatched (but not missing) Objective-C GC attributes. 1176 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && 1177 ParamQs.hasObjCGCAttr()) 1178 return true; 1179 1180 // Mismatched (but not missing) address spaces. 1181 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && 1182 ParamQs.hasAddressSpace()) 1183 return true; 1184 1185 // Mismatched (but not missing) Objective-C lifetime qualifiers. 1186 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && 1187 ParamQs.hasObjCLifetime()) 1188 return true; 1189 1190 // CVR qualifiers inconsistent or a superset. 1191 return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0; 1192 } 1193 1194 /// Compare types for equality with respect to possibly compatible 1195 /// function types (noreturn adjustment, implicit calling conventions). If any 1196 /// of parameter and argument is not a function, just perform type comparison. 1197 /// 1198 /// \param P the template parameter type. 1199 /// 1200 /// \param A the argument type. 1201 bool Sema::isSameOrCompatibleFunctionType(QualType P, QualType A) { 1202 const FunctionType *PF = P->getAs<FunctionType>(), 1203 *AF = A->getAs<FunctionType>(); 1204 1205 // Just compare if not functions. 1206 if (!PF || !AF) 1207 return Context.hasSameType(P, A); 1208 1209 // Noreturn and noexcept adjustment. 1210 QualType AdjustedParam; 1211 if (IsFunctionConversion(P, A, AdjustedParam)) 1212 return Context.hasSameType(AdjustedParam, A); 1213 1214 // FIXME: Compatible calling conventions. 1215 1216 return Context.hasSameType(P, A); 1217 } 1218 1219 /// Get the index of the first template parameter that was originally from the 1220 /// innermost template-parameter-list. This is 0 except when we concatenate 1221 /// the template parameter lists of a class template and a constructor template 1222 /// when forming an implicit deduction guide. 1223 static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) { 1224 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl()); 1225 if (!Guide || !Guide->isImplicit()) 1226 return 0; 1227 return Guide->getDeducedTemplate()->getTemplateParameters()->size(); 1228 } 1229 1230 /// Determine whether a type denotes a forwarding reference. 1231 static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) { 1232 // C++1z [temp.deduct.call]p3: 1233 // A forwarding reference is an rvalue reference to a cv-unqualified 1234 // template parameter that does not represent a template parameter of a 1235 // class template. 1236 if (auto *ParamRef = Param->getAs<RValueReferenceType>()) { 1237 if (ParamRef->getPointeeType().getQualifiers()) 1238 return false; 1239 auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>(); 1240 return TypeParm && TypeParm->getIndex() >= FirstInnerIndex; 1241 } 1242 return false; 1243 } 1244 1245 static CXXRecordDecl *getCanonicalRD(QualType T) { 1246 return cast<CXXRecordDecl>( 1247 T->castAs<RecordType>()->getDecl()->getCanonicalDecl()); 1248 } 1249 1250 /// Attempt to deduce the template arguments by checking the base types 1251 /// according to (C++20 [temp.deduct.call] p4b3. 1252 /// 1253 /// \param S the semantic analysis object within which we are deducing. 1254 /// 1255 /// \param RD the top level record object we are deducing against. 1256 /// 1257 /// \param TemplateParams the template parameters that we are deducing. 1258 /// 1259 /// \param P the template specialization parameter type. 1260 /// 1261 /// \param Info information about the template argument deduction itself. 1262 /// 1263 /// \param Deduced the deduced template arguments. 1264 /// 1265 /// \returns the result of template argument deduction with the bases. "invalid" 1266 /// means no matches, "success" found a single item, and the 1267 /// "MiscellaneousDeductionFailure" result happens when the match is ambiguous. 1268 static Sema::TemplateDeductionResult 1269 DeduceTemplateBases(Sema &S, const CXXRecordDecl *RD, 1270 TemplateParameterList *TemplateParams, QualType P, 1271 TemplateDeductionInfo &Info, 1272 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 1273 // C++14 [temp.deduct.call] p4b3: 1274 // If P is a class and P has the form simple-template-id, then the 1275 // transformed A can be a derived class of the deduced A. Likewise if 1276 // P is a pointer to a class of the form simple-template-id, the 1277 // transformed A can be a pointer to a derived class pointed to by the 1278 // deduced A. However, if there is a class C that is a (direct or 1279 // indirect) base class of D and derived (directly or indirectly) from a 1280 // class B and that would be a valid deduced A, the deduced A cannot be 1281 // B or pointer to B, respectively. 1282 // 1283 // These alternatives are considered only if type deduction would 1284 // otherwise fail. If they yield more than one possible deduced A, the 1285 // type deduction fails. 1286 1287 // Use a breadth-first search through the bases to collect the set of 1288 // successful matches. Visited contains the set of nodes we have already 1289 // visited, while ToVisit is our stack of records that we still need to 1290 // visit. Matches contains a list of matches that have yet to be 1291 // disqualified. 1292 llvm::SmallPtrSet<const CXXRecordDecl *, 8> Visited; 1293 SmallVector<QualType, 8> ToVisit; 1294 // We iterate over this later, so we have to use MapVector to ensure 1295 // determinism. 1296 llvm::MapVector<const CXXRecordDecl *, 1297 SmallVector<DeducedTemplateArgument, 8>> 1298 Matches; 1299 1300 auto AddBases = [&Visited, &ToVisit](const CXXRecordDecl *RD) { 1301 for (const auto &Base : RD->bases()) { 1302 QualType T = Base.getType(); 1303 assert(T->isRecordType() && "Base class that isn't a record?"); 1304 if (Visited.insert(::getCanonicalRD(T)).second) 1305 ToVisit.push_back(T); 1306 } 1307 }; 1308 1309 // Set up the loop by adding all the bases. 1310 AddBases(RD); 1311 1312 // Search each path of bases until we either run into a successful match 1313 // (where all bases of it are invalid), or we run out of bases. 1314 while (!ToVisit.empty()) { 1315 QualType NextT = ToVisit.pop_back_val(); 1316 1317 SmallVector<DeducedTemplateArgument, 8> DeducedCopy(Deduced.begin(), 1318 Deduced.end()); 1319 TemplateDeductionInfo BaseInfo(TemplateDeductionInfo::ForBase, Info); 1320 Sema::TemplateDeductionResult BaseResult = DeduceTemplateSpecArguments( 1321 S, TemplateParams, P, NextT, BaseInfo, DeducedCopy); 1322 1323 // If this was a successful deduction, add it to the list of matches, 1324 // otherwise we need to continue searching its bases. 1325 const CXXRecordDecl *RD = ::getCanonicalRD(NextT); 1326 if (BaseResult == Sema::TDK_Success) 1327 Matches.insert({RD, DeducedCopy}); 1328 else 1329 AddBases(RD); 1330 } 1331 1332 // At this point, 'Matches' contains a list of seemingly valid bases, however 1333 // in the event that we have more than 1 match, it is possible that the base 1334 // of one of the matches might be disqualified for being a base of another 1335 // valid match. We can count on cyclical instantiations being invalid to 1336 // simplify the disqualifications. That is, if A & B are both matches, and B 1337 // inherits from A (disqualifying A), we know that A cannot inherit from B. 1338 if (Matches.size() > 1) { 1339 Visited.clear(); 1340 for (const auto &Match : Matches) 1341 AddBases(Match.first); 1342 1343 // We can give up once we have a single item (or have run out of things to 1344 // search) since cyclical inheritance isn't valid. 1345 while (Matches.size() > 1 && !ToVisit.empty()) { 1346 const CXXRecordDecl *RD = ::getCanonicalRD(ToVisit.pop_back_val()); 1347 Matches.erase(RD); 1348 1349 // Always add all bases, since the inheritance tree can contain 1350 // disqualifications for multiple matches. 1351 AddBases(RD); 1352 } 1353 } 1354 1355 if (Matches.empty()) 1356 return Sema::TDK_Invalid; 1357 if (Matches.size() > 1) 1358 return Sema::TDK_MiscellaneousDeductionFailure; 1359 1360 std::swap(Matches.front().second, Deduced); 1361 return Sema::TDK_Success; 1362 } 1363 1364 /// Deduce the template arguments by comparing the parameter type and 1365 /// the argument type (C++ [temp.deduct.type]). 1366 /// 1367 /// \param S the semantic analysis object within which we are deducing 1368 /// 1369 /// \param TemplateParams the template parameters that we are deducing 1370 /// 1371 /// \param P the parameter type 1372 /// 1373 /// \param A the argument type 1374 /// 1375 /// \param Info information about the template argument deduction itself 1376 /// 1377 /// \param Deduced the deduced template arguments 1378 /// 1379 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 1380 /// how template argument deduction is performed. 1381 /// 1382 /// \param PartialOrdering Whether we're performing template argument deduction 1383 /// in the context of partial ordering (C++0x [temp.deduct.partial]). 1384 /// 1385 /// \returns the result of template argument deduction so far. Note that a 1386 /// "success" result means that template argument deduction has not yet failed, 1387 /// but it may still fail, later, for other reasons. 1388 static Sema::TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch( 1389 Sema &S, TemplateParameterList *TemplateParams, QualType P, QualType A, 1390 TemplateDeductionInfo &Info, 1391 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF, 1392 bool PartialOrdering, bool DeducedFromArrayBound) { 1393 1394 // If the argument type is a pack expansion, look at its pattern. 1395 // This isn't explicitly called out 1396 if (const auto *AExp = dyn_cast<PackExpansionType>(A)) 1397 A = AExp->getPattern(); 1398 assert(!isa<PackExpansionType>(A.getCanonicalType())); 1399 1400 if (PartialOrdering) { 1401 // C++11 [temp.deduct.partial]p5: 1402 // Before the partial ordering is done, certain transformations are 1403 // performed on the types used for partial ordering: 1404 // - If P is a reference type, P is replaced by the type referred to. 1405 const ReferenceType *PRef = P->getAs<ReferenceType>(); 1406 if (PRef) 1407 P = PRef->getPointeeType(); 1408 1409 // - If A is a reference type, A is replaced by the type referred to. 1410 const ReferenceType *ARef = A->getAs<ReferenceType>(); 1411 if (ARef) 1412 A = A->getPointeeType(); 1413 1414 if (PRef && ARef && S.Context.hasSameUnqualifiedType(P, A)) { 1415 // C++11 [temp.deduct.partial]p9: 1416 // If, for a given type, deduction succeeds in both directions (i.e., 1417 // the types are identical after the transformations above) and both 1418 // P and A were reference types [...]: 1419 // - if [one type] was an lvalue reference and [the other type] was 1420 // not, [the other type] is not considered to be at least as 1421 // specialized as [the first type] 1422 // - if [one type] is more cv-qualified than [the other type], 1423 // [the other type] is not considered to be at least as specialized 1424 // as [the first type] 1425 // Objective-C ARC adds: 1426 // - [one type] has non-trivial lifetime, [the other type] has 1427 // __unsafe_unretained lifetime, and the types are otherwise 1428 // identical 1429 // 1430 // A is "considered to be at least as specialized" as P iff deduction 1431 // succeeds, so we model this as a deduction failure. Note that 1432 // [the first type] is P and [the other type] is A here; the standard 1433 // gets this backwards. 1434 Qualifiers PQuals = P.getQualifiers(), AQuals = A.getQualifiers(); 1435 if ((PRef->isLValueReferenceType() && !ARef->isLValueReferenceType()) || 1436 PQuals.isStrictSupersetOf(AQuals) || 1437 (PQuals.hasNonTrivialObjCLifetime() && 1438 AQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone && 1439 PQuals.withoutObjCLifetime() == AQuals.withoutObjCLifetime())) { 1440 Info.FirstArg = TemplateArgument(P); 1441 Info.SecondArg = TemplateArgument(A); 1442 return Sema::TDK_NonDeducedMismatch; 1443 } 1444 } 1445 Qualifiers DiscardedQuals; 1446 // C++11 [temp.deduct.partial]p7: 1447 // Remove any top-level cv-qualifiers: 1448 // - If P is a cv-qualified type, P is replaced by the cv-unqualified 1449 // version of P. 1450 P = S.Context.getUnqualifiedArrayType(P, DiscardedQuals); 1451 // - If A is a cv-qualified type, A is replaced by the cv-unqualified 1452 // version of A. 1453 A = S.Context.getUnqualifiedArrayType(A, DiscardedQuals); 1454 } else { 1455 // C++0x [temp.deduct.call]p4 bullet 1: 1456 // - If the original P is a reference type, the deduced A (i.e., the type 1457 // referred to by the reference) can be more cv-qualified than the 1458 // transformed A. 1459 if (TDF & TDF_ParamWithReferenceType) { 1460 Qualifiers Quals; 1461 QualType UnqualP = S.Context.getUnqualifiedArrayType(P, Quals); 1462 Quals.setCVRQualifiers(Quals.getCVRQualifiers() & A.getCVRQualifiers()); 1463 P = S.Context.getQualifiedType(UnqualP, Quals); 1464 } 1465 1466 if ((TDF & TDF_TopLevelParameterTypeList) && !P->isFunctionType()) { 1467 // C++0x [temp.deduct.type]p10: 1468 // If P and A are function types that originated from deduction when 1469 // taking the address of a function template (14.8.2.2) or when deducing 1470 // template arguments from a function declaration (14.8.2.6) and Pi and 1471 // Ai are parameters of the top-level parameter-type-list of P and A, 1472 // respectively, Pi is adjusted if it is a forwarding reference and Ai 1473 // is an lvalue reference, in 1474 // which case the type of Pi is changed to be the template parameter 1475 // type (i.e., T&& is changed to simply T). [ Note: As a result, when 1476 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be 1477 // deduced as X&. - end note ] 1478 TDF &= ~TDF_TopLevelParameterTypeList; 1479 if (isForwardingReference(P, /*FirstInnerIndex=*/0) && 1480 A->isLValueReferenceType()) 1481 P = P->getPointeeType(); 1482 } 1483 } 1484 1485 // C++ [temp.deduct.type]p9: 1486 // A template type argument T, a template template argument TT or a 1487 // template non-type argument i can be deduced if P and A have one of 1488 // the following forms: 1489 // 1490 // T 1491 // cv-list T 1492 if (const auto *TTP = P->getAs<TemplateTypeParmType>()) { 1493 // Just skip any attempts to deduce from a placeholder type or a parameter 1494 // at a different depth. 1495 if (A->isPlaceholderType() || Info.getDeducedDepth() != TTP->getDepth()) 1496 return Sema::TDK_Success; 1497 1498 unsigned Index = TTP->getIndex(); 1499 1500 // If the argument type is an array type, move the qualifiers up to the 1501 // top level, so they can be matched with the qualifiers on the parameter. 1502 if (A->isArrayType()) { 1503 Qualifiers Quals; 1504 A = S.Context.getUnqualifiedArrayType(A, Quals); 1505 if (Quals) 1506 A = S.Context.getQualifiedType(A, Quals); 1507 } 1508 1509 // The argument type can not be less qualified than the parameter 1510 // type. 1511 if (!(TDF & TDF_IgnoreQualifiers) && 1512 hasInconsistentOrSupersetQualifiersOf(P, A)) { 1513 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1514 Info.FirstArg = TemplateArgument(P); 1515 Info.SecondArg = TemplateArgument(A); 1516 return Sema::TDK_Underqualified; 1517 } 1518 1519 // Do not match a function type with a cv-qualified type. 1520 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584 1521 if (A->isFunctionType() && P.hasQualifiers()) 1522 return Sema::TDK_NonDeducedMismatch; 1523 1524 assert(TTP->getDepth() == Info.getDeducedDepth() && 1525 "saw template type parameter with wrong depth"); 1526 assert(A->getCanonicalTypeInternal() != S.Context.OverloadTy && 1527 "Unresolved overloaded function"); 1528 QualType DeducedType = A; 1529 1530 // Remove any qualifiers on the parameter from the deduced type. 1531 // We checked the qualifiers for consistency above. 1532 Qualifiers DeducedQs = DeducedType.getQualifiers(); 1533 Qualifiers ParamQs = P.getQualifiers(); 1534 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers()); 1535 if (ParamQs.hasObjCGCAttr()) 1536 DeducedQs.removeObjCGCAttr(); 1537 if (ParamQs.hasAddressSpace()) 1538 DeducedQs.removeAddressSpace(); 1539 if (ParamQs.hasObjCLifetime()) 1540 DeducedQs.removeObjCLifetime(); 1541 1542 // Objective-C ARC: 1543 // If template deduction would produce a lifetime qualifier on a type 1544 // that is not a lifetime type, template argument deduction fails. 1545 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() && 1546 !DeducedType->isDependentType()) { 1547 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1548 Info.FirstArg = TemplateArgument(P); 1549 Info.SecondArg = TemplateArgument(A); 1550 return Sema::TDK_Underqualified; 1551 } 1552 1553 // Objective-C ARC: 1554 // If template deduction would produce an argument type with lifetime type 1555 // but no lifetime qualifier, the __strong lifetime qualifier is inferred. 1556 if (S.getLangOpts().ObjCAutoRefCount && DeducedType->isObjCLifetimeType() && 1557 !DeducedQs.hasObjCLifetime()) 1558 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); 1559 1560 DeducedType = 1561 S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), DeducedQs); 1562 1563 DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound); 1564 DeducedTemplateArgument Result = 1565 checkDeducedTemplateArguments(S.Context, Deduced[Index], NewDeduced); 1566 if (Result.isNull()) { 1567 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1568 Info.FirstArg = Deduced[Index]; 1569 Info.SecondArg = NewDeduced; 1570 return Sema::TDK_Inconsistent; 1571 } 1572 1573 Deduced[Index] = Result; 1574 return Sema::TDK_Success; 1575 } 1576 1577 // Set up the template argument deduction information for a failure. 1578 Info.FirstArg = TemplateArgument(P); 1579 Info.SecondArg = TemplateArgument(A); 1580 1581 // If the parameter is an already-substituted template parameter 1582 // pack, do nothing: we don't know which of its arguments to look 1583 // at, so we have to wait until all of the parameter packs in this 1584 // expansion have arguments. 1585 if (P->getAs<SubstTemplateTypeParmPackType>()) 1586 return Sema::TDK_Success; 1587 1588 // Check the cv-qualifiers on the parameter and argument types. 1589 if (!(TDF & TDF_IgnoreQualifiers)) { 1590 if (TDF & TDF_ParamWithReferenceType) { 1591 if (hasInconsistentOrSupersetQualifiersOf(P, A)) 1592 return Sema::TDK_NonDeducedMismatch; 1593 } else if (TDF & TDF_ArgWithReferenceType) { 1594 // C++ [temp.deduct.conv]p4: 1595 // If the original A is a reference type, A can be more cv-qualified 1596 // than the deduced A 1597 if (!A.getQualifiers().compatiblyIncludes(P.getQualifiers())) 1598 return Sema::TDK_NonDeducedMismatch; 1599 1600 // Strip out all extra qualifiers from the argument to figure out the 1601 // type we're converting to, prior to the qualification conversion. 1602 Qualifiers Quals; 1603 A = S.Context.getUnqualifiedArrayType(A, Quals); 1604 A = S.Context.getQualifiedType(A, P.getQualifiers()); 1605 } else if (!IsPossiblyOpaquelyQualifiedType(P)) { 1606 if (P.getCVRQualifiers() != A.getCVRQualifiers()) 1607 return Sema::TDK_NonDeducedMismatch; 1608 } 1609 } 1610 1611 // If the parameter type is not dependent, there is nothing to deduce. 1612 if (!P->isDependentType()) { 1613 if (TDF & TDF_SkipNonDependent) 1614 return Sema::TDK_Success; 1615 if ((TDF & TDF_IgnoreQualifiers) ? S.Context.hasSameUnqualifiedType(P, A) 1616 : S.Context.hasSameType(P, A)) 1617 return Sema::TDK_Success; 1618 if (TDF & TDF_AllowCompatibleFunctionType && 1619 S.isSameOrCompatibleFunctionType(P, A)) 1620 return Sema::TDK_Success; 1621 if (!(TDF & TDF_IgnoreQualifiers)) 1622 return Sema::TDK_NonDeducedMismatch; 1623 // Otherwise, when ignoring qualifiers, the types not having the same 1624 // unqualified type does not mean they do not match, so in this case we 1625 // must keep going and analyze with a non-dependent parameter type. 1626 } 1627 1628 switch (P.getCanonicalType()->getTypeClass()) { 1629 // Non-canonical types cannot appear here. 1630 #define NON_CANONICAL_TYPE(Class, Base) \ 1631 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); 1632 #define TYPE(Class, Base) 1633 #include "clang/AST/TypeNodes.inc" 1634 1635 case Type::TemplateTypeParm: 1636 case Type::SubstTemplateTypeParmPack: 1637 llvm_unreachable("Type nodes handled above"); 1638 1639 case Type::Auto: 1640 // C++23 [temp.deduct.funcaddr]/3: 1641 // A placeholder type in the return type of a function template is a 1642 // non-deduced context. 1643 // There's no corresponding wording for [temp.deduct.decl], but we treat 1644 // it the same to match other compilers. 1645 if (P->isDependentType()) 1646 return Sema::TDK_Success; 1647 [[fallthrough]]; 1648 case Type::Builtin: 1649 case Type::VariableArray: 1650 case Type::Vector: 1651 case Type::FunctionNoProto: 1652 case Type::Record: 1653 case Type::Enum: 1654 case Type::ObjCObject: 1655 case Type::ObjCInterface: 1656 case Type::ObjCObjectPointer: 1657 case Type::BitInt: 1658 return (TDF & TDF_SkipNonDependent) || 1659 ((TDF & TDF_IgnoreQualifiers) 1660 ? S.Context.hasSameUnqualifiedType(P, A) 1661 : S.Context.hasSameType(P, A)) 1662 ? Sema::TDK_Success 1663 : Sema::TDK_NonDeducedMismatch; 1664 1665 // _Complex T [placeholder extension] 1666 case Type::Complex: { 1667 const auto *CP = P->castAs<ComplexType>(), *CA = A->getAs<ComplexType>(); 1668 if (!CA) 1669 return Sema::TDK_NonDeducedMismatch; 1670 return DeduceTemplateArgumentsByTypeMatch( 1671 S, TemplateParams, CP->getElementType(), CA->getElementType(), Info, 1672 Deduced, TDF); 1673 } 1674 1675 // _Atomic T [extension] 1676 case Type::Atomic: { 1677 const auto *PA = P->castAs<AtomicType>(), *AA = A->getAs<AtomicType>(); 1678 if (!AA) 1679 return Sema::TDK_NonDeducedMismatch; 1680 return DeduceTemplateArgumentsByTypeMatch( 1681 S, TemplateParams, PA->getValueType(), AA->getValueType(), Info, 1682 Deduced, TDF); 1683 } 1684 1685 // T * 1686 case Type::Pointer: { 1687 QualType PointeeType; 1688 if (const auto *PA = A->getAs<PointerType>()) { 1689 PointeeType = PA->getPointeeType(); 1690 } else if (const auto *PA = A->getAs<ObjCObjectPointerType>()) { 1691 PointeeType = PA->getPointeeType(); 1692 } else { 1693 return Sema::TDK_NonDeducedMismatch; 1694 } 1695 return DeduceTemplateArgumentsByTypeMatch( 1696 S, TemplateParams, P->castAs<PointerType>()->getPointeeType(), 1697 PointeeType, Info, Deduced, 1698 TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass)); 1699 } 1700 1701 // T & 1702 case Type::LValueReference: { 1703 const auto *RP = P->castAs<LValueReferenceType>(), 1704 *RA = A->getAs<LValueReferenceType>(); 1705 if (!RA) 1706 return Sema::TDK_NonDeducedMismatch; 1707 1708 return DeduceTemplateArgumentsByTypeMatch( 1709 S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info, 1710 Deduced, 0); 1711 } 1712 1713 // T && [C++0x] 1714 case Type::RValueReference: { 1715 const auto *RP = P->castAs<RValueReferenceType>(), 1716 *RA = A->getAs<RValueReferenceType>(); 1717 if (!RA) 1718 return Sema::TDK_NonDeducedMismatch; 1719 1720 return DeduceTemplateArgumentsByTypeMatch( 1721 S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info, 1722 Deduced, 0); 1723 } 1724 1725 // T [] (implied, but not stated explicitly) 1726 case Type::IncompleteArray: { 1727 const auto *IAA = S.Context.getAsIncompleteArrayType(A); 1728 if (!IAA) 1729 return Sema::TDK_NonDeducedMismatch; 1730 1731 const auto *IAP = S.Context.getAsIncompleteArrayType(P); 1732 assert(IAP && "Template parameter not of incomplete array type"); 1733 1734 return DeduceTemplateArgumentsByTypeMatch( 1735 S, TemplateParams, IAP->getElementType(), IAA->getElementType(), Info, 1736 Deduced, TDF & TDF_IgnoreQualifiers); 1737 } 1738 1739 // T [integer-constant] 1740 case Type::ConstantArray: { 1741 const auto *CAA = S.Context.getAsConstantArrayType(A), 1742 *CAP = S.Context.getAsConstantArrayType(P); 1743 assert(CAP); 1744 if (!CAA || CAA->getSize() != CAP->getSize()) 1745 return Sema::TDK_NonDeducedMismatch; 1746 1747 return DeduceTemplateArgumentsByTypeMatch( 1748 S, TemplateParams, CAP->getElementType(), CAA->getElementType(), Info, 1749 Deduced, TDF & TDF_IgnoreQualifiers); 1750 } 1751 1752 // type [i] 1753 case Type::DependentSizedArray: { 1754 const auto *AA = S.Context.getAsArrayType(A); 1755 if (!AA) 1756 return Sema::TDK_NonDeducedMismatch; 1757 1758 // Check the element type of the arrays 1759 const auto *DAP = S.Context.getAsDependentSizedArrayType(P); 1760 assert(DAP); 1761 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1762 S, TemplateParams, DAP->getElementType(), AA->getElementType(), 1763 Info, Deduced, TDF & TDF_IgnoreQualifiers)) 1764 return Result; 1765 1766 // Determine the array bound is something we can deduce. 1767 const NonTypeTemplateParmDecl *NTTP = 1768 getDeducedParameterFromExpr(Info, DAP->getSizeExpr()); 1769 if (!NTTP) 1770 return Sema::TDK_Success; 1771 1772 // We can perform template argument deduction for the given non-type 1773 // template parameter. 1774 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1775 "saw non-type template parameter with wrong depth"); 1776 if (const auto *CAA = dyn_cast<ConstantArrayType>(AA)) { 1777 llvm::APSInt Size(CAA->getSize()); 1778 return DeduceNonTypeTemplateArgument( 1779 S, TemplateParams, NTTP, Size, S.Context.getSizeType(), 1780 /*ArrayBound=*/true, Info, Deduced); 1781 } 1782 if (const auto *DAA = dyn_cast<DependentSizedArrayType>(AA)) 1783 if (DAA->getSizeExpr()) 1784 return DeduceNonTypeTemplateArgument( 1785 S, TemplateParams, NTTP, DAA->getSizeExpr(), Info, Deduced); 1786 1787 // Incomplete type does not match a dependently-sized array type 1788 return Sema::TDK_NonDeducedMismatch; 1789 } 1790 1791 // type(*)(T) 1792 // T(*)() 1793 // T(*)(T) 1794 case Type::FunctionProto: { 1795 const auto *FPP = P->castAs<FunctionProtoType>(), 1796 *FPA = A->getAs<FunctionProtoType>(); 1797 if (!FPA) 1798 return Sema::TDK_NonDeducedMismatch; 1799 1800 if (FPP->getMethodQuals() != FPA->getMethodQuals() || 1801 FPP->getRefQualifier() != FPA->getRefQualifier() || 1802 FPP->isVariadic() != FPA->isVariadic()) 1803 return Sema::TDK_NonDeducedMismatch; 1804 1805 // Check return types. 1806 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1807 S, TemplateParams, FPP->getReturnType(), FPA->getReturnType(), 1808 Info, Deduced, 0, 1809 /*PartialOrdering=*/false, 1810 /*DeducedFromArrayBound=*/false)) 1811 return Result; 1812 1813 // Check parameter types. 1814 if (auto Result = DeduceTemplateArguments( 1815 S, TemplateParams, FPP->param_type_begin(), FPP->getNumParams(), 1816 FPA->param_type_begin(), FPA->getNumParams(), Info, Deduced, 1817 TDF & TDF_TopLevelParameterTypeList, PartialOrdering)) 1818 return Result; 1819 1820 if (TDF & TDF_AllowCompatibleFunctionType) 1821 return Sema::TDK_Success; 1822 1823 // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit 1824 // deducing through the noexcept-specifier if it's part of the canonical 1825 // type. libstdc++ relies on this. 1826 Expr *NoexceptExpr = FPP->getNoexceptExpr(); 1827 if (const NonTypeTemplateParmDecl *NTTP = 1828 NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr) 1829 : nullptr) { 1830 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1831 "saw non-type template parameter with wrong depth"); 1832 1833 llvm::APSInt Noexcept(1); 1834 switch (FPA->canThrow()) { 1835 case CT_Cannot: 1836 Noexcept = 1; 1837 [[fallthrough]]; 1838 1839 case CT_Can: 1840 // We give E in noexcept(E) the "deduced from array bound" treatment. 