1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===// 7 // 8 // This file implements semantic analysis for C++ templates. 9 //===----------------------------------------------------------------------===// 10 11 #include "TreeTransform.h" 12 #include "clang/AST/ASTConsumer.h" 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclFriend.h" 15 #include "clang/AST/DeclTemplate.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/RecursiveASTVisitor.h" 19 #include "clang/AST/TypeVisitor.h" 20 #include "clang/Basic/Builtins.h" 21 #include "clang/Basic/LangOptions.h" 22 #include "clang/Basic/PartialDiagnostic.h" 23 #include "clang/Basic/Stack.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Sema/DeclSpec.h" 26 #include "clang/Sema/Lookup.h" 27 #include "clang/Sema/Overload.h" 28 #include "clang/Sema/ParsedTemplate.h" 29 #include "clang/Sema/Scope.h" 30 #include "clang/Sema/SemaInternal.h" 31 #include "clang/Sema/Template.h" 32 #include "clang/Sema/TemplateDeduction.h" 33 #include "llvm/ADT/SmallBitVector.h" 34 #include "llvm/ADT/SmallString.h" 35 #include "llvm/ADT/StringExtras.h" 36 37 #include <iterator> 38 using namespace clang; 39 using namespace sema; 40 41 // Exported for use by Parser. 42 SourceRange 43 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 44 unsigned N) { 45 if (!N) return SourceRange(); 46 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 47 } 48 49 unsigned Sema::getTemplateDepth(Scope *S) const { 50 unsigned Depth = 0; 51 52 // Each template parameter scope represents one level of template parameter 53 // depth. 54 for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope; 55 TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) { 56 ++Depth; 57 } 58 59 // Note that there are template parameters with the given depth. 60 auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); }; 61 62 // Look for parameters of an enclosing generic lambda. We don't create a 63 // template parameter scope for these. 64 for (FunctionScopeInfo *FSI : getFunctionScopes()) { 65 if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) { 66 if (!LSI->TemplateParams.empty()) { 67 ParamsAtDepth(LSI->AutoTemplateParameterDepth); 68 break; 69 } 70 if (LSI->GLTemplateParameterList) { 71 ParamsAtDepth(LSI->GLTemplateParameterList->getDepth()); 72 break; 73 } 74 } 75 } 76 77 // Look for parameters of an enclosing terse function template. We don't 78 // create a template parameter scope for these either. 79 for (const InventedTemplateParameterInfo &Info : 80 getInventedParameterInfos()) { 81 if (!Info.TemplateParams.empty()) { 82 ParamsAtDepth(Info.AutoTemplateParameterDepth); 83 break; 84 } 85 } 86 87 return Depth; 88 } 89 90 /// \brief Determine whether the declaration found is acceptable as the name 91 /// of a template and, if so, return that template declaration. Otherwise, 92 /// returns null. 93 /// 94 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent 95 /// is true. In all other cases it will return a TemplateDecl (or null). 96 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D, 97 bool AllowFunctionTemplates, 98 bool AllowDependent) { 99 D = D->getUnderlyingDecl(); 100 101 if (isa<TemplateDecl>(D)) { 102 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 103 return nullptr; 104 105 return D; 106 } 107 108 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 109 // C++ [temp.local]p1: 110 // Like normal (non-template) classes, class templates have an 111 // injected-class-name (Clause 9). The injected-class-name 112 // can be used with or without a template-argument-list. When 113 // it is used without a template-argument-list, it is 114 // equivalent to the injected-class-name followed by the 115 // template-parameters of the class template enclosed in 116 // <>. When it is used with a template-argument-list, it 117 // refers to the specified class template specialization, 118 // which could be the current specialization or another 119 // specialization. 120 if (Record->isInjectedClassName()) { 121 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 122 if (Record->getDescribedClassTemplate()) 123 return Record->getDescribedClassTemplate(); 124 125 if (ClassTemplateSpecializationDecl *Spec 126 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 127 return Spec->getSpecializedTemplate(); 128 } 129 130 return nullptr; 131 } 132 133 // 'using Dependent::foo;' can resolve to a template name. 134 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an 135 // injected-class-name). 136 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D)) 137 return D; 138 139 return nullptr; 140 } 141 142 void Sema::FilterAcceptableTemplateNames(LookupResult &R, 143 bool AllowFunctionTemplates, 144 bool AllowDependent) { 145 LookupResult::Filter filter = R.makeFilter(); 146 while (filter.hasNext()) { 147 NamedDecl *Orig = filter.next(); 148 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent)) 149 filter.erase(); 150 } 151 filter.done(); 152 } 153 154 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 155 bool AllowFunctionTemplates, 156 bool AllowDependent, 157 bool AllowNonTemplateFunctions) { 158 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 159 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent)) 160 return true; 161 if (AllowNonTemplateFunctions && 162 isa<FunctionDecl>((*I)->getUnderlyingDecl())) 163 return true; 164 } 165 166 return false; 167 } 168 169 TemplateNameKind Sema::isTemplateName(Scope *S, 170 CXXScopeSpec &SS, 171 bool hasTemplateKeyword, 172 const UnqualifiedId &Name, 173 ParsedType ObjectTypePtr, 174 bool EnteringContext, 175 TemplateTy &TemplateResult, 176 bool &MemberOfUnknownSpecialization, 177 bool Disambiguation) { 178 assert(getLangOpts().CPlusPlus && "No template names in C!"); 179 180 DeclarationName TName; 181 MemberOfUnknownSpecialization = false; 182 183 switch (Name.getKind()) { 184 case UnqualifiedIdKind::IK_Identifier: 185 TName = DeclarationName(Name.Identifier); 186 break; 187 188 case UnqualifiedIdKind::IK_OperatorFunctionId: 189 TName = Context.DeclarationNames.getCXXOperatorName( 190 Name.OperatorFunctionId.Operator); 191 break; 192 193 case UnqualifiedIdKind::IK_LiteralOperatorId: 194 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 195 break; 196 197 default: 198 return TNK_Non_template; 199 } 200 201 QualType ObjectType = ObjectTypePtr.get(); 202 203 AssumedTemplateKind AssumedTemplate; 204 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName); 205 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 206 MemberOfUnknownSpecialization, SourceLocation(), 207 &AssumedTemplate, 208 /*AllowTypoCorrection=*/!Disambiguation)) 209 return TNK_Non_template; 210 211 if (AssumedTemplate != AssumedTemplateKind::None) { 212 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName)); 213 // Let the parser know whether we found nothing or found functions; if we 214 // found nothing, we want to more carefully check whether this is actually 215 // a function template name versus some other kind of undeclared identifier. 216 return AssumedTemplate == AssumedTemplateKind::FoundNothing 217 ? TNK_Undeclared_template 218 : TNK_Function_template; 219 } 220 221 if (R.empty()) 222 return TNK_Non_template; 223 224 NamedDecl *D = nullptr; 225 if (R.isAmbiguous()) { 226 // If we got an ambiguity involving a non-function template, treat this 227 // as a template name, and pick an arbitrary template for error recovery. 228 bool AnyFunctionTemplates = false; 229 for (NamedDecl *FoundD : R) { 230 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) { 231 if (isa<FunctionTemplateDecl>(FoundTemplate)) 232 AnyFunctionTemplates = true; 233 else { 234 D = FoundTemplate; 235 break; 236 } 237 } 238 } 239 240 // If we didn't find any templates at all, this isn't a template name. 241 // Leave the ambiguity for a later lookup to diagnose. 242 if (!D && !AnyFunctionTemplates) { 243 R.suppressDiagnostics(); 244 return TNK_Non_template; 245 } 246 247 // If the only templates were function templates, filter out the rest. 248 // We'll diagnose the ambiguity later. 249 if (!D) 250 FilterAcceptableTemplateNames(R); 251 } 252 253 // At this point, we have either picked a single template name declaration D 254 // or we have a non-empty set of results R containing either one template name 255 // declaration or a set of function templates. 256 257 TemplateName Template; 258 TemplateNameKind TemplateKind; 259 260 unsigned ResultCount = R.end() - R.begin(); 261 if (!D && ResultCount > 1) { 262 // We assume that we'll preserve the qualifier from a function 263 // template name in other ways. 264 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 265 TemplateKind = TNK_Function_template; 266 267 // We'll do this lookup again later. 268 R.suppressDiagnostics(); 269 } else { 270 if (!D) { 271 D = getAsTemplateNameDecl(*R.begin()); 272 assert(D && "unambiguous result is not a template name"); 273 } 274 275 if (isa<UnresolvedUsingValueDecl>(D)) { 276 // We don't yet know whether this is a template-name or not. 277 MemberOfUnknownSpecialization = true; 278 return TNK_Non_template; 279 } 280 281 TemplateDecl *TD = cast<TemplateDecl>(D); 282 283 if (SS.isSet() && !SS.isInvalid()) { 284 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 285 Template = Context.getQualifiedTemplateName(Qualifier, 286 hasTemplateKeyword, TD); 287 } else { 288 Template = TemplateName(TD); 289 } 290 291 if (isa<FunctionTemplateDecl>(TD)) { 292 TemplateKind = TNK_Function_template; 293 294 // We'll do this lookup again later. 295 R.suppressDiagnostics(); 296 } else { 297 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 298 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || 299 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)); 300 TemplateKind = 301 isa<VarTemplateDecl>(TD) ? TNK_Var_template : 302 isa<ConceptDecl>(TD) ? TNK_Concept_template : 303 TNK_Type_template; 304 } 305 } 306 307 TemplateResult = TemplateTy::make(Template); 308 return TemplateKind; 309 } 310 311 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, 312 SourceLocation NameLoc, 313 ParsedTemplateTy *Template) { 314 CXXScopeSpec SS; 315 bool MemberOfUnknownSpecialization = false; 316 317 // We could use redeclaration lookup here, but we don't need to: the 318 // syntactic form of a deduction guide is enough to identify it even 319 // if we can't look up the template name at all. 320 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); 321 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), 322 /*EnteringContext*/ false, 323 MemberOfUnknownSpecialization)) 324 return false; 325 326 if (R.empty()) return false; 327 if (R.isAmbiguous()) { 328 // FIXME: Diagnose an ambiguity if we find at least one template. 329 R.suppressDiagnostics(); 330 return false; 331 } 332 333 // We only treat template-names that name type templates as valid deduction 334 // guide names. 335 TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); 336 if (!TD || !getAsTypeTemplateDecl(TD)) 337 return false; 338 339 if (Template) 340 *Template = TemplateTy::make(TemplateName(TD)); 341 return true; 342 } 343 344 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 345 SourceLocation IILoc, 346 Scope *S, 347 const CXXScopeSpec *SS, 348 TemplateTy &SuggestedTemplate, 349 TemplateNameKind &SuggestedKind) { 350 // We can't recover unless there's a dependent scope specifier preceding the 351 // template name. 352 // FIXME: Typo correction? 353 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 354 computeDeclContext(*SS)) 355 return false; 356 357 // The code is missing a 'template' keyword prior to the dependent template 358 // name. 359 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 360 Diag(IILoc, diag::err_template_kw_missing) 361 << Qualifier << II.getName() 362 << FixItHint::CreateInsertion(IILoc, "template "); 363 SuggestedTemplate 364 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 365 SuggestedKind = TNK_Dependent_template_name; 366 return true; 367 } 368 369 bool Sema::LookupTemplateName(LookupResult &Found, 370 Scope *S, CXXScopeSpec &SS, 371 QualType ObjectType, 372 bool EnteringContext, 373 bool &MemberOfUnknownSpecialization, 374 RequiredTemplateKind RequiredTemplate, 375 AssumedTemplateKind *ATK, 376 bool AllowTypoCorrection) { 377 if (ATK) 378 *ATK = AssumedTemplateKind::None; 379 380 if (SS.isInvalid()) 381 return true; 382 383 Found.setTemplateNameLookup(true); 384 385 // Determine where to perform name lookup 386 MemberOfUnknownSpecialization = false; 387 DeclContext *LookupCtx = nullptr; 388 bool IsDependent = false; 389 if (!ObjectType.isNull()) { 390 // This nested-name-specifier occurs in a member access expression, e.g., 391 // x->B::f, and we are looking into the type of the object. 392 assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist"); 393 LookupCtx = computeDeclContext(ObjectType); 394 IsDependent = !LookupCtx && ObjectType->isDependentType(); 395 assert((IsDependent || !ObjectType->isIncompleteType() || 396 ObjectType->castAs<TagType>()->isBeingDefined()) && 397 "Caller should have completed object type"); 398 399 // Template names cannot appear inside an Objective-C class or object type 400 // or a vector type. 401 // 402 // FIXME: This is wrong. For example: 403 // 404 // template<typename T> using Vec = T __attribute__((ext_vector_type(4))); 405 // Vec<int> vi; 406 // vi.Vec<int>::~Vec<int>(); 407 // 408 // ... should be accepted but we will not treat 'Vec' as a template name 409 // here. The right thing to do would be to check if the name is a valid 410 // vector component name, and look up a template name if not. And similarly 411 // for lookups into Objective-C class and object types, where the same 412 // problem can arise. 413 if (ObjectType->isObjCObjectOrInterfaceType() || 414 ObjectType->isVectorType()) { 415 Found.clear(); 416 return false; 417 } 418 } else if (SS.isNotEmpty()) { 419 // This nested-name-specifier occurs after another nested-name-specifier, 420 // so long into the context associated with the prior nested-name-specifier. 421 LookupCtx = computeDeclContext(SS, EnteringContext); 422 IsDependent = !LookupCtx && isDependentScopeSpecifier(SS); 423 424 // The declaration context must be complete. 425 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 426 return true; 427 } 428 429 bool ObjectTypeSearchedInScope = false; 430 bool AllowFunctionTemplatesInLookup = true; 431 if (LookupCtx) { 432 // Perform "qualified" name lookup into the declaration context we 433 // computed, which is either the type of the base of a member access 434 // expression or the declaration context associated with a prior 435 // nested-name-specifier. 436 LookupQualifiedName(Found, LookupCtx); 437 438 // FIXME: The C++ standard does not clearly specify what happens in the 439 // case where the object type is dependent, and implementations vary. In 440 // Clang, we treat a name after a . or -> as a template-name if lookup 441 // finds a non-dependent member or member of the current instantiation that 442 // is a type template, or finds no such members and lookup in the context 443 // of the postfix-expression finds a type template. In the latter case, the 444 // name is nonetheless dependent, and we may resolve it to a member of an 445 // unknown specialization when we come to instantiate the template. 446 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 447 } 448 449 if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) { 450 // C++ [basic.lookup.classref]p1: 451 // In a class member access expression (5.2.5), if the . or -> token is 452 // immediately followed by an identifier followed by a <, the 453 // identifier must be looked up to determine whether the < is the 454 // beginning of a template argument list (14.2) or a less-than operator. 455 // The identifier is first looked up in the class of the object 456 // expression. If the identifier is not found, it is then looked up in 457 // the context of the entire postfix-expression and shall name a class 458 // template. 459 if (S) 460 LookupName(Found, S); 461 462 if (!ObjectType.isNull()) { 463 // FIXME: We should filter out all non-type templates here, particularly 464 // variable templates and concepts. But the exclusion of alias templates 465 // and template template parameters is a wording defect. 466 AllowFunctionTemplatesInLookup = false; 467 ObjectTypeSearchedInScope = true; 468 } 469 470 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 471 } 472 473 if (Found.isAmbiguous()) 474 return false; 475 476 if (ATK && SS.isEmpty() && ObjectType.isNull() && 477 !RequiredTemplate.hasTemplateKeyword()) { 478 // C++2a [temp.names]p2: 479 // A name is also considered to refer to a template if it is an 480 // unqualified-id followed by a < and name lookup finds either one or more 481 // functions or finds nothing. 482 // 483 // To keep our behavior consistent, we apply the "finds nothing" part in 484 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we 485 // successfully form a call to an undeclared template-id. 486 bool AllFunctions = 487 getLangOpts().CPlusPlus20 && 488 std::all_of(Found.begin(), Found.end(), [](NamedDecl *ND) { 489 return isa<FunctionDecl>(ND->getUnderlyingDecl()); 490 }); 491 if (AllFunctions || (Found.empty() && !IsDependent)) { 492 // If lookup found any functions, or if this is a name that can only be 493 // used for a function, then strongly assume this is a function 494 // template-id. 495 *ATK = (Found.empty() && Found.getLookupName().isIdentifier()) 496 ? AssumedTemplateKind::FoundNothing 497 : AssumedTemplateKind::FoundFunctions; 498 Found.clear(); 499 return false; 500 } 501 } 502 503 if (Found.empty() && !IsDependent && AllowTypoCorrection) { 504 // If we did not find any names, and this is not a disambiguation, attempt 505 // to correct any typos. 506 DeclarationName Name = Found.getLookupName(); 507 Found.clear(); 508 // Simple filter callback that, for keywords, only accepts the C++ *_cast 509 DefaultFilterCCC FilterCCC{}; 510 FilterCCC.WantTypeSpecifiers = false; 511 FilterCCC.WantExpressionKeywords = false; 512 FilterCCC.WantRemainingKeywords = false; 513 FilterCCC.WantCXXNamedCasts = true; 514 if (TypoCorrection Corrected = 515 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S, 516 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) { 517 if (auto *ND = Corrected.getFoundDecl()) 518 Found.addDecl(ND); 519 FilterAcceptableTemplateNames(Found); 520 if (Found.isAmbiguous()) { 521 Found.clear(); 522 } else if (!Found.empty()) { 523 Found.setLookupName(Corrected.getCorrection()); 524 if (LookupCtx) { 525 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 526 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 527 Name.getAsString() == CorrectedStr; 528 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) 529 << Name << LookupCtx << DroppedSpecifier 530 << SS.getRange()); 531 } else { 532 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); 533 } 534 } 535 } 536 } 537 538 NamedDecl *ExampleLookupResult = 539 Found.empty() ? nullptr : Found.getRepresentativeDecl(); 540 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 541 if (Found.empty()) { 542 if (IsDependent) { 543 MemberOfUnknownSpecialization = true; 544 return false; 545 } 546 547 // If a 'template' keyword was used, a lookup that finds only non-template 548 // names is an error. 549 if (ExampleLookupResult && RequiredTemplate) { 550 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) 551 << Found.getLookupName() << SS.getRange() 552 << RequiredTemplate.hasTemplateKeyword() 553 << RequiredTemplate.getTemplateKeywordLoc(); 554 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), 555 diag::note_template_kw_refers_to_non_template) 556 << Found.getLookupName(); 557 return true; 558 } 559 560 return false; 561 } 562 563 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 564 !getLangOpts().CPlusPlus11) { 565 // C++03 [basic.lookup.classref]p1: 566 // [...] If the lookup in the class of the object expression finds a 567 // template, the name is also looked up in the context of the entire 568 // postfix-expression and [...] 569 // 570 // Note: C++11 does not perform this second lookup. 571 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 572 LookupOrdinaryName); 573 FoundOuter.setTemplateNameLookup(true); 574 LookupName(FoundOuter, S); 575 // FIXME: We silently accept an ambiguous lookup here, in violation of 576 // [basic.lookup]/1. 577 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 578 579 NamedDecl *OuterTemplate; 580 if (FoundOuter.empty()) { 581 // - if the name is not found, the name found in the class of the 582 // object expression is used, otherwise 583 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() || 584 !(OuterTemplate = 585 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) { 586 // - if the name is found in the context of the entire 587 // postfix-expression and does not name a class template, the name 588 // found in the class of the object expression is used, otherwise 589 FoundOuter.clear(); 590 } else if (!Found.isSuppressingDiagnostics()) { 591 // - if the name found is a class template, it must refer to the same 592 // entity as the one found in the class of the object expression, 593 // otherwise the program is ill-formed. 594 if (!Found.isSingleResult() || 595 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() != 596 OuterTemplate->getCanonicalDecl()) { 597 Diag(Found.getNameLoc(), 598 diag::ext_nested_name_member_ref_lookup_ambiguous) 599 << Found.getLookupName() 600 << ObjectType; 601 Diag(Found.getRepresentativeDecl()->getLocation(), 602 diag::note_ambig_member_ref_object_type) 603 << ObjectType; 604 Diag(FoundOuter.getFoundDecl()->getLocation(), 605 diag::note_ambig_member_ref_scope); 606 607 // Recover by taking the template that we found in the object 608 // expression's type. 609 } 610 } 611 } 612 613 return false; 614 } 615 616 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, 617 SourceLocation Less, 618 SourceLocation Greater) { 619 if (TemplateName.isInvalid()) 620 return; 621 622 DeclarationNameInfo NameInfo; 623 CXXScopeSpec SS; 624 LookupNameKind LookupKind; 625 626 DeclContext *LookupCtx = nullptr; 627 NamedDecl *Found = nullptr; 628 bool MissingTemplateKeyword = false; 629 630 // Figure out what name we looked up. 631 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) { 632 NameInfo = DRE->getNameInfo(); 633 SS.Adopt(DRE->getQualifierLoc()); 634 LookupKind = LookupOrdinaryName; 635 Found = DRE->getFoundDecl(); 636 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) { 637 NameInfo = ME->getMemberNameInfo(); 638 SS.Adopt(ME->getQualifierLoc()); 639 LookupKind = LookupMemberName; 640 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); 641 Found = ME->getMemberDecl(); 642 } else if (auto *DSDRE = 643 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) { 644 NameInfo = DSDRE->getNameInfo(); 645 SS.Adopt(DSDRE->getQualifierLoc()); 646 MissingTemplateKeyword = true; 647 } else if (auto *DSME = 648 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) { 649 NameInfo = DSME->getMemberNameInfo(); 650 SS.Adopt(DSME->getQualifierLoc()); 651 MissingTemplateKeyword = true; 652 } else { 653 llvm_unreachable("unexpected kind of potential template name"); 654 } 655 656 // If this is a dependent-scope lookup, diagnose that the 'template' keyword 657 // was missing. 658 if (MissingTemplateKeyword) { 659 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing) 660 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater); 661 return; 662 } 663 664 // Try to correct the name by looking for templates and C++ named casts. 665 struct TemplateCandidateFilter : CorrectionCandidateCallback { 666 Sema &S; 667 TemplateCandidateFilter(Sema &S) : S(S) { 668 WantTypeSpecifiers = false; 669 WantExpressionKeywords = false; 670 WantRemainingKeywords = false; 671 WantCXXNamedCasts = true; 672 }; 673 bool ValidateCandidate(const TypoCorrection &Candidate) override { 674 if (auto *ND = Candidate.getCorrectionDecl()) 675 return S.getAsTemplateNameDecl(ND); 676 return Candidate.isKeyword(); 677 } 678 679 std::unique_ptr<CorrectionCandidateCallback> clone() override { 680 return std::make_unique<TemplateCandidateFilter>(*this); 681 } 682 }; 683 684 DeclarationName Name = NameInfo.getName(); 685 TemplateCandidateFilter CCC(*this); 686 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC, 687 CTK_ErrorRecovery, LookupCtx)) { 688 auto *ND = Corrected.getFoundDecl(); 689 if (ND) 690 ND = getAsTemplateNameDecl(ND); 691 if (ND || Corrected.isKeyword()) { 692 if (LookupCtx) { 693 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 694 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 695 Name.getAsString() == CorrectedStr; 696 diagnoseTypo(Corrected, 697 PDiag(diag::err_non_template_in_member_template_id_suggest) 698 << Name << LookupCtx << DroppedSpecifier 699 << SS.getRange(), false); 700 } else { 701 diagnoseTypo(Corrected, 702 PDiag(diag::err_non_template_in_template_id_suggest) 703 << Name, false); 704 } 705 if (Found) 706 Diag(Found->getLocation(), 707 diag::note_non_template_in_template_id_found); 708 return; 709 } 710 } 711 712 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) 713 << Name << SourceRange(Less, Greater); 714 if (Found) 715 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); 716 } 717 718 /// ActOnDependentIdExpression - Handle a dependent id-expression that 719 /// was just parsed. This is only possible with an explicit scope 720 /// specifier naming a dependent type. 721 ExprResult 722 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 723 SourceLocation TemplateKWLoc, 724 const DeclarationNameInfo &NameInfo, 725 bool isAddressOfOperand, 726 const TemplateArgumentListInfo *TemplateArgs) { 727 DeclContext *DC = getFunctionLevelDeclContext(); 728 729 // C++11 [expr.prim.general]p12: 730 // An id-expression that denotes a non-static data member or non-static 731 // member function of a class can only be used: 732 // (...) 733 // - if that id-expression denotes a non-static data member and it 734 // appears in an unevaluated operand. 735 // 736 // If this might be the case, form a DependentScopeDeclRefExpr instead of a 737 // CXXDependentScopeMemberExpr. The former can instantiate to either 738 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is 739 // always a MemberExpr. 740 bool MightBeCxx11UnevalField = 741 getLangOpts().CPlusPlus11 && isUnevaluatedContext(); 742 743 // Check if the nested name specifier is an enum type. 744 bool IsEnum = false; 745 if (NestedNameSpecifier *NNS = SS.getScopeRep()) 746 IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType()); 747 748 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum && 749 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) { 750 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(); 751 752 // Since the 'this' expression is synthesized, we don't need to 753 // perform the double-lookup check. 754 NamedDecl *FirstQualifierInScope = nullptr; 755 756 return CXXDependentScopeMemberExpr::Create( 757 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true, 758 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc, 759 FirstQualifierInScope, NameInfo, TemplateArgs); 760 } 761 762 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 763 } 764 765 ExprResult 766 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 767 SourceLocation TemplateKWLoc, 768 const DeclarationNameInfo &NameInfo, 769 const TemplateArgumentListInfo *TemplateArgs) { 770 // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc 771 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 772 if (!QualifierLoc) 773 return ExprError(); 774 775 return DependentScopeDeclRefExpr::Create( 776 Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs); 777 } 778 779 780 /// Determine whether we would be unable to instantiate this template (because 781 /// it either has no definition, or is in the process of being instantiated). 782 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, 783 NamedDecl *Instantiation, 784 bool InstantiatedFromMember, 785 const NamedDecl *Pattern, 786 const NamedDecl *PatternDef, 787 TemplateSpecializationKind TSK, 788 bool Complain /*= true*/) { 789 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || 790 isa<VarDecl>(Instantiation)); 791 792 bool IsEntityBeingDefined = false; 793 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef)) 794 IsEntityBeingDefined = TD->isBeingDefined(); 795 796 if (PatternDef && !IsEntityBeingDefined) { 797 NamedDecl *SuggestedDef = nullptr; 798 if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef, 799 /*OnlyNeedComplete*/false)) { 800 // If we're allowed to diagnose this and recover, do so. 801 bool Recover = Complain && !isSFINAEContext(); 802 if (Complain) 803 diagnoseMissingImport(PointOfInstantiation, SuggestedDef, 804 Sema::MissingImportKind::Definition, Recover); 805 return !Recover; 806 } 807 return false; 808 } 809 810 if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) 811 return true; 812 813 llvm::Optional<unsigned> Note; 814 QualType InstantiationTy; 815 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation)) 816 InstantiationTy = Context.getTypeDeclType(TD); 817 if (PatternDef) { 818 Diag(PointOfInstantiation, 819 diag::err_template_instantiate_within_definition) 820 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) 821 << InstantiationTy; 822 // Not much point in noting the template declaration here, since 823 // we're lexically inside it. 824 Instantiation->setInvalidDecl(); 825 } else if (InstantiatedFromMember) { 826 if (isa<FunctionDecl>(Instantiation)) { 827 Diag(PointOfInstantiation, 828 diag::err_explicit_instantiation_undefined_member) 829 << /*member function*/ 1 << Instantiation->getDeclName() 830 << Instantiation->getDeclContext(); 831 Note = diag::note_explicit_instantiation_here; 832 } else { 833 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!"); 834 Diag(PointOfInstantiation, 835 diag::err_implicit_instantiate_member_undefined) 836 << InstantiationTy; 837 Note = diag::note_member_declared_at; 838 } 839 } else { 840 if (isa<FunctionDecl>(Instantiation)) { 841 Diag(PointOfInstantiation, 842 diag::err_explicit_instantiation_undefined_func_template) 843 << Pattern; 844 Note = diag::note_explicit_instantiation_here; 845 } else if (isa<TagDecl>(Instantiation)) { 846 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) 847 << (TSK != TSK_ImplicitInstantiation) 848 << InstantiationTy; 849 Note = diag::note_template_decl_here; 850 } else { 851 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!"); 852 if (isa<VarTemplateSpecializationDecl>(Instantiation)) { 853 Diag(PointOfInstantiation, 854 diag::err_explicit_instantiation_undefined_var_template) 855 << Instantiation; 856 Instantiation->setInvalidDecl(); 857 } else 858 Diag(PointOfInstantiation, 859 diag::err_explicit_instantiation_undefined_member) 860 << /*static data member*/ 2 << Instantiation->getDeclName() 861 << Instantiation->getDeclContext(); 862 Note = diag::note_explicit_instantiation_here; 863 } 864 } 865 if (Note) // Diagnostics were emitted. 866 Diag(Pattern->getLocation(), Note.getValue()); 867 868 // In general, Instantiation isn't marked invalid to get more than one 869 // error for multiple undefined instantiations. But the code that does 870 // explicit declaration -> explicit definition conversion can't handle 871 // invalid declarations, so mark as invalid in that case. 872 if (TSK == TSK_ExplicitInstantiationDeclaration) 873 Instantiation->setInvalidDecl(); 874 return true; 875 } 876 877 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 878 /// that the template parameter 'PrevDecl' is being shadowed by a new 879 /// declaration at location Loc. Returns true to indicate that this is 880 /// an error, and false otherwise. 881 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 882 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 883 884 // C++ [temp.local]p4: 885 // A template-parameter shall not be redeclared within its 886 // scope (including nested scopes). 887 // 888 // Make this a warning when MSVC compatibility is requested. 889 unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow 890 : diag::err_template_param_shadow; 891 Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName(); 892 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 893 } 894 895 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 896 /// the parameter D to reference the templated declaration and return a pointer 897 /// to the template declaration. Otherwise, do nothing to D and return null. 898 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 899 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 900 D = Temp->getTemplatedDecl(); 901 return Temp; 902 } 903 return nullptr; 904 } 905 906 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 907 SourceLocation EllipsisLoc) const { 908 assert(Kind == Template && 909 "Only template template arguments can be pack expansions here"); 910 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 911 "Template template argument pack expansion without packs"); 912 ParsedTemplateArgument Result(*this); 913 Result.EllipsisLoc = EllipsisLoc; 914 return Result; 915 } 916 917 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 918 const ParsedTemplateArgument &Arg) { 919 920 switch (Arg.getKind()) { 921 case ParsedTemplateArgument::Type: { 922 TypeSourceInfo *DI; 923 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 924 if (!DI) 925 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 926 return TemplateArgumentLoc(TemplateArgument(T), DI); 927 } 928 929 case ParsedTemplateArgument::NonType: { 930 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 931 return TemplateArgumentLoc(TemplateArgument(E), E); 932 } 933 934 case ParsedTemplateArgument::Template: { 935 TemplateName Template = Arg.getAsTemplate().get(); 936 TemplateArgument TArg; 937 if (Arg.getEllipsisLoc().isValid()) 938 TArg = TemplateArgument(Template, Optional<unsigned int>()); 939 else 940 TArg = Template; 941 return TemplateArgumentLoc(TArg, 942 Arg.getScopeSpec().getWithLocInContext( 943 SemaRef.Context), 944 Arg.getLocation(), 945 Arg.getEllipsisLoc()); 946 } 947 } 948 949 llvm_unreachable("Unhandled parsed template argument"); 950 } 951 952 /// Translates template arguments as provided by the parser 953 /// into template arguments used by semantic analysis. 954 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 955 TemplateArgumentListInfo &TemplateArgs) { 956 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 957 TemplateArgs.addArgument(translateTemplateArgument(*this, 958 TemplateArgsIn[I])); 959 } 960 961 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, 962 SourceLocation Loc, 963 IdentifierInfo *Name) { 964 NamedDecl *PrevDecl = SemaRef.LookupSingleName( 965 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 966 if (PrevDecl && PrevDecl->isTemplateParameter()) 967 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); 968 } 969 970 /// Convert a parsed type into a parsed template argument. This is mostly 971 /// trivial, except that we may have parsed a C++17 deduced class template 972 /// specialization type, in which case we should form a template template 973 /// argument instead of a type template argument. 974 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { 975 TypeSourceInfo *TInfo; 976 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo); 977 if (T.isNull()) 978 return ParsedTemplateArgument(); 979 assert(TInfo && "template argument with no location"); 980 981 // If we might have formed a deduced template specialization type, convert 982 // it to a template template argument. 983 if (getLangOpts().CPlusPlus17) { 984 TypeLoc TL = TInfo->getTypeLoc(); 985 SourceLocation EllipsisLoc; 986 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { 987 EllipsisLoc = PET.getEllipsisLoc(); 988 TL = PET.getPatternLoc(); 989 } 990 991 CXXScopeSpec SS; 992 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { 993 SS.Adopt(ET.getQualifierLoc()); 994 TL = ET.getNamedTypeLoc(); 995 } 996 997 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { 998 TemplateName Name = DTST.getTypePtr()->getTemplateName(); 999 if (SS.isSet()) 1000 Name = Context.getQualifiedTemplateName(SS.getScopeRep(), 1001 /*HasTemplateKeyword*/ false, 1002 Name.getAsTemplateDecl()); 1003 ParsedTemplateArgument Result(SS, TemplateTy::make(Name), 1004 DTST.getTemplateNameLoc()); 1005 if (EllipsisLoc.isValid()) 1006 Result = Result.getTemplatePackExpansion(EllipsisLoc); 1007 return Result; 1008 } 1009 } 1010 1011 // This is a normal type template argument. Note, if the type template 1012 // argument is an injected-class-name for a template, it has a dual nature 1013 // and can be used as either a type or a template. We handle that in 1014 // convertTypeTemplateArgumentToTemplate. 1015 return ParsedTemplateArgument(ParsedTemplateArgument::Type, 1016 ParsedType.get().getAsOpaquePtr(), 1017 TInfo->getTypeLoc().getBeginLoc()); 1018 } 1019 1020 /// ActOnTypeParameter - Called when a C++ template type parameter 1021 /// (e.g., "typename T") has been parsed. Typename specifies whether 1022 /// the keyword "typename" was used to declare the type parameter 1023 /// (otherwise, "class" was used), and KeyLoc is the location of the 1024 /// "class" or "typename" keyword. ParamName is the name of the 1025 /// parameter (NULL indicates an unnamed template parameter) and 1026 /// ParamNameLoc is the location of the parameter name (if any). 1027 /// If the type parameter has a default argument, it will be added 1028 /// later via ActOnTypeParameterDefault. 1029 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, 1030 SourceLocation EllipsisLoc, 1031 SourceLocation KeyLoc, 1032 IdentifierInfo *ParamName, 1033 SourceLocation ParamNameLoc, 1034 unsigned Depth, unsigned Position, 1035 SourceLocation EqualLoc, 1036 ParsedType DefaultArg, 1037 bool HasTypeConstraint) { 1038 assert(S->isTemplateParamScope() && 1039 "Template type parameter not in template parameter scope!"); 1040 1041 bool IsParameterPack = EllipsisLoc.isValid(); 1042 TemplateTypeParmDecl *Param 1043 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1044 KeyLoc, ParamNameLoc, Depth, Position, 1045 ParamName, Typename, IsParameterPack, 1046 HasTypeConstraint); 1047 Param->setAccess(AS_public); 1048 1049 if (Param->isParameterPack()) 1050 if (auto *LSI = getEnclosingLambda()) 1051 LSI->LocalPacks.push_back(Param); 1052 1053 if (ParamName) { 1054 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); 1055 1056 // Add the template parameter into the current scope. 1057 S->AddDecl(Param); 1058 IdResolver.AddDecl(Param); 1059 } 1060 1061 // C++0x [temp.param]p9: 1062 // A default template-argument may be specified for any kind of 1063 // template-parameter that is not a template parameter pack. 1064 if (DefaultArg && IsParameterPack) { 1065 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1066 DefaultArg = nullptr; 1067 } 1068 1069 // Handle the default argument, if provided. 1070 if (DefaultArg) { 1071 TypeSourceInfo *DefaultTInfo; 1072 GetTypeFromParser(DefaultArg, &DefaultTInfo); 1073 1074 assert(DefaultTInfo && "expected source information for type"); 1075 1076 // Check for unexpanded parameter packs. 1077 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo, 1078 UPPC_DefaultArgument)) 1079 return Param; 1080 1081 // Check the template argument itself. 1082 if (CheckTemplateArgument(Param, DefaultTInfo)) { 1083 Param->setInvalidDecl(); 1084 return Param; 1085 } 1086 1087 Param->setDefaultArgument(DefaultTInfo); 1088 } 1089 1090 return Param; 1091 } 1092 1093 /// Convert the parser's template argument list representation into our form. 1094 static TemplateArgumentListInfo 1095 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { 1096 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, 1097 TemplateId.RAngleLoc); 1098 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), 1099 TemplateId.NumArgs); 1100 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 1101 return TemplateArgs; 1102 } 1103 1104 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS, 1105 TemplateIdAnnotation *TypeConstr, 1106 TemplateTypeParmDecl *ConstrainedParameter, 1107 SourceLocation EllipsisLoc) { 1108 ConceptDecl *CD = 1109 cast<ConceptDecl>(TypeConstr->Template.get().getAsTemplateDecl()); 1110 1111 // C++2a [temp.param]p4: 1112 // [...] The concept designated by a type-constraint shall be a type 1113 // concept ([temp.concept]). 1114 if (!CD->isTypeConcept()) { 1115 Diag(TypeConstr->TemplateNameLoc, 1116 diag::err_type_constraint_non_type_concept); 1117 return true; 1118 } 1119 1120 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid(); 1121 1122 if (!WereArgsSpecified && 1123 CD->getTemplateParameters()->getMinRequiredArguments() > 1) { 1124 Diag(TypeConstr->TemplateNameLoc, 1125 diag::err_type_constraint_missing_arguments) << CD; 1126 return true; 1127 } 1128 1129 TemplateArgumentListInfo TemplateArgs; 1130 if (TypeConstr->LAngleLoc.isValid()) { 1131 TemplateArgs = 1132 makeTemplateArgumentListInfo(*this, *TypeConstr); 1133 } 1134 return AttachTypeConstraint( 1135 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(), 1136 DeclarationNameInfo(DeclarationName(TypeConstr->Name), 1137 TypeConstr->TemplateNameLoc), CD, 1138 TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr, 1139 ConstrainedParameter, EllipsisLoc); 1140 } 1141 1142 template<typename ArgumentLocAppender> 1143 static ExprResult formImmediatelyDeclaredConstraint( 1144 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, 1145 ConceptDecl *NamedConcept, SourceLocation LAngleLoc, 1146 SourceLocation RAngleLoc, QualType ConstrainedType, 1147 SourceLocation ParamNameLoc, ArgumentLocAppender Appender, 1148 SourceLocation EllipsisLoc) { 1149 1150 TemplateArgumentListInfo ConstraintArgs; 1151 ConstraintArgs.addArgument( 1152 S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType), 1153 /*NTTPType=*/QualType(), ParamNameLoc)); 1154 1155 ConstraintArgs.setRAngleLoc(RAngleLoc); 1156 ConstraintArgs.setLAngleLoc(LAngleLoc); 1157 Appender(ConstraintArgs); 1158 1159 // C++2a [temp.param]p4: 1160 // [...] This constraint-expression E is called the immediately-declared 1161 // constraint of T. [...] 1162 CXXScopeSpec SS; 1163 SS.Adopt(NS); 1164 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId( 1165 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo, 1166 /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs); 1167 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid()) 1168 return ImmediatelyDeclaredConstraint; 1169 1170 // C++2a [temp.param]p4: 1171 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). 1172 // 1173 // We have the following case: 1174 // 1175 // template<typename T> concept C1 = true; 1176 // template<C1... T> struct s1; 1177 // 1178 // The constraint: (C1<T> && ...) 1179 return S.BuildCXXFoldExpr(/*LParenLoc=*/SourceLocation(), 1180 ImmediatelyDeclaredConstraint.get(), BO_LAnd, 1181 EllipsisLoc, /*RHS=*/nullptr, 1182 /*RParenLoc=*/SourceLocation(), 1183 /*NumExpansions=*/None); 1184 } 1185 1186 /// Attach a type-constraint to a template parameter. 1187 /// \returns true if an error occured. This can happen if the 1188 /// immediately-declared constraint could not be formed (e.g. incorrect number 1189 /// of arguments for the named concept). 1190 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS, 1191 DeclarationNameInfo NameInfo, 1192 ConceptDecl *NamedConcept, 1193 const TemplateArgumentListInfo *TemplateArgs, 1194 TemplateTypeParmDecl *ConstrainedParameter, 1195 SourceLocation EllipsisLoc) { 1196 // C++2a [temp.param]p4: 1197 // [...] If Q is of the form C<A1, ..., An>, then let E' be 1198 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...] 1199 const ASTTemplateArgumentListInfo *ArgsAsWritten = 1200 TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context, 1201 *TemplateArgs) : nullptr; 1202 1203 QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0); 1204 1205 ExprResult ImmediatelyDeclaredConstraint = 1206 formImmediatelyDeclaredConstraint( 1207 *this, NS, NameInfo, NamedConcept, 1208 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(), 1209 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(), 1210 ParamAsArgument, ConstrainedParameter->getLocation(), 1211 [&] (TemplateArgumentListInfo &ConstraintArgs) { 1212 if (TemplateArgs) 1213 for (const auto &ArgLoc : TemplateArgs->arguments()) 1214 ConstraintArgs.addArgument(ArgLoc); 1215 }, EllipsisLoc); 1216 if (ImmediatelyDeclaredConstraint.isInvalid()) 1217 return true; 1218 1219 ConstrainedParameter->setTypeConstraint(NS, NameInfo, 1220 /*FoundDecl=*/NamedConcept, 1221 NamedConcept, ArgsAsWritten, 1222 ImmediatelyDeclaredConstraint.get()); 1223 return false; 1224 } 1225 1226 bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP, 1227 SourceLocation EllipsisLoc) { 1228 if (NTTP->getType() != TL.getType() || 1229 TL.getAutoKeyword() != AutoTypeKeyword::Auto) { 1230 Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1231 diag::err_unsupported_placeholder_constraint) 1232 << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange(); 1233 return true; 1234 } 1235 // FIXME: Concepts: This should be the type of the placeholder, but this is 1236 // unclear in the wording right now. 1237 DeclRefExpr *Ref = BuildDeclRefExpr(NTTP, NTTP->getType(), VK_RValue, 1238 NTTP->getLocation()); 1239 if (!Ref) 1240 return true; 1241 ExprResult ImmediatelyDeclaredConstraint = 1242 formImmediatelyDeclaredConstraint( 1243 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(), 1244 TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(), 1245 BuildDecltypeType(Ref, NTTP->getLocation()), NTTP->getLocation(), 1246 [&] (TemplateArgumentListInfo &ConstraintArgs) { 1247 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I) 1248 ConstraintArgs.addArgument(TL.getArgLoc(I)); 1249 }, EllipsisLoc); 1250 if (ImmediatelyDeclaredConstraint.isInvalid() || 1251 !ImmediatelyDeclaredConstraint.isUsable()) 1252 return true; 1253 1254 NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get()); 1255 return false; 1256 } 1257 1258 /// Check that the type of a non-type template parameter is 1259 /// well-formed. 1260 /// 1261 /// \returns the (possibly-promoted) parameter type if valid; 1262 /// otherwise, produces a diagnostic and returns a NULL type. 1263 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, 1264 SourceLocation Loc) { 1265 if (TSI->getType()->isUndeducedType()) { 1266 // C++17 [temp.dep.expr]p3: 1267 // An id-expression is type-dependent if it contains 1268 // - an identifier associated by name lookup with a non-type 1269 // template-parameter declared with a type that contains a 1270 // placeholder type (7.1.7.4), 1271 TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy); 1272 } 1273 1274 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc); 1275 } 1276 1277 QualType Sema::CheckNonTypeTemplateParameterType(QualType T, 1278 SourceLocation Loc) { 1279 // We don't allow variably-modified types as the type of non-type template 1280 // parameters. 1281 if (T->isVariablyModifiedType()) { 1282 Diag(Loc, diag::err_variably_modified_nontype_template_param) 1283 << T; 1284 return QualType(); 1285 } 1286 1287 // C++ [temp.param]p4: 1288 // 1289 // A non-type template-parameter shall have one of the following 1290 // (optionally cv-qualified) types: 1291 // 1292 // -- integral or enumeration type, 1293 if (T->isIntegralOrEnumerationType() || 1294 // -- pointer to object or pointer to function, 1295 T->isPointerType() || 1296 // -- reference to object or reference to function, 1297 T->isReferenceType() || 1298 // -- pointer to member, 1299 T->isMemberPointerType() || 1300 // -- std::nullptr_t. 1301 T->isNullPtrType() || 1302 // Allow use of auto in template parameter declarations. 1303 T->isUndeducedType()) { 1304 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 1305 // are ignored when determining its type. 1306 return T.getUnqualifiedType(); 1307 } 1308 1309 // C++ [temp.param]p8: 1310 // 1311 // A non-type template-parameter of type "array of T" or 1312 // "function returning T" is adjusted to be of type "pointer to 1313 // T" or "pointer to function returning T", respectively. 1314 if (T->isArrayType() || T->isFunctionType()) 1315 return Context.getDecayedType(T); 1316 1317 // If T is a dependent type, we can't do the check now, so we 1318 // assume that it is well-formed. Note that stripping off the 1319 // qualifiers here is not really correct if T turns out to be 1320 // an array type, but we'll recompute the type everywhere it's 1321 // used during instantiation, so that should be OK. (Using the 1322 // qualified type is equally wrong.) 1323 if (T->isDependentType()) 1324 return T.getUnqualifiedType(); 1325 1326 Diag(Loc, diag::err_template_nontype_parm_bad_type) 1327 << T; 1328 1329 return QualType(); 1330 } 1331 1332 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 1333 unsigned Depth, 1334 unsigned Position, 1335 SourceLocation EqualLoc, 1336 Expr *Default) { 1337 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 1338 1339 // Check that we have valid decl-specifiers specified. 1340 auto CheckValidDeclSpecifiers = [this, &D] { 1341 // C++ [temp.param] 1342 // p1 1343 // template-parameter: 1344 // ... 1345 // parameter-declaration 1346 // p2 1347 // ... A storage class shall not be specified in a template-parameter 1348 // declaration. 1349 // [dcl.typedef]p1: 1350 // The typedef specifier [...] shall not be used in the decl-specifier-seq 1351 // of a parameter-declaration 1352 const DeclSpec &DS = D.getDeclSpec(); 1353 auto EmitDiag = [this](SourceLocation Loc) { 1354 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) 1355 << FixItHint::CreateRemoval(Loc); 1356 }; 1357 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) 1358 EmitDiag(DS.getStorageClassSpecLoc()); 1359 1360 if (DS.getThreadStorageClassSpec() != TSCS_unspecified) 1361 EmitDiag(DS.getThreadStorageClassSpecLoc()); 1362 1363 // [dcl.inline]p1: 1364 // The inline specifier can be applied only to the declaration or 1365 // definition of a variable or function. 1366 1367 if (DS.isInlineSpecified()) 1368 EmitDiag(DS.getInlineSpecLoc()); 1369 1370 // [dcl.constexpr]p1: 1371 // The constexpr specifier shall be applied only to the definition of a 1372 // variable or variable template or the declaration of a function or 1373 // function template. 1374 1375 if (DS.hasConstexprSpecifier()) 1376 EmitDiag(DS.getConstexprSpecLoc()); 1377 1378 // [dcl.fct.spec]p1: 1379 // Function-specifiers can be used only in function declarations. 1380 1381 if (DS.isVirtualSpecified()) 1382 EmitDiag(DS.getVirtualSpecLoc()); 1383 1384 if (DS.hasExplicitSpecifier()) 1385 EmitDiag(DS.getExplicitSpecLoc()); 1386 1387 if (DS.isNoreturnSpecified()) 1388 EmitDiag(DS.getNoreturnSpecLoc()); 1389 }; 1390 1391 CheckValidDeclSpecifiers(); 1392 1393 if (TInfo->getType()->isUndeducedType()) { 1394 Diag(D.getIdentifierLoc(), 1395 diag::warn_cxx14_compat_template_nontype_parm_auto_type) 1396 << QualType(TInfo->getType()->getContainedAutoType(), 0); 1397 } 1398 1399 assert(S->isTemplateParamScope() && 1400 "Non-type template parameter not in template parameter scope!"); 1401 bool Invalid = false; 1402 1403 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc()); 1404 if (T.isNull()) { 1405 T = Context.IntTy; // Recover with an 'int' type. 1406 Invalid = true; 1407 } 1408 1409 CheckFunctionOrTemplateParamDeclarator(S, D); 1410 1411 IdentifierInfo *ParamName = D.getIdentifier(); 1412 bool IsParameterPack = D.hasEllipsis(); 1413 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create( 1414 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(), 1415 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack, 1416 TInfo); 1417 Param->setAccess(AS_public); 1418 1419 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) 1420 if (TL.isConstrained()) 1421 if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc())) 1422 Invalid = true; 1423 1424 if (Invalid) 1425 Param->setInvalidDecl(); 1426 1427 if (Param->isParameterPack()) 1428 if (auto *LSI = getEnclosingLambda()) 1429 LSI->LocalPacks.push_back(Param); 1430 1431 if (ParamName) { 1432 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), 1433 ParamName); 1434 1435 // Add the template parameter into the current scope. 