1 //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements C++ template argument deduction. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "TreeTransform.h" 14 #include "TypeLocBuilder.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTLambda.h" 17 #include "clang/AST/Decl.h" 18 #include "clang/AST/DeclAccessPair.h" 19 #include "clang/AST/DeclBase.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/DeclarationName.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/NestedNameSpecifier.h" 26 #include "clang/AST/RecursiveASTVisitor.h" 27 #include "clang/AST/TemplateBase.h" 28 #include "clang/AST/TemplateName.h" 29 #include "clang/AST/Type.h" 30 #include "clang/AST/TypeLoc.h" 31 #include "clang/AST/UnresolvedSet.h" 32 #include "clang/Basic/AddressSpaces.h" 33 #include "clang/Basic/ExceptionSpecificationType.h" 34 #include "clang/Basic/LLVM.h" 35 #include "clang/Basic/LangOptions.h" 36 #include "clang/Basic/PartialDiagnostic.h" 37 #include "clang/Basic/SourceLocation.h" 38 #include "clang/Basic/Specifiers.h" 39 #include "clang/Sema/EnterExpressionEvaluationContext.h" 40 #include "clang/Sema/Ownership.h" 41 #include "clang/Sema/Sema.h" 42 #include "clang/Sema/Template.h" 43 #include "clang/Sema/TemplateDeduction.h" 44 #include "llvm/ADT/APInt.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/ArrayRef.h" 47 #include "llvm/ADT/DenseMap.h" 48 #include "llvm/ADT/FoldingSet.h" 49 #include "llvm/ADT/SmallBitVector.h" 50 #include "llvm/ADT/SmallPtrSet.h" 51 #include "llvm/ADT/SmallVector.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <optional> 58 #include <tuple> 59 #include <type_traits> 60 #include <utility> 61 62 namespace clang { 63 64 /// Various flags that control template argument deduction. 65 /// 66 /// These flags can be bitwise-OR'd together. 67 enum TemplateDeductionFlags { 68 /// No template argument deduction flags, which indicates the 69 /// strictest results for template argument deduction (as used for, e.g., 70 /// matching class template partial specializations). 71 TDF_None = 0, 72 73 /// Within template argument deduction from a function call, we are 74 /// matching with a parameter type for which the original parameter was 75 /// a reference. 76 TDF_ParamWithReferenceType = 0x1, 77 78 /// Within template argument deduction from a function call, we 79 /// are matching in a case where we ignore cv-qualifiers. 80 TDF_IgnoreQualifiers = 0x02, 81 82 /// Within template argument deduction from a function call, 83 /// we are matching in a case where we can perform template argument 84 /// deduction from a template-id of a derived class of the argument type. 85 TDF_DerivedClass = 0x04, 86 87 /// Allow non-dependent types to differ, e.g., when performing 88 /// template argument deduction from a function call where conversions 89 /// may apply. 90 TDF_SkipNonDependent = 0x08, 91 92 /// Whether we are performing template argument deduction for 93 /// parameters and arguments in a top-level template argument 94 TDF_TopLevelParameterTypeList = 0x10, 95 96 /// Within template argument deduction from overload resolution per 97 /// C++ [over.over] allow matching function types that are compatible in 98 /// terms of noreturn and default calling convention adjustments, or 99 /// similarly matching a declared template specialization against a 100 /// possible template, per C++ [temp.deduct.decl]. In either case, permit 101 /// deduction where the parameter is a function type that can be converted 102 /// to the argument type. 103 TDF_AllowCompatibleFunctionType = 0x20, 104 105 /// Within template argument deduction for a conversion function, we are 106 /// matching with an argument type for which the original argument was 107 /// a reference. 108 TDF_ArgWithReferenceType = 0x40, 109 }; 110 } 111 112 using namespace clang; 113 using namespace sema; 114 115 /// Compare two APSInts, extending and switching the sign as 116 /// necessary to compare their values regardless of underlying type. 117 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) { 118 if (Y.getBitWidth() > X.getBitWidth()) 119 X = X.extend(Y.getBitWidth()); 120 else if (Y.getBitWidth() < X.getBitWidth()) 121 Y = Y.extend(X.getBitWidth()); 122 123 // If there is a signedness mismatch, correct it. 124 if (X.isSigned() != Y.isSigned()) { 125 // If the signed value is negative, then the values cannot be the same. 126 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative())) 127 return false; 128 129 Y.setIsSigned(true); 130 X.setIsSigned(true); 131 } 132 133 return X == Y; 134 } 135 136 static Sema::TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch( 137 Sema &S, TemplateParameterList *TemplateParams, QualType Param, 138 QualType Arg, TemplateDeductionInfo &Info, 139 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF, 140 bool PartialOrdering = false, bool DeducedFromArrayBound = false); 141 142 static Sema::TemplateDeductionResult 143 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 144 ArrayRef<TemplateArgument> Ps, 145 ArrayRef<TemplateArgument> As, 146 TemplateDeductionInfo &Info, 147 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 148 bool NumberOfArgumentsMustMatch); 149 150 static void MarkUsedTemplateParameters(ASTContext &Ctx, 151 const TemplateArgument &TemplateArg, 152 bool OnlyDeduced, unsigned Depth, 153 llvm::SmallBitVector &Used); 154 155 static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 156 bool OnlyDeduced, unsigned Level, 157 llvm::SmallBitVector &Deduced); 158 159 /// If the given expression is of a form that permits the deduction 160 /// of a non-type template parameter, return the declaration of that 161 /// non-type template parameter. 162 static const NonTypeTemplateParmDecl * 163 getDeducedParameterFromExpr(const Expr *E, unsigned Depth) { 164 // If we are within an alias template, the expression may have undergone 165 // any number of parameter substitutions already. 166 while (true) { 167 if (const auto *IC = dyn_cast<ImplicitCastExpr>(E)) 168 E = IC->getSubExpr(); 169 else if (const auto *CE = dyn_cast<ConstantExpr>(E)) 170 E = CE->getSubExpr(); 171 else if (const auto *Subst = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 172 E = Subst->getReplacement(); 173 else if (const auto *CCE = dyn_cast<CXXConstructExpr>(E)) { 174 // Look through implicit copy construction from an lvalue of the same type. 175 if (CCE->getParenOrBraceRange().isValid()) 176 break; 177 // Note, there could be default arguments. 178 assert(CCE->getNumArgs() >= 1 && "implicit construct expr should have 1 arg"); 179 E = CCE->getArg(0); 180 } else 181 break; 182 } 183 184 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 185 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) 186 if (NTTP->getDepth() == Depth) 187 return NTTP; 188 189 return nullptr; 190 } 191 192 static const NonTypeTemplateParmDecl * 193 getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) { 194 return getDeducedParameterFromExpr(E, Info.getDeducedDepth()); 195 } 196 197 /// Determine whether two declaration pointers refer to the same 198 /// declaration. 199 static bool isSameDeclaration(Decl *X, Decl *Y) { 200 if (NamedDecl *NX = dyn_cast<NamedDecl>(X)) 201 X = NX->getUnderlyingDecl(); 202 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y)) 203 Y = NY->getUnderlyingDecl(); 204 205 return X->getCanonicalDecl() == Y->getCanonicalDecl(); 206 } 207 208 /// Verify that the given, deduced template arguments are compatible. 209 /// 210 /// \returns The deduced template argument, or a NULL template argument if 211 /// the deduced template arguments were incompatible. 212 static DeducedTemplateArgument 213 checkDeducedTemplateArguments(ASTContext &Context, 214 const DeducedTemplateArgument &X, 215 const DeducedTemplateArgument &Y, 216 bool AggregateCandidateDeduction = false) { 217 // We have no deduction for one or both of the arguments; they're compatible. 218 if (X.isNull()) 219 return Y; 220 if (Y.isNull()) 221 return X; 222 223 // If we have two non-type template argument values deduced for the same 224 // parameter, they must both match the type of the parameter, and thus must 225 // match each other's type. As we're only keeping one of them, we must check 226 // for that now. The exception is that if either was deduced from an array 227 // bound, the type is permitted to differ. 228 if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) { 229 QualType XType = X.getNonTypeTemplateArgumentType(); 230 if (!XType.isNull()) { 231 QualType YType = Y.getNonTypeTemplateArgumentType(); 232 if (YType.isNull() || !Context.hasSameType(XType, YType)) 233 return DeducedTemplateArgument(); 234 } 235 } 236 237 switch (X.getKind()) { 238 case TemplateArgument::Null: 239 llvm_unreachable("Non-deduced template arguments handled above"); 240 241 case TemplateArgument::Type: { 242 // If two template type arguments have the same type, they're compatible. 243 QualType TX = X.getAsType(), TY = Y.getAsType(); 244 if (Y.getKind() == TemplateArgument::Type && Context.hasSameType(TX, TY)) 245 return DeducedTemplateArgument(Context.getCommonSugaredType(TX, TY), 246 X.wasDeducedFromArrayBound() || 247 Y.wasDeducedFromArrayBound()); 248 249 // If one of the two arguments was deduced from an array bound, the other 250 // supersedes it. 251 if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound()) 252 return X.wasDeducedFromArrayBound() ? Y : X; 253 254 // The arguments are not compatible. 255 return DeducedTemplateArgument(); 256 } 257 258 case TemplateArgument::Integral: 259 // If we deduced a constant in one case and either a dependent expression or 260 // declaration in another case, keep the integral constant. 261 // If both are integral constants with the same value, keep that value. 262 if (Y.getKind() == TemplateArgument::Expression || 263 Y.getKind() == TemplateArgument::Declaration || 264 (Y.getKind() == TemplateArgument::Integral && 265 hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()))) 266 return X.wasDeducedFromArrayBound() ? Y : X; 267 268 // All other combinations are incompatible. 269 return DeducedTemplateArgument(); 270 271 case TemplateArgument::Template: 272 if (Y.getKind() == TemplateArgument::Template && 273 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate())) 274 return X; 275 276 // All other combinations are incompatible. 277 return DeducedTemplateArgument(); 278 279 case TemplateArgument::TemplateExpansion: 280 if (Y.getKind() == TemplateArgument::TemplateExpansion && 281 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(), 282 Y.getAsTemplateOrTemplatePattern())) 283 return X; 284 285 // All other combinations are incompatible. 286 return DeducedTemplateArgument(); 287 288 case TemplateArgument::Expression: { 289 if (Y.getKind() != TemplateArgument::Expression) 290 return checkDeducedTemplateArguments(Context, Y, X); 291 292 // Compare the expressions for equality 293 llvm::FoldingSetNodeID ID1, ID2; 294 X.getAsExpr()->Profile(ID1, Context, true); 295 Y.getAsExpr()->Profile(ID2, Context, true); 296 if (ID1 == ID2) 297 return X.wasDeducedFromArrayBound() ? Y : X; 298 299 // Differing dependent expressions are incompatible. 300 return DeducedTemplateArgument(); 301 } 302 303 case TemplateArgument::Declaration: 304 assert(!X.wasDeducedFromArrayBound()); 305 306 // If we deduced a declaration and a dependent expression, keep the 307 // declaration. 308 if (Y.getKind() == TemplateArgument::Expression) 309 return X; 310 311 // If we deduced a declaration and an integral constant, keep the 312 // integral constant and whichever type did not come from an array 313 // bound. 314 if (Y.getKind() == TemplateArgument::Integral) { 315 if (Y.wasDeducedFromArrayBound()) 316 return TemplateArgument(Context, Y.getAsIntegral(), 317 X.getParamTypeForDecl()); 318 return Y; 319 } 320 321 // If we deduced two declarations, make sure that they refer to the 322 // same declaration. 323 if (Y.getKind() == TemplateArgument::Declaration && 324 isSameDeclaration(X.getAsDecl(), Y.getAsDecl())) 325 return X; 326 327 // All other combinations are incompatible. 328 return DeducedTemplateArgument(); 329 330 case TemplateArgument::NullPtr: 331 // If we deduced a null pointer and a dependent expression, keep the 332 // null pointer. 333 if (Y.getKind() == TemplateArgument::Expression) 334 return TemplateArgument(Context.getCommonSugaredType( 335 X.getNullPtrType(), Y.getAsExpr()->getType()), 336 true); 337 338 // If we deduced a null pointer and an integral constant, keep the 339 // integral constant. 340 if (Y.getKind() == TemplateArgument::Integral) 341 return Y; 342 343 // If we deduced two null pointers, they are the same. 344 if (Y.getKind() == TemplateArgument::NullPtr) 345 return TemplateArgument( 346 Context.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()), 347 true); 348 349 // All other combinations are incompatible. 350 return DeducedTemplateArgument(); 351 352 case TemplateArgument::Pack: { 353 if (Y.getKind() != TemplateArgument::Pack || 354 (!AggregateCandidateDeduction && X.pack_size() != Y.pack_size())) 355 return DeducedTemplateArgument(); 356 357 llvm::SmallVector<TemplateArgument, 8> NewPack; 358 for (TemplateArgument::pack_iterator 359 XA = X.pack_begin(), 360 XAEnd = X.pack_end(), YA = Y.pack_begin(), YAEnd = Y.pack_end(); 361 XA != XAEnd; ++XA, ++YA) { 362 if (YA != YAEnd) { 363 TemplateArgument Merged = checkDeducedTemplateArguments( 364 Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), 365 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())); 366 if (Merged.isNull() && !(XA->isNull() && YA->isNull())) 367 return DeducedTemplateArgument(); 368 NewPack.push_back(Merged); 369 } else { 370 NewPack.push_back(*XA); 371 } 372 } 373 374 return DeducedTemplateArgument( 375 TemplateArgument::CreatePackCopy(Context, NewPack), 376 X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound()); 377 } 378 } 379 380 llvm_unreachable("Invalid TemplateArgument Kind!"); 381 } 382 383 /// Deduce the value of the given non-type template parameter 384 /// as the given deduced template argument. All non-type template parameter 385 /// deduction is funneled through here. 386 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 387 Sema &S, TemplateParameterList *TemplateParams, 388 const NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced, 389 QualType ValueType, TemplateDeductionInfo &Info, 390 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 391 assert(NTTP->getDepth() == Info.getDeducedDepth() && 392 "deducing non-type template argument with wrong depth"); 393 394 DeducedTemplateArgument Result = checkDeducedTemplateArguments( 395 S.Context, Deduced[NTTP->getIndex()], NewDeduced); 396 if (Result.isNull()) { 397 Info.Param = const_cast<NonTypeTemplateParmDecl*>(NTTP); 398 Info.FirstArg = Deduced[NTTP->getIndex()]; 399 Info.SecondArg = NewDeduced; 400 return Sema::TDK_Inconsistent; 401 } 402 403 Deduced[NTTP->getIndex()] = Result; 404 if (!S.getLangOpts().CPlusPlus17) 405 return Sema::TDK_Success; 406 407 if (NTTP->isExpandedParameterPack()) 408 // FIXME: We may still need to deduce parts of the type here! But we 409 // don't have any way to find which slice of the type to use, and the 410 // type stored on the NTTP itself is nonsense. Perhaps the type of an 411 // expanded NTTP should be a pack expansion type? 412 return Sema::TDK_Success; 413 414 // Get the type of the parameter for deduction. If it's a (dependent) array 415 // or function type, we will not have decayed it yet, so do that now. 416 QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType()); 417 if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType)) 418 ParamType = Expansion->getPattern(); 419 420 // FIXME: It's not clear how deduction of a parameter of reference 421 // type from an argument (of non-reference type) should be performed. 422 // For now, we just remove reference types from both sides and let 423 // the final check for matching types sort out the mess. 424 ValueType = ValueType.getNonReferenceType(); 425 if (ParamType->isReferenceType()) 426 ParamType = ParamType.getNonReferenceType(); 427 else 428 // Top-level cv-qualifiers are irrelevant for a non-reference type. 429 ValueType = ValueType.getUnqualifiedType(); 430 431 return DeduceTemplateArgumentsByTypeMatch( 432 S, TemplateParams, ParamType, ValueType, Info, Deduced, 433 TDF_SkipNonDependent, /*PartialOrdering=*/false, 434 /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound()); 435 } 436 437 /// Deduce the value of the given non-type template parameter 438 /// from the given integral constant. 439 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 440 Sema &S, TemplateParameterList *TemplateParams, 441 const NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value, 442 QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info, 443 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 444 return DeduceNonTypeTemplateArgument( 445 S, TemplateParams, NTTP, 446 DeducedTemplateArgument(S.Context, Value, ValueType, 447 DeducedFromArrayBound), 448 ValueType, Info, Deduced); 449 } 450 451 /// Deduce the value of the given non-type template parameter 452 /// from the given null pointer template argument type. 453 static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument( 454 Sema &S, TemplateParameterList *TemplateParams, 455 const NonTypeTemplateParmDecl *NTTP, QualType NullPtrType, 456 TemplateDeductionInfo &Info, 457 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 458 Expr *Value = S.ImpCastExprToType( 459 new (S.Context) CXXNullPtrLiteralExpr(S.Context.NullPtrTy, 460 NTTP->getLocation()), 461 NullPtrType, 462 NullPtrType->isMemberPointerType() ? CK_NullToMemberPointer 463 : CK_NullToPointer) 464 .get(); 465 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 466 DeducedTemplateArgument(Value), 467 Value->getType(), Info, Deduced); 468 } 469 470 /// Deduce the value of the given non-type template parameter 471 /// from the given type- or value-dependent expression. 472 /// 473 /// \returns true if deduction succeeded, false otherwise. 474 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 475 Sema &S, TemplateParameterList *TemplateParams, 476 const NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info, 477 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 478 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 479 DeducedTemplateArgument(Value), 480 Value->getType(), Info, Deduced); 481 } 482 483 /// Deduce the value of the given non-type template parameter 484 /// from the given declaration. 485 /// 486 /// \returns true if deduction succeeded, false otherwise. 487 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( 488 Sema &S, TemplateParameterList *TemplateParams, 489 const NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T, 490 TemplateDeductionInfo &Info, 491 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 492 D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; 493 TemplateArgument New(D, T); 494 return DeduceNonTypeTemplateArgument( 495 S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced); 496 } 497 498 static Sema::TemplateDeductionResult 499 DeduceTemplateArguments(Sema &S, 500 TemplateParameterList *TemplateParams, 501 TemplateName Param, 502 TemplateName Arg, 503 TemplateDeductionInfo &Info, 504 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 505 TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); 506 if (!ParamDecl) { 507 // The parameter type is dependent and is not a template template parameter, 508 // so there is nothing that we can deduce. 509 return Sema::TDK_Success; 510 } 511 512 if (TemplateTemplateParmDecl *TempParam 513 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) { 514 // If we're not deducing at this depth, there's nothing to deduce. 515 if (TempParam->getDepth() != Info.getDeducedDepth()) 516 return Sema::TDK_Success; 517 518 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg)); 519 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 520 Deduced[TempParam->getIndex()], 521 NewDeduced); 522 if (Result.isNull()) { 523 Info.Param = TempParam; 524 Info.FirstArg = Deduced[TempParam->getIndex()]; 525 Info.SecondArg = NewDeduced; 526 return Sema::TDK_Inconsistent; 527 } 528 529 Deduced[TempParam->getIndex()] = Result; 530 return Sema::TDK_Success; 531 } 532 533 // Verify that the two template names are equivalent. 534 if (S.Context.hasSameTemplateName(Param, Arg)) 535 return Sema::TDK_Success; 536 537 // Mismatch of non-dependent template parameter to argument. 538 Info.FirstArg = TemplateArgument(Param); 539 Info.SecondArg = TemplateArgument(Arg); 540 return Sema::TDK_NonDeducedMismatch; 541 } 542 543 /// Deduce the template arguments by comparing the template parameter 544 /// type (which is a template-id) with the template argument type. 545 /// 546 /// \param S the Sema 547 /// 548 /// \param TemplateParams the template parameters that we are deducing 549 /// 550 /// \param P the parameter type 551 /// 552 /// \param A the argument type 553 /// 554 /// \param Info information about the template argument deduction itself 555 /// 556 /// \param Deduced the deduced template arguments 557 /// 558 /// \returns the result of template argument deduction so far. Note that a 559 /// "success" result means that template argument deduction has not yet failed, 560 /// but it may still fail, later, for other reasons. 561 static Sema::TemplateDeductionResult 562 DeduceTemplateSpecArguments(Sema &S, TemplateParameterList *TemplateParams, 563 const QualType P, QualType A, 564 TemplateDeductionInfo &Info, 565 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 566 QualType UP = P; 567 if (const auto *IP = P->getAs<InjectedClassNameType>()) 568 UP = IP->getInjectedSpecializationType(); 569 // FIXME: Try to preserve type sugar here, which is hard 570 // because of the unresolved template arguments. 571 const auto *TP = UP.getCanonicalType()->castAs<TemplateSpecializationType>(); 572 TemplateName TNP = TP->getTemplateName(); 573 574 // If the parameter is an alias template, there is nothing to deduce. 575 if (const auto *TD = TNP.getAsTemplateDecl(); TD && TD->isTypeAlias()) 576 return Sema::TDK_Success; 577 578 ArrayRef<TemplateArgument> PResolved = TP->template_arguments(); 579 580 QualType UA = A; 581 // Treat an injected-class-name as its underlying template-id. 582 if (const auto *Injected = A->getAs<InjectedClassNameType>()) 583 UA = Injected->getInjectedSpecializationType(); 584 585 // Check whether the template argument is a dependent template-id. 586 // FIXME: Should not lose sugar here. 587 if (const auto *SA = 588 dyn_cast<TemplateSpecializationType>(UA.getCanonicalType())) { 589 TemplateName TNA = SA->getTemplateName(); 590 591 // If the argument is an alias template, there is nothing to deduce. 592 if (const auto *TD = TNA.getAsTemplateDecl(); TD && TD->isTypeAlias()) 593 return Sema::TDK_Success; 594 595 // Perform template argument deduction for the template name. 596 if (auto Result = 597 DeduceTemplateArguments(S, TemplateParams, TNP, TNA, Info, Deduced)) 598 return Result; 599 // Perform template argument deduction on each template 600 // argument. Ignore any missing/extra arguments, since they could be 601 // filled in by default arguments. 602 return DeduceTemplateArguments(S, TemplateParams, PResolved, 603 SA->template_arguments(), Info, Deduced, 604 /*NumberOfArgumentsMustMatch=*/false); 605 } 606 607 // If the argument type is a class template specialization, we 608 // perform template argument deduction using its template 609 // arguments. 610 const auto *RA = UA->getAs<RecordType>(); 611 const auto *SA = 612 RA ? dyn_cast<ClassTemplateSpecializationDecl>(RA->getDecl()) : nullptr; 613 if (!SA) { 614 Info.FirstArg = TemplateArgument(P); 615 Info.SecondArg = TemplateArgument(A); 616 return Sema::TDK_NonDeducedMismatch; 617 } 618 619 // Perform template argument deduction for the template name. 620 if (auto Result = DeduceTemplateArguments( 621 S, TemplateParams, TP->getTemplateName(), 622 TemplateName(SA->getSpecializedTemplate()), Info, Deduced)) 623 return Result; 624 625 // Perform template argument deduction for the template arguments. 626 return DeduceTemplateArguments(S, TemplateParams, PResolved, 627 SA->getTemplateArgs().asArray(), Info, Deduced, 628 /*NumberOfArgumentsMustMatch=*/true); 629 } 630 631 static bool IsPossiblyOpaquelyQualifiedTypeInternal(const Type *T) { 632 assert(T->isCanonicalUnqualified()); 633 634 switch (T->getTypeClass()) { 635 case Type::TypeOfExpr: 636 case Type::TypeOf: 637 case Type::DependentName: 638 case Type::Decltype: 639 case Type::UnresolvedUsing: 640 case Type::TemplateTypeParm: 641 return true; 642 643 case Type::ConstantArray: 644 case Type::IncompleteArray: 645 case Type::VariableArray: 646 case Type::DependentSizedArray: 647 return IsPossiblyOpaquelyQualifiedTypeInternal( 648 cast<ArrayType>(T)->getElementType().getTypePtr()); 649 650 default: 651 return false; 652 } 653 } 654 655 /// Determines whether the given type is an opaque type that 656 /// might be more qualified when instantiated. 657 static bool IsPossiblyOpaquelyQualifiedType(QualType T) { 658 return IsPossiblyOpaquelyQualifiedTypeInternal( 659 T->getCanonicalTypeInternal().getTypePtr()); 660 } 661 662 /// Helper function to build a TemplateParameter when we don't 663 /// know its type statically. 664 static TemplateParameter makeTemplateParameter(Decl *D) { 665 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D)) 666 return TemplateParameter(TTP); 667 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) 668 return TemplateParameter(NTTP); 669 670 return TemplateParameter(cast<TemplateTemplateParmDecl>(D)); 671 } 672 673 /// A pack that we're currently deducing. 674 struct clang::DeducedPack { 675 // The index of the pack. 676 unsigned Index; 677 678 // The old value of the pack before we started deducing it. 679 DeducedTemplateArgument Saved; 680 681 // A deferred value of this pack from an inner deduction, that couldn't be 682 // deduced because this deduction hadn't happened yet. 683 DeducedTemplateArgument DeferredDeduction; 684 685 // The new value of the pack. 686 SmallVector<DeducedTemplateArgument, 4> New; 687 688 // The outer deduction for this pack, if any. 689 DeducedPack *Outer = nullptr; 690 691 DeducedPack(unsigned Index) : Index(Index) {} 692 }; 693 694 namespace { 695 696 /// A scope in which we're performing pack deduction. 697 class PackDeductionScope { 698 public: 699 /// Prepare to deduce the packs named within Pattern. 700 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 701 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 702 TemplateDeductionInfo &Info, TemplateArgument Pattern, 703 bool DeducePackIfNotAlreadyDeduced = false) 704 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info), 705 DeducePackIfNotAlreadyDeduced(DeducePackIfNotAlreadyDeduced){ 706 unsigned NumNamedPacks = addPacks(Pattern); 707 finishConstruction(NumNamedPacks); 708 } 709 710 /// Prepare to directly deduce arguments of the parameter with index \p Index. 711 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 712 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 713 TemplateDeductionInfo &Info, unsigned Index) 714 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { 715 addPack(Index); 716 finishConstruction(1); 717 } 718 719 private: 720 void addPack(unsigned Index) { 721 // Save the deduced template argument for the parameter pack expanded 722 // by this pack expansion, then clear out the deduction. 723 DeducedPack Pack(Index); 724 Pack.Saved = Deduced[Index]; 725 Deduced[Index] = TemplateArgument(); 726 727 // FIXME: What if we encounter multiple packs with different numbers of 728 // pre-expanded expansions? (This should already have been diagnosed 729 // during substitution.) 730 if (std::optional<unsigned> ExpandedPackExpansions = 731 getExpandedPackSize(TemplateParams->getParam(Index))) 732 FixedNumExpansions = ExpandedPackExpansions; 733 734 Packs.push_back(Pack); 735 } 736 737 unsigned addPacks(TemplateArgument Pattern) { 738 // Compute the set of template parameter indices that correspond to 739 // parameter packs expanded by the pack expansion. 740 llvm::SmallBitVector SawIndices(TemplateParams->size()); 741 llvm::SmallVector<TemplateArgument, 4> ExtraDeductions; 742 743 auto AddPack = [&](unsigned Index) { 744 if (SawIndices[Index]) 745 return; 746 SawIndices[Index] = true; 747 addPack(Index); 748 749 // Deducing a parameter pack that is a pack expansion also constrains the 750 // packs appearing in that parameter to have the same deduced arity. Also, 751 // in C++17 onwards, deducing a non-type template parameter deduces its 752 // type, so we need to collect the pending deduced values for those packs. 753 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>( 754 TemplateParams->getParam(Index))) { 755 if (!NTTP->isExpandedParameterPack()) 756 if (auto *Expansion = dyn_cast<PackExpansionType>(NTTP->getType())) 757 ExtraDeductions.push_back(Expansion->getPattern()); 758 } 759 // FIXME: Also collect the unexpanded packs in any type and template 760 // parameter packs that are pack expansions. 761 }; 762 763 auto Collect = [&](TemplateArgument Pattern) { 764 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 765 S.collectUnexpandedParameterPacks(Pattern, Unexpanded); 766 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { 767 unsigned Depth, Index; 768 std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); 769 if (Depth == Info.getDeducedDepth()) 770 AddPack(Index); 771 } 772 }; 773 774 // Look for unexpanded packs in the pattern. 775 Collect(Pattern); 776 assert(!Packs.empty() && "Pack expansion without unexpanded packs?"); 777 778 unsigned NumNamedPacks = Packs.size(); 779 780 // Also look for unexpanded packs that are indirectly deduced by deducing 781 // the sizes of the packs in this pattern. 782 while (!ExtraDeductions.empty()) 783 Collect(ExtraDeductions.pop_back_val()); 784 785 return NumNamedPacks; 786 } 787 788 void finishConstruction(unsigned NumNamedPacks) { 789 // Dig out the partially-substituted pack, if there is one. 790 const TemplateArgument *PartialPackArgs = nullptr; 791 unsigned NumPartialPackArgs = 0; 792 std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u); 793 if (auto *Scope = S.CurrentInstantiationScope) 794 if (auto *Partial = Scope->getPartiallySubstitutedPack( 795 &PartialPackArgs, &NumPartialPackArgs)) 796 PartialPackDepthIndex = getDepthAndIndex(Partial); 797 798 // This pack expansion will have been partially or fully expanded if 799 // it only names explicitly-specified parameter packs (including the 800 // partially-substituted one, if any). 801 bool IsExpanded = true; 802 for (unsigned I = 0; I != NumNamedPacks; ++I) { 803 if (Packs[I].Index >= Info.getNumExplicitArgs()) { 804 IsExpanded = false; 805 IsPartiallyExpanded = false; 806 break; 807 } 808 if (PartialPackDepthIndex == 809 std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) { 810 IsPartiallyExpanded = true; 811 } 812 } 813 814 // Skip over the pack elements that were expanded into separate arguments. 815 // If we partially expanded, this is the number of partial arguments. 816 if (IsPartiallyExpanded) 817 PackElements += NumPartialPackArgs; 818 else if (IsExpanded) 819 PackElements += *FixedNumExpansions; 820 821 for (auto &Pack : Packs) { 822 if (Info.PendingDeducedPacks.size() > Pack.Index) 823 Pack.Outer = Info.PendingDeducedPacks[Pack.Index]; 824 else 825 Info.PendingDeducedPacks.resize(Pack.Index + 1); 826 Info.PendingDeducedPacks[Pack.Index] = &Pack; 827 828 if (PartialPackDepthIndex == 829 std::make_pair(Info.getDeducedDepth(), Pack.Index)) { 830 Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs); 831 // We pre-populate the deduced value of the partially-substituted 832 // pack with the specified value. This is not entirely correct: the 833 // value is supposed to have been substituted, not deduced, but the 834 // cases where this is observable require an exact type match anyway. 835 // 836 // FIXME: If we could represent a "depth i, index j, pack elem k" 837 // parameter, we could substitute the partially-substituted pack 838 // everywhere and avoid this. 839 if (!IsPartiallyExpanded) 840 Deduced[Pack.Index] = Pack.New[PackElements]; 841 } 842 } 843 } 844 845 public: 846 ~PackDeductionScope() { 847 for (auto &Pack : Packs) 848 Info.PendingDeducedPacks[Pack.Index] = Pack.Outer; 849 } 850 851 /// Determine whether this pack has already been partially expanded into a 852 /// sequence of (prior) function parameters / template arguments. 