xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaTemplate.cpp (revision c37c6b38b6911a307b4ec0f58abf63c504caf3bf)
1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===//
7 //
8 //  This file implements semantic analysis for C++ templates.
9 //===----------------------------------------------------------------------===//
10 
11 #include "TreeTransform.h"
12 #include "clang/AST/ASTConsumer.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclFriend.h"
15 #include "clang/AST/DeclTemplate.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/TypeVisitor.h"
20 #include "clang/Basic/Builtins.h"
21 #include "clang/Basic/LangOptions.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/Stack.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "clang/Sema/Lookup.h"
27 #include "clang/Sema/Overload.h"
28 #include "clang/Sema/ParsedTemplate.h"
29 #include "clang/Sema/Scope.h"
30 #include "clang/Sema/SemaInternal.h"
31 #include "clang/Sema/Template.h"
32 #include "clang/Sema/TemplateDeduction.h"
33 #include "llvm/ADT/SmallBitVector.h"
34 #include "llvm/ADT/SmallString.h"
35 #include "llvm/ADT/StringExtras.h"
36 
37 #include <iterator>
38 using namespace clang;
39 using namespace sema;
40 
41 // Exported for use by Parser.
42 SourceRange
43 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
44                               unsigned N) {
45   if (!N) return SourceRange();
46   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
47 }
48 
49 unsigned Sema::getTemplateDepth(Scope *S) const {
50   unsigned Depth = 0;
51 
52   // Each template parameter scope represents one level of template parameter
53   // depth.
54   for (Scope *TempParamScope = S->getTemplateParamParent();
55        TempParamScope && !Depth;
56        TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
57     ++Depth;
58   }
59 
60   // Note that there are template parameters with the given depth.
61   auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
62 
63   // Look for parameters of an enclosing generic lambda. We don't create a
64   // template parameter scope for these.
65   for (FunctionScopeInfo *FSI : getFunctionScopes()) {
66     if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
67       if (!LSI->TemplateParams.empty()) {
68         ParamsAtDepth(LSI->AutoTemplateParameterDepth);
69         break;
70       }
71       if (LSI->GLTemplateParameterList) {
72         ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
73         break;
74       }
75     }
76   }
77 
78   // Look for parameters of an enclosing terse function template. We don't
79   // create a template parameter scope for these either.
80   for (const InventedTemplateParameterInfo &Info :
81        getInventedParameterInfos()) {
82     if (!Info.TemplateParams.empty()) {
83       ParamsAtDepth(Info.AutoTemplateParameterDepth);
84       break;
85     }
86   }
87 
88   return Depth;
89 }
90 
91 /// \brief Determine whether the declaration found is acceptable as the name
92 /// of a template and, if so, return that template declaration. Otherwise,
93 /// returns null.
94 ///
95 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
96 /// is true. In all other cases it will return a TemplateDecl (or null).
97 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
98                                        bool AllowFunctionTemplates,
99                                        bool AllowDependent) {
100   D = D->getUnderlyingDecl();
101 
102   if (isa<TemplateDecl>(D)) {
103     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
104       return nullptr;
105 
106     return D;
107   }
108 
109   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
110     // C++ [temp.local]p1:
111     //   Like normal (non-template) classes, class templates have an
112     //   injected-class-name (Clause 9). The injected-class-name
113     //   can be used with or without a template-argument-list. When
114     //   it is used without a template-argument-list, it is
115     //   equivalent to the injected-class-name followed by the
116     //   template-parameters of the class template enclosed in
117     //   <>. When it is used with a template-argument-list, it
118     //   refers to the specified class template specialization,
119     //   which could be the current specialization or another
120     //   specialization.
121     if (Record->isInjectedClassName()) {
122       Record = cast<CXXRecordDecl>(Record->getDeclContext());
123       if (Record->getDescribedClassTemplate())
124         return Record->getDescribedClassTemplate();
125 
126       if (ClassTemplateSpecializationDecl *Spec
127             = dyn_cast<ClassTemplateSpecializationDecl>(Record))
128         return Spec->getSpecializedTemplate();
129     }
130 
131     return nullptr;
132   }
133 
134   // 'using Dependent::foo;' can resolve to a template name.
135   // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
136   // injected-class-name).
