1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===// 7 // 8 // This file implements semantic analysis for C++ templates. 9 //===----------------------------------------------------------------------===// 10 11 #include "TreeTransform.h" 12 #include "clang/AST/ASTConsumer.h" 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclFriend.h" 15 #include "clang/AST/DeclTemplate.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/RecursiveASTVisitor.h" 19 #include "clang/AST/TypeVisitor.h" 20 #include "clang/Basic/Builtins.h" 21 #include "clang/Basic/LangOptions.h" 22 #include "clang/Basic/PartialDiagnostic.h" 23 #include "clang/Basic/Stack.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Sema/DeclSpec.h" 26 #include "clang/Sema/Lookup.h" 27 #include "clang/Sema/Overload.h" 28 #include "clang/Sema/ParsedTemplate.h" 29 #include "clang/Sema/Scope.h" 30 #include "clang/Sema/SemaInternal.h" 31 #include "clang/Sema/Template.h" 32 #include "clang/Sema/TemplateDeduction.h" 33 #include "llvm/ADT/SmallBitVector.h" 34 #include "llvm/ADT/SmallString.h" 35 #include "llvm/ADT/StringExtras.h" 36 37 #include <iterator> 38 using namespace clang; 39 using namespace sema; 40 41 // Exported for use by Parser. 42 SourceRange 43 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 44 unsigned N) { 45 if (!N) return SourceRange(); 46 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 47 } 48 49 /// \brief Determine whether the declaration found is acceptable as the name 50 /// of a template and, if so, return that template declaration. Otherwise, 51 /// returns null. 52 /// 53 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent 54 /// is true. In all other cases it will return a TemplateDecl (or null). 55 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D, 56 bool AllowFunctionTemplates, 57 bool AllowDependent) { 58 D = D->getUnderlyingDecl(); 59 60 if (isa<TemplateDecl>(D)) { 61 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 62 return nullptr; 63 64 return D; 65 } 66 67 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 68 // C++ [temp.local]p1: 69 // Like normal (non-template) classes, class templates have an 70 // injected-class-name (Clause 9). The injected-class-name 71 // can be used with or without a template-argument-list. When 72 // it is used without a template-argument-list, it is 73 // equivalent to the injected-class-name followed by the 74 // template-parameters of the class template enclosed in 75 // <>. When it is used with a template-argument-list, it 76 // refers to the specified class template specialization, 77 // which could be the current specialization or another 78 // specialization. 79 if (Record->isInjectedClassName()) { 80 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 81 if (Record->getDescribedClassTemplate()) 82 return Record->getDescribedClassTemplate(); 83 84 if (ClassTemplateSpecializationDecl *Spec 85 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 86 return Spec->getSpecializedTemplate(); 87 } 88 89 return nullptr; 90 } 91 92 // 'using Dependent::foo;' can resolve to a template name. 93 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an 94 // injected-class-name). 95 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D)) 96 return D; 97 98 return nullptr; 99 } 100 101 void Sema::FilterAcceptableTemplateNames(LookupResult &R, 102 bool AllowFunctionTemplates, 103 bool AllowDependent) { 104 LookupResult::Filter filter = R.makeFilter(); 105 while (filter.hasNext()) { 106 NamedDecl *Orig = filter.next(); 107 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent)) 108 filter.erase(); 109 } 110 filter.done(); 111 } 112 113 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 114 bool AllowFunctionTemplates, 115 bool AllowDependent, 116 bool AllowNonTemplateFunctions) { 117 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 118 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent)) 119 return true; 120 if (AllowNonTemplateFunctions && 121 isa<FunctionDecl>((*I)->getUnderlyingDecl())) 122 return true; 123 } 124 125 return false; 126 } 127 128 TemplateNameKind Sema::isTemplateName(Scope *S, 129 CXXScopeSpec &SS, 130 bool hasTemplateKeyword, 131 const UnqualifiedId &Name, 132 ParsedType ObjectTypePtr, 133 bool EnteringContext, 134 TemplateTy &TemplateResult, 135 bool &MemberOfUnknownSpecialization) { 136 assert(getLangOpts().CPlusPlus && "No template names in C!"); 137 138 DeclarationName TName; 139 MemberOfUnknownSpecialization = false; 140 141 switch (Name.getKind()) { 142 case UnqualifiedIdKind::IK_Identifier: 143 TName = DeclarationName(Name.Identifier); 144 break; 145 146 case UnqualifiedIdKind::IK_OperatorFunctionId: 147 TName = Context.DeclarationNames.getCXXOperatorName( 148 Name.OperatorFunctionId.Operator); 149 break; 150 151 case UnqualifiedIdKind::IK_LiteralOperatorId: 152 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 153 break; 154 155 default: 156 return TNK_Non_template; 157 } 158 159 QualType ObjectType = ObjectTypePtr.get(); 160 161 AssumedTemplateKind AssumedTemplate; 162 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName); 163 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 164 MemberOfUnknownSpecialization, SourceLocation(), 165 &AssumedTemplate)) 166 return TNK_Non_template; 167 168 if (AssumedTemplate != AssumedTemplateKind::None) { 169 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName)); 170 // Let the parser know whether we found nothing or found functions; if we 171 // found nothing, we want to more carefully check whether this is actually 172 // a function template name versus some other kind of undeclared identifier. 173 return AssumedTemplate == AssumedTemplateKind::FoundNothing 174 ? TNK_Undeclared_template 175 : TNK_Function_template; 176 } 177 178 if (R.empty()) 179 return TNK_Non_template; 180 181 NamedDecl *D = nullptr; 182 if (R.isAmbiguous()) { 183 // If we got an ambiguity involving a non-function template, treat this 184 // as a template name, and pick an arbitrary template for error recovery. 185 bool AnyFunctionTemplates = false; 186 for (NamedDecl *FoundD : R) { 187 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) { 188 if (isa<FunctionTemplateDecl>(FoundTemplate)) 189 AnyFunctionTemplates = true; 190 else { 191 D = FoundTemplate; 192 break; 193 } 194 } 195 } 196 197 // If we didn't find any templates at all, this isn't a template name. 198 // Leave the ambiguity for a later lookup to diagnose. 199 if (!D && !AnyFunctionTemplates) { 200 R.suppressDiagnostics(); 201 return TNK_Non_template; 202 } 203 204 // If the only templates were function templates, filter out the rest. 205 // We'll diagnose the ambiguity later. 206 if (!D) 207 FilterAcceptableTemplateNames(R); 208 } 209 210 // At this point, we have either picked a single template name declaration D 211 // or we have a non-empty set of results R containing either one template name 212 // declaration or a set of function templates. 213 214 TemplateName Template; 215 TemplateNameKind TemplateKind; 216 217 unsigned ResultCount = R.end() - R.begin(); 218 if (!D && ResultCount > 1) { 219 // We assume that we'll preserve the qualifier from a function 220 // template name in other ways. 221 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 222 TemplateKind = TNK_Function_template; 223 224 // We'll do this lookup again later. 225 R.suppressDiagnostics(); 226 } else { 227 if (!D) { 228 D = getAsTemplateNameDecl(*R.begin()); 229 assert(D && "unambiguous result is not a template name"); 230 } 231 232 if (isa<UnresolvedUsingValueDecl>(D)) { 233 // We don't yet know whether this is a template-name or not. 234 MemberOfUnknownSpecialization = true; 235 return TNK_Non_template; 236 } 237 238 TemplateDecl *TD = cast<TemplateDecl>(D); 239 240 if (SS.isSet() && !SS.isInvalid()) { 241 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 242 Template = Context.getQualifiedTemplateName(Qualifier, 243 hasTemplateKeyword, TD); 244 } else { 245 Template = TemplateName(TD); 246 } 247 248 if (isa<FunctionTemplateDecl>(TD)) { 249 TemplateKind = TNK_Function_template; 250 251 // We'll do this lookup again later. 252 R.suppressDiagnostics(); 253 } else { 254 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 255 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || 256 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)); 257 TemplateKind = 258 isa<VarTemplateDecl>(TD) ? TNK_Var_template : 259 isa<ConceptDecl>(TD) ? TNK_Concept_template : 260 TNK_Type_template; 261 } 262 } 263 264 TemplateResult = TemplateTy::make(Template); 265 return TemplateKind; 266 } 267 268 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, 269 SourceLocation NameLoc, 270 ParsedTemplateTy *Template) { 271 CXXScopeSpec SS; 272 bool MemberOfUnknownSpecialization = false; 273 274 // We could use redeclaration lookup here, but we don't need to: the 275 // syntactic form of a deduction guide is enough to identify it even 276 // if we can't look up the template name at all. 277 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); 278 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), 279 /*EnteringContext*/ false, 280 MemberOfUnknownSpecialization)) 281 return false; 282 283 if (R.empty()) return false; 284 if (R.isAmbiguous()) { 285 // FIXME: Diagnose an ambiguity if we find at least one template. 286 R.suppressDiagnostics(); 287 return false; 288 } 289 290 // We only treat template-names that name type templates as valid deduction 291 // guide names. 292 TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); 293 if (!TD || !getAsTypeTemplateDecl(TD)) 294 return false; 295 296 if (Template) 297 *Template = TemplateTy::make(TemplateName(TD)); 298 return true; 299 } 300 301 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 302 SourceLocation IILoc, 303 Scope *S, 304 const CXXScopeSpec *SS, 305 TemplateTy &SuggestedTemplate, 306 TemplateNameKind &SuggestedKind) { 307 // We can't recover unless there's a dependent scope specifier preceding the 308 // template name. 309 // FIXME: Typo correction? 310 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 311 computeDeclContext(*SS)) 312 return false; 313 314 // The code is missing a 'template' keyword prior to the dependent template 315 // name. 316 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 317 Diag(IILoc, diag::err_template_kw_missing) 318 << Qualifier << II.getName() 319 << FixItHint::CreateInsertion(IILoc, "template "); 320 SuggestedTemplate 321 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 322 SuggestedKind = TNK_Dependent_template_name; 323 return true; 324 } 325 326 bool Sema::LookupTemplateName(LookupResult &Found, 327 Scope *S, CXXScopeSpec &SS, 328 QualType ObjectType, 329 bool EnteringContext, 330 bool &MemberOfUnknownSpecialization, 331 SourceLocation TemplateKWLoc, 332 AssumedTemplateKind *ATK) { 333 if (ATK) 334 *ATK = AssumedTemplateKind::None; 335 336 Found.setTemplateNameLookup(true); 337 338 // Determine where to perform name lookup 339 MemberOfUnknownSpecialization = false; 340 DeclContext *LookupCtx = nullptr; 341 bool IsDependent = false; 342 if (!ObjectType.isNull()) { 343 // This nested-name-specifier occurs in a member access expression, e.g., 344 // x->B::f, and we are looking into the type of the object. 345 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 346 LookupCtx = computeDeclContext(ObjectType); 347 IsDependent = !LookupCtx && ObjectType->isDependentType(); 348 assert((IsDependent || !ObjectType->isIncompleteType() || 349 ObjectType->castAs<TagType>()->isBeingDefined()) && 350 "Caller should have completed object type"); 351 352 // Template names cannot appear inside an Objective-C class or object type 353 // or a vector type. 354 // 355 // FIXME: This is wrong. For example: 356 // 357 // template<typename T> using Vec = T __attribute__((ext_vector_type(4))); 358 // Vec<int> vi; 359 // vi.Vec<int>::~Vec<int>(); 360 // 361 // ... should be accepted but we will not treat 'Vec' as a template name 362 // here. The right thing to do would be to check if the name is a valid 363 // vector component name, and look up a template name if not. And similarly 364 // for lookups into Objective-C class and object types, where the same 365 // problem can arise. 366 if (ObjectType->isObjCObjectOrInterfaceType() || 367 ObjectType->isVectorType()) { 368 Found.clear(); 369 return false; 370 } 371 } else if (SS.isSet()) { 372 // This nested-name-specifier occurs after another nested-name-specifier, 373 // so long into the context associated with the prior nested-name-specifier. 374 LookupCtx = computeDeclContext(SS, EnteringContext); 375 IsDependent = !LookupCtx; 376 377 // The declaration context must be complete. 378 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 379 return true; 380 } 381 382 bool ObjectTypeSearchedInScope = false; 383 bool AllowFunctionTemplatesInLookup = true; 384 if (LookupCtx) { 385 // Perform "qualified" name lookup into the declaration context we 386 // computed, which is either the type of the base of a member access 387 // expression or the declaration context associated with a prior 388 // nested-name-specifier. 389 LookupQualifiedName(Found, LookupCtx); 390 391 // FIXME: The C++ standard does not clearly specify what happens in the 392 // case where the object type is dependent, and implementations vary. In 393 // Clang, we treat a name after a . or -> as a template-name if lookup 394 // finds a non-dependent member or member of the current instantiation that 395 // is a type template, or finds no such members and lookup in the context 396 // of the postfix-expression finds a type template. In the latter case, the 397 // name is nonetheless dependent, and we may resolve it to a member of an 398 // unknown specialization when we come to instantiate the template. 399 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 400 } 401 402 if (!SS.isSet() && (ObjectType.isNull() || Found.empty())) { 403 // C++ [basic.lookup.classref]p1: 404 // In a class member access expression (5.2.5), if the . or -> token is 405 // immediately followed by an identifier followed by a <, the 406 // identifier must be looked up to determine whether the < is the 407 // beginning of a template argument list (14.2) or a less-than operator. 408 // The identifier is first looked up in the class of the object 409 // expression. If the identifier is not found, it is then looked up in 410 // the context of the entire postfix-expression and shall name a class 411 // template. 412 if (S) 413 LookupName(Found, S); 414 415 if (!ObjectType.isNull()) { 416 // FIXME: We should filter out all non-type templates here, particularly 417 // variable templates and concepts. But the exclusion of alias templates 418 // and template template parameters is a wording defect. 419 AllowFunctionTemplatesInLookup = false; 420 ObjectTypeSearchedInScope = true; 421 } 422 423 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 424 } 425 426 if (Found.isAmbiguous()) 427 return false; 428 429 if (ATK && !SS.isSet() && ObjectType.isNull() && TemplateKWLoc.isInvalid()) { 430 // C++2a [temp.names]p2: 431 // A name is also considered to refer to a template if it is an 432 // unqualified-id followed by a < and name lookup finds either one or more 433 // functions or finds nothing. 434 // 435 // To keep our behavior consistent, we apply the "finds nothing" part in 436 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we 437 // successfully form a call to an undeclared template-id. 438 bool AllFunctions = 439 getLangOpts().CPlusPlus2a && 440 std::all_of(Found.begin(), Found.end(), [](NamedDecl *ND) { 441 return isa<FunctionDecl>(ND->getUnderlyingDecl()); 442 }); 443 if (AllFunctions || (Found.empty() && !IsDependent)) { 444 // If lookup found any functions, or if this is a name that can only be 445 // used for a function, then strongly assume this is a function 446 // template-id. 447 *ATK = (Found.empty() && Found.getLookupName().isIdentifier()) 448 ? AssumedTemplateKind::FoundNothing 449 : AssumedTemplateKind::FoundFunctions; 450 Found.clear(); 451 return false; 452 } 453 } 454 455 if (Found.empty() && !IsDependent) { 456 // If we did not find any names, attempt to correct any typos. 457 DeclarationName Name = Found.getLookupName(); 458 Found.clear(); 459 // Simple filter callback that, for keywords, only accepts the C++ *_cast 460 DefaultFilterCCC FilterCCC{}; 461 FilterCCC.WantTypeSpecifiers = false; 462 FilterCCC.WantExpressionKeywords = false; 463 FilterCCC.WantRemainingKeywords = false; 464 FilterCCC.WantCXXNamedCasts = true; 465 if (TypoCorrection Corrected = 466 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S, 467 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) { 468 if (auto *ND = Corrected.getFoundDecl()) 469 Found.addDecl(ND); 470 FilterAcceptableTemplateNames(Found); 471 if (Found.isAmbiguous()) { 472 Found.clear(); 473 } else if (!Found.empty()) { 474 Found.setLookupName(Corrected.getCorrection()); 475 if (LookupCtx) { 476 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 477 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 478 Name.getAsString() == CorrectedStr; 479 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) 480 << Name << LookupCtx << DroppedSpecifier 481 << SS.getRange()); 482 } else { 483 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); 484 } 485 } 486 } 487 } 488 489 NamedDecl *ExampleLookupResult = 490 Found.empty() ? nullptr : Found.getRepresentativeDecl(); 491 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 492 if (Found.empty()) { 493 if (IsDependent) { 494 MemberOfUnknownSpecialization = true; 495 return false; 496 } 497 498 // If a 'template' keyword was used, a lookup that finds only non-template 499 // names is an error. 500 if (ExampleLookupResult && TemplateKWLoc.isValid()) { 501 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) 502 << Found.getLookupName() << SS.getRange(); 503 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), 504 diag::note_template_kw_refers_to_non_template) 505 << Found.getLookupName(); 506 return true; 507 } 508 509 return false; 510 } 511 512 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 513 !getLangOpts().CPlusPlus11) { 514 // C++03 [basic.lookup.classref]p1: 515 // [...] If the lookup in the class of the object expression finds a 516 // template, the name is also looked up in the context of the entire 517 // postfix-expression and [...] 518 // 519 // Note: C++11 does not perform this second lookup. 520 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 521 LookupOrdinaryName); 522 FoundOuter.setTemplateNameLookup(true); 523 LookupName(FoundOuter, S); 524 // FIXME: We silently accept an ambiguous lookup here, in violation of 525 // [basic.lookup]/1. 526 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 527 528 NamedDecl *OuterTemplate; 529 if (FoundOuter.empty()) { 530 // - if the name is not found, the name found in the class of the 531 // object expression is used, otherwise 532 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() || 533 !(OuterTemplate = 534 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) { 535 // - if the name is found in the context of the entire 536 // postfix-expression and does not name a class template, the name 537 // found in the class of the object expression is used, otherwise 538 FoundOuter.clear(); 539 } else if (!Found.isSuppressingDiagnostics()) { 540 // - if the name found is a class template, it must refer to the same 541 // entity as the one found in the class of the object expression, 542 // otherwise the program is ill-formed. 543 if (!Found.isSingleResult() || 544 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() != 545 OuterTemplate->getCanonicalDecl()) { 546 Diag(Found.getNameLoc(), 547 diag::ext_nested_name_member_ref_lookup_ambiguous) 548 << Found.getLookupName() 549 << ObjectType; 550 Diag(Found.getRepresentativeDecl()->getLocation(), 551 diag::note_ambig_member_ref_object_type) 552 << ObjectType; 553 Diag(FoundOuter.getFoundDecl()->getLocation(), 554 diag::note_ambig_member_ref_scope); 555 556 // Recover by taking the template that we found in the object 557 // expression's type. 558 } 559 } 560 } 561 562 return false; 563 } 564 565 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, 566 SourceLocation Less, 567 SourceLocation Greater) { 568 if (TemplateName.isInvalid()) 569 return; 570 571 DeclarationNameInfo NameInfo; 572 CXXScopeSpec SS; 573 LookupNameKind LookupKind; 574 575 DeclContext *LookupCtx = nullptr; 576 NamedDecl *Found = nullptr; 577 bool MissingTemplateKeyword = false; 578 579 // Figure out what name we looked up. 580 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) { 581 NameInfo = DRE->getNameInfo(); 582 SS.Adopt(DRE->getQualifierLoc()); 583 LookupKind = LookupOrdinaryName; 584 Found = DRE->getFoundDecl(); 585 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) { 586 NameInfo = ME->getMemberNameInfo(); 587 SS.Adopt(ME->getQualifierLoc()); 588 LookupKind = LookupMemberName; 589 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); 590 Found = ME->getMemberDecl(); 591 } else if (auto *DSDRE = 592 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) { 593 NameInfo = DSDRE->getNameInfo(); 594 SS.Adopt(DSDRE->getQualifierLoc()); 595 MissingTemplateKeyword = true; 596 } else if (auto *DSME = 597 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) { 598 NameInfo = DSME->getMemberNameInfo(); 599 SS.Adopt(DSME->getQualifierLoc()); 600 MissingTemplateKeyword = true; 601 } else { 602 llvm_unreachable("unexpected kind of potential template name"); 603 } 604 605 // If this is a dependent-scope lookup, diagnose that the 'template' keyword 606 // was missing. 607 if (MissingTemplateKeyword) { 608 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing) 609 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater); 610 return; 611 } 612 613 // Try to correct the name by looking for templates and C++ named casts. 614 struct TemplateCandidateFilter : CorrectionCandidateCallback { 615 Sema &S; 616 TemplateCandidateFilter(Sema &S) : S(S) { 617 WantTypeSpecifiers = false; 618 WantExpressionKeywords = false; 619 WantRemainingKeywords = false; 620 WantCXXNamedCasts = true; 621 }; 622 bool ValidateCandidate(const TypoCorrection &Candidate) override { 623 if (auto *ND = Candidate.getCorrectionDecl()) 624 return S.getAsTemplateNameDecl(ND); 625 return Candidate.isKeyword(); 626 } 627 628 std::unique_ptr<CorrectionCandidateCallback> clone() override { 629 return std::make_unique<TemplateCandidateFilter>(*this); 630 } 631 }; 632 633 DeclarationName Name = NameInfo.getName(); 634 TemplateCandidateFilter CCC(*this); 635 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC, 636 CTK_ErrorRecovery, LookupCtx)) { 637 auto *ND = Corrected.getFoundDecl(); 638 if (ND) 639 ND = getAsTemplateNameDecl(ND); 640 if (ND || Corrected.isKeyword()) { 641 if (LookupCtx) { 642 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 643 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 644 Name.getAsString() == CorrectedStr; 645 diagnoseTypo(Corrected, 646 PDiag(diag::err_non_template_in_member_template_id_suggest) 647 << Name << LookupCtx << DroppedSpecifier 648 << SS.getRange(), false); 649 } else { 650 diagnoseTypo(Corrected, 651 PDiag(diag::err_non_template_in_template_id_suggest) 652 << Name, false); 653 } 654 if (Found) 655 Diag(Found->getLocation(), 656 diag::note_non_template_in_template_id_found); 657 return; 658 } 659 } 660 661 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) 662 << Name << SourceRange(Less, Greater); 663 if (Found) 664 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); 665 } 666 667 /// ActOnDependentIdExpression - Handle a dependent id-expression that 668 /// was just parsed. This is only possible with an explicit scope 669 /// specifier naming a dependent type. 670 ExprResult 671 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 672 SourceLocation TemplateKWLoc, 673 const DeclarationNameInfo &NameInfo, 674 bool isAddressOfOperand, 675 const TemplateArgumentListInfo *TemplateArgs) { 676 DeclContext *DC = getFunctionLevelDeclContext(); 677 678 // C++11 [expr.prim.general]p12: 679 // An id-expression that denotes a non-static data member or non-static 680 // member function of a class can only be used: 681 // (...) 682 // - if that id-expression denotes a non-static data member and it 683 // appears in an unevaluated operand. 684 // 685 // If this might be the case, form a DependentScopeDeclRefExpr instead of a 686 // CXXDependentScopeMemberExpr. The former can instantiate to either 687 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is 688 // always a MemberExpr. 689 bool MightBeCxx11UnevalField = 690 getLangOpts().CPlusPlus11 && isUnevaluatedContext(); 691 692 // Check if the nested name specifier is an enum type. 693 bool IsEnum = false; 694 if (NestedNameSpecifier *NNS = SS.getScopeRep()) 695 IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType()); 696 697 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum && 698 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) { 699 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(); 700 701 // Since the 'this' expression is synthesized, we don't need to 702 // perform the double-lookup check. 703 NamedDecl *FirstQualifierInScope = nullptr; 704 705 return CXXDependentScopeMemberExpr::Create( 706 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true, 707 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc, 708 FirstQualifierInScope, NameInfo, TemplateArgs); 709 } 710 711 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 712 } 713 714 ExprResult 715 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 716 SourceLocation TemplateKWLoc, 717 const DeclarationNameInfo &NameInfo, 718 const TemplateArgumentListInfo *TemplateArgs) { 719 // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc 720 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 721 if (!QualifierLoc) 722 return ExprError(); 723 724 return DependentScopeDeclRefExpr::Create( 725 Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs); 726 } 727 728 729 /// Determine whether we would be unable to instantiate this template (because 730 /// it either has no definition, or is in the process of being instantiated). 731 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, 732 NamedDecl *Instantiation, 733 bool InstantiatedFromMember, 734 const NamedDecl *Pattern, 735 const NamedDecl *PatternDef, 736 TemplateSpecializationKind TSK, 737 bool Complain /*= true*/) { 738 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || 739 isa<VarDecl>(Instantiation)); 740 741 bool IsEntityBeingDefined = false; 742 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef)) 743 IsEntityBeingDefined = TD->isBeingDefined(); 744 745 if (PatternDef && !IsEntityBeingDefined) { 746 NamedDecl *SuggestedDef = nullptr; 747 if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef, 748 /*OnlyNeedComplete*/false)) { 749 // If we're allowed to diagnose this and recover, do so. 750 bool Recover = Complain && !isSFINAEContext(); 751 if (Complain) 752 diagnoseMissingImport(PointOfInstantiation, SuggestedDef, 753 Sema::MissingImportKind::Definition, Recover); 754 return !Recover; 755 } 756 return false; 757 } 758 759 if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) 760 return true; 761 762 llvm::Optional<unsigned> Note; 763 QualType InstantiationTy; 764 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation)) 765 InstantiationTy = Context.getTypeDeclType(TD); 766 if (PatternDef) { 767 Diag(PointOfInstantiation, 768 diag::err_template_instantiate_within_definition) 769 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) 770 << InstantiationTy; 771 // Not much point in noting the template declaration here, since 772 // we're lexically inside it. 773 Instantiation->setInvalidDecl(); 774 } else if (InstantiatedFromMember) { 775 if (isa<FunctionDecl>(Instantiation)) { 776 Diag(PointOfInstantiation, 777 diag::err_explicit_instantiation_undefined_member) 778 << /*member function*/ 1 << Instantiation->getDeclName() 779 << Instantiation->getDeclContext(); 780 Note = diag::note_explicit_instantiation_here; 781 } else { 782 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!"); 783 Diag(PointOfInstantiation, 784 diag::err_implicit_instantiate_member_undefined) 785 << InstantiationTy; 786 Note = diag::note_member_declared_at; 787 } 788 } else { 789 if (isa<FunctionDecl>(Instantiation)) { 790 Diag(PointOfInstantiation, 791 diag::err_explicit_instantiation_undefined_func_template) 792 << Pattern; 793 Note = diag::note_explicit_instantiation_here; 794 } else if (isa<TagDecl>(Instantiation)) { 795 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) 796 << (TSK != TSK_ImplicitInstantiation) 797 << InstantiationTy; 798 Note = diag::note_template_decl_here; 799 } else { 800 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!"); 801 if (isa<VarTemplateSpecializationDecl>(Instantiation)) { 802 Diag(PointOfInstantiation, 803 diag::err_explicit_instantiation_undefined_var_template) 804 << Instantiation; 805 Instantiation->setInvalidDecl(); 806 } else 807 Diag(PointOfInstantiation, 808 diag::err_explicit_instantiation_undefined_member) 809 << /*static data member*/ 2 << Instantiation->getDeclName() 810 << Instantiation->getDeclContext(); 811 Note = diag::note_explicit_instantiation_here; 812 } 813 } 814 if (Note) // Diagnostics were emitted. 815 Diag(Pattern->getLocation(), Note.getValue()); 816 817 // In general, Instantiation isn't marked invalid to get more than one 818 // error for multiple undefined instantiations. But the code that does 819 // explicit declaration -> explicit definition conversion can't handle 820 // invalid declarations, so mark as invalid in that case. 821 if (TSK == TSK_ExplicitInstantiationDeclaration) 822 Instantiation->setInvalidDecl(); 823 return true; 824 } 825 826 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 827 /// that the template parameter 'PrevDecl' is being shadowed by a new 828 /// declaration at location Loc. Returns true to indicate that this is 829 /// an error, and false otherwise. 830 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 831 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 832 833 // C++ [temp.local]p4: 834 // A template-parameter shall not be redeclared within its 835 // scope (including nested scopes). 836 // 837 // Make this a warning when MSVC compatibility is requested. 838 unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow 839 : diag::err_template_param_shadow; 840 Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName(); 841 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 842 } 843 844 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 845 /// the parameter D to reference the templated declaration and return a pointer 846 /// to the template declaration. Otherwise, do nothing to D and return null. 847 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 848 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 849 D = Temp->getTemplatedDecl(); 850 return Temp; 851 } 852 return nullptr; 853 } 854 855 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 856 SourceLocation EllipsisLoc) const { 857 assert(Kind == Template && 858 "Only template template arguments can be pack expansions here"); 859 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 860 "Template template argument pack expansion without packs"); 861 ParsedTemplateArgument Result(*this); 862 Result.EllipsisLoc = EllipsisLoc; 863 return Result; 864 } 865 866 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 867 const ParsedTemplateArgument &Arg) { 868 869 switch (Arg.getKind()) { 870 case ParsedTemplateArgument::Type: { 871 TypeSourceInfo *DI; 872 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 873 if (!DI) 874 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 875 return TemplateArgumentLoc(TemplateArgument(T), DI); 876 } 877 878 case ParsedTemplateArgument::NonType: { 879 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 880 return TemplateArgumentLoc(TemplateArgument(E), E); 881 } 882 883 case ParsedTemplateArgument::Template: { 884 TemplateName Template = Arg.getAsTemplate().get(); 885 TemplateArgument TArg; 886 if (Arg.getEllipsisLoc().isValid()) 887 TArg = TemplateArgument(Template, Optional<unsigned int>()); 888 else 889 TArg = Template; 890 return TemplateArgumentLoc(TArg, 891 Arg.getScopeSpec().getWithLocInContext( 892 SemaRef.Context), 893 Arg.getLocation(), 894 Arg.getEllipsisLoc()); 895 } 896 } 897 898 llvm_unreachable("Unhandled parsed template argument"); 899 } 900 901 /// Translates template arguments as provided by the parser 902 /// into template arguments used by semantic analysis. 903 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 904 TemplateArgumentListInfo &TemplateArgs) { 905 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 906 TemplateArgs.addArgument(translateTemplateArgument(*this, 907 TemplateArgsIn[I])); 908 } 909 910 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, 911 SourceLocation Loc, 912 IdentifierInfo *Name) { 913 NamedDecl *PrevDecl = SemaRef.LookupSingleName( 914 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 915 if (PrevDecl && PrevDecl->isTemplateParameter()) 916 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); 917 } 918 919 /// Convert a parsed type into a parsed template argument. This is mostly 920 /// trivial, except that we may have parsed a C++17 deduced class template 921 /// specialization type, in which case we should form a template template 922 /// argument instead of a type template argument. 923 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { 924 TypeSourceInfo *TInfo; 925 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo); 926 if (T.isNull()) 927 return ParsedTemplateArgument(); 928 assert(TInfo && "template argument with no location"); 929 930 // If we might have formed a deduced template specialization type, convert 931 // it to a template template argument. 932 if (getLangOpts().CPlusPlus17) { 933 TypeLoc TL = TInfo->getTypeLoc(); 934 SourceLocation EllipsisLoc; 935 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { 936 EllipsisLoc = PET.getEllipsisLoc(); 937 TL = PET.getPatternLoc(); 938 } 939 940 CXXScopeSpec SS; 941 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { 942 SS.Adopt(ET.getQualifierLoc()); 943 TL = ET.getNamedTypeLoc(); 944 } 945 946 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { 947 TemplateName Name = DTST.getTypePtr()->getTemplateName(); 948 if (SS.isSet()) 949 Name = Context.getQualifiedTemplateName(SS.getScopeRep(), 950 /*HasTemplateKeyword*/ false, 951 Name.getAsTemplateDecl()); 952 ParsedTemplateArgument Result(SS, TemplateTy::make(Name), 953 DTST.getTemplateNameLoc()); 954 if (EllipsisLoc.isValid()) 955 Result = Result.getTemplatePackExpansion(EllipsisLoc); 956 return Result; 957 } 958 } 959 960 // This is a normal type template argument. Note, if the type template 961 // argument is an injected-class-name for a template, it has a dual nature 962 // and can be used as either a type or a template. We handle that in 963 // convertTypeTemplateArgumentToTemplate. 964 return ParsedTemplateArgument(ParsedTemplateArgument::Type, 965 ParsedType.get().getAsOpaquePtr(), 966 TInfo->getTypeLoc().getBeginLoc()); 967 } 968 969 /// ActOnTypeParameter - Called when a C++ template type parameter 970 /// (e.g., "typename T") has been parsed. Typename specifies whether 971 /// the keyword "typename" was used to declare the type parameter 972 /// (otherwise, "class" was used), and KeyLoc is the location of the 973 /// "class" or "typename" keyword. ParamName is the name of the 974 /// parameter (NULL indicates an unnamed template parameter) and 975 /// ParamNameLoc is the location of the parameter name (if any). 976 /// If the type parameter has a default argument, it will be added 977 /// later via ActOnTypeParameterDefault. 978 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, 979 SourceLocation EllipsisLoc, 980 SourceLocation KeyLoc, 981 IdentifierInfo *ParamName, 982 SourceLocation ParamNameLoc, 983 unsigned Depth, unsigned Position, 984 SourceLocation EqualLoc, 985 ParsedType DefaultArg, 986 bool HasTypeConstraint) { 987 assert(S->isTemplateParamScope() && 988 "Template type parameter not in template parameter scope!"); 989 990 bool IsParameterPack = EllipsisLoc.isValid(); 991 TemplateTypeParmDecl *Param 992 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 993 KeyLoc, ParamNameLoc, Depth, Position, 994 ParamName, Typename, IsParameterPack, 995 HasTypeConstraint); 996 Param->setAccess(AS_public); 997 998 if (Param->isParameterPack()) 999 if (auto *LSI = getEnclosingLambda()) 1000 LSI->LocalPacks.push_back(Param); 1001 1002 if (ParamName) { 1003 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); 1004 1005 // Add the template parameter into the current scope. 1006 S->AddDecl(Param); 1007 IdResolver.AddDecl(Param); 1008 } 1009 1010 // C++0x [temp.param]p9: 1011 // A default template-argument may be specified for any kind of 1012 // template-parameter that is not a template parameter pack. 1013 if (DefaultArg && IsParameterPack) { 1014 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1015 DefaultArg = nullptr; 1016 } 1017 1018 // Handle the default argument, if provided. 1019 if (DefaultArg) { 1020 TypeSourceInfo *DefaultTInfo; 1021 GetTypeFromParser(DefaultArg, &DefaultTInfo); 1022 1023 assert(DefaultTInfo && "expected source information for type"); 1024 1025 // Check for unexpanded parameter packs. 1026 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo, 1027 UPPC_DefaultArgument)) 1028 return Param; 1029 1030 // Check the template argument itself. 1031 if (CheckTemplateArgument(Param, DefaultTInfo)) { 1032 Param->setInvalidDecl(); 1033 return Param; 1034 } 1035 1036 Param->setDefaultArgument(DefaultTInfo); 1037 } 1038 1039 return Param; 1040 } 1041 1042 /// Convert the parser's template argument list representation into our form. 1043 static TemplateArgumentListInfo 1044 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { 1045 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, 1046 TemplateId.RAngleLoc); 1047 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), 1048 TemplateId.NumArgs); 1049 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 1050 return TemplateArgs; 1051 } 1052 1053 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS, 1054 TemplateIdAnnotation *TypeConstr, 1055 TemplateTypeParmDecl *ConstrainedParameter, 1056 SourceLocation EllipsisLoc) { 1057 ConceptDecl *CD = 1058 cast<ConceptDecl>(TypeConstr->Template.get().getAsTemplateDecl()); 1059 1060 // C++2a [temp.param]p4: 1061 // [...] The concept designated by a type-constraint shall be a type 1062 // concept ([temp.concept]). 1063 if (!CD->isTypeConcept()) { 1064 Diag(TypeConstr->TemplateNameLoc, 1065 diag::err_type_constraint_non_type_concept); 1066 return true; 1067 } 1068 1069 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid(); 1070 1071 if (!WereArgsSpecified && 1072 CD->getTemplateParameters()->getMinRequiredArguments() > 1) { 1073 Diag(TypeConstr->TemplateNameLoc, 1074 diag::err_type_constraint_missing_arguments) << CD; 1075 return true; 1076 } 1077 1078 TemplateArgumentListInfo TemplateArgs; 1079 if (TypeConstr->LAngleLoc.isValid()) { 1080 TemplateArgs = 1081 makeTemplateArgumentListInfo(*this, *TypeConstr); 1082 } 1083 return AttachTypeConstraint( 1084 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(), 1085 DeclarationNameInfo(DeclarationName(TypeConstr->Name), 1086 TypeConstr->TemplateNameLoc), CD, 1087 TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr, 1088 ConstrainedParameter, EllipsisLoc); 1089 } 1090 1091 template<typename ArgumentLocAppender> 1092 static ExprResult formImmediatelyDeclaredConstraint( 1093 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, 1094 ConceptDecl *NamedConcept, SourceLocation LAngleLoc, 1095 SourceLocation RAngleLoc, QualType ConstrainedType, 1096 SourceLocation ParamNameLoc, ArgumentLocAppender Appender, 1097 SourceLocation EllipsisLoc) { 1098 1099 TemplateArgumentListInfo ConstraintArgs; 1100 ConstraintArgs.addArgument( 1101 S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType), 1102 /*NTTPType=*/QualType(), ParamNameLoc)); 1103 1104 ConstraintArgs.setRAngleLoc(RAngleLoc); 1105 ConstraintArgs.setLAngleLoc(LAngleLoc); 1106 Appender(ConstraintArgs); 1107 1108 // C++2a [temp.param]p4: 1109 // [...] This constraint-expression E is called the immediately-declared 1110 // constraint of T. [...] 1111 CXXScopeSpec SS; 1112 SS.Adopt(NS); 1113 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId( 1114 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo, 1115 /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs); 1116 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid()) 1117 return ImmediatelyDeclaredConstraint; 1118 1119 // C++2a [temp.param]p4: 1120 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). 1121 // 1122 // We have the following case: 1123 // 1124 // template<typename T> concept C1 = true; 1125 // template<C1... T> struct s1; 1126 // 1127 // The constraint: (C1<T> && ...) 1128 return S.BuildCXXFoldExpr(/*LParenLoc=*/SourceLocation(), 1129 ImmediatelyDeclaredConstraint.get(), BO_LAnd, 1130 EllipsisLoc, /*RHS=*/nullptr, 1131 /*RParenLoc=*/SourceLocation(), 1132 /*NumExpansions=*/None); 1133 } 1134 1135 /// Attach a type-constraint to a template parameter. 1136 /// \returns true if an error occured. This can happen if the 1137 /// immediately-declared constraint could not be formed (e.g. incorrect number 1138 /// of arguments for the named concept). 1139 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS, 1140 DeclarationNameInfo NameInfo, 1141 ConceptDecl *NamedConcept, 1142 const TemplateArgumentListInfo *TemplateArgs, 1143 TemplateTypeParmDecl *ConstrainedParameter, 1144 SourceLocation EllipsisLoc) { 1145 // C++2a [temp.param]p4: 1146 // [...] If Q is of the form C<A1, ..., An>, then let E' be 1147 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...] 1148 const ASTTemplateArgumentListInfo *ArgsAsWritten = 1149 TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context, 1150 *TemplateArgs) : nullptr; 1151 1152 QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0); 1153 1154 ExprResult ImmediatelyDeclaredConstraint = 1155 formImmediatelyDeclaredConstraint( 1156 *this, NS, NameInfo, NamedConcept, 1157 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(), 1158 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(), 1159 ParamAsArgument, ConstrainedParameter->getLocation(), 1160 [&] (TemplateArgumentListInfo &ConstraintArgs) { 1161 if (TemplateArgs) 1162 for (const auto &ArgLoc : TemplateArgs->arguments()) 1163 ConstraintArgs.addArgument(ArgLoc); 1164 }, EllipsisLoc); 1165 if (ImmediatelyDeclaredConstraint.isInvalid()) 1166 return true; 1167 1168 ConstrainedParameter->setTypeConstraint(NS, NameInfo, 1169 /*FoundDecl=*/NamedConcept, 1170 NamedConcept, ArgsAsWritten, 1171 ImmediatelyDeclaredConstraint.get()); 1172 return false; 1173 } 1174 1175 bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP, 1176 SourceLocation EllipsisLoc) { 1177 if (NTTP->getType() != TL.getType() || 1178 TL.getAutoKeyword() != AutoTypeKeyword::Auto) { 1179 Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1180 diag::err_unsupported_placeholder_constraint) 1181 << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange(); 1182 return true; 1183 } 1184 // FIXME: Concepts: This should be the type of the placeholder, but this is 1185 // unclear in the wording right now. 1186 DeclRefExpr *Ref = BuildDeclRefExpr(NTTP, NTTP->getType(), VK_RValue, 1187 NTTP->getLocation()); 1188 if (!Ref) 1189 return true; 1190 ExprResult ImmediatelyDeclaredConstraint = 1191 formImmediatelyDeclaredConstraint( 1192 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(), 1193 TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(), 1194 BuildDecltypeType(Ref, NTTP->getLocation()), NTTP->getLocation(), 1195 [&] (TemplateArgumentListInfo &ConstraintArgs) { 1196 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I) 1197 ConstraintArgs.addArgument(TL.getArgLoc(I)); 1198 }, EllipsisLoc); 1199 if (ImmediatelyDeclaredConstraint.isInvalid() || 1200 !ImmediatelyDeclaredConstraint.isUsable()) 1201 return true; 1202 1203 NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get()); 1204 return false; 1205 } 1206 1207 /// Check that the type of a non-type template parameter is 1208 /// well-formed. 1209 /// 1210 /// \returns the (possibly-promoted) parameter type if valid; 1211 /// otherwise, produces a diagnostic and returns a NULL type. 1212 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, 1213 SourceLocation Loc) { 1214 if (TSI->getType()->isUndeducedType()) { 1215 // C++17 [temp.dep.expr]p3: 1216 // An id-expression is type-dependent if it contains 1217 // - an identifier associated by name lookup with a non-type 1218 // template-parameter declared with a type that contains a 1219 // placeholder type (7.1.7.4), 1220 TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy); 1221 } 1222 1223 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc); 1224 } 1225 1226 QualType Sema::CheckNonTypeTemplateParameterType(QualType T, 1227 SourceLocation Loc) { 1228 // We don't allow variably-modified types as the type of non-type template 1229 // parameters. 1230 if (T->isVariablyModifiedType()) { 1231 Diag(Loc, diag::err_variably_modified_nontype_template_param) 1232 << T; 1233 return QualType(); 1234 } 1235 1236 // C++ [temp.param]p4: 1237 // 1238 // A non-type template-parameter shall have one of the following 1239 // (optionally cv-qualified) types: 1240 // 1241 // -- integral or enumeration type, 1242 if (T->isIntegralOrEnumerationType() || 1243 // -- pointer to object or pointer to function, 1244 T->isPointerType() || 1245 // -- reference to object or reference to function, 1246 T->isReferenceType() || 1247 // -- pointer to member, 1248 T->isMemberPointerType() || 1249 // -- std::nullptr_t. 1250 T->isNullPtrType() || 1251 // Allow use of auto in template parameter declarations. 1252 T->isUndeducedType()) { 1253 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 1254 // are ignored when determining its type. 1255 return T.getUnqualifiedType(); 1256 } 1257 1258 // C++ [temp.param]p8: 1259 // 1260 // A non-type template-parameter of type "array of T" or 1261 // "function returning T" is adjusted to be of type "pointer to 1262 // T" or "pointer to function returning T", respectively. 1263 if (T->isArrayType() || T->isFunctionType()) 1264 return Context.getDecayedType(T); 1265 1266 // If T is a dependent type, we can't do the check now, so we 1267 // assume that it is well-formed. Note that stripping off the 1268 // qualifiers here is not really correct if T turns out to be 1269 // an array type, but we'll recompute the type everywhere it's 1270 // used during instantiation, so that should be OK. (Using the 1271 // qualified type is equally wrong.) 1272 if (T->isDependentType()) 1273 return T.getUnqualifiedType(); 1274 1275 Diag(Loc, diag::err_template_nontype_parm_bad_type) 1276 << T; 1277 1278 return QualType(); 1279 } 1280 1281 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 1282 unsigned Depth, 1283 unsigned Position, 1284 SourceLocation EqualLoc, 1285 Expr *Default) { 1286 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 1287 1288 // Check that we have valid decl-specifiers specified. 1289 auto CheckValidDeclSpecifiers = [this, &D] { 1290 // C++ [temp.param] 1291 // p1 1292 // template-parameter: 1293 // ... 1294 // parameter-declaration 1295 // p2 1296 // ... A storage class shall not be specified in a template-parameter 1297 // declaration. 1298 // [dcl.typedef]p1: 1299 // The typedef specifier [...] shall not be used in the decl-specifier-seq 1300 // of a parameter-declaration 1301 const DeclSpec &DS = D.getDeclSpec(); 1302 auto EmitDiag = [this](SourceLocation Loc) { 1303 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) 1304 << FixItHint::CreateRemoval(Loc); 1305 }; 1306 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) 1307 EmitDiag(DS.getStorageClassSpecLoc()); 1308 1309 if (DS.getThreadStorageClassSpec() != TSCS_unspecified) 1310 EmitDiag(DS.getThreadStorageClassSpecLoc()); 1311 1312 // [dcl.inline]p1: 1313 // The inline specifier can be applied only to the declaration or 1314 // definition of a variable or function. 1315 1316 if (DS.isInlineSpecified()) 1317 EmitDiag(DS.getInlineSpecLoc()); 1318 1319 // [dcl.constexpr]p1: 1320 // The constexpr specifier shall be applied only to the definition of a 1321 // variable or variable template or the declaration of a function or 1322 // function template. 1323 1324 if (DS.hasConstexprSpecifier()) 1325 EmitDiag(DS.getConstexprSpecLoc()); 1326 1327 // [dcl.fct.spec]p1: 1328 // Function-specifiers can be used only in function declarations. 1329 1330 if (DS.isVirtualSpecified()) 1331 EmitDiag(DS.getVirtualSpecLoc()); 1332 1333 if (DS.hasExplicitSpecifier()) 1334 EmitDiag(DS.getExplicitSpecLoc()); 1335 1336 if (DS.isNoreturnSpecified()) 1337 EmitDiag(DS.getNoreturnSpecLoc()); 1338 }; 1339 1340 CheckValidDeclSpecifiers(); 1341 1342 if (TInfo->getType()->isUndeducedType()) { 1343 Diag(D.getIdentifierLoc(), 1344 diag::warn_cxx14_compat_template_nontype_parm_auto_type) 1345 << QualType(TInfo->getType()->getContainedAutoType(), 0); 1346 } 1347 1348 assert(S->isTemplateParamScope() && 1349 "Non-type template parameter not in template parameter scope!"); 1350 bool Invalid = false; 1351 1352 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc()); 1353 if (T.isNull()) { 1354 T = Context.IntTy; // Recover with an 'int' type. 1355 Invalid = true; 1356 } 1357 1358 CheckFunctionOrTemplateParamDeclarator(S, D); 1359 1360 IdentifierInfo *ParamName = D.getIdentifier(); 1361 bool IsParameterPack = D.hasEllipsis(); 1362 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create( 1363 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(), 1364 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack, 1365 TInfo); 1366 Param->setAccess(AS_public); 1367 1368 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) 1369 if (TL.isConstrained()) 1370 if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc())) 1371 Invalid = true; 1372 1373 if (Invalid) 1374 Param->setInvalidDecl(); 1375 1376 if (Param->isParameterPack()) 1377 if (auto *LSI = getEnclosingLambda()) 1378 LSI->LocalPacks.push_back(Param); 1379 1380 if (ParamName) { 1381 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), 1382 ParamName); 1383 1384 // Add the template parameter into the current scope. 1385 S->AddDecl(Param); 1386 IdResolver.AddDecl(Param); 1387 } 1388 1389 // C++0x [temp.param]p9: 1390 // A default template-argument may be specified for any kind of 1391 // template-parameter that is not a template parameter pack. 1392 if (Default && IsParameterPack) { 1393 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1394 Default = nullptr; 1395 } 1396 1397 // Check the well-formedness of the default template argument, if provided. 1398 if (Default) { 1399 // Check for unexpanded parameter packs. 1400 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 1401 return Param; 1402 1403 TemplateArgument Converted; 1404 ExprResult DefaultRes = 1405 CheckTemplateArgument(Param, Param->getType(), Default, Converted); 1406 if (DefaultRes.isInvalid()) { 1407 Param->setInvalidDecl(); 1408 return Param; 1409 } 1410 Default = DefaultRes.get(); 1411 1412 Param->setDefaultArgument(Default); 1413 } 1414 1415 return Param; 1416 } 1417 1418 /// ActOnTemplateTemplateParameter - Called when a C++ template template 1419 /// parameter (e.g. T in template <template \<typename> class T> class array) 1420 /// has been parsed. S is the current scope. 