853 bool isPartiallyExpanded() { return IsPartiallyExpanded; } 854 855 /// Determine whether this pack expansion scope has a known, fixed arity. 856 /// This happens if it involves a pack from an outer template that has 857 /// (notionally) already been expanded. 858 bool hasFixedArity() { return FixedNumExpansions.has_value(); } 859 860 /// Determine whether the next element of the argument is still part of this 861 /// pack. This is the case unless the pack is already expanded to a fixed 862 /// length. 863 bool hasNextElement() { 864 return !FixedNumExpansions || *FixedNumExpansions > PackElements; 865 } 866 867 /// Move to deducing the next element in each pack that is being deduced. 868 void nextPackElement() { 869 // Capture the deduced template arguments for each parameter pack expanded 870 // by this pack expansion, add them to the list of arguments we've deduced 871 // for that pack, then clear out the deduced argument. 872 for (auto &Pack : Packs) { 873 DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index]; 874 if (!Pack.New.empty() || !DeducedArg.isNull()) { 875 while (Pack.New.size() < PackElements) 876 Pack.New.push_back(DeducedTemplateArgument()); 877 if (Pack.New.size() == PackElements) 878 Pack.New.push_back(DeducedArg); 879 else 880 Pack.New[PackElements] = DeducedArg; 881 DeducedArg = Pack.New.size() > PackElements + 1 882 ? Pack.New[PackElements + 1] 883 : DeducedTemplateArgument(); 884 } 885 } 886 ++PackElements; 887 } 888 889 /// Finish template argument deduction for a set of argument packs, 890 /// producing the argument packs and checking for consistency with prior 891 /// deductions. 892 Sema::TemplateDeductionResult finish() { 893 // Build argument packs for each of the parameter packs expanded by this 894 // pack expansion. 895 for (auto &Pack : Packs) { 896 // Put back the old value for this pack. 897 Deduced[Pack.Index] = Pack.Saved; 898 899 // Always make sure the size of this pack is correct, even if we didn't 900 // deduce any values for it. 901 // 902 // FIXME: This isn't required by the normative wording, but substitution 903 // and post-substitution checking will always fail if the arity of any 904 // pack is not equal to the number of elements we processed. (Either that 905 // or something else has gone *very* wrong.) We're permitted to skip any 906 // hard errors from those follow-on steps by the intent (but not the 907 // wording) of C++ [temp.inst]p8: 908 // 909 // If the function selected by overload resolution can be determined 910 // without instantiating a class template definition, it is unspecified 911 // whether that instantiation actually takes place 912 Pack.New.resize(PackElements); 913 914 // Build or find a new value for this pack. 915 DeducedTemplateArgument NewPack; 916 if (Pack.New.empty()) { 917 // If we deduced an empty argument pack, create it now. 918 NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack()); 919 } else { 920 TemplateArgument *ArgumentPack = 921 new (S.Context) TemplateArgument[Pack.New.size()]; 922 std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack); 923 NewPack = DeducedTemplateArgument( 924 TemplateArgument(llvm::ArrayRef(ArgumentPack, Pack.New.size())), 925 // FIXME: This is wrong, it's possible that some pack elements are 926 // deduced from an array bound and others are not: 927 // template<typename ...T, T ...V> void g(const T (&...p)[V]); 928 // g({1, 2, 3}, {{}, {}}); 929 // ... should deduce T = {int, size_t (from array bound)}. 930 Pack.New[0].wasDeducedFromArrayBound()); 931 } 932 933 // Pick where we're going to put the merged pack. 934 DeducedTemplateArgument *Loc; 935 if (Pack.Outer) { 936 if (Pack.Outer->DeferredDeduction.isNull()) { 937 // Defer checking this pack until we have a complete pack to compare 938 // it against. 939 Pack.Outer->DeferredDeduction = NewPack; 940 continue; 941 } 942 Loc = &Pack.Outer->DeferredDeduction; 943 } else { 944 Loc = &Deduced[Pack.Index]; 945 } 946 947 // Check the new pack matches any previous value. 948 DeducedTemplateArgument OldPack = *Loc; 949 DeducedTemplateArgument Result = checkDeducedTemplateArguments( 950 S.Context, OldPack, NewPack, DeducePackIfNotAlreadyDeduced); 951 952 Info.AggregateDeductionCandidateHasMismatchedArity = 953 OldPack.getKind() == TemplateArgument::Pack && 954 NewPack.getKind() == TemplateArgument::Pack && 955 OldPack.pack_size() != NewPack.pack_size() && !Result.isNull(); 956 957 // If we deferred a deduction of this pack, check that one now too. 958 if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) { 959 OldPack = Result; 960 NewPack = Pack.DeferredDeduction; 961 Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 962 } 963 964 NamedDecl *Param = TemplateParams->getParam(Pack.Index); 965 if (Result.isNull()) { 966 Info.Param = makeTemplateParameter(Param); 967 Info.FirstArg = OldPack; 968 Info.SecondArg = NewPack; 969 return Sema::TDK_Inconsistent; 970 } 971 972 // If we have a pre-expanded pack and we didn't deduce enough elements 973 // for it, fail deduction. 974 if (std::optional<unsigned> Expansions = getExpandedPackSize(Param)) { 975 if (*Expansions != PackElements) { 976 Info.Param = makeTemplateParameter(Param); 977 Info.FirstArg = Result; 978 return Sema::TDK_IncompletePack; 979 } 980 } 981 982 *Loc = Result; 983 } 984 985 return Sema::TDK_Success; 986 } 987 988 private: 989 Sema &S; 990 TemplateParameterList *TemplateParams; 991 SmallVectorImpl<DeducedTemplateArgument> &Deduced; 992 TemplateDeductionInfo &Info; 993 unsigned PackElements = 0; 994 bool IsPartiallyExpanded = false; 995 bool DeducePackIfNotAlreadyDeduced = false; 996 /// The number of expansions, if we have a fully-expanded pack in this scope. 997 std::optional<unsigned> FixedNumExpansions; 998 999 SmallVector<DeducedPack, 2> Packs; 1000 }; 1001 1002 } // namespace 1003 1004 /// Deduce the template arguments by comparing the list of parameter 1005 /// types to the list of argument types, as in the parameter-type-lists of 1006 /// function types (C++ [temp.deduct.type]p10). 1007 /// 1008 /// \param S The semantic analysis object within which we are deducing 1009 /// 1010 /// \param TemplateParams The template parameters that we are deducing 1011 /// 1012 /// \param Params The list of parameter types 1013 /// 1014 /// \param NumParams The number of types in \c Params 1015 /// 1016 /// \param Args The list of argument types 1017 /// 1018 /// \param NumArgs The number of types in \c Args 1019 /// 1020 /// \param Info information about the template argument deduction itself 1021 /// 1022 /// \param Deduced the deduced template arguments 1023 /// 1024 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 1025 /// how template argument deduction is performed. 1026 /// 1027 /// \param PartialOrdering If true, we are performing template argument 1028 /// deduction for during partial ordering for a call 1029 /// (C++0x [temp.deduct.partial]). 1030 /// 1031 /// \returns the result of template argument deduction so far. Note that a 1032 /// "success" result means that template argument deduction has not yet failed, 1033 /// but it may still fail, later, for other reasons. 1034 static Sema::TemplateDeductionResult 1035 DeduceTemplateArguments(Sema &S, 1036 TemplateParameterList *TemplateParams, 1037 const QualType *Params, unsigned NumParams, 1038 const QualType *Args, unsigned NumArgs, 1039 TemplateDeductionInfo &Info, 1040 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 1041 unsigned TDF, 1042 bool PartialOrdering = false) { 1043 // C++0x [temp.deduct.type]p10: 1044 // Similarly, if P has a form that contains (T), then each parameter type 1045 // Pi of the respective parameter-type- list of P is compared with the 1046 // corresponding parameter type Ai of the corresponding parameter-type-list 1047 // of A. [...] 1048 unsigned ArgIdx = 0, ParamIdx = 0; 1049 for (; ParamIdx != NumParams; ++ParamIdx) { 1050 // Check argument types. 1051 const PackExpansionType *Expansion 1052 = dyn_cast<PackExpansionType>(Params[ParamIdx]); 1053 if (!Expansion) { 1054 // Simple case: compare the parameter and argument types at this point. 1055 1056 // Make sure we have an argument. 1057 if (ArgIdx >= NumArgs) 1058 return Sema::TDK_MiscellaneousDeductionFailure; 1059 1060 if (isa<PackExpansionType>(Args[ArgIdx])) { 1061 // C++0x [temp.deduct.type]p22: 1062 // If the original function parameter associated with A is a function 1063 // parameter pack and the function parameter associated with P is not 1064 // a function parameter pack, then template argument deduction fails. 1065 return Sema::TDK_MiscellaneousDeductionFailure; 1066 } 1067 1068 if (Sema::TemplateDeductionResult Result = 1069 DeduceTemplateArgumentsByTypeMatch( 1070 S, TemplateParams, Params[ParamIdx].getUnqualifiedType(), 1071 Args[ArgIdx].getUnqualifiedType(), Info, Deduced, TDF, 1072 PartialOrdering, 1073 /*DeducedFromArrayBound=*/false)) 1074 return Result; 1075 1076 ++ArgIdx; 1077 continue; 1078 } 1079 1080 // C++0x [temp.deduct.type]p10: 1081 // If the parameter-declaration corresponding to Pi is a function 1082 // parameter pack, then the type of its declarator- id is compared with 1083 // each remaining parameter type in the parameter-type-list of A. Each 1084 // comparison deduces template arguments for subsequent positions in the 1085 // template parameter packs expanded by the function parameter pack. 1086 1087 QualType Pattern = Expansion->getPattern(); 1088 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 1089 1090 // A pack scope with fixed arity is not really a pack any more, so is not 1091 // a non-deduced context. 1092 if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) { 1093 for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) { 1094 // Deduce template arguments from the pattern. 1095 if (Sema::TemplateDeductionResult Result = 1096 DeduceTemplateArgumentsByTypeMatch( 1097 S, TemplateParams, Pattern.getUnqualifiedType(), 1098 Args[ArgIdx].getUnqualifiedType(), Info, Deduced, TDF, 1099 PartialOrdering, /*DeducedFromArrayBound=*/false)) 1100 return Result; 1101 1102 PackScope.nextPackElement(); 1103 } 1104 } else { 1105 // C++0x [temp.deduct.type]p5: 1106 // The non-deduced contexts are: 1107 // - A function parameter pack that does not occur at the end of the 1108 // parameter-declaration-clause. 1109 // 1110 // FIXME: There is no wording to say what we should do in this case. We 1111 // choose to resolve this by applying the same rule that is applied for a 1112 // function call: that is, deduce all contained packs to their 1113 // explicitly-specified values (or to <> if there is no such value). 1114 // 1115 // This is seemingly-arbitrarily different from the case of a template-id 1116 // with a non-trailing pack-expansion in its arguments, which renders the 1117 // entire template-argument-list a non-deduced context. 1118 1119 // If the parameter type contains an explicitly-specified pack that we 1120 // could not expand, skip the number of parameters notionally created 1121 // by the expansion. 1122 std::optional<unsigned> NumExpansions = Expansion->getNumExpansions(); 1123 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 1124 for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs; 1125 ++I, ++ArgIdx) 1126 PackScope.nextPackElement(); 1127 } 1128 } 1129 1130 // Build argument packs for each of the parameter packs expanded by this 1131 // pack expansion. 1132 if (auto Result = PackScope.finish()) 1133 return Result; 1134 } 1135 1136 // DR692, DR1395 1137 // C++0x [temp.deduct.type]p10: 1138 // If the parameter-declaration corresponding to P_i ... 1139 // During partial ordering, if Ai was originally a function parameter pack: 1140 // - if P does not contain a function parameter type corresponding to Ai then 1141 // Ai is ignored; 1142 if (PartialOrdering && ArgIdx + 1 == NumArgs && 1143 isa<PackExpansionType>(Args[ArgIdx])) 1144 return Sema::TDK_Success; 1145 1146 // Make sure we don't have any extra arguments. 1147 if (ArgIdx < NumArgs) 1148 return Sema::TDK_MiscellaneousDeductionFailure; 1149 1150 return Sema::TDK_Success; 1151 } 1152 1153 /// Determine whether the parameter has qualifiers that the argument 1154 /// lacks. Put another way, determine whether there is no way to add 1155 /// a deduced set of qualifiers to the ParamType that would result in 1156 /// its qualifiers matching those of the ArgType. 1157 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, 1158 QualType ArgType) { 1159 Qualifiers ParamQs = ParamType.getQualifiers(); 1160 Qualifiers ArgQs = ArgType.getQualifiers(); 1161 1162 if (ParamQs == ArgQs) 1163 return false; 1164 1165 // Mismatched (but not missing) Objective-C GC attributes. 1166 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && 1167 ParamQs.hasObjCGCAttr()) 1168 return true; 1169 1170 // Mismatched (but not missing) address spaces. 1171 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && 1172 ParamQs.hasAddressSpace()) 1173 return true; 1174 1175 // Mismatched (but not missing) Objective-C lifetime qualifiers. 1176 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && 1177 ParamQs.hasObjCLifetime()) 1178 return true; 1179 1180 // CVR qualifiers inconsistent or a superset. 1181 return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0; 1182 } 1183 1184 /// Compare types for equality with respect to possibly compatible 1185 /// function types (noreturn adjustment, implicit calling conventions). If any 1186 /// of parameter and argument is not a function, just perform type comparison. 1187 /// 1188 /// \param P the template parameter type. 1189 /// 1190 /// \param A the argument type. 1191 bool Sema::isSameOrCompatibleFunctionType(QualType P, QualType A) { 1192 const FunctionType *PF = P->getAs<FunctionType>(), 1193 *AF = A->getAs<FunctionType>(); 1194 1195 // Just compare if not functions. 1196 if (!PF || !AF) 1197 return Context.hasSameType(P, A); 1198 1199 // Noreturn and noexcept adjustment. 1200 QualType AdjustedParam; 1201 if (IsFunctionConversion(P, A, AdjustedParam)) 1202 return Context.hasSameType(AdjustedParam, A); 1203 1204 // FIXME: Compatible calling conventions. 1205 1206 return Context.hasSameType(P, A); 1207 } 1208 1209 /// Get the index of the first template parameter that was originally from the 1210 /// innermost template-parameter-list. This is 0 except when we concatenate 1211 /// the template parameter lists of a class template and a constructor template 1212 /// when forming an implicit deduction guide. 1213 static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) { 1214 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl()); 1215 if (!Guide || !Guide->isImplicit()) 1216 return 0; 1217 return Guide->getDeducedTemplate()->getTemplateParameters()->size(); 1218 } 1219 1220 /// Determine whether a type denotes a forwarding reference. 1221 static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) { 1222 // C++1z [temp.deduct.call]p3: 1223 // A forwarding reference is an rvalue reference to a cv-unqualified 1224 // template parameter that does not represent a template parameter of a 1225 // class template. 1226 if (auto *ParamRef = Param->getAs<RValueReferenceType>()) { 1227 if (ParamRef->getPointeeType().getQualifiers()) 1228 return false; 1229 auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>(); 1230 return TypeParm && TypeParm->getIndex() >= FirstInnerIndex; 1231 } 1232 return false; 1233 } 1234 1235 static CXXRecordDecl *getCanonicalRD(QualType T) { 1236 return cast<CXXRecordDecl>( 1237 T->castAs<RecordType>()->getDecl()->getCanonicalDecl()); 1238 } 1239 1240 /// Attempt to deduce the template arguments by checking the base types 1241 /// according to (C++20 [temp.deduct.call] p4b3. 1242 /// 1243 /// \param S the semantic analysis object within which we are deducing. 1244 /// 1245 /// \param RD the top level record object we are deducing against. 1246 /// 1247 /// \param TemplateParams the template parameters that we are deducing. 1248 /// 1249 /// \param P the template specialization parameter type. 1250 /// 1251 /// \param Info information about the template argument deduction itself. 1252 /// 1253 /// \param Deduced the deduced template arguments. 1254 /// 1255 /// \returns the result of template argument deduction with the bases. "invalid" 1256 /// means no matches, "success" found a single item, and the 1257 /// "MiscellaneousDeductionFailure" result happens when the match is ambiguous. 1258 static Sema::TemplateDeductionResult 1259 DeduceTemplateBases(Sema &S, const CXXRecordDecl *RD, 1260 TemplateParameterList *TemplateParams, QualType P, 1261 TemplateDeductionInfo &Info, 1262 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 1263 // C++14 [temp.deduct.call] p4b3: 1264 // If P is a class and P has the form simple-template-id, then the 1265 // transformed A can be a derived class of the deduced A. Likewise if 1266 // P is a pointer to a class of the form simple-template-id, the 1267 // transformed A can be a pointer to a derived class pointed to by the 1268 // deduced A. However, if there is a class C that is a (direct or 1269 // indirect) base class of D and derived (directly or indirectly) from a 1270 // class B and that would be a valid deduced A, the deduced A cannot be 1271 // B or pointer to B, respectively. 1272 // 1273 // These alternatives are considered only if type deduction would 1274 // otherwise fail. If they yield more than one possible deduced A, the 1275 // type deduction fails. 1276 1277 // Use a breadth-first search through the bases to collect the set of 1278 // successful matches. Visited contains the set of nodes we have already 1279 // visited, while ToVisit is our stack of records that we still need to 1280 // visit. Matches contains a list of matches that have yet to be 1281 // disqualified. 1282 llvm::SmallPtrSet<const CXXRecordDecl *, 8> Visited; 1283 SmallVector<QualType, 8> ToVisit; 1284 // We iterate over this later, so we have to use MapVector to ensure 1285 // determinism. 1286 llvm::MapVector<const CXXRecordDecl *, 1287 SmallVector<DeducedTemplateArgument, 8>> 1288 Matches; 1289 1290 auto AddBases = [&Visited, &ToVisit](const CXXRecordDecl *RD) { 1291 for (const auto &Base : RD->bases()) { 1292 QualType T = Base.getType(); 1293 assert(T->isRecordType() && "Base class that isn't a record?"); 1294 if (Visited.insert(::getCanonicalRD(T)).second) 1295 ToVisit.push_back(T); 1296 } 1297 }; 1298 1299 // Set up the loop by adding all the bases. 1300 AddBases(RD); 1301 1302 // Search each path of bases until we either run into a successful match 1303 // (where all bases of it are invalid), or we run out of bases. 1304 while (!ToVisit.empty()) { 1305 QualType NextT = ToVisit.pop_back_val(); 1306 1307 SmallVector<DeducedTemplateArgument, 8> DeducedCopy(Deduced.begin(), 1308 Deduced.end()); 1309 TemplateDeductionInfo BaseInfo(TemplateDeductionInfo::ForBase, Info); 1310 Sema::TemplateDeductionResult BaseResult = DeduceTemplateSpecArguments( 1311 S, TemplateParams, P, NextT, BaseInfo, DeducedCopy); 1312 1313 // If this was a successful deduction, add it to the list of matches, 1314 // otherwise we need to continue searching its bases. 1315 const CXXRecordDecl *RD = ::getCanonicalRD(NextT); 1316 if (BaseResult == Sema::TDK_Success) 1317 Matches.insert({RD, DeducedCopy}); 1318 else 1319 AddBases(RD); 1320 } 1321 1322 // At this point, 'Matches' contains a list of seemingly valid bases, however 1323 // in the event that we have more than 1 match, it is possible that the base 1324 // of one of the matches might be disqualified for being a base of another 1325 // valid match. We can count on cyclical instantiations being invalid to 1326 // simplify the disqualifications. That is, if A & B are both matches, and B 1327 // inherits from A (disqualifying A), we know that A cannot inherit from B. 1328 if (Matches.size() > 1) { 1329 Visited.clear(); 1330 for (const auto &Match : Matches) 1331 AddBases(Match.first); 1332 1333 // We can give up once we have a single item (or have run out of things to 1334 // search) since cyclical inheritance isn't valid. 1335 while (Matches.size() > 1 && !ToVisit.empty()) { 1336 const CXXRecordDecl *RD = ::getCanonicalRD(ToVisit.pop_back_val()); 1337 Matches.erase(RD); 1338 1339 // Always add all bases, since the inheritance tree can contain 1340 // disqualifications for multiple matches. 1341 AddBases(RD); 1342 } 1343 } 1344 1345 if (Matches.empty()) 1346 return Sema::TDK_Invalid; 1347 if (Matches.size() > 1) 1348 return Sema::TDK_MiscellaneousDeductionFailure; 1349 1350 std::swap(Matches.front().second, Deduced); 1351 return Sema::TDK_Success; 1352 } 1353 1354 /// Deduce the template arguments by comparing the parameter type and 1355 /// the argument type (C++ [temp.deduct.type]). 1356 /// 1357 /// \param S the semantic analysis object within which we are deducing 1358 /// 1359 /// \param TemplateParams the template parameters that we are deducing 1360 /// 1361 /// \param P the parameter type 1362 /// 1363 /// \param A the argument type 1364 /// 1365 /// \param Info information about the template argument deduction itself 1366 /// 1367 /// \param Deduced the deduced template arguments 1368 /// 1369 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 1370 /// how template argument deduction is performed. 1371 /// 1372 /// \param PartialOrdering Whether we're performing template argument deduction 1373 /// in the context of partial ordering (C++0x [temp.deduct.partial]). 1374 /// 1375 /// \returns the result of template argument deduction so far. Note that a 1376 /// "success" result means that template argument deduction has not yet failed, 1377 /// but it may still fail, later, for other reasons. 1378 static Sema::TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch( 1379 Sema &S, TemplateParameterList *TemplateParams, QualType P, QualType A, 1380 TemplateDeductionInfo &Info, 1381 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF, 1382 bool PartialOrdering, bool DeducedFromArrayBound) { 1383 1384 // If the argument type is a pack expansion, look at its pattern. 1385 // This isn't explicitly called out 1386 if (const auto *AExp = dyn_cast<PackExpansionType>(A)) 1387 A = AExp->getPattern(); 1388 assert(!isa<PackExpansionType>(A.getCanonicalType())); 1389 1390 if (PartialOrdering) { 1391 // C++11 [temp.deduct.partial]p5: 1392 // Before the partial ordering is done, certain transformations are 1393 // performed on the types used for partial ordering: 1394 // - If P is a reference type, P is replaced by the type referred to. 1395 const ReferenceType *PRef = P->getAs<ReferenceType>(); 1396 if (PRef) 1397 P = PRef->getPointeeType(); 1398 1399 // - If A is a reference type, A is replaced by the type referred to. 1400 const ReferenceType *ARef = A->getAs<ReferenceType>(); 1401 if (ARef) 1402 A = A->getPointeeType(); 1403 1404 if (PRef && ARef && S.Context.hasSameUnqualifiedType(P, A)) { 1405 // C++11 [temp.deduct.partial]p9: 1406 // If, for a given type, deduction succeeds in both directions (i.e., 1407 // the types are identical after the transformations above) and both 1408 // P and A were reference types [...]: 1409 // - if [one type] was an lvalue reference and [the other type] was 1410 // not, [the other type] is not considered to be at least as 1411 // specialized as [the first type] 1412 // - if [one type] is more cv-qualified than [the other type], 1413 // [the other type] is not considered to be at least as specialized 1414 // as [the first type] 1415 // Objective-C ARC adds: 1416 // - [one type] has non-trivial lifetime, [the other type] has 1417 // __unsafe_unretained lifetime, and the types are otherwise 1418 // identical 1419 // 1420 // A is "considered to be at least as specialized" as P iff deduction 1421 // succeeds, so we model this as a deduction failure. Note that 1422 // [the first type] is P and [the other type] is A here; the standard 1423 // gets this backwards. 1424 Qualifiers PQuals = P.getQualifiers(), AQuals = A.getQualifiers(); 1425 if ((PRef->isLValueReferenceType() && !ARef->isLValueReferenceType()) || 1426 PQuals.isStrictSupersetOf(AQuals) || 1427 (PQuals.hasNonTrivialObjCLifetime() && 1428 AQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone && 1429 PQuals.withoutObjCLifetime() == AQuals.withoutObjCLifetime())) { 1430 Info.FirstArg = TemplateArgument(P); 1431 Info.SecondArg = TemplateArgument(A); 1432 return Sema::TDK_NonDeducedMismatch; 1433 } 1434 } 1435 Qualifiers DiscardedQuals; 1436 // C++11 [temp.deduct.partial]p7: 1437 // Remove any top-level cv-qualifiers: 1438 // - If P is a cv-qualified type, P is replaced by the cv-unqualified 1439 // version of P. 1440 P = S.Context.getUnqualifiedArrayType(P, DiscardedQuals); 1441 // - If A is a cv-qualified type, A is replaced by the cv-unqualified 1442 // version of A. 1443 A = S.Context.getUnqualifiedArrayType(A, DiscardedQuals); 1444 } else { 1445 // C++0x [temp.deduct.call]p4 bullet 1: 1446 // - If the original P is a reference type, the deduced A (i.e., the type 1447 // referred to by the reference) can be more cv-qualified than the 1448 // transformed A. 1449 if (TDF & TDF_ParamWithReferenceType) { 1450 Qualifiers Quals; 1451 QualType UnqualP = S.Context.getUnqualifiedArrayType(P, Quals); 1452 Quals.setCVRQualifiers(Quals.getCVRQualifiers() & A.getCVRQualifiers()); 1453 P = S.Context.getQualifiedType(UnqualP, Quals); 1454 } 1455 1456 if ((TDF & TDF_TopLevelParameterTypeList) && !P->isFunctionType()) { 1457 // C++0x [temp.deduct.type]p10: 1458 // If P and A are function types that originated from deduction when 1459 // taking the address of a function template (14.8.2.2) or when deducing 1460 // template arguments from a function declaration (14.8.2.6) and Pi and 1461 // Ai are parameters of the top-level parameter-type-list of P and A, 1462 // respectively, Pi is adjusted if it is a forwarding reference and Ai 1463 // is an lvalue reference, in 1464 // which case the type of Pi is changed to be the template parameter 1465 // type (i.e., T&& is changed to simply T). [ Note: As a result, when 1466 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be 1467 // deduced as X&. - end note ] 1468 TDF &= ~TDF_TopLevelParameterTypeList; 1469 if (isForwardingReference(P, /*FirstInnerIndex=*/0) && 1470 A->isLValueReferenceType()) 1471 P = P->getPointeeType(); 1472 } 1473 } 1474 1475 // C++ [temp.deduct.type]p9: 1476 // A template type argument T, a template template argument TT or a 1477 // template non-type argument i can be deduced if P and A have one of 1478 // the following forms: 1479 // 1480 // T 1481 // cv-list T 1482 if (const auto *TTP = P->getAs<TemplateTypeParmType>()) { 1483 // Just skip any attempts to deduce from a placeholder type or a parameter 1484 // at a different depth. 1485 if (A->isPlaceholderType() || Info.getDeducedDepth() != TTP->getDepth()) 1486 return Sema::TDK_Success; 1487 1488 unsigned Index = TTP->getIndex(); 1489 1490 // If the argument type is an array type, move the qualifiers up to the 1491 // top level, so they can be matched with the qualifiers on the parameter. 1492 if (A->isArrayType()) { 1493 Qualifiers Quals; 1494 A = S.Context.getUnqualifiedArrayType(A, Quals); 1495 if (Quals) 1496 A = S.Context.getQualifiedType(A, Quals); 1497 } 1498 1499 // The argument type can not be less qualified than the parameter 1500 // type. 1501 if (!(TDF & TDF_IgnoreQualifiers) && 1502 hasInconsistentOrSupersetQualifiersOf(P, A)) { 1503 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1504 Info.FirstArg = TemplateArgument(P); 1505 Info.SecondArg = TemplateArgument(A); 1506 return Sema::TDK_Underqualified; 1507 } 1508 1509 // Do not match a function type with a cv-qualified type. 1510 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584 1511 if (A->isFunctionType() && P.hasQualifiers()) 1512 return Sema::TDK_NonDeducedMismatch; 1513 1514 assert(TTP->getDepth() == Info.getDeducedDepth() && 1515 "saw template type parameter with wrong depth"); 1516 assert(A->getCanonicalTypeInternal() != S.Context.OverloadTy && 1517 "Unresolved overloaded function"); 1518 QualType DeducedType = A; 1519 1520 // Remove any qualifiers on the parameter from the deduced type. 1521 // We checked the qualifiers for consistency above. 1522 Qualifiers DeducedQs = DeducedType.getQualifiers(); 1523 Qualifiers ParamQs = P.getQualifiers(); 1524 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers()); 1525 if (ParamQs.hasObjCGCAttr()) 1526 DeducedQs.removeObjCGCAttr(); 1527 if (ParamQs.hasAddressSpace()) 1528 DeducedQs.removeAddressSpace(); 1529 if (ParamQs.hasObjCLifetime()) 1530 DeducedQs.removeObjCLifetime(); 1531 1532 // Objective-C ARC: 1533 // If template deduction would produce a lifetime qualifier on a type 1534 // that is not a lifetime type, template argument deduction fails. 1535 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() && 1536 !DeducedType->isDependentType()) { 1537 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1538 Info.FirstArg = TemplateArgument(P); 1539 Info.SecondArg = TemplateArgument(A); 1540 return Sema::TDK_Underqualified; 1541 } 1542 1543 // Objective-C ARC: 1544 // If template deduction would produce an argument type with lifetime type 1545 // but no lifetime qualifier, the __strong lifetime qualifier is inferred. 1546 if (S.getLangOpts().ObjCAutoRefCount && DeducedType->isObjCLifetimeType() && 1547 !DeducedQs.hasObjCLifetime()) 1548 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); 1549 1550 DeducedType = 1551 S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), DeducedQs); 1552 1553 DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound); 1554 DeducedTemplateArgument Result = 1555 checkDeducedTemplateArguments(S.Context, Deduced[Index], NewDeduced); 1556 if (Result.isNull()) { 1557 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1558 Info.FirstArg = Deduced[Index]; 1559 Info.SecondArg = NewDeduced; 1560 return Sema::TDK_Inconsistent; 1561 } 1562 1563 Deduced[Index] = Result; 1564 return Sema::TDK_Success; 1565 } 1566 1567 // Set up the template argument deduction information for a failure. 1568 Info.FirstArg = TemplateArgument(P); 1569 Info.SecondArg = TemplateArgument(A); 1570 1571 // If the parameter is an already-substituted template parameter 1572 // pack, do nothing: we don't know which of its arguments to look 1573 // at, so we have to wait until all of the parameter packs in this 1574 // expansion have arguments. 1575 if (P->getAs<SubstTemplateTypeParmPackType>()) 1576 return Sema::TDK_Success; 1577 1578 // Check the cv-qualifiers on the parameter and argument types. 1579 if (!(TDF & TDF_IgnoreQualifiers)) { 1580 if (TDF & TDF_ParamWithReferenceType) { 1581 if (hasInconsistentOrSupersetQualifiersOf(P, A)) 1582 return Sema::TDK_NonDeducedMismatch; 1583 } else if (TDF & TDF_ArgWithReferenceType) { 1584 // C++ [temp.deduct.conv]p4: 1585 // If the original A is a reference type, A can be more cv-qualified 1586 // than the deduced A 1587 if (!A.getQualifiers().compatiblyIncludes(P.getQualifiers())) 1588 return Sema::TDK_NonDeducedMismatch; 1589 1590 // Strip out all extra qualifiers from the argument to figure out the 1591 // type we're converting to, prior to the qualification conversion. 1592 Qualifiers Quals; 1593 A = S.Context.getUnqualifiedArrayType(A, Quals); 1594 A = S.Context.getQualifiedType(A, P.getQualifiers()); 1595 } else if (!IsPossiblyOpaquelyQualifiedType(P)) { 1596 if (P.getCVRQualifiers() != A.getCVRQualifiers()) 1597 return Sema::TDK_NonDeducedMismatch; 1598 } 1599 } 1600 1601 // If the parameter type is not dependent, there is nothing to deduce. 1602 if (!P->isDependentType()) { 1603 if (TDF & TDF_SkipNonDependent) 1604 return Sema::TDK_Success; 1605 if ((TDF & TDF_IgnoreQualifiers) ? S.Context.hasSameUnqualifiedType(P, A) 1606 : S.Context.hasSameType(P, A)) 1607 return Sema::TDK_Success; 1608 if (TDF & TDF_AllowCompatibleFunctionType && 1609 S.isSameOrCompatibleFunctionType(P, A)) 1610 return Sema::TDK_Success; 1611 if (!