1841 // FIXME: Should we? 1842 return DeduceNonTypeTemplateArgument( 1843 S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy, 1844 /*DeducedFromArrayBound=*/true, Info, Deduced); 1845 1846 case CT_Dependent: 1847 if (Expr *ArgNoexceptExpr = FPA->getNoexceptExpr()) 1848 return DeduceNonTypeTemplateArgument( 1849 S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced); 1850 // Can't deduce anything from throw(T...). 1851 break; 1852 } 1853 } 1854 // FIXME: Detect non-deduced exception specification mismatches? 1855 // 1856 // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow 1857 // top-level differences in noexcept-specifications. 1858 1859 return Sema::TDK_Success; 1860 } 1861 1862 case Type::InjectedClassName: 1863 // Treat a template's injected-class-name as if the template 1864 // specialization type had been used. 1865 1866 // template-name<T> (where template-name refers to a class template) 1867 // template-name<i> 1868 // TT<T> 1869 // TT<i> 1870 // TT<> 1871 case Type::TemplateSpecialization: { 1872 // When Arg cannot be a derived class, we can just try to deduce template 1873 // arguments from the template-id. 1874 if (!(TDF & TDF_DerivedClass) || !A->isRecordType()) 1875 return DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info, 1876 Deduced); 1877 1878 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(), 1879 Deduced.end()); 1880 1881 auto Result = 1882 DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info, Deduced); 1883 if (Result == Sema::TDK_Success) 1884 return Result; 1885 1886 // We cannot inspect base classes as part of deduction when the type 1887 // is incomplete, so either instantiate any templates necessary to 1888 // complete the type, or skip over it if it cannot be completed. 1889 if (!S.isCompleteType(Info.getLocation(), A)) 1890 return Result; 1891 1892 // Reset the incorrectly deduced argument from above. 1893 Deduced = DeducedOrig; 1894 1895 // Check bases according to C++14 [temp.deduct.call] p4b3: 1896 auto BaseResult = DeduceTemplateBases(S, getCanonicalRD(A), 1897 TemplateParams, P, Info, Deduced); 1898 return BaseResult != Sema::TDK_Invalid ? BaseResult : Result; 1899 } 1900 1901 // T type::* 1902 // T T::* 1903 // T (type::*)() 1904 // type (T::*)() 1905 // type (type::*)(T) 1906 // type (T::*)(T) 1907 // T (type::*)(T) 1908 // T (T::*)() 1909 // T (T::*)(T) 1910 case Type::MemberPointer: { 1911 const auto *MPP = P->castAs<MemberPointerType>(), 1912 *MPA = A->getAs<MemberPointerType>(); 1913 if (!MPA) 1914 return Sema::TDK_NonDeducedMismatch; 1915 1916 QualType PPT = MPP->getPointeeType(); 1917 if (PPT->isFunctionType()) 1918 S.adjustMemberFunctionCC(PPT, /*HasThisPointer=*/false, 1919 /*IsCtorOrDtor=*/false, Info.getLocation()); 1920 QualType APT = MPA->getPointeeType(); 1921 if (APT->isFunctionType()) 1922 S.adjustMemberFunctionCC(APT, /*HasThisPointer=*/false, 1923 /*IsCtorOrDtor=*/false, Info.getLocation()); 1924 1925 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1926 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1927 S, TemplateParams, PPT, APT, Info, Deduced, SubTDF)) 1928 return Result; 1929 return DeduceTemplateArgumentsByTypeMatch( 1930 S, TemplateParams, QualType(MPP->getClass(), 0), 1931 QualType(MPA->getClass(), 0), Info, Deduced, SubTDF); 1932 } 1933 1934 // (clang extension) 1935 // 1936 // type(^)(T) 1937 // T(^)() 1938 // T(^)(T) 1939 case Type::BlockPointer: { 1940 const auto *BPP = P->castAs<BlockPointerType>(), 1941 *BPA = A->getAs<BlockPointerType>(); 1942 if (!BPA) 1943 return Sema::TDK_NonDeducedMismatch; 1944 return DeduceTemplateArgumentsByTypeMatch( 1945 S, TemplateParams, BPP->getPointeeType(), BPA->getPointeeType(), Info, 1946 Deduced, 0); 1947 } 1948 1949 // (clang extension) 1950 // 1951 // T __attribute__(((ext_vector_type(<integral constant>)))) 1952 case Type::ExtVector: { 1953 const auto *VP = P->castAs<ExtVectorType>(); 1954 QualType ElementType; 1955 if (const auto *VA = A->getAs<ExtVectorType>()) { 1956 // Make sure that the vectors have the same number of elements. 1957 if (VP->getNumElements() != VA->getNumElements()) 1958 return Sema::TDK_NonDeducedMismatch; 1959 ElementType = VA->getElementType(); 1960 } else if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) { 1961 // We can't check the number of elements, since the argument has a 1962 // dependent number of elements. This can only occur during partial 1963 // ordering. 1964 ElementType = VA->getElementType(); 1965 } else { 1966 return Sema::TDK_NonDeducedMismatch; 1967 } 1968 // Perform deduction on the element types. 1969 return DeduceTemplateArgumentsByTypeMatch( 1970 S, TemplateParams, VP->getElementType(), ElementType, Info, Deduced, 1971 TDF); 1972 } 1973 1974 case Type::DependentVector: { 1975 const auto *VP = P->castAs<DependentVectorType>(); 1976 1977 if (const auto *VA = A->getAs<VectorType>()) { 1978 // Perform deduction on the element types. 1979 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1980 S, TemplateParams, VP->getElementType(), VA->getElementType(), 1981 Info, Deduced, TDF)) 1982 return Result; 1983 1984 // Perform deduction on the vector size, if we can. 1985 const NonTypeTemplateParmDecl *NTTP = 1986 getDeducedParameterFromExpr(Info, VP->getSizeExpr()); 1987 if (!NTTP) 1988 return Sema::TDK_Success; 1989 1990 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 1991 ArgSize = VA->getNumElements(); 1992 // Note that we use the "array bound" rules here; just like in that 1993 // case, we don't have any particular type for the vector size, but 1994 // we can provide one if necessary. 1995 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 1996 S.Context.UnsignedIntTy, true, 1997 Info, Deduced); 1998 } 1999 2000 if (const auto *VA = A->getAs<DependentVectorType>()) { 2001 // Perform deduction on the element types. 2002 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 2003 S, TemplateParams, VP->getElementType(), VA->getElementType(), 2004 Info, Deduced, TDF)) 2005 return Result; 2006 2007 // Perform deduction on the vector size, if we can. 2008 const NonTypeTemplateParmDecl *NTTP = 2009 getDeducedParameterFromExpr(Info, VP->getSizeExpr()); 2010 if (!NTTP) 2011 return Sema::TDK_Success; 2012 2013 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2014 VA->getSizeExpr(), Info, Deduced); 2015 } 2016 2017 return Sema::TDK_NonDeducedMismatch; 2018 } 2019 2020 // (clang extension) 2021 // 2022 // T __attribute__(((ext_vector_type(N)))) 2023 case Type::DependentSizedExtVector: { 2024 const auto *VP = P->castAs<DependentSizedExtVectorType>(); 2025 2026 if (const auto *VA = A->getAs<ExtVectorType>()) { 2027 // Perform deduction on the element types. 2028 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 2029 S, TemplateParams, VP->getElementType(), VA->getElementType(), 2030 Info, Deduced, TDF)) 2031 return Result; 2032 2033 // Perform deduction on the vector size, if we can. 2034 const NonTypeTemplateParmDecl *NTTP = 2035 getDeducedParameterFromExpr(Info, VP->getSizeExpr()); 2036 if (!NTTP) 2037 return Sema::TDK_Success; 2038 2039 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 2040 ArgSize = VA->getNumElements(); 2041 // Note that we use the "array bound" rules here; just like in that 2042 // case, we don't have any particular type for the vector size, but 2043 // we can provide one if necessary. 2044 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 2045 S.Context.IntTy, true, Info, 2046 Deduced); 2047 } 2048 2049 if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) { 2050 // Perform deduction on the element types. 2051 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 2052 S, TemplateParams, VP->getElementType(), VA->getElementType(), 2053 Info, Deduced, TDF)) 2054 return Result; 2055 2056 // Perform deduction on the vector size, if we can. 2057 const NonTypeTemplateParmDecl *NTTP = 2058 getDeducedParameterFromExpr(Info, VP->getSizeExpr()); 2059 if (!NTTP) 2060 return Sema::TDK_Success; 2061 2062 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2063 VA->getSizeExpr(), Info, Deduced); 2064 } 2065 2066 return Sema::TDK_NonDeducedMismatch; 2067 } 2068 2069 // (clang extension) 2070 // 2071 // T __attribute__((matrix_type(<integral constant>, 2072 // <integral constant>))) 2073 case Type::ConstantMatrix: { 2074 const auto *MP = P->castAs<ConstantMatrixType>(), 2075 *MA = A->getAs<ConstantMatrixType>(); 2076 if (!MA) 2077 return Sema::TDK_NonDeducedMismatch; 2078 2079 // Check that the dimensions are the same 2080 if (MP->getNumRows() != MA->getNumRows() || 2081 MP->getNumColumns() != MA->getNumColumns()) { 2082 return Sema::TDK_NonDeducedMismatch; 2083 } 2084 // Perform deduction on element types. 2085 return DeduceTemplateArgumentsByTypeMatch( 2086 S, TemplateParams, MP->getElementType(), MA->getElementType(), Info, 2087 Deduced, TDF); 2088 } 2089 2090 case Type::DependentSizedMatrix: { 2091 const auto *MP = P->castAs<DependentSizedMatrixType>(); 2092 const auto *MA = A->getAs<MatrixType>(); 2093 if (!MA) 2094 return Sema::TDK_NonDeducedMismatch; 2095 2096 // Check the element type of the matrixes. 2097 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 2098 S, TemplateParams, MP->getElementType(), MA->getElementType(), 2099 Info, Deduced, TDF)) 2100 return Result; 2101 2102 // Try to deduce a matrix dimension. 2103 auto DeduceMatrixArg = 2104 [&S, &Info, &Deduced, &TemplateParams]( 2105 Expr *ParamExpr, const MatrixType *A, 2106 unsigned (ConstantMatrixType::*GetArgDimension)() const, 2107 Expr *(DependentSizedMatrixType::*GetArgDimensionExpr)() const) { 2108 const auto *ACM = dyn_cast<ConstantMatrixType>(A); 2109 const auto *ADM = dyn_cast<DependentSizedMatrixType>(A); 2110 if (!ParamExpr->isValueDependent()) { 2111 std::optional<llvm::APSInt> ParamConst = 2112 ParamExpr->getIntegerConstantExpr(S.Context); 2113 if (!ParamConst) 2114 return Sema::TDK_NonDeducedMismatch; 2115 2116 if (ACM) { 2117 if ((ACM->*GetArgDimension)() == *ParamConst) 2118 return Sema::TDK_Success; 2119 return Sema::TDK_NonDeducedMismatch; 2120 } 2121 2122 Expr *ArgExpr = (ADM->*GetArgDimensionExpr)(); 2123 if (std::optional<llvm::APSInt> ArgConst = 2124 ArgExpr->getIntegerConstantExpr(S.Context)) 2125 if (*ArgConst == *ParamConst) 2126 return Sema::TDK_Success; 2127 return Sema::TDK_NonDeducedMismatch; 2128 } 2129 2130 const NonTypeTemplateParmDecl *NTTP = 2131 getDeducedParameterFromExpr(Info, ParamExpr); 2132 if (!NTTP) 2133 return Sema::TDK_Success; 2134 2135 if (ACM) { 2136 llvm::APSInt ArgConst( 2137 S.Context.getTypeSize(S.Context.getSizeType())); 2138 ArgConst = (ACM->*GetArgDimension)(); 2139 return DeduceNonTypeTemplateArgument( 2140 S, TemplateParams, NTTP, ArgConst, S.Context.getSizeType(), 2141 /*ArrayBound=*/true, Info, Deduced); 2142 } 2143 2144 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2145 (ADM->*GetArgDimensionExpr)(), 2146 Info, Deduced); 2147 }; 2148 2149 if (auto Result = DeduceMatrixArg(MP->getRowExpr(), MA, 2150 &ConstantMatrixType::getNumRows, 2151 &DependentSizedMatrixType::getRowExpr)) 2152 return Result; 2153 2154 return DeduceMatrixArg(MP->getColumnExpr(), MA, 2155 &ConstantMatrixType::getNumColumns, 2156 &DependentSizedMatrixType::getColumnExpr); 2157 } 2158 2159 // (clang extension) 2160 // 2161 // T __attribute__(((address_space(N)))) 2162 case Type::DependentAddressSpace: { 2163 const auto *ASP = P->castAs<DependentAddressSpaceType>(); 2164 2165 if (const auto *ASA = A->getAs<DependentAddressSpaceType>()) { 2166 // Perform deduction on the pointer type. 2167 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 2168 S, TemplateParams, ASP->getPointeeType(), ASA->getPointeeType(), 2169 Info, Deduced, TDF)) 2170 return Result; 2171 2172 // Perform deduction on the address space, if we can. 2173 const NonTypeTemplateParmDecl *NTTP = 2174 getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr()); 2175 if (!NTTP) 2176 return Sema::TDK_Success; 2177 2178 return DeduceNonTypeTemplateArgument( 2179 S, TemplateParams, NTTP, ASA->getAddrSpaceExpr(), Info, Deduced); 2180 } 2181 2182 if (isTargetAddressSpace(A.getAddressSpace())) { 2183 llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy), 2184 false); 2185 ArgAddressSpace = toTargetAddressSpace(A.getAddressSpace()); 2186 2187 // Perform deduction on the pointer types. 2188 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 2189 S, TemplateParams, ASP->getPointeeType(), 2190 S.Context.removeAddrSpaceQualType(A), Info, Deduced, TDF)) 2191 return Result; 2192 2193 // Perform deduction on the address space, if we can. 2194 const NonTypeTemplateParmDecl *NTTP = 2195 getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr()); 2196 if (!NTTP) 2197 return Sema::TDK_Success; 2198 2199 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2200 ArgAddressSpace, S.Context.IntTy, 2201 true, Info, Deduced); 2202 } 2203 2204 return Sema::TDK_NonDeducedMismatch; 2205 } 2206 case Type::DependentBitInt: { 2207 const auto *IP = P->castAs<DependentBitIntType>(); 2208 2209 if (const auto *IA = A->getAs<BitIntType>()) { 2210 if (IP->isUnsigned() != IA->isUnsigned()) 2211 return Sema::TDK_NonDeducedMismatch; 2212 2213 const NonTypeTemplateParmDecl *NTTP = 2214 getDeducedParameterFromExpr(Info, IP->getNumBitsExpr()); 2215 if (!NTTP) 2216 return Sema::TDK_Success; 2217 2218 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 2219 ArgSize = IA->getNumBits(); 2220 2221 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 2222 S.Context.IntTy, true, Info, 2223 Deduced); 2224 } 2225 2226 if (const auto *IA = A->getAs<DependentBitIntType>()) { 2227 if (IP->isUnsigned() != IA->isUnsigned()) 2228 return Sema::TDK_NonDeducedMismatch; 2229 return Sema::TDK_Success; 2230 } 2231 2232 return Sema::TDK_NonDeducedMismatch; 2233 } 2234 2235 case Type::TypeOfExpr: 2236 case Type::TypeOf: 2237 case Type::DependentName: 2238 case Type::UnresolvedUsing: 2239 case Type::Decltype: 2240 case Type::UnaryTransform: 2241 case Type::DeducedTemplateSpecialization: 2242 case Type::DependentTemplateSpecialization: 2243 case Type::PackExpansion: 2244 case Type::Pipe: 2245 // No template argument deduction for these types 2246 return Sema::TDK_Success; 2247 } 2248 2249 llvm_unreachable("Invalid Type Class!"); 2250 } 2251 2252 static Sema::TemplateDeductionResult 2253 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 2254 const TemplateArgument &P, TemplateArgument A, 2255 TemplateDeductionInfo &Info, 2256 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2257 // If the template argument is a pack expansion, perform template argument 2258 // deduction against the pattern of that expansion. This only occurs during 2259 // partial ordering. 2260 if (A.isPackExpansion()) 2261 A = A.getPackExpansionPattern(); 2262 2263 switch (P.getKind()) { 2264 case TemplateArgument::Null: 2265 llvm_unreachable("Null template argument in parameter list"); 2266 2267 case TemplateArgument::Type: 2268 if (A.getKind() == TemplateArgument::Type) 2269 return DeduceTemplateArgumentsByTypeMatch( 2270 S, TemplateParams, P.getAsType(), A.getAsType(), Info, Deduced, 0); 2271 Info.FirstArg = P; 2272 Info.SecondArg = A; 2273 return Sema::TDK_NonDeducedMismatch; 2274 2275 case TemplateArgument::Template: 2276 if (A.getKind() == TemplateArgument::Template) 2277 return DeduceTemplateArguments(S, TemplateParams, P.getAsTemplate(), 2278 A.getAsTemplate(), Info, Deduced); 2279 Info.FirstArg = P; 2280 Info.SecondArg = A; 2281 return Sema::TDK_NonDeducedMismatch; 2282 2283 case TemplateArgument::TemplateExpansion: 2284 llvm_unreachable("caller should handle pack expansions"); 2285 2286 case TemplateArgument::Declaration: 2287 if (A.getKind() == TemplateArgument::Declaration && 2288 isSameDeclaration(P.getAsDecl(), A.getAsDecl())) 2289 return Sema::TDK_Success; 2290 2291 Info.FirstArg = P; 2292 Info.SecondArg = A; 2293 return Sema::TDK_NonDeducedMismatch; 2294 2295 case TemplateArgument::NullPtr: 2296 if (A.getKind() == TemplateArgument::NullPtr && 2297 S.Context.hasSameType(P.getNullPtrType(), A.getNullPtrType())) 2298 return Sema::TDK_Success; 2299 2300 Info.FirstArg = P; 2301 Info.SecondArg = A; 2302 return Sema::TDK_NonDeducedMismatch; 2303 2304 case TemplateArgument::Integral: 2305 if (A.getKind() == TemplateArgument::Integral) { 2306 if (hasSameExtendedValue(P.getAsIntegral(), A.getAsIntegral())) 2307 return Sema::TDK_Success; 2308 } 2309 Info.FirstArg = P; 2310 Info.SecondArg = A; 2311 return Sema::TDK_NonDeducedMismatch; 2312 2313 case TemplateArgument::StructuralValue: 2314 if (A.getKind() == TemplateArgument::StructuralValue && 2315 A.structurallyEquals(P)) 2316 return Sema::TDK_Success; 2317 2318 Info.FirstArg = P; 2319 Info.SecondArg = A; 2320 return Sema::TDK_NonDeducedMismatch; 2321 2322 case TemplateArgument::Expression: 2323 if (const NonTypeTemplateParmDecl *NTTP = 2324 getDeducedParameterFromExpr(Info, P.getAsExpr())) { 2325 switch (A.getKind()) { 2326 case TemplateArgument::Integral: 2327 case TemplateArgument::Expression: 2328 case TemplateArgument::StructuralValue: 2329 return DeduceNonTypeTemplateArgument( 2330 S, TemplateParams, NTTP, DeducedTemplateArgument(A), 2331 A.getNonTypeTemplateArgumentType(), Info, Deduced); 2332 2333 case TemplateArgument::NullPtr: 2334 return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP, 2335 A.getNullPtrType(), Info, Deduced); 2336 2337 case TemplateArgument::Declaration: 2338 return DeduceNonTypeTemplateArgument( 2339 S, TemplateParams, NTTP, A.getAsDecl(), A.getParamTypeForDecl(), 2340 Info, Deduced); 2341 2342 case TemplateArgument::Null: 2343 case TemplateArgument::Type: 2344 case TemplateArgument::Template: 2345 case TemplateArgument::TemplateExpansion: 2346 case TemplateArgument::Pack: 2347 Info.FirstArg = P; 2348 Info.SecondArg = A; 2349 return Sema::TDK_NonDeducedMismatch; 2350 } 2351 llvm_unreachable("Unknown template argument kind"); 2352 } 2353 2354 // Can't deduce anything, but that's okay. 2355 return Sema::TDK_Success; 2356 case TemplateArgument::Pack: 2357 llvm_unreachable("Argument packs should be expanded by the caller!"); 2358 } 2359 2360 llvm_unreachable("Invalid TemplateArgument Kind!"); 2361 } 2362 2363 /// Determine whether there is a template argument to be used for 2364 /// deduction. 2365 /// 2366 /// This routine "expands" argument packs in-place, overriding its input 2367 /// parameters so that \c Args[ArgIdx] will be the available template argument. 2368 /// 2369 /// \returns true if there is another template argument (which will be at 2370 /// \c Args[ArgIdx]), false otherwise. 2371 static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args, 2372 unsigned &ArgIdx) { 2373 if (ArgIdx == Args.size()) 2374 return false; 2375 2376 const TemplateArgument &Arg = Args[ArgIdx]; 2377 if (Arg.getKind() != TemplateArgument::Pack) 2378 return true; 2379 2380 assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?"); 2381 Args = Arg.pack_elements(); 2382 ArgIdx = 0; 2383 return ArgIdx < Args.size(); 2384 } 2385 2386 /// Determine whether the given set of template arguments has a pack 2387 /// expansion that is not the last template argument. 2388 static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) { 2389 bool FoundPackExpansion = false; 2390 for (const auto &A : Args) { 2391 if (FoundPackExpansion) 2392 return true; 2393 2394 if (A.getKind() == TemplateArgument::Pack) 2395 return hasPackExpansionBeforeEnd(A.pack_elements()); 2396 2397 // FIXME: If this is a fixed-arity pack expansion from an outer level of 2398 // templates, it should not be treated as a pack expansion. 2399 if (A.isPackExpansion()) 2400 FoundPackExpansion = true; 2401 } 2402 2403 return false; 2404 } 2405 2406 static Sema::TemplateDeductionResult 2407 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 2408 ArrayRef<TemplateArgument> Ps, 2409 ArrayRef<TemplateArgument> As, 2410 TemplateDeductionInfo &Info, 2411 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2412 bool NumberOfArgumentsMustMatch) { 2413 // C++0x [temp.deduct.type]p9: 2414 // If the template argument list of P contains a pack expansion that is not 2415 // the last template argument, the entire template argument list is a 2416 // non-deduced context. 2417 if (hasPackExpansionBeforeEnd(Ps)) 2418 return Sema::TDK_Success; 2419 2420 // C++0x [temp.deduct.type]p9: 2421 // If P has a form that contains <T> or <i>, then each argument Pi of the 2422 // respective template argument list P is compared with the corresponding 2423 // argument Ai of the corresponding template argument list of A. 2424 unsigned ArgIdx = 0, ParamIdx = 0; 2425 for (; hasTemplateArgumentForDeduction(Ps, ParamIdx); ++ParamIdx) { 2426 const TemplateArgument &P = Ps[ParamIdx]; 2427 if (!P.isPackExpansion()) { 2428 // The simple case: deduce template arguments by matching Pi and Ai. 2429 2430 // Check whether we have enough arguments. 2431 if (!hasTemplateArgumentForDeduction(As, ArgIdx)) 2432 return NumberOfArgumentsMustMatch 2433 ? Sema::TDK_MiscellaneousDeductionFailure 2434 : Sema::TDK_Success; 2435 2436 // C++1z [temp.deduct.type]p9: 2437 // During partial ordering, if Ai was originally a pack expansion [and] 2438 // Pi is not a pack expansion, template argument deduction fails. 2439 if (As[ArgIdx].isPackExpansion()) 2440 return Sema::TDK_MiscellaneousDeductionFailure; 2441 2442 // Perform deduction for this Pi/Ai pair. 2443 if (auto Result = DeduceTemplateArguments(S, TemplateParams, P, 2444 As[ArgIdx], Info, Deduced)) 2445 return Result; 2446 2447 // Move to the next argument. 2448 ++ArgIdx; 2449 continue; 2450 } 2451 2452 // The parameter is a pack expansion. 2453 2454 // C++0x [temp.deduct.type]p9: 2455 // If Pi is a pack expansion, then the pattern of Pi is compared with 2456 // each remaining argument in the template argument list of A. Each 2457 // comparison deduces template arguments for subsequent positions in the 2458 // template parameter packs expanded by Pi. 2459 TemplateArgument Pattern = P.getPackExpansionPattern(); 2460 2461 // Prepare to deduce the packs within the pattern. 2462 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 2463 2464 // Keep track of the deduced template arguments for each parameter pack 2465 // expanded by this pack expansion (the outer index) and for each 2466 // template argument (the inner SmallVectors). 2467 for (; hasTemplateArgumentForDeduction(As, ArgIdx) && 2468 PackScope.hasNextElement(); 2469 ++ArgIdx) { 2470 // Deduce template arguments from the pattern. 2471 if (auto Result = DeduceTemplateArguments(S, TemplateParams, Pattern, 2472 As[ArgIdx], Info, Deduced)) 2473 return Result; 2474 2475 PackScope.nextPackElement(); 2476 } 2477 2478 // Build argument packs for each of the parameter packs expanded by this 2479 // pack expansion. 2480 if (auto Result = PackScope.finish()) 2481 return Result; 2482 } 2483 2484 return Sema::TDK_Success; 2485 } 2486 2487 static Sema::TemplateDeductionResult 2488 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 2489 const TemplateArgumentList &ParamList, 2490 const TemplateArgumentList &ArgList, 2491 TemplateDeductionInfo &Info, 2492 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2493 return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(), 2494 ArgList.asArray(), Info, Deduced, 2495 /*NumberOfArgumentsMustMatch=*/false); 2496 } 2497 2498 /// Determine whether two template arguments are the same. 2499 static bool isSameTemplateArg(ASTContext &Context, 2500 TemplateArgument X, 2501 const TemplateArgument &Y, 2502 bool PartialOrdering, 2503 bool PackExpansionMatchesPack = false) { 2504 // If we're checking deduced arguments (X) against original arguments (Y), 2505 // we will have flattened packs to non-expansions in X. 2506 if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion()) 2507 X = X.getPackExpansionPattern(); 2508 2509 if (X.getKind() != Y.getKind()) 2510 return false; 2511 2512 switch (X.getKind()) { 2513 case TemplateArgument::Null: 2514 llvm_unreachable("Comparing NULL template argument"); 2515 2516 case TemplateArgument::Type: 2517 return Context.getCanonicalType(X.getAsType()) == 2518 Context.getCanonicalType(Y.getAsType()); 2519 2520 case TemplateArgument::Declaration: 2521 return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()); 2522 2523 case TemplateArgument::NullPtr: 2524 return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()); 2525 2526 case TemplateArgument::Template: 2527 case TemplateArgument::TemplateExpansion: 2528 return Context.getCanonicalTemplateName( 2529 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() == 2530 Context.getCanonicalTemplateName( 2531 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer(); 2532 2533 case TemplateArgument::Integral: 2534 return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()); 2535 2536 case TemplateArgument::StructuralValue: 2537 return X.structurallyEquals(Y); 2538 2539 case TemplateArgument::Expression: { 2540 llvm::FoldingSetNodeID XID, YID; 2541 X.getAsExpr()->Profile(XID, Context, true); 2542 Y.getAsExpr()->Profile(YID, Context, true); 2543 return XID == YID; 2544 } 2545 2546 case TemplateArgument::Pack: { 2547 unsigned PackIterationSize = X.pack_size(); 2548 if (X.pack_size() != Y.pack_size()) { 2549 if (!PartialOrdering) 2550 return false; 2551 2552 // C++0x [temp.deduct.type]p9: 2553 // During partial ordering, if Ai was originally a pack expansion: 2554 // - if P does not contain a template argument corresponding to Ai 2555 // then Ai is ignored; 2556 bool XHasMoreArg = X.pack_size() > Y.pack_size(); 2557 if (!(XHasMoreArg && X.pack_elements().back().isPackExpansion()) && 2558 !(!XHasMoreArg && Y.pack_elements().back().isPackExpansion())) 2559 return false; 2560 2561 if (XHasMoreArg) 2562 PackIterationSize = Y.pack_size(); 2563 } 2564 2565 ArrayRef<TemplateArgument> XP = X.pack_elements(); 2566 ArrayRef<TemplateArgument> YP = Y.pack_elements(); 2567 for (unsigned i = 0; i < PackIterationSize; ++i) 2568 if (!isSameTemplateArg(Context, XP[i], YP[i], PartialOrdering, 2569 PackExpansionMatchesPack)) 2570 return false; 2571 return true; 2572 } 2573 } 2574 2575 llvm_unreachable("Invalid TemplateArgument Kind!"); 2576 } 2577 2578 /// Allocate a TemplateArgumentLoc where all locations have 2579 /// been initialized to the given location. 