1421 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S, 1422 SourceLocation TmpLoc, 1423 TemplateParameterList *Params, 1424 SourceLocation EllipsisLoc, 1425 IdentifierInfo *Name, 1426 SourceLocation NameLoc, 1427 unsigned Depth, 1428 unsigned Position, 1429 SourceLocation EqualLoc, 1430 ParsedTemplateArgument Default) { 1431 assert(S->isTemplateParamScope() && 1432 "Template template parameter not in template parameter scope!"); 1433 1434 // Construct the parameter object. 1435 bool IsParameterPack = EllipsisLoc.isValid(); 1436 TemplateTemplateParmDecl *Param = 1437 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1438 NameLoc.isInvalid()? TmpLoc : NameLoc, 1439 Depth, Position, IsParameterPack, 1440 Name, Params); 1441 Param->setAccess(AS_public); 1442 1443 if (Param->isParameterPack()) 1444 if (auto *LSI = getEnclosingLambda()) 1445 LSI->LocalPacks.push_back(Param); 1446 1447 // If the template template parameter has a name, then link the identifier 1448 // into the scope and lookup mechanisms. 1449 if (Name) { 1450 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); 1451 1452 S->AddDecl(Param); 1453 IdResolver.AddDecl(Param); 1454 } 1455 1456 if (Params->size() == 0) { 1457 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 1458 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 1459 Param->setInvalidDecl(); 1460 } 1461 1462 // C++0x [temp.param]p9: 1463 // A default template-argument may be specified for any kind of 1464 // template-parameter that is not a template parameter pack. 1465 if (IsParameterPack && !Default.isInvalid()) { 1466 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1467 Default = ParsedTemplateArgument(); 1468 } 1469 1470 if (!Default.isInvalid()) { 1471 // Check only that we have a template template argument. We don't want to 1472 // try to check well-formedness now, because our template template parameter 1473 // might have dependent types in its template parameters, which we wouldn't 1474 // be able to match now. 1475 // 1476 // If none of the template template parameter's template arguments mention 1477 // other template parameters, we could actually perform more checking here. 1478 // However, it isn't worth doing. 1479 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 1480 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 1481 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template) 1482 << DefaultArg.getSourceRange(); 1483 return Param; 1484 } 1485 1486 // Check for unexpanded parameter packs. 1487 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 1488 DefaultArg.getArgument().getAsTemplate(), 1489 UPPC_DefaultArgument)) 1490 return Param; 1491 1492 Param->setDefaultArgument(Context, DefaultArg); 1493 } 1494 1495 return Param; 1496 } 1497 1498 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally 1499 /// constrained by RequiresClause, that contains the template parameters in 1500 /// Params. 1501 TemplateParameterList * 1502 Sema::ActOnTemplateParameterList(unsigned Depth, 1503 SourceLocation ExportLoc, 1504 SourceLocation TemplateLoc, 1505 SourceLocation LAngleLoc, 1506 ArrayRef<NamedDecl *> Params, 1507 SourceLocation RAngleLoc, 1508 Expr *RequiresClause) { 1509 if (ExportLoc.isValid()) 1510 Diag(ExportLoc, diag::warn_template_export_unsupported); 1511 1512 return TemplateParameterList::Create( 1513 Context, TemplateLoc, LAngleLoc, 1514 llvm::makeArrayRef(Params.data(), Params.size()), 1515 RAngleLoc, RequiresClause); 1516 } 1517 1518 static void SetNestedNameSpecifier(Sema &S, TagDecl *T, 1519 const CXXScopeSpec &SS) { 1520 if (SS.isSet()) 1521 T->setQualifierInfo(SS.getWithLocInContext(S.Context)); 1522 } 1523 1524 DeclResult Sema::CheckClassTemplate( 1525 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 1526 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, 1527 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, 1528 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 1529 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, 1530 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { 1531 assert(TemplateParams && TemplateParams->size() > 0 && 1532 "No template parameters"); 1533 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 1534 bool Invalid = false; 1535 1536 // Check that we can declare a template here. 1537 if (CheckTemplateDeclScope(S, TemplateParams)) 1538 return true; 1539 1540 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1541 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 1542 1543 // There is no such thing as an unnamed class template. 1544 if (!Name) { 1545 Diag(KWLoc, diag::err_template_unnamed_class); 1546 return true; 1547 } 1548 1549 // Find any previous declaration with this name. For a friend with no 1550 // scope explicitly specified, we only look for tag declarations (per 1551 // C++11 [basic.lookup.elab]p2). 1552 DeclContext *SemanticContext; 1553 LookupResult Previous(*this, Name, NameLoc, 1554 (SS.isEmpty() && TUK == TUK_Friend) 1555 ? LookupTagName : LookupOrdinaryName, 1556 forRedeclarationInCurContext()); 1557 if (SS.isNotEmpty() && !SS.isInvalid()) { 1558 SemanticContext = computeDeclContext(SS, true); 1559 if (!SemanticContext) { 1560 // FIXME: Horrible, horrible hack! We can't currently represent this 1561 // in the AST, and historically we have just ignored such friend 1562 // class templates, so don't complain here. 1563 Diag(NameLoc, TUK == TUK_Friend 1564 ? diag::warn_template_qualified_friend_ignored 1565 : diag::err_template_qualified_declarator_no_match) 1566 << SS.getScopeRep() << SS.getRange(); 1567 return TUK != TUK_Friend; 1568 } 1569 1570 if (RequireCompleteDeclContext(SS, SemanticContext)) 1571 return true; 1572 1573 // If we're adding a template to a dependent context, we may need to 1574 // rebuilding some of the types used within the template parameter list, 1575 // now that we know what the current instantiation is. 1576 if (SemanticContext->isDependentContext()) { 1577 ContextRAII SavedContext(*this, SemanticContext); 1578 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 1579 Invalid = true; 1580 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 1581 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false); 1582 1583 LookupQualifiedName(Previous, SemanticContext); 1584 } else { 1585 SemanticContext = CurContext; 1586 1587 // C++14 [class.mem]p14: 1588 // If T is the name of a class, then each of the following shall have a 1589 // name different from T: 1590 // -- every member template of class T 1591 if (TUK != TUK_Friend && 1592 DiagnoseClassNameShadow(SemanticContext, 1593 DeclarationNameInfo(Name, NameLoc))) 1594 return true; 1595 1596 LookupName(Previous, S); 1597 } 1598 1599 if (Previous.isAmbiguous()) 1600 return true; 1601 1602 NamedDecl *PrevDecl = nullptr; 1603 if (Previous.begin() != Previous.end()) 1604 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1605 1606 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1607 // Maybe we will complain about the shadowed template parameter. 1608 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1609 // Just pretend that we didn't see the previous declaration. 1610 PrevDecl = nullptr; 1611 } 1612 1613 // If there is a previous declaration with the same name, check 1614 // whether this is a valid redeclaration. 1615 ClassTemplateDecl *PrevClassTemplate = 1616 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 1617 1618 // We may have found the injected-class-name of a class template, 1619 // class template partial specialization, or class template specialization. 1620 // In these cases, grab the template that is being defined or specialized. 1621 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 1622 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 1623 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 1624 PrevClassTemplate 1625 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 1626 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 1627 PrevClassTemplate 1628 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 1629 ->getSpecializedTemplate(); 1630 } 1631 } 1632 1633 if (TUK == TUK_Friend) { 1634 // C++ [namespace.memdef]p3: 1635 // [...] When looking for a prior declaration of a class or a function 1636 // declared as a friend, and when the name of the friend class or 1637 // function is neither a qualified name nor a template-id, scopes outside 1638 // the innermost enclosing namespace scope are not considered. 1639 if (!SS.isSet()) { 1640 DeclContext *OutermostContext = CurContext; 1641 while (!OutermostContext->isFileContext()) 1642 OutermostContext = OutermostContext->getLookupParent(); 1643 1644 if (PrevDecl && 1645 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 1646 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 1647 SemanticContext = PrevDecl->getDeclContext(); 1648 } else { 1649 // Declarations in outer scopes don't matter. However, the outermost 1650 // context we computed is the semantic context for our new 1651 // declaration. 1652 PrevDecl = PrevClassTemplate = nullptr; 1653 SemanticContext = OutermostContext; 1654 1655 // Check that the chosen semantic context doesn't already contain a 1656 // declaration of this name as a non-tag type. 1657 Previous.clear(LookupOrdinaryName); 1658 DeclContext *LookupContext = SemanticContext; 1659 while (LookupContext->isTransparentContext()) 1660 LookupContext = LookupContext->getLookupParent(); 1661 LookupQualifiedName(Previous, LookupContext); 1662 1663 if (Previous.isAmbiguous()) 1664 return true; 1665 1666 if (Previous.begin() != Previous.end()) 1667 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1668 } 1669 } 1670 } else if (PrevDecl && 1671 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext, 1672 S, SS.isValid())) 1673 PrevDecl = PrevClassTemplate = nullptr; 1674 1675 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( 1676 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { 1677 if (SS.isEmpty() && 1678 !(PrevClassTemplate && 1679 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( 1680 SemanticContext->getRedeclContext()))) { 1681 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 1682 Diag(Shadow->getTargetDecl()->getLocation(), 1683 diag::note_using_decl_target); 1684 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; 1685 // Recover by ignoring the old declaration. 1686 PrevDecl = PrevClassTemplate = nullptr; 1687 } 1688 } 1689 1690 if (PrevClassTemplate) { 1691 // Ensure that the template parameter lists are compatible. Skip this check 1692 // for a friend in a dependent context: the template parameter list itself 1693 // could be dependent. 1694 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1695 !TemplateParameterListsAreEqual(TemplateParams, 1696 PrevClassTemplate->getTemplateParameters(), 1697 /*Complain=*/true, 1698 TPL_TemplateMatch)) 1699 return true; 1700 1701 // C++ [temp.class]p4: 1702 // In a redeclaration, partial specialization, explicit 1703 // specialization or explicit instantiation of a class template, 1704 // the class-key shall agree in kind with the original class 1705 // template declaration (7.1.5.3). 1706 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 1707 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 1708 TUK == TUK_Definition, KWLoc, Name)) { 1709 Diag(KWLoc, diag::err_use_with_wrong_tag) 1710 << Name 1711 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 1712 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 1713 Kind = PrevRecordDecl->getTagKind(); 1714 } 1715 1716 // Check for redefinition of this class template. 1717 if (TUK == TUK_Definition) { 1718 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 1719 // If we have a prior definition that is not visible, treat this as 1720 // simply making that previous definition visible. 1721 NamedDecl *Hidden = nullptr; 1722 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 1723 SkipBody->ShouldSkip = true; 1724 SkipBody->Previous = Def; 1725 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate(); 1726 assert(Tmpl && "original definition of a class template is not a " 1727 "class template?"); 1728 makeMergedDefinitionVisible(Hidden); 1729 makeMergedDefinitionVisible(Tmpl); 1730 } else { 1731 Diag(NameLoc, diag::err_redefinition) << Name; 1732 Diag(Def->getLocation(), diag::note_previous_definition); 1733 // FIXME: Would it make sense to try to "forget" the previous 1734 // definition, as part of error recovery? 1735 return true; 1736 } 1737 } 1738 } 1739 } else if (PrevDecl) { 1740 // C++ [temp]p5: 1741 // A class template shall not have the same name as any other 1742 // template, class, function, object, enumeration, enumerator, 1743 // namespace, or type in the same scope (3.3), except as specified 1744 // in (14.5.4). 1745 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1746 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1747 return true; 1748 } 1749 1750 // Check the template parameter list of this declaration, possibly 1751 // merging in the template parameter list from the previous class 1752 // template declaration. Skip this check for a friend in a dependent 1753 // context, because the template parameter list might be dependent. 1754 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1755 CheckTemplateParameterList( 1756 TemplateParams, 1757 PrevClassTemplate 1758 ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters() 1759 : nullptr, 1760 (SS.isSet() && SemanticContext && SemanticContext->isRecord() && 1761 SemanticContext->isDependentContext()) 1762 ? TPC_ClassTemplateMember 1763 : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate, 1764 SkipBody)) 1765 Invalid = true; 1766 1767 if (SS.isSet()) { 1768 // If the name of the template was qualified, we must be defining the 1769 // template out-of-line. 1770 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 1771 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 1772 : diag::err_member_decl_does_not_match) 1773 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange(); 1774 Invalid = true; 1775 } 1776 } 1777 1778 // If this is a templated friend in a dependent context we should not put it 1779 // on the redecl chain. In some cases, the templated friend can be the most 1780 // recent declaration tricking the template instantiator to make substitutions 1781 // there. 1782 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious 1783 bool ShouldAddRedecl 1784 = !(TUK == TUK_Friend && CurContext->isDependentContext()); 1785 1786 CXXRecordDecl *NewClass = 1787 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1788 PrevClassTemplate && ShouldAddRedecl ? 1789 PrevClassTemplate->getTemplatedDecl() : nullptr, 1790 /*DelayTypeCreation=*/true); 1791 SetNestedNameSpecifier(*this, NewClass, SS); 1792 if (NumOuterTemplateParamLists > 0) 1793 NewClass->setTemplateParameterListsInfo( 1794 Context, llvm::makeArrayRef(OuterTemplateParamLists, 1795 NumOuterTemplateParamLists)); 1796 1797 // Add alignment attributes if necessary; these attributes are checked when 1798 // the ASTContext lays out the structure. 1799 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 1800 AddAlignmentAttributesForRecord(NewClass); 1801 AddMsStructLayoutForRecord(NewClass); 1802 } 1803 1804 ClassTemplateDecl *NewTemplate 1805 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1806 DeclarationName(Name), TemplateParams, 1807 NewClass); 1808 1809 if (ShouldAddRedecl) 1810 NewTemplate->setPreviousDecl(PrevClassTemplate); 1811 1812 NewClass->setDescribedClassTemplate(NewTemplate); 1813 1814 if (ModulePrivateLoc.isValid()) 1815 NewTemplate->setModulePrivate(); 1816 1817 // Build the type for the class template declaration now. 1818 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1819 T = Context.getInjectedClassNameType(NewClass, T); 1820 assert(T->isDependentType() && "Class template type is not dependent?"); 1821 (void)T; 1822 1823 // If we are providing an explicit specialization of a member that is a 1824 // class template, make a note of that. 1825 if (PrevClassTemplate && 1826 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1827 PrevClassTemplate->setMemberSpecialization(); 1828 1829 // Set the access specifier. 1830 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 1831 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1832 1833 // Set the lexical context of these templates 1834 NewClass->setLexicalDeclContext(CurContext); 1835 NewTemplate->setLexicalDeclContext(CurContext); 1836 1837 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 1838 NewClass->startDefinition(); 1839 1840 ProcessDeclAttributeList(S, NewClass, Attr); 1841 1842 if (PrevClassTemplate) 1843 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 1844 1845 AddPushedVisibilityAttribute(NewClass); 1846 inferGslOwnerPointerAttribute(NewClass); 1847 1848 if (TUK != TUK_Friend) { 1849 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. 1850 Scope *Outer = S; 1851 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) 1852 Outer = Outer->getParent(); 1853 PushOnScopeChains(NewTemplate, Outer); 1854 } else { 1855 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1856 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1857 NewClass->setAccess(PrevClassTemplate->getAccess()); 1858 } 1859 1860 NewTemplate->setObjectOfFriendDecl(); 1861 1862 // Friend templates are visible in fairly strange ways. 1863 if (!CurContext->isDependentContext()) { 1864 DeclContext *DC = SemanticContext->getRedeclContext(); 1865 DC->makeDeclVisibleInContext(NewTemplate); 1866 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1867 PushOnScopeChains(NewTemplate, EnclosingScope, 1868 /* AddToContext = */ false); 1869 } 1870 1871 FriendDecl *Friend = FriendDecl::Create( 1872 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc); 1873 Friend->setAccess(AS_public); 1874 CurContext->addDecl(Friend); 1875 } 1876 1877 if (PrevClassTemplate) 1878 CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate); 1879 1880 if (Invalid) { 1881 NewTemplate->setInvalidDecl(); 1882 NewClass->setInvalidDecl(); 1883 } 1884 1885 ActOnDocumentableDecl(NewTemplate); 1886 1887 if (SkipBody && SkipBody->ShouldSkip) 1888 return SkipBody->Previous; 1889 1890 return NewTemplate; 1891 } 1892 1893 namespace { 1894 /// Tree transform to "extract" a transformed type from a class template's 1895 /// constructor to a deduction guide. 1896 class ExtractTypeForDeductionGuide 1897 : public TreeTransform<ExtractTypeForDeductionGuide> { 1898 public: 1899 typedef TreeTransform<ExtractTypeForDeductionGuide> Base; 1900 ExtractTypeForDeductionGuide(Sema &SemaRef) : Base(SemaRef) {} 1901 1902 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); } 1903 1904 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) { 1905 return TransformType( 1906 TLB, 1907 TL.getTypedefNameDecl()->getTypeSourceInfo()->getTypeLoc()); 1908 } 1909 }; 1910 1911 /// Transform to convert portions of a constructor declaration into the 1912 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1. 1913 struct ConvertConstructorToDeductionGuideTransform { 1914 ConvertConstructorToDeductionGuideTransform(Sema &S, 1915 ClassTemplateDecl *Template) 1916 : SemaRef(S), Template(Template) {} 1917 1918 Sema &SemaRef; 1919 ClassTemplateDecl *Template; 1920 1921 DeclContext *DC = Template->getDeclContext(); 1922 CXXRecordDecl *Primary = Template->getTemplatedDecl(); 1923 DeclarationName DeductionGuideName = 1924 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template); 1925 1926 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary); 1927 1928 // Index adjustment to apply to convert depth-1 template parameters into 1929 // depth-0 template parameters. 1930 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size(); 1931 1932 /// Transform a constructor declaration into a deduction guide. 1933 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD, 1934 CXXConstructorDecl *CD) { 1935 SmallVector<TemplateArgument, 16> SubstArgs; 1936 1937 LocalInstantiationScope Scope(SemaRef); 1938 1939 // C++ [over.match.class.deduct]p1: 1940 // -- For each constructor of the class template designated by the 1941 // template-name, a function template with the following properties: 1942 1943 // -- The template parameters are the template parameters of the class 1944 // template followed by the template parameters (including default 1945 // template arguments) of the constructor, if any. 1946 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 1947 if (FTD) { 1948 TemplateParameterList *InnerParams = FTD->getTemplateParameters(); 1949 SmallVector<NamedDecl *, 16> AllParams; 1950 AllParams.reserve(TemplateParams->size() + InnerParams->size()); 1951 AllParams.insert(AllParams.begin(), 1952 TemplateParams->begin(), TemplateParams->end()); 1953 SubstArgs.reserve(InnerParams->size()); 1954 1955 // Later template parameters could refer to earlier ones, so build up 1956 // a list of substituted template arguments as we go. 1957 for (NamedDecl *Param : *InnerParams) { 1958 MultiLevelTemplateArgumentList Args; 1959 Args.addOuterTemplateArguments(SubstArgs); 1960 Args.addOuterRetainedLevel(); 1961 NamedDecl *NewParam = transformTemplateParameter(Param, Args); 1962 if (!NewParam) 1963 return nullptr; 1964 AllParams.push_back(NewParam); 1965 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument( 1966 SemaRef.Context.getInjectedTemplateArg(NewParam))); 1967 } 1968 TemplateParams = TemplateParameterList::Create( 1969 SemaRef.Context, InnerParams->getTemplateLoc(), 1970 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(), 1971 /*FIXME: RequiresClause*/ nullptr); 1972 } 1973 1974 // If we built a new template-parameter-list, track that we need to 1975 // substitute references to the old parameters into references to the 1976 // new ones. 1977 MultiLevelTemplateArgumentList Args; 1978 if (FTD) { 1979 Args.addOuterTemplateArguments(SubstArgs); 1980 Args.addOuterRetainedLevel(); 1981 } 1982 1983 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc() 1984 .getAsAdjusted<FunctionProtoTypeLoc>(); 1985 assert(FPTL && "no prototype for constructor declaration"); 1986 1987 // Transform the type of the function, adjusting the return type and 1988 // replacing references to the old parameters with references to the 1989 // new ones. 1990 TypeLocBuilder TLB; 1991 SmallVector<ParmVarDecl*, 8> Params; 1992 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args); 1993 if (NewType.isNull()) 1994 return nullptr; 1995 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType); 1996 1997 return buildDeductionGuide(TemplateParams, CD->getExplicitSpecifier(), 1998 NewTInfo, CD->getBeginLoc(), CD->getLocation(), 1999 CD->getEndLoc()); 2000 } 2001 2002 /// Build a deduction guide with the specified parameter types. 2003 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) { 2004 SourceLocation Loc = Template->getLocation(); 2005 2006 // Build the requested type. 2007 FunctionProtoType::ExtProtoInfo EPI; 2008 EPI.HasTrailingReturn = true; 2009 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc, 2010 DeductionGuideName, EPI); 2011 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc); 2012 2013 FunctionProtoTypeLoc FPTL = 2014 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>(); 2015 2016 // Build the parameters, needed during deduction / substitution. 2017 SmallVector<ParmVarDecl*, 4> Params; 2018 for (auto T : ParamTypes) { 2019 ParmVarDecl *NewParam = ParmVarDecl::Create( 2020 SemaRef.Context, DC, Loc, Loc, nullptr, T, 2021 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr); 2022 NewParam->setScopeInfo(0, Params.size()); 2023 FPTL.setParam(Params.size(), NewParam); 2024 Params.push_back(NewParam); 2025 } 2026 2027 return buildDeductionGuide(Template->getTemplateParameters(), 2028 ExplicitSpecifier(), TSI, Loc, Loc, Loc); 2029 } 2030 2031 private: 2032 /// Transform a constructor template parameter into a deduction guide template 2033 /// parameter, rebuilding any internal references to earlier parameters and 2034 /// renumbering as we go. 2035 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam, 2036 MultiLevelTemplateArgumentList &Args) { 2037 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) { 2038 // TemplateTypeParmDecl's index cannot be changed after creation, so 2039 // substitute it directly. 2040 auto *NewTTP = TemplateTypeParmDecl::Create( 2041 SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(), 2042 /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(), 2043 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(), 2044 TTP->isParameterPack(), TTP->hasTypeConstraint(), 2045 TTP->isExpandedParameterPack() ? 2046 llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None); 2047 if (const auto *TC = TTP->getTypeConstraint()) { 2048 TemplateArgumentListInfo TransformedArgs; 2049 const auto *ArgsAsWritten = TC->getTemplateArgsAsWritten(); 2050 if (!ArgsAsWritten || 2051 SemaRef.Subst(ArgsAsWritten->getTemplateArgs(), 2052 ArgsAsWritten->NumTemplateArgs, TransformedArgs, 2053 Args)) 2054 SemaRef.AttachTypeConstraint( 2055 TC->getNestedNameSpecifierLoc(), TC->getConceptNameInfo(), 2056 TC->getNamedConcept(), ArgsAsWritten ? &TransformedArgs : nullptr, 2057 NewTTP, 2058 NewTTP->isParameterPack() 2059 ? cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint()) 2060 ->getEllipsisLoc() 2061 : SourceLocation()); 2062 } 2063 if (TTP->hasDefaultArgument()) { 2064 TypeSourceInfo *InstantiatedDefaultArg = 2065 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args, 2066 TTP->getDefaultArgumentLoc(), TTP->getDeclName()); 2067 if (InstantiatedDefaultArg) 2068 NewTTP->setDefaultArgument(InstantiatedDefaultArg); 2069 } 2070 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam, 2071 NewTTP); 2072 return NewTTP; 2073 } 2074 2075 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam)) 2076 return transformTemplateParameterImpl(TTP, Args); 2077 2078 return transformTemplateParameterImpl( 2079 cast<NonTypeTemplateParmDecl>(TemplateParam), Args); 2080 } 2081 template<typename TemplateParmDecl> 2082 TemplateParmDecl * 2083 transformTemplateParameterImpl(TemplateParmDecl *OldParam, 2084 MultiLevelTemplateArgumentList &Args) { 2085 // Ask the template instantiator to do the heavy lifting for us, then adjust 2086 // the index of the parameter once it's done. 2087 auto *NewParam = 2088 cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args)); 2089 assert(NewParam->getDepth() == 0 && "unexpected template param depth"); 2090 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment); 2091 return NewParam; 2092 } 2093 2094 QualType transformFunctionProtoType(TypeLocBuilder &TLB, 2095 FunctionProtoTypeLoc TL, 2096 SmallVectorImpl<ParmVarDecl*> &Params, 2097 MultiLevelTemplateArgumentList &Args) { 2098 SmallVector<QualType, 4> ParamTypes; 2099 const FunctionProtoType *T = TL.getTypePtr(); 2100 2101 // -- The types of the function parameters are those of the constructor. 2102 for (auto *OldParam : TL.getParams()) { 2103 ParmVarDecl *NewParam = transformFunctionTypeParam(OldParam, Args); 2104 if (!NewParam) 2105 return QualType(); 2106 ParamTypes.push_back(NewParam->getType()); 2107 Params.push_back(NewParam); 2108 } 2109 2110 // -- The return type is the class template specialization designated by 2111 // the template-name and template arguments corresponding to the 2112 // template parameters obtained from the class template. 2113 // 2114 // We use the injected-class-name type of the primary template instead. 2115 // This has the convenient property that it is different from any type that 2116 // the user can write in a deduction-guide (because they cannot enter the 2117 // context of the template), so implicit deduction guides can never collide 2118 // with explicit ones. 2119 QualType ReturnType = DeducedType; 2120 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation()); 2121 2122 // Resolving a wording defect, we also inherit the variadicness of the 2123 // constructor. 2124 FunctionProtoType::ExtProtoInfo EPI; 2125 EPI.Variadic = T->isVariadic(); 2126 EPI.HasTrailingReturn = true; 2127 2128 QualType Result = SemaRef.BuildFunctionType( 2129 ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI); 2130 if (Result.isNull()) 2131 return QualType(); 2132 2133 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result); 2134 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); 2135 NewTL.setLParenLoc(TL.getLParenLoc()); 2136 NewTL.setRParenLoc(TL.getRParenLoc()); 2137 NewTL.setExceptionSpecRange(SourceRange()); 2138 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); 2139 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I) 2140 NewTL.setParam(I, Params[I]); 2141 2142 return Result; 2143 } 2144 2145 ParmVarDecl * 2146 transformFunctionTypeParam(ParmVarDecl *OldParam, 2147 MultiLevelTemplateArgumentList &Args) { 2148 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo(); 2149 TypeSourceInfo *NewDI; 2150 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) { 2151 // Expand out the one and only element in each inner pack. 2152 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0); 2153 NewDI = 2154 SemaRef.SubstType(PackTL.getPatternLoc(), Args, 2155 OldParam->getLocation(), OldParam->getDeclName()); 2156 if (!NewDI) return nullptr; 2157 NewDI = 2158 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(), 2159 PackTL.getTypePtr()->getNumExpansions()); 2160 } else 2161 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(), 2162 OldParam->getDeclName()); 2163 if (!NewDI) 2164 return nullptr; 2165 2166 // Extract the type. This (for instance) replaces references to typedef 2167 // members of the current instantiations with the definitions of those 2168 // typedefs, avoiding triggering instantiation of the deduced type during 2169 // deduction. 2170 NewDI = ExtractTypeForDeductionGuide(SemaRef).transform(NewDI); 2171 2172 // Resolving a wording defect, we also inherit default arguments from the 2173 // constructor. 2174 ExprResult NewDefArg; 2175 if (OldParam->hasDefaultArg()) { 2176 NewDefArg = SemaRef.SubstExpr(OldParam->getDefaultArg(), Args); 2177 if (NewDefArg.isInvalid()) 2178 return nullptr; 2179 } 2180 2181 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC, 2182 OldParam->getInnerLocStart(), 2183 OldParam->getLocation(), 2184 OldParam->getIdentifier(), 2185 NewDI->getType(), 2186 NewDI, 2187 OldParam->getStorageClass(), 2188 NewDefArg.get()); 2189 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(), 2190 OldParam->getFunctionScopeIndex()); 2191 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam); 2192 return NewParam; 2193 } 2194 2195 NamedDecl *buildDeductionGuide(TemplateParameterList *TemplateParams, 2196 ExplicitSpecifier ES, TypeSourceInfo *TInfo, 2197 SourceLocation LocStart, SourceLocation Loc, 2198 SourceLocation LocEnd) { 2199 DeclarationNameInfo Name(DeductionGuideName, Loc); 2200 ArrayRef<ParmVarDecl *> Params = 2201 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(); 2202 2203 // Build the implicit deduction guide template. 2204 auto *Guide = 2205 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name, 2206 TInfo->getType(), TInfo, LocEnd); 2207 Guide->setImplicit(); 2208 Guide->setParams(Params); 2209 2210 for (auto *Param : Params) 2211 Param->setDeclContext(Guide); 2212 2213 auto *GuideTemplate = FunctionTemplateDecl::Create( 2214 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide); 2215 GuideTemplate->setImplicit(); 2216 Guide->setDescribedFunctionTemplate(GuideTemplate); 2217 2218 if (isa<CXXRecordDecl>(DC)) { 2219 Guide->setAccess(AS_public); 2220 GuideTemplate->setAccess(AS_public); 2221 } 2222 2223 DC->addDecl(GuideTemplate); 2224 return GuideTemplate; 2225 } 2226 }; 2227 } 2228 2229 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template, 2230 SourceLocation Loc) { 2231 if (CXXRecordDecl *DefRecord = 2232 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) { 2233 TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate(); 2234 Template = DescribedTemplate ? DescribedTemplate : Template; 2235 } 2236 2237 DeclContext *DC = Template->getDeclContext(); 2238 if (DC->isDependentContext()) 2239 return; 2240 2241 ConvertConstructorToDeductionGuideTransform Transform( 2242 *this, cast<ClassTemplateDecl>(Template)); 2243 if (!isCompleteType(Loc, Transform.DeducedType)) 2244 return; 2245 2246 // Check whether we've already declared deduction guides for this template. 2247 // FIXME: Consider storing a flag on the template to indicate this. 2248 auto Existing = DC->lookup(Transform.DeductionGuideName); 2249 for (auto *D : Existing) 2250 if (D->isImplicit()) 2251 return; 2252 2253 // In case we were expanding a pack when we attempted to declare deduction 2254 // guides, turn off pack expansion for everything we're about to do. 2255 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1); 2256 // Create a template instantiation record to track the "instantiation" of 2257 // constructors into deduction guides. 2258 // FIXME: Add a kind for this to give more meaningful diagnostics. But can 2259 // this substitution process actually fail? 2260 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template); 2261 if (BuildingDeductionGuides.isInvalid()) 2262 return; 2263 2264 // Convert declared constructors into deduction guide templates. 2265 // FIXME: Skip constructors for which deduction must necessarily fail (those 2266 // for which some class template parameter without a default argument never 2267 // appears in a deduced context). 2268 bool AddedAny = false; 2269 for (NamedDecl *D : LookupConstructors(Transform.Primary)) { 2270 D = D->getUnderlyingDecl(); 2271 if (D->isInvalidDecl() || D->isImplicit()) 2272 continue; 2273 D = cast<NamedDecl>(D->getCanonicalDecl()); 2274 2275 auto *FTD = dyn_cast<FunctionTemplateDecl>(D); 2276 auto *CD = 2277 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D); 2278 // Class-scope explicit specializations (MS extension) do not result in 2279 // deduction guides. 2280 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization())) 2281 continue; 2282 2283 Transform.transformConstructor(FTD, CD); 2284 AddedAny = true; 2285 } 2286 2287 // C++17 [over.match.class.deduct] 2288 // -- If C is not defined or does not declare any constructors, an 2289 // additional function template derived as above from a hypothetical 2290 // constructor C(). 2291 if (!AddedAny) 2292 Transform.buildSimpleDeductionGuide(None); 2293 2294 // -- An additional function template derived as above from a hypothetical 2295 // constructor C(C), called the copy deduction candidate. 2296 cast<CXXDeductionGuideDecl>( 2297 cast<FunctionTemplateDecl>( 2298 Transform.buildSimpleDeductionGuide(Transform.DeducedType)) 2299 ->getTemplatedDecl()) 2300 ->setIsCopyDeductionCandidate(); 2301 } 2302 2303 /// Diagnose the presence of a default template argument on a 2304 /// template parameter, which is ill-formed in certain contexts. 2305 /// 2306 /// \returns true if the default template argument should be dropped. 2307 static bool DiagnoseDefaultTemplateArgument(Sema &S, 2308 Sema::TemplateParamListContext TPC, 2309 SourceLocation ParamLoc, 2310 SourceRange DefArgRange) { 2311 switch (TPC) { 2312 case Sema::TPC_ClassTemplate: 2313 case Sema::TPC_VarTemplate: 2314 case Sema::TPC_TypeAliasTemplate: 2315 return false; 2316 2317 case Sema::TPC_FunctionTemplate: 2318 case Sema::TPC_FriendFunctionTemplateDefinition: 2319 // C++ [temp.param]p9: 2320 // A default template-argument shall not be specified in a 2321 // function template declaration or a function template 2322 // definition [...] 2323 // If a friend function template declaration specifies a default 2324 // template-argument, that declaration shall be a definition and shall be 2325 // the only declaration of the function template in the translation unit. 2326 // (C++98/03 doesn't have this wording; see DR226). 2327 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 2328 diag::warn_cxx98_compat_template_parameter_default_in_function_template 2329 : diag::ext_template_parameter_default_in_function_template) 2330 << DefArgRange; 2331 return false; 2332 2333 case Sema::TPC_ClassTemplateMember: 2334 // C++0x [temp.param]p9: 2335 // A default template-argument shall not be specified in the 2336 // template-parameter-lists of the definition of a member of a 2337 // class template that appears outside of the member's class. 2338 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 2339 << DefArgRange; 2340 return true; 2341 2342 case Sema::TPC_FriendClassTemplate: 2343 case Sema::TPC_FriendFunctionTemplate: 2344 // C++ [temp.param]p9: 2345 // A default template-argument shall not be specified in a 2346 // friend template declaration. 2347 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 2348 << DefArgRange; 2349 return true; 2350 2351 // FIXME: C++0x [temp.param]p9 allows default template-arguments 2352 // for friend function templates if there is only a single 2353 // declaration (and it is a definition). Strange! 2354 } 2355 2356 llvm_unreachable("Invalid TemplateParamListContext!"); 2357 } 2358 2359 /// Check for unexpanded parameter packs within the template parameters 2360 /// of a template template parameter, recursively. 2361 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 2362 TemplateTemplateParmDecl *TTP) { 2363 // A template template parameter which is a parameter pack is also a pack 2364 // expansion. 2365 if (TTP->isParameterPack()) 2366 return false; 2367 2368 TemplateParameterList *Params = TTP->getTemplateParameters(); 2369 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 2370 NamedDecl *P = Params->getParam(I); 2371 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) { 2372 if (!TTP->isParameterPack()) 2373 if (const TypeConstraint *TC = TTP->getTypeConstraint()) 2374 if (TC->hasExplicitTemplateArgs()) 2375 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) 2376 if (S.DiagnoseUnexpandedParameterPack(ArgLoc, 2377 Sema::UPPC_TypeConstraint)) 2378 return true; 2379 continue; 2380 } 2381 2382 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 2383 if (!NTTP->isParameterPack() && 2384 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 2385 NTTP->getTypeSourceInfo(), 2386 Sema::UPPC_NonTypeTemplateParameterType)) 2387 return true; 2388 2389 continue; 2390 } 2391 2392 if (TemplateTemplateParmDecl *InnerTTP 2393 = dyn_cast<TemplateTemplateParmDecl>(P)) 2394 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 2395 return true; 2396 } 2397 2398 return false; 2399 } 2400 2401 /// Checks the validity of a template parameter list, possibly 2402 /// considering the template parameter list from a previous 2403 /// declaration. 2404 /// 2405 /// If an "old" template parameter list is provided, it must be 2406 /// equivalent (per TemplateParameterListsAreEqual) to the "new" 2407 /// template parameter list. 2408 /// 2409 /// \param NewParams Template parameter list for a new template 2410 /// declaration. This template parameter list will be updated with any 2411 /// default arguments that are carried through from the previous 2412 /// template parameter list. 2413 /// 2414 /// \param OldParams If provided, template parameter list from a 2415 /// previous declaration of the same template. Default template 2416 /// arguments will be merged from the old template parameter list to 2417 /// the new template parameter list. 2418 /// 2419 /// \param TPC Describes the context in which we are checking the given 2420 /// template parameter list. 2421 /// 2422 /// \param SkipBody If we might have already made a prior merged definition 2423 /// of this template visible, the corresponding body-skipping information. 2424 /// Default argument redefinition is not an error when skipping such a body, 2425 /// because (under the ODR) we can assume the default arguments are the same 2426 /// as the prior merged definition. 2427 /// 2428 /// \returns true if an error occurred, false otherwise. 2429 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 2430 TemplateParameterList *OldParams, 2431 TemplateParamListContext TPC, 2432 SkipBodyInfo *SkipBody) { 2433 bool Invalid = false; 2434 2435 // C++ [temp.param]p10: 2436 // The set of default template-arguments available for use with a 2437 // template declaration or definition is obtained by merging the 2438 // default arguments from the definition (if in scope) and all 2439 // declarations in scope in the same way default function 2440 // arguments are (8.3.6). 2441 bool SawDefaultArgument = false; 2442 SourceLocation PreviousDefaultArgLoc; 2443 2444 // Dummy initialization to avoid warnings. 2445 TemplateParameterList::iterator OldParam = NewParams->end(); 2446 if (OldParams) 2447 OldParam = OldParams->begin(); 2448 2449 bool RemoveDefaultArguments = false; 2450 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2451 NewParamEnd = NewParams->end(); 2452 NewParam != NewParamEnd; ++NewParam) { 2453 // Variables used to diagnose redundant default arguments 2454 bool RedundantDefaultArg = false; 2455 SourceLocation OldDefaultLoc; 2456 SourceLocation NewDefaultLoc; 2457 2458 // Variable used to diagnose missing default arguments 2459 bool MissingDefaultArg = false; 2460 2461 // Variable used to diagnose non-final parameter packs 2462 bool SawParameterPack = false; 2463 2464 if (TemplateTypeParmDecl *NewTypeParm 2465 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 2466 // Check the presence of a default argument here. 2467 if (NewTypeParm->hasDefaultArgument() && 2468 DiagnoseDefaultTemplateArgument(*this, TPC, 2469 NewTypeParm->getLocation(), 2470 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 2471 .getSourceRange())) 2472 NewTypeParm->removeDefaultArgument(); 2473 2474 // Merge default arguments for template type parameters. 2475 TemplateTypeParmDecl *OldTypeParm 2476 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr; 2477 if (NewTypeParm->isParameterPack()) { 2478 assert(!NewTypeParm->hasDefaultArgument() && 2479 "Parameter packs can't have a default argument!"); 2480 SawParameterPack = true; 2481 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && 2482 NewTypeParm->hasDefaultArgument() && 2483 (!SkipBody || !SkipBody->ShouldSkip)) { 2484 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 2485 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 2486 SawDefaultArgument = true; 2487 RedundantDefaultArg = true; 2488 PreviousDefaultArgLoc = NewDefaultLoc; 2489 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 2490 // Merge the default argument from the old declaration to the 2491 // new declaration. 2492 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm); 2493 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 2494 } else if (NewTypeParm->hasDefaultArgument()) { 2495 SawDefaultArgument = true; 2496 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 2497 } else if (SawDefaultArgument) 2498 MissingDefaultArg = true; 2499 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 2500 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 2501 // Check for unexpanded parameter packs. 2502 if (!NewNonTypeParm->isParameterPack() && 2503 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 2504 NewNonTypeParm->getTypeSourceInfo(), 2505 UPPC_NonTypeTemplateParameterType)) { 2506 Invalid = true; 2507 continue; 2508 } 2509 2510 // Check the presence of a default argument here. 2511 if (NewNonTypeParm->hasDefaultArgument() && 2512 DiagnoseDefaultTemplateArgument(*this, TPC, 2513 NewNonTypeParm->getLocation(), 2514 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 2515 NewNonTypeParm->removeDefaultArgument(); 2516 } 2517 2518 // Merge default arguments for non-type template parameters 2519 NonTypeTemplateParmDecl *OldNonTypeParm 2520 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr; 2521 if (NewNonTypeParm->isParameterPack()) { 2522 assert(!NewNonTypeParm->hasDefaultArgument() && 2523 "Parameter packs can't have a default argument!"); 2524 if (!NewNonTypeParm->isPackExpansion()) 2525 SawParameterPack = true; 2526 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && 2527 NewNonTypeParm->hasDefaultArgument() && 2528 (!SkipBody || !SkipBody->ShouldSkip)) { 2529 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2530 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2531 SawDefaultArgument = true; 2532 RedundantDefaultArg = true; 2533 PreviousDefaultArgLoc = NewDefaultLoc; 2534 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 2535 // Merge the default argument from the old declaration to the 2536 // new declaration. 2537 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm); 2538 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2539 } else if (NewNonTypeParm->hasDefaultArgument()) { 2540 SawDefaultArgument = true; 2541 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2542 } else if (SawDefaultArgument) 2543 MissingDefaultArg = true; 2544 } else { 2545 TemplateTemplateParmDecl *NewTemplateParm 2546 = cast<TemplateTemplateParmDecl>(*NewParam); 2547 2548 // Check for unexpanded parameter packs, recursively. 2549 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 2550 Invalid = true; 2551 continue; 2552 } 2553 2554 // Check the presence of a default argument here. 2555 if (NewTemplateParm->hasDefaultArgument() && 2556 DiagnoseDefaultTemplateArgument(*this, TPC, 2557 NewTemplateParm->getLocation(), 2558 NewTemplateParm->getDefaultArgument().getSourceRange())) 2559 NewTemplateParm->removeDefaultArgument(); 2560 2561 // Merge default arguments for template template parameters 2562 TemplateTemplateParmDecl *OldTemplateParm 2563 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr; 2564 if (NewTemplateParm->isParameterPack()) { 2565 assert(!NewTemplateParm->hasDefaultArgument() && 2566 "Parameter packs can't have a default argument!"); 2567 if (!NewTemplateParm->isPackExpansion()) 2568 SawParameterPack = true; 2569 } else if (OldTemplateParm && 2570 hasVisibleDefaultArgument(OldTemplateParm) && 2571 NewTemplateParm->hasDefaultArgument() && 2572 (!SkipBody || !SkipBody->ShouldSkip)) { 2573 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 2574 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 2575 SawDefaultArgument = true; 2576 RedundantDefaultArg = true; 2577 PreviousDefaultArgLoc = NewDefaultLoc; 2578 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 2579 // Merge the default argument from the old declaration to the 2580 // new declaration. 2581 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm); 2582 PreviousDefaultArgLoc 2583 = OldTemplateParm->getDefaultArgument().getLocation(); 2584 } else if (NewTemplateParm->hasDefaultArgument()) { 2585 SawDefaultArgument = true; 2586 PreviousDefaultArgLoc 2587 = NewTemplateParm->getDefaultArgument().getLocation(); 2588 } else if (SawDefaultArgument) 2589 MissingDefaultArg = true; 2590 } 2591 2592 // C++11 [temp.param]p11: 2593 // If a template parameter of a primary class template or alias template 2594 // is a template parameter pack, it shall be the last template parameter. 2595 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 2596 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || 2597 TPC == TPC_TypeAliasTemplate)) { 2598 Diag((*NewParam)->getLocation(), 2599 diag::err_template_param_pack_must_be_last_template_parameter); 2600 Invalid = true; 2601 } 2602 2603 if (RedundantDefaultArg) { 2604 // C++ [temp.param]p12: 2605 // A template-parameter shall not be given default arguments 2606 // by two different declarations in the same scope. 2607 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 2608 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 2609 Invalid = true; 2610 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 2611 // C++ [temp.param]p11: 2612 // If a template-parameter of a class template has a default 2613 // template-argument, each subsequent template-parameter shall either 2614 // have a default template-argument supplied or be a template parameter 2615 // pack. 2616 Diag((*NewParam)->getLocation(), 2617 diag::err_template_param_default_arg_missing); 2618 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 2619 Invalid = true; 2620 RemoveDefaultArguments = true; 2621 } 2622 2623 // If we have an old template parameter list that we're merging 2624 // in, move on to the next parameter. 2625 if (OldParams) 2626 ++OldParam; 2627 } 2628 2629 // We were missing some default arguments at the end of the list, so remove 2630 // all of the default arguments. 2631 if (RemoveDefaultArguments) { 2632 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2633 NewParamEnd = NewParams->end(); 2634 NewParam != NewParamEnd; ++NewParam) { 2635 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 2636 TTP->removeDefaultArgument(); 2637 else if (NonTypeTemplateParmDecl *NTTP 2638 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 2639 NTTP->removeDefaultArgument(); 2640 else 2641 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 2642 } 2643 } 2644 2645 return Invalid; 2646 } 2647 2648 namespace { 2649 2650 /// A class which looks for a use of a certain level of template 2651 /// parameter. 2652 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 2653 typedef RecursiveASTVisitor<DependencyChecker> super; 2654 2655 unsigned Depth; 2656 2657 // Whether we're looking for a use of a template parameter that makes the 2658 // overall construct type-dependent / a dependent type. This is strictly 2659 // best-effort for now; we may fail to match at all for a dependent type 2660 // in some cases if this is set. 2661 bool IgnoreNonTypeDependent; 2662 2663 bool Match; 2664 SourceLocation MatchLoc; 2665 2666 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) 2667 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), 2668 Match(false) {} 2669 2670 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) 2671 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { 2672 NamedDecl *ND = Params->getParam(0); 2673 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 2674 Depth = PD->getDepth(); 2675 } else if (NonTypeTemplateParmDecl *PD = 2676 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 2677 Depth = PD->getDepth(); 2678 } else { 2679 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 2680 } 2681 } 2682 2683 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { 2684 if (ParmDepth >= Depth) { 2685 Match = true; 2686 MatchLoc = Loc; 2687 return true; 2688 } 2689 return false; 2690 } 2691 2692 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) { 2693 // Prune out non-type-dependent expressions if requested. This can 2694 // sometimes result in us failing to find a template parameter reference 2695 // (if a value-dependent expression creates a dependent type), but this 2696 // mode is best-effort only. 2697 if (auto *E = dyn_cast_or_null<Expr>(S)) 2698 if (IgnoreNonTypeDependent && !E->isTypeDependent()) 2699 return true; 2700 return super::TraverseStmt(S, Q); 2701 } 2702 2703 bool TraverseTypeLoc(TypeLoc TL) { 2704 if (IgnoreNonTypeDependent && !TL.isNull() && 2705 !TL.getType()->isDependentType()) 2706 return true; 2707 return super::TraverseTypeLoc(TL); 2708 } 2709 2710 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { 2711 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc()); 2712 } 2713 2714 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 2715 // For a best-effort search, keep looking until we find a location. 