137   if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
138     return D;
139 
140   return nullptr;
141 }
142 
143 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
144                                          bool AllowFunctionTemplates,
145                                          bool AllowDependent) {
146   LookupResult::Filter filter = R.makeFilter();
147   while (filter.hasNext()) {
148     NamedDecl *Orig = filter.next();
149     if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
150       filter.erase();
151   }
152   filter.done();
153 }
154 
155 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
156                                          bool AllowFunctionTemplates,
157                                          bool AllowDependent,
158                                          bool AllowNonTemplateFunctions) {
159   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
160     if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
161       return true;
162     if (AllowNonTemplateFunctions &&
163         isa<FunctionDecl>((*I)->getUnderlyingDecl()))
164       return true;
165   }
166 
167   return false;
168 }
169 
170 TemplateNameKind Sema::isTemplateName(Scope *S,
171                                       CXXScopeSpec &SS,
172                                       bool hasTemplateKeyword,
173                                       const UnqualifiedId &Name,
174                                       ParsedType ObjectTypePtr,
175                                       bool EnteringContext,
176                                       TemplateTy &TemplateResult,
177                                       bool &MemberOfUnknownSpecialization) {
178   assert(getLangOpts().CPlusPlus && "No template names in C!");
179 
180   DeclarationName TName;
181   MemberOfUnknownSpecialization = false;
182 
183   switch (Name.getKind()) {
184   case UnqualifiedIdKind::IK_Identifier:
185     TName = DeclarationName(Name.Identifier);
186     break;
187 
188   case UnqualifiedIdKind::IK_OperatorFunctionId:
189     TName = Context.DeclarationNames.getCXXOperatorName(
190                                               Name.OperatorFunctionId.Operator);
191     break;
192 
193   case UnqualifiedIdKind::IK_LiteralOperatorId:
194     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
195     break;
196 
197   default:
198     return TNK_Non_template;
199   }
200 
201   QualType ObjectType = ObjectTypePtr.get();
202 
203   AssumedTemplateKind AssumedTemplate;
204   LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
205   if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
206                          MemberOfUnknownSpecialization, SourceLocation(),
207                          &AssumedTemplate))
208     return TNK_Non_template;
209 
210   if (AssumedTemplate != AssumedTemplateKind::None) {
211     TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
212     // Let the parser know whether we found nothing or found functions; if we
213     // found nothing, we want to more carefully check whether this is actually
214     // a function template name versus some other kind of undeclared identifier.
215     return AssumedTemplate == AssumedTemplateKind::FoundNothing
216                ? TNK_Undeclared_template
217                : TNK_Function_template;
218   }
219 
220   if (R.empty())
221     return TNK_Non_template;
222 
223   NamedDecl *D = nullptr;
224   if (R.isAmbiguous()) {
225     // If we got an ambiguity involving a non-function template, treat this
226     // as a template name, and pick an arbitrary template for error recovery.
227     bool AnyFunctionTemplates = false;
228     for (NamedDecl *FoundD : R) {
229       if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
230         if (isa<FunctionTemplateDecl>(FoundTemplate))
231           AnyFunctionTemplates = true;
232         else {
233           D = FoundTemplate;
234           break;
235         }
236       }
237     }
238 
239     // If we didn't find any templates at all, this isn't a template name.
240     // Leave the ambiguity for a later lookup to diagnose.
241     if (!D && !AnyFunctionTemplates) {
242       R.suppressDiagnostics();
243       return TNK_Non_template;
244     }
245 
246     // If the only templates were function templates, filter out the rest.
247     // We'll diagnose the ambiguity later.
248     if (!D)
249       FilterAcceptableTemplateNames(R);
250   }
251 
252   // At this point, we have either picked a single template name declaration D
253   // or we have a non-empty set of results R containing either one template name
254   // declaration or a set of function templates.
255 
256   TemplateName Template;
257   TemplateNameKind TemplateKind;
258 
259   unsigned ResultCount = R.end() - R.begin();
260   if (!D && ResultCount > 1) {
261     // We assume that we'll preserve the qualifier from a function
262     // template name in other ways.
263     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
264     TemplateKind = TNK_Function_template;
265 
266     // We'll do this lookup again later.
267     R.suppressDiagnostics();
268   } else {
269     if (!D) {
270       D = getAsTemplateNameDecl(*R.begin());
271       assert(D && "unambiguous result is not a template name");
272     }
273 
274     if (isa<UnresolvedUsingValueDecl>(D)) {
275       // We don't yet know whether this is a template-name or not.