2580 /// 2581 /// \param Arg The template argument we are producing template argument 2582 /// location information for. 2583 /// 2584 /// \param NTTPType For a declaration template argument, the type of 2585 /// the non-type template parameter that corresponds to this template 2586 /// argument. Can be null if no type sugar is available to add to the 2587 /// type from the template argument. 2588 /// 2589 /// \param Loc The source location to use for the resulting template 2590 /// argument. 2591 TemplateArgumentLoc 2592 Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, 2593 QualType NTTPType, SourceLocation Loc) { 2594 switch (Arg.getKind()) { 2595 case TemplateArgument::Null: 2596 llvm_unreachable("Can't get a NULL template argument here"); 2597 2598 case TemplateArgument::Type: 2599 return TemplateArgumentLoc( 2600 Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); 2601 2602 case TemplateArgument::Declaration: { 2603 if (NTTPType.isNull()) 2604 NTTPType = Arg.getParamTypeForDecl(); 2605 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2606 .getAs<Expr>(); 2607 return TemplateArgumentLoc(TemplateArgument(E), E); 2608 } 2609 2610 case TemplateArgument::NullPtr: { 2611 if (NTTPType.isNull()) 2612 NTTPType = Arg.getNullPtrType(); 2613 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2614 .getAs<Expr>(); 2615 return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true), 2616 E); 2617 } 2618 2619 case TemplateArgument::Integral: 2620 case TemplateArgument::StructuralValue: { 2621 Expr *E = BuildExpressionFromNonTypeTemplateArgument(Arg, Loc).get(); 2622 return TemplateArgumentLoc(TemplateArgument(E), E); 2623 } 2624 2625 case TemplateArgument::Template: 2626 case TemplateArgument::TemplateExpansion: { 2627 NestedNameSpecifierLocBuilder Builder; 2628 TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); 2629 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) 2630 Builder.MakeTrivial(Context, DTN->getQualifier(), Loc); 2631 else if (QualifiedTemplateName *QTN = 2632 Template.getAsQualifiedTemplateName()) 2633 Builder.MakeTrivial(Context, QTN->getQualifier(), Loc); 2634 2635 if (Arg.getKind() == TemplateArgument::Template) 2636 return TemplateArgumentLoc(Context, Arg, 2637 Builder.getWithLocInContext(Context), Loc); 2638 2639 return TemplateArgumentLoc( 2640 Context, Arg, Builder.getWithLocInContext(Context), Loc, Loc); 2641 } 2642 2643 case TemplateArgument::Expression: 2644 return TemplateArgumentLoc(Arg, Arg.getAsExpr()); 2645 2646 case TemplateArgument::Pack: 2647 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); 2648 } 2649 2650 llvm_unreachable("Invalid TemplateArgument Kind!"); 2651 } 2652 2653 TemplateArgumentLoc 2654 Sema::getIdentityTemplateArgumentLoc(NamedDecl *TemplateParm, 2655 SourceLocation Location) { 2656 return getTrivialTemplateArgumentLoc( 2657 Context.getInjectedTemplateArg(TemplateParm), QualType(), Location); 2658 } 2659 2660 /// Convert the given deduced template argument and add it to the set of 2661 /// fully-converted template arguments. 2662 static bool ConvertDeducedTemplateArgument( 2663 Sema &S, NamedDecl *Param, DeducedTemplateArgument Arg, NamedDecl *Template, 2664 TemplateDeductionInfo &Info, bool IsDeduced, 2665 SmallVectorImpl<TemplateArgument> &SugaredOutput, 2666 SmallVectorImpl<TemplateArgument> &CanonicalOutput) { 2667 auto ConvertArg = [&](DeducedTemplateArgument Arg, 2668 unsigned ArgumentPackIndex) { 2669 // Convert the deduced template argument into a template 2670 // argument that we can check, almost as if the user had written 2671 // the template argument explicitly. 2672 TemplateArgumentLoc ArgLoc = 2673 S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation()); 2674 2675 // Check the template argument, converting it as necessary. 2676 return S.CheckTemplateArgument( 2677 Param, ArgLoc, Template, Template->getLocation(), 2678 Template->getSourceRange().getEnd(), ArgumentPackIndex, SugaredOutput, 2679 CanonicalOutput, 2680 IsDeduced 2681 ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound 2682 : Sema::CTAK_Deduced) 2683 : Sema::CTAK_Specified); 2684 }; 2685 2686 if (Arg.getKind() == TemplateArgument::Pack) { 2687 // This is a template argument pack, so check each of its arguments against 2688 // the template parameter. 2689 SmallVector<TemplateArgument, 2> SugaredPackedArgsBuilder, 2690 CanonicalPackedArgsBuilder; 2691 for (const auto &P : Arg.pack_elements()) { 2692 // When converting the deduced template argument, append it to the 2693 // general output list. We need to do this so that the template argument 2694 // checking logic has all of the prior template arguments available. 2695 DeducedTemplateArgument InnerArg(P); 2696 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); 2697 assert(InnerArg.getKind() != TemplateArgument::Pack && 2698 "deduced nested pack"); 2699 if (P.isNull()) { 2700 // We deduced arguments for some elements of this pack, but not for 2701 // all of them. This happens if we get a conditionally-non-deduced 2702 // context in a pack expansion (such as an overload set in one of the 2703 // arguments). 2704 S.Diag(Param->getLocation(), 2705 diag::err_template_arg_deduced_incomplete_pack) 2706 << Arg << Param; 2707 return true; 2708 } 2709 if (ConvertArg(InnerArg, SugaredPackedArgsBuilder.size())) 2710 return true; 2711 2712 // Move the converted template argument into our argument pack. 2713 SugaredPackedArgsBuilder.push_back(SugaredOutput.pop_back_val()); 2714 CanonicalPackedArgsBuilder.push_back(CanonicalOutput.pop_back_val()); 2715 } 2716 2717 // If the pack is empty, we still need to substitute into the parameter 2718 // itself, in case that substitution fails. 2719 if (SugaredPackedArgsBuilder.empty()) { 2720 LocalInstantiationScope Scope(S); 2721 MultiLevelTemplateArgumentList Args(Template, SugaredOutput, 2722 /*Final=*/true); 2723 2724 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2725 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2726 NTTP, SugaredOutput, 2727 Template->getSourceRange()); 2728 if (Inst.isInvalid() || 2729 S.SubstType(NTTP->getType(), Args, NTTP->getLocation(), 2730 NTTP->getDeclName()).isNull()) 2731 return true; 2732 } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) { 2733 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2734 TTP, SugaredOutput, 2735 Template->getSourceRange()); 2736 if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args)) 2737 return true; 2738 } 2739 // For type parameters, no substitution is ever required. 2740 } 2741 2742 // Create the resulting argument pack. 2743 SugaredOutput.push_back( 2744 TemplateArgument::CreatePackCopy(S.Context, SugaredPackedArgsBuilder)); 2745 CanonicalOutput.push_back(TemplateArgument::CreatePackCopy( 2746 S.Context, CanonicalPackedArgsBuilder)); 2747 return false; 2748 } 2749 2750 return ConvertArg(Arg, 0); 2751 } 2752 2753 // FIXME: This should not be a template, but 2754 // ClassTemplatePartialSpecializationDecl sadly does not derive from 2755 // TemplateDecl. 2756 template <typename TemplateDeclT> 2757 static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments( 2758 Sema &S, TemplateDeclT *Template, bool IsDeduced, 2759 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2760 TemplateDeductionInfo &Info, 2761 SmallVectorImpl<TemplateArgument> &SugaredBuilder, 2762 SmallVectorImpl<TemplateArgument> &CanonicalBuilder, 2763 LocalInstantiationScope *CurrentInstantiationScope = nullptr, 2764 unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) { 2765 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2766 2767 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2768 NamedDecl *Param = TemplateParams->getParam(I); 2769 2770 // C++0x [temp.arg.explicit]p3: 2771 // A trailing template parameter pack (14.5.3) not otherwise deduced will 2772 // be deduced to an empty sequence of template arguments. 2773 // FIXME: Where did the word "trailing" come from? 2774 if (Deduced[I].isNull() && Param->isTemplateParameterPack()) { 2775 if (auto Result = 2776 PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish()) 2777 return Result; 2778 } 2779 2780 if (!Deduced[I].isNull()) { 2781 if (I < NumAlreadyConverted) { 2782 // We may have had explicitly-specified template arguments for a 2783 // template parameter pack (that may or may not have been extended 2784 // via additional deduced arguments). 2785 if (Param->isParameterPack() && CurrentInstantiationScope && 2786 CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) { 2787 // Forget the partially-substituted pack; its substitution is now 2788 // complete. 2789 CurrentInstantiationScope->ResetPartiallySubstitutedPack(); 2790 // We still need to check the argument in case it was extended by 2791 // deduction. 2792 } else { 2793 // We have already fully type-checked and converted this 2794 // argument, because it was explicitly-specified. Just record the 2795 // presence of this argument. 2796 SugaredBuilder.push_back(Deduced[I]); 2797 CanonicalBuilder.push_back( 2798 S.Context.getCanonicalTemplateArgument(Deduced[I])); 2799 continue; 2800 } 2801 } 2802 2803 // We may have deduced this argument, so it still needs to be 2804 // checked and converted. 2805 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info, 2806 IsDeduced, SugaredBuilder, 2807 CanonicalBuilder)) { 2808 Info.Param = makeTemplateParameter(Param); 2809 // FIXME: These template arguments are temporary. Free them! 2810 Info.reset( 2811 TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder), 2812 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder)); 2813 return Sema::TDK_SubstitutionFailure; 2814 } 2815 2816 continue; 2817 } 2818 2819 // Substitute into the default template argument, if available. 2820 bool HasDefaultArg = false; 2821 TemplateDecl *TD = dyn_cast<TemplateDecl>(Template); 2822 if (!TD) { 2823 assert(isa<ClassTemplatePartialSpecializationDecl>(Template) || 2824 isa<VarTemplatePartialSpecializationDecl>(Template)); 2825 return Sema::TDK_Incomplete; 2826 } 2827 2828 TemplateArgumentLoc DefArg; 2829 { 2830 Qualifiers ThisTypeQuals; 2831 CXXRecordDecl *ThisContext = nullptr; 2832 if (auto *Rec = dyn_cast<CXXRecordDecl>(TD->getDeclContext())) 2833 if (Rec->isLambda()) 2834 if (auto *Method = dyn_cast<CXXMethodDecl>(Rec->getDeclContext())) { 2835 ThisContext = Method->getParent(); 2836 ThisTypeQuals = Method->getMethodQualifiers(); 2837 } 2838 2839 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, ThisTypeQuals, 2840 S.getLangOpts().CPlusPlus17); 2841 2842 DefArg = S.SubstDefaultTemplateArgumentIfAvailable( 2843 TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, 2844 SugaredBuilder, CanonicalBuilder, HasDefaultArg); 2845 } 2846 2847 // If there was no default argument, deduction is incomplete. 2848 if (DefArg.getArgument().isNull()) { 2849 Info.Param = makeTemplateParameter( 2850 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2851 Info.reset(TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder), 2852 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder)); 2853 if (PartialOverloading) break; 2854 2855 return HasDefaultArg ? Sema::TDK_SubstitutionFailure 2856 : Sema::TDK_Incomplete; 2857 } 2858 2859 // Check whether we can actually use the default argument. 2860 if (S.CheckTemplateArgument( 2861 Param, DefArg, TD, TD->getLocation(), TD->getSourceRange().getEnd(), 2862 0, SugaredBuilder, CanonicalBuilder, Sema::CTAK_Specified)) { 2863 Info.Param = makeTemplateParameter( 2864 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2865 // FIXME: These template arguments are temporary. Free them! 2866 Info.reset(TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder), 2867 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder)); 2868 return Sema::TDK_SubstitutionFailure; 2869 } 2870 2871 // If we get here, we successfully used the default template argument. 2872 } 2873 2874 return Sema::TDK_Success; 2875 } 2876 2877 static DeclContext *getAsDeclContextOrEnclosing(Decl *D) { 2878 if (auto *DC = dyn_cast<DeclContext>(D)) 2879 return DC; 2880 return D->getDeclContext(); 2881 } 2882 2883 template<typename T> struct IsPartialSpecialization { 2884 static constexpr bool value = false; 2885 }; 2886 template<> 2887 struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> { 2888 static constexpr bool value = true; 2889 }; 2890 template<> 2891 struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> { 2892 static constexpr bool value = true; 2893 }; 2894 template <typename TemplateDeclT> 2895 static bool DeducedArgsNeedReplacement(TemplateDeclT *Template) { 2896 return false; 2897 } 2898 template <> 2899 bool DeducedArgsNeedReplacement<VarTemplatePartialSpecializationDecl>( 2900 VarTemplatePartialSpecializationDecl *Spec) { 2901 return !Spec->isClassScopeExplicitSpecialization(); 2902 } 2903 template <> 2904 bool DeducedArgsNeedReplacement<ClassTemplatePartialSpecializationDecl>( 2905 ClassTemplatePartialSpecializationDecl *Spec) { 2906 return !Spec->isClassScopeExplicitSpecialization(); 2907 } 2908 2909 template <typename TemplateDeclT> 2910 static Sema::TemplateDeductionResult 2911 CheckDeducedArgumentConstraints(Sema &S, TemplateDeclT *Template, 2912 ArrayRef<TemplateArgument> SugaredDeducedArgs, 2913 ArrayRef<TemplateArgument> CanonicalDeducedArgs, 2914 TemplateDeductionInfo &Info) { 2915 llvm::SmallVector<const Expr *, 3> AssociatedConstraints; 2916 Template->getAssociatedConstraints(AssociatedConstraints); 2917 2918 bool NeedsReplacement = DeducedArgsNeedReplacement(Template); 2919 TemplateArgumentList DeducedTAL{TemplateArgumentList::OnStack, 2920 CanonicalDeducedArgs}; 2921 2922 MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs( 2923 Template, Template->getDeclContext(), /*Final=*/false, 2924 /*InnerMost=*/NeedsReplacement ? nullptr : &DeducedTAL, 2925 /*RelativeToPrimary=*/true, /*Pattern=*/ 2926 nullptr, /*ForConstraintInstantiation=*/true); 2927 2928 // getTemplateInstantiationArgs picks up the non-deduced version of the 2929 // template args when this is a variable template partial specialization and 2930 // not class-scope explicit specialization, so replace with Deduced Args 2931 // instead of adding to inner-most. 2932 if (NeedsReplacement) 2933 MLTAL.replaceInnermostTemplateArguments(Template, CanonicalDeducedArgs); 2934 2935 if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints, MLTAL, 2936 Info.getLocation(), 2937 Info.AssociatedConstraintsSatisfaction) || 2938 !Info.AssociatedConstraintsSatisfaction.IsSatisfied) { 2939 Info.reset( 2940 TemplateArgumentList::CreateCopy(S.Context, SugaredDeducedArgs), 2941 TemplateArgumentList::CreateCopy(S.Context, CanonicalDeducedArgs)); 2942 return Sema::TDK_ConstraintsNotSatisfied; 2943 } 2944 return Sema::TDK_Success; 2945 } 2946 2947 /// Complete template argument deduction for a partial specialization. 2948 template <typename T> 2949 static std::enable_if_t<IsPartialSpecialization<T>::value, 2950 Sema::TemplateDeductionResult> 2951 FinishTemplateArgumentDeduction( 2952 Sema &S, T *Partial, bool IsPartialOrdering, 2953 const TemplateArgumentList &TemplateArgs, 2954 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2955 TemplateDeductionInfo &Info) { 2956 // Unevaluated SFINAE context. 2957 EnterExpressionEvaluationContext Unevaluated( 2958 S, Sema::ExpressionEvaluationContext::Unevaluated); 2959 Sema::SFINAETrap Trap(S); 2960 2961 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial)); 2962 2963 // C++ [temp.deduct.type]p2: 2964 // [...] or if any template argument remains neither deduced nor 2965 // explicitly specified, template argument deduction fails. 2966 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder; 2967 if (auto Result = ConvertDeducedTemplateArguments( 2968 S, Partial, IsPartialOrdering, Deduced, Info, SugaredBuilder, 2969 CanonicalBuilder)) 2970 return Result; 2971 2972 // Form the template argument list from the deduced template arguments. 2973 TemplateArgumentList *SugaredDeducedArgumentList = 2974 TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder); 2975 TemplateArgumentList *CanonicalDeducedArgumentList = 2976 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder); 2977 2978 Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList); 2979 2980 // Substitute the deduced template arguments into the template 2981 // arguments of the class template partial specialization, and 2982 // verify that the instantiated template arguments are both valid 2983 // and are equivalent to the template arguments originally provided 2984 // to the class template. 2985 LocalInstantiationScope InstScope(S); 2986 auto *Template = Partial->getSpecializedTemplate(); 2987 const ASTTemplateArgumentListInfo *PartialTemplArgInfo = 2988 Partial->getTemplateArgsAsWritten(); 2989 2990 TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc, 2991 PartialTemplArgInfo->RAngleLoc); 2992 2993 if (S.SubstTemplateArguments(PartialTemplArgInfo->arguments(), 2994 MultiLevelTemplateArgumentList(Partial, 2995 SugaredBuilder, 2996 /*Final=*/true), 2997 InstArgs)) { 2998 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; 2999 if (ParamIdx >= Partial->getTemplateParameters()->size()) 3000 ParamIdx = Partial->getTemplateParameters()->size() - 1; 3001 3002 Decl *Param = const_cast<NamedDecl *>( 3003 Partial->getTemplateParameters()->getParam(ParamIdx)); 3004 Info.Param = makeTemplateParameter(Param); 3005 Info.FirstArg = (*PartialTemplArgInfo)[ArgIdx].getArgument(); 3006 return Sema::TDK_SubstitutionFailure; 3007 } 3008 3009 bool ConstraintsNotSatisfied; 3010 SmallVector<TemplateArgument, 4> SugaredConvertedInstArgs, 3011 CanonicalConvertedInstArgs; 3012 if (S.CheckTemplateArgumentList( 3013 Template, Partial->getLocation(), InstArgs, false, 3014 SugaredConvertedInstArgs, CanonicalConvertedInstArgs, 3015 /*UpdateArgsWithConversions=*/true, &ConstraintsNotSatisfied)) 3016 return ConstraintsNotSatisfied ? Sema::TDK_ConstraintsNotSatisfied 3017 : Sema::TDK_SubstitutionFailure; 3018 3019 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 3020 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 3021 TemplateArgument InstArg = SugaredConvertedInstArgs.data()[I]; 3022 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, 3023 IsPartialOrdering)) { 3024 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 3025 Info.FirstArg = TemplateArgs[I]; 3026 Info.SecondArg = InstArg; 3027 return Sema::TDK_NonDeducedMismatch; 3028 } 3029 } 3030 3031 if (Trap.hasErrorOccurred()) 3032 return Sema::TDK_SubstitutionFailure; 3033 3034 if (auto Result = CheckDeducedArgumentConstraints(S, Partial, SugaredBuilder, 3035 CanonicalBuilder, Info)) 3036 return Result; 3037 3038 return Sema::TDK_Success; 3039 } 3040 3041 /// Complete template argument deduction for a class or variable template, 3042 /// when partial ordering against a partial specialization. 3043 // FIXME: Factor out duplication with partial specialization version above. 3044 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction( 3045 Sema &S, TemplateDecl *Template, bool PartialOrdering, 3046 const TemplateArgumentList &TemplateArgs, 3047 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3048 TemplateDeductionInfo &Info) { 3049 // Unevaluated SFINAE context. 3050 EnterExpressionEvaluationContext Unevaluated( 3051 S, Sema::ExpressionEvaluationContext::Unevaluated); 3052 Sema::SFINAETrap Trap(S); 3053 3054 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template)); 3055 3056 // C++ [temp.deduct.type]p2: 3057 // [...] or if any template argument remains neither deduced nor 3058 // explicitly specified, template argument deduction fails. 3059 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder; 3060 if (auto Result = ConvertDeducedTemplateArguments( 3061 S, Template, /*IsDeduced*/ PartialOrdering, Deduced, Info, 3062 SugaredBuilder, CanonicalBuilder, 3063 /*CurrentInstantiationScope=*/nullptr, 3064 /*NumAlreadyConverted=*/0U, /*PartialOverloading=*/false)) 3065 return Result; 3066 3067 // Check that we produced the correct argument list. 3068 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 3069 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 3070 TemplateArgument InstArg = CanonicalBuilder[I]; 3071 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, PartialOrdering, 3072 /*PackExpansionMatchesPack=*/true)) { 3073 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 3074 Info.FirstArg = TemplateArgs[I]; 3075 Info.SecondArg = InstArg; 3076 return Sema::TDK_NonDeducedMismatch; 3077 } 3078 } 3079 3080 if (Trap.hasErrorOccurred()) 3081 return Sema::TDK_SubstitutionFailure; 3082 3083 if (auto Result = CheckDeducedArgumentConstraints(S, Template, SugaredBuilder, 3084 CanonicalBuilder, Info)) 3085 return Result; 3086 3087 return Sema::TDK_Success; 3088 } 3089 3090 /// Perform template argument deduction to determine whether 3091 /// the given template arguments match the given class template 3092 /// partial specialization per C++ [temp.class.spec.match]. 3093 Sema::TemplateDeductionResult 3094 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, 3095 const TemplateArgumentList &TemplateArgs, 3096 TemplateDeductionInfo &Info) { 3097 if (Partial->isInvalidDecl()) 3098 return TDK_Invalid; 3099 3100 // C++ [temp.class.spec.match]p2: 3101 // A partial specialization matches a given actual template 3102 // argument list if the template arguments of the partial 3103 // specialization can be deduced from the actual template argument 3104 // list (14.8.2). 3105 3106 // Unevaluated SFINAE context. 3107 EnterExpressionEvaluationContext Unevaluated( 3108 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3109 SFINAETrap Trap(*this); 3110 3111 // This deduction has no relation to any outer instantiation we might be 3112 // performing. 3113 LocalInstantiationScope InstantiationScope(*this); 3114 3115 SmallVector<DeducedTemplateArgument, 4> Deduced; 3116 Deduced.resize(Partial->getTemplateParameters()->size()); 3117 if (TemplateDeductionResult Result 3118 = ::DeduceTemplateArguments(*this, 3119 Partial->getTemplateParameters(), 3120 Partial->getTemplateArgs(), 3121 TemplateArgs, Info, Deduced)) 3122 return Result; 3123 3124 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3125 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 3126 Info); 3127 if (Inst.isInvalid()) 3128 return TDK_InstantiationDepth; 3129 3130 if (Trap.hasErrorOccurred()) 3131 return Sema::TDK_SubstitutionFailure; 3132 3133 TemplateDeductionResult Result; 3134 runWithSufficientStackSpace(Info.getLocation(), [&] { 3135 Result = ::FinishTemplateArgumentDeduction(*this, Partial, 3136 /*IsPartialOrdering=*/false, 3137 TemplateArgs, Deduced, Info); 3138 }); 3139 return Result; 3140 } 3141 3142 /// Perform template argument deduction to determine whether 3143 /// the given template arguments match the given variable template 3144 /// partial specialization per C++ [temp.class.spec.match]. 3145 Sema::TemplateDeductionResult 3146 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, 3147 const TemplateArgumentList &TemplateArgs, 3148 TemplateDeductionInfo &Info) { 3149 if (Partial->isInvalidDecl()) 3150 return TDK_Invalid; 3151 3152 // C++ [temp.class.spec.match]p2: 3153 // A partial specialization matches a given actual template 3154 // argument list if the template arguments of the partial 3155 // specialization can be deduced from the actual template argument 3156 // list (14.8.2). 3157 3158 // Unevaluated SFINAE context. 3159 EnterExpressionEvaluationContext Unevaluated( 3160 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3161 SFINAETrap Trap(*this); 3162 3163 // This deduction has no relation to any outer instantiation we might be 3164 // performing. 3165 LocalInstantiationScope InstantiationScope(*this); 3166 3167 SmallVector<DeducedTemplateArgument, 4> Deduced; 3168 Deduced.resize(Partial->getTemplateParameters()->size()); 3169 if (TemplateDeductionResult Result = ::DeduceTemplateArguments( 3170 *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(), 3171 TemplateArgs, Info, Deduced)) 3172 return Result; 3173 3174 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3175 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 3176 Info); 3177 if (Inst.isInvalid()) 3178 return TDK_InstantiationDepth; 3179 3180 if (Trap.hasErrorOccurred()) 3181 return Sema::TDK_SubstitutionFailure; 3182 3183 TemplateDeductionResult Result; 3184 runWithSufficientStackSpace(Info.getLocation(), [&] { 3185 Result = ::FinishTemplateArgumentDeduction(*this, Partial, 3186 /*IsPartialOrdering=*/false, 3187 TemplateArgs, Deduced, Info); 3188 }); 3189 return Result; 3190 } 3191 3192 /// Determine whether the given type T is a simple-template-id type. 3193 static bool isSimpleTemplateIdType(QualType T) { 3194 if (const TemplateSpecializationType *Spec 3195 = T->getAs<TemplateSpecializationType>()) 3196 return Spec->getTemplateName().getAsTemplateDecl() != nullptr; 3197 3198 // C++17 [temp.local]p2: 3199 // the injected-class-name [...] is equivalent to the template-name followed 3200 // by the template-arguments of the class template specialization or partial 3201 // specialization enclosed in <> 3202 // ... which means it's equivalent to a simple-template-id. 3203 // 3204 // This only arises during class template argument deduction for a copy 3205 // deduction candidate, where it permits slicing. 3206 if (T->getAs<InjectedClassNameType>()) 3207 return true; 3208 3209 return false; 3210 } 3211 3212 /// Substitute the explicitly-provided template arguments into the 3213 /// given function template according to C++ [temp.arg.explicit]. 3214 /// 3215 /// \param FunctionTemplate the function template into which the explicit 3216 /// template arguments will be substituted. 3217 /// 3218 /// \param ExplicitTemplateArgs the explicitly-specified template 3219 /// arguments. 3220 /// 3221 /// \param Deduced the deduced template arguments, which will be populated 3222 /// with the converted and checked explicit template arguments. 3223 /// 3224 /// \param ParamTypes will be populated with the instantiated function 3225 /// parameters. 3226 /// 3227 /// \param FunctionType if non-NULL, the result type of the function template 3228 /// will also be instantiated and the pointed-to value will be updated with 3229 /// the instantiated function type. 3230 /// 3231 /// \param Info if substitution fails for any reason, this object will be 3232 /// populated with more information about the failure. 3233 /// 3234 /// \returns TDK_Success if substitution was successful, or some failure 3235 /// condition. 