2716 return IgnoreNonTypeDependent || !Matches(T->getDepth()); 2717 } 2718 2719 bool TraverseTemplateName(TemplateName N) { 2720 if (TemplateTemplateParmDecl *PD = 2721 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 2722 if (Matches(PD->getDepth())) 2723 return false; 2724 return super::TraverseTemplateName(N); 2725 } 2726 2727 bool VisitDeclRefExpr(DeclRefExpr *E) { 2728 if (NonTypeTemplateParmDecl *PD = 2729 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 2730 if (Matches(PD->getDepth(), E->getExprLoc())) 2731 return false; 2732 return super::VisitDeclRefExpr(E); 2733 } 2734 2735 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { 2736 return TraverseType(T->getReplacementType()); 2737 } 2738 2739 bool 2740 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { 2741 return TraverseTemplateArgument(T->getArgumentPack()); 2742 } 2743 2744 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 2745 return TraverseType(T->getInjectedSpecializationType()); 2746 } 2747 }; 2748 } // end anonymous namespace 2749 2750 /// Determines whether a given type depends on the given parameter 2751 /// list. 2752 static bool 2753 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 2754 if (!Params->size()) 2755 return false; 2756 2757 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); 2758 Checker.TraverseType(T); 2759 return Checker.Match; 2760 } 2761 2762 // Find the source range corresponding to the named type in the given 2763 // nested-name-specifier, if any. 2764 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 2765 QualType T, 2766 const CXXScopeSpec &SS) { 2767 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 2768 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 2769 if (const Type *CurType = NNS->getAsType()) { 2770 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 2771 return NNSLoc.getTypeLoc().getSourceRange(); 2772 } else 2773 break; 2774 2775 NNSLoc = NNSLoc.getPrefix(); 2776 } 2777 2778 return SourceRange(); 2779 } 2780 2781 /// Match the given template parameter lists to the given scope 2782 /// specifier, returning the template parameter list that applies to the 2783 /// name. 2784 /// 2785 /// \param DeclStartLoc the start of the declaration that has a scope 2786 /// specifier or a template parameter list. 2787 /// 2788 /// \param DeclLoc The location of the declaration itself. 2789 /// 2790 /// \param SS the scope specifier that will be matched to the given template 2791 /// parameter lists. This scope specifier precedes a qualified name that is 2792 /// being declared. 2793 /// 2794 /// \param TemplateId The template-id following the scope specifier, if there 2795 /// is one. Used to check for a missing 'template<>'. 2796 /// 2797 /// \param ParamLists the template parameter lists, from the outermost to the 2798 /// innermost template parameter lists. 2799 /// 2800 /// \param IsFriend Whether to apply the slightly different rules for 2801 /// matching template parameters to scope specifiers in friend 2802 /// declarations. 2803 /// 2804 /// \param IsMemberSpecialization will be set true if the scope specifier 2805 /// denotes a fully-specialized type, and therefore this is a declaration of 2806 /// a member specialization. 2807 /// 2808 /// \returns the template parameter list, if any, that corresponds to the 2809 /// name that is preceded by the scope specifier @p SS. This template 2810 /// parameter list may have template parameters (if we're declaring a 2811 /// template) or may have no template parameters (if we're declaring a 2812 /// template specialization), or may be NULL (if what we're declaring isn't 2813 /// itself a template). 2814 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( 2815 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, 2816 TemplateIdAnnotation *TemplateId, 2817 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, 2818 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) { 2819 IsMemberSpecialization = false; 2820 Invalid = false; 2821 2822 // The sequence of nested types to which we will match up the template 2823 // parameter lists. We first build this list by starting with the type named 2824 // by the nested-name-specifier and walking out until we run out of types. 2825 SmallVector<QualType, 4> NestedTypes; 2826 QualType T; 2827 if (SS.getScopeRep()) { 2828 if (CXXRecordDecl *Record 2829 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 2830 T = Context.getTypeDeclType(Record); 2831 else 2832 T = QualType(SS.getScopeRep()->getAsType(), 0); 2833 } 2834 2835 // If we found an explicit specialization that prevents us from needing 2836 // 'template<>' headers, this will be set to the location of that 2837 // explicit specialization. 2838 SourceLocation ExplicitSpecLoc; 2839 2840 while (!T.isNull()) { 2841 NestedTypes.push_back(T); 2842 2843 // Retrieve the parent of a record type. 2844 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 2845 // If this type is an explicit specialization, we're done. 2846 if (ClassTemplateSpecializationDecl *Spec 2847 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 2848 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 2849 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 2850 ExplicitSpecLoc = Spec->getLocation(); 2851 break; 2852 } 2853 } else if (Record->getTemplateSpecializationKind() 2854 == TSK_ExplicitSpecialization) { 2855 ExplicitSpecLoc = Record->getLocation(); 2856 break; 2857 } 2858 2859 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 2860 T = Context.getTypeDeclType(Parent); 2861 else 2862 T = QualType(); 2863 continue; 2864 } 2865 2866 if (const TemplateSpecializationType *TST 2867 = T->getAs<TemplateSpecializationType>()) { 2868 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 2869 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 2870 T = Context.getTypeDeclType(Parent); 2871 else 2872 T = QualType(); 2873 continue; 2874 } 2875 } 2876 2877 // Look one step prior in a dependent template specialization type. 2878 if (const DependentTemplateSpecializationType *DependentTST 2879 = T->getAs<DependentTemplateSpecializationType>()) { 2880 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 2881 T = QualType(NNS->getAsType(), 0); 2882 else 2883 T = QualType(); 2884 continue; 2885 } 2886 2887 // Look one step prior in a dependent name type. 2888 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 2889 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 2890 T = QualType(NNS->getAsType(), 0); 2891 else 2892 T = QualType(); 2893 continue; 2894 } 2895 2896 // Retrieve the parent of an enumeration type. 2897 if (const EnumType *EnumT = T->getAs<EnumType>()) { 2898 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 2899 // check here. 2900 EnumDecl *Enum = EnumT->getDecl(); 2901 2902 // Get to the parent type. 2903 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 2904 T = Context.getTypeDeclType(Parent); 2905 else 2906 T = QualType(); 2907 continue; 2908 } 2909 2910 T = QualType(); 2911 } 2912 // Reverse the nested types list, since we want to traverse from the outermost 2913 // to the innermost while checking template-parameter-lists. 2914 std::reverse(NestedTypes.begin(), NestedTypes.end()); 2915 2916 // C++0x [temp.expl.spec]p17: 2917 // A member or a member template may be nested within many 2918 // enclosing class templates. In an explicit specialization for 2919 // such a member, the member declaration shall be preceded by a 2920 // template<> for each enclosing class template that is 2921 // explicitly specialized. 2922 bool SawNonEmptyTemplateParameterList = false; 2923 2924 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { 2925 if (SawNonEmptyTemplateParameterList) { 2926 if (!SuppressDiagnostic) 2927 Diag(DeclLoc, diag::err_specialize_member_of_template) 2928 << !Recovery << Range; 2929 Invalid = true; 2930 IsMemberSpecialization = false; 2931 return true; 2932 } 2933 2934 return false; 2935 }; 2936 2937 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { 2938 // Check that we can have an explicit specialization here. 2939 if (CheckExplicitSpecialization(Range, true)) 2940 return true; 2941 2942 // We don't have a template header, but we should. 2943 SourceLocation ExpectedTemplateLoc; 2944 if (!ParamLists.empty()) 2945 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 2946 else 2947 ExpectedTemplateLoc = DeclStartLoc; 2948 2949 if (!SuppressDiagnostic) 2950 Diag(DeclLoc, diag::err_template_spec_needs_header) 2951 << Range 2952 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 2953 return false; 2954 }; 2955 2956 unsigned ParamIdx = 0; 2957 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 2958 ++TypeIdx) { 2959 T = NestedTypes[TypeIdx]; 2960 2961 // Whether we expect a 'template<>' header. 2962 bool NeedEmptyTemplateHeader = false; 2963 2964 // Whether we expect a template header with parameters. 2965 bool NeedNonemptyTemplateHeader = false; 2966 2967 // For a dependent type, the set of template parameters that we 2968 // expect to see. 2969 TemplateParameterList *ExpectedTemplateParams = nullptr; 2970 2971 // C++0x [temp.expl.spec]p15: 2972 // A member or a member template may be nested within many enclosing 2973 // class templates. In an explicit specialization for such a member, the 2974 // member declaration shall be preceded by a template<> for each 2975 // enclosing class template that is explicitly specialized. 2976 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 2977 if (ClassTemplatePartialSpecializationDecl *Partial 2978 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 2979 ExpectedTemplateParams = Partial->getTemplateParameters(); 2980 NeedNonemptyTemplateHeader = true; 2981 } else if (Record->isDependentType()) { 2982 if (Record->getDescribedClassTemplate()) { 2983 ExpectedTemplateParams = Record->getDescribedClassTemplate() 2984 ->getTemplateParameters(); 2985 NeedNonemptyTemplateHeader = true; 2986 } 2987 } else if (ClassTemplateSpecializationDecl *Spec 2988 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 2989 // C++0x [temp.expl.spec]p4: 2990 // Members of an explicitly specialized class template are defined 2991 // in the same manner as members of normal classes, and not using 2992 // the template<> syntax. 2993 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 2994 NeedEmptyTemplateHeader = true; 2995 else 2996 continue; 2997 } else if (Record->getTemplateSpecializationKind()) { 2998 if (Record->getTemplateSpecializationKind() 2999 != TSK_ExplicitSpecialization && 3000 TypeIdx == NumTypes - 1) 3001 IsMemberSpecialization = true; 3002 3003 continue; 3004 } 3005 } else if (const TemplateSpecializationType *TST 3006 = T->getAs<TemplateSpecializationType>()) { 3007 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 3008 ExpectedTemplateParams = Template->getTemplateParameters(); 3009 NeedNonemptyTemplateHeader = true; 3010 } 3011 } else if (T->getAs<DependentTemplateSpecializationType>()) { 3012 // FIXME: We actually could/should check the template arguments here 3013 // against the corresponding template parameter list. 3014 NeedNonemptyTemplateHeader = false; 3015 } 3016 3017 // C++ [temp.expl.spec]p16: 3018 // In an explicit specialization declaration for a member of a class 3019 // template or a member template that ap- pears in namespace scope, the 3020 // member template and some of its enclosing class templates may remain 3021 // unspecialized, except that the declaration shall not explicitly 3022 // specialize a class member template if its en- closing class templates 3023 // are not explicitly specialized as well. 3024 if (ParamIdx < ParamLists.size()) { 3025 if (ParamLists[ParamIdx]->size() == 0) { 3026 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3027 false)) 3028 return nullptr; 3029 } else 3030 SawNonEmptyTemplateParameterList = true; 3031 } 3032 3033 if (NeedEmptyTemplateHeader) { 3034 // If we're on the last of the types, and we need a 'template<>' header 3035 // here, then it's a member specialization. 3036 if (TypeIdx == NumTypes - 1) 3037 IsMemberSpecialization = true; 3038 3039 if (ParamIdx < ParamLists.size()) { 3040 if (ParamLists[ParamIdx]->size() > 0) { 3041 // The header has template parameters when it shouldn't. Complain. 3042 if (!SuppressDiagnostic) 3043 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3044 diag::err_template_param_list_matches_nontemplate) 3045 << T 3046 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 3047 ParamLists[ParamIdx]->getRAngleLoc()) 3048 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 3049 Invalid = true; 3050 return nullptr; 3051 } 3052 3053 // Consume this template header. 3054 ++ParamIdx; 3055 continue; 3056 } 3057 3058 if (!IsFriend) 3059 if (DiagnoseMissingExplicitSpecialization( 3060 getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) 3061 return nullptr; 3062 3063 continue; 3064 } 3065 3066 if (NeedNonemptyTemplateHeader) { 3067 // In friend declarations we can have template-ids which don't 3068 // depend on the corresponding template parameter lists. But 3069 // assume that empty parameter lists are supposed to match this 3070 // template-id. 3071 if (IsFriend && T->isDependentType()) { 3072 if (ParamIdx < ParamLists.size() && 3073 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 3074 ExpectedTemplateParams = nullptr; 3075 else 3076 continue; 3077 } 3078 3079 if (ParamIdx < ParamLists.size()) { 3080 // Check the template parameter list, if we can. 3081 if (ExpectedTemplateParams && 3082 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 3083 ExpectedTemplateParams, 3084 !SuppressDiagnostic, TPL_TemplateMatch)) 3085 Invalid = true; 3086 3087 if (!Invalid && 3088 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr, 3089 TPC_ClassTemplateMember)) 3090 Invalid = true; 3091 3092 ++ParamIdx; 3093 continue; 3094 } 3095 3096 if (!SuppressDiagnostic) 3097 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 3098 << T 3099 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 3100 Invalid = true; 3101 continue; 3102 } 3103 } 3104 3105 // If there were at least as many template-ids as there were template 3106 // parameter lists, then there are no template parameter lists remaining for 3107 // the declaration itself. 3108 if (ParamIdx >= ParamLists.size()) { 3109 if (TemplateId && !IsFriend) { 3110 // We don't have a template header for the declaration itself, but we 3111 // should. 3112 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, 3113 TemplateId->RAngleLoc)); 3114 3115 // Fabricate an empty template parameter list for the invented header. 3116 return TemplateParameterList::Create(Context, SourceLocation(), 3117 SourceLocation(), None, 3118 SourceLocation(), nullptr); 3119 } 3120 3121 return nullptr; 3122 } 3123 3124 // If there were too many template parameter lists, complain about that now. 3125 if (ParamIdx < ParamLists.size() - 1) { 3126 bool HasAnyExplicitSpecHeader = false; 3127 bool AllExplicitSpecHeaders = true; 3128 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { 3129 if (ParamLists[I]->size() == 0) 3130 HasAnyExplicitSpecHeader = true; 3131 else 3132 AllExplicitSpecHeaders = false; 3133 } 3134 3135 if (!SuppressDiagnostic) 3136 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3137 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers 3138 : diag::err_template_spec_extra_headers) 3139 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 3140 ParamLists[ParamLists.size() - 2]->getRAngleLoc()); 3141 3142 // If there was a specialization somewhere, such that 'template<>' is 3143 // not required, and there were any 'template<>' headers, note where the 3144 // specialization occurred. 3145 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader && 3146 !SuppressDiagnostic) 3147 Diag(ExplicitSpecLoc, 3148 diag::note_explicit_template_spec_does_not_need_header) 3149 << NestedTypes.back(); 3150 3151 // We have a template parameter list with no corresponding scope, which 3152 // means that the resulting template declaration can't be instantiated 3153 // properly (we'll end up with dependent nodes when we shouldn't). 3154 if (!AllExplicitSpecHeaders) 3155 Invalid = true; 3156 } 3157 3158 // C++ [temp.expl.spec]p16: 3159 // In an explicit specialization declaration for a member of a class 3160 // template or a member template that ap- pears in namespace scope, the 3161 // member template and some of its enclosing class templates may remain 3162 // unspecialized, except that the declaration shall not explicitly 3163 // specialize a class member template if its en- closing class templates 3164 // are not explicitly specialized as well. 3165 if (ParamLists.back()->size() == 0 && 3166 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3167 false)) 3168 return nullptr; 3169 3170 // Return the last template parameter list, which corresponds to the 3171 // entity being declared. 3172 return ParamLists.back(); 3173 } 3174 3175 void Sema::NoteAllFoundTemplates(TemplateName Name) { 3176 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 3177 Diag(Template->getLocation(), diag::note_template_declared_here) 3178 << (isa<FunctionTemplateDecl>(Template) 3179 ? 0 3180 : isa<ClassTemplateDecl>(Template) 3181 ? 1 3182 : isa<VarTemplateDecl>(Template) 3183 ? 2 3184 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) 3185 << Template->getDeclName(); 3186 return; 3187 } 3188 3189 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 3190 for (OverloadedTemplateStorage::iterator I = OST->begin(), 3191 IEnd = OST->end(); 3192 I != IEnd; ++I) 3193 Diag((*I)->getLocation(), diag::note_template_declared_here) 3194 << 0 << (*I)->getDeclName(); 3195 3196 return; 3197 } 3198 } 3199 3200 static QualType 3201 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, 3202 const SmallVectorImpl<TemplateArgument> &Converted, 3203 SourceLocation TemplateLoc, 3204 TemplateArgumentListInfo &TemplateArgs) { 3205 ASTContext &Context = SemaRef.getASTContext(); 3206 switch (BTD->getBuiltinTemplateKind()) { 3207 case BTK__make_integer_seq: { 3208 // Specializations of __make_integer_seq<S, T, N> are treated like 3209 // S<T, 0, ..., N-1>. 3210 3211 // C++14 [inteseq.intseq]p1: 3212 // T shall be an integer type. 3213 if (!Converted[1].getAsType()->isIntegralType(Context)) { 3214 SemaRef.Diag(TemplateArgs[1].getLocation(), 3215 diag::err_integer_sequence_integral_element_type); 3216 return QualType(); 3217 } 3218 3219 // C++14 [inteseq.make]p1: 3220 // If N is negative the program is ill-formed. 3221 TemplateArgument NumArgsArg = Converted[2]; 3222 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); 3223 if (NumArgs < 0) { 3224 SemaRef.Diag(TemplateArgs[2].getLocation(), 3225 diag::err_integer_sequence_negative_length); 3226 return QualType(); 3227 } 3228 3229 QualType ArgTy = NumArgsArg.getIntegralType(); 3230 TemplateArgumentListInfo SyntheticTemplateArgs; 3231 // The type argument gets reused as the first template argument in the 3232 // synthetic template argument list. 3233 SyntheticTemplateArgs.addArgument(TemplateArgs[1]); 3234 // Expand N into 0 ... N-1. 3235 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); 3236 I < NumArgs; ++I) { 3237 TemplateArgument TA(Context, I, ArgTy); 3238 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc( 3239 TA, ArgTy, TemplateArgs[2].getLocation())); 3240 } 3241 // The first template argument will be reused as the template decl that 3242 // our synthetic template arguments will be applied to. 3243 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(), 3244 TemplateLoc, SyntheticTemplateArgs); 3245 } 3246 3247 case BTK__type_pack_element: 3248 // Specializations of 3249 // __type_pack_element<Index, T_1, ..., T_N> 3250 // are treated like T_Index. 3251 assert(Converted.size() == 2 && 3252 "__type_pack_element should be given an index and a parameter pack"); 3253 3254 // If the Index is out of bounds, the program is ill-formed. 3255 TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; 3256 llvm::APSInt Index = IndexArg.getAsIntegral(); 3257 assert(Index >= 0 && "the index used with __type_pack_element should be of " 3258 "type std::size_t, and hence be non-negative"); 3259 if (Index >= Ts.pack_size()) { 3260 SemaRef.Diag(TemplateArgs[0].getLocation(), 3261 diag::err_type_pack_element_out_of_bounds); 3262 return QualType(); 3263 } 3264 3265 // We simply return the type at index `Index`. 3266 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue()); 3267 return Nth->getAsType(); 3268 } 3269 llvm_unreachable("unexpected BuiltinTemplateDecl!"); 3270 } 3271 3272 /// Determine whether this alias template is "enable_if_t". 3273 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { 3274 return AliasTemplate->getName().equals("enable_if_t"); 3275 } 3276 3277 /// Collect all of the separable terms in the given condition, which 3278 /// might be a conjunction. 3279 /// 3280 /// FIXME: The right answer is to convert the logical expression into 3281 /// disjunctive normal form, so we can find the first failed term 3282 /// within each possible clause. 3283 static void collectConjunctionTerms(Expr *Clause, 3284 SmallVectorImpl<Expr *> &Terms) { 3285 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) { 3286 if (BinOp->getOpcode() == BO_LAnd) { 3287 collectConjunctionTerms(BinOp->getLHS(), Terms); 3288 collectConjunctionTerms(BinOp->getRHS(), Terms); 3289 } 3290 3291 return; 3292 } 3293 3294 Terms.push_back(Clause); 3295 } 3296 3297 // The ranges-v3 library uses an odd pattern of a top-level "||" with 3298 // a left-hand side that is value-dependent but never true. Identify 3299 // the idiom and ignore that term. 3300 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { 3301 // Top-level '||'. 3302 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts()); 3303 if (!BinOp) return Cond; 3304 3305 if (BinOp->getOpcode() != BO_LOr) return Cond; 3306 3307 // With an inner '==' that has a literal on the right-hand side. 3308 Expr *LHS = BinOp->getLHS(); 3309 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts()); 3310 if (!InnerBinOp) return Cond; 3311 3312 if (InnerBinOp->getOpcode() != BO_EQ || 3313 !isa<IntegerLiteral>(InnerBinOp->getRHS())) 3314 return Cond; 3315 3316 // If the inner binary operation came from a macro expansion named 3317 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side 3318 // of the '||', which is the real, user-provided condition. 3319 SourceLocation Loc = InnerBinOp->getExprLoc(); 3320 if (!Loc.isMacroID()) return Cond; 3321 3322 StringRef MacroName = PP.getImmediateMacroName(Loc); 3323 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_") 3324 return BinOp->getRHS(); 3325 3326 return Cond; 3327 } 3328 3329 namespace { 3330 3331 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions 3332 // within failing boolean expression, such as substituting template parameters 3333 // for actual types. 3334 class FailedBooleanConditionPrinterHelper : public PrinterHelper { 3335 public: 3336 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P) 3337 : Policy(P) {} 3338 3339 bool handledStmt(Stmt *E, raw_ostream &OS) override { 3340 const auto *DR = dyn_cast<DeclRefExpr>(E); 3341 if (DR && DR->getQualifier()) { 3342 // If this is a qualified name, expand the template arguments in nested 3343 // qualifiers. 3344 DR->getQualifier()->print(OS, Policy, true); 3345 // Then print the decl itself. 3346 const ValueDecl *VD = DR->getDecl(); 3347 OS << VD->getName(); 3348 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 3349 // This is a template variable, print the expanded template arguments. 3350 printTemplateArgumentList(OS, IV->getTemplateArgs().asArray(), Policy); 3351 } 3352 return true; 3353 } 3354 return false; 3355 } 3356 3357 private: 3358 const PrintingPolicy Policy; 3359 }; 3360 3361 } // end anonymous namespace 3362 3363 std::pair<Expr *, std::string> 3364 Sema::findFailedBooleanCondition(Expr *Cond) { 3365 Cond = lookThroughRangesV3Condition(PP, Cond); 3366 3367 // Separate out all of the terms in a conjunction. 3368 SmallVector<Expr *, 4> Terms; 3369 collectConjunctionTerms(Cond, Terms); 3370 3371 // Determine which term failed. 3372 Expr *FailedCond = nullptr; 3373 for (Expr *Term : Terms) { 3374 Expr *TermAsWritten = Term->IgnoreParenImpCasts(); 3375 3376 // Literals are uninteresting. 3377 if (isa<CXXBoolLiteralExpr>(TermAsWritten) || 3378 isa<IntegerLiteral>(TermAsWritten)) 3379 continue; 3380 3381 // The initialization of the parameter from the argument is 3382 // a constant-evaluated context. 3383 EnterExpressionEvaluationContext ConstantEvaluated( 3384 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 3385 3386 bool Succeeded; 3387 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) && 3388 !Succeeded) { 3389 FailedCond = TermAsWritten; 3390 break; 3391 } 3392 } 3393 if (!FailedCond) 3394 FailedCond = Cond->IgnoreParenImpCasts(); 3395 3396 std::string Description; 3397 { 3398 llvm::raw_string_ostream Out(Description); 3399 PrintingPolicy Policy = getPrintingPolicy(); 3400 Policy.PrintCanonicalTypes = true; 3401 FailedBooleanConditionPrinterHelper Helper(Policy); 3402 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr); 3403 } 3404 return { FailedCond, Description }; 3405 } 3406 3407 QualType Sema::CheckTemplateIdType(TemplateName Name, 3408 SourceLocation TemplateLoc, 3409 TemplateArgumentListInfo &TemplateArgs) { 3410 DependentTemplateName *DTN 3411 = Name.getUnderlying().getAsDependentTemplateName(); 3412 if (DTN && DTN->isIdentifier()) 3413 // When building a template-id where the template-name is dependent, 3414 // assume the template is a type template. Either our assumption is 3415 // correct, or the code is ill-formed and will be diagnosed when the 3416 // dependent name is substituted. 3417 return Context.getDependentTemplateSpecializationType(ETK_None, 3418 DTN->getQualifier(), 3419 DTN->getIdentifier(), 3420 TemplateArgs); 3421 3422 TemplateDecl *Template = Name.getAsTemplateDecl(); 3423 if (!Template || isa<FunctionTemplateDecl>(Template) || 3424 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) { 3425 // We might have a substituted template template parameter pack. If so, 3426 // build a template specialization type for it. 3427 if (Name.getAsSubstTemplateTemplateParmPack()) 3428 return Context.getTemplateSpecializationType(Name, TemplateArgs); 3429 3430 Diag(TemplateLoc, diag::err_template_id_not_a_type) 3431 << Name; 3432 NoteAllFoundTemplates(Name); 3433 return QualType(); 3434 } 3435 3436 // Check that the template argument list is well-formed for this 3437 // template. 3438 SmallVector<TemplateArgument, 4> Converted; 3439 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 3440 false, Converted, 3441 /*UpdateArgsWithConversion=*/true)) 3442 return QualType(); 3443 3444 QualType CanonType; 3445 3446 bool InstantiationDependent = false; 3447 if (TypeAliasTemplateDecl *AliasTemplate = 3448 dyn_cast<TypeAliasTemplateDecl>(Template)) { 3449 3450 // Find the canonical type for this type alias template specialization. 3451 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 3452 if (Pattern->isInvalidDecl()) 3453 return QualType(); 3454 3455 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack, 3456 Converted); 3457 3458 // Only substitute for the innermost template argument list. 3459 MultiLevelTemplateArgumentList TemplateArgLists; 3460 TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs); 3461 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 3462 for (unsigned I = 0; I < Depth; ++I) 3463 TemplateArgLists.addOuterTemplateArguments(None); 3464 3465 LocalInstantiationScope Scope(*this); 3466 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 3467 if (Inst.isInvalid()) 3468 return QualType(); 3469 3470 CanonType = SubstType(Pattern->getUnderlyingType(), 3471 TemplateArgLists, AliasTemplate->getLocation(), 3472 AliasTemplate->getDeclName()); 3473 if (CanonType.isNull()) { 3474 // If this was enable_if and we failed to find the nested type 3475 // within enable_if in a SFINAE context, dig out the specific 3476 // enable_if condition that failed and present that instead. 3477 if (isEnableIfAliasTemplate(AliasTemplate)) { 3478 if (auto DeductionInfo = isSFINAEContext()) { 3479 if (*DeductionInfo && 3480 (*DeductionInfo)->hasSFINAEDiagnostic() && 3481 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == 3482 diag::err_typename_nested_not_found_enable_if && 3483 TemplateArgs[0].getArgument().getKind() 3484 == TemplateArgument::Expression) { 3485 Expr *FailedCond; 3486 std::string FailedDescription; 3487 std::tie(FailedCond, FailedDescription) = 3488 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression()); 3489 3490 // Remove the old SFINAE diagnostic. 3491 PartialDiagnosticAt OldDiag = 3492 {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; 3493 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag); 3494 3495 // Add a new SFINAE diagnostic specifying which condition 3496 // failed. 3497 (*DeductionInfo)->addSFINAEDiagnostic( 3498 OldDiag.first, 3499 PDiag(diag::err_typename_nested_not_found_requirement) 3500 << FailedDescription 3501 << FailedCond->getSourceRange()); 3502 } 3503 } 3504 } 3505 3506 return QualType(); 3507 } 3508 } else if (Name.isDependent() || 3509 TemplateSpecializationType::anyDependentTemplateArguments( 3510 TemplateArgs, InstantiationDependent)) { 3511 // This class template specialization is a dependent 3512 // type. Therefore, its canonical type is another class template 3513 // specialization type that contains all of the converted 3514 // arguments in canonical form. This ensures that, e.g., A<T> and 3515 // A<T, T> have identical types when A is declared as: 3516 // 3517 // template<typename T, typename U = T> struct A; 3518 CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted); 3519 3520 // This might work out to be a current instantiation, in which 3521 // case the canonical type needs to be the InjectedClassNameType. 3522 // 3523 // TODO: in theory this could be a simple hashtable lookup; most 3524 // changes to CurContext don't change the set of current 3525 // instantiations. 3526 if (isa<ClassTemplateDecl>(Template)) { 3527 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 3528 // If we get out to a namespace, we're done. 3529 if (Ctx->isFileContext()) break; 3530 3531 // If this isn't a record, keep looking. 3532 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 3533 if (!Record) continue; 3534 3535 // Look for one of the two cases with InjectedClassNameTypes 3536 // and check whether it's the same template. 3537 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 3538 !Record->getDescribedClassTemplate()) 3539 continue; 3540 3541 // Fetch the injected class name type and check whether its 3542 // injected type is equal to the type we just built. 3543 QualType ICNT = Context.getTypeDeclType(Record); 3544 QualType Injected = cast<InjectedClassNameType>(ICNT) 3545 ->getInjectedSpecializationType(); 3546 3547 if (CanonType != Injected->getCanonicalTypeInternal()) 3548 continue; 3549 3550 // If so, the canonical type of this TST is the injected 3551 // class name type of the record we just found. 3552 assert(ICNT.isCanonical()); 3553 CanonType = ICNT; 3554 break; 3555 } 3556 } 3557 } else if (ClassTemplateDecl *ClassTemplate 3558 = dyn_cast<ClassTemplateDecl>(Template)) { 3559 // Find the class template specialization declaration that 3560 // corresponds to these arguments. 3561 void *InsertPos = nullptr; 3562 ClassTemplateSpecializationDecl *Decl 3563 = ClassTemplate->findSpecialization(Converted, InsertPos); 3564 if (!Decl) { 3565 // This is the first time we have referenced this class template 3566 // specialization. Create the canonical declaration and add it to 3567 // the set of specializations. 3568 Decl = ClassTemplateSpecializationDecl::Create( 3569 Context, ClassTemplate->getTemplatedDecl()->getTagKind(), 3570 ClassTemplate->getDeclContext(), 3571 ClassTemplate->getTemplatedDecl()->getBeginLoc(), 3572 ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr); 3573 ClassTemplate->AddSpecialization(Decl, InsertPos); 3574 if (ClassTemplate->isOutOfLine()) 3575 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 3576 } 3577 3578 if (Decl->getSpecializationKind() == TSK_Undeclared) { 3579 MultiLevelTemplateArgumentList TemplateArgLists; 3580 TemplateArgLists.addOuterTemplateArguments(Converted); 3581 InstantiateAttrsForDecl(TemplateArgLists, ClassTemplate->getTemplatedDecl(), 3582 Decl); 3583 } 3584 3585 // Diagnose uses of this specialization. 3586 (void)DiagnoseUseOfDecl(Decl, TemplateLoc); 3587 3588 CanonType = Context.getTypeDeclType(Decl); 3589 assert(isa<RecordType>(CanonType) && 3590 "type of non-dependent specialization is not a RecordType"); 3591 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) { 3592 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc, 3593 TemplateArgs); 3594 } 3595 3596 // Build the fully-sugared type for this class template 3597 // specialization, which refers back to the class template 3598 // specialization we created or found. 3599 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 3600 } 3601 3602 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName, 3603 TemplateNameKind &TNK, 3604 SourceLocation NameLoc, 3605 IdentifierInfo *&II) { 3606 assert(TNK == TNK_Undeclared_template && "not an undeclared template name"); 3607 3608 TemplateName Name = ParsedName.get(); 3609 auto *ATN = Name.getAsAssumedTemplateName(); 3610 assert(ATN && "not an assumed template name"); 3611 II = ATN->getDeclName().getAsIdentifierInfo(); 3612 3613 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) { 3614 // Resolved to a type template name. 3615 ParsedName = TemplateTy::make(Name); 3616 TNK = TNK_Type_template; 3617 } 3618 } 3619 3620 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, 3621 SourceLocation NameLoc, 3622 bool Diagnose) { 3623 // We assumed this undeclared identifier to be an (ADL-only) function 3624 // template name, but it was used in a context where a type was required. 3625 // Try to typo-correct it now. 3626 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName(); 3627 assert(ATN && "not an assumed template name"); 3628 3629 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName); 3630 struct CandidateCallback : CorrectionCandidateCallback { 3631 bool ValidateCandidate(const TypoCorrection &TC) override { 3632 return TC.getCorrectionDecl() && 3633 getAsTypeTemplateDecl(TC.getCorrectionDecl()); 3634 } 3635 std::unique_ptr<CorrectionCandidateCallback> clone() override { 3636 return std::make_unique<CandidateCallback>(*this); 3637 } 3638 } FilterCCC; 3639 3640 TypoCorrection Corrected = 3641 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr, 3642 FilterCCC, CTK_ErrorRecovery); 3643 if (Corrected && Corrected.getFoundDecl()) { 3644 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) 3645 << ATN->getDeclName()); 3646 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>()); 3647 return false; 3648 } 3649 3650 if (Diagnose) 3651 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName(); 3652 return true; 3653 } 3654 3655 TypeResult Sema::ActOnTemplateIdType( 3656 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 3657 TemplateTy TemplateD, IdentifierInfo *TemplateII, 3658 SourceLocation TemplateIILoc, SourceLocation LAngleLoc, 3659 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc, 3660 bool IsCtorOrDtorName, bool IsClassName) { 3661 if (SS.isInvalid()) 3662 return true; 3663 3664 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { 3665 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); 3666 3667 // C++ [temp.res]p3: 3668 // A qualified-id that refers to a type and in which the 3669 // nested-name-specifier depends on a template-parameter (14.6.2) 3670 // shall be prefixed by the keyword typename to indicate that the 3671 // qualified-id denotes a type, forming an 3672 // elaborated-type-specifier (7.1.5.3). 3673 if (!LookupCtx && isDependentScopeSpecifier(SS)) { 3674 Diag(SS.getBeginLoc(), diag::err_typename_missing_template) 3675 << SS.getScopeRep() << TemplateII->getName(); 3676 // Recover as if 'typename' were specified. 3677 // FIXME: This is not quite correct recovery as we don't transform SS 3678 // into the corresponding dependent form (and we don't diagnose missing 3679 // 'template' keywords within SS as a result). 3680 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc, 3681 TemplateD, TemplateII, TemplateIILoc, LAngleLoc, 3682 TemplateArgsIn, RAngleLoc); 3683 } 3684 3685 // Per C++ [class.qual]p2, if the template-id was an injected-class-name, 3686 // it's not actually allowed to be used as a type in most cases. Because 3687 // we annotate it before we know whether it's valid, we have to check for 3688 // this case here. 3689 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 3690 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 3691 Diag(TemplateIILoc, 3692 TemplateKWLoc.isInvalid() 3693 ? diag::err_out_of_line_qualified_id_type_names_constructor 3694 : diag::ext_out_of_line_qualified_id_type_names_constructor) 3695 << TemplateII << 0 /*injected-class-name used as template name*/ 3696 << 1 /*if any keyword was present, it was 'template'*/; 3697 } 3698 } 3699 3700 TemplateName Template = TemplateD.get(); 3701 if (Template.getAsAssumedTemplateName() && 3702 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc)) 3703 return true; 3704 3705 // Translate the parser's template argument list in our AST format. 3706 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 3707 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3708 3709 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 3710 QualType T 3711 = Context.getDependentTemplateSpecializationType(ETK_None, 3712 DTN->getQualifier(), 3713 DTN->getIdentifier(), 3714 TemplateArgs); 3715 // Build type-source information. 3716 TypeLocBuilder TLB; 3717 DependentTemplateSpecializationTypeLoc SpecTL 3718 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 3719 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 3720 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3721 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3722 SpecTL.setTemplateNameLoc(TemplateIILoc); 3723 SpecTL.setLAngleLoc(LAngleLoc); 3724 SpecTL.setRAngleLoc(RAngleLoc); 3725 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 3726 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 3727 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 3728 } 3729 3730 QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 3731 if (Result.isNull()) 3732 return true; 3733 3734 // Build type-source information. 3735 TypeLocBuilder TLB; 3736 TemplateSpecializationTypeLoc SpecTL 3737 = TLB.push<TemplateSpecializationTypeLoc>(Result); 3738 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3739 SpecTL.setTemplateNameLoc(TemplateIILoc); 3740 SpecTL.setLAngleLoc(LAngleLoc); 3741 SpecTL.setRAngleLoc(RAngleLoc); 3742 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 3743 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 3744 3745 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 3746 // constructor or destructor name (in such a case, the scope specifier 3747 // will be attached to the enclosing Decl or Expr node). 3748 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 3749 // Create an elaborated-type-specifier containing the nested-name-specifier. 3750 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 3751 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 3752 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 3753 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3754 } 3755 3756 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 3757 } 3758 3759 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 3760 TypeSpecifierType TagSpec, 3761 SourceLocation TagLoc, 3762 CXXScopeSpec &SS, 3763 SourceLocation TemplateKWLoc, 3764 TemplateTy TemplateD, 3765 SourceLocation TemplateLoc, 3766 SourceLocation LAngleLoc, 3767 ASTTemplateArgsPtr TemplateArgsIn, 3768 SourceLocation RAngleLoc) { 3769 TemplateName Template = TemplateD.get(); 3770 3771 // Translate the parser's template argument list in our AST format. 3772 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 3773 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3774 3775 // Determine the tag kind 3776 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 3777 ElaboratedTypeKeyword Keyword 3778 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 3779 3780 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 3781 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 3782 DTN->getQualifier(), 3783 DTN->getIdentifier(), 3784 TemplateArgs); 3785 3786 // Build type-source information. 3787 TypeLocBuilder TLB; 3788 DependentTemplateSpecializationTypeLoc SpecTL 3789 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 3790 SpecTL.setElaboratedKeywordLoc(TagLoc); 3791 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3792 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3793 SpecTL.setTemplateNameLoc(TemplateLoc); 3794 SpecTL.setLAngleLoc(LAngleLoc); 3795 SpecTL.setRAngleLoc(RAngleLoc); 3796 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 3797 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 3798 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 3799 } 3800 3801 if (TypeAliasTemplateDecl *TAT = 3802 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 3803 // C++0x [dcl.type.elab]p2: 3804 // If the identifier resolves to a typedef-name or the simple-template-id 3805 // resolves to an alias template specialization, the 3806 // elaborated-type-specifier is ill-formed. 3807 Diag(TemplateLoc, diag::err_tag_reference_non_tag) 3808 << TAT << NTK_TypeAliasTemplate << TagKind; 3809 Diag(TAT->getLocation(), diag::note_declared_at); 3810 } 3811 3812 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 3813 if (Result.isNull()) 3814 return TypeResult(true); 3815 3816 // Check the tag kind 3817 if (const RecordType *RT = Result->getAs<RecordType>()) { 3818 RecordDecl *D = RT->getDecl(); 3819 3820 IdentifierInfo *Id = D->getIdentifier(); 3821 assert(Id && "templated class must have an identifier"); 3822 3823 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 3824 TagLoc, Id)) { 3825 Diag(TagLoc, diag::err_use_with_wrong_tag) 3826 << Result 3827 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 3828 Diag(D->getLocation(), diag::note_previous_use); 3829 } 3830 } 3831 3832 // Provide source-location information for the template specialization. 3833 TypeLocBuilder TLB; 3834 TemplateSpecializationTypeLoc SpecTL 3835 = TLB.push<TemplateSpecializationTypeLoc>(Result); 3836 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3837 SpecTL.setTemplateNameLoc(TemplateLoc); 3838 SpecTL.setLAngleLoc(LAngleLoc); 3839 SpecTL.setRAngleLoc(RAngleLoc); 3840 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 3841 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 3842 3843 // Construct an elaborated type containing the nested-name-specifier (if any) 3844 // and tag keyword. 3845 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 3846 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 3847 ElabTL.setElaboratedKeywordLoc(TagLoc); 3848 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3849 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 3850 } 3851 3852 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, 3853 NamedDecl *PrevDecl, 3854 SourceLocation Loc, 3855 bool IsPartialSpecialization); 3856 3857 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); 3858 3859 static bool isTemplateArgumentTemplateParameter( 3860 const TemplateArgument &Arg, unsigned Depth, unsigned Index) { 3861 switch (Arg.getKind()) { 3862 case TemplateArgument::Null: 3863 case TemplateArgument::NullPtr: 3864 case TemplateArgument::Integral: 3865 case TemplateArgument::Declaration: 3866 case TemplateArgument::Pack: 3867 case TemplateArgument::TemplateExpansion: 3868 return false; 3869 3870 case TemplateArgument::Type: { 3871 QualType Type = Arg.getAsType(); 3872 const TemplateTypeParmType *TPT = 3873 Arg.getAsType()->getAs<TemplateTypeParmType>(); 3874 return TPT && !Type.hasQualifiers() && 3875 TPT->getDepth() == Depth && TPT->getIndex() == Index; 3876 } 3877 3878 case TemplateArgument::Expression: { 3879 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr()); 3880 if (!DRE || !DRE->getDecl()) 3881 return false; 3882 const NonTypeTemplateParmDecl *NTTP = 3883 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 3884 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; 3885 } 3886 3887 case TemplateArgument::Template: 3888 const TemplateTemplateParmDecl *TTP = 3889 dyn_cast_or_null<TemplateTemplateParmDecl>( 3890 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); 3891 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; 3892 } 3893 llvm_unreachable("unexpected kind of template argument"); 3894 } 3895 3896 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, 3897 ArrayRef<TemplateArgument> Args) { 3898 if (Params->size() != Args.size()) 3899 return false; 3900 3901 unsigned Depth = Params->getDepth(); 3902 3903 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 3904 TemplateArgument Arg = Args[I]; 3905 3906 // If the parameter is a pack expansion, the argument must be a pack 3907 // whose only element is a pack expansion. 3908 if (Params->getParam(I)->isParameterPack()) { 3909 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || 3910 !Arg.pack_begin()->isPackExpansion()) 3911 return false; 3912 Arg = Arg.pack_begin()->getPackExpansionPattern(); 3913 } 3914 3915 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I)) 3916 return false; 3917 } 3918 3919 return true; 3920 } 3921 3922 template<typename PartialSpecDecl> 3923 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { 3924 if (Partial->getDeclContext()->isDependentContext()) 3925 return; 3926 3927 // FIXME: Get the TDK from deduction in order to provide better diagnostics 3928 // for non-substitution-failure issues? 3929 TemplateDeductionInfo Info(Partial->getLocation()); 3930 if (S.isMoreSpecializedThanPrimary(Partial, Info)) 3931 return; 3932 3933 auto *Template = Partial->getSpecializedTemplate(); 3934 S.Diag(Partial->getLocation(), 3935 diag::ext_partial_spec_not_more_specialized_than_primary) 3936 << isa<VarTemplateDecl>(Template); 3937 3938 if (Info.hasSFINAEDiagnostic()) { 3939 PartialDiagnosticAt Diag = {SourceLocation(), 3940 PartialDiagnostic::NullDiagnostic()}; 3941 Info.takeSFINAEDiagnostic(Diag); 3942 SmallString<128> SFINAEArgString; 3943 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString); 3944 S.Diag(Diag.first, 3945 diag::note_partial_spec_not_more_specialized_than_primary) 3946 << SFINAEArgString; 3947 } 3948 3949 S.Diag(Template->getLocation(), diag::note_template_decl_here); 3950 SmallVector<const Expr *, 3> PartialAC, TemplateAC; 3951 Template->getAssociatedConstraints(TemplateAC); 3952 Partial->getAssociatedConstraints(PartialAC); 3953 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template, 3954 TemplateAC); 3955 } 3956 3957 static void 3958 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, 3959 const llvm::SmallBitVector &DeducibleParams) { 3960 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3961 if (!DeducibleParams[I]) { 3962 NamedDecl *Param = TemplateParams->getParam(I); 3963 if (Param->getDeclName()) 3964 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 3965 << Param->getDeclName(); 3966 else 3967 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 3968 << "(anonymous)"; 3969 } 3970 } 3971 } 3972 3973 3974 template<typename PartialSpecDecl> 3975 static void checkTemplatePartialSpecialization(Sema &S, 3976 PartialSpecDecl *Partial) { 3977 // C++1z [temp.class.spec]p8: (DR1495) 3978 // - The specialization shall be more specialized than the primary 3979 // template (14.5.5.2). 3980 checkMoreSpecializedThanPrimary(S, Partial); 3981 3982 // C++ [temp.class.spec]p8: (DR1315) 3983 // - Each template-parameter shall appear at least once in the 3984 // template-id outside a non-deduced context. 3985 // C++1z [temp.class.spec.match]p3 (P0127R2) 3986 // If the template arguments of a partial specialization cannot be 3987 // deduced because of the structure of its template-parameter-list 3988 // and the template-id, the program is ill-formed. 3989 auto *TemplateParams = Partial->getTemplateParameters(); 3990 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 3991 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3992 TemplateParams->getDepth(), DeducibleParams); 3993 3994 if (!DeducibleParams.all()) { 3995 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 3996 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) 3997 << isa<VarTemplatePartialSpecializationDecl>(Partial) 3998 << (NumNonDeducible > 1) 3999 << SourceRange(Partial->getLocation(), 4000 Partial->getTemplateArgsAsWritten()->RAngleLoc); 4001 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); 4002 } 4003 } 4004 4005 void Sema::CheckTemplatePartialSpecialization( 4006 ClassTemplatePartialSpecializationDecl *Partial) { 4007 checkTemplatePartialSpecialization(*this, Partial); 4008 } 4009 4010 void Sema::CheckTemplatePartialSpecialization( 4011 VarTemplatePartialSpecializationDecl *Partial) { 4012 checkTemplatePartialSpecialization(*this, Partial); 4013 } 4014 4015 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { 4016 // C++1z [temp.param]p11: 4017 // A template parameter of a deduction guide template that does not have a 4018 // default-argument shall be deducible from the parameter-type-list of the 4019 // deduction guide template. 4020 auto *TemplateParams = TD->getTemplateParameters(); 4021 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4022 MarkDeducedTemplateParameters(TD, DeducibleParams); 4023 for (unsigned I = 0; I != TemplateParams->size(); ++I) { 4024 // A parameter pack is deducible (to an empty pack). 4025 auto *Param = TemplateParams->getParam(I); 4026 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param)) 4027 DeducibleParams[I] = true; 4028 } 4029 4030 if (!DeducibleParams.all()) { 4031 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4032 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible) 4033 << (NumNonDeducible > 1); 4034 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams); 4035 } 4036 } 4037 4038 DeclResult Sema::ActOnVarTemplateSpecialization( 4039 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, 4040 TemplateParameterList *TemplateParams, StorageClass SC, 4041 bool IsPartialSpecialization) { 4042 // D must be variable template id. 4043 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && 4044 "Variable template specialization is declared with a template it."); 4045 4046 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4047 TemplateArgumentListInfo TemplateArgs = 4048 makeTemplateArgumentListInfo(*this, *TemplateId); 4049 SourceLocation TemplateNameLoc = D.getIdentifierLoc(); 4050 SourceLocation LAngleLoc = TemplateId->LAngleLoc; 4051 SourceLocation RAngleLoc = TemplateId->RAngleLoc; 4052 4053 TemplateName Name = TemplateId->Template.get(); 4054 4055 // The template-id must name a variable template. 4056 VarTemplateDecl *VarTemplate = 4057 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl()); 4058 if (!VarTemplate) { 4059 NamedDecl *FnTemplate; 4060 if (auto *OTS = Name.getAsOverloadedTemplate()) 4061 FnTemplate = *OTS->begin(); 4062 else 4063 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); 4064 if (FnTemplate) 4065 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) 4066 << FnTemplate->getDeclName(); 4067 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) 4068 << IsPartialSpecialization; 4069 } 4070 4071 // Check for unexpanded parameter packs in any of the template arguments. 