(TDF & TDF_IgnoreQualifiers)) 1612 return Sema::TDK_NonDeducedMismatch; 1613 // Otherwise, when ignoring qualifiers, the types not having the same 1614 // unqualified type does not mean they do not match, so in this case we 1615 // must keep going and analyze with a non-dependent parameter type. 1616 } 1617 1618 switch (P.getCanonicalType()->getTypeClass()) { 1619 // Non-canonical types cannot appear here. 1620 #define NON_CANONICAL_TYPE(Class, Base) \ 1621 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); 1622 #define TYPE(Class, Base) 1623 #include "clang/AST/TypeNodes.inc" 1624 1625 case Type::TemplateTypeParm: 1626 case Type::SubstTemplateTypeParmPack: 1627 llvm_unreachable("Type nodes handled above"); 1628 1629 case Type::Auto: 1630 // C++23 [temp.deduct.funcaddr]/3: 1631 // A placeholder type in the return type of a function template is a 1632 // non-deduced context. 1633 // There's no corresponding wording for [temp.deduct.decl], but we treat 1634 // it the same to match other compilers. 1635 if (P->isDependentType()) 1636 return Sema::TDK_Success; 1637 [[fallthrough]]; 1638 case Type::Builtin: 1639 case Type::VariableArray: 1640 case Type::Vector: 1641 case Type::FunctionNoProto: 1642 case Type::Record: 1643 case Type::Enum: 1644 case Type::ObjCObject: 1645 case Type::ObjCInterface: 1646 case Type::ObjCObjectPointer: 1647 case Type::BitInt: 1648 return (TDF & TDF_SkipNonDependent) || 1649 ((TDF & TDF_IgnoreQualifiers) 1650 ? S.Context.hasSameUnqualifiedType(P, A) 1651 : S.Context.hasSameType(P, A)) 1652 ? Sema::TDK_Success 1653 : Sema::TDK_NonDeducedMismatch; 1654 1655 // _Complex T [placeholder extension] 1656 case Type::Complex: { 1657 const auto *CP = P->castAs<ComplexType>(), *CA = A->getAs<ComplexType>(); 1658 if (!CA) 1659 return Sema::TDK_NonDeducedMismatch; 1660 return DeduceTemplateArgumentsByTypeMatch( 1661 S, TemplateParams, CP->getElementType(), CA->getElementType(), Info, 1662 Deduced, TDF); 1663 } 1664 1665 // _Atomic T [extension] 1666 case Type::Atomic: { 1667 const auto *PA = P->castAs<AtomicType>(), *AA = A->getAs<AtomicType>(); 1668 if (!AA) 1669 return Sema::TDK_NonDeducedMismatch; 1670 return DeduceTemplateArgumentsByTypeMatch( 1671 S, TemplateParams, PA->getValueType(), AA->getValueType(), Info, 1672 Deduced, TDF); 1673 } 1674 1675 // T * 1676 case Type::Pointer: { 1677 QualType PointeeType; 1678 if (const auto *PA = A->getAs<PointerType>()) { 1679 PointeeType = PA->getPointeeType(); 1680 } else if (const auto *PA = A->getAs<ObjCObjectPointerType>()) { 1681 PointeeType = PA->getPointeeType(); 1682 } else { 1683 return Sema::TDK_NonDeducedMismatch; 1684 } 1685 return DeduceTemplateArgumentsByTypeMatch( 1686 S, TemplateParams, P->castAs<PointerType>()->getPointeeType(), 1687 PointeeType, Info, Deduced, 1688 TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass)); 1689 } 1690 1691 // T & 1692 case Type::LValueReference: { 1693 const auto *RP = P->castAs<LValueReferenceType>(), 1694 *RA = A->getAs<LValueReferenceType>(); 1695 if (!RA) 1696 return Sema::TDK_NonDeducedMismatch; 1697 1698 return DeduceTemplateArgumentsByTypeMatch( 1699 S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info, 1700 Deduced, 0); 1701 } 1702 1703 // T && [C++0x] 1704 case Type::RValueReference: { 1705 const auto *RP = P->castAs<RValueReferenceType>(), 1706 *RA = A->getAs<RValueReferenceType>(); 1707 if (!RA) 1708 return Sema::TDK_NonDeducedMismatch; 1709 1710 return DeduceTemplateArgumentsByTypeMatch( 1711 S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info, 1712 Deduced, 0); 1713 } 1714 1715 // T [] (implied, but not stated explicitly) 1716 case Type::IncompleteArray: { 1717 const auto *IAA = S.Context.getAsIncompleteArrayType(A); 1718 if (!IAA) 1719 return Sema::TDK_NonDeducedMismatch; 1720 1721 const auto *IAP = S.Context.getAsIncompleteArrayType(P); 1722 assert(IAP && "Template parameter not of incomplete array type"); 1723 1724 return DeduceTemplateArgumentsByTypeMatch( 1725 S, TemplateParams, IAP->getElementType(), IAA->getElementType(), Info, 1726 Deduced, TDF & TDF_IgnoreQualifiers); 1727 } 1728 1729 // T [integer-constant] 1730 case Type::ConstantArray: { 1731 const auto *CAA = S.Context.getAsConstantArrayType(A), 1732 *CAP = S.Context.getAsConstantArrayType(P); 1733 assert(CAP); 1734 if (!CAA || CAA->getSize() != CAP->getSize()) 1735 return Sema::TDK_NonDeducedMismatch; 1736 1737 return DeduceTemplateArgumentsByTypeMatch( 1738 S, TemplateParams, CAP->getElementType(), CAA->getElementType(), Info, 1739 Deduced, TDF & TDF_IgnoreQualifiers); 1740 } 1741 1742 // type [i] 1743 case Type::DependentSizedArray: { 1744 const auto *AA = S.Context.getAsArrayType(A); 1745 if (!AA) 1746 return Sema::TDK_NonDeducedMismatch; 1747 1748 // Check the element type of the arrays 1749 const auto *DAP = S.Context.getAsDependentSizedArrayType(P); 1750 assert(DAP); 1751 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1752 S, TemplateParams, DAP->getElementType(), AA->getElementType(), 1753 Info, Deduced, TDF & TDF_IgnoreQualifiers)) 1754 return Result; 1755 1756 // Determine the array bound is something we can deduce. 1757 const NonTypeTemplateParmDecl *NTTP = 1758 getDeducedParameterFromExpr(Info, DAP->getSizeExpr()); 1759 if (!NTTP) 1760 return Sema::TDK_Success; 1761 1762 // We can perform template argument deduction for the given non-type 1763 // template parameter. 1764 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1765 "saw non-type template parameter with wrong depth"); 1766 if (const auto *CAA = dyn_cast<ConstantArrayType>(AA)) { 1767 llvm::APSInt Size(CAA->getSize()); 1768 return DeduceNonTypeTemplateArgument( 1769 S, TemplateParams, NTTP, Size, S.Context.getSizeType(), 1770 /*ArrayBound=*/true, Info, Deduced); 1771 } 1772 if (const auto *DAA = dyn_cast<DependentSizedArrayType>(AA)) 1773 if (DAA->getSizeExpr()) 1774 return DeduceNonTypeTemplateArgument( 1775 S, TemplateParams, NTTP, DAA->getSizeExpr(), Info, Deduced); 1776 1777 // Incomplete type does not match a dependently-sized array type 1778 return Sema::TDK_NonDeducedMismatch; 1779 } 1780 1781 // type(*)(T) 1782 // T(*)() 1783 // T(*)(T) 1784 case Type::FunctionProto: { 1785 const auto *FPP = P->castAs<FunctionProtoType>(), 1786 *FPA = A->getAs<FunctionProtoType>(); 1787 if (!FPA) 1788 return Sema::TDK_NonDeducedMismatch; 1789 1790 if (FPP->getMethodQuals() != FPA->getMethodQuals() || 1791 FPP->getRefQualifier() != FPA->getRefQualifier() || 1792 FPP->isVariadic() != FPA->isVariadic()) 1793 return Sema::TDK_NonDeducedMismatch; 1794 1795 // Check return types. 1796 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1797 S, TemplateParams, FPP->getReturnType(), FPA->getReturnType(), 1798 Info, Deduced, 0, 1799 /*PartialOrdering=*/false, 1800 /*DeducedFromArrayBound=*/false)) 1801 return Result; 1802 1803 // Check parameter types. 1804 if (auto Result = DeduceTemplateArguments( 1805 S, TemplateParams, FPP->param_type_begin(), FPP->getNumParams(), 1806 FPA->param_type_begin(), FPA->getNumParams(), Info, Deduced, 1807 TDF & TDF_TopLevelParameterTypeList, PartialOrdering)) 1808 return Result; 1809 1810 if (TDF & TDF_AllowCompatibleFunctionType) 1811 return Sema::TDK_Success; 1812 1813 // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit 1814 // deducing through the noexcept-specifier if it's part of the canonical 1815 // type. libstdc++ relies on this. 1816 Expr *NoexceptExpr = FPP->getNoexceptExpr(); 1817 if (const NonTypeTemplateParmDecl *NTTP = 1818 NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr) 1819 : nullptr) { 1820 assert(NTTP->getDepth() == Info.getDeducedDepth() && 1821 "saw non-type template parameter with wrong depth"); 1822 1823 llvm::APSInt Noexcept(1); 1824 switch (FPA->canThrow()) { 1825 case CT_Cannot: 1826 Noexcept = 1; 1827 [[fallthrough]]; 1828 1829 case CT_Can: 1830 // We give E in noexcept(E) the "deduced from array bound" treatment. 1831 // FIXME: Should we? 1832 return DeduceNonTypeTemplateArgument( 1833 S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy, 1834 /*DeducedFromArrayBound=*/true, Info, Deduced); 1835 1836 case CT_Dependent: 1837 if (Expr *ArgNoexceptExpr = FPA->getNoexceptExpr()) 1838 return DeduceNonTypeTemplateArgument( 1839 S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced); 1840 // Can't deduce anything from throw(T...). 1841 break; 1842 } 1843 } 1844 // FIXME: Detect non-deduced exception specification mismatches? 1845 // 1846 // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow 1847 // top-level differences in noexcept-specifications. 1848 1849 return Sema::TDK_Success; 1850 } 1851 1852 case Type::InjectedClassName: 1853 // Treat a template's injected-class-name as if the template 1854 // specialization type had been used. 1855 1856 // template-name<T> (where template-name refers to a class template) 1857 // template-name<i> 1858 // TT<T> 1859 // TT<i> 1860 // TT<> 1861 case Type::TemplateSpecialization: { 1862 // When Arg cannot be a derived class, we can just try to deduce template 1863 // arguments from the template-id. 1864 if (!(TDF & TDF_DerivedClass) || !A->isRecordType()) 1865 return DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info, 1866 Deduced); 1867 1868 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(), 1869 Deduced.end()); 1870 1871 auto Result = 1872 DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info, Deduced); 1873 if (Result == Sema::TDK_Success) 1874 return Result; 1875 1876 // We cannot inspect base classes as part of deduction when the type 1877 // is incomplete, so either instantiate any templates necessary to 1878 // complete the type, or skip over it if it cannot be completed. 1879 if (!S.isCompleteType(Info.getLocation(), A)) 1880 return Result; 1881 1882 // Reset the incorrectly deduced argument from above. 1883 Deduced = DeducedOrig; 1884 1885 // Check bases according to C++14 [temp.deduct.call] p4b3: 1886 auto BaseResult = DeduceTemplateBases(S, getCanonicalRD(A), 1887 TemplateParams, P, Info, Deduced); 1888 return BaseResult != Sema::TDK_Invalid ? BaseResult : Result; 1889 } 1890 1891 // T type::* 1892 // T T::* 1893 // T (type::*)() 1894 // type (T::*)() 1895 // type (type::*)(T) 1896 // type (T::*)(T) 1897 // T (type::*)(T) 1898 // T (T::*)() 1899 // T (T::*)(T) 1900 case Type::MemberPointer: { 1901 const auto *MPP = P->castAs<MemberPointerType>(), 1902 *MPA = A->getAs<MemberPointerType>(); 1903 if (!MPA) 1904 return Sema::TDK_NonDeducedMismatch; 1905 1906 QualType PPT = MPP->getPointeeType(); 1907 if (PPT->isFunctionType()) 1908 S.adjustMemberFunctionCC(PPT, /*HasThisPointer=*/false, 1909 /*IsCtorOrDtor=*/false, Info.getLocation()); 1910 QualType APT = MPA->getPointeeType(); 1911 if (APT->isFunctionType()) 1912 S.adjustMemberFunctionCC(APT, /*HasThisPointer=*/false, 1913 /*IsCtorOrDtor=*/false, Info.getLocation()); 1914 1915 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1916 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1917 S, TemplateParams, PPT, APT, Info, Deduced, SubTDF)) 1918 return Result; 1919 return DeduceTemplateArgumentsByTypeMatch( 1920 S, TemplateParams, QualType(MPP->getClass(), 0), 1921 QualType(MPA->getClass(), 0), Info, Deduced, SubTDF); 1922 } 1923 1924 // (clang extension) 1925 // 1926 // type(^)(T) 1927 // T(^)() 1928 // T(^)(T) 1929 case Type::BlockPointer: { 1930 const auto *BPP = P->castAs<BlockPointerType>(), 1931 *BPA = A->getAs<BlockPointerType>(); 1932 if (!BPA) 1933 return Sema::TDK_NonDeducedMismatch; 1934 return DeduceTemplateArgumentsByTypeMatch( 1935 S, TemplateParams, BPP->getPointeeType(), BPA->getPointeeType(), Info, 1936 Deduced, 0); 1937 } 1938 1939 // (clang extension) 1940 // 1941 // T __attribute__(((ext_vector_type(<integral constant>)))) 1942 case Type::ExtVector: { 1943 const auto *VP = P->castAs<ExtVectorType>(); 1944 QualType ElementType; 1945 if (const auto *VA = A->getAs<ExtVectorType>()) { 1946 // Make sure that the vectors have the same number of elements. 1947 if (VP->getNumElements() != VA->getNumElements()) 1948 return Sema::TDK_NonDeducedMismatch; 1949 ElementType = VA->getElementType(); 1950 } else if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) { 1951 // We can't check the number of elements, since the argument has a 1952 // dependent number of elements. This can only occur during partial 1953 // ordering. 1954 ElementType = VA->getElementType(); 1955 } else { 1956 return Sema::TDK_NonDeducedMismatch; 1957 } 1958 // Perform deduction on the element types. 1959 return DeduceTemplateArgumentsByTypeMatch( 1960 S, TemplateParams, VP->getElementType(), ElementType, Info, Deduced, 1961 TDF); 1962 } 1963 1964 case Type::DependentVector: { 1965 const auto *VP = P->castAs<DependentVectorType>(); 1966 1967 if (const auto *VA = A->getAs<VectorType>()) { 1968 // Perform deduction on the element types. 1969 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1970 S, TemplateParams, VP->getElementType(), VA->getElementType(), 1971 Info, Deduced, TDF)) 1972 return Result; 1973 1974 // Perform deduction on the vector size, if we can. 1975 const NonTypeTemplateParmDecl *NTTP = 1976 getDeducedParameterFromExpr(Info, VP->getSizeExpr()); 1977 if (!NTTP) 1978 return Sema::TDK_Success; 1979 1980 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 1981 ArgSize = VA->getNumElements(); 1982 // Note that we use the "array bound" rules here; just like in that 1983 // case, we don't have any particular type for the vector size, but 1984 // we can provide one if necessary. 1985 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 1986 S.Context.UnsignedIntTy, true, 1987 Info, Deduced); 1988 } 1989 1990 if (const auto *VA = A->getAs<DependentVectorType>()) { 1991 // Perform deduction on the element types. 1992 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 1993 S, TemplateParams, VP->getElementType(), VA->getElementType(), 1994 Info, Deduced, TDF)) 1995 return Result; 1996 1997 // Perform deduction on the vector size, if we can. 1998 const NonTypeTemplateParmDecl *NTTP = 1999 getDeducedParameterFromExpr(Info, VP->getSizeExpr()); 2000 if (!NTTP) 2001 return Sema::TDK_Success; 2002 2003 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2004 VA->getSizeExpr(), Info, Deduced); 2005 } 2006 2007 return Sema::TDK_NonDeducedMismatch; 2008 } 2009 2010 // (clang extension) 2011 // 2012 // T __attribute__(((ext_vector_type(N)))) 2013 case Type::DependentSizedExtVector: { 2014 const auto *VP = P->castAs<DependentSizedExtVectorType>(); 2015 2016 if (const auto *VA = A->getAs<ExtVectorType>()) { 2017 // Perform deduction on the element types. 2018 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 2019 S, TemplateParams, VP->getElementType(), VA->getElementType(), 2020 Info, Deduced, TDF)) 2021 return Result; 2022 2023 // Perform deduction on the vector size, if we can. 2024 const NonTypeTemplateParmDecl *NTTP = 2025 getDeducedParameterFromExpr(Info, VP->getSizeExpr()); 2026 if (!NTTP) 2027 return Sema::TDK_Success; 2028 2029 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 2030 ArgSize = VA->getNumElements(); 2031 // Note that we use the "array bound" rules here; just like in that 2032 // case, we don't have any particular type for the vector size, but 2033 // we can provide one if necessary. 2034 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 2035 S.Context.IntTy, true, Info, 2036 Deduced); 2037 } 2038 2039 if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) { 2040 // Perform deduction on the element types. 2041 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 2042 S, TemplateParams, VP->getElementType(), VA->getElementType(), 2043 Info, Deduced, TDF)) 2044 return Result; 2045 2046 // Perform deduction on the vector size, if we can. 2047 const NonTypeTemplateParmDecl *NTTP = 2048 getDeducedParameterFromExpr(Info, VP->getSizeExpr()); 2049 if (!NTTP) 2050 return Sema::TDK_Success; 2051 2052 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2053 VA->getSizeExpr(), Info, Deduced); 2054 } 2055 2056 return Sema::TDK_NonDeducedMismatch; 2057 } 2058 2059 // (clang extension) 2060 // 2061 // T __attribute__((matrix_type(<integral constant>, 2062 // <integral constant>))) 2063 case Type::ConstantMatrix: { 2064 const auto *MP = P->castAs<ConstantMatrixType>(), 2065 *MA = A->getAs<ConstantMatrixType>(); 2066 if (!MA) 2067 return Sema::TDK_NonDeducedMismatch; 2068 2069 // Check that the dimensions are the same 2070 if (MP->getNumRows() != MA->getNumRows() || 2071 MP->getNumColumns() != MA->getNumColumns()) { 2072 return Sema::TDK_NonDeducedMismatch; 2073 } 2074 // Perform deduction on element types. 2075 return DeduceTemplateArgumentsByTypeMatch( 2076 S, TemplateParams, MP->getElementType(), MA->getElementType(), Info, 2077 Deduced, TDF); 2078 } 2079 2080 case Type::DependentSizedMatrix: { 2081 const auto *MP = P->castAs<DependentSizedMatrixType>(); 2082 const auto *MA = A->getAs<MatrixType>(); 2083 if (!MA) 2084 return Sema::TDK_NonDeducedMismatch; 2085 2086 // Check the element type of the matrixes. 2087 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 2088 S, TemplateParams, MP->getElementType(), MA->getElementType(), 2089 Info, Deduced, TDF)) 2090 return Result; 2091 2092 // Try to deduce a matrix dimension. 2093 auto DeduceMatrixArg = 2094 [&S, &Info, &Deduced, &TemplateParams]( 2095 Expr *ParamExpr, const MatrixType *A, 2096 unsigned (ConstantMatrixType::*GetArgDimension)() const, 2097 Expr *(DependentSizedMatrixType::*GetArgDimensionExpr)() const) { 2098 const auto *ACM = dyn_cast<ConstantMatrixType>(A); 2099 const auto *ADM = dyn_cast<DependentSizedMatrixType>(A); 2100 if (!ParamExpr->isValueDependent()) { 2101 std::optional<llvm::APSInt> ParamConst = 2102 ParamExpr->getIntegerConstantExpr(S.Context); 2103 if (!ParamConst) 2104 return Sema::TDK_NonDeducedMismatch; 2105 2106 if (ACM) { 2107 if ((ACM->*GetArgDimension)() == *ParamConst) 2108 return Sema::TDK_Success; 2109 return Sema::TDK_NonDeducedMismatch; 2110 } 2111 2112 Expr *ArgExpr = (ADM->*GetArgDimensionExpr)(); 2113 if (std::optional<llvm::APSInt> ArgConst = 2114 ArgExpr->getIntegerConstantExpr(S.Context)) 2115 if (*ArgConst == *ParamConst) 2116 return Sema::TDK_Success; 2117 return Sema::TDK_NonDeducedMismatch; 2118 } 2119 2120 const NonTypeTemplateParmDecl *NTTP = 2121 getDeducedParameterFromExpr(Info, ParamExpr); 2122 if (!NTTP) 2123 return Sema::TDK_Success; 2124 2125 if (ACM) { 2126 llvm::APSInt ArgConst( 2127 S.Context.getTypeSize(S.Context.getSizeType())); 2128 ArgConst = (ACM->*GetArgDimension)(); 2129 return DeduceNonTypeTemplateArgument( 2130 S, TemplateParams, NTTP, ArgConst, S.Context.getSizeType(), 2131 /*ArrayBound=*/true, Info, Deduced); 2132 } 2133 2134 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2135 (ADM->*GetArgDimensionExpr)(), 2136 Info, Deduced); 2137 }; 2138 2139 if (auto Result = DeduceMatrixArg(MP->getRowExpr(), MA, 2140 &ConstantMatrixType::getNumRows, 2141 &DependentSizedMatrixType::getRowExpr)) 2142 return Result; 2143 2144 return DeduceMatrixArg(MP->getColumnExpr(), MA, 2145 &ConstantMatrixType::getNumColumns, 2146 &DependentSizedMatrixType::getColumnExpr); 2147 } 2148 2149 // (clang extension) 2150 // 2151 // T __attribute__(((address_space(N)))) 2152 case Type::DependentAddressSpace: { 2153 const auto *ASP = P->castAs<DependentAddressSpaceType>(); 2154 2155 if (const auto *ASA = A->getAs<DependentAddressSpaceType>()) { 2156 // Perform deduction on the pointer type. 2157 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 2158 S, TemplateParams, ASP->getPointeeType(), ASA->getPointeeType(), 2159 Info, Deduced, TDF)) 2160 return Result; 2161 2162 // Perform deduction on the address space, if we can. 2163 const NonTypeTemplateParmDecl *NTTP = 2164 getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr()); 2165 if (!NTTP) 2166 return Sema::TDK_Success; 2167 2168 return DeduceNonTypeTemplateArgument( 2169 S, TemplateParams, NTTP, ASA->getAddrSpaceExpr(), Info, Deduced); 2170 } 2171 2172 if (isTargetAddressSpace(A.getAddressSpace())) { 2173 llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy), 2174 false); 2175 ArgAddressSpace = toTargetAddressSpace(A.getAddressSpace()); 2176 2177 // Perform deduction on the pointer types. 2178 if (auto Result = DeduceTemplateArgumentsByTypeMatch( 2179 S, TemplateParams, ASP->getPointeeType(), 2180 S.Context.removeAddrSpaceQualType(A), Info, Deduced, TDF)) 2181 return Result; 2182 2183 // Perform deduction on the address space, if we can. 2184 const NonTypeTemplateParmDecl *NTTP = 2185 getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr()); 2186 if (!NTTP) 2187 return Sema::TDK_Success; 2188 2189 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2190 ArgAddressSpace, S.Context.IntTy, 2191 true, Info, Deduced); 2192 } 2193 2194 return Sema::TDK_NonDeducedMismatch; 2195 } 2196 case Type::DependentBitInt: { 2197 const auto *IP = P->castAs<DependentBitIntType>(); 2198 2199 if (const auto *IA = A->getAs<BitIntType>()) { 2200 if (IP->isUnsigned() != IA->isUnsigned()) 2201 return Sema::TDK_NonDeducedMismatch; 2202 2203 const NonTypeTemplateParmDecl *NTTP = 2204 getDeducedParameterFromExpr(Info, IP->getNumBitsExpr()); 2205 if (!NTTP) 2206 return Sema::TDK_Success; 2207 2208 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 2209 ArgSize = IA->getNumBits(); 2210 2211 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, 2212 S.Context.IntTy, true, Info, 2213 Deduced); 2214 } 2215 2216 if (const auto *IA = A->getAs<DependentBitIntType>()) { 2217 if (IP->isUnsigned() != IA->isUnsigned()) 2218 return Sema::TDK_NonDeducedMismatch; 2219 return Sema::TDK_Success; 2220 } 2221 2222 return Sema::TDK_NonDeducedMismatch; 2223 } 2224 2225 case Type::TypeOfExpr: 2226 case Type::TypeOf: 2227 case Type::DependentName: 2228 case Type::UnresolvedUsing: 2229 case Type::Decltype: 2230 case Type::UnaryTransform: 2231 case Type::DeducedTemplateSpecialization: 2232 case Type::DependentTemplateSpecialization: 2233 case Type::PackExpansion: 2234 case Type::Pipe: 2235 // No template argument deduction for these types 2236 return Sema::TDK_Success; 2237 } 2238 2239 llvm_unreachable("Invalid Type Class!"); 2240 } 2241 2242 static Sema::TemplateDeductionResult 2243 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 2244 const TemplateArgument &P, TemplateArgument A, 2245 TemplateDeductionInfo &Info, 2246 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2247 // If the template argument is a pack expansion, perform template argument 2248 // deduction against the pattern of that expansion. This only occurs during 2249 // partial ordering. 2250 if (A.isPackExpansion()) 2251 A = A.getPackExpansionPattern(); 2252 2253 switch (P.getKind()) { 2254 case TemplateArgument::Null: 2255 llvm_unreachable("Null template argument in parameter list"); 2256 2257 case TemplateArgument::Type: 2258 if (A.getKind() == TemplateArgument::Type) 2259 return DeduceTemplateArgumentsByTypeMatch( 2260 S, TemplateParams, P.getAsType(), A.getAsType(), Info, Deduced, 0); 2261 Info.FirstArg = P; 2262 Info.SecondArg = A; 2263 return Sema::TDK_NonDeducedMismatch; 2264 2265 case TemplateArgument::Template: 2266 if (A.getKind() == TemplateArgument::Template) 2267 return DeduceTemplateArguments(S, TemplateParams, P.getAsTemplate(), 2268 A.getAsTemplate(), Info, Deduced); 2269 Info.FirstArg = P; 2270 Info.SecondArg = A; 2271 return Sema::TDK_NonDeducedMismatch; 2272 2273 case TemplateArgument::TemplateExpansion: 2274 llvm_unreachable("caller should handle pack expansions"); 2275 2276 case TemplateArgument::Declaration: 2277 if (A.getKind() == TemplateArgument::Declaration && 2278 isSameDeclaration(P.getAsDecl(), A.getAsDecl())) 2279 return Sema::TDK_Success; 2280 2281 Info.FirstArg = P; 2282 Info.SecondArg = A; 2283 return Sema::TDK_NonDeducedMismatch; 2284 2285 case TemplateArgument::NullPtr: 2286 if (A.getKind() == TemplateArgument::NullPtr && 2287 S.Context.hasSameType(P.getNullPtrType(), A.getNullPtrType())) 2288 return Sema::TDK_Success; 2289 2290 Info.FirstArg = P; 2291 Info.SecondArg = A; 2292 return Sema::TDK_NonDeducedMismatch; 2293 2294 case TemplateArgument::Integral: 2295 if (A.getKind() == TemplateArgument::Integral) { 2296 if (hasSameExtendedValue(P.getAsIntegral(), A.getAsIntegral())) 2297 return Sema::TDK_Success; 2298 } 2299 Info.FirstArg = P; 2300 Info.SecondArg = A; 2301 return Sema::TDK_NonDeducedMismatch; 2302 2303 case TemplateArgument::Expression: 2304 if (const NonTypeTemplateParmDecl *NTTP = 2305 getDeducedParameterFromExpr(Info, P.getAsExpr())) { 2306 if (A.getKind() == TemplateArgument::Integral) 2307 return DeduceNonTypeTemplateArgument( 2308 S, TemplateParams, NTTP, A.getAsIntegral(), A.getIntegralType(), 2309 /*ArrayBound=*/false, Info, Deduced); 2310 if (A.getKind() == TemplateArgument::NullPtr) 2311 return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP, 2312 A.getNullPtrType(), Info, Deduced); 2313 if (A.getKind() == TemplateArgument::Expression) 2314 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, 2315 A.getAsExpr(), Info, Deduced); 2316 if (A.getKind() == TemplateArgument::Declaration) 2317 return DeduceNonTypeTemplateArgument( 2318 S, TemplateParams, NTTP, A.getAsDecl(), A.getParamTypeForDecl(), 2319 Info, Deduced); 2320 2321 Info.FirstArg = P; 2322 Info.SecondArg = A; 2323 return Sema::TDK_NonDeducedMismatch; 2324 } 2325 2326 // Can't deduce anything, but that's okay. 2327 return Sema::TDK_Success; 2328 case TemplateArgument::Pack: 2329 llvm_unreachable("Argument packs should be expanded by the caller!"); 2330 } 2331 2332 llvm_unreachable("Invalid TemplateArgument Kind!"); 2333 } 2334 2335 /// Determine whether there is a template argument to be used for 2336 /// deduction. 2337 /// 2338 /// This routine "expands" argument packs in-place, overriding its input 2339 /// parameters so that \c Args[ArgIdx] will be the available template argument. 2340 /// 2341 /// \returns true if there is another template argument (which will be at 2342 /// \c Args[ArgIdx]), false otherwise. 2343 static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args, 2344 unsigned &ArgIdx) { 2345 if (ArgIdx == Args.size()) 2346 return false; 2347 2348 const TemplateArgument &Arg = Args[ArgIdx]; 2349 if (Arg.getKind() != TemplateArgument::Pack) 2350 return true; 2351 2352 assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?"); 2353 Args = Arg.pack_elements(); 2354 ArgIdx = 0; 2355 return ArgIdx < Args.size(); 2356 } 2357 2358 /// Determine whether the given set of template arguments has a pack 2359 /// expansion that is not the last template argument. 2360 static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) { 2361 bool FoundPackExpansion = false; 2362 for (const auto &A : Args) { 2363 if (FoundPackExpansion) 2364 return true; 2365 2366 if (A.getKind() == TemplateArgument::Pack) 2367 return hasPackExpansionBeforeEnd(A.pack_elements()); 2368 2369 // FIXME: If this is a fixed-arity pack expansion from an outer level of 2370 // templates, it should not be treated as a pack expansion. 2371 if (A.isPackExpansion()) 2372 FoundPackExpansion = true; 2373 } 2374 2375 return false; 2376 } 2377 2378 static Sema::TemplateDeductionResult 2379 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 2380 ArrayRef<TemplateArgument> Ps, 2381 ArrayRef<TemplateArgument> As, 2382 TemplateDeductionInfo &Info, 2383 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2384 bool NumberOfArgumentsMustMatch) { 2385 // C++0x [temp.deduct.type]p9: 2386 // If the template argument list of P contains a pack expansion that is not 2387 // the last template argument, the entire template argument list is a 2388 // non-deduced context. 2389 if (hasPackExpansionBeforeEnd(Ps)) 2390 return Sema::TDK_Success; 2391 2392 // C++0x [temp.deduct.type]p9: 2393 // If P has a form that contains <T> or <i>, then each argument Pi of the 2394 // respective template argument list P is compared with the corresponding 2395 // argument Ai of the corresponding template argument list of A. 2396 unsigned ArgIdx = 0, ParamIdx = 0; 2397 for (; hasTemplateArgumentForDeduction(Ps, ParamIdx); ++ParamIdx) { 2398 const TemplateArgument &P = Ps[ParamIdx]; 2399 if (!P.isPackExpansion()) { 2400 // The simple case: deduce template arguments by matching Pi and Ai. 2401 2402 // Check whether we have enough arguments. 2403 if (!hasTemplateArgumentForDeduction(As, ArgIdx)) 2404 return NumberOfArgumentsMustMatch 2405 ? Sema::TDK_MiscellaneousDeductionFailure 2406 : Sema::TDK_Success; 2407 2408 // C++1z [temp.deduct.type]p9: 2409 // During partial ordering, if Ai was originally a pack expansion [and] 2410 // Pi is not a pack expansion, template argument deduction fails. 2411 if (As[ArgIdx].isPackExpansion()) 2412 return Sema::TDK_MiscellaneousDeductionFailure; 2413 2414 // Perform deduction for this Pi/Ai pair. 2415 if (auto Result = DeduceTemplateArguments(S, TemplateParams, P, 2416 As[ArgIdx], Info, Deduced)) 2417 return Result; 2418 2419 // Move to the next argument. 2420 ++ArgIdx; 2421 continue; 2422 } 2423 2424 // The parameter is a pack expansion. 2425 2426 // C++0x [temp.deduct.type]p9: 2427 // If Pi is a pack expansion, then the pattern of Pi is compared with 2428 // each remaining argument in the template argument list of A. Each 2429 // comparison deduces template arguments for subsequent positions in the 2430 // template parameter packs expanded by Pi. 2431 TemplateArgument Pattern = P.getPackExpansionPattern(); 2432 2433 // Prepare to deduce the packs within the pattern. 2434 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 2435 2436 // Keep track of the deduced template arguments for each parameter pack 2437 // expanded by this pack expansion (the outer index) and for each 2438 // template argument (the inner SmallVectors). 2439 for (; hasTemplateArgumentForDeduction(As, ArgIdx) && 2440 PackScope.hasNextElement(); 2441 ++ArgIdx) { 2442 // Deduce template arguments from the pattern. 2443 if (auto Result = DeduceTemplateArguments(S, TemplateParams, Pattern, 2444 As[ArgIdx], Info, Deduced)) 2445 return Result; 2446 2447 PackScope.nextPackElement(); 2448 } 2449 2450 // Build argument packs for each of the parameter packs expanded by this 2451 // pack expansion. 2452 if (auto Result = PackScope.finish()) 2453 return Result; 2454 } 2455 2456 return Sema::TDK_Success; 2457 } 2458 2459 static Sema::TemplateDeductionResult 2460 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, 2461 const TemplateArgumentList &ParamList, 2462 const TemplateArgumentList &ArgList, 2463 TemplateDeductionInfo &Info, 2464 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 2465 return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(), 2466 ArgList.asArray(), Info, Deduced, 2467 /*NumberOfArgumentsMustMatch=*/false); 2468 } 2469 2470 /// Determine whether two template arguments are the same. 2471 static bool isSameTemplateArg(ASTContext &Context, 2472 TemplateArgument X, 2473 const TemplateArgument &Y, 2474 bool PartialOrdering, 2475 bool PackExpansionMatchesPack = false) { 2476 // If we're checking deduced arguments (X) against original arguments (Y), 2477 // we will have flattened packs to non-expansions in X. 2478 if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion()) 2479 X = X.getPackExpansionPattern(); 2480 2481 if (X.getKind() != Y.getKind()) 2482 return false; 2483 2484 switch (X.getKind()) { 2485 case TemplateArgument::Null: 2486 llvm_unreachable("Comparing NULL template argument"); 2487 2488 case TemplateArgument::Type: 2489 return Context.getCanonicalType(X.getAsType()) == 2490 Context.getCanonicalType(Y.getAsType()); 2491 2492 case TemplateArgument::Declaration: 2493 return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()); 2494 2495 case TemplateArgument::NullPtr: 2496 return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()); 2497 2498 case TemplateArgument::Template: 2499 case TemplateArgument::TemplateExpansion: 2500 return Context.getCanonicalTemplateName( 2501 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() == 2502 Context.getCanonicalTemplateName( 2503 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer(); 2504 2505 case TemplateArgument::Integral: 2506 return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()); 2507 2508 case TemplateArgument::Expression: { 2509 llvm::FoldingSetNodeID XID, YID; 2510 X.getAsExpr()->Profile(XID, Context, true); 2511 Y.getAsExpr()->Profile(YID, Context, true); 2512 return XID == YID; 2513 } 2514 2515 case TemplateArgument::Pack: { 2516 unsigned PackIterationSize = X.pack_size(); 2517 if (X.pack_size() != Y.pack_size()) { 2518 if (!PartialOrdering) 2519 return false; 2520 2521 // C++0x [temp.deduct.type]p9: 2522 // During partial ordering, if Ai was originally a pack expansion: 2523 // - if P does not contain a template argument corresponding to Ai 2524 // then Ai is ignored; 2525 bool XHasMoreArg = X.pack_size() > Y.pack_size(); 2526 if (!