3236 Sema::TemplateDeductionResult Sema::SubstituteExplicitTemplateArguments( 3237 FunctionTemplateDecl *FunctionTemplate, 3238 TemplateArgumentListInfo &ExplicitTemplateArgs, 3239 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3240 SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType, 3241 TemplateDeductionInfo &Info) { 3242 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 3243 TemplateParameterList *TemplateParams 3244 = FunctionTemplate->getTemplateParameters(); 3245 3246 if (ExplicitTemplateArgs.size() == 0) { 3247 // No arguments to substitute; just copy over the parameter types and 3248 // fill in the function type. 3249 for (auto *P : Function->parameters()) 3250 ParamTypes.push_back(P->getType()); 3251 3252 if (FunctionType) 3253 *FunctionType = Function->getType(); 3254 return TDK_Success; 3255 } 3256 3257 // Unevaluated SFINAE context. 3258 EnterExpressionEvaluationContext Unevaluated( 3259 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3260 SFINAETrap Trap(*this); 3261 3262 // C++ [temp.arg.explicit]p3: 3263 // Template arguments that are present shall be specified in the 3264 // declaration order of their corresponding template-parameters. The 3265 // template argument list shall not specify more template-arguments than 3266 // there are corresponding template-parameters. 3267 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder; 3268 3269 // Enter a new template instantiation context where we check the 3270 // explicitly-specified template arguments against this function template, 3271 // and then substitute them into the function parameter types. 3272 SmallVector<TemplateArgument, 4> DeducedArgs; 3273 InstantiatingTemplate Inst( 3274 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3275 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); 3276 if (Inst.isInvalid()) 3277 return TDK_InstantiationDepth; 3278 3279 if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(), 3280 ExplicitTemplateArgs, true, SugaredBuilder, 3281 CanonicalBuilder, 3282 /*UpdateArgsWithConversions=*/false) || 3283 Trap.hasErrorOccurred()) { 3284 unsigned Index = SugaredBuilder.size(); 3285 if (Index >= TemplateParams->size()) 3286 return TDK_SubstitutionFailure; 3287 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index)); 3288 return TDK_InvalidExplicitArguments; 3289 } 3290 3291 // Form the template argument list from the explicitly-specified 3292 // template arguments. 3293 TemplateArgumentList *SugaredExplicitArgumentList = 3294 TemplateArgumentList::CreateCopy(Context, SugaredBuilder); 3295 TemplateArgumentList *CanonicalExplicitArgumentList = 3296 TemplateArgumentList::CreateCopy(Context, CanonicalBuilder); 3297 Info.setExplicitArgs(SugaredExplicitArgumentList, 3298 CanonicalExplicitArgumentList); 3299 3300 // Template argument deduction and the final substitution should be 3301 // done in the context of the templated declaration. Explicit 3302 // argument substitution, on the other hand, needs to happen in the 3303 // calling context. 3304 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3305 3306 // If we deduced template arguments for a template parameter pack, 3307 // note that the template argument pack is partially substituted and record 3308 // the explicit template arguments. They'll be used as part of deduction 3309 // for this template parameter pack. 3310 unsigned PartiallySubstitutedPackIndex = -1u; 3311 if (!CanonicalBuilder.empty()) { 3312 const TemplateArgument &Arg = CanonicalBuilder.back(); 3313 if (Arg.getKind() == TemplateArgument::Pack) { 3314 auto *Param = TemplateParams->getParam(CanonicalBuilder.size() - 1); 3315 // If this is a fully-saturated fixed-size pack, it should be 3316 // fully-substituted, not partially-substituted. 3317 std::optional<unsigned> Expansions = getExpandedPackSize(Param); 3318 if (!Expansions || Arg.pack_size() < *Expansions) { 3319 PartiallySubstitutedPackIndex = CanonicalBuilder.size() - 1; 3320 CurrentInstantiationScope->SetPartiallySubstitutedPack( 3321 Param, Arg.pack_begin(), Arg.pack_size()); 3322 } 3323 } 3324 } 3325 3326 const FunctionProtoType *Proto 3327 = Function->getType()->getAs<FunctionProtoType>(); 3328 assert(Proto && "Function template does not have a prototype?"); 3329 3330 // Isolate our substituted parameters from our caller. 3331 LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true); 3332 3333 ExtParameterInfoBuilder ExtParamInfos; 3334 3335 MultiLevelTemplateArgumentList MLTAL(FunctionTemplate, 3336 SugaredExplicitArgumentList->asArray(), 3337 /*Final=*/true); 3338 3339 // Instantiate the types of each of the function parameters given the 3340 // explicitly-specified template arguments. If the function has a trailing 3341 // return type, substitute it after the arguments to ensure we substitute 3342 // in lexical order. 3343 if (Proto->hasTrailingReturn()) { 3344 if (SubstParmTypes(Function->getLocation(), Function->parameters(), 3345 Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes, 3346 /*params=*/nullptr, ExtParamInfos)) 3347 return TDK_SubstitutionFailure; 3348 } 3349 3350 // Instantiate the return type. 3351 QualType ResultType; 3352 { 3353 // C++11 [expr.prim.general]p3: 3354 // If a declaration declares a member function or member function 3355 // template of a class X, the expression this is a prvalue of type 3356 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq 3357 // and the end of the function-definition, member-declarator, or 3358 // declarator. 3359 Qualifiers ThisTypeQuals; 3360 CXXRecordDecl *ThisContext = nullptr; 3361 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3362 ThisContext = Method->getParent(); 3363 ThisTypeQuals = Method->getMethodQualifiers(); 3364 } 3365 3366 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals, 3367 getLangOpts().CPlusPlus11); 3368 3369 ResultType = 3370 SubstType(Proto->getReturnType(), MLTAL, 3371 Function->getTypeSpecStartLoc(), Function->getDeclName()); 3372 if (ResultType.isNull() || Trap.hasErrorOccurred()) 3373 return TDK_SubstitutionFailure; 3374 // CUDA: Kernel function must have 'void' return type. 3375 if (getLangOpts().CUDA) 3376 if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) { 3377 Diag(Function->getLocation(), diag::err_kern_type_not_void_return) 3378 << Function->getType() << Function->getSourceRange(); 3379 return TDK_SubstitutionFailure; 3380 } 3381 } 3382 3383 // Instantiate the types of each of the function parameters given the 3384 // explicitly-specified template arguments if we didn't do so earlier. 3385 if (!Proto->hasTrailingReturn() && 3386 SubstParmTypes(Function->getLocation(), Function->parameters(), 3387 Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes, 3388 /*params*/ nullptr, ExtParamInfos)) 3389 return TDK_SubstitutionFailure; 3390 3391 if (FunctionType) { 3392 auto EPI = Proto->getExtProtoInfo(); 3393 EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size()); 3394 3395 // In C++1z onwards, exception specifications are part of the function type, 3396 // so substitution into the type must also substitute into the exception 3397 // specification. 3398 SmallVector<QualType, 4> ExceptionStorage; 3399 if (getLangOpts().CPlusPlus17 && 3400 SubstExceptionSpec(Function->getLocation(), EPI.ExceptionSpec, 3401 ExceptionStorage, 3402 getTemplateInstantiationArgs( 3403 FunctionTemplate, nullptr, /*Final=*/true, 3404 /*Innermost=*/SugaredExplicitArgumentList, 3405 /*RelativeToPrimary=*/false, 3406 /*Pattern=*/nullptr, 3407 /*ForConstraintInstantiation=*/false, 3408 /*SkipForSpecialization=*/true))) 3409 return TDK_SubstitutionFailure; 3410 3411 *FunctionType = BuildFunctionType(ResultType, ParamTypes, 3412 Function->getLocation(), 3413 Function->getDeclName(), 3414 EPI); 3415 if (FunctionType->isNull() || Trap.hasErrorOccurred()) 3416 return TDK_SubstitutionFailure; 3417 } 3418 3419 // C++ [temp.arg.explicit]p2: 3420 // Trailing template arguments that can be deduced (14.8.2) may be 3421 // omitted from the list of explicit template-arguments. If all of the 3422 // template arguments can be deduced, they may all be omitted; in this 3423 // case, the empty template argument list <> itself may also be omitted. 3424 // 3425 // Take all of the explicitly-specified arguments and put them into 3426 // the set of deduced template arguments. The partially-substituted 3427 // parameter pack, however, will be set to NULL since the deduction 3428 // mechanism handles the partially-substituted argument pack directly. 3429 Deduced.reserve(TemplateParams->size()); 3430 for (unsigned I = 0, N = SugaredExplicitArgumentList->size(); I != N; ++I) { 3431 const TemplateArgument &Arg = SugaredExplicitArgumentList->get(I); 3432 if (I == PartiallySubstitutedPackIndex) 3433 Deduced.push_back(DeducedTemplateArgument()); 3434 else 3435 Deduced.push_back(Arg); 3436 } 3437 3438 return TDK_Success; 3439 } 3440 3441 /// Check whether the deduced argument type for a call to a function 3442 /// template matches the actual argument type per C++ [temp.deduct.call]p4. 3443 static Sema::TemplateDeductionResult 3444 CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info, 3445 Sema::OriginalCallArg OriginalArg, 3446 QualType DeducedA) { 3447 ASTContext &Context = S.Context; 3448 3449 auto Failed = [&]() -> Sema::TemplateDeductionResult { 3450 Info.FirstArg = TemplateArgument(DeducedA); 3451 Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType); 3452 Info.CallArgIndex = OriginalArg.ArgIdx; 3453 return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested 3454 : Sema::TDK_DeducedMismatch; 3455 }; 3456 3457 QualType A = OriginalArg.OriginalArgType; 3458 QualType OriginalParamType = OriginalArg.OriginalParamType; 3459 3460 // Check for type equality (top-level cv-qualifiers are ignored). 3461 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3462 return Sema::TDK_Success; 3463 3464 // Strip off references on the argument types; they aren't needed for 3465 // the following checks. 3466 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>()) 3467 DeducedA = DeducedARef->getPointeeType(); 3468 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) 3469 A = ARef->getPointeeType(); 3470 3471 // C++ [temp.deduct.call]p4: 3472 // [...] However, there are three cases that allow a difference: 3473 // - If the original P is a reference type, the deduced A (i.e., the 3474 // type referred to by the reference) can be more cv-qualified than 3475 // the transformed A. 3476 if (const ReferenceType *OriginalParamRef 3477 = OriginalParamType->getAs<ReferenceType>()) { 3478 // We don't want to keep the reference around any more. 3479 OriginalParamType = OriginalParamRef->getPointeeType(); 3480 3481 // FIXME: Resolve core issue (no number yet): if the original P is a 3482 // reference type and the transformed A is function type "noexcept F", 3483 // the deduced A can be F. 3484 QualType Tmp; 3485 if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp)) 3486 return Sema::TDK_Success; 3487 3488 Qualifiers AQuals = A.getQualifiers(); 3489 Qualifiers DeducedAQuals = DeducedA.getQualifiers(); 3490 3491 // Under Objective-C++ ARC, the deduced type may have implicitly 3492 // been given strong or (when dealing with a const reference) 3493 // unsafe_unretained lifetime. If so, update the original 3494 // qualifiers to include this lifetime. 3495 if (S.getLangOpts().ObjCAutoRefCount && 3496 ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong && 3497 AQuals.getObjCLifetime() == Qualifiers::OCL_None) || 3498 (DeducedAQuals.hasConst() && 3499 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) { 3500 AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime()); 3501 } 3502 3503 if (AQuals == DeducedAQuals) { 3504 // Qualifiers match; there's nothing to do. 3505 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) { 3506 return Failed(); 3507 } else { 3508 // Qualifiers are compatible, so have the argument type adopt the 3509 // deduced argument type's qualifiers as if we had performed the 3510 // qualification conversion. 3511 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals); 3512 } 3513 } 3514 3515 // - The transformed A can be another pointer or pointer to member 3516 // type that can be converted to the deduced A via a function pointer 3517 // conversion and/or a qualification conversion. 3518 // 3519 // Also allow conversions which merely strip __attribute__((noreturn)) from 3520 // function types (recursively). 3521 bool ObjCLifetimeConversion = false; 3522 QualType ResultTy; 3523 if ((A->isAnyPointerType() || A->isMemberPointerType()) && 3524 (S.IsQualificationConversion(A, DeducedA, false, 3525 ObjCLifetimeConversion) || 3526 S.IsFunctionConversion(A, DeducedA, ResultTy))) 3527 return Sema::TDK_Success; 3528 3529 // - If P is a class and P has the form simple-template-id, then the 3530 // transformed A can be a derived class of the deduced A. [...] 3531 // [...] Likewise, if P is a pointer to a class of the form 3532 // simple-template-id, the transformed A can be a pointer to a 3533 // derived class pointed to by the deduced A. 3534 if (const PointerType *OriginalParamPtr 3535 = OriginalParamType->getAs<PointerType>()) { 3536 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) { 3537 if (const PointerType *APtr = A->getAs<PointerType>()) { 3538 if (A->getPointeeType()->isRecordType()) { 3539 OriginalParamType = OriginalParamPtr->getPointeeType(); 3540 DeducedA = DeducedAPtr->getPointeeType(); 3541 A = APtr->getPointeeType(); 3542 } 3543 } 3544 } 3545 } 3546 3547 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3548 return Sema::TDK_Success; 3549 3550 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) && 3551 S.IsDerivedFrom(Info.getLocation(), A, DeducedA)) 3552 return Sema::TDK_Success; 3553 3554 return Failed(); 3555 } 3556 3557 /// Find the pack index for a particular parameter index in an instantiation of 3558 /// a function template with specific arguments. 3559 /// 3560 /// \return The pack index for whichever pack produced this parameter, or -1 3561 /// if this was not produced by a parameter. Intended to be used as the 3562 /// ArgumentPackSubstitutionIndex for further substitutions. 3563 // FIXME: We should track this in OriginalCallArgs so we don't need to 3564 // reconstruct it here. 3565 static unsigned getPackIndexForParam(Sema &S, 3566 FunctionTemplateDecl *FunctionTemplate, 3567 const MultiLevelTemplateArgumentList &Args, 3568 unsigned ParamIdx) { 3569 unsigned Idx = 0; 3570 for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) { 3571 if (PD->isParameterPack()) { 3572 unsigned NumExpansions = 3573 S.getNumArgumentsInExpansion(PD->getType(), Args).value_or(1); 3574 if (Idx + NumExpansions > ParamIdx) 3575 return ParamIdx - Idx; 3576 Idx += NumExpansions; 3577 } else { 3578 if (Idx == ParamIdx) 3579 return -1; // Not a pack expansion 3580 ++Idx; 3581 } 3582 } 3583 3584 llvm_unreachable("parameter index would not be produced from template"); 3585 } 3586 3587 // if `Specialization` is a `CXXConstructorDecl` or `CXXConversionDecl`, 3588 // we'll try to instantiate and update its explicit specifier after constraint 3589 // checking. 3590 static Sema::TemplateDeductionResult instantiateExplicitSpecifierDeferred( 3591 Sema &S, FunctionDecl *Specialization, 3592 const MultiLevelTemplateArgumentList &SubstArgs, 3593 TemplateDeductionInfo &Info, FunctionTemplateDecl *FunctionTemplate, 3594 ArrayRef<TemplateArgument> DeducedArgs) { 3595 auto GetExplicitSpecifier = [](FunctionDecl *D) { 3596 return isa<CXXConstructorDecl>(D) 3597 ? cast<CXXConstructorDecl>(D)->getExplicitSpecifier() 3598 : cast<CXXConversionDecl>(D)->getExplicitSpecifier(); 3599 }; 3600 auto SetExplicitSpecifier = [](FunctionDecl *D, ExplicitSpecifier ES) { 3601 isa<CXXConstructorDecl>(D) 3602 ? cast<CXXConstructorDecl>(D)->setExplicitSpecifier(ES) 3603 : cast<CXXConversionDecl>(D)->setExplicitSpecifier(ES); 3604 }; 3605 3606 ExplicitSpecifier ES = GetExplicitSpecifier(Specialization); 3607 Expr *ExplicitExpr = ES.getExpr(); 3608 if (!ExplicitExpr) 3609 return Sema::TDK_Success; 3610 if (!ExplicitExpr->isValueDependent()) 3611 return Sema::TDK_Success; 3612 3613 Sema::InstantiatingTemplate Inst( 3614 S, Info.getLocation(), FunctionTemplate, DeducedArgs, 3615 Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); 3616 if (Inst.isInvalid()) 3617 return Sema::TDK_InstantiationDepth; 3618 Sema::SFINAETrap Trap(S); 3619 const ExplicitSpecifier InstantiatedES = 3620 S.instantiateExplicitSpecifier(SubstArgs, ES); 3621 if (InstantiatedES.isInvalid() || Trap.hasErrorOccurred()) { 3622 Specialization->setInvalidDecl(true); 3623 return Sema::TDK_SubstitutionFailure; 3624 } 3625 SetExplicitSpecifier(Specialization, InstantiatedES); 3626 return Sema::TDK_Success; 3627 } 3628 3629 /// Finish template argument deduction for a function template, 3630 /// checking the deduced template arguments for completeness and forming 3631 /// the function template specialization. 3632 /// 3633 /// \param OriginalCallArgs If non-NULL, the original call arguments against 3634 /// which the deduced argument types should be compared. 3635 Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction( 3636 FunctionTemplateDecl *FunctionTemplate, 3637 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3638 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, 3639 TemplateDeductionInfo &Info, 3640 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs, 3641 bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) { 3642 // Unevaluated SFINAE context. 3643 EnterExpressionEvaluationContext Unevaluated( 3644 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3645 SFINAETrap Trap(*this); 3646 3647 // Enter a new template instantiation context while we instantiate the 3648 // actual function declaration. 3649 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3650 InstantiatingTemplate Inst( 3651 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3652 CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); 3653 if (Inst.isInvalid()) 3654 return TDK_InstantiationDepth; 3655 3656 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3657 3658 // C++ [temp.deduct.type]p2: 3659 // [...] or if any template argument remains neither deduced nor 3660 // explicitly specified, template argument deduction fails. 3661 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder; 3662 if (auto Result = ConvertDeducedTemplateArguments( 3663 *this, FunctionTemplate, /*IsDeduced*/ true, Deduced, Info, 3664 SugaredBuilder, CanonicalBuilder, CurrentInstantiationScope, 3665 NumExplicitlySpecified, PartialOverloading)) 3666 return Result; 3667 3668 // C++ [temp.deduct.call]p10: [DR1391] 3669 // If deduction succeeds for all parameters that contain 3670 // template-parameters that participate in template argument deduction, 3671 // and all template arguments are explicitly specified, deduced, or 3672 // obtained from default template arguments, remaining parameters are then 3673 // compared with the corresponding arguments. For each remaining parameter 3674 // P with a type that was non-dependent before substitution of any 3675 // explicitly-specified template arguments, if the corresponding argument 3676 // A cannot be implicitly converted to P, deduction fails. 3677 if (CheckNonDependent()) 3678 return TDK_NonDependentConversionFailure; 3679 3680 // Form the template argument list from the deduced template arguments. 3681 TemplateArgumentList *SugaredDeducedArgumentList = 3682 TemplateArgumentList::CreateCopy(Context, SugaredBuilder); 3683 TemplateArgumentList *CanonicalDeducedArgumentList = 3684 TemplateArgumentList::CreateCopy(Context, CanonicalBuilder); 3685 Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList); 3686 3687 // Substitute the deduced template arguments into the function template 3688 // declaration to produce the function template specialization. 3689 DeclContext *Owner = FunctionTemplate->getDeclContext(); 3690 if (FunctionTemplate->getFriendObjectKind()) 3691 Owner = FunctionTemplate->getLexicalDeclContext(); 3692 FunctionDecl *FD = FunctionTemplate->getTemplatedDecl(); 3693 // additional check for inline friend, 3694 // ``` 3695 // template <class F1> int foo(F1 X); 3696 // template <int A1> struct A { 3697 // template <class F1> friend int foo(F1 X) { return A1; } 3698 // }; 3699 // template struct A<1>; 3700 // int a = foo(1.0); 3701 // ``` 3702 const FunctionDecl *FDFriend; 3703 if (FD->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None && 3704 FD->isDefined(FDFriend, /*CheckForPendingFriendDefinition*/ true) && 3705 FDFriend->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None) { 3706 FD = const_cast<FunctionDecl *>(FDFriend); 3707 Owner = FD->getLexicalDeclContext(); 3708 } 3709 MultiLevelTemplateArgumentList SubstArgs( 3710 FunctionTemplate, CanonicalDeducedArgumentList->asArray(), 3711 /*Final=*/false); 3712 Specialization = cast_or_null<FunctionDecl>( 3713 SubstDecl(FD, Owner, SubstArgs)); 3714 if (!Specialization || Specialization->isInvalidDecl()) 3715 return TDK_SubstitutionFailure; 3716 3717 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() == 3718 FunctionTemplate->getCanonicalDecl()); 3719 3720 // If the template argument list is owned by the function template 3721 // specialization, release it. 3722 if (Specialization->getTemplateSpecializationArgs() == 3723 CanonicalDeducedArgumentList && 3724 !Trap.hasErrorOccurred()) 3725 Info.takeCanonical(); 3726 3727 // There may have been an error that did not prevent us from constructing a 3728 // declaration. Mark the declaration invalid and return with a substitution 3729 // failure. 3730 if (Trap.hasErrorOccurred()) { 3731 Specialization->setInvalidDecl(true); 3732 return TDK_SubstitutionFailure; 3733 } 3734 3735 // C++2a [temp.deduct]p5 3736 // [...] When all template arguments have been deduced [...] all uses of 3737 // template parameters [...] are replaced with the corresponding deduced 3738 // or default argument values. 3739 // [...] If the function template has associated constraints 3740 // ([temp.constr.decl]), those constraints are checked for satisfaction 3741 // ([temp.constr.constr]). If the constraints are not satisfied, type 3742 // deduction fails. 3743 if (!PartialOverloading || 3744 (CanonicalBuilder.size() == 3745 FunctionTemplate->getTemplateParameters()->size())) { 3746 if (CheckInstantiatedFunctionTemplateConstraints( 3747 Info.getLocation(), Specialization, CanonicalBuilder, 3748 Info.AssociatedConstraintsSatisfaction)) 3749 return TDK_MiscellaneousDeductionFailure; 3750 3751 if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) { 3752 Info.reset(Info.takeSugared(), 3753 TemplateArgumentList::CreateCopy(Context, CanonicalBuilder)); 3754 return TDK_ConstraintsNotSatisfied; 3755 } 3756 } 3757 3758 // We skipped the instantiation of the explicit-specifier during the 3759 // substitution of `FD` before. So, we try to instantiate it back if 3760 // `Specialization` is either a constructor or a conversion function. 3761 if (isa<CXXConstructorDecl, CXXConversionDecl>(Specialization)) { 3762 if (TDK_Success != instantiateExplicitSpecifierDeferred( 3763 *this, Specialization, SubstArgs, Info, 3764 FunctionTemplate, DeducedArgs)) { 3765 return TDK_SubstitutionFailure; 3766 } 3767 } 3768 3769 if (OriginalCallArgs) { 3770 // C++ [temp.deduct.call]p4: 3771 // In general, the deduction process attempts to find template argument 3772 // values that will make the deduced A identical to A (after the type A 3773 // is transformed as described above). [...] 3774 llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes; 3775 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) { 3776 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I]; 3777 3778 auto ParamIdx = OriginalArg.ArgIdx; 3779 unsigned ExplicitOffset = 3780 Specialization->hasCXXExplicitFunctionObjectParameter() ? 1 : 0; 3781 if (ParamIdx >= Specialization->getNumParams() - ExplicitOffset) 3782 // FIXME: This presumably means a pack ended up smaller than we 3783 // expected while deducing. Should this not result in deduction 3784 // failure? Can it even happen? 3785 continue; 3786 3787 QualType DeducedA; 3788 if (!OriginalArg.DecomposedParam) { 3789 // P is one of the function parameters, just look up its substituted 3790 // type. 3791 DeducedA = 3792 Specialization->getParamDecl(ParamIdx + ExplicitOffset)->getType(); 3793 } else { 3794 // P is a decomposed element of a parameter corresponding to a 3795 // braced-init-list argument. Substitute back into P to find the 3796 // deduced A. 3797 QualType &CacheEntry = 3798 DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}]; 3799 if (CacheEntry.isNull()) { 3800 ArgumentPackSubstitutionIndexRAII PackIndex( 3801 *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs, 3802 ParamIdx)); 3803 CacheEntry = 3804 SubstType(OriginalArg.OriginalParamType, SubstArgs, 3805 Specialization->getTypeSpecStartLoc(), 3806 Specialization->getDeclName()); 3807 } 3808 DeducedA = CacheEntry; 3809 } 3810 3811 if (auto TDK = 3812 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) 3813 return TDK; 3814 } 3815 } 3816 3817 // If we suppressed any diagnostics while performing template argument 3818 // deduction, and if we haven't already instantiated this declaration, 3819 // keep track of these diagnostics. They'll be emitted if this specialization 3820 // is actually used. 3821 if (Info.diag_begin() != Info.diag_end()) { 3822 SuppressedDiagnosticsMap::iterator 3823 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl()); 3824 if (Pos == SuppressedDiagnostics.end()) 3825 SuppressedDiagnostics[Specialization->getCanonicalDecl()] 3826 .append(Info.diag_begin(), Info.diag_end()); 3827 } 3828 3829 return TDK_Success; 3830 } 3831 3832 /// Gets the type of a function for template-argument-deducton 3833 /// purposes when it's considered as part of an overload set. 3834 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R, 3835 FunctionDecl *Fn) { 3836 // We may need to deduce the return type of the function now. 3837 if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() && 3838 S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false)) 3839 return {}; 3840 3841 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 3842 if (Method->isImplicitObjectMemberFunction()) { 3843 // An instance method that's referenced in a form that doesn't 3844 // look like a member pointer is just invalid. 