4072 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4073 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4074 UPPC_PartialSpecialization)) 4075 return true; 4076 4077 // Check that the template argument list is well-formed for this 4078 // template. 4079 SmallVector<TemplateArgument, 4> Converted; 4080 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, 4081 false, Converted, 4082 /*UpdateArgsWithConversion=*/true)) 4083 return true; 4084 4085 // Find the variable template (partial) specialization declaration that 4086 // corresponds to these arguments. 4087 if (IsPartialSpecialization) { 4088 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate, 4089 TemplateArgs.size(), Converted)) 4090 return true; 4091 4092 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we 4093 // also do them during instantiation. 4094 bool InstantiationDependent; 4095 if (!Name.isDependent() && 4096 !TemplateSpecializationType::anyDependentTemplateArguments( 4097 TemplateArgs.arguments(), 4098 InstantiationDependent)) { 4099 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4100 << VarTemplate->getDeclName(); 4101 IsPartialSpecialization = false; 4102 } 4103 4104 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), 4105 Converted) && 4106 (!Context.getLangOpts().CPlusPlus2a || 4107 !TemplateParams->hasAssociatedConstraints())) { 4108 // C++ [temp.class.spec]p9b3: 4109 // 4110 // -- The argument list of the specialization shall not be identical 4111 // to the implicit argument list of the primary template. 4112 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4113 << /*variable template*/ 1 4114 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) 4115 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4116 // FIXME: Recover from this by treating the declaration as a redeclaration 4117 // of the primary template. 4118 return true; 4119 } 4120 } 4121 4122 void *InsertPos = nullptr; 4123 VarTemplateSpecializationDecl *PrevDecl = nullptr; 4124 4125 if (IsPartialSpecialization) 4126 PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams, 4127 InsertPos); 4128 else 4129 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos); 4130 4131 VarTemplateSpecializationDecl *Specialization = nullptr; 4132 4133 // Check whether we can declare a variable template specialization in 4134 // the current scope. 4135 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, 4136 TemplateNameLoc, 4137 IsPartialSpecialization)) 4138 return true; 4139 4140 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4141 // Since the only prior variable template specialization with these 4142 // arguments was referenced but not declared, reuse that 4143 // declaration node as our own, updating its source location and 4144 // the list of outer template parameters to reflect our new declaration. 4145 Specialization = PrevDecl; 4146 Specialization->setLocation(TemplateNameLoc); 4147 PrevDecl = nullptr; 4148 } else if (IsPartialSpecialization) { 4149 // Create a new class template partial specialization declaration node. 4150 VarTemplatePartialSpecializationDecl *PrevPartial = 4151 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); 4152 VarTemplatePartialSpecializationDecl *Partial = 4153 VarTemplatePartialSpecializationDecl::Create( 4154 Context, VarTemplate->getDeclContext(), TemplateKWLoc, 4155 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, 4156 Converted, TemplateArgs); 4157 4158 if (!PrevPartial) 4159 VarTemplate->AddPartialSpecialization(Partial, InsertPos); 4160 Specialization = Partial; 4161 4162 // If we are providing an explicit specialization of a member variable 4163 // template specialization, make a note of that. 4164 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4165 PrevPartial->setMemberSpecialization(); 4166 4167 CheckTemplatePartialSpecialization(Partial); 4168 } else { 4169 // Create a new class template specialization declaration node for 4170 // this explicit specialization or friend declaration. 4171 Specialization = VarTemplateSpecializationDecl::Create( 4172 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, 4173 VarTemplate, DI->getType(), DI, SC, Converted); 4174 Specialization->setTemplateArgsInfo(TemplateArgs); 4175 4176 if (!PrevDecl) 4177 VarTemplate->AddSpecialization(Specialization, InsertPos); 4178 } 4179 4180 // C++ [temp.expl.spec]p6: 4181 // If a template, a member template or the member of a class template is 4182 // explicitly specialized then that specialization shall be declared 4183 // before the first use of that specialization that would cause an implicit 4184 // instantiation to take place, in every translation unit in which such a 4185 // use occurs; no diagnostic is required. 4186 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4187 bool Okay = false; 4188 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 4189 // Is there any previous explicit specialization declaration? 4190 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4191 Okay = true; 4192 break; 4193 } 4194 } 4195 4196 if (!Okay) { 4197 SourceRange Range(TemplateNameLoc, RAngleLoc); 4198 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4199 << Name << Range; 4200 4201 Diag(PrevDecl->getPointOfInstantiation(), 4202 diag::note_instantiation_required_here) 4203 << (PrevDecl->getTemplateSpecializationKind() != 4204 TSK_ImplicitInstantiation); 4205 return true; 4206 } 4207 } 4208 4209 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 4210 Specialization->setLexicalDeclContext(CurContext); 4211 4212 // Add the specialization into its lexical context, so that it can 4213 // be seen when iterating through the list of declarations in that 4214 // context. However, specializations are not found by name lookup. 4215 CurContext->addDecl(Specialization); 4216 4217 // Note that this is an explicit specialization. 4218 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4219 4220 if (PrevDecl) { 4221 // Check that this isn't a redefinition of this specialization, 4222 // merging with previous declarations. 4223 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName, 4224 forRedeclarationInCurContext()); 4225 PrevSpec.addDecl(PrevDecl); 4226 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec)); 4227 } else if (Specialization->isStaticDataMember() && 4228 Specialization->isOutOfLine()) { 4229 Specialization->setAccess(VarTemplate->getAccess()); 4230 } 4231 4232 return Specialization; 4233 } 4234 4235 namespace { 4236 /// A partial specialization whose template arguments have matched 4237 /// a given template-id. 4238 struct PartialSpecMatchResult { 4239 VarTemplatePartialSpecializationDecl *Partial; 4240 TemplateArgumentList *Args; 4241 }; 4242 } // end anonymous namespace 4243 4244 DeclResult 4245 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, 4246 SourceLocation TemplateNameLoc, 4247 const TemplateArgumentListInfo &TemplateArgs) { 4248 assert(Template && "A variable template id without template?"); 4249 4250 // Check that the template argument list is well-formed for this template. 4251 SmallVector<TemplateArgument, 4> Converted; 4252 if (CheckTemplateArgumentList( 4253 Template, TemplateNameLoc, 4254 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, 4255 Converted, /*UpdateArgsWithConversion=*/true)) 4256 return true; 4257 4258 // Find the variable template specialization declaration that 4259 // corresponds to these arguments. 4260 void *InsertPos = nullptr; 4261 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization( 4262 Converted, InsertPos)) { 4263 checkSpecializationVisibility(TemplateNameLoc, Spec); 4264 // If we already have a variable template specialization, return it. 4265 return Spec; 4266 } 4267 4268 // This is the first time we have referenced this variable template 4269 // specialization. Create the canonical declaration and add it to 4270 // the set of specializations, based on the closest partial specialization 4271 // that it represents. That is, 4272 VarDecl *InstantiationPattern = Template->getTemplatedDecl(); 4273 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, 4274 Converted); 4275 TemplateArgumentList *InstantiationArgs = &TemplateArgList; 4276 bool AmbiguousPartialSpec = false; 4277 typedef PartialSpecMatchResult MatchResult; 4278 SmallVector<MatchResult, 4> Matched; 4279 SourceLocation PointOfInstantiation = TemplateNameLoc; 4280 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, 4281 /*ForTakingAddress=*/false); 4282 4283 // 1. Attempt to find the closest partial specialization that this 4284 // specializes, if any. 4285 // If any of the template arguments is dependent, then this is probably 4286 // a placeholder for an incomplete declarative context; which must be 4287 // complete by instantiation time. Thus, do not search through the partial 4288 // specializations yet. 4289 // TODO: Unify with InstantiateClassTemplateSpecialization()? 4290 // Perhaps better after unification of DeduceTemplateArguments() and 4291 // getMoreSpecializedPartialSpecialization(). 4292 bool InstantiationDependent = false; 4293 if (!TemplateSpecializationType::anyDependentTemplateArguments( 4294 TemplateArgs, InstantiationDependent)) { 4295 4296 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 4297 Template->getPartialSpecializations(PartialSpecs); 4298 4299 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { 4300 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; 4301 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 4302 4303 if (TemplateDeductionResult Result = 4304 DeduceTemplateArguments(Partial, TemplateArgList, Info)) { 4305 // Store the failed-deduction information for use in diagnostics, later. 4306 // TODO: Actually use the failed-deduction info? 4307 FailedCandidates.addCandidate().set( 4308 DeclAccessPair::make(Template, AS_public), Partial, 4309 MakeDeductionFailureInfo(Context, Result, Info)); 4310 (void)Result; 4311 } else { 4312 Matched.push_back(PartialSpecMatchResult()); 4313 Matched.back().Partial = Partial; 4314 Matched.back().Args = Info.take(); 4315 } 4316 } 4317 4318 if (Matched.size() >= 1) { 4319 SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); 4320 if (Matched.size() == 1) { 4321 // -- If exactly one matching specialization is found, the 4322 // instantiation is generated from that specialization. 4323 // We don't need to do anything for this. 4324 } else { 4325 // -- If more than one matching specialization is found, the 4326 // partial order rules (14.5.4.2) are used to determine 4327 // whether one of the specializations is more specialized 4328 // than the others. If none of the specializations is more 4329 // specialized than all of the other matching 4330 // specializations, then the use of the variable template is 4331 // ambiguous and the program is ill-formed. 4332 for (SmallVector<MatchResult, 4>::iterator P = Best + 1, 4333 PEnd = Matched.end(); 4334 P != PEnd; ++P) { 4335 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, 4336 PointOfInstantiation) == 4337 P->Partial) 4338 Best = P; 4339 } 4340 4341 // Determine if the best partial specialization is more specialized than 4342 // the others. 4343 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 4344 PEnd = Matched.end(); 4345 P != PEnd; ++P) { 4346 if (P != Best && getMoreSpecializedPartialSpecialization( 4347 P->Partial, Best->Partial, 4348 PointOfInstantiation) != Best->Partial) { 4349 AmbiguousPartialSpec = true; 4350 break; 4351 } 4352 } 4353 } 4354 4355 // Instantiate using the best variable template partial specialization. 4356 InstantiationPattern = Best->Partial; 4357 InstantiationArgs = Best->Args; 4358 } else { 4359 // -- If no match is found, the instantiation is generated 4360 // from the primary template. 4361 // InstantiationPattern = Template->getTemplatedDecl(); 4362 } 4363 } 4364 4365 // 2. Create the canonical declaration. 4366 // Note that we do not instantiate a definition until we see an odr-use 4367 // in DoMarkVarDeclReferenced(). 4368 // FIXME: LateAttrs et al.? 4369 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( 4370 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs, 4371 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/); 4372 if (!Decl) 4373 return true; 4374 4375 if (AmbiguousPartialSpec) { 4376 // Partial ordering did not produce a clear winner. Complain. 4377 Decl->setInvalidDecl(); 4378 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) 4379 << Decl; 4380 4381 // Print the matching partial specializations. 4382 for (MatchResult P : Matched) 4383 Diag(P.Partial->getLocation(), diag::note_partial_spec_match) 4384 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(), 4385 *P.Args); 4386 return true; 4387 } 4388 4389 if (VarTemplatePartialSpecializationDecl *D = 4390 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) 4391 Decl->setInstantiationOf(D, InstantiationArgs); 4392 4393 checkSpecializationVisibility(TemplateNameLoc, Decl); 4394 4395 assert(Decl && "No variable template specialization?"); 4396 return Decl; 4397 } 4398 4399 ExprResult 4400 Sema::CheckVarTemplateId(const CXXScopeSpec &SS, 4401 const DeclarationNameInfo &NameInfo, 4402 VarTemplateDecl *Template, SourceLocation TemplateLoc, 4403 const TemplateArgumentListInfo *TemplateArgs) { 4404 4405 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), 4406 *TemplateArgs); 4407 if (Decl.isInvalid()) 4408 return ExprError(); 4409 4410 VarDecl *Var = cast<VarDecl>(Decl.get()); 4411 if (!Var->getTemplateSpecializationKind()) 4412 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, 4413 NameInfo.getLoc()); 4414 4415 // Build an ordinary singleton decl ref. 4416 return BuildDeclarationNameExpr(SS, NameInfo, Var, 4417 /*FoundD=*/nullptr, TemplateArgs); 4418 } 4419 4420 void Sema::diagnoseMissingTemplateArguments(TemplateName Name, 4421 SourceLocation Loc) { 4422 Diag(Loc, diag::err_template_missing_args) 4423 << (int)getTemplateNameKindForDiagnostics(Name) << Name; 4424 if (TemplateDecl *TD = Name.getAsTemplateDecl()) { 4425 Diag(TD->getLocation(), diag::note_template_decl_here) 4426 << TD->getTemplateParameters()->getSourceRange(); 4427 } 4428 } 4429 4430 ExprResult 4431 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS, 4432 SourceLocation TemplateKWLoc, 4433 const DeclarationNameInfo &ConceptNameInfo, 4434 NamedDecl *FoundDecl, 4435 ConceptDecl *NamedConcept, 4436 const TemplateArgumentListInfo *TemplateArgs) { 4437 assert(NamedConcept && "A concept template id without a template?"); 4438 4439 llvm::SmallVector<TemplateArgument, 4> Converted; 4440 if (CheckTemplateArgumentList(NamedConcept, ConceptNameInfo.getLoc(), 4441 const_cast<TemplateArgumentListInfo&>(*TemplateArgs), 4442 /*PartialTemplateArgs=*/false, Converted, 4443 /*UpdateArgsWithConversion=*/false)) 4444 return ExprError(); 4445 4446 ConstraintSatisfaction Satisfaction; 4447 bool AreArgsDependent = false; 4448 for (TemplateArgument &Arg : Converted) { 4449 if (Arg.isDependent()) { 4450 AreArgsDependent = true; 4451 break; 4452 } 4453 } 4454 if (!AreArgsDependent && 4455 CheckConstraintSatisfaction(NamedConcept, 4456 {NamedConcept->getConstraintExpr()}, 4457 Converted, 4458 SourceRange(SS.isSet() ? SS.getBeginLoc() : 4459 ConceptNameInfo.getLoc(), 4460 TemplateArgs->getRAngleLoc()), 4461 Satisfaction)) 4462 return ExprError(); 4463 4464 return ConceptSpecializationExpr::Create(Context, 4465 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{}, 4466 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept, 4467 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted, 4468 AreArgsDependent ? nullptr : &Satisfaction); 4469 } 4470 4471 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 4472 SourceLocation TemplateKWLoc, 4473 LookupResult &R, 4474 bool RequiresADL, 4475 const TemplateArgumentListInfo *TemplateArgs) { 4476 // FIXME: Can we do any checking at this point? I guess we could check the 4477 // template arguments that we have against the template name, if the template 4478 // name refers to a single template. That's not a terribly common case, 4479 // though. 4480 // foo<int> could identify a single function unambiguously 4481 // This approach does NOT work, since f<int>(1); 4482 // gets resolved prior to resorting to overload resolution 4483 // i.e., template<class T> void f(double); 4484 // vs template<class T, class U> void f(U); 4485 4486 // These should be filtered out by our callers. 4487 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 4488 4489 // Non-function templates require a template argument list. 4490 if (auto *TD = R.getAsSingle<TemplateDecl>()) { 4491 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) { 4492 diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc()); 4493 return ExprError(); 4494 } 4495 } 4496 4497 auto AnyDependentArguments = [&]() -> bool { 4498 bool InstantiationDependent; 4499 return TemplateArgs && 4500 TemplateSpecializationType::anyDependentTemplateArguments( 4501 *TemplateArgs, InstantiationDependent); 4502 }; 4503 4504 // In C++1y, check variable template ids. 4505 if (R.getAsSingle<VarTemplateDecl>() && !AnyDependentArguments()) { 4506 return CheckVarTemplateId(SS, R.getLookupNameInfo(), 4507 R.getAsSingle<VarTemplateDecl>(), 4508 TemplateKWLoc, TemplateArgs); 4509 } 4510 4511 if (R.getAsSingle<ConceptDecl>()) { 4512 return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(), 4513 R.getFoundDecl(), 4514 R.getAsSingle<ConceptDecl>(), TemplateArgs); 4515 } 4516 4517 // We don't want lookup warnings at this point. 4518 R.suppressDiagnostics(); 4519 4520 UnresolvedLookupExpr *ULE 4521 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 4522 SS.getWithLocInContext(Context), 4523 TemplateKWLoc, 4524 R.getLookupNameInfo(), 4525 RequiresADL, TemplateArgs, 4526 R.begin(), R.end()); 4527 4528 return ULE; 4529 } 4530 4531 // We actually only call this from template instantiation. 4532 ExprResult 4533 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 4534 SourceLocation TemplateKWLoc, 4535 const DeclarationNameInfo &NameInfo, 4536 const TemplateArgumentListInfo *TemplateArgs) { 4537 4538 assert(TemplateArgs || TemplateKWLoc.isValid()); 4539 DeclContext *DC; 4540 if (!(DC = computeDeclContext(SS, false)) || 4541 DC->isDependentContext() || 4542 RequireCompleteDeclContext(SS, DC)) 4543 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 4544 4545 bool MemberOfUnknownSpecialization; 4546 LookupResult R(*this, NameInfo, LookupOrdinaryName); 4547 if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(), 4548 /*Entering*/false, MemberOfUnknownSpecialization, 4549 TemplateKWLoc)) 4550 return ExprError(); 4551 4552 if (R.isAmbiguous()) 4553 return ExprError(); 4554 4555 if (R.empty()) { 4556 Diag(NameInfo.getLoc(), diag::err_no_member) 4557 << NameInfo.getName() << DC << SS.getRange(); 4558 return ExprError(); 4559 } 4560 4561 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 4562 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 4563 << SS.getScopeRep() 4564 << NameInfo.getName().getAsString() << SS.getRange(); 4565 Diag(Temp->getLocation(), diag::note_referenced_class_template); 4566 return ExprError(); 4567 } 4568 4569 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 4570 } 4571 4572 /// Form a dependent template name. 4573 /// 4574 /// This action forms a dependent template name given the template 4575 /// name and its (presumably dependent) scope specifier. For 4576 /// example, given "MetaFun::template apply", the scope specifier \p 4577 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location 4578 /// of the "template" keyword, and "apply" is the \p Name. 4579 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 4580 CXXScopeSpec &SS, 4581 SourceLocation TemplateKWLoc, 4582 const UnqualifiedId &Name, 4583 ParsedType ObjectType, 4584 bool EnteringContext, 4585 TemplateTy &Result, 4586 bool AllowInjectedClassName) { 4587 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 4588 Diag(TemplateKWLoc, 4589 getLangOpts().CPlusPlus11 ? 4590 diag::warn_cxx98_compat_template_outside_of_template : 4591 diag::ext_template_outside_of_template) 4592 << FixItHint::CreateRemoval(TemplateKWLoc); 4593 4594 DeclContext *LookupCtx = nullptr; 4595 if (SS.isSet()) 4596 LookupCtx = computeDeclContext(SS, EnteringContext); 4597 if (!LookupCtx && ObjectType) 4598 LookupCtx = computeDeclContext(ObjectType.get()); 4599 if (LookupCtx) { 4600 // C++0x [temp.names]p5: 4601 // If a name prefixed by the keyword template is not the name of 4602 // a template, the program is ill-formed. [Note: the keyword 4603 // template may not be applied to non-template members of class 4604 // templates. -end note ] [ Note: as is the case with the 4605 // typename prefix, the template prefix is allowed in cases 4606 // where it is not strictly necessary; i.e., when the 4607 // nested-name-specifier or the expression on the left of the -> 4608 // or . is not dependent on a template-parameter, or the use 4609 // does not appear in the scope of a template. -end note] 4610 // 4611 // Note: C++03 was more strict here, because it banned the use of 4612 // the "template" keyword prior to a template-name that was not a 4613 // dependent name. C++ DR468 relaxed this requirement (the 4614 // "template" keyword is now permitted). We follow the C++0x 4615 // rules, even in C++03 mode with a warning, retroactively applying the DR. 4616 bool MemberOfUnknownSpecialization; 4617 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 4618 ObjectType, EnteringContext, Result, 4619 MemberOfUnknownSpecialization); 4620 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization) { 4621 // This is a dependent template. Handle it below. 4622 } else if (TNK == TNK_Non_template) { 4623 // Do the lookup again to determine if this is a "nothing found" case or 4624 // a "not a template" case. FIXME: Refactor isTemplateName so we don't 4625 // need to do this. 4626 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); 4627 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(), 4628 LookupOrdinaryName); 4629 bool MOUS; 4630 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, 4631 MOUS, TemplateKWLoc) && !R.isAmbiguous()) 4632 Diag(Name.getBeginLoc(), diag::err_no_member) 4633 << DNI.getName() << LookupCtx << SS.getRange(); 4634 return TNK_Non_template; 4635 } else { 4636 // We found something; return it. 4637 auto *LookupRD = dyn_cast<CXXRecordDecl>(LookupCtx); 4638 if (!AllowInjectedClassName && SS.isSet() && LookupRD && 4639 Name.getKind() == UnqualifiedIdKind::IK_Identifier && 4640 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { 4641 // C++14 [class.qual]p2: 4642 // In a lookup in which function names are not ignored and the 4643 // nested-name-specifier nominates a class C, if the name specified 4644 // [...] is the injected-class-name of C, [...] the name is instead 4645 // considered to name the constructor 4646 // 4647 // We don't get here if naming the constructor would be valid, so we 4648 // just reject immediately and recover by treating the 4649 // injected-class-name as naming the template. 4650 Diag(Name.getBeginLoc(), 4651 diag::ext_out_of_line_qualified_id_type_names_constructor) 4652 << Name.Identifier 4653 << 0 /*injected-class-name used as template name*/ 4654 << 1 /*'template' keyword was used*/; 4655 } 4656 return TNK; 4657 } 4658 } 4659 4660 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 4661 4662 switch (Name.getKind()) { 4663 case UnqualifiedIdKind::IK_Identifier: 4664 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 4665 Name.Identifier)); 4666 return TNK_Dependent_template_name; 4667 4668 case UnqualifiedIdKind::IK_OperatorFunctionId: 4669 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 4670 Name.OperatorFunctionId.Operator)); 4671 return TNK_Function_template; 4672 4673 case UnqualifiedIdKind::IK_LiteralOperatorId: 4674 llvm_unreachable("literal operator id cannot have a dependent scope"); 4675 4676 default: 4677 break; 4678 } 4679 4680 Diag(Name.getBeginLoc(), diag::err_template_kw_refers_to_non_template) 4681 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange() 4682 << TemplateKWLoc; 4683 return TNK_Non_template; 4684 } 4685 4686 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 4687 TemplateArgumentLoc &AL, 4688 SmallVectorImpl<TemplateArgument> &Converted) { 4689 const TemplateArgument &Arg = AL.getArgument(); 4690 QualType ArgType; 4691 TypeSourceInfo *TSI = nullptr; 4692 4693 // Check template type parameter. 4694 switch(Arg.getKind()) { 4695 case TemplateArgument::Type: 4696 // C++ [temp.arg.type]p1: 4697 // A template-argument for a template-parameter which is a 4698 // type shall be a type-id. 4699 ArgType = Arg.getAsType(); 4700 TSI = AL.getTypeSourceInfo(); 4701 break; 4702 case TemplateArgument::Template: 4703 case TemplateArgument::TemplateExpansion: { 4704 // We have a template type parameter but the template argument 4705 // is a template without any arguments. 4706 SourceRange SR = AL.getSourceRange(); 4707 TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); 4708 diagnoseMissingTemplateArguments(Name, SR.getEnd()); 4709 return true; 4710 } 4711 case TemplateArgument::Expression: { 4712 // We have a template type parameter but the template argument is an 4713 // expression; see if maybe it is missing the "typename" keyword. 4714 CXXScopeSpec SS; 4715 DeclarationNameInfo NameInfo; 4716 4717 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) { 4718 SS.Adopt(ArgExpr->getQualifierLoc()); 4719 NameInfo = ArgExpr->getNameInfo(); 4720 } else if (DependentScopeDeclRefExpr *ArgExpr = 4721 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 4722 SS.Adopt(ArgExpr->getQualifierLoc()); 4723 NameInfo = ArgExpr->getNameInfo(); 4724 } else if (CXXDependentScopeMemberExpr *ArgExpr = 4725 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 4726 if (ArgExpr->isImplicitAccess()) { 4727 SS.Adopt(ArgExpr->getQualifierLoc()); 4728 NameInfo = ArgExpr->getMemberNameInfo(); 4729 } 4730 } 4731 4732 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { 4733 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 4734 LookupParsedName(Result, CurScope, &SS); 4735 4736 if (Result.getAsSingle<TypeDecl>() || 4737 Result.getResultKind() == 4738 LookupResult::NotFoundInCurrentInstantiation) { 4739 // Suggest that the user add 'typename' before the NNS. 4740 SourceLocation Loc = AL.getSourceRange().getBegin(); 4741 Diag(Loc, getLangOpts().MSVCCompat 4742 ? diag::ext_ms_template_type_arg_missing_typename 4743 : diag::err_template_arg_must_be_type_suggest) 4744 << FixItHint::CreateInsertion(Loc, "typename "); 4745 Diag(Param->getLocation(), diag::note_template_param_here); 4746 4747 // Recover by synthesizing a type using the location information that we 4748 // already have. 4749 ArgType = 4750 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II); 4751 TypeLocBuilder TLB; 4752 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType); 4753 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); 4754 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4755 TL.setNameLoc(NameInfo.getLoc()); 4756 TSI = TLB.getTypeSourceInfo(Context, ArgType); 4757 4758 // Overwrite our input TemplateArgumentLoc so that we can recover 4759 // properly. 4760 AL = TemplateArgumentLoc(TemplateArgument(ArgType), 4761 TemplateArgumentLocInfo(TSI)); 4762 4763 break; 4764 } 4765 } 4766 // fallthrough 4767 LLVM_FALLTHROUGH; 4768 } 4769 default: { 4770 // We have a template type parameter but the template argument 4771 // is not a type. 4772 SourceRange SR = AL.getSourceRange(); 4773 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 4774 Diag(Param->getLocation(), diag::note_template_param_here); 4775 4776 return true; 4777 } 4778 } 4779 4780 if (CheckTemplateArgument(Param, TSI)) 4781 return true; 4782 4783 // Add the converted template type argument. 4784 ArgType = Context.getCanonicalType(ArgType); 4785 4786 // Objective-C ARC: 4787 // If an explicitly-specified template argument type is a lifetime type 4788 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 4789 if (getLangOpts().ObjCAutoRefCount && 4790 ArgType->isObjCLifetimeType() && 4791 !ArgType.getObjCLifetime()) { 4792 Qualifiers Qs; 4793 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 4794 ArgType = Context.getQualifiedType(ArgType, Qs); 4795 } 4796 4797 Converted.push_back(TemplateArgument(ArgType)); 4798 return false; 4799 } 4800 4801 /// Substitute template arguments into the default template argument for 4802 /// the given template type parameter. 4803 /// 4804 /// \param SemaRef the semantic analysis object for which we are performing 4805 /// the substitution. 4806 /// 4807 /// \param Template the template that we are synthesizing template arguments 4808 /// for. 4809 /// 4810 /// \param TemplateLoc the location of the template name that started the 4811 /// template-id we are checking. 4812 /// 4813 /// \param RAngleLoc the location of the right angle bracket ('>') that 4814 /// terminates the template-id. 4815 /// 4816 /// \param Param the template template parameter whose default we are 4817 /// substituting into. 4818 /// 4819 /// \param Converted the list of template arguments provided for template 4820 /// parameters that precede \p Param in the template parameter list. 4821 /// \returns the substituted template argument, or NULL if an error occurred. 4822 static TypeSourceInfo * 4823 SubstDefaultTemplateArgument(Sema &SemaRef, 4824 TemplateDecl *Template, 4825 SourceLocation TemplateLoc, 4826 SourceLocation RAngleLoc, 4827 TemplateTypeParmDecl *Param, 4828 SmallVectorImpl<TemplateArgument> &Converted) { 4829 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 4830 4831 // If the argument type is dependent, instantiate it now based 4832 // on the previously-computed template arguments. 4833 if (ArgType->getType()->isInstantiationDependentType()) { 4834 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 4835 Param, Template, Converted, 4836 SourceRange(TemplateLoc, RAngleLoc)); 4837 if (Inst.isInvalid()) 4838 return nullptr; 4839 4840 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 4841 4842 // Only substitute for the innermost template argument list. 4843 MultiLevelTemplateArgumentList TemplateArgLists; 4844 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 4845 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 4846 TemplateArgLists.addOuterTemplateArguments(None); 4847 4848 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 4849 ArgType = 4850 SemaRef.SubstType(ArgType, TemplateArgLists, 4851 Param->getDefaultArgumentLoc(), Param->getDeclName()); 4852 } 4853 4854 return ArgType; 4855 } 4856 4857 /// Substitute template arguments into the default template argument for 4858 /// the given non-type template parameter. 4859 /// 4860 /// \param SemaRef the semantic analysis object for which we are performing 4861 /// the substitution. 4862 /// 4863 /// \param Template the template that we are synthesizing template arguments 4864 /// for. 4865 /// 4866 /// \param TemplateLoc the location of the template name that started the 4867 /// template-id we are checking. 4868 /// 4869 /// \param RAngleLoc the location of the right angle bracket ('>') that 4870 /// terminates the template-id. 4871 /// 4872 /// \param Param the non-type template parameter whose default we are 4873 /// substituting into. 4874 /// 4875 /// \param Converted the list of template arguments provided for template 4876 /// parameters that precede \p Param in the template parameter list. 4877 /// 4878 /// \returns the substituted template argument, or NULL if an error occurred. 4879 static ExprResult 4880 SubstDefaultTemplateArgument(Sema &SemaRef, 4881 TemplateDecl *Template, 4882 SourceLocation TemplateLoc, 4883 SourceLocation RAngleLoc, 4884 NonTypeTemplateParmDecl *Param, 4885 SmallVectorImpl<TemplateArgument> &Converted) { 4886 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 4887 Param, Template, Converted, 4888 SourceRange(TemplateLoc, RAngleLoc)); 4889 if (Inst.isInvalid()) 4890 return ExprError(); 4891 4892 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 4893 4894 // Only substitute for the innermost template argument list. 4895 MultiLevelTemplateArgumentList TemplateArgLists; 4896 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 4897 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 4898 TemplateArgLists.addOuterTemplateArguments(None); 4899 4900 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 4901 EnterExpressionEvaluationContext ConstantEvaluated( 4902 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 4903 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists); 4904 } 4905 4906 /// Substitute template arguments into the default template argument for 4907 /// the given template template parameter. 4908 /// 4909 /// \param SemaRef the semantic analysis object for which we are performing 4910 /// the substitution. 4911 /// 4912 /// \param Template the template that we are synthesizing template arguments 4913 /// for. 4914 /// 4915 /// \param TemplateLoc the location of the template name that started the 4916 /// template-id we are checking. 4917 /// 4918 /// \param RAngleLoc the location of the right angle bracket ('>') that 4919 /// terminates the template-id. 4920 /// 4921 /// \param Param the template template parameter whose default we are 4922 /// substituting into. 4923 /// 4924 /// \param Converted the list of template arguments provided for template 4925 /// parameters that precede \p Param in the template parameter list. 4926 /// 4927 /// \param QualifierLoc Will be set to the nested-name-specifier (with 4928 /// source-location information) that precedes the template name. 4929 /// 4930 /// \returns the substituted template argument, or NULL if an error occurred. 4931 static TemplateName 4932 SubstDefaultTemplateArgument(Sema &SemaRef, 4933 TemplateDecl *Template, 4934 SourceLocation TemplateLoc, 4935 SourceLocation RAngleLoc, 4936 TemplateTemplateParmDecl *Param, 4937 SmallVectorImpl<TemplateArgument> &Converted, 4938 NestedNameSpecifierLoc &QualifierLoc) { 4939 Sema::InstantiatingTemplate Inst( 4940 SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted, 4941 SourceRange(TemplateLoc, RAngleLoc)); 4942 if (Inst.isInvalid()) 4943 return TemplateName(); 4944 4945 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 4946 4947 // Only substitute for the innermost template argument list. 4948 MultiLevelTemplateArgumentList TemplateArgLists; 4949 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 4950 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 4951 TemplateArgLists.addOuterTemplateArguments(None); 4952 4953 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 4954 // Substitute into the nested-name-specifier first, 4955 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 4956 if (QualifierLoc) { 4957 QualifierLoc = 4958 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); 4959 if (!QualifierLoc) 4960 return TemplateName(); 4961 } 4962 4963 return SemaRef.SubstTemplateName( 4964 QualifierLoc, 4965 Param->getDefaultArgument().getArgument().getAsTemplate(), 4966 Param->getDefaultArgument().getTemplateNameLoc(), 4967 TemplateArgLists); 4968 } 4969 4970 /// If the given template parameter has a default template 4971 /// argument, substitute into that default template argument and 4972 /// return the corresponding template argument. 4973 TemplateArgumentLoc 4974 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 4975 SourceLocation TemplateLoc, 4976 SourceLocation RAngleLoc, 4977 Decl *Param, 4978 SmallVectorImpl<TemplateArgument> 4979 &Converted, 4980 bool &HasDefaultArg) { 4981 HasDefaultArg = false; 4982 4983 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 4984 if (!hasVisibleDefaultArgument(TypeParm)) 4985 return TemplateArgumentLoc(); 4986 4987 HasDefaultArg = true; 4988 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 4989 TemplateLoc, 4990 RAngleLoc, 4991 TypeParm, 4992 Converted); 4993 if (DI) 4994 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 4995 4996 return TemplateArgumentLoc(); 4997 } 4998 4999 if (NonTypeTemplateParmDecl *NonTypeParm 5000 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5001 if (!hasVisibleDefaultArgument(NonTypeParm)) 5002 return TemplateArgumentLoc(); 5003 5004 HasDefaultArg = true; 5005 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 5006 TemplateLoc, 5007 RAngleLoc, 5008 NonTypeParm, 5009 Converted); 5010 if (Arg.isInvalid()) 5011 return TemplateArgumentLoc(); 5012 5013 Expr *ArgE = Arg.getAs<Expr>(); 5014 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 5015 } 5016 5017 TemplateTemplateParmDecl *TempTempParm 5018 = cast<TemplateTemplateParmDecl>(Param); 5019 if (!hasVisibleDefaultArgument(TempTempParm)) 5020 return TemplateArgumentLoc(); 5021 5022 HasDefaultArg = true; 5023 NestedNameSpecifierLoc QualifierLoc; 5024 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 5025 TemplateLoc, 5026 RAngleLoc, 5027 TempTempParm, 5028 Converted, 5029 QualifierLoc); 5030 if (TName.isNull()) 5031 return TemplateArgumentLoc(); 5032 5033 return TemplateArgumentLoc(TemplateArgument(TName), 5034 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 5035 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 5036 } 5037 5038 /// Convert a template-argument that we parsed as a type into a template, if 5039 /// possible. C++ permits injected-class-names to perform dual service as 5040 /// template template arguments and as template type arguments. 5041 static TemplateArgumentLoc convertTypeTemplateArgumentToTemplate(TypeLoc TLoc) { 5042 // Extract and step over any surrounding nested-name-specifier. 5043 NestedNameSpecifierLoc QualLoc; 5044 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { 5045 if (ETLoc.getTypePtr()->getKeyword() != ETK_None) 5046 return TemplateArgumentLoc(); 5047 5048 QualLoc = ETLoc.getQualifierLoc(); 5049 TLoc = ETLoc.getNamedTypeLoc(); 5050 } 5051 5052 // If this type was written as an injected-class-name, it can be used as a 5053 // template template argument. 5054 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) 5055 return TemplateArgumentLoc(InjLoc.getTypePtr()->getTemplateName(), 5056 QualLoc, InjLoc.getNameLoc()); 5057 5058 // If this type was written as an injected-class-name, it may have been 5059 // converted to a RecordType during instantiation. If the RecordType is 5060 // *not* wrapped in a TemplateSpecializationType and denotes a class 5061 // template specialization, it must have come from an injected-class-name. 5062 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) 5063 if (auto *CTSD = 5064 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl())) 5065 return TemplateArgumentLoc(TemplateName(CTSD->getSpecializedTemplate()), 5066 QualLoc, RecLoc.getNameLoc()); 5067 5068 return TemplateArgumentLoc(); 5069 } 5070 5071 /// Check that the given template argument corresponds to the given 5072 /// template parameter. 5073 /// 5074 /// \param Param The template parameter against which the argument will be 5075 /// checked. 5076 /// 5077 /// \param Arg The template argument, which may be updated due to conversions. 5078 /// 5079 /// \param Template The template in which the template argument resides. 5080 /// 5081 /// \param TemplateLoc The location of the template name for the template 5082 /// whose argument list we're matching. 5083 /// 5084 /// \param RAngleLoc The location of the right angle bracket ('>') that closes 5085 /// the template argument list. 5086 /// 5087 /// \param ArgumentPackIndex The index into the argument pack where this 5088 /// argument will be placed. Only valid if the parameter is a parameter pack. 5089 /// 5090 /// \param Converted The checked, converted argument will be added to the 5091 /// end of this small vector. 5092 /// 5093 /// \param CTAK Describes how we arrived at this particular template argument: 5094 /// explicitly written, deduced, etc. 5095 /// 5096 /// \returns true on error, false otherwise. 5097 bool Sema::CheckTemplateArgument(NamedDecl *Param, 5098 TemplateArgumentLoc &Arg, 5099 NamedDecl *Template, 5100 SourceLocation TemplateLoc, 5101 SourceLocation RAngleLoc, 5102 unsigned ArgumentPackIndex, 5103 SmallVectorImpl<TemplateArgument> &Converted, 5104 CheckTemplateArgumentKind CTAK) { 5105 // Check template type parameters. 5106 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 5107 return CheckTemplateTypeArgument(TTP, Arg, Converted); 5108 5109 // Check non-type template parameters. 5110 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5111 // Do substitution on the type of the non-type template parameter 5112 // with the template arguments we've seen thus far. But if the 5113 // template has a dependent context then we cannot substitute yet. 5114 QualType NTTPType = NTTP->getType(); 5115 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 5116 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 5117 5118 if (NTTPType->isInstantiationDependentType() && 5119 !isa<TemplateTemplateParmDecl>(Template) && 5120 !Template->getDeclContext()->isDependentContext()) { 5121 // Do substitution on the type of the non-type template parameter. 5122 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 5123 NTTP, Converted, 5124 SourceRange(TemplateLoc, RAngleLoc)); 5125 if (Inst.isInvalid()) 5126 return true; 5127 5128 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 5129 Converted); 5130 5131 // If the parameter is a pack expansion, expand this slice of the pack. 5132 if (auto *PET = NTTPType->getAs<PackExpansionType>()) { 5133 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, 5134 ArgumentPackIndex); 5135 NTTPType = SubstType(PET->getPattern(), 5136 MultiLevelTemplateArgumentList(TemplateArgs), 5137 NTTP->getLocation(), 5138 NTTP->getDeclName()); 5139 } else { 5140 NTTPType = SubstType(NTTPType, 5141 MultiLevelTemplateArgumentList(TemplateArgs), 5142 NTTP->getLocation(), 5143 NTTP->getDeclName()); 5144 } 5145 5146 // If that worked, check the non-type template parameter type 5147 // for validity. 5148 if (!NTTPType.isNull()) 5149 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 5150 NTTP->getLocation()); 5151 if (NTTPType.isNull()) 5152 return true; 5153 } 5154 5155 switch (Arg.getArgument().getKind()) { 5156 case TemplateArgument::Null: 5157 llvm_unreachable("Should never see a NULL template argument here"); 5158 5159 case TemplateArgument::Expression: { 5160 TemplateArgument Result; 5161 unsigned CurSFINAEErrors = NumSFINAEErrors; 5162 ExprResult Res = 5163 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 5164 Result, CTAK); 5165 if (Res.isInvalid()) 5166 return true; 5167 // If the current template argument causes an error, give up now. 5168 if (CurSFINAEErrors < NumSFINAEErrors) 5169 return true; 5170 5171 // If the resulting expression is new, then use it in place of the 5172 // old expression in the template argument. 5173 if (Res.get() != Arg.getArgument().getAsExpr()) { 5174 TemplateArgument TA(Res.get()); 5175 Arg = TemplateArgumentLoc(TA, Res.get()); 5176 } 5177 5178 Converted.push_back(Result); 5179 break; 5180 } 5181 5182 case TemplateArgument::Declaration: 5183 case TemplateArgument::Integral: 5184 case TemplateArgument::NullPtr: 5185 // We've already checked this template argument, so just copy 5186 // it to the list of converted arguments. 5187 Converted.push_back(Arg.getArgument()); 5188 break; 5189 5190 case TemplateArgument::Template: 5191 case TemplateArgument::TemplateExpansion: 5192 // We were given a template template argument. It may not be ill-formed; 5193 // see below. 5194 if (DependentTemplateName *DTN 5195 = Arg.getArgument().getAsTemplateOrTemplatePattern() 5196 .getAsDependentTemplateName()) { 5197 // We have a template argument such as \c T::template X, which we 5198 // parsed as a template template argument. However, since we now 5199 // know that we need a non-type template argument, convert this 5200 // template name into an expression. 5201 5202 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 5203 Arg.getTemplateNameLoc()); 5204 5205 CXXScopeSpec SS; 5206 SS.Adopt(Arg.getTemplateQualifierLoc()); 5207 // FIXME: the template-template arg was a DependentTemplateName, 5208 // so it was provided with a template keyword. However, its source 5209 // location is not stored in the template argument structure. 5210 SourceLocation TemplateKWLoc; 5211 ExprResult E = DependentScopeDeclRefExpr::Create( 5212 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 5213 nullptr); 5214 5215 // If we parsed the template argument as a pack expansion, create a 5216 // pack expansion expression. 5217 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 5218 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc()); 5219 if (E.isInvalid()) 5220 return true; 5221 } 5222 5223 TemplateArgument Result; 5224 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result); 5225 if (E.isInvalid()) 5226 return true; 5227 5228 Converted.push_back(Result); 5229 break; 5230 } 5231 5232 // We have a template argument that actually does refer to a class 5233 // template, alias template, or template template parameter, and 5234 // therefore cannot be a non-type template argument. 5235 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 5236 << Arg.getSourceRange(); 5237 5238 Diag(Param->getLocation(), diag::note_template_param_here); 5239 return true; 5240 5241 case TemplateArgument::Type: { 5242 // We have a non-type template parameter but the template 5243 // argument is a type. 5244 5245 // C++ [temp.arg]p2: 5246 // In a template-argument, an ambiguity between a type-id and 5247 // an expression is resolved to a type-id, regardless of the 5248 // form of the corresponding template-parameter. 5249 // 5250 // We warn specifically about this case, since it can be rather 5251 // confusing for users. 5252 QualType T = Arg.getArgument().getAsType(); 5253 SourceRange SR = Arg.getSourceRange(); 5254 if (T->isFunctionType()) 5255 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 5256 else 5257 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 5258 Diag(Param->getLocation(), diag::note_template_param_here); 5259 return true; 5260 } 5261 5262 case TemplateArgument::Pack: 5263 llvm_unreachable("Caller must expand template argument packs"); 5264 } 5265 5266 return false; 5267 } 5268 5269 5270 // Check template template parameters. 5271 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 5272 5273 TemplateParameterList *Params = TempParm->getTemplateParameters(); 5274 if (TempParm->isExpandedParameterPack()) 5275 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex); 5276 5277 // Substitute into the template parameter list of the template 5278 // template parameter, since previously-supplied template arguments 5279 // may appear within the template template parameter. 5280 // 5281 // FIXME: Skip this if the parameters aren't instantiation-dependent. 5282 { 5283 // Set up a template instantiation context. 5284 LocalInstantiationScope Scope(*this); 5285 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 5286 TempParm, Converted, 5287 SourceRange(TemplateLoc, RAngleLoc)); 5288 if (Inst.isInvalid()) 5289 return true; 5290 5291 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5292 Params = SubstTemplateParams(Params, CurContext, 5293 MultiLevelTemplateArgumentList(TemplateArgs)); 5294 if (!Params) 5295 return true; 5296 } 5297 5298 // C++1z [temp.local]p1: (DR1004) 5299 // When [the injected-class-name] is used [...] as a template-argument for 5300 // a template template-parameter [...] it refers to the class template 5301 // itself. 5302 if (Arg.getArgument().getKind() == TemplateArgument::Type) { 5303 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( 5304 Arg.getTypeSourceInfo()->getTypeLoc()); 5305 if (!ConvertedArg.getArgument().isNull()) 5306 Arg = ConvertedArg; 5307 } 5308 5309 switch (Arg.getArgument().getKind()) { 5310 case TemplateArgument::Null: 5311 llvm_unreachable("Should never see a NULL template argument here"); 5312 5313 case TemplateArgument::Template: 5314 case TemplateArgument::TemplateExpansion: 5315 if (CheckTemplateTemplateArgument(TempParm, Params, Arg)) 5316 return true; 5317 5318 Converted.push_back(Arg.getArgument()); 5319 break; 5320 5321 case TemplateArgument::Expression: 5322 case TemplateArgument::Type: 5323 // We have a template template parameter but the template 5324 // argument does not refer to a template. 5325 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 5326 << getLangOpts().CPlusPlus11; 5327 return true; 5328 5329 case TemplateArgument::Declaration: 5330 llvm_unreachable("Declaration argument with template template parameter"); 5331 case TemplateArgument::Integral: 5332 llvm_unreachable("Integral argument with template template parameter"); 5333 case TemplateArgument::NullPtr: 5334 llvm_unreachable("Null pointer argument with template template parameter"); 5335 5336 case TemplateArgument::Pack: 5337 llvm_unreachable("Caller must expand template argument packs"); 5338 } 5339 5340 return false; 5341 } 5342 5343 /// Check whether the template parameter is a pack expansion, and if so, 5344 /// determine the number of parameters produced by that expansion. For instance: 5345 /// 5346 /// \code 5347 /// template<typename ...Ts> struct A { 5348 /// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B; 5349 /// }; 5350 /// \endcode 5351 /// 5352 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us 5353 /// is not a pack expansion, so returns an empty Optional. 5354 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 5355 if (TemplateTypeParmDecl *TTP 5356 = dyn_cast<TemplateTypeParmDecl>(Param)) { 5357 if (TTP->isExpandedParameterPack()) 5358 return TTP->getNumExpansionParameters(); 5359 } 5360 5361 if (NonTypeTemplateParmDecl *NTTP 5362 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5363 if (NTTP->isExpandedParameterPack()) 5364 return NTTP->getNumExpansionTypes(); 5365 } 5366 5367 if (TemplateTemplateParmDecl *TTP 5368 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 5369 if (TTP->isExpandedParameterPack()) 5370 return TTP->getNumExpansionTemplateParameters(); 5371 } 5372 5373 return None; 5374 } 5375 5376 /// Diagnose a missing template argument. 5377 template<typename TemplateParmDecl> 5378 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, 5379 TemplateDecl *TD, 5380 const TemplateParmDecl *D, 5381 TemplateArgumentListInfo &Args) { 5382 // Dig out the most recent declaration of the template parameter; there may be 5383 // declarations of the template that are more recent than TD. 5384 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) 5385 ->getTemplateParameters() 5386 ->getParam(D->getIndex())); 5387 5388 // If there's a default argument that's not visible, diagnose that we're 5389 // missing a module import. 5390 llvm::SmallVector<Module*, 8> Modules; 5391 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) { 5392 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD), 5393 D->getDefaultArgumentLoc(), Modules, 5394 Sema::MissingImportKind::DefaultArgument, 5395 /*Recover*/true); 5396 return true; 5397 } 5398 5399 // FIXME: If there's a more recent default argument that *is* visible, 5400 // diagnose that it was declared too late. 5401 5402 TemplateParameterList *Params = TD->getTemplateParameters(); 5403 5404 S.Diag(Loc, diag::err_template_arg_list_different_arity) 5405 << /*not enough args*/0 5406 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD)) 5407 << TD; 5408 S.Diag(TD->getLocation(), diag::note_template_decl_here) 5409 << Params->getSourceRange(); 5410 return true; 5411 } 5412 5413 /// Check that the given template argument list is well-formed 5414 /// for specializing the given template. 5415 bool Sema::CheckTemplateArgumentList( 5416 TemplateDecl *Template, SourceLocation TemplateLoc, 5417 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, 5418 SmallVectorImpl<TemplateArgument> &Converted, 5419 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) { 5420 5421 if (ConstraintsNotSatisfied) 5422 *ConstraintsNotSatisfied = false; 5423 5424 // Make a copy of the template arguments for processing. Only make the 5425 // changes at the end when successful in matching the arguments to the 5426 // template. 5427 TemplateArgumentListInfo NewArgs = TemplateArgs; 5428 5429 // Make sure we get the template parameter list from the most 5430 // recentdeclaration, since that is the only one that has is guaranteed to 5431 // have all the default template argument information. 5432 TemplateParameterList *Params = 5433 cast<TemplateDecl>(Template->getMostRecentDecl()) 5434 ->getTemplateParameters(); 5435 5436 SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); 5437 5438 // C++ [temp.arg]p1: 5439 // [...] The type and form of each template-argument specified in 5440 // a template-id shall match the type and form specified for the 5441 // corresponding parameter declared by the template in its 5442 // template-parameter-list. 5443 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 5444 SmallVector<TemplateArgument, 2> ArgumentPack; 5445 unsigned ArgIdx = 0, NumArgs = NewArgs.size(); 5446 LocalInstantiationScope InstScope(*this, true); 5447 for (TemplateParameterList::iterator Param = Params->begin(), 5448 ParamEnd = Params->end(); 5449 Param != ParamEnd; /* increment in loop */) { 5450 // If we have an expanded parameter pack, make sure we don't have too 5451 // many arguments. 5452 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 5453 if (*Expansions == ArgumentPack.size()) { 5454 // We're done with this parameter pack. Pack up its arguments and add 5455 // them to the list. 5456 Converted.push_back( 5457 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5458 ArgumentPack.clear(); 5459 5460 // This argument is assigned to the next parameter. 5461 ++Param; 5462 continue; 5463 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 5464 // Not enough arguments for this parameter pack. 5465 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5466 << /*not enough args*/0 5467 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5468 << Template; 5469 Diag(Template->getLocation(), diag::note_template_decl_here) 5470 << Params->getSourceRange(); 5471 return true; 5472 } 5473 } 5474 5475 if (ArgIdx < NumArgs) { 5476 // Check the template argument we were given. 5477 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, 5478 TemplateLoc, RAngleLoc, 5479 ArgumentPack.size(), Converted)) 5480 return true; 5481 5482 bool PackExpansionIntoNonPack = 5483 NewArgs[ArgIdx].getArgument().isPackExpansion() && 5484 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param)); 5485 if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) || 5486 isa<ConceptDecl>(Template))) { 5487 // Core issue 1430: we have a pack expansion as an argument to an 5488 // alias template, and it's not part of a parameter pack. This 5489 // can't be canonicalized, so reject it now. 5490 // As for concepts - we cannot normalize constraints where this 5491 // situation exists. 5492 Diag(NewArgs[ArgIdx].getLocation(), 5493 diag::err_template_expansion_into_fixed_list) 5494 << (isa<ConceptDecl>(Template) ? 1 : 0) 5495 << NewArgs[ArgIdx].getSourceRange(); 5496 Diag((*Param)->getLocation(), diag::note_template_param_here); 5497 return true; 5498 } 5499 5500 // We're now done with this argument. 5501 ++ArgIdx; 5502 5503 if ((*Param)->isTemplateParameterPack()) { 5504 // The template parameter was a template parameter pack, so take the 5505 // deduced argument and place it on the argument pack. Note that we 5506 // stay on the same template parameter so that we can deduce more 5507 // arguments. 5508 ArgumentPack.push_back(Converted.pop_back_val()); 5509 } else { 5510 // Move to the next template parameter. 5511 ++Param; 5512 } 5513 5514 // If we just saw a pack expansion into a non-pack, then directly convert 5515 // the remaining arguments, because we don't know what parameters they'll 5516 // match up with. 5517 if (PackExpansionIntoNonPack) { 5518 if (!ArgumentPack.empty()) { 5519 // If we were part way through filling in an expanded parameter pack, 5520 // fall back to just producing individual arguments. 5521 Converted.insert(Converted.end(), 5522 ArgumentPack.begin(), ArgumentPack.end()); 5523 ArgumentPack.clear(); 5524 } 5525 5526 while (ArgIdx < NumArgs) { 5527 Converted.push_back(NewArgs[ArgIdx].getArgument()); 5528 ++ArgIdx; 5529 } 5530 5531 return false; 5532 } 5533 5534 continue; 5535 } 5536 5537 // If we're checking a partial template argument list, we're done. 5538 if (PartialTemplateArgs) { 5539 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 5540 Converted.push_back( 5541 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5542 return false; 5543 } 5544 5545 // If we have a template parameter pack with no more corresponding 5546 // arguments, just break out now and we'll fill in the argument pack below. 5547 if ((*Param)->isTemplateParameterPack()) { 5548 assert(!getExpandedPackSize(*Param) && 5549 "Should have dealt with this already"); 5550 5551 // A non-expanded parameter pack before the end of the parameter list 5552 // only occurs for an ill-formed template parameter list, unless we've 5553 // got a partial argument list for a function template, so just bail out. 5554 if (Param + 1 != ParamEnd) 5555 return true; 5556 5557 Converted.push_back( 5558 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5559 ArgumentPack.clear(); 5560 5561 ++Param; 5562 continue; 5563 } 5564 5565 // Check whether we have a default argument. 5566 TemplateArgumentLoc Arg; 5567 5568 // Retrieve the default template argument from the template 5569 // parameter. For each kind of template parameter, we substitute the 5570 // template arguments provided thus far and any "outer" template arguments 5571 // (when the template parameter was part of a nested template) into 5572 // the default argument. 5573 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 5574 if (!hasVisibleDefaultArgument(TTP)) 5575 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP, 5576 NewArgs); 5577 5578 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 5579 Template, 5580 TemplateLoc, 5581 RAngleLoc, 5582 TTP, 5583 Converted); 5584 if (!ArgType) 5585 return true; 5586 5587 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 5588 ArgType); 5589 } else if (NonTypeTemplateParmDecl *NTTP 5590 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 5591 if (!hasVisibleDefaultArgument(NTTP)) 5592 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP, 5593 NewArgs); 5594 5595 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 5596 TemplateLoc, 5597 RAngleLoc, 5598 NTTP, 5599 Converted); 5600 if (E.isInvalid()) 5601 return true; 5602 5603 Expr *Ex = E.getAs<Expr>(); 5604 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 5605 } else { 5606 TemplateTemplateParmDecl *TempParm 5607 = cast<TemplateTemplateParmDecl>(*Param); 5608 5609 if (!hasVisibleDefaultArgument(TempParm)) 5610 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm, 5611 NewArgs); 5612 5613 NestedNameSpecifierLoc QualifierLoc; 5614 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 5615 TemplateLoc, 5616 RAngleLoc, 5617 TempParm, 5618 Converted, 5619 QualifierLoc); 5620 if (Name.isNull()) 5621 return true; 5622 5623 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 5624 TempParm->getDefaultArgument().getTemplateNameLoc()); 5625 } 5626 5627 // Introduce an instantiation record that describes where we are using 5628 // the default template argument. We're not actually instantiating a 5629 // template here, we just create this object to put a note into the 5630 // context stack. 5631 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted, 5632 SourceRange(TemplateLoc, RAngleLoc)); 5633 if (Inst.isInvalid()) 5634 return true; 5635 5636 // Check the default template argument. 5637 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 5638 RAngleLoc, 0, Converted)) 5639 return true; 5640 5641 // Core issue 150 (assumed resolution): if this is a template template 5642 // parameter, keep track of the default template arguments from the 5643 // template definition. 5644 if (isTemplateTemplateParameter) 5645 NewArgs.addArgument(Arg); 5646 5647 // Move to the next template parameter and argument. 5648 ++Param; 5649 ++ArgIdx; 5650 } 5651 5652 // If we're performing a partial argument substitution, allow any trailing 5653 // pack expansions; they might be empty. This can happen even if 5654 // PartialTemplateArgs is false (the list of arguments is complete but 5655 // still dependent). 5656 if (ArgIdx < NumArgs && CurrentInstantiationScope && 5657 CurrentInstantiationScope->getPartiallySubstitutedPack()) { 5658 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion()) 5659 Converted.push_back(NewArgs[ArgIdx++].getArgument()); 5660 } 5661 5662 // If we have any leftover arguments, then there were too many arguments. 5663 // Complain and fail. 5664 if (ArgIdx < NumArgs) { 5665 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5666 << /*too many args*/1 5667 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5668 << Template 5669 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); 5670 Diag(Template->getLocation(), diag::note_template_decl_here) 5671 << Params->getSourceRange(); 5672 return true; 5673 } 5674 5675 // No problems found with the new argument list, propagate changes back 5676 // to caller. 5677 if (UpdateArgsWithConversions) 5678 TemplateArgs = std::move(NewArgs); 5679 5680 if (!PartialTemplateArgs && 5681 EnsureTemplateArgumentListConstraints( 5682 Template, Converted, SourceRange(TemplateLoc, 5683 TemplateArgs.getRAngleLoc()))) { 5684 if (ConstraintsNotSatisfied) 5685 *ConstraintsNotSatisfied = true; 5686 return true; 5687 } 5688 5689 return false; 5690 } 5691 5692 namespace { 5693 class UnnamedLocalNoLinkageFinder 5694 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 5695 { 5696 Sema &S; 5697 SourceRange SR; 5698 5699 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 5700 5701 public: 5702 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 5703 5704 bool Visit(QualType T) { 5705 return T.isNull() ? false : inherited::Visit(T.getTypePtr()); 5706 } 5707 5708 #define TYPE(Class, Parent) \ 5709 bool Visit##Class##Type(const Class##Type *); 5710 #define ABSTRACT_TYPE(Class, Parent) \ 5711 bool Visit##Class##Type(const Class##Type *) { return false; } 5712 #define NON_CANONICAL_TYPE(Class, Parent) \ 5713 bool Visit##Class##Type(const Class##Type *) { return false; } 5714 #include "clang/AST/TypeNodes.inc" 5715 5716 bool VisitTagDecl(const TagDecl *Tag); 5717 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 5718 }; 5719 } // end anonymous namespace 5720 5721 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 5722 return false; 5723 } 5724 5725 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 5726 return Visit(T->getElementType()); 5727 } 5728 5729 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 5730 return Visit(T->getPointeeType()); 5731 } 5732 5733 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 5734 const BlockPointerType* T) { 5735 return Visit(T->getPointeeType()); 5736 } 5737 5738 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 5739 const LValueReferenceType* T) { 5740 return Visit(T->getPointeeType()); 5741 } 5742 5743 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 5744 const RValueReferenceType* T) { 5745 return Visit(T->getPointeeType()); 5746 } 5747 5748 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 5749 const MemberPointerType* T) { 5750 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 5751 } 5752 5753 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 5754 const ConstantArrayType* T) { 5755 return Visit(T->getElementType()); 5756 } 5757 5758 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 5759 const IncompleteArrayType* T) { 5760 return Visit(T->getElementType()); 5761 } 5762 5763 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 5764 const VariableArrayType* T) { 5765 return Visit(T->getElementType()); 5766 } 5767 5768 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 5769 const DependentSizedArrayType* T) { 5770 return Visit(T->getElementType()); 5771 } 5772 5773 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 5774 const DependentSizedExtVectorType* T) { 5775 return Visit(T->getElementType()); 5776 } 5777 5778 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( 5779 const DependentAddressSpaceType *T) { 5780 return Visit(T->getPointeeType()); 5781 } 5782 5783 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 5784 return Visit(T->getElementType()); 5785 } 5786 5787 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( 5788 const DependentVectorType *T) { 5789 return Visit(T->getElementType()); 5790 } 5791 5792 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 5793 return Visit(T->getElementType()); 5794 } 5795 5796 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 5797 const FunctionProtoType* T) { 5798 for (const auto &A : T->param_types()) { 5799 if (Visit(A)) 5800 return true; 5801 } 5802 5803 return Visit(T->getReturnType()); 5804 } 5805 5806 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 5807 const FunctionNoProtoType* T) { 5808 return Visit(T->getReturnType()); 5809 } 5810 5811 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 5812 const UnresolvedUsingType*) { 5813 return false; 5814 } 5815 5816 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 5817 return false; 5818 } 5819 5820 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 5821 return Visit(T->getUnderlyingType()); 5822 } 5823 5824 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 5825 return false; 5826 } 5827 5828 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 5829 const UnaryTransformType*) { 5830 return false; 5831 } 5832 5833 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 5834 return Visit(T->getDeducedType()); 5835 } 5836 5837 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( 5838 const DeducedTemplateSpecializationType *T) { 5839 return Visit(T->getDeducedType()); 5840 } 5841 5842 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 5843 return VisitTagDecl(T->getDecl()); 5844 } 5845 5846 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 5847 return VisitTagDecl(T->getDecl()); 5848 } 5849 5850 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 5851 const TemplateTypeParmType*) { 5852 return false; 5853 } 5854 5855 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 5856 const SubstTemplateTypeParmPackType *) { 5857 return false; 5858 } 5859 5860 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 5861 const TemplateSpecializationType*) { 5862 return false; 5863 } 5864 5865 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 5866 const InjectedClassNameType* T) { 5867 return VisitTagDecl(T->getDecl()); 5868 } 5869 5870 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 5871 const DependentNameType* T) { 5872 return VisitNestedNameSpecifier(T->getQualifier()); 5873 } 5874 5875 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 5876 const DependentTemplateSpecializationType* T) { 5877 return VisitNestedNameSpecifier(T->getQualifier()); 5878 } 5879 5880 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 5881 const PackExpansionType* T) { 5882 return Visit(T->getPattern()); 5883 } 5884 5885 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 5886 return false; 5887 } 5888 5889 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 5890 const ObjCInterfaceType *) { 5891 return false; 5892 } 5893 5894 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 5895 const ObjCObjectPointerType *) { 5896 return false; 5897 } 5898 5899 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 5900 return Visit(T->getValueType()); 5901 } 5902 5903 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { 5904 return false; 5905 } 5906 5907 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 5908 if (Tag->getDeclContext()->isFunctionOrMethod()) { 5909 S.Diag(SR.getBegin(), 5910 S.getLangOpts().CPlusPlus11 ? 5911 diag::warn_cxx98_compat_template_arg_local_type : 5912 diag::ext_template_arg_local_type) 5913 << S.Context.getTypeDeclType(Tag) << SR; 5914 return true; 5915 } 5916 5917 if (!Tag->hasNameForLinkage()) { 5918 S.Diag(SR.getBegin(), 5919 S.getLangOpts().CPlusPlus11 ? 5920 diag::warn_cxx98_compat_template_arg_unnamed_type : 5921 diag::ext_template_arg_unnamed_type) << SR; 5922 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 5923 return true; 5924 } 5925 5926 return false; 5927 } 5928 5929 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 5930 NestedNameSpecifier *NNS) { 5931 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 5932 return true; 5933 5934 switch (NNS->getKind()) { 5935 case NestedNameSpecifier::Identifier: 5936 case NestedNameSpecifier::Namespace: 5937 case NestedNameSpecifier::NamespaceAlias: 5938 case NestedNameSpecifier::Global: 5939 case NestedNameSpecifier::Super: 5940 return false; 5941 5942 case NestedNameSpecifier::TypeSpec: 5943 case NestedNameSpecifier::TypeSpecWithTemplate: 5944 return Visit(QualType(NNS->getAsType(), 0)); 5945 } 5946 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 5947 } 5948 5949 /// Check a template argument against its corresponding 5950 /// template type parameter. 5951 /// 5952 /// This routine implements the semantics of C++ [temp.arg.type]. It 5953 /// returns true if an error occurred, and false otherwise. 5954 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 5955 TypeSourceInfo *ArgInfo) { 5956 assert(ArgInfo && "invalid TypeSourceInfo"); 5957 QualType Arg = ArgInfo->getType(); 5958 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 5959 5960 if (Arg->isVariablyModifiedType()) { 5961 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 5962 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 5963 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 5964 } 5965 5966 // C++03 [temp.arg.type]p2: 5967 // A local type, a type with no linkage, an unnamed type or a type 5968 // compounded from any of these types shall not be used as a 5969 // template-argument for a template type-parameter. 5970 // 5971 // C++11 allows these, and even in C++03 we allow them as an extension with 5972 // a warning. 5973 if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) { 5974 UnnamedLocalNoLinkageFinder Finder(*this, SR); 5975 (void)Finder.Visit(Context.getCanonicalType(Arg)); 5976 } 5977 5978 return false; 5979 } 5980 5981 enum NullPointerValueKind { 5982 NPV_NotNullPointer, 5983 NPV_NullPointer, 5984 NPV_Error 5985 }; 5986 5987 /// Determine whether the given template argument is a null pointer 5988 /// value of the appropriate type. 5989 static NullPointerValueKind 5990 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 5991 QualType ParamType, Expr *Arg, 5992 Decl *Entity = nullptr) { 5993 if (Arg->isValueDependent() || Arg->isTypeDependent()) 5994 return NPV_NotNullPointer; 5995 5996 // dllimport'd entities aren't constant but are available inside of template 5997 // arguments. 5998 if (Entity && Entity->hasAttr<DLLImportAttr>()) 5999 return NPV_NotNullPointer; 6000 6001 if (!S.isCompleteType(Arg->getExprLoc(), ParamType)) 6002 llvm_unreachable( 6003 "Incomplete parameter type in isNullPointerValueTemplateArgument!"); 6004 6005 if (!S.getLangOpts().CPlusPlus11) 6006 return NPV_NotNullPointer; 6007 6008 // Determine whether we have a constant expression. 6009 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 6010 if (ArgRV.isInvalid()) 6011 return NPV_Error; 6012 Arg = ArgRV.get(); 6013 6014 Expr::EvalResult EvalResult; 6015 SmallVector<PartialDiagnosticAt, 8> Notes; 6016 EvalResult.Diag = &Notes; 6017 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 6018 EvalResult.HasSideEffects) { 6019 SourceLocation DiagLoc = Arg->getExprLoc(); 6020 6021 // If our only note is the usual "invalid subexpression" note, just point 6022 // the caret at its location rather than producing an essentially 6023 // redundant note. 6024 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 6025 diag::note_invalid_subexpr_in_const_expr) { 6026 DiagLoc = Notes[0].first; 6027 Notes.clear(); 6028 } 6029 6030 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 6031 << Arg->getType() << Arg->getSourceRange(); 6032 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 6033 S.Diag(Notes[I].first, Notes[I].second); 6034 6035 S.Diag(Param->getLocation(), diag::note_template_param_here); 6036 return NPV_Error; 6037 } 6038 6039 // C++11 [temp.arg.nontype]p1: 6040 // - an address constant expression of type std::nullptr_t 6041 if (Arg->getType()->isNullPtrType()) 6042 return NPV_NullPointer; 6043 6044 // - a constant expression that evaluates to a null pointer value (4.10); or 6045 // - a constant expression that evaluates to a null member pointer value 6046 // (4.11); or 6047 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 6048 (EvalResult.Val.isMemberPointer() && 6049 !EvalResult.Val.getMemberPointerDecl())) { 6050 // If our expression has an appropriate type, we've succeeded. 6051 bool ObjCLifetimeConversion; 6052 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 6053 S.IsQualificationConversion(Arg->getType(), ParamType, false, 6054 ObjCLifetimeConversion)) 6055 return NPV_NullPointer; 6056 6057 // The types didn't match, but we know we got a null pointer; complain, 6058 // then recover as if the types were correct. 6059 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 6060 << Arg->getType() << ParamType << Arg->getSourceRange(); 6061 S.Diag(Param->getLocation(), diag::note_template_param_here); 6062 return NPV_NullPointer; 6063 } 6064 6065 // If we don't have a null pointer value, but we do have a NULL pointer 6066 // constant, suggest a cast to the appropriate type. 6067 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 6068 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 6069 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 6070 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code) 6071 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()), 6072 ")"); 6073 S.Diag(Param->getLocation(), diag::note_template_param_here); 6074 return NPV_NullPointer; 6075 } 6076 6077 // FIXME: If we ever want to support general, address-constant expressions 6078 // as non-type template arguments, we should return the ExprResult here to 6079 // be interpreted by the caller. 6080 return NPV_NotNullPointer; 6081 } 6082 6083 /// Checks whether the given template argument is compatible with its 6084 /// template parameter. 6085 static bool CheckTemplateArgumentIsCompatibleWithParameter( 6086 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 6087 Expr *Arg, QualType ArgType) { 6088 bool ObjCLifetimeConversion; 6089 if (ParamType->isPointerType() && 6090 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() && 6091 S.IsQualificationConversion(ArgType, ParamType, false, 6092 ObjCLifetimeConversion)) { 6093 // For pointer-to-object types, qualification conversions are 6094 // permitted. 6095 } else { 6096 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 6097 if (!ParamRef->getPointeeType()->isFunctionType()) { 6098 // C++ [temp.arg.nontype]p5b3: 6099 // For a non-type template-parameter of type reference to 6100 // object, no conversions apply. The type referred to by the 6101 // reference may be more cv-qualified than the (otherwise 6102 // identical) type of the template- argument. The 6103 // template-parameter is bound directly to the 6104 // template-argument, which shall be an lvalue. 6105 6106 // FIXME: Other qualifiers? 6107 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 6108 unsigned ArgQuals = ArgType.getCVRQualifiers(); 6109 6110 if ((ParamQuals | ArgQuals) != ParamQuals) { 6111 S.Diag(Arg->getBeginLoc(), 6112 diag::err_template_arg_ref_bind_ignores_quals) 6113 << ParamType << Arg->getType() << Arg->getSourceRange(); 6114 S.Diag(Param->getLocation(), diag::note_template_param_here); 6115 return true; 6116 } 6117 } 6118 } 6119 6120 // At this point, the template argument refers to an object or 6121 // function with external linkage. We now need to check whether the 6122 // argument and parameter types are compatible. 6123 if (!S.Context.hasSameUnqualifiedType(ArgType, 6124 ParamType.getNonReferenceType())) { 6125 // We can't perform this conversion or binding. 6126 if (ParamType->isReferenceType()) 6127 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind) 6128 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 6129 else 6130 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 6131 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 6132 S.Diag(Param->getLocation(), diag::note_template_param_here); 6133 return true; 6134 } 6135 } 6136 6137 return false; 6138 } 6139 6140 /// Checks whether the given template argument is the address 6141 /// of an object or function according to C++ [temp.arg.nontype]p1. 6142 static bool 6143 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 6144 NonTypeTemplateParmDecl *Param, 6145 QualType ParamType, 6146 Expr *ArgIn, 6147 TemplateArgument &Converted) { 6148 bool Invalid = false; 6149 Expr *Arg = ArgIn; 6150 QualType ArgType = Arg->getType(); 6151 6152 bool AddressTaken = false; 6153 SourceLocation AddrOpLoc; 6154 if (S.getLangOpts().MicrosoftExt) { 6155 // Microsoft Visual C++ strips all casts, allows an arbitrary number of 6156 // dereference and address-of operators. 6157 Arg = Arg->IgnoreParenCasts(); 6158 6159 bool ExtWarnMSTemplateArg = false; 6160 UnaryOperatorKind FirstOpKind; 6161 SourceLocation FirstOpLoc; 6162 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6163 UnaryOperatorKind UnOpKind = UnOp->getOpcode(); 6164 if (UnOpKind == UO_Deref) 6165 ExtWarnMSTemplateArg = true; 6166 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { 6167 Arg = UnOp->getSubExpr()->IgnoreParenCasts(); 6168 if (!AddrOpLoc.isValid()) { 6169 FirstOpKind = UnOpKind; 6170 FirstOpLoc = UnOp->getOperatorLoc(); 6171 } 6172 } else 6173 break; 6174 } 6175 if (FirstOpLoc.isValid()) { 6176 if (ExtWarnMSTemplateArg) 6177 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument) 6178 << ArgIn->getSourceRange(); 6179 6180 if (FirstOpKind == UO_AddrOf) 6181 AddressTaken = true; 6182 else if (Arg->getType()->isPointerType()) { 6183 // We cannot let pointers get dereferenced here, that is obviously not a 6184 // constant expression. 6185 assert(FirstOpKind == UO_Deref); 6186 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6187 << Arg->getSourceRange(); 6188 } 6189 } 6190 } else { 6191 // See through any implicit casts we added to fix the type. 6192 Arg = Arg->IgnoreImpCasts(); 6193 6194 // C++ [temp.arg.nontype]p1: 6195 // 6196 // A template-argument for a non-type, non-template 6197 // template-parameter shall be one of: [...] 6198 // 6199 // -- the address of an object or function with external 6200 // linkage, including function templates and function 6201 // template-ids but excluding non-static class members, 6202 // expressed as & id-expression where the & is optional if 6203 // the name refers to a function or array, or if the 6204 // corresponding template-parameter is a reference; or 6205 6206 // In C++98/03 mode, give an extension warning on any extra parentheses. 6207 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6208 bool ExtraParens = false; 6209 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6210 if (!Invalid && !ExtraParens) { 6211 S.Diag(Arg->getBeginLoc(), 6212 S.getLangOpts().CPlusPlus11 6213 ? diag::warn_cxx98_compat_template_arg_extra_parens 6214 : diag::ext_template_arg_extra_parens) 6215 << Arg->getSourceRange(); 6216 ExtraParens = true; 6217 } 6218 6219 Arg = Parens->getSubExpr(); 6220 } 6221 6222 while (SubstNonTypeTemplateParmExpr *subst = 6223 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6224 Arg = subst->getReplacement()->IgnoreImpCasts(); 6225 6226 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6227 if (UnOp->getOpcode() == UO_AddrOf) { 6228 Arg = UnOp->getSubExpr(); 6229 AddressTaken = true; 6230 AddrOpLoc = UnOp->getOperatorLoc(); 6231 } 6232 } 6233 6234 while (SubstNonTypeTemplateParmExpr *subst = 6235 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6236 Arg = subst->getReplacement()->IgnoreImpCasts(); 6237 } 6238 6239 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 6240 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; 6241 6242 // If our parameter has pointer type, check for a null template value. 6243 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 6244 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn, 6245 Entity)) { 6246 case NPV_NullPointer: 6247 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6248 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 6249 /*isNullPtr=*/true); 6250 return false; 6251 6252 case NPV_Error: 6253 return true; 6254 6255 case NPV_NotNullPointer: 6256 break; 6257 } 6258 } 6259 6260 // Stop checking the precise nature of the argument if it is value dependent, 6261 // it should be checked when instantiated. 6262 if (Arg->isValueDependent()) { 6263 Converted = TemplateArgument(ArgIn); 6264 return false; 6265 } 6266 6267 if (isa<CXXUuidofExpr>(Arg)) { 6268 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, 6269 ArgIn, Arg, ArgType)) 6270 return true; 6271 6272 Converted = TemplateArgument(ArgIn); 6273 return false; 6274 } 6275 6276 if (!DRE) { 6277 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6278 << Arg->getSourceRange(); 6279 S.Diag(Param->getLocation(), diag::note_template_param_here); 6280 return true; 6281 } 6282 6283 // Cannot refer to non-static data members 6284 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) { 6285 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field) 6286 << Entity << Arg->getSourceRange(); 6287 S.Diag(Param->getLocation(), diag::note_template_param_here); 6288 return true; 6289 } 6290 6291 // Cannot refer to non-static member functions 6292 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 6293 if (!Method->isStatic()) { 6294 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method) 6295 << Method << Arg->getSourceRange(); 6296 S.Diag(Param->getLocation(), diag::note_template_param_here); 6297 return true; 6298 } 6299 } 6300 6301 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 6302 VarDecl *Var = dyn_cast<VarDecl>(Entity); 6303 6304 // A non-type template argument must refer to an object or function. 6305 if (!Func && !Var) { 6306 // We found something, but we don't know specifically what it is. 6307 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func) 6308 << Arg->getSourceRange(); 6309 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 6310 return true; 6311 } 6312 6313 // Address / reference template args must have external linkage in C++98. 6314 if (Entity->getFormalLinkage() == InternalLinkage) { 6315 S.Diag(Arg->getBeginLoc(), 6316 S.getLangOpts().CPlusPlus11 6317 ? diag::warn_cxx98_compat_template_arg_object_internal 6318 : diag::ext_template_arg_object_internal) 6319 << !Func << Entity << Arg->getSourceRange(); 6320 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6321 << !Func; 6322 } else if (!Entity->hasLinkage()) { 6323 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage) 6324 << !Func << Entity << Arg->getSourceRange(); 6325 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6326 << !Func; 6327 return true; 6328 } 6329 6330 if (Func) { 6331 // If the template parameter has pointer type, the function decays. 6332 if (ParamType->isPointerType() && !AddressTaken) 6333 ArgType = S.Context.getPointerType(Func->getType()); 6334 else if (AddressTaken && ParamType->isReferenceType()) { 6335 // If we originally had an address-of operator, but the 6336 // parameter has reference type, complain and (if things look 6337 // like they will work) drop the address-of operator. 6338 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 6339 ParamType.getNonReferenceType())) { 6340 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6341 << ParamType; 6342 S.Diag(Param->getLocation(), diag::note_template_param_here); 6343 return true; 6344 } 6345 6346 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6347 << ParamType 6348 << FixItHint::CreateRemoval(AddrOpLoc); 6349 S.Diag(Param->getLocation(), diag::note_template_param_here); 6350 6351 ArgType = Func->getType(); 6352 } 6353 } else { 6354 // A value of reference type is not an object. 6355 if (Var->getType()->isReferenceType()) { 6356 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var) 6357 << Var->getType() << Arg->getSourceRange(); 6358 S.Diag(Param->getLocation(), diag::note_template_param_here); 6359 return true; 6360 } 6361 6362 // A template argument must have static storage duration. 6363 if (Var->getTLSKind()) { 6364 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local) 6365 << Arg->getSourceRange(); 6366 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 6367 return true; 6368 } 6369 6370 // If the template parameter has pointer type, we must have taken 6371 // the address of this object. 6372 if (ParamType->isReferenceType()) { 6373 if (AddressTaken) { 6374 // If we originally had an address-of operator, but the 6375 // parameter has reference type, complain and (if things look 6376 // like they will work) drop the address-of operator. 6377 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 6378 ParamType.getNonReferenceType())) { 6379 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6380 << ParamType; 6381 S.Diag(Param->getLocation(), diag::note_template_param_here); 6382 return true; 6383 } 6384 6385 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6386 << ParamType 6387 << FixItHint::CreateRemoval(AddrOpLoc); 6388 S.Diag(Param->getLocation(), diag::note_template_param_here); 6389 6390 ArgType = Var->getType(); 6391 } 6392 } else if (!AddressTaken && ParamType->isPointerType()) { 6393 if (Var->getType()->isArrayType()) { 6394 // Array-to-pointer decay. 6395 ArgType = S.Context.getArrayDecayedType(Var->getType()); 6396 } else { 6397 // If the template parameter has pointer type but the address of 6398 // this object was not taken, complain and (possibly) recover by 6399 // taking the address of the entity. 6400 ArgType = S.Context.getPointerType(Var->getType()); 6401 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 6402 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6403 << ParamType; 6404 S.Diag(Param->getLocation(), diag::note_template_param_here); 6405 return true; 6406 } 6407 6408 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6409 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&"); 6410 6411 S.Diag(Param->getLocation(), diag::note_template_param_here); 6412 } 6413 } 6414 } 6415 6416 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, 6417 Arg, ArgType)) 6418 return true; 6419 6420 // Create the template argument. 6421 Converted = 6422 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType); 6423 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false); 6424 return false; 6425 } 6426 6427 /// Checks whether the given template argument is a pointer to 6428 /// member constant according to C++ [temp.arg.nontype]p1. 6429 static bool CheckTemplateArgumentPointerToMember(Sema &S, 6430 NonTypeTemplateParmDecl *Param, 6431 QualType ParamType, 6432 Expr *&ResultArg, 6433 TemplateArgument &Converted) { 6434 bool Invalid = false; 6435 6436 Expr *Arg = ResultArg; 6437 bool ObjCLifetimeConversion; 6438 6439 // C++ [temp.arg.nontype]p1: 6440 // 6441 // A template-argument for a non-type, non-template 6442 // template-parameter shall be one of: [...] 6443 // 6444 // -- a pointer to member expressed as described in 5.3.1. 6445 DeclRefExpr *DRE = nullptr; 6446 6447 // In C++98/03 mode, give an extension warning on any extra parentheses. 6448 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6449 bool ExtraParens = false; 6450 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6451 if (!Invalid && !ExtraParens) { 6452 S.Diag(Arg->getBeginLoc(), 6453 S.getLangOpts().CPlusPlus11 6454 ? diag::warn_cxx98_compat_template_arg_extra_parens 6455 : diag::ext_template_arg_extra_parens) 6456 << Arg->getSourceRange(); 6457 ExtraParens = true; 6458 } 6459 6460 Arg = Parens->getSubExpr(); 6461 } 6462 6463 while (SubstNonTypeTemplateParmExpr *subst = 6464 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6465 Arg = subst->getReplacement()->IgnoreImpCasts(); 6466 6467 // A pointer-to-member constant written &Class::member. 6468 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6469 if (UnOp->getOpcode() == UO_AddrOf) { 6470 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 6471 if (DRE && !DRE->getQualifier()) 6472 DRE = nullptr; 6473 } 6474 } 6475 // A constant of pointer-to-member type. 6476 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 6477 ValueDecl *VD = DRE->getDecl(); 6478 if (VD->getType()->isMemberPointerType()) { 6479 if (isa<NonTypeTemplateParmDecl>(VD)) { 6480 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6481 Converted = TemplateArgument(Arg); 6482 } else { 6483 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 6484 Converted = TemplateArgument(VD, ParamType); 6485 } 6486 return Invalid; 6487 } 6488 } 6489 6490 DRE = nullptr; 6491 } 6492 6493 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; 6494 6495 // Check for a null pointer value. 6496 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg, 6497 Entity)) { 6498 case NPV_Error: 6499 return true; 6500 case NPV_NullPointer: 6501 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6502 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 6503 /*isNullPtr*/true); 6504 return false; 6505 case NPV_NotNullPointer: 6506 break; 6507 } 6508 6509 if (S.IsQualificationConversion(ResultArg->getType(), 6510 ParamType.getNonReferenceType(), false, 6511 ObjCLifetimeConversion)) { 6512 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp, 6513 ResultArg->getValueKind()) 6514 .get(); 6515 } else if (!S.Context.hasSameUnqualifiedType( 6516 ResultArg->getType(), ParamType.getNonReferenceType())) { 6517 // We can't perform this conversion. 6518 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible) 6519 << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); 6520 S.Diag(Param->getLocation(), diag::note_template_param_here); 6521 return true; 6522 } 6523 6524 if (!DRE) 6525 return S.Diag(Arg->getBeginLoc(), 6526 diag::err_template_arg_not_pointer_to_member_form) 6527 << Arg->getSourceRange(); 6528 6529 if (isa<FieldDecl>(DRE->getDecl()) || 6530 isa<IndirectFieldDecl>(DRE->getDecl()) || 6531 isa<CXXMethodDecl>(DRE->getDecl())) { 6532 assert((isa<FieldDecl>(DRE->getDecl()) || 6533 isa<IndirectFieldDecl>(DRE->getDecl()) || 6534 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 6535 "Only non-static member pointers can make it here"); 6536 6537 // Okay: this is the address of a non-static member, and therefore 6538 // a member pointer constant. 6539 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6540 Converted = TemplateArgument(Arg); 6541 } else { 6542 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 6543 Converted = TemplateArgument(D, ParamType); 6544 } 6545 return Invalid; 6546 } 6547 6548 // We found something else, but we don't know specifically what it is. 6549 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form) 6550 << Arg->getSourceRange(); 6551 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 6552 return true; 6553 } 6554 6555 /// Check a template argument against its corresponding 6556 /// non-type template parameter. 6557 /// 6558 /// This routine implements the semantics of C++ [temp.arg.nontype]. 6559 /// If an error occurred, it returns ExprError(); otherwise, it 6560 /// returns the converted template argument. \p ParamType is the 6561 /// type of the non-type template parameter after it has been instantiated. 6562 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 6563 QualType ParamType, Expr *Arg, 6564 TemplateArgument &Converted, 6565 CheckTemplateArgumentKind CTAK) { 6566 SourceLocation StartLoc = Arg->getBeginLoc(); 6567 6568 // If the parameter type somehow involves auto, deduce the type now. 6569 if (getLangOpts().CPlusPlus17 && ParamType->isUndeducedType()) { 6570 // During template argument deduction, we allow 'decltype(auto)' to 6571 // match an arbitrary dependent argument. 6572 // FIXME: The language rules don't say what happens in this case. 6573 // FIXME: We get an opaque dependent type out of decltype(auto) if the 6574 // expression is merely instantiation-dependent; is this enough? 6575 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) { 6576 auto *AT = dyn_cast<AutoType>(ParamType); 6577 if (AT && AT->isDecltypeAuto()) { 6578 Converted = TemplateArgument(Arg); 6579 return Arg; 6580 } 6581 } 6582 6583 // When checking a deduced template argument, deduce from its type even if 6584 // the type is dependent, in order to check the types of non-type template 6585 // arguments line up properly in partial ordering. 6586 Optional<unsigned> Depth = Param->getDepth() + 1; 6587 Expr *DeductionArg = Arg; 6588 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg)) 6589 DeductionArg = PE->getPattern(); 6590 if (DeduceAutoType( 6591 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()), 6592 DeductionArg, ParamType, Depth, 6593 // We do not check constraints right now because the 6594 // immediately-declared constraint of the auto type is also an 6595 // associated constraint, and will be checked along with the other 6596 // associated constraints after checking the template argument list. 6597 /*IgnoreConstraints=*/true) == DAR_Failed) { 6598 Diag(Arg->getExprLoc(), 6599 diag::err_non_type_template_parm_type_deduction_failure) 6600 << Param->getDeclName() << Param->getType() << Arg->getType() 6601 << Arg->getSourceRange(); 6602 Diag(Param->getLocation(), diag::note_template_param_here); 6603 return ExprError(); 6604 } 6605 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's 6606 // an error. The error message normally references the parameter 6607 // declaration, but here we'll pass the argument location because that's 6608 // where the parameter type is deduced. 6609 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc()); 6610 if (ParamType.isNull()) { 6611 Diag(Param->getLocation(), diag::note_template_param_here); 6612 return ExprError(); 6613 } 6614 } 6615 6616 // We should have already dropped all cv-qualifiers by now. 6617 assert(!ParamType.hasQualifiers() && 6618 "non-type template parameter type cannot be qualified"); 6619 6620 if (CTAK == CTAK_Deduced && 6621 !Context.hasSameType(ParamType.getNonLValueExprType(Context), 6622 Arg->getType())) { 6623 // FIXME: If either type is dependent, we skip the check. This isn't 6624 // correct, since during deduction we're supposed to have replaced each 6625 // template parameter with some unique (non-dependent) placeholder. 6626 // FIXME: If the argument type contains 'auto', we carry on and fail the 6627 // type check in order to force specific types to be more specialized than 6628 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to 6629 // work. 6630 if ((ParamType->isDependentType() || Arg->isTypeDependent()) && 6631 !Arg->getType()->getContainedAutoType()) { 6632 Converted = TemplateArgument(Arg); 6633 return Arg; 6634 } 6635 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, 6636 // we should actually be checking the type of the template argument in P, 6637 // not the type of the template argument deduced from A, against the 6638 // template parameter type. 6639 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 6640 << Arg->getType() 6641 << ParamType.getUnqualifiedType(); 6642 Diag(Param->getLocation(), diag::note_template_param_here); 6643 return ExprError(); 6644 } 6645 6646 // If either the parameter has a dependent type or the argument is 6647 // type-dependent, there's nothing we can check now. The argument only 6648 // contains an unexpanded pack during partial ordering, and there's 6649 // nothing more we can check in that case. 6650 if (ParamType->isDependentType() || Arg->isTypeDependent() || 6651 Arg->containsUnexpandedParameterPack()) { 6652 // Force the argument to the type of the parameter to maintain invariants. 6653 auto *PE = dyn_cast<PackExpansionExpr>(Arg); 6654 if (PE) 6655 Arg = PE->getPattern(); 6656 ExprResult E = ImpCastExprToType( 6657 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent, 6658 ParamType->isLValueReferenceType() ? VK_LValue : 6659 ParamType->isRValueReferenceType() ? VK_XValue : VK_RValue); 6660 if (E.isInvalid()) 6661 return ExprError(); 6662 if (PE) { 6663 // Recreate a pack expansion if we unwrapped one. 6664 E = new (Context) 6665 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(), 6666 PE->getNumExpansions()); 6667 } 6668 Converted = TemplateArgument(E.get()); 6669 return E; 6670 } 6671 6672 // The initialization of the parameter from the argument is 6673 // a constant-evaluated context. 6674 EnterExpressionEvaluationContext ConstantEvaluated( 6675 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 6676 6677 if (getLangOpts().CPlusPlus17) { 6678 // C++17 [temp.arg.nontype]p1: 6679 // A template-argument for a non-type template parameter shall be 6680 // a converted constant expression of the type of the template-parameter. 6681 APValue Value; 6682 ExprResult ArgResult = CheckConvertedConstantExpression( 6683 Arg, ParamType, Value, CCEK_TemplateArg); 6684 if (ArgResult.isInvalid()) 6685 return ExprError(); 6686 6687 // For a value-dependent argument, CheckConvertedConstantExpression is 6688 // permitted (and expected) to be unable to determine a value. 6689 if (ArgResult.get()->isValueDependent()) { 6690 Converted = TemplateArgument(ArgResult.get()); 6691 return ArgResult; 6692 } 6693 6694 QualType CanonParamType = Context.getCanonicalType(ParamType); 6695 6696 // Convert the APValue to a TemplateArgument. 6697 switch (Value.getKind()) { 6698 case APValue::None: 6699 assert(ParamType->isNullPtrType()); 6700 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true); 6701 break; 6702 case APValue::Indeterminate: 6703 llvm_unreachable("result of constant evaluation should be initialized"); 6704 break; 6705 case APValue::Int: 6706 assert(ParamType->isIntegralOrEnumerationType()); 6707 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType); 6708 break; 6709 case APValue::MemberPointer: { 6710 assert(ParamType->isMemberPointerType()); 6711 6712 // FIXME: We need TemplateArgument representation and mangling for these. 6713 if (!Value.getMemberPointerPath().empty()) { 6714 Diag(Arg->getBeginLoc(), 6715 diag::err_template_arg_member_ptr_base_derived_not_supported) 6716 << Value.getMemberPointerDecl() << ParamType 6717 << Arg->getSourceRange(); 6718 return ExprError(); 6719 } 6720 6721 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl()); 6722 Converted = VD ? TemplateArgument(VD, CanonParamType) 6723 : TemplateArgument(CanonParamType, /*isNullPtr*/true); 6724 break; 6725 } 6726 case APValue::LValue: { 6727 // For a non-type template-parameter of pointer or reference type, 6728 // the value of the constant expression shall not refer to 6729 assert(ParamType->isPointerType() || ParamType->isReferenceType() || 6730 ParamType->isNullPtrType()); 6731 // -- a temporary object 6732 // -- a string literal 6733 // -- the result of a typeid expression, or 6734 // -- a predefined __func__ variable 6735 APValue::LValueBase Base = Value.getLValueBase(); 6736 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>()); 6737 if (Base && !VD) { 6738 auto *E = Base.dyn_cast<const Expr *>(); 6739 if (E && isa<CXXUuidofExpr>(E)) { 6740 Converted = TemplateArgument(ArgResult.get()->IgnoreImpCasts()); 6741 break; 6742 } 6743 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6744 << Arg->getSourceRange(); 6745 return ExprError(); 6746 } 6747 // -- a subobject 6748 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && 6749 VD && VD->getType()->isArrayType() && 6750 Value.getLValuePath()[0].getAsArrayIndex() == 0 && 6751 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { 6752 // Per defect report (no number yet): 6753 // ... other than a pointer to the first element of a complete array 6754 // object. 6755 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() || 6756 Value.isLValueOnePastTheEnd()) { 6757 Diag(StartLoc, diag::err_non_type_template_arg_subobject) 6758 << Value.getAsString(Context, ParamType); 6759 return ExprError(); 6760 } 6761 assert((VD || !ParamType->isReferenceType()) && 6762 "null reference should not be a constant expression"); 6763 assert((!VD || !ParamType->isNullPtrType()) && 6764 "non-null value of type nullptr_t?"); 6765 Converted = VD ? TemplateArgument(VD, CanonParamType) 6766 : TemplateArgument(CanonParamType, /*isNullPtr*/true); 6767 break; 6768 } 6769 case APValue::AddrLabelDiff: 6770 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); 6771 case APValue::FixedPoint: 6772 case APValue::Float: 6773 case APValue::ComplexInt: 6774 case APValue::ComplexFloat: 6775 case APValue::Vector: 6776 case APValue::Array: 6777 case APValue::Struct: 6778 case APValue::Union: 6779 llvm_unreachable("invalid kind for template argument"); 6780 } 6781 6782 return ArgResult.get(); 6783 } 6784 6785 // C++ [temp.arg.nontype]p5: 6786 // The following conversions are performed on each expression used 6787 // as a non-type template-argument. If a non-type 6788 // template-argument cannot be converted to the type of the 6789 // corresponding template-parameter then the program is 6790 // ill-formed. 6791 if (ParamType->isIntegralOrEnumerationType()) { 6792 // C++11: 6793 // -- for a non-type template-parameter of integral or 6794 // enumeration type, conversions permitted in a converted 6795 // constant expression are applied. 6796 // 6797 // C++98: 6798 // -- for a non-type template-parameter of integral or 6799 // enumeration type, integral promotions (4.5) and integral 6800 // conversions (4.7) are applied. 6801 6802 if (getLangOpts().CPlusPlus11) { 6803 // C++ [temp.arg.nontype]p1: 6804 // A template-argument for a non-type, non-template template-parameter 6805 // shall be one of: 6806 // 6807 // -- for a non-type template-parameter of integral or enumeration 6808 // type, a converted constant expression of the type of the 6809 // template-parameter; or 6810 llvm::APSInt Value; 6811 ExprResult ArgResult = 6812 CheckConvertedConstantExpression(Arg, ParamType, Value, 6813 CCEK_TemplateArg); 6814 if (ArgResult.isInvalid()) 6815 return ExprError(); 6816 6817 // We can't check arbitrary value-dependent arguments. 6818 if (ArgResult.get()->isValueDependent()) { 6819 Converted = TemplateArgument(ArgResult.get()); 6820 return ArgResult; 6821 } 6822 6823 // Widen the argument value to sizeof(parameter type). This is almost 6824 // always a no-op, except when the parameter type is bool. In 6825 // that case, this may extend the argument from 1 bit to 8 bits. 6826 QualType IntegerType = ParamType; 6827 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 6828 IntegerType = Enum->getDecl()->getIntegerType(); 6829 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 6830 6831 Converted = TemplateArgument(Context, Value, 6832 Context.getCanonicalType(ParamType)); 6833 return ArgResult; 6834 } 6835 6836 ExprResult ArgResult = DefaultLvalueConversion(Arg); 6837 if (ArgResult.isInvalid()) 6838 return ExprError(); 6839 Arg = ArgResult.get(); 6840 6841 QualType ArgType = Arg->getType(); 6842 6843 // C++ [temp.arg.nontype]p1: 6844 // A template-argument for a non-type, non-template 6845 // template-parameter shall be one of: 6846 // 6847 // -- an integral constant-expression of integral or enumeration 6848 // type; or 6849 // -- the name of a non-type template-parameter; or 6850 llvm::APSInt Value; 6851 if (!ArgType->isIntegralOrEnumerationType()) { 6852 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral) 6853 << ArgType << Arg->getSourceRange(); 6854 Diag(Param->getLocation(), diag::note_template_param_here); 6855 return ExprError(); 6856 } else if (!Arg->isValueDependent()) { 6857 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 6858 QualType T; 6859 6860 public: 6861 TmplArgICEDiagnoser(QualType T) : T(T) { } 6862 6863 void diagnoseNotICE(Sema &S, SourceLocation Loc, 6864 SourceRange SR) override { 6865 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR; 6866 } 6867 } Diagnoser(ArgType); 6868 6869 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser, 6870 false).get(); 6871 if (!Arg) 6872 return ExprError(); 6873 } 6874 6875 // From here on out, all we care about is the unqualified form 6876 // of the argument type. 6877 ArgType = ArgType.getUnqualifiedType(); 6878 6879 // Try to convert the argument to the parameter's type. 6880 if (Context.hasSameType(ParamType, ArgType)) { 6881 // Okay: no conversion necessary 6882 } else if (ParamType->isBooleanType()) { 6883 // This is an integral-to-boolean conversion. 6884 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get(); 6885 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 6886 !ParamType->isEnumeralType()) { 6887 // This is an integral promotion or conversion. 6888 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get(); 6889 } else { 6890 // We can't perform this conversion. 6891 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 6892 << Arg->getType() << ParamType << Arg->getSourceRange(); 6893 Diag(Param->getLocation(), diag::note_template_param_here); 6894 return ExprError(); 6895 } 6896 6897 // Add the value of this argument to the list of converted 6898 // arguments. We use the bitwidth and signedness of the template 6899 // parameter. 6900 if (Arg->isValueDependent()) { 6901 // The argument is value-dependent. Create a new 6902 // TemplateArgument with the converted expression. 6903 Converted = TemplateArgument(Arg); 6904 return Arg; 6905 } 6906 6907 QualType IntegerType = Context.getCanonicalType(ParamType); 6908 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 6909 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 6910 6911 if (ParamType->isBooleanType()) { 6912 // Value must be zero or one. 6913 Value = Value != 0; 6914 unsigned AllowedBits = Context.getTypeSize(IntegerType); 6915 if (Value.getBitWidth() != AllowedBits) 6916 Value = Value.extOrTrunc(AllowedBits); 6917 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 6918 } else { 6919 llvm::APSInt OldValue = Value; 6920 6921 // Coerce the template argument's value to the value it will have 6922 // based on the template parameter's type. 6923 unsigned AllowedBits = Context.getTypeSize(IntegerType); 6924 if (Value.getBitWidth() != AllowedBits) 6925 Value = Value.extOrTrunc(AllowedBits); 6926 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 6927 6928 // Complain if an unsigned parameter received a negative value. 6929 if (IntegerType->isUnsignedIntegerOrEnumerationType() 6930 && (OldValue.isSigned() && OldValue.isNegative())) { 6931 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative) 6932 << OldValue.toString(10) << Value.toString(10) << Param->getType() 6933 << Arg->getSourceRange(); 6934 Diag(Param->getLocation(), diag::note_template_param_here); 6935 } 6936 6937 // Complain if we overflowed the template parameter's type. 6938 unsigned RequiredBits; 6939 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 6940 RequiredBits = OldValue.getActiveBits(); 6941 else if (OldValue.isUnsigned()) 6942 RequiredBits = OldValue.getActiveBits() + 1; 6943 else 6944 RequiredBits = OldValue.getMinSignedBits(); 6945 if (RequiredBits > AllowedBits) { 6946 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large) 6947 << OldValue.toString(10) << Value.toString(10) << Param->getType() 6948 << Arg->getSourceRange(); 6949 Diag(Param->getLocation(), diag::note_template_param_here); 6950 } 6951 } 6952 6953 Converted = TemplateArgument(Context, Value, 6954 ParamType->isEnumeralType() 6955 ? Context.getCanonicalType(ParamType) 6956 : IntegerType); 6957 return Arg; 6958 } 6959 6960 QualType ArgType = Arg->getType(); 6961 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 6962 6963 // Handle pointer-to-function, reference-to-function, and 6964 // pointer-to-member-function all in (roughly) the same way. 6965 if (// -- For a non-type template-parameter of type pointer to 6966 // function, only the function-to-pointer conversion (4.3) is 6967 // applied. If the template-argument represents a set of 6968 // overloaded functions (or a pointer to such), the matching 6969 // function is selected from the set (13.4). 6970 (ParamType->isPointerType() && 6971 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) || 6972 // -- For a non-type template-parameter of type reference to 6973 // function, no conversions apply. If the template-argument 6974 // represents a set of overloaded functions, the matching 6975 // function is selected from the set (13.4). 6976 (ParamType->isReferenceType() && 6977 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 6978 // -- For a non-type template-parameter of type pointer to 6979 // member function, no conversions apply. If the 6980 // template-argument represents a set of overloaded member 6981 // functions, the matching member function is selected from 6982 // the set (13.4). 6983 (ParamType->isMemberPointerType() && 6984 ParamType->castAs<MemberPointerType>()->getPointeeType() 6985 ->isFunctionType())) { 6986 6987 if (Arg->getType() == Context.OverloadTy) { 6988 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 6989 true, 6990 FoundResult)) { 6991 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 6992 return ExprError(); 6993 6994 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 6995 ArgType = Arg->getType(); 6996 } else 6997 return ExprError(); 6998 } 6999 7000 if (!ParamType->isMemberPointerType()) { 7001 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 7002 ParamType, 7003 Arg, Converted)) 7004 return ExprError(); 7005 return Arg; 7006 } 7007 7008 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 7009 Converted)) 7010 return ExprError(); 7011 return Arg; 7012 } 7013 7014 if (ParamType->isPointerType()) { 7015 // -- for a non-type template-parameter of type pointer to 7016 // object, qualification conversions (4.4) and the 7017 // array-to-pointer conversion (4.2) are applied. 7018 // C++0x also allows a value of std::nullptr_t. 7019 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 7020 "Only object pointers allowed here"); 7021 7022 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 7023 ParamType, 7024 Arg, Converted)) 7025 return ExprError(); 7026 return Arg; 7027 } 7028 7029 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 7030 // -- For a non-type template-parameter of type reference to 7031 // object, no conversions apply. The type referred to by the 7032 // reference may be more cv-qualified than the (otherwise 7033 // identical) type of the template-argument. The 7034 // template-parameter is bound directly to the 7035 // template-argument, which must be an lvalue. 7036 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 7037 "Only object references allowed here"); 7038 7039 if (Arg->getType() == Context.OverloadTy) { 7040 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 7041 ParamRefType->getPointeeType(), 7042 true, 7043 FoundResult)) { 7044 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7045 return ExprError(); 7046 7047 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7048 ArgType = Arg->getType(); 7049 } else 7050 return ExprError(); 7051 } 7052 7053 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 7054 ParamType, 7055 Arg, Converted)) 7056 return ExprError(); 7057 return Arg; 7058 } 7059 7060 // Deal with parameters of type std::nullptr_t. 7061 if (ParamType->isNullPtrType()) { 7062 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 7063 Converted = TemplateArgument(Arg); 7064 return Arg; 7065 } 7066 7067 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 7068 case NPV_NotNullPointer: 7069 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 7070 << Arg->getType() << ParamType; 7071 Diag(Param->getLocation(), diag::note_template_param_here); 7072 return ExprError(); 7073 7074 case NPV_Error: 7075 return ExprError(); 7076 7077 case NPV_NullPointer: 7078 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 7079 Converted = TemplateArgument(Context.getCanonicalType(ParamType), 7080 /*isNullPtr*/true); 7081 return Arg; 7082 } 7083 } 7084 7085 // -- For a non-type template-parameter of type pointer to data 7086 // member, qualification conversions (4.4) are applied. 7087 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 7088 7089 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 7090 Converted)) 7091 return ExprError(); 7092 return Arg; 7093 } 7094 7095 static void DiagnoseTemplateParameterListArityMismatch( 7096 Sema &S, TemplateParameterList *New, TemplateParameterList *Old, 7097 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); 7098 7099 /// Check a template argument against its corresponding 7100 /// template template parameter. 7101 /// 7102 /// This routine implements the semantics of C++ [temp.arg.template]. 7103 /// It returns true if an error occurred, and false otherwise. 7104 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param, 7105 TemplateParameterList *Params, 7106 TemplateArgumentLoc &Arg) { 7107 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 7108 TemplateDecl *Template = Name.getAsTemplateDecl(); 7109 if (!Template) { 7110 // Any dependent template name is fine. 7111 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 7112 return false; 7113 } 7114 7115 if (Template->isInvalidDecl()) 7116 return true; 7117 7118 // C++0x [temp.arg.template]p1: 7119 // A template-argument for a template template-parameter shall be 7120 // the name of a class template or an alias template, expressed as an 7121 // id-expression. When the template-argument names a class template, only 7122 // primary class templates are considered when matching the 7123 // template template argument with the corresponding parameter; 7124 // partial specializations are not considered even if their 7125 // parameter lists match that of the template template parameter. 7126 // 7127 // Note that we also allow template template parameters here, which 7128 // will happen when we are dealing with, e.g., class template 7129 // partial specializations. 7130 if (!isa<ClassTemplateDecl>(Template) && 7131 !isa<TemplateTemplateParmDecl>(Template) && 7132 !isa<TypeAliasTemplateDecl>(Template) && 7133 !isa<BuiltinTemplateDecl>(Template)) { 7134 assert(isa<FunctionTemplateDecl>(Template) && 7135 "Only function templates are possible here"); 7136 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template); 7137 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 7138 << Template; 7139 } 7140 7141 // C++1z [temp.arg.template]p3: (DR 150) 7142 // A template-argument matches a template template-parameter P when P 7143 // is at least as specialized as the template-argument A. 7144 // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a 7145 // defect report resolution from C++17 and shouldn't be introduced by 7146 // concepts. 7147 if (getLangOpts().RelaxedTemplateTemplateArgs) { 7148 // Quick check for the common case: 7149 // If P contains a parameter pack, then A [...] matches P if each of A's 7150 // template parameters matches the corresponding template parameter in 7151 // the template-parameter-list of P. 7152 if (TemplateParameterListsAreEqual( 7153 Template->getTemplateParameters(), Params, false, 7154 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) && 7155 // If the argument has no associated constraints, then the parameter is 7156 // definitely at least as specialized as the argument. 7157 // Otherwise - we need a more thorough check. 7158 !Template->hasAssociatedConstraints()) 7159 return false; 7160 7161 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template, 7162 Arg.getLocation())) { 7163 // C++2a[temp.func.order]p2 7164 // [...] If both deductions succeed, the partial ordering selects the 7165 // more constrained template as described by the rules in 7166 // [temp.constr.order]. 7167 SmallVector<const Expr *, 3> ParamsAC, TemplateAC; 7168 Params->getAssociatedConstraints(ParamsAC); 7169 // C++2a[temp.arg.template]p3 7170 // [...] In this comparison, if P is unconstrained, the constraints on A 7171 // are not considered. 7172 if (ParamsAC.empty()) 7173 return false; 7174 Template->getAssociatedConstraints(TemplateAC); 7175 bool IsParamAtLeastAsConstrained; 7176 if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC, 7177 IsParamAtLeastAsConstrained)) 7178 return true; 7179 if (!IsParamAtLeastAsConstrained) { 7180 Diag(Arg.getLocation(), 7181 diag::err_template_template_parameter_not_at_least_as_constrained) 7182 << Template << Param << Arg.getSourceRange(); 7183 Diag(Param->getLocation(), diag::note_entity_declared_at) << Param; 7184 Diag(Template->getLocation(), diag::note_entity_declared_at) 7185 << Template; 7186 MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template, 7187 TemplateAC); 7188 return true; 7189 } 7190 return false; 7191 } 7192 // FIXME: Produce better diagnostics for deduction failures. 7193 } 7194 7195 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 7196 Params, 7197 true, 7198 TPL_TemplateTemplateArgumentMatch, 7199 Arg.getLocation()); 7200 } 7201 7202 /// Given a non-type template argument that refers to a 7203 /// declaration and the type of its corresponding non-type template 7204 /// parameter, produce an expression that properly refers to that 7205 /// declaration. 7206 ExprResult 7207 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 7208 QualType ParamType, 7209 SourceLocation Loc) { 7210 // C++ [temp.param]p8: 7211 // 7212 // A non-type template-parameter of type "array of T" or 7213 // "function returning T" is adjusted to be of type "pointer to 7214 // T" or "pointer to function returning T", respectively. 7215 if (ParamType->isArrayType()) 7216 ParamType = Context.getArrayDecayedType(ParamType); 7217 else if (ParamType->isFunctionType()) 7218 ParamType = Context.getPointerType(ParamType); 7219 7220 // For a NULL non-type template argument, return nullptr casted to the 7221 // parameter's type. 7222 if (Arg.getKind() == TemplateArgument::NullPtr) { 7223 return ImpCastExprToType( 7224 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 7225 ParamType, 7226 ParamType->getAs<MemberPointerType>() 7227 ? CK_NullToMemberPointer 7228 : CK_NullToPointer); 7229 } 7230 assert(Arg.getKind() == TemplateArgument::Declaration && 7231 "Only declaration template arguments permitted here"); 7232 7233 ValueDecl *VD = Arg.getAsDecl(); 7234 7235 CXXScopeSpec SS; 7236 if (ParamType->isMemberPointerType()) { 7237 // If this is a pointer to member, we need to use a qualified name to 7238 // form a suitable pointer-to-member constant. 7239 assert(VD->getDeclContext()->isRecord() && 7240 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || 7241 isa<IndirectFieldDecl>(VD))); 7242 QualType ClassType 7243 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 7244 NestedNameSpecifier *Qualifier 7245 = NestedNameSpecifier::Create(Context, nullptr, false, 7246 ClassType.getTypePtr()); 7247 SS.MakeTrivial(Context, Qualifier, Loc); 7248 } 7249 7250 ExprResult RefExpr = BuildDeclarationNameExpr( 7251 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD); 7252 if (RefExpr.isInvalid()) 7253 return ExprError(); 7254 7255 // For a pointer, the argument declaration is the pointee. Take its address. 7256 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0); 7257 if (ParamType->isPointerType() && !ElemT.isNull() && 7258 Context.hasSimilarType(ElemT, ParamType->getPointeeType())) { 7259 // Decay an array argument if we want a pointer to its first element. 7260 RefExpr = DefaultFunctionArrayConversion(RefExpr.get()); 7261 if (RefExpr.isInvalid()) 7262 return ExprError(); 7263 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 7264 // For any other pointer, take the address (or form a pointer-to-member). 7265 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 7266 if (RefExpr.isInvalid()) 7267 return ExprError(); 7268 } else { 7269 assert(ParamType->isReferenceType() && 7270 "unexpected type for decl template argument"); 7271 } 7272 7273 // At this point we should have the right value category. 7274 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() && 7275 "value kind mismatch for non-type template argument"); 7276 7277 // The type of the template parameter can differ from the type of the 7278 // argument in various ways; convert it now if necessary. 7279 QualType DestExprType = ParamType.getNonLValueExprType(Context); 7280 if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) { 7281 CastKind CK; 7282 QualType Ignored; 7283 if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) || 7284 IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) { 7285 CK = CK_NoOp; 7286 } else if (ParamType->isVoidPointerType() && 7287 RefExpr.get()->getType()->isPointerType()) { 7288 CK = CK_BitCast; 7289 } else { 7290 // FIXME: Pointers to members can need conversion derived-to-base or 7291 // base-to-derived conversions. We currently don't retain enough 7292 // information to convert properly (we need to track a cast path or 7293 // subobject number in the template argument). 7294 llvm_unreachable( 7295 "unexpected conversion required for non-type template argument"); 7296 } 7297 RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK, 7298 RefExpr.get()->getValueKind()); 7299 } 7300 7301 return RefExpr; 7302 } 7303 7304 /// Construct a new expression that refers to the given 7305 /// integral template argument with the given source-location 7306 /// information. 7307 /// 7308 /// This routine takes care of the mapping from an integral template 7309 /// argument (which may have any integral type) to the appropriate 7310 /// literal value. 7311 ExprResult 7312 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 7313 SourceLocation Loc) { 7314 assert(Arg.getKind() == TemplateArgument::Integral && 7315 "Operation is only valid for integral template arguments"); 7316 QualType OrigT = Arg.getIntegralType(); 7317 7318 // If this is an enum type that we're instantiating, we need to use an integer 7319 // type the same size as the enumerator. We don't want to build an 7320 // IntegerLiteral with enum type. The integer type of an enum type can be of 7321 // any integral type with C++11 enum classes, make sure we create the right 7322 // type of literal for it. 7323 QualType T = OrigT; 7324 if (const EnumType *ET = OrigT->getAs<EnumType>()) 7325 T = ET->getDecl()->getIntegerType(); 7326 7327 Expr *E; 7328 if (T->isAnyCharacterType()) { 7329 CharacterLiteral::CharacterKind Kind; 7330 if (T->isWideCharType()) 7331 Kind = CharacterLiteral::Wide; 7332 else if (T->isChar8Type() && getLangOpts().Char8) 7333 Kind = CharacterLiteral::UTF8; 7334 else if (T->isChar16Type()) 7335 Kind = CharacterLiteral::UTF16; 7336 else if (T->isChar32Type()) 7337 Kind = CharacterLiteral::UTF32; 7338 else 7339 Kind = CharacterLiteral::Ascii; 7340 7341 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), 7342 Kind, T, Loc); 7343 } else if (T->isBooleanType()) { 7344 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), 7345 T, Loc); 7346 } else if (T->isNullPtrType()) { 7347 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 7348 } else { 7349 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); 7350 } 7351 7352 if (OrigT->isEnumeralType()) { 7353 // FIXME: This is a hack. We need a better way to handle substituted 7354 // non-type template parameters. 7355 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 7356 nullptr, 7357 Context.getTrivialTypeSourceInfo(OrigT, Loc), 7358 Loc, Loc); 7359 } 7360 7361 return E; 7362 } 7363 7364 /// Match two template parameters within template parameter lists. 7365 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 7366 bool Complain, 7367 Sema::TemplateParameterListEqualKind Kind, 7368 SourceLocation TemplateArgLoc) { 7369 // Check the actual kind (type, non-type, template). 7370 if (Old->getKind() != New->getKind()) { 7371 if (Complain) { 7372 unsigned NextDiag = diag::err_template_param_different_kind; 7373 if (TemplateArgLoc.isValid()) { 7374 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7375 NextDiag = diag::note_template_param_different_kind; 7376 } 7377 S.Diag(New->getLocation(), NextDiag) 7378 << (Kind != Sema::TPL_TemplateMatch); 7379 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 7380 << (Kind != Sema::TPL_TemplateMatch); 7381 } 7382 7383 return false; 7384 } 7385 7386 // Check that both are parameter packs or neither are parameter packs. 7387 // However, if we are matching a template template argument to a 7388 // template template parameter, the template template parameter can have 7389 // a parameter pack where the template template argument does not. 7390 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 7391 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 7392 Old->isTemplateParameterPack())) { 7393 if (Complain) { 7394 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 7395 if (TemplateArgLoc.isValid()) { 7396 S.Diag(TemplateArgLoc, 7397 diag::err_template_arg_template_params_mismatch); 7398 NextDiag = diag::note_template_parameter_pack_non_pack; 7399 } 7400 7401 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 7402 : isa<NonTypeTemplateParmDecl>(New)? 1 7403 : 2; 7404 S.Diag(New->getLocation(), NextDiag) 7405 << ParamKind << New->isParameterPack(); 7406 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 7407 << ParamKind << Old->isParameterPack(); 7408 } 7409 7410 return false; 7411 } 7412 7413 // For non-type template parameters, check the type of the parameter. 7414 if (NonTypeTemplateParmDecl *OldNTTP 7415 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 7416 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 7417 7418 // If we are matching a template template argument to a template 7419 // template parameter and one of the non-type template parameter types 7420 // is dependent, then we must wait until template instantiation time 7421 // to actually compare the arguments. 7422 if (Kind != Sema::TPL_TemplateTemplateArgumentMatch || 7423 (!OldNTTP->getType()->isDependentType() && 7424 !NewNTTP->getType()->isDependentType())) 7425 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 7426 if (Complain) { 7427 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 7428 if (TemplateArgLoc.isValid()) { 7429 S.Diag(TemplateArgLoc, 7430 diag::err_template_arg_template_params_mismatch); 7431 NextDiag = diag::note_template_nontype_parm_different_type; 7432 } 7433 S.Diag(NewNTTP->getLocation(), NextDiag) 7434 << NewNTTP->getType() 7435 << (Kind != Sema::TPL_TemplateMatch); 7436 S.Diag(OldNTTP->getLocation(), 7437 diag::note_template_nontype_parm_prev_declaration) 7438 << OldNTTP->getType(); 7439 } 7440 7441 return false; 7442 } 7443 } 7444 // For template template parameters, check the template parameter types. 7445 // The template parameter lists of template template 7446 // parameters must agree. 7447 else if (TemplateTemplateParmDecl *OldTTP 7448 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 7449 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 7450 if (!S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 7451 OldTTP->getTemplateParameters(), 7452 Complain, 7453 (Kind == Sema::TPL_TemplateMatch 7454 ? Sema::TPL_TemplateTemplateParmMatch 7455 : Kind), 7456 TemplateArgLoc)) 7457 return false; 7458 } else if (Kind != Sema::TPL_TemplateTemplateArgumentMatch) { 7459 const Expr *NewC = nullptr, *OldC = nullptr; 7460 if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint()) 7461 NewC = TC->getImmediatelyDeclaredConstraint(); 7462 if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint()) 7463 OldC = TC->getImmediatelyDeclaredConstraint(); 7464 7465 auto Diagnose = [&] { 7466 S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(), 7467 diag::err_template_different_type_constraint); 7468 S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(), 7469 diag::note_template_prev_declaration) << /*declaration*/0; 7470 }; 7471 7472 if (!NewC != !OldC) { 7473 if (Complain) 7474 Diagnose(); 7475 return false; 7476 } 7477 7478 if (NewC) { 7479 llvm::FoldingSetNodeID OldCID, NewCID; 7480 OldC->Profile(OldCID, S.Context, /*Canonical=*/true); 7481 NewC->Profile(NewCID, S.Context, /*Canonical=*/true); 7482 if (OldCID != NewCID) { 7483 if (Complain) 7484 Diagnose(); 7485 return false; 7486 } 7487 } 7488 } 7489 7490 return true; 7491 } 7492 7493 /// Diagnose a known arity mismatch when comparing template argument 7494 /// lists. 7495 static 7496 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 7497 TemplateParameterList *New, 7498 TemplateParameterList *Old, 7499 Sema::TemplateParameterListEqualKind Kind, 7500 SourceLocation TemplateArgLoc) { 7501 unsigned NextDiag = diag::err_template_param_list_different_arity; 7502 if (TemplateArgLoc.isValid()) { 7503 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7504 NextDiag = diag::note_template_param_list_different_arity; 7505 } 7506 S.Diag(New->getTemplateLoc(), NextDiag) 7507 << (New->size() > Old->size()) 7508 << (Kind != Sema::TPL_TemplateMatch) 7509 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 7510 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 7511 << (Kind != Sema::TPL_TemplateMatch) 7512 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 7513 } 7514 7515 /// Determine whether the given template parameter lists are 7516 /// equivalent. 7517 /// 7518 /// \param New The new template parameter list, typically written in the 7519 /// source code as part of a new template declaration. 7520 /// 7521 /// \param Old The old template parameter list, typically found via 7522 /// name lookup of the template declared with this template parameter 7523 /// list. 7524 /// 7525 /// \param Complain If true, this routine will produce a diagnostic if 7526 /// the template parameter lists are not equivalent. 7527 /// 7528 /// \param Kind describes how we are to match the template parameter lists. 7529 /// 7530 /// \param TemplateArgLoc If this source location is valid, then we 7531 /// are actually checking the template parameter list of a template 7532 /// argument (New) against the template parameter list of its 7533 /// corresponding template template parameter (Old). We produce 7534 /// slightly different diagnostics in this scenario. 7535 /// 7536 /// \returns True if the template parameter lists are equal, false 7537 /// otherwise. 7538 bool 7539 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 7540 TemplateParameterList *Old, 7541 bool Complain, 7542 TemplateParameterListEqualKind Kind, 7543 SourceLocation TemplateArgLoc) { 7544 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 7545 if (Complain) 7546 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7547 TemplateArgLoc); 7548 7549 return false; 7550 } 7551 7552 // C++0x [temp.arg.template]p3: 7553 // A template-argument matches a template template-parameter (call it P) 7554 // when each of the template parameters in the template-parameter-list of 7555 // the template-argument's corresponding class template or alias template 7556 // (call it A) matches the corresponding template parameter in the 7557 // template-parameter-list of P. [...] 7558 TemplateParameterList::iterator NewParm = New->begin(); 7559 TemplateParameterList::iterator NewParmEnd = New->end(); 7560 for (TemplateParameterList::iterator OldParm = Old->begin(), 7561 OldParmEnd = Old->end(); 7562 OldParm != OldParmEnd; ++OldParm) { 7563 if (Kind != TPL_TemplateTemplateArgumentMatch || 7564 !(*OldParm)->isTemplateParameterPack()) { 7565 if (NewParm == NewParmEnd) { 7566 if (Complain) 7567 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7568 TemplateArgLoc); 7569 7570 return false; 7571 } 7572 7573 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 7574 Kind, TemplateArgLoc)) 7575 return false; 7576 7577 ++NewParm; 7578 continue; 7579 } 7580 7581 // C++0x [temp.arg.template]p3: 7582 // [...] When P's template- parameter-list contains a template parameter 7583 // pack (14.5.3), the template parameter pack will match zero or more 7584 // template parameters or template parameter packs in the 7585 // template-parameter-list of A with the same type and form as the 7586 // template parameter pack in P (ignoring whether those template 7587 // parameters are template parameter packs). 7588 for (; NewParm != NewParmEnd; ++NewParm) { 7589 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 7590 Kind, TemplateArgLoc)) 7591 return false; 7592 } 7593 } 7594 7595 // Make sure we exhausted all of the arguments. 7596 if (NewParm != NewParmEnd) { 7597 if (Complain) 7598 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7599 TemplateArgLoc); 7600 7601 return false; 7602 } 7603 7604 if (Kind != TPL_TemplateTemplateArgumentMatch) { 7605 const Expr *NewRC = New->getRequiresClause(); 7606 const Expr *OldRC = Old->getRequiresClause(); 7607 7608 auto Diagnose = [&] { 7609 Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(), 7610 diag::err_template_different_requires_clause); 7611 Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(), 7612 diag::note_template_prev_declaration) << /*declaration*/0; 7613 }; 7614 7615 if (!NewRC != !OldRC) { 7616 if (Complain) 7617 Diagnose(); 7618 return false; 7619 } 7620 7621 if (NewRC) { 7622 llvm::FoldingSetNodeID OldRCID, NewRCID; 7623 OldRC->Profile(OldRCID, Context, /*Canonical=*/true); 7624 NewRC->Profile(NewRCID, Context, /*Canonical=*/true); 7625 if (OldRCID != NewRCID) { 7626 if (Complain) 7627 Diagnose(); 7628 return false; 7629 } 7630 } 7631 } 7632 7633 return true; 7634 } 7635 7636 /// Check whether a template can be declared within this scope. 7637 /// 7638 /// If the template declaration is valid in this scope, returns 7639 /// false. Otherwise, issues a diagnostic and returns true. 7640 bool 7641 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 7642 if (!S) 7643 return false; 7644 7645 // Find the nearest enclosing declaration scope. 7646 while ((S->getFlags() & Scope::DeclScope) == 0 || 7647 (S->getFlags() & Scope::TemplateParamScope) != 0) 7648 S = S->getParent(); 7649 7650 // C++ [temp]p4: 7651 // A template [...] shall not have C linkage. 7652 DeclContext *Ctx = S->getEntity(); 7653 assert(Ctx && "Unknown context"); 7654 if (Ctx->isExternCContext()) { 7655 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 7656 << TemplateParams->getSourceRange(); 7657 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) 7658 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 7659 return true; 7660 } 7661 Ctx = Ctx->getRedeclContext(); 7662 7663 // C++ [temp]p2: 7664 // A template-declaration can appear only as a namespace scope or 7665 // class scope declaration. 7666 if (Ctx) { 7667 if (Ctx->isFileContext()) 7668 return false; 7669 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) { 7670 // C++ [temp.mem]p2: 7671 // A local class shall not have member templates. 7672 if (RD->isLocalClass()) 7673 return Diag(TemplateParams->getTemplateLoc(), 7674 diag::err_template_inside_local_class) 7675 << TemplateParams->getSourceRange(); 7676 else 7677 return false; 7678 } 7679 } 7680 7681 return Diag(TemplateParams->getTemplateLoc(), 7682 diag::err_template_outside_namespace_or_class_scope) 7683 << TemplateParams->getSourceRange(); 7684 } 7685 7686 /// Determine what kind of template specialization the given declaration 7687 /// is. 7688 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 7689 if (!D) 7690 return TSK_Undeclared; 7691 7692 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 7693 return Record->getTemplateSpecializationKind(); 7694 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 7695 return Function->getTemplateSpecializationKind(); 7696 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 7697 return Var->getTemplateSpecializationKind(); 7698 7699 return TSK_Undeclared; 7700 } 7701 7702 /// Check whether a specialization is well-formed in the current 7703 /// context. 7704 /// 7705 /// This routine determines whether a template specialization can be declared 7706 /// in the current context (C++ [temp.expl.spec]p2). 7707 /// 7708 /// \param S the semantic analysis object for which this check is being 7709 /// performed. 7710 /// 7711 /// \param Specialized the entity being specialized or instantiated, which 7712 /// may be a kind of template (class template, function template, etc.) or 7713 /// a member of a class template (member function, static data member, 7714 /// member class). 7715 /// 7716 /// \param PrevDecl the previous declaration of this entity, if any. 7717 /// 7718 /// \param Loc the location of the explicit specialization or instantiation of 7719 /// this entity. 7720 /// 7721 /// \param IsPartialSpecialization whether this is a partial specialization of 7722 /// a class template. 7723 /// 7724 /// \returns true if there was an error that we cannot recover from, false 7725 /// otherwise. 7726 static bool CheckTemplateSpecializationScope(Sema &S, 7727 NamedDecl *Specialized, 7728 NamedDecl *PrevDecl, 7729 SourceLocation Loc, 7730 bool IsPartialSpecialization) { 7731 // Keep these "kind" numbers in sync with the %select statements in the 7732 // various diagnostics emitted by this routine. 7733 int EntityKind = 0; 7734 if (isa<ClassTemplateDecl>(Specialized)) 7735 EntityKind = IsPartialSpecialization? 1 : 0; 7736 else if (isa<VarTemplateDecl>(Specialized)) 7737 EntityKind = IsPartialSpecialization ? 3 : 2; 7738 else if (isa<FunctionTemplateDecl>(Specialized)) 7739 EntityKind = 4; 7740 else if (isa<CXXMethodDecl>(Specialized)) 7741 EntityKind = 5; 7742 else if (isa<VarDecl>(Specialized)) 7743 EntityKind = 6; 7744 else if (isa<RecordDecl>(Specialized)) 7745 EntityKind = 7; 7746 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 7747 EntityKind = 8; 7748 else { 7749 S.Diag(Loc, diag::err_template_spec_unknown_kind) 7750 << S.getLangOpts().CPlusPlus11; 7751 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 7752 return true; 7753 } 7754 7755 // C++ [temp.expl.spec]p2: 7756 // An explicit specialization may be declared in any scope in which 7757 // the corresponding primary template may be defined. 7758 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 7759 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 7760 << Specialized; 7761 return true; 7762 } 7763 7764 // C++ [temp.class.spec]p6: 7765 // A class template partial specialization may be declared in any 7766 // scope in which the primary template may be defined. 7767 DeclContext *SpecializedContext = 7768 Specialized->getDeclContext()->getRedeclContext(); 7769 DeclContext *DC = S.CurContext->getRedeclContext(); 7770 7771 // Make sure that this redeclaration (or definition) occurs in the same 7772 // scope or an enclosing namespace. 7773 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext) 7774 : DC->Equals(SpecializedContext))) { 7775 if (isa<TranslationUnitDecl>(SpecializedContext)) 7776 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 7777 << EntityKind << Specialized; 7778 else { 7779 auto *ND = cast<NamedDecl>(SpecializedContext); 7780 int Diag = diag::err_template_spec_redecl_out_of_scope; 7781 if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) 7782 Diag = diag::ext_ms_template_spec_redecl_out_of_scope; 7783 S.Diag(Loc, Diag) << EntityKind << Specialized 7784 << ND << isa<CXXRecordDecl>(ND); 7785 } 7786 7787 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 7788 7789 // Don't allow specializing in the wrong class during error recovery. 7790 // Otherwise, things can go horribly wrong. 7791 if (DC->isRecord()) 7792 return true; 7793 } 7794 7795 return false; 7796 } 7797 7798 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { 7799 if (!E->isTypeDependent()) 7800 return SourceLocation(); 7801 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 7802 Checker.TraverseStmt(E); 7803 if (Checker.MatchLoc.isInvalid()) 7804 return E->getSourceRange(); 7805 return Checker.MatchLoc; 7806 } 7807 7808 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { 7809 if (!TL.getType()->isDependentType()) 7810 return SourceLocation(); 7811 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 7812 Checker.TraverseTypeLoc(TL); 7813 if (Checker.MatchLoc.isInvalid()) 7814 return TL.getSourceRange(); 7815 return Checker.MatchLoc; 7816 } 7817 7818 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs 7819 /// that checks non-type template partial specialization arguments. 7820 static bool CheckNonTypeTemplatePartialSpecializationArgs( 7821 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, 7822 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { 7823 for (unsigned I = 0; I != NumArgs; ++I) { 7824 if (Args[I].getKind() == TemplateArgument::Pack) { 7825 if (CheckNonTypeTemplatePartialSpecializationArgs( 7826 S, TemplateNameLoc, Param, Args[I].pack_begin(), 7827 Args[I].pack_size(), IsDefaultArgument)) 7828 return true; 7829 7830 continue; 7831 } 7832 7833 if (Args[I].getKind() != TemplateArgument::Expression) 7834 continue; 7835 7836 Expr *ArgExpr = Args[I].getAsExpr(); 7837 7838 // We can have a pack expansion of any of the bullets below. 7839 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 7840 ArgExpr = Expansion->getPattern(); 7841 7842 // Strip off any implicit casts we added as part of type checking. 7843 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 7844 ArgExpr = ICE->getSubExpr(); 7845 7846 // C++ [temp.class.spec]p8: 7847 // A non-type argument is non-specialized if it is the name of a 7848 // non-type parameter. All other non-type arguments are 7849 // specialized. 7850 // 7851 // Below, we check the two conditions that only apply to 7852 // specialized non-type arguments, so skip any non-specialized 7853 // arguments. 7854 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 7855 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 7856 continue; 7857 7858 // C++ [temp.class.spec]p9: 7859 // Within the argument list of a class template partial 7860 // specialization, the following restrictions apply: 7861 // -- A partially specialized non-type argument expression 7862 // shall not involve a template parameter of the partial 7863 // specialization except when the argument expression is a 7864 // simple identifier. 7865 // -- The type of a template parameter corresponding to a 7866 // specialized non-type argument shall not be dependent on a 7867 // parameter of the specialization. 7868 // DR1315 removes the first bullet, leaving an incoherent set of rules. 7869 // We implement a compromise between the original rules and DR1315: 7870 // -- A specialized non-type template argument shall not be 7871 // type-dependent and the corresponding template parameter 7872 // shall have a non-dependent type. 7873 SourceRange ParamUseRange = 7874 findTemplateParameterInType(Param->getDepth(), ArgExpr); 7875 if (ParamUseRange.isValid()) { 7876 if (IsDefaultArgument) { 7877 S.Diag(TemplateNameLoc, 7878 diag::err_dependent_non_type_arg_in_partial_spec); 7879 S.Diag(ParamUseRange.getBegin(), 7880 diag::note_dependent_non_type_default_arg_in_partial_spec) 7881 << ParamUseRange; 7882 } else { 7883 S.Diag(ParamUseRange.getBegin(), 7884 diag::err_dependent_non_type_arg_in_partial_spec) 7885 << ParamUseRange; 7886 } 7887 return true; 7888 } 7889 7890 ParamUseRange = findTemplateParameter( 7891 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); 7892 if (ParamUseRange.isValid()) { 7893 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(), 7894 diag::err_dependent_typed_non_type_arg_in_partial_spec) 7895 << Param->getType(); 7896 S.Diag(Param->getLocation(), diag::note_template_param_here) 7897 << (IsDefaultArgument ? ParamUseRange : SourceRange()) 7898 << ParamUseRange; 7899 return true; 7900 } 7901 } 7902 7903 return false; 7904 } 7905 7906 /// Check the non-type template arguments of a class template 7907 /// partial specialization according to C++ [temp.class.spec]p9. 7908 /// 7909 /// \param TemplateNameLoc the location of the template name. 7910 /// \param PrimaryTemplate the template parameters of the primary class 7911 /// template. 7912 /// \param NumExplicit the number of explicitly-specified template arguments. 7913 /// \param TemplateArgs the template arguments of the class template 7914 /// partial specialization. 7915 /// 7916 /// \returns \c true if there was an error, \c false otherwise. 7917 bool Sema::CheckTemplatePartialSpecializationArgs( 7918 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, 7919 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { 7920 // We have to be conservative when checking a template in a dependent 7921 // context. 7922 if (PrimaryTemplate->getDeclContext()->isDependentContext()) 7923 return false; 7924 7925 TemplateParameterList *TemplateParams = 7926 PrimaryTemplate->getTemplateParameters(); 7927 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 7928 NonTypeTemplateParmDecl *Param 7929 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 7930 if (!Param) 7931 continue; 7932 7933 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc, 7934 Param, &TemplateArgs[I], 7935 1, I >= NumExplicit)) 7936 return true; 7937 } 7938 7939 return false; 7940 } 7941 7942 DeclResult Sema::ActOnClassTemplateSpecialization( 7943 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 7944 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, 7945 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, 7946 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { 7947 assert(TUK != TUK_Reference && "References are not specializations"); 7948 7949 // NOTE: KWLoc is the location of the tag keyword. This will instead 7950 // store the location of the outermost template keyword in the declaration. 7951 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 7952 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc; 7953 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; 7954 SourceLocation LAngleLoc = TemplateId.LAngleLoc; 7955 SourceLocation RAngleLoc = TemplateId.RAngleLoc; 7956 7957 // Find the class template we're specializing 7958 TemplateName Name = TemplateId.Template.get(); 7959 ClassTemplateDecl *ClassTemplate 7960 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 7961 7962 if (!ClassTemplate) { 7963 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 7964 << (Name.getAsTemplateDecl() && 7965 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 7966 return true; 7967 } 7968 7969 bool isMemberSpecialization = false; 7970 bool isPartialSpecialization = false; 7971 7972 // Check the validity of the template headers that introduce this 7973 // template. 7974 // FIXME: We probably shouldn't complain about these headers for 7975 // friend declarations. 7976 bool Invalid = false; 7977 TemplateParameterList *TemplateParams = 7978 MatchTemplateParametersToScopeSpecifier( 7979 KWLoc, TemplateNameLoc, SS, &TemplateId, 7980 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization, 7981 Invalid); 7982 if (Invalid) 7983 return true; 7984 7985 if (TemplateParams && TemplateParams->size() > 0) { 7986 isPartialSpecialization = true; 7987 7988 if (TUK == TUK_Friend) { 7989 Diag(KWLoc, diag::err_partial_specialization_friend) 7990 << SourceRange(LAngleLoc, RAngleLoc); 7991 return true; 7992 } 7993 7994 // C++ [temp.class.spec]p10: 7995 // The template parameter list of a specialization shall not 7996 // contain default template argument values. 7997 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 7998 Decl *Param = TemplateParams->getParam(I); 7999 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 8000 if (TTP->hasDefaultArgument()) { 8001 Diag(TTP->getDefaultArgumentLoc(), 8002 diag::err_default_arg_in_partial_spec); 8003 TTP->removeDefaultArgument(); 8004 } 8005 } else if (NonTypeTemplateParmDecl *NTTP 8006 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 8007 if (Expr *DefArg = NTTP->getDefaultArgument()) { 8008 Diag(NTTP->getDefaultArgumentLoc(), 8009 diag::err_default_arg_in_partial_spec) 8010 << DefArg->getSourceRange(); 8011 NTTP->removeDefaultArgument(); 8012 } 8013 } else { 8014 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 8015 if (TTP->hasDefaultArgument()) { 8016 Diag(TTP->getDefaultArgument().getLocation(), 8017 diag::err_default_arg_in_partial_spec) 8018 << TTP->getDefaultArgument().getSourceRange(); 8019 TTP->removeDefaultArgument(); 8020 } 8021 } 8022 } 8023 } else if (TemplateParams) { 8024 if (TUK == TUK_Friend) 8025 Diag(KWLoc, diag::err_template_spec_friend) 8026 << FixItHint::CreateRemoval( 8027 SourceRange(TemplateParams->getTemplateLoc(), 8028 TemplateParams->getRAngleLoc())) 8029 << SourceRange(LAngleLoc, RAngleLoc); 8030 } else { 8031 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl"); 8032 } 8033 8034 // Check that the specialization uses the same tag kind as the 8035 // original template. 8036 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 8037 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 8038 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 8039 Kind, TUK == TUK_Definition, KWLoc, 8040 ClassTemplate->getIdentifier())) { 8041 Diag(KWLoc, diag::err_use_with_wrong_tag) 8042 << ClassTemplate 8043 << FixItHint::CreateReplacement(KWLoc, 8044 ClassTemplate->getTemplatedDecl()->getKindName()); 8045 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 8046 diag::note_previous_use); 8047 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 8048 } 8049 8050 // Translate the parser's template argument list in our AST format. 8051 TemplateArgumentListInfo TemplateArgs = 8052 makeTemplateArgumentListInfo(*this, TemplateId); 8053 8054 // Check for unexpanded parameter packs in any of the template arguments. 8055 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 8056 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 8057 UPPC_PartialSpecialization)) 8058 return true; 8059 8060 // Check that the template argument list is well-formed for this 8061 // template. 8062 SmallVector<TemplateArgument, 4> Converted; 8063 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 8064 TemplateArgs, false, Converted, 8065 /*UpdateArgsWithConversion=*/true)) 8066 return true; 8067 8068 // Find the class template (partial) specialization declaration that 8069 // corresponds to these arguments. 8070 if (isPartialSpecialization) { 8071 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate, 8072 TemplateArgs.size(), Converted)) 8073 return true; 8074 8075 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we 8076 // also do it during instantiation. 8077 bool InstantiationDependent; 8078 if (!Name.isDependent() && 8079 !TemplateSpecializationType::anyDependentTemplateArguments( 8080 TemplateArgs.arguments(), InstantiationDependent)) { 8081 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 8082 << ClassTemplate->getDeclName(); 8083 isPartialSpecialization = false; 8084 } 8085 } 8086 8087 void *InsertPos = nullptr; 8088 ClassTemplateSpecializationDecl *PrevDecl = nullptr; 8089 8090 if (isPartialSpecialization) 8091 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, 8092 TemplateParams, 8093 InsertPos); 8094 else 8095 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos); 8096 8097 ClassTemplateSpecializationDecl *Specialization = nullptr; 8098 8099 // Check whether we can declare a class template specialization in 8100 // the current scope. 8101 if (TUK != TUK_Friend && 8102 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 8103 TemplateNameLoc, 8104 isPartialSpecialization)) 8105 return true; 8106 8107 // The canonical type 8108 QualType CanonType; 8109 if (isPartialSpecialization) { 8110 // Build the canonical type that describes the converted template 8111 // arguments of the class template partial specialization. 8112 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8113 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 8114 Converted); 8115 8116 if (Context.hasSameType(CanonType, 8117 ClassTemplate->getInjectedClassNameSpecialization()) && 8118 (!Context.getLangOpts().CPlusPlus2a || 8119 !TemplateParams->hasAssociatedConstraints())) { 8120 // C++ [temp.class.spec]p9b3: 8121 // 8122 // -- The argument list of the specialization shall not be identical 8123 // to the implicit argument list of the primary template. 8124 // 8125 // This rule has since been removed, because it's redundant given DR1495, 8126 // but we keep it because it produces better diagnostics and recovery. 8127 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 8128 << /*class template*/0 << (TUK == TUK_Definition) 8129 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 8130 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 8131 ClassTemplate->getIdentifier(), 8132 TemplateNameLoc, 8133 Attr, 8134 TemplateParams, 8135 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 8136 /*FriendLoc*/SourceLocation(), 8137 TemplateParameterLists.size() - 1, 8138 TemplateParameterLists.data()); 8139 } 8140 8141 // Create a new class template partial specialization declaration node. 8142 ClassTemplatePartialSpecializationDecl *PrevPartial 8143 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 8144 ClassTemplatePartialSpecializationDecl *Partial 8145 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 8146 ClassTemplate->getDeclContext(), 8147 KWLoc, TemplateNameLoc, 8148 TemplateParams, 8149 ClassTemplate, 8150 Converted, 8151 TemplateArgs, 8152 CanonType, 8153 PrevPartial); 8154 SetNestedNameSpecifier(*this, Partial, SS); 8155 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 8156 Partial->setTemplateParameterListsInfo( 8157 Context, TemplateParameterLists.drop_back(1)); 8158 } 8159 8160 if (!PrevPartial) 8161 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 8162 Specialization = Partial; 8163 8164 // If we are providing an explicit specialization of a member class 8165 // template specialization, make a note of that. 8166 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 8167 PrevPartial->setMemberSpecialization(); 8168 8169 CheckTemplatePartialSpecialization(Partial); 8170 } else { 8171 // Create a new class template specialization declaration node for 8172 // this explicit specialization or friend declaration. 