1436 S->AddDecl(Param); 1437 IdResolver.AddDecl(Param); 1438 } 1439 1440 // C++0x [temp.param]p9: 1441 // A default template-argument may be specified for any kind of 1442 // template-parameter that is not a template parameter pack. 1443 if (Default && IsParameterPack) { 1444 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1445 Default = nullptr; 1446 } 1447 1448 // Check the well-formedness of the default template argument, if provided. 1449 if (Default) { 1450 // Check for unexpanded parameter packs. 1451 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 1452 return Param; 1453 1454 TemplateArgument Converted; 1455 ExprResult DefaultRes = 1456 CheckTemplateArgument(Param, Param->getType(), Default, Converted); 1457 if (DefaultRes.isInvalid()) { 1458 Param->setInvalidDecl(); 1459 return Param; 1460 } 1461 Default = DefaultRes.get(); 1462 1463 Param->setDefaultArgument(Default); 1464 } 1465 1466 return Param; 1467 } 1468 1469 /// ActOnTemplateTemplateParameter - Called when a C++ template template 1470 /// parameter (e.g. T in template <template \<typename> class T> class array) 1471 /// has been parsed. S is the current scope. 1472 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S, 1473 SourceLocation TmpLoc, 1474 TemplateParameterList *Params, 1475 SourceLocation EllipsisLoc, 1476 IdentifierInfo *Name, 1477 SourceLocation NameLoc, 1478 unsigned Depth, 1479 unsigned Position, 1480 SourceLocation EqualLoc, 1481 ParsedTemplateArgument Default) { 1482 assert(S->isTemplateParamScope() && 1483 "Template template parameter not in template parameter scope!"); 1484 1485 // Construct the parameter object. 1486 bool IsParameterPack = EllipsisLoc.isValid(); 1487 TemplateTemplateParmDecl *Param = 1488 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1489 NameLoc.isInvalid()? TmpLoc : NameLoc, 1490 Depth, Position, IsParameterPack, 1491 Name, Params); 1492 Param->setAccess(AS_public); 1493 1494 if (Param->isParameterPack()) 1495 if (auto *LSI = getEnclosingLambda()) 1496 LSI->LocalPacks.push_back(Param); 1497 1498 // If the template template parameter has a name, then link the identifier 1499 // into the scope and lookup mechanisms. 1500 if (Name) { 1501 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); 1502 1503 S->AddDecl(Param); 1504 IdResolver.AddDecl(Param); 1505 } 1506 1507 if (Params->size() == 0) { 1508 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 1509 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 1510 Param->setInvalidDecl(); 1511 } 1512 1513 // C++0x [temp.param]p9: 1514 // A default template-argument may be specified for any kind of 1515 // template-parameter that is not a template parameter pack. 1516 if (IsParameterPack && !Default.isInvalid()) { 1517 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1518 Default = ParsedTemplateArgument(); 1519 } 1520 1521 if (!Default.isInvalid()) { 1522 // Check only that we have a template template argument. We don't want to 1523 // try to check well-formedness now, because our template template parameter 1524 // might have dependent types in its template parameters, which we wouldn't 1525 // be able to match now. 1526 // 1527 // If none of the template template parameter's template arguments mention 1528 // other template parameters, we could actually perform more checking here. 1529 // However, it isn't worth doing. 1530 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 1531 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 1532 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template) 1533 << DefaultArg.getSourceRange(); 1534 return Param; 1535 } 1536 1537 // Check for unexpanded parameter packs. 1538 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 1539 DefaultArg.getArgument().getAsTemplate(), 1540 UPPC_DefaultArgument)) 1541 return Param; 1542 1543 Param->setDefaultArgument(Context, DefaultArg); 1544 } 1545 1546 return Param; 1547 } 1548 1549 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally 1550 /// constrained by RequiresClause, that contains the template parameters in 1551 /// Params. 1552 TemplateParameterList * 1553 Sema::ActOnTemplateParameterList(unsigned Depth, 1554 SourceLocation ExportLoc, 1555 SourceLocation TemplateLoc, 1556 SourceLocation LAngleLoc, 1557 ArrayRef<NamedDecl *> Params, 1558 SourceLocation RAngleLoc, 1559 Expr *RequiresClause) { 1560 if (ExportLoc.isValid()) 1561 Diag(ExportLoc, diag::warn_template_export_unsupported); 1562 1563 return TemplateParameterList::Create( 1564 Context, TemplateLoc, LAngleLoc, 1565 llvm::makeArrayRef(Params.data(), Params.size()), 1566 RAngleLoc, RequiresClause); 1567 } 1568 1569 static void SetNestedNameSpecifier(Sema &S, TagDecl *T, 1570 const CXXScopeSpec &SS) { 1571 if (SS.isSet()) 1572 T->setQualifierInfo(SS.getWithLocInContext(S.Context)); 1573 } 1574 1575 DeclResult Sema::CheckClassTemplate( 1576 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 1577 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, 1578 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, 1579 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 1580 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, 1581 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { 1582 assert(TemplateParams && TemplateParams->size() > 0 && 1583 "No template parameters"); 1584 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 1585 bool Invalid = false; 1586 1587 // Check that we can declare a template here. 1588 if (CheckTemplateDeclScope(S, TemplateParams)) 1589 return true; 1590 1591 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1592 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 1593 1594 // There is no such thing as an unnamed class template. 1595 if (!Name) { 1596 Diag(KWLoc, diag::err_template_unnamed_class); 1597 return true; 1598 } 1599 1600 // Find any previous declaration with this name. For a friend with no 1601 // scope explicitly specified, we only look for tag declarations (per 1602 // C++11 [basic.lookup.elab]p2). 1603 DeclContext *SemanticContext; 1604 LookupResult Previous(*this, Name, NameLoc, 1605 (SS.isEmpty() && TUK == TUK_Friend) 1606 ? LookupTagName : LookupOrdinaryName, 1607 forRedeclarationInCurContext()); 1608 if (SS.isNotEmpty() && !SS.isInvalid()) { 1609 SemanticContext = computeDeclContext(SS, true); 1610 if (!SemanticContext) { 1611 // FIXME: Horrible, horrible hack! We can't currently represent this 1612 // in the AST, and historically we have just ignored such friend 1613 // class templates, so don't complain here. 1614 Diag(NameLoc, TUK == TUK_Friend 1615 ? diag::warn_template_qualified_friend_ignored 1616 : diag::err_template_qualified_declarator_no_match) 1617 << SS.getScopeRep() << SS.getRange(); 1618 return TUK != TUK_Friend; 1619 } 1620 1621 if (RequireCompleteDeclContext(SS, SemanticContext)) 1622 return true; 1623 1624 // If we're adding a template to a dependent context, we may need to 1625 // rebuilding some of the types used within the template parameter list, 1626 // now that we know what the current instantiation is. 1627 if (SemanticContext->isDependentContext()) { 1628 ContextRAII SavedContext(*this, SemanticContext); 1629 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 1630 Invalid = true; 1631 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 1632 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false); 1633 1634 LookupQualifiedName(Previous, SemanticContext); 1635 } else { 1636 SemanticContext = CurContext; 1637 1638 // C++14 [class.mem]p14: 1639 // If T is the name of a class, then each of the following shall have a 1640 // name different from T: 1641 // -- every member template of class T 1642 if (TUK != TUK_Friend && 1643 DiagnoseClassNameShadow(SemanticContext, 1644 DeclarationNameInfo(Name, NameLoc))) 1645 return true; 1646 1647 LookupName(Previous, S); 1648 } 1649 1650 if (Previous.isAmbiguous()) 1651 return true; 1652 1653 NamedDecl *PrevDecl = nullptr; 1654 if (Previous.begin() != Previous.end()) 1655 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1656 1657 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1658 // Maybe we will complain about the shadowed template parameter. 1659 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1660 // Just pretend that we didn't see the previous declaration. 1661 PrevDecl = nullptr; 1662 } 1663 1664 // If there is a previous declaration with the same name, check 1665 // whether this is a valid redeclaration. 1666 ClassTemplateDecl *PrevClassTemplate = 1667 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 1668 1669 // We may have found the injected-class-name of a class template, 1670 // class template partial specialization, or class template specialization. 1671 // In these cases, grab the template that is being defined or specialized. 1672 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 1673 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 1674 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 1675 PrevClassTemplate 1676 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 1677 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 1678 PrevClassTemplate 1679 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 1680 ->getSpecializedTemplate(); 1681 } 1682 } 1683 1684 if (TUK == TUK_Friend) { 1685 // C++ [namespace.memdef]p3: 1686 // [...] When looking for a prior declaration of a class or a function 1687 // declared as a friend, and when the name of the friend class or 1688 // function is neither a qualified name nor a template-id, scopes outside 1689 // the innermost enclosing namespace scope are not considered. 1690 if (!SS.isSet()) { 1691 DeclContext *OutermostContext = CurContext; 1692 while (!OutermostContext->isFileContext()) 1693 OutermostContext = OutermostContext->getLookupParent(); 1694 1695 if (PrevDecl && 1696 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 1697 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 1698 SemanticContext = PrevDecl->getDeclContext(); 1699 } else { 1700 // Declarations in outer scopes don't matter. However, the outermost 1701 // context we computed is the semantic context for our new 1702 // declaration. 1703 PrevDecl = PrevClassTemplate = nullptr; 1704 SemanticContext = OutermostContext; 1705 1706 // Check that the chosen semantic context doesn't already contain a 1707 // declaration of this name as a non-tag type. 1708 Previous.clear(LookupOrdinaryName); 1709 DeclContext *LookupContext = SemanticContext; 1710 while (LookupContext->isTransparentContext()) 1711 LookupContext = LookupContext->getLookupParent(); 1712 LookupQualifiedName(Previous, LookupContext); 1713 1714 if (Previous.isAmbiguous()) 1715 return true; 1716 1717 if (Previous.begin() != Previous.end()) 1718 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1719 } 1720 } 1721 } else if (PrevDecl && 1722 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext, 1723 S, SS.isValid())) 1724 PrevDecl = PrevClassTemplate = nullptr; 1725 1726 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( 1727 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { 1728 if (SS.isEmpty() && 1729 !(PrevClassTemplate && 1730 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( 1731 SemanticContext->getRedeclContext()))) { 1732 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 1733 Diag(Shadow->getTargetDecl()->getLocation(), 1734 diag::note_using_decl_target); 1735 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; 1736 // Recover by ignoring the old declaration. 1737 PrevDecl = PrevClassTemplate = nullptr; 1738 } 1739 } 1740 1741 if (PrevClassTemplate) { 1742 // Ensure that the template parameter lists are compatible. Skip this check 1743 // for a friend in a dependent context: the template parameter list itself 1744 // could be dependent. 1745 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1746 !TemplateParameterListsAreEqual(TemplateParams, 1747 PrevClassTemplate->getTemplateParameters(), 1748 /*Complain=*/true, 1749 TPL_TemplateMatch)) 1750 return true; 1751 1752 // C++ [temp.class]p4: 1753 // In a redeclaration, partial specialization, explicit 1754 // specialization or explicit instantiation of a class template, 1755 // the class-key shall agree in kind with the original class 1756 // template declaration (7.1.5.3). 1757 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 1758 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 1759 TUK == TUK_Definition, KWLoc, Name)) { 1760 Diag(KWLoc, diag::err_use_with_wrong_tag) 1761 << Name 1762 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 1763 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 1764 Kind = PrevRecordDecl->getTagKind(); 1765 } 1766 1767 // Check for redefinition of this class template. 1768 if (TUK == TUK_Definition) { 1769 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 1770 // If we have a prior definition that is not visible, treat this as 1771 // simply making that previous definition visible. 1772 NamedDecl *Hidden = nullptr; 1773 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 1774 SkipBody->ShouldSkip = true; 1775 SkipBody->Previous = Def; 1776 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate(); 1777 assert(Tmpl && "original definition of a class template is not a " 1778 "class template?"); 1779 makeMergedDefinitionVisible(Hidden); 1780 makeMergedDefinitionVisible(Tmpl); 1781 } else { 1782 Diag(NameLoc, diag::err_redefinition) << Name; 1783 Diag(Def->getLocation(), diag::note_previous_definition); 1784 // FIXME: Would it make sense to try to "forget" the previous 1785 // definition, as part of error recovery? 1786 return true; 1787 } 1788 } 1789 } 1790 } else if (PrevDecl) { 1791 // C++ [temp]p5: 1792 // A class template shall not have the same name as any other 1793 // template, class, function, object, enumeration, enumerator, 1794 // namespace, or type in the same scope (3.3), except as specified 1795 // in (14.5.4). 1796 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1797 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1798 return true; 1799 } 1800 1801 // Check the template parameter list of this declaration, possibly 1802 // merging in the template parameter list from the previous class 1803 // template declaration. Skip this check for a friend in a dependent 1804 // context, because the template parameter list might be dependent. 1805 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1806 CheckTemplateParameterList( 1807 TemplateParams, 1808 PrevClassTemplate 1809 ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters() 1810 : nullptr, 1811 (SS.isSet() && SemanticContext && SemanticContext->isRecord() && 1812 SemanticContext->isDependentContext()) 1813 ? TPC_ClassTemplateMember 1814 : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate, 1815 SkipBody)) 1816 Invalid = true; 1817 1818 if (SS.isSet()) { 1819 // If the name of the template was qualified, we must be defining the 1820 // template out-of-line. 1821 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 1822 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 1823 : diag::err_member_decl_does_not_match) 1824 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange(); 1825 Invalid = true; 1826 } 1827 } 1828 1829 // If this is a templated friend in a dependent context we should not put it 1830 // on the redecl chain. In some cases, the templated friend can be the most 1831 // recent declaration tricking the template instantiator to make substitutions 1832 // there. 1833 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious 1834 bool ShouldAddRedecl 1835 = !(TUK == TUK_Friend && CurContext->isDependentContext()); 1836 1837 CXXRecordDecl *NewClass = 1838 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1839 PrevClassTemplate && ShouldAddRedecl ? 1840 PrevClassTemplate->getTemplatedDecl() : nullptr, 1841 /*DelayTypeCreation=*/true); 1842 SetNestedNameSpecifier(*this, NewClass, SS); 1843 if (NumOuterTemplateParamLists > 0) 1844 NewClass->setTemplateParameterListsInfo( 1845 Context, llvm::makeArrayRef(OuterTemplateParamLists, 1846 NumOuterTemplateParamLists)); 1847 1848 // Add alignment attributes if necessary; these attributes are checked when 1849 // the ASTContext lays out the structure. 1850 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 1851 AddAlignmentAttributesForRecord(NewClass); 1852 AddMsStructLayoutForRecord(NewClass); 1853 } 1854 1855 ClassTemplateDecl *NewTemplate 1856 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1857 DeclarationName(Name), TemplateParams, 1858 NewClass); 1859 1860 if (ShouldAddRedecl) 1861 NewTemplate->setPreviousDecl(PrevClassTemplate); 1862 1863 NewClass->setDescribedClassTemplate(NewTemplate); 1864 1865 if (ModulePrivateLoc.isValid()) 1866 NewTemplate->setModulePrivate(); 1867 1868 // Build the type for the class template declaration now. 1869 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1870 T = Context.getInjectedClassNameType(NewClass, T); 1871 assert(T->isDependentType() && "Class template type is not dependent?"); 1872 (void)T; 1873 1874 // If we are providing an explicit specialization of a member that is a 1875 // class template, make a note of that. 1876 if (PrevClassTemplate && 1877 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1878 PrevClassTemplate->setMemberSpecialization(); 1879 1880 // Set the access specifier. 1881 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 1882 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1883 1884 // Set the lexical context of these templates 1885 NewClass->setLexicalDeclContext(CurContext); 1886 NewTemplate->setLexicalDeclContext(CurContext); 1887 1888 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 1889 NewClass->startDefinition(); 1890 1891 ProcessDeclAttributeList(S, NewClass, Attr); 1892 1893 if (PrevClassTemplate) 1894 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 1895 1896 AddPushedVisibilityAttribute(NewClass); 1897 inferGslOwnerPointerAttribute(NewClass); 1898 1899 if (TUK != TUK_Friend) { 1900 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. 1901 Scope *Outer = S; 1902 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) 1903 Outer = Outer->getParent(); 1904 PushOnScopeChains(NewTemplate, Outer); 1905 } else { 1906 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1907 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1908 NewClass->setAccess(PrevClassTemplate->getAccess()); 1909 } 1910 1911 NewTemplate->setObjectOfFriendDecl(); 1912 1913 // Friend templates are visible in fairly strange ways. 1914 if (!CurContext->isDependentContext()) { 1915 DeclContext *DC = SemanticContext->getRedeclContext(); 1916 DC->makeDeclVisibleInContext(NewTemplate); 1917 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1918 PushOnScopeChains(NewTemplate, EnclosingScope, 1919 /* AddToContext = */ false); 1920 } 1921 1922 FriendDecl *Friend = FriendDecl::Create( 1923 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc); 1924 Friend->setAccess(AS_public); 1925 CurContext->addDecl(Friend); 1926 } 1927 1928 if (PrevClassTemplate) 1929 CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate); 1930 1931 if (Invalid) { 1932 NewTemplate->setInvalidDecl(); 1933 NewClass->setInvalidDecl(); 1934 } 1935 1936 ActOnDocumentableDecl(NewTemplate); 1937 1938 if (SkipBody && SkipBody->ShouldSkip) 1939 return SkipBody->Previous; 1940 1941 return NewTemplate; 1942 } 1943 1944 namespace { 1945 /// Tree transform to "extract" a transformed type from a class template's 1946 /// constructor to a deduction guide. 1947 class ExtractTypeForDeductionGuide 1948 : public TreeTransform<ExtractTypeForDeductionGuide> { 1949 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs; 1950 1951 public: 1952 typedef TreeTransform<ExtractTypeForDeductionGuide> Base; 1953 ExtractTypeForDeductionGuide( 1954 Sema &SemaRef, 1955 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) 1956 : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {} 1957 1958 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); } 1959 1960 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) { 1961 ASTContext &Context = SemaRef.getASTContext(); 1962 TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl(); 1963 TypeLocBuilder InnerTLB; 1964 QualType Transformed = 1965 TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc()); 1966 TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed); 1967 1968 TypedefNameDecl *Decl = nullptr; 1969 1970 if (isa<TypeAliasDecl>(OrigDecl)) 1971 Decl = TypeAliasDecl::Create( 1972 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(), 1973 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI); 1974 else { 1975 assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef"); 1976 Decl = TypedefDecl::Create( 1977 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(), 1978 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI); 1979 } 1980 1981 MaterializedTypedefs.push_back(Decl); 1982 1983 QualType TDTy = Context.getTypedefType(Decl); 1984 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy); 1985 TypedefTL.setNameLoc(TL.getNameLoc()); 1986 1987 return TDTy; 1988 } 1989 }; 1990 1991 /// Transform to convert portions of a constructor declaration into the 1992 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1. 1993 struct ConvertConstructorToDeductionGuideTransform { 1994 ConvertConstructorToDeductionGuideTransform(Sema &S, 1995 ClassTemplateDecl *Template) 1996 : SemaRef(S), Template(Template) {} 1997 1998 Sema &SemaRef; 1999 ClassTemplateDecl *Template; 2000 2001 DeclContext *DC = Template->getDeclContext(); 2002 CXXRecordDecl *Primary = Template->getTemplatedDecl(); 2003 DeclarationName DeductionGuideName = 2004 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template); 2005 2006 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary); 2007 2008 // Index adjustment to apply to convert depth-1 template parameters into 2009 // depth-0 template parameters. 2010 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size(); 2011 2012 /// Transform a constructor declaration into a deduction guide. 2013 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD, 2014 CXXConstructorDecl *CD) { 2015 SmallVector<TemplateArgument, 16> SubstArgs; 2016 2017 LocalInstantiationScope Scope(SemaRef); 2018 2019 // C++ [over.match.class.deduct]p1: 2020 // -- For each constructor of the class template designated by the 2021 // template-name, a function template with the following properties: 2022 2023 // -- The template parameters are the template parameters of the class 2024 // template followed by the template parameters (including default 2025 // template arguments) of the constructor, if any. 2026 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2027 if (FTD) { 2028 TemplateParameterList *InnerParams = FTD->getTemplateParameters(); 2029 SmallVector<NamedDecl *, 16> AllParams; 2030 AllParams.reserve(TemplateParams->size() + InnerParams->size()); 2031 AllParams.insert(AllParams.begin(), 2032 TemplateParams->begin(), TemplateParams->end()); 2033 SubstArgs.reserve(InnerParams->size()); 2034 2035 // Later template parameters could refer to earlier ones, so build up 2036 // a list of substituted template arguments as we go. 2037 for (NamedDecl *Param : *InnerParams) { 2038 MultiLevelTemplateArgumentList Args; 2039 Args.setKind(TemplateSubstitutionKind::Rewrite); 2040 Args.addOuterTemplateArguments(SubstArgs); 2041 Args.addOuterRetainedLevel(); 2042 NamedDecl *NewParam = transformTemplateParameter(Param, Args); 2043 if (!NewParam) 2044 return nullptr; 2045 AllParams.push_back(NewParam); 2046 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument( 2047 SemaRef.Context.getInjectedTemplateArg(NewParam))); 2048 } 2049 TemplateParams = TemplateParameterList::Create( 2050 SemaRef.Context, InnerParams->getTemplateLoc(), 2051 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(), 2052 /*FIXME: RequiresClause*/ nullptr); 2053 } 2054 2055 // If we built a new template-parameter-list, track that we need to 2056 // substitute references to the old parameters into references to the 2057 // new ones. 2058 MultiLevelTemplateArgumentList Args; 2059 Args.setKind(TemplateSubstitutionKind::Rewrite); 2060 if (FTD) { 2061 Args.addOuterTemplateArguments(SubstArgs); 2062 Args.addOuterRetainedLevel(); 2063 } 2064 2065 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc() 2066 .getAsAdjusted<FunctionProtoTypeLoc>(); 2067 assert(FPTL && "no prototype for constructor declaration"); 2068 2069 // Transform the type of the function, adjusting the return type and 2070 // replacing references to the old parameters with references to the 2071 // new ones. 2072 TypeLocBuilder TLB; 2073 SmallVector<ParmVarDecl*, 8> Params; 2074 SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs; 2075 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args, 2076 MaterializedTypedefs); 2077 if (NewType.isNull()) 2078 return nullptr; 2079 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType); 2080 2081 return buildDeductionGuide(TemplateParams, CD->getExplicitSpecifier(), 2082 NewTInfo, CD->getBeginLoc(), CD->getLocation(), 2083 CD->getEndLoc(), MaterializedTypedefs); 2084 } 2085 2086 /// Build a deduction guide with the specified parameter types. 2087 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) { 2088 SourceLocation Loc = Template->getLocation(); 2089 2090 // Build the requested type. 2091 FunctionProtoType::ExtProtoInfo EPI; 2092 EPI.HasTrailingReturn = true; 2093 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc, 2094 DeductionGuideName, EPI); 2095 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc); 2096 2097 FunctionProtoTypeLoc FPTL = 2098 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>(); 2099 2100 // Build the parameters, needed during deduction / substitution. 2101 SmallVector<ParmVarDecl*, 4> Params; 2102 for (auto T : ParamTypes) { 2103 ParmVarDecl *NewParam = ParmVarDecl::Create( 2104 SemaRef.Context, DC, Loc, Loc, nullptr, T, 2105 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr); 2106 NewParam->setScopeInfo(0, Params.size()); 2107 FPTL.setParam(Params.size(), NewParam); 2108 Params.push_back(NewParam); 2109 } 2110 2111 return buildDeductionGuide(Template->getTemplateParameters(), 2112 ExplicitSpecifier(), TSI, Loc, Loc, Loc); 2113 } 2114 2115 private: 2116 /// Transform a constructor template parameter into a deduction guide template 2117 /// parameter, rebuilding any internal references to earlier parameters and 2118 /// renumbering as we go. 2119 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam, 2120 MultiLevelTemplateArgumentList &Args) { 2121 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) { 2122 // TemplateTypeParmDecl's index cannot be changed after creation, so 2123 // substitute it directly. 2124 auto *NewTTP = TemplateTypeParmDecl::Create( 2125 SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(), 2126 /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(), 2127 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(), 2128 TTP->isParameterPack(), TTP->hasTypeConstraint(), 2129 TTP->isExpandedParameterPack() ? 2130 llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None); 2131 if (const auto *TC = TTP->getTypeConstraint()) { 2132 TemplateArgumentListInfo TransformedArgs; 2133 const auto *ArgsAsWritten = TC->getTemplateArgsAsWritten(); 2134 if (!ArgsAsWritten || 2135 SemaRef.Subst(ArgsAsWritten->getTemplateArgs(), 2136 ArgsAsWritten->NumTemplateArgs, TransformedArgs, 2137 Args)) 2138 SemaRef.AttachTypeConstraint( 2139 TC->getNestedNameSpecifierLoc(), TC->getConceptNameInfo(), 2140 TC->getNamedConcept(), ArgsAsWritten ? &TransformedArgs : nullptr, 2141 NewTTP, 2142 NewTTP->isParameterPack() 2143 ? cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint()) 2144 ->getEllipsisLoc() 2145 : SourceLocation()); 2146 } 2147 if (TTP->hasDefaultArgument()) { 2148 TypeSourceInfo *InstantiatedDefaultArg = 2149 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args, 2150 TTP->getDefaultArgumentLoc(), TTP->getDeclName()); 2151 if (InstantiatedDefaultArg) 2152 NewTTP->setDefaultArgument(InstantiatedDefaultArg); 2153 } 2154 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam, 2155 NewTTP); 2156 return NewTTP; 2157 } 2158 2159 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam)) 2160 return transformTemplateParameterImpl(TTP, Args); 2161 2162 return transformTemplateParameterImpl( 2163 cast<NonTypeTemplateParmDecl>(TemplateParam), Args); 2164 } 2165 template<typename TemplateParmDecl> 2166 TemplateParmDecl * 2167 transformTemplateParameterImpl(TemplateParmDecl *OldParam, 2168 MultiLevelTemplateArgumentList &Args) { 2169 // Ask the template instantiator to do the heavy lifting for us, then adjust 2170 // the index of the parameter once it's done. 2171 auto *NewParam = 2172 cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args)); 2173 assert(NewParam->getDepth() == 0 && "unexpected template param depth"); 2174 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment); 2175 return NewParam; 2176 } 2177 2178 QualType transformFunctionProtoType( 2179 TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, 2180 SmallVectorImpl<ParmVarDecl *> &Params, 2181 MultiLevelTemplateArgumentList &Args, 2182 SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { 2183 SmallVector<QualType, 4> ParamTypes; 2184 const FunctionProtoType *T = TL.getTypePtr(); 2185 2186 // -- The types of the function parameters are those of the constructor. 2187 for (auto *OldParam : TL.getParams()) { 2188 ParmVarDecl *NewParam = 2189 transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs); 2190 if (!NewParam) 2191 return QualType(); 2192 ParamTypes.push_back(NewParam->getType()); 2193 Params.push_back(NewParam); 2194 } 2195 2196 // -- The return type is the class template specialization designated by 2197 // the template-name and template arguments corresponding to the 2198 // template parameters obtained from the class template. 2199 // 2200 // We use the injected-class-name type of the primary template instead. 2201 // This has the convenient property that it is different from any type that 2202 // the user can write in a deduction-guide (because they cannot enter the 2203 // context of the template), so implicit deduction guides can never collide 2204 // with explicit ones. 2205 QualType ReturnType = DeducedType; 2206 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation()); 2207 2208 // Resolving a wording defect, we also inherit the variadicness of the 2209 // constructor. 2210 FunctionProtoType::ExtProtoInfo EPI; 2211 EPI.Variadic = T->isVariadic(); 2212 EPI.HasTrailingReturn = true; 2213 2214 QualType Result = SemaRef.BuildFunctionType( 2215 ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI); 2216 if (Result.isNull()) 2217 return QualType(); 2218 2219 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result); 2220 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); 2221 NewTL.setLParenLoc(TL.getLParenLoc()); 2222 NewTL.setRParenLoc(TL.getRParenLoc()); 2223 NewTL.setExceptionSpecRange(SourceRange()); 2224 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); 2225 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I) 2226 NewTL.setParam(I, Params[I]); 2227 2228 return Result; 2229 } 2230 2231 ParmVarDecl *transformFunctionTypeParam( 2232 ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args, 2233 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { 2234 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo(); 2235 TypeSourceInfo *NewDI; 2236 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) { 2237 // Expand out the one and only element in each inner pack. 2238 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0); 2239 NewDI = 2240 SemaRef.SubstType(PackTL.getPatternLoc(), Args, 2241 OldParam->getLocation(), OldParam->getDeclName()); 2242 if (!NewDI) return nullptr; 2243 NewDI = 2244 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(), 2245 PackTL.getTypePtr()->getNumExpansions()); 2246 } else 2247 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(), 2248 OldParam->getDeclName()); 2249 if (!NewDI) 2250 return nullptr; 2251 2252 // Extract the type. This (for instance) replaces references to typedef 2253 // members of the current instantiations with the definitions of those 2254 // typedefs, avoiding triggering instantiation of the deduced type during 2255 // deduction. 2256 NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs) 2257 .transform(NewDI); 2258 2259 // Resolving a wording defect, we also inherit default arguments from the 2260 // constructor. 2261 ExprResult NewDefArg; 2262 if (OldParam->hasDefaultArg()) { 2263 // We don't care what the value is (we won't use it); just create a 2264 // placeholder to indicate there is a default argument. 2265 QualType ParamTy = NewDI->getType(); 2266 NewDefArg = new (SemaRef.Context) 2267 OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(), 2268 ParamTy.getNonLValueExprType(SemaRef.Context), 2269 ParamTy->isLValueReferenceType() ? VK_LValue : 2270 ParamTy->isRValueReferenceType() ? VK_XValue : 2271 VK_RValue); 2272 } 2273 2274 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC, 2275 OldParam->getInnerLocStart(), 2276 OldParam->getLocation(), 2277 OldParam->getIdentifier(), 2278 NewDI->getType(), 2279 NewDI, 2280 OldParam->getStorageClass(), 2281 NewDefArg.get()); 2282 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(), 2283 OldParam->getFunctionScopeIndex()); 2284 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam); 2285 return NewParam; 2286 } 2287 2288 FunctionTemplateDecl *buildDeductionGuide( 2289 TemplateParameterList *TemplateParams, ExplicitSpecifier ES, 2290 TypeSourceInfo *TInfo, SourceLocation LocStart, SourceLocation Loc, 2291 SourceLocation LocEnd, 2292 llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) { 2293 DeclarationNameInfo Name(DeductionGuideName, Loc); 2294 ArrayRef<ParmVarDecl *> Params = 2295 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(); 2296 2297 // Build the implicit deduction guide template. 2298 auto *Guide = 2299 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name, 2300 TInfo->getType(), TInfo, LocEnd); 2301 Guide->setImplicit(); 2302 Guide->setParams(Params); 2303 2304 for (auto *Param : Params) 2305 Param->setDeclContext(Guide); 2306 for (auto *TD : MaterializedTypedefs) 2307 TD->setDeclContext(Guide); 2308 2309 auto *GuideTemplate = FunctionTemplateDecl::Create( 2310 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide); 2311 GuideTemplate->setImplicit(); 2312 Guide->setDescribedFunctionTemplate(GuideTemplate); 2313 2314 if (isa<CXXRecordDecl>(DC)) { 2315 Guide->setAccess(AS_public); 2316 GuideTemplate->setAccess(AS_public); 2317 } 2318 2319 DC->addDecl(GuideTemplate); 2320 return GuideTemplate; 2321 } 2322 }; 2323 } 2324 2325 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template, 2326 SourceLocation Loc) { 2327 if (CXXRecordDecl *DefRecord = 2328 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) { 2329 TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate(); 2330 Template = DescribedTemplate ? DescribedTemplate : Template; 2331 } 2332 2333 DeclContext *DC = Template->getDeclContext(); 2334 if (DC->isDependentContext()) 2335 return; 2336 2337 ConvertConstructorToDeductionGuideTransform Transform( 2338 *this, cast<ClassTemplateDecl>(Template)); 2339 if (!isCompleteType(Loc, Transform.DeducedType)) 2340 return; 2341 2342 // Check whether we've already declared deduction guides for this template. 2343 // FIXME: Consider storing a flag on the template to indicate this. 2344 auto Existing = DC->lookup(Transform.DeductionGuideName); 2345 for (auto *D : Existing) 2346 if (D->isImplicit()) 2347 return; 2348 2349 // In case we were expanding a pack when we attempted to declare deduction 2350 // guides, turn off pack expansion for everything we're about to do. 2351 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1); 2352 // Create a template instantiation record to track the "instantiation" of 2353 // constructors into deduction guides. 2354 // FIXME: Add a kind for this to give more meaningful diagnostics. But can 2355 // this substitution process actually fail? 2356 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template); 2357 if (BuildingDeductionGuides.isInvalid()) 2358 return; 2359 2360 // Convert declared constructors into deduction guide templates. 2361 // FIXME: Skip constructors for which deduction must necessarily fail (those 2362 // for which some class template parameter without a default argument never 2363 // appears in a deduced context). 2364 bool AddedAny = false; 2365 for (NamedDecl *D : LookupConstructors(Transform.Primary)) { 2366 D = D->getUnderlyingDecl(); 2367 if (D->isInvalidDecl() || D->isImplicit()) 2368 continue; 2369 D = cast<NamedDecl>(D->getCanonicalDecl()); 2370 2371 auto *FTD = dyn_cast<FunctionTemplateDecl>(D); 2372 auto *CD = 2373 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D); 2374 // Class-scope explicit specializations (MS extension) do not result in 2375 // deduction guides. 2376 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization())) 2377 continue; 2378 2379 Transform.transformConstructor(FTD, CD); 2380 AddedAny = true; 2381 } 2382 2383 // C++17 [over.match.class.deduct] 2384 // -- If C is not defined or does not declare any constructors, an 2385 // additional function template derived as above from a hypothetical 2386 // constructor C(). 2387 if (!AddedAny) 2388 Transform.buildSimpleDeductionGuide(None); 2389 2390 // -- An additional function template derived as above from a hypothetical 2391 // constructor C(C), called the copy deduction candidate. 2392 cast<CXXDeductionGuideDecl>( 2393 cast<FunctionTemplateDecl>( 2394 Transform.buildSimpleDeductionGuide(Transform.DeducedType)) 2395 ->getTemplatedDecl()) 2396 ->setIsCopyDeductionCandidate(); 2397 } 2398 2399 /// Diagnose the presence of a default template argument on a 2400 /// template parameter, which is ill-formed in certain contexts. 2401 /// 2402 /// \returns true if the default template argument should be dropped. 2403 static bool DiagnoseDefaultTemplateArgument(Sema &S, 2404 Sema::TemplateParamListContext TPC, 2405 SourceLocation ParamLoc, 2406 SourceRange DefArgRange) { 2407 switch (TPC) { 2408 case Sema::TPC_ClassTemplate: 2409 case Sema::TPC_VarTemplate: 2410 case Sema::TPC_TypeAliasTemplate: 2411 return false; 2412 2413 case Sema::TPC_FunctionTemplate: 2414 case Sema::TPC_FriendFunctionTemplateDefinition: 2415 // C++ [temp.param]p9: 2416 // A default template-argument shall not be specified in a 2417 // function template declaration or a function template 2418 // definition [...] 2419 // If a friend function template declaration specifies a default 2420 // template-argument, that declaration shall be a definition and shall be 2421 // the only declaration of the function template in the translation unit. 2422 // (C++98/03 doesn't have this wording; see DR226). 2423 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 2424 diag::warn_cxx98_compat_template_parameter_default_in_function_template 2425 : diag::ext_template_parameter_default_in_function_template) 2426 << DefArgRange; 2427 return false; 2428 2429 case Sema::TPC_ClassTemplateMember: 2430 // C++0x [temp.param]p9: 2431 // A default template-argument shall not be specified in the 2432 // template-parameter-lists of the definition of a member of a 2433 // class template that appears outside of the member's class. 2434 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 2435 << DefArgRange; 2436 return true; 2437 2438 case Sema::TPC_FriendClassTemplate: 2439 case Sema::TPC_FriendFunctionTemplate: 2440 // C++ [temp.param]p9: 2441 // A default template-argument shall not be specified in a 2442 // friend template declaration. 2443 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 2444 << DefArgRange; 2445 return true; 2446 2447 // FIXME: C++0x [temp.param]p9 allows default template-arguments 2448 // for friend function templates if there is only a single 2449 // declaration (and it is a definition). Strange! 2450 } 2451 2452 llvm_unreachable("Invalid TemplateParamListContext!"); 2453 } 2454 2455 /// Check for unexpanded parameter packs within the template parameters 2456 /// of a template template parameter, recursively. 2457 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 2458 TemplateTemplateParmDecl *TTP) { 2459 // A template template parameter which is a parameter pack is also a pack 2460 // expansion. 2461 if (TTP->isParameterPack()) 2462 return false; 2463 2464 TemplateParameterList *Params = TTP->getTemplateParameters(); 2465 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 2466 NamedDecl *P = Params->getParam(I); 2467 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) { 2468 if (!TTP->isParameterPack()) 2469 if (const TypeConstraint *TC = TTP->getTypeConstraint()) 2470 if (TC->hasExplicitTemplateArgs()) 2471 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) 2472 if (S.DiagnoseUnexpandedParameterPack(ArgLoc, 2473 Sema::UPPC_TypeConstraint)) 2474 return true; 2475 continue; 2476 } 2477 2478 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 2479 if (!NTTP->isParameterPack() && 2480 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 2481 NTTP->getTypeSourceInfo(), 2482 Sema::UPPC_NonTypeTemplateParameterType)) 2483 return true; 2484 2485 continue; 2486 } 2487 2488 if (TemplateTemplateParmDecl *InnerTTP 2489 = dyn_cast<TemplateTemplateParmDecl>(P)) 2490 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 2491 return true; 2492 } 2493 2494 return false; 2495 } 2496 2497 /// Checks the validity of a template parameter list, possibly 2498 /// considering the template parameter list from a previous 2499 /// declaration. 2500 /// 2501 /// If an "old" template parameter list is provided, it must be 2502 /// equivalent (per TemplateParameterListsAreEqual) to the "new" 2503 /// template parameter list. 2504 /// 2505 /// \param NewParams Template parameter list for a new template 2506 /// declaration. This template parameter list will be updated with any 2507 /// default arguments that are carried through from the previous 2508 /// template parameter list. 2509 /// 2510 /// \param OldParams If provided, template parameter list from a 2511 /// previous declaration of the same template. Default template 2512 /// arguments will be merged from the old template parameter list to 2513 /// the new template parameter list. 2514 /// 2515 /// \param TPC Describes the context in which we are checking the given 2516 /// template parameter list. 2517 /// 2518 /// \param SkipBody If we might have already made a prior merged definition 2519 /// of this template visible, the corresponding body-skipping information. 2520 /// Default argument redefinition is not an error when skipping such a body, 2521 /// because (under the ODR) we can assume the default arguments are the same 2522 /// as the prior merged definition. 2523 /// 2524 /// \returns true if an error occurred, false otherwise. 2525 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 2526 TemplateParameterList *OldParams, 2527 TemplateParamListContext TPC, 2528 SkipBodyInfo *SkipBody) { 2529 bool Invalid = false; 2530 2531 // C++ [temp.param]p10: 2532 // The set of default template-arguments available for use with a 2533 // template declaration or definition is obtained by merging the 2534 // default arguments from the definition (if in scope) and all 2535 // declarations in scope in the same way default function 2536 // arguments are (8.3.6). 2537 bool SawDefaultArgument = false; 2538 SourceLocation PreviousDefaultArgLoc; 2539 2540 // Dummy initialization to avoid warnings. 2541 TemplateParameterList::iterator OldParam = NewParams->end(); 2542 if (OldParams) 2543 OldParam = OldParams->begin(); 2544 2545 bool RemoveDefaultArguments = false; 2546 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2547 NewParamEnd = NewParams->end(); 2548 NewParam != NewParamEnd; ++NewParam) { 2549 // Variables used to diagnose redundant default arguments 2550 bool RedundantDefaultArg = false; 2551 SourceLocation OldDefaultLoc; 2552 SourceLocation NewDefaultLoc; 2553 2554 // Variable used to diagnose missing default arguments 2555 bool MissingDefaultArg = false; 2556 2557 // Variable used to diagnose non-final parameter packs 2558 bool SawParameterPack = false; 2559 2560 if (TemplateTypeParmDecl *NewTypeParm 2561 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 2562 // Check the presence of a default argument here. 2563 if (NewTypeParm->hasDefaultArgument() && 2564 DiagnoseDefaultTemplateArgument(*this, TPC, 2565 NewTypeParm->getLocation(), 2566 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 2567 .getSourceRange())) 2568 NewTypeParm->removeDefaultArgument(); 2569 2570 // Merge default arguments for template type parameters. 2571 TemplateTypeParmDecl *OldTypeParm 2572 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr; 2573 if (NewTypeParm->isParameterPack()) { 2574 assert(!NewTypeParm->hasDefaultArgument() && 2575 "Parameter packs can't have a default argument!"); 2576 SawParameterPack = true; 2577 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && 2578 NewTypeParm->hasDefaultArgument() && 2579 (!SkipBody || !SkipBody->ShouldSkip)) { 2580 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 2581 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 2582 SawDefaultArgument = true; 2583 RedundantDefaultArg = true; 2584 PreviousDefaultArgLoc = NewDefaultLoc; 2585 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 2586 // Merge the default argument from the old declaration to the 2587 // new declaration. 2588 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm); 2589 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 2590 } else if (NewTypeParm->hasDefaultArgument()) { 2591 SawDefaultArgument = true; 2592 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 2593 } else if (SawDefaultArgument) 2594 MissingDefaultArg = true; 2595 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 2596 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 2597 // Check for unexpanded parameter packs. 2598 if (!NewNonTypeParm->isParameterPack() && 2599 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 2600 NewNonTypeParm->getTypeSourceInfo(), 2601 UPPC_NonTypeTemplateParameterType)) { 2602 Invalid = true; 2603 continue; 2604 } 2605 2606 // Check the presence of a default argument here. 2607 if (NewNonTypeParm->hasDefaultArgument() && 2608 DiagnoseDefaultTemplateArgument(*this, TPC, 2609 NewNonTypeParm->getLocation(), 2610 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 2611 NewNonTypeParm->removeDefaultArgument(); 2612 } 2613 2614 // Merge default arguments for non-type template parameters 2615 NonTypeTemplateParmDecl *OldNonTypeParm 2616 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr; 2617 if (NewNonTypeParm->isParameterPack()) { 2618 assert(!NewNonTypeParm->hasDefaultArgument() && 2619 "Parameter packs can't have a default argument!"); 2620 if (!NewNonTypeParm->isPackExpansion()) 2621 SawParameterPack = true; 2622 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && 2623 NewNonTypeParm->hasDefaultArgument() && 2624 (!SkipBody || !SkipBody->ShouldSkip)) { 2625 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2626 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2627 SawDefaultArgument = true; 2628 RedundantDefaultArg = true; 2629 PreviousDefaultArgLoc = NewDefaultLoc; 2630 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 2631 // Merge the default argument from the old declaration to the 2632 // new declaration. 2633 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm); 2634 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2635 } else if (NewNonTypeParm->hasDefaultArgument()) { 2636 SawDefaultArgument = true; 2637 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2638 } else if (SawDefaultArgument) 2639 MissingDefaultArg = true; 2640 } else { 2641 TemplateTemplateParmDecl *NewTemplateParm 2642 = cast<TemplateTemplateParmDecl>(*NewParam); 2643 2644 // Check for unexpanded parameter packs, recursively. 2645 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 2646 Invalid = true; 2647 continue; 2648 } 2649 2650 // Check the presence of a default argument here. 2651 if (NewTemplateParm->hasDefaultArgument() && 2652 DiagnoseDefaultTemplateArgument(*this, TPC, 2653 NewTemplateParm->getLocation(), 2654 NewTemplateParm->getDefaultArgument().getSourceRange())) 2655 NewTemplateParm->removeDefaultArgument(); 2656 2657 // Merge default arguments for template template parameters 2658 TemplateTemplateParmDecl *OldTemplateParm 2659 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr; 2660 if (NewTemplateParm->isParameterPack()) { 2661 assert(!NewTemplateParm->hasDefaultArgument() && 2662 "Parameter packs can't have a default argument!"); 2663 if (!NewTemplateParm->isPackExpansion()) 2664 SawParameterPack = true; 2665 } else if (OldTemplateParm && 2666 hasVisibleDefaultArgument(OldTemplateParm) && 2667 NewTemplateParm->hasDefaultArgument() && 2668 (!SkipBody || !SkipBody->ShouldSkip)) { 2669 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 2670 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 2671 SawDefaultArgument = true; 2672 RedundantDefaultArg = true; 2673 PreviousDefaultArgLoc = NewDefaultLoc; 2674 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 2675 // Merge the default argument from the old declaration to the 2676 // new declaration. 2677 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm); 2678 PreviousDefaultArgLoc 2679 = OldTemplateParm->getDefaultArgument().getLocation(); 2680 } else if (NewTemplateParm->hasDefaultArgument()) { 2681 SawDefaultArgument = true; 2682 PreviousDefaultArgLoc 2683 = NewTemplateParm->getDefaultArgument().getLocation(); 2684 } else if (SawDefaultArgument) 2685 MissingDefaultArg = true; 2686 } 2687 2688 // C++11 [temp.param]p11: 2689 // If a template parameter of a primary class template or alias template 2690 // is a template parameter pack, it shall be the last template parameter. 2691 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 2692 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || 2693 TPC == TPC_TypeAliasTemplate)) { 2694 Diag((*NewParam)->getLocation(), 2695 diag::err_template_param_pack_must_be_last_template_parameter); 2696 Invalid = true; 2697 } 2698 2699 if (RedundantDefaultArg) { 2700 // C++ [temp.param]p12: 2701 // A template-parameter shall not be given default arguments 2702 // by two different declarations in the same scope. 2703 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 2704 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 2705 Invalid = true; 2706 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 2707 // C++ [temp.param]p11: 2708 // If a template-parameter of a class template has a default 2709 // template-argument, each subsequent template-parameter shall either 2710 // have a default template-argument supplied or be a template parameter 2711 // pack. 2712 Diag((*NewParam)->getLocation(), 2713 diag::err_template_param_default_arg_missing); 2714 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 2715 Invalid = true; 2716 RemoveDefaultArguments = true; 2717 } 2718 2719 // If we have an old template parameter list that we're merging 2720 // in, move on to the next parameter. 2721 if (OldParams) 2722 ++OldParam; 2723 } 2724 2725 // We were missing some default arguments at the end of the list, so remove 2726 // all of the default arguments. 2727 if (RemoveDefaultArguments) { 2728 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2729 NewParamEnd = NewParams->end(); 2730 NewParam != NewParamEnd; ++NewParam) { 2731 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 2732 TTP->removeDefaultArgument(); 2733 else if (NonTypeTemplateParmDecl *NTTP 2734 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 2735 NTTP->removeDefaultArgument(); 2736 else 2737 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 2738 } 2739 } 2740 2741 return Invalid; 2742 } 2743 2744 namespace { 2745 2746 /// A class which looks for a use of a certain level of template 2747 /// parameter. 