3845 if (!R.HasFormOfMemberPointer) 3846 return {}; 3847 3848 return S.Context.getMemberPointerType(Fn->getType(), 3849 S.Context.getTypeDeclType(Method->getParent()).getTypePtr()); 3850 } 3851 3852 if (!R.IsAddressOfOperand) return Fn->getType(); 3853 return S.Context.getPointerType(Fn->getType()); 3854 } 3855 3856 /// Apply the deduction rules for overload sets. 3857 /// 3858 /// \return the null type if this argument should be treated as an 3859 /// undeduced context 3860 static QualType 3861 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, 3862 Expr *Arg, QualType ParamType, 3863 bool ParamWasReference, 3864 TemplateSpecCandidateSet *FailedTSC = nullptr) { 3865 3866 OverloadExpr::FindResult R = OverloadExpr::find(Arg); 3867 3868 OverloadExpr *Ovl = R.Expression; 3869 3870 // C++0x [temp.deduct.call]p4 3871 unsigned TDF = 0; 3872 if (ParamWasReference) 3873 TDF |= TDF_ParamWithReferenceType; 3874 if (R.IsAddressOfOperand) 3875 TDF |= TDF_IgnoreQualifiers; 3876 3877 // C++0x [temp.deduct.call]p6: 3878 // When P is a function type, pointer to function type, or pointer 3879 // to member function type: 3880 3881 if (!ParamType->isFunctionType() && 3882 !ParamType->isFunctionPointerType() && 3883 !ParamType->isMemberFunctionPointerType()) { 3884 if (Ovl->hasExplicitTemplateArgs()) { 3885 // But we can still look for an explicit specialization. 3886 if (FunctionDecl *ExplicitSpec = 3887 S.ResolveSingleFunctionTemplateSpecialization( 3888 Ovl, /*Complain=*/false, 3889 /*FoundDeclAccessPair=*/nullptr, FailedTSC)) 3890 return GetTypeOfFunction(S, R, ExplicitSpec); 3891 } 3892 3893 DeclAccessPair DAP; 3894 if (FunctionDecl *Viable = 3895 S.resolveAddressOfSingleOverloadCandidate(Arg, DAP)) 3896 return GetTypeOfFunction(S, R, Viable); 3897 3898 return {}; 3899 } 3900 3901 // Gather the explicit template arguments, if any. 3902 TemplateArgumentListInfo ExplicitTemplateArgs; 3903 if (Ovl->hasExplicitTemplateArgs()) 3904 Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); 3905 QualType Match; 3906 for (UnresolvedSetIterator I = Ovl->decls_begin(), 3907 E = Ovl->decls_end(); I != E; ++I) { 3908 NamedDecl *D = (*I)->getUnderlyingDecl(); 3909 3910 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) { 3911 // - If the argument is an overload set containing one or more 3912 // function templates, the parameter is treated as a 3913 // non-deduced context. 3914 if (!Ovl->hasExplicitTemplateArgs()) 3915 return {}; 3916 3917 // Otherwise, see if we can resolve a function type 3918 FunctionDecl *Specialization = nullptr; 3919 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3920 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs, 3921 Specialization, Info)) 3922 continue; 3923 3924 D = Specialization; 3925 } 3926 3927 FunctionDecl *Fn = cast<FunctionDecl>(D); 3928 QualType ArgType = GetTypeOfFunction(S, R, Fn); 3929 if (ArgType.isNull()) continue; 3930 3931 // Function-to-pointer conversion. 3932 if (!ParamWasReference && ParamType->isPointerType() && 3933 ArgType->isFunctionType()) 3934 ArgType = S.Context.getPointerType(ArgType); 3935 3936 // - If the argument is an overload set (not containing function 3937 // templates), trial argument deduction is attempted using each 3938 // of the members of the set. If deduction succeeds for only one 3939 // of the overload set members, that member is used as the 3940 // argument value for the deduction. If deduction succeeds for 3941 // more than one member of the overload set the parameter is 3942 // treated as a non-deduced context. 3943 3944 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2: 3945 // Type deduction is done independently for each P/A pair, and 3946 // the deduced template argument values are then combined. 3947 // So we do not reject deductions which were made elsewhere. 3948 SmallVector<DeducedTemplateArgument, 8> 3949 Deduced(TemplateParams->size()); 3950 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3951 Sema::TemplateDeductionResult Result 3952 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 3953 ArgType, Info, Deduced, TDF); 3954 if (Result) continue; 3955 if (!Match.isNull()) 3956 return {}; 3957 Match = ArgType; 3958 } 3959 3960 return Match; 3961 } 3962 3963 /// Perform the adjustments to the parameter and argument types 3964 /// described in C++ [temp.deduct.call]. 3965 /// 3966 /// \returns true if the caller should not attempt to perform any template 3967 /// argument deduction based on this P/A pair because the argument is an 3968 /// overloaded function set that could not be resolved. 3969 static bool AdjustFunctionParmAndArgTypesForDeduction( 3970 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3971 QualType &ParamType, QualType &ArgType, 3972 Expr::Classification ArgClassification, Expr *Arg, unsigned &TDF, 3973 TemplateSpecCandidateSet *FailedTSC = nullptr) { 3974 // C++0x [temp.deduct.call]p3: 3975 // If P is a cv-qualified type, the top level cv-qualifiers of P's type 3976 // are ignored for type deduction. 3977 if (ParamType.hasQualifiers()) 3978 ParamType = ParamType.getUnqualifiedType(); 3979 3980 // [...] If P is a reference type, the type referred to by P is 3981 // used for type deduction. 3982 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>(); 3983 if (ParamRefType) 3984 ParamType = ParamRefType->getPointeeType(); 3985 3986 // Overload sets usually make this parameter an undeduced context, 3987 // but there are sometimes special circumstances. Typically 3988 // involving a template-id-expr. 3989 if (ArgType == S.Context.OverloadTy) { 3990 assert(Arg && "expected a non-null arg expression"); 3991 ArgType = ResolveOverloadForDeduction(S, TemplateParams, Arg, ParamType, 3992 ParamRefType != nullptr, FailedTSC); 3993 if (ArgType.isNull()) 3994 return true; 3995 } 3996 3997 if (ParamRefType) { 3998 // If the argument has incomplete array type, try to complete its type. 3999 if (ArgType->isIncompleteArrayType()) { 4000 assert(Arg && "expected a non-null arg expression"); 4001 ArgType = S.getCompletedType(Arg); 4002 } 4003 4004 // C++1z [temp.deduct.call]p3: 4005 // If P is a forwarding reference and the argument is an lvalue, the type 4006 // "lvalue reference to A" is used in place of A for type deduction. 4007 if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) && 4008 ArgClassification.isLValue()) { 4009 if (S.getLangOpts().OpenCL && !ArgType.hasAddressSpace()) 4010 ArgType = S.Context.getAddrSpaceQualType( 4011 ArgType, S.Context.getDefaultOpenCLPointeeAddrSpace()); 4012 ArgType = S.Context.getLValueReferenceType(ArgType); 4013 } 4014 } else { 4015 // C++ [temp.deduct.call]p2: 4016 // If P is not a reference type: 4017 // - If A is an array type, the pointer type produced by the 4018 // array-to-pointer standard conversion (4.2) is used in place of 4019 // A for type deduction; otherwise, 4020 // - If A is a function type, the pointer type produced by the 4021 // function-to-pointer standard conversion (4.3) is used in place 4022 // of A for type deduction; otherwise, 4023 if (ArgType->canDecayToPointerType()) 4024 ArgType = S.Context.getDecayedType(ArgType); 4025 else { 4026 // - If A is a cv-qualified type, the top level cv-qualifiers of A's 4027 // type are ignored for type deduction. 4028 ArgType = ArgType.getUnqualifiedType(); 4029 } 4030 } 4031 4032 // C++0x [temp.deduct.call]p4: 4033 // In general, the deduction process attempts to find template argument 4034 // values that will make the deduced A identical to A (after the type A 4035 // is transformed as described above). [...] 4036 TDF = TDF_SkipNonDependent; 4037 4038 // - If the original P is a reference type, the deduced A (i.e., the 4039 // type referred to by the reference) can be more cv-qualified than 4040 // the transformed A. 4041 if (ParamRefType) 4042 TDF |= TDF_ParamWithReferenceType; 4043 // - The transformed A can be another pointer or pointer to member 4044 // type that can be converted to the deduced A via a qualification 4045 // conversion (4.4). 4046 if (ArgType->isPointerType() || ArgType->isMemberPointerType() || 4047 ArgType->isObjCObjectPointerType()) 4048 TDF |= TDF_IgnoreQualifiers; 4049 // - If P is a class and P has the form simple-template-id, then the 4050 // transformed A can be a derived class of the deduced A. Likewise, 4051 // if P is a pointer to a class of the form simple-template-id, the 4052 // transformed A can be a pointer to a derived class pointed to by 4053 // the deduced A. 4054 if (isSimpleTemplateIdType(ParamType) || 4055 (isa<PointerType>(ParamType) && 4056 isSimpleTemplateIdType( 4057 ParamType->castAs<PointerType>()->getPointeeType()))) 4058 TDF |= TDF_DerivedClass; 4059 4060 return false; 4061 } 4062 4063 static bool 4064 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, 4065 QualType T); 4066 4067 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 4068 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 4069 QualType ParamType, QualType ArgType, 4070 Expr::Classification ArgClassification, Expr *Arg, 4071 TemplateDeductionInfo &Info, 4072 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 4073 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 4074 bool DecomposedParam, unsigned ArgIdx, unsigned TDF, 4075 TemplateSpecCandidateSet *FailedTSC = nullptr); 4076 4077 /// Attempt template argument deduction from an initializer list 4078 /// deemed to be an argument in a function call. 4079 static Sema::TemplateDeductionResult DeduceFromInitializerList( 4080 Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType, 4081 InitListExpr *ILE, TemplateDeductionInfo &Info, 4082 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 4083 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx, 4084 unsigned TDF) { 4085 // C++ [temp.deduct.call]p1: (CWG 1591) 4086 // If removing references and cv-qualifiers from P gives 4087 // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is 4088 // a non-empty initializer list, then deduction is performed instead for 4089 // each element of the initializer list, taking P0 as a function template 4090 // parameter type and the initializer element as its argument 4091 // 4092 // We've already removed references and cv-qualifiers here. 4093 if (!ILE->getNumInits()) 4094 return Sema::TDK_Success; 4095 4096 QualType ElTy; 4097 auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType); 4098 if (ArrTy) 4099 ElTy = ArrTy->getElementType(); 4100 else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) { 4101 // Otherwise, an initializer list argument causes the parameter to be 4102 // considered a non-deduced context 4103 return Sema::TDK_Success; 4104 } 4105 4106 // Resolving a core issue: a braced-init-list containing any designators is 4107 // a non-deduced context. 4108 for (Expr *E : ILE->inits()) 4109 if (isa<DesignatedInitExpr>(E)) 4110 return Sema::TDK_Success; 4111 4112 // Deduction only needs to be done for dependent types. 4113 if (ElTy->isDependentType()) { 4114 for (Expr *E : ILE->inits()) { 4115 if (auto Result = DeduceTemplateArgumentsFromCallArgument( 4116 S, TemplateParams, 0, ElTy, E->getType(), 4117 E->Classify(S.getASTContext()), E, Info, Deduced, 4118 OriginalCallArgs, true, ArgIdx, TDF)) 4119 return Result; 4120 } 4121 } 4122 4123 // in the P0[N] case, if N is a non-type template parameter, N is deduced 4124 // from the length of the initializer list. 4125 if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) { 4126 // Determine the array bound is something we can deduce. 4127 if (const NonTypeTemplateParmDecl *NTTP = 4128 getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) { 4129 // We can perform template argument deduction for the given non-type 4130 // template parameter. 4131 // C++ [temp.deduct.type]p13: 4132 // The type of N in the type T[N] is std::size_t. 4133 QualType T = S.Context.getSizeType(); 4134 llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits()); 4135 if (auto Result = DeduceNonTypeTemplateArgument( 4136 S, TemplateParams, NTTP, llvm::APSInt(Size), T, 4137 /*ArrayBound=*/true, Info, Deduced)) 4138 return Result; 4139 } 4140 } 4141 4142 return Sema::TDK_Success; 4143 } 4144 4145 /// Perform template argument deduction per [temp.deduct.call] for a 4146 /// single parameter / argument pair. 4147 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 4148 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 4149 QualType ParamType, QualType ArgType, 4150 Expr::Classification ArgClassification, Expr *Arg, 4151 TemplateDeductionInfo &Info, 4152 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 4153 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 4154 bool DecomposedParam, unsigned ArgIdx, unsigned TDF, 4155 TemplateSpecCandidateSet *FailedTSC) { 4156 4157 QualType OrigParamType = ParamType; 4158 4159 // If P is a reference type [...] 4160 // If P is a cv-qualified type [...] 4161 if (AdjustFunctionParmAndArgTypesForDeduction( 4162 S, TemplateParams, FirstInnerIndex, ParamType, ArgType, 4163 ArgClassification, Arg, TDF, FailedTSC)) 4164 return Sema::TDK_Success; 4165 4166 // If [...] the argument is a non-empty initializer list [...] 4167 if (InitListExpr *ILE = dyn_cast_if_present<InitListExpr>(Arg)) 4168 return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info, 4169 Deduced, OriginalCallArgs, ArgIdx, TDF); 4170 4171 // [...] the deduction process attempts to find template argument values 4172 // that will make the deduced A identical to A 4173 // 4174 // Keep track of the argument type and corresponding parameter index, 4175 // so we can check for compatibility between the deduced A and A. 4176 if (Arg) 4177 OriginalCallArgs.push_back( 4178 Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType)); 4179 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 4180 ArgType, Info, Deduced, TDF); 4181 } 4182 4183 /// Perform template argument deduction from a function call 4184 /// (C++ [temp.deduct.call]). 4185 /// 4186 /// \param FunctionTemplate the function template for which we are performing 4187 /// template argument deduction. 4188 /// 4189 /// \param ExplicitTemplateArgs the explicit template arguments provided 4190 /// for this call. 4191 /// 4192 /// \param Args the function call arguments 4193 /// 4194 /// \param Specialization if template argument deduction was successful, 4195 /// this will be set to the function template specialization produced by 4196 /// template argument deduction. 4197 /// 4198 /// \param Info the argument will be updated to provide additional information 4199 /// about template argument deduction. 4200 /// 4201 /// \param CheckNonDependent A callback to invoke to check conversions for 4202 /// non-dependent parameters, between deduction and substitution, per DR1391. 4203 /// If this returns true, substitution will be skipped and we return 4204 /// TDK_NonDependentConversionFailure. The callback is passed the parameter 4205 /// types (after substituting explicit template arguments). 4206 /// 4207 /// \returns the result of template argument deduction. 4208 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4209 FunctionTemplateDecl *FunctionTemplate, 4210 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 4211 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4212 bool PartialOverloading, bool AggregateDeductionCandidate, 4213 QualType ObjectType, Expr::Classification ObjectClassification, 4214 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) { 4215 if (FunctionTemplate->isInvalidDecl()) 4216 return TDK_Invalid; 4217 4218 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 4219 unsigned NumParams = Function->getNumParams(); 4220 bool HasExplicitObject = false; 4221 int ExplicitObjectOffset = 0; 4222 if (Function->hasCXXExplicitFunctionObjectParameter()) { 4223 HasExplicitObject = true; 4224 ExplicitObjectOffset = 1; 4225 } 4226 4227 unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate); 4228 4229 // C++ [temp.deduct.call]p1: 4230 // Template argument deduction is done by comparing each function template 4231 // parameter type (call it P) with the type of the corresponding argument 4232 // of the call (call it A) as described below. 4233 if (Args.size() < Function->getMinRequiredExplicitArguments() && 4234 !PartialOverloading) 4235 return TDK_TooFewArguments; 4236 else if (TooManyArguments(NumParams, Args.size() + ExplicitObjectOffset, 4237 PartialOverloading)) { 4238 const auto *Proto = Function->getType()->castAs<FunctionProtoType>(); 4239 if (Proto->isTemplateVariadic()) 4240 /* Do nothing */; 4241 else if (!Proto->isVariadic()) 4242 return TDK_TooManyArguments; 4243 } 4244 4245 // The types of the parameters from which we will perform template argument 4246 // deduction. 4247 LocalInstantiationScope InstScope(*this); 4248 TemplateParameterList *TemplateParams 4249 = FunctionTemplate->getTemplateParameters(); 4250 SmallVector<DeducedTemplateArgument, 4> Deduced; 4251 SmallVector<QualType, 8> ParamTypes; 4252 unsigned NumExplicitlySpecified = 0; 4253 if (ExplicitTemplateArgs) { 4254 TemplateDeductionResult Result; 4255 runWithSufficientStackSpace(Info.getLocation(), [&] { 4256 Result = SubstituteExplicitTemplateArguments( 4257 FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, nullptr, 4258 Info); 4259 }); 4260 if (Result) 4261 return Result; 4262 4263 NumExplicitlySpecified = Deduced.size(); 4264 } else { 4265 // Just fill in the parameter types from the function declaration. 4266 for (unsigned I = 0; I != NumParams; ++I) 4267 ParamTypes.push_back(Function->getParamDecl(I)->getType()); 4268 } 4269 4270 SmallVector<OriginalCallArg, 8> OriginalCallArgs; 4271 4272 // Deduce an argument of type ParamType from an expression with index ArgIdx. 4273 auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx, 4274 bool ExplicitObjetArgument) { 4275 // C++ [demp.deduct.call]p1: (DR1391) 4276 // Template argument deduction is done by comparing each function template 4277 // parameter that contains template-parameters that participate in 4278 // template argument deduction ... 4279 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) 4280 return Sema::TDK_Success; 4281 4282 if (ExplicitObjetArgument) { 4283 // ... with the type of the corresponding argument 4284 return DeduceTemplateArgumentsFromCallArgument( 4285 *this, TemplateParams, FirstInnerIndex, ParamType, ObjectType, 4286 ObjectClassification, 4287 /*Arg=*/nullptr, Info, Deduced, OriginalCallArgs, 4288 /*Decomposed*/ false, ArgIdx, /*TDF*/ 0); 4289 } 4290 4291 // ... with the type of the corresponding argument 4292 return DeduceTemplateArgumentsFromCallArgument( 4293 *this, TemplateParams, FirstInnerIndex, ParamType, 4294 Args[ArgIdx]->getType(), Args[ArgIdx]->Classify(getASTContext()), 4295 Args[ArgIdx], Info, Deduced, OriginalCallArgs, /*Decomposed*/ false, 4296 ArgIdx, /*TDF*/ 0); 4297 }; 4298 4299 // Deduce template arguments from the function parameters. 4300 Deduced.resize(TemplateParams->size()); 4301 SmallVector<QualType, 8> ParamTypesForArgChecking; 4302 for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0; 4303 ParamIdx != NumParamTypes; ++ParamIdx) { 4304 QualType ParamType = ParamTypes[ParamIdx]; 4305 4306 const PackExpansionType *ParamExpansion = 4307 dyn_cast<PackExpansionType>(ParamType); 4308 if (!ParamExpansion) { 4309 // Simple case: matching a function parameter to a function argument. 4310 if (ArgIdx >= Args.size() && !(HasExplicitObject && ParamIdx == 0)) 4311 break; 4312 4313 ParamTypesForArgChecking.push_back(ParamType); 4314 4315 if (ParamIdx == 0 && HasExplicitObject) { 4316 if (auto Result = DeduceCallArgument(ParamType, 0, 4317 /*ExplicitObjetArgument=*/true)) 4318 return Result; 4319 continue; 4320 } 4321 4322 if (auto Result = DeduceCallArgument(ParamType, ArgIdx++, 4323 /*ExplicitObjetArgument=*/false)) 4324 return Result; 4325 4326 continue; 4327 } 4328 4329 bool IsTrailingPack = ParamIdx + 1 == NumParamTypes; 4330 4331 QualType ParamPattern = ParamExpansion->getPattern(); 4332 PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info, 4333 ParamPattern, 4334 AggregateDeductionCandidate && IsTrailingPack); 4335 4336 // C++0x [temp.deduct.call]p1: 4337 // For a function parameter pack that occurs at the end of the 4338 // parameter-declaration-list, the type A of each remaining argument of 4339 // the call is compared with the type P of the declarator-id of the 4340 // function parameter pack. Each comparison deduces template arguments 4341 // for subsequent positions in the template parameter packs expanded by 4342 // the function parameter pack. When a function parameter pack appears 4343 // in a non-deduced context [not at the end of the list], the type of 4344 // that parameter pack is never deduced. 4345 // 4346 // FIXME: The above rule allows the size of the parameter pack to change 4347 // after we skip it (in the non-deduced case). That makes no sense, so 4348 // we instead notionally deduce the pack against N arguments, where N is 4349 // the length of the explicitly-specified pack if it's expanded by the 4350 // parameter pack and 0 otherwise, and we treat each deduction as a 4351 // non-deduced context. 4352 if (IsTrailingPack || PackScope.hasFixedArity()) { 4353 for (; ArgIdx < Args.size() && PackScope.hasNextElement(); 4354 PackScope.nextPackElement(), ++ArgIdx) { 4355 ParamTypesForArgChecking.push_back(ParamPattern); 4356 if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx, 4357 /*ExplicitObjetArgument=*/false)) 4358 return Result; 4359 } 4360 } else { 4361 // If the parameter type contains an explicitly-specified pack that we 4362 // could not expand, skip the number of parameters notionally created 4363 // by the expansion. 4364 std::optional<unsigned> NumExpansions = 4365 ParamExpansion->getNumExpansions(); 4366 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 4367 for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size(); 4368 ++I, ++ArgIdx) { 4369 ParamTypesForArgChecking.push_back(ParamPattern); 4370 // FIXME: Should we add OriginalCallArgs for these? What if the 4371 // corresponding argument is a list? 4372 PackScope.nextPackElement(); 4373 } 4374 } 4375 } 4376 4377 // Build argument packs for each of the parameter packs expanded by this 4378 // pack expansion. 4379 if (auto Result = PackScope.finish()) 4380 return Result; 4381 } 4382 4383 // Capture the context in which the function call is made. This is the context 4384 // that is needed when the accessibility of template arguments is checked. 4385 DeclContext *CallingCtx = CurContext; 4386 4387 TemplateDeductionResult Result; 4388 runWithSufficientStackSpace(Info.getLocation(), [&] { 4389 Result = FinishTemplateArgumentDeduction( 4390 FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info, 4391 &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() { 4392 ContextRAII SavedContext(*this, CallingCtx); 4393 return CheckNonDependent(ParamTypesForArgChecking); 4394 }); 4395 }); 4396 return Result; 4397 } 4398 4399 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType, 4400 QualType FunctionType, 4401 bool AdjustExceptionSpec) { 4402 if (ArgFunctionType.isNull()) 4403 return ArgFunctionType; 4404 4405 const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>(); 4406 const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>(); 4407 FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo(); 4408 bool Rebuild = false; 4409 4410 CallingConv CC = FunctionTypeP->getCallConv(); 4411 if (EPI.ExtInfo.getCC() != CC) { 4412 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC); 4413 Rebuild = true; 4414 } 4415 4416 bool NoReturn = FunctionTypeP->getNoReturnAttr(); 4417 if (EPI.ExtInfo.getNoReturn() != NoReturn) { 4418 EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn); 4419 Rebuild = true; 4420 } 4421 4422 if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() || 4423 ArgFunctionTypeP->hasExceptionSpec())) { 4424 EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec; 4425 Rebuild = true; 4426 } 4427 4428 if (!Rebuild) 4429 return ArgFunctionType; 4430 4431 return Context.getFunctionType(ArgFunctionTypeP->getReturnType(), 4432 ArgFunctionTypeP->getParamTypes(), EPI); 4433 } 4434 4435 /// Deduce template arguments when taking the address of a function 4436 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to 4437 /// a template. 4438 /// 4439 /// \param FunctionTemplate the function template for which we are performing 4440 /// template argument deduction. 4441 /// 4442 /// \param ExplicitTemplateArgs the explicitly-specified template 4443 /// arguments. 4444 /// 4445 /// \param ArgFunctionType the function type that will be used as the 4446 /// "argument" type (A) when performing template argument deduction from the 4447 /// function template's function type. This type may be NULL, if there is no 4448 /// argument type to compare against, in C++0x [temp.arg.explicit]p3. 4449 /// 4450 /// \param Specialization if template argument deduction was successful, 4451 /// this will be set to the function template specialization produced by 4452 /// template argument deduction. 4453 /// 4454 /// \param Info the argument will be updated to provide additional information 4455 /// about template argument deduction. 4456 /// 4457 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4458 /// the address of a function template per [temp.deduct.funcaddr] and 4459 /// [over.over]. If \c false, we are looking up a function template 4460 /// specialization based on its signature, per [temp.deduct.decl]. 4461 /// 4462 /// \returns the result of template argument deduction. 4463 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4464 FunctionTemplateDecl *FunctionTemplate, 4465 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, 4466 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4467 bool IsAddressOfFunction) { 4468 if (FunctionTemplate->isInvalidDecl()) 4469 return TDK_Invalid; 4470 4471 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 4472 TemplateParameterList *TemplateParams 4473 = FunctionTemplate->getTemplateParameters(); 4474 QualType FunctionType = Function->getType(); 4475 4476 // Substitute any explicit template arguments. 4477 LocalInstantiationScope InstScope(*this); 4478 SmallVector<DeducedTemplateArgument, 4> Deduced; 4479 unsigned NumExplicitlySpecified = 0; 4480 SmallVector<QualType, 4> ParamTypes; 4481 if (ExplicitTemplateArgs) { 4482 TemplateDeductionResult Result; 4483 runWithSufficientStackSpace(Info.getLocation(), [&] { 4484 Result = SubstituteExplicitTemplateArguments( 4485 FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, 4486 &FunctionType, Info); 4487 }); 4488 if (Result) 4489 return Result; 4490 4491 NumExplicitlySpecified = Deduced.size(); 4492 } 4493 4494 // When taking the address of a function, we require convertibility of 4495 // the resulting function type. Otherwise, we allow arbitrary mismatches 4496 // of calling convention and noreturn. 4497 if (!IsAddressOfFunction) 4498 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType, 4499 /*AdjustExceptionSpec*/false); 4500 4501 // Unevaluated SFINAE context. 4502 EnterExpressionEvaluationContext Unevaluated( 4503 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4504 SFINAETrap Trap(*this); 4505 4506 Deduced.resize(TemplateParams->size()); 4507 4508 // If the function has a deduced return type, substitute it for a dependent 4509 // type so that we treat it as a non-deduced context in what follows. 