276       MemberOfUnknownSpecialization = true;
277       return TNK_Non_template;
278     }
279 
280     TemplateDecl *TD = cast<TemplateDecl>(D);
281 
282     if (SS.isSet() && !SS.isInvalid()) {
283       NestedNameSpecifier *Qualifier = SS.getScopeRep();
284       Template = Context.getQualifiedTemplateName(Qualifier,
285                                                   hasTemplateKeyword, TD);
286     } else {
287       Template = TemplateName(TD);
288     }
289 
290     if (isa<FunctionTemplateDecl>(TD)) {
291       TemplateKind = TNK_Function_template;
292 
293       // We'll do this lookup again later.
294       R.suppressDiagnostics();
295     } else {
296       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
297              isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
298              isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
299       TemplateKind =
300           isa<VarTemplateDecl>(TD) ? TNK_Var_template :
301           isa<ConceptDecl>(TD) ? TNK_Concept_template :
302           TNK_Type_template;
303     }
304   }
305 
306   TemplateResult = TemplateTy::make(Template);
307   return TemplateKind;
308 }
309 
310 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
311                                 SourceLocation NameLoc,
312                                 ParsedTemplateTy *Template) {
313   CXXScopeSpec SS;
314   bool MemberOfUnknownSpecialization = false;
315 
316   // We could use redeclaration lookup here, but we don't need to: the
317   // syntactic form of a deduction guide is enough to identify it even
318   // if we can't look up the template name at all.
319   LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
320   if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
321                          /*EnteringContext*/ false,
322                          MemberOfUnknownSpecialization))
323     return false;
324 
325   if (R.empty()) return false;
326   if (R.isAmbiguous()) {
327     // FIXME: Diagnose an ambiguity if we find at least one template.
328     R.suppressDiagnostics();
329     return false;
330   }
331 
332   // We only treat template-names that name type templates as valid deduction
333   // guide names.
334   TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
335   if (!TD || !getAsTypeTemplateDecl(TD))
336     return false;
337 
338   if (Template)
339     *Template = TemplateTy::make(TemplateName(TD));
340   return true;
341 }
342 
343 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
344                                        SourceLocation IILoc,
345                                        Scope *S,
346                                        const CXXScopeSpec *SS,
347                                        TemplateTy &SuggestedTemplate,
348                                        TemplateNameKind &SuggestedKind) {
349   // We can't recover unless there's a dependent scope specifier preceding the
350   // template name.
351   // FIXME: Typo correction?
352   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
353       computeDeclContext(*SS))
354     return false;
355 
356   // The code is missing a 'template' keyword prior to the dependent template
357   // name.
358   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
359   Diag(IILoc, diag::err_template_kw_missing)
360     << Qualifier << II.getName()
361     << FixItHint::CreateInsertion(IILoc, "template ");
362   SuggestedTemplate
363     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
364   SuggestedKind = TNK_Dependent_template_name;
365   return true;
366 }
367 
368 bool Sema::LookupTemplateName(LookupResult &Found,
369                               Scope *S, CXXScopeSpec &SS,
370                               QualType ObjectType,
371                               bool EnteringContext,
372                               bool &MemberOfUnknownSpecialization,
373                               SourceLocation TemplateKWLoc,
374                               AssumedTemplateKind *ATK) {
375   if (ATK)
376     *ATK = AssumedTemplateKind::None;
377 
378   Found.setTemplateNameLookup(true);
379 
380   // Determine where to perform name lookup
381   MemberOfUnknownSpecialization = false;
382   DeclContext *LookupCtx = nullptr;
383   bool IsDependent = false;
384   if (!ObjectType.isNull()) {
385     // This nested-name-specifier occurs in a member access expression, e.g.,
386     // x->B::f, and we are looking into the type of the object.
387     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
388     LookupCtx = computeDeclContext(ObjectType);
389     IsDependent = !LookupCtx && ObjectType->isDependentType();
390     assert((IsDependent || !ObjectType->isIncompleteType() ||
391             ObjectType->castAs<TagType>()->isBeingDefined()) &&
392            "Caller should have completed object type");
393 
394     // Template names cannot appear inside an Objective-C class or object type
395     // or a vector type.
396     //
397     // FIXME: This is wrong. For example:
398     //
399     //   template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
400     //   Vec<int> vi;
401     //   vi.Vec<int>::~Vec<int>();
402     //
403     // ... should be accepted but we will not treat 'Vec' as a template name
404     // here. The right thing to do would be to check if the name is a valid
405     // vector component name, and look up a template name if not. And similarly
406     // for lookups into Objective-C class and object types, where the same
407     // problem can arise.