8173 Specialization 8174 = ClassTemplateSpecializationDecl::Create(Context, Kind, 8175 ClassTemplate->getDeclContext(), 8176 KWLoc, TemplateNameLoc, 8177 ClassTemplate, 8178 Converted, 8179 PrevDecl); 8180 SetNestedNameSpecifier(*this, Specialization, SS); 8181 if (TemplateParameterLists.size() > 0) { 8182 Specialization->setTemplateParameterListsInfo(Context, 8183 TemplateParameterLists); 8184 } 8185 8186 if (!PrevDecl) 8187 ClassTemplate->AddSpecialization(Specialization, InsertPos); 8188 8189 if (CurContext->isDependentContext()) { 8190 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8191 CanonType = Context.getTemplateSpecializationType( 8192 CanonTemplate, Converted); 8193 } else { 8194 CanonType = Context.getTypeDeclType(Specialization); 8195 } 8196 } 8197 8198 // C++ [temp.expl.spec]p6: 8199 // If a template, a member template or the member of a class template is 8200 // explicitly specialized then that specialization shall be declared 8201 // before the first use of that specialization that would cause an implicit 8202 // instantiation to take place, in every translation unit in which such a 8203 // use occurs; no diagnostic is required. 8204 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 8205 bool Okay = false; 8206 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8207 // Is there any previous explicit specialization declaration? 8208 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8209 Okay = true; 8210 break; 8211 } 8212 } 8213 8214 if (!Okay) { 8215 SourceRange Range(TemplateNameLoc, RAngleLoc); 8216 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 8217 << Context.getTypeDeclType(Specialization) << Range; 8218 8219 Diag(PrevDecl->getPointOfInstantiation(), 8220 diag::note_instantiation_required_here) 8221 << (PrevDecl->getTemplateSpecializationKind() 8222 != TSK_ImplicitInstantiation); 8223 return true; 8224 } 8225 } 8226 8227 // If this is not a friend, note that this is an explicit specialization. 8228 if (TUK != TUK_Friend) 8229 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 8230 8231 // Check that this isn't a redefinition of this specialization. 8232 if (TUK == TUK_Definition) { 8233 RecordDecl *Def = Specialization->getDefinition(); 8234 NamedDecl *Hidden = nullptr; 8235 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 8236 SkipBody->ShouldSkip = true; 8237 SkipBody->Previous = Def; 8238 makeMergedDefinitionVisible(Hidden); 8239 } else if (Def) { 8240 SourceRange Range(TemplateNameLoc, RAngleLoc); 8241 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range; 8242 Diag(Def->getLocation(), diag::note_previous_definition); 8243 Specialization->setInvalidDecl(); 8244 return true; 8245 } 8246 } 8247 8248 ProcessDeclAttributeList(S, Specialization, Attr); 8249 8250 // Add alignment attributes if necessary; these attributes are checked when 8251 // the ASTContext lays out the structure. 8252 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 8253 AddAlignmentAttributesForRecord(Specialization); 8254 AddMsStructLayoutForRecord(Specialization); 8255 } 8256 8257 if (ModulePrivateLoc.isValid()) 8258 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 8259 << (isPartialSpecialization? 1 : 0) 8260 << FixItHint::CreateRemoval(ModulePrivateLoc); 8261 8262 // Build the fully-sugared type for this class template 8263 // specialization as the user wrote in the specialization 8264 // itself. This means that we'll pretty-print the type retrieved 8265 // from the specialization's declaration the way that the user 8266 // actually wrote the specialization, rather than formatting the 8267 // name based on the "canonical" representation used to store the 8268 // template arguments in the specialization. 8269 TypeSourceInfo *WrittenTy 8270 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 8271 TemplateArgs, CanonType); 8272 if (TUK != TUK_Friend) { 8273 Specialization->setTypeAsWritten(WrittenTy); 8274 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 8275 } 8276 8277 // C++ [temp.expl.spec]p9: 8278 // A template explicit specialization is in the scope of the 8279 // namespace in which the template was defined. 8280 // 8281 // We actually implement this paragraph where we set the semantic 8282 // context (in the creation of the ClassTemplateSpecializationDecl), 8283 // but we also maintain the lexical context where the actual 8284 // definition occurs. 8285 Specialization->setLexicalDeclContext(CurContext); 8286 8287 // We may be starting the definition of this specialization. 8288 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 8289 Specialization->startDefinition(); 8290 8291 if (TUK == TUK_Friend) { 8292 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 8293 TemplateNameLoc, 8294 WrittenTy, 8295 /*FIXME:*/KWLoc); 8296 Friend->setAccess(AS_public); 8297 CurContext->addDecl(Friend); 8298 } else { 8299 // Add the specialization into its lexical context, so that it can 8300 // be seen when iterating through the list of declarations in that 8301 // context. However, specializations are not found by name lookup. 8302 CurContext->addDecl(Specialization); 8303 } 8304 8305 if (SkipBody && SkipBody->ShouldSkip) 8306 return SkipBody->Previous; 8307 8308 return Specialization; 8309 } 8310 8311 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 8312 MultiTemplateParamsArg TemplateParameterLists, 8313 Declarator &D) { 8314 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 8315 ActOnDocumentableDecl(NewDecl); 8316 return NewDecl; 8317 } 8318 8319 Decl *Sema::ActOnConceptDefinition(Scope *S, 8320 MultiTemplateParamsArg TemplateParameterLists, 8321 IdentifierInfo *Name, SourceLocation NameLoc, 8322 Expr *ConstraintExpr) { 8323 DeclContext *DC = CurContext; 8324 8325 if (!DC->getRedeclContext()->isFileContext()) { 8326 Diag(NameLoc, 8327 diag::err_concept_decls_may_only_appear_in_global_namespace_scope); 8328 return nullptr; 8329 } 8330 8331 if (TemplateParameterLists.size() > 1) { 8332 Diag(NameLoc, diag::err_concept_extra_headers); 8333 return nullptr; 8334 } 8335 8336 if (TemplateParameterLists.front()->size() == 0) { 8337 Diag(NameLoc, diag::err_concept_no_parameters); 8338 return nullptr; 8339 } 8340 8341 ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name, 8342 TemplateParameterLists.front(), 8343 ConstraintExpr); 8344 8345 if (NewDecl->hasAssociatedConstraints()) { 8346 // C++2a [temp.concept]p4: 8347 // A concept shall not have associated constraints. 8348 Diag(NameLoc, diag::err_concept_no_associated_constraints); 8349 NewDecl->setInvalidDecl(); 8350 } 8351 8352 // Check for conflicting previous declaration. 8353 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc); 8354 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 8355 ForVisibleRedeclaration); 8356 LookupName(Previous, S); 8357 8358 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false, 8359 /*AllowInlineNamespace*/false); 8360 if (!Previous.empty()) { 8361 auto *Old = Previous.getRepresentativeDecl(); 8362 Diag(NameLoc, isa<ConceptDecl>(Old) ? diag::err_redefinition : 8363 diag::err_redefinition_different_kind) << NewDecl->getDeclName(); 8364 Diag(Old->getLocation(), diag::note_previous_definition); 8365 } 8366 8367 ActOnDocumentableDecl(NewDecl); 8368 PushOnScopeChains(NewDecl, S); 8369 return NewDecl; 8370 } 8371 8372 /// \brief Strips various properties off an implicit instantiation 8373 /// that has just been explicitly specialized. 8374 static void StripImplicitInstantiation(NamedDecl *D) { 8375 D->dropAttr<DLLImportAttr>(); 8376 D->dropAttr<DLLExportAttr>(); 8377 8378 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 8379 FD->setInlineSpecified(false); 8380 } 8381 8382 /// Compute the diagnostic location for an explicit instantiation 8383 // declaration or definition. 8384 static SourceLocation DiagLocForExplicitInstantiation( 8385 NamedDecl* D, SourceLocation PointOfInstantiation) { 8386 // Explicit instantiations following a specialization have no effect and 8387 // hence no PointOfInstantiation. In that case, walk decl backwards 8388 // until a valid name loc is found. 8389 SourceLocation PrevDiagLoc = PointOfInstantiation; 8390 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 8391 Prev = Prev->getPreviousDecl()) { 8392 PrevDiagLoc = Prev->getLocation(); 8393 } 8394 assert(PrevDiagLoc.isValid() && 8395 "Explicit instantiation without point of instantiation?"); 8396 return PrevDiagLoc; 8397 } 8398 8399 /// Diagnose cases where we have an explicit template specialization 8400 /// before/after an explicit template instantiation, producing diagnostics 8401 /// for those cases where they are required and determining whether the 8402 /// new specialization/instantiation will have any effect. 8403 /// 8404 /// \param NewLoc the location of the new explicit specialization or 8405 /// instantiation. 8406 /// 8407 /// \param NewTSK the kind of the new explicit specialization or instantiation. 8408 /// 8409 /// \param PrevDecl the previous declaration of the entity. 8410 /// 8411 /// \param PrevTSK the kind of the old explicit specialization or instantiatin. 8412 /// 8413 /// \param PrevPointOfInstantiation if valid, indicates where the previus 8414 /// declaration was instantiated (either implicitly or explicitly). 8415 /// 8416 /// \param HasNoEffect will be set to true to indicate that the new 8417 /// specialization or instantiation has no effect and should be ignored. 8418 /// 8419 /// \returns true if there was an error that should prevent the introduction of 8420 /// the new declaration into the AST, false otherwise. 8421 bool 8422 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 8423 TemplateSpecializationKind NewTSK, 8424 NamedDecl *PrevDecl, 8425 TemplateSpecializationKind PrevTSK, 8426 SourceLocation PrevPointOfInstantiation, 8427 bool &HasNoEffect) { 8428 HasNoEffect = false; 8429 8430 switch (NewTSK) { 8431 case TSK_Undeclared: 8432 case TSK_ImplicitInstantiation: 8433 assert( 8434 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && 8435 "previous declaration must be implicit!"); 8436 return false; 8437 8438 case TSK_ExplicitSpecialization: 8439 switch (PrevTSK) { 8440 case TSK_Undeclared: 8441 case TSK_ExplicitSpecialization: 8442 // Okay, we're just specializing something that is either already 8443 // explicitly specialized or has merely been mentioned without any 8444 // instantiation. 8445 return false; 8446 8447 case TSK_ImplicitInstantiation: 8448 if (PrevPointOfInstantiation.isInvalid()) { 8449 // The declaration itself has not actually been instantiated, so it is 8450 // still okay to specialize it. 8451 StripImplicitInstantiation(PrevDecl); 8452 return false; 8453 } 8454 // Fall through 8455 LLVM_FALLTHROUGH; 8456 8457 case TSK_ExplicitInstantiationDeclaration: 8458 case TSK_ExplicitInstantiationDefinition: 8459 assert((PrevTSK == TSK_ImplicitInstantiation || 8460 PrevPointOfInstantiation.isValid()) && 8461 "Explicit instantiation without point of instantiation?"); 8462 8463 // C++ [temp.expl.spec]p6: 8464 // If a template, a member template or the member of a class template 8465 // is explicitly specialized then that specialization shall be declared 8466 // before the first use of that specialization that would cause an 8467 // implicit instantiation to take place, in every translation unit in 8468 // which such a use occurs; no diagnostic is required. 8469 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8470 // Is there any previous explicit specialization declaration? 8471 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 8472 return false; 8473 } 8474 8475 Diag(NewLoc, diag::err_specialization_after_instantiation) 8476 << PrevDecl; 8477 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 8478 << (PrevTSK != TSK_ImplicitInstantiation); 8479 8480 return true; 8481 } 8482 llvm_unreachable("The switch over PrevTSK must be exhaustive."); 8483 8484 case TSK_ExplicitInstantiationDeclaration: 8485 switch (PrevTSK) { 8486 case TSK_ExplicitInstantiationDeclaration: 8487 // This explicit instantiation declaration is redundant (that's okay). 8488 HasNoEffect = true; 8489 return false; 8490 8491 case TSK_Undeclared: 8492 case TSK_ImplicitInstantiation: 8493 // We're explicitly instantiating something that may have already been 8494 // implicitly instantiated; that's fine. 8495 return false; 8496 8497 case TSK_ExplicitSpecialization: 8498 // C++0x [temp.explicit]p4: 8499 // For a given set of template parameters, if an explicit instantiation 8500 // of a template appears after a declaration of an explicit 8501 // specialization for that template, the explicit instantiation has no 8502 // effect. 8503 HasNoEffect = true; 8504 return false; 8505 8506 case TSK_ExplicitInstantiationDefinition: 8507 // C++0x [temp.explicit]p10: 8508 // If an entity is the subject of both an explicit instantiation 8509 // declaration and an explicit instantiation definition in the same 8510 // translation unit, the definition shall follow the declaration. 8511 Diag(NewLoc, 8512 diag::err_explicit_instantiation_declaration_after_definition); 8513 8514 // Explicit instantiations following a specialization have no effect and 8515 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 8516 // until a valid name loc is found. 8517 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 8518 diag::note_explicit_instantiation_definition_here); 8519 HasNoEffect = true; 8520 return false; 8521 } 8522 llvm_unreachable("Unexpected TemplateSpecializationKind!"); 8523 8524 case TSK_ExplicitInstantiationDefinition: 8525 switch (PrevTSK) { 8526 case TSK_Undeclared: 8527 case TSK_ImplicitInstantiation: 8528 // We're explicitly instantiating something that may have already been 8529 // implicitly instantiated; that's fine. 8530 return false; 8531 8532 case TSK_ExplicitSpecialization: 8533 // C++ DR 259, C++0x [temp.explicit]p4: 8534 // For a given set of template parameters, if an explicit 8535 // instantiation of a template appears after a declaration of 8536 // an explicit specialization for that template, the explicit 8537 // instantiation has no effect. 8538 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization) 8539 << PrevDecl; 8540 Diag(PrevDecl->getLocation(), 8541 diag::note_previous_template_specialization); 8542 HasNoEffect = true; 8543 return false; 8544 8545 case TSK_ExplicitInstantiationDeclaration: 8546 // We're explicitly instantiating a definition for something for which we 8547 // were previously asked to suppress instantiations. That's fine. 8548 8549 // C++0x [temp.explicit]p4: 8550 // For a given set of template parameters, if an explicit instantiation 8551 // of a template appears after a declaration of an explicit 8552 // specialization for that template, the explicit instantiation has no 8553 // effect. 8554 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8555 // Is there any previous explicit specialization declaration? 8556 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8557 HasNoEffect = true; 8558 break; 8559 } 8560 } 8561 8562 return false; 8563 8564 case TSK_ExplicitInstantiationDefinition: 8565 // C++0x [temp.spec]p5: 8566 // For a given template and a given set of template-arguments, 8567 // - an explicit instantiation definition shall appear at most once 8568 // in a program, 8569 8570 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. 8571 Diag(NewLoc, (getLangOpts().MSVCCompat) 8572 ? diag::ext_explicit_instantiation_duplicate 8573 : diag::err_explicit_instantiation_duplicate) 8574 << PrevDecl; 8575 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 8576 diag::note_previous_explicit_instantiation); 8577 HasNoEffect = true; 8578 return false; 8579 } 8580 } 8581 8582 llvm_unreachable("Missing specialization/instantiation case?"); 8583 } 8584 8585 /// Perform semantic analysis for the given dependent function 8586 /// template specialization. 8587 /// 8588 /// The only possible way to get a dependent function template specialization 8589 /// is with a friend declaration, like so: 8590 /// 8591 /// \code 8592 /// template \<class T> void foo(T); 8593 /// template \<class T> class A { 8594 /// friend void foo<>(T); 8595 /// }; 8596 /// \endcode 8597 /// 8598 /// There really isn't any useful analysis we can do here, so we 8599 /// just store the information. 8600 bool 8601 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 8602 const TemplateArgumentListInfo &ExplicitTemplateArgs, 8603 LookupResult &Previous) { 8604 // Remove anything from Previous that isn't a function template in 8605 // the correct context. 8606 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 8607 LookupResult::Filter F = Previous.makeFilter(); 8608 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; 8609 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; 8610 while (F.hasNext()) { 8611 NamedDecl *D = F.next()->getUnderlyingDecl(); 8612 if (!isa<FunctionTemplateDecl>(D)) { 8613 F.erase(); 8614 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D)); 8615 continue; 8616 } 8617 8618 if (!FDLookupContext->InEnclosingNamespaceSetOf( 8619 D->getDeclContext()->getRedeclContext())) { 8620 F.erase(); 8621 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D)); 8622 continue; 8623 } 8624 } 8625 F.done(); 8626 8627 if (Previous.empty()) { 8628 Diag(FD->getLocation(), 8629 diag::err_dependent_function_template_spec_no_match); 8630 for (auto &P : DiscardedCandidates) 8631 Diag(P.second->getLocation(), 8632 diag::note_dependent_function_template_spec_discard_reason) 8633 << P.first; 8634 return true; 8635 } 8636 8637 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 8638 ExplicitTemplateArgs); 8639 return false; 8640 } 8641 8642 /// Perform semantic analysis for the given function template 8643 /// specialization. 8644 /// 8645 /// This routine performs all of the semantic analysis required for an 8646 /// explicit function template specialization. On successful completion, 8647 /// the function declaration \p FD will become a function template 8648 /// specialization. 8649 /// 8650 /// \param FD the function declaration, which will be updated to become a 8651 /// function template specialization. 8652 /// 8653 /// \param ExplicitTemplateArgs the explicitly-provided template arguments, 8654 /// if any. Note that this may be valid info even when 0 arguments are 8655 /// explicitly provided as in, e.g., \c void sort<>(char*, char*); 8656 /// as it anyway contains info on the angle brackets locations. 8657 /// 8658 /// \param Previous the set of declarations that may be specialized by 8659 /// this function specialization. 8660 /// 8661 /// \param QualifiedFriend whether this is a lookup for a qualified friend 8662 /// declaration with no explicit template argument list that might be 8663 /// befriending a function template specialization. 8664 bool Sema::CheckFunctionTemplateSpecialization( 8665 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, 8666 LookupResult &Previous, bool QualifiedFriend) { 8667 // The set of function template specializations that could match this 8668 // explicit function template specialization. 8669 UnresolvedSet<8> Candidates; 8670 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), 8671 /*ForTakingAddress=*/false); 8672 8673 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> 8674 ConvertedTemplateArgs; 8675 8676 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 8677 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 8678 I != E; ++I) { 8679 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 8680 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 8681 // Only consider templates found within the same semantic lookup scope as 8682 // FD. 8683 if (!FDLookupContext->InEnclosingNamespaceSetOf( 8684 Ovl->getDeclContext()->getRedeclContext())) 8685 continue; 8686 8687 // When matching a constexpr member function template specialization 8688 // against the primary template, we don't yet know whether the 8689 // specialization has an implicit 'const' (because we don't know whether 8690 // it will be a static member function until we know which template it 8691 // specializes), so adjust it now assuming it specializes this template. 8692 QualType FT = FD->getType(); 8693 if (FD->isConstexpr()) { 8694 CXXMethodDecl *OldMD = 8695 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 8696 if (OldMD && OldMD->isConst()) { 8697 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 8698 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8699 EPI.TypeQuals.addConst(); 8700 FT = Context.getFunctionType(FPT->getReturnType(), 8701 FPT->getParamTypes(), EPI); 8702 } 8703 } 8704 8705 TemplateArgumentListInfo Args; 8706 if (ExplicitTemplateArgs) 8707 Args = *ExplicitTemplateArgs; 8708 8709 // C++ [temp.expl.spec]p11: 8710 // A trailing template-argument can be left unspecified in the 8711 // template-id naming an explicit function template specialization 8712 // provided it can be deduced from the function argument type. 8713 // Perform template argument deduction to determine whether we may be 8714 // specializing this template. 8715 // FIXME: It is somewhat wasteful to build 8716 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 8717 FunctionDecl *Specialization = nullptr; 8718 if (TemplateDeductionResult TDK = DeduceTemplateArguments( 8719 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), 8720 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, 8721 Info)) { 8722 // Template argument deduction failed; record why it failed, so 8723 // that we can provide nifty diagnostics. 8724 FailedCandidates.addCandidate().set( 8725 I.getPair(), FunTmpl->getTemplatedDecl(), 8726 MakeDeductionFailureInfo(Context, TDK, Info)); 8727 (void)TDK; 8728 continue; 8729 } 8730 8731 // Target attributes are part of the cuda function signature, so 8732 // the deduced template's cuda target must match that of the 8733 // specialization. Given that C++ template deduction does not 8734 // take target attributes into account, we reject candidates 8735 // here that have a different target. 8736 if (LangOpts.CUDA && 8737 IdentifyCUDATarget(Specialization, 8738 /* IgnoreImplicitHDAttr = */ true) != 8739 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) { 8740 FailedCandidates.addCandidate().set( 8741 I.getPair(), FunTmpl->getTemplatedDecl(), 8742 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 8743 continue; 8744 } 8745 8746 // Record this candidate. 8747 if (ExplicitTemplateArgs) 8748 ConvertedTemplateArgs[Specialization] = std::move(Args); 8749 Candidates.addDecl(Specialization, I.getAccess()); 8750 } 8751 } 8752 8753 // For a qualified friend declaration (with no explicit marker to indicate 8754 // that a template specialization was intended), note all (template and 8755 // non-template) candidates. 8756 if (QualifiedFriend && Candidates.empty()) { 8757 Diag(FD->getLocation(), diag::err_qualified_friend_no_match) 8758 << FD->getDeclName() << FDLookupContext; 8759 // FIXME: We should form a single candidate list and diagnose all 8760 // candidates at once, to get proper sorting and limiting. 8761 for (auto *OldND : Previous) { 8762 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl())) 8763 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false); 8764 } 8765 FailedCandidates.NoteCandidates(*this, FD->getLocation()); 8766 return true; 8767 } 8768 8769 // Find the most specialized function template. 8770 UnresolvedSetIterator Result = getMostSpecialized( 8771 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(), 8772 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), 8773 PDiag(diag::err_function_template_spec_ambiguous) 8774 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), 8775 PDiag(diag::note_function_template_spec_matched)); 8776 8777 if (Result == Candidates.end()) 8778 return true; 8779 8780 // Ignore access information; it doesn't figure into redeclaration checking. 8781 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 8782 8783 FunctionTemplateSpecializationInfo *SpecInfo 8784 = Specialization->getTemplateSpecializationInfo(); 8785 assert(SpecInfo && "Function template specialization info missing?"); 8786 8787 // Note: do not overwrite location info if previous template 8788 // specialization kind was explicit. 8789 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 8790 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 8791 Specialization->setLocation(FD->getLocation()); 8792 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); 8793 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 8794 // function can differ from the template declaration with respect to 8795 // the constexpr specifier. 8796 // FIXME: We need an update record for this AST mutation. 8797 // FIXME: What if there are multiple such prior declarations (for instance, 8798 // from different modules)? 8799 Specialization->setConstexprKind(FD->getConstexprKind()); 8800 } 8801 8802 // FIXME: Check if the prior specialization has a point of instantiation. 8803 // If so, we have run afoul of . 8804 8805 // If this is a friend declaration, then we're not really declaring 8806 // an explicit specialization. 8807 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 8808 8809 // Check the scope of this explicit specialization. 8810 if (!isFriend && 8811 CheckTemplateSpecializationScope(*this, 8812 Specialization->getPrimaryTemplate(), 8813 Specialization, FD->getLocation(), 8814 false)) 8815 return true; 8816 8817 // C++ [temp.expl.spec]p6: 8818 // If a template, a member template or the member of a class template is 8819 // explicitly specialized then that specialization shall be declared 8820 // before the first use of that specialization that would cause an implicit 8821 // instantiation to take place, in every translation unit in which such a 8822 // use occurs; no diagnostic is required. 8823 bool HasNoEffect = false; 8824 if (!isFriend && 8825 CheckSpecializationInstantiationRedecl(FD->getLocation(), 8826 TSK_ExplicitSpecialization, 8827 Specialization, 8828 SpecInfo->getTemplateSpecializationKind(), 8829 SpecInfo->getPointOfInstantiation(), 8830 HasNoEffect)) 8831 return true; 8832 8833 // Mark the prior declaration as an explicit specialization, so that later 8834 // clients know that this is an explicit specialization. 8835 if (!isFriend) { 8836 // Since explicit specializations do not inherit '=delete' from their 8837 // primary function template - check if the 'specialization' that was 8838 // implicitly generated (during template argument deduction for partial 8839 // ordering) from the most specialized of all the function templates that 8840 // 'FD' could have been specializing, has a 'deleted' definition. If so, 8841 // first check that it was implicitly generated during template argument 8842 // deduction by making sure it wasn't referenced, and then reset the deleted 8843 // flag to not-deleted, so that we can inherit that information from 'FD'. 8844 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && 8845 !Specialization->getCanonicalDecl()->isReferenced()) { 8846 // FIXME: This assert will not hold in the presence of modules. 8847 assert( 8848 Specialization->getCanonicalDecl() == Specialization && 8849 "This must be the only existing declaration of this specialization"); 8850 // FIXME: We need an update record for this AST mutation. 8851 Specialization->setDeletedAsWritten(false); 8852 } 8853 // FIXME: We need an update record for this AST mutation. 8854 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 8855 MarkUnusedFileScopedDecl(Specialization); 8856 } 8857 8858 // Turn the given function declaration into a function template 8859 // specialization, with the template arguments from the previous 8860 // specialization. 8861 // Take copies of (semantic and syntactic) template argument lists. 8862 const TemplateArgumentList* TemplArgs = new (Context) 8863 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 8864 FD->setFunctionTemplateSpecialization( 8865 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr, 8866 SpecInfo->getTemplateSpecializationKind(), 8867 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); 8868 8869 // A function template specialization inherits the target attributes 8870 // of its template. (We require the attributes explicitly in the 8871 // code to match, but a template may have implicit attributes by 8872 // virtue e.g. of being constexpr, and it passes these implicit 8873 // attributes on to its specializations.) 8874 if (LangOpts.CUDA) 8875 inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate()); 8876 8877 // The "previous declaration" for this function template specialization is 8878 // the prior function template specialization. 8879 Previous.clear(); 8880 Previous.addDecl(Specialization); 8881 return false; 8882 } 8883 8884 /// Perform semantic analysis for the given non-template member 8885 /// specialization. 8886 /// 8887 /// This routine performs all of the semantic analysis required for an 8888 /// explicit member function specialization. On successful completion, 8889 /// the function declaration \p FD will become a member function 8890 /// specialization. 8891 /// 8892 /// \param Member the member declaration, which will be updated to become a 8893 /// specialization. 8894 /// 8895 /// \param Previous the set of declarations, one of which may be specialized 8896 /// by this function specialization; the set will be modified to contain the 8897 /// redeclared member. 8898 bool 8899 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 8900 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 8901 8902 // Try to find the member we are instantiating. 8903 NamedDecl *FoundInstantiation = nullptr; 8904 NamedDecl *Instantiation = nullptr; 8905 NamedDecl *InstantiatedFrom = nullptr; 8906 MemberSpecializationInfo *MSInfo = nullptr; 8907 8908 if (Previous.empty()) { 8909 // Nowhere to look anyway. 8910 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 8911 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 8912 I != E; ++I) { 8913 NamedDecl *D = (*I)->getUnderlyingDecl(); 8914 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 8915 QualType Adjusted = Function->getType(); 8916 if (!hasExplicitCallingConv(Adjusted)) 8917 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType()); 8918 // This doesn't handle deduced return types, but both function 8919 // declarations should be undeduced at this point. 8920 if (Context.hasSameType(Adjusted, Method->getType())) { 8921 FoundInstantiation = *I; 8922 Instantiation = Method; 8923 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 8924 MSInfo = Method->getMemberSpecializationInfo(); 8925 break; 8926 } 8927 } 8928 } 8929 } else if (isa<VarDecl>(Member)) { 8930 VarDecl *PrevVar; 8931 if (Previous.isSingleResult() && 8932 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 8933 if (PrevVar->isStaticDataMember()) { 8934 FoundInstantiation = Previous.getRepresentativeDecl(); 8935 Instantiation = PrevVar; 8936 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 8937 MSInfo = PrevVar->getMemberSpecializationInfo(); 8938 } 8939 } else if (isa<RecordDecl>(Member)) { 8940 CXXRecordDecl *PrevRecord; 8941 if (Previous.isSingleResult() && 8942 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 8943 FoundInstantiation = Previous.getRepresentativeDecl(); 8944 Instantiation = PrevRecord; 8945 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 8946 MSInfo = PrevRecord->getMemberSpecializationInfo(); 8947 } 8948 } else if (isa<EnumDecl>(Member)) { 8949 EnumDecl *PrevEnum; 8950 if (Previous.isSingleResult() && 8951 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 8952 FoundInstantiation = Previous.getRepresentativeDecl(); 8953 Instantiation = PrevEnum; 8954 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 8955 MSInfo = PrevEnum->getMemberSpecializationInfo(); 8956 } 8957 } 8958 8959 if (!Instantiation) { 8960 // There is no previous declaration that matches. Since member 8961 // specializations are always out-of-line, the caller will complain about 8962 // this mismatch later. 8963 return false; 8964 } 8965 8966 // A member specialization in a friend declaration isn't really declaring 8967 // an explicit specialization, just identifying a specific (possibly implicit) 8968 // specialization. Don't change the template specialization kind. 8969 // 8970 // FIXME: Is this really valid? Other compilers reject. 8971 if (Member->getFriendObjectKind() != Decl::FOK_None) { 8972 // Preserve instantiation information. 8973 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 8974 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 8975 cast<CXXMethodDecl>(InstantiatedFrom), 8976 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 8977 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 8978 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 8979 cast<CXXRecordDecl>(InstantiatedFrom), 8980 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 8981 } 8982 8983 Previous.clear(); 8984 Previous.addDecl(FoundInstantiation); 8985 return false; 8986 } 8987 8988 // Make sure that this is a specialization of a member. 8989 if (!InstantiatedFrom) { 8990 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 8991 << Member; 8992 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 8993 return true; 8994 } 8995 8996 // C++ [temp.expl.spec]p6: 8997 // If a template, a member template or the member of a class template is 8998 // explicitly specialized then that specialization shall be declared 8999 // before the first use of that specialization that would cause an implicit 9000 // instantiation to take place, in every translation unit in which such a 9001 // use occurs; no diagnostic is required. 9002 assert(MSInfo && "Member specialization info missing?"); 9003 9004 bool HasNoEffect = false; 9005 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 9006 TSK_ExplicitSpecialization, 9007 Instantiation, 9008 MSInfo->getTemplateSpecializationKind(), 9009 MSInfo->getPointOfInstantiation(), 9010 HasNoEffect)) 9011 return true; 9012 9013 // Check the scope of this explicit specialization. 9014 if (CheckTemplateSpecializationScope(*this, 9015 InstantiatedFrom, 9016 Instantiation, Member->getLocation(), 9017 false)) 9018 return true; 9019 9020 // Note that this member specialization is an "instantiation of" the 9021 // corresponding member of the original template. 9022 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) { 9023 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 9024 if (InstantiationFunction->getTemplateSpecializationKind() == 9025 TSK_ImplicitInstantiation) { 9026 // Explicit specializations of member functions of class templates do not 9027 // inherit '=delete' from the member function they are specializing. 9028 if (InstantiationFunction->isDeleted()) { 9029 // FIXME: This assert will not hold in the presence of modules. 9030 assert(InstantiationFunction->getCanonicalDecl() == 9031 InstantiationFunction); 9032 // FIXME: We need an update record for this AST mutation. 9033 InstantiationFunction->setDeletedAsWritten(false); 9034 } 9035 } 9036 9037 MemberFunction->setInstantiationOfMemberFunction( 9038 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9039 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) { 9040 MemberVar->setInstantiationOfStaticDataMember( 9041 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9042 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) { 9043 MemberClass->setInstantiationOfMemberClass( 9044 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9045 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) { 9046 MemberEnum->setInstantiationOfMemberEnum( 9047 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9048 } else { 9049 llvm_unreachable("unknown member specialization kind"); 9050 } 9051 9052 // Save the caller the trouble of having to figure out which declaration 9053 // this specialization matches. 9054 Previous.clear(); 9055 Previous.addDecl(FoundInstantiation); 9056 return false; 9057 } 9058 9059 /// Complete the explicit specialization of a member of a class template by 9060 /// updating the instantiated member to be marked as an explicit specialization. 9061 /// 9062 /// \param OrigD The member declaration instantiated from the template. 9063 /// \param Loc The location of the explicit specialization of the member. 9064 template<typename DeclT> 9065 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, 9066 SourceLocation Loc) { 9067 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 9068 return; 9069 9070 // FIXME: Inform AST mutation listeners of this AST mutation. 9071 // FIXME: If there are multiple in-class declarations of the member (from 9072 // multiple modules, or a declaration and later definition of a member type), 9073 // should we update all of them? 9074 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 9075 OrigD->setLocation(Loc); 9076 } 9077 9078 void Sema::CompleteMemberSpecialization(NamedDecl *Member, 9079 LookupResult &Previous) { 9080 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl()); 9081 if (Instantiation == Member) 9082 return; 9083 9084 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation)) 9085 completeMemberSpecializationImpl(*this, Function, Member->getLocation()); 9086 else if (auto *Var = dyn_cast<VarDecl>(Instantiation)) 9087 completeMemberSpecializationImpl(*this, Var, Member->getLocation()); 9088 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation)) 9089 completeMemberSpecializationImpl(*this, Record, Member->getLocation()); 9090 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation)) 9091 completeMemberSpecializationImpl(*this, Enum, Member->getLocation()); 9092 else 9093 llvm_unreachable("unknown member specialization kind"); 9094 } 9095 9096 /// Check the scope of an explicit instantiation. 9097 /// 9098 /// \returns true if a serious error occurs, false otherwise. 9099 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 9100 SourceLocation InstLoc, 9101 bool WasQualifiedName) { 9102 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 9103 DeclContext *CurContext = S.CurContext->getRedeclContext(); 9104 9105 if (CurContext->isRecord()) { 9106 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 9107 << D; 9108 return true; 9109 } 9110 9111 // C++11 [temp.explicit]p3: 9112 // An explicit instantiation shall appear in an enclosing namespace of its 9113 // template. If the name declared in the explicit instantiation is an 9114 // unqualified name, the explicit instantiation shall appear in the 9115 // namespace where its template is declared or, if that namespace is inline 9116 // (7.3.1), any namespace from its enclosing namespace set. 9117 // 9118 // This is DR275, which we do not retroactively apply to C++98/03. 9119 if (WasQualifiedName) { 9120 if (CurContext->Encloses(OrigContext)) 9121 return false; 9122 } else { 9123 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 9124 return false; 9125 } 9126 9127 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 9128 if (WasQualifiedName) 9129 S.Diag(InstLoc, 9130 S.getLangOpts().CPlusPlus11? 9131 diag::err_explicit_instantiation_out_of_scope : 9132 diag::warn_explicit_instantiation_out_of_scope_0x) 9133 << D << NS; 9134 else 9135 S.Diag(InstLoc, 9136 S.getLangOpts().CPlusPlus11? 9137 diag::err_explicit_instantiation_unqualified_wrong_namespace : 9138 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 9139 << D << NS; 9140 } else 9141 S.Diag(InstLoc, 9142 S.getLangOpts().CPlusPlus11? 9143 diag::err_explicit_instantiation_must_be_global : 9144 diag::warn_explicit_instantiation_must_be_global_0x) 9145 << D; 9146 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 9147 return false; 9148 } 9149 9150 /// Common checks for whether an explicit instantiation of \p D is valid. 9151 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D, 9152 SourceLocation InstLoc, 9153 bool WasQualifiedName, 9154 TemplateSpecializationKind TSK) { 9155 // C++ [temp.explicit]p13: 9156 // An explicit instantiation declaration shall not name a specialization of 9157 // a template with internal linkage. 9158 if (TSK == TSK_ExplicitInstantiationDeclaration && 9159 D->getFormalLinkage() == InternalLinkage) { 9160 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D; 9161 return true; 9162 } 9163 9164 // C++11 [temp.explicit]p3: [DR 275] 9165 // An explicit instantiation shall appear in an enclosing namespace of its 9166 // template. 9167 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName)) 9168 return true; 9169 9170 return false; 9171 } 9172 9173 /// Determine whether the given scope specifier has a template-id in it. 9174 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 9175 if (!SS.isSet()) 9176 return false; 9177 9178 // C++11 [temp.explicit]p3: 9179 // If the explicit instantiation is for a member function, a member class 9180 // or a static data member of a class template specialization, the name of 9181 // the class template specialization in the qualified-id for the member 9182 // name shall be a simple-template-id. 9183 // 9184 // C++98 has the same restriction, just worded differently. 9185 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; 9186 NNS = NNS->getPrefix()) 9187 if (const Type *T = NNS->getAsType()) 9188 if (isa<TemplateSpecializationType>(T)) 9189 return true; 9190 9191 return false; 9192 } 9193 9194 /// Make a dllexport or dllimport attr on a class template specialization take 9195 /// effect. 9196 static void dllExportImportClassTemplateSpecialization( 9197 Sema &S, ClassTemplateSpecializationDecl *Def) { 9198 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def)); 9199 assert(A && "dllExportImportClassTemplateSpecialization called " 9200 "on Def without dllexport or dllimport"); 9201 9202 // We reject explicit instantiations in class scope, so there should 9203 // never be any delayed exported classes to worry about. 9204 assert(S.DelayedDllExportClasses.empty() && 9205 "delayed exports present at explicit instantiation"); 9206 S.checkClassLevelDLLAttribute(Def); 9207 9208 // Propagate attribute to base class templates. 9209 for (auto &B : Def->bases()) { 9210 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 9211 B.getType()->getAsCXXRecordDecl())) 9212 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc()); 9213 } 9214 9215 S.referenceDLLExportedClassMethods(); 9216 } 9217 9218 // Explicit instantiation of a class template specialization 9219 DeclResult Sema::ActOnExplicitInstantiation( 9220 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, 9221 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, 9222 TemplateTy TemplateD, SourceLocation TemplateNameLoc, 9223 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, 9224 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { 9225 // Find the class template we're specializing 9226 TemplateName Name = TemplateD.get(); 9227 TemplateDecl *TD = Name.getAsTemplateDecl(); 9228 // Check that the specialization uses the same tag kind as the 9229 // original template. 9230 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 9231 assert(Kind != TTK_Enum && 9232 "Invalid enum tag in class template explicit instantiation!"); 9233 9234 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD); 9235 9236 if (!ClassTemplate) { 9237 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind); 9238 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind; 9239 Diag(TD->getLocation(), diag::note_previous_use); 9240 return true; 9241 } 9242 9243 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 9244 Kind, /*isDefinition*/false, KWLoc, 9245 ClassTemplate->getIdentifier())) { 9246 Diag(KWLoc, diag::err_use_with_wrong_tag) 9247 << ClassTemplate 9248 << FixItHint::CreateReplacement(KWLoc, 9249 ClassTemplate->getTemplatedDecl()->getKindName()); 9250 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 9251 diag::note_previous_use); 9252 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 9253 } 9254 9255 // C++0x [temp.explicit]p2: 9256 // There are two forms of explicit instantiation: an explicit instantiation 9257 // definition and an explicit instantiation declaration. An explicit 9258 // instantiation declaration begins with the extern keyword. [...] 9259 TemplateSpecializationKind TSK = ExternLoc.isInvalid() 9260 ? TSK_ExplicitInstantiationDefinition 9261 : TSK_ExplicitInstantiationDeclaration; 9262 9263 if (TSK == TSK_ExplicitInstantiationDeclaration && 9264 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9265 // Check for dllexport class template instantiation declarations, 9266 // except for MinGW mode. 9267 for (const ParsedAttr &AL : Attr) { 9268 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9269 Diag(ExternLoc, 9270 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9271 Diag(AL.getLoc(), diag::note_attribute); 9272 break; 9273 } 9274 } 9275 9276 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { 9277 Diag(ExternLoc, 9278 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9279 Diag(A->getLocation(), diag::note_attribute); 9280 } 9281 } 9282 9283 // In MSVC mode, dllimported explicit instantiation definitions are treated as 9284 // instantiation declarations for most purposes. 9285 bool DLLImportExplicitInstantiationDef = false; 9286 if (TSK == TSK_ExplicitInstantiationDefinition && 9287 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 9288 // Check for dllimport class template instantiation definitions. 9289 bool DLLImport = 9290 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); 9291 for (const ParsedAttr &AL : Attr) { 9292 if (AL.getKind() == ParsedAttr::AT_DLLImport) 9293 DLLImport = true; 9294 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9295 // dllexport trumps dllimport here. 9296 DLLImport = false; 9297 break; 9298 } 9299 } 9300 if (DLLImport) { 9301 TSK = TSK_ExplicitInstantiationDeclaration; 9302 DLLImportExplicitInstantiationDef = true; 9303 } 9304 } 9305 9306 // Translate the parser's template argument list in our AST format. 9307 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 9308 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 9309 9310 // Check that the template argument list is well-formed for this 9311 // template. 9312 SmallVector<TemplateArgument, 4> Converted; 9313 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 9314 TemplateArgs, false, Converted, 9315 /*UpdateArgsWithConversion=*/true)) 9316 return true; 9317 9318 // Find the class template specialization declaration that 9319 // corresponds to these arguments. 9320 void *InsertPos = nullptr; 9321 ClassTemplateSpecializationDecl *PrevDecl 9322 = ClassTemplate->findSpecialization(Converted, InsertPos); 9323 9324 TemplateSpecializationKind PrevDecl_TSK 9325 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 9326 9327 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr && 9328 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9329 // Check for dllexport class template instantiation definitions in MinGW 9330 // mode, if a previous declaration of the instantiation was seen. 9331 for (const ParsedAttr &AL : Attr) { 9332 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9333 Diag(AL.getLoc(), 9334 diag::warn_attribute_dllexport_explicit_instantiation_def); 9335 break; 9336 } 9337 } 9338 } 9339 9340 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc, 9341 SS.isSet(), TSK)) 9342 return true; 9343 9344 ClassTemplateSpecializationDecl *Specialization = nullptr; 9345 9346 bool HasNoEffect = false; 9347 if (PrevDecl) { 9348 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 9349 PrevDecl, PrevDecl_TSK, 9350 PrevDecl->getPointOfInstantiation(), 9351 HasNoEffect)) 9352 return PrevDecl; 9353 9354 // Even though HasNoEffect == true means that this explicit instantiation 9355 // has no effect on semantics, we go on to put its syntax in the AST. 9356 9357 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 9358 PrevDecl_TSK == TSK_Undeclared) { 9359 // Since the only prior class template specialization with these 9360 // arguments was referenced but not declared, reuse that 9361 // declaration node as our own, updating the source location 9362 // for the template name to reflect our new declaration. 9363 // (Other source locations will be updated later.) 9364 Specialization = PrevDecl; 9365 Specialization->setLocation(TemplateNameLoc); 9366 PrevDecl = nullptr; 9367 } 9368 9369 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9370 DLLImportExplicitInstantiationDef) { 9371 // The new specialization might add a dllimport attribute. 9372 HasNoEffect = false; 9373 } 9374 } 9375 9376 if (!Specialization) { 9377 // Create a new class template specialization declaration node for 9378 // this explicit specialization. 9379 Specialization 9380 = ClassTemplateSpecializationDecl::Create(Context, Kind, 9381 ClassTemplate->getDeclContext(), 9382 KWLoc, TemplateNameLoc, 9383 ClassTemplate, 9384 Converted, 9385 PrevDecl); 9386 SetNestedNameSpecifier(*this, Specialization, SS); 9387 9388 if (!HasNoEffect && !PrevDecl) { 9389 // Insert the new specialization. 9390 ClassTemplate->AddSpecialization(Specialization, InsertPos); 9391 } 9392 } 9393 9394 // Build the fully-sugared type for this explicit instantiation as 9395 // the user wrote in the explicit instantiation itself. This means 9396 // that we'll pretty-print the type retrieved from the 9397 // specialization's declaration the way that the user actually wrote 9398 // the explicit instantiation, rather than formatting the name based 9399 // on the "canonical" representation used to store the template 9400 // arguments in the specialization. 9401 TypeSourceInfo *WrittenTy 9402 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 9403 TemplateArgs, 9404 Context.getTypeDeclType(Specialization)); 9405 Specialization->setTypeAsWritten(WrittenTy); 9406 9407 // Set source locations for keywords. 9408 Specialization->setExternLoc(ExternLoc); 9409 Specialization->setTemplateKeywordLoc(TemplateLoc); 9410 Specialization->setBraceRange(SourceRange()); 9411 9412 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); 9413 ProcessDeclAttributeList(S, Specialization, Attr); 9414 9415 // Add the explicit instantiation into its lexical context. However, 9416 // since explicit instantiations are never found by name lookup, we 9417 // just put it into the declaration context directly. 9418 Specialization->setLexicalDeclContext(CurContext); 9419 CurContext->addDecl(Specialization); 9420 9421 // Syntax is now OK, so return if it has no other effect on semantics. 9422 if (HasNoEffect) { 9423 // Set the template specialization kind. 9424 Specialization->setTemplateSpecializationKind(TSK); 9425 return Specialization; 9426 } 9427 9428 // C++ [temp.explicit]p3: 9429 // A definition of a class template or class member template 9430 // shall be in scope at the point of the explicit instantiation of 9431 // the class template or class member template. 9432 // 9433 // This check comes when we actually try to perform the 9434 // instantiation. 9435 ClassTemplateSpecializationDecl *Def 9436 = cast_or_null<ClassTemplateSpecializationDecl>( 9437 Specialization->getDefinition()); 9438 if (!Def) 9439 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 9440 else if (TSK == TSK_ExplicitInstantiationDefinition) { 9441 MarkVTableUsed(TemplateNameLoc, Specialization, true); 9442 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 9443 } 9444 9445 // Instantiate the members of this class template specialization. 9446 Def = cast_or_null<ClassTemplateSpecializationDecl>( 9447 Specialization->getDefinition()); 9448 if (Def) { 9449 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 9450 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 9451 // TSK_ExplicitInstantiationDefinition 9452 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 9453 (TSK == TSK_ExplicitInstantiationDefinition || 9454 DLLImportExplicitInstantiationDef)) { 9455 // FIXME: Need to notify the ASTMutationListener that we did this. 9456 Def->setTemplateSpecializationKind(TSK); 9457 9458 if (!getDLLAttr(Def) && getDLLAttr(Specialization) && 9459 (Context.getTargetInfo().getCXXABI().isMicrosoft() || 9460 Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) { 9461 // In the MS ABI, an explicit instantiation definition can add a dll 9462 // attribute to a template with a previous instantiation declaration. 