4510 bool HasDeducedReturnType = false; 4511 if (getLangOpts().CPlusPlus14 && 4512 Function->getReturnType()->getContainedAutoType()) { 4513 FunctionType = SubstAutoTypeDependent(FunctionType); 4514 HasDeducedReturnType = true; 4515 } 4516 4517 if (!ArgFunctionType.isNull() && !FunctionType.isNull()) { 4518 unsigned TDF = 4519 TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType; 4520 // Deduce template arguments from the function type. 4521 if (TemplateDeductionResult Result 4522 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4523 FunctionType, ArgFunctionType, 4524 Info, Deduced, TDF)) 4525 return Result; 4526 } 4527 4528 TemplateDeductionResult Result; 4529 runWithSufficientStackSpace(Info.getLocation(), [&] { 4530 Result = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 4531 NumExplicitlySpecified, 4532 Specialization, Info); 4533 }); 4534 if (Result) 4535 return Result; 4536 4537 // If the function has a deduced return type, deduce it now, so we can check 4538 // that the deduced function type matches the requested type. 4539 if (HasDeducedReturnType && IsAddressOfFunction && 4540 Specialization->getReturnType()->isUndeducedType() && 4541 DeduceReturnType(Specialization, Info.getLocation(), false)) 4542 return TDK_MiscellaneousDeductionFailure; 4543 4544 if (IsAddressOfFunction && getLangOpts().CPlusPlus20 && 4545 Specialization->isImmediateEscalating() && 4546 CheckIfFunctionSpecializationIsImmediate(Specialization, 4547 Info.getLocation())) 4548 return TDK_MiscellaneousDeductionFailure; 4549 4550 // If the function has a dependent exception specification, resolve it now, 4551 // so we can check that the exception specification matches. 4552 auto *SpecializationFPT = 4553 Specialization->getType()->castAs<FunctionProtoType>(); 4554 if (getLangOpts().CPlusPlus17 && 4555 isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) && 4556 !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT)) 4557 return TDK_MiscellaneousDeductionFailure; 4558 4559 // Adjust the exception specification of the argument to match the 4560 // substituted and resolved type we just formed. (Calling convention and 4561 // noreturn can't be dependent, so we don't actually need this for them 4562 // right now.) 4563 QualType SpecializationType = Specialization->getType(); 4564 if (!IsAddressOfFunction) { 4565 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType, 4566 /*AdjustExceptionSpec*/true); 4567 4568 // Revert placeholder types in the return type back to undeduced types so 4569 // that the comparison below compares the declared return types. 4570 if (HasDeducedReturnType) { 4571 SpecializationType = SubstAutoType(SpecializationType, QualType()); 4572 ArgFunctionType = SubstAutoType(ArgFunctionType, QualType()); 4573 } 4574 } 4575 4576 // If the requested function type does not match the actual type of the 4577 // specialization with respect to arguments of compatible pointer to function 4578 // types, template argument deduction fails. 4579 if (!ArgFunctionType.isNull()) { 4580 if (IsAddressOfFunction 4581 ? !isSameOrCompatibleFunctionType( 4582 Context.getCanonicalType(SpecializationType), 4583 Context.getCanonicalType(ArgFunctionType)) 4584 : !Context.hasSameType(SpecializationType, ArgFunctionType)) { 4585 Info.FirstArg = TemplateArgument(SpecializationType); 4586 Info.SecondArg = TemplateArgument(ArgFunctionType); 4587 return TDK_NonDeducedMismatch; 4588 } 4589 } 4590 4591 return TDK_Success; 4592 } 4593 4594 /// Deduce template arguments for a templated conversion 4595 /// function (C++ [temp.deduct.conv]) and, if successful, produce a 4596 /// conversion function template specialization. 4597 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4598 FunctionTemplateDecl *ConversionTemplate, QualType ObjectType, 4599 Expr::Classification ObjectClassification, QualType ToType, 4600 CXXConversionDecl *&Specialization, TemplateDeductionInfo &Info) { 4601 if (ConversionTemplate->isInvalidDecl()) 4602 return TDK_Invalid; 4603 4604 CXXConversionDecl *ConversionGeneric 4605 = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl()); 4606 4607 QualType FromType = ConversionGeneric->getConversionType(); 4608 4609 // Canonicalize the types for deduction. 4610 QualType P = Context.getCanonicalType(FromType); 4611 QualType A = Context.getCanonicalType(ToType); 4612 4613 // C++0x [temp.deduct.conv]p2: 4614 // If P is a reference type, the type referred to by P is used for 4615 // type deduction. 4616 if (const ReferenceType *PRef = P->getAs<ReferenceType>()) 4617 P = PRef->getPointeeType(); 4618 4619 // C++0x [temp.deduct.conv]p4: 4620 // [...] If A is a reference type, the type referred to by A is used 4621 // for type deduction. 4622 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) { 4623 A = ARef->getPointeeType(); 4624 // We work around a defect in the standard here: cv-qualifiers are also 4625 // removed from P and A in this case, unless P was a reference type. This 4626 // seems to mostly match what other compilers are doing. 4627 if (!FromType->getAs<ReferenceType>()) { 4628 A = A.getUnqualifiedType(); 4629 P = P.getUnqualifiedType(); 4630 } 4631 4632 // C++ [temp.deduct.conv]p3: 4633 // 4634 // If A is not a reference type: 4635 } else { 4636 assert(!A->isReferenceType() && "Reference types were handled above"); 4637 4638 // - If P is an array type, the pointer type produced by the 4639 // array-to-pointer standard conversion (4.2) is used in place 4640 // of P for type deduction; otherwise, 4641 if (P->isArrayType()) 4642 P = Context.getArrayDecayedType(P); 4643 // - If P is a function type, the pointer type produced by the 4644 // function-to-pointer standard conversion (4.3) is used in 4645 // place of P for type deduction; otherwise, 4646 else if (P->isFunctionType()) 4647 P = Context.getPointerType(P); 4648 // - If P is a cv-qualified type, the top level cv-qualifiers of 4649 // P's type are ignored for type deduction. 4650 else 4651 P = P.getUnqualifiedType(); 4652 4653 // C++0x [temp.deduct.conv]p4: 4654 // If A is a cv-qualified type, the top level cv-qualifiers of A's 4655 // type are ignored for type deduction. If A is a reference type, the type 4656 // referred to by A is used for type deduction. 4657 A = A.getUnqualifiedType(); 4658 } 4659 4660 // Unevaluated SFINAE context. 4661 EnterExpressionEvaluationContext Unevaluated( 4662 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4663 SFINAETrap Trap(*this); 4664 4665 // C++ [temp.deduct.conv]p1: 4666 // Template argument deduction is done by comparing the return 4667 // type of the template conversion function (call it P) with the 4668 // type that is required as the result of the conversion (call it 4669 // A) as described in 14.8.2.4. 4670 TemplateParameterList *TemplateParams 4671 = ConversionTemplate->getTemplateParameters(); 4672 SmallVector<DeducedTemplateArgument, 4> Deduced; 4673 Deduced.resize(TemplateParams->size()); 4674 4675 // C++0x [temp.deduct.conv]p4: 4676 // In general, the deduction process attempts to find template 4677 // argument values that will make the deduced A identical to 4678 // A. However, there are two cases that allow a difference: 4679 unsigned TDF = 0; 4680 // - If the original A is a reference type, A can be more 4681 // cv-qualified than the deduced A (i.e., the type referred to 4682 // by the reference) 4683 if (ToType->isReferenceType()) 4684 TDF |= TDF_ArgWithReferenceType; 4685 // - The deduced A can be another pointer or pointer to member 4686 // type that can be converted to A via a qualification 4687 // conversion. 4688 // 4689 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when 4690 // both P and A are pointers or member pointers. In this case, we 4691 // just ignore cv-qualifiers completely). 4692 if ((P->isPointerType() && A->isPointerType()) || 4693 (P->isMemberPointerType() && A->isMemberPointerType())) 4694 TDF |= TDF_IgnoreQualifiers; 4695 4696 SmallVector<Sema::OriginalCallArg, 1> OriginalCallArgs; 4697 if (ConversionGeneric->isExplicitObjectMemberFunction()) { 4698 QualType ParamType = ConversionGeneric->getParamDecl(0)->getType(); 4699 if (TemplateDeductionResult Result = 4700 DeduceTemplateArgumentsFromCallArgument( 4701 *this, TemplateParams, getFirstInnerIndex(ConversionTemplate), 4702 ParamType, ObjectType, ObjectClassification, 4703 /*Arg=*/nullptr, Info, Deduced, OriginalCallArgs, 4704 /*Decomposed*/ false, 0, /*TDF*/ 0)) 4705 return Result; 4706 } 4707 4708 if (TemplateDeductionResult Result 4709 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4710 P, A, Info, Deduced, TDF)) 4711 return Result; 4712 4713 // Create an Instantiation Scope for finalizing the operator. 4714 LocalInstantiationScope InstScope(*this); 4715 // Finish template argument deduction. 4716 FunctionDecl *ConversionSpecialized = nullptr; 4717 TemplateDeductionResult Result; 4718 runWithSufficientStackSpace(Info.getLocation(), [&] { 4719 Result = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0, 4720 ConversionSpecialized, Info, 4721 &OriginalCallArgs); 4722 }); 4723 Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized); 4724 return Result; 4725 } 4726 4727 /// Deduce template arguments for a function template when there is 4728 /// nothing to deduce against (C++0x [temp.arg.explicit]p3). 4729 /// 4730 /// \param FunctionTemplate the function template for which we are performing 4731 /// template argument deduction. 4732 /// 4733 /// \param ExplicitTemplateArgs the explicitly-specified template 4734 /// arguments. 4735 /// 4736 /// \param Specialization if template argument deduction was successful, 4737 /// this will be set to the function template specialization produced by 4738 /// template argument deduction. 4739 /// 4740 /// \param Info the argument will be updated to provide additional information 4741 /// about template argument deduction. 4742 /// 4743 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4744 /// the address of a function template in a context where we do not have a 4745 /// target type, per [over.over]. If \c false, we are looking up a function 4746 /// template specialization based on its signature, which only happens when 4747 /// deducing a function parameter type from an argument that is a template-id 4748 /// naming a function template specialization. 4749 /// 4750 /// \returns the result of template argument deduction. 4751 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4752 FunctionTemplateDecl *FunctionTemplate, 4753 TemplateArgumentListInfo *ExplicitTemplateArgs, 4754 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4755 bool IsAddressOfFunction) { 4756 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 4757 QualType(), Specialization, Info, 4758 IsAddressOfFunction); 4759 } 4760 4761 namespace { 4762 struct DependentAuto { bool IsPack; }; 4763 4764 /// Substitute the 'auto' specifier or deduced template specialization type 4765 /// specifier within a type for a given replacement type. 4766 class SubstituteDeducedTypeTransform : 4767 public TreeTransform<SubstituteDeducedTypeTransform> { 4768 QualType Replacement; 4769 bool ReplacementIsPack; 4770 bool UseTypeSugar; 4771 using inherited = TreeTransform<SubstituteDeducedTypeTransform>; 4772 4773 public: 4774 SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA) 4775 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), 4776 ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {} 4777 4778 SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement, 4779 bool UseTypeSugar = true) 4780 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), 4781 Replacement(Replacement), ReplacementIsPack(false), 4782 UseTypeSugar(UseTypeSugar) {} 4783 4784 QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) { 4785 assert(isa<TemplateTypeParmType>(Replacement) && 4786 "unexpected unsugared replacement kind"); 4787 QualType Result = Replacement; 4788 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result); 4789 NewTL.setNameLoc(TL.getNameLoc()); 4790 return Result; 4791 } 4792 4793 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { 4794 // If we're building the type pattern to deduce against, don't wrap the 4795 // substituted type in an AutoType. Certain template deduction rules 4796 // apply only when a template type parameter appears directly (and not if 4797 // the parameter is found through desugaring). For instance: 4798 // auto &&lref = lvalue; 4799 // must transform into "rvalue reference to T" not "rvalue reference to 4800 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply. 4801 // 4802 // FIXME: Is this still necessary? 4803 if (!UseTypeSugar) 4804 return TransformDesugared(TLB, TL); 4805 4806 QualType Result = SemaRef.Context.getAutoType( 4807 Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(), 4808 ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(), 4809 TL.getTypePtr()->getTypeConstraintArguments()); 4810 auto NewTL = TLB.push<AutoTypeLoc>(Result); 4811 NewTL.copy(TL); 4812 return Result; 4813 } 4814 4815 QualType TransformDeducedTemplateSpecializationType( 4816 TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) { 4817 if (!UseTypeSugar) 4818 return TransformDesugared(TLB, TL); 4819 4820 QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType( 4821 TL.getTypePtr()->getTemplateName(), 4822 Replacement, Replacement.isNull()); 4823 auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result); 4824 NewTL.setNameLoc(TL.getNameLoc()); 4825 return Result; 4826 } 4827 4828 ExprResult TransformLambdaExpr(LambdaExpr *E) { 4829 // Lambdas never need to be transformed. 4830 return E; 4831 } 4832 bool TransformExceptionSpec(SourceLocation Loc, 4833 FunctionProtoType::ExceptionSpecInfo &ESI, 4834 SmallVectorImpl<QualType> &Exceptions, 4835 bool &Changed) { 4836 if (ESI.Type == EST_Uninstantiated) { 4837 ESI.instantiate(); 4838 Changed = true; 4839 } 4840 return inherited::TransformExceptionSpec(Loc, ESI, Exceptions, Changed); 4841 } 4842 4843 QualType Apply(TypeLoc TL) { 4844 // Create some scratch storage for the transformed type locations. 4845 // FIXME: We're just going to throw this information away. Don't build it. 4846 TypeLocBuilder TLB; 4847 TLB.reserve(TL.getFullDataSize()); 4848 return TransformType(TLB, TL); 4849 } 4850 }; 4851 4852 } // namespace 4853 4854 static bool CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type, 4855 AutoTypeLoc TypeLoc, 4856 QualType Deduced) { 4857 ConstraintSatisfaction Satisfaction; 4858 ConceptDecl *Concept = Type.getTypeConstraintConcept(); 4859 TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(), 4860 TypeLoc.getRAngleLoc()); 4861 TemplateArgs.addArgument( 4862 TemplateArgumentLoc(TemplateArgument(Deduced), 4863 S.Context.getTrivialTypeSourceInfo( 4864 Deduced, TypeLoc.getNameLoc()))); 4865 for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I) 4866 TemplateArgs.addArgument(TypeLoc.getArgLoc(I)); 4867 4868 llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4869 if (S.CheckTemplateArgumentList(Concept, SourceLocation(), TemplateArgs, 4870 /*PartialTemplateArgs=*/false, 4871 SugaredConverted, CanonicalConverted)) 4872 return true; 4873 MultiLevelTemplateArgumentList MLTAL(Concept, CanonicalConverted, 4874 /*Final=*/false); 4875 if (S.CheckConstraintSatisfaction(Concept, {Concept->getConstraintExpr()}, 4876 MLTAL, TypeLoc.getLocalSourceRange(), 4877 Satisfaction)) 4878 return true; 4879 if (!Satisfaction.IsSatisfied) { 4880 std::string Buf; 4881 llvm::raw_string_ostream OS(Buf); 4882 OS << "'" << Concept->getName(); 4883 if (TypeLoc.hasExplicitTemplateArgs()) { 4884 printTemplateArgumentList( 4885 OS, Type.getTypeConstraintArguments(), S.getPrintingPolicy(), 4886 Type.getTypeConstraintConcept()->getTemplateParameters()); 4887 } 4888 OS << "'"; 4889 OS.flush(); 4890 S.Diag(TypeLoc.getConceptNameLoc(), 4891 diag::err_placeholder_constraints_not_satisfied) 4892 << Deduced << Buf << TypeLoc.getLocalSourceRange(); 4893 S.DiagnoseUnsatisfiedConstraint(Satisfaction); 4894 return true; 4895 } 4896 return false; 4897 } 4898 4899 /// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6) 4900 /// 4901 /// Note that this is done even if the initializer is dependent. (This is 4902 /// necessary to support partial ordering of templates using 'auto'.) 4903 /// A dependent type will be produced when deducing from a dependent type. 4904 /// 4905 /// \param Type the type pattern using the auto type-specifier. 4906 /// \param Init the initializer for the variable whose type is to be deduced. 4907 /// \param Result if type deduction was successful, this will be set to the 4908 /// deduced type. 4909 /// \param Info the argument will be updated to provide additional information 4910 /// about template argument deduction. 4911 /// \param DependentDeduction Set if we should permit deduction in 4912 /// dependent cases. This is necessary for template partial ordering with 4913 /// 'auto' template parameters. The template parameter depth to be used 4914 /// should be specified in the 'Info' parameter. 4915 /// \param IgnoreConstraints Set if we should not fail if the deduced type does 4916 /// not satisfy the type-constraint in the auto type. 4917 Sema::TemplateDeductionResult 4918 Sema::DeduceAutoType(TypeLoc Type, Expr *Init, QualType &Result, 4919 TemplateDeductionInfo &Info, bool DependentDeduction, 4920 bool IgnoreConstraints, 4921 TemplateSpecCandidateSet *FailedTSC) { 4922 assert(DependentDeduction || Info.getDeducedDepth() == 0); 4923 if (Init->containsErrors()) 4924 return TDK_AlreadyDiagnosed; 4925 4926 const AutoType *AT = Type.getType()->getContainedAutoType(); 4927 assert(AT); 4928 4929 if (Init->getType()->isNonOverloadPlaceholderType() || AT->isDecltypeAuto()) { 4930 ExprResult NonPlaceholder = CheckPlaceholderExpr(Init); 4931 if (NonPlaceholder.isInvalid()) 4932 return TDK_AlreadyDiagnosed; 4933 Init = NonPlaceholder.get(); 4934 } 4935 4936 DependentAuto DependentResult = { 4937 /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()}; 4938 4939 if (!DependentDeduction && 4940 (Type.getType()->isDependentType() || Init->isTypeDependent() || 4941 Init->containsUnexpandedParameterPack())) { 4942 Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4943 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4944 return TDK_Success; 4945 } 4946 4947 // Make sure that we treat 'char[]' equaly as 'char*' in C23 mode. 4948 auto *String = dyn_cast<StringLiteral>(Init); 4949 if (getLangOpts().C23 && String && Type.getType()->isArrayType()) { 4950 Diag(Type.getBeginLoc(), diag::ext_c23_auto_non_plain_identifier); 4951 TypeLoc TL = TypeLoc(Init->getType(), Type.getOpaqueData()); 4952 Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(TL); 4953 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4954 return TDK_Success; 4955 } 4956 4957 // Emit a warning if 'auto*' is used in pedantic and in C23 mode. 4958 if (getLangOpts().C23 && Type.getType()->isPointerType()) { 4959 Diag(Type.getBeginLoc(), diag::ext_c23_auto_non_plain_identifier); 4960 } 4961 4962 auto *InitList = dyn_cast<InitListExpr>(Init); 4963 if (!getLangOpts().CPlusPlus && InitList) { 4964 Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c) 4965 << (int)AT->getKeyword() << getLangOpts().C23; 4966 return TDK_AlreadyDiagnosed; 4967 } 4968 4969 // Deduce type of TemplParam in Func(Init) 4970 SmallVector<DeducedTemplateArgument, 1> Deduced; 4971 Deduced.resize(1); 4972 4973 // If deduction failed, don't diagnose if the initializer is dependent; it 4974 // might acquire a matching type in the instantiation. 4975 auto DeductionFailed = [&](TemplateDeductionResult TDK) { 4976 if (Init->isTypeDependent()) { 4977 Result = 4978 SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4979 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4980 return TDK_Success; 4981 } 4982 return TDK; 4983 }; 4984 4985 SmallVector<OriginalCallArg, 4> OriginalCallArgs; 4986 4987 QualType DeducedType; 4988 // If this is a 'decltype(auto)' specifier, do the decltype dance. 4989 if (AT->isDecltypeAuto()) { 4990 if (InitList) { 4991 Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list); 4992 return TDK_AlreadyDiagnosed; 4993 } 4994 4995 DeducedType = getDecltypeForExpr(Init); 4996 assert(!DeducedType.isNull()); 4997 } else { 4998 LocalInstantiationScope InstScope(*this); 4999 5000 // Build template<class TemplParam> void Func(FuncParam); 5001 SourceLocation Loc = Init->getExprLoc(); 5002 TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create( 5003 Context, nullptr, SourceLocation(), Loc, Info.getDeducedDepth(), 0, 5004 nullptr, false, false, false); 5005 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0); 5006 NamedDecl *TemplParamPtr = TemplParam; 5007 FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt( 5008 Context, Loc, Loc, TemplParamPtr, Loc, nullptr); 5009 5010 if (InitList) { 5011 // Notionally, we substitute std::initializer_list<T> for 'auto' and 5012 // deduce against that. Such deduction only succeeds if removing 5013 // cv-qualifiers and references results in std::initializer_list<T>. 5014 if (!Type.getType().getNonReferenceType()->getAs<AutoType>()) 5015 return TDK_Invalid; 5016 5017 SourceRange DeducedFromInitRange; 5018 for (Expr *Init : InitList->inits()) { 5019 // Resolving a core issue: a braced-init-list containing any designators 5020 // is a non-deduced context. 5021 if (isa<DesignatedInitExpr>(Init)) 5022 return TDK_Invalid; 5023 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 5024 *this, TemplateParamsSt.get(), 0, TemplArg, Init->getType(), 5025 Init->Classify(getASTContext()), Init, Info, Deduced, 5026 OriginalCallArgs, /*Decomposed=*/true, 5027 /*ArgIdx=*/0, /*TDF=*/0)) { 5028 if (TDK == TDK_Inconsistent) { 5029 Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction) 5030 << Info.FirstArg << Info.SecondArg << DeducedFromInitRange 5031 << Init->getSourceRange(); 5032 return DeductionFailed(TDK_AlreadyDiagnosed); 5033 } 5034 return DeductionFailed(TDK); 5035 } 5036 5037 if (DeducedFromInitRange.isInvalid() && 5038 Deduced[0].getKind() != TemplateArgument::Null) 5039 DeducedFromInitRange = Init->getSourceRange(); 5040 } 5041 } else { 5042 if (!getLangOpts().CPlusPlus && Init->refersToBitField()) { 5043 Diag(Loc, diag::err_auto_bitfield); 5044 return TDK_AlreadyDiagnosed; 5045 } 5046 QualType FuncParam = 5047 SubstituteDeducedTypeTransform(*this, TemplArg).Apply(Type); 5048 assert(!FuncParam.isNull() && 5049 "substituting template parameter for 'auto' failed"); 5050 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 5051 *this, TemplateParamsSt.get(), 0, FuncParam, Init->getType(), 5052 Init->Classify(getASTContext()), Init, Info, Deduced, 5053 OriginalCallArgs, /*Decomposed=*/false, /*ArgIdx=*/0, /*TDF=*/0, 5054 FailedTSC)) 5055 return DeductionFailed(TDK); 5056 } 5057 5058 // Could be null if somehow 'auto' appears in a non-deduced context. 5059 if (Deduced[0].getKind() != TemplateArgument::Type) 5060 return DeductionFailed(TDK_Incomplete); 5061 DeducedType = Deduced[0].getAsType(); 5062 5063 if (InitList) { 5064 DeducedType = BuildStdInitializerList(DeducedType, Loc); 5065 if (DeducedType.isNull()) 5066 return TDK_AlreadyDiagnosed; 5067 } 5068 } 5069 5070 if (!Result.isNull()) { 5071 if (!Context.hasSameType(DeducedType, Result)) { 5072 Info.FirstArg = Result; 5073 Info.SecondArg = DeducedType; 5074 return DeductionFailed(TDK_Inconsistent); 5075 } 5076 DeducedType = Context.getCommonSugaredType(Result, DeducedType); 5077 } 5078 5079 if (AT->isConstrained() && !IgnoreConstraints && 5080 CheckDeducedPlaceholderConstraints( 5081 *this, *AT, Type.getContainedAutoTypeLoc(), DeducedType)) 5082 return TDK_AlreadyDiagnosed; 5083 5084 Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type); 5085 if (Result.isNull()) 5086 return TDK_AlreadyDiagnosed; 5087 5088 // Check that the deduced argument type is compatible with the original 5089 // argument type per C++ [temp.deduct.call]p4. 5090 QualType DeducedA = InitList ? Deduced[0].getAsType() : Result; 5091 for (const OriginalCallArg &OriginalArg : OriginalCallArgs) { 5092 assert((bool)InitList == OriginalArg.DecomposedParam && 5093 "decomposed non-init-list in auto deduction?"); 5094 if (auto TDK = 5095 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) { 5096 Result = QualType(); 5097 return DeductionFailed(TDK); 5098 } 5099 } 5100 5101 return TDK_Success; 5102 } 5103 5104 QualType Sema::SubstAutoType(QualType TypeWithAuto, 5105 QualType TypeToReplaceAuto) { 5106 assert(TypeToReplaceAuto != Context.DependentTy); 5107 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 5108 .TransformType(TypeWithAuto); 5109 } 5110 5111 TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, 5112 QualType TypeToReplaceAuto) { 5113 assert(TypeToReplaceAuto != Context.DependentTy); 5114 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 5115 .TransformType(TypeWithAuto); 5116 } 5117 5118 QualType Sema::SubstAutoTypeDependent(QualType TypeWithAuto) { 5119 return SubstituteDeducedTypeTransform(*this, DependentAuto{false}) 5120 .TransformType(TypeWithAuto); 5121 } 5122 5123 TypeSourceInfo * 5124 Sema::SubstAutoTypeSourceInfoDependent(TypeSourceInfo *TypeWithAuto) { 5125 return SubstituteDeducedTypeTransform(*this, DependentAuto{false}) 5126 .TransformType(TypeWithAuto); 5127 } 5128 5129 QualType Sema::ReplaceAutoType(QualType TypeWithAuto, 5130 QualType TypeToReplaceAuto) { 5131 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, 5132 /*UseTypeSugar*/ false) 5133 .TransformType(TypeWithAuto); 5134 } 5135 5136 TypeSourceInfo *Sema::ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, 5137 QualType TypeToReplaceAuto) { 5138 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, 5139 /*UseTypeSugar*/ false) 5140 .TransformType(TypeWithAuto); 5141 } 5142 5143 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) { 5144 if (isa<InitListExpr>(Init)) 5145 Diag(VDecl->getLocation(), 5146 VDecl->isInitCapture() 5147 ? diag::err_init_capture_deduction_failure_from_init_list 5148 : diag::err_auto_var_deduction_failure_from_init_list) 5149 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange(); 5150 else 5151 Diag(VDecl->getLocation(), 5152 VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure 5153 : diag::err_auto_var_deduction_failure) 5154 << VDecl->getDeclName() << VDecl->getType() << Init->getType() 5155 << Init->getSourceRange(); 5156 } 5157 5158 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, 5159 bool Diagnose) { 5160 assert(FD->getReturnType()->isUndeducedType()); 5161 5162 // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)' 5163 // within the return type from the call operator's type. 5164 if (isLambdaConversionOperator(FD)) { 5165 CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent(); 5166 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 5167 5168 // For a generic lambda, instantiate the call operator if needed. 