2748 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 2749 typedef RecursiveASTVisitor<DependencyChecker> super; 2750 2751 unsigned Depth; 2752 2753 // Whether we're looking for a use of a template parameter that makes the 2754 // overall construct type-dependent / a dependent type. This is strictly 2755 // best-effort for now; we may fail to match at all for a dependent type 2756 // in some cases if this is set. 2757 bool IgnoreNonTypeDependent; 2758 2759 bool Match; 2760 SourceLocation MatchLoc; 2761 2762 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) 2763 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), 2764 Match(false) {} 2765 2766 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) 2767 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { 2768 NamedDecl *ND = Params->getParam(0); 2769 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 2770 Depth = PD->getDepth(); 2771 } else if (NonTypeTemplateParmDecl *PD = 2772 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 2773 Depth = PD->getDepth(); 2774 } else { 2775 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 2776 } 2777 } 2778 2779 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { 2780 if (ParmDepth >= Depth) { 2781 Match = true; 2782 MatchLoc = Loc; 2783 return true; 2784 } 2785 return false; 2786 } 2787 2788 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) { 2789 // Prune out non-type-dependent expressions if requested. This can 2790 // sometimes result in us failing to find a template parameter reference 2791 // (if a value-dependent expression creates a dependent type), but this 2792 // mode is best-effort only. 2793 if (auto *E = dyn_cast_or_null<Expr>(S)) 2794 if (IgnoreNonTypeDependent && !E->isTypeDependent()) 2795 return true; 2796 return super::TraverseStmt(S, Q); 2797 } 2798 2799 bool TraverseTypeLoc(TypeLoc TL) { 2800 if (IgnoreNonTypeDependent && !TL.isNull() && 2801 !TL.getType()->isDependentType()) 2802 return true; 2803 return super::TraverseTypeLoc(TL); 2804 } 2805 2806 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { 2807 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc()); 2808 } 2809 2810 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 2811 // For a best-effort search, keep looking until we find a location. 2812 return IgnoreNonTypeDependent || !Matches(T->getDepth()); 2813 } 2814 2815 bool TraverseTemplateName(TemplateName N) { 2816 if (TemplateTemplateParmDecl *PD = 2817 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 2818 if (Matches(PD->getDepth())) 2819 return false; 2820 return super::TraverseTemplateName(N); 2821 } 2822 2823 bool VisitDeclRefExpr(DeclRefExpr *E) { 2824 if (NonTypeTemplateParmDecl *PD = 2825 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 2826 if (Matches(PD->getDepth(), E->getExprLoc())) 2827 return false; 2828 return super::VisitDeclRefExpr(E); 2829 } 2830 2831 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { 2832 return TraverseType(T->getReplacementType()); 2833 } 2834 2835 bool 2836 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { 2837 return TraverseTemplateArgument(T->getArgumentPack()); 2838 } 2839 2840 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 2841 return TraverseType(T->getInjectedSpecializationType()); 2842 } 2843 }; 2844 } // end anonymous namespace 2845 2846 /// Determines whether a given type depends on the given parameter 2847 /// list. 2848 static bool 2849 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 2850 if (!Params->size()) 2851 return false; 2852 2853 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); 2854 Checker.TraverseType(T); 2855 return Checker.Match; 2856 } 2857 2858 // Find the source range corresponding to the named type in the given 2859 // nested-name-specifier, if any. 2860 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 2861 QualType T, 2862 const CXXScopeSpec &SS) { 2863 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 2864 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 2865 if (const Type *CurType = NNS->getAsType()) { 2866 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 2867 return NNSLoc.getTypeLoc().getSourceRange(); 2868 } else 2869 break; 2870 2871 NNSLoc = NNSLoc.getPrefix(); 2872 } 2873 2874 return SourceRange(); 2875 } 2876 2877 /// Match the given template parameter lists to the given scope 2878 /// specifier, returning the template parameter list that applies to the 2879 /// name. 2880 /// 2881 /// \param DeclStartLoc the start of the declaration that has a scope 2882 /// specifier or a template parameter list. 2883 /// 2884 /// \param DeclLoc The location of the declaration itself. 2885 /// 2886 /// \param SS the scope specifier that will be matched to the given template 2887 /// parameter lists. This scope specifier precedes a qualified name that is 2888 /// being declared. 2889 /// 2890 /// \param TemplateId The template-id following the scope specifier, if there 2891 /// is one. Used to check for a missing 'template<>'. 2892 /// 2893 /// \param ParamLists the template parameter lists, from the outermost to the 2894 /// innermost template parameter lists. 2895 /// 2896 /// \param IsFriend Whether to apply the slightly different rules for 2897 /// matching template parameters to scope specifiers in friend 2898 /// declarations. 2899 /// 2900 /// \param IsMemberSpecialization will be set true if the scope specifier 2901 /// denotes a fully-specialized type, and therefore this is a declaration of 2902 /// a member specialization. 2903 /// 2904 /// \returns the template parameter list, if any, that corresponds to the 2905 /// name that is preceded by the scope specifier @p SS. This template 2906 /// parameter list may have template parameters (if we're declaring a 2907 /// template) or may have no template parameters (if we're declaring a 2908 /// template specialization), or may be NULL (if what we're declaring isn't 2909 /// itself a template). 2910 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( 2911 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, 2912 TemplateIdAnnotation *TemplateId, 2913 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, 2914 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) { 2915 IsMemberSpecialization = false; 2916 Invalid = false; 2917 2918 // The sequence of nested types to which we will match up the template 2919 // parameter lists. We first build this list by starting with the type named 2920 // by the nested-name-specifier and walking out until we run out of types. 2921 SmallVector<QualType, 4> NestedTypes; 2922 QualType T; 2923 if (SS.getScopeRep()) { 2924 if (CXXRecordDecl *Record 2925 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 2926 T = Context.getTypeDeclType(Record); 2927 else 2928 T = QualType(SS.getScopeRep()->getAsType(), 0); 2929 } 2930 2931 // If we found an explicit specialization that prevents us from needing 2932 // 'template<>' headers, this will be set to the location of that 2933 // explicit specialization. 2934 SourceLocation ExplicitSpecLoc; 2935 2936 while (!T.isNull()) { 2937 NestedTypes.push_back(T); 2938 2939 // Retrieve the parent of a record type. 2940 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 2941 // If this type is an explicit specialization, we're done. 2942 if (ClassTemplateSpecializationDecl *Spec 2943 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 2944 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 2945 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 2946 ExplicitSpecLoc = Spec->getLocation(); 2947 break; 2948 } 2949 } else if (Record->getTemplateSpecializationKind() 2950 == TSK_ExplicitSpecialization) { 2951 ExplicitSpecLoc = Record->getLocation(); 2952 break; 2953 } 2954 2955 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 2956 T = Context.getTypeDeclType(Parent); 2957 else 2958 T = QualType(); 2959 continue; 2960 } 2961 2962 if (const TemplateSpecializationType *TST 2963 = T->getAs<TemplateSpecializationType>()) { 2964 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 2965 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 2966 T = Context.getTypeDeclType(Parent); 2967 else 2968 T = QualType(); 2969 continue; 2970 } 2971 } 2972 2973 // Look one step prior in a dependent template specialization type. 2974 if (const DependentTemplateSpecializationType *DependentTST 2975 = T->getAs<DependentTemplateSpecializationType>()) { 2976 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 2977 T = QualType(NNS->getAsType(), 0); 2978 else 2979 T = QualType(); 2980 continue; 2981 } 2982 2983 // Look one step prior in a dependent name type. 2984 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 2985 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 2986 T = QualType(NNS->getAsType(), 0); 2987 else 2988 T = QualType(); 2989 continue; 2990 } 2991 2992 // Retrieve the parent of an enumeration type. 2993 if (const EnumType *EnumT = T->getAs<EnumType>()) { 2994 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 2995 // check here. 2996 EnumDecl *Enum = EnumT->getDecl(); 2997 2998 // Get to the parent type. 2999 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 3000 T = Context.getTypeDeclType(Parent); 3001 else 3002 T = QualType(); 3003 continue; 3004 } 3005 3006 T = QualType(); 3007 } 3008 // Reverse the nested types list, since we want to traverse from the outermost 3009 // to the innermost while checking template-parameter-lists. 3010 std::reverse(NestedTypes.begin(), NestedTypes.end()); 3011 3012 // C++0x [temp.expl.spec]p17: 3013 // A member or a member template may be nested within many 3014 // enclosing class templates. In an explicit specialization for 3015 // such a member, the member declaration shall be preceded by a 3016 // template<> for each enclosing class template that is 3017 // explicitly specialized. 3018 bool SawNonEmptyTemplateParameterList = false; 3019 3020 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { 3021 if (SawNonEmptyTemplateParameterList) { 3022 if (!SuppressDiagnostic) 3023 Diag(DeclLoc, diag::err_specialize_member_of_template) 3024 << !Recovery << Range; 3025 Invalid = true; 3026 IsMemberSpecialization = false; 3027 return true; 3028 } 3029 3030 return false; 3031 }; 3032 3033 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { 3034 // Check that we can have an explicit specialization here. 3035 if (CheckExplicitSpecialization(Range, true)) 3036 return true; 3037 3038 // We don't have a template header, but we should. 3039 SourceLocation ExpectedTemplateLoc; 3040 if (!ParamLists.empty()) 3041 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 3042 else 3043 ExpectedTemplateLoc = DeclStartLoc; 3044 3045 if (!SuppressDiagnostic) 3046 Diag(DeclLoc, diag::err_template_spec_needs_header) 3047 << Range 3048 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 3049 return false; 3050 }; 3051 3052 unsigned ParamIdx = 0; 3053 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 3054 ++TypeIdx) { 3055 T = NestedTypes[TypeIdx]; 3056 3057 // Whether we expect a 'template<>' header. 3058 bool NeedEmptyTemplateHeader = false; 3059 3060 // Whether we expect a template header with parameters. 3061 bool NeedNonemptyTemplateHeader = false; 3062 3063 // For a dependent type, the set of template parameters that we 3064 // expect to see. 3065 TemplateParameterList *ExpectedTemplateParams = nullptr; 3066 3067 // C++0x [temp.expl.spec]p15: 3068 // A member or a member template may be nested within many enclosing 3069 // class templates. In an explicit specialization for such a member, the 3070 // member declaration shall be preceded by a template<> for each 3071 // enclosing class template that is explicitly specialized. 3072 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 3073 if (ClassTemplatePartialSpecializationDecl *Partial 3074 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 3075 ExpectedTemplateParams = Partial->getTemplateParameters(); 3076 NeedNonemptyTemplateHeader = true; 3077 } else if (Record->isDependentType()) { 3078 if (Record->getDescribedClassTemplate()) { 3079 ExpectedTemplateParams = Record->getDescribedClassTemplate() 3080 ->getTemplateParameters(); 3081 NeedNonemptyTemplateHeader = true; 3082 } 3083 } else if (ClassTemplateSpecializationDecl *Spec 3084 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 3085 // C++0x [temp.expl.spec]p4: 3086 // Members of an explicitly specialized class template are defined 3087 // in the same manner as members of normal classes, and not using 3088 // the template<> syntax. 3089 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 3090 NeedEmptyTemplateHeader = true; 3091 else 3092 continue; 3093 } else if (Record->getTemplateSpecializationKind()) { 3094 if (Record->getTemplateSpecializationKind() 3095 != TSK_ExplicitSpecialization && 3096 TypeIdx == NumTypes - 1) 3097 IsMemberSpecialization = true; 3098 3099 continue; 3100 } 3101 } else if (const TemplateSpecializationType *TST 3102 = T->getAs<TemplateSpecializationType>()) { 3103 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 3104 ExpectedTemplateParams = Template->getTemplateParameters(); 3105 NeedNonemptyTemplateHeader = true; 3106 } 3107 } else if (T->getAs<DependentTemplateSpecializationType>()) { 3108 // FIXME: We actually could/should check the template arguments here 3109 // against the corresponding template parameter list. 3110 NeedNonemptyTemplateHeader = false; 3111 } 3112 3113 // C++ [temp.expl.spec]p16: 3114 // In an explicit specialization declaration for a member of a class 3115 // template or a member template that ap- pears in namespace scope, the 3116 // member template and some of its enclosing class templates may remain 3117 // unspecialized, except that the declaration shall not explicitly 3118 // specialize a class member template if its en- closing class templates 3119 // are not explicitly specialized as well. 3120 if (ParamIdx < ParamLists.size()) { 3121 if (ParamLists[ParamIdx]->size() == 0) { 3122 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3123 false)) 3124 return nullptr; 3125 } else 3126 SawNonEmptyTemplateParameterList = true; 3127 } 3128 3129 if (NeedEmptyTemplateHeader) { 3130 // If we're on the last of the types, and we need a 'template<>' header 3131 // here, then it's a member specialization. 3132 if (TypeIdx == NumTypes - 1) 3133 IsMemberSpecialization = true; 3134 3135 if (ParamIdx < ParamLists.size()) { 3136 if (ParamLists[ParamIdx]->size() > 0) { 3137 // The header has template parameters when it shouldn't. Complain. 3138 if (!SuppressDiagnostic) 3139 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3140 diag::err_template_param_list_matches_nontemplate) 3141 << T 3142 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 3143 ParamLists[ParamIdx]->getRAngleLoc()) 3144 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 3145 Invalid = true; 3146 return nullptr; 3147 } 3148 3149 // Consume this template header. 3150 ++ParamIdx; 3151 continue; 3152 } 3153 3154 if (!IsFriend) 3155 if (DiagnoseMissingExplicitSpecialization( 3156 getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) 3157 return nullptr; 3158 3159 continue; 3160 } 3161 3162 if (NeedNonemptyTemplateHeader) { 3163 // In friend declarations we can have template-ids which don't 3164 // depend on the corresponding template parameter lists. But 3165 // assume that empty parameter lists are supposed to match this 3166 // template-id. 3167 if (IsFriend && T->isDependentType()) { 3168 if (ParamIdx < ParamLists.size() && 3169 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 3170 ExpectedTemplateParams = nullptr; 3171 else 3172 continue; 3173 } 3174 3175 if (ParamIdx < ParamLists.size()) { 3176 // Check the template parameter list, if we can. 3177 if (ExpectedTemplateParams && 3178 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 3179 ExpectedTemplateParams, 3180 !SuppressDiagnostic, TPL_TemplateMatch)) 3181 Invalid = true; 3182 3183 if (!Invalid && 3184 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr, 3185 TPC_ClassTemplateMember)) 3186 Invalid = true; 3187 3188 ++ParamIdx; 3189 continue; 3190 } 3191 3192 if (!SuppressDiagnostic) 3193 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 3194 << T 3195 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 3196 Invalid = true; 3197 continue; 3198 } 3199 } 3200 3201 // If there were at least as many template-ids as there were template 3202 // parameter lists, then there are no template parameter lists remaining for 3203 // the declaration itself. 3204 if (ParamIdx >= ParamLists.size()) { 3205 if (TemplateId && !IsFriend) { 3206 // We don't have a template header for the declaration itself, but we 3207 // should. 3208 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, 3209 TemplateId->RAngleLoc)); 3210 3211 // Fabricate an empty template parameter list for the invented header. 3212 return TemplateParameterList::Create(Context, SourceLocation(), 3213 SourceLocation(), None, 3214 SourceLocation(), nullptr); 3215 } 3216 3217 return nullptr; 3218 } 3219 3220 // If there were too many template parameter lists, complain about that now. 3221 if (ParamIdx < ParamLists.size() - 1) { 3222 bool HasAnyExplicitSpecHeader = false; 3223 bool AllExplicitSpecHeaders = true; 3224 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { 3225 if (ParamLists[I]->size() == 0) 3226 HasAnyExplicitSpecHeader = true; 3227 else 3228 AllExplicitSpecHeaders = false; 3229 } 3230 3231 if (!SuppressDiagnostic) 3232 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3233 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers 3234 : diag::err_template_spec_extra_headers) 3235 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 3236 ParamLists[ParamLists.size() - 2]->getRAngleLoc()); 3237 3238 // If there was a specialization somewhere, such that 'template<>' is 3239 // not required, and there were any 'template<>' headers, note where the 3240 // specialization occurred. 3241 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader && 3242 !SuppressDiagnostic) 3243 Diag(ExplicitSpecLoc, 3244 diag::note_explicit_template_spec_does_not_need_header) 3245 << NestedTypes.back(); 3246 3247 // We have a template parameter list with no corresponding scope, which 3248 // means that the resulting template declaration can't be instantiated 3249 // properly (we'll end up with dependent nodes when we shouldn't). 3250 if (!AllExplicitSpecHeaders) 3251 Invalid = true; 3252 } 3253 3254 // C++ [temp.expl.spec]p16: 3255 // In an explicit specialization declaration for a member of a class 3256 // template or a member template that ap- pears in namespace scope, the 3257 // member template and some of its enclosing class templates may remain 3258 // unspecialized, except that the declaration shall not explicitly 3259 // specialize a class member template if its en- closing class templates 3260 // are not explicitly specialized as well. 3261 if (ParamLists.back()->size() == 0 && 3262 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3263 false)) 3264 return nullptr; 3265 3266 // Return the last template parameter list, which corresponds to the 3267 // entity being declared. 3268 return ParamLists.back(); 3269 } 3270 3271 void Sema::NoteAllFoundTemplates(TemplateName Name) { 3272 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 3273 Diag(Template->getLocation(), diag::note_template_declared_here) 3274 << (isa<FunctionTemplateDecl>(Template) 3275 ? 0 3276 : isa<ClassTemplateDecl>(Template) 3277 ? 1 3278 : isa<VarTemplateDecl>(Template) 3279 ? 2 3280 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) 3281 << Template->getDeclName(); 3282 return; 3283 } 3284 3285 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 3286 for (OverloadedTemplateStorage::iterator I = OST->begin(), 3287 IEnd = OST->end(); 3288 I != IEnd; ++I) 3289 Diag((*I)->getLocation(), diag::note_template_declared_here) 3290 << 0 << (*I)->getDeclName(); 3291 3292 return; 3293 } 3294 } 3295 3296 static QualType 3297 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, 3298 const SmallVectorImpl<TemplateArgument> &Converted, 3299 SourceLocation TemplateLoc, 3300 TemplateArgumentListInfo &TemplateArgs) { 3301 ASTContext &Context = SemaRef.getASTContext(); 3302 switch (BTD->getBuiltinTemplateKind()) { 3303 case BTK__make_integer_seq: { 3304 // Specializations of __make_integer_seq<S, T, N> are treated like 3305 // S<T, 0, ..., N-1>. 3306 3307 // C++14 [inteseq.intseq]p1: 3308 // T shall be an integer type. 3309 if (!Converted[1].getAsType()->isIntegralType(Context)) { 3310 SemaRef.Diag(TemplateArgs[1].getLocation(), 3311 diag::err_integer_sequence_integral_element_type); 3312 return QualType(); 3313 } 3314 3315 // C++14 [inteseq.make]p1: 3316 // If N is negative the program is ill-formed. 3317 TemplateArgument NumArgsArg = Converted[2]; 3318 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); 3319 if (NumArgs < 0) { 3320 SemaRef.Diag(TemplateArgs[2].getLocation(), 3321 diag::err_integer_sequence_negative_length); 3322 return QualType(); 3323 } 3324 3325 QualType ArgTy = NumArgsArg.getIntegralType(); 3326 TemplateArgumentListInfo SyntheticTemplateArgs; 3327 // The type argument gets reused as the first template argument in the 3328 // synthetic template argument list. 3329 SyntheticTemplateArgs.addArgument(TemplateArgs[1]); 3330 // Expand N into 0 ... N-1. 3331 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); 3332 I < NumArgs; ++I) { 3333 TemplateArgument TA(Context, I, ArgTy); 3334 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc( 3335 TA, ArgTy, TemplateArgs[2].getLocation())); 3336 } 3337 // The first template argument will be reused as the template decl that 3338 // our synthetic template arguments will be applied to. 3339 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(), 3340 TemplateLoc, SyntheticTemplateArgs); 3341 } 3342 3343 case BTK__type_pack_element: 3344 // Specializations of 3345 // __type_pack_element<Index, T_1, ..., T_N> 3346 // are treated like T_Index. 3347 assert(Converted.size() == 2 && 3348 "__type_pack_element should be given an index and a parameter pack"); 3349 3350 // If the Index is out of bounds, the program is ill-formed. 3351 TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; 3352 llvm::APSInt Index = IndexArg.getAsIntegral(); 3353 assert(Index >= 0 && "the index used with __type_pack_element should be of " 3354 "type std::size_t, and hence be non-negative"); 3355 if (Index >= Ts.pack_size()) { 3356 SemaRef.Diag(TemplateArgs[0].getLocation(), 3357 diag::err_type_pack_element_out_of_bounds); 3358 return QualType(); 3359 } 3360 3361 // We simply return the type at index `Index`. 3362 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue()); 3363 return Nth->getAsType(); 3364 } 3365 llvm_unreachable("unexpected BuiltinTemplateDecl!"); 3366 } 3367 3368 /// Determine whether this alias template is "enable_if_t". 3369 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { 3370 return AliasTemplate->getName().equals("enable_if_t"); 3371 } 3372 3373 /// Collect all of the separable terms in the given condition, which 3374 /// might be a conjunction. 3375 /// 3376 /// FIXME: The right answer is to convert the logical expression into 3377 /// disjunctive normal form, so we can find the first failed term 3378 /// within each possible clause. 3379 static void collectConjunctionTerms(Expr *Clause, 3380 SmallVectorImpl<Expr *> &Terms) { 3381 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) { 3382 if (BinOp->getOpcode() == BO_LAnd) { 3383 collectConjunctionTerms(BinOp->getLHS(), Terms); 3384 collectConjunctionTerms(BinOp->getRHS(), Terms); 3385 } 3386 3387 return; 3388 } 3389 3390 Terms.push_back(Clause); 3391 } 3392 3393 // The ranges-v3 library uses an odd pattern of a top-level "||" with 3394 // a left-hand side that is value-dependent but never true. Identify 3395 // the idiom and ignore that term. 3396 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { 3397 // Top-level '||'. 3398 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts()); 3399 if (!BinOp) return Cond; 3400 3401 if (BinOp->getOpcode() != BO_LOr) return Cond; 3402 3403 // With an inner '==' that has a literal on the right-hand side. 3404 Expr *LHS = BinOp->getLHS(); 3405 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts()); 3406 if (!InnerBinOp) return Cond; 3407 3408 if (InnerBinOp->getOpcode() != BO_EQ || 3409 !isa<IntegerLiteral>(InnerBinOp->getRHS())) 3410 return Cond; 3411 3412 // If the inner binary operation came from a macro expansion named 3413 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side 3414 // of the '||', which is the real, user-provided condition. 3415 SourceLocation Loc = InnerBinOp->getExprLoc(); 3416 if (!Loc.isMacroID()) return Cond; 3417 3418 StringRef MacroName = PP.getImmediateMacroName(Loc); 3419 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_") 3420 return BinOp->getRHS(); 3421 3422 return Cond; 3423 } 3424 3425 namespace { 3426 3427 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions 3428 // within failing boolean expression, such as substituting template parameters 3429 // for actual types. 3430 class FailedBooleanConditionPrinterHelper : public PrinterHelper { 3431 public: 3432 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P) 3433 : Policy(P) {} 3434 3435 bool handledStmt(Stmt *E, raw_ostream &OS) override { 3436 const auto *DR = dyn_cast<DeclRefExpr>(E); 3437 if (DR && DR->getQualifier()) { 3438 // If this is a qualified name, expand the template arguments in nested 3439 // qualifiers. 3440 DR->getQualifier()->print(OS, Policy, true); 3441 // Then print the decl itself. 3442 const ValueDecl *VD = DR->getDecl(); 3443 OS << VD->getName(); 3444 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 3445 // This is a template variable, print the expanded template arguments. 3446 printTemplateArgumentList(OS, IV->getTemplateArgs().asArray(), Policy); 3447 } 3448 return true; 3449 } 3450 return false; 3451 } 3452 3453 private: 3454 const PrintingPolicy Policy; 3455 }; 3456 3457 } // end anonymous namespace 3458 3459 std::pair<Expr *, std::string> 3460 Sema::findFailedBooleanCondition(Expr *Cond) { 3461 Cond = lookThroughRangesV3Condition(PP, Cond); 3462 3463 // Separate out all of the terms in a conjunction. 3464 SmallVector<Expr *, 4> Terms; 3465 collectConjunctionTerms(Cond, Terms); 3466 3467 // Determine which term failed. 3468 Expr *FailedCond = nullptr; 3469 for (Expr *Term : Terms) { 3470 Expr *TermAsWritten = Term->IgnoreParenImpCasts(); 3471 3472 // Literals are uninteresting. 3473 if (isa<CXXBoolLiteralExpr>(TermAsWritten) || 3474 isa<IntegerLiteral>(TermAsWritten)) 3475 continue; 3476 3477 // The initialization of the parameter from the argument is 3478 // a constant-evaluated context. 3479 EnterExpressionEvaluationContext ConstantEvaluated( 3480 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 3481 3482 bool Succeeded; 3483 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) && 3484 !Succeeded) { 3485 FailedCond = TermAsWritten; 3486 break; 3487 } 3488 } 3489 if (!FailedCond) 3490 FailedCond = Cond->IgnoreParenImpCasts(); 3491 3492 std::string Description; 3493 { 3494 llvm::raw_string_ostream Out(Description); 3495 PrintingPolicy Policy = getPrintingPolicy(); 3496 Policy.PrintCanonicalTypes = true; 3497 FailedBooleanConditionPrinterHelper Helper(Policy); 3498 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr); 3499 } 3500 return { FailedCond, Description }; 3501 } 3502 3503 QualType Sema::CheckTemplateIdType(TemplateName Name, 3504 SourceLocation TemplateLoc, 3505 TemplateArgumentListInfo &TemplateArgs) { 3506 DependentTemplateName *DTN 3507 = Name.getUnderlying().getAsDependentTemplateName(); 3508 if (DTN && DTN->isIdentifier()) 3509 // When building a template-id where the template-name is dependent, 3510 // assume the template is a type template. Either our assumption is 3511 // correct, or the code is ill-formed and will be diagnosed when the 3512 // dependent name is substituted. 3513 return Context.getDependentTemplateSpecializationType(ETK_None, 3514 DTN->getQualifier(), 3515 DTN->getIdentifier(), 3516 TemplateArgs); 3517 3518 if (Name.getAsAssumedTemplateName() && 3519 resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc)) 3520 return QualType(); 3521 3522 TemplateDecl *Template = Name.getAsTemplateDecl(); 3523 if (!Template || isa<FunctionTemplateDecl>(Template) || 3524 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) { 3525 // We might have a substituted template template parameter pack. If so, 3526 // build a template specialization type for it. 3527 if (Name.getAsSubstTemplateTemplateParmPack()) 3528 return Context.getTemplateSpecializationType(Name, TemplateArgs); 3529 3530 Diag(TemplateLoc, diag::err_template_id_not_a_type) 3531 << Name; 3532 NoteAllFoundTemplates(Name); 3533 return QualType(); 3534 } 3535 3536 // Check that the template argument list is well-formed for this 3537 // template. 3538 SmallVector<TemplateArgument, 4> Converted; 3539 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 3540 false, Converted, 3541 /*UpdateArgsWithConversion=*/true)) 3542 return QualType(); 3543 3544 QualType CanonType; 3545 3546 bool InstantiationDependent = false; 3547 if (TypeAliasTemplateDecl *AliasTemplate = 3548 dyn_cast<TypeAliasTemplateDecl>(Template)) { 3549 3550 // Find the canonical type for this type alias template specialization. 3551 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 3552 if (Pattern->isInvalidDecl()) 3553 return QualType(); 3554 3555 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack, 3556 Converted); 3557 3558 // Only substitute for the innermost template argument list. 3559 MultiLevelTemplateArgumentList TemplateArgLists; 3560 TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs); 3561 TemplateArgLists.addOuterRetainedLevels( 3562 AliasTemplate->getTemplateParameters()->getDepth()); 3563 3564 LocalInstantiationScope Scope(*this); 3565 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 3566 if (Inst.isInvalid()) 3567 return QualType(); 3568 3569 CanonType = SubstType(Pattern->getUnderlyingType(), 3570 TemplateArgLists, AliasTemplate->getLocation(), 3571 AliasTemplate->getDeclName()); 3572 if (CanonType.isNull()) { 3573 // If this was enable_if and we failed to find the nested type 3574 // within enable_if in a SFINAE context, dig out the specific 3575 // enable_if condition that failed and present that instead. 3576 if (isEnableIfAliasTemplate(AliasTemplate)) { 3577 if (auto DeductionInfo = isSFINAEContext()) { 3578 if (*DeductionInfo && 3579 (*DeductionInfo)->hasSFINAEDiagnostic() && 3580 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == 3581 diag::err_typename_nested_not_found_enable_if && 3582 TemplateArgs[0].getArgument().getKind() 3583 == TemplateArgument::Expression) { 3584 Expr *FailedCond; 3585 std::string FailedDescription; 3586 std::tie(FailedCond, FailedDescription) = 3587 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression()); 3588 3589 // Remove the old SFINAE diagnostic. 3590 PartialDiagnosticAt OldDiag = 3591 {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; 3592 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag); 3593 3594 // Add a new SFINAE diagnostic specifying which condition 3595 // failed. 3596 (*DeductionInfo)->addSFINAEDiagnostic( 3597 OldDiag.first, 3598 PDiag(diag::err_typename_nested_not_found_requirement) 3599 << FailedDescription 3600 << FailedCond->getSourceRange()); 3601 } 3602 } 3603 } 3604 3605 return QualType(); 3606 } 3607 } else if (Name.isDependent() || 3608 TemplateSpecializationType::anyDependentTemplateArguments( 3609 TemplateArgs, InstantiationDependent)) { 3610 // This class template specialization is a dependent 3611 // type. Therefore, its canonical type is another class template 3612 // specialization type that contains all of the converted 3613 // arguments in canonical form. This ensures that, e.g., A<T> and 3614 // A<T, T> have identical types when A is declared as: 3615 // 3616 // template<typename T, typename U = T> struct A; 3617 CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted); 3618 3619 // This might work out to be a current instantiation, in which 3620 // case the canonical type needs to be the InjectedClassNameType. 3621 // 3622 // TODO: in theory this could be a simple hashtable lookup; most 3623 // changes to CurContext don't change the set of current 3624 // instantiations. 3625 if (isa<ClassTemplateDecl>(Template)) { 3626 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 3627 // If we get out to a namespace, we're done. 3628 if (Ctx->isFileContext()) break; 3629 3630 // If this isn't a record, keep looking. 3631 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 3632 if (!Record) continue; 3633 3634 // Look for one of the two cases with InjectedClassNameTypes 3635 // and check whether it's the same template. 3636 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 3637 !Record->getDescribedClassTemplate()) 3638 continue; 3639 3640 // Fetch the injected class name type and check whether its 3641 // injected type is equal to the type we just built. 3642 QualType ICNT = Context.getTypeDeclType(Record); 3643 QualType Injected = cast<InjectedClassNameType>(ICNT) 3644 ->getInjectedSpecializationType(); 3645 3646 if (CanonType != Injected->getCanonicalTypeInternal()) 3647 continue; 3648 3649 // If so, the canonical type of this TST is the injected 3650 // class name type of the record we just found. 3651 assert(ICNT.isCanonical()); 3652 CanonType = ICNT; 3653 break; 3654 } 3655 } 3656 } else if (ClassTemplateDecl *ClassTemplate 3657 = dyn_cast<ClassTemplateDecl>(Template)) { 3658 // Find the class template specialization declaration that 3659 // corresponds to these arguments. 3660 void *InsertPos = nullptr; 3661 ClassTemplateSpecializationDecl *Decl 3662 = ClassTemplate->findSpecialization(Converted, InsertPos); 3663 if (!Decl) { 3664 // This is the first time we have referenced this class template 3665 // specialization. Create the canonical declaration and add it to 3666 // the set of specializations. 3667 Decl = ClassTemplateSpecializationDecl::Create( 3668 Context, ClassTemplate->getTemplatedDecl()->getTagKind(), 3669 ClassTemplate->getDeclContext(), 3670 ClassTemplate->getTemplatedDecl()->getBeginLoc(), 3671 ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr); 3672 ClassTemplate->AddSpecialization(Decl, InsertPos); 3673 if (ClassTemplate->isOutOfLine()) 3674 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 3675 } 3676 3677 if (Decl->getSpecializationKind() == TSK_Undeclared) { 3678 MultiLevelTemplateArgumentList TemplateArgLists; 3679 TemplateArgLists.addOuterTemplateArguments(Converted); 3680 InstantiateAttrsForDecl(TemplateArgLists, ClassTemplate->getTemplatedDecl(), 3681 Decl); 3682 } 3683 3684 // Diagnose uses of this specialization. 3685 (void)DiagnoseUseOfDecl(Decl, TemplateLoc); 3686 3687 CanonType = Context.getTypeDeclType(Decl); 3688 assert(isa<RecordType>(CanonType) && 3689 "type of non-dependent specialization is not a RecordType"); 3690 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) { 3691 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc, 3692 TemplateArgs); 3693 } 3694 3695 // Build the fully-sugared type for this class template 3696 // specialization, which refers back to the class template 3697 // specialization we created or found. 3698 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 3699 } 3700 3701 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName, 3702 TemplateNameKind &TNK, 3703 SourceLocation NameLoc, 3704 IdentifierInfo *&II) { 3705 assert(TNK == TNK_Undeclared_template && "not an undeclared template name"); 3706 3707 TemplateName Name = ParsedName.get(); 3708 auto *ATN = Name.getAsAssumedTemplateName(); 3709 assert(ATN && "not an assumed template name"); 3710 II = ATN->getDeclName().getAsIdentifierInfo(); 3711 3712 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) { 3713 // Resolved to a type template name. 3714 ParsedName = TemplateTy::make(Name); 3715 TNK = TNK_Type_template; 3716 } 3717 } 3718 3719 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, 3720 SourceLocation NameLoc, 3721 bool Diagnose) { 3722 // We assumed this undeclared identifier to be an (ADL-only) function 3723 // template name, but it was used in a context where a type was required. 3724 // Try to typo-correct it now. 3725 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName(); 3726 assert(ATN && "not an assumed template name"); 3727 3728 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName); 3729 struct CandidateCallback : CorrectionCandidateCallback { 3730 bool ValidateCandidate(const TypoCorrection &TC) override { 3731 return TC.getCorrectionDecl() && 3732 getAsTypeTemplateDecl(TC.getCorrectionDecl()); 3733 } 3734 std::unique_ptr<CorrectionCandidateCallback> clone() override { 3735 return std::make_unique<CandidateCallback>(*this); 3736 } 3737 } FilterCCC; 3738 3739 TypoCorrection Corrected = 3740 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr, 3741 FilterCCC, CTK_ErrorRecovery); 3742 if (Corrected && Corrected.getFoundDecl()) { 3743 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) 3744 << ATN->getDeclName()); 3745 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>()); 3746 return false; 3747 } 3748 3749 if (Diagnose) 3750 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName(); 3751 return true; 3752 } 3753 3754 TypeResult Sema::ActOnTemplateIdType( 3755 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 3756 TemplateTy TemplateD, IdentifierInfo *TemplateII, 3757 SourceLocation TemplateIILoc, SourceLocation LAngleLoc, 3758 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc, 3759 bool IsCtorOrDtorName, bool IsClassName) { 3760 if (SS.isInvalid()) 3761 return true; 3762 3763 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { 3764 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); 3765 3766 // C++ [temp.res]p3: 3767 // A qualified-id that refers to a type and in which the 3768 // nested-name-specifier depends on a template-parameter (14.6.2) 3769 // shall be prefixed by the keyword typename to indicate that the 3770 // qualified-id denotes a type, forming an 3771 // elaborated-type-specifier (7.1.5.3). 3772 if (!LookupCtx && isDependentScopeSpecifier(SS)) { 3773 Diag(SS.getBeginLoc(), diag::err_typename_missing_template) 3774 << SS.getScopeRep() << TemplateII->getName(); 3775 // Recover as if 'typename' were specified. 3776 // FIXME: This is not quite correct recovery as we don't transform SS 3777 // into the corresponding dependent form (and we don't diagnose missing 3778 // 'template' keywords within SS as a result). 3779 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc, 3780 TemplateD, TemplateII, TemplateIILoc, LAngleLoc, 3781 TemplateArgsIn, RAngleLoc); 3782 } 3783 3784 // Per C++ [class.qual]p2, if the template-id was an injected-class-name, 3785 // it's not actually allowed to be used as a type in most cases. Because 3786 // we annotate it before we know whether it's valid, we have to check for 3787 // this case here. 3788 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 3789 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 3790 Diag(TemplateIILoc, 3791 TemplateKWLoc.isInvalid() 3792 ? diag::err_out_of_line_qualified_id_type_names_constructor 3793 : diag::ext_out_of_line_qualified_id_type_names_constructor) 3794 << TemplateII << 0 /*injected-class-name used as template name*/ 3795 << 1 /*if any keyword was present, it was 'template'*/; 3796 } 3797 } 3798 3799 TemplateName Template = TemplateD.get(); 3800 if (Template.getAsAssumedTemplateName() && 3801 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc)) 3802 return true; 3803 3804 // Translate the parser's template argument list in our AST format. 3805 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 3806 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3807 3808 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 3809 QualType T 3810 = Context.getDependentTemplateSpecializationType(ETK_None, 3811 DTN->getQualifier(), 3812 DTN->getIdentifier(), 3813 TemplateArgs); 3814 // Build type-source information. 3815 TypeLocBuilder TLB; 3816 DependentTemplateSpecializationTypeLoc SpecTL 3817 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 3818 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 3819 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3820 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3821 SpecTL.setTemplateNameLoc(TemplateIILoc); 3822 SpecTL.setLAngleLoc(LAngleLoc); 3823 SpecTL.setRAngleLoc(RAngleLoc); 3824 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 3825 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 3826 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 3827 } 3828 3829 QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 3830 if (Result.isNull()) 3831 return true; 3832 3833 // Build type-source information. 3834 TypeLocBuilder TLB; 3835 TemplateSpecializationTypeLoc SpecTL 3836 = TLB.push<TemplateSpecializationTypeLoc>(Result); 3837 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3838 SpecTL.setTemplateNameLoc(TemplateIILoc); 3839 SpecTL.setLAngleLoc(LAngleLoc); 3840 SpecTL.setRAngleLoc(RAngleLoc); 3841 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 3842 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 3843 3844 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 3845 // constructor or destructor name (in such a case, the scope specifier 3846 // will be attached to the enclosing Decl or Expr node). 3847 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 3848 // Create an elaborated-type-specifier containing the nested-name-specifier. 3849 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 3850 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 3851 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 3852 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3853 } 3854 3855 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 3856 } 3857 3858 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 3859 TypeSpecifierType TagSpec, 3860 SourceLocation TagLoc, 3861 CXXScopeSpec &SS, 3862 SourceLocation TemplateKWLoc, 3863 TemplateTy TemplateD, 3864 SourceLocation TemplateLoc, 3865 SourceLocation LAngleLoc, 3866 ASTTemplateArgsPtr TemplateArgsIn, 3867 SourceLocation RAngleLoc) { 3868 if (SS.isInvalid()) 3869 return TypeResult(true); 3870 3871 TemplateName Template = TemplateD.get(); 3872 3873 // Translate the parser's template argument list in our AST format. 3874 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 3875 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3876 3877 // Determine the tag kind 3878 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 3879 ElaboratedTypeKeyword Keyword 3880 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 3881 3882 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 3883 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 3884 DTN->getQualifier(), 3885 DTN->getIdentifier(), 3886 TemplateArgs); 3887 3888 // Build type-source information. 3889 TypeLocBuilder TLB; 3890 DependentTemplateSpecializationTypeLoc SpecTL 3891 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 3892 SpecTL.setElaboratedKeywordLoc(TagLoc); 3893 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3894 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3895 SpecTL.setTemplateNameLoc(TemplateLoc); 3896 SpecTL.setLAngleLoc(LAngleLoc); 3897 SpecTL.setRAngleLoc(RAngleLoc); 3898 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 3899 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 3900 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 3901 } 3902 3903 if (TypeAliasTemplateDecl *TAT = 3904 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 3905 // C++0x [dcl.type.elab]p2: 3906 // If the identifier resolves to a typedef-name or the simple-template-id 3907 // resolves to an alias template specialization, the 3908 // elaborated-type-specifier is ill-formed. 3909 Diag(TemplateLoc, diag::err_tag_reference_non_tag) 3910 << TAT << NTK_TypeAliasTemplate << TagKind; 3911 Diag(TAT->getLocation(), diag::note_declared_at); 3912 } 3913 3914 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 3915 if (Result.isNull()) 3916 return TypeResult(true); 3917 3918 // Check the tag kind 3919 if (const RecordType *RT = Result->getAs<RecordType>()) { 3920 RecordDecl *D = RT->getDecl(); 3921 3922 IdentifierInfo *Id = D->getIdentifier(); 3923 assert(Id && "templated class must have an identifier"); 3924 3925 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 3926 TagLoc, Id)) { 3927 Diag(TagLoc, diag::err_use_with_wrong_tag) 3928 << Result 3929 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 3930 Diag(D->getLocation(), diag::note_previous_use); 3931 } 3932 } 3933 3934 // Provide source-location information for the template specialization. 3935 TypeLocBuilder TLB; 3936 TemplateSpecializationTypeLoc SpecTL 3937 = TLB.push<TemplateSpecializationTypeLoc>(Result); 3938 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3939 SpecTL.setTemplateNameLoc(TemplateLoc); 3940 SpecTL.setLAngleLoc(LAngleLoc); 3941 SpecTL.setRAngleLoc(RAngleLoc); 3942 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 3943 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 3944 3945 // Construct an elaborated type containing the nested-name-specifier (if any) 3946 // and tag keyword. 3947 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 3948 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 3949 ElabTL.setElaboratedKeywordLoc(TagLoc); 3950 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3951 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 3952 } 3953 3954 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, 3955 NamedDecl *PrevDecl, 3956 SourceLocation Loc, 3957 bool IsPartialSpecialization); 3958 3959 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); 3960 3961 static bool isTemplateArgumentTemplateParameter( 3962 const TemplateArgument &Arg, unsigned Depth, unsigned Index) { 3963 switch (Arg.getKind()) { 3964 case TemplateArgument::Null: 3965 case TemplateArgument::NullPtr: 3966 case TemplateArgument::Integral: 3967 case TemplateArgument::Declaration: 3968 case TemplateArgument::Pack: 3969 case TemplateArgument::TemplateExpansion: 3970 return false; 3971 3972 case TemplateArgument::Type: { 3973 QualType Type = Arg.getAsType(); 3974 const TemplateTypeParmType *TPT = 3975 Arg.getAsType()->getAs<TemplateTypeParmType>(); 3976 return TPT && !Type.hasQualifiers() && 3977 TPT->getDepth() == Depth && TPT->getIndex() == Index; 3978 } 3979 3980 case TemplateArgument::Expression: { 3981 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr()); 3982 if (!DRE || !DRE->getDecl()) 3983 return false; 3984 const NonTypeTemplateParmDecl *NTTP = 3985 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 3986 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; 3987 } 3988 3989 case TemplateArgument::Template: 3990 const TemplateTemplateParmDecl *TTP = 3991 dyn_cast_or_null<TemplateTemplateParmDecl>( 3992 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); 3993 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; 3994 } 3995 llvm_unreachable("unexpected kind of template argument"); 3996 } 3997 3998 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, 3999 ArrayRef<TemplateArgument> Args) { 4000 if (Params->size() != Args.size()) 4001 return false; 4002 4003 unsigned Depth = Params->getDepth(); 4004 4005 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 4006 TemplateArgument Arg = Args[I]; 4007 4008 // If the parameter is a pack expansion, the argument must be a pack 4009 // whose only element is a pack expansion. 4010 if (Params->getParam(I)->isParameterPack()) { 4011 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || 4012 !Arg.pack_begin()->isPackExpansion()) 4013 return false; 4014 Arg = Arg.pack_begin()->getPackExpansionPattern(); 4015 } 4016 4017 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I)) 4018 return false; 4019 } 4020 4021 return true; 4022 } 4023 4024 template<typename PartialSpecDecl> 4025 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { 4026 if (Partial->getDeclContext()->isDependentContext()) 4027 return; 4028 4029 // FIXME: Get the TDK from deduction in order to provide better diagnostics 4030 // for non-substitution-failure issues? 4031 TemplateDeductionInfo Info(Partial->getLocation()); 4032 if (S.isMoreSpecializedThanPrimary(Partial, Info)) 4033 return; 4034 4035 auto *Template = Partial->getSpecializedTemplate(); 4036 S.Diag(Partial->getLocation(), 4037 diag::ext_partial_spec_not_more_specialized_than_primary) 4038 << isa<VarTemplateDecl>(Template); 4039 4040 if (Info.hasSFINAEDiagnostic()) { 4041 PartialDiagnosticAt Diag = {SourceLocation(), 4042 PartialDiagnostic::NullDiagnostic()}; 4043 Info.takeSFINAEDiagnostic(Diag); 4044 SmallString<128> SFINAEArgString; 4045 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString); 4046 S.Diag(Diag.first, 4047 diag::note_partial_spec_not_more_specialized_than_primary) 4048 << SFINAEArgString; 4049 } 4050 4051 S.Diag(Template->getLocation(), diag::note_template_decl_here); 4052 SmallVector<const Expr *, 3> PartialAC, TemplateAC; 4053 Template->getAssociatedConstraints(TemplateAC); 4054 Partial->getAssociatedConstraints(PartialAC); 4055 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template, 4056 TemplateAC); 4057 } 4058 4059 static void 4060 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, 4061 const llvm::SmallBitVector &DeducibleParams) { 4062 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4063 if (!DeducibleParams[I]) { 4064 NamedDecl *Param = TemplateParams->getParam(I); 4065 if (Param->getDeclName()) 4066 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4067 << Param->getDeclName(); 4068 else 4069 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4070 << "(anonymous)"; 4071 } 4072 } 4073 } 4074 4075 4076 template<typename PartialSpecDecl> 4077 static void checkTemplatePartialSpecialization(Sema &S, 4078 PartialSpecDecl *Partial) { 4079 // C++1z [temp.class.spec]p8: (DR1495) 4080 // - The specialization shall be more specialized than the primary 4081 // template (14.5.5.2). 4082 checkMoreSpecializedThanPrimary(S, Partial); 4083 4084 // C++ [temp.class.spec]p8: (DR1315) 4085 // - Each template-parameter shall appear at least once in the 4086 // template-id outside a non-deduced context. 4087 // C++1z [temp.class.spec.match]p3 (P0127R2) 4088 // If the template arguments of a partial specialization cannot be 4089 // deduced because of the structure of its template-parameter-list 4090 // and the template-id, the program is ill-formed. 4091 auto *TemplateParams = Partial->getTemplateParameters(); 4092 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4093 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4094 TemplateParams->getDepth(), DeducibleParams); 4095 4096 if (!DeducibleParams.all()) { 4097 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4098 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) 4099 << isa<VarTemplatePartialSpecializationDecl>(Partial) 4100 << (NumNonDeducible > 1) 4101 << SourceRange(Partial->getLocation(), 4102 Partial->getTemplateArgsAsWritten()->RAngleLoc); 4103 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); 4104 } 4105 } 4106 4107 void Sema::CheckTemplatePartialSpecialization( 4108 ClassTemplatePartialSpecializationDecl *Partial) { 4109 checkTemplatePartialSpecialization(*this, Partial); 4110 } 4111 4112 void Sema::CheckTemplatePartialSpecialization( 4113 VarTemplatePartialSpecializationDecl *Partial) { 4114 checkTemplatePartialSpecialization(*this, Partial); 4115 } 4116 4117 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { 4118 // C++1z [temp.param]p11: 4119 // A template parameter of a deduction guide template that does not have a 4120 // default-argument shall be deducible from the parameter-type-list of the 4121 // deduction guide template. 4122 auto *TemplateParams = TD->getTemplateParameters(); 4123 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4124 MarkDeducedTemplateParameters(TD, DeducibleParams); 4125 for (unsigned I = 0; I != TemplateParams->size(); ++I) { 4126 // A parameter pack is deducible (to an empty pack). 