(XHasMoreArg && X.pack_elements().back().isPackExpansion()) && 2527 !(!XHasMoreArg && Y.pack_elements().back().isPackExpansion())) 2528 return false; 2529 2530 if (XHasMoreArg) 2531 PackIterationSize = Y.pack_size(); 2532 } 2533 2534 ArrayRef<TemplateArgument> XP = X.pack_elements(); 2535 ArrayRef<TemplateArgument> YP = Y.pack_elements(); 2536 for (unsigned i = 0; i < PackIterationSize; ++i) 2537 if (!isSameTemplateArg(Context, XP[i], YP[i], PartialOrdering, 2538 PackExpansionMatchesPack)) 2539 return false; 2540 return true; 2541 } 2542 } 2543 2544 llvm_unreachable("Invalid TemplateArgument Kind!"); 2545 } 2546 2547 /// Allocate a TemplateArgumentLoc where all locations have 2548 /// been initialized to the given location. 2549 /// 2550 /// \param Arg The template argument we are producing template argument 2551 /// location information for. 2552 /// 2553 /// \param NTTPType For a declaration template argument, the type of 2554 /// the non-type template parameter that corresponds to this template 2555 /// argument. Can be null if no type sugar is available to add to the 2556 /// type from the template argument. 2557 /// 2558 /// \param Loc The source location to use for the resulting template 2559 /// argument. 2560 TemplateArgumentLoc 2561 Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, 2562 QualType NTTPType, SourceLocation Loc) { 2563 switch (Arg.getKind()) { 2564 case TemplateArgument::Null: 2565 llvm_unreachable("Can't get a NULL template argument here"); 2566 2567 case TemplateArgument::Type: 2568 return TemplateArgumentLoc( 2569 Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); 2570 2571 case TemplateArgument::Declaration: { 2572 if (NTTPType.isNull()) 2573 NTTPType = Arg.getParamTypeForDecl(); 2574 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2575 .getAs<Expr>(); 2576 return TemplateArgumentLoc(TemplateArgument(E), E); 2577 } 2578 2579 case TemplateArgument::NullPtr: { 2580 if (NTTPType.isNull()) 2581 NTTPType = Arg.getNullPtrType(); 2582 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2583 .getAs<Expr>(); 2584 return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true), 2585 E); 2586 } 2587 2588 case TemplateArgument::Integral: { 2589 Expr *E = 2590 BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>(); 2591 return TemplateArgumentLoc(TemplateArgument(E), E); 2592 } 2593 2594 case TemplateArgument::Template: 2595 case TemplateArgument::TemplateExpansion: { 2596 NestedNameSpecifierLocBuilder Builder; 2597 TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); 2598 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) 2599 Builder.MakeTrivial(Context, DTN->getQualifier(), Loc); 2600 else if (QualifiedTemplateName *QTN = 2601 Template.getAsQualifiedTemplateName()) 2602 Builder.MakeTrivial(Context, QTN->getQualifier(), Loc); 2603 2604 if (Arg.getKind() == TemplateArgument::Template) 2605 return TemplateArgumentLoc(Context, Arg, 2606 Builder.getWithLocInContext(Context), Loc); 2607 2608 return TemplateArgumentLoc( 2609 Context, Arg, Builder.getWithLocInContext(Context), Loc, Loc); 2610 } 2611 2612 case TemplateArgument::Expression: 2613 return TemplateArgumentLoc(Arg, Arg.getAsExpr()); 2614 2615 case TemplateArgument::Pack: 2616 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); 2617 } 2618 2619 llvm_unreachable("Invalid TemplateArgument Kind!"); 2620 } 2621 2622 TemplateArgumentLoc 2623 Sema::getIdentityTemplateArgumentLoc(NamedDecl *TemplateParm, 2624 SourceLocation Location) { 2625 return getTrivialTemplateArgumentLoc( 2626 Context.getInjectedTemplateArg(TemplateParm), QualType(), Location); 2627 } 2628 2629 /// Convert the given deduced template argument and add it to the set of 2630 /// fully-converted template arguments. 2631 static bool ConvertDeducedTemplateArgument( 2632 Sema &S, NamedDecl *Param, DeducedTemplateArgument Arg, NamedDecl *Template, 2633 TemplateDeductionInfo &Info, bool IsDeduced, 2634 SmallVectorImpl<TemplateArgument> &SugaredOutput, 2635 SmallVectorImpl<TemplateArgument> &CanonicalOutput) { 2636 auto ConvertArg = [&](DeducedTemplateArgument Arg, 2637 unsigned ArgumentPackIndex) { 2638 // Convert the deduced template argument into a template 2639 // argument that we can check, almost as if the user had written 2640 // the template argument explicitly. 2641 TemplateArgumentLoc ArgLoc = 2642 S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation()); 2643 2644 // Check the template argument, converting it as necessary. 2645 return S.CheckTemplateArgument( 2646 Param, ArgLoc, Template, Template->getLocation(), 2647 Template->getSourceRange().getEnd(), ArgumentPackIndex, SugaredOutput, 2648 CanonicalOutput, 2649 IsDeduced 2650 ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound 2651 : Sema::CTAK_Deduced) 2652 : Sema::CTAK_Specified); 2653 }; 2654 2655 if (Arg.getKind() == TemplateArgument::Pack) { 2656 // This is a template argument pack, so check each of its arguments against 2657 // the template parameter. 2658 SmallVector<TemplateArgument, 2> SugaredPackedArgsBuilder, 2659 CanonicalPackedArgsBuilder; 2660 for (const auto &P : Arg.pack_elements()) { 2661 // When converting the deduced template argument, append it to the 2662 // general output list. We need to do this so that the template argument 2663 // checking logic has all of the prior template arguments available. 2664 DeducedTemplateArgument InnerArg(P); 2665 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); 2666 assert(InnerArg.getKind() != TemplateArgument::Pack && 2667 "deduced nested pack"); 2668 if (P.isNull()) { 2669 // We deduced arguments for some elements of this pack, but not for 2670 // all of them. This happens if we get a conditionally-non-deduced 2671 // context in a pack expansion (such as an overload set in one of the 2672 // arguments). 2673 S.Diag(Param->getLocation(), 2674 diag::err_template_arg_deduced_incomplete_pack) 2675 << Arg << Param; 2676 return true; 2677 } 2678 if (ConvertArg(InnerArg, SugaredPackedArgsBuilder.size())) 2679 return true; 2680 2681 // Move the converted template argument into our argument pack. 2682 SugaredPackedArgsBuilder.push_back(SugaredOutput.pop_back_val()); 2683 CanonicalPackedArgsBuilder.push_back(CanonicalOutput.pop_back_val()); 2684 } 2685 2686 // If the pack is empty, we still need to substitute into the parameter 2687 // itself, in case that substitution fails. 2688 if (SugaredPackedArgsBuilder.empty()) { 2689 LocalInstantiationScope Scope(S); 2690 MultiLevelTemplateArgumentList Args(Template, SugaredOutput, 2691 /*Final=*/true); 2692 2693 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2694 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2695 NTTP, SugaredOutput, 2696 Template->getSourceRange()); 2697 if (Inst.isInvalid() || 2698 S.SubstType(NTTP->getType(), Args, NTTP->getLocation(), 2699 NTTP->getDeclName()).isNull()) 2700 return true; 2701 } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) { 2702 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, 2703 TTP, SugaredOutput, 2704 Template->getSourceRange()); 2705 if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args)) 2706 return true; 2707 } 2708 // For type parameters, no substitution is ever required. 2709 } 2710 2711 // Create the resulting argument pack. 2712 SugaredOutput.push_back( 2713 TemplateArgument::CreatePackCopy(S.Context, SugaredPackedArgsBuilder)); 2714 CanonicalOutput.push_back(TemplateArgument::CreatePackCopy( 2715 S.Context, CanonicalPackedArgsBuilder)); 2716 return false; 2717 } 2718 2719 return ConvertArg(Arg, 0); 2720 } 2721 2722 // FIXME: This should not be a template, but 2723 // ClassTemplatePartialSpecializationDecl sadly does not derive from 2724 // TemplateDecl. 2725 template <typename TemplateDeclT> 2726 static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments( 2727 Sema &S, TemplateDeclT *Template, bool IsDeduced, 2728 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2729 TemplateDeductionInfo &Info, 2730 SmallVectorImpl<TemplateArgument> &SugaredBuilder, 2731 SmallVectorImpl<TemplateArgument> &CanonicalBuilder, 2732 LocalInstantiationScope *CurrentInstantiationScope = nullptr, 2733 unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) { 2734 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2735 2736 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2737 NamedDecl *Param = TemplateParams->getParam(I); 2738 2739 // C++0x [temp.arg.explicit]p3: 2740 // A trailing template parameter pack (14.5.3) not otherwise deduced will 2741 // be deduced to an empty sequence of template arguments. 2742 // FIXME: Where did the word "trailing" come from? 2743 if (Deduced[I].isNull() && Param->isTemplateParameterPack()) { 2744 if (auto Result = 2745 PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish()) 2746 return Result; 2747 } 2748 2749 if (!Deduced[I].isNull()) { 2750 if (I < NumAlreadyConverted) { 2751 // We may have had explicitly-specified template arguments for a 2752 // template parameter pack (that may or may not have been extended 2753 // via additional deduced arguments). 2754 if (Param->isParameterPack() && CurrentInstantiationScope && 2755 CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) { 2756 // Forget the partially-substituted pack; its substitution is now 2757 // complete. 2758 CurrentInstantiationScope->ResetPartiallySubstitutedPack(); 2759 // We still need to check the argument in case it was extended by 2760 // deduction. 2761 } else { 2762 // We have already fully type-checked and converted this 2763 // argument, because it was explicitly-specified. Just record the 2764 // presence of this argument. 2765 SugaredBuilder.push_back(Deduced[I]); 2766 CanonicalBuilder.push_back( 2767 S.Context.getCanonicalTemplateArgument(Deduced[I])); 2768 continue; 2769 } 2770 } 2771 2772 // We may have deduced this argument, so it still needs to be 2773 // checked and converted. 2774 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info, 2775 IsDeduced, SugaredBuilder, 2776 CanonicalBuilder)) { 2777 Info.Param = makeTemplateParameter(Param); 2778 // FIXME: These template arguments are temporary. Free them! 2779 Info.reset( 2780 TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder), 2781 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder)); 2782 return Sema::TDK_SubstitutionFailure; 2783 } 2784 2785 continue; 2786 } 2787 2788 // Substitute into the default template argument, if available. 2789 bool HasDefaultArg = false; 2790 TemplateDecl *TD = dyn_cast<TemplateDecl>(Template); 2791 if (!TD) { 2792 assert(isa<ClassTemplatePartialSpecializationDecl>(Template) || 2793 isa<VarTemplatePartialSpecializationDecl>(Template)); 2794 return Sema::TDK_Incomplete; 2795 } 2796 2797 TemplateArgumentLoc DefArg; 2798 { 2799 Qualifiers ThisTypeQuals; 2800 CXXRecordDecl *ThisContext = nullptr; 2801 if (auto *Rec = dyn_cast<CXXRecordDecl>(TD->getDeclContext())) 2802 if (Rec->isLambda()) 2803 if (auto *Method = dyn_cast<CXXMethodDecl>(Rec->getDeclContext())) { 2804 ThisContext = Method->getParent(); 2805 ThisTypeQuals = Method->getMethodQualifiers(); 2806 } 2807 2808 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, ThisTypeQuals, 2809 S.getLangOpts().CPlusPlus17); 2810 2811 DefArg = S.SubstDefaultTemplateArgumentIfAvailable( 2812 TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, 2813 SugaredBuilder, CanonicalBuilder, HasDefaultArg); 2814 } 2815 2816 // If there was no default argument, deduction is incomplete. 2817 if (DefArg.getArgument().isNull()) { 2818 Info.Param = makeTemplateParameter( 2819 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2820 Info.reset(TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder), 2821 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder)); 2822 if (PartialOverloading) break; 2823 2824 return HasDefaultArg ? Sema::TDK_SubstitutionFailure 2825 : Sema::TDK_Incomplete; 2826 } 2827 2828 // Check whether we can actually use the default argument. 2829 if (S.CheckTemplateArgument( 2830 Param, DefArg, TD, TD->getLocation(), TD->getSourceRange().getEnd(), 2831 0, SugaredBuilder, CanonicalBuilder, Sema::CTAK_Specified)) { 2832 Info.Param = makeTemplateParameter( 2833 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2834 // FIXME: These template arguments are temporary. Free them! 2835 Info.reset(TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder), 2836 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder)); 2837 return Sema::TDK_SubstitutionFailure; 2838 } 2839 2840 // If we get here, we successfully used the default template argument. 2841 } 2842 2843 return Sema::TDK_Success; 2844 } 2845 2846 static DeclContext *getAsDeclContextOrEnclosing(Decl *D) { 2847 if (auto *DC = dyn_cast<DeclContext>(D)) 2848 return DC; 2849 return D->getDeclContext(); 2850 } 2851 2852 template<typename T> struct IsPartialSpecialization { 2853 static constexpr bool value = false; 2854 }; 2855 template<> 2856 struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> { 2857 static constexpr bool value = true; 2858 }; 2859 template<> 2860 struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> { 2861 static constexpr bool value = true; 2862 }; 2863 template <typename TemplateDeclT> 2864 static bool DeducedArgsNeedReplacement(TemplateDeclT *Template) { 2865 return false; 2866 } 2867 template <> 2868 bool DeducedArgsNeedReplacement<VarTemplatePartialSpecializationDecl>( 2869 VarTemplatePartialSpecializationDecl *Spec) { 2870 return !Spec->isClassScopeExplicitSpecialization(); 2871 } 2872 template <> 2873 bool DeducedArgsNeedReplacement<ClassTemplatePartialSpecializationDecl>( 2874 ClassTemplatePartialSpecializationDecl *Spec) { 2875 return !Spec->isClassScopeExplicitSpecialization(); 2876 } 2877 2878 template <typename TemplateDeclT> 2879 static Sema::TemplateDeductionResult 2880 CheckDeducedArgumentConstraints(Sema &S, TemplateDeclT *Template, 2881 ArrayRef<TemplateArgument> SugaredDeducedArgs, 2882 ArrayRef<TemplateArgument> CanonicalDeducedArgs, 2883 TemplateDeductionInfo &Info) { 2884 llvm::SmallVector<const Expr *, 3> AssociatedConstraints; 2885 Template->getAssociatedConstraints(AssociatedConstraints); 2886 2887 bool NeedsReplacement = DeducedArgsNeedReplacement(Template); 2888 TemplateArgumentList DeducedTAL{TemplateArgumentList::OnStack, 2889 CanonicalDeducedArgs}; 2890 2891 MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs( 2892 Template, Template->getDeclContext(), /*Final=*/false, 2893 /*InnerMost=*/NeedsReplacement ? nullptr : &DeducedTAL, 2894 /*RelativeToPrimary=*/true, /*Pattern=*/ 2895 nullptr, /*ForConstraintInstantiation=*/true); 2896 2897 // getTemplateInstantiationArgs picks up the non-deduced version of the 2898 // template args when this is a variable template partial specialization and 2899 // not class-scope explicit specialization, so replace with Deduced Args 2900 // instead of adding to inner-most. 2901 if (NeedsReplacement) 2902 MLTAL.replaceInnermostTemplateArguments(Template, CanonicalDeducedArgs); 2903 2904 if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints, MLTAL, 2905 Info.getLocation(), 2906 Info.AssociatedConstraintsSatisfaction) || 2907 !Info.AssociatedConstraintsSatisfaction.IsSatisfied) { 2908 Info.reset( 2909 TemplateArgumentList::CreateCopy(S.Context, SugaredDeducedArgs), 2910 TemplateArgumentList::CreateCopy(S.Context, CanonicalDeducedArgs)); 2911 return Sema::TDK_ConstraintsNotSatisfied; 2912 } 2913 return Sema::TDK_Success; 2914 } 2915 2916 /// Complete template argument deduction for a partial specialization. 2917 template <typename T> 2918 static std::enable_if_t<IsPartialSpecialization<T>::value, 2919 Sema::TemplateDeductionResult> 2920 FinishTemplateArgumentDeduction( 2921 Sema &S, T *Partial, bool IsPartialOrdering, 2922 const TemplateArgumentList &TemplateArgs, 2923 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2924 TemplateDeductionInfo &Info) { 2925 // Unevaluated SFINAE context. 2926 EnterExpressionEvaluationContext Unevaluated( 2927 S, Sema::ExpressionEvaluationContext::Unevaluated); 2928 Sema::SFINAETrap Trap(S); 2929 2930 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial)); 2931 2932 // C++ [temp.deduct.type]p2: 2933 // [...] or if any template argument remains neither deduced nor 2934 // explicitly specified, template argument deduction fails. 2935 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder; 2936 if (auto Result = ConvertDeducedTemplateArguments( 2937 S, Partial, IsPartialOrdering, Deduced, Info, SugaredBuilder, 2938 CanonicalBuilder)) 2939 return Result; 2940 2941 // Form the template argument list from the deduced template arguments. 2942 TemplateArgumentList *SugaredDeducedArgumentList = 2943 TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder); 2944 TemplateArgumentList *CanonicalDeducedArgumentList = 2945 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder); 2946 2947 Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList); 2948 2949 // Substitute the deduced template arguments into the template 2950 // arguments of the class template partial specialization, and 2951 // verify that the instantiated template arguments are both valid 2952 // and are equivalent to the template arguments originally provided 2953 // to the class template. 2954 LocalInstantiationScope InstScope(S); 2955 auto *Template = Partial->getSpecializedTemplate(); 2956 const ASTTemplateArgumentListInfo *PartialTemplArgInfo = 2957 Partial->getTemplateArgsAsWritten(); 2958 2959 TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc, 2960 PartialTemplArgInfo->RAngleLoc); 2961 2962 if (S.SubstTemplateArguments(PartialTemplArgInfo->arguments(), 2963 MultiLevelTemplateArgumentList(Partial, 2964 SugaredBuilder, 2965 /*Final=*/true), 2966 InstArgs)) { 2967 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; 2968 if (ParamIdx >= Partial->getTemplateParameters()->size()) 2969 ParamIdx = Partial->getTemplateParameters()->size() - 1; 2970 2971 Decl *Param = const_cast<NamedDecl *>( 2972 Partial->getTemplateParameters()->getParam(ParamIdx)); 2973 Info.Param = makeTemplateParameter(Param); 2974 Info.FirstArg = (*PartialTemplArgInfo)[ArgIdx].getArgument(); 2975 return Sema::TDK_SubstitutionFailure; 2976 } 2977 2978 bool ConstraintsNotSatisfied; 2979 SmallVector<TemplateArgument, 4> SugaredConvertedInstArgs, 2980 CanonicalConvertedInstArgs; 2981 if (S.CheckTemplateArgumentList( 2982 Template, Partial->getLocation(), InstArgs, false, 2983 SugaredConvertedInstArgs, CanonicalConvertedInstArgs, 2984 /*UpdateArgsWithConversions=*/true, &ConstraintsNotSatisfied)) 2985 return ConstraintsNotSatisfied ? Sema::TDK_ConstraintsNotSatisfied 2986 : Sema::TDK_SubstitutionFailure; 2987 2988 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2989 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 2990 TemplateArgument InstArg = SugaredConvertedInstArgs.data()[I]; 2991 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, 2992 IsPartialOrdering)) { 2993 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 2994 Info.FirstArg = TemplateArgs[I]; 2995 Info.SecondArg = InstArg; 2996 return Sema::TDK_NonDeducedMismatch; 2997 } 2998 } 2999 3000 if (Trap.hasErrorOccurred()) 3001 return Sema::TDK_SubstitutionFailure; 3002 3003 if (auto Result = CheckDeducedArgumentConstraints(S, Partial, SugaredBuilder, 3004 CanonicalBuilder, Info)) 3005 return Result; 3006 3007 return Sema::TDK_Success; 3008 } 3009 3010 /// Complete template argument deduction for a class or variable template, 3011 /// when partial ordering against a partial specialization. 3012 // FIXME: Factor out duplication with partial specialization version above. 3013 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction( 3014 Sema &S, TemplateDecl *Template, bool PartialOrdering, 3015 const TemplateArgumentList &TemplateArgs, 3016 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3017 TemplateDeductionInfo &Info) { 3018 // Unevaluated SFINAE context. 3019 EnterExpressionEvaluationContext Unevaluated( 3020 S, Sema::ExpressionEvaluationContext::Unevaluated); 3021 Sema::SFINAETrap Trap(S); 3022 3023 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template)); 3024 3025 // C++ [temp.deduct.type]p2: 3026 // [...] or if any template argument remains neither deduced nor 3027 // explicitly specified, template argument deduction fails. 3028 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder; 3029 if (auto Result = ConvertDeducedTemplateArguments( 3030 S, Template, /*IsDeduced*/ PartialOrdering, Deduced, Info, 3031 SugaredBuilder, CanonicalBuilder, 3032 /*CurrentInstantiationScope=*/nullptr, 3033 /*NumAlreadyConverted=*/0U, /*PartialOverloading=*/false)) 3034 return Result; 3035 3036 // Check that we produced the correct argument list. 3037 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 3038 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 3039 TemplateArgument InstArg = CanonicalBuilder[I]; 3040 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, PartialOrdering, 3041 /*PackExpansionMatchesPack=*/true)) { 3042 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 3043 Info.FirstArg = TemplateArgs[I]; 3044 Info.SecondArg = InstArg; 3045 return Sema::TDK_NonDeducedMismatch; 3046 } 3047 } 3048 3049 if (Trap.hasErrorOccurred()) 3050 return Sema::TDK_SubstitutionFailure; 3051 3052 if (auto Result = CheckDeducedArgumentConstraints(S, Template, SugaredBuilder, 3053 CanonicalBuilder, Info)) 3054 return Result; 3055 3056 return Sema::TDK_Success; 3057 } 3058 3059 /// Perform template argument deduction to determine whether 3060 /// the given template arguments match the given class template 3061 /// partial specialization per C++ [temp.class.spec.match]. 3062 Sema::TemplateDeductionResult 3063 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, 3064 const TemplateArgumentList &TemplateArgs, 3065 TemplateDeductionInfo &Info) { 3066 if (Partial->isInvalidDecl()) 3067 return TDK_Invalid; 3068 3069 // C++ [temp.class.spec.match]p2: 3070 // A partial specialization matches a given actual template 3071 // argument list if the template arguments of the partial 3072 // specialization can be deduced from the actual template argument 3073 // list (14.8.2). 3074 3075 // Unevaluated SFINAE context. 3076 EnterExpressionEvaluationContext Unevaluated( 3077 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3078 SFINAETrap Trap(*this); 3079 3080 // This deduction has no relation to any outer instantiation we might be 3081 // performing. 3082 LocalInstantiationScope InstantiationScope(*this); 3083 3084 SmallVector<DeducedTemplateArgument, 4> Deduced; 3085 Deduced.resize(Partial->getTemplateParameters()->size()); 3086 if (TemplateDeductionResult Result 3087 = ::DeduceTemplateArguments(*this, 3088 Partial->getTemplateParameters(), 3089 Partial->getTemplateArgs(), 3090 TemplateArgs, Info, Deduced)) 3091 return Result; 3092 3093 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3094 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 3095 Info); 3096 if (Inst.isInvalid()) 3097 return TDK_InstantiationDepth; 3098 3099 if (Trap.hasErrorOccurred()) 3100 return Sema::TDK_SubstitutionFailure; 3101 3102 TemplateDeductionResult Result; 3103 runWithSufficientStackSpace(Info.getLocation(), [&] { 3104 Result = ::FinishTemplateArgumentDeduction(*this, Partial, 3105 /*IsPartialOrdering=*/false, 3106 TemplateArgs, Deduced, Info); 3107 }); 3108 return Result; 3109 } 3110 3111 /// Perform template argument deduction to determine whether 3112 /// the given template arguments match the given variable template 3113 /// partial specialization per C++ [temp.class.spec.match]. 3114 Sema::TemplateDeductionResult 3115 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, 3116 const TemplateArgumentList &TemplateArgs, 3117 TemplateDeductionInfo &Info) { 3118 if (Partial->isInvalidDecl()) 3119 return TDK_Invalid; 3120 3121 // C++ [temp.class.spec.match]p2: 3122 // A partial specialization matches a given actual template 3123 // argument list if the template arguments of the partial 3124 // specialization can be deduced from the actual template argument 3125 // list (14.8.2). 3126 3127 // Unevaluated SFINAE context. 3128 EnterExpressionEvaluationContext Unevaluated( 3129 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3130 SFINAETrap Trap(*this); 3131 3132 // This deduction has no relation to any outer instantiation we might be 3133 // performing. 3134 LocalInstantiationScope InstantiationScope(*this); 3135 3136 SmallVector<DeducedTemplateArgument, 4> Deduced; 3137 Deduced.resize(Partial->getTemplateParameters()->size()); 3138 if (TemplateDeductionResult Result = ::DeduceTemplateArguments( 3139 *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(), 3140 TemplateArgs, Info, Deduced)) 3141 return Result; 3142 3143 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3144 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 3145 Info); 3146 if (Inst.isInvalid()) 3147 return TDK_InstantiationDepth; 3148 3149 if (Trap.hasErrorOccurred()) 3150 return Sema::TDK_SubstitutionFailure; 3151 3152 TemplateDeductionResult Result; 3153 runWithSufficientStackSpace(Info.getLocation(), [&] { 3154 Result = ::FinishTemplateArgumentDeduction(*this, Partial, 3155 /*IsPartialOrdering=*/false, 3156 TemplateArgs, Deduced, Info); 3157 }); 3158 return Result; 3159 } 3160 3161 /// Determine whether the given type T is a simple-template-id type. 3162 static bool isSimpleTemplateIdType(QualType T) { 3163 if (const TemplateSpecializationType *Spec 3164 = T->getAs<TemplateSpecializationType>()) 3165 return Spec->getTemplateName().getAsTemplateDecl() != nullptr; 3166 3167 // C++17 [temp.local]p2: 3168 // the injected-class-name [...] is equivalent to the template-name followed 3169 // by the template-arguments of the class template specialization or partial 3170 // specialization enclosed in <> 3171 // ... which means it's equivalent to a simple-template-id. 3172 // 3173 // This only arises during class template argument deduction for a copy 3174 // deduction candidate, where it permits slicing. 3175 if (T->getAs<InjectedClassNameType>()) 3176 return true; 3177 3178 return false; 3179 } 3180 3181 /// Substitute the explicitly-provided template arguments into the 3182 /// given function template according to C++ [temp.arg.explicit]. 3183 /// 3184 /// \param FunctionTemplate the function template into which the explicit 3185 /// template arguments will be substituted. 3186 /// 3187 /// \param ExplicitTemplateArgs the explicitly-specified template 3188 /// arguments. 3189 /// 3190 /// \param Deduced the deduced template arguments, which will be populated 3191 /// with the converted and checked explicit template arguments. 3192 /// 3193 /// \param ParamTypes will be populated with the instantiated function 3194 /// parameters. 3195 /// 3196 /// \param FunctionType if non-NULL, the result type of the function template 3197 /// will also be instantiated and the pointed-to value will be updated with 3198 /// the instantiated function type. 3199 /// 3200 /// \param Info if substitution fails for any reason, this object will be 3201 /// populated with more information about the failure. 3202 /// 3203 /// \returns TDK_Success if substitution was successful, or some failure 3204 /// condition. 3205 Sema::TemplateDeductionResult Sema::SubstituteExplicitTemplateArguments( 3206 FunctionTemplateDecl *FunctionTemplate, 3207 TemplateArgumentListInfo &ExplicitTemplateArgs, 3208 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3209 SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType, 3210 TemplateDeductionInfo &Info) { 3211 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 3212 TemplateParameterList *TemplateParams 3213 = FunctionTemplate->getTemplateParameters(); 3214 3215 if (ExplicitTemplateArgs.size() == 0) { 3216 // No arguments to substitute; just copy over the parameter types and 3217 // fill in the function type. 3218 for (auto *P : Function->parameters()) 3219 ParamTypes.push_back(P->getType()); 3220 3221 if (FunctionType) 3222 *FunctionType = Function->getType(); 3223 return TDK_Success; 3224 } 3225 3226 // Unevaluated SFINAE context. 3227 EnterExpressionEvaluationContext Unevaluated( 3228 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3229 SFINAETrap Trap(*this); 3230 3231 // C++ [temp.arg.explicit]p3: 3232 // Template arguments that are present shall be specified in the 3233 // declaration order of their corresponding template-parameters. The 3234 // template argument list shall not specify more template-arguments than 3235 // there are corresponding template-parameters. 3236 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder; 3237 3238 // Enter a new template instantiation context where we check the 3239 // explicitly-specified template arguments against this function template, 3240 // and then substitute them into the function parameter types. 3241 SmallVector<TemplateArgument, 4> DeducedArgs; 3242 InstantiatingTemplate Inst( 3243 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3244 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); 3245 if (Inst.isInvalid()) 3246 return TDK_InstantiationDepth; 3247 3248 if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(), 3249 ExplicitTemplateArgs, true, SugaredBuilder, 3250 CanonicalBuilder, 3251 /*UpdateArgsWithConversions=*/false) || 3252 Trap.hasErrorOccurred()) { 3253 unsigned Index = SugaredBuilder.size(); 3254 if (Index >= TemplateParams->size()) 3255 return TDK_SubstitutionFailure; 3256 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index)); 3257 return TDK_InvalidExplicitArguments; 3258 } 3259 3260 // Form the template argument list from the explicitly-specified 3261 // template arguments. 3262 TemplateArgumentList *SugaredExplicitArgumentList = 3263 TemplateArgumentList::CreateCopy(Context, SugaredBuilder); 3264 TemplateArgumentList *CanonicalExplicitArgumentList = 3265 TemplateArgumentList::CreateCopy(Context, CanonicalBuilder); 3266 Info.setExplicitArgs(SugaredExplicitArgumentList, 3267 CanonicalExplicitArgumentList); 3268 3269 // Template argument deduction and the final substitution should be 3270 // done in the context of the templated declaration. Explicit 3271 // argument substitution, on the other hand, needs to happen in the 3272 // calling context. 3273 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3274 3275 // If we deduced template arguments for a template parameter pack, 3276 // note that the template argument pack is partially substituted and record 3277 // the explicit template arguments. They'll be used as part of deduction 3278 // for this template parameter pack. 3279 unsigned PartiallySubstitutedPackIndex = -1u; 3280 if (!CanonicalBuilder.empty()) { 3281 const TemplateArgument &Arg = CanonicalBuilder.back(); 3282 if (Arg.getKind() == TemplateArgument::Pack) { 3283 auto *Param = TemplateParams->getParam(CanonicalBuilder.size() - 1); 3284 // If this is a fully-saturated fixed-size pack, it should be 3285 // fully-substituted, not partially-substituted. 3286 std::optional<unsigned> Expansions = getExpandedPackSize(Param); 3287 if (!Expansions || Arg.pack_size() < *Expansions) { 3288 PartiallySubstitutedPackIndex = CanonicalBuilder.size() - 1; 3289 CurrentInstantiationScope->SetPartiallySubstitutedPack( 3290 Param, Arg.pack_begin(), Arg.pack_size()); 3291 } 3292 } 3293 } 3294 3295 const FunctionProtoType *Proto 3296 = Function->getType()->getAs<FunctionProtoType>(); 3297 assert(Proto && "Function template does not have a prototype?"); 3298 3299 // Isolate our substituted parameters from our caller. 3300 LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true); 3301 3302 ExtParameterInfoBuilder ExtParamInfos; 3303 3304 MultiLevelTemplateArgumentList MLTAL(FunctionTemplate, 3305 SugaredExplicitArgumentList->asArray(), 3306 /*Final=*/true); 3307 3308 // Instantiate the types of each of the function parameters given the 3309 // explicitly-specified template arguments. If the function has a trailing 3310 // return type, substitute it after the arguments to ensure we substitute 3311 // in lexical order. 