5169 if (auto *Args = FD->getTemplateSpecializationArgs()) { 5170 CallOp = InstantiateFunctionDeclaration( 5171 CallOp->getDescribedFunctionTemplate(), Args, Loc); 5172 if (!CallOp || CallOp->isInvalidDecl()) 5173 return true; 5174 5175 // We might need to deduce the return type by instantiating the definition 5176 // of the operator() function. 5177 if (CallOp->getReturnType()->isUndeducedType()) { 5178 runWithSufficientStackSpace(Loc, [&] { 5179 InstantiateFunctionDefinition(Loc, CallOp); 5180 }); 5181 } 5182 } 5183 5184 if (CallOp->isInvalidDecl()) 5185 return true; 5186 assert(!CallOp->getReturnType()->isUndeducedType() && 5187 "failed to deduce lambda return type"); 5188 5189 // Build the new return type from scratch. 5190 CallingConv RetTyCC = FD->getReturnType() 5191 ->getPointeeType() 5192 ->castAs<FunctionType>() 5193 ->getCallConv(); 5194 QualType RetType = getLambdaConversionFunctionResultType( 5195 CallOp->getType()->castAs<FunctionProtoType>(), RetTyCC); 5196 if (FD->getReturnType()->getAs<PointerType>()) 5197 RetType = Context.getPointerType(RetType); 5198 else { 5199 assert(FD->getReturnType()->getAs<BlockPointerType>()); 5200 RetType = Context.getBlockPointerType(RetType); 5201 } 5202 Context.adjustDeducedFunctionResultType(FD, RetType); 5203 return false; 5204 } 5205 5206 if (FD->getTemplateInstantiationPattern()) { 5207 runWithSufficientStackSpace(Loc, [&] { 5208 InstantiateFunctionDefinition(Loc, FD); 5209 }); 5210 } 5211 5212 bool StillUndeduced = FD->getReturnType()->isUndeducedType(); 5213 if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) { 5214 Diag(Loc, diag::err_auto_fn_used_before_defined) << FD; 5215 Diag(FD->getLocation(), diag::note_callee_decl) << FD; 5216 } 5217 5218 return StillUndeduced; 5219 } 5220 5221 bool Sema::CheckIfFunctionSpecializationIsImmediate(FunctionDecl *FD, 5222 SourceLocation Loc) { 5223 assert(FD->isImmediateEscalating()); 5224 5225 if (isLambdaConversionOperator(FD)) { 5226 CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent(); 5227 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 5228 5229 // For a generic lambda, instantiate the call operator if needed. 5230 if (auto *Args = FD->getTemplateSpecializationArgs()) { 5231 CallOp = InstantiateFunctionDeclaration( 5232 CallOp->getDescribedFunctionTemplate(), Args, Loc); 5233 if (!CallOp || CallOp->isInvalidDecl()) 5234 return true; 5235 runWithSufficientStackSpace( 5236 Loc, [&] { InstantiateFunctionDefinition(Loc, CallOp); }); 5237 } 5238 return CallOp->isInvalidDecl(); 5239 } 5240 5241 if (FD->getTemplateInstantiationPattern()) { 5242 runWithSufficientStackSpace( 5243 Loc, [&] { InstantiateFunctionDefinition(Loc, FD); }); 5244 } 5245 return false; 5246 } 5247 5248 /// If this is a non-static member function, 5249 static void 5250 AddImplicitObjectParameterType(ASTContext &Context, 5251 CXXMethodDecl *Method, 5252 SmallVectorImpl<QualType> &ArgTypes) { 5253 // C++11 [temp.func.order]p3: 5254 // [...] The new parameter is of type "reference to cv A," where cv are 5255 // the cv-qualifiers of the function template (if any) and A is 5256 // the class of which the function template is a member. 5257 // 5258 // The standard doesn't say explicitly, but we pick the appropriate kind of 5259 // reference type based on [over.match.funcs]p4. 5260 assert(Method && Method->isImplicitObjectMemberFunction() && 5261 "expected an implicit objet function"); 5262 QualType ArgTy = Context.getTypeDeclType(Method->getParent()); 5263 ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers()); 5264 if (Method->getRefQualifier() == RQ_RValue) 5265 ArgTy = Context.getRValueReferenceType(ArgTy); 5266 else 5267 ArgTy = Context.getLValueReferenceType(ArgTy); 5268 ArgTypes.push_back(ArgTy); 5269 } 5270 5271 /// Determine whether the function template \p FT1 is at least as 5272 /// specialized as \p FT2. 5273 static bool isAtLeastAsSpecializedAs(Sema &S, 5274 SourceLocation Loc, 5275 FunctionTemplateDecl *FT1, 5276 FunctionTemplateDecl *FT2, 5277 TemplatePartialOrderingContext TPOC, 5278 unsigned NumCallArguments1, 5279 bool Reversed) { 5280 assert(!Reversed || TPOC == TPOC_Call); 5281 5282 FunctionDecl *FD1 = FT1->getTemplatedDecl(); 5283 FunctionDecl *FD2 = FT2->getTemplatedDecl(); 5284 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>(); 5285 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>(); 5286 5287 assert(Proto1 && Proto2 && "Function templates must have prototypes"); 5288 TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); 5289 SmallVector<DeducedTemplateArgument, 4> Deduced; 5290 Deduced.resize(TemplateParams->size()); 5291 5292 // C++0x [temp.deduct.partial]p3: 5293 // The types used to determine the ordering depend on the context in which 5294 // the partial ordering is done: 5295 TemplateDeductionInfo Info(Loc); 5296 SmallVector<QualType, 4> Args2; 5297 switch (TPOC) { 5298 case TPOC_Call: { 5299 // - In the context of a function call, the function parameter types are 5300 // used. 5301 CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1); 5302 CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2); 5303 5304 // C++11 [temp.func.order]p3: 5305 // [...] If only one of the function templates is a non-static 5306 // member, that function template is considered to have a new 5307 // first parameter inserted in its function parameter list. The 5308 // new parameter is of type "reference to cv A," where cv are 5309 // the cv-qualifiers of the function template (if any) and A is 5310 // the class of which the function template is a member. 5311 // 5312 // Note that we interpret this to mean "if one of the function 5313 // templates is a non-static member and the other is a non-member"; 5314 // otherwise, the ordering rules for static functions against non-static 5315 // functions don't make any sense. 5316 // 5317 // C++98/03 doesn't have this provision but we've extended DR532 to cover 5318 // it as wording was broken prior to it. 5319 SmallVector<QualType, 4> Args1; 5320 5321 unsigned NumComparedArguments = NumCallArguments1; 5322 5323 if (!Method2 && Method1 && Method1->isImplicitObjectMemberFunction()) { 5324 // Compare 'this' from Method1 against first parameter from Method2. 5325 AddImplicitObjectParameterType(S.Context, Method1, Args1); 5326 ++NumComparedArguments; 5327 } else if (!Method1 && Method2 && 5328 Method2->isImplicitObjectMemberFunction()) { 5329 // Compare 'this' from Method2 against first parameter from Method1. 5330 AddImplicitObjectParameterType(S.Context, Method2, Args2); 5331 } else if (Method1 && Method2 && Reversed && 5332 Method1->isImplicitObjectMemberFunction() && 5333 Method2->isImplicitObjectMemberFunction()) { 5334 // Compare 'this' from Method1 against second parameter from Method2 5335 // and 'this' from Method2 against second parameter from Method1. 5336 AddImplicitObjectParameterType(S.Context, Method1, Args1); 5337 AddImplicitObjectParameterType(S.Context, Method2, Args2); 5338 ++NumComparedArguments; 5339 } 5340 5341 Args1.insert(Args1.end(), Proto1->param_type_begin(), 5342 Proto1->param_type_end()); 5343 Args2.insert(Args2.end(), Proto2->param_type_begin(), 5344 Proto2->param_type_end()); 5345 5346 // C++ [temp.func.order]p5: 5347 // The presence of unused ellipsis and default arguments has no effect on 5348 // the partial ordering of function templates. 5349 if (Args1.size() > NumComparedArguments) 5350 Args1.resize(NumComparedArguments); 5351 if (Args2.size() > NumComparedArguments) 5352 Args2.resize(NumComparedArguments); 5353 if (Reversed) 5354 std::reverse(Args2.begin(), Args2.end()); 5355 5356 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(), 5357 Args1.data(), Args1.size(), Info, Deduced, 5358 TDF_None, /*PartialOrdering=*/true)) 5359 return false; 5360 5361 break; 5362 } 5363 5364 case TPOC_Conversion: 5365 // - In the context of a call to a conversion operator, the return types 5366 // of the conversion function templates are used. 5367 if (DeduceTemplateArgumentsByTypeMatch( 5368 S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(), 5369 Info, Deduced, TDF_None, 5370 /*PartialOrdering=*/true)) 5371 return false; 5372 break; 5373 5374 case TPOC_Other: 5375 // - In other contexts (14.6.6.2) the function template's function type 5376 // is used. 5377 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 5378 FD2->getType(), FD1->getType(), 5379 Info, Deduced, TDF_None, 5380 /*PartialOrdering=*/true)) 5381 return false; 5382 break; 5383 } 5384 5385 // C++0x [temp.deduct.partial]p11: 5386 // In most cases, all template parameters must have values in order for 5387 // deduction to succeed, but for partial ordering purposes a template 5388 // parameter may remain without a value provided it is not used in the 5389 // types being used for partial ordering. [ Note: a template parameter used 5390 // in a non-deduced context is considered used. -end note] 5391 unsigned ArgIdx = 0, NumArgs = Deduced.size(); 5392 for (; ArgIdx != NumArgs; ++ArgIdx) 5393 if (Deduced[ArgIdx].isNull()) 5394 break; 5395 5396 // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need 5397 // to substitute the deduced arguments back into the template and check that 5398 // we get the right type. 5399 5400 if (ArgIdx == NumArgs) { 5401 // All template arguments were deduced. FT1 is at least as specialized 5402 // as FT2. 5403 return true; 5404 } 5405 5406 // Figure out which template parameters were used. 5407 llvm::SmallBitVector UsedParameters(TemplateParams->size()); 5408 switch (TPOC) { 5409 case TPOC_Call: 5410 for (unsigned I = 0, N = Args2.size(); I != N; ++I) 5411 ::MarkUsedTemplateParameters(S.Context, Args2[I], false, 5412 TemplateParams->getDepth(), 5413 UsedParameters); 5414 break; 5415 5416 case TPOC_Conversion: 5417 ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false, 5418 TemplateParams->getDepth(), UsedParameters); 5419 break; 5420 5421 case TPOC_Other: 5422 ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false, 5423 TemplateParams->getDepth(), 5424 UsedParameters); 5425 break; 5426 } 5427 5428 for (; ArgIdx != NumArgs; ++ArgIdx) 5429 // If this argument had no value deduced but was used in one of the types 5430 // used for partial ordering, then deduction fails. 5431 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) 5432 return false; 5433 5434 return true; 5435 } 5436 5437 /// Returns the more specialized function template according 5438 /// to the rules of function template partial ordering (C++ [temp.func.order]). 5439 /// 5440 /// \param FT1 the first function template 5441 /// 5442 /// \param FT2 the second function template 5443 /// 5444 /// \param TPOC the context in which we are performing partial ordering of 5445 /// function templates. 5446 /// 5447 /// \param NumCallArguments1 The number of arguments in the call to FT1, used 5448 /// only when \c TPOC is \c TPOC_Call. 5449 /// 5450 /// \param NumCallArguments2 The number of arguments in the call to FT2, used 5451 /// only when \c TPOC is \c TPOC_Call. 5452 /// 5453 /// \param Reversed If \c true, exactly one of FT1 and FT2 is an overload 5454 /// candidate with a reversed parameter order. In this case, the corresponding 5455 /// P/A pairs between FT1 and FT2 are reversed. 5456 /// 5457 /// \returns the more specialized function template. If neither 5458 /// template is more specialized, returns NULL. 5459 FunctionTemplateDecl *Sema::getMoreSpecializedTemplate( 5460 FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc, 5461 TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1, 5462 unsigned NumCallArguments2, bool Reversed) { 5463 5464 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 5465 NumCallArguments1, Reversed); 5466 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, 5467 NumCallArguments2, Reversed); 5468 5469 // C++ [temp.deduct.partial]p10: 5470 // F is more specialized than G if F is at least as specialized as G and G 5471 // is not at least as specialized as F. 5472 if (Better1 != Better2) // We have a clear winner 5473 return Better1 ? FT1 : FT2; 5474 5475 if (!Better1 && !Better2) // Neither is better than the other 5476 return nullptr; 5477 5478 // C++ [temp.deduct.partial]p11: 5479 // ... and if G has a trailing function parameter pack for which F does not 5480 // have a corresponding parameter, and if F does not have a trailing 5481 // function parameter pack, then F is more specialized than G. 5482 FunctionDecl *FD1 = FT1->getTemplatedDecl(); 5483 FunctionDecl *FD2 = FT2->getTemplatedDecl(); 5484 unsigned NumParams1 = FD1->getNumParams(); 5485 unsigned NumParams2 = FD2->getNumParams(); 5486 bool Variadic1 = NumParams1 && FD1->parameters().back()->isParameterPack(); 5487 bool Variadic2 = NumParams2 && FD2->parameters().back()->isParameterPack(); 5488 if (Variadic1 != Variadic2) { 5489 if (Variadic1 && NumParams1 > NumParams2) 5490 return FT2; 5491 if (Variadic2 && NumParams2 > NumParams1) 5492 return FT1; 5493 } 5494 5495 // This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that 5496 // there is no wording or even resolution for this issue. 5497 for (int i = 0, e = std::min(NumParams1, NumParams2); i < e; ++i) { 5498 QualType T1 = FD1->getParamDecl(i)->getType().getCanonicalType(); 5499 QualType T2 = FD2->getParamDecl(i)->getType().getCanonicalType(); 5500 auto *TST1 = dyn_cast<TemplateSpecializationType>(T1); 5501 auto *TST2 = dyn_cast<TemplateSpecializationType>(T2); 5502 if (!TST1 || !TST2) 5503 continue; 5504 const TemplateArgument &TA1 = TST1->template_arguments().back(); 5505 if (TA1.getKind() == TemplateArgument::Pack) { 5506 assert(TST1->template_arguments().size() == 5507 TST2->template_arguments().size()); 5508 const TemplateArgument &TA2 = TST2->template_arguments().back(); 5509 assert(TA2.getKind() == TemplateArgument::Pack); 5510 unsigned PackSize1 = TA1.pack_size(); 5511 unsigned PackSize2 = TA2.pack_size(); 5512 bool IsPackExpansion1 = 5513 PackSize1 && TA1.pack_elements().back().isPackExpansion(); 5514 bool IsPackExpansion2 = 5515 PackSize2 && TA2.pack_elements().back().isPackExpansion(); 5516 if (PackSize1 != PackSize2 && IsPackExpansion1 != IsPackExpansion2) { 5517 if (PackSize1 > PackSize2 && IsPackExpansion1) 5518 return FT2; 5519 if (PackSize1 < PackSize2 && IsPackExpansion2) 5520 return FT1; 5521 } 5522 } 5523 } 5524 5525 if (!Context.getLangOpts().CPlusPlus20) 5526 return nullptr; 5527 5528 // Match GCC on not implementing [temp.func.order]p6.2.1. 5529 5530 // C++20 [temp.func.order]p6: 5531 // If deduction against the other template succeeds for both transformed 5532 // templates, constraints can be considered as follows: 5533 5534 // C++20 [temp.func.order]p6.1: 5535 // If their template-parameter-lists (possibly including template-parameters 5536 // invented for an abbreviated function template ([dcl.fct])) or function 5537 // parameter lists differ in length, neither template is more specialized 5538 // than the other. 5539 TemplateParameterList *TPL1 = FT1->getTemplateParameters(); 5540 TemplateParameterList *TPL2 = FT2->getTemplateParameters(); 5541 if (TPL1->size() != TPL2->size() || NumParams1 != NumParams2) 5542 return nullptr; 5543 5544 // C++20 [temp.func.order]p6.2.2: 5545 // Otherwise, if the corresponding template-parameters of the 5546 // template-parameter-lists are not equivalent ([temp.over.link]) or if the 5547 // function parameters that positionally correspond between the two 5548 // templates are not of the same type, neither template is more specialized 5549 // than the other. 5550 if (!TemplateParameterListsAreEqual(TPL1, TPL2, false, 5551 Sema::TPL_TemplateParamsEquivalent)) 5552 return nullptr; 5553 5554 for (unsigned i = 0; i < NumParams1; ++i) 5555 if (!Context.hasSameType(FD1->getParamDecl(i)->getType(), 5556 FD2->getParamDecl(i)->getType())) 5557 return nullptr; 5558 5559 // C++20 [temp.func.order]p6.3: 5560 // Otherwise, if the context in which the partial ordering is done is 5561 // that of a call to a conversion function and the return types of the 5562 // templates are not the same, then neither template is more specialized 5563 // than the other. 5564 if (TPOC == TPOC_Conversion && 5565 !Context.hasSameType(FD1->getReturnType(), FD2->getReturnType())) 5566 return nullptr; 5567 5568 llvm::SmallVector<const Expr *, 3> AC1, AC2; 5569 FT1->getAssociatedConstraints(AC1); 5570 FT2->getAssociatedConstraints(AC2); 5571 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 5572 if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1)) 5573 return nullptr; 5574 if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2)) 5575 return nullptr; 5576 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 5577 return nullptr; 5578 return AtLeastAsConstrained1 ? FT1 : FT2; 5579 } 5580 5581 /// Determine if the two templates are equivalent. 5582 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) { 5583 if (T1 == T2) 5584 return true; 5585 5586 if (!T1 || !T2) 5587 return false; 5588 5589 return T1->getCanonicalDecl() == T2->getCanonicalDecl(); 5590 } 5591 5592 /// Retrieve the most specialized of the given function template 5593 /// specializations. 5594 /// 5595 /// \param SpecBegin the start iterator of the function template 5596 /// specializations that we will be comparing. 5597 /// 5598 /// \param SpecEnd the end iterator of the function template 5599 /// specializations, paired with \p SpecBegin. 5600 /// 5601 /// \param Loc the location where the ambiguity or no-specializations 5602 /// diagnostic should occur. 5603 /// 5604 /// \param NoneDiag partial diagnostic used to diagnose cases where there are 5605 /// no matching candidates. 5606 /// 5607 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one 5608 /// occurs. 5609 /// 5610 /// \param CandidateDiag partial diagnostic used for each function template 5611 /// specialization that is a candidate in the ambiguous ordering. One parameter 5612 /// in this diagnostic should be unbound, which will correspond to the string 5613 /// describing the template arguments for the function template specialization. 5614 /// 5615 /// \returns the most specialized function template specialization, if 5616 /// found. Otherwise, returns SpecEnd. 5617 UnresolvedSetIterator Sema::getMostSpecialized( 5618 UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd, 5619 TemplateSpecCandidateSet &FailedCandidates, 5620 SourceLocation Loc, const PartialDiagnostic &NoneDiag, 5621 const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, 5622 bool Complain, QualType TargetType) { 5623 if (SpecBegin == SpecEnd) { 5624 if (Complain) { 5625 Diag(Loc, NoneDiag); 5626 FailedCandidates.NoteCandidates(*this, Loc); 5627 } 5628 return SpecEnd; 5629 } 5630 5631 if (SpecBegin + 1 == SpecEnd) 5632 return SpecBegin; 5633 5634 // Find the function template that is better than all of the templates it 5635 // has been compared to. 5636 UnresolvedSetIterator Best = SpecBegin; 5637 FunctionTemplateDecl *BestTemplate 5638 = cast<FunctionDecl>(*Best)->getPrimaryTemplate(); 5639 assert(BestTemplate && "Not a function template specialization?"); 5640 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) { 5641 FunctionTemplateDecl *Challenger 5642 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 5643 assert(Challenger && "Not a function template specialization?"); 5644 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 5645 Loc, TPOC_Other, 0, 0), 5646 Challenger)) { 5647 Best = I; 5648 BestTemplate = Challenger; 5649 } 5650 } 5651 5652 // Make sure that the "best" function template is more specialized than all 5653 // of the others. 5654 bool Ambiguous = false; 5655 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 5656 FunctionTemplateDecl *Challenger 5657 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 5658 if (I != Best && 5659 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 5660 Loc, TPOC_Other, 0, 0), 5661 BestTemplate)) { 5662 Ambiguous = true; 5663 break; 5664 } 5665 } 5666 5667 if (!Ambiguous) { 5668 // We found an answer. Return it. 5669 return Best; 5670 } 5671 5672 // Diagnose the ambiguity. 5673 if (Complain) { 5674 Diag(Loc, AmbigDiag); 5675 5676 // FIXME: Can we order the candidates in some sane way? 5677 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 5678 PartialDiagnostic PD = CandidateDiag; 5679 const auto *FD = cast<FunctionDecl>(*I); 5680 PD << FD << getTemplateArgumentBindingsText( 5681 FD->getPrimaryTemplate()->getTemplateParameters(), 5682 *FD->getTemplateSpecializationArgs()); 5683 if (!TargetType.isNull()) 5684 HandleFunctionTypeMismatch(PD, FD->getType(), TargetType); 5685 Diag((*I)->getLocation(), PD); 5686 } 5687 } 5688 5689 return SpecEnd; 5690 } 5691 5692 /// Determine whether one partial specialization, P1, is at least as 5693 /// specialized than another, P2. 5694 /// 5695 /// \tparam TemplateLikeDecl The kind of P2, which must be a 5696 /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl. 5697 /// \param T1 The injected-class-name of P1 (faked for a variable template). 5698 /// \param T2 The injected-class-name of P2 (faked for a variable template). 5699 template<typename TemplateLikeDecl> 5700 static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2, 5701 TemplateLikeDecl *P2, 5702 TemplateDeductionInfo &Info) { 5703 // C++ [temp.class.order]p1: 5704 // For two class template partial specializations, the first is at least as 5705 // specialized as the second if, given the following rewrite to two 5706 // function templates, the first function template is at least as 5707 // specialized as the second according to the ordering rules for function 5708 // templates (14.6.6.2): 5709 // - the first function template has the same template parameters as the 5710 // first partial specialization and has a single function parameter 5711 // whose type is a class template specialization with the template 5712 // arguments of the first partial specialization, and 5713 // - the second function template has the same template parameters as the 5714 // second partial specialization and has a single function parameter 5715 // whose type is a class template specialization with the template 5716 // arguments of the second partial specialization. 5717 // 5718 // Rather than synthesize function templates, we merely perform the 5719 // equivalent partial ordering by performing deduction directly on 5720 // the template arguments of the class template partial 5721 // specializations. This computation is slightly simpler than the 5722 // general problem of function template partial ordering, because 5723 // class template partial specializations are more constrained. We 5724 // know that every template parameter is deducible from the class 5725 // template partial specialization's template arguments, for 5726 // example. 5727 SmallVector<DeducedTemplateArgument, 4> Deduced; 5728 5729 // Determine whether P1 is at least as specialized as P2. 5730 Deduced.resize(P2->getTemplateParameters()->size()); 5731 if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(), 5732 T2, T1, Info, Deduced, TDF_None, 5733 /*PartialOrdering=*/true)) 5734 return false; 5735 5736 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), 5737 Deduced.end()); 5738 Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs, 5739 Info); 5740 if (Inst.isInvalid()) 5741 return false; 5742 5743 const auto *TST1 = cast<TemplateSpecializationType>(T1); 5744 bool AtLeastAsSpecialized; 5745 S.runWithSufficientStackSpace(Info.getLocation(), [&] { 5746 AtLeastAsSpecialized = !FinishTemplateArgumentDeduction( 5747 S, P2, /*IsPartialOrdering=*/true, 5748 TemplateArgumentList(TemplateArgumentList::OnStack, 5749 TST1->template_arguments()), 5750 Deduced, Info); 5751 }); 5752 return AtLeastAsSpecialized; 5753 } 5754 5755 namespace { 5756 // A dummy class to return nullptr instead of P2 when performing "more 5757 // specialized than primary" check. 5758 struct GetP2 { 5759 template <typename T1, typename T2, 5760 std::enable_if_t<std::is_same_v<T1, T2>, bool> = true> 5761 T2 *operator()(T1 *, T2 *P2) { 5762 return P2; 5763 } 5764 template <typename T1, typename T2, 5765 std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true> 5766 T1 *operator()(T1 *, T2 *) { 5767 return nullptr; 5768 } 5769 }; 5770 5771 // The assumption is that two template argument lists have the same size. 5772 struct TemplateArgumentListAreEqual { 5773 ASTContext &Ctx; 5774 TemplateArgumentListAreEqual(ASTContext &Ctx) : Ctx(Ctx) {} 5775 5776 template <typename T1, typename T2, 5777 std::enable_if_t<std::is_same_v<T1, T2>, bool> = true> 5778 bool operator()(T1 *PS1, T2 *PS2) { 5779 ArrayRef<TemplateArgument> Args1 = PS1->getTemplateArgs().asArray(), 5780 Args2 = PS2->getTemplateArgs().asArray(); 5781 5782 for (unsigned I = 0, E = Args1.size(); I < E; ++I) { 5783 // We use profile, instead of structural comparison of the arguments, 5784 // because canonicalization can't do the right thing for dependent 5785 // expressions. 5786 llvm::FoldingSetNodeID IDA, IDB; 5787 Args1[I].Profile(IDA, Ctx); 5788 Args2[I].Profile(IDB, Ctx); 5789 if (IDA != IDB) 5790 return false; 5791 } 5792 return true; 5793 } 5794 5795 template <typename T1, typename T2, 5796 std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true> 5797 bool operator()(T1 *Spec, T2 *Primary) { 5798 ArrayRef<TemplateArgument> Args1 = Spec->getTemplateArgs().asArray(), 5799 Args2 = Primary->getInjectedTemplateArgs(); 5800 5801 for (unsigned I = 0, E = Args1.size(); I < E; ++I) { 5802 // We use profile, instead of structural comparison of the arguments, 5803 // because canonicalization can't do the right thing for dependent 5804 // expressions. 5805 llvm::FoldingSetNodeID IDA, IDB; 5806 Args1[I].Profile(IDA, Ctx); 5807 // Unlike the specialization arguments, the injected arguments are not 5808 // always canonical. 5809 Ctx.getCanonicalTemplateArgument(Args2[I]).Profile(IDB, Ctx); 5810 if (IDA != IDB) 5811 return false; 5812 } 5813 return true; 5814 } 5815 }; 5816 } // namespace 5817 5818 /// Returns the more specialized template specialization between T1/P1 and 5819 /// T2/P2. 5820 /// - If IsMoreSpecialThanPrimaryCheck is true, T1/P1 is the partial 5821 /// specialization and T2/P2 is the primary template. 5822 /// - otherwise, both T1/P1 and T2/P2 are the partial specialization. 5823 /// 5824 /// \param T1 the type of the first template partial specialization 5825 /// 5826 /// \param T2 if IsMoreSpecialThanPrimaryCheck is true, the type of the second 5827 /// template partial specialization; otherwise, the type of the 5828 /// primary template. 