408     if (ObjectType->isObjCObjectOrInterfaceType() ||
409         ObjectType->isVectorType()) {
410       Found.clear();
411       return false;
412     }
413   } else if (SS.isSet()) {
414     // This nested-name-specifier occurs after another nested-name-specifier,
415     // so long into the context associated with the prior nested-name-specifier.
416     LookupCtx = computeDeclContext(SS, EnteringContext);
417     IsDependent = !LookupCtx;
418 
419     // The declaration context must be complete.
420     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
421       return true;
422   }
423 
424   bool ObjectTypeSearchedInScope = false;
425   bool AllowFunctionTemplatesInLookup = true;
426   if (LookupCtx) {
427     // Perform "qualified" name lookup into the declaration context we
428     // computed, which is either the type of the base of a member access
429     // expression or the declaration context associated with a prior
430     // nested-name-specifier.
431     LookupQualifiedName(Found, LookupCtx);
432 
433     // FIXME: The C++ standard does not clearly specify what happens in the
434     // case where the object type is dependent, and implementations vary. In
435     // Clang, we treat a name after a . or -> as a template-name if lookup
436     // finds a non-dependent member or member of the current instantiation that
437     // is a type template, or finds no such members and lookup in the context
438     // of the postfix-expression finds a type template. In the latter case, the
439     // name is nonetheless dependent, and we may resolve it to a member of an
440     // unknown specialization when we come to instantiate the template.
441     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
442   }
443 
444   if (!SS.isSet() && (ObjectType.isNull() || Found.empty())) {
445     // C++ [basic.lookup.classref]p1:
446     //   In a class member access expression (5.2.5), if the . or -> token is
447     //   immediately followed by an identifier followed by a <, the
448     //   identifier must be looked up to determine whether the < is the
449     //   beginning of a template argument list (14.2) or a less-than operator.
450     //   The identifier is first looked up in the class of the object
451     //   expression. If the identifier is not found, it is then looked up in
452     //   the context of the entire postfix-expression and shall name a class
453     //   template.
454     if (S)
455       LookupName(Found, S);
456 
457     if (!ObjectType.isNull()) {
458       //  FIXME: We should filter out all non-type templates here, particularly
459       //  variable templates and concepts. But the exclusion of alias templates
460       //  and template template parameters is a wording defect.
461       AllowFunctionTemplatesInLookup = false;
462       ObjectTypeSearchedInScope = true;
463     }
464 
465     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
466   }
467 
468   if (Found.isAmbiguous())
469     return false;
470 
471   if (ATK && !SS.isSet() && ObjectType.isNull() && TemplateKWLoc.isInvalid()) {
472     // C++2a [temp.names]p2:
473     //   A name is also considered to refer to a template if it is an
474     //   unqualified-id followed by a < and name lookup finds either one or more
475     //   functions or finds nothing.
476     //
477     // To keep our behavior consistent, we apply the "finds nothing" part in
478     // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
479     // successfully form a call to an undeclared template-id.
480     bool AllFunctions =
481         getLangOpts().CPlusPlus2a &&
482         std::all_of(Found.begin(), Found.end(), [](NamedDecl *ND) {
483           return isa<FunctionDecl>(ND->getUnderlyingDecl());
484         });
485     if (AllFunctions || (Found.empty() && !IsDependent)) {
486       // If lookup found any functions, or if this is a name that can only be
487       // used for a function, then strongly assume this is a function
488       // template-id.
489       *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
490                  ? AssumedTemplateKind::FoundNothing
491                  : AssumedTemplateKind::FoundFunctions;
492       Found.clear();
493       return false;
494     }
495   }
496 
497   if (Found.empty() && !IsDependent) {
498     // If we did not find any names, attempt to correct any typos.