4127 auto *Param = TemplateParams->getParam(I); 4128 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param)) 4129 DeducibleParams[I] = true; 4130 } 4131 4132 if (!DeducibleParams.all()) { 4133 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4134 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible) 4135 << (NumNonDeducible > 1); 4136 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams); 4137 } 4138 } 4139 4140 DeclResult Sema::ActOnVarTemplateSpecialization( 4141 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, 4142 TemplateParameterList *TemplateParams, StorageClass SC, 4143 bool IsPartialSpecialization) { 4144 // D must be variable template id. 4145 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && 4146 "Variable template specialization is declared with a template it."); 4147 4148 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4149 TemplateArgumentListInfo TemplateArgs = 4150 makeTemplateArgumentListInfo(*this, *TemplateId); 4151 SourceLocation TemplateNameLoc = D.getIdentifierLoc(); 4152 SourceLocation LAngleLoc = TemplateId->LAngleLoc; 4153 SourceLocation RAngleLoc = TemplateId->RAngleLoc; 4154 4155 TemplateName Name = TemplateId->Template.get(); 4156 4157 // The template-id must name a variable template. 4158 VarTemplateDecl *VarTemplate = 4159 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl()); 4160 if (!VarTemplate) { 4161 NamedDecl *FnTemplate; 4162 if (auto *OTS = Name.getAsOverloadedTemplate()) 4163 FnTemplate = *OTS->begin(); 4164 else 4165 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); 4166 if (FnTemplate) 4167 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) 4168 << FnTemplate->getDeclName(); 4169 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) 4170 << IsPartialSpecialization; 4171 } 4172 4173 // Check for unexpanded parameter packs in any of the template arguments. 4174 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4175 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4176 UPPC_PartialSpecialization)) 4177 return true; 4178 4179 // Check that the template argument list is well-formed for this 4180 // template. 4181 SmallVector<TemplateArgument, 4> Converted; 4182 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, 4183 false, Converted, 4184 /*UpdateArgsWithConversion=*/true)) 4185 return true; 4186 4187 // Find the variable template (partial) specialization declaration that 4188 // corresponds to these arguments. 4189 if (IsPartialSpecialization) { 4190 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate, 4191 TemplateArgs.size(), Converted)) 4192 return true; 4193 4194 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we 4195 // also do them during instantiation. 4196 bool InstantiationDependent; 4197 if (!Name.isDependent() && 4198 !TemplateSpecializationType::anyDependentTemplateArguments( 4199 TemplateArgs.arguments(), 4200 InstantiationDependent)) { 4201 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4202 << VarTemplate->getDeclName(); 4203 IsPartialSpecialization = false; 4204 } 4205 4206 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), 4207 Converted) && 4208 (!Context.getLangOpts().CPlusPlus20 || 4209 !TemplateParams->hasAssociatedConstraints())) { 4210 // C++ [temp.class.spec]p9b3: 4211 // 4212 // -- The argument list of the specialization shall not be identical 4213 // to the implicit argument list of the primary template. 4214 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4215 << /*variable template*/ 1 4216 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) 4217 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4218 // FIXME: Recover from this by treating the declaration as a redeclaration 4219 // of the primary template. 4220 return true; 4221 } 4222 } 4223 4224 void *InsertPos = nullptr; 4225 VarTemplateSpecializationDecl *PrevDecl = nullptr; 4226 4227 if (IsPartialSpecialization) 4228 PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams, 4229 InsertPos); 4230 else 4231 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos); 4232 4233 VarTemplateSpecializationDecl *Specialization = nullptr; 4234 4235 // Check whether we can declare a variable template specialization in 4236 // the current scope. 4237 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, 4238 TemplateNameLoc, 4239 IsPartialSpecialization)) 4240 return true; 4241 4242 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4243 // Since the only prior variable template specialization with these 4244 // arguments was referenced but not declared, reuse that 4245 // declaration node as our own, updating its source location and 4246 // the list of outer template parameters to reflect our new declaration. 4247 Specialization = PrevDecl; 4248 Specialization->setLocation(TemplateNameLoc); 4249 PrevDecl = nullptr; 4250 } else if (IsPartialSpecialization) { 4251 // Create a new class template partial specialization declaration node. 4252 VarTemplatePartialSpecializationDecl *PrevPartial = 4253 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); 4254 VarTemplatePartialSpecializationDecl *Partial = 4255 VarTemplatePartialSpecializationDecl::Create( 4256 Context, VarTemplate->getDeclContext(), TemplateKWLoc, 4257 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, 4258 Converted, TemplateArgs); 4259 4260 if (!PrevPartial) 4261 VarTemplate->AddPartialSpecialization(Partial, InsertPos); 4262 Specialization = Partial; 4263 4264 // If we are providing an explicit specialization of a member variable 4265 // template specialization, make a note of that. 4266 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4267 PrevPartial->setMemberSpecialization(); 4268 4269 CheckTemplatePartialSpecialization(Partial); 4270 } else { 4271 // Create a new class template specialization declaration node for 4272 // this explicit specialization or friend declaration. 4273 Specialization = VarTemplateSpecializationDecl::Create( 4274 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, 4275 VarTemplate, DI->getType(), DI, SC, Converted); 4276 Specialization->setTemplateArgsInfo(TemplateArgs); 4277 4278 if (!PrevDecl) 4279 VarTemplate->AddSpecialization(Specialization, InsertPos); 4280 } 4281 4282 // C++ [temp.expl.spec]p6: 4283 // If a template, a member template or the member of a class template is 4284 // explicitly specialized then that specialization shall be declared 4285 // before the first use of that specialization that would cause an implicit 4286 // instantiation to take place, in every translation unit in which such a 4287 // use occurs; no diagnostic is required. 4288 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4289 bool Okay = false; 4290 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 4291 // Is there any previous explicit specialization declaration? 4292 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4293 Okay = true; 4294 break; 4295 } 4296 } 4297 4298 if (!Okay) { 4299 SourceRange Range(TemplateNameLoc, RAngleLoc); 4300 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4301 << Name << Range; 4302 4303 Diag(PrevDecl->getPointOfInstantiation(), 4304 diag::note_instantiation_required_here) 4305 << (PrevDecl->getTemplateSpecializationKind() != 4306 TSK_ImplicitInstantiation); 4307 return true; 4308 } 4309 } 4310 4311 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 4312 Specialization->setLexicalDeclContext(CurContext); 4313 4314 // Add the specialization into its lexical context, so that it can 4315 // be seen when iterating through the list of declarations in that 4316 // context. However, specializations are not found by name lookup. 4317 CurContext->addDecl(Specialization); 4318 4319 // Note that this is an explicit specialization. 4320 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4321 4322 if (PrevDecl) { 4323 // Check that this isn't a redefinition of this specialization, 4324 // merging with previous declarations. 4325 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName, 4326 forRedeclarationInCurContext()); 4327 PrevSpec.addDecl(PrevDecl); 4328 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec)); 4329 } else if (Specialization->isStaticDataMember() && 4330 Specialization->isOutOfLine()) { 4331 Specialization->setAccess(VarTemplate->getAccess()); 4332 } 4333 4334 return Specialization; 4335 } 4336 4337 namespace { 4338 /// A partial specialization whose template arguments have matched 4339 /// a given template-id. 4340 struct PartialSpecMatchResult { 4341 VarTemplatePartialSpecializationDecl *Partial; 4342 TemplateArgumentList *Args; 4343 }; 4344 } // end anonymous namespace 4345 4346 DeclResult 4347 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, 4348 SourceLocation TemplateNameLoc, 4349 const TemplateArgumentListInfo &TemplateArgs) { 4350 assert(Template && "A variable template id without template?"); 4351 4352 // Check that the template argument list is well-formed for this template. 4353 SmallVector<TemplateArgument, 4> Converted; 4354 if (CheckTemplateArgumentList( 4355 Template, TemplateNameLoc, 4356 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, 4357 Converted, /*UpdateArgsWithConversion=*/true)) 4358 return true; 4359 4360 // Find the variable template specialization declaration that 4361 // corresponds to these arguments. 4362 void *InsertPos = nullptr; 4363 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization( 4364 Converted, InsertPos)) { 4365 checkSpecializationVisibility(TemplateNameLoc, Spec); 4366 // If we already have a variable template specialization, return it. 4367 return Spec; 4368 } 4369 4370 // This is the first time we have referenced this variable template 4371 // specialization. Create the canonical declaration and add it to 4372 // the set of specializations, based on the closest partial specialization 4373 // that it represents. That is, 4374 VarDecl *InstantiationPattern = Template->getTemplatedDecl(); 4375 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, 4376 Converted); 4377 TemplateArgumentList *InstantiationArgs = &TemplateArgList; 4378 bool AmbiguousPartialSpec = false; 4379 typedef PartialSpecMatchResult MatchResult; 4380 SmallVector<MatchResult, 4> Matched; 4381 SourceLocation PointOfInstantiation = TemplateNameLoc; 4382 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, 4383 /*ForTakingAddress=*/false); 4384 4385 // 1. Attempt to find the closest partial specialization that this 4386 // specializes, if any. 4387 // If any of the template arguments is dependent, then this is probably 4388 // a placeholder for an incomplete declarative context; which must be 4389 // complete by instantiation time. Thus, do not search through the partial 4390 // specializations yet. 4391 // TODO: Unify with InstantiateClassTemplateSpecialization()? 4392 // Perhaps better after unification of DeduceTemplateArguments() and 4393 // getMoreSpecializedPartialSpecialization(). 4394 bool InstantiationDependent = false; 4395 if (!TemplateSpecializationType::anyDependentTemplateArguments( 4396 TemplateArgs, InstantiationDependent)) { 4397 4398 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 4399 Template->getPartialSpecializations(PartialSpecs); 4400 4401 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { 4402 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; 4403 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 4404 4405 if (TemplateDeductionResult Result = 4406 DeduceTemplateArguments(Partial, TemplateArgList, Info)) { 4407 // Store the failed-deduction information for use in diagnostics, later. 4408 // TODO: Actually use the failed-deduction info? 4409 FailedCandidates.addCandidate().set( 4410 DeclAccessPair::make(Template, AS_public), Partial, 4411 MakeDeductionFailureInfo(Context, Result, Info)); 4412 (void)Result; 4413 } else { 4414 Matched.push_back(PartialSpecMatchResult()); 4415 Matched.back().Partial = Partial; 4416 Matched.back().Args = Info.take(); 4417 } 4418 } 4419 4420 if (Matched.size() >= 1) { 4421 SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); 4422 if (Matched.size() == 1) { 4423 // -- If exactly one matching specialization is found, the 4424 // instantiation is generated from that specialization. 4425 // We don't need to do anything for this. 4426 } else { 4427 // -- If more than one matching specialization is found, the 4428 // partial order rules (14.5.4.2) are used to determine 4429 // whether one of the specializations is more specialized 4430 // than the others. If none of the specializations is more 4431 // specialized than all of the other matching 4432 // specializations, then the use of the variable template is 4433 // ambiguous and the program is ill-formed. 4434 for (SmallVector<MatchResult, 4>::iterator P = Best + 1, 4435 PEnd = Matched.end(); 4436 P != PEnd; ++P) { 4437 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, 4438 PointOfInstantiation) == 4439 P->Partial) 4440 Best = P; 4441 } 4442 4443 // Determine if the best partial specialization is more specialized than 4444 // the others. 4445 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 4446 PEnd = Matched.end(); 4447 P != PEnd; ++P) { 4448 if (P != Best && getMoreSpecializedPartialSpecialization( 4449 P->Partial, Best->Partial, 4450 PointOfInstantiation) != Best->Partial) { 4451 AmbiguousPartialSpec = true; 4452 break; 4453 } 4454 } 4455 } 4456 4457 // Instantiate using the best variable template partial specialization. 4458 InstantiationPattern = Best->Partial; 4459 InstantiationArgs = Best->Args; 4460 } else { 4461 // -- If no match is found, the instantiation is generated 4462 // from the primary template. 4463 // InstantiationPattern = Template->getTemplatedDecl(); 4464 } 4465 } 4466 4467 // 2. Create the canonical declaration. 4468 // Note that we do not instantiate a definition until we see an odr-use 4469 // in DoMarkVarDeclReferenced(). 4470 // FIXME: LateAttrs et al.? 4471 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( 4472 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs, 4473 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/); 4474 if (!Decl) 4475 return true; 4476 4477 if (AmbiguousPartialSpec) { 4478 // Partial ordering did not produce a clear winner. Complain. 4479 Decl->setInvalidDecl(); 4480 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) 4481 << Decl; 4482 4483 // Print the matching partial specializations. 4484 for (MatchResult P : Matched) 4485 Diag(P.Partial->getLocation(), diag::note_partial_spec_match) 4486 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(), 4487 *P.Args); 4488 return true; 4489 } 4490 4491 if (VarTemplatePartialSpecializationDecl *D = 4492 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) 4493 Decl->setInstantiationOf(D, InstantiationArgs); 4494 4495 checkSpecializationVisibility(TemplateNameLoc, Decl); 4496 4497 assert(Decl && "No variable template specialization?"); 4498 return Decl; 4499 } 4500 4501 ExprResult 4502 Sema::CheckVarTemplateId(const CXXScopeSpec &SS, 4503 const DeclarationNameInfo &NameInfo, 4504 VarTemplateDecl *Template, SourceLocation TemplateLoc, 4505 const TemplateArgumentListInfo *TemplateArgs) { 4506 4507 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), 4508 *TemplateArgs); 4509 if (Decl.isInvalid()) 4510 return ExprError(); 4511 4512 VarDecl *Var = cast<VarDecl>(Decl.get()); 4513 if (!Var->getTemplateSpecializationKind()) 4514 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, 4515 NameInfo.getLoc()); 4516 4517 // Build an ordinary singleton decl ref. 4518 return BuildDeclarationNameExpr(SS, NameInfo, Var, 4519 /*FoundD=*/nullptr, TemplateArgs); 4520 } 4521 4522 void Sema::diagnoseMissingTemplateArguments(TemplateName Name, 4523 SourceLocation Loc) { 4524 Diag(Loc, diag::err_template_missing_args) 4525 << (int)getTemplateNameKindForDiagnostics(Name) << Name; 4526 if (TemplateDecl *TD = Name.getAsTemplateDecl()) { 4527 Diag(TD->getLocation(), diag::note_template_decl_here) 4528 << TD->getTemplateParameters()->getSourceRange(); 4529 } 4530 } 4531 4532 ExprResult 4533 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS, 4534 SourceLocation TemplateKWLoc, 4535 const DeclarationNameInfo &ConceptNameInfo, 4536 NamedDecl *FoundDecl, 4537 ConceptDecl *NamedConcept, 4538 const TemplateArgumentListInfo *TemplateArgs) { 4539 assert(NamedConcept && "A concept template id without a template?"); 4540 4541 llvm::SmallVector<TemplateArgument, 4> Converted; 4542 if (CheckTemplateArgumentList(NamedConcept, ConceptNameInfo.getLoc(), 4543 const_cast<TemplateArgumentListInfo&>(*TemplateArgs), 4544 /*PartialTemplateArgs=*/false, Converted, 4545 /*UpdateArgsWithConversion=*/false)) 4546 return ExprError(); 4547 4548 ConstraintSatisfaction Satisfaction; 4549 bool AreArgsDependent = false; 4550 for (TemplateArgument &Arg : Converted) { 4551 if (Arg.isDependent()) { 4552 AreArgsDependent = true; 4553 break; 4554 } 4555 } 4556 if (!AreArgsDependent && 4557 CheckConstraintSatisfaction(NamedConcept, 4558 {NamedConcept->getConstraintExpr()}, 4559 Converted, 4560 SourceRange(SS.isSet() ? SS.getBeginLoc() : 4561 ConceptNameInfo.getLoc(), 4562 TemplateArgs->getRAngleLoc()), 4563 Satisfaction)) 4564 return ExprError(); 4565 4566 return ConceptSpecializationExpr::Create(Context, 4567 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{}, 4568 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept, 4569 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted, 4570 AreArgsDependent ? nullptr : &Satisfaction); 4571 } 4572 4573 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 4574 SourceLocation TemplateKWLoc, 4575 LookupResult &R, 4576 bool RequiresADL, 4577 const TemplateArgumentListInfo *TemplateArgs) { 4578 // FIXME: Can we do any checking at this point? I guess we could check the 4579 // template arguments that we have against the template name, if the template 4580 // name refers to a single template. That's not a terribly common case, 4581 // though. 4582 // foo<int> could identify a single function unambiguously 4583 // This approach does NOT work, since f<int>(1); 4584 // gets resolved prior to resorting to overload resolution 4585 // i.e., template<class T> void f(double); 4586 // vs template<class T, class U> void f(U); 4587 4588 // These should be filtered out by our callers. 4589 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 4590 4591 // Non-function templates require a template argument list. 4592 if (auto *TD = R.getAsSingle<TemplateDecl>()) { 4593 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) { 4594 diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc()); 4595 return ExprError(); 4596 } 4597 } 4598 4599 auto AnyDependentArguments = [&]() -> bool { 4600 bool InstantiationDependent; 4601 return TemplateArgs && 4602 TemplateSpecializationType::anyDependentTemplateArguments( 4603 *TemplateArgs, InstantiationDependent); 4604 }; 4605 4606 // In C++1y, check variable template ids. 4607 if (R.getAsSingle<VarTemplateDecl>() && !AnyDependentArguments()) { 4608 return CheckVarTemplateId(SS, R.getLookupNameInfo(), 4609 R.getAsSingle<VarTemplateDecl>(), 4610 TemplateKWLoc, TemplateArgs); 4611 } 4612 4613 if (R.getAsSingle<ConceptDecl>()) { 4614 return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(), 4615 R.getFoundDecl(), 4616 R.getAsSingle<ConceptDecl>(), TemplateArgs); 4617 } 4618 4619 // We don't want lookup warnings at this point. 4620 R.suppressDiagnostics(); 4621 4622 UnresolvedLookupExpr *ULE 4623 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 4624 SS.getWithLocInContext(Context), 4625 TemplateKWLoc, 4626 R.getLookupNameInfo(), 4627 RequiresADL, TemplateArgs, 4628 R.begin(), R.end()); 4629 4630 return ULE; 4631 } 4632 4633 // We actually only call this from template instantiation. 4634 ExprResult 4635 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 4636 SourceLocation TemplateKWLoc, 4637 const DeclarationNameInfo &NameInfo, 4638 const TemplateArgumentListInfo *TemplateArgs) { 4639 4640 assert(TemplateArgs || TemplateKWLoc.isValid()); 4641 DeclContext *DC; 4642 if (!(DC = computeDeclContext(SS, false)) || 4643 DC->isDependentContext() || 4644 RequireCompleteDeclContext(SS, DC)) 4645 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 4646 4647 bool MemberOfUnknownSpecialization; 4648 LookupResult R(*this, NameInfo, LookupOrdinaryName); 4649 if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(), 4650 /*Entering*/false, MemberOfUnknownSpecialization, 4651 TemplateKWLoc)) 4652 return ExprError(); 4653 4654 if (R.isAmbiguous()) 4655 return ExprError(); 4656 4657 if (R.empty()) { 4658 Diag(NameInfo.getLoc(), diag::err_no_member) 4659 << NameInfo.getName() << DC << SS.getRange(); 4660 return ExprError(); 4661 } 4662 4663 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 4664 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 4665 << SS.getScopeRep() 4666 << NameInfo.getName().getAsString() << SS.getRange(); 4667 Diag(Temp->getLocation(), diag::note_referenced_class_template); 4668 return ExprError(); 4669 } 4670 4671 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 4672 } 4673 4674 /// Form a template name from a name that is syntactically required to name a 4675 /// template, either due to use of the 'template' keyword or because a name in 4676 /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4). 4677 /// 4678 /// This action forms a template name given the name of the template and its 4679 /// optional scope specifier. This is used when the 'template' keyword is used 4680 /// or when the parsing context unambiguously treats a following '<' as 4681 /// introducing a template argument list. Note that this may produce a 4682 /// non-dependent template name if we can perform the lookup now and identify 4683 /// the named template. 4684 /// 4685 /// For example, given "x.MetaFun::template apply", the scope specifier 4686 /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location 4687 /// of the "template" keyword, and "apply" is the \p Name. 4688 TemplateNameKind Sema::ActOnTemplateName(Scope *S, 4689 CXXScopeSpec &SS, 4690 SourceLocation TemplateKWLoc, 4691 const UnqualifiedId &Name, 4692 ParsedType ObjectType, 4693 bool EnteringContext, 4694 TemplateTy &Result, 4695 bool AllowInjectedClassName) { 4696 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 4697 Diag(TemplateKWLoc, 4698 getLangOpts().CPlusPlus11 ? 4699 diag::warn_cxx98_compat_template_outside_of_template : 4700 diag::ext_template_outside_of_template) 4701 << FixItHint::CreateRemoval(TemplateKWLoc); 4702 4703 if (SS.isInvalid()) 4704 return TNK_Non_template; 4705 4706 // Figure out where isTemplateName is going to look. 4707 DeclContext *LookupCtx = nullptr; 4708 if (SS.isNotEmpty()) 4709 LookupCtx = computeDeclContext(SS, EnteringContext); 4710 else if (ObjectType) 4711 LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType)); 4712 4713 // C++0x [temp.names]p5: 4714 // If a name prefixed by the keyword template is not the name of 4715 // a template, the program is ill-formed. [Note: the keyword 4716 // template may not be applied to non-template members of class 4717 // templates. -end note ] [ Note: as is the case with the 4718 // typename prefix, the template prefix is allowed in cases 4719 // where it is not strictly necessary; i.e., when the 4720 // nested-name-specifier or the expression on the left of the -> 4721 // or . is not dependent on a template-parameter, or the use 4722 // does not appear in the scope of a template. -end note] 4723 // 4724 // Note: C++03 was more strict here, because it banned the use of 4725 // the "template" keyword prior to a template-name that was not a 4726 // dependent name. C++ DR468 relaxed this requirement (the 4727 // "template" keyword is now permitted). We follow the C++0x 4728 // rules, even in C++03 mode with a warning, retroactively applying the DR. 4729 bool MemberOfUnknownSpecialization; 4730 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 4731 ObjectType, EnteringContext, Result, 4732 MemberOfUnknownSpecialization); 4733 if (TNK != TNK_Non_template) { 4734 // We resolved this to a (non-dependent) template name. Return it. 4735 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 4736 if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD && 4737 Name.getKind() == UnqualifiedIdKind::IK_Identifier && 4738 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { 4739 // C++14 [class.qual]p2: 4740 // In a lookup in which function names are not ignored and the 4741 // nested-name-specifier nominates a class C, if the name specified 4742 // [...] is the injected-class-name of C, [...] the name is instead 4743 // considered to name the constructor 4744 // 4745 // We don't get here if naming the constructor would be valid, so we 4746 // just reject immediately and recover by treating the 4747 // injected-class-name as naming the template. 4748 Diag(Name.getBeginLoc(), 4749 diag::ext_out_of_line_qualified_id_type_names_constructor) 4750 << Name.Identifier 4751 << 0 /*injected-class-name used as template name*/ 4752 << TemplateKWLoc.isValid(); 4753 } 4754 return TNK; 4755 } 4756 4757 if (!MemberOfUnknownSpecialization) { 4758 // Didn't find a template name, and the lookup wasn't dependent. 4759 // Do the lookup again to determine if this is a "nothing found" case or 4760 // a "not a template" case. FIXME: Refactor isTemplateName so we don't 4761 // need to do this. 4762 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); 4763 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(), 4764 LookupOrdinaryName); 4765 bool MOUS; 4766 // Tell LookupTemplateName that we require a template so that it diagnoses 4767 // cases where it finds a non-template. 4768 RequiredTemplateKind RTK = TemplateKWLoc.isValid() 4769 ? RequiredTemplateKind(TemplateKWLoc) 4770 : TemplateNameIsRequired; 4771 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS, 4772 RTK, nullptr, /*AllowTypoCorrection=*/false) && 4773 !R.isAmbiguous()) { 4774 if (LookupCtx) 4775 Diag(Name.getBeginLoc(), diag::err_no_member) 4776 << DNI.getName() << LookupCtx << SS.getRange(); 4777 else 4778 Diag(Name.getBeginLoc(), diag::err_undeclared_use) 4779 << DNI.getName() << SS.getRange(); 4780 } 4781 return TNK_Non_template; 4782 } 4783 4784 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 4785 4786 switch (Name.getKind()) { 4787 case UnqualifiedIdKind::IK_Identifier: 4788 Result = TemplateTy::make( 4789 Context.getDependentTemplateName(Qualifier, Name.Identifier)); 4790 return TNK_Dependent_template_name; 4791 4792 case UnqualifiedIdKind::IK_OperatorFunctionId: 4793 Result = TemplateTy::make(Context.getDependentTemplateName( 4794 Qualifier, Name.OperatorFunctionId.Operator)); 4795 return TNK_Function_template; 4796 4797 case UnqualifiedIdKind::IK_LiteralOperatorId: 4798 // This is a kind of template name, but can never occur in a dependent 4799 // scope (literal operators can only be declared at namespace scope). 4800 break; 4801 4802 default: 4803 break; 4804 } 4805 4806 // This name cannot possibly name a dependent template. Diagnose this now 4807 // rather than building a dependent template name that can never be valid. 4808 Diag(Name.getBeginLoc(), 4809 diag::err_template_kw_refers_to_dependent_non_template) 4810 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange() 4811 << TemplateKWLoc.isValid() << TemplateKWLoc; 4812 return TNK_Non_template; 4813 } 4814 4815 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 4816 TemplateArgumentLoc &AL, 4817 SmallVectorImpl<TemplateArgument> &Converted) { 4818 const TemplateArgument &Arg = AL.getArgument(); 4819 QualType ArgType; 4820 TypeSourceInfo *TSI = nullptr; 4821 4822 // Check template type parameter. 4823 switch(Arg.getKind()) { 4824 case TemplateArgument::Type: 4825 // C++ [temp.arg.type]p1: 4826 // A template-argument for a template-parameter which is a 4827 // type shall be a type-id. 4828 ArgType = Arg.getAsType(); 4829 TSI = AL.getTypeSourceInfo(); 4830 break; 4831 case TemplateArgument::Template: 4832 case TemplateArgument::TemplateExpansion: { 4833 // We have a template type parameter but the template argument 4834 // is a template without any arguments. 4835 SourceRange SR = AL.getSourceRange(); 4836 TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); 4837 diagnoseMissingTemplateArguments(Name, SR.getEnd()); 4838 return true; 4839 } 4840 case TemplateArgument::Expression: { 4841 // We have a template type parameter but the template argument is an 4842 // expression; see if maybe it is missing the "typename" keyword. 4843 CXXScopeSpec SS; 4844 DeclarationNameInfo NameInfo; 4845 4846 if (DependentScopeDeclRefExpr *ArgExpr = 4847 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 4848 SS.Adopt(ArgExpr->getQualifierLoc()); 4849 NameInfo = ArgExpr->getNameInfo(); 4850 } else if (CXXDependentScopeMemberExpr *ArgExpr = 4851 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 4852 if (ArgExpr->isImplicitAccess()) { 4853 SS.Adopt(ArgExpr->getQualifierLoc()); 4854 NameInfo = ArgExpr->getMemberNameInfo(); 4855 } 4856 } 4857 4858 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { 4859 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 4860 LookupParsedName(Result, CurScope, &SS); 4861 4862 if (Result.getAsSingle<TypeDecl>() || 4863 Result.getResultKind() == 4864 LookupResult::NotFoundInCurrentInstantiation) { 4865 assert(SS.getScopeRep() && "dependent scope expr must has a scope!"); 4866 // Suggest that the user add 'typename' before the NNS. 4867 SourceLocation Loc = AL.getSourceRange().getBegin(); 4868 Diag(Loc, getLangOpts().MSVCCompat 4869 ? diag::ext_ms_template_type_arg_missing_typename 4870 : diag::err_template_arg_must_be_type_suggest) 4871 << FixItHint::CreateInsertion(Loc, "typename "); 4872 Diag(Param->getLocation(), diag::note_template_param_here); 4873 4874 // Recover by synthesizing a type using the location information that we 4875 // already have. 4876 ArgType = 4877 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II); 4878 TypeLocBuilder TLB; 4879 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType); 4880 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); 4881 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4882 TL.setNameLoc(NameInfo.getLoc()); 4883 TSI = TLB.getTypeSourceInfo(Context, ArgType); 4884 4885 // Overwrite our input TemplateArgumentLoc so that we can recover 4886 // properly. 4887 AL = TemplateArgumentLoc(TemplateArgument(ArgType), 4888 TemplateArgumentLocInfo(TSI)); 4889 4890 break; 4891 } 4892 } 4893 // fallthrough 4894 LLVM_FALLTHROUGH; 4895 } 4896 default: { 4897 // We have a template type parameter but the template argument 4898 // is not a type. 4899 SourceRange SR = AL.getSourceRange(); 4900 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 4901 Diag(Param->getLocation(), diag::note_template_param_here); 4902 4903 return true; 4904 } 4905 } 4906 4907 if (CheckTemplateArgument(Param, TSI)) 4908 return true; 4909 4910 // Add the converted template type argument. 4911 ArgType = Context.getCanonicalType(ArgType); 4912 4913 // Objective-C ARC: 4914 // If an explicitly-specified template argument type is a lifetime type 4915 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 4916 if (getLangOpts().ObjCAutoRefCount && 4917 ArgType->isObjCLifetimeType() && 4918 !ArgType.getObjCLifetime()) { 4919 Qualifiers Qs; 4920 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 4921 ArgType = Context.getQualifiedType(ArgType, Qs); 4922 } 4923 4924 Converted.push_back(TemplateArgument(ArgType)); 4925 return false; 4926 } 4927 4928 /// Substitute template arguments into the default template argument for 4929 /// the given template type parameter. 4930 /// 4931 /// \param SemaRef the semantic analysis object for which we are performing 4932 /// the substitution. 4933 /// 4934 /// \param Template the template that we are synthesizing template arguments 4935 /// for. 4936 /// 4937 /// \param TemplateLoc the location of the template name that started the 4938 /// template-id we are checking. 4939 /// 4940 /// \param RAngleLoc the location of the right angle bracket ('>') that 4941 /// terminates the template-id. 4942 /// 4943 /// \param Param the template template parameter whose default we are 4944 /// substituting into. 4945 /// 4946 /// \param Converted the list of template arguments provided for template 4947 /// parameters that precede \p Param in the template parameter list. 4948 /// \returns the substituted template argument, or NULL if an error occurred. 4949 static TypeSourceInfo * 4950 SubstDefaultTemplateArgument(Sema &SemaRef, 4951 TemplateDecl *Template, 4952 SourceLocation TemplateLoc, 4953 SourceLocation RAngleLoc, 4954 TemplateTypeParmDecl *Param, 4955 SmallVectorImpl<TemplateArgument> &Converted) { 4956 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 4957 4958 // If the argument type is dependent, instantiate it now based 4959 // on the previously-computed template arguments. 4960 if (ArgType->getType()->isInstantiationDependentType()) { 4961 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 4962 Param, Template, Converted, 4963 SourceRange(TemplateLoc, RAngleLoc)); 4964 if (Inst.isInvalid()) 4965 return nullptr; 4966 4967 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 4968 4969 // Only substitute for the innermost template argument list. 4970 MultiLevelTemplateArgumentList TemplateArgLists; 4971 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 4972 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 4973 TemplateArgLists.addOuterTemplateArguments(None); 4974 4975 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 4976 ArgType = 4977 SemaRef.SubstType(ArgType, TemplateArgLists, 4978 Param->getDefaultArgumentLoc(), Param->getDeclName()); 4979 } 4980 4981 return ArgType; 4982 } 4983 4984 /// Substitute template arguments into the default template argument for 4985 /// the given non-type template parameter. 4986 /// 4987 /// \param SemaRef the semantic analysis object for which we are performing 4988 /// the substitution. 4989 /// 4990 /// \param Template the template that we are synthesizing template arguments 4991 /// for. 4992 /// 4993 /// \param TemplateLoc the location of the template name that started the 4994 /// template-id we are checking. 4995 /// 4996 /// \param RAngleLoc the location of the right angle bracket ('>') that 4997 /// terminates the template-id. 4998 /// 4999 /// \param Param the non-type template parameter whose default we are 5000 /// substituting into. 5001 /// 5002 /// \param Converted the list of template arguments provided for template 5003 /// parameters that precede \p Param in the template parameter list. 5004 /// 5005 /// \returns the substituted template argument, or NULL if an error occurred. 5006 static ExprResult 5007 SubstDefaultTemplateArgument(Sema &SemaRef, 5008 TemplateDecl *Template, 5009 SourceLocation TemplateLoc, 5010 SourceLocation RAngleLoc, 5011 NonTypeTemplateParmDecl *Param, 5012 SmallVectorImpl<TemplateArgument> &Converted) { 5013 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 5014 Param, Template, Converted, 5015 SourceRange(TemplateLoc, RAngleLoc)); 5016 if (Inst.isInvalid()) 5017 return ExprError(); 5018 5019 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5020 5021 // Only substitute for the innermost template argument list. 5022 MultiLevelTemplateArgumentList TemplateArgLists; 5023 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 5024 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5025 TemplateArgLists.addOuterTemplateArguments(None); 5026 5027 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5028 EnterExpressionEvaluationContext ConstantEvaluated( 5029 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 5030 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists); 5031 } 5032 5033 /// Substitute template arguments into the default template argument for 5034 /// the given template template parameter. 5035 /// 5036 /// \param SemaRef the semantic analysis object for which we are performing 5037 /// the substitution. 5038 /// 5039 /// \param Template the template that we are synthesizing template arguments 5040 /// for. 5041 /// 5042 /// \param TemplateLoc the location of the template name that started the 5043 /// template-id we are checking. 5044 /// 5045 /// \param RAngleLoc the location of the right angle bracket ('>') that 5046 /// terminates the template-id. 5047 /// 5048 /// \param Param the template template parameter whose default we are 5049 /// substituting into. 5050 /// 5051 /// \param Converted the list of template arguments provided for template 5052 /// parameters that precede \p Param in the template parameter list. 5053 /// 5054 /// \param QualifierLoc Will be set to the nested-name-specifier (with 5055 /// source-location information) that precedes the template name. 5056 /// 5057 /// \returns the substituted template argument, or NULL if an error occurred. 5058 static TemplateName 5059 SubstDefaultTemplateArgument(Sema &SemaRef, 5060 TemplateDecl *Template, 5061 SourceLocation TemplateLoc, 5062 SourceLocation RAngleLoc, 5063 TemplateTemplateParmDecl *Param, 5064 SmallVectorImpl<TemplateArgument> &Converted, 5065 NestedNameSpecifierLoc &QualifierLoc) { 5066 Sema::InstantiatingTemplate Inst( 5067 SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted, 5068 SourceRange(TemplateLoc, RAngleLoc)); 5069 if (Inst.isInvalid()) 5070 return TemplateName(); 5071 5072 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5073 5074 // Only substitute for the innermost template argument list. 5075 MultiLevelTemplateArgumentList TemplateArgLists; 5076 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 5077 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5078 TemplateArgLists.addOuterTemplateArguments(None); 5079 5080 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5081 // Substitute into the nested-name-specifier first, 5082 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 5083 if (QualifierLoc) { 5084 QualifierLoc = 5085 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); 5086 if (!QualifierLoc) 5087 return TemplateName(); 5088 } 5089 5090 return SemaRef.SubstTemplateName( 5091 QualifierLoc, 5092 Param->getDefaultArgument().getArgument().getAsTemplate(), 5093 Param->getDefaultArgument().getTemplateNameLoc(), 5094 TemplateArgLists); 5095 } 5096 5097 /// If the given template parameter has a default template 5098 /// argument, substitute into that default template argument and 5099 /// return the corresponding template argument. 5100 TemplateArgumentLoc 5101 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 5102 SourceLocation TemplateLoc, 5103 SourceLocation RAngleLoc, 5104 Decl *Param, 5105 SmallVectorImpl<TemplateArgument> 5106 &Converted, 5107 bool &HasDefaultArg) { 5108 HasDefaultArg = false; 5109 5110 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 5111 if (!hasVisibleDefaultArgument(TypeParm)) 5112 return TemplateArgumentLoc(); 5113 5114 HasDefaultArg = true; 5115 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 5116 TemplateLoc, 5117 RAngleLoc, 5118 TypeParm, 5119 Converted); 5120 if (DI) 5121 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 5122 5123 return TemplateArgumentLoc(); 5124 } 5125 5126 if (NonTypeTemplateParmDecl *NonTypeParm 5127 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5128 if (!hasVisibleDefaultArgument(NonTypeParm)) 5129 return TemplateArgumentLoc(); 5130 5131 HasDefaultArg = true; 5132 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 5133 TemplateLoc, 5134 RAngleLoc, 5135 NonTypeParm, 5136 Converted); 5137 if (Arg.isInvalid()) 5138 return TemplateArgumentLoc(); 5139 5140 Expr *ArgE = Arg.getAs<Expr>(); 5141 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 5142 } 5143 5144 TemplateTemplateParmDecl *TempTempParm 5145 = cast<TemplateTemplateParmDecl>(Param); 5146 if (!hasVisibleDefaultArgument(TempTempParm)) 5147 return TemplateArgumentLoc(); 5148 5149 HasDefaultArg = true; 5150 NestedNameSpecifierLoc QualifierLoc; 5151 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 5152 TemplateLoc, 5153 RAngleLoc, 5154 TempTempParm, 5155 Converted, 5156 QualifierLoc); 5157 if (TName.isNull()) 5158 return TemplateArgumentLoc(); 5159 5160 return TemplateArgumentLoc(TemplateArgument(TName), 5161 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 5162 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 5163 } 5164 5165 /// Convert a template-argument that we parsed as a type into a template, if 5166 /// possible. C++ permits injected-class-names to perform dual service as 5167 /// template template arguments and as template type arguments. 5168 static TemplateArgumentLoc convertTypeTemplateArgumentToTemplate(TypeLoc TLoc) { 5169 // Extract and step over any surrounding nested-name-specifier. 5170 NestedNameSpecifierLoc QualLoc; 5171 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { 5172 if (ETLoc.getTypePtr()->getKeyword() != ETK_None) 5173 return TemplateArgumentLoc(); 5174 5175 QualLoc = ETLoc.getQualifierLoc(); 5176 TLoc = ETLoc.getNamedTypeLoc(); 5177 } 5178 5179 // If this type was written as an injected-class-name, it can be used as a 5180 // template template argument. 5181 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) 5182 return TemplateArgumentLoc(InjLoc.getTypePtr()->getTemplateName(), 5183 QualLoc, InjLoc.getNameLoc()); 5184 5185 // If this type was written as an injected-class-name, it may have been 5186 // converted to a RecordType during instantiation. If the RecordType is 5187 // *not* wrapped in a TemplateSpecializationType and denotes a class 5188 // template specialization, it must have come from an injected-class-name. 5189 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) 5190 if (auto *CTSD = 5191 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl())) 5192 return TemplateArgumentLoc(TemplateName(CTSD->getSpecializedTemplate()), 5193 QualLoc, RecLoc.getNameLoc()); 5194 5195 return TemplateArgumentLoc(); 5196 } 5197 5198 /// Check that the given template argument corresponds to the given 5199 /// template parameter. 5200 /// 5201 /// \param Param The template parameter against which the argument will be 5202 /// checked. 5203 /// 5204 /// \param Arg The template argument, which may be updated due to conversions. 5205 /// 5206 /// \param Template The template in which the template argument resides. 5207 /// 5208 /// \param TemplateLoc The location of the template name for the template 5209 /// whose argument list we're matching. 5210 /// 5211 /// \param RAngleLoc The location of the right angle bracket ('>') that closes 5212 /// the template argument list. 5213 /// 5214 /// \param ArgumentPackIndex The index into the argument pack where this 5215 /// argument will be placed. Only valid if the parameter is a parameter pack. 5216 /// 5217 /// \param Converted The checked, converted argument will be added to the 5218 /// end of this small vector. 5219 /// 5220 /// \param CTAK Describes how we arrived at this particular template argument: 5221 /// explicitly written, deduced, etc. 5222 /// 5223 /// \returns true on error, false otherwise. 5224 bool Sema::CheckTemplateArgument(NamedDecl *Param, 5225 TemplateArgumentLoc &Arg, 5226 NamedDecl *Template, 5227 SourceLocation TemplateLoc, 5228 SourceLocation RAngleLoc, 5229 unsigned ArgumentPackIndex, 5230 SmallVectorImpl<TemplateArgument> &Converted, 5231 CheckTemplateArgumentKind CTAK) { 5232 // Check template type parameters. 5233 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 5234 return CheckTemplateTypeArgument(TTP, Arg, Converted); 5235 5236 // Check non-type template parameters. 5237 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5238 // Do substitution on the type of the non-type template parameter 5239 // with the template arguments we've seen thus far. But if the 5240 // template has a dependent context then we cannot substitute yet. 5241 QualType NTTPType = NTTP->getType(); 5242 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 5243 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 5244 5245 if (NTTPType->isInstantiationDependentType() && 5246 !isa<TemplateTemplateParmDecl>(Template) && 5247 !Template->getDeclContext()->isDependentContext()) { 5248 // Do substitution on the type of the non-type template parameter. 5249 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 5250 NTTP, Converted, 5251 SourceRange(TemplateLoc, RAngleLoc)); 5252 if (Inst.isInvalid()) 5253 return true; 5254 5255 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 5256 Converted); 5257 5258 // If the parameter is a pack expansion, expand this slice of the pack. 5259 if (auto *PET = NTTPType->getAs<PackExpansionType>()) { 5260 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, 5261 ArgumentPackIndex); 5262 NTTPType = SubstType(PET->getPattern(), 5263 MultiLevelTemplateArgumentList(TemplateArgs), 5264 NTTP->getLocation(), 5265 NTTP->getDeclName()); 5266 } else { 5267 NTTPType = SubstType(NTTPType, 5268 MultiLevelTemplateArgumentList(TemplateArgs), 5269 NTTP->getLocation(), 5270 NTTP->getDeclName()); 5271 } 5272 5273 // If that worked, check the non-type template parameter type 5274 // for validity. 5275 if (!NTTPType.isNull()) 5276 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 5277 NTTP->getLocation()); 5278 if (NTTPType.isNull()) 5279 return true; 5280 } 5281 5282 switch (Arg.getArgument().getKind()) { 5283 case TemplateArgument::Null: 5284 llvm_unreachable("Should never see a NULL template argument here"); 5285 5286 case TemplateArgument::Expression: { 5287 TemplateArgument Result; 5288 unsigned CurSFINAEErrors = NumSFINAEErrors; 5289 ExprResult Res = 5290 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 5291 Result, CTAK); 5292 if (Res.isInvalid()) 5293 return true; 5294 // If the current template argument causes an error, give up now. 5295 if (CurSFINAEErrors < NumSFINAEErrors) 5296 return true; 5297 5298 // If the resulting expression is new, then use it in place of the 5299 // old expression in the template argument. 5300 if (Res.get() != Arg.getArgument().getAsExpr()) { 5301 TemplateArgument TA(Res.get()); 5302 Arg = TemplateArgumentLoc(TA, Res.get()); 5303 } 5304 5305 Converted.push_back(Result); 5306 break; 5307 } 5308 5309 case TemplateArgument::Declaration: 5310 case TemplateArgument::Integral: 5311 case TemplateArgument::NullPtr: 5312 // We've already checked this template argument, so just copy 5313 // it to the list of converted arguments. 5314 Converted.push_back(Arg.getArgument()); 5315 break; 5316 5317 case TemplateArgument::Template: 5318 case TemplateArgument::TemplateExpansion: 5319 // We were given a template template argument. It may not be ill-formed; 5320 // see below. 5321 if (DependentTemplateName *DTN 5322 = Arg.getArgument().getAsTemplateOrTemplatePattern() 5323 .getAsDependentTemplateName()) { 5324 // We have a template argument such as \c T::template X, which we 5325 // parsed as a template template argument. However, since we now 5326 // know that we need a non-type template argument, convert this 5327 // template name into an expression. 5328 5329 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 5330 Arg.getTemplateNameLoc()); 5331 5332 CXXScopeSpec SS; 5333 SS.Adopt(Arg.getTemplateQualifierLoc()); 5334 // FIXME: the template-template arg was a DependentTemplateName, 5335 // so it was provided with a template keyword. However, its source 5336 // location is not stored in the template argument structure. 5337 SourceLocation TemplateKWLoc; 5338 ExprResult E = DependentScopeDeclRefExpr::Create( 5339 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 5340 nullptr); 5341 5342 // If we parsed the template argument as a pack expansion, create a 5343 // pack expansion expression. 5344 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 5345 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc()); 5346 if (E.isInvalid()) 5347 return true; 5348 } 5349 5350 TemplateArgument Result; 5351 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result); 5352 if (E.isInvalid()) 5353 return true; 5354 5355 Converted.push_back(Result); 5356 break; 5357 } 5358 5359 // We have a template argument that actually does refer to a class 5360 // template, alias template, or template template parameter, and 5361 // therefore cannot be a non-type template argument. 5362 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 5363 << Arg.getSourceRange(); 5364 5365 Diag(Param->getLocation(), diag::note_template_param_here); 5366 return true; 5367 5368 case TemplateArgument::Type: { 5369 // We have a non-type template parameter but the template 5370 // argument is a type. 5371 5372 // C++ [temp.arg]p2: 5373 // In a template-argument, an ambiguity between a type-id and 5374 // an expression is resolved to a type-id, regardless of the 5375 // form of the corresponding template-parameter. 5376 // 5377 // We warn specifically about this case, since it can be rather 5378 // confusing for users. 5379 QualType T = Arg.getArgument().getAsType(); 5380 SourceRange SR = Arg.getSourceRange(); 5381 if (T->isFunctionType()) 5382 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 5383 else 5384 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 5385 Diag(Param->getLocation(), diag::note_template_param_here); 5386 return true; 5387 } 5388 5389 case TemplateArgument::Pack: 5390 llvm_unreachable("Caller must expand template argument packs"); 5391 } 5392 5393 return false; 5394 } 5395 5396 5397 // Check template template parameters. 5398 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 5399 5400 TemplateParameterList *Params = TempParm->getTemplateParameters(); 5401 if (TempParm->isExpandedParameterPack()) 5402 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex); 5403 5404 // Substitute into the template parameter list of the template 5405 // template parameter, since previously-supplied template arguments 5406 // may appear within the template template parameter. 5407 // 5408 // FIXME: Skip this if the parameters aren't instantiation-dependent. 5409 { 5410 // Set up a template instantiation context. 5411 LocalInstantiationScope Scope(*this); 5412 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 5413 TempParm, Converted, 5414 SourceRange(TemplateLoc, RAngleLoc)); 5415 if (Inst.isInvalid()) 5416 return true; 5417 5418 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5419 Params = SubstTemplateParams(Params, CurContext, 5420 MultiLevelTemplateArgumentList(TemplateArgs)); 5421 if (!Params) 5422 return true; 5423 } 5424 5425 // C++1z [temp.local]p1: (DR1004) 5426 // When [the injected-class-name] is used [...] as a template-argument for 5427 // a template template-parameter [...] it refers to the class template 5428 // itself. 5429 if (Arg.getArgument().getKind() == TemplateArgument::Type) { 5430 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( 5431 Arg.getTypeSourceInfo()->getTypeLoc()); 5432 if (!ConvertedArg.getArgument().isNull()) 5433 Arg = ConvertedArg; 5434 } 5435 5436 switch (Arg.getArgument().getKind()) { 5437 case TemplateArgument::Null: 5438 llvm_unreachable("Should never see a NULL template argument here"); 5439 5440 case TemplateArgument::Template: 5441 case TemplateArgument::TemplateExpansion: 5442 if (CheckTemplateTemplateArgument(TempParm, Params, Arg)) 5443 return true; 5444 5445 Converted.push_back(Arg.getArgument()); 5446 break; 5447 5448 case TemplateArgument::Expression: 5449 case TemplateArgument::Type: 5450 // We have a template template parameter but the template 5451 // argument does not refer to a template. 5452 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 5453 << getLangOpts().CPlusPlus11; 5454 return true; 5455 5456 case TemplateArgument::Declaration: 5457 llvm_unreachable("Declaration argument with template template parameter"); 5458 case TemplateArgument::Integral: 5459 llvm_unreachable("Integral argument with template template parameter"); 5460 case TemplateArgument::NullPtr: 5461 llvm_unreachable("Null pointer argument with template template parameter"); 5462 5463 case TemplateArgument::Pack: 5464 llvm_unreachable("Caller must expand template argument packs"); 5465 } 5466 5467 return false; 5468 } 5469 5470 /// Check whether the template parameter is a pack expansion, and if so, 5471 /// determine the number of parameters produced by that expansion. For instance: 5472 /// 5473 /// \code 5474 /// template<typename ...Ts> struct A { 5475 /// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B; 5476 /// }; 5477 /// \endcode 5478 /// 5479 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us 5480 /// is not a pack expansion, so returns an empty Optional. 