5829 /// 5830 /// \param P1 the first template partial specialization 5831 /// 5832 /// \param P2 if IsMoreSpecialThanPrimaryCheck is true, the second template 5833 /// partial specialization; otherwise, the primary template. 5834 /// 5835 /// \returns - If IsMoreSpecialThanPrimaryCheck is true, returns P1 if P1 is 5836 /// more specialized, returns nullptr if P1 is not more specialized. 5837 /// - otherwise, returns the more specialized template partial 5838 /// specialization. If neither partial specialization is more 5839 /// specialized, returns NULL. 5840 template <typename TemplateLikeDecl, typename PrimaryDel> 5841 static TemplateLikeDecl * 5842 getMoreSpecialized(Sema &S, QualType T1, QualType T2, TemplateLikeDecl *P1, 5843 PrimaryDel *P2, TemplateDeductionInfo &Info) { 5844 constexpr bool IsMoreSpecialThanPrimaryCheck = 5845 !std::is_same_v<TemplateLikeDecl, PrimaryDel>; 5846 5847 bool Better1 = isAtLeastAsSpecializedAs(S, T1, T2, P2, Info); 5848 if (IsMoreSpecialThanPrimaryCheck && !Better1) 5849 return nullptr; 5850 5851 bool Better2 = isAtLeastAsSpecializedAs(S, T2, T1, P1, Info); 5852 if (IsMoreSpecialThanPrimaryCheck && !Better2) 5853 return P1; 5854 5855 // C++ [temp.deduct.partial]p10: 5856 // F is more specialized than G if F is at least as specialized as G and G 5857 // is not at least as specialized as F. 5858 if (Better1 != Better2) // We have a clear winner 5859 return Better1 ? P1 : GetP2()(P1, P2); 5860 5861 if (!Better1 && !Better2) 5862 return nullptr; 5863 5864 // This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that 5865 // there is no wording or even resolution for this issue. 5866 auto *TST1 = cast<TemplateSpecializationType>(T1); 5867 auto *TST2 = cast<TemplateSpecializationType>(T2); 5868 const TemplateArgument &TA1 = TST1->template_arguments().back(); 5869 if (TA1.getKind() == TemplateArgument::Pack) { 5870 assert(TST1->template_arguments().size() == 5871 TST2->template_arguments().size()); 5872 const TemplateArgument &TA2 = TST2->template_arguments().back(); 5873 assert(TA2.getKind() == TemplateArgument::Pack); 5874 unsigned PackSize1 = TA1.pack_size(); 5875 unsigned PackSize2 = TA2.pack_size(); 5876 bool IsPackExpansion1 = 5877 PackSize1 && TA1.pack_elements().back().isPackExpansion(); 5878 bool IsPackExpansion2 = 5879 PackSize2 && TA2.pack_elements().back().isPackExpansion(); 5880 if (PackSize1 != PackSize2 && IsPackExpansion1 != IsPackExpansion2) { 5881 if (PackSize1 > PackSize2 && IsPackExpansion1) 5882 return GetP2()(P1, P2); 5883 if (PackSize1 < PackSize2 && IsPackExpansion2) 5884 return P1; 5885 } 5886 } 5887 5888 if (!S.Context.getLangOpts().CPlusPlus20) 5889 return nullptr; 5890 5891 // Match GCC on not implementing [temp.func.order]p6.2.1. 5892 5893 // C++20 [temp.func.order]p6: 5894 // If deduction against the other template succeeds for both transformed 5895 // templates, constraints can be considered as follows: 5896 5897 TemplateParameterList *TPL1 = P1->getTemplateParameters(); 5898 TemplateParameterList *TPL2 = P2->getTemplateParameters(); 5899 if (TPL1->size() != TPL2->size()) 5900 return nullptr; 5901 5902 // C++20 [temp.func.order]p6.2.2: 5903 // Otherwise, if the corresponding template-parameters of the 5904 // template-parameter-lists are not equivalent ([temp.over.link]) or if the 5905 // function parameters that positionally correspond between the two 5906 // templates are not of the same type, neither template is more specialized 5907 // than the other. 5908 if (!S.TemplateParameterListsAreEqual(TPL1, TPL2, false, 5909 Sema::TPL_TemplateParamsEquivalent)) 5910 return nullptr; 5911 5912 if (!TemplateArgumentListAreEqual(S.getASTContext())(P1, P2)) 5913 return nullptr; 5914 5915 llvm::SmallVector<const Expr *, 3> AC1, AC2; 5916 P1->getAssociatedConstraints(AC1); 5917 P2->getAssociatedConstraints(AC2); 5918 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 5919 if (S.IsAtLeastAsConstrained(P1, AC1, P2, AC2, AtLeastAsConstrained1) || 5920 (IsMoreSpecialThanPrimaryCheck && !AtLeastAsConstrained1)) 5921 return nullptr; 5922 if (S.IsAtLeastAsConstrained(P2, AC2, P1, AC1, AtLeastAsConstrained2)) 5923 return nullptr; 5924 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 5925 return nullptr; 5926 return AtLeastAsConstrained1 ? P1 : GetP2()(P1, P2); 5927 } 5928 5929 /// Returns the more specialized class template partial specialization 5930 /// according to the rules of partial ordering of class template partial 5931 /// specializations (C++ [temp.class.order]). 5932 /// 5933 /// \param PS1 the first class template partial specialization 5934 /// 5935 /// \param PS2 the second class template partial specialization 5936 /// 5937 /// \returns the more specialized class template partial specialization. If 5938 /// neither partial specialization is more specialized, returns NULL. 5939 ClassTemplatePartialSpecializationDecl * 5940 Sema::getMoreSpecializedPartialSpecialization( 5941 ClassTemplatePartialSpecializationDecl *PS1, 5942 ClassTemplatePartialSpecializationDecl *PS2, 5943 SourceLocation Loc) { 5944 QualType PT1 = PS1->getInjectedSpecializationType(); 5945 QualType PT2 = PS2->getInjectedSpecializationType(); 5946 5947 TemplateDeductionInfo Info(Loc); 5948 return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info); 5949 } 5950 5951 bool Sema::isMoreSpecializedThanPrimary( 5952 ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5953 ClassTemplateDecl *Primary = Spec->getSpecializedTemplate(); 5954 QualType PrimaryT = Primary->getInjectedClassNameSpecialization(); 5955 QualType PartialT = Spec->getInjectedSpecializationType(); 5956 5957 ClassTemplatePartialSpecializationDecl *MaybeSpec = 5958 getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info); 5959 if (MaybeSpec) 5960 Info.clearSFINAEDiagnostic(); 5961 return MaybeSpec; 5962 } 5963 5964 VarTemplatePartialSpecializationDecl * 5965 Sema::getMoreSpecializedPartialSpecialization( 5966 VarTemplatePartialSpecializationDecl *PS1, 5967 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) { 5968 // Pretend the variable template specializations are class template 5969 // specializations and form a fake injected class name type for comparison. 5970 assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() && 5971 "the partial specializations being compared should specialize" 5972 " the same template."); 5973 TemplateName Name(PS1->getSpecializedTemplate()); 5974 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5975 QualType PT1 = Context.getTemplateSpecializationType( 5976 CanonTemplate, PS1->getTemplateArgs().asArray()); 5977 QualType PT2 = Context.getTemplateSpecializationType( 5978 CanonTemplate, PS2->getTemplateArgs().asArray()); 5979 5980 TemplateDeductionInfo Info(Loc); 5981 return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info); 5982 } 5983 5984 bool Sema::isMoreSpecializedThanPrimary( 5985 VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5986 VarTemplateDecl *Primary = Spec->getSpecializedTemplate(); 5987 TemplateName CanonTemplate = 5988 Context.getCanonicalTemplateName(TemplateName(Primary)); 5989 QualType PrimaryT = Context.getTemplateSpecializationType( 5990 CanonTemplate, Primary->getInjectedTemplateArgs()); 5991 QualType PartialT = Context.getTemplateSpecializationType( 5992 CanonTemplate, Spec->getTemplateArgs().asArray()); 5993 5994 VarTemplatePartialSpecializationDecl *MaybeSpec = 5995 getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info); 5996 if (MaybeSpec) 5997 Info.clearSFINAEDiagnostic(); 5998 return MaybeSpec; 5999 } 6000 6001 bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs( 6002 TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) { 6003 // C++1z [temp.arg.template]p4: (DR 150) 6004 // A template template-parameter P is at least as specialized as a 6005 // template template-argument A if, given the following rewrite to two 6006 // function templates... 6007 6008 // Rather than synthesize function templates, we merely perform the 6009 // equivalent partial ordering by performing deduction directly on 6010 // the template parameter lists of the template template parameters. 6011 // 6012 // Given an invented class template X with the template parameter list of 6013 // A (including default arguments): 6014 TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg)); 6015 TemplateParameterList *A = AArg->getTemplateParameters(); 6016 6017 // - Each function template has a single function parameter whose type is 6018 // a specialization of X with template arguments corresponding to the 6019 // template parameters from the respective function template 6020 SmallVector<TemplateArgument, 8> AArgs; 6021 Context.getInjectedTemplateArgs(A, AArgs); 6022 6023 // Check P's arguments against A's parameter list. This will fill in default 6024 // template arguments as needed. AArgs are already correct by construction. 6025 // We can't just use CheckTemplateIdType because that will expand alias 6026 // templates. 6027 SmallVector<TemplateArgument, 4> PArgs; 6028 { 6029 SFINAETrap Trap(*this); 6030 6031 Context.getInjectedTemplateArgs(P, PArgs); 6032 TemplateArgumentListInfo PArgList(P->getLAngleLoc(), 6033 P->getRAngleLoc()); 6034 for (unsigned I = 0, N = P->size(); I != N; ++I) { 6035 // Unwrap packs that getInjectedTemplateArgs wrapped around pack 6036 // expansions, to form an "as written" argument list. 6037 TemplateArgument Arg = PArgs[I]; 6038 if (Arg.getKind() == TemplateArgument::Pack) { 6039 assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion()); 6040 Arg = *Arg.pack_begin(); 6041 } 6042 PArgList.addArgument(getTrivialTemplateArgumentLoc( 6043 Arg, QualType(), P->getParam(I)->getLocation())); 6044 } 6045 PArgs.clear(); 6046 6047 // C++1z [temp.arg.template]p3: 6048 // If the rewrite produces an invalid type, then P is not at least as 6049 // specialized as A. 6050 SmallVector<TemplateArgument, 4> SugaredPArgs; 6051 if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, SugaredPArgs, 6052 PArgs) || 6053 Trap.hasErrorOccurred()) 6054 return false; 6055 } 6056 6057 QualType AType = Context.getCanonicalTemplateSpecializationType(X, AArgs); 6058 QualType PType = Context.getCanonicalTemplateSpecializationType(X, PArgs); 6059 6060 // ... the function template corresponding to P is at least as specialized 6061 // as the function template corresponding to A according to the partial 6062 // ordering rules for function templates. 6063 TemplateDeductionInfo Info(Loc, A->getDepth()); 6064 return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info); 6065 } 6066 6067 namespace { 6068 struct MarkUsedTemplateParameterVisitor : 6069 RecursiveASTVisitor<MarkUsedTemplateParameterVisitor> { 6070 llvm::SmallBitVector &Used; 6071 unsigned Depth; 6072 6073 MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used, 6074 unsigned Depth) 6075 : Used(Used), Depth(Depth) { } 6076 6077 bool VisitTemplateTypeParmType(TemplateTypeParmType *T) { 6078 if (T->getDepth() == Depth) 6079 Used[T->getIndex()] = true; 6080 return true; 6081 } 6082 6083 bool TraverseTemplateName(TemplateName Template) { 6084 if (auto *TTP = llvm::dyn_cast_or_null<TemplateTemplateParmDecl>( 6085 Template.getAsTemplateDecl())) 6086 if (TTP->getDepth() == Depth) 6087 Used[TTP->getIndex()] = true; 6088 RecursiveASTVisitor<MarkUsedTemplateParameterVisitor>:: 6089 TraverseTemplateName(Template); 6090 return true; 6091 } 6092 6093 bool VisitDeclRefExpr(DeclRefExpr *E) { 6094 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 6095 if (NTTP->getDepth() == Depth) 6096 Used[NTTP->getIndex()] = true; 6097 return true; 6098 } 6099 }; 6100 } 6101 6102 /// Mark the template parameters that are used by the given 6103 /// expression. 6104 static void 6105 MarkUsedTemplateParameters(ASTContext &Ctx, 6106 const Expr *E, 6107 bool OnlyDeduced, 6108 unsigned Depth, 6109 llvm::SmallBitVector &Used) { 6110 if (!OnlyDeduced) { 6111 MarkUsedTemplateParameterVisitor(Used, Depth) 6112 .TraverseStmt(const_cast<Expr *>(E)); 6113 return; 6114 } 6115 6116 // We can deduce from a pack expansion. 6117 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E)) 6118 E = Expansion->getPattern(); 6119 6120 const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(E, Depth); 6121 if (!NTTP) 6122 return; 6123 6124 if (NTTP->getDepth() == Depth) 6125 Used[NTTP->getIndex()] = true; 6126 6127 // In C++17 mode, additional arguments may be deduced from the type of a 6128 // non-type argument. 6129 if (Ctx.getLangOpts().CPlusPlus17) 6130 MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used); 6131 } 6132 6133 /// Mark the template parameters that are used by the given 6134 /// nested name specifier. 6135 static void 6136 MarkUsedTemplateParameters(ASTContext &Ctx, 6137 NestedNameSpecifier *NNS, 6138 bool OnlyDeduced, 6139 unsigned Depth, 6140 llvm::SmallBitVector &Used) { 6141 if (!NNS) 6142 return; 6143 6144 MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth, 6145 Used); 6146 MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0), 6147 OnlyDeduced, Depth, Used); 6148 } 6149 6150 /// Mark the template parameters that are used by the given 6151 /// template name. 6152 static void 6153 MarkUsedTemplateParameters(ASTContext &Ctx, 6154 TemplateName Name, 6155 bool OnlyDeduced, 6156 unsigned Depth, 6157 llvm::SmallBitVector &Used) { 6158 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 6159 if (TemplateTemplateParmDecl *TTP 6160 = dyn_cast<TemplateTemplateParmDecl>(Template)) { 6161 if (TTP->getDepth() == Depth) 6162 Used[TTP->getIndex()] = true; 6163 } 6164 return; 6165 } 6166 6167 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) 6168 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced, 6169 Depth, Used); 6170 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) 6171 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced, 6172 Depth, Used); 6173 } 6174 6175 /// Mark the template parameters that are used by the given 6176 /// type. 6177 static void 6178 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 6179 bool OnlyDeduced, 6180 unsigned Depth, 6181 llvm::SmallBitVector &Used) { 6182 if (T.isNull()) 6183 return; 6184 6185 // Non-dependent types have nothing deducible 6186 if (!T->isDependentType()) 6187 return; 6188 6189 T = Ctx.getCanonicalType(T); 6190 switch (T->getTypeClass()) { 6191 case Type::Pointer: 6192 MarkUsedTemplateParameters(Ctx, 6193 cast<PointerType>(T)->getPointeeType(), 6194 OnlyDeduced, 6195 Depth, 6196 Used); 6197 break; 6198 6199 case Type::BlockPointer: 6200 MarkUsedTemplateParameters(Ctx, 6201 cast<BlockPointerType>(T)->getPointeeType(), 6202 OnlyDeduced, 6203 Depth, 6204 Used); 6205 break; 6206 6207 case Type::LValueReference: 6208 case Type::RValueReference: 6209 MarkUsedTemplateParameters(Ctx, 6210 cast<ReferenceType>(T)->getPointeeType(), 6211 OnlyDeduced, 6212 Depth, 6213 Used); 6214 break; 6215 6216 case Type::MemberPointer: { 6217 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr()); 6218 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced, 6219 Depth, Used); 6220 MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0), 6221 OnlyDeduced, Depth, Used); 6222 break; 6223 } 6224 6225 case Type::DependentSizedArray: 6226 MarkUsedTemplateParameters(Ctx, 6227 cast<DependentSizedArrayType>(T)->getSizeExpr(), 6228 OnlyDeduced, Depth, Used); 6229 // Fall through to check the element type 6230 [[fallthrough]]; 6231 6232 case Type::ConstantArray: 6233 case Type::IncompleteArray: 6234 MarkUsedTemplateParameters(Ctx, 6235 cast<ArrayType>(T)->getElementType(), 6236 OnlyDeduced, Depth, Used); 6237 break; 6238 6239 case Type::Vector: 6240 case Type::ExtVector: 6241 MarkUsedTemplateParameters(Ctx, 6242 cast<VectorType>(T)->getElementType(), 6243 OnlyDeduced, Depth, Used); 6244 break; 6245 6246 case Type::DependentVector: { 6247 const auto *VecType = cast<DependentVectorType>(T); 6248 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 6249 Depth, Used); 6250 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth, 6251 Used); 6252 break; 6253 } 6254 case Type::DependentSizedExtVector: { 6255 const DependentSizedExtVectorType *VecType 6256 = cast<DependentSizedExtVectorType>(T); 6257 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 6258 Depth, Used); 6259 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, 6260 Depth, Used); 6261 break; 6262 } 6263 6264 case Type::DependentAddressSpace: { 6265 const DependentAddressSpaceType *DependentASType = 6266 cast<DependentAddressSpaceType>(T); 6267 MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(), 6268 OnlyDeduced, Depth, Used); 6269 MarkUsedTemplateParameters(Ctx, 6270 DependentASType->getAddrSpaceExpr(), 6271 OnlyDeduced, Depth, Used); 6272 break; 6273 } 6274 6275 case Type::ConstantMatrix: { 6276 const ConstantMatrixType *MatType = cast<ConstantMatrixType>(T); 6277 MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced, 6278 Depth, Used); 6279 break; 6280 } 6281 6282 case Type::DependentSizedMatrix: { 6283 const DependentSizedMatrixType *MatType = cast<DependentSizedMatrixType>(T); 6284 MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced, 6285 Depth, Used); 6286 MarkUsedTemplateParameters(Ctx, MatType->getRowExpr(), OnlyDeduced, Depth, 6287 Used); 6288 MarkUsedTemplateParameters(Ctx, MatType->getColumnExpr(), OnlyDeduced, 6289 Depth, Used); 6290 break; 6291 } 6292 6293 case Type::FunctionProto: { 6294 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 6295 MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth, 6296 Used); 6297 for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) { 6298 // C++17 [temp.deduct.type]p5: 6299 // The non-deduced contexts are: [...] 6300 // -- A function parameter pack that does not occur at the end of the 6301 // parameter-declaration-list. 6302 if (!OnlyDeduced || I + 1 == N || 6303 !Proto->getParamType(I)->getAs<PackExpansionType>()) { 6304 MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced, 6305 Depth, Used); 6306 } else { 6307 // FIXME: C++17 [temp.deduct.call]p1: 6308 // When a function parameter pack appears in a non-deduced context, 6309 // the type of that pack is never deduced. 6310 // 6311 // We should also track a set of "never deduced" parameters, and 6312 // subtract that from the list of deduced parameters after marking. 6313 } 6314 } 6315 if (auto *E = Proto->getNoexceptExpr()) 6316 MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used); 6317 break; 6318 } 6319 6320 case Type::TemplateTypeParm: { 6321 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T); 6322 if (TTP->getDepth() == Depth) 6323 Used[TTP->getIndex()] = true; 6324 break; 6325 } 6326 6327 case Type::SubstTemplateTypeParmPack: { 6328 const SubstTemplateTypeParmPackType *Subst 6329 = cast<SubstTemplateTypeParmPackType>(T); 6330 if (Subst->getReplacedParameter()->getDepth() == Depth) 6331 Used[Subst->getIndex()] = true; 6332 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(), 6333 OnlyDeduced, Depth, Used); 6334 break; 6335 } 6336 6337 case Type::InjectedClassName: 6338 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType(); 6339 [[fallthrough]]; 6340 6341 case Type::TemplateSpecialization: { 6342 const TemplateSpecializationType *Spec 6343 = cast<TemplateSpecializationType>(T); 6344 MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced, 6345 Depth, Used); 6346 6347 // C++0x [temp.deduct.type]p9: 6348 // If the template argument list of P contains a pack expansion that is 6349 // not the last template argument, the entire template argument list is a 6350 // non-deduced context. 6351 if (OnlyDeduced && 6352 hasPackExpansionBeforeEnd(Spec->template_arguments())) 6353 break; 6354 6355 for (const auto &Arg : Spec->template_arguments()) 6356 MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used); 6357 break; 6358 } 6359 6360 case Type::Complex: 6361 if (!OnlyDeduced) 6362 MarkUsedTemplateParameters(Ctx, 6363 cast<ComplexType>(T)->getElementType(), 6364 OnlyDeduced, Depth, Used); 6365 break; 6366 6367 case Type::Atomic: 6368 if (!OnlyDeduced) 6369 MarkUsedTemplateParameters(Ctx, 6370 cast<AtomicType>(T)->getValueType(), 6371 OnlyDeduced, Depth, Used); 6372 break; 6373 6374 case Type::DependentName: 6375 if (!OnlyDeduced) 6376 MarkUsedTemplateParameters(Ctx, 6377 cast<DependentNameType>(T)->getQualifier(), 6378 OnlyDeduced, Depth, Used); 6379 break; 6380 6381 case Type::DependentTemplateSpecialization: { 6382 // C++14 [temp.deduct.type]p5: 6383 // The non-deduced contexts are: 6384 // -- The nested-name-specifier of a type that was specified using a 6385 // qualified-id 6386 // 6387 // C++14 [temp.deduct.type]p6: 6388 // When a type name is specified in a way that includes a non-deduced 6389 // context, all of the types that comprise that type name are also 6390 // non-deduced. 6391 if (OnlyDeduced) 6392 break; 6393 6394 const DependentTemplateSpecializationType *Spec 6395 = cast<DependentTemplateSpecializationType>(T); 6396 6397 MarkUsedTemplateParameters(Ctx, Spec->getQualifier(), 6398 OnlyDeduced, Depth, Used); 6399 6400 for (const auto &Arg : Spec->template_arguments()) 6401 MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used); 6402 break; 6403 } 6404 6405 case Type::TypeOf: 6406 if (!OnlyDeduced) 6407 MarkUsedTemplateParameters(Ctx, cast<TypeOfType>(T)->getUnmodifiedType(), 6408 OnlyDeduced, Depth, Used); 6409 break; 6410 6411 case Type::TypeOfExpr: 6412 if (!OnlyDeduced) 6413 MarkUsedTemplateParameters(Ctx, 6414 cast<TypeOfExprType>(T)->getUnderlyingExpr(), 6415 OnlyDeduced, Depth, Used); 6416 break; 6417 6418 case Type::Decltype: 6419 if (!OnlyDeduced) 6420 MarkUsedTemplateParameters(Ctx, 6421 cast<DecltypeType>(T)->getUnderlyingExpr(), 6422 OnlyDeduced, Depth, Used); 6423 break; 6424 6425 case Type::UnaryTransform: 6426 if (!OnlyDeduced) 6427 MarkUsedTemplateParameters(Ctx, 6428 cast<UnaryTransformType>(T)->getUnderlyingType(), 6429 OnlyDeduced, Depth, Used); 6430 break; 6431 6432 case Type::PackExpansion: 6433 MarkUsedTemplateParameters(Ctx, 6434 cast<PackExpansionType>(T)->getPattern(), 6435 OnlyDeduced, Depth, Used); 6436 break; 6437 6438 case Type::Auto: 6439 case Type::DeducedTemplateSpecialization: 6440 MarkUsedTemplateParameters(Ctx, 6441 cast<DeducedType>(T)->getDeducedType(), 6442 OnlyDeduced, Depth, Used); 6443 break; 6444 case Type::DependentBitInt: 6445 MarkUsedTemplateParameters(Ctx, 6446 cast<DependentBitIntType>(T)->getNumBitsExpr(), 6447 OnlyDeduced, Depth, Used); 6448 break; 6449 6450 // None of these types have any template parameters in them. 6451 case Type::Builtin: 6452 case Type::VariableArray: 6453 case Type::FunctionNoProto: 6454 case Type::Record: 6455 case Type::Enum: 6456 case Type::ObjCInterface: 6457 case Type::ObjCObject: 6458 case Type::ObjCObjectPointer: 6459 case Type::UnresolvedUsing: 6460 case Type::Pipe: 6461 case Type::BitInt: 6462 #define TYPE(Class, Base) 6463 #define ABSTRACT_TYPE(Class, Base) 6464 #define DEPENDENT_TYPE(Class, Base) 6465 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 6466 #include "clang/AST/TypeNodes.inc" 6467 break; 6468 } 6469 } 6470 6471 /// Mark the template parameters that are used by this 6472 /// template argument. 6473 static void 6474 MarkUsedTemplateParameters(ASTContext &Ctx, 6475 const TemplateArgument &TemplateArg, 6476 bool OnlyDeduced, 6477 unsigned Depth, 6478 llvm::SmallBitVector &Used) { 6479 switch (TemplateArg.getKind()) { 6480 case TemplateArgument::Null: 6481 case TemplateArgument::Integral: 6482 case TemplateArgument::Declaration: 6483 case TemplateArgument::NullPtr: 6484 case TemplateArgument::StructuralValue: 6485 break; 6486 6487 case TemplateArgument::Type: 6488 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced, 6489 Depth, Used); 6490 break; 6491 6492 case TemplateArgument::Template: 6493 case TemplateArgument::TemplateExpansion: 6494 MarkUsedTemplateParameters(Ctx, 6495 TemplateArg.getAsTemplateOrTemplatePattern(), 6496 OnlyDeduced, Depth, Used); 6497 break; 6498 6499 case TemplateArgument::Expression: 6500 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced, 6501 Depth, Used); 6502 break; 6503 6504 case TemplateArgument::Pack: 6505 for (const auto &P : TemplateArg.pack_elements()) 6506 MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used); 6507 break; 6508 } 6509 } 6510 6511 /// Mark which template parameters are used in a given expression. 6512 /// 6513 /// \param E the expression from which template parameters will be deduced. 6514 /// 6515 /// \param Used a bit vector whose elements will be set to \c true 6516 /// to indicate when the corresponding template parameter will be 6517 /// deduced. 6518 void 6519 Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced, 6520 unsigned Depth, 6521 llvm::SmallBitVector &Used) { 6522 ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used); 6523 } 6524 6525 /// Mark which template parameters can be deduced from a given 6526 /// template argument list. 6527 /// 6528 /// \param TemplateArgs the template argument list from which template 6529 /// parameters will be deduced. 6530 /// 6531 /// \param Used a bit vector whose elements will be set to \c true 6532 /// to indicate when the corresponding template parameter will be 6533 /// deduced. 6534 void 6535 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, 6536 bool OnlyDeduced, unsigned Depth, 6537 llvm::SmallBitVector &Used) { 6538 // C++0x [temp.deduct.type]p9: 6539 // If the template argument list of P contains a pack expansion that is not 6540 // the last template argument, the entire template argument list is a 6541 // non-deduced context. 6542 if (OnlyDeduced && 6543 hasPackExpansionBeforeEnd(TemplateArgs.asArray())) 6544 return; 6545 6546 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6547 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced, 6548 Depth, Used); 6549 } 6550 6551 /// Marks all of the template parameters that will be deduced by a 6552 /// call to the given function template. 6553 void Sema::MarkDeducedTemplateParameters( 6554 ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, 6555 llvm::SmallBitVector &Deduced) { 6556 TemplateParameterList *TemplateParams 6557 = FunctionTemplate->getTemplateParameters(); 6558 Deduced.clear(); 6559 Deduced.resize(TemplateParams->size()); 6560 6561 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 6562 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) 6563 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(), 6564 true, TemplateParams->getDepth(), Deduced); 6565 } 6566 6567 bool hasDeducibleTemplateParameters(Sema &S, 6568 FunctionTemplateDecl *FunctionTemplate, 6569 QualType T) { 6570 if (!T->isDependentType()) 6571 return false; 6572 6573 TemplateParameterList *TemplateParams 6574 = FunctionTemplate->getTemplateParameters(); 6575 llvm::SmallBitVector Deduced(TemplateParams->size()); 6576 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(), 6577 Deduced); 6578 6579 return Deduced.any(); 6580 } 6581