3312 if (Proto->hasTrailingReturn()) { 3313 if (SubstParmTypes(Function->getLocation(), Function->parameters(), 3314 Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes, 3315 /*params=*/nullptr, ExtParamInfos)) 3316 return TDK_SubstitutionFailure; 3317 } 3318 3319 // Instantiate the return type. 3320 QualType ResultType; 3321 { 3322 // C++11 [expr.prim.general]p3: 3323 // If a declaration declares a member function or member function 3324 // template of a class X, the expression this is a prvalue of type 3325 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq 3326 // and the end of the function-definition, member-declarator, or 3327 // declarator. 3328 Qualifiers ThisTypeQuals; 3329 CXXRecordDecl *ThisContext = nullptr; 3330 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 3331 ThisContext = Method->getParent(); 3332 ThisTypeQuals = Method->getMethodQualifiers(); 3333 } 3334 3335 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals, 3336 getLangOpts().CPlusPlus11); 3337 3338 ResultType = 3339 SubstType(Proto->getReturnType(), MLTAL, 3340 Function->getTypeSpecStartLoc(), Function->getDeclName()); 3341 if (ResultType.isNull() || Trap.hasErrorOccurred()) 3342 return TDK_SubstitutionFailure; 3343 // CUDA: Kernel function must have 'void' return type. 3344 if (getLangOpts().CUDA) 3345 if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) { 3346 Diag(Function->getLocation(), diag::err_kern_type_not_void_return) 3347 << Function->getType() << Function->getSourceRange(); 3348 return TDK_SubstitutionFailure; 3349 } 3350 } 3351 3352 // Instantiate the types of each of the function parameters given the 3353 // explicitly-specified template arguments if we didn't do so earlier. 3354 if (!Proto->hasTrailingReturn() && 3355 SubstParmTypes(Function->getLocation(), Function->parameters(), 3356 Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes, 3357 /*params*/ nullptr, ExtParamInfos)) 3358 return TDK_SubstitutionFailure; 3359 3360 if (FunctionType) { 3361 auto EPI = Proto->getExtProtoInfo(); 3362 EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size()); 3363 3364 // In C++1z onwards, exception specifications are part of the function type, 3365 // so substitution into the type must also substitute into the exception 3366 // specification. 3367 SmallVector<QualType, 4> ExceptionStorage; 3368 if (getLangOpts().CPlusPlus17 && 3369 SubstExceptionSpec(Function->getLocation(), EPI.ExceptionSpec, 3370 ExceptionStorage, 3371 getTemplateInstantiationArgs( 3372 FunctionTemplate, nullptr, /*Final=*/true, 3373 /*Innermost=*/SugaredExplicitArgumentList, 3374 /*RelativeToPrimary=*/false, 3375 /*Pattern=*/nullptr, 3376 /*ForConstraintInstantiation=*/false, 3377 /*SkipForSpecialization=*/true))) 3378 return TDK_SubstitutionFailure; 3379 3380 *FunctionType = BuildFunctionType(ResultType, ParamTypes, 3381 Function->getLocation(), 3382 Function->getDeclName(), 3383 EPI); 3384 if (FunctionType->isNull() || Trap.hasErrorOccurred()) 3385 return TDK_SubstitutionFailure; 3386 } 3387 3388 // C++ [temp.arg.explicit]p2: 3389 // Trailing template arguments that can be deduced (14.8.2) may be 3390 // omitted from the list of explicit template-arguments. If all of the 3391 // template arguments can be deduced, they may all be omitted; in this 3392 // case, the empty template argument list <> itself may also be omitted. 3393 // 3394 // Take all of the explicitly-specified arguments and put them into 3395 // the set of deduced template arguments. The partially-substituted 3396 // parameter pack, however, will be set to NULL since the deduction 3397 // mechanism handles the partially-substituted argument pack directly. 3398 Deduced.reserve(TemplateParams->size()); 3399 for (unsigned I = 0, N = SugaredExplicitArgumentList->size(); I != N; ++I) { 3400 const TemplateArgument &Arg = SugaredExplicitArgumentList->get(I); 3401 if (I == PartiallySubstitutedPackIndex) 3402 Deduced.push_back(DeducedTemplateArgument()); 3403 else 3404 Deduced.push_back(Arg); 3405 } 3406 3407 return TDK_Success; 3408 } 3409 3410 /// Check whether the deduced argument type for a call to a function 3411 /// template matches the actual argument type per C++ [temp.deduct.call]p4. 3412 static Sema::TemplateDeductionResult 3413 CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info, 3414 Sema::OriginalCallArg OriginalArg, 3415 QualType DeducedA) { 3416 ASTContext &Context = S.Context; 3417 3418 auto Failed = [&]() -> Sema::TemplateDeductionResult { 3419 Info.FirstArg = TemplateArgument(DeducedA); 3420 Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType); 3421 Info.CallArgIndex = OriginalArg.ArgIdx; 3422 return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested 3423 : Sema::TDK_DeducedMismatch; 3424 }; 3425 3426 QualType A = OriginalArg.OriginalArgType; 3427 QualType OriginalParamType = OriginalArg.OriginalParamType; 3428 3429 // Check for type equality (top-level cv-qualifiers are ignored). 3430 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3431 return Sema::TDK_Success; 3432 3433 // Strip off references on the argument types; they aren't needed for 3434 // the following checks. 3435 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>()) 3436 DeducedA = DeducedARef->getPointeeType(); 3437 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) 3438 A = ARef->getPointeeType(); 3439 3440 // C++ [temp.deduct.call]p4: 3441 // [...] However, there are three cases that allow a difference: 3442 // - If the original P is a reference type, the deduced A (i.e., the 3443 // type referred to by the reference) can be more cv-qualified than 3444 // the transformed A. 3445 if (const ReferenceType *OriginalParamRef 3446 = OriginalParamType->getAs<ReferenceType>()) { 3447 // We don't want to keep the reference around any more. 3448 OriginalParamType = OriginalParamRef->getPointeeType(); 3449 3450 // FIXME: Resolve core issue (no number yet): if the original P is a 3451 // reference type and the transformed A is function type "noexcept F", 3452 // the deduced A can be F. 3453 QualType Tmp; 3454 if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp)) 3455 return Sema::TDK_Success; 3456 3457 Qualifiers AQuals = A.getQualifiers(); 3458 Qualifiers DeducedAQuals = DeducedA.getQualifiers(); 3459 3460 // Under Objective-C++ ARC, the deduced type may have implicitly 3461 // been given strong or (when dealing with a const reference) 3462 // unsafe_unretained lifetime. If so, update the original 3463 // qualifiers to include this lifetime. 3464 if (S.getLangOpts().ObjCAutoRefCount && 3465 ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong && 3466 AQuals.getObjCLifetime() == Qualifiers::OCL_None) || 3467 (DeducedAQuals.hasConst() && 3468 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) { 3469 AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime()); 3470 } 3471 3472 if (AQuals == DeducedAQuals) { 3473 // Qualifiers match; there's nothing to do. 3474 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) { 3475 return Failed(); 3476 } else { 3477 // Qualifiers are compatible, so have the argument type adopt the 3478 // deduced argument type's qualifiers as if we had performed the 3479 // qualification conversion. 3480 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals); 3481 } 3482 } 3483 3484 // - The transformed A can be another pointer or pointer to member 3485 // type that can be converted to the deduced A via a function pointer 3486 // conversion and/or a qualification conversion. 3487 // 3488 // Also allow conversions which merely strip __attribute__((noreturn)) from 3489 // function types (recursively). 3490 bool ObjCLifetimeConversion = false; 3491 QualType ResultTy; 3492 if ((A->isAnyPointerType() || A->isMemberPointerType()) && 3493 (S.IsQualificationConversion(A, DeducedA, false, 3494 ObjCLifetimeConversion) || 3495 S.IsFunctionConversion(A, DeducedA, ResultTy))) 3496 return Sema::TDK_Success; 3497 3498 // - If P is a class and P has the form simple-template-id, then the 3499 // transformed A can be a derived class of the deduced A. [...] 3500 // [...] Likewise, if P is a pointer to a class of the form 3501 // simple-template-id, the transformed A can be a pointer to a 3502 // derived class pointed to by the deduced A. 3503 if (const PointerType *OriginalParamPtr 3504 = OriginalParamType->getAs<PointerType>()) { 3505 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) { 3506 if (const PointerType *APtr = A->getAs<PointerType>()) { 3507 if (A->getPointeeType()->isRecordType()) { 3508 OriginalParamType = OriginalParamPtr->getPointeeType(); 3509 DeducedA = DeducedAPtr->getPointeeType(); 3510 A = APtr->getPointeeType(); 3511 } 3512 } 3513 } 3514 } 3515 3516 if (Context.hasSameUnqualifiedType(A, DeducedA)) 3517 return Sema::TDK_Success; 3518 3519 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) && 3520 S.IsDerivedFrom(Info.getLocation(), A, DeducedA)) 3521 return Sema::TDK_Success; 3522 3523 return Failed(); 3524 } 3525 3526 /// Find the pack index for a particular parameter index in an instantiation of 3527 /// a function template with specific arguments. 3528 /// 3529 /// \return The pack index for whichever pack produced this parameter, or -1 3530 /// if this was not produced by a parameter. Intended to be used as the 3531 /// ArgumentPackSubstitutionIndex for further substitutions. 3532 // FIXME: We should track this in OriginalCallArgs so we don't need to 3533 // reconstruct it here. 3534 static unsigned getPackIndexForParam(Sema &S, 3535 FunctionTemplateDecl *FunctionTemplate, 3536 const MultiLevelTemplateArgumentList &Args, 3537 unsigned ParamIdx) { 3538 unsigned Idx = 0; 3539 for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) { 3540 if (PD->isParameterPack()) { 3541 unsigned NumExpansions = 3542 S.getNumArgumentsInExpansion(PD->getType(), Args).value_or(1); 3543 if (Idx + NumExpansions > ParamIdx) 3544 return ParamIdx - Idx; 3545 Idx += NumExpansions; 3546 } else { 3547 if (Idx == ParamIdx) 3548 return -1; // Not a pack expansion 3549 ++Idx; 3550 } 3551 } 3552 3553 llvm_unreachable("parameter index would not be produced from template"); 3554 } 3555 3556 // if `Specialization` is a `CXXConstructorDecl` or `CXXConversionDecl`, 3557 // we'll try to instantiate and update its explicit specifier after constraint 3558 // checking. 3559 static Sema::TemplateDeductionResult instantiateExplicitSpecifierDeferred( 3560 Sema &S, FunctionDecl *Specialization, 3561 const MultiLevelTemplateArgumentList &SubstArgs, 3562 TemplateDeductionInfo &Info, FunctionTemplateDecl *FunctionTemplate, 3563 ArrayRef<TemplateArgument> DeducedArgs) { 3564 auto GetExplicitSpecifier = [](FunctionDecl *D) { 3565 return isa<CXXConstructorDecl>(D) 3566 ? cast<CXXConstructorDecl>(D)->getExplicitSpecifier() 3567 : cast<CXXConversionDecl>(D)->getExplicitSpecifier(); 3568 }; 3569 auto SetExplicitSpecifier = [](FunctionDecl *D, ExplicitSpecifier ES) { 3570 isa<CXXConstructorDecl>(D) 3571 ? cast<CXXConstructorDecl>(D)->setExplicitSpecifier(ES) 3572 : cast<CXXConversionDecl>(D)->setExplicitSpecifier(ES); 3573 }; 3574 3575 ExplicitSpecifier ES = GetExplicitSpecifier(Specialization); 3576 Expr *ExplicitExpr = ES.getExpr(); 3577 if (!ExplicitExpr) 3578 return Sema::TDK_Success; 3579 if (!ExplicitExpr->isValueDependent()) 3580 return Sema::TDK_Success; 3581 3582 Sema::InstantiatingTemplate Inst( 3583 S, Info.getLocation(), FunctionTemplate, DeducedArgs, 3584 Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); 3585 if (Inst.isInvalid()) 3586 return Sema::TDK_InstantiationDepth; 3587 Sema::SFINAETrap Trap(S); 3588 const ExplicitSpecifier InstantiatedES = 3589 S.instantiateExplicitSpecifier(SubstArgs, ES); 3590 if (InstantiatedES.isInvalid() || Trap.hasErrorOccurred()) { 3591 Specialization->setInvalidDecl(true); 3592 return Sema::TDK_SubstitutionFailure; 3593 } 3594 SetExplicitSpecifier(Specialization, InstantiatedES); 3595 return Sema::TDK_Success; 3596 } 3597 3598 /// Finish template argument deduction for a function template, 3599 /// checking the deduced template arguments for completeness and forming 3600 /// the function template specialization. 3601 /// 3602 /// \param OriginalCallArgs If non-NULL, the original call arguments against 3603 /// which the deduced argument types should be compared. 3604 Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction( 3605 FunctionTemplateDecl *FunctionTemplate, 3606 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3607 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, 3608 TemplateDeductionInfo &Info, 3609 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs, 3610 bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) { 3611 // Unevaluated SFINAE context. 3612 EnterExpressionEvaluationContext Unevaluated( 3613 *this, Sema::ExpressionEvaluationContext::Unevaluated); 3614 SFINAETrap Trap(*this); 3615 3616 // Enter a new template instantiation context while we instantiate the 3617 // actual function declaration. 3618 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 3619 InstantiatingTemplate Inst( 3620 *this, Info.getLocation(), FunctionTemplate, DeducedArgs, 3621 CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); 3622 if (Inst.isInvalid()) 3623 return TDK_InstantiationDepth; 3624 3625 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 3626 3627 // C++ [temp.deduct.type]p2: 3628 // [...] or if any template argument remains neither deduced nor 3629 // explicitly specified, template argument deduction fails. 3630 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder; 3631 if (auto Result = ConvertDeducedTemplateArguments( 3632 *this, FunctionTemplate, /*IsDeduced*/ true, Deduced, Info, 3633 SugaredBuilder, CanonicalBuilder, CurrentInstantiationScope, 3634 NumExplicitlySpecified, PartialOverloading)) 3635 return Result; 3636 3637 // C++ [temp.deduct.call]p10: [DR1391] 3638 // If deduction succeeds for all parameters that contain 3639 // template-parameters that participate in template argument deduction, 3640 // and all template arguments are explicitly specified, deduced, or 3641 // obtained from default template arguments, remaining parameters are then 3642 // compared with the corresponding arguments. For each remaining parameter 3643 // P with a type that was non-dependent before substitution of any 3644 // explicitly-specified template arguments, if the corresponding argument 3645 // A cannot be implicitly converted to P, deduction fails. 3646 if (CheckNonDependent()) 3647 return TDK_NonDependentConversionFailure; 3648 3649 // Form the template argument list from the deduced template arguments. 3650 TemplateArgumentList *SugaredDeducedArgumentList = 3651 TemplateArgumentList::CreateCopy(Context, SugaredBuilder); 3652 TemplateArgumentList *CanonicalDeducedArgumentList = 3653 TemplateArgumentList::CreateCopy(Context, CanonicalBuilder); 3654 Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList); 3655 3656 // Substitute the deduced template arguments into the function template 3657 // declaration to produce the function template specialization. 3658 DeclContext *Owner = FunctionTemplate->getDeclContext(); 3659 if (FunctionTemplate->getFriendObjectKind()) 3660 Owner = FunctionTemplate->getLexicalDeclContext(); 3661 FunctionDecl *FD = FunctionTemplate->getTemplatedDecl(); 3662 // additional check for inline friend, 3663 // ``` 3664 // template <class F1> int foo(F1 X); 3665 // template <int A1> struct A { 3666 // template <class F1> friend int foo(F1 X) { return A1; } 3667 // }; 3668 // template struct A<1>; 3669 // int a = foo(1.0); 3670 // ``` 3671 const FunctionDecl *FDFriend; 3672 if (FD->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None && 3673 FD->isDefined(FDFriend, /*CheckForPendingFriendDefinition*/ true) && 3674 FDFriend->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None) { 3675 FD = const_cast<FunctionDecl *>(FDFriend); 3676 Owner = FD->getLexicalDeclContext(); 3677 } 3678 MultiLevelTemplateArgumentList SubstArgs( 3679 FunctionTemplate, CanonicalDeducedArgumentList->asArray(), 3680 /*Final=*/false); 3681 Specialization = cast_or_null<FunctionDecl>( 3682 SubstDecl(FD, Owner, SubstArgs)); 3683 if (!Specialization || Specialization->isInvalidDecl()) 3684 return TDK_SubstitutionFailure; 3685 3686 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() == 3687 FunctionTemplate->getCanonicalDecl()); 3688 3689 // If the template argument list is owned by the function template 3690 // specialization, release it. 3691 if (Specialization->getTemplateSpecializationArgs() == 3692 CanonicalDeducedArgumentList && 3693 !Trap.hasErrorOccurred()) 3694 Info.takeCanonical(); 3695 3696 // There may have been an error that did not prevent us from constructing a 3697 // declaration. Mark the declaration invalid and return with a substitution 3698 // failure. 3699 if (Trap.hasErrorOccurred()) { 3700 Specialization->setInvalidDecl(true); 3701 return TDK_SubstitutionFailure; 3702 } 3703 3704 // C++2a [temp.deduct]p5 3705 // [...] When all template arguments have been deduced [...] all uses of 3706 // template parameters [...] are replaced with the corresponding deduced 3707 // or default argument values. 3708 // [...] If the function template has associated constraints 3709 // ([temp.constr.decl]), those constraints are checked for satisfaction 3710 // ([temp.constr.constr]). If the constraints are not satisfied, type 3711 // deduction fails. 3712 if (!PartialOverloading || 3713 (CanonicalBuilder.size() == 3714 FunctionTemplate->getTemplateParameters()->size())) { 3715 if (CheckInstantiatedFunctionTemplateConstraints( 3716 Info.getLocation(), Specialization, CanonicalBuilder, 3717 Info.AssociatedConstraintsSatisfaction)) 3718 return TDK_MiscellaneousDeductionFailure; 3719 3720 if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) { 3721 Info.reset(Info.takeSugared(), 3722 TemplateArgumentList::CreateCopy(Context, CanonicalBuilder)); 3723 return TDK_ConstraintsNotSatisfied; 3724 } 3725 } 3726 3727 // We skipped the instantiation of the explicit-specifier during the 3728 // substitution of `FD` before. So, we try to instantiate it back if 3729 // `Specialization` is either a constructor or a conversion function. 3730 if (isa<CXXConstructorDecl, CXXConversionDecl>(Specialization)) { 3731 if (TDK_Success != instantiateExplicitSpecifierDeferred( 3732 *this, Specialization, SubstArgs, Info, 3733 FunctionTemplate, DeducedArgs)) { 3734 return TDK_SubstitutionFailure; 3735 } 3736 } 3737 3738 if (OriginalCallArgs) { 3739 // C++ [temp.deduct.call]p4: 3740 // In general, the deduction process attempts to find template argument 3741 // values that will make the deduced A identical to A (after the type A 3742 // is transformed as described above). [...] 3743 llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes; 3744 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) { 3745 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I]; 3746 3747 auto ParamIdx = OriginalArg.ArgIdx; 3748 unsigned ExplicitOffset = 3749 Specialization->hasCXXExplicitFunctionObjectParameter() ? 1 : 0; 3750 if (ParamIdx >= Specialization->getNumParams() - ExplicitOffset) 3751 // FIXME: This presumably means a pack ended up smaller than we 3752 // expected while deducing. Should this not result in deduction 3753 // failure? Can it even happen? 3754 continue; 3755 3756 QualType DeducedA; 3757 if (!OriginalArg.DecomposedParam) { 3758 // P is one of the function parameters, just look up its substituted 3759 // type. 3760 DeducedA = 3761 Specialization->getParamDecl(ParamIdx + ExplicitOffset)->getType(); 3762 } else { 3763 // P is a decomposed element of a parameter corresponding to a 3764 // braced-init-list argument. Substitute back into P to find the 3765 // deduced A. 3766 QualType &CacheEntry = 3767 DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}]; 3768 if (CacheEntry.isNull()) { 3769 ArgumentPackSubstitutionIndexRAII PackIndex( 3770 *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs, 3771 ParamIdx)); 3772 CacheEntry = 3773 SubstType(OriginalArg.OriginalParamType, SubstArgs, 3774 Specialization->getTypeSpecStartLoc(), 3775 Specialization->getDeclName()); 3776 } 3777 DeducedA = CacheEntry; 3778 } 3779 3780 if (auto TDK = 3781 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) 3782 return TDK; 3783 } 3784 } 3785 3786 // If we suppressed any diagnostics while performing template argument 3787 // deduction, and if we haven't already instantiated this declaration, 3788 // keep track of these diagnostics. They'll be emitted if this specialization 3789 // is actually used. 3790 if (Info.diag_begin() != Info.diag_end()) { 3791 SuppressedDiagnosticsMap::iterator 3792 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl()); 3793 if (Pos == SuppressedDiagnostics.end()) 3794 SuppressedDiagnostics[Specialization->getCanonicalDecl()] 3795 .append(Info.diag_begin(), Info.diag_end()); 3796 } 3797 3798 return TDK_Success; 3799 } 3800 3801 /// Gets the type of a function for template-argument-deducton 3802 /// purposes when it's considered as part of an overload set. 3803 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R, 3804 FunctionDecl *Fn) { 3805 // We may need to deduce the return type of the function now. 3806 if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() && 3807 S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false)) 3808 return {}; 3809 3810 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 3811 if (Method->isImplicitObjectMemberFunction()) { 3812 // An instance method that's referenced in a form that doesn't 3813 // look like a member pointer is just invalid. 3814 if (!R.HasFormOfMemberPointer) 3815 return {}; 3816 3817 return S.Context.getMemberPointerType(Fn->getType(), 3818 S.Context.getTypeDeclType(Method->getParent()).getTypePtr()); 3819 } 3820 3821 if (!R.IsAddressOfOperand) return Fn->getType(); 3822 return S.Context.getPointerType(Fn->getType()); 3823 } 3824 3825 /// Apply the deduction rules for overload sets. 3826 /// 3827 /// \return the null type if this argument should be treated as an 3828 /// undeduced context 3829 static QualType 3830 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, 3831 Expr *Arg, QualType ParamType, 3832 bool ParamWasReference, 3833 TemplateSpecCandidateSet *FailedTSC = nullptr) { 3834 3835 OverloadExpr::FindResult R = OverloadExpr::find(Arg); 3836 3837 OverloadExpr *Ovl = R.Expression; 3838 3839 // C++0x [temp.deduct.call]p4 3840 unsigned TDF = 0; 3841 if (ParamWasReference) 3842 TDF |= TDF_ParamWithReferenceType; 3843 if (R.IsAddressOfOperand) 3844 TDF |= TDF_IgnoreQualifiers; 3845 3846 // C++0x [temp.deduct.call]p6: 3847 // When P is a function type, pointer to function type, or pointer 3848 // to member function type: 3849 3850 if (!ParamType->isFunctionType() && 3851 !ParamType->isFunctionPointerType() && 3852 !ParamType->isMemberFunctionPointerType()) { 3853 if (Ovl->hasExplicitTemplateArgs()) { 3854 // But we can still look for an explicit specialization. 3855 if (FunctionDecl *ExplicitSpec = 3856 S.ResolveSingleFunctionTemplateSpecialization( 3857 Ovl, /*Complain=*/false, 3858 /*FoundDeclAccessPair=*/nullptr, FailedTSC)) 3859 return GetTypeOfFunction(S, R, ExplicitSpec); 3860 } 3861 3862 DeclAccessPair DAP; 3863 if (FunctionDecl *Viable = 3864 S.resolveAddressOfSingleOverloadCandidate(Arg, DAP)) 3865 return GetTypeOfFunction(S, R, Viable); 3866 3867 return {}; 3868 } 3869 3870 // Gather the explicit template arguments, if any. 3871 TemplateArgumentListInfo ExplicitTemplateArgs; 3872 if (Ovl->hasExplicitTemplateArgs()) 3873 Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); 3874 QualType Match; 3875 for (UnresolvedSetIterator I = Ovl->decls_begin(), 3876 E = Ovl->decls_end(); I != E; ++I) { 3877 NamedDecl *D = (*I)->getUnderlyingDecl(); 3878 3879 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) { 3880 // - If the argument is an overload set containing one or more 3881 // function templates, the parameter is treated as a 3882 // non-deduced context. 3883 if (!Ovl->hasExplicitTemplateArgs()) 3884 return {}; 3885 3886 // Otherwise, see if we can resolve a function type 3887 FunctionDecl *Specialization = nullptr; 3888 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3889 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs, 3890 Specialization, Info)) 3891 continue; 3892 3893 D = Specialization; 3894 } 3895 3896 FunctionDecl *Fn = cast<FunctionDecl>(D); 3897 QualType ArgType = GetTypeOfFunction(S, R, Fn); 3898 if (ArgType.isNull()) continue; 3899 3900 // Function-to-pointer conversion. 3901 if (!ParamWasReference && ParamType->isPointerType() && 3902 ArgType->isFunctionType()) 3903 ArgType = S.Context.getPointerType(ArgType); 3904 3905 // - If the argument is an overload set (not containing function 3906 // templates), trial argument deduction is attempted using each 3907 // of the members of the set. If deduction succeeds for only one 3908 // of the overload set members, that member is used as the 3909 // argument value for the deduction. If deduction succeeds for 3910 // more than one member of the overload set the parameter is 3911 // treated as a non-deduced context. 3912 3913 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2: 3914 // Type deduction is done independently for each P/A pair, and 3915 // the deduced template argument values are then combined. 3916 // So we do not reject deductions which were made elsewhere. 3917 SmallVector<DeducedTemplateArgument, 8> 3918 Deduced(TemplateParams->size()); 3919 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3920 Sema::TemplateDeductionResult Result 3921 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 3922 ArgType, Info, Deduced, TDF); 3923 if (Result) continue; 3924 if (!Match.isNull()) 3925 return {}; 3926 Match = ArgType; 3927 } 3928 3929 return Match; 3930 } 3931 3932 /// Perform the adjustments to the parameter and argument types 3933 /// described in C++ [temp.deduct.call]. 3934 /// 3935 /// \returns true if the caller should not attempt to perform any template 3936 /// argument deduction based on this P/A pair because the argument is an 3937 /// overloaded function set that could not be resolved. 3938 static bool AdjustFunctionParmAndArgTypesForDeduction( 3939 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 3940 QualType &ParamType, QualType &ArgType, 3941 Expr::Classification ArgClassification, Expr *Arg, unsigned &TDF, 3942 TemplateSpecCandidateSet *FailedTSC = nullptr) { 3943 // C++0x [temp.deduct.call]p3: 3944 // If P is a cv-qualified type, the top level cv-qualifiers of P's type 3945 // are ignored for type deduction. 3946 if (ParamType.hasQualifiers()) 3947 ParamType = ParamType.getUnqualifiedType(); 3948 3949 // [...] If P is a reference type, the type referred to by P is 3950 // used for type deduction. 3951 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>(); 3952 if (ParamRefType) 3953 ParamType = ParamRefType->getPointeeType(); 3954 3955 // Overload sets usually make this parameter an undeduced context, 3956 // but there are sometimes special circumstances. Typically 3957 // involving a template-id-expr. 3958 if (ArgType == S.Context.OverloadTy) { 3959 assert(Arg && "expected a non-null arg expression"); 3960 ArgType = ResolveOverloadForDeduction(S, TemplateParams, Arg, ParamType, 3961 ParamRefType != nullptr, FailedTSC); 3962 if (ArgType.isNull()) 3963 return true; 3964 } 3965 3966 if (ParamRefType) { 3967 // If the argument has incomplete array type, try to complete its type. 3968 if (ArgType->isIncompleteArrayType()) { 3969 assert(Arg && "expected a non-null arg expression"); 3970 ArgType = S.getCompletedType(Arg); 3971 } 3972 3973 // C++1z [temp.deduct.call]p3: 3974 // If P is a forwarding reference and the argument is an lvalue, the type 3975 // "lvalue reference to A" is used in place of A for type deduction. 3976 if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) && 3977 ArgClassification.isLValue()) { 3978 if (S.getLangOpts().OpenCL && !ArgType.hasAddressSpace()) 3979 ArgType = S.Context.getAddrSpaceQualType( 3980 ArgType, S.Context.getDefaultOpenCLPointeeAddrSpace()); 3981 ArgType = S.Context.getLValueReferenceType(ArgType); 3982 } 3983 } else { 3984 // C++ [temp.deduct.call]p2: 3985 // If P is not a reference type: 3986 // - If A is an array type, the pointer type produced by the 3987 // array-to-pointer standard conversion (4.2) is used in place of 3988 // A for type deduction; otherwise, 3989 // - If A is a function type, the pointer type produced by the 3990 // function-to-pointer standard conversion (4.3) is used in place 3991 // of A for type deduction; otherwise, 3992 if (ArgType->canDecayToPointerType()) 3993 ArgType = S.Context.getDecayedType(ArgType); 3994 else { 3995 // - If A is a cv-qualified type, the top level cv-qualifiers of A's 3996 // type are ignored for type deduction. 3997 ArgType = ArgType.getUnqualifiedType(); 3998 } 3999 } 4000 4001 // C++0x [temp.deduct.call]p4: 4002 // In general, the deduction process attempts to find template argument 4003 // values that will make the deduced A identical to A (after the type A 4004 // is transformed as described above). [...] 4005 TDF = TDF_SkipNonDependent; 4006 4007 // - If the original P is a reference type, the deduced A (i.e., the 4008 // type referred to by the reference) can be more cv-qualified than 4009 // the transformed A. 4010 if (ParamRefType) 4011 TDF |= TDF_ParamWithReferenceType; 4012 // - The transformed A can be another pointer or pointer to member 4013 // type that can be converted to the deduced A via a qualification 4014 // conversion (4.4). 4015 if (ArgType->isPointerType() || ArgType->isMemberPointerType() || 4016 ArgType->isObjCObjectPointerType()) 4017 TDF |= TDF_IgnoreQualifiers; 4018 // - If P is a class and P has the form simple-template-id, then the 4019 // transformed A can be a derived class of the deduced A. Likewise, 4020 // if P is a pointer to a class of the form simple-template-id, the 4021 // transformed A can be a pointer to a derived class pointed to by 4022 // the deduced A. 4023 if (isSimpleTemplateIdType(ParamType) || 4024 (isa<PointerType>(ParamType) && 4025 isSimpleTemplateIdType( 4026 ParamType->castAs<PointerType>()->getPointeeType()))) 4027 TDF |= TDF_DerivedClass; 4028 4029 return false; 4030 } 4031 4032 static bool 4033 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, 4034 QualType T); 4035 4036 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 4037 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 4038 QualType ParamType, QualType ArgType, 4039 Expr::Classification ArgClassification, Expr *Arg, 4040 TemplateDeductionInfo &Info, 4041 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 4042 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 4043 bool DecomposedParam, unsigned ArgIdx, unsigned TDF, 4044 TemplateSpecCandidateSet *FailedTSC = nullptr); 4045 4046 /// Attempt template argument deduction from an initializer list 4047 /// deemed to be an argument in a function call. 4048 static Sema::TemplateDeductionResult DeduceFromInitializerList( 4049 Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType, 4050 InitListExpr *ILE, TemplateDeductionInfo &Info, 4051 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 4052 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx, 4053 unsigned TDF) { 4054 // C++ [temp.deduct.call]p1: (CWG 1591) 4055 // If removing references and cv-qualifiers from P gives 4056 // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is 4057 // a non-empty initializer list, then deduction is performed instead for 4058 // each element of the initializer list, taking P0 as a function template 4059 // parameter type and the initializer element as its argument 4060 // 4061 // We've already removed references and cv-qualifiers here. 4062 if (!ILE->getNumInits()) 4063 return Sema::TDK_Success; 4064 4065 QualType ElTy; 4066 auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType); 4067 if (ArrTy) 4068 ElTy = ArrTy->getElementType(); 4069 else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) { 4070 // Otherwise, an initializer list argument causes the parameter to be 4071 // considered a non-deduced context 4072 return Sema::TDK_Success; 4073 } 4074 4075 // Resolving a core issue: a braced-init-list containing any designators is 4076 // a non-deduced context. 