5481 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 5482 if (TemplateTypeParmDecl *TTP 5483 = dyn_cast<TemplateTypeParmDecl>(Param)) { 5484 if (TTP->isExpandedParameterPack()) 5485 return TTP->getNumExpansionParameters(); 5486 } 5487 5488 if (NonTypeTemplateParmDecl *NTTP 5489 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5490 if (NTTP->isExpandedParameterPack()) 5491 return NTTP->getNumExpansionTypes(); 5492 } 5493 5494 if (TemplateTemplateParmDecl *TTP 5495 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 5496 if (TTP->isExpandedParameterPack()) 5497 return TTP->getNumExpansionTemplateParameters(); 5498 } 5499 5500 return None; 5501 } 5502 5503 /// Diagnose a missing template argument. 5504 template<typename TemplateParmDecl> 5505 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, 5506 TemplateDecl *TD, 5507 const TemplateParmDecl *D, 5508 TemplateArgumentListInfo &Args) { 5509 // Dig out the most recent declaration of the template parameter; there may be 5510 // declarations of the template that are more recent than TD. 5511 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) 5512 ->getTemplateParameters() 5513 ->getParam(D->getIndex())); 5514 5515 // If there's a default argument that's not visible, diagnose that we're 5516 // missing a module import. 5517 llvm::SmallVector<Module*, 8> Modules; 5518 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) { 5519 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD), 5520 D->getDefaultArgumentLoc(), Modules, 5521 Sema::MissingImportKind::DefaultArgument, 5522 /*Recover*/true); 5523 return true; 5524 } 5525 5526 // FIXME: If there's a more recent default argument that *is* visible, 5527 // diagnose that it was declared too late. 5528 5529 TemplateParameterList *Params = TD->getTemplateParameters(); 5530 5531 S.Diag(Loc, diag::err_template_arg_list_different_arity) 5532 << /*not enough args*/0 5533 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD)) 5534 << TD; 5535 S.Diag(TD->getLocation(), diag::note_template_decl_here) 5536 << Params->getSourceRange(); 5537 return true; 5538 } 5539 5540 /// Check that the given template argument list is well-formed 5541 /// for specializing the given template. 5542 bool Sema::CheckTemplateArgumentList( 5543 TemplateDecl *Template, SourceLocation TemplateLoc, 5544 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, 5545 SmallVectorImpl<TemplateArgument> &Converted, 5546 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) { 5547 5548 if (ConstraintsNotSatisfied) 5549 *ConstraintsNotSatisfied = false; 5550 5551 // Make a copy of the template arguments for processing. Only make the 5552 // changes at the end when successful in matching the arguments to the 5553 // template. 5554 TemplateArgumentListInfo NewArgs = TemplateArgs; 5555 5556 // Make sure we get the template parameter list from the most 5557 // recentdeclaration, since that is the only one that has is guaranteed to 5558 // have all the default template argument information. 5559 TemplateParameterList *Params = 5560 cast<TemplateDecl>(Template->getMostRecentDecl()) 5561 ->getTemplateParameters(); 5562 5563 SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); 5564 5565 // C++ [temp.arg]p1: 5566 // [...] The type and form of each template-argument specified in 5567 // a template-id shall match the type and form specified for the 5568 // corresponding parameter declared by the template in its 5569 // template-parameter-list. 5570 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 5571 SmallVector<TemplateArgument, 2> ArgumentPack; 5572 unsigned ArgIdx = 0, NumArgs = NewArgs.size(); 5573 LocalInstantiationScope InstScope(*this, true); 5574 for (TemplateParameterList::iterator Param = Params->begin(), 5575 ParamEnd = Params->end(); 5576 Param != ParamEnd; /* increment in loop */) { 5577 // If we have an expanded parameter pack, make sure we don't have too 5578 // many arguments. 5579 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 5580 if (*Expansions == ArgumentPack.size()) { 5581 // We're done with this parameter pack. Pack up its arguments and add 5582 // them to the list. 5583 Converted.push_back( 5584 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5585 ArgumentPack.clear(); 5586 5587 // This argument is assigned to the next parameter. 5588 ++Param; 5589 continue; 5590 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 5591 // Not enough arguments for this parameter pack. 5592 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5593 << /*not enough args*/0 5594 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5595 << Template; 5596 Diag(Template->getLocation(), diag::note_template_decl_here) 5597 << Params->getSourceRange(); 5598 return true; 5599 } 5600 } 5601 5602 if (ArgIdx < NumArgs) { 5603 // Check the template argument we were given. 5604 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, 5605 TemplateLoc, RAngleLoc, 5606 ArgumentPack.size(), Converted)) 5607 return true; 5608 5609 bool PackExpansionIntoNonPack = 5610 NewArgs[ArgIdx].getArgument().isPackExpansion() && 5611 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param)); 5612 if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) || 5613 isa<ConceptDecl>(Template))) { 5614 // Core issue 1430: we have a pack expansion as an argument to an 5615 // alias template, and it's not part of a parameter pack. This 5616 // can't be canonicalized, so reject it now. 5617 // As for concepts - we cannot normalize constraints where this 5618 // situation exists. 5619 Diag(NewArgs[ArgIdx].getLocation(), 5620 diag::err_template_expansion_into_fixed_list) 5621 << (isa<ConceptDecl>(Template) ? 1 : 0) 5622 << NewArgs[ArgIdx].getSourceRange(); 5623 Diag((*Param)->getLocation(), diag::note_template_param_here); 5624 return true; 5625 } 5626 5627 // We're now done with this argument. 5628 ++ArgIdx; 5629 5630 if ((*Param)->isTemplateParameterPack()) { 5631 // The template parameter was a template parameter pack, so take the 5632 // deduced argument and place it on the argument pack. Note that we 5633 // stay on the same template parameter so that we can deduce more 5634 // arguments. 5635 ArgumentPack.push_back(Converted.pop_back_val()); 5636 } else { 5637 // Move to the next template parameter. 5638 ++Param; 5639 } 5640 5641 // If we just saw a pack expansion into a non-pack, then directly convert 5642 // the remaining arguments, because we don't know what parameters they'll 5643 // match up with. 5644 if (PackExpansionIntoNonPack) { 5645 if (!ArgumentPack.empty()) { 5646 // If we were part way through filling in an expanded parameter pack, 5647 // fall back to just producing individual arguments. 5648 Converted.insert(Converted.end(), 5649 ArgumentPack.begin(), ArgumentPack.end()); 5650 ArgumentPack.clear(); 5651 } 5652 5653 while (ArgIdx < NumArgs) { 5654 Converted.push_back(NewArgs[ArgIdx].getArgument()); 5655 ++ArgIdx; 5656 } 5657 5658 return false; 5659 } 5660 5661 continue; 5662 } 5663 5664 // If we're checking a partial template argument list, we're done. 5665 if (PartialTemplateArgs) { 5666 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 5667 Converted.push_back( 5668 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5669 return false; 5670 } 5671 5672 // If we have a template parameter pack with no more corresponding 5673 // arguments, just break out now and we'll fill in the argument pack below. 5674 if ((*Param)->isTemplateParameterPack()) { 5675 assert(!getExpandedPackSize(*Param) && 5676 "Should have dealt with this already"); 5677 5678 // A non-expanded parameter pack before the end of the parameter list 5679 // only occurs for an ill-formed template parameter list, unless we've 5680 // got a partial argument list for a function template, so just bail out. 5681 if (Param + 1 != ParamEnd) 5682 return true; 5683 5684 Converted.push_back( 5685 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5686 ArgumentPack.clear(); 5687 5688 ++Param; 5689 continue; 5690 } 5691 5692 // Check whether we have a default argument. 5693 TemplateArgumentLoc Arg; 5694 5695 // Retrieve the default template argument from the template 5696 // parameter. For each kind of template parameter, we substitute the 5697 // template arguments provided thus far and any "outer" template arguments 5698 // (when the template parameter was part of a nested template) into 5699 // the default argument. 5700 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 5701 if (!hasVisibleDefaultArgument(TTP)) 5702 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP, 5703 NewArgs); 5704 5705 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 5706 Template, 5707 TemplateLoc, 5708 RAngleLoc, 5709 TTP, 5710 Converted); 5711 if (!ArgType) 5712 return true; 5713 5714 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 5715 ArgType); 5716 } else if (NonTypeTemplateParmDecl *NTTP 5717 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 5718 if (!hasVisibleDefaultArgument(NTTP)) 5719 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP, 5720 NewArgs); 5721 5722 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 5723 TemplateLoc, 5724 RAngleLoc, 5725 NTTP, 5726 Converted); 5727 if (E.isInvalid()) 5728 return true; 5729 5730 Expr *Ex = E.getAs<Expr>(); 5731 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 5732 } else { 5733 TemplateTemplateParmDecl *TempParm 5734 = cast<TemplateTemplateParmDecl>(*Param); 5735 5736 if (!hasVisibleDefaultArgument(TempParm)) 5737 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm, 5738 NewArgs); 5739 5740 NestedNameSpecifierLoc QualifierLoc; 5741 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 5742 TemplateLoc, 5743 RAngleLoc, 5744 TempParm, 5745 Converted, 5746 QualifierLoc); 5747 if (Name.isNull()) 5748 return true; 5749 5750 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 5751 TempParm->getDefaultArgument().getTemplateNameLoc()); 5752 } 5753 5754 // Introduce an instantiation record that describes where we are using 5755 // the default template argument. We're not actually instantiating a 5756 // template here, we just create this object to put a note into the 5757 // context stack. 5758 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted, 5759 SourceRange(TemplateLoc, RAngleLoc)); 5760 if (Inst.isInvalid()) 5761 return true; 5762 5763 // Check the default template argument. 5764 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 5765 RAngleLoc, 0, Converted)) 5766 return true; 5767 5768 // Core issue 150 (assumed resolution): if this is a template template 5769 // parameter, keep track of the default template arguments from the 5770 // template definition. 5771 if (isTemplateTemplateParameter) 5772 NewArgs.addArgument(Arg); 5773 5774 // Move to the next template parameter and argument. 5775 ++Param; 5776 ++ArgIdx; 5777 } 5778 5779 // If we're performing a partial argument substitution, allow any trailing 5780 // pack expansions; they might be empty. This can happen even if 5781 // PartialTemplateArgs is false (the list of arguments is complete but 5782 // still dependent). 5783 if (ArgIdx < NumArgs && CurrentInstantiationScope && 5784 CurrentInstantiationScope->getPartiallySubstitutedPack()) { 5785 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion()) 5786 Converted.push_back(NewArgs[ArgIdx++].getArgument()); 5787 } 5788 5789 // If we have any leftover arguments, then there were too many arguments. 5790 // Complain and fail. 5791 if (ArgIdx < NumArgs) { 5792 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5793 << /*too many args*/1 5794 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5795 << Template 5796 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); 5797 Diag(Template->getLocation(), diag::note_template_decl_here) 5798 << Params->getSourceRange(); 5799 return true; 5800 } 5801 5802 // No problems found with the new argument list, propagate changes back 5803 // to caller. 5804 if (UpdateArgsWithConversions) 5805 TemplateArgs = std::move(NewArgs); 5806 5807 if (!PartialTemplateArgs && 5808 EnsureTemplateArgumentListConstraints( 5809 Template, Converted, SourceRange(TemplateLoc, 5810 TemplateArgs.getRAngleLoc()))) { 5811 if (ConstraintsNotSatisfied) 5812 *ConstraintsNotSatisfied = true; 5813 return true; 5814 } 5815 5816 return false; 5817 } 5818 5819 namespace { 5820 class UnnamedLocalNoLinkageFinder 5821 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 5822 { 5823 Sema &S; 5824 SourceRange SR; 5825 5826 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 5827 5828 public: 5829 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 5830 5831 bool Visit(QualType T) { 5832 return T.isNull() ? false : inherited::Visit(T.getTypePtr()); 5833 } 5834 5835 #define TYPE(Class, Parent) \ 5836 bool Visit##Class##Type(const Class##Type *); 5837 #define ABSTRACT_TYPE(Class, Parent) \ 5838 bool Visit##Class##Type(const Class##Type *) { return false; } 5839 #define NON_CANONICAL_TYPE(Class, Parent) \ 5840 bool Visit##Class##Type(const Class##Type *) { return false; } 5841 #include "clang/AST/TypeNodes.inc" 5842 5843 bool VisitTagDecl(const TagDecl *Tag); 5844 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 5845 }; 5846 } // end anonymous namespace 5847 5848 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 5849 return false; 5850 } 5851 5852 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 5853 return Visit(T->getElementType()); 5854 } 5855 5856 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 5857 return Visit(T->getPointeeType()); 5858 } 5859 5860 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 5861 const BlockPointerType* T) { 5862 return Visit(T->getPointeeType()); 5863 } 5864 5865 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 5866 const LValueReferenceType* T) { 5867 return Visit(T->getPointeeType()); 5868 } 5869 5870 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 5871 const RValueReferenceType* T) { 5872 return Visit(T->getPointeeType()); 5873 } 5874 5875 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 5876 const MemberPointerType* T) { 5877 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 5878 } 5879 5880 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 5881 const ConstantArrayType* T) { 5882 return Visit(T->getElementType()); 5883 } 5884 5885 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 5886 const IncompleteArrayType* T) { 5887 return Visit(T->getElementType()); 5888 } 5889 5890 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 5891 const VariableArrayType* T) { 5892 return Visit(T->getElementType()); 5893 } 5894 5895 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 5896 const DependentSizedArrayType* T) { 5897 return Visit(T->getElementType()); 5898 } 5899 5900 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 5901 const DependentSizedExtVectorType* T) { 5902 return Visit(T->getElementType()); 5903 } 5904 5905 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType( 5906 const DependentSizedMatrixType *T) { 5907 return Visit(T->getElementType()); 5908 } 5909 5910 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( 5911 const DependentAddressSpaceType *T) { 5912 return Visit(T->getPointeeType()); 5913 } 5914 5915 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 5916 return Visit(T->getElementType()); 5917 } 5918 5919 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( 5920 const DependentVectorType *T) { 5921 return Visit(T->getElementType()); 5922 } 5923 5924 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 5925 return Visit(T->getElementType()); 5926 } 5927 5928 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType( 5929 const ConstantMatrixType *T) { 5930 return Visit(T->getElementType()); 5931 } 5932 5933 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 5934 const FunctionProtoType* T) { 5935 for (const auto &A : T->param_types()) { 5936 if (Visit(A)) 5937 return true; 5938 } 5939 5940 return Visit(T->getReturnType()); 5941 } 5942 5943 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 5944 const FunctionNoProtoType* T) { 5945 return Visit(T->getReturnType()); 5946 } 5947 5948 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 5949 const UnresolvedUsingType*) { 5950 return false; 5951 } 5952 5953 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 5954 return false; 5955 } 5956 5957 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 5958 return Visit(T->getUnderlyingType()); 5959 } 5960 5961 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 5962 return false; 5963 } 5964 5965 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 5966 const UnaryTransformType*) { 5967 return false; 5968 } 5969 5970 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 5971 return Visit(T->getDeducedType()); 5972 } 5973 5974 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( 5975 const DeducedTemplateSpecializationType *T) { 5976 return Visit(T->getDeducedType()); 5977 } 5978 5979 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 5980 return VisitTagDecl(T->getDecl()); 5981 } 5982 5983 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 5984 return VisitTagDecl(T->getDecl()); 5985 } 5986 5987 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 5988 const TemplateTypeParmType*) { 5989 return false; 5990 } 5991 5992 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 5993 const SubstTemplateTypeParmPackType *) { 5994 return false; 5995 } 5996 5997 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 5998 const TemplateSpecializationType*) { 5999 return false; 6000 } 6001 6002 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 6003 const InjectedClassNameType* T) { 6004 return VisitTagDecl(T->getDecl()); 6005 } 6006 6007 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 6008 const DependentNameType* T) { 6009 return VisitNestedNameSpecifier(T->getQualifier()); 6010 } 6011 6012 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 6013 const DependentTemplateSpecializationType* T) { 6014 if (auto *Q = T->getQualifier()) 6015 return VisitNestedNameSpecifier(Q); 6016 return false; 6017 } 6018 6019 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 6020 const PackExpansionType* T) { 6021 return Visit(T->getPattern()); 6022 } 6023 6024 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 6025 return false; 6026 } 6027 6028 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 6029 const ObjCInterfaceType *) { 6030 return false; 6031 } 6032 6033 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 6034 const ObjCObjectPointerType *) { 6035 return false; 6036 } 6037 6038 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 6039 return Visit(T->getValueType()); 6040 } 6041 6042 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { 6043 return false; 6044 } 6045 6046 bool UnnamedLocalNoLinkageFinder::VisitExtIntType(const ExtIntType *T) { 6047 return false; 6048 } 6049 6050 bool UnnamedLocalNoLinkageFinder::VisitDependentExtIntType( 6051 const DependentExtIntType *T) { 6052 return false; 6053 } 6054 6055 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 6056 if (Tag->getDeclContext()->isFunctionOrMethod()) { 6057 S.Diag(SR.getBegin(), 6058 S.getLangOpts().CPlusPlus11 ? 6059 diag::warn_cxx98_compat_template_arg_local_type : 6060 diag::ext_template_arg_local_type) 6061 << S.Context.getTypeDeclType(Tag) << SR; 6062 return true; 6063 } 6064 6065 if (!Tag->hasNameForLinkage()) { 6066 S.Diag(SR.getBegin(), 6067 S.getLangOpts().CPlusPlus11 ? 6068 diag::warn_cxx98_compat_template_arg_unnamed_type : 6069 diag::ext_template_arg_unnamed_type) << SR; 6070 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 6071 return true; 6072 } 6073 6074 return false; 6075 } 6076 6077 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 6078 NestedNameSpecifier *NNS) { 6079 assert(NNS); 6080 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 6081 return true; 6082 6083 switch (NNS->getKind()) { 6084 case NestedNameSpecifier::Identifier: 6085 case NestedNameSpecifier::Namespace: 6086 case NestedNameSpecifier::NamespaceAlias: 6087 case NestedNameSpecifier::Global: 6088 case NestedNameSpecifier::Super: 6089 return false; 6090 6091 case NestedNameSpecifier::TypeSpec: 6092 case NestedNameSpecifier::TypeSpecWithTemplate: 6093 return Visit(QualType(NNS->getAsType(), 0)); 6094 } 6095 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 6096 } 6097 6098 /// Check a template argument against its corresponding 6099 /// template type parameter. 6100 /// 6101 /// This routine implements the semantics of C++ [temp.arg.type]. It 6102 /// returns true if an error occurred, and false otherwise. 6103 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 6104 TypeSourceInfo *ArgInfo) { 6105 assert(ArgInfo && "invalid TypeSourceInfo"); 6106 QualType Arg = ArgInfo->getType(); 6107 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 6108 6109 if (Arg->isVariablyModifiedType()) { 6110 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 6111 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 6112 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 6113 } 6114 6115 // C++03 [temp.arg.type]p2: 6116 // A local type, a type with no linkage, an unnamed type or a type 6117 // compounded from any of these types shall not be used as a 6118 // template-argument for a template type-parameter. 6119 // 6120 // C++11 allows these, and even in C++03 we allow them as an extension with 6121 // a warning. 6122 if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) { 6123 UnnamedLocalNoLinkageFinder Finder(*this, SR); 6124 (void)Finder.Visit(Context.getCanonicalType(Arg)); 6125 } 6126 6127 return false; 6128 } 6129 6130 enum NullPointerValueKind { 6131 NPV_NotNullPointer, 6132 NPV_NullPointer, 6133 NPV_Error 6134 }; 6135 6136 /// Determine whether the given template argument is a null pointer 6137 /// value of the appropriate type. 6138 static NullPointerValueKind 6139 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 6140 QualType ParamType, Expr *Arg, 6141 Decl *Entity = nullptr) { 6142 if (Arg->isValueDependent() || Arg->isTypeDependent()) 6143 return NPV_NotNullPointer; 6144 6145 // dllimport'd entities aren't constant but are available inside of template 6146 // arguments. 6147 if (Entity && Entity->hasAttr<DLLImportAttr>()) 6148 return NPV_NotNullPointer; 6149 6150 if (!S.isCompleteType(Arg->getExprLoc(), ParamType)) 6151 llvm_unreachable( 6152 "Incomplete parameter type in isNullPointerValueTemplateArgument!"); 6153 6154 if (!S.getLangOpts().CPlusPlus11) 6155 return NPV_NotNullPointer; 6156 6157 // Determine whether we have a constant expression. 6158 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 6159 if (ArgRV.isInvalid()) 6160 return NPV_Error; 6161 Arg = ArgRV.get(); 6162 6163 Expr::EvalResult EvalResult; 6164 SmallVector<PartialDiagnosticAt, 8> Notes; 6165 EvalResult.Diag = &Notes; 6166 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 6167 EvalResult.HasSideEffects) { 6168 SourceLocation DiagLoc = Arg->getExprLoc(); 6169 6170 // If our only note is the usual "invalid subexpression" note, just point 6171 // the caret at its location rather than producing an essentially 6172 // redundant note. 6173 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 6174 diag::note_invalid_subexpr_in_const_expr) { 6175 DiagLoc = Notes[0].first; 6176 Notes.clear(); 6177 } 6178 6179 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 6180 << Arg->getType() << Arg->getSourceRange(); 6181 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 6182 S.Diag(Notes[I].first, Notes[I].second); 6183 6184 S.Diag(Param->getLocation(), diag::note_template_param_here); 6185 return NPV_Error; 6186 } 6187 6188 // C++11 [temp.arg.nontype]p1: 6189 // - an address constant expression of type std::nullptr_t 6190 if (Arg->getType()->isNullPtrType()) 6191 return NPV_NullPointer; 6192 6193 // - a constant expression that evaluates to a null pointer value (4.10); or 6194 // - a constant expression that evaluates to a null member pointer value 6195 // (4.11); or 6196 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 6197 (EvalResult.Val.isMemberPointer() && 6198 !EvalResult.Val.getMemberPointerDecl())) { 6199 // If our expression has an appropriate type, we've succeeded. 6200 bool ObjCLifetimeConversion; 6201 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 6202 S.IsQualificationConversion(Arg->getType(), ParamType, false, 6203 ObjCLifetimeConversion)) 6204 return NPV_NullPointer; 6205 6206 // The types didn't match, but we know we got a null pointer; complain, 6207 // then recover as if the types were correct. 6208 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 6209 << Arg->getType() << ParamType << Arg->getSourceRange(); 6210 S.Diag(Param->getLocation(), diag::note_template_param_here); 6211 return NPV_NullPointer; 6212 } 6213 6214 // If we don't have a null pointer value, but we do have a NULL pointer 6215 // constant, suggest a cast to the appropriate type. 6216 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 6217 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 6218 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 6219 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code) 6220 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()), 6221 ")"); 6222 S.Diag(Param->getLocation(), diag::note_template_param_here); 6223 return NPV_NullPointer; 6224 } 6225 6226 // FIXME: If we ever want to support general, address-constant expressions 6227 // as non-type template arguments, we should return the ExprResult here to 6228 // be interpreted by the caller. 6229 return NPV_NotNullPointer; 6230 } 6231 6232 /// Checks whether the given template argument is compatible with its 6233 /// template parameter. 6234 static bool CheckTemplateArgumentIsCompatibleWithParameter( 6235 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 6236 Expr *Arg, QualType ArgType) { 6237 bool ObjCLifetimeConversion; 6238 if (ParamType->isPointerType() && 6239 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() && 6240 S.IsQualificationConversion(ArgType, ParamType, false, 6241 ObjCLifetimeConversion)) { 6242 // For pointer-to-object types, qualification conversions are 6243 // permitted. 6244 } else { 6245 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 6246 if (!ParamRef->getPointeeType()->isFunctionType()) { 6247 // C++ [temp.arg.nontype]p5b3: 6248 // For a non-type template-parameter of type reference to 6249 // object, no conversions apply. The type referred to by the 6250 // reference may be more cv-qualified than the (otherwise 6251 // identical) type of the template- argument. The 6252 // template-parameter is bound directly to the 6253 // template-argument, which shall be an lvalue. 6254 6255 // FIXME: Other qualifiers? 6256 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 6257 unsigned ArgQuals = ArgType.getCVRQualifiers(); 6258 6259 if ((ParamQuals | ArgQuals) != ParamQuals) { 6260 S.Diag(Arg->getBeginLoc(), 6261 diag::err_template_arg_ref_bind_ignores_quals) 6262 << ParamType << Arg->getType() << Arg->getSourceRange(); 6263 S.Diag(Param->getLocation(), diag::note_template_param_here); 6264 return true; 6265 } 6266 } 6267 } 6268 6269 // At this point, the template argument refers to an object or 6270 // function with external linkage. We now need to check whether the 6271 // argument and parameter types are compatible. 6272 if (!S.Context.hasSameUnqualifiedType(ArgType, 6273 ParamType.getNonReferenceType())) { 6274 // We can't perform this conversion or binding. 6275 if (ParamType->isReferenceType()) 6276 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind) 6277 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 6278 else 6279 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 6280 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 6281 S.Diag(Param->getLocation(), diag::note_template_param_here); 6282 return true; 6283 } 6284 } 6285 6286 return false; 6287 } 6288 6289 /// Checks whether the given template argument is the address 6290 /// of an object or function according to C++ [temp.arg.nontype]p1. 6291 static bool 6292 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 6293 NonTypeTemplateParmDecl *Param, 6294 QualType ParamType, 6295 Expr *ArgIn, 6296 TemplateArgument &Converted) { 6297 bool Invalid = false; 6298 Expr *Arg = ArgIn; 6299 QualType ArgType = Arg->getType(); 6300 6301 bool AddressTaken = false; 6302 SourceLocation AddrOpLoc; 6303 if (S.getLangOpts().MicrosoftExt) { 6304 // Microsoft Visual C++ strips all casts, allows an arbitrary number of 6305 // dereference and address-of operators. 6306 Arg = Arg->IgnoreParenCasts(); 6307 6308 bool ExtWarnMSTemplateArg = false; 6309 UnaryOperatorKind FirstOpKind; 6310 SourceLocation FirstOpLoc; 6311 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6312 UnaryOperatorKind UnOpKind = UnOp->getOpcode(); 6313 if (UnOpKind == UO_Deref) 6314 ExtWarnMSTemplateArg = true; 6315 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { 6316 Arg = UnOp->getSubExpr()->IgnoreParenCasts(); 6317 if (!AddrOpLoc.isValid()) { 6318 FirstOpKind = UnOpKind; 6319 FirstOpLoc = UnOp->getOperatorLoc(); 6320 } 6321 } else 6322 break; 6323 } 6324 if (FirstOpLoc.isValid()) { 6325 if (ExtWarnMSTemplateArg) 6326 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument) 6327 << ArgIn->getSourceRange(); 6328 6329 if (FirstOpKind == UO_AddrOf) 6330 AddressTaken = true; 6331 else if (Arg->getType()->isPointerType()) { 6332 // We cannot let pointers get dereferenced here, that is obviously not a 6333 // constant expression. 6334 assert(FirstOpKind == UO_Deref); 6335 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6336 << Arg->getSourceRange(); 6337 } 6338 } 6339 } else { 6340 // See through any implicit casts we added to fix the type. 6341 Arg = Arg->IgnoreImpCasts(); 6342 6343 // C++ [temp.arg.nontype]p1: 6344 // 6345 // A template-argument for a non-type, non-template 6346 // template-parameter shall be one of: [...] 6347 // 6348 // -- the address of an object or function with external 6349 // linkage, including function templates and function 6350 // template-ids but excluding non-static class members, 6351 // expressed as & id-expression where the & is optional if 6352 // the name refers to a function or array, or if the 6353 // corresponding template-parameter is a reference; or 6354 6355 // In C++98/03 mode, give an extension warning on any extra parentheses. 6356 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6357 bool ExtraParens = false; 6358 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6359 if (!Invalid && !ExtraParens) { 6360 S.Diag(Arg->getBeginLoc(), 6361 S.getLangOpts().CPlusPlus11 6362 ? diag::warn_cxx98_compat_template_arg_extra_parens 6363 : diag::ext_template_arg_extra_parens) 6364 << Arg->getSourceRange(); 6365 ExtraParens = true; 6366 } 6367 6368 Arg = Parens->getSubExpr(); 6369 } 6370 6371 while (SubstNonTypeTemplateParmExpr *subst = 6372 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6373 Arg = subst->getReplacement()->IgnoreImpCasts(); 6374 6375 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6376 if (UnOp->getOpcode() == UO_AddrOf) { 6377 Arg = UnOp->getSubExpr(); 6378 AddressTaken = true; 6379 AddrOpLoc = UnOp->getOperatorLoc(); 6380 } 6381 } 6382 6383 while (SubstNonTypeTemplateParmExpr *subst = 6384 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6385 Arg = subst->getReplacement()->IgnoreImpCasts(); 6386 } 6387 6388 ValueDecl *Entity = nullptr; 6389 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg)) 6390 Entity = DRE->getDecl(); 6391 else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg)) 6392 Entity = CUE->getGuidDecl(); 6393 6394 // If our parameter has pointer type, check for a null template value. 6395 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 6396 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn, 6397 Entity)) { 6398 case NPV_NullPointer: 6399 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6400 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 6401 /*isNullPtr=*/true); 6402 return false; 6403 6404 case NPV_Error: 6405 return true; 6406 6407 case NPV_NotNullPointer: 6408 break; 6409 } 6410 } 6411 6412 // Stop checking the precise nature of the argument if it is value dependent, 6413 // it should be checked when instantiated. 6414 if (Arg->isValueDependent()) { 6415 Converted = TemplateArgument(ArgIn); 6416 return false; 6417 } 6418 6419 if (!Entity) { 6420 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6421 << Arg->getSourceRange(); 6422 S.Diag(Param->getLocation(), diag::note_template_param_here); 6423 return true; 6424 } 6425 6426 // Cannot refer to non-static data members 6427 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) { 6428 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field) 6429 << Entity << Arg->getSourceRange(); 6430 S.Diag(Param->getLocation(), diag::note_template_param_here); 6431 return true; 6432 } 6433 6434 // Cannot refer to non-static member functions 6435 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 6436 if (!Method->isStatic()) { 6437 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method) 6438 << Method << Arg->getSourceRange(); 6439 S.Diag(Param->getLocation(), diag::note_template_param_here); 6440 return true; 6441 } 6442 } 6443 6444 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 6445 VarDecl *Var = dyn_cast<VarDecl>(Entity); 6446 MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity); 6447 6448 // A non-type template argument must refer to an object or function. 6449 if (!Func && !Var && !Guid) { 6450 // We found something, but we don't know specifically what it is. 6451 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func) 6452 << Arg->getSourceRange(); 6453 S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here); 6454 return true; 6455 } 6456 6457 // Address / reference template args must have external linkage in C++98. 6458 if (Entity->getFormalLinkage() == InternalLinkage) { 6459 S.Diag(Arg->getBeginLoc(), 6460 S.getLangOpts().CPlusPlus11 6461 ? diag::warn_cxx98_compat_template_arg_object_internal 6462 : diag::ext_template_arg_object_internal) 6463 << !Func << Entity << Arg->getSourceRange(); 6464 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6465 << !Func; 6466 } else if (!Entity->hasLinkage()) { 6467 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage) 6468 << !Func << Entity << Arg->getSourceRange(); 6469 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6470 << !Func; 6471 return true; 6472 } 6473 6474 if (Var) { 6475 // A value of reference type is not an object. 6476 if (Var->getType()->isReferenceType()) { 6477 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var) 6478 << Var->getType() << Arg->getSourceRange(); 6479 S.Diag(Param->getLocation(), diag::note_template_param_here); 6480 return true; 6481 } 6482 6483 // A template argument must have static storage duration. 6484 if (Var->getTLSKind()) { 6485 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local) 6486 << Arg->getSourceRange(); 6487 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 6488 return true; 6489 } 6490 } 6491 6492 if (AddressTaken && ParamType->isReferenceType()) { 6493 // If we originally had an address-of operator, but the 6494 // parameter has reference type, complain and (if things look 6495 // like they will work) drop the address-of operator. 6496 if (!S.Context.hasSameUnqualifiedType(Entity->getType(), 6497 ParamType.getNonReferenceType())) { 6498 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6499 << ParamType; 6500 S.Diag(Param->getLocation(), diag::note_template_param_here); 6501 return true; 6502 } 6503 6504 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6505 << ParamType 6506 << FixItHint::CreateRemoval(AddrOpLoc); 6507 S.Diag(Param->getLocation(), diag::note_template_param_here); 6508 6509 ArgType = Entity->getType(); 6510 } 6511 6512 // If the template parameter has pointer type, either we must have taken the 6513 // address or the argument must decay to a pointer. 6514 if (!AddressTaken && ParamType->isPointerType()) { 6515 if (Func) { 6516 // Function-to-pointer decay. 6517 ArgType = S.Context.getPointerType(Func->getType()); 6518 } else if (Entity->getType()->isArrayType()) { 6519 // Array-to-pointer decay. 6520 ArgType = S.Context.getArrayDecayedType(Entity->getType()); 6521 } else { 6522 // If the template parameter has pointer type but the address of 6523 // this object was not taken, complain and (possibly) recover by 6524 // taking the address of the entity. 6525 ArgType = S.Context.getPointerType(Entity->getType()); 6526 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 6527 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6528 << ParamType; 6529 S.Diag(Param->getLocation(), diag::note_template_param_here); 6530 return true; 6531 } 6532 6533 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6534 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&"); 6535 6536 S.Diag(Param->getLocation(), diag::note_template_param_here); 6537 } 6538 } 6539 6540 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, 6541 Arg, ArgType)) 6542 return true; 6543 6544 // Create the template argument. 6545 Converted = 6546 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType); 6547 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false); 6548 return false; 6549 } 6550 6551 /// Checks whether the given template argument is a pointer to 6552 /// member constant according to C++ [temp.arg.nontype]p1. 6553 static bool CheckTemplateArgumentPointerToMember(Sema &S, 6554 NonTypeTemplateParmDecl *Param, 6555 QualType ParamType, 6556 Expr *&ResultArg, 6557 TemplateArgument &Converted) { 6558 bool Invalid = false; 6559 6560 Expr *Arg = ResultArg; 6561 bool ObjCLifetimeConversion; 6562 6563 // C++ [temp.arg.nontype]p1: 6564 // 6565 // A template-argument for a non-type, non-template 6566 // template-parameter shall be one of: [...] 6567 // 6568 // -- a pointer to member expressed as described in 5.3.1. 6569 DeclRefExpr *DRE = nullptr; 6570 6571 // In C++98/03 mode, give an extension warning on any extra parentheses. 6572 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6573 bool ExtraParens = false; 6574 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6575 if (!Invalid && !ExtraParens) { 6576 S.Diag(Arg->getBeginLoc(), 6577 S.getLangOpts().CPlusPlus11 6578 ? diag::warn_cxx98_compat_template_arg_extra_parens 6579 : diag::ext_template_arg_extra_parens) 6580 << Arg->getSourceRange(); 6581 ExtraParens = true; 6582 } 6583 6584 Arg = Parens->getSubExpr(); 6585 } 6586 6587 while (SubstNonTypeTemplateParmExpr *subst = 6588 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6589 Arg = subst->getReplacement()->IgnoreImpCasts(); 6590 6591 // A pointer-to-member constant written &Class::member. 6592 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6593 if (UnOp->getOpcode() == UO_AddrOf) { 6594 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 6595 if (DRE && !DRE->getQualifier()) 6596 DRE = nullptr; 6597 } 6598 } 6599 // A constant of pointer-to-member type. 6600 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 6601 ValueDecl *VD = DRE->getDecl(); 6602 if (VD->getType()->isMemberPointerType()) { 6603 if (isa<NonTypeTemplateParmDecl>(VD)) { 6604 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6605 Converted = TemplateArgument(Arg); 6606 } else { 6607 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 6608 Converted = TemplateArgument(VD, ParamType); 6609 } 6610 return Invalid; 6611 } 6612 } 6613 6614 DRE = nullptr; 6615 } 6616 6617 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; 6618 6619 // Check for a null pointer value. 6620 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg, 6621 Entity)) { 6622 case NPV_Error: 6623 return true; 6624 case NPV_NullPointer: 6625 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6626 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 6627 /*isNullPtr*/true); 6628 return false; 6629 case NPV_NotNullPointer: 6630 break; 6631 } 6632 6633 if (S.IsQualificationConversion(ResultArg->getType(), 6634 ParamType.getNonReferenceType(), false, 6635 ObjCLifetimeConversion)) { 6636 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp, 6637 ResultArg->getValueKind()) 6638 .get(); 6639 } else if (!S.Context.hasSameUnqualifiedType( 6640 ResultArg->getType(), ParamType.getNonReferenceType())) { 6641 // We can't perform this conversion. 6642 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible) 6643 << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); 6644 S.Diag(Param->getLocation(), diag::note_template_param_here); 6645 return true; 6646 } 6647 6648 if (!DRE) 6649 return S.Diag(Arg->getBeginLoc(), 6650 diag::err_template_arg_not_pointer_to_member_form) 6651 << Arg->getSourceRange(); 6652 6653 if (isa<FieldDecl>(DRE->getDecl()) || 6654 isa<IndirectFieldDecl>(DRE->getDecl()) || 6655 isa<CXXMethodDecl>(DRE->getDecl())) { 6656 assert((isa<FieldDecl>(DRE->getDecl()) || 6657 isa<IndirectFieldDecl>(DRE->getDecl()) || 6658 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 6659 "Only non-static member pointers can make it here"); 6660 6661 // Okay: this is the address of a non-static member, and therefore 6662 // a member pointer constant. 6663 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6664 Converted = TemplateArgument(Arg); 6665 } else { 6666 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 6667 Converted = TemplateArgument(D, ParamType); 6668 } 6669 return Invalid; 6670 } 6671 6672 // We found something else, but we don't know specifically what it is. 6673 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form) 6674 << Arg->getSourceRange(); 6675 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 6676 return true; 6677 } 6678 6679 /// Check a template argument against its corresponding 6680 /// non-type template parameter. 6681 /// 6682 /// This routine implements the semantics of C++ [temp.arg.nontype]. 6683 /// If an error occurred, it returns ExprError(); otherwise, it 6684 /// returns the converted template argument. \p ParamType is the 6685 /// type of the non-type template parameter after it has been instantiated. 6686 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 6687 QualType ParamType, Expr *Arg, 6688 TemplateArgument &Converted, 6689 CheckTemplateArgumentKind CTAK) { 6690 SourceLocation StartLoc = Arg->getBeginLoc(); 6691 6692 // If the parameter type somehow involves auto, deduce the type now. 6693 if (getLangOpts().CPlusPlus17 && ParamType->isUndeducedType()) { 6694 // During template argument deduction, we allow 'decltype(auto)' to 6695 // match an arbitrary dependent argument. 6696 // FIXME: The language rules don't say what happens in this case. 6697 // FIXME: We get an opaque dependent type out of decltype(auto) if the 6698 // expression is merely instantiation-dependent; is this enough? 6699 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) { 6700 auto *AT = dyn_cast<AutoType>(ParamType); 6701 if (AT && AT->isDecltypeAuto()) { 6702 Converted = TemplateArgument(Arg); 6703 return Arg; 6704 } 6705 } 6706 6707 // When checking a deduced template argument, deduce from its type even if 6708 // the type is dependent, in order to check the types of non-type template 6709 // arguments line up properly in partial ordering. 6710 Optional<unsigned> Depth = Param->getDepth() + 1; 6711 Expr *DeductionArg = Arg; 6712 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg)) 6713 DeductionArg = PE->getPattern(); 6714 if (DeduceAutoType( 6715 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()), 6716 DeductionArg, ParamType, Depth, 6717 // We do not check constraints right now because the 6718 // immediately-declared constraint of the auto type is also an 6719 // associated constraint, and will be checked along with the other 6720 // associated constraints after checking the template argument list. 6721 /*IgnoreConstraints=*/true) == DAR_Failed) { 6722 Diag(Arg->getExprLoc(), 6723 diag::err_non_type_template_parm_type_deduction_failure) 6724 << Param->getDeclName() << Param->getType() << Arg->getType() 6725 << Arg->getSourceRange(); 6726 Diag(Param->getLocation(), diag::note_template_param_here); 6727 return ExprError(); 6728 } 6729 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's 6730 // an error. The error message normally references the parameter 6731 // declaration, but here we'll pass the argument location because that's 6732 // where the parameter type is deduced. 6733 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc()); 6734 if (ParamType.isNull()) { 6735 Diag(Param->getLocation(), diag::note_template_param_here); 6736 return ExprError(); 6737 } 6738 } 6739 6740 // We should have already dropped all cv-qualifiers by now. 6741 assert(!ParamType.hasQualifiers() && 6742 "non-type template parameter type cannot be qualified"); 6743 6744 if (CTAK == CTAK_Deduced && 6745 !Context.hasSameType(ParamType.getNonLValueExprType(Context), 6746 Arg->getType())) { 6747 // FIXME: If either type is dependent, we skip the check. This isn't 6748 // correct, since during deduction we're supposed to have replaced each 6749 // template parameter with some unique (non-dependent) placeholder. 6750 // FIXME: If the argument type contains 'auto', we carry on and fail the 6751 // type check in order to force specific types to be more specialized than 6752 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to 6753 // work. 6754 if ((ParamType->isDependentType() || Arg->isTypeDependent()) && 6755 !Arg->getType()->getContainedAutoType()) { 6756 Converted = TemplateArgument(Arg); 6757 return Arg; 6758 } 6759 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, 6760 // we should actually be checking the type of the template argument in P, 6761 // not the type of the template argument deduced from A, against the 6762 // template parameter type. 6763 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 6764 << Arg->getType() 6765 << ParamType.getUnqualifiedType(); 6766 Diag(Param->getLocation(), diag::note_template_param_here); 6767 return ExprError(); 6768 } 6769 6770 // If either the parameter has a dependent type or the argument is 6771 // type-dependent, there's nothing we can check now. The argument only 6772 // contains an unexpanded pack during partial ordering, and there's 6773 // nothing more we can check in that case. 6774 if (ParamType->isDependentType() || Arg->isTypeDependent() || 6775 Arg->containsUnexpandedParameterPack()) { 6776 // Force the argument to the type of the parameter to maintain invariants. 6777 auto *PE = dyn_cast<PackExpansionExpr>(Arg); 6778 if (PE) 6779 Arg = PE->getPattern(); 6780 ExprResult E = ImpCastExprToType( 6781 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent, 6782 ParamType->isLValueReferenceType() ? VK_LValue : 6783 ParamType->isRValueReferenceType() ? VK_XValue : VK_RValue); 6784 if (E.isInvalid()) 6785 return ExprError(); 6786 if (PE) { 6787 // Recreate a pack expansion if we unwrapped one. 6788 E = new (Context) 6789 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(), 6790 PE->getNumExpansions()); 6791 } 6792 Converted = TemplateArgument(E.get()); 6793 return E; 6794 } 6795 6796 // The initialization of the parameter from the argument is 6797 // a constant-evaluated context. 6798 EnterExpressionEvaluationContext ConstantEvaluated( 6799 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 6800 6801 if (getLangOpts().CPlusPlus17) { 6802 // C++17 [temp.arg.nontype]p1: 6803 // A template-argument for a non-type template parameter shall be 6804 // a converted constant expression of the type of the template-parameter. 6805 APValue Value; 6806 ExprResult ArgResult = CheckConvertedConstantExpression( 6807 Arg, ParamType, Value, CCEK_TemplateArg); 6808 if (ArgResult.isInvalid()) 6809 return ExprError(); 6810 6811 // For a value-dependent argument, CheckConvertedConstantExpression is 6812 // permitted (and expected) to be unable to determine a value. 6813 if (ArgResult.get()->isValueDependent()) { 6814 Converted = TemplateArgument(ArgResult.get()); 6815 return ArgResult; 6816 } 6817 6818 QualType CanonParamType = Context.getCanonicalType(ParamType); 6819 6820 // Convert the APValue to a TemplateArgument. 6821 switch (Value.getKind()) { 6822 case APValue::None: 6823 assert(ParamType->isNullPtrType()); 6824 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true); 6825 break; 6826 case APValue::Indeterminate: 6827 llvm_unreachable("result of constant evaluation should be initialized"); 6828 break; 6829 case APValue::Int: 6830 assert(ParamType->isIntegralOrEnumerationType()); 6831 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType); 6832 break; 6833 case APValue::MemberPointer: { 6834 assert(ParamType->isMemberPointerType()); 6835 6836 // FIXME: We need TemplateArgument representation and mangling for these. 6837 if (!Value.getMemberPointerPath().empty()) { 6838 Diag(Arg->getBeginLoc(), 6839 diag::err_template_arg_member_ptr_base_derived_not_supported) 6840 << Value.getMemberPointerDecl() << ParamType 6841 << Arg->getSourceRange(); 6842 return ExprError(); 6843 } 6844 6845 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl()); 6846 Converted = VD ? TemplateArgument(VD, CanonParamType) 6847 : TemplateArgument(CanonParamType, /*isNullPtr*/true); 6848 break; 6849 } 6850 case APValue::LValue: { 6851 // For a non-type template-parameter of pointer or reference type, 6852 // the value of the constant expression shall not refer to 6853 assert(ParamType->isPointerType() || ParamType->isReferenceType() || 6854 ParamType->isNullPtrType()); 6855 // -- a temporary object 6856 // -- a string literal 6857 // -- the result of a typeid expression, or 6858 // -- a predefined __func__ variable 6859 APValue::LValueBase Base = Value.getLValueBase(); 6860 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>()); 6861 if (Base && (!VD || isa<LifetimeExtendedTemporaryDecl>(VD))) { 6862 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6863 << Arg->getSourceRange(); 6864 return ExprError(); 6865 } 6866 // -- a subobject 6867 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && 6868 VD && VD->getType()->isArrayType() && 6869 Value.getLValuePath()[0].getAsArrayIndex() == 0 && 6870 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { 6871 // Per defect report (no number yet): 6872 // ... other than a pointer to the first element of a complete array 6873 // object. 6874 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() || 6875 Value.isLValueOnePastTheEnd()) { 6876 Diag(StartLoc, diag::err_non_type_template_arg_subobject) 6877 << Value.getAsString(Context, ParamType); 6878 return ExprError(); 6879 } 6880 assert((VD || !ParamType->isReferenceType()) && 6881 "null reference should not be a constant expression"); 6882 assert((!VD || !ParamType->isNullPtrType()) && 6883 "non-null value of type nullptr_t?"); 6884 Converted = VD ? TemplateArgument(VD, CanonParamType) 6885 : TemplateArgument(CanonParamType, /*isNullPtr*/true); 6886 break; 6887 } 6888 case APValue::AddrLabelDiff: 6889 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); 6890 case APValue::FixedPoint: 6891 case APValue::Float: 6892 case APValue::ComplexInt: 6893 case APValue::ComplexFloat: 6894 case APValue::Vector: 6895 case APValue::Array: 6896 case APValue::Struct: 6897 case APValue::Union: 6898 llvm_unreachable("invalid kind for template argument"); 6899 } 6900 6901 return ArgResult.get(); 6902 } 6903 6904 // C++ [temp.arg.nontype]p5: 6905 // The following conversions are performed on each expression used 6906 // as a non-type template-argument. If a non-type 6907 // template-argument cannot be converted to the type of the 6908 // corresponding template-parameter then the program is 6909 // ill-formed. 6910 if (ParamType->isIntegralOrEnumerationType()) { 6911 // C++11: 6912 // -- for a non-type template-parameter of integral or 6913 // enumeration type, conversions permitted in a converted 6914 // constant expression are applied. 6915 // 6916 // C++98: 6917 // -- for a non-type template-parameter of integral or 6918 // enumeration type, integral promotions (4.5) and integral 6919 // conversions (4.7) are applied. 6920 6921 if (getLangOpts().CPlusPlus11) { 6922 // C++ [temp.arg.nontype]p1: 6923 // A template-argument for a non-type, non-template template-parameter 6924 // shall be one of: 6925 // 6926 // -- for a non-type template-parameter of integral or enumeration 6927 // type, a converted constant expression of the type of the 6928 // template-parameter; or 6929 llvm::APSInt Value; 6930 ExprResult ArgResult = 6931 CheckConvertedConstantExpression(Arg, ParamType, Value, 6932 CCEK_TemplateArg); 6933 if (ArgResult.isInvalid()) 6934 return ExprError(); 6935 6936 // We can't check arbitrary value-dependent arguments. 6937 if (ArgResult.get()->isValueDependent()) { 6938 Converted = TemplateArgument(ArgResult.get()); 6939 return ArgResult; 6940 } 6941 6942 // Widen the argument value to sizeof(parameter type). This is almost 6943 // always a no-op, except when the parameter type is bool. In 6944 // that case, this may extend the argument from 1 bit to 8 bits. 6945 QualType IntegerType = ParamType; 6946 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 6947 IntegerType = Enum->getDecl()->getIntegerType(); 6948 Value = Value.extOrTrunc(IntegerType->isExtIntType() 6949 ? Context.getIntWidth(IntegerType) 6950 : Context.getTypeSize(IntegerType)); 6951 6952 Converted = TemplateArgument(Context, Value, 6953 Context.getCanonicalType(ParamType)); 6954 return ArgResult; 6955 } 6956 6957 ExprResult ArgResult = DefaultLvalueConversion(Arg); 6958 if (ArgResult.isInvalid()) 6959 return ExprError(); 6960 Arg = ArgResult.get(); 6961 6962 QualType ArgType = Arg->getType(); 6963 6964 // C++ [temp.arg.nontype]p1: 6965 // A template-argument for a non-type, non-template 6966 // template-parameter shall be one of: 6967 // 6968 // -- an integral constant-expression of integral or enumeration 6969 // type; or 6970 // -- the name of a non-type template-parameter; or 6971 llvm::APSInt Value; 6972 if (!ArgType->isIntegralOrEnumerationType()) { 6973 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral) 6974 << ArgType << Arg->getSourceRange(); 6975 Diag(Param->getLocation(), diag::note_template_param_here); 6976 return ExprError(); 6977 } else if (!Arg->isValueDependent()) { 6978 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 6979 QualType T; 6980 6981 public: 6982 TmplArgICEDiagnoser(QualType T) : T(T) { } 6983 6984 void diagnoseNotICE(Sema &S, SourceLocation Loc, 6985 SourceRange SR) override { 6986 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR; 6987 } 6988 } Diagnoser(ArgType); 6989 6990 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser, 6991 false).get(); 6992 if (!Arg) 6993 return ExprError(); 6994 } 6995 6996 // From here on out, all we care about is the unqualified form 6997 // of the argument type. 6998 ArgType = ArgType.getUnqualifiedType(); 6999 7000 // Try to convert the argument to the parameter's type. 7001 if (Context.hasSameType(ParamType, ArgType)) { 7002 // Okay: no conversion necessary 7003 } else if (ParamType->isBooleanType()) { 7004 // This is an integral-to-boolean conversion. 7005 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get(); 7006 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 7007 !ParamType->isEnumeralType()) { 7008 // This is an integral promotion or conversion. 7009 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get(); 7010 } else { 7011 // We can't perform this conversion. 7012 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 7013 << Arg->getType() << ParamType << Arg->getSourceRange(); 7014 Diag(Param->getLocation(), diag::note_template_param_here); 7015 return ExprError(); 7016 } 7017 7018 // Add the value of this argument to the list of converted 7019 // arguments. We use the bitwidth and signedness of the template 7020 // parameter. 7021 if (Arg->isValueDependent()) { 7022 // The argument is value-dependent. Create a new 7023 // TemplateArgument with the converted expression. 7024 Converted = TemplateArgument(Arg); 7025 return Arg; 7026 } 7027 7028 QualType IntegerType = Context.getCanonicalType(ParamType); 7029 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 7030 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 7031 7032 if (ParamType->isBooleanType()) { 7033 // Value must be zero or one. 7034 Value = Value != 0; 7035 unsigned AllowedBits = Context.getTypeSize(IntegerType); 7036 if (Value.getBitWidth() != AllowedBits) 7037 Value = Value.extOrTrunc(AllowedBits); 7038 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7039 } else { 7040 llvm::APSInt OldValue = Value; 7041 7042 // Coerce the template argument's value to the value it will have 7043 // based on the template parameter's type. 7044 unsigned AllowedBits = IntegerType->isExtIntType() 7045 ? Context.getIntWidth(IntegerType) 7046 : Context.getTypeSize(IntegerType); 7047 if (Value.getBitWidth() != AllowedBits) 7048 Value = Value.extOrTrunc(AllowedBits); 7049 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7050 7051 // Complain if an unsigned parameter received a negative value. 7052 if (IntegerType->isUnsignedIntegerOrEnumerationType() 7053 && (OldValue.isSigned() && OldValue.isNegative())) { 7054 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative) 7055 << OldValue.toString(10) << Value.toString(10) << Param->getType() 7056 << Arg->getSourceRange(); 7057 Diag(Param->getLocation(), diag::note_template_param_here); 7058 } 7059 7060 // Complain if we overflowed the template parameter's type. 7061 unsigned RequiredBits; 7062 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 7063 RequiredBits = OldValue.getActiveBits(); 7064 else if (OldValue.isUnsigned()) 7065 RequiredBits = OldValue.getActiveBits() + 1; 7066 else 7067 RequiredBits = OldValue.getMinSignedBits(); 7068 if (RequiredBits > AllowedBits) { 7069 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large) 7070 << OldValue.toString(10) << Value.toString(10) << Param->getType() 7071 << Arg->getSourceRange(); 7072 Diag(Param->getLocation(), diag::note_template_param_here); 7073 } 7074 } 7075 7076 Converted = TemplateArgument(Context, Value, 7077 ParamType->isEnumeralType() 7078 ? Context.getCanonicalType(ParamType) 7079 : IntegerType); 7080 return Arg; 7081 } 7082 7083 QualType ArgType = Arg->getType(); 7084 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 7085 7086 // Handle pointer-to-function, reference-to-function, and 7087 // pointer-to-member-function all in (roughly) the same way. 7088 if (// -- For a non-type template-parameter of type pointer to 7089 // function, only the function-to-pointer conversion (4.3) is 7090 // applied. If the template-argument represents a set of 7091 // overloaded functions (or a pointer to such), the matching 7092 // function is selected from the set (13.4). 7093 (ParamType->isPointerType() && 7094 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) || 7095 // -- For a non-type template-parameter of type reference to 7096 // function, no conversions apply. If the template-argument 7097 // represents a set of overloaded functions, the matching 7098 // function is selected from the set (13.4). 7099 (ParamType->isReferenceType() && 7100 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 7101 // -- For a non-type template-parameter of type pointer to 7102 // member function, no conversions apply. If the 7103 // template-argument represents a set of overloaded member 7104 // functions, the matching member function is selected from 7105 // the set (13.4). 7106 (ParamType->isMemberPointerType() && 7107 ParamType->castAs<MemberPointerType>()->getPointeeType() 7108 ->isFunctionType())) { 7109 7110 if (Arg->getType() == Context.OverloadTy) { 7111 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 7112 true, 7113 FoundResult)) { 7114 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7115 return ExprError(); 7116 7117 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7118 ArgType = Arg->getType(); 7119 } else 7120 return ExprError(); 7121 } 7122 7123 if (!ParamType->isMemberPointerType()) { 7124 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 7125 ParamType, 7126 Arg, Converted)) 7127 return ExprError(); 7128 return Arg; 7129 } 7130 7131 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 7132 Converted)) 7133 return ExprError(); 7134 return Arg; 7135 } 7136 7137 if (ParamType->isPointerType()) { 7138 // -- for a non-type template-parameter of type pointer to 7139 // object, qualification conversions (4.4) and the 7140 // array-to-pointer conversion (4.2) are applied. 7141 // C++0x also allows a value of std::nullptr_t. 7142 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 7143 "Only object pointers allowed here"); 7144 7145 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 7146 ParamType, 7147 Arg, Converted)) 7148 return ExprError(); 7149 return Arg; 7150 } 7151 7152 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 7153 // -- For a non-type template-parameter of type reference to 7154 // object, no conversions apply. The type referred to by the 7155 // reference may be more cv-qualified than the (otherwise 7156 // identical) type of the template-argument. The 7157 // template-parameter is bound directly to the 7158 // template-argument, which must be an lvalue. 7159 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 7160 "Only object references allowed here"); 7161 7162 if (Arg->getType() == Context.OverloadTy) { 7163 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 7164 ParamRefType->getPointeeType(), 7165 true, 7166 FoundResult)) { 7167 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7168 return ExprError(); 7169 7170 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7171 ArgType = Arg->getType(); 7172 } else 7173 return ExprError(); 7174 } 7175 7176 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 7177 ParamType, 7178 Arg, Converted)) 7179 return ExprError(); 7180 return Arg; 7181 } 7182 7183 // Deal with parameters of type std::nullptr_t. 7184 if (ParamType->isNullPtrType()) { 7185 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 7186 Converted = TemplateArgument(Arg); 7187 return Arg; 7188 } 7189 7190 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 7191 case NPV_NotNullPointer: 7192 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 7193 << Arg->getType() << ParamType; 7194 Diag(Param->getLocation(), diag::note_template_param_here); 7195 return ExprError(); 7196 7197 case NPV_Error: 7198 return ExprError(); 7199 7200 case NPV_NullPointer: 7201 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 7202 Converted = TemplateArgument(Context.getCanonicalType(ParamType), 7203 /*isNullPtr*/true); 7204 return Arg; 7205 } 7206 } 7207 7208 // -- For a non-type template-parameter of type pointer to data 7209 // member, qualification conversions (4.4) are applied. 7210 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 7211 7212 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 7213 Converted)) 7214 return ExprError(); 7215 return Arg; 7216 } 7217 7218 static void DiagnoseTemplateParameterListArityMismatch( 7219 Sema &S, TemplateParameterList *New, TemplateParameterList *Old, 7220 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); 7221 7222 /// Check a template argument against its corresponding 7223 /// template template parameter. 7224 /// 7225 /// This routine implements the semantics of C++ [temp.arg.template]. 7226 /// It returns true if an error occurred, and false otherwise. 7227 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param, 7228 TemplateParameterList *Params, 7229 TemplateArgumentLoc &Arg) { 7230 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 7231 TemplateDecl *Template = Name.getAsTemplateDecl(); 7232 if (!Template) { 7233 // Any dependent template name is fine. 7234 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 7235 return false; 7236 } 7237 7238 if (Template->isInvalidDecl()) 7239 return true; 7240 7241 // C++0x [temp.arg.template]p1: 7242 // A template-argument for a template template-parameter shall be 7243 // the name of a class template or an alias template, expressed as an 7244 // id-expression. When the template-argument names a class template, only 7245 // primary class templates are considered when matching the 7246 // template template argument with the corresponding parameter; 7247 // partial specializations are not considered even if their 7248 // parameter lists match that of the template template parameter. 7249 // 7250 // Note that we also allow template template parameters here, which 7251 // will happen when we are dealing with, e.g., class template 7252 // partial specializations. 7253 if (!isa<ClassTemplateDecl>(Template) && 7254 !isa<TemplateTemplateParmDecl>(Template) && 7255 !isa<TypeAliasTemplateDecl>(Template) && 7256 !isa<BuiltinTemplateDecl>(Template)) { 7257 assert(isa<FunctionTemplateDecl>(Template) && 7258 "Only function templates are possible here"); 7259 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template); 7260 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 7261 << Template; 7262 } 7263 7264 // C++1z [temp.arg.template]p3: (DR 150) 7265 // A template-argument matches a template template-parameter P when P 7266 // is at least as specialized as the template-argument A. 7267 // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a 7268 // defect report resolution from C++17 and shouldn't be introduced by 7269 // concepts. 7270 if (getLangOpts().RelaxedTemplateTemplateArgs) { 7271 // Quick check for the common case: 7272 // If P contains a parameter pack, then A [...] matches P if each of A's 7273 // template parameters matches the corresponding template parameter in 7274 // the template-parameter-list of P. 7275 if (TemplateParameterListsAreEqual( 7276 Template->getTemplateParameters(), Params, false, 7277 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) && 7278 // If the argument has no associated constraints, then the parameter is 7279 // definitely at least as specialized as the argument. 7280 // Otherwise - we need a more thorough check. 7281 !Template->hasAssociatedConstraints()) 7282 return false; 7283 7284 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template, 7285 Arg.getLocation())) { 7286 // C++2a[temp.func.order]p2 7287 // [...] If both deductions succeed, the partial ordering selects the 7288 // more constrained template as described by the rules in 7289 // [temp.constr.order]. 7290 SmallVector<const Expr *, 3> ParamsAC, TemplateAC; 7291 Params->getAssociatedConstraints(ParamsAC); 7292 // C++2a[temp.arg.template]p3 7293 // [...] In this comparison, if P is unconstrained, the constraints on A 7294 // are not considered. 7295 if (ParamsAC.empty()) 7296 return false; 7297 Template->getAssociatedConstraints(TemplateAC); 7298 bool IsParamAtLeastAsConstrained; 7299 if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC, 7300 IsParamAtLeastAsConstrained)) 7301 return true; 7302 if (!IsParamAtLeastAsConstrained) { 7303 Diag(Arg.getLocation(), 7304 diag::err_template_template_parameter_not_at_least_as_constrained) 7305 << Template << Param << Arg.getSourceRange(); 7306 Diag(Param->getLocation(), diag::note_entity_declared_at) << Param; 7307 Diag(Template->getLocation(), diag::note_entity_declared_at) 7308 << Template; 7309 MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template, 7310 TemplateAC); 7311 return true; 7312 } 7313 return false; 7314 } 7315 // FIXME: Produce better diagnostics for deduction failures. 7316 } 7317 7318 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 7319 Params, 7320 true, 7321 TPL_TemplateTemplateArgumentMatch, 7322 Arg.getLocation()); 7323 } 7324 7325 /// Given a non-type template argument that refers to a 7326 /// declaration and the type of its corresponding non-type template 7327 /// parameter, produce an expression that properly refers to that 7328 /// declaration. 7329 ExprResult 7330 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 7331 QualType ParamType, 7332 SourceLocation Loc) { 7333 // C++ [temp.param]p8: 7334 // 7335 // A non-type template-parameter of type "array of T" or 7336 // "function returning T" is adjusted to be of type "pointer to 7337 // T" or "pointer to function returning T", respectively. 7338 if (ParamType->isArrayType()) 7339 ParamType = Context.getArrayDecayedType(ParamType); 7340 else if (ParamType->isFunctionType()) 7341 ParamType = Context.getPointerType(ParamType); 7342 7343 // For a NULL non-type template argument, return nullptr casted to the 7344 // parameter's type. 7345 if (Arg.getKind() == TemplateArgument::NullPtr) { 7346 return ImpCastExprToType( 7347 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 7348 ParamType, 7349 ParamType->getAs<MemberPointerType>() 7350 ? CK_NullToMemberPointer 7351 : CK_NullToPointer); 7352 } 7353 assert(Arg.getKind() == TemplateArgument::Declaration && 7354 "Only declaration template arguments permitted here"); 7355 7356 ValueDecl *VD = Arg.getAsDecl(); 7357 7358 CXXScopeSpec SS; 7359 if (ParamType->isMemberPointerType()) { 7360 // If this is a pointer to member, we need to use a qualified name to 7361 // form a suitable pointer-to-member constant. 7362 assert(VD->getDeclContext()->isRecord() && 7363 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || 7364 isa<IndirectFieldDecl>(VD))); 7365 QualType ClassType 7366 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 7367 NestedNameSpecifier *Qualifier 7368 = NestedNameSpecifier::Create(Context, nullptr, false, 7369 ClassType.getTypePtr()); 7370 SS.MakeTrivial(Context, Qualifier, Loc); 7371 } 7372 7373 ExprResult RefExpr = BuildDeclarationNameExpr( 7374 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD); 7375 if (RefExpr.isInvalid()) 7376 return ExprError(); 7377 7378 // For a pointer, the argument declaration is the pointee. Take its address. 7379 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0); 7380 if (ParamType->isPointerType() && !ElemT.isNull() && 7381 Context.hasSimilarType(ElemT, ParamType->getPointeeType())) { 7382 // Decay an array argument if we want a pointer to its first element. 7383 RefExpr = DefaultFunctionArrayConversion(RefExpr.get()); 7384 if (RefExpr.isInvalid()) 7385 return ExprError(); 7386 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 7387 // For any other pointer, take the address (or form a pointer-to-member). 7388 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 7389 if (RefExpr.isInvalid()) 7390 return ExprError(); 7391 } else { 7392 assert(ParamType->isReferenceType() && 7393 "unexpected type for decl template argument"); 7394 } 7395 7396 // At this point we should have the right value category. 7397 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() && 7398 "value kind mismatch for non-type template argument"); 7399 7400 // The type of the template parameter can differ from the type of the 7401 // argument in various ways; convert it now if necessary. 7402 QualType DestExprType = ParamType.getNonLValueExprType(Context); 7403 if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) { 7404 CastKind CK; 7405 QualType Ignored; 7406 if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) || 7407 IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) { 7408 CK = CK_NoOp; 7409 } else if (ParamType->isVoidPointerType() && 7410 RefExpr.get()->getType()->isPointerType()) { 7411 CK = CK_BitCast; 7412 } else { 7413 // FIXME: Pointers to members can need conversion derived-to-base or 7414 // base-to-derived conversions. We currently don't retain enough 7415 // information to convert properly (we need to track a cast path or 7416 // subobject number in the template argument). 7417 llvm_unreachable( 7418 "unexpected conversion required for non-type template argument"); 7419 } 7420 RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK, 7421 RefExpr.get()->getValueKind()); 7422 } 7423 7424 return RefExpr; 7425 } 7426 7427 /// Construct a new expression that refers to the given 7428 /// integral template argument with the given source-location 7429 /// information. 7430 /// 7431 /// This routine takes care of the mapping from an integral template 7432 /// argument (which may have any integral type) to the appropriate 7433 /// literal value. 7434 ExprResult 7435 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 7436 SourceLocation Loc) { 7437 assert(Arg.getKind() == TemplateArgument::Integral && 7438 "Operation is only valid for integral template arguments"); 7439 QualType OrigT = Arg.getIntegralType(); 7440 7441 // If this is an enum type that we're instantiating, we need to use an integer 7442 // type the same size as the enumerator. We don't want to build an 7443 // IntegerLiteral with enum type. The integer type of an enum type can be of 7444 // any integral type with C++11 enum classes, make sure we create the right 7445 // type of literal for it. 7446 QualType T = OrigT; 7447 if (const EnumType *ET = OrigT->getAs<EnumType>()) 7448 T = ET->getDecl()->getIntegerType(); 7449 7450 Expr *E; 7451 if (T->isAnyCharacterType()) { 7452 CharacterLiteral::CharacterKind Kind; 7453 if (T->isWideCharType()) 7454 Kind = CharacterLiteral::Wide; 7455 else if (T->isChar8Type() && getLangOpts().Char8) 7456 Kind = CharacterLiteral::UTF8; 7457 else if (T->isChar16Type()) 7458 Kind = CharacterLiteral::UTF16; 7459 else if (T->isChar32Type()) 7460 Kind = CharacterLiteral::UTF32; 7461 else 7462 Kind = CharacterLiteral::Ascii; 7463 7464 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), 7465 Kind, T, Loc); 7466 } else if (T->isBooleanType()) { 7467 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), 7468 T, Loc); 7469 } else if (T->isNullPtrType()) { 7470 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 7471 } else { 7472 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); 7473 } 7474 7475 if (OrigT->isEnumeralType()) { 7476 // FIXME: This is a hack. We need a better way to handle substituted 7477 // non-type template parameters. 7478 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 7479 nullptr, 7480 Context.getTrivialTypeSourceInfo(OrigT, Loc), 7481 Loc, Loc); 7482 } 7483 7484 return E; 7485 } 7486 7487 /// Match two template parameters within template parameter lists. 7488 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 7489 bool Complain, 7490 Sema::TemplateParameterListEqualKind Kind, 7491 SourceLocation TemplateArgLoc) { 7492 // Check the actual kind (type, non-type, template). 7493 if (Old->getKind() != New->getKind()) { 7494 if (Complain) { 7495 unsigned NextDiag = diag::err_template_param_different_kind; 7496 if (TemplateArgLoc.isValid()) { 7497 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7498 NextDiag = diag::note_template_param_different_kind; 7499 } 7500 S.Diag(New->getLocation(), NextDiag) 7501 << (Kind != Sema::TPL_TemplateMatch); 7502 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 7503 << (Kind != Sema::TPL_TemplateMatch); 7504 } 7505 7506 return false; 7507 } 7508 7509 // Check that both are parameter packs or neither are parameter packs. 7510 // However, if we are matching a template template argument to a 7511 // template template parameter, the template template parameter can have 7512 // a parameter pack where the template template argument does not. 7513 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 7514 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 7515 Old->isTemplateParameterPack())) { 7516 if (Complain) { 7517 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 7518 if (TemplateArgLoc.isValid()) { 7519 S.Diag(TemplateArgLoc, 7520 diag::err_template_arg_template_params_mismatch); 7521 NextDiag = diag::note_template_parameter_pack_non_pack; 7522 } 7523 7524 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 7525 : isa<NonTypeTemplateParmDecl>(New)? 1 7526 : 2; 7527 S.Diag(New->getLocation(), NextDiag) 7528 << ParamKind << New->isParameterPack(); 7529 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 7530 << ParamKind << Old->isParameterPack(); 7531 } 7532 7533 return false; 7534 } 7535 7536 // For non-type template parameters, check the type of the parameter. 7537 if (NonTypeTemplateParmDecl *OldNTTP 7538 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 7539 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 7540 7541 // If we are matching a template template argument to a template 7542 // template parameter and one of the non-type template parameter types 7543 // is dependent, then we must wait until template instantiation time 7544 // to actually compare the arguments. 7545 if (Kind != Sema::TPL_TemplateTemplateArgumentMatch || 7546 (!OldNTTP->getType()->isDependentType() && 7547 !NewNTTP->getType()->isDependentType())) 7548 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 7549 if (Complain) { 7550 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 7551 if (TemplateArgLoc.isValid()) { 7552 S.Diag(TemplateArgLoc, 7553 diag::err_template_arg_template_params_mismatch); 7554 NextDiag = diag::note_template_nontype_parm_different_type; 7555 } 7556 S.Diag(NewNTTP->getLocation(), NextDiag) 7557 << NewNTTP->getType() 7558 << (Kind != Sema::TPL_TemplateMatch); 7559 S.Diag(OldNTTP->getLocation(), 7560 diag::note_template_nontype_parm_prev_declaration) 7561 << OldNTTP->getType(); 7562 } 7563 7564 return false; 7565 } 7566 } 7567 // For template template parameters, check the template parameter types. 7568 // The template parameter lists of template template 7569 // parameters must agree. 7570 else if (TemplateTemplateParmDecl *OldTTP 7571 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 7572 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 7573 if (!S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 7574 OldTTP->getTemplateParameters(), 7575 Complain, 7576 (Kind == Sema::TPL_TemplateMatch 7577 ? Sema::TPL_TemplateTemplateParmMatch 7578 : Kind), 7579 TemplateArgLoc)) 7580 return false; 7581 } else if (Kind != Sema::TPL_TemplateTemplateArgumentMatch) { 7582 const Expr *NewC = nullptr, *OldC = nullptr; 7583 if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint()) 7584 NewC = TC->getImmediatelyDeclaredConstraint(); 7585 if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint()) 7586 OldC = TC->getImmediatelyDeclaredConstraint(); 7587 7588 auto Diagnose = [&] { 7589 S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(), 7590 diag::err_template_different_type_constraint); 7591 S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(), 7592 diag::note_template_prev_declaration) << /*declaration*/0; 7593 }; 7594 7595 if (!NewC != !OldC) { 7596 if (Complain) 7597 Diagnose(); 7598 return false; 7599 } 7600 7601 if (NewC) { 7602 llvm::FoldingSetNodeID OldCID, NewCID; 7603 OldC->Profile(OldCID, S.Context, /*Canonical=*/true); 7604 NewC->Profile(NewCID, S.Context, /*Canonical=*/true); 7605 if (OldCID != NewCID) { 7606 if (Complain) 7607 Diagnose(); 7608 return false; 7609 } 7610 } 7611 } 7612 7613 return true; 7614 } 7615 7616 /// Diagnose a known arity mismatch when comparing template argument 7617 /// lists. 7618 static 7619 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 7620 TemplateParameterList *New, 7621 TemplateParameterList *Old, 7622 Sema::TemplateParameterListEqualKind Kind, 7623 SourceLocation TemplateArgLoc) { 7624 unsigned NextDiag = diag::err_template_param_list_different_arity; 7625 if (TemplateArgLoc.isValid()) { 7626 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7627 NextDiag = diag::note_template_param_list_different_arity; 7628 } 7629 S.Diag(New->getTemplateLoc(), NextDiag) 7630 << (New->size() > Old->size()) 7631 << (Kind != Sema::TPL_TemplateMatch) 7632 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 7633 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 7634 << (Kind != Sema::TPL_TemplateMatch) 7635 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 7636 } 7637 7638 /// Determine whether the given template parameter lists are 7639 /// equivalent. 7640 /// 7641 /// \param New The new template parameter list, typically written in the 7642 /// source code as part of a new template declaration. 7643 /// 7644 /// \param Old The old template parameter list, typically found via 7645 /// name lookup of the template declared with this template parameter 7646 /// list. 7647 /// 7648 /// \param Complain If true, this routine will produce a diagnostic if 7649 /// the template parameter lists are not equivalent. 7650 /// 7651 /// \param Kind describes how we are to match the template parameter lists. 7652 /// 7653 /// \param TemplateArgLoc If this source location is valid, then we 7654 /// are actually checking the template parameter list of a template 7655 /// argument (New) against the template parameter list of its 7656 /// corresponding template template parameter (Old). We produce 7657 /// slightly different diagnostics in this scenario. 7658 /// 7659 /// \returns True if the template parameter lists are equal, false 7660 /// otherwise. 7661 bool 7662 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 7663 TemplateParameterList *Old, 7664 bool Complain, 7665 TemplateParameterListEqualKind Kind, 7666 SourceLocation TemplateArgLoc) { 7667 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 7668 if (Complain) 7669 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7670 TemplateArgLoc); 7671 7672 return false; 7673 } 7674 7675 // C++0x [temp.arg.template]p3: 7676 // A template-argument matches a template template-parameter (call it P) 7677 // when each of the template parameters in the template-parameter-list of 7678 // the template-argument's corresponding class template or alias template 7679 // (call it A) matches the corresponding template parameter in the 7680 // template-parameter-list of P. [...] 7681 TemplateParameterList::iterator NewParm = New->begin(); 7682 TemplateParameterList::iterator NewParmEnd = New->end(); 7683 for (TemplateParameterList::iterator OldParm = Old->begin(), 7684 OldParmEnd = Old->end(); 7685 OldParm != OldParmEnd; ++OldParm) { 7686 if (Kind != TPL_TemplateTemplateArgumentMatch || 7687 !(*OldParm)->isTemplateParameterPack()) { 7688 if (NewParm == NewParmEnd) { 7689 if (Complain) 7690 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7691 TemplateArgLoc); 7692 7693 return false; 7694 } 7695 7696 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 7697 Kind, TemplateArgLoc)) 7698 return false; 7699 7700 ++NewParm; 7701 continue; 7702 } 7703 7704 // C++0x [temp.arg.template]p3: 7705 // [...] When P's template- parameter-list contains a template parameter 7706 // pack (14.5.3), the template parameter pack will match zero or more 7707 // template parameters or template parameter packs in the 7708 // template-parameter-list of A with the same type and form as the 7709 // template parameter pack in P (ignoring whether those template 7710 // parameters are template parameter packs). 7711 for (; NewParm != NewParmEnd; ++NewParm) { 7712 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 7713 Kind, TemplateArgLoc)) 7714 return false; 7715 } 7716 } 7717 7718 // Make sure we exhausted all of the arguments. 7719 if (NewParm != NewParmEnd) { 7720 if (Complain) 7721 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7722 TemplateArgLoc); 7723 7724 return false; 7725 } 7726 7727 if (Kind != TPL_TemplateTemplateArgumentMatch) { 7728 const Expr *NewRC = New->getRequiresClause(); 7729 const Expr *OldRC = Old->getRequiresClause(); 7730 7731 auto Diagnose = [&] { 7732 Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(), 7733 diag::err_template_different_requires_clause); 7734 Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(), 7735 diag::note_template_prev_declaration) << /*declaration*/0; 7736 }; 7737 7738 if (!NewRC != !OldRC) { 7739 if (Complain) 7740 Diagnose(); 7741 return false; 7742 } 7743 7744 if (NewRC) { 7745 llvm::FoldingSetNodeID OldRCID, NewRCID; 7746 OldRC->Profile(OldRCID, Context, /*Canonical=*/true); 7747 NewRC->Profile(NewRCID, Context, /*Canonical=*/true); 7748 if (OldRCID != NewRCID) { 7749 if (Complain) 7750 Diagnose(); 7751 return false; 7752 } 7753 } 7754 } 7755 7756 return true; 7757 } 7758 7759 /// Check whether a template can be declared within this scope. 7760 /// 7761 /// If the template declaration is valid in this scope, returns 7762 /// false. Otherwise, issues a diagnostic and returns true. 7763 bool 7764 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 7765 if (!S) 7766 return false; 7767 7768 // Find the nearest enclosing declaration scope. 7769 while ((S->getFlags() & Scope::DeclScope) == 0 || 7770 (S->getFlags() & Scope::TemplateParamScope) != 0) 7771 S = S->getParent(); 7772 7773 // C++ [temp]p4: 7774 // A template [...] shall not have C linkage. 7775 DeclContext *Ctx = S->getEntity(); 7776 assert(Ctx && "Unknown context"); 7777 if (Ctx->isExternCContext()) { 7778 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 7779 << TemplateParams->getSourceRange(); 7780 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) 7781 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 7782 return true; 7783 } 7784 Ctx = Ctx->getRedeclContext(); 7785 7786 // C++ [temp]p2: 7787 // A template-declaration can appear only as a namespace scope or 7788 // class scope declaration. 7789 if (Ctx) { 7790 if (Ctx->isFileContext()) 7791 return false; 7792 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) { 7793 // C++ [temp.mem]p2: 7794 // A local class shall not have member templates. 7795 if (RD->isLocalClass()) 7796 return Diag(TemplateParams->getTemplateLoc(), 7797 diag::err_template_inside_local_class) 7798 << TemplateParams->getSourceRange(); 7799 else 7800 return false; 7801 } 7802 } 7803 7804 return Diag(TemplateParams->getTemplateLoc(), 7805 diag::err_template_outside_namespace_or_class_scope) 7806 << TemplateParams->getSourceRange(); 7807 } 7808 7809 /// Determine what kind of template specialization the given declaration 7810 /// is. 7811 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 7812 if (!D) 7813 return TSK_Undeclared; 7814 7815 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 7816 return Record->getTemplateSpecializationKind(); 7817 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 7818 return Function->getTemplateSpecializationKind(); 7819 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 7820 return Var->getTemplateSpecializationKind(); 7821 7822 return TSK_Undeclared; 7823 } 7824 7825 /// Check whether a specialization is well-formed in the current 7826 /// context. 7827 /// 7828 /// This routine determines whether a template specialization can be declared 7829 /// in the current context (C++ [temp.expl.spec]p2). 7830 /// 7831 /// \param S the semantic analysis object for which this check is being 7832 /// performed. 7833 /// 7834 /// \param Specialized the entity being specialized or instantiated, which 7835 /// may be a kind of template (class template, function template, etc.) or 7836 /// a member of a class template (member function, static data member, 7837 /// member class). 7838 /// 7839 /// \param PrevDecl the previous declaration of this entity, if any. 7840 /// 7841 /// \param Loc the location of the explicit specialization or instantiation of 7842 /// this entity. 7843 /// 7844 /// \param IsPartialSpecialization whether this is a partial specialization of 7845 /// a class template. 7846 /// 7847 /// \returns true if there was an error that we cannot recover from, false 7848 /// otherwise. 7849 static bool CheckTemplateSpecializationScope(Sema &S, 7850 NamedDecl *Specialized, 7851 NamedDecl *PrevDecl, 7852 SourceLocation Loc, 7853 bool IsPartialSpecialization) { 7854 // Keep these "kind" numbers in sync with the %select statements in the 7855 // various diagnostics emitted by this routine. 7856 int EntityKind = 0; 7857 if (isa<ClassTemplateDecl>(Specialized)) 7858 EntityKind = IsPartialSpecialization? 1 : 0; 7859 else if (isa<VarTemplateDecl>(Specialized)) 7860 EntityKind = IsPartialSpecialization ? 3 : 2; 7861 else if (isa<FunctionTemplateDecl>(Specialized)) 7862 EntityKind = 4; 7863 else if (isa<CXXMethodDecl>(Specialized)) 7864 EntityKind = 5; 7865 else if (isa<VarDecl>(Specialized)) 7866 EntityKind = 6; 7867 else if (isa<RecordDecl>(Specialized)) 7868 EntityKind = 7; 7869 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 7870 EntityKind = 8; 7871 else { 7872 S.Diag(Loc, diag::err_template_spec_unknown_kind) 7873 << S.getLangOpts().CPlusPlus11; 7874 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 7875 return true; 7876 } 7877 7878 // C++ [temp.expl.spec]p2: 7879 // An explicit specialization may be declared in any scope in which 7880 // the corresponding primary template may be defined. 7881 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 7882 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 7883 << Specialized; 7884 return true; 7885 } 7886 7887 // C++ [temp.class.spec]p6: 7888 // A class template partial specialization may be declared in any 7889 // scope in which the primary template may be defined. 7890 DeclContext *SpecializedContext = 7891 Specialized->getDeclContext()->getRedeclContext(); 7892 DeclContext *DC = S.CurContext->getRedeclContext(); 7893 7894 // Make sure that this redeclaration (or definition) occurs in the same 7895 // scope or an enclosing namespace. 7896 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext) 7897 : DC->Equals(SpecializedContext))) { 7898 if (isa<TranslationUnitDecl>(SpecializedContext)) 7899 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 7900 << EntityKind << Specialized; 7901 else { 7902 auto *ND = cast<NamedDecl>(SpecializedContext); 7903 int Diag = diag::err_template_spec_redecl_out_of_scope; 7904 if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) 7905 Diag = diag::ext_ms_template_spec_redecl_out_of_scope; 7906 S.Diag(Loc, Diag) << EntityKind << Specialized 7907 << ND << isa<CXXRecordDecl>(ND); 7908 } 7909 7910 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 7911 7912 // Don't allow specializing in the wrong class during error recovery. 7913 // Otherwise, things can go horribly wrong. 7914 if (DC->isRecord()) 7915 return true; 7916 } 7917 7918 return false; 7919 } 7920 7921 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { 7922 if (!E->isTypeDependent()) 7923 return SourceLocation(); 7924 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 7925 Checker.TraverseStmt(E); 7926 if (Checker.MatchLoc.isInvalid()) 7927 return E->getSourceRange(); 7928 return Checker.MatchLoc; 7929 } 7930 7931 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { 7932 if (!TL.getType()->isDependentType()) 7933 return SourceLocation(); 7934 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 7935 Checker.TraverseTypeLoc(TL); 7936 if (Checker.MatchLoc.isInvalid()) 7937 return TL.getSourceRange(); 7938 return Checker.MatchLoc; 7939 } 7940 7941 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs 7942 /// that checks non-type template partial specialization arguments. 7943 static bool CheckNonTypeTemplatePartialSpecializationArgs( 7944 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, 7945 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { 7946 for (unsigned I = 0; I != NumArgs; ++I) { 7947 if (Args[I].getKind() == TemplateArgument::Pack) { 7948 if (CheckNonTypeTemplatePartialSpecializationArgs( 7949 S, TemplateNameLoc, Param, Args[I].pack_begin(), 7950 Args[I].pack_size(), IsDefaultArgument)) 7951 return true; 7952 7953 continue; 7954 } 7955 7956 if (Args[I].getKind() != TemplateArgument::Expression) 7957 continue; 7958 7959 Expr *ArgExpr = Args[I].getAsExpr(); 7960 7961 // We can have a pack expansion of any of the bullets below. 7962 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 7963 ArgExpr = Expansion->getPattern(); 7964 7965 // Strip off any implicit casts we added as part of type checking. 7966 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 7967 ArgExpr = ICE->getSubExpr(); 7968 7969 // C++ [temp.class.spec]p8: 7970 // A non-type argument is non-specialized if it is the name of a 7971 // non-type parameter. All other non-type arguments are 7972 // specialized. 7973 // 7974 // Below, we check the two conditions that only apply to 7975 // specialized non-type arguments, so skip any non-specialized 7976 // arguments. 7977 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 7978 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 7979 continue; 7980 7981 // C++ [temp.class.spec]p9: 7982 // Within the argument list of a class template partial 7983 // specialization, the following restrictions apply: 7984 // -- A partially specialized non-type argument expression 7985 // shall not involve a template parameter of the partial 7986 // specialization except when the argument expression is a 7987 // simple identifier. 7988 // -- The type of a template parameter corresponding to a 7989 // specialized non-type argument shall not be dependent on a 7990 // parameter of the specialization. 7991 // DR1315 removes the first bullet, leaving an incoherent set of rules. 7992 // We implement a compromise between the original rules and DR1315: 7993 // -- A specialized non-type template argument shall not be 7994 // type-dependent and the corresponding template parameter 7995 // shall have a non-dependent type. 7996 SourceRange ParamUseRange = 7997 findTemplateParameterInType(Param->getDepth(), ArgExpr); 7998 if (ParamUseRange.isValid()) { 7999 if (IsDefaultArgument) { 8000 S.Diag(TemplateNameLoc, 8001 diag::err_dependent_non_type_arg_in_partial_spec); 8002 S.Diag(ParamUseRange.getBegin(), 8003 diag::note_dependent_non_type_default_arg_in_partial_spec) 8004 << ParamUseRange; 8005 } else { 8006 S.Diag(ParamUseRange.getBegin(), 8007 diag::err_dependent_non_type_arg_in_partial_spec) 8008 << ParamUseRange; 8009 } 8010 return true; 8011 } 8012 8013 ParamUseRange = findTemplateParameter( 8014 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); 8015 if (ParamUseRange.isValid()) { 8016 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(), 8017 diag::err_dependent_typed_non_type_arg_in_partial_spec) 8018 << Param->getType(); 8019 S.Diag(Param->getLocation(), diag::note_template_param_here) 8020 << (IsDefaultArgument ? ParamUseRange : SourceRange()) 8021 << ParamUseRange; 8022 return true; 8023 } 8024 } 8025 8026 return false; 8027 } 8028 8029 /// Check the non-type template arguments of a class template 8030 /// partial specialization according to C++ [temp.class.spec]p9. 8031 /// 8032 /// \param TemplateNameLoc the location of the template name. 8033 /// \param PrimaryTemplate the template parameters of the primary class 8034 /// template. 8035 /// \param NumExplicit the number of explicitly-specified template arguments. 8036 /// \param TemplateArgs the template arguments of the class template 8037 /// partial specialization. 8038 /// 8039 /// \returns \c true if there was an error, \c false otherwise. 8040 bool Sema::CheckTemplatePartialSpecializationArgs( 8041 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, 8042 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { 8043 // We have to be conservative when checking a template in a dependent 8044 // context. 8045 if (PrimaryTemplate->getDeclContext()->isDependentContext()) 8046 return false; 8047 8048 TemplateParameterList *TemplateParams = 8049 PrimaryTemplate->getTemplateParameters(); 8050 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8051 NonTypeTemplateParmDecl *Param 8052 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 8053 if (!Param) 8054 continue; 8055 8056 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc, 8057 Param, &TemplateArgs[I], 8058 1, I >= NumExplicit)) 8059 return true; 8060 } 8061 8062 return false; 8063 } 8064 8065 DeclResult Sema::ActOnClassTemplateSpecialization( 8066 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 8067 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, 8068 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, 8069 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { 8070 assert(TUK != TUK_Reference && "References are not specializations"); 8071 8072 // NOTE: KWLoc is the location of the tag keyword. This will instead 8073 // store the location of the outermost template keyword in the declaration. 8074 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 8075 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc; 8076 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; 8077 SourceLocation LAngleLoc = TemplateId.LAngleLoc; 8078 SourceLocation RAngleLoc = TemplateId.RAngleLoc; 8079 8080 // Find the class template we're specializing 8081 TemplateName Name = TemplateId.Template.get(); 8082 ClassTemplateDecl *ClassTemplate 8083 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 8084 8085 if (!ClassTemplate) { 8086 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 8087 << (Name.getAsTemplateDecl() && 8088 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 8089 return true; 8090 } 8091 8092 bool isMemberSpecialization = false; 8093 bool isPartialSpecialization = false; 8094 8095 // Check the validity of the template headers that introduce this 8096 // template. 8097 // FIXME: We probably shouldn't complain about these headers for 8098 // friend declarations. 8099 bool Invalid = false; 8100 TemplateParameterList *TemplateParams = 8101 MatchTemplateParametersToScopeSpecifier( 8102 KWLoc, TemplateNameLoc, SS, &TemplateId, 8103 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization, 8104 Invalid); 8105 if (Invalid) 8106 return true; 8107 8108 if (TemplateParams && TemplateParams->size() > 0) { 8109 isPartialSpecialization = true; 8110 8111 if (TUK == TUK_Friend) { 8112 Diag(KWLoc, diag::err_partial_specialization_friend) 8113 << SourceRange(LAngleLoc, RAngleLoc); 8114 return true; 8115 } 8116 8117 // C++ [temp.class.spec]p10: 8118 // The template parameter list of a specialization shall not 8119 // contain default template argument values. 8120 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8121 Decl *Param = TemplateParams->getParam(I); 8122 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 8123 if (TTP->hasDefaultArgument()) { 8124 Diag(TTP->getDefaultArgumentLoc(), 8125 diag::err_default_arg_in_partial_spec); 8126 TTP->removeDefaultArgument(); 8127 } 8128 } else if (NonTypeTemplateParmDecl *NTTP 8129 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 8130 if (Expr *DefArg = NTTP->getDefaultArgument()) { 8131 Diag(NTTP->getDefaultArgumentLoc(), 8132 diag::err_default_arg_in_partial_spec) 8133 << DefArg->getSourceRange(); 8134 NTTP->removeDefaultArgument(); 8135 } 8136 } else { 8137 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 8138 if (TTP->hasDefaultArgument()) { 8139 Diag(TTP->getDefaultArgument().getLocation(), 8140 diag::err_default_arg_in_partial_spec) 8141 << TTP->getDefaultArgument().getSourceRange(); 8142 TTP->removeDefaultArgument(); 8143 } 8144 } 8145 } 8146 } else if (TemplateParams) { 8147 if (TUK == TUK_Friend) 8148 Diag(KWLoc, diag::err_template_spec_friend) 8149 << FixItHint::CreateRemoval( 8150 SourceRange(TemplateParams->getTemplateLoc(), 8151 TemplateParams->getRAngleLoc())) 8152 << SourceRange(LAngleLoc, RAngleLoc); 8153 } else { 8154 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl"); 8155 } 8156 8157 // Check that the specialization uses the same tag kind as the 8158 // original template. 8159 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 8160 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 8161 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 8162 Kind, TUK == TUK_Definition, KWLoc, 8163 ClassTemplate->getIdentifier())) { 8164 Diag(KWLoc, diag::err_use_with_wrong_tag) 8165 << ClassTemplate 8166 << FixItHint::CreateReplacement(KWLoc, 8167 ClassTemplate->getTemplatedDecl()->getKindName()); 8168 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 8169 diag::note_previous_use); 8170 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 8171 } 8172 8173 // Translate the parser's template argument list in our AST format. 8174 TemplateArgumentListInfo TemplateArgs = 8175 makeTemplateArgumentListInfo(*this, TemplateId); 8176 8177 // Check for unexpanded parameter packs in any of the template arguments. 8178 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 8179 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 8180 UPPC_PartialSpecialization)) 8181 return true; 8182 8183 // Check that the template argument list is well-formed for this 8184 // template. 8185 SmallVector<TemplateArgument, 4> Converted; 8186 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 8187 TemplateArgs, false, Converted, 8188 /*UpdateArgsWithConversion=*/true)) 8189 return true; 8190 8191 // Find the class template (partial) specialization declaration that 8192 // corresponds to these arguments. 8193 if (isPartialSpecialization) { 8194 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate, 8195 TemplateArgs.size(), Converted)) 8196 return true; 8197 8198 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we 8199 // also do it during instantiation. 8200 bool InstantiationDependent; 8201 if (!Name.isDependent() && 8202 !TemplateSpecializationType::anyDependentTemplateArguments( 8203 TemplateArgs.arguments(), InstantiationDependent)) { 8204 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 8205 << ClassTemplate->getDeclName(); 8206 isPartialSpecialization = false; 8207 } 8208 } 8209 8210 void *InsertPos = nullptr; 8211 ClassTemplateSpecializationDecl *PrevDecl = nullptr; 8212 8213 if (isPartialSpecialization) 8214 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, 8215 TemplateParams, 8216 InsertPos); 8217 else 8218 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos); 8219 8220 ClassTemplateSpecializationDecl *Specialization = nullptr; 8221 8222 // Check whether we can declare a class template specialization in 8223 // the current scope. 8224 if (TUK != TUK_Friend && 8225 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 8226 TemplateNameLoc, 8227 isPartialSpecialization)) 8228 return true; 8229 8230 // The canonical type 8231 QualType CanonType; 8232 if (isPartialSpecialization) { 8233 // Build the canonical type that describes the converted template 8234 // arguments of the class template partial specialization. 8235 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8236 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 8237 Converted); 8238 8239 if (Context.hasSameType(CanonType, 8240 ClassTemplate->getInjectedClassNameSpecialization()) && 8241 (!Context.getLangOpts().CPlusPlus20 || 8242 !TemplateParams->hasAssociatedConstraints())) { 8243 // C++ [temp.class.spec]p9b3: 8244 // 8245 // -- The argument list of the specialization shall not be identical 8246 // to the implicit argument list of the primary template. 8247 // 8248 // This rule has since been removed, because it's redundant given DR1495, 8249 // but we keep it because it produces better diagnostics and recovery. 8250 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 8251 << /*class template*/0 << (TUK == TUK_Definition) 8252 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 8253 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 8254 ClassTemplate->getIdentifier(), 8255 TemplateNameLoc, 8256 Attr, 8257 TemplateParams, 8258 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 8259 /*FriendLoc*/SourceLocation(), 8260 TemplateParameterLists.size() - 1, 8261 TemplateParameterLists.data()); 8262 } 8263 8264 // Create a new class template partial specialization declaration node. 8265 ClassTemplatePartialSpecializationDecl *PrevPartial 8266 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 8267 ClassTemplatePartialSpecializationDecl *Partial 8268 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 8269 ClassTemplate->getDeclContext(), 8270 KWLoc, TemplateNameLoc, 8271 TemplateParams, 8272 ClassTemplate, 8273 Converted, 8274 TemplateArgs, 8275 CanonType, 8276 PrevPartial); 8277 SetNestedNameSpecifier(*this, Partial, SS); 8278 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 8279 Partial->setTemplateParameterListsInfo( 8280 Context, TemplateParameterLists.drop_back(1)); 8281 } 8282 8283 if (!PrevPartial) 8284 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 8285 Specialization = Partial; 8286 8287 // If we are providing an explicit specialization of a member class 8288 // template specialization, make a note of that. 8289 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 8290 PrevPartial->setMemberSpecialization(); 8291 8292 CheckTemplatePartialSpecialization(Partial); 8293 } else { 8294 // Create a new class template specialization declaration node for 8295 // this explicit specialization or friend declaration. 8296 Specialization 8297 = ClassTemplateSpecializationDecl::Create(Context, Kind, 8298 ClassTemplate->getDeclContext(), 8299 KWLoc, TemplateNameLoc, 8300 ClassTemplate, 8301 Converted, 8302 PrevDecl); 8303 SetNestedNameSpecifier(*this, Specialization, SS); 8304 if (TemplateParameterLists.size() > 0) { 8305 Specialization->setTemplateParameterListsInfo(Context, 8306 TemplateParameterLists); 8307 } 8308 8309 if (!PrevDecl) 8310 ClassTemplate->AddSpecialization(Specialization, InsertPos); 8311 8312 if (CurContext->isDependentContext()) { 8313 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8314 CanonType = Context.getTemplateSpecializationType( 8315 CanonTemplate, Converted); 8316 } else { 8317 CanonType = Context.getTypeDeclType(Specialization); 8318 } 8319 } 8320 8321 // C++ [temp.expl.spec]p6: 8322 // If a template, a member template or the member of a class template is 8323 // explicitly specialized then that specialization shall be declared 8324 // before the first use of that specialization that would cause an implicit 8325 // instantiation to take place, in every translation unit in which such a 8326 // use occurs; no diagnostic is required. 8327 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 8328 bool Okay = false; 8329 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8330 // Is there any previous explicit specialization declaration? 8331 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8332 Okay = true; 8333 break; 8334 } 8335 } 8336 8337 if (!Okay) { 8338 SourceRange Range(TemplateNameLoc, RAngleLoc); 8339 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 8340 << Context.getTypeDeclType(Specialization) << Range; 8341 8342 Diag(PrevDecl->getPointOfInstantiation(), 8343 diag::note_instantiation_required_here) 8344 << (PrevDecl->getTemplateSpecializationKind() 8345 != TSK_ImplicitInstantiation); 8346 return true; 8347 } 8348 } 8349 8350 // If this is not a friend, note that this is an explicit specialization. 8351 if (TUK != TUK_Friend) 8352 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 8353 8354 // Check that this isn't a redefinition of this specialization. 8355 if (TUK == TUK_Definition) { 8356 RecordDecl *Def = Specialization->getDefinition(); 8357 NamedDecl *Hidden = nullptr; 8358 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 8359 SkipBody->ShouldSkip = true; 8360 SkipBody->Previous = Def; 8361 makeMergedDefinitionVisible(Hidden); 8362 } else if (Def) { 8363 SourceRange Range(TemplateNameLoc, RAngleLoc); 8364 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range; 8365 Diag(Def->getLocation(), diag::note_previous_definition); 8366 Specialization->setInvalidDecl(); 8367 return true; 8368 } 8369 } 8370 8371 ProcessDeclAttributeList(S, Specialization, Attr); 8372 8373 // Add alignment attributes if necessary; these attributes are checked when 8374 // the ASTContext lays out the structure. 8375 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 8376 AddAlignmentAttributesForRecord(Specialization); 8377 AddMsStructLayoutForRecord(Specialization); 8378 } 8379 8380 if (ModulePrivateLoc.isValid()) 8381 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 8382 << (isPartialSpecialization? 1 : 0) 8383 << FixItHint::CreateRemoval(ModulePrivateLoc); 8384 8385 // Build the fully-sugared type for this class template 8386 // specialization as the user wrote in the specialization 8387 // itself. This means that we'll pretty-print the type retrieved 8388 // from the specialization's declaration the way that the user 8389 // actually wrote the specialization, rather than formatting the 8390 // name based on the "canonical" representation used to store the 8391 // template arguments in the specialization. 8392 TypeSourceInfo *WrittenTy 8393 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 8394 TemplateArgs, CanonType); 8395 if (TUK != TUK_Friend) { 8396 Specialization->setTypeAsWritten(WrittenTy); 8397 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 8398 } 8399 8400 // C++ [temp.expl.spec]p9: 8401 // A template explicit specialization is in the scope of the 8402 // namespace in which the template was defined. 8403 // 8404 // We actually implement this paragraph where we set the semantic 8405 // context (in the creation of the ClassTemplateSpecializationDecl), 8406 // but we also maintain the lexical context where the actual 8407 // definition occurs. 8408 Specialization->setLexicalDeclContext(CurContext); 8409 8410 // We may be starting the definition of this specialization. 8411 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 8412 Specialization->startDefinition(); 8413 8414 if (TUK == TUK_Friend) { 8415 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 8416 TemplateNameLoc, 8417 WrittenTy, 8418 /*FIXME:*/KWLoc); 8419 Friend->setAccess(AS_public); 8420 CurContext->addDecl(Friend); 8421 } else { 8422 // Add the specialization into its lexical context, so that it can 8423 // be seen when iterating through the list of declarations in that 8424 // context. However, specializations are not found by name lookup. 8425 CurContext->addDecl(Specialization); 8426 } 8427 8428 if (SkipBody && SkipBody->ShouldSkip) 8429 return SkipBody->Previous; 8430 8431 return Specialization; 8432 } 8433 8434 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 8435 MultiTemplateParamsArg TemplateParameterLists, 8436 Declarator &D) { 8437 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 8438 ActOnDocumentableDecl(NewDecl); 8439 return NewDecl; 8440 } 8441 8442 Decl *Sema::ActOnConceptDefinition(Scope *S, 8443 MultiTemplateParamsArg TemplateParameterLists, 8444 IdentifierInfo *Name, SourceLocation NameLoc, 8445 Expr *ConstraintExpr) { 8446 DeclContext *DC = CurContext; 8447 8448 if (!DC->getRedeclContext()->isFileContext()) { 8449 Diag(NameLoc, 8450 diag::err_concept_decls_may_only_appear_in_global_namespace_scope); 8451 return nullptr; 8452 } 8453 8454 if (TemplateParameterLists.size() > 1) { 8455 Diag(NameLoc, diag::err_concept_extra_headers); 8456 return nullptr; 8457 } 8458 8459 if (TemplateParameterLists.front()->size() == 0) { 8460 Diag(NameLoc, diag::err_concept_no_parameters); 8461 return nullptr; 8462 } 8463 8464 ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name, 8465 TemplateParameterLists.front(), 8466 ConstraintExpr); 8467 8468 if (NewDecl->hasAssociatedConstraints()) { 8469 // C++2a [temp.concept]p4: 8470 // A concept shall not have associated constraints. 8471 Diag(NameLoc, diag::err_concept_no_associated_constraints); 8472 NewDecl->setInvalidDecl(); 8473 } 8474 8475 // Check for conflicting previous declaration. 8476 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc); 8477 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 8478 ForVisibleRedeclaration); 8479 LookupName(Previous, S); 8480 8481 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false, 8482 /*AllowInlineNamespace*/false); 8483 if (!Previous.empty()) { 8484 auto *Old = Previous.getRepresentativeDecl(); 8485 Diag(NameLoc, isa<ConceptDecl>(Old) ? diag::err_redefinition : 8486 diag::err_redefinition_different_kind) << NewDecl->getDeclName(); 8487 Diag(Old->getLocation(), diag::note_previous_definition); 8488 } 8489 8490 ActOnDocumentableDecl(NewDecl); 8491 PushOnScopeChains(NewDecl, S); 8492 return NewDecl; 8493 } 8494 8495 /// \brief Strips various properties off an implicit instantiation 8496 /// that has just been explicitly specialized. 8497 static void StripImplicitInstantiation(NamedDecl *D) { 8498 D->dropAttr<DLLImportAttr>(); 8499 D->dropAttr<DLLExportAttr>(); 8500 8501 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 8502 FD->setInlineSpecified(false); 8503 } 8504 8505 /// Compute the diagnostic location for an explicit instantiation 8506 // declaration or definition. 8507 static SourceLocation DiagLocForExplicitInstantiation( 8508 NamedDecl* D, SourceLocation PointOfInstantiation) { 8509 // Explicit instantiations following a specialization have no effect and 8510 // hence no PointOfInstantiation. In that case, walk decl backwards 8511 // until a valid name loc is found. 8512 SourceLocation PrevDiagLoc = PointOfInstantiation; 8513 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 8514 Prev = Prev->getPreviousDecl()) { 8515 PrevDiagLoc = Prev->getLocation(); 8516 } 8517 assert(PrevDiagLoc.isValid() && 8518 "Explicit instantiation without point of instantiation?"); 8519 return PrevDiagLoc; 8520 } 8521 8522 /// Diagnose cases where we have an explicit template specialization 8523 /// before/after an explicit template instantiation, producing diagnostics 8524 /// for those cases where they are required and determining whether the 8525 /// new specialization/instantiation will have any effect. 8526 /// 8527 /// \param NewLoc the location of the new explicit specialization or 8528 /// instantiation. 8529 /// 8530 /// \param NewTSK the kind of the new explicit specialization or instantiation. 8531 /// 8532 /// \param PrevDecl the previous declaration of the entity. 8533 /// 8534 /// \param PrevTSK the kind of the old explicit specialization or instantiatin. 8535 /// 8536 /// \param PrevPointOfInstantiation if valid, indicates where the previus 8537 /// declaration was instantiated (either implicitly or explicitly). 8538 /// 8539 /// \param HasNoEffect will be set to true to indicate that the new 8540 /// specialization or instantiation has no effect and should be ignored. 8541 /// 8542 /// \returns true if there was an error that should prevent the introduction of 8543 /// the new declaration into the AST, false otherwise. 8544 bool 8545 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 8546 TemplateSpecializationKind NewTSK, 8547 NamedDecl *PrevDecl, 8548 TemplateSpecializationKind PrevTSK, 8549 SourceLocation PrevPointOfInstantiation, 8550 bool &HasNoEffect) { 8551 HasNoEffect = false; 8552 8553 switch (NewTSK) { 8554 case TSK_Undeclared: 8555 case TSK_ImplicitInstantiation: 8556 assert( 8557 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && 8558 "previous declaration must be implicit!"); 8559 return false; 8560 8561 case TSK_ExplicitSpecialization: 8562 switch (PrevTSK) { 8563 case TSK_Undeclared: 8564 case TSK_ExplicitSpecialization: 8565 // Okay, we're just specializing something that is either already 8566 // explicitly specialized or has merely been mentioned without any 8567 // instantiation. 8568 return false; 8569 8570 case TSK_ImplicitInstantiation: 8571 if (PrevPointOfInstantiation.isInvalid()) { 8572 // The declaration itself has not actually been instantiated, so it is 8573 // still okay to specialize it. 8574 StripImplicitInstantiation(PrevDecl); 8575 return false; 8576 } 8577 // Fall through 8578 LLVM_FALLTHROUGH; 8579 8580 case TSK_ExplicitInstantiationDeclaration: 8581 case TSK_ExplicitInstantiationDefinition: 8582 assert((PrevTSK == TSK_ImplicitInstantiation || 8583 PrevPointOfInstantiation.isValid()) && 8584 "Explicit instantiation without point of instantiation?"); 8585 8586 // C++ [temp.expl.spec]p6: 8587 // If a template, a member template or the member of a class template 8588 // is explicitly specialized then that specialization shall be declared 8589 // before the first use of that specialization that would cause an 8590 // implicit instantiation to take place, in every translation unit in 8591 // which such a use occurs; no diagnostic is required. 8592 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8593 // Is there any previous explicit specialization declaration? 8594 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 8595 return false; 8596 } 8597 8598 Diag(NewLoc, diag::err_specialization_after_instantiation) 8599 << PrevDecl; 8600 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 8601 << (PrevTSK != TSK_ImplicitInstantiation); 8602 8603 return true; 8604 } 8605 llvm_unreachable("The switch over PrevTSK must be exhaustive."); 8606 8607 case TSK_ExplicitInstantiationDeclaration: 8608 switch (PrevTSK) { 8609 case TSK_ExplicitInstantiationDeclaration: 8610 // This explicit instantiation declaration is redundant (that's okay). 8611 HasNoEffect = true; 8612 return false; 8613 8614 case TSK_Undeclared: 8615 case TSK_ImplicitInstantiation: 8616 // We're explicitly instantiating something that may have already been 8617 // implicitly instantiated; that's fine. 8618 return false; 8619 8620 case TSK_ExplicitSpecialization: 8621 // C++0x [temp.explicit]p4: 8622 // For a given set of template parameters, if an explicit instantiation 8623 // of a template appears after a declaration of an explicit 8624 // specialization for that template, the explicit instantiation has no 8625 // effect. 8626 HasNoEffect = true; 8627 return false; 8628 8629 case TSK_ExplicitInstantiationDefinition: 8630 // C++0x [temp.explicit]p10: 8631 // If an entity is the subject of both an explicit instantiation 8632 // declaration and an explicit instantiation definition in the same 8633 // translation unit, the definition shall follow the declaration. 8634 Diag(NewLoc, 8635 diag::err_explicit_instantiation_declaration_after_definition); 8636 8637 // Explicit instantiations following a specialization have no effect and 8638 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 8639 // until a valid name loc is found. 8640 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 8641 diag::note_explicit_instantiation_definition_here); 8642 HasNoEffect = true; 8643 return false; 8644 } 8645 llvm_unreachable("Unexpected TemplateSpecializationKind!"); 8646 8647 case TSK_ExplicitInstantiationDefinition: 8648 switch (PrevTSK) { 8649 case TSK_Undeclared: 8650 case TSK_ImplicitInstantiation: 8651 // We're explicitly instantiating something that may have already been 8652 // implicitly instantiated; that's fine. 8653 return false; 8654 8655 case TSK_ExplicitSpecialization: 8656 // C++ DR 259, C++0x [temp.explicit]p4: 8657 // For a given set of template parameters, if an explicit 8658 // instantiation of a template appears after a declaration of 8659 // an explicit specialization for that template, the explicit 8660 // instantiation has no effect. 8661 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization) 8662 << PrevDecl; 8663 Diag(PrevDecl->getLocation(), 8664 diag::note_previous_template_specialization); 8665 HasNoEffect = true; 8666 return false; 8667 8668 case TSK_ExplicitInstantiationDeclaration: 8669 // We're explicitly instantiating a definition for something for which we 8670 // were previously asked to suppress instantiations. That's fine. 8671 8672 // C++0x [temp.explicit]p4: 8673 // For a given set of template parameters, if an explicit instantiation 8674 // of a template appears after a declaration of an explicit 8675 // specialization for that template, the explicit instantiation has no 8676 // effect. 8677 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8678 // Is there any previous explicit specialization declaration? 8679 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8680 HasNoEffect = true; 8681 break; 8682 } 8683 } 8684 8685 return false; 8686 8687 case TSK_ExplicitInstantiationDefinition: 8688 // C++0x [temp.spec]p5: 8689 // For a given template and a given set of template-arguments, 8690 // - an explicit instantiation definition shall appear at most once 8691 // in a program, 8692 8693 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. 8694 Diag(NewLoc, (getLangOpts().MSVCCompat) 8695 ? diag::ext_explicit_instantiation_duplicate 8696 : diag::err_explicit_instantiation_duplicate) 8697 << PrevDecl; 8698 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 8699 diag::note_previous_explicit_instantiation); 8700 HasNoEffect = true; 8701 return false; 8702 } 8703 } 8704 8705 llvm_unreachable("Missing specialization/instantiation case?"); 8706 } 8707 8708 /// Perform semantic analysis for the given dependent function 8709 /// template specialization. 8710 /// 8711 /// The only possible way to get a dependent function template specialization 8712 /// is with a friend declaration, like so: 8713 /// 8714 /// \code 8715 /// template \<class T> void foo(T); 8716 /// template \<class T> class A { 8717 /// friend void foo<>(T); 8718 /// }; 8719 /// \endcode 8720 /// 8721 /// There really isn't any useful analysis we can do here, so we 8722 /// just store the information. 8723 bool 8724 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 8725 const TemplateArgumentListInfo &ExplicitTemplateArgs, 8726 LookupResult &Previous) { 8727 // Remove anything from Previous that isn't a function template in 8728 // the correct context. 8729 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 8730 LookupResult::Filter F = Previous.makeFilter(); 8731 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; 8732 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; 8733 while (F.hasNext()) { 8734 NamedDecl *D = F.next()->getUnderlyingDecl(); 8735 if (!isa<FunctionTemplateDecl>(D)) { 8736 F.erase(); 8737 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D)); 8738 continue; 8739 } 8740 8741 if (!FDLookupContext->InEnclosingNamespaceSetOf( 8742 D->getDeclContext()->getRedeclContext())) { 8743 F.erase(); 8744 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D)); 8745 continue; 8746 } 8747 } 8748 F.done(); 8749 8750 if (Previous.empty()) { 8751 Diag(FD->getLocation(), 8752 diag::err_dependent_function_template_spec_no_match); 8753 for (auto &P : DiscardedCandidates) 8754 Diag(P.second->getLocation(), 8755 diag::note_dependent_function_template_spec_discard_reason) 8756 << P.first; 8757 return true; 8758 } 8759 8760 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 8761 ExplicitTemplateArgs); 8762 return false; 8763 } 8764 8765 /// Perform semantic analysis for the given function template 8766 /// specialization. 8767 /// 8768 /// This routine performs all of the semantic analysis required for an 8769 /// explicit function template specialization. On successful completion, 8770 /// the function declaration \p FD will become a function template 8771 /// specialization. 8772 /// 8773 /// \param FD the function declaration, which will be updated to become a 8774 /// function template specialization. 8775 /// 8776 /// \param ExplicitTemplateArgs the explicitly-provided template arguments, 8777 /// if any. Note that this may be valid info even when 0 arguments are 8778 /// explicitly provided as in, e.g., \c void sort<>(char*, char*); 8779 /// as it anyway contains info on the angle brackets locations. 8780 /// 8781 /// \param Previous the set of declarations that may be specialized by 8782 /// this function specialization. 8783 /// 8784 /// \param QualifiedFriend whether this is a lookup for a qualified friend 8785 /// declaration with no explicit template argument list that might be 8786 /// befriending a function template specialization. 8787 bool Sema::CheckFunctionTemplateSpecialization( 8788 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, 8789 LookupResult &Previous, bool QualifiedFriend) { 8790 // The set of function template specializations that could match this 8791 // explicit function template specialization. 8792 UnresolvedSet<8> Candidates; 8793 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), 8794 /*ForTakingAddress=*/false); 8795 8796 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> 8797 ConvertedTemplateArgs; 8798 8799 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 8800 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 8801 I != E; ++I) { 8802 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 8803 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 8804 // Only consider templates found within the same semantic lookup scope as 8805 // FD. 8806 if (!FDLookupContext->InEnclosingNamespaceSetOf( 8807 Ovl->getDeclContext()->getRedeclContext())) 8808 continue; 8809 8810 // When matching a constexpr member function template specialization 8811 // against the primary template, we don't yet know whether the 8812 // specialization has an implicit 'const' (because we don't know whether 8813 // it will be a static member function until we know which template it 8814 // specializes), so adjust it now assuming it specializes this template. 8815 QualType FT = FD->getType(); 8816 if (FD->isConstexpr()) { 8817 CXXMethodDecl *OldMD = 8818 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 8819 if (OldMD && OldMD->isConst()) { 8820 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 8821 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8822 EPI.TypeQuals.addConst(); 8823 FT = Context.getFunctionType(FPT->getReturnType(), 8824 FPT->getParamTypes(), EPI); 8825 } 8826 } 8827 8828 TemplateArgumentListInfo Args; 8829 if (ExplicitTemplateArgs) 8830 Args = *ExplicitTemplateArgs; 8831 8832 // C++ [temp.expl.spec]p11: 8833 // A trailing template-argument can be left unspecified in the 8834 // template-id naming an explicit function template specialization 8835 // provided it can be deduced from the function argument type. 8836 // Perform template argument deduction to determine whether we may be 8837 // specializing this template. 8838 // FIXME: It is somewhat wasteful to build 8839 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 8840 FunctionDecl *Specialization = nullptr; 8841 if (TemplateDeductionResult TDK = DeduceTemplateArguments( 8842 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), 8843 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, 8844 Info)) { 8845 // Template argument deduction failed; record why it failed, so 8846 // that we can provide nifty diagnostics. 8847 FailedCandidates.addCandidate().set( 8848 I.getPair(), FunTmpl->getTemplatedDecl(), 8849 MakeDeductionFailureInfo(Context, TDK, Info)); 8850 (void)TDK; 8851 continue; 8852 } 8853 8854 // Target attributes are part of the cuda function signature, so 8855 // the deduced template's cuda target must match that of the 8856 // specialization. Given that C++ template deduction does not 8857 // take target attributes into account, we reject candidates 8858 // here that have a different target. 8859 if (LangOpts.CUDA && 8860 IdentifyCUDATarget(Specialization, 8861 /* IgnoreImplicitHDAttr = */ true) != 8862 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) { 8863 FailedCandidates.addCandidate().set( 8864 I.getPair(), FunTmpl->getTemplatedDecl(), 8865 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 8866 continue; 8867 } 8868 8869 // Record this candidate. 8870 if (ExplicitTemplateArgs) 8871 ConvertedTemplateArgs[Specialization] = std::move(Args); 8872 Candidates.addDecl(Specialization, I.getAccess()); 8873 } 8874 } 8875 8876 // For a qualified friend declaration (with no explicit marker to indicate 8877 // that a template specialization was intended), note all (template and 8878 // non-template) candidates. 8879 if (QualifiedFriend && Candidates.empty()) { 8880 Diag(FD->getLocation(), diag::err_qualified_friend_no_match) 8881 << FD->getDeclName() << FDLookupContext; 8882 // FIXME: We should form a single candidate list and diagnose all 8883 // candidates at once, to get proper sorting and limiting. 8884 for (auto *OldND : Previous) { 8885 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl())) 8886 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false); 8887 } 8888 FailedCandidates.NoteCandidates(*this, FD->getLocation()); 8889 return true; 8890 } 8891 8892 // Find the most specialized function template. 8893 UnresolvedSetIterator Result = getMostSpecialized( 8894 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(), 8895 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), 8896 PDiag(diag::err_function_template_spec_ambiguous) 8897 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), 8898 PDiag(diag::note_function_template_spec_matched)); 8899 8900 if (Result == Candidates.end()) 8901 return true; 8902 8903 // Ignore access information; it doesn't figure into redeclaration checking. 8904 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 8905 8906 FunctionTemplateSpecializationInfo *SpecInfo 8907 = Specialization->getTemplateSpecializationInfo(); 8908 assert(SpecInfo && "Function template specialization info missing?"); 8909 8910 // Note: do not overwrite location info if previous template 8911 // specialization kind was explicit. 8912 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 8913 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 8914 Specialization->setLocation(FD->getLocation()); 8915 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); 8916 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 8917 // function can differ from the template declaration with respect to 8918 // the constexpr specifier. 8919 // FIXME: We need an update record for this AST mutation. 8920 // FIXME: What if there are multiple such prior declarations (for instance, 8921 // from different modules)? 8922 Specialization->setConstexprKind(FD->getConstexprKind()); 8923 } 8924 8925 // FIXME: Check if the prior specialization has a point of instantiation. 8926 // If so, we have run afoul of . 8927 8928 // If this is a friend declaration, then we're not really declaring 8929 // an explicit specialization. 8930 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 8931 8932 // Check the scope of this explicit specialization. 8933 if (!isFriend && 8934 CheckTemplateSpecializationScope(*this, 8935 Specialization->getPrimaryTemplate(), 8936 Specialization, FD->getLocation(), 8937 false)) 8938 return true; 8939 8940 // C++ [temp.expl.spec]p6: 8941 // If a template, a member template or the member of a class template is 8942 // explicitly specialized then that specialization shall be declared 8943 // before the first use of that specialization that would cause an implicit 8944 // instantiation to take place, in every translation unit in which such a 8945 // use occurs; no diagnostic is required. 8946 bool HasNoEffect = false; 8947 if (!isFriend && 8948 CheckSpecializationInstantiationRedecl(FD->getLocation(), 8949 TSK_ExplicitSpecialization, 8950 Specialization, 8951 SpecInfo->getTemplateSpecializationKind(), 8952 SpecInfo->getPointOfInstantiation(), 8953 HasNoEffect)) 8954 return true; 8955 8956 // Mark the prior declaration as an explicit specialization, so that later 8957 // clients know that this is an explicit specialization. 8958 if (!isFriend) { 8959 // Since explicit specializations do not inherit '=delete' from their 8960 // primary function template - check if the 'specialization' that was 8961 // implicitly generated (during template argument deduction for partial 8962 // ordering) from the most specialized of all the function templates that 8963 // 'FD' could have been specializing, has a 'deleted' definition. If so, 8964 // first check that it was implicitly generated during template argument 8965 // deduction by making sure it wasn't referenced, and then reset the deleted 8966 // flag to not-deleted, so that we can inherit that information from 'FD'. 8967 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && 8968 !Specialization->getCanonicalDecl()->isReferenced()) { 8969 // FIXME: This assert will not hold in the presence of modules. 8970 assert( 8971 Specialization->getCanonicalDecl() == Specialization && 8972 "This must be the only existing declaration of this specialization"); 8973 // FIXME: We need an update record for this AST mutation. 8974 Specialization->setDeletedAsWritten(false); 8975 } 8976 // FIXME: We need an update record for this AST mutation. 8977 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 8978 MarkUnusedFileScopedDecl(Specialization); 8979 } 8980 8981 // Turn the given function declaration into a function template 8982 // specialization, with the template arguments from the previous 8983 // specialization. 8984 // Take copies of (semantic and syntactic) template argument lists. 8985 const TemplateArgumentList* TemplArgs = new (Context) 8986 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 8987 FD->setFunctionTemplateSpecialization( 8988 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr, 8989 SpecInfo->getTemplateSpecializationKind(), 8990 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); 8991 8992 // A function template specialization inherits the target attributes 8993 // of its template. (We require the attributes explicitly in the 8994 // code to match, but a template may have implicit attributes by 8995 // virtue e.g. of being constexpr, and it passes these implicit 8996 // attributes on to its specializations.) 8997 if (LangOpts.CUDA) 8998 inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate()); 8999 9000 // The "previous declaration" for this function template specialization is 9001 // the prior function template specialization. 9002 Previous.clear(); 9003 Previous.addDecl(Specialization); 9004 return false; 9005 } 9006 9007 /// Perform semantic analysis for the given non-template member 9008 /// specialization. 9009 /// 9010 /// This routine performs all of the semantic analysis required for an 9011 /// explicit member function specialization. On successful completion, 9012 /// the function declaration \p FD will become a member function 9013 /// specialization. 9014 /// 9015 /// \param Member the member declaration, which will be updated to become a 9016 /// specialization. 9017 /// 9018 /// \param Previous the set of declarations, one of which may be specialized 9019 /// by this function specialization; the set will be modified to contain the 9020 /// redeclared member. 9021 bool 9022 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 9023 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 9024 9025 // Try to find the member we are instantiating. 9026 NamedDecl *FoundInstantiation = nullptr; 9027 NamedDecl *Instantiation = nullptr; 9028 NamedDecl *InstantiatedFrom = nullptr; 9029 MemberSpecializationInfo *MSInfo = nullptr; 9030 9031 if (Previous.empty()) { 9032 // Nowhere to look anyway. 9033 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 9034 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 9035 I != E; ++I) { 9036 NamedDecl *D = (*I)->getUnderlyingDecl(); 9037 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 9038 QualType Adjusted = Function->getType(); 9039 if (!hasExplicitCallingConv(Adjusted)) 9040 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType()); 9041 // This doesn't handle deduced return types, but both function 9042 // declarations should be undeduced at this point. 9043 if (Context.hasSameType(Adjusted, Method->getType())) { 9044 FoundInstantiation = *I; 9045 Instantiation = Method; 9046 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 9047 MSInfo = Method->getMemberSpecializationInfo(); 9048 break; 9049 } 9050 } 9051 } 9052 } else if (isa<VarDecl>(Member)) { 9053 VarDecl *PrevVar; 9054 if (Previous.isSingleResult() && 9055 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 9056 if (PrevVar->isStaticDataMember()) { 9057 FoundInstantiation = Previous.getRepresentativeDecl(); 9058 Instantiation = PrevVar; 9059 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 9060 MSInfo = PrevVar->getMemberSpecializationInfo(); 9061 } 9062 } else if (isa<RecordDecl>(Member)) { 9063 CXXRecordDecl *PrevRecord; 9064 if (Previous.isSingleResult() && 9065 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 9066 FoundInstantiation = Previous.getRepresentativeDecl(); 9067 Instantiation = PrevRecord; 9068 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 9069 MSInfo = PrevRecord->getMemberSpecializationInfo(); 9070 } 9071 } else if (isa<EnumDecl>(Member)) { 9072 EnumDecl *PrevEnum; 9073 if (Previous.isSingleResult() && 9074 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 9075 FoundInstantiation = Previous.getRepresentativeDecl(); 9076 Instantiation = PrevEnum; 9077 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 9078 MSInfo = PrevEnum->getMemberSpecializationInfo(); 9079 } 9080 } 9081 9082 if (!Instantiation) { 9083 // There is no previous declaration that matches. Since member 9084 // specializations are always out-of-line, the caller will complain about 9085 // this mismatch later. 9086 return false; 9087 } 9088 9089 // A member specialization in a friend declaration isn't really declaring 9090 // an explicit specialization, just identifying a specific (possibly implicit) 9091 // specialization. Don't change the template specialization kind. 9092 // 9093 // FIXME: Is this really valid? Other compilers reject. 9094 if (Member->getFriendObjectKind() != Decl::FOK_None) { 9095 // Preserve instantiation information. 9096 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 9097 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 9098 cast<CXXMethodDecl>(InstantiatedFrom), 9099 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 9100 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 9101 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 9102 cast<CXXRecordDecl>(InstantiatedFrom), 9103 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 9104 } 9105 9106 Previous.clear(); 9107 Previous.addDecl(FoundInstantiation); 9108 return false; 9109 } 9110 9111 // Make sure that this is a specialization of a member. 9112 if (!InstantiatedFrom) { 9113 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 9114 << Member; 9115 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 9116 return true; 9117 } 9118 9119 // C++ [temp.expl.spec]p6: 9120 // If a template, a member template or the member of a class template is 9121 // explicitly specialized then that specialization shall be declared 9122 // before the first use of that specialization that would cause an implicit 9123 // instantiation to take place, in every translation unit in which such a 9124 // use occurs; no diagnostic is required. 9125 assert(MSInfo && "Member specialization info missing?"); 9126 9127 bool HasNoEffect = false; 9128 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 9129 TSK_ExplicitSpecialization, 9130 Instantiation, 9131 MSInfo->getTemplateSpecializationKind(), 9132 MSInfo->getPointOfInstantiation(), 9133 HasNoEffect)) 9134 return true; 9135 9136 // Check the scope of this explicit specialization. 9137 if (CheckTemplateSpecializationScope(*this, 9138 InstantiatedFrom, 9139 Instantiation, Member->getLocation(), 9140 false)) 9141 return true; 9142 9143 // Note that this member specialization is an "instantiation of" the 9144 // corresponding member of the original template. 9145 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) { 9146 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 9147 if (InstantiationFunction->getTemplateSpecializationKind() == 9148 TSK_ImplicitInstantiation) { 9149 // Explicit specializations of member functions of class templates do not 9150 // inherit '=delete' from the member function they are specializing. 9151 if (InstantiationFunction->isDeleted()) { 9152 // FIXME: This assert will not hold in the presence of modules. 9153 assert(InstantiationFunction->getCanonicalDecl() == 9154 InstantiationFunction); 9155 // FIXME: We need an update record for this AST mutation. 9156 InstantiationFunction->setDeletedAsWritten(false); 9157 } 9158 } 9159 9160 MemberFunction->setInstantiationOfMemberFunction( 9161 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9162 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) { 9163 MemberVar->setInstantiationOfStaticDataMember( 9164 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9165 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) { 9166 MemberClass->setInstantiationOfMemberClass( 9167 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9168 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) { 9169 MemberEnum->setInstantiationOfMemberEnum( 9170 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9171 } else { 9172 llvm_unreachable("unknown member specialization kind"); 9173 } 9174 9175 // Save the caller the trouble of having to figure out which declaration 9176 // this specialization matches. 9177 Previous.clear(); 9178 Previous.addDecl(FoundInstantiation); 9179 return false; 9180 } 9181 9182 /// Complete the explicit specialization of a member of a class template by 9183 /// updating the instantiated member to be marked as an explicit specialization. 9184 /// 9185 /// \param OrigD The member declaration instantiated from the template. 9186 /// \param Loc The location of the explicit specialization of the member. 9187 template<typename DeclT> 9188 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, 9189 SourceLocation Loc) { 9190 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 9191 return; 9192 9193 // FIXME: Inform AST mutation listeners of this AST mutation. 9194 // FIXME: If there are multiple in-class declarations of the member (from 9195 // multiple modules, or a declaration and later definition of a member type), 9196 // should we update all of them? 9197 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 9198 OrigD->setLocation(Loc); 9199 } 9200 9201 void Sema::CompleteMemberSpecialization(NamedDecl *Member, 9202 LookupResult &Previous) { 9203 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl()); 9204 if (Instantiation == Member) 9205 return; 9206 9207 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation)) 9208 completeMemberSpecializationImpl(*this, Function, Member->getLocation()); 9209 else if (auto *Var = dyn_cast<VarDecl>(Instantiation)) 9210 completeMemberSpecializationImpl(*this, Var, Member->getLocation()); 9211 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation)) 9212 completeMemberSpecializationImpl(*this, Record, Member->getLocation()); 9213 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation)) 9214 completeMemberSpecializationImpl(*this, Enum, Member->getLocation()); 9215 else 9216 llvm_unreachable("unknown member specialization kind"); 9217 } 9218 9219 /// Check the scope of an explicit instantiation. 9220 /// 9221 /// \returns true if a serious error occurs, false otherwise. 9222 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 9223 SourceLocation InstLoc, 9224 bool WasQualifiedName) { 9225 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 9226 DeclContext *CurContext = S.CurContext->getRedeclContext(); 9227 9228 if (CurContext->isRecord()) { 9229 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 9230 << D; 9231 return true; 9232 } 9233 9234 // C++11 [temp.explicit]p3: 9235 // An explicit instantiation shall appear in an enclosing namespace of its 9236 // template. If the name declared in the explicit instantiation is an 9237 // unqualified name, the explicit instantiation shall appear in the 9238 // namespace where its template is declared or, if that namespace is inline 9239 // (7.3.1), any namespace from its enclosing namespace set. 9240 // 9241 // This is DR275, which we do not retroactively apply to C++98/03. 9242 if (WasQualifiedName) { 9243 if (CurContext->Encloses(OrigContext)) 9244 return false; 9245 } else { 9246 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 9247 return false; 9248 } 9249 9250 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 9251 if (WasQualifiedName) 9252 S.Diag(InstLoc, 9253 S.getLangOpts().CPlusPlus11? 9254 diag::err_explicit_instantiation_out_of_scope : 9255 diag::warn_explicit_instantiation_out_of_scope_0x) 9256 << D << NS; 9257 else 9258 S.Diag(InstLoc, 9259 S.getLangOpts().CPlusPlus11? 9260 diag::err_explicit_instantiation_unqualified_wrong_namespace : 9261 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 9262 << D << NS; 9263 } else 9264 S.Diag(InstLoc, 9265 S.getLangOpts().CPlusPlus11? 9266 diag::err_explicit_instantiation_must_be_global : 9267 diag::warn_explicit_instantiation_must_be_global_0x) 9268 << D; 9269 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 9270 return false; 9271 } 9272 9273 /// Common checks for whether an explicit instantiation of \p D is valid. 9274 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D, 9275 SourceLocation InstLoc, 9276 bool WasQualifiedName, 9277 TemplateSpecializationKind TSK) { 9278 // C++ [temp.explicit]p13: 9279 // An explicit instantiation declaration shall not name a specialization of 9280 // a template with internal linkage. 9281 if (TSK == TSK_ExplicitInstantiationDeclaration && 9282 D->getFormalLinkage() == InternalLinkage) { 9283 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D; 9284 return true; 9285 } 9286 9287 // C++11 [temp.explicit]p3: [DR 275] 9288 // An explicit instantiation shall appear in an enclosing namespace of its 9289 // template. 9290 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName)) 9291 return true; 9292 9293 return false; 9294 } 9295 9296 /// Determine whether the given scope specifier has a template-id in it. 9297 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 9298 if (!SS.isSet()) 9299 return false; 9300 9301 // C++11 [temp.explicit]p3: 9302 // If the explicit instantiation is for a member function, a member class 9303 // or a static data member of a class template specialization, the name of 9304 // the class template specialization in the qualified-id for the member 9305 // name shall be a simple-template-id. 9306 // 9307 // C++98 has the same restriction, just worded differently. 9308 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; 9309 NNS = NNS->getPrefix()) 9310 if (const Type *T = NNS->getAsType()) 9311 if (isa<TemplateSpecializationType>(T)) 9312 return true; 9313 9314 return false; 9315 } 9316 9317 /// Make a dllexport or dllimport attr on a class template specialization take 9318 /// effect. 9319 static void dllExportImportClassTemplateSpecialization( 9320 Sema &S, ClassTemplateSpecializationDecl *Def) { 9321 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def)); 9322 assert(A && "dllExportImportClassTemplateSpecialization called " 9323 "on Def without dllexport or dllimport"); 9324 9325 // We reject explicit instantiations in class scope, so there should 9326 // never be any delayed exported classes to worry about. 9327 assert(S.DelayedDllExportClasses.empty() && 9328 "delayed exports present at explicit instantiation"); 9329 S.checkClassLevelDLLAttribute(Def); 9330 9331 // Propagate attribute to base class templates. 9332 for (auto &B : Def->bases()) { 9333 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 9334 B.getType()->getAsCXXRecordDecl())) 9335 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc()); 9336 } 9337 9338 S.referenceDLLExportedClassMethods(); 9339 } 9340 9341 // Explicit instantiation of a class template specialization 9342 DeclResult Sema::ActOnExplicitInstantiation( 9343 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, 9344 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, 9345 TemplateTy TemplateD, SourceLocation TemplateNameLoc, 9346 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, 9347 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { 9348 // Find the class template we're specializing 9349 TemplateName Name = TemplateD.get(); 9350 TemplateDecl *TD = Name.getAsTemplateDecl(); 9351 // Check that the specialization uses the same tag kind as the 9352 // original template. 9353 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 9354 assert(Kind != TTK_Enum && 9355 "Invalid enum tag in class template explicit instantiation!"); 9356 9357 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD); 9358 9359 if (!ClassTemplate) { 9360 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind); 9361 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind; 9362 Diag(TD->getLocation(), diag::note_previous_use); 9363 return true; 9364 } 9365 9366 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 9367 Kind, /*isDefinition*/false, KWLoc, 9368 ClassTemplate->getIdentifier())) { 9369 Diag(KWLoc, diag::err_use_with_wrong_tag) 9370 << ClassTemplate 9371 << FixItHint::CreateReplacement(KWLoc, 9372 ClassTemplate->getTemplatedDecl()->getKindName()); 9373 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 9374 diag::note_previous_use); 9375 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 9376 } 9377 9378 // C++0x [temp.explicit]p2: 9379 // There are two forms of explicit instantiation: an explicit instantiation 9380 // definition and an explicit instantiation declaration. An explicit 9381 // instantiation declaration begins with the extern keyword. [...] 9382 TemplateSpecializationKind TSK = ExternLoc.isInvalid() 9383 ? TSK_ExplicitInstantiationDefinition 9384 : TSK_ExplicitInstantiationDeclaration; 9385 9386 if (TSK == TSK_ExplicitInstantiationDeclaration && 9387 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9388 // Check for dllexport class template instantiation declarations, 9389 // except for MinGW mode. 9390 for (const ParsedAttr &AL : Attr) { 9391 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9392 Diag(ExternLoc, 9393 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9394 Diag(AL.getLoc(), diag::note_attribute); 9395 break; 9396 } 9397 } 9398 9399 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { 9400 Diag(ExternLoc, 9401 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9402 Diag(A->getLocation(), diag::note_attribute); 9403 } 9404 } 9405 9406 // In MSVC mode, dllimported explicit instantiation definitions are treated as 9407 // instantiation declarations for most purposes. 9408 bool DLLImportExplicitInstantiationDef = false; 9409 if (TSK == TSK_ExplicitInstantiationDefinition && 9410 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 9411 // Check for dllimport class template instantiation definitions. 9412 bool DLLImport = 9413 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); 9414 for (const ParsedAttr &AL : Attr) { 9415 if (AL.getKind() == ParsedAttr::AT_DLLImport) 9416 DLLImport = true; 9417 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9418 // dllexport trumps dllimport here. 9419 DLLImport = false; 9420 break; 9421 } 9422 } 9423 if (DLLImport) { 9424 TSK = TSK_ExplicitInstantiationDeclaration; 9425 DLLImportExplicitInstantiationDef = true; 9426 } 9427 } 9428 9429 // Translate the parser's template argument list in our AST format. 9430 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 9431 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 9432 9433 // Check that the template argument list is well-formed for this 9434 // template. 9435 SmallVector<TemplateArgument, 4> Converted; 9436 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 9437 TemplateArgs, false, Converted, 9438 /*UpdateArgsWithConversion=*/true)) 9439 return true; 9440 9441 // Find the class template specialization declaration that 9442 // corresponds to these arguments. 9443 void *InsertPos = nullptr; 9444 ClassTemplateSpecializationDecl *PrevDecl 9445 = ClassTemplate->findSpecialization(Converted, InsertPos); 9446 9447 TemplateSpecializationKind PrevDecl_TSK 9448 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 9449 9450 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr && 9451 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9452 // Check for dllexport class template instantiation definitions in MinGW 9453 // mode, if a previous declaration of the instantiation was seen. 9454 for (const ParsedAttr &AL : Attr) { 9455 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9456 Diag(AL.getLoc(), 9457 diag::warn_attribute_dllexport_explicit_instantiation_def); 9458 break; 9459 } 9460 } 9461 } 9462 9463 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc, 9464 SS.isSet(), TSK)) 9465 return true; 9466 9467 ClassTemplateSpecializationDecl *Specialization = nullptr; 9468 9469 bool HasNoEffect = false; 9470 if (PrevDecl) { 9471 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 9472 PrevDecl, PrevDecl_TSK, 9473 PrevDecl->getPointOfInstantiation(), 9474 HasNoEffect)) 9475 return PrevDecl; 9476 9477 // Even though HasNoEffect == true means that this explicit instantiation 9478 // has no effect on semantics, we go on to put its syntax in the AST. 9479 9480 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 9481 PrevDecl_TSK == TSK_Undeclared) { 9482 // Since the only prior class template specialization with these 9483 // arguments was referenced but not declared, reuse that 9484 // declaration node as our own, updating the source location 9485 // for the template name to reflect our new declaration. 9486 // (Other source locations will be updated later.) 9487 Specialization = PrevDecl; 9488 Specialization->setLocation(TemplateNameLoc); 9489 PrevDecl = nullptr; 9490 } 9491 9492 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9493 DLLImportExplicitInstantiationDef) { 9494 // The new specialization might add a dllimport attribute. 9495 HasNoEffect = false; 9496 } 9497 } 9498 9499 if (!Specialization) { 9500 // Create a new class template specialization declaration node for 9501 // this explicit specialization. 9502 Specialization 9503 = ClassTemplateSpecializationDecl::Create(Context, Kind, 9504 ClassTemplate->getDeclContext(), 9505 KWLoc, TemplateNameLoc, 9506 ClassTemplate, 9507 Converted, 9508 PrevDecl); 9509 SetNestedNameSpecifier(*this, Specialization, SS); 9510 9511 if (!HasNoEffect && !PrevDecl) { 9512 // Insert the new specialization. 9513 ClassTemplate->AddSpecialization(Specialization, InsertPos); 9514 } 9515 } 9516 9517 // Build the fully-sugared type for this explicit instantiation as 9518 // the user wrote in the explicit instantiation itself. This means 9519 // that we'll pretty-print the type retrieved from the 9520 // specialization's declaration the way that the user actually wrote 9521 // the explicit instantiation, rather than formatting the name based 9522 // on the "canonical" representation used to store the template 9523 // arguments in the specialization. 9524 TypeSourceInfo *WrittenTy 9525 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 9526 TemplateArgs, 9527 Context.getTypeDeclType(Specialization)); 9528 Specialization->setTypeAsWritten(WrittenTy); 9529 9530 // Set source locations for keywords. 9531 Specialization->setExternLoc(ExternLoc); 9532 Specialization->setTemplateKeywordLoc(TemplateLoc); 9533 Specialization->setBraceRange(SourceRange()); 9534 9535 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); 9536 ProcessDeclAttributeList(S, Specialization, Attr); 9537 9538 // Add the explicit instantiation into its lexical context. However, 9539 // since explicit instantiations are never found by name lookup, we 9540 // just put it into the declaration context directly. 9541 Specialization->setLexicalDeclContext(CurContext); 9542 CurContext->addDecl(Specialization); 9543 9544 // Syntax is now OK, so return if it has no other effect on semantics. 9545 if (HasNoEffect) { 9546 // Set the template specialization kind. 9547 Specialization->setTemplateSpecializationKind(TSK); 9548 return Specialization; 9549 } 9550 9551 // C++ [temp.explicit]p3: 9552 // A definition of a class template or class member template 9553 // shall be in scope at the point of the explicit instantiation of 9554 // the class template or class member template. 9555 // 9556 // This check comes when we actually try to perform the 9557 // instantiation. 9558 ClassTemplateSpecializationDecl *Def 9559 = cast_or_null<ClassTemplateSpecializationDecl>( 9560 Specialization->getDefinition()); 9561 if (!Def) 9562 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 9563 else if (TSK == TSK_ExplicitInstantiationDefinition) { 9564 MarkVTableUsed(TemplateNameLoc, Specialization, true); 9565 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 9566 } 9567 9568 // Instantiate the members of this class template specialization. 9569 Def = cast_or_null<ClassTemplateSpecializationDecl>( 9570 Specialization->getDefinition()); 9571 if (Def) { 9572 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 9573 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 9574 // TSK_ExplicitInstantiationDefinition 9575 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 9576 (TSK == TSK_ExplicitInstantiationDefinition || 9577 DLLImportExplicitInstantiationDef)) { 9578 // FIXME: Need to notify the ASTMutationListener that we did this. 9579 Def->setTemplateSpecializationKind(TSK); 9580 9581 if (!getDLLAttr(Def) && getDLLAttr(Specialization) && 9582 (Context.getTargetInfo().getCXXABI().isMicrosoft() || 9583 Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) { 9584 // In the MS ABI, an explicit instantiation definition can add a dll 9585 // attribute to a template with a previous instantiation declaration. 9586 // MinGW doesn't allow this. 9587 auto *A = cast<InheritableAttr>( 9588 getDLLAttr(Specialization)->clone(getASTContext())); 9589 A->setInherited(true); 9590 Def->addAttr(A); 9591 dllExportImportClassTemplateSpecialization(*this, Def); 9592 } 9593 } 9594 9595 // Fix a TSK_ImplicitInstantiation followed by a 9596 // TSK_ExplicitInstantiationDefinition 9597 bool NewlyDLLExported = 9598 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); 9599 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && 9600 (Context.getTargetInfo().getCXXABI().isMicrosoft() || 9601 Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) { 9602 // In the MS ABI, an explicit instantiation definition can add a dll 9603 // attribute to a template with a previous implicit instantiation. 9604 // MinGW doesn't allow this. We limit clang to only adding dllexport, to 9605 // avoid potentially strange codegen behavior. For example, if we extend 9606 // this conditional to dllimport, and we have a source file calling a 9607 // method on an implicitly instantiated template class instance and then 9608 // declaring a dllimport explicit instantiation definition for the same 9609 // template class, the codegen for the method call will not respect the 9610 // dllimport, while it will with cl. The Def will already have the DLL 9611 // attribute, since the Def and Specialization will be the same in the 9612 // case of Old_TSK == TSK_ImplicitInstantiation, and we already added the 9613 // attribute to the Specialization; we just need to make it take effect. 9614 assert(Def == Specialization && 9615 "Def and Specialization should match for implicit instantiation"); 9616 dllExportImportClassTemplateSpecialization(*this, Def); 9617 } 9618 9619 // In MinGW mode, export the template instantiation if the declaration 9620 // was marked dllexport. 9621 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9622 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() && 9623 PrevDecl->hasAttr<DLLExportAttr>()) { 9624 dllExportImportClassTemplateSpecialization(*this, Def); 9625 } 9626 9627 // Set the template specialization kind. Make sure it is set before 9628 // instantiating the members which will trigger ASTConsumer callbacks. 9629 Specialization->setTemplateSpecializationKind(TSK); 9630 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 9631 } else { 9632 9633 // Set the template specialization kind. 9634 Specialization->setTemplateSpecializationKind(TSK); 9635 } 9636 9637 return Specialization; 9638 } 9639 9640 // Explicit instantiation of a member class of a class template. 9641 DeclResult 9642 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, 9643 SourceLocation TemplateLoc, unsigned TagSpec, 9644 SourceLocation KWLoc, CXXScopeSpec &SS, 9645 IdentifierInfo *Name, SourceLocation NameLoc, 9646 const ParsedAttributesView &Attr) { 9647 9648 bool Owned = false; 9649 bool IsDependent = false; 9650 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 9651 KWLoc, SS, Name, NameLoc, Attr, AS_none, 9652 /*ModulePrivateLoc=*/SourceLocation(), 9653 MultiTemplateParamsArg(), Owned, IsDependent, 9654 SourceLocation(), false, TypeResult(), 9655 /*IsTypeSpecifier*/false, 9656 /*IsTemplateParamOrArg*/false); 9657 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 9658 9659 if (!TagD) 9660 return true; 9661 9662 TagDecl *Tag = cast<TagDecl>(TagD); 9663 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 9664 9665 if (Tag->isInvalidDecl()) 9666 return true; 9667 9668 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 9669 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 9670 if (!Pattern) { 9671 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 9672 << Context.getTypeDeclType(Record); 9673 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 9674 return true; 9675 } 9676 9677 // C++0x [temp.explicit]p2: 9678 // If the explicit instantiation is for a class or member class, the 9679 // elaborated-type-specifier in the declaration shall include a 9680 // simple-template-id. 9681 // 9682 // C++98 has the same restriction, just worded differently. 9683 if (!ScopeSpecifierHasTemplateId(SS)) 9684 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 9685 << Record << SS.getRange(); 9686 9687 // C++0x [temp.explicit]p2: 9688 // There are two forms of explicit instantiation: an explicit instantiation 9689 // definition and an explicit instantiation declaration. An explicit 9690 // instantiation declaration begins with the extern keyword. [...] 9691 TemplateSpecializationKind TSK 9692 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 9693 : TSK_ExplicitInstantiationDeclaration; 9694 9695 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK); 9696 9697 // Verify that it is okay to explicitly instantiate here. 9698 CXXRecordDecl *PrevDecl 9699 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 9700 if (!PrevDecl && Record->getDefinition()) 9701 PrevDecl = Record; 9702 if (PrevDecl) { 9703 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 9704 bool HasNoEffect = false; 9705 assert(MSInfo && "No member specialization information?"); 9706 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 9707 PrevDecl, 9708 MSInfo->getTemplateSpecializationKind(), 9709 MSInfo->getPointOfInstantiation(), 9710 HasNoEffect)) 9711 return true; 9712 if (HasNoEffect) 9713 return TagD; 9714 } 9715 9716 CXXRecordDecl *RecordDef 9717 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 9718 if (!RecordDef) { 9719 // C++ [temp.explicit]p3: 9720 // A definition of a member class of a class template shall be in scope 9721 // at the point of an explicit instantiation of the member class. 9722 CXXRecordDecl *Def 9723 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 9724 if (!Def) { 9725 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 9726 << 0 << Record->getDeclName() << Record->getDeclContext(); 9727 Diag(Pattern->getLocation(), diag::note_forward_declaration) 9728 << Pattern; 9729 return true; 9730 } else { 9731 if (InstantiateClass(NameLoc, Record, Def, 9732 getTemplateInstantiationArgs(Record), 9733 TSK)) 9734 return true; 9735 9736 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 9737 if (!RecordDef) 9738 return true; 9739 } 9740 } 9741 9742 // Instantiate all of the members of the class. 9743 InstantiateClassMembers(NameLoc, RecordDef, 9744 getTemplateInstantiationArgs(Record), TSK); 9745 9746 if (TSK == TSK_ExplicitInstantiationDefinition) 9747 MarkVTableUsed(NameLoc, RecordDef, true); 9748 9749 // FIXME: We don't have any representation for explicit instantiations of 9750 // member classes. Such a representation is not needed for compilation, but it 9751 // should be available for clients that want to see all of the declarations in 9752 // the source code. 9753 return TagD; 9754 } 9755 9756 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 9757 SourceLocation ExternLoc, 9758 SourceLocation TemplateLoc, 9759 Declarator &D) { 9760 // Explicit instantiations always require a name. 9761 // TODO: check if/when DNInfo should replace Name. 9762 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 9763 DeclarationName Name = NameInfo.getName(); 9764 if (!Name) { 9765 if (!D.isInvalidType()) 9766 Diag(D.getDeclSpec().getBeginLoc(), 9767 diag::err_explicit_instantiation_requires_name) 9768 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 9769 9770 return true; 9771 } 9772 9773 // The scope passed in may not be a decl scope. Zip up the scope tree until 9774 // we find one that is. 9775 while ((S->getFlags() & Scope::DeclScope) == 0 || 9776 (S->getFlags() & Scope::TemplateParamScope) != 0) 9777 S = S->getParent(); 9778 9779 // Determine the type of the declaration. 9780 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 9781 QualType R = T->getType(); 9782 if (R.isNull()) 9783 return true; 9784 9785 // C++ [dcl.stc]p1: 9786 // A storage-class-specifier shall not be specified in [...] an explicit 9787 // instantiation (14.7.2) directive. 9788 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 9789 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 9790 << Name; 9791 return true; 9792 } else if (D.getDeclSpec().getStorageClassSpec() 9793 != DeclSpec::SCS_unspecified) { 9794 // Complain about then remove the storage class specifier. 9795 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 9796 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 9797 9798 D.getMutableDeclSpec().ClearStorageClassSpecs(); 9799 } 9800 9801 // C++0x [temp.explicit]p1: 9802 // [...] An explicit instantiation of a function template shall not use the 9803 // inline or constexpr specifiers. 9804 // Presumably, this also applies to member functions of class templates as 9805 // well. 9806 if (D.getDeclSpec().isInlineSpecified()) 9807 Diag(D.getDeclSpec().getInlineSpecLoc(), 9808 getLangOpts().CPlusPlus11 ? 9809 diag::err_explicit_instantiation_inline : 9810 diag::warn_explicit_instantiation_inline_0x) 9811 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 9812 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType()) 9813 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 9814 // not already specified. 9815 Diag(D.getDeclSpec().getConstexprSpecLoc(), 9816 diag::err_explicit_instantiation_constexpr); 9817 9818 // A deduction guide is not on the list of entities that can be explicitly 9819 // instantiated. 9820 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { 9821 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized) 9822 << /*explicit instantiation*/ 0; 9823 return true; 9824 } 9825 9826 // C++0x [temp.explicit]p2: 9827 // There are two forms of explicit instantiation: an explicit instantiation 9828 // definition and an explicit instantiation declaration. An explicit 9829 // instantiation declaration begins with the extern keyword. [...] 9830 TemplateSpecializationKind TSK 9831 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 9832 : TSK_ExplicitInstantiationDeclaration; 9833 9834 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 9835 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 9836 9837 if (!R->isFunctionType()) { 9838 // C++ [temp.explicit]p1: 9839 // A [...] static data member of a class template can be explicitly 9840 // instantiated from the member definition associated with its class 9841 // template. 9842 // C++1y [temp.explicit]p1: 9843 // A [...] variable [...] template specialization can be explicitly 9844 // instantiated from its template. 9845 if (Previous.isAmbiguous()) 9846 return true; 9847 9848 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 9849 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); 9850 9851 if (!PrevTemplate) { 9852 if (!Prev || !Prev->isStaticDataMember()) { 9853 // We expect to see a static data member here. 9854 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 9855 << Name; 9856 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 9857 P != PEnd; ++P) 9858 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 9859 return true; 9860 } 9861 9862 if (!Prev->getInstantiatedFromStaticDataMember()) { 9863 // FIXME: Check for explicit specialization? 9864 Diag(D.getIdentifierLoc(), 9865 diag::err_explicit_instantiation_data_member_not_instantiated) 9866 << Prev; 9867 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 9868 // FIXME: Can we provide a note showing where this was declared? 9869 return true; 9870 } 9871 } else { 9872 // Explicitly instantiate a variable template. 9873 9874 // C++1y [dcl.spec.auto]p6: 9875 // ... A program that uses auto or decltype(auto) in a context not 9876 // explicitly allowed in this section is ill-formed. 9877 // 9878 // This includes auto-typed variable template instantiations. 9879 if (R->isUndeducedType()) { 9880 Diag(T->getTypeLoc().getBeginLoc(), 9881 diag::err_auto_not_allowed_var_inst); 9882 return true; 9883 } 9884 9885 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 9886 // C++1y [temp.explicit]p3: 9887 // If the explicit instantiation is for a variable, the unqualified-id 9888 // in the declaration shall be a template-id. 9889 Diag(D.getIdentifierLoc(), 9890 diag::err_explicit_instantiation_without_template_id) 9891 << PrevTemplate; 9892 Diag(PrevTemplate->getLocation(), 9893 diag::note_explicit_instantiation_here); 9894 return true; 9895 } 9896 9897 // Translate the parser's template argument list into our AST format. 9898 TemplateArgumentListInfo TemplateArgs = 9899 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 9900 9901 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, 9902 D.getIdentifierLoc(), TemplateArgs); 9903 if (Res.isInvalid()) 9904 return true; 9905 9906 // Ignore access control bits, we don't need them for redeclaration 9907 // checking. 9908 Prev = cast<VarDecl>(Res.get()); 9909 } 9910 9911 // C++0x [temp.explicit]p2: 9912 // If the explicit instantiation is for a member function, a member class 9913 // or a static data member of a class template specialization, the name of 9914 // the class template specialization in the qualified-id for the member 9915 // name shall be a simple-template-id. 9916 // 9917 // C++98 has the same restriction, just worded differently. 9918 // 9919 // This does not apply to variable template specializations, where the 9920 // template-id is in the unqualified-id instead. 9921 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) 9922 Diag(D.getIdentifierLoc(), 9923 diag::ext_explicit_instantiation_without_qualified_id) 9924 << Prev << D.getCXXScopeSpec().getRange(); 9925 9926 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK); 9927 9928 // Verify that it is okay to explicitly instantiate here. 9929 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); 9930 SourceLocation POI = Prev->getPointOfInstantiation(); 9931 bool HasNoEffect = false; 9932 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 9933 PrevTSK, POI, HasNoEffect)) 9934 return true; 9935 9936 if (!HasNoEffect) { 9937 // Instantiate static data member or variable template. 9938 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 9939 // Merge attributes. 9940 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes()); 9941 if (TSK == TSK_ExplicitInstantiationDefinition) 9942 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); 9943 } 9944 9945 // Check the new variable specialization against the parsed input. 9946 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) { 9947 Diag(T->getTypeLoc().getBeginLoc(), 9948 diag::err_invalid_var_template_spec_type) 9949 << 0 << PrevTemplate << R << Prev->getType(); 9950 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) 9951 << 2 << PrevTemplate->getDeclName(); 9952 return true; 9953 } 9954 9955 // FIXME: Create an ExplicitInstantiation node? 9956 return (Decl*) nullptr; 9957 } 9958 9959 // If the declarator is a template-id, translate the parser's template 9960 // argument list into our AST format. 9961 bool HasExplicitTemplateArgs = false; 9962 TemplateArgumentListInfo TemplateArgs; 9963 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 9964 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 9965 HasExplicitTemplateArgs = true; 9966 } 9967 9968 // C++ [temp.explicit]p1: 9969 // A [...] function [...] can be explicitly instantiated from its template. 9970 // A member function [...] of a class template can be explicitly 9971 // instantiated from the member definition associated with its class 9972 // template. 9973 UnresolvedSet<8> TemplateMatches; 9974 FunctionDecl *NonTemplateMatch = nullptr; 9975 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); 9976 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 9977 P != PEnd; ++P) { 9978 NamedDecl *Prev = *P; 9979 if (!HasExplicitTemplateArgs) { 9980 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 9981 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(), 9982 /*AdjustExceptionSpec*/true); 9983 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) { 9984 if (Method->getPrimaryTemplate()) { 9985 TemplateMatches.addDecl(Method, P.getAccess()); 9986 } else { 9987 // FIXME: Can this assert ever happen? Needs a test. 9988 assert(!NonTemplateMatch && "Multiple NonTemplateMatches"); 9989 NonTemplateMatch = Method; 9990 } 9991 } 9992 } 9993 } 9994 9995 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 9996 if (!FunTmpl) 9997 continue; 9998 9999 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 10000 FunctionDecl *Specialization = nullptr; 10001 if (TemplateDeductionResult TDK 10002 = DeduceTemplateArguments(FunTmpl, 10003 (HasExplicitTemplateArgs ? &TemplateArgs 10004 : nullptr), 10005 R, Specialization, Info)) { 10006 // Keep track of almost-matches. 10007 FailedCandidates.addCandidate() 10008 .set(P.getPair(), FunTmpl->getTemplatedDecl(), 10009 MakeDeductionFailureInfo(Context, TDK, Info)); 10010 (void)TDK; 10011 continue; 10012 } 10013 10014 // Target attributes are part of the cuda function signature, so 10015 // the cuda target of the instantiated function must match that of its 10016 // template. Given that C++ template deduction does not take 10017 // target attributes into account, we reject candidates here that 10018 // have a different target. 10019 if (LangOpts.CUDA && 10020 IdentifyCUDATarget(Specialization, 10021 /* IgnoreImplicitHDAttr = */ true) != 10022 IdentifyCUDATarget(D.getDeclSpec().getAttributes())) { 10023 FailedCandidates.addCandidate().set( 10024 P.getPair(), FunTmpl->getTemplatedDecl(), 10025 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 10026 continue; 10027 } 10028 10029 TemplateMatches.addDecl(Specialization, P.getAccess()); 10030 } 10031 10032 FunctionDecl *Specialization = NonTemplateMatch; 10033 if (!Specialization) { 10034 // Find the most specialized function template specialization. 10035 UnresolvedSetIterator Result = getMostSpecialized( 10036 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates, 10037 D.getIdentifierLoc(), 10038 PDiag(diag::err_explicit_instantiation_not_known) << Name, 10039 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 10040 PDiag(diag::note_explicit_instantiation_candidate)); 10041 10042 if (Result == TemplateMatches.end()) 10043 return true; 10044 10045 // Ignore access control bits, we don't need them for redeclaration checking. 10046 Specialization = cast<FunctionDecl>(*Result); 10047 } 10048 10049 // C++11 [except.spec]p4 10050 // In an explicit instantiation an exception-specification may be specified, 10051 // but is not required. 10052 // If an exception-specification is specified in an explicit instantiation 10053 // directive, it shall be compatible with the exception-specifications of 10054 // other declarations of that function. 10055 if (auto *FPT = R->getAs<FunctionProtoType>()) 10056 if (FPT->hasExceptionSpec()) { 10057 unsigned DiagID = 10058 diag::err_mismatched_exception_spec_explicit_instantiation; 10059 if (getLangOpts().MicrosoftExt) 10060 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; 10061 bool Result = CheckEquivalentExceptionSpec( 10062 PDiag(DiagID) << Specialization->getType(), 10063 PDiag(diag::note_explicit_instantiation_here), 10064 Specialization->getType()->getAs<FunctionProtoType>(), 10065 Specialization->getLocation(), FPT, D.getBeginLoc()); 10066 // In Microsoft mode, mismatching exception specifications just cause a 10067 // warning. 10068 if (!getLangOpts().MicrosoftExt && Result) 10069 return true; 10070 } 10071 10072 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 10073 Diag(D.getIdentifierLoc(), 10074 diag::err_explicit_instantiation_member_function_not_instantiated) 10075 << Specialization 10076 << (Specialization->getTemplateSpecializationKind() == 10077 TSK_ExplicitSpecialization); 10078 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 10079 return true; 10080 } 10081 10082 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 10083 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 10084 PrevDecl = Specialization; 10085 10086 if (PrevDecl) { 10087 bool HasNoEffect = false; 10088 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 10089 PrevDecl, 10090 PrevDecl->getTemplateSpecializationKind(), 10091 PrevDecl->getPointOfInstantiation(), 10092 HasNoEffect)) 10093 return true; 10094 10095 // FIXME: We may still want to build some representation of this 10096 // explicit specialization. 10097 if (HasNoEffect) 10098 return (Decl*) nullptr; 10099 } 10100 10101 // HACK: libc++ has a bug where it attempts to explicitly instantiate the 10102 // functions 10103 // valarray<size_t>::valarray(size_t) and 10104 // valarray<size_t>::~valarray() 10105 // that it declared to have internal linkage with the internal_linkage 10106 // attribute. Ignore the explicit instantiation declaration in this case. 10107 if (Specialization->hasAttr<InternalLinkageAttr>() && 10108 TSK == TSK_ExplicitInstantiationDeclaration) { 10109 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext())) 10110 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") && 10111 RD->isInStdNamespace()) 10112 return (Decl*) nullptr; 10113 } 10114 10115 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes()); 10116 10117 // In MSVC mode, dllimported explicit instantiation definitions are treated as 10118 // instantiation declarations. 10119 if (TSK == TSK_ExplicitInstantiationDefinition && 10120 Specialization->hasAttr<DLLImportAttr>() && 10121 Context.getTargetInfo().getCXXABI().isMicrosoft()) 10122 TSK = TSK_ExplicitInstantiationDeclaration; 10123 10124 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10125 10126 if (Specialization->isDefined()) { 10127 // Let the ASTConsumer know that this function has been explicitly 10128 // instantiated now, and its linkage might have changed. 10129 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization)); 10130 } else if (TSK == TSK_ExplicitInstantiationDefinition) 10131 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 10132 10133 // C++0x [temp.explicit]p2: 10134 // If the explicit instantiation is for a member function, a member class 10135 // or a static data member of a class template specialization, the name of 10136 // the class template specialization in the qualified-id for the member 10137 // name shall be a simple-template-id. 10138 // 10139 // C++98 has the same restriction, just worded differently. 10140 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 10141 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && 10142 D.getCXXScopeSpec().isSet() && 10143 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 10144 Diag(D.getIdentifierLoc(), 10145 diag::ext_explicit_instantiation_without_qualified_id) 10146 << Specialization << D.getCXXScopeSpec().getRange(); 10147 10148 CheckExplicitInstantiation( 10149 *this, 10150 FunTmpl ? (NamedDecl *)FunTmpl 10151 : Specialization->getInstantiatedFromMemberFunction(), 10152 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK); 10153 10154 // FIXME: Create some kind of ExplicitInstantiationDecl here. 10155 return (Decl*) nullptr; 10156 } 10157 10158 TypeResult 10159 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 10160 const CXXScopeSpec &SS, IdentifierInfo *Name, 10161 SourceLocation TagLoc, SourceLocation NameLoc) { 10162 // This has to hold, because SS is expected to be defined. 10163 assert(Name && "Expected a name in a dependent tag"); 10164 10165 NestedNameSpecifier *NNS = SS.getScopeRep(); 10166 if (!NNS) 10167 return true; 10168 10169 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 10170 10171 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 10172 Diag(NameLoc, diag::err_dependent_tag_decl) 10173 << (TUK == TUK_Definition) << Kind << SS.getRange(); 10174 return true; 10175 } 10176 10177 // Create the resulting type. 10178 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 10179 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 10180 10181 // Create type-source location information for this type. 10182 TypeLocBuilder TLB; 10183 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 10184 TL.setElaboratedKeywordLoc(TagLoc); 10185 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10186 TL.setNameLoc(NameLoc); 10187 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 10188 } 10189 10190 TypeResult 10191 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 10192 const CXXScopeSpec &SS, const IdentifierInfo &II, 10193 SourceLocation IdLoc) { 10194 if (SS.isInvalid()) 10195 return true; 10196 10197 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10198 Diag(TypenameLoc, 10199 getLangOpts().CPlusPlus11 ? 10200 diag::warn_cxx98_compat_typename_outside_of_template : 10201 diag::ext_typename_outside_of_template) 10202 << FixItHint::CreateRemoval(TypenameLoc); 10203 10204 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 10205 TypeSourceInfo *TSI = nullptr; 10206 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 10207 TypenameLoc, QualifierLoc, II, IdLoc, &TSI, 10208 /*DeducedTSTContext=*/true); 10209 if (T.isNull()) 10210 return true; 10211 return CreateParsedType(T, TSI); 10212 } 10213 10214 TypeResult 10215 Sema::ActOnTypenameType(Scope *S, 10216 SourceLocation TypenameLoc, 10217 const CXXScopeSpec &SS, 10218 SourceLocation TemplateKWLoc, 10219 TemplateTy TemplateIn, 10220 IdentifierInfo *TemplateII, 10221 SourceLocation TemplateIILoc, 10222 SourceLocation LAngleLoc, 10223 ASTTemplateArgsPtr TemplateArgsIn, 10224 SourceLocation RAngleLoc) { 10225 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10226 Diag(TypenameLoc, 10227 getLangOpts().CPlusPlus11 ? 10228 diag::warn_cxx98_compat_typename_outside_of_template : 10229 diag::ext_typename_outside_of_template) 10230 << FixItHint::CreateRemoval(TypenameLoc); 10231 10232 // Strangely, non-type results are not ignored by this lookup, so the 10233 // program is ill-formed if it finds an injected-class-name. 10234 if (TypenameLoc.isValid()) { 10235 auto *LookupRD = 10236 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false)); 10237 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 10238 Diag(TemplateIILoc, 10239 diag::ext_out_of_line_qualified_id_type_names_constructor) 10240 << TemplateII << 0 /*injected-class-name used as template name*/ 10241 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); 10242 } 10243 } 10244 10245 // Translate the parser's template argument list in our AST format. 10246 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 10247 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 10248 10249 TemplateName Template = TemplateIn.get(); 10250 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 10251 // Construct a dependent template specialization type. 10252 assert(DTN && "dependent template has non-dependent name?"); 10253 assert(DTN->getQualifier() == SS.getScopeRep()); 10254 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 10255 DTN->getQualifier(), 10256 DTN->getIdentifier(), 10257 TemplateArgs); 10258 10259 // Create source-location information for this type. 10260 TypeLocBuilder Builder; 10261 DependentTemplateSpecializationTypeLoc SpecTL 10262 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 10263 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 10264 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 10265 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10266 SpecTL.setTemplateNameLoc(TemplateIILoc); 10267 SpecTL.setLAngleLoc(LAngleLoc); 10268 SpecTL.setRAngleLoc(RAngleLoc); 10269 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10270 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10271 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 10272 } 10273 10274 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 10275 if (T.isNull()) 10276 return true; 10277 10278 // Provide source-location information for the template specialization type. 10279 TypeLocBuilder Builder; 10280 TemplateSpecializationTypeLoc SpecTL 10281 = Builder.push<TemplateSpecializationTypeLoc>(T); 10282 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10283 SpecTL.setTemplateNameLoc(TemplateIILoc); 10284 SpecTL.setLAngleLoc(LAngleLoc); 10285 SpecTL.setRAngleLoc(RAngleLoc); 10286 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10287 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10288 10289 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 10290 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 10291 TL.setElaboratedKeywordLoc(TypenameLoc); 10292 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10293 10294 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 10295 return CreateParsedType(T, TSI); 10296 } 10297 10298 10299 /// Determine whether this failed name lookup should be treated as being 10300 /// disabled by a usage of std::enable_if. 10301 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 10302 SourceRange &CondRange, Expr *&Cond) { 10303 // We must be looking for a ::type... 10304 if (!II.isStr("type")) 10305 return false; 10306 10307 // ... within an explicitly-written template specialization... 10308 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 10309 return false; 10310 TypeLoc EnableIfTy = NNS.getTypeLoc(); 10311 TemplateSpecializationTypeLoc EnableIfTSTLoc = 10312 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 10313 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 10314 return false; 10315 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); 10316 10317 // ... which names a complete class template declaration... 10318 const TemplateDecl *EnableIfDecl = 10319 EnableIfTST->getTemplateName().getAsTemplateDecl(); 10320 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 10321 return false; 10322 10323 // ... called "enable_if". 10324 const IdentifierInfo *EnableIfII = 10325 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 10326 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 10327 return false; 10328 10329 // Assume the first template argument is the condition. 10330 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 10331 10332 // Dig out the condition. 10333 Cond = nullptr; 10334 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind() 10335 != TemplateArgument::Expression) 10336 return true; 10337 10338 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression(); 10339 10340 // Ignore Boolean literals; they add no value. 10341 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts())) 10342 Cond = nullptr; 10343 10344 return true; 10345 } 10346 10347 QualType 10348 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10349 SourceLocation KeywordLoc, 10350 NestedNameSpecifierLoc QualifierLoc, 10351 const IdentifierInfo &II, 10352 SourceLocation IILoc, 10353 TypeSourceInfo **TSI, 10354 bool DeducedTSTContext) { 10355 QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc, 10356 DeducedTSTContext); 10357 if (T.isNull()) 10358 return QualType(); 10359 10360 *TSI = Context.CreateTypeSourceInfo(T); 10361 if (isa<DependentNameType>(T)) { 10362 DependentNameTypeLoc TL = 10363 (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>(); 10364 TL.setElaboratedKeywordLoc(KeywordLoc); 10365 TL.setQualifierLoc(QualifierLoc); 10366 TL.setNameLoc(IILoc); 10367 } else { 10368 ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>(); 10369 TL.setElaboratedKeywordLoc(KeywordLoc); 10370 TL.setQualifierLoc(QualifierLoc); 10371 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc); 10372 } 10373 return T; 10374 } 10375 10376 /// Build the type that describes a C++ typename specifier, 10377 /// e.g., "typename T::type". 10378 QualType 10379 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10380 SourceLocation KeywordLoc, 10381 NestedNameSpecifierLoc QualifierLoc, 10382 const IdentifierInfo &II, 10383 SourceLocation IILoc, bool DeducedTSTContext) { 10384 CXXScopeSpec SS; 10385 SS.Adopt(QualifierLoc); 10386 10387 DeclContext *Ctx = nullptr; 10388 if (QualifierLoc) { 10389 Ctx = computeDeclContext(SS); 10390 if (!Ctx) { 10391 // If the nested-name-specifier is dependent and couldn't be 10392 // resolved to a type, build a typename type. 10393 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 10394 return Context.getDependentNameType(Keyword, 10395 QualifierLoc.getNestedNameSpecifier(), 10396 &II); 10397 } 10398 10399 // If the nested-name-specifier refers to the current instantiation, 10400 // the "typename" keyword itself is superfluous. In C++03, the 10401 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 10402 // allows such extraneous "typename" keywords, and we retroactively 10403 // apply this DR to C++03 code with only a warning. In any case we continue. 10404 10405 if (RequireCompleteDeclContext(SS, Ctx)) 10406 return QualType(); 10407 } 10408 10409 DeclarationName Name(&II); 10410 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 10411 if (Ctx) 10412 LookupQualifiedName(Result, Ctx, SS); 10413 else 10414 LookupName(Result, CurScope); 10415 unsigned DiagID = 0; 10416 Decl *Referenced = nullptr; 10417 switch (Result.getResultKind()) { 10418 case LookupResult::NotFound: { 10419 // If we're looking up 'type' within a template named 'enable_if', produce 10420 // a more specific diagnostic. 10421 SourceRange CondRange; 10422 Expr *Cond = nullptr; 10423 if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) { 10424 // If we have a condition, narrow it down to the specific failed 10425 // condition. 10426 if (Cond) { 10427 Expr *FailedCond; 10428 std::string FailedDescription; 10429 std::tie(FailedCond, FailedDescription) = 10430 findFailedBooleanCondition(Cond); 10431 10432 Diag(FailedCond->getExprLoc(), 10433 diag::err_typename_nested_not_found_requirement) 10434 << FailedDescription 10435 << FailedCond->getSourceRange(); 10436 return QualType(); 10437 } 10438 10439 Diag(CondRange.getBegin(), 10440 diag::err_typename_nested_not_found_enable_if) 10441 << Ctx << CondRange; 10442 return QualType(); 10443 } 10444 10445 DiagID = Ctx ? diag::err_typename_nested_not_found 10446 : diag::err_unknown_typename; 10447 break; 10448 } 10449 10450 case LookupResult::FoundUnresolvedValue: { 10451 // We found a using declaration that is a value. Most likely, the using 10452 // declaration itself is meant to have the 'typename' keyword. 10453 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10454 IILoc); 10455 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 10456 << Name << Ctx << FullRange; 10457 if (UnresolvedUsingValueDecl *Using 10458 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 10459 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 10460 Diag(Loc, diag::note_using_value_decl_missing_typename) 10461 << FixItHint::CreateInsertion(Loc, "typename "); 10462 } 10463 } 10464 // Fall through to create a dependent typename type, from which we can recover 10465 // better. 10466 LLVM_FALLTHROUGH; 10467 10468 case LookupResult::NotFoundInCurrentInstantiation: 10469 // Okay, it's a member of an unknown instantiation. 10470 return Context.getDependentNameType(Keyword, 10471 QualifierLoc.getNestedNameSpecifier(), 10472 &II); 10473 10474 case LookupResult::Found: 10475 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 10476 // C++ [class.qual]p2: 10477 // In a lookup in which function names are not ignored and the 10478 // nested-name-specifier nominates a class C, if the name specified 10479 // after the nested-name-specifier, when looked up in C, is the 10480 // injected-class-name of C [...] then the name is instead considered 10481 // to name the constructor of class C. 10482 // 10483 // Unlike in an elaborated-type-specifier, function names are not ignored 10484 // in typename-specifier lookup. However, they are ignored in all the 10485 // contexts where we form a typename type with no keyword (that is, in 10486 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). 10487 // 10488 // FIXME: That's not strictly true: mem-initializer-id lookup does not 10489 // ignore functions, but that appears to be an oversight. 10490 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx); 10491 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type); 10492 if (Keyword == ETK_Typename && LookupRD && FoundRD && 10493 FoundRD->isInjectedClassName() && 10494 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) 10495 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor) 10496 << &II << 1 << 0 /*'typename' keyword used*/; 10497 10498 // We found a type. Build an ElaboratedType, since the 10499 // typename-specifier was just sugar. 10500 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 10501 return Context.getElaboratedType(Keyword, 10502 QualifierLoc.getNestedNameSpecifier(), 10503 Context.getTypeDeclType(Type)); 10504 } 10505 10506 // C++ [dcl.type.simple]p2: 10507 // A type-specifier of the form 10508 // typename[opt] nested-name-specifier[opt] template-name 10509 // is a placeholder for a deduced class type [...]. 10510 if (getLangOpts().CPlusPlus17) { 10511 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) { 10512 if (!DeducedTSTContext) { 10513 QualType T(QualifierLoc 10514 ? QualifierLoc.getNestedNameSpecifier()->getAsType() 10515 : nullptr, 0); 10516 if (!T.isNull()) 10517 Diag(IILoc, diag::err_dependent_deduced_tst) 10518 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T; 10519 else 10520 Diag(IILoc, diag::err_deduced_tst) 10521 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)); 10522 Diag(TD->getLocation(), diag::note_template_decl_here); 10523 return QualType(); 10524 } 10525 return Context.getElaboratedType( 10526 Keyword, QualifierLoc.getNestedNameSpecifier(), 10527 Context.getDeducedTemplateSpecializationType(TemplateName(TD), 10528 QualType(), false)); 10529 } 10530 } 10531 10532 DiagID = Ctx ? diag::err_typename_nested_not_type 10533 : diag::err_typename_not_type; 10534 Referenced = Result.getFoundDecl(); 10535 break; 10536 10537 case LookupResult::FoundOverloaded: 10538 DiagID = Ctx ? diag::err_typename_nested_not_type 10539 : diag::err_typename_not_type; 10540 Referenced = *Result.begin(); 10541 break; 10542 10543 case LookupResult::Ambiguous: 10544 return QualType(); 10545 } 10546 10547 // If we get here, it's because name lookup did not find a 10548 // type. Emit an appropriate diagnostic and return an error. 10549 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10550 IILoc); 10551 if (Ctx) 10552 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 10553 else 10554 Diag(IILoc, DiagID) << FullRange << Name; 10555 if (Referenced) 10556 Diag(Referenced->getLocation(), 10557 Ctx ? diag::note_typename_member_refers_here 10558 : diag::note_typename_refers_here) 10559 << Name; 10560 return QualType(); 10561 } 10562 10563 namespace { 10564 // See Sema::RebuildTypeInCurrentInstantiation 10565 class CurrentInstantiationRebuilder 10566 : public TreeTransform<CurrentInstantiationRebuilder> { 10567 SourceLocation Loc; 10568 DeclarationName Entity; 10569 10570 public: 10571 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 10572 10573 CurrentInstantiationRebuilder(Sema &SemaRef, 10574 SourceLocation Loc, 10575 DeclarationName Entity) 10576 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 10577 Loc(Loc), Entity(Entity) { } 10578 10579 /// Determine whether the given type \p T has already been 10580 /// transformed. 10581 /// 10582 /// For the purposes of type reconstruction, a type has already been 10583 /// transformed if it is NULL or if it is not dependent. 10584 bool AlreadyTransformed(QualType T) { 10585 return T.isNull() || !T->isDependentType(); 10586 } 10587 10588 /// Returns the location of the entity whose type is being 10589 /// rebuilt. 10590 SourceLocation getBaseLocation() { return Loc; } 10591 10592 /// Returns the name of the entity whose type is being rebuilt. 10593 DeclarationName getBaseEntity() { return Entity; } 10594 10595 /// Sets the "base" location and entity when that 10596 /// information is known based on another transformation. 10597 void setBase(SourceLocation Loc, DeclarationName Entity) { 10598 this->Loc = Loc; 10599 this->Entity = Entity; 10600 } 10601 10602 ExprResult TransformLambdaExpr(LambdaExpr *E) { 10603 // Lambdas never need to be transformed. 10604 return E; 10605 } 10606 }; 10607 } // end anonymous namespace 10608 10609 /// Rebuilds a type within the context of the current instantiation. 10610 /// 10611 /// The type \p T is part of the type of an out-of-line member definition of 10612 /// a class template (or class template partial specialization) that was parsed 10613 /// and constructed before we entered the scope of the class template (or 10614 /// partial specialization thereof). This routine will rebuild that type now 10615 /// that we have entered the declarator's scope, which may produce different 10616 /// canonical types, e.g., 10617 /// 10618 /// \code 10619 /// template<typename T> 10620 /// struct X { 10621 /// typedef T* pointer; 10622 /// pointer data(); 10623 /// }; 10624 /// 10625 /// template<typename T> 10626 /// typename X<T>::pointer X<T>::data() { ... } 10627 /// \endcode 10628 /// 10629 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 10630 /// since we do not know that we can look into X<T> when we parsed the type. 10631 /// This function will rebuild the type, performing the lookup of "pointer" 10632 /// in X<T> and returning an ElaboratedType whose canonical type is the same 10633 /// as the canonical type of T*, allowing the return types of the out-of-line 10634 /// definition and the declaration to match. 10635 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 10636 SourceLocation Loc, 10637 DeclarationName Name) { 10638 if (!T || !T->getType()->isDependentType()) 10639 return T; 10640 10641 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 10642 return Rebuilder.TransformType(T); 10643 } 10644 10645 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 10646 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 10647 DeclarationName()); 10648 return Rebuilder.TransformExpr(E); 10649 } 10650 10651 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 10652 if (SS.isInvalid()) 10653 return true; 10654 10655 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 10656 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 10657 DeclarationName()); 10658 NestedNameSpecifierLoc Rebuilt 10659 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 10660 if (!Rebuilt) 10661 return true; 10662 10663 SS.Adopt(Rebuilt); 10664 return false; 10665 } 10666 10667 /// Rebuild the template parameters now that we know we're in a current 10668 /// instantiation. 10669 bool Sema::RebuildTemplateParamsInCurrentInstantiation( 10670 TemplateParameterList *Params) { 10671 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 10672 Decl *Param = Params->getParam(I); 10673 10674 // There is nothing to rebuild in a type parameter. 10675 if (isa<TemplateTypeParmDecl>(Param)) 10676 continue; 10677 10678 // Rebuild the template parameter list of a template template parameter. 10679 if (TemplateTemplateParmDecl *TTP 10680 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 10681 if (RebuildTemplateParamsInCurrentInstantiation( 10682 TTP->getTemplateParameters())) 10683 return true; 10684 10685 continue; 10686 } 10687 10688 // Rebuild the type of a non-type template parameter. 10689 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 10690 TypeSourceInfo *NewTSI 10691 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 10692 NTTP->getLocation(), 10693 NTTP->getDeclName()); 10694 if (!NewTSI) 10695 return true; 10696 10697 if (NewTSI->getType()->isUndeducedType()) { 10698 // C++17 [temp.dep.expr]p3: 10699 // An id-expression is type-dependent if it contains 10700 // - an identifier associated by name lookup with a non-type 10701 // template-parameter declared with a type that contains a 10702 // placeholder type (7.1.7.4), 10703 NewTSI = SubstAutoTypeSourceInfo(NewTSI, Context.DependentTy); 10704 } 10705 10706 if (NewTSI != NTTP->getTypeSourceInfo()) { 10707 NTTP->setTypeSourceInfo(NewTSI); 10708 NTTP->setType(NewTSI->getType()); 10709 } 10710 } 10711 10712 return false; 10713 } 10714 10715 /// Produces a formatted string that describes the binding of 10716 /// template parameters to template arguments. 10717 std::string 10718 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 10719 const TemplateArgumentList &Args) { 10720 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 10721 } 10722 10723 std::string 10724 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 10725 const TemplateArgument *Args, 10726 unsigned NumArgs) { 10727 SmallString<128> Str; 10728 llvm::raw_svector_ostream Out(Str); 10729 10730 if (!Params || Params->size() == 0 || NumArgs == 0) 10731 return std::string(); 10732 10733 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 10734 if (I >= NumArgs) 10735 break; 10736 10737 if (I == 0) 10738 Out << "[with "; 10739 else 10740 Out << ", "; 10741 10742 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 10743 Out << Id->getName(); 10744 } else { 10745 Out << '$' << I; 10746 } 10747 10748 Out << " = "; 10749 Args[I].print(getPrintingPolicy(), Out); 10750 } 10751 10752 Out << ']'; 10753 return std::string(Out.str()); 10754 } 10755 10756 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, 10757 CachedTokens &Toks) { 10758 if (!FD) 10759 return; 10760 10761 auto LPT = std::make_unique<LateParsedTemplate>(); 10762 10763 // Take tokens to avoid allocations 10764 LPT->Toks.swap(Toks); 10765 LPT->D = FnD; 10766 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT))); 10767 10768 FD->setLateTemplateParsed(true); 10769 } 10770 10771 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { 10772 if (!FD) 10773 return; 10774 FD->setLateTemplateParsed(false); 10775 } 10776 10777 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 10778 DeclContext *DC = CurContext; 10779 10780 while (DC) { 10781 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 10782 const FunctionDecl *FD = RD->isLocalClass(); 10783 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 10784 } else if (DC->isTranslationUnit() || DC->isNamespace()) 10785 return false; 10786 10787 DC = DC->getParent(); 10788 } 10789 return false; 10790 } 10791 10792 namespace { 10793 /// Walk the path from which a declaration was instantiated, and check 10794 /// that every explicit specialization along that path is visible. This enforces 10795 /// C++ [temp.expl.spec]/6: 10796 /// 10797 /// If a template, a member template or a member of a class template is 10798 /// explicitly specialized then that specialization shall be declared before 10799 /// the first use of that specialization that would cause an implicit 10800 /// instantiation to take place, in every translation unit in which such a 10801 /// use occurs; no diagnostic is required. 10802 /// 10803 /// and also C++ [temp.class.spec]/1: 10804 /// 10805 /// A partial specialization shall be declared before the first use of a 10806 /// class template specialization that would make use of the partial 10807 /// specialization as the result of an implicit or explicit instantiation 10808 /// in every translation unit in which such a use occurs; no diagnostic is 10809 /// required. 10810 class ExplicitSpecializationVisibilityChecker { 10811 Sema &S; 10812 SourceLocation Loc; 10813 llvm::SmallVector<Module *, 8> Modules; 10814 10815 public: 10816 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc) 10817 : S(S), Loc(Loc) {} 10818 10819 void check(NamedDecl *ND) { 10820 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 10821 return checkImpl(FD); 10822 if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) 10823 return checkImpl(RD); 10824 if (auto *VD = dyn_cast<VarDecl>(ND)) 10825 return checkImpl(VD); 10826 if (auto *ED = dyn_cast<EnumDecl>(ND)) 10827 return checkImpl(ED); 10828 } 10829 10830 private: 10831 void diagnose(NamedDecl *D, bool IsPartialSpec) { 10832 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization 10833 : Sema::MissingImportKind::ExplicitSpecialization; 10834 const bool Recover = true; 10835 10836 // If we got a custom set of modules (because only a subset of the 10837 // declarations are interesting), use them, otherwise let 10838 // diagnoseMissingImport intelligently pick some. 10839 if (Modules.empty()) 10840 S.diagnoseMissingImport(Loc, D, Kind, Recover); 10841 else 10842 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover); 10843 } 10844 10845 // Check a specific declaration. There are three problematic cases: 10846 // 10847 // 1) The declaration is an explicit specialization of a template 10848 // specialization. 10849 // 2) The declaration is an explicit specialization of a member of an 10850 // templated class. 10851 // 3) The declaration is an instantiation of a template, and that template 10852 // is an explicit specialization of a member of a templated class. 10853 // 10854 // We don't need to go any deeper than that, as the instantiation of the 10855 // surrounding class / etc is not triggered by whatever triggered this 10856 // instantiation, and thus should be checked elsewhere. 10857 template<typename SpecDecl> 10858 void checkImpl(SpecDecl *Spec) { 10859 bool IsHiddenExplicitSpecialization = false; 10860 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { 10861 IsHiddenExplicitSpecialization = 10862 Spec->getMemberSpecializationInfo() 10863 ? !S.hasVisibleMemberSpecialization(Spec, &Modules) 10864 : !S.hasVisibleExplicitSpecialization(Spec, &Modules); 10865 } else { 10866 checkInstantiated(Spec); 10867 } 10868 10869 if (IsHiddenExplicitSpecialization) 10870 diagnose(Spec->getMostRecentDecl(), false); 10871 } 10872 10873 void checkInstantiated(FunctionDecl *FD) { 10874 if (auto *TD = FD->getPrimaryTemplate()) 10875 checkTemplate(TD); 10876 } 10877 10878 void checkInstantiated(CXXRecordDecl *RD) { 10879 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD); 10880 if (!SD) 10881 return; 10882 10883 auto From = SD->getSpecializedTemplateOrPartial(); 10884 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) 10885 checkTemplate(TD); 10886 else if (auto *TD = 10887 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 10888 if (!S.hasVisibleDeclaration(TD)) 10889 diagnose(TD, true); 10890 checkTemplate(TD); 10891 } 10892 } 10893 10894 void checkInstantiated(VarDecl *RD) { 10895 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD); 10896 if (!SD) 10897 return; 10898 10899 auto From = SD->getSpecializedTemplateOrPartial(); 10900 if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) 10901 checkTemplate(TD); 10902 else if (auto *TD = 10903 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 10904 if (!S.hasVisibleDeclaration(TD)) 10905 diagnose(TD, true); 10906 checkTemplate(TD); 10907 } 10908 } 10909 10910 void checkInstantiated(EnumDecl *FD) {} 10911 10912 template<typename TemplDecl> 10913 void checkTemplate(TemplDecl *TD) { 10914 if (TD->isMemberSpecialization()) { 10915 if (!S.hasVisibleMemberSpecialization(TD, &Modules)) 10916 diagnose(TD->getMostRecentDecl(), false); 10917 } 10918 } 10919 }; 10920 } // end anonymous namespace 10921 10922 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { 10923 if (!getLangOpts().Modules) 10924 return; 10925 10926 ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec); 10927 } 10928 10929 /// Check whether a template partial specialization that we've discovered 10930 /// is hidden, and produce suitable diagnostics if so. 10931 void Sema::checkPartialSpecializationVisibility(SourceLocation Loc, 10932 NamedDecl *Spec) { 10933 llvm::SmallVector<Module *, 8> Modules; 10934 if (!hasVisibleDeclaration(Spec, &Modules)) 10935 diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules, 10936 MissingImportKind::PartialSpecialization, 10937 /*Recover*/true); 10938 } 10939