9463 // MinGW doesn't allow this. 9464 auto *A = cast<InheritableAttr>( 9465 getDLLAttr(Specialization)->clone(getASTContext())); 9466 A->setInherited(true); 9467 Def->addAttr(A); 9468 dllExportImportClassTemplateSpecialization(*this, Def); 9469 } 9470 } 9471 9472 // Fix a TSK_ImplicitInstantiation followed by a 9473 // TSK_ExplicitInstantiationDefinition 9474 bool NewlyDLLExported = 9475 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); 9476 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && 9477 (Context.getTargetInfo().getCXXABI().isMicrosoft() || 9478 Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) { 9479 // In the MS ABI, an explicit instantiation definition can add a dll 9480 // attribute to a template with a previous implicit instantiation. 9481 // MinGW doesn't allow this. We limit clang to only adding dllexport, to 9482 // avoid potentially strange codegen behavior. For example, if we extend 9483 // this conditional to dllimport, and we have a source file calling a 9484 // method on an implicitly instantiated template class instance and then 9485 // declaring a dllimport explicit instantiation definition for the same 9486 // template class, the codegen for the method call will not respect the 9487 // dllimport, while it will with cl. The Def will already have the DLL 9488 // attribute, since the Def and Specialization will be the same in the 9489 // case of Old_TSK == TSK_ImplicitInstantiation, and we already added the 9490 // attribute to the Specialization; we just need to make it take effect. 9491 assert(Def == Specialization && 9492 "Def and Specialization should match for implicit instantiation"); 9493 dllExportImportClassTemplateSpecialization(*this, Def); 9494 } 9495 9496 // In MinGW mode, export the template instantiation if the declaration 9497 // was marked dllexport. 9498 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9499 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() && 9500 PrevDecl->hasAttr<DLLExportAttr>()) { 9501 dllExportImportClassTemplateSpecialization(*this, Def); 9502 } 9503 9504 // Set the template specialization kind. Make sure it is set before 9505 // instantiating the members which will trigger ASTConsumer callbacks. 9506 Specialization->setTemplateSpecializationKind(TSK); 9507 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 9508 } else { 9509 9510 // Set the template specialization kind. 9511 Specialization->setTemplateSpecializationKind(TSK); 9512 } 9513 9514 return Specialization; 9515 } 9516 9517 // Explicit instantiation of a member class of a class template. 9518 DeclResult 9519 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, 9520 SourceLocation TemplateLoc, unsigned TagSpec, 9521 SourceLocation KWLoc, CXXScopeSpec &SS, 9522 IdentifierInfo *Name, SourceLocation NameLoc, 9523 const ParsedAttributesView &Attr) { 9524 9525 bool Owned = false; 9526 bool IsDependent = false; 9527 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 9528 KWLoc, SS, Name, NameLoc, Attr, AS_none, 9529 /*ModulePrivateLoc=*/SourceLocation(), 9530 MultiTemplateParamsArg(), Owned, IsDependent, 9531 SourceLocation(), false, TypeResult(), 9532 /*IsTypeSpecifier*/false, 9533 /*IsTemplateParamOrArg*/false); 9534 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 9535 9536 if (!TagD) 9537 return true; 9538 9539 TagDecl *Tag = cast<TagDecl>(TagD); 9540 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 9541 9542 if (Tag->isInvalidDecl()) 9543 return true; 9544 9545 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 9546 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 9547 if (!Pattern) { 9548 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 9549 << Context.getTypeDeclType(Record); 9550 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 9551 return true; 9552 } 9553 9554 // C++0x [temp.explicit]p2: 9555 // If the explicit instantiation is for a class or member class, the 9556 // elaborated-type-specifier in the declaration shall include a 9557 // simple-template-id. 9558 // 9559 // C++98 has the same restriction, just worded differently. 9560 if (!ScopeSpecifierHasTemplateId(SS)) 9561 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 9562 << Record << SS.getRange(); 9563 9564 // C++0x [temp.explicit]p2: 9565 // There are two forms of explicit instantiation: an explicit instantiation 9566 // definition and an explicit instantiation declaration. An explicit 9567 // instantiation declaration begins with the extern keyword. [...] 9568 TemplateSpecializationKind TSK 9569 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 9570 : TSK_ExplicitInstantiationDeclaration; 9571 9572 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK); 9573 9574 // Verify that it is okay to explicitly instantiate here. 9575 CXXRecordDecl *PrevDecl 9576 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 9577 if (!PrevDecl && Record->getDefinition()) 9578 PrevDecl = Record; 9579 if (PrevDecl) { 9580 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 9581 bool HasNoEffect = false; 9582 assert(MSInfo && "No member specialization information?"); 9583 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 9584 PrevDecl, 9585 MSInfo->getTemplateSpecializationKind(), 9586 MSInfo->getPointOfInstantiation(), 9587 HasNoEffect)) 9588 return true; 9589 if (HasNoEffect) 9590 return TagD; 9591 } 9592 9593 CXXRecordDecl *RecordDef 9594 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 9595 if (!RecordDef) { 9596 // C++ [temp.explicit]p3: 9597 // A definition of a member class of a class template shall be in scope 9598 // at the point of an explicit instantiation of the member class. 9599 CXXRecordDecl *Def 9600 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 9601 if (!Def) { 9602 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 9603 << 0 << Record->getDeclName() << Record->getDeclContext(); 9604 Diag(Pattern->getLocation(), diag::note_forward_declaration) 9605 << Pattern; 9606 return true; 9607 } else { 9608 if (InstantiateClass(NameLoc, Record, Def, 9609 getTemplateInstantiationArgs(Record), 9610 TSK)) 9611 return true; 9612 9613 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 9614 if (!RecordDef) 9615 return true; 9616 } 9617 } 9618 9619 // Instantiate all of the members of the class. 9620 InstantiateClassMembers(NameLoc, RecordDef, 9621 getTemplateInstantiationArgs(Record), TSK); 9622 9623 if (TSK == TSK_ExplicitInstantiationDefinition) 9624 MarkVTableUsed(NameLoc, RecordDef, true); 9625 9626 // FIXME: We don't have any representation for explicit instantiations of 9627 // member classes. Such a representation is not needed for compilation, but it 9628 // should be available for clients that want to see all of the declarations in 9629 // the source code. 9630 return TagD; 9631 } 9632 9633 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 9634 SourceLocation ExternLoc, 9635 SourceLocation TemplateLoc, 9636 Declarator &D) { 9637 // Explicit instantiations always require a name. 9638 // TODO: check if/when DNInfo should replace Name. 9639 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 9640 DeclarationName Name = NameInfo.getName(); 9641 if (!Name) { 9642 if (!D.isInvalidType()) 9643 Diag(D.getDeclSpec().getBeginLoc(), 9644 diag::err_explicit_instantiation_requires_name) 9645 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 9646 9647 return true; 9648 } 9649 9650 // The scope passed in may not be a decl scope. Zip up the scope tree until 9651 // we find one that is. 9652 while ((S->getFlags() & Scope::DeclScope) == 0 || 9653 (S->getFlags() & Scope::TemplateParamScope) != 0) 9654 S = S->getParent(); 9655 9656 // Determine the type of the declaration. 9657 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 9658 QualType R = T->getType(); 9659 if (R.isNull()) 9660 return true; 9661 9662 // C++ [dcl.stc]p1: 9663 // A storage-class-specifier shall not be specified in [...] an explicit 9664 // instantiation (14.7.2) directive. 9665 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 9666 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 9667 << Name; 9668 return true; 9669 } else if (D.getDeclSpec().getStorageClassSpec() 9670 != DeclSpec::SCS_unspecified) { 9671 // Complain about then remove the storage class specifier. 9672 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 9673 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 9674 9675 D.getMutableDeclSpec().ClearStorageClassSpecs(); 9676 } 9677 9678 // C++0x [temp.explicit]p1: 9679 // [...] An explicit instantiation of a function template shall not use the 9680 // inline or constexpr specifiers. 9681 // Presumably, this also applies to member functions of class templates as 9682 // well. 9683 if (D.getDeclSpec().isInlineSpecified()) 9684 Diag(D.getDeclSpec().getInlineSpecLoc(), 9685 getLangOpts().CPlusPlus11 ? 9686 diag::err_explicit_instantiation_inline : 9687 diag::warn_explicit_instantiation_inline_0x) 9688 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 9689 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType()) 9690 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 9691 // not already specified. 9692 Diag(D.getDeclSpec().getConstexprSpecLoc(), 9693 diag::err_explicit_instantiation_constexpr); 9694 9695 // A deduction guide is not on the list of entities that can be explicitly 9696 // instantiated. 9697 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { 9698 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized) 9699 << /*explicit instantiation*/ 0; 9700 return true; 9701 } 9702 9703 // C++0x [temp.explicit]p2: 9704 // There are two forms of explicit instantiation: an explicit instantiation 9705 // definition and an explicit instantiation declaration. An explicit 9706 // instantiation declaration begins with the extern keyword. [...] 9707 TemplateSpecializationKind TSK 9708 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 9709 : TSK_ExplicitInstantiationDeclaration; 9710 9711 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 9712 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 9713 9714 if (!R->isFunctionType()) { 9715 // C++ [temp.explicit]p1: 9716 // A [...] static data member of a class template can be explicitly 9717 // instantiated from the member definition associated with its class 9718 // template. 9719 // C++1y [temp.explicit]p1: 9720 // A [...] variable [...] template specialization can be explicitly 9721 // instantiated from its template. 9722 if (Previous.isAmbiguous()) 9723 return true; 9724 9725 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 9726 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); 9727 9728 if (!PrevTemplate) { 9729 if (!Prev || !Prev->isStaticDataMember()) { 9730 // We expect to see a static data member here. 9731 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 9732 << Name; 9733 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 9734 P != PEnd; ++P) 9735 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 9736 return true; 9737 } 9738 9739 if (!Prev->getInstantiatedFromStaticDataMember()) { 9740 // FIXME: Check for explicit specialization? 9741 Diag(D.getIdentifierLoc(), 9742 diag::err_explicit_instantiation_data_member_not_instantiated) 9743 << Prev; 9744 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 9745 // FIXME: Can we provide a note showing where this was declared? 9746 return true; 9747 } 9748 } else { 9749 // Explicitly instantiate a variable template. 9750 9751 // C++1y [dcl.spec.auto]p6: 9752 // ... A program that uses auto or decltype(auto) in a context not 9753 // explicitly allowed in this section is ill-formed. 9754 // 9755 // This includes auto-typed variable template instantiations. 9756 if (R->isUndeducedType()) { 9757 Diag(T->getTypeLoc().getBeginLoc(), 9758 diag::err_auto_not_allowed_var_inst); 9759 return true; 9760 } 9761 9762 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 9763 // C++1y [temp.explicit]p3: 9764 // If the explicit instantiation is for a variable, the unqualified-id 9765 // in the declaration shall be a template-id. 9766 Diag(D.getIdentifierLoc(), 9767 diag::err_explicit_instantiation_without_template_id) 9768 << PrevTemplate; 9769 Diag(PrevTemplate->getLocation(), 9770 diag::note_explicit_instantiation_here); 9771 return true; 9772 } 9773 9774 // Translate the parser's template argument list into our AST format. 9775 TemplateArgumentListInfo TemplateArgs = 9776 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 9777 9778 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, 9779 D.getIdentifierLoc(), TemplateArgs); 9780 if (Res.isInvalid()) 9781 return true; 9782 9783 // Ignore access control bits, we don't need them for redeclaration 9784 // checking. 9785 Prev = cast<VarDecl>(Res.get()); 9786 } 9787 9788 // C++0x [temp.explicit]p2: 9789 // If the explicit instantiation is for a member function, a member class 9790 // or a static data member of a class template specialization, the name of 9791 // the class template specialization in the qualified-id for the member 9792 // name shall be a simple-template-id. 9793 // 9794 // C++98 has the same restriction, just worded differently. 9795 // 9796 // This does not apply to variable template specializations, where the 9797 // template-id is in the unqualified-id instead. 9798 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) 9799 Diag(D.getIdentifierLoc(), 9800 diag::ext_explicit_instantiation_without_qualified_id) 9801 << Prev << D.getCXXScopeSpec().getRange(); 9802 9803 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK); 9804 9805 // Verify that it is okay to explicitly instantiate here. 9806 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); 9807 SourceLocation POI = Prev->getPointOfInstantiation(); 9808 bool HasNoEffect = false; 9809 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 9810 PrevTSK, POI, HasNoEffect)) 9811 return true; 9812 9813 if (!HasNoEffect) { 9814 // Instantiate static data member or variable template. 9815 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 9816 // Merge attributes. 9817 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes()); 9818 if (TSK == TSK_ExplicitInstantiationDefinition) 9819 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); 9820 } 9821 9822 // Check the new variable specialization against the parsed input. 9823 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) { 9824 Diag(T->getTypeLoc().getBeginLoc(), 9825 diag::err_invalid_var_template_spec_type) 9826 << 0 << PrevTemplate << R << Prev->getType(); 9827 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) 9828 << 2 << PrevTemplate->getDeclName(); 9829 return true; 9830 } 9831 9832 // FIXME: Create an ExplicitInstantiation node? 9833 return (Decl*) nullptr; 9834 } 9835 9836 // If the declarator is a template-id, translate the parser's template 9837 // argument list into our AST format. 9838 bool HasExplicitTemplateArgs = false; 9839 TemplateArgumentListInfo TemplateArgs; 9840 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 9841 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 9842 HasExplicitTemplateArgs = true; 9843 } 9844 9845 // C++ [temp.explicit]p1: 9846 // A [...] function [...] can be explicitly instantiated from its template. 9847 // A member function [...] of a class template can be explicitly 9848 // instantiated from the member definition associated with its class 9849 // template. 9850 UnresolvedSet<8> TemplateMatches; 9851 FunctionDecl *NonTemplateMatch = nullptr; 9852 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); 9853 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 9854 P != PEnd; ++P) { 9855 NamedDecl *Prev = *P; 9856 if (!HasExplicitTemplateArgs) { 9857 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 9858 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(), 9859 /*AdjustExceptionSpec*/true); 9860 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) { 9861 if (Method->getPrimaryTemplate()) { 9862 TemplateMatches.addDecl(Method, P.getAccess()); 9863 } else { 9864 // FIXME: Can this assert ever happen? Needs a test. 9865 assert(!NonTemplateMatch && "Multiple NonTemplateMatches"); 9866 NonTemplateMatch = Method; 9867 } 9868 } 9869 } 9870 } 9871 9872 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 9873 if (!FunTmpl) 9874 continue; 9875 9876 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 9877 FunctionDecl *Specialization = nullptr; 9878 if (TemplateDeductionResult TDK 9879 = DeduceTemplateArguments(FunTmpl, 9880 (HasExplicitTemplateArgs ? &TemplateArgs 9881 : nullptr), 9882 R, Specialization, Info)) { 9883 // Keep track of almost-matches. 9884 FailedCandidates.addCandidate() 9885 .set(P.getPair(), FunTmpl->getTemplatedDecl(), 9886 MakeDeductionFailureInfo(Context, TDK, Info)); 9887 (void)TDK; 9888 continue; 9889 } 9890 9891 // Target attributes are part of the cuda function signature, so 9892 // the cuda target of the instantiated function must match that of its 9893 // template. Given that C++ template deduction does not take 9894 // target attributes into account, we reject candidates here that 9895 // have a different target. 9896 if (LangOpts.CUDA && 9897 IdentifyCUDATarget(Specialization, 9898 /* IgnoreImplicitHDAttr = */ true) != 9899 IdentifyCUDATarget(D.getDeclSpec().getAttributes())) { 9900 FailedCandidates.addCandidate().set( 9901 P.getPair(), FunTmpl->getTemplatedDecl(), 9902 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 9903 continue; 9904 } 9905 9906 TemplateMatches.addDecl(Specialization, P.getAccess()); 9907 } 9908 9909 FunctionDecl *Specialization = NonTemplateMatch; 9910 if (!Specialization) { 9911 // Find the most specialized function template specialization. 9912 UnresolvedSetIterator Result = getMostSpecialized( 9913 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates, 9914 D.getIdentifierLoc(), 9915 PDiag(diag::err_explicit_instantiation_not_known) << Name, 9916 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 9917 PDiag(diag::note_explicit_instantiation_candidate)); 9918 9919 if (Result == TemplateMatches.end()) 9920 return true; 9921 9922 // Ignore access control bits, we don't need them for redeclaration checking. 9923 Specialization = cast<FunctionDecl>(*Result); 9924 } 9925 9926 // C++11 [except.spec]p4 9927 // In an explicit instantiation an exception-specification may be specified, 9928 // but is not required. 9929 // If an exception-specification is specified in an explicit instantiation 9930 // directive, it shall be compatible with the exception-specifications of 9931 // other declarations of that function. 9932 if (auto *FPT = R->getAs<FunctionProtoType>()) 9933 if (FPT->hasExceptionSpec()) { 9934 unsigned DiagID = 9935 diag::err_mismatched_exception_spec_explicit_instantiation; 9936 if (getLangOpts().MicrosoftExt) 9937 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; 9938 bool Result = CheckEquivalentExceptionSpec( 9939 PDiag(DiagID) << Specialization->getType(), 9940 PDiag(diag::note_explicit_instantiation_here), 9941 Specialization->getType()->getAs<FunctionProtoType>(), 9942 Specialization->getLocation(), FPT, D.getBeginLoc()); 9943 // In Microsoft mode, mismatching exception specifications just cause a 9944 // warning. 9945 if (!getLangOpts().MicrosoftExt && Result) 9946 return true; 9947 } 9948 9949 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 9950 Diag(D.getIdentifierLoc(), 9951 diag::err_explicit_instantiation_member_function_not_instantiated) 9952 << Specialization 9953 << (Specialization->getTemplateSpecializationKind() == 9954 TSK_ExplicitSpecialization); 9955 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 9956 return true; 9957 } 9958 9959 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 9960 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 9961 PrevDecl = Specialization; 9962 9963 if (PrevDecl) { 9964 bool HasNoEffect = false; 9965 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 9966 PrevDecl, 9967 PrevDecl->getTemplateSpecializationKind(), 9968 PrevDecl->getPointOfInstantiation(), 9969 HasNoEffect)) 9970 return true; 9971 9972 // FIXME: We may still want to build some representation of this 9973 // explicit specialization. 9974 if (HasNoEffect) 9975 return (Decl*) nullptr; 9976 } 9977 9978 // HACK: libc++ has a bug where it attempts to explicitly instantiate the 9979 // functions 9980 // valarray<size_t>::valarray(size_t) and 9981 // valarray<size_t>::~valarray() 9982 // that it declared to have internal linkage with the internal_linkage 9983 // attribute. Ignore the explicit instantiation declaration in this case. 9984 if (Specialization->hasAttr<InternalLinkageAttr>() && 9985 TSK == TSK_ExplicitInstantiationDeclaration) { 9986 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext())) 9987 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") && 9988 RD->isInStdNamespace()) 9989 return (Decl*) nullptr; 9990 } 9991 9992 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes()); 9993 9994 // In MSVC mode, dllimported explicit instantiation definitions are treated as 9995 // instantiation declarations. 9996 if (TSK == TSK_ExplicitInstantiationDefinition && 9997 Specialization->hasAttr<DLLImportAttr>() && 9998 Context.getTargetInfo().getCXXABI().isMicrosoft()) 9999 TSK = TSK_ExplicitInstantiationDeclaration; 10000 10001 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10002 10003 if (Specialization->isDefined()) { 10004 // Let the ASTConsumer know that this function has been explicitly 10005 // instantiated now, and its linkage might have changed. 10006 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization)); 10007 } else if (TSK == TSK_ExplicitInstantiationDefinition) 10008 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 10009 10010 // C++0x [temp.explicit]p2: 10011 // If the explicit instantiation is for a member function, a member class 10012 // or a static data member of a class template specialization, the name of 10013 // the class template specialization in the qualified-id for the member 10014 // name shall be a simple-template-id. 10015 // 10016 // C++98 has the same restriction, just worded differently. 10017 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 10018 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && 10019 D.getCXXScopeSpec().isSet() && 10020 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 10021 Diag(D.getIdentifierLoc(), 10022 diag::ext_explicit_instantiation_without_qualified_id) 10023 << Specialization << D.getCXXScopeSpec().getRange(); 10024 10025 CheckExplicitInstantiation( 10026 *this, 10027 FunTmpl ? (NamedDecl *)FunTmpl 10028 : Specialization->getInstantiatedFromMemberFunction(), 10029 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK); 10030 10031 // FIXME: Create some kind of ExplicitInstantiationDecl here. 10032 return (Decl*) nullptr; 10033 } 10034 10035 TypeResult 10036 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 10037 const CXXScopeSpec &SS, IdentifierInfo *Name, 10038 SourceLocation TagLoc, SourceLocation NameLoc) { 10039 // This has to hold, because SS is expected to be defined. 10040 assert(Name && "Expected a name in a dependent tag"); 10041 10042 NestedNameSpecifier *NNS = SS.getScopeRep(); 10043 if (!NNS) 10044 return true; 10045 10046 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 10047 10048 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 10049 Diag(NameLoc, diag::err_dependent_tag_decl) 10050 << (TUK == TUK_Definition) << Kind << SS.getRange(); 10051 return true; 10052 } 10053 10054 // Create the resulting type. 10055 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 10056 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 10057 10058 // Create type-source location information for this type. 10059 TypeLocBuilder TLB; 10060 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 10061 TL.setElaboratedKeywordLoc(TagLoc); 10062 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10063 TL.setNameLoc(NameLoc); 10064 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 10065 } 10066 10067 TypeResult 10068 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 10069 const CXXScopeSpec &SS, const IdentifierInfo &II, 10070 SourceLocation IdLoc) { 10071 if (SS.isInvalid()) 10072 return true; 10073 10074 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10075 Diag(TypenameLoc, 10076 getLangOpts().CPlusPlus11 ? 10077 diag::warn_cxx98_compat_typename_outside_of_template : 10078 diag::ext_typename_outside_of_template) 10079 << FixItHint::CreateRemoval(TypenameLoc); 10080 10081 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 10082 TypeSourceInfo *TSI = nullptr; 10083 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 10084 TypenameLoc, QualifierLoc, II, IdLoc, &TSI, 10085 /*DeducedTSTContext=*/true); 10086 if (T.isNull()) 10087 return true; 10088 return CreateParsedType(T, TSI); 10089 } 10090 10091 TypeResult 10092 Sema::ActOnTypenameType(Scope *S, 10093 SourceLocation TypenameLoc, 10094 const CXXScopeSpec &SS, 10095 SourceLocation TemplateKWLoc, 10096 TemplateTy TemplateIn, 10097 IdentifierInfo *TemplateII, 10098 SourceLocation TemplateIILoc, 10099 SourceLocation LAngleLoc, 10100 ASTTemplateArgsPtr TemplateArgsIn, 10101 SourceLocation RAngleLoc) { 10102 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10103 Diag(TypenameLoc, 10104 getLangOpts().CPlusPlus11 ? 10105 diag::warn_cxx98_compat_typename_outside_of_template : 10106 diag::ext_typename_outside_of_template) 10107 << FixItHint::CreateRemoval(TypenameLoc); 10108 10109 // Strangely, non-type results are not ignored by this lookup, so the 10110 // program is ill-formed if it finds an injected-class-name. 10111 if (TypenameLoc.isValid()) { 10112 auto *LookupRD = 10113 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false)); 10114 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 10115 Diag(TemplateIILoc, 10116 diag::ext_out_of_line_qualified_id_type_names_constructor) 10117 << TemplateII << 0 /*injected-class-name used as template name*/ 10118 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); 10119 } 10120 } 10121 10122 // Translate the parser's template argument list in our AST format. 10123 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 10124 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 10125 10126 TemplateName Template = TemplateIn.get(); 10127 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 10128 // Construct a dependent template specialization type. 10129 assert(DTN && "dependent template has non-dependent name?"); 10130 assert(DTN->getQualifier() == SS.getScopeRep()); 10131 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 10132 DTN->getQualifier(), 10133 DTN->getIdentifier(), 10134 TemplateArgs); 10135 10136 // Create source-location information for this type. 10137 TypeLocBuilder Builder; 10138 DependentTemplateSpecializationTypeLoc SpecTL 10139 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 10140 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 10141 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 10142 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10143 SpecTL.setTemplateNameLoc(TemplateIILoc); 10144 SpecTL.setLAngleLoc(LAngleLoc); 10145 SpecTL.setRAngleLoc(RAngleLoc); 10146 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10147 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10148 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 10149 } 10150 10151 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 10152 if (T.isNull()) 10153 return true; 10154 10155 // Provide source-location information for the template specialization type. 10156 TypeLocBuilder Builder; 10157 TemplateSpecializationTypeLoc SpecTL 10158 = Builder.push<TemplateSpecializationTypeLoc>(T); 10159 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10160 SpecTL.setTemplateNameLoc(TemplateIILoc); 10161 SpecTL.setLAngleLoc(LAngleLoc); 10162 SpecTL.setRAngleLoc(RAngleLoc); 10163 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10164 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10165 10166 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 10167 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 10168 TL.setElaboratedKeywordLoc(TypenameLoc); 10169 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10170 10171 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 10172 return CreateParsedType(T, TSI); 10173 } 10174 10175 10176 /// Determine whether this failed name lookup should be treated as being 10177 /// disabled by a usage of std::enable_if. 10178 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 10179 SourceRange &CondRange, Expr *&Cond) { 10180 // We must be looking for a ::type... 10181 if (!II.isStr("type")) 10182 return false; 10183 10184 // ... within an explicitly-written template specialization... 10185 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 10186 return false; 10187 TypeLoc EnableIfTy = NNS.getTypeLoc(); 10188 TemplateSpecializationTypeLoc EnableIfTSTLoc = 10189 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 10190 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 10191 return false; 10192 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); 10193 10194 // ... which names a complete class template declaration... 10195 const TemplateDecl *EnableIfDecl = 10196 EnableIfTST->getTemplateName().getAsTemplateDecl(); 10197 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 10198 return false; 10199 10200 // ... called "enable_if". 10201 const IdentifierInfo *EnableIfII = 10202 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 10203 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 10204 return false; 10205 10206 // Assume the first template argument is the condition. 10207 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 10208 10209 // Dig out the condition. 10210 Cond = nullptr; 10211 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind() 10212 != TemplateArgument::Expression) 10213 return true; 10214 10215 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression(); 10216 10217 // Ignore Boolean literals; they add no value. 10218 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts())) 10219 Cond = nullptr; 10220 10221 return true; 10222 } 10223 10224 QualType 10225 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10226 SourceLocation KeywordLoc, 10227 NestedNameSpecifierLoc QualifierLoc, 10228 const IdentifierInfo &II, 10229 SourceLocation IILoc, 10230 TypeSourceInfo **TSI, 10231 bool DeducedTSTContext) { 10232 QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc, 10233 DeducedTSTContext); 10234 if (T.isNull()) 10235 return QualType(); 10236 10237 *TSI = Context.CreateTypeSourceInfo(T); 10238 if (isa<DependentNameType>(T)) { 10239 DependentNameTypeLoc TL = 10240 (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>(); 10241 TL.setElaboratedKeywordLoc(KeywordLoc); 10242 TL.setQualifierLoc(QualifierLoc); 10243 TL.setNameLoc(IILoc); 10244 } else { 10245 ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>(); 10246 TL.setElaboratedKeywordLoc(KeywordLoc); 10247 TL.setQualifierLoc(QualifierLoc); 10248 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc); 10249 } 10250 return T; 10251 } 10252 10253 /// Build the type that describes a C++ typename specifier, 10254 /// e.g., "typename T::type". 10255 QualType 10256 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10257 SourceLocation KeywordLoc, 10258 NestedNameSpecifierLoc QualifierLoc, 10259 const IdentifierInfo &II, 10260 SourceLocation IILoc, bool DeducedTSTContext) { 10261 CXXScopeSpec SS; 10262 SS.Adopt(QualifierLoc); 10263 10264 DeclContext *Ctx = nullptr; 10265 if (QualifierLoc) { 10266 Ctx = computeDeclContext(SS); 10267 if (!Ctx) { 10268 // If the nested-name-specifier is dependent and couldn't be 10269 // resolved to a type, build a typename type. 10270 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 10271 return Context.getDependentNameType(Keyword, 10272 QualifierLoc.getNestedNameSpecifier(), 10273 &II); 10274 } 10275 10276 // If the nested-name-specifier refers to the current instantiation, 10277 // the "typename" keyword itself is superfluous. In C++03, the 10278 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 10279 // allows such extraneous "typename" keywords, and we retroactively 10280 // apply this DR to C++03 code with only a warning. In any case we continue. 10281 10282 if (RequireCompleteDeclContext(SS, Ctx)) 10283 return QualType(); 10284 } 10285 10286 DeclarationName Name(&II); 10287 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 10288 if (Ctx) 10289 LookupQualifiedName(Result, Ctx, SS); 10290 else 10291 LookupName(Result, CurScope); 10292 unsigned DiagID = 0; 10293 Decl *Referenced = nullptr; 10294 switch (Result.getResultKind()) { 10295 case LookupResult::NotFound: { 10296 // If we're looking up 'type' within a template named 'enable_if', produce 10297 // a more specific diagnostic. 10298 SourceRange CondRange; 10299 Expr *Cond = nullptr; 10300 if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) { 10301 // If we have a condition, narrow it down to the specific failed 10302 // condition. 10303 if (Cond) { 10304 Expr *FailedCond; 10305 std::string FailedDescription; 10306 std::tie(FailedCond, FailedDescription) = 10307 findFailedBooleanCondition(Cond); 10308 10309 Diag(FailedCond->getExprLoc(), 10310 diag::err_typename_nested_not_found_requirement) 10311 << FailedDescription 10312 << FailedCond->getSourceRange(); 10313 return QualType(); 10314 } 10315 10316 Diag(CondRange.getBegin(), 10317 diag::err_typename_nested_not_found_enable_if) 10318 << Ctx << CondRange; 10319 return QualType(); 10320 } 10321 10322 DiagID = Ctx ? diag::err_typename_nested_not_found 10323 : diag::err_unknown_typename; 10324 break; 10325 } 10326 10327 case LookupResult::FoundUnresolvedValue: { 10328 // We found a using declaration that is a value. Most likely, the using 10329 // declaration itself is meant to have the 'typename' keyword. 10330 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10331 IILoc); 10332 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 10333 << Name << Ctx << FullRange; 10334 if (UnresolvedUsingValueDecl *Using 10335 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 10336 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 10337 Diag(Loc, diag::note_using_value_decl_missing_typename) 10338 << FixItHint::CreateInsertion(Loc, "typename "); 10339 } 10340 } 10341 // Fall through to create a dependent typename type, from which we can recover 10342 // better. 10343 LLVM_FALLTHROUGH; 10344 10345 case LookupResult::NotFoundInCurrentInstantiation: 10346 // Okay, it's a member of an unknown instantiation. 10347 return Context.getDependentNameType(Keyword, 10348 QualifierLoc.getNestedNameSpecifier(), 10349 &II); 10350 10351 case LookupResult::Found: 10352 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 10353 // C++ [class.qual]p2: 10354 // In a lookup in which function names are not ignored and the 10355 // nested-name-specifier nominates a class C, if the name specified 10356 // after the nested-name-specifier, when looked up in C, is the 10357 // injected-class-name of C [...] then the name is instead considered 10358 // to name the constructor of class C. 10359 // 10360 // Unlike in an elaborated-type-specifier, function names are not ignored 10361 // in typename-specifier lookup. However, they are ignored in all the 10362 // contexts where we form a typename type with no keyword (that is, in 10363 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). 10364 // 10365 // FIXME: That's not strictly true: mem-initializer-id lookup does not 10366 // ignore functions, but that appears to be an oversight. 10367 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx); 10368 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type); 10369 if (Keyword == ETK_Typename && LookupRD && FoundRD && 10370 FoundRD->isInjectedClassName() && 10371 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) 10372 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor) 10373 << &II << 1 << 0 /*'typename' keyword used*/; 10374 10375 // We found a type. Build an ElaboratedType, since the 10376 // typename-specifier was just sugar. 10377 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 10378 return Context.getElaboratedType(Keyword, 10379 QualifierLoc.getNestedNameSpecifier(), 10380 Context.getTypeDeclType(Type)); 10381 } 10382 10383 // C++ [dcl.type.simple]p2: 10384 // A type-specifier of the form 10385 // typename[opt] nested-name-specifier[opt] template-name 10386 // is a placeholder for a deduced class type [...]. 10387 if (getLangOpts().CPlusPlus17) { 10388 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) { 10389 if (!DeducedTSTContext) { 10390 QualType T(QualifierLoc 10391 ? QualifierLoc.getNestedNameSpecifier()->getAsType() 10392 : nullptr, 0); 10393 if (!T.isNull()) 10394 Diag(IILoc, diag::err_dependent_deduced_tst) 10395 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T; 10396 else 10397 Diag(IILoc, diag::err_deduced_tst) 10398 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)); 10399 Diag(TD->getLocation(), diag::note_template_decl_here); 10400 return QualType(); 10401 } 10402 return Context.getElaboratedType( 10403 Keyword, QualifierLoc.getNestedNameSpecifier(), 10404 Context.getDeducedTemplateSpecializationType(TemplateName(TD), 10405 QualType(), false)); 10406 } 10407 } 10408 10409 DiagID = Ctx ? diag::err_typename_nested_not_type 10410 : diag::err_typename_not_type; 10411 Referenced = Result.getFoundDecl(); 10412 break; 10413 10414 case LookupResult::FoundOverloaded: 10415 DiagID = Ctx ? diag::err_typename_nested_not_type 10416 : diag::err_typename_not_type; 10417 Referenced = *Result.begin(); 10418 break; 10419 10420 case LookupResult::Ambiguous: 10421 return QualType(); 10422 } 10423 10424 // If we get here, it's because name lookup did not find a 10425 // type. Emit an appropriate diagnostic and return an error. 10426 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10427 IILoc); 10428 if (Ctx) 10429 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 10430 else 10431 Diag(IILoc, DiagID) << FullRange << Name; 10432 if (Referenced) 10433 Diag(Referenced->getLocation(), 10434 Ctx ? diag::note_typename_member_refers_here 10435 : diag::note_typename_refers_here) 10436 << Name; 10437 return QualType(); 10438 } 10439 10440 namespace { 10441 // See Sema::RebuildTypeInCurrentInstantiation 10442 class CurrentInstantiationRebuilder 10443 : public TreeTransform<CurrentInstantiationRebuilder> { 10444 SourceLocation Loc; 10445 DeclarationName Entity; 10446 10447 public: 10448 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 10449 10450 CurrentInstantiationRebuilder(Sema &SemaRef, 10451 SourceLocation Loc, 10452 DeclarationName Entity) 10453 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 10454 Loc(Loc), Entity(Entity) { } 10455 10456 /// Determine whether the given type \p T has already been 10457 /// transformed. 10458 /// 10459 /// For the purposes of type reconstruction, a type has already been 10460 /// transformed if it is NULL or if it is not dependent. 10461 bool AlreadyTransformed(QualType T) { 10462 return T.isNull() || !T->isDependentType(); 10463 } 10464 10465 /// Returns the location of the entity whose type is being 10466 /// rebuilt. 10467 SourceLocation getBaseLocation() { return Loc; } 10468 10469 /// Returns the name of the entity whose type is being rebuilt. 10470 DeclarationName getBaseEntity() { return Entity; } 10471 10472 /// Sets the "base" location and entity when that 10473 /// information is known based on another transformation. 10474 void setBase(SourceLocation Loc, DeclarationName Entity) { 10475 this->Loc = Loc; 10476 this->Entity = Entity; 10477 } 10478 10479 ExprResult TransformLambdaExpr(LambdaExpr *E) { 10480 // Lambdas never need to be transformed. 10481 return E; 10482 } 10483 }; 10484 } // end anonymous namespace 10485 10486 /// Rebuilds a type within the context of the current instantiation. 10487 /// 10488 /// The type \p T is part of the type of an out-of-line member definition of 10489 /// a class template (or class template partial specialization) that was parsed 10490 /// and constructed before we entered the scope of the class template (or 10491 /// partial specialization thereof). This routine will rebuild that type now 10492 /// that we have entered the declarator's scope, which may produce different 10493 /// canonical types, e.g., 10494 /// 10495 /// \code 10496 /// template<typename T> 10497 /// struct X { 10498 /// typedef T* pointer; 10499 /// pointer data(); 10500 /// }; 10501 /// 10502 /// template<typename T> 10503 /// typename X<T>::pointer X<T>::data() { ... } 10504 /// \endcode 10505 /// 10506 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 10507 /// since we do not know that we can look into X<T> when we parsed the type. 10508 /// This function will rebuild the type, performing the lookup of "pointer" 10509 /// in X<T> and returning an ElaboratedType whose canonical type is the same 10510 /// as the canonical type of T*, allowing the return types of the out-of-line 10511 /// definition and the declaration to match. 10512 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 10513 SourceLocation Loc, 10514 DeclarationName Name) { 10515 if (!T || !T->getType()->isDependentType()) 10516 return T; 10517 10518 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 10519 return Rebuilder.TransformType(T); 10520 } 10521 10522 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 10523 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 10524 DeclarationName()); 10525 return Rebuilder.TransformExpr(E); 10526 } 10527 10528 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 10529 if (SS.isInvalid()) 10530 return true; 10531 10532 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 10533 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 10534 DeclarationName()); 10535 NestedNameSpecifierLoc Rebuilt 10536 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 10537 if (!Rebuilt) 10538 return true; 10539 10540 SS.Adopt(Rebuilt); 10541 return false; 10542 } 10543 10544 /// Rebuild the template parameters now that we know we're in a current 10545 /// instantiation. 10546 bool Sema::RebuildTemplateParamsInCurrentInstantiation( 10547 TemplateParameterList *Params) { 10548 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 10549 Decl *Param = Params->getParam(I); 10550 10551 // There is nothing to rebuild in a type parameter. 10552 if (isa<TemplateTypeParmDecl>(Param)) 10553 continue; 10554 10555 // Rebuild the template parameter list of a template template parameter. 10556 if (TemplateTemplateParmDecl *TTP 10557 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 10558 if (RebuildTemplateParamsInCurrentInstantiation( 10559 TTP->getTemplateParameters())) 10560 return true; 10561 10562 continue; 10563 } 10564 10565 // Rebuild the type of a non-type template parameter. 10566 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 10567 TypeSourceInfo *NewTSI 10568 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 10569 NTTP->getLocation(), 10570 NTTP->getDeclName()); 10571 if (!NewTSI) 10572 return true; 10573 10574 if (NewTSI->getType()->isUndeducedType()) { 10575 // C++17 [temp.dep.expr]p3: 10576 // An id-expression is type-dependent if it contains 10577 // - an identifier associated by name lookup with a non-type 10578 // template-parameter declared with a type that contains a 10579 // placeholder type (7.1.7.4), 10580 NewTSI = SubstAutoTypeSourceInfo(NewTSI, Context.DependentTy); 10581 } 10582 10583 if (NewTSI != NTTP->getTypeSourceInfo()) { 10584 NTTP->setTypeSourceInfo(NewTSI); 10585 NTTP->setType(NewTSI->getType()); 10586 } 10587 } 10588 10589 return false; 10590 } 10591 10592 /// Produces a formatted string that describes the binding of 10593 /// template parameters to template arguments. 10594 std::string 10595 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 10596 const TemplateArgumentList &Args) { 10597 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 10598 } 10599 10600 std::string 10601 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 10602 const TemplateArgument *Args, 10603 unsigned NumArgs) { 10604 SmallString<128> Str; 10605 llvm::raw_svector_ostream Out(Str); 10606 10607 if (!Params || Params->size() == 0 || NumArgs == 0) 10608 return std::string(); 10609 10610 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 10611 if (I >= NumArgs) 10612 break; 10613 10614 if (I == 0) 10615 Out << "[with "; 10616 else 10617 Out << ", "; 10618 10619 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 10620 Out << Id->getName(); 10621 } else { 10622 Out << '$' << I; 10623 } 10624 10625 Out << " = "; 10626 Args[I].print(getPrintingPolicy(), Out); 10627 } 10628 10629 Out << ']'; 10630 return Out.str(); 10631 } 10632 10633 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, 10634 CachedTokens &Toks) { 10635 if (!FD) 10636 return; 10637 10638 auto LPT = std::make_unique<LateParsedTemplate>(); 10639 10640 // Take tokens to avoid allocations 10641 LPT->Toks.swap(Toks); 10642 LPT->D = FnD; 10643 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT))); 10644 10645 FD->setLateTemplateParsed(true); 10646 } 10647 10648 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { 10649 if (!FD) 10650 return; 10651 FD->setLateTemplateParsed(false); 10652 } 10653 10654 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 10655 DeclContext *DC = CurContext; 10656 10657 while (DC) { 10658 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 10659 const FunctionDecl *FD = RD->isLocalClass(); 10660 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 10661 } else if (DC->isTranslationUnit() || DC->isNamespace()) 10662 return false; 10663 10664 DC = DC->getParent(); 10665 } 10666 return false; 10667 } 10668 10669 namespace { 10670 /// Walk the path from which a declaration was instantiated, and check 10671 /// that every explicit specialization along that path is visible. This enforces 10672 /// C++ [temp.expl.spec]/6: 10673 /// 10674 /// If a template, a member template or a member of a class template is 10675 /// explicitly specialized then that specialization shall be declared before 10676 /// the first use of that specialization that would cause an implicit 10677 /// instantiation to take place, in every translation unit in which such a 10678 /// use occurs; no diagnostic is required. 10679 /// 10680 /// and also C++ [temp.class.spec]/1: 10681 /// 10682 /// A partial specialization shall be declared before the first use of a 10683 /// class template specialization that would make use of the partial 10684 /// specialization as the result of an implicit or explicit instantiation 10685 /// in every translation unit in which such a use occurs; no diagnostic is 10686 /// required. 10687 class ExplicitSpecializationVisibilityChecker { 10688 Sema &S; 10689 SourceLocation Loc; 10690 llvm::SmallVector<Module *, 8> Modules; 10691 10692 public: 10693 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc) 10694 : S(S), Loc(Loc) {} 10695 10696 void check(NamedDecl *ND) { 10697 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 10698 return checkImpl(FD); 10699 if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) 10700 return checkImpl(RD); 10701 if (auto *VD = dyn_cast<VarDecl>(ND)) 10702 return checkImpl(VD); 10703 if (auto *ED = dyn_cast<EnumDecl>(ND)) 10704 return checkImpl(ED); 10705 } 10706 10707 private: 10708 void diagnose(NamedDecl *D, bool IsPartialSpec) { 10709 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization 10710 : Sema::MissingImportKind::ExplicitSpecialization; 10711 const bool Recover = true; 10712 10713 // If we got a custom set of modules (because only a subset of the 10714 // declarations are interesting), use them, otherwise let 10715 // diagnoseMissingImport intelligently pick some. 10716 if (Modules.empty()) 10717 S.diagnoseMissingImport(Loc, D, Kind, Recover); 10718 else 10719 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover); 10720 } 10721 10722 // Check a specific declaration. There are three problematic cases: 10723 // 10724 // 1) The declaration is an explicit specialization of a template 10725 // specialization. 10726 // 2) The declaration is an explicit specialization of a member of an 10727 // templated class. 10728 // 3) The declaration is an instantiation of a template, and that template 10729 // is an explicit specialization of a member of a templated class. 10730 // 10731 // We don't need to go any deeper than that, as the instantiation of the 10732 // surrounding class / etc is not triggered by whatever triggered this 10733 // instantiation, and thus should be checked elsewhere. 10734 template<typename SpecDecl> 10735 void checkImpl(SpecDecl *Spec) { 10736 bool IsHiddenExplicitSpecialization = false; 10737 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { 10738 IsHiddenExplicitSpecialization = 10739 Spec->getMemberSpecializationInfo() 10740 ? !S.hasVisibleMemberSpecialization(Spec, &Modules) 10741 : !S.hasVisibleExplicitSpecialization(Spec, &Modules); 10742 } else { 10743 checkInstantiated(Spec); 10744 } 10745 10746 if (IsHiddenExplicitSpecialization) 10747 diagnose(Spec->getMostRecentDecl(), false); 10748 } 10749 10750 void checkInstantiated(FunctionDecl *FD) { 10751 if (auto *TD = FD->getPrimaryTemplate()) 10752 checkTemplate(TD); 10753 } 10754 10755 void checkInstantiated(CXXRecordDecl *RD) { 10756 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD); 10757 if (!SD) 10758 return; 10759 10760 auto From = SD->getSpecializedTemplateOrPartial(); 10761 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) 10762 checkTemplate(TD); 10763 else if (auto *TD = 10764 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 10765 if (!S.hasVisibleDeclaration(TD)) 10766 diagnose(TD, true); 10767 checkTemplate(TD); 10768 } 10769 } 10770 10771 void checkInstantiated(VarDecl *RD) { 10772 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD); 10773 if (!SD) 10774 return; 10775 10776 auto From = SD->getSpecializedTemplateOrPartial(); 10777 if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) 10778 checkTemplate(TD); 10779 else if (auto *TD = 10780 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 10781 if (!S.hasVisibleDeclaration(TD)) 10782 diagnose(TD, true); 10783 checkTemplate(TD); 10784 } 10785 } 10786 10787 void checkInstantiated(EnumDecl *FD) {} 10788 10789 template<typename TemplDecl> 10790 void checkTemplate(TemplDecl *TD) { 10791 if (TD->isMemberSpecialization()) { 10792 if (!S.hasVisibleMemberSpecialization(TD, &Modules)) 10793 diagnose(TD->getMostRecentDecl(), false); 10794 } 10795 } 10796 }; 10797 } // end anonymous namespace 10798 10799 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { 10800 if (!getLangOpts().Modules) 10801 return; 10802 10803 ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec); 10804 } 10805 10806 /// Check whether a template partial specialization that we've discovered 10807 /// is hidden, and produce suitable diagnostics if so. 10808 void Sema::checkPartialSpecializationVisibility(SourceLocation Loc, 10809 NamedDecl *Spec) { 10810 llvm::SmallVector<Module *, 8> Modules; 10811 if (!hasVisibleDeclaration(Spec, &Modules)) 10812 diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules, 10813 MissingImportKind::PartialSpecialization, 10814 /*Recover*/true); 10815 } 10816