4077 for (Expr *E : ILE->inits()) 4078 if (isa<DesignatedInitExpr>(E)) 4079 return Sema::TDK_Success; 4080 4081 // Deduction only needs to be done for dependent types. 4082 if (ElTy->isDependentType()) { 4083 for (Expr *E : ILE->inits()) { 4084 if (auto Result = DeduceTemplateArgumentsFromCallArgument( 4085 S, TemplateParams, 0, ElTy, E->getType(), 4086 E->Classify(S.getASTContext()), E, Info, Deduced, 4087 OriginalCallArgs, true, ArgIdx, TDF)) 4088 return Result; 4089 } 4090 } 4091 4092 // in the P0[N] case, if N is a non-type template parameter, N is deduced 4093 // from the length of the initializer list. 4094 if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) { 4095 // Determine the array bound is something we can deduce. 4096 if (const NonTypeTemplateParmDecl *NTTP = 4097 getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) { 4098 // We can perform template argument deduction for the given non-type 4099 // template parameter. 4100 // C++ [temp.deduct.type]p13: 4101 // The type of N in the type T[N] is std::size_t. 4102 QualType T = S.Context.getSizeType(); 4103 llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits()); 4104 if (auto Result = DeduceNonTypeTemplateArgument( 4105 S, TemplateParams, NTTP, llvm::APSInt(Size), T, 4106 /*ArrayBound=*/true, Info, Deduced)) 4107 return Result; 4108 } 4109 } 4110 4111 return Sema::TDK_Success; 4112 } 4113 4114 /// Perform template argument deduction per [temp.deduct.call] for a 4115 /// single parameter / argument pair. 4116 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( 4117 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, 4118 QualType ParamType, QualType ArgType, 4119 Expr::Classification ArgClassification, Expr *Arg, 4120 TemplateDeductionInfo &Info, 4121 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 4122 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, 4123 bool DecomposedParam, unsigned ArgIdx, unsigned TDF, 4124 TemplateSpecCandidateSet *FailedTSC) { 4125 4126 QualType OrigParamType = ParamType; 4127 4128 // If P is a reference type [...] 4129 // If P is a cv-qualified type [...] 4130 if (AdjustFunctionParmAndArgTypesForDeduction( 4131 S, TemplateParams, FirstInnerIndex, ParamType, ArgType, 4132 ArgClassification, Arg, TDF, FailedTSC)) 4133 return Sema::TDK_Success; 4134 4135 // If [...] the argument is a non-empty initializer list [...] 4136 if (InitListExpr *ILE = dyn_cast_if_present<InitListExpr>(Arg)) 4137 return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info, 4138 Deduced, OriginalCallArgs, ArgIdx, TDF); 4139 4140 // [...] the deduction process attempts to find template argument values 4141 // that will make the deduced A identical to A 4142 // 4143 // Keep track of the argument type and corresponding parameter index, 4144 // so we can check for compatibility between the deduced A and A. 4145 if (Arg) 4146 OriginalCallArgs.push_back( 4147 Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType)); 4148 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 4149 ArgType, Info, Deduced, TDF); 4150 } 4151 4152 /// Perform template argument deduction from a function call 4153 /// (C++ [temp.deduct.call]). 4154 /// 4155 /// \param FunctionTemplate the function template for which we are performing 4156 /// template argument deduction. 4157 /// 4158 /// \param ExplicitTemplateArgs the explicit template arguments provided 4159 /// for this call. 4160 /// 4161 /// \param Args the function call arguments 4162 /// 4163 /// \param Specialization if template argument deduction was successful, 4164 /// this will be set to the function template specialization produced by 4165 /// template argument deduction. 4166 /// 4167 /// \param Info the argument will be updated to provide additional information 4168 /// about template argument deduction. 4169 /// 4170 /// \param CheckNonDependent A callback to invoke to check conversions for 4171 /// non-dependent parameters, between deduction and substitution, per DR1391. 4172 /// If this returns true, substitution will be skipped and we return 4173 /// TDK_NonDependentConversionFailure. The callback is passed the parameter 4174 /// types (after substituting explicit template arguments). 4175 /// 4176 /// \returns the result of template argument deduction. 4177 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4178 FunctionTemplateDecl *FunctionTemplate, 4179 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 4180 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4181 bool PartialOverloading, bool AggregateDeductionCandidate, 4182 QualType ObjectType, Expr::Classification ObjectClassification, 4183 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) { 4184 if (FunctionTemplate->isInvalidDecl()) 4185 return TDK_Invalid; 4186 4187 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 4188 unsigned NumParams = Function->getNumParams(); 4189 bool HasExplicitObject = false; 4190 int ExplicitObjectOffset = 0; 4191 if (Function->hasCXXExplicitFunctionObjectParameter()) { 4192 HasExplicitObject = true; 4193 ExplicitObjectOffset = 1; 4194 } 4195 4196 unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate); 4197 4198 // C++ [temp.deduct.call]p1: 4199 // Template argument deduction is done by comparing each function template 4200 // parameter type (call it P) with the type of the corresponding argument 4201 // of the call (call it A) as described below. 4202 if (Args.size() < Function->getMinRequiredExplicitArguments() && 4203 !PartialOverloading) 4204 return TDK_TooFewArguments; 4205 else if (TooManyArguments(NumParams, Args.size() + ExplicitObjectOffset, 4206 PartialOverloading)) { 4207 const auto *Proto = Function->getType()->castAs<FunctionProtoType>(); 4208 if (Proto->isTemplateVariadic()) 4209 /* Do nothing */; 4210 else if (!Proto->isVariadic()) 4211 return TDK_TooManyArguments; 4212 } 4213 4214 // The types of the parameters from which we will perform template argument 4215 // deduction. 4216 LocalInstantiationScope InstScope(*this); 4217 TemplateParameterList *TemplateParams 4218 = FunctionTemplate->getTemplateParameters(); 4219 SmallVector<DeducedTemplateArgument, 4> Deduced; 4220 SmallVector<QualType, 8> ParamTypes; 4221 unsigned NumExplicitlySpecified = 0; 4222 if (ExplicitTemplateArgs) { 4223 TemplateDeductionResult Result; 4224 runWithSufficientStackSpace(Info.getLocation(), [&] { 4225 Result = SubstituteExplicitTemplateArguments( 4226 FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, nullptr, 4227 Info); 4228 }); 4229 if (Result) 4230 return Result; 4231 4232 NumExplicitlySpecified = Deduced.size(); 4233 } else { 4234 // Just fill in the parameter types from the function declaration. 4235 for (unsigned I = 0; I != NumParams; ++I) 4236 ParamTypes.push_back(Function->getParamDecl(I)->getType()); 4237 } 4238 4239 SmallVector<OriginalCallArg, 8> OriginalCallArgs; 4240 4241 // Deduce an argument of type ParamType from an expression with index ArgIdx. 4242 auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx, 4243 bool ExplicitObjetArgument) { 4244 // C++ [demp.deduct.call]p1: (DR1391) 4245 // Template argument deduction is done by comparing each function template 4246 // parameter that contains template-parameters that participate in 4247 // template argument deduction ... 4248 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) 4249 return Sema::TDK_Success; 4250 4251 if (ExplicitObjetArgument) { 4252 // ... with the type of the corresponding argument 4253 return DeduceTemplateArgumentsFromCallArgument( 4254 *this, TemplateParams, FirstInnerIndex, ParamType, ObjectType, 4255 ObjectClassification, 4256 /*Arg=*/nullptr, Info, Deduced, OriginalCallArgs, 4257 /*Decomposed*/ false, ArgIdx, /*TDF*/ 0); 4258 } 4259 4260 // ... with the type of the corresponding argument 4261 return DeduceTemplateArgumentsFromCallArgument( 4262 *this, TemplateParams, FirstInnerIndex, ParamType, 4263 Args[ArgIdx]->getType(), Args[ArgIdx]->Classify(getASTContext()), 4264 Args[ArgIdx], Info, Deduced, OriginalCallArgs, /*Decomposed*/ false, 4265 ArgIdx, /*TDF*/ 0); 4266 }; 4267 4268 // Deduce template arguments from the function parameters. 4269 Deduced.resize(TemplateParams->size()); 4270 SmallVector<QualType, 8> ParamTypesForArgChecking; 4271 for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0; 4272 ParamIdx != NumParamTypes; ++ParamIdx) { 4273 QualType ParamType = ParamTypes[ParamIdx]; 4274 4275 const PackExpansionType *ParamExpansion = 4276 dyn_cast<PackExpansionType>(ParamType); 4277 if (!ParamExpansion) { 4278 // Simple case: matching a function parameter to a function argument. 4279 if (ArgIdx >= Args.size() && !(HasExplicitObject && ParamIdx == 0)) 4280 break; 4281 4282 ParamTypesForArgChecking.push_back(ParamType); 4283 4284 if (ParamIdx == 0 && HasExplicitObject) { 4285 if (auto Result = DeduceCallArgument(ParamType, 0, 4286 /*ExplicitObjetArgument=*/true)) 4287 return Result; 4288 continue; 4289 } 4290 4291 if (auto Result = DeduceCallArgument(ParamType, ArgIdx++, 4292 /*ExplicitObjetArgument=*/false)) 4293 return Result; 4294 4295 continue; 4296 } 4297 4298 bool IsTrailingPack = ParamIdx + 1 == NumParamTypes; 4299 4300 QualType ParamPattern = ParamExpansion->getPattern(); 4301 PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info, 4302 ParamPattern, 4303 AggregateDeductionCandidate && IsTrailingPack); 4304 4305 // C++0x [temp.deduct.call]p1: 4306 // For a function parameter pack that occurs at the end of the 4307 // parameter-declaration-list, the type A of each remaining argument of 4308 // the call is compared with the type P of the declarator-id of the 4309 // function parameter pack. Each comparison deduces template arguments 4310 // for subsequent positions in the template parameter packs expanded by 4311 // the function parameter pack. When a function parameter pack appears 4312 // in a non-deduced context [not at the end of the list], the type of 4313 // that parameter pack is never deduced. 4314 // 4315 // FIXME: The above rule allows the size of the parameter pack to change 4316 // after we skip it (in the non-deduced case). That makes no sense, so 4317 // we instead notionally deduce the pack against N arguments, where N is 4318 // the length of the explicitly-specified pack if it's expanded by the 4319 // parameter pack and 0 otherwise, and we treat each deduction as a 4320 // non-deduced context. 4321 if (IsTrailingPack || PackScope.hasFixedArity()) { 4322 for (; ArgIdx < Args.size() && PackScope.hasNextElement(); 4323 PackScope.nextPackElement(), ++ArgIdx) { 4324 ParamTypesForArgChecking.push_back(ParamPattern); 4325 if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx, 4326 /*ExplicitObjetArgument=*/false)) 4327 return Result; 4328 } 4329 } else { 4330 // If the parameter type contains an explicitly-specified pack that we 4331 // could not expand, skip the number of parameters notionally created 4332 // by the expansion. 4333 std::optional<unsigned> NumExpansions = 4334 ParamExpansion->getNumExpansions(); 4335 if (NumExpansions && !PackScope.isPartiallyExpanded()) { 4336 for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size(); 4337 ++I, ++ArgIdx) { 4338 ParamTypesForArgChecking.push_back(ParamPattern); 4339 // FIXME: Should we add OriginalCallArgs for these? What if the 4340 // corresponding argument is a list? 4341 PackScope.nextPackElement(); 4342 } 4343 } 4344 } 4345 4346 // Build argument packs for each of the parameter packs expanded by this 4347 // pack expansion. 4348 if (auto Result = PackScope.finish()) 4349 return Result; 4350 } 4351 4352 // Capture the context in which the function call is made. This is the context 4353 // that is needed when the accessibility of template arguments is checked. 4354 DeclContext *CallingCtx = CurContext; 4355 4356 TemplateDeductionResult Result; 4357 runWithSufficientStackSpace(Info.getLocation(), [&] { 4358 Result = FinishTemplateArgumentDeduction( 4359 FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info, 4360 &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() { 4361 ContextRAII SavedContext(*this, CallingCtx); 4362 return CheckNonDependent(ParamTypesForArgChecking); 4363 }); 4364 }); 4365 return Result; 4366 } 4367 4368 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType, 4369 QualType FunctionType, 4370 bool AdjustExceptionSpec) { 4371 if (ArgFunctionType.isNull()) 4372 return ArgFunctionType; 4373 4374 const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>(); 4375 const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>(); 4376 FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo(); 4377 bool Rebuild = false; 4378 4379 CallingConv CC = FunctionTypeP->getCallConv(); 4380 if (EPI.ExtInfo.getCC() != CC) { 4381 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC); 4382 Rebuild = true; 4383 } 4384 4385 bool NoReturn = FunctionTypeP->getNoReturnAttr(); 4386 if (EPI.ExtInfo.getNoReturn() != NoReturn) { 4387 EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn); 4388 Rebuild = true; 4389 } 4390 4391 if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() || 4392 ArgFunctionTypeP->hasExceptionSpec())) { 4393 EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec; 4394 Rebuild = true; 4395 } 4396 4397 if (!Rebuild) 4398 return ArgFunctionType; 4399 4400 return Context.getFunctionType(ArgFunctionTypeP->getReturnType(), 4401 ArgFunctionTypeP->getParamTypes(), EPI); 4402 } 4403 4404 /// Deduce template arguments when taking the address of a function 4405 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to 4406 /// a template. 4407 /// 4408 /// \param FunctionTemplate the function template for which we are performing 4409 /// template argument deduction. 4410 /// 4411 /// \param ExplicitTemplateArgs the explicitly-specified template 4412 /// arguments. 4413 /// 4414 /// \param ArgFunctionType the function type that will be used as the 4415 /// "argument" type (A) when performing template argument deduction from the 4416 /// function template's function type. This type may be NULL, if there is no 4417 /// argument type to compare against, in C++0x [temp.arg.explicit]p3. 4418 /// 4419 /// \param Specialization if template argument deduction was successful, 4420 /// this will be set to the function template specialization produced by 4421 /// template argument deduction. 4422 /// 4423 /// \param Info the argument will be updated to provide additional information 4424 /// about template argument deduction. 4425 /// 4426 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4427 /// the address of a function template per [temp.deduct.funcaddr] and 4428 /// [over.over]. If \c false, we are looking up a function template 4429 /// specialization based on its signature, per [temp.deduct.decl]. 4430 /// 4431 /// \returns the result of template argument deduction. 4432 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4433 FunctionTemplateDecl *FunctionTemplate, 4434 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, 4435 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4436 bool IsAddressOfFunction) { 4437 if (FunctionTemplate->isInvalidDecl()) 4438 return TDK_Invalid; 4439 4440 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 4441 TemplateParameterList *TemplateParams 4442 = FunctionTemplate->getTemplateParameters(); 4443 QualType FunctionType = Function->getType(); 4444 4445 // Substitute any explicit template arguments. 4446 LocalInstantiationScope InstScope(*this); 4447 SmallVector<DeducedTemplateArgument, 4> Deduced; 4448 unsigned NumExplicitlySpecified = 0; 4449 SmallVector<QualType, 4> ParamTypes; 4450 if (ExplicitTemplateArgs) { 4451 TemplateDeductionResult Result; 4452 runWithSufficientStackSpace(Info.getLocation(), [&] { 4453 Result = SubstituteExplicitTemplateArguments( 4454 FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, 4455 &FunctionType, Info); 4456 }); 4457 if (Result) 4458 return Result; 4459 4460 NumExplicitlySpecified = Deduced.size(); 4461 } 4462 4463 // When taking the address of a function, we require convertibility of 4464 // the resulting function type. Otherwise, we allow arbitrary mismatches 4465 // of calling convention and noreturn. 4466 if (!IsAddressOfFunction) 4467 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType, 4468 /*AdjustExceptionSpec*/false); 4469 4470 // Unevaluated SFINAE context. 4471 EnterExpressionEvaluationContext Unevaluated( 4472 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4473 SFINAETrap Trap(*this); 4474 4475 Deduced.resize(TemplateParams->size()); 4476 4477 // If the function has a deduced return type, substitute it for a dependent 4478 // type so that we treat it as a non-deduced context in what follows. 4479 bool HasDeducedReturnType = false; 4480 if (getLangOpts().CPlusPlus14 && 4481 Function->getReturnType()->getContainedAutoType()) { 4482 FunctionType = SubstAutoTypeDependent(FunctionType); 4483 HasDeducedReturnType = true; 4484 } 4485 4486 if (!ArgFunctionType.isNull() && !FunctionType.isNull()) { 4487 unsigned TDF = 4488 TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType; 4489 // Deduce template arguments from the function type. 4490 if (TemplateDeductionResult Result 4491 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4492 FunctionType, ArgFunctionType, 4493 Info, Deduced, TDF)) 4494 return Result; 4495 } 4496 4497 TemplateDeductionResult Result; 4498 runWithSufficientStackSpace(Info.getLocation(), [&] { 4499 Result = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 4500 NumExplicitlySpecified, 4501 Specialization, Info); 4502 }); 4503 if (Result) 4504 return Result; 4505 4506 // If the function has a deduced return type, deduce it now, so we can check 4507 // that the deduced function type matches the requested type. 4508 if (HasDeducedReturnType && IsAddressOfFunction && 4509 Specialization->getReturnType()->isUndeducedType() && 4510 DeduceReturnType(Specialization, Info.getLocation(), false)) 4511 return TDK_MiscellaneousDeductionFailure; 4512 4513 if (IsAddressOfFunction && getLangOpts().CPlusPlus20 && 4514 Specialization->isImmediateEscalating() && 4515 CheckIfFunctionSpecializationIsImmediate(Specialization, 4516 Info.getLocation())) 4517 return TDK_MiscellaneousDeductionFailure; 4518 4519 // If the function has a dependent exception specification, resolve it now, 4520 // so we can check that the exception specification matches. 4521 auto *SpecializationFPT = 4522 Specialization->getType()->castAs<FunctionProtoType>(); 4523 if (getLangOpts().CPlusPlus17 && 4524 isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) && 4525 !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT)) 4526 return TDK_MiscellaneousDeductionFailure; 4527 4528 // Adjust the exception specification of the argument to match the 4529 // substituted and resolved type we just formed. (Calling convention and 4530 // noreturn can't be dependent, so we don't actually need this for them 4531 // right now.) 4532 QualType SpecializationType = Specialization->getType(); 4533 if (!IsAddressOfFunction) { 4534 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType, 4535 /*AdjustExceptionSpec*/true); 4536 4537 // Revert placeholder types in the return type back to undeduced types so 4538 // that the comparison below compares the declared return types. 4539 if (HasDeducedReturnType) { 4540 SpecializationType = SubstAutoType(SpecializationType, QualType()); 4541 ArgFunctionType = SubstAutoType(ArgFunctionType, QualType()); 4542 } 4543 } 4544 4545 // If the requested function type does not match the actual type of the 4546 // specialization with respect to arguments of compatible pointer to function 4547 // types, template argument deduction fails. 4548 if (!ArgFunctionType.isNull()) { 4549 if (IsAddressOfFunction 4550 ? !isSameOrCompatibleFunctionType( 4551 Context.getCanonicalType(SpecializationType), 4552 Context.getCanonicalType(ArgFunctionType)) 4553 : !Context.hasSameType(SpecializationType, ArgFunctionType)) { 4554 Info.FirstArg = TemplateArgument(SpecializationType); 4555 Info.SecondArg = TemplateArgument(ArgFunctionType); 4556 return TDK_NonDeducedMismatch; 4557 } 4558 } 4559 4560 return TDK_Success; 4561 } 4562 4563 /// Deduce template arguments for a templated conversion 4564 /// function (C++ [temp.deduct.conv]) and, if successful, produce a 4565 /// conversion function template specialization. 4566 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4567 FunctionTemplateDecl *ConversionTemplate, QualType ObjectType, 4568 Expr::Classification ObjectClassification, QualType ToType, 4569 CXXConversionDecl *&Specialization, TemplateDeductionInfo &Info) { 4570 if (ConversionTemplate->isInvalidDecl()) 4571 return TDK_Invalid; 4572 4573 CXXConversionDecl *ConversionGeneric 4574 = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl()); 4575 4576 QualType FromType = ConversionGeneric->getConversionType(); 4577 4578 // Canonicalize the types for deduction. 4579 QualType P = Context.getCanonicalType(FromType); 4580 QualType A = Context.getCanonicalType(ToType); 4581 4582 // C++0x [temp.deduct.conv]p2: 4583 // If P is a reference type, the type referred to by P is used for 4584 // type deduction. 4585 if (const ReferenceType *PRef = P->getAs<ReferenceType>()) 4586 P = PRef->getPointeeType(); 4587 4588 // C++0x [temp.deduct.conv]p4: 4589 // [...] If A is a reference type, the type referred to by A is used 4590 // for type deduction. 4591 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) { 4592 A = ARef->getPointeeType(); 4593 // We work around a defect in the standard here: cv-qualifiers are also 4594 // removed from P and A in this case, unless P was a reference type. This 4595 // seems to mostly match what other compilers are doing. 4596 if (!FromType->getAs<ReferenceType>()) { 4597 A = A.getUnqualifiedType(); 4598 P = P.getUnqualifiedType(); 4599 } 4600 4601 // C++ [temp.deduct.conv]p3: 4602 // 4603 // If A is not a reference type: 4604 } else { 4605 assert(!A->isReferenceType() && "Reference types were handled above"); 4606 4607 // - If P is an array type, the pointer type produced by the 4608 // array-to-pointer standard conversion (4.2) is used in place 4609 // of P for type deduction; otherwise, 4610 if (P->isArrayType()) 4611 P = Context.getArrayDecayedType(P); 4612 // - If P is a function type, the pointer type produced by the 4613 // function-to-pointer standard conversion (4.3) is used in 4614 // place of P for type deduction; otherwise, 4615 else if (P->isFunctionType()) 4616 P = Context.getPointerType(P); 4617 // - If P is a cv-qualified type, the top level cv-qualifiers of 4618 // P's type are ignored for type deduction. 4619 else 4620 P = P.getUnqualifiedType(); 4621 4622 // C++0x [temp.deduct.conv]p4: 4623 // If A is a cv-qualified type, the top level cv-qualifiers of A's 4624 // type are ignored for type deduction. If A is a reference type, the type 4625 // referred to by A is used for type deduction. 4626 A = A.getUnqualifiedType(); 4627 } 4628 4629 // Unevaluated SFINAE context. 4630 EnterExpressionEvaluationContext Unevaluated( 4631 *this, Sema::ExpressionEvaluationContext::Unevaluated); 4632 SFINAETrap Trap(*this); 4633 4634 // C++ [temp.deduct.conv]p1: 4635 // Template argument deduction is done by comparing the return 4636 // type of the template conversion function (call it P) with the 4637 // type that is required as the result of the conversion (call it 4638 // A) as described in 14.8.2.4. 4639 TemplateParameterList *TemplateParams 4640 = ConversionTemplate->getTemplateParameters(); 4641 SmallVector<DeducedTemplateArgument, 4> Deduced; 4642 Deduced.resize(TemplateParams->size()); 4643 4644 // C++0x [temp.deduct.conv]p4: 4645 // In general, the deduction process attempts to find template 4646 // argument values that will make the deduced A identical to 4647 // A. However, there are two cases that allow a difference: 4648 unsigned TDF = 0; 4649 // - If the original A is a reference type, A can be more 4650 // cv-qualified than the deduced A (i.e., the type referred to 4651 // by the reference) 4652 if (ToType->isReferenceType()) 4653 TDF |= TDF_ArgWithReferenceType; 4654 // - The deduced A can be another pointer or pointer to member 4655 // type that can be converted to A via a qualification 4656 // conversion. 4657 // 4658 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when 4659 // both P and A are pointers or member pointers. In this case, we 4660 // just ignore cv-qualifiers completely). 4661 if ((P->isPointerType() && A->isPointerType()) || 4662 (P->isMemberPointerType() && A->isMemberPointerType())) 4663 TDF |= TDF_IgnoreQualifiers; 4664 4665 SmallVector<Sema::OriginalCallArg, 1> OriginalCallArgs; 4666 if (ConversionGeneric->isExplicitObjectMemberFunction()) { 4667 QualType ParamType = ConversionGeneric->getParamDecl(0)->getType(); 4668 if (TemplateDeductionResult Result = 4669 DeduceTemplateArgumentsFromCallArgument( 4670 *this, TemplateParams, getFirstInnerIndex(ConversionTemplate), 4671 ParamType, ObjectType, ObjectClassification, 4672 /*Arg=*/nullptr, Info, Deduced, OriginalCallArgs, 4673 /*Decomposed*/ false, 0, /*TDF*/ 0)) 4674 return Result; 4675 } 4676 4677 if (TemplateDeductionResult Result 4678 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 4679 P, A, Info, Deduced, TDF)) 4680 return Result; 4681 4682 // Create an Instantiation Scope for finalizing the operator. 4683 LocalInstantiationScope InstScope(*this); 4684 // Finish template argument deduction. 4685 FunctionDecl *ConversionSpecialized = nullptr; 4686 TemplateDeductionResult Result; 4687 runWithSufficientStackSpace(Info.getLocation(), [&] { 4688 Result = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0, 4689 ConversionSpecialized, Info, 4690 &OriginalCallArgs); 4691 }); 4692 Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized); 4693 return Result; 4694 } 4695 4696 /// Deduce template arguments for a function template when there is 4697 /// nothing to deduce against (C++0x [temp.arg.explicit]p3). 4698 /// 4699 /// \param FunctionTemplate the function template for which we are performing 4700 /// template argument deduction. 4701 /// 4702 /// \param ExplicitTemplateArgs the explicitly-specified template 4703 /// arguments. 4704 /// 4705 /// \param Specialization if template argument deduction was successful, 4706 /// this will be set to the function template specialization produced by 4707 /// template argument deduction. 4708 /// 4709 /// \param Info the argument will be updated to provide additional information 4710 /// about template argument deduction. 4711 /// 4712 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking 4713 /// the address of a function template in a context where we do not have a 4714 /// target type, per [over.over]. If \c false, we are looking up a function 4715 /// template specialization based on its signature, which only happens when 4716 /// deducing a function parameter type from an argument that is a template-id 4717 /// naming a function template specialization. 4718 /// 4719 /// \returns the result of template argument deduction. 4720 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 4721 FunctionTemplateDecl *FunctionTemplate, 4722 TemplateArgumentListInfo *ExplicitTemplateArgs, 4723 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 4724 bool IsAddressOfFunction) { 4725 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 4726 QualType(), Specialization, Info, 4727 IsAddressOfFunction); 4728 } 4729 4730 namespace { 4731 struct DependentAuto { bool IsPack; }; 4732 4733 /// Substitute the 'auto' specifier or deduced template specialization type 4734 /// specifier within a type for a given replacement type. 4735 class SubstituteDeducedTypeTransform : 4736 public TreeTransform<SubstituteDeducedTypeTransform> { 4737 QualType Replacement; 4738 bool ReplacementIsPack; 4739 bool UseTypeSugar; 4740 using inherited = TreeTransform<SubstituteDeducedTypeTransform>; 4741 4742 public: 4743 SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA) 4744 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), 4745 ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {} 4746 4747 SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement, 4748 bool UseTypeSugar = true) 4749 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), 4750 Replacement(Replacement), ReplacementIsPack(false), 4751 UseTypeSugar(UseTypeSugar) {} 4752 4753 QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) { 4754 assert(isa<TemplateTypeParmType>(Replacement) && 4755 "unexpected unsugared replacement kind"); 4756 QualType Result = Replacement; 4757 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result); 4758 NewTL.setNameLoc(TL.getNameLoc()); 4759 return Result; 4760 } 4761 4762 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { 4763 // If we're building the type pattern to deduce against, don't wrap the 4764 // substituted type in an AutoType. Certain template deduction rules 4765 // apply only when a template type parameter appears directly (and not if 4766 // the parameter is found through desugaring). For instance: 4767 // auto &&lref = lvalue; 4768 // must transform into "rvalue reference to T" not "rvalue reference to 4769 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply. 4770 // 4771 // FIXME: Is this still necessary? 4772 if (!UseTypeSugar) 4773 return TransformDesugared(TLB, TL); 4774 4775 QualType Result = SemaRef.Context.getAutoType( 4776 Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(), 4777 ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(), 4778 TL.getTypePtr()->getTypeConstraintArguments()); 4779 auto NewTL = TLB.push<AutoTypeLoc>(Result); 4780 NewTL.copy(TL); 4781 return Result; 4782 } 4783 4784 QualType TransformDeducedTemplateSpecializationType( 4785 TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) { 4786 if (!UseTypeSugar) 4787 return TransformDesugared(TLB, TL); 4788 4789 QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType( 4790 TL.getTypePtr()->getTemplateName(), 4791 Replacement, Replacement.isNull()); 4792 auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result); 4793 NewTL.setNameLoc(TL.getNameLoc()); 4794 return Result; 4795 } 4796 4797 ExprResult TransformLambdaExpr(LambdaExpr *E) { 4798 // Lambdas never need to be transformed. 4799 return E; 4800 } 4801 bool TransformExceptionSpec(SourceLocation Loc, 4802 FunctionProtoType::ExceptionSpecInfo &ESI, 4803 SmallVectorImpl<QualType> &Exceptions, 4804 bool &Changed) { 4805 if (ESI.Type == EST_Uninstantiated) { 4806 ESI.instantiate(); 4807 Changed = true; 4808 } 4809 return inherited::TransformExceptionSpec(Loc, ESI, Exceptions, Changed); 4810 } 4811 4812 QualType Apply(TypeLoc TL) { 4813 // Create some scratch storage for the transformed type locations. 4814 // FIXME: We're just going to throw this information away. Don't build it. 4815 TypeLocBuilder TLB; 4816 TLB.reserve(TL.getFullDataSize()); 4817 return TransformType(TLB, TL); 4818 } 4819 }; 4820 4821 } // namespace 4822 4823 static bool CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type, 4824 AutoTypeLoc TypeLoc, 4825 QualType Deduced) { 4826 ConstraintSatisfaction Satisfaction; 4827 ConceptDecl *Concept = Type.getTypeConstraintConcept(); 4828 TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(), 4829 TypeLoc.getRAngleLoc()); 4830 TemplateArgs.addArgument( 4831 TemplateArgumentLoc(TemplateArgument(Deduced), 4832 S.Context.getTrivialTypeSourceInfo( 4833 Deduced, TypeLoc.getNameLoc()))); 4834 for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I) 4835 TemplateArgs.addArgument(TypeLoc.getArgLoc(I)); 4836 4837 llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4838 if (S.CheckTemplateArgumentList(Concept, SourceLocation(), TemplateArgs, 4839 /*PartialTemplateArgs=*/false, 4840 SugaredConverted, CanonicalConverted)) 4841 return true; 4842 MultiLevelTemplateArgumentList MLTAL(Concept, CanonicalConverted, 4843 /*Final=*/false); 4844 if (S.CheckConstraintSatisfaction(Concept, {Concept->getConstraintExpr()}, 4845 MLTAL, TypeLoc.getLocalSourceRange(), 4846 Satisfaction)) 4847 return true; 4848 if (!Satisfaction.IsSatisfied) { 4849 std::string Buf; 4850 llvm::raw_string_ostream OS(Buf); 4851 OS << "'" << Concept->getName(); 4852 if (TypeLoc.hasExplicitTemplateArgs()) { 4853 printTemplateArgumentList( 4854 OS, Type.getTypeConstraintArguments(), S.getPrintingPolicy(), 4855 Type.getTypeConstraintConcept()->getTemplateParameters()); 4856 } 4857 OS << "'"; 4858 OS.flush(); 4859 S.Diag(TypeLoc.getConceptNameLoc(), 4860 diag::err_placeholder_constraints_not_satisfied) 4861 << Deduced << Buf << TypeLoc.getLocalSourceRange(); 4862 S.DiagnoseUnsatisfiedConstraint(Satisfaction); 4863 return true; 4864 } 4865 return false; 4866 } 4867 4868 /// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6) 4869 /// 4870 /// Note that this is done even if the initializer is dependent. (This is 4871 /// necessary to support partial ordering of templates using 'auto'.) 