499     DeclarationName Name = Found.getLookupName();
500     Found.clear();
501     // Simple filter callback that, for keywords, only accepts the C++ *_cast
502     DefaultFilterCCC FilterCCC{};
503     FilterCCC.WantTypeSpecifiers = false;
504     FilterCCC.WantExpressionKeywords = false;
505     FilterCCC.WantRemainingKeywords = false;
506     FilterCCC.WantCXXNamedCasts = true;
507     if (TypoCorrection Corrected =
508             CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
509                         &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
510       if (auto *ND = Corrected.getFoundDecl())
511         Found.addDecl(ND);
512       FilterAcceptableTemplateNames(Found);
513       if (Found.isAmbiguous()) {
514         Found.clear();
515       } else if (!Found.empty()) {
516         Found.setLookupName(Corrected.getCorrection());
517         if (LookupCtx) {
518           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
519           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
520                                   Name.getAsString() == CorrectedStr;
521           diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
522                                     << Name << LookupCtx << DroppedSpecifier
523                                     << SS.getRange());
524         } else {
525           diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
526         }
527       }
528     }
529   }
530 
531   NamedDecl *ExampleLookupResult =
532       Found.empty() ? nullptr : Found.getRepresentativeDecl();
533   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
534   if (Found.empty()) {
535     if (IsDependent) {
536       MemberOfUnknownSpecialization = true;
537       return false;
538     }
539 
540     // If a 'template' keyword was used, a lookup that finds only non-template
541     // names is an error.
542     if (ExampleLookupResult && TemplateKWLoc.isValid()) {
543       Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
544         << Found.getLookupName() << SS.getRange();
545       Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
546            diag::note_template_kw_refers_to_non_template)
547           << Found.getLookupName();
548       return true;
549     }
550 
551     return false;
552   }
553 
554   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
555       !getLangOpts().CPlusPlus11) {
556     // C++03 [basic.lookup.classref]p1:
557     //   [...] If the lookup in the class of the object expression finds a
558     //   template, the name is also looked up in the context of the entire
559     //   postfix-expression and [...]
560     //
561     // Note: C++11 does not perform this second lookup.
562     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
563                             LookupOrdinaryName);
564     FoundOuter.setTemplateNameLookup(true);
565     LookupName(FoundOuter, S);
566     // FIXME: We silently accept an ambiguous lookup here, in violation of
567     // [basic.lookup]/1.
568     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
569 
570     NamedDecl *OuterTemplate;
571     if (FoundOuter.empty()) {
572       //   - if the name is not found, the name found in the class of the
573       //     object expression is used, otherwise
574     } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
575                !(OuterTemplate =
576                      getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
577       //   - if the name is found in the context of the entire
578       //     postfix-expression and does not name a class template, the name
579       //     found in the class of the object expression is used, otherwise
580       FoundOuter.clear();
581     } else if (!Found.isSuppressingDiagnostics()) {
582       //   - if the name found is a class template, it must refer to the same
583       //     entity as the one found in the class of the object expression,
584       //     otherwise the program is ill-formed.
585       if (!Found.isSingleResult() ||
586           getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
587               OuterTemplate->getCanonicalDecl()) {
588         Diag(Found.getNameLoc(),
589              diag::ext_nested_name_member_ref_lookup_ambiguous)
590           << Found.getLookupName()
591           << ObjectType;
592         Diag(Found.getRepresentativeDecl()->getLocation(),
593              diag::note_ambig_member_ref_object_type)
594           << ObjectType;
595         Diag(FoundOuter.getFoundDecl()->getLocation(),
596              diag::note_ambig_member_ref_scope);
597 
598         // Recover by taking the template that we found in the object
599         // expression's type.
600       }
601     }
602   }
603 
604   return false;
605 }
606 
607 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
608                                               SourceLocation Less,
609                                               SourceLocation Greater) {
610   if (TemplateName.isInvalid())
611     return;
612 
613   DeclarationNameInfo NameInfo;
614   CXXScopeSpec SS;
615   LookupNameKind LookupKind;
616 
617   DeclContext *LookupCtx = nullptr;
618   NamedDecl *Found = nullptr;
619   bool MissingTemplateKeyword = false;
620 
621   // Figure out what name we looked up.
622   if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
623     NameInfo = DRE->getNameInfo();
624     SS.Adopt(DRE->getQualifierLoc());
625     LookupKind = LookupOrdinaryName;
626     Found = DRE->getFoundDecl();
627   } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
628     NameInfo = ME->getMemberNameInfo();
629     SS.Adopt(ME->getQualifierLoc());
630     LookupKind = LookupMemberName;
631     LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
632     Found = ME->getMemberDecl();
633   } else if (auto *DSDRE =
634                  dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
635     NameInfo = DSDRE->getNameInfo();
636     SS.Adopt(DSDRE->getQualifierLoc());
637     MissingTemplateKeyword = true;
638   } else if (auto *DSME =
639                  dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
640     NameInfo = DSME->getMemberNameInfo();
641     SS.Adopt(DSME->getQualifierLoc());
642     MissingTemplateKeyword = true;
643   } else {
644     llvm_unreachable("unexpected kind of potential template name");
645   }
646 
647   // If this is a dependent-scope lookup, diagnose that the 'template' keyword
648   // was missing.