4872 /// A dependent type will be produced when deducing from a dependent type. 4873 /// 4874 /// \param Type the type pattern using the auto type-specifier. 4875 /// \param Init the initializer for the variable whose type is to be deduced. 4876 /// \param Result if type deduction was successful, this will be set to the 4877 /// deduced type. 4878 /// \param Info the argument will be updated to provide additional information 4879 /// about template argument deduction. 4880 /// \param DependentDeduction Set if we should permit deduction in 4881 /// dependent cases. This is necessary for template partial ordering with 4882 /// 'auto' template parameters. The template parameter depth to be used 4883 /// should be specified in the 'Info' parameter. 4884 /// \param IgnoreConstraints Set if we should not fail if the deduced type does 4885 /// not satisfy the type-constraint in the auto type. 4886 Sema::TemplateDeductionResult 4887 Sema::DeduceAutoType(TypeLoc Type, Expr *Init, QualType &Result, 4888 TemplateDeductionInfo &Info, bool DependentDeduction, 4889 bool IgnoreConstraints, 4890 TemplateSpecCandidateSet *FailedTSC) { 4891 assert(DependentDeduction || Info.getDeducedDepth() == 0); 4892 if (Init->containsErrors()) 4893 return TDK_AlreadyDiagnosed; 4894 4895 const AutoType *AT = Type.getType()->getContainedAutoType(); 4896 assert(AT); 4897 4898 if (Init->getType()->isNonOverloadPlaceholderType() || AT->isDecltypeAuto()) { 4899 ExprResult NonPlaceholder = CheckPlaceholderExpr(Init); 4900 if (NonPlaceholder.isInvalid()) 4901 return TDK_AlreadyDiagnosed; 4902 Init = NonPlaceholder.get(); 4903 } 4904 4905 DependentAuto DependentResult = { 4906 /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()}; 4907 4908 if (!DependentDeduction && 4909 (Type.getType()->isDependentType() || Init->isTypeDependent() || 4910 Init->containsUnexpandedParameterPack())) { 4911 Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4912 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4913 return TDK_Success; 4914 } 4915 4916 // Make sure that we treat 'char[]' equaly as 'char*' in C23 mode. 4917 auto *String = dyn_cast<StringLiteral>(Init); 4918 if (getLangOpts().C23 && String && Type.getType()->isArrayType()) { 4919 Diag(Type.getBeginLoc(), diag::ext_c23_auto_non_plain_identifier); 4920 TypeLoc TL = TypeLoc(Init->getType(), Type.getOpaqueData()); 4921 Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(TL); 4922 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4923 return TDK_Success; 4924 } 4925 4926 // Emit a warning if 'auto*' is used in pedantic and in C23 mode. 4927 if (getLangOpts().C23 && Type.getType()->isPointerType()) { 4928 Diag(Type.getBeginLoc(), diag::ext_c23_auto_non_plain_identifier); 4929 } 4930 4931 auto *InitList = dyn_cast<InitListExpr>(Init); 4932 if (!getLangOpts().CPlusPlus && InitList) { 4933 Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c) 4934 << (int)AT->getKeyword() << getLangOpts().C23; 4935 return TDK_AlreadyDiagnosed; 4936 } 4937 4938 // Deduce type of TemplParam in Func(Init) 4939 SmallVector<DeducedTemplateArgument, 1> Deduced; 4940 Deduced.resize(1); 4941 4942 // If deduction failed, don't diagnose if the initializer is dependent; it 4943 // might acquire a matching type in the instantiation. 4944 auto DeductionFailed = [&](TemplateDeductionResult TDK) { 4945 if (Init->isTypeDependent()) { 4946 Result = 4947 SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); 4948 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4949 return TDK_Success; 4950 } 4951 return TDK; 4952 }; 4953 4954 SmallVector<OriginalCallArg, 4> OriginalCallArgs; 4955 4956 QualType DeducedType; 4957 // If this is a 'decltype(auto)' specifier, do the decltype dance. 4958 if (AT->isDecltypeAuto()) { 4959 if (InitList) { 4960 Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list); 4961 return TDK_AlreadyDiagnosed; 4962 } 4963 4964 DeducedType = getDecltypeForExpr(Init); 4965 assert(!DeducedType.isNull()); 4966 } else { 4967 LocalInstantiationScope InstScope(*this); 4968 4969 // Build template<class TemplParam> void Func(FuncParam); 4970 SourceLocation Loc = Init->getExprLoc(); 4971 TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create( 4972 Context, nullptr, SourceLocation(), Loc, Info.getDeducedDepth(), 0, 4973 nullptr, false, false, false); 4974 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0); 4975 NamedDecl *TemplParamPtr = TemplParam; 4976 FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt( 4977 Context, Loc, Loc, TemplParamPtr, Loc, nullptr); 4978 4979 if (InitList) { 4980 // Notionally, we substitute std::initializer_list<T> for 'auto' and 4981 // deduce against that. Such deduction only succeeds if removing 4982 // cv-qualifiers and references results in std::initializer_list<T>. 4983 if (!Type.getType().getNonReferenceType()->getAs<AutoType>()) 4984 return TDK_Invalid; 4985 4986 SourceRange DeducedFromInitRange; 4987 for (Expr *Init : InitList->inits()) { 4988 // Resolving a core issue: a braced-init-list containing any designators 4989 // is a non-deduced context. 4990 if (isa<DesignatedInitExpr>(Init)) 4991 return TDK_Invalid; 4992 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 4993 *this, TemplateParamsSt.get(), 0, TemplArg, Init->getType(), 4994 Init->Classify(getASTContext()), Init, Info, Deduced, 4995 OriginalCallArgs, /*Decomposed=*/true, 4996 /*ArgIdx=*/0, /*TDF=*/0)) { 4997 if (TDK == TDK_Inconsistent) { 4998 Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction) 4999 << Info.FirstArg << Info.SecondArg << DeducedFromInitRange 5000 << Init->getSourceRange(); 5001 return DeductionFailed(TDK_AlreadyDiagnosed); 5002 } 5003 return DeductionFailed(TDK); 5004 } 5005 5006 if (DeducedFromInitRange.isInvalid() && 5007 Deduced[0].getKind() != TemplateArgument::Null) 5008 DeducedFromInitRange = Init->getSourceRange(); 5009 } 5010 } else { 5011 if (!getLangOpts().CPlusPlus && Init->refersToBitField()) { 5012 Diag(Loc, diag::err_auto_bitfield); 5013 return TDK_AlreadyDiagnosed; 5014 } 5015 QualType FuncParam = 5016 SubstituteDeducedTypeTransform(*this, TemplArg).Apply(Type); 5017 assert(!FuncParam.isNull() && 5018 "substituting template parameter for 'auto' failed"); 5019 if (auto TDK = DeduceTemplateArgumentsFromCallArgument( 5020 *this, TemplateParamsSt.get(), 0, FuncParam, Init->getType(), 5021 Init->Classify(getASTContext()), Init, Info, Deduced, 5022 OriginalCallArgs, /*Decomposed=*/false, /*ArgIdx=*/0, /*TDF=*/0, 5023 FailedTSC)) 5024 return DeductionFailed(TDK); 5025 } 5026 5027 // Could be null if somehow 'auto' appears in a non-deduced context. 5028 if (Deduced[0].getKind() != TemplateArgument::Type) 5029 return DeductionFailed(TDK_Incomplete); 5030 DeducedType = Deduced[0].getAsType(); 5031 5032 if (InitList) { 5033 DeducedType = BuildStdInitializerList(DeducedType, Loc); 5034 if (DeducedType.isNull()) 5035 return TDK_AlreadyDiagnosed; 5036 } 5037 } 5038 5039 if (!Result.isNull()) { 5040 if (!Context.hasSameType(DeducedType, Result)) { 5041 Info.FirstArg = Result; 5042 Info.SecondArg = DeducedType; 5043 return DeductionFailed(TDK_Inconsistent); 5044 } 5045 DeducedType = Context.getCommonSugaredType(Result, DeducedType); 5046 } 5047 5048 if (AT->isConstrained() && !IgnoreConstraints && 5049 CheckDeducedPlaceholderConstraints( 5050 *this, *AT, Type.getContainedAutoTypeLoc(), DeducedType)) 5051 return TDK_AlreadyDiagnosed; 5052 5053 Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type); 5054 if (Result.isNull()) 5055 return TDK_AlreadyDiagnosed; 5056 5057 // Check that the deduced argument type is compatible with the original 5058 // argument type per C++ [temp.deduct.call]p4. 5059 QualType DeducedA = InitList ? Deduced[0].getAsType() : Result; 5060 for (const OriginalCallArg &OriginalArg : OriginalCallArgs) { 5061 assert((bool)InitList == OriginalArg.DecomposedParam && 5062 "decomposed non-init-list in auto deduction?"); 5063 if (auto TDK = 5064 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) { 5065 Result = QualType(); 5066 return DeductionFailed(TDK); 5067 } 5068 } 5069 5070 return TDK_Success; 5071 } 5072 5073 QualType Sema::SubstAutoType(QualType TypeWithAuto, 5074 QualType TypeToReplaceAuto) { 5075 assert(TypeToReplaceAuto != Context.DependentTy); 5076 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 5077 .TransformType(TypeWithAuto); 5078 } 5079 5080 TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, 5081 QualType TypeToReplaceAuto) { 5082 assert(TypeToReplaceAuto != Context.DependentTy); 5083 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) 5084 .TransformType(TypeWithAuto); 5085 } 5086 5087 QualType Sema::SubstAutoTypeDependent(QualType TypeWithAuto) { 5088 return SubstituteDeducedTypeTransform(*this, DependentAuto{false}) 5089 .TransformType(TypeWithAuto); 5090 } 5091 5092 TypeSourceInfo * 5093 Sema::SubstAutoTypeSourceInfoDependent(TypeSourceInfo *TypeWithAuto) { 5094 return SubstituteDeducedTypeTransform(*this, DependentAuto{false}) 5095 .TransformType(TypeWithAuto); 5096 } 5097 5098 QualType Sema::ReplaceAutoType(QualType TypeWithAuto, 5099 QualType TypeToReplaceAuto) { 5100 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, 5101 /*UseTypeSugar*/ false) 5102 .TransformType(TypeWithAuto); 5103 } 5104 5105 TypeSourceInfo *Sema::ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, 5106 QualType TypeToReplaceAuto) { 5107 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, 5108 /*UseTypeSugar*/ false) 5109 .TransformType(TypeWithAuto); 5110 } 5111 5112 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) { 5113 if (isa<InitListExpr>(Init)) 5114 Diag(VDecl->getLocation(), 5115 VDecl->isInitCapture() 5116 ? diag::err_init_capture_deduction_failure_from_init_list 5117 : diag::err_auto_var_deduction_failure_from_init_list) 5118 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange(); 5119 else 5120 Diag(VDecl->getLocation(), 5121 VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure 5122 : diag::err_auto_var_deduction_failure) 5123 << VDecl->getDeclName() << VDecl->getType() << Init->getType() 5124 << Init->getSourceRange(); 5125 } 5126 5127 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, 5128 bool Diagnose) { 5129 assert(FD->getReturnType()->isUndeducedType()); 5130 5131 // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)' 5132 // within the return type from the call operator's type. 5133 if (isLambdaConversionOperator(FD)) { 5134 CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent(); 5135 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 5136 5137 // For a generic lambda, instantiate the call operator if needed. 5138 if (auto *Args = FD->getTemplateSpecializationArgs()) { 5139 CallOp = InstantiateFunctionDeclaration( 5140 CallOp->getDescribedFunctionTemplate(), Args, Loc); 5141 if (!CallOp || CallOp->isInvalidDecl()) 5142 return true; 5143 5144 // We might need to deduce the return type by instantiating the definition 5145 // of the operator() function. 5146 if (CallOp->getReturnType()->isUndeducedType()) { 5147 runWithSufficientStackSpace(Loc, [&] { 5148 InstantiateFunctionDefinition(Loc, CallOp); 5149 }); 5150 } 5151 } 5152 5153 if (CallOp->isInvalidDecl()) 5154 return true; 5155 assert(!CallOp->getReturnType()->isUndeducedType() && 5156 "failed to deduce lambda return type"); 5157 5158 // Build the new return type from scratch. 5159 CallingConv RetTyCC = FD->getReturnType() 5160 ->getPointeeType() 5161 ->castAs<FunctionType>() 5162 ->getCallConv(); 5163 QualType RetType = getLambdaConversionFunctionResultType( 5164 CallOp->getType()->castAs<FunctionProtoType>(), RetTyCC); 5165 if (FD->getReturnType()->getAs<PointerType>()) 5166 RetType = Context.getPointerType(RetType); 5167 else { 5168 assert(FD->getReturnType()->getAs<BlockPointerType>()); 5169 RetType = Context.getBlockPointerType(RetType); 5170 } 5171 Context.adjustDeducedFunctionResultType(FD, RetType); 5172 return false; 5173 } 5174 5175 if (FD->getTemplateInstantiationPattern()) { 5176 runWithSufficientStackSpace(Loc, [&] { 5177 InstantiateFunctionDefinition(Loc, FD); 5178 }); 5179 } 5180 5181 bool StillUndeduced = FD->getReturnType()->isUndeducedType(); 5182 if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) { 5183 Diag(Loc, diag::err_auto_fn_used_before_defined) << FD; 5184 Diag(FD->getLocation(), diag::note_callee_decl) << FD; 5185 } 5186 5187 return StillUndeduced; 5188 } 5189 5190 bool Sema::CheckIfFunctionSpecializationIsImmediate(FunctionDecl *FD, 5191 SourceLocation Loc) { 5192 assert(FD->isImmediateEscalating()); 5193 5194 if (isLambdaConversionOperator(FD)) { 5195 CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent(); 5196 FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); 5197 5198 // For a generic lambda, instantiate the call operator if needed. 5199 if (auto *Args = FD->getTemplateSpecializationArgs()) { 5200 CallOp = InstantiateFunctionDeclaration( 5201 CallOp->getDescribedFunctionTemplate(), Args, Loc); 5202 if (!CallOp || CallOp->isInvalidDecl()) 5203 return true; 5204 runWithSufficientStackSpace( 5205 Loc, [&] { InstantiateFunctionDefinition(Loc, CallOp); }); 5206 } 5207 return CallOp->isInvalidDecl(); 5208 } 5209 5210 if (FD->getTemplateInstantiationPattern()) { 5211 runWithSufficientStackSpace( 5212 Loc, [&] { InstantiateFunctionDefinition(Loc, FD); }); 5213 } 5214 return false; 5215 } 5216 5217 /// If this is a non-static member function, 5218 static void 5219 AddImplicitObjectParameterType(ASTContext &Context, 5220 CXXMethodDecl *Method, 5221 SmallVectorImpl<QualType> &ArgTypes) { 5222 // C++11 [temp.func.order]p3: 5223 // [...] The new parameter is of type "reference to cv A," where cv are 5224 // the cv-qualifiers of the function template (if any) and A is 5225 // the class of which the function template is a member. 5226 // 5227 // The standard doesn't say explicitly, but we pick the appropriate kind of 5228 // reference type based on [over.match.funcs]p4. 5229 assert(Method && Method->isImplicitObjectMemberFunction() && 5230 "expected an implicit objet function"); 5231 QualType ArgTy = Context.getTypeDeclType(Method->getParent()); 5232 ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers()); 5233 if (Method->getRefQualifier() == RQ_RValue) 5234 ArgTy = Context.getRValueReferenceType(ArgTy); 5235 else 5236 ArgTy = Context.getLValueReferenceType(ArgTy); 5237 ArgTypes.push_back(ArgTy); 5238 } 5239 5240 /// Determine whether the function template \p FT1 is at least as 5241 /// specialized as \p FT2. 5242 static bool isAtLeastAsSpecializedAs(Sema &S, 5243 SourceLocation Loc, 5244 FunctionTemplateDecl *FT1, 5245 FunctionTemplateDecl *FT2, 5246 TemplatePartialOrderingContext TPOC, 5247 unsigned NumCallArguments1, 5248 bool Reversed) { 5249 assert(!Reversed || TPOC == TPOC_Call); 5250 5251 FunctionDecl *FD1 = FT1->getTemplatedDecl(); 5252 FunctionDecl *FD2 = FT2->getTemplatedDecl(); 5253 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>(); 5254 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>(); 5255 5256 assert(Proto1 && Proto2 && "Function templates must have prototypes"); 5257 TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); 5258 SmallVector<DeducedTemplateArgument, 4> Deduced; 5259 Deduced.resize(TemplateParams->size()); 5260 5261 // C++0x [temp.deduct.partial]p3: 5262 // The types used to determine the ordering depend on the context in which 5263 // the partial ordering is done: 5264 TemplateDeductionInfo Info(Loc); 5265 SmallVector<QualType, 4> Args2; 5266 switch (TPOC) { 5267 case TPOC_Call: { 5268 // - In the context of a function call, the function parameter types are 5269 // used. 5270 CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1); 5271 CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2); 5272 5273 // C++11 [temp.func.order]p3: 5274 // [...] If only one of the function templates is a non-static 5275 // member, that function template is considered to have a new 5276 // first parameter inserted in its function parameter list. The 5277 // new parameter is of type "reference to cv A," where cv are 5278 // the cv-qualifiers of the function template (if any) and A is 5279 // the class of which the function template is a member. 5280 // 5281 // Note that we interpret this to mean "if one of the function 5282 // templates is a non-static member and the other is a non-member"; 5283 // otherwise, the ordering rules for static functions against non-static 5284 // functions don't make any sense. 5285 // 5286 // C++98/03 doesn't have this provision but we've extended DR532 to cover 5287 // it as wording was broken prior to it. 5288 SmallVector<QualType, 4> Args1; 5289 5290 unsigned NumComparedArguments = NumCallArguments1; 5291 5292 if (!Method2 && Method1 && Method1->isImplicitObjectMemberFunction()) { 5293 // Compare 'this' from Method1 against first parameter from Method2. 5294 AddImplicitObjectParameterType(S.Context, Method1, Args1); 5295 ++NumComparedArguments; 5296 } else if (!Method1 && Method2 && 5297 Method2->isImplicitObjectMemberFunction()) { 5298 // Compare 'this' from Method2 against first parameter from Method1. 5299 AddImplicitObjectParameterType(S.Context, Method2, Args2); 5300 } else if (Method1 && Method2 && Reversed && 5301 Method1->isImplicitObjectMemberFunction() && 5302 Method2->isImplicitObjectMemberFunction()) { 5303 // Compare 'this' from Method1 against second parameter from Method2 5304 // and 'this' from Method2 against second parameter from Method1. 5305 AddImplicitObjectParameterType(S.Context, Method1, Args1); 5306 AddImplicitObjectParameterType(S.Context, Method2, Args2); 5307 ++NumComparedArguments; 5308 } 5309 5310 Args1.insert(Args1.end(), Proto1->param_type_begin(), 5311 Proto1->param_type_end()); 5312 Args2.insert(Args2.end(), Proto2->param_type_begin(), 5313 Proto2->param_type_end()); 5314 5315 // C++ [temp.func.order]p5: 5316 // The presence of unused ellipsis and default arguments has no effect on 5317 // the partial ordering of function templates. 5318 if (Args1.size() > NumComparedArguments) 5319 Args1.resize(NumComparedArguments); 5320 if (Args2.size() > NumComparedArguments) 5321 Args2.resize(NumComparedArguments); 5322 if (Reversed) 5323 std::reverse(Args2.begin(), Args2.end()); 5324 5325 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(), 5326 Args1.data(), Args1.size(), Info, Deduced, 5327 TDF_None, /*PartialOrdering=*/true)) 5328 return false; 5329 5330 break; 5331 } 5332 5333 case TPOC_Conversion: 5334 // - In the context of a call to a conversion operator, the return types 5335 // of the conversion function templates are used. 5336 if (DeduceTemplateArgumentsByTypeMatch( 5337 S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(), 5338 Info, Deduced, TDF_None, 5339 /*PartialOrdering=*/true)) 5340 return false; 5341 break; 5342 5343 case TPOC_Other: 5344 // - In other contexts (14.6.6.2) the function template's function type 5345 // is used. 5346 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 5347 FD2->getType(), FD1->getType(), 5348 Info, Deduced, TDF_None, 5349 /*PartialOrdering=*/true)) 5350 return false; 5351 break; 5352 } 5353 5354 // C++0x [temp.deduct.partial]p11: 5355 // In most cases, all template parameters must have values in order for 5356 // deduction to succeed, but for partial ordering purposes a template 5357 // parameter may remain without a value provided it is not used in the 5358 // types being used for partial ordering. [ Note: a template parameter used 5359 // in a non-deduced context is considered used. -end note] 5360 unsigned ArgIdx = 0, NumArgs = Deduced.size(); 5361 for (; ArgIdx != NumArgs; ++ArgIdx) 5362 if (Deduced[ArgIdx].isNull()) 5363 break; 5364 5365 // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need 5366 // to substitute the deduced arguments back into the template and check that 5367 // we get the right type. 5368 5369 if (ArgIdx == NumArgs) { 5370 // All template arguments were deduced. FT1 is at least as specialized 5371 // as FT2. 5372 return true; 5373 } 5374 5375 // Figure out which template parameters were used. 5376 llvm::SmallBitVector UsedParameters(TemplateParams->size()); 5377 switch (TPOC) { 5378 case TPOC_Call: 5379 for (unsigned I = 0, N = Args2.size(); I != N; ++I) 5380 ::MarkUsedTemplateParameters(S.Context, Args2[I], false, 5381 TemplateParams->getDepth(), 5382 UsedParameters); 5383 break; 5384 5385 case TPOC_Conversion: 5386 ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false, 5387 TemplateParams->getDepth(), UsedParameters); 5388 break; 5389 5390 case TPOC_Other: 5391 ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false, 5392 TemplateParams->getDepth(), 5393 UsedParameters); 5394 break; 5395 } 5396 5397 for (; ArgIdx != NumArgs; ++ArgIdx) 5398 // If this argument had no value deduced but was used in one of the types 5399 // used for partial ordering, then deduction fails. 5400 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) 5401 return false; 5402 5403 return true; 5404 } 5405 5406 /// Returns the more specialized function template according 5407 /// to the rules of function template partial ordering (C++ [temp.func.order]). 5408 /// 5409 /// \param FT1 the first function template 5410 /// 5411 /// \param FT2 the second function template 5412 /// 5413 /// \param TPOC the context in which we are performing partial ordering of 5414 /// function templates. 5415 /// 5416 /// \param NumCallArguments1 The number of arguments in the call to FT1, used 5417 /// only when \c TPOC is \c TPOC_Call. 5418 /// 5419 /// \param NumCallArguments2 The number of arguments in the call to FT2, used 5420 /// only when \c TPOC is \c TPOC_Call. 5421 /// 5422 /// \param Reversed If \c true, exactly one of FT1 and FT2 is an overload 5423 /// candidate with a reversed parameter order. In this case, the corresponding 5424 /// P/A pairs between FT1 and FT2 are reversed. 5425 /// 5426 /// \returns the more specialized function template. If neither 5427 /// template is more specialized, returns NULL. 5428 FunctionTemplateDecl *Sema::getMoreSpecializedTemplate( 5429 FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc, 5430 TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1, 5431 unsigned NumCallArguments2, bool Reversed) { 5432 5433 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 5434 NumCallArguments1, Reversed); 5435 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, 5436 NumCallArguments2, Reversed); 5437 5438 // C++ [temp.deduct.partial]p10: 5439 // F is more specialized than G if F is at least as specialized as G and G 5440 // is not at least as specialized as F. 5441 if (Better1 != Better2) // We have a clear winner 5442 return Better1 ? FT1 : FT2; 5443 5444 if (!Better1 && !Better2) // Neither is better than the other 5445 return nullptr; 5446 5447 // C++ [temp.deduct.partial]p11: 5448 // ... and if G has a trailing function parameter pack for which F does not 5449 // have a corresponding parameter, and if F does not have a trailing 5450 // function parameter pack, then F is more specialized than G. 5451 FunctionDecl *FD1 = FT1->getTemplatedDecl(); 5452 FunctionDecl *FD2 = FT2->getTemplatedDecl(); 5453 unsigned NumParams1 = FD1->getNumParams(); 5454 unsigned NumParams2 = FD2->getNumParams(); 5455 bool Variadic1 = NumParams1 && FD1->parameters().back()->isParameterPack(); 5456 bool Variadic2 = NumParams2 && FD2->parameters().back()->isParameterPack(); 5457 if (Variadic1 != Variadic2) { 5458 if (Variadic1 && NumParams1 > NumParams2) 5459 return FT2; 5460 if (Variadic2 && NumParams2 > NumParams1) 5461 return FT1; 5462 } 5463 5464 // This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that 5465 // there is no wording or even resolution for this issue. 5466 for (int i = 0, e = std::min(NumParams1, NumParams2); i < e; ++i) { 5467 QualType T1 = FD1->getParamDecl(i)->getType().getCanonicalType(); 5468 QualType T2 = FD2->getParamDecl(i)->getType().getCanonicalType(); 5469 auto *TST1 = dyn_cast<TemplateSpecializationType>(T1); 5470 auto *TST2 = dyn_cast<TemplateSpecializationType>(T2); 5471 if (!TST1 || !TST2) 5472 continue; 5473 const TemplateArgument &TA1 = TST1->template_arguments().back(); 5474 if (TA1.getKind() == TemplateArgument::Pack) { 5475 assert(TST1->template_arguments().size() == 5476 TST2->template_arguments().size()); 5477 const TemplateArgument &TA2 = TST2->template_arguments().back(); 5478 assert(TA2.getKind() == TemplateArgument::Pack); 5479 unsigned PackSize1 = TA1.pack_size(); 5480 unsigned PackSize2 = TA2.pack_size(); 5481 bool IsPackExpansion1 = 5482 PackSize1 && TA1.pack_elements().back().isPackExpansion(); 5483 bool IsPackExpansion2 = 5484 PackSize2 && TA2.pack_elements().back().isPackExpansion(); 5485 if (PackSize1 != PackSize2 && IsPackExpansion1 != IsPackExpansion2) { 5486 if (PackSize1 > PackSize2 && IsPackExpansion1) 5487 return FT2; 5488 if (PackSize1 < PackSize2 && IsPackExpansion2) 5489 return FT1; 5490 } 5491 } 5492 } 5493 5494 if (!Context.getLangOpts().CPlusPlus20) 5495 return nullptr; 5496 5497 // Match GCC on not implementing [temp.func.order]p6.2.1. 5498 5499 // C++20 [temp.func.order]p6: 5500 // If deduction against the other template succeeds for both transformed 5501 // templates, constraints can be considered as follows: 5502 5503 // C++20 [temp.func.order]p6.1: 5504 // If their template-parameter-lists (possibly including template-parameters 5505 // invented for an abbreviated function template ([dcl.fct])) or function 5506 // parameter lists differ in length, neither template is more specialized 5507 // than the other. 5508 TemplateParameterList *TPL1 = FT1->getTemplateParameters(); 5509 TemplateParameterList *TPL2 = FT2->getTemplateParameters(); 5510 if (TPL1->size() != TPL2->size() || NumParams1 != NumParams2) 5511 return nullptr; 5512 5513 // C++20 [temp.func.order]p6.2.2: 5514 // Otherwise, if the corresponding template-parameters of the 5515 // template-parameter-lists are not equivalent ([temp.over.link]) or if the 5516 // function parameters that positionally correspond between the two 5517 // templates are not of the same type, neither template is more specialized 5518 // than the other. 5519 if (!TemplateParameterListsAreEqual(TPL1, TPL2, false, 5520 Sema::TPL_TemplateParamsEquivalent)) 5521 return nullptr; 5522 5523 for (unsigned i = 0; i < NumParams1; ++i) 5524 if (!Context.hasSameType(FD1->getParamDecl(i)->getType(), 5525 FD2->getParamDecl(i)->getType())) 5526 return nullptr; 5527 5528 // C++20 [temp.func.order]p6.3: 5529 // Otherwise, if the context in which the partial ordering is done is 5530 // that of a call to a conversion function and the return types of the 5531 // templates are not the same, then neither template is more specialized 5532 // than the other. 5533 if (TPOC == TPOC_Conversion && 5534 !Context.hasSameType(FD1->getReturnType(), FD2->getReturnType())) 5535 return nullptr; 5536 5537 llvm::SmallVector<const Expr *, 3> AC1, AC2; 5538 FT1->getAssociatedConstraints(AC1); 5539 FT2->getAssociatedConstraints(AC2); 5540 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 5541 if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1)) 5542 return nullptr; 5543 if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2)) 5544 return nullptr; 5545 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 5546 return nullptr; 5547 return AtLeastAsConstrained1 ? FT1 : FT2; 5548 } 5549 5550 /// Determine if the two templates are equivalent. 5551 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) { 5552 if (T1 == T2) 5553 return true; 5554 5555 if (!T1 || !T2) 5556 return false; 5557 5558 return T1->getCanonicalDecl() == T2->getCanonicalDecl(); 5559 } 5560 5561 /// Retrieve the most specialized of the given function template 5562 /// specializations. 5563 /// 5564 /// \param SpecBegin the start iterator of the function template 5565 /// specializations that we will be comparing. 5566 /// 5567 /// \param SpecEnd the end iterator of the function template 5568 /// specializations, paired with \p SpecBegin. 5569 /// 5570 /// \param Loc the location where the ambiguity or no-specializations 5571 /// diagnostic should occur. 5572 /// 5573 /// \param NoneDiag partial diagnostic used to diagnose cases where there are 5574 /// no matching candidates. 5575 /// 5576 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one 5577 /// occurs. 5578 /// 5579 /// \param CandidateDiag partial diagnostic used for each function template 5580 /// specialization that is a candidate in the ambiguous ordering. One parameter 5581 /// in this diagnostic should be unbound, which will correspond to the string 5582 /// describing the template arguments for the function template specialization. 5583 /// 5584 /// \returns the most specialized function template specialization, if 5585 /// found. Otherwise, returns SpecEnd. 5586 UnresolvedSetIterator Sema::getMostSpecialized( 5587 UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd, 5588 TemplateSpecCandidateSet &FailedCandidates, 5589 SourceLocation Loc, const PartialDiagnostic &NoneDiag, 5590 const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, 5591 bool Complain, QualType TargetType) { 5592 if (SpecBegin == SpecEnd) { 5593 if (Complain) { 5594 Diag(Loc, NoneDiag); 5595 FailedCandidates.NoteCandidates(*this, Loc); 5596 } 5597 return SpecEnd; 5598 } 5599 5600 if (SpecBegin + 1 == SpecEnd) 5601 return SpecBegin; 5602 5603 // Find the function template that is better than all of the templates it 5604 // has been compared to. 5605 UnresolvedSetIterator Best = SpecBegin; 5606 FunctionTemplateDecl *BestTemplate 5607 = cast<FunctionDecl>(*Best)->getPrimaryTemplate(); 5608 assert(BestTemplate && "Not a function template specialization?"); 5609 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) { 5610 FunctionTemplateDecl *Challenger 5611 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 5612 assert(Challenger && "Not a function template specialization?"); 5613 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 5614 Loc, TPOC_Other, 0, 0), 5615 Challenger)) { 5616 Best = I; 5617 BestTemplate = Challenger; 5618 } 5619 } 5620 5621 // Make sure that the "best" function template is more specialized than all 5622 // of the others. 5623 bool Ambiguous = false; 5624 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 5625 FunctionTemplateDecl *Challenger 5626 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 5627 if (I != Best && 5628 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 5629 Loc, TPOC_Other, 0, 0), 5630 BestTemplate)) { 5631 Ambiguous = true; 5632 break; 5633 } 5634 } 5635 5636 if (!Ambiguous) { 5637 // We found an answer. Return it. 5638 return Best; 5639 } 5640 5641 // Diagnose the ambiguity. 5642 if (Complain) { 5643 Diag(Loc, AmbigDiag); 5644 5645 // FIXME: Can we order the candidates in some sane way? 5646 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 5647 PartialDiagnostic PD = CandidateDiag; 5648 const auto *FD = cast<FunctionDecl>(*I); 5649 PD << FD << getTemplateArgumentBindingsText( 5650 FD->getPrimaryTemplate()->getTemplateParameters(), 5651 *FD->getTemplateSpecializationArgs()); 5652 if (!TargetType.isNull()) 5653 HandleFunctionTypeMismatch(PD, FD->getType(), TargetType); 5654 Diag((*I)->getLocation(), PD); 5655 } 5656 } 5657 5658 return SpecEnd; 5659 } 5660 5661 /// Determine whether one partial specialization, P1, is at least as 5662 /// specialized than another, P2. 5663 /// 5664 /// \tparam TemplateLikeDecl The kind of P2, which must be a 5665 /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl. 5666 /// \param T1 The injected-class-name of P1 (faked for a variable template). 5667 /// \param T2 The injected-class-name of P2 (faked for a variable template). 5668 template<typename TemplateLikeDecl> 5669 static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2, 5670 TemplateLikeDecl *P2, 5671 TemplateDeductionInfo &Info) { 5672 // C++ [temp.class.order]p1: 5673 // For two class template partial specializations, the first is at least as 5674 // specialized as the second if, given the following rewrite to two 5675 // function templates, the first function template is at least as 5676 // specialized as the second according to the ordering rules for function 5677 // templates (14.6.6.2): 5678 // - the first function template has the same template parameters as the 5679 // first partial specialization and has a single function parameter 5680 // whose type is a class template specialization with the template 5681 // arguments of the first partial specialization, and 5682 // - the second function template has the same template parameters as the 5683 // second partial specialization and has a single function parameter 5684 // whose type is a class template specialization with the template 5685 // arguments of the second partial specialization. 5686 // 5687 // Rather than synthesize function templates, we merely perform the 5688 // equivalent partial ordering by performing deduction directly on 5689 // the template arguments of the class template partial 5690 // specializations. This computation is slightly simpler than the 5691 // general problem of function template partial ordering, because 5692 // class template partial specializations are more constrained. We 5693 // know that every template parameter is deducible from the class 5694 // template partial specialization's template arguments, for 5695 // example. 5696 SmallVector<DeducedTemplateArgument, 4> Deduced; 5697 5698 // Determine whether P1 is at least as specialized as P2. 5699 Deduced.resize(P2->getTemplateParameters()->size()); 5700 if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(), 5701 T2, T1, Info, Deduced, TDF_None, 5702 /*PartialOrdering=*/true)) 5703 return false; 5704 5705 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), 5706 Deduced.end()); 5707 Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs, 5708 Info); 5709 if (Inst.isInvalid()) 5710 return false; 5711 5712 const auto *TST1 = cast<TemplateSpecializationType>(T1); 5713 bool AtLeastAsSpecialized; 5714 S.runWithSufficientStackSpace(Info.getLocation(), [&] { 5715 AtLeastAsSpecialized = !FinishTemplateArgumentDeduction( 5716 S, P2, /*IsPartialOrdering=*/true, 5717 TemplateArgumentList(TemplateArgumentList::OnStack, 5718 TST1->template_arguments()), 5719 Deduced, Info); 5720 }); 5721 return AtLeastAsSpecialized; 5722 } 5723 5724 namespace { 5725 // A dummy class to return nullptr instead of P2 when performing "more 5726 // specialized than primary" check. 5727 struct GetP2 { 5728 template <typename T1, typename T2, 5729 std::enable_if_t<std::is_same_v<T1, T2>, bool> = true> 5730 T2 *operator()(T1 *, T2 *P2) { 5731 return P2; 5732 } 5733 template <typename T1, typename T2, 5734 std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true> 5735 T1 *operator()(T1 *, T2 *) { 5736 return nullptr; 5737 } 5738 }; 5739 5740 // The assumption is that two template argument lists have the same size. 5741 struct TemplateArgumentListAreEqual { 5742 ASTContext &Ctx; 5743 TemplateArgumentListAreEqual(ASTContext &Ctx) : Ctx(Ctx) {} 5744 5745 template <typename T1, typename T2, 5746 std::enable_if_t<std::is_same_v<T1, T2>, bool> = true> 5747 bool operator()(T1 *PS1, T2 *PS2) { 5748 ArrayRef<TemplateArgument> Args1 = PS1->getTemplateArgs().asArray(), 5749 Args2 = PS2->getTemplateArgs().asArray(); 5750 5751 for (unsigned I = 0, E = Args1.size(); I < E; ++I) { 5752 // We use profile, instead of structural comparison of the arguments, 5753 // because canonicalization can't do the right thing for dependent 5754 // expressions. 5755 llvm::FoldingSetNodeID IDA, IDB; 5756 Args1[I].Profile(IDA, Ctx); 5757 Args2[I].Profile(IDB, Ctx); 5758 if (IDA != IDB) 5759 return false; 5760 } 5761 return true; 5762 } 5763 5764 template <typename T1, typename T2, 5765 std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true> 5766 bool operator()(T1 *Spec, T2 *Primary) { 5767 ArrayRef<TemplateArgument> Args1 = Spec->getTemplateArgs().asArray(), 5768 Args2 = Primary->getInjectedTemplateArgs(); 5769 5770 for (unsigned I = 0, E = Args1.size(); I < E; ++I) { 5771 // We use profile, instead of structural comparison of the arguments, 5772 // because canonicalization can't do the right thing for dependent 5773 // expressions. 5774 llvm::FoldingSetNodeID IDA, IDB; 5775 Args1[I].Profile(IDA, Ctx); 5776 // Unlike the specialization arguments, the injected arguments are not 5777 // always canonical. 5778 Ctx.getCanonicalTemplateArgument(Args2[I]).Profile(IDB, Ctx); 5779 if (IDA != IDB) 5780 return false; 5781 } 5782 return true; 5783 } 5784 }; 5785 } // namespace 5786 5787 /// Returns the more specialized template specialization between T1/P1 and 5788 /// T2/P2. 5789 /// - If IsMoreSpecialThanPrimaryCheck is true, T1/P1 is the partial 5790 /// specialization and T2/P2 is the primary template. 5791 /// - otherwise, both T1/P1 and T2/P2 are the partial specialization. 5792 /// 5793 /// \param T1 the type of the first template partial specialization 5794 /// 5795 /// \param T2 if IsMoreSpecialThanPrimaryCheck is true, the type of the second 5796 /// template partial specialization; otherwise, the type of the 5797 /// primary template. 5798 /// 5799 /// \param P1 the first template partial specialization 5800 /// 5801 /// \param P2 if IsMoreSpecialThanPrimaryCheck is true, the second template 5802 /// partial specialization; otherwise, the primary template. 5803 /// 5804 /// \returns - If IsMoreSpecialThanPrimaryCheck is true, returns P1 if P1 is 5805 /// more specialized, returns nullptr if P1 is not more specialized. 5806 /// - otherwise, returns the more specialized template partial 5807 /// specialization. If neither partial specialization is more 5808 /// specialized, returns NULL. 5809 template <typename TemplateLikeDecl, typename PrimaryDel> 5810 static TemplateLikeDecl * 5811 getMoreSpecialized(Sema &S, QualType T1, QualType T2, TemplateLikeDecl *P1, 5812 PrimaryDel *P2, TemplateDeductionInfo &Info) { 5813 constexpr bool IsMoreSpecialThanPrimaryCheck = 5814 !std::is_same_v<TemplateLikeDecl, PrimaryDel>; 5815 5816 bool Better1 = isAtLeastAsSpecializedAs(S, T1, T2, P2, Info); 5817 if (IsMoreSpecialThanPrimaryCheck && !Better1) 5818 return nullptr; 5819 5820 bool Better2 = isAtLeastAsSpecializedAs(S, T2, T1, P1, Info); 5821 if (IsMoreSpecialThanPrimaryCheck && !Better2) 5822 return P1; 5823 5824 // C++ [temp.deduct.partial]p10: 5825 // F is more specialized than G if F is at least as specialized as G and G 5826 // is not at least as specialized as F. 5827 if (Better1 != Better2) // We have a clear winner 5828 return Better1 ? P1 : GetP2()(P1, P2); 5829 5830 if (!Better1 && !Better2) 5831 return nullptr; 5832 5833 // This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that 5834 // there is no wording or even resolution for this issue. 5835 auto *TST1 = cast<TemplateSpecializationType>(T1); 5836 auto *TST2 = cast<TemplateSpecializationType>(T2); 5837 const TemplateArgument &TA1 = TST1->template_arguments().back(); 5838 if (TA1.getKind() == TemplateArgument::Pack) { 5839 assert(TST1->template_arguments().size() == 5840 TST2->template_arguments().size()); 5841 const TemplateArgument &TA2 = TST2->template_arguments().back(); 5842 assert(TA2.getKind() == TemplateArgument::Pack); 5843 unsigned PackSize1 = TA1.pack_size(); 5844 unsigned PackSize2 = TA2.pack_size(); 5845 bool IsPackExpansion1 = 5846 PackSize1 && TA1.pack_elements().back().isPackExpansion(); 5847 bool IsPackExpansion2 = 5848 PackSize2 && TA2.pack_elements().back().isPackExpansion(); 5849 if (PackSize1 != PackSize2 && IsPackExpansion1 != IsPackExpansion2) { 5850 if (PackSize1 > PackSize2 && IsPackExpansion1) 5851 return GetP2()(P1, P2); 5852 if (PackSize1 < PackSize2 && IsPackExpansion2) 5853 return P1; 5854 } 5855 } 5856 5857 if (!S.Context.getLangOpts().CPlusPlus20) 5858 return nullptr; 5859 5860 // Match GCC on not implementing [temp.func.order]p6.2.1. 5861 5862 // C++20 [temp.func.order]p6: 5863 // If deduction against the other template succeeds for both transformed 5864 // templates, constraints can be considered as follows: 5865 5866 TemplateParameterList *TPL1 = P1->getTemplateParameters(); 5867 TemplateParameterList *TPL2 = P2->getTemplateParameters(); 5868 if (TPL1->size() != TPL2->size()) 5869 return nullptr; 5870 5871 // C++20 [temp.func.order]p6.2.2: 5872 // Otherwise, if the corresponding template-parameters of the 5873 // template-parameter-lists are not equivalent ([temp.over.link]) or if the 5874 // function parameters that positionally correspond between the two 5875 // templates are not of the same type, neither template is more specialized 5876 // than the other. 5877 if (!S.TemplateParameterListsAreEqual(TPL1, TPL2, false, 5878 Sema::TPL_TemplateParamsEquivalent)) 5879 return nullptr; 5880 5881 if (!TemplateArgumentListAreEqual(S.getASTContext())(P1, P2)) 5882 return nullptr; 5883 5884 llvm::SmallVector<const Expr *, 3> AC1, AC2; 5885 P1->getAssociatedConstraints(AC1); 5886 P2->getAssociatedConstraints(AC2); 5887 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 5888 if (S.IsAtLeastAsConstrained(P1, AC1, P2, AC2, AtLeastAsConstrained1) || 5889 (IsMoreSpecialThanPrimaryCheck && !AtLeastAsConstrained1)) 5890 return nullptr; 5891 if (S.IsAtLeastAsConstrained(P2, AC2, P1, AC1, AtLeastAsConstrained2)) 5892 return nullptr; 5893 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 5894 return nullptr; 5895 return AtLeastAsConstrained1 ? P1 : GetP2()(P1, P2); 5896 } 5897 5898 /// Returns the more specialized class template partial specialization 5899 /// according to the rules of partial ordering of class template partial 5900 /// specializations (C++ [temp.class.order]). 5901 /// 5902 /// \param PS1 the first class template partial specialization 5903 /// 5904 /// \param PS2 the second class template partial specialization 5905 /// 5906 /// \returns the more specialized class template partial specialization. If 5907 /// neither partial specialization is more specialized, returns NULL. 5908 ClassTemplatePartialSpecializationDecl * 5909 Sema::getMoreSpecializedPartialSpecialization( 5910 ClassTemplatePartialSpecializationDecl *PS1, 5911 ClassTemplatePartialSpecializationDecl *PS2, 5912 SourceLocation Loc) { 5913 QualType PT1 = PS1->getInjectedSpecializationType(); 5914 QualType PT2 = PS2->getInjectedSpecializationType(); 5915 5916 TemplateDeductionInfo Info(Loc); 5917 return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info); 5918 } 5919 5920 bool Sema::isMoreSpecializedThanPrimary( 5921 ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5922 ClassTemplateDecl *Primary = Spec->getSpecializedTemplate(); 5923 QualType PrimaryT = Primary->getInjectedClassNameSpecialization(); 5924 QualType PartialT = Spec->getInjectedSpecializationType(); 5925 5926 ClassTemplatePartialSpecializationDecl *MaybeSpec = 5927 getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info); 5928 if (MaybeSpec) 5929 Info.clearSFINAEDiagnostic(); 5930 return MaybeSpec; 5931 } 5932 5933 VarTemplatePartialSpecializationDecl * 5934 Sema::getMoreSpecializedPartialSpecialization( 5935 VarTemplatePartialSpecializationDecl *PS1, 5936 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) { 5937 // Pretend the variable template specializations are class template 5938 // specializations and form a fake injected class name type for comparison. 5939 assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() && 5940 "the partial specializations being compared should specialize" 5941 " the same template."); 5942 TemplateName Name(PS1->getSpecializedTemplate()); 5943 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5944 QualType PT1 = Context.getTemplateSpecializationType( 5945 CanonTemplate, PS1->getTemplateArgs().asArray()); 5946 QualType PT2 = Context.getTemplateSpecializationType( 5947 CanonTemplate, PS2->getTemplateArgs().asArray()); 5948 5949 TemplateDeductionInfo Info(Loc); 5950 return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info); 5951 } 5952 5953 bool Sema::isMoreSpecializedThanPrimary( 5954 VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { 5955 VarTemplateDecl *Primary = Spec->getSpecializedTemplate(); 5956 TemplateName CanonTemplate = 5957 Context.getCanonicalTemplateName(TemplateName(Primary)); 5958 QualType PrimaryT = Context.getTemplateSpecializationType( 5959 CanonTemplate, Primary->getInjectedTemplateArgs()); 5960 QualType PartialT = Context.getTemplateSpecializationType( 5961 CanonTemplate, Spec->getTemplateArgs().asArray()); 5962 5963 VarTemplatePartialSpecializationDecl *MaybeSpec = 5964 getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info); 5965 if (MaybeSpec) 5966 Info.clearSFINAEDiagnostic(); 5967 return MaybeSpec; 5968 } 5969 5970 bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs( 5971 TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) { 5972 // C++1z [temp.arg.template]p4: (DR 150) 5973 // A template template-parameter P is at least as specialized as a 5974 // template template-argument A if, given the following rewrite to two 5975 // function templates... 5976 5977 // Rather than synthesize function templates, we merely perform the 5978 // equivalent partial ordering by performing deduction directly on 5979 // the template parameter lists of the template template parameters. 5980 // 5981 // Given an invented class template X with the template parameter list of 5982 // A (including default arguments): 5983 TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg)); 5984 TemplateParameterList *A = AArg->getTemplateParameters(); 5985 5986 // - Each function template has a single function parameter whose type is 5987 // a specialization of X with template arguments corresponding to the 5988 // template parameters from the respective function template 5989 SmallVector<TemplateArgument, 8> AArgs; 5990 Context.getInjectedTemplateArgs(A, AArgs); 5991 5992 // Check P's arguments against A's parameter list. This will fill in default 5993 // template arguments as needed. AArgs are already correct by construction. 5994 // We can't just use CheckTemplateIdType because that will expand alias 5995 // templates. 5996 SmallVector<TemplateArgument, 4> PArgs; 5997 { 5998 SFINAETrap Trap(*this); 5999 6000 Context.getInjectedTemplateArgs(P, PArgs); 6001 TemplateArgumentListInfo PArgList(P->getLAngleLoc(), 6002 P->getRAngleLoc()); 6003 for (unsigned I = 0, N = P->size(); I != N; ++I) { 6004 // Unwrap packs that getInjectedTemplateArgs wrapped around pack 6005 // expansions, to form an "as written" argument list. 6006 TemplateArgument Arg = PArgs[I]; 6007 if (Arg.getKind() == TemplateArgument::Pack) { 6008 assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion()); 6009 Arg = *Arg.pack_begin(); 6010 } 6011 PArgList.addArgument(getTrivialTemplateArgumentLoc( 6012 Arg, QualType(), P->getParam(I)->getLocation())); 6013 } 6014 PArgs.clear(); 6015 6016 // C++1z [temp.arg.template]p3: 6017 // If the rewrite produces an invalid type, then P is not at least as 6018 // specialized as A. 6019 SmallVector<TemplateArgument, 4> SugaredPArgs; 6020 if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, SugaredPArgs, 6021 PArgs) || 6022 Trap.hasErrorOccurred()) 6023 return false; 6024 } 6025 6026 QualType AType = Context.getCanonicalTemplateSpecializationType(X, AArgs); 6027 QualType PType = Context.getCanonicalTemplateSpecializationType(X, PArgs); 6028 6029 // ... the function template corresponding to P is at least as specialized 6030 // as the function template corresponding to A according to the partial 6031 // ordering rules for function templates. 6032 TemplateDeductionInfo Info(Loc, A->getDepth()); 6033 return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info); 6034 } 6035 6036 namespace { 6037 struct MarkUsedTemplateParameterVisitor : 6038 RecursiveASTVisitor<MarkUsedTemplateParameterVisitor> { 6039 llvm::SmallBitVector &Used; 6040 unsigned Depth; 6041 6042 MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used, 6043 unsigned Depth) 6044 : Used(Used), Depth(Depth) { } 6045 6046 bool VisitTemplateTypeParmType(TemplateTypeParmType *T) { 6047 if (T->getDepth() == Depth) 6048 Used[T->getIndex()] = true; 6049 return true; 6050 } 6051 6052 bool TraverseTemplateName(TemplateName Template) { 6053 if (auto *TTP = llvm::dyn_cast_or_null<TemplateTemplateParmDecl>( 6054 Template.getAsTemplateDecl())) 6055 if (TTP->getDepth() == Depth) 6056 Used[TTP->getIndex()] = true; 6057 RecursiveASTVisitor<MarkUsedTemplateParameterVisitor>:: 6058 TraverseTemplateName(Template); 6059 return true; 6060 } 6061 6062 bool VisitDeclRefExpr(DeclRefExpr *E) { 6063 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 6064 if (NTTP->getDepth() == Depth) 6065 Used[NTTP->getIndex()] = true; 6066 return true; 6067 } 6068 }; 6069 } 6070 6071 /// Mark the template parameters that are used by the given 6072 /// expression. 6073 static void 6074 MarkUsedTemplateParameters(ASTContext &Ctx, 6075 const Expr *E, 6076 bool OnlyDeduced, 6077 unsigned Depth, 6078 llvm::SmallBitVector &Used) { 6079 if (!OnlyDeduced) { 6080 MarkUsedTemplateParameterVisitor(Used, Depth) 6081 .TraverseStmt(const_cast<Expr *>(E)); 6082 return; 6083 } 6084 6085 // We can deduce from a pack expansion. 6086 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E)) 6087 E = Expansion->getPattern(); 6088 6089 const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(E, Depth); 6090 if (!NTTP) 6091 return; 6092 6093 if (NTTP->getDepth() == Depth) 6094 Used[NTTP->getIndex()] = true; 6095 6096 // In C++17 mode, additional arguments may be deduced from the type of a 6097 // non-type argument. 6098 if (Ctx.getLangOpts().CPlusPlus17) 6099 MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used); 6100 } 6101 6102 /// Mark the template parameters that are used by the given 6103 /// nested name specifier. 6104 static void 6105 MarkUsedTemplateParameters(ASTContext &Ctx, 6106 NestedNameSpecifier *NNS, 6107 bool OnlyDeduced, 6108 unsigned Depth, 6109 llvm::SmallBitVector &Used) { 6110 if (!NNS) 6111 return; 6112 6113 MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth, 6114 Used); 6115 MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0), 6116 OnlyDeduced, Depth, Used); 6117 } 6118 6119 /// Mark the template parameters that are used by the given 6120 /// template name. 6121 static void 6122 MarkUsedTemplateParameters(ASTContext &Ctx, 6123 TemplateName Name, 6124 bool OnlyDeduced, 6125 unsigned Depth, 6126 llvm::SmallBitVector &Used) { 6127 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 6128 if (TemplateTemplateParmDecl *TTP 6129 = dyn_cast<TemplateTemplateParmDecl>(Template)) { 6130 if (TTP->getDepth() == Depth) 6131 Used[TTP->getIndex()] = true; 6132 } 6133 return; 6134 } 6135 6136 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) 6137 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced, 6138 Depth, Used); 6139 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) 6140 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced, 6141 Depth, Used); 6142 } 6143 6144 /// Mark the template parameters that are used by the given 6145 /// type. 6146 static void 6147 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 6148 bool OnlyDeduced, 6149 unsigned Depth, 6150 llvm::SmallBitVector &Used) { 6151 if (T.isNull()) 6152 return; 6153 6154 // Non-dependent types have nothing deducible 6155 if (!T->isDependentType()) 6156 return; 6157 6158 T = Ctx.getCanonicalType(T); 6159 switch (T->getTypeClass()) { 6160 case Type::Pointer: 6161 MarkUsedTemplateParameters(Ctx, 6162 cast<PointerType>(T)->getPointeeType(), 6163 OnlyDeduced, 6164 Depth, 6165 Used); 6166 break; 6167 6168 case Type::BlockPointer: 6169 MarkUsedTemplateParameters(Ctx, 6170 cast<BlockPointerType>(T)->getPointeeType(), 6171 OnlyDeduced, 6172 Depth, 6173 Used); 6174 break; 6175 6176 case Type::LValueReference: 6177 case Type::RValueReference: 6178 MarkUsedTemplateParameters(Ctx, 6179 cast<ReferenceType>(T)->getPointeeType(), 6180 OnlyDeduced, 6181 Depth, 6182 Used); 6183 break; 6184 6185 case Type::MemberPointer: { 6186 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr()); 6187 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced, 6188 Depth, Used); 6189 MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0), 6190 OnlyDeduced, Depth, Used); 6191 break; 6192 } 6193 6194 case Type::DependentSizedArray: 6195 MarkUsedTemplateParameters(Ctx, 6196 cast<DependentSizedArrayType>(T)->getSizeExpr(), 6197 OnlyDeduced, Depth, Used); 6198 // Fall through to check the element type 6199 [[fallthrough]]; 6200 6201 case Type::ConstantArray: 6202 case Type::IncompleteArray: 6203 MarkUsedTemplateParameters(Ctx, 6204 cast<ArrayType>(T)->getElementType(), 6205 OnlyDeduced, Depth, Used); 6206 break; 6207 6208 case Type::Vector: 6209 case Type::ExtVector: 6210 MarkUsedTemplateParameters(Ctx, 6211 cast<VectorType>(T)->getElementType(), 6212 OnlyDeduced, Depth, Used); 6213 break; 6214 6215 case Type::DependentVector: { 6216 const auto *VecType = cast<DependentVectorType>(T); 6217 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 6218 Depth, Used); 6219 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth, 6220 Used); 6221 break; 6222 } 6223 case Type::DependentSizedExtVector: { 6224 const DependentSizedExtVectorType *VecType 6225 = cast<DependentSizedExtVectorType>(T); 6226 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 6227 Depth, Used); 6228 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, 6229 Depth, Used); 6230 break; 6231 } 6232 6233 case Type::DependentAddressSpace: { 6234 const DependentAddressSpaceType *DependentASType = 6235 cast<DependentAddressSpaceType>(T); 6236 MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(), 6237 OnlyDeduced, Depth, Used); 6238 MarkUsedTemplateParameters(Ctx, 6239 DependentASType->getAddrSpaceExpr(), 6240 OnlyDeduced, Depth, Used); 6241 break; 6242 } 6243 6244 case Type::ConstantMatrix: { 6245 const ConstantMatrixType *MatType = cast<ConstantMatrixType>(T); 6246 MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced, 6247 Depth, Used); 6248 break; 6249 } 6250 6251 case Type::DependentSizedMatrix: { 6252 const DependentSizedMatrixType *MatType = cast<DependentSizedMatrixType>(T); 6253 MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced, 6254 Depth, Used); 6255 MarkUsedTemplateParameters(Ctx, MatType->getRowExpr(), OnlyDeduced, Depth, 6256 Used); 6257 MarkUsedTemplateParameters(Ctx, MatType->getColumnExpr(), OnlyDeduced, 6258 Depth, Used); 6259 break; 6260 } 6261 6262 case Type::FunctionProto: { 6263 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 6264 MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth, 6265 Used); 6266 for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) { 6267 // C++17 [temp.deduct.type]p5: 6268 // The non-deduced contexts are: [...] 6269 // -- A function parameter pack that does not occur at the end of the 6270 // parameter-declaration-list. 6271 if (!OnlyDeduced || I + 1 == N || 6272 !Proto->getParamType(I)->getAs<PackExpansionType>()) { 6273 MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced, 6274 Depth, Used); 6275 } else { 6276 // FIXME: C++17 [temp.deduct.call]p1: 6277 // When a function parameter pack appears in a non-deduced context, 6278 // the type of that pack is never deduced. 6279 // 6280 // We should also track a set of "never deduced" parameters, and 6281 // subtract that from the list of deduced parameters after marking. 6282 } 6283 } 6284 if (auto *E = Proto->getNoexceptExpr()) 6285 MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used); 6286 break; 6287 } 6288 6289 case Type::TemplateTypeParm: { 6290 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T); 6291 if (TTP->getDepth() == Depth) 6292 Used[TTP->getIndex()] = true; 6293 break; 6294 } 6295 6296 case Type::SubstTemplateTypeParmPack: { 6297 const SubstTemplateTypeParmPackType *Subst 6298 = cast<SubstTemplateTypeParmPackType>(T); 6299 if (Subst->getReplacedParameter()->getDepth() == Depth) 6300 Used[Subst->getIndex()] = true; 6301 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(), 6302 OnlyDeduced, Depth, Used); 6303 break; 6304 } 6305 6306 case Type::InjectedClassName: 6307 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType(); 6308 [[fallthrough]]; 6309 6310 case Type::TemplateSpecialization: { 6311 const TemplateSpecializationType *Spec 6312 = cast<TemplateSpecializationType>(T); 6313 MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced, 6314 Depth, Used); 6315 6316 // C++0x [temp.deduct.type]p9: 6317 // If the template argument list of P contains a pack expansion that is 6318 // not the last template argument, the entire template argument list is a 6319 // non-deduced context. 6320 if (OnlyDeduced && 6321 hasPackExpansionBeforeEnd(Spec->template_arguments())) 6322 break; 6323 6324 for (const auto &Arg : Spec->template_arguments()) 6325 MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used); 6326 break; 6327 } 6328 6329 case Type::Complex: 6330 if (!OnlyDeduced) 6331 MarkUsedTemplateParameters(Ctx, 6332 cast<ComplexType>(T)->getElementType(), 6333 OnlyDeduced, Depth, Used); 6334 break; 6335 6336 case Type::Atomic: 6337 if (!OnlyDeduced) 6338 MarkUsedTemplateParameters(Ctx, 6339 cast<AtomicType>(T)->getValueType(), 6340 OnlyDeduced, Depth, Used); 6341 break; 6342 6343 case Type::DependentName: 6344 if (!OnlyDeduced) 6345 MarkUsedTemplateParameters(Ctx, 6346 cast<DependentNameType>(T)->getQualifier(), 6347 OnlyDeduced, Depth, Used); 6348 break; 6349 6350 case Type::DependentTemplateSpecialization: { 6351 // C++14 [temp.deduct.type]p5: 6352 // The non-deduced contexts are: 6353 // -- The nested-name-specifier of a type that was specified using a 6354 // qualified-id 6355 // 6356 // C++14 [temp.deduct.type]p6: 6357 // When a type name is specified in a way that includes a non-deduced 6358 // context, all of the types that comprise that type name are also 6359 // non-deduced. 6360 if (OnlyDeduced) 6361 break; 6362 6363 const DependentTemplateSpecializationType *Spec 6364 = cast<DependentTemplateSpecializationType>(T); 6365 6366 MarkUsedTemplateParameters(Ctx, Spec->getQualifier(), 6367 OnlyDeduced, Depth, Used); 6368 6369 for (const auto &Arg : Spec->template_arguments()) 6370 MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used); 6371 break; 6372 } 6373 6374 case Type::TypeOf: 6375 if (!OnlyDeduced) 6376 MarkUsedTemplateParameters(Ctx, cast<TypeOfType>(T)->getUnmodifiedType(), 6377 OnlyDeduced, Depth, Used); 6378 break; 6379 6380 case Type::TypeOfExpr: 6381 if (!OnlyDeduced) 6382 MarkUsedTemplateParameters(Ctx, 6383 cast<TypeOfExprType>(T)->getUnderlyingExpr(), 6384 OnlyDeduced, Depth, Used); 6385 break; 6386 6387 case Type::Decltype: 6388 if (!OnlyDeduced) 6389 MarkUsedTemplateParameters(Ctx, 6390 cast<DecltypeType>(T)->getUnderlyingExpr(), 6391 OnlyDeduced, Depth, Used); 6392 break; 6393 6394 case Type::UnaryTransform: 6395 if (!OnlyDeduced) 6396 MarkUsedTemplateParameters(Ctx, 6397 cast<UnaryTransformType>(T)->getUnderlyingType(), 6398 OnlyDeduced, Depth, Used); 6399 break; 6400 6401 case Type::PackExpansion: 6402 MarkUsedTemplateParameters(Ctx, 6403 cast<PackExpansionType>(T)->getPattern(), 6404 OnlyDeduced, Depth, Used); 6405 break; 6406 6407 case Type::Auto: 6408 case Type::DeducedTemplateSpecialization: 6409 MarkUsedTemplateParameters(Ctx, 6410 cast<DeducedType>(T)->getDeducedType(), 6411 OnlyDeduced, Depth, Used); 6412 break; 6413 case Type::DependentBitInt: 6414 MarkUsedTemplateParameters(Ctx, 6415 cast<DependentBitIntType>(T)->getNumBitsExpr(), 6416 OnlyDeduced, Depth, Used); 6417 break; 6418 6419 // None of these types have any template parameters in them. 6420 case Type::Builtin: 6421 case Type::VariableArray: 6422 case Type::FunctionNoProto: 6423 case Type::Record: 6424 case Type::Enum: 6425 case Type::ObjCInterface: 6426 case Type::ObjCObject: 6427 case Type::ObjCObjectPointer: 6428 case Type::UnresolvedUsing: 6429 case Type::Pipe: 6430 case Type::BitInt: 6431 #define TYPE(Class, Base) 6432 #define ABSTRACT_TYPE(Class, Base) 6433 #define DEPENDENT_TYPE(Class, Base) 6434 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 6435 #include "clang/AST/TypeNodes.inc" 6436 break; 6437 } 6438 } 6439 6440 /// Mark the template parameters that are used by this 6441 /// template argument. 6442 static void 6443 MarkUsedTemplateParameters(ASTContext &Ctx, 6444 const TemplateArgument &TemplateArg, 6445 bool OnlyDeduced, 6446 unsigned Depth, 6447 llvm::SmallBitVector &Used) { 6448 switch (TemplateArg.getKind()) { 6449 case TemplateArgument::Null: 6450 case TemplateArgument::Integral: 6451 case TemplateArgument::Declaration: 6452 break; 6453 6454 case TemplateArgument::NullPtr: 6455 MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced, 6456 Depth, Used); 6457 break; 6458 6459 case TemplateArgument::Type: 6460 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced, 6461 Depth, Used); 6462 break; 6463 6464 case TemplateArgument::Template: 6465 case TemplateArgument::TemplateExpansion: 6466 MarkUsedTemplateParameters(Ctx, 6467 TemplateArg.getAsTemplateOrTemplatePattern(), 6468 OnlyDeduced, Depth, Used); 6469 break; 6470 6471 case TemplateArgument::Expression: 6472 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced, 6473 Depth, Used); 6474 break; 6475 6476 case TemplateArgument::Pack: 6477 for (const auto &P : TemplateArg.pack_elements()) 6478 MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used); 6479 break; 6480 } 6481 } 6482 6483 /// Mark which template parameters are used in a given expression. 6484 /// 6485 /// \param E the expression from which template parameters will be deduced. 6486 /// 6487 /// \param Used a bit vector whose elements will be set to \c true 6488 /// to indicate when the corresponding template parameter will be 6489 /// deduced. 6490 void 6491 Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced, 6492 unsigned Depth, 6493 llvm::SmallBitVector &Used) { 6494 ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used); 6495 } 6496 6497 /// Mark which template parameters can be deduced from a given 6498 /// template argument list. 6499 /// 6500 /// \param TemplateArgs the template argument list from which template 6501 /// parameters will be deduced. 6502 /// 6503 /// \param Used a bit vector whose elements will be set to \c true 6504 /// to indicate when the corresponding template parameter will be 6505 /// deduced. 6506 void 6507 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, 6508 bool OnlyDeduced, unsigned Depth, 6509 llvm::SmallBitVector &Used) { 6510 // C++0x [temp.deduct.type]p9: 6511 // If the template argument list of P contains a pack expansion that is not 6512 // the last template argument, the entire template argument list is a 6513 // non-deduced context. 6514 if (OnlyDeduced && 6515 hasPackExpansionBeforeEnd(TemplateArgs.asArray())) 6516 return; 6517 6518 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6519 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced, 6520 Depth, Used); 6521 } 6522 6523 /// Marks all of the template parameters that will be deduced by a 6524 /// call to the given function template. 6525 void Sema::MarkDeducedTemplateParameters( 6526 ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, 6527 llvm::SmallBitVector &Deduced) { 6528 TemplateParameterList *TemplateParams 6529 = FunctionTemplate->getTemplateParameters(); 6530 Deduced.clear(); 6531 Deduced.resize(TemplateParams->size()); 6532 6533 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 6534 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) 6535 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(), 6536 true, TemplateParams->getDepth(), Deduced); 6537 } 6538 6539 bool hasDeducibleTemplateParameters(Sema &S, 6540 FunctionTemplateDecl *FunctionTemplate, 6541 QualType T) { 6542 if (!T->isDependentType()) 6543 return false; 6544 6545 TemplateParameterList *TemplateParams 6546 = FunctionTemplate->getTemplateParameters(); 6547 llvm::SmallBitVector Deduced(TemplateParams->size()); 6548 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(), 6549 Deduced); 6550 6551 return Deduced.any(); 6552 } 6553