649   if (MissingTemplateKeyword) {
650     Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
651         << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
652     return;
653   }
654 
655   // Try to correct the name by looking for templates and C++ named casts.
656   struct TemplateCandidateFilter : CorrectionCandidateCallback {
657     Sema &S;
658     TemplateCandidateFilter(Sema &S) : S(S) {
659       WantTypeSpecifiers = false;
660       WantExpressionKeywords = false;
661       WantRemainingKeywords = false;
662       WantCXXNamedCasts = true;
663     };
664     bool ValidateCandidate(const TypoCorrection &Candidate) override {
665       if (auto *ND = Candidate.getCorrectionDecl())
666         return S.getAsTemplateNameDecl(ND);
667       return Candidate.isKeyword();
668     }
669 
670     std::unique_ptr<CorrectionCandidateCallback> clone() override {
671       return std::make_unique<TemplateCandidateFilter>(*this);
672     }
673   };
674 
675   DeclarationName Name = NameInfo.getName();
676   TemplateCandidateFilter CCC(*this);
677   if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
678                                              CTK_ErrorRecovery, LookupCtx)) {
679     auto *ND = Corrected.getFoundDecl();
680     if (ND)
681       ND = getAsTemplateNameDecl(ND);
682     if (ND || Corrected.isKeyword()) {
683       if (LookupCtx) {
684         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
685         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
686                                 Name.getAsString() == CorrectedStr;
687         diagnoseTypo(Corrected,
688                      PDiag(diag::err_non_template_in_member_template_id_suggest)
689                          << Name << LookupCtx << DroppedSpecifier
690                          << SS.getRange(), false);
691       } else {
692         diagnoseTypo(Corrected,
693                      PDiag(diag::err_non_template_in_template_id_suggest)
694                          << Name, false);
695       }
696       if (Found)
697         Diag(Found->getLocation(),
698              diag::note_non_template_in_template_id_found);
699       return;
700     }
701   }
702 
703   Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
704     << Name << SourceRange(Less, Greater);
705   if (Found)
706     Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
707 }
708 
709 /// ActOnDependentIdExpression - Handle a dependent id-expression that
710 /// was just parsed.  This is only possible with an explicit scope
711 /// specifier naming a dependent type.
712 ExprResult
713 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
714                                  SourceLocation TemplateKWLoc,
715                                  const DeclarationNameInfo &NameInfo,
716                                  bool isAddressOfOperand,
717                            const TemplateArgumentListInfo *TemplateArgs) {
718   DeclContext *DC = getFunctionLevelDeclContext();
719 
720   // C++11 [expr.prim.general]p12:
721   //   An id-expression that denotes a non-static data member or non-static
722   //   member function of a class can only be used:
723   //   (...)
724   //   - if that id-expression denotes a non-static data member and it
725   //     appears in an unevaluated operand.
726   //
727   // If this might be the case, form a DependentScopeDeclRefExpr instead of a
728   // CXXDependentScopeMemberExpr. The former can instantiate to either
729   // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
730   // always a MemberExpr.
731   bool MightBeCxx11UnevalField =
732       getLangOpts().CPlusPlus11 && isUnevaluatedContext();
733 
734   // Check if the nested name specifier is an enum type.
735   bool IsEnum = false;
736   if (NestedNameSpecifier *NNS = SS.getScopeRep())
737     IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType());
738 
739   if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
740       isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
741     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType();
742 
743     // Since the 'this' expression is synthesized, we don't need to
744     // perform the double-lookup check.
745     NamedDecl *FirstQualifierInScope = nullptr;
746 
747     return CXXDependentScopeMemberExpr::Create(
748         Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
749         /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
750         FirstQualifierInScope, NameInfo, TemplateArgs);
751   }
752 
753   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
754 }
755 
756 ExprResult
757 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
758                                 SourceLocation TemplateKWLoc,
759                                 const DeclarationNameInfo &NameInfo,
760                                 const TemplateArgumentListInfo *TemplateArgs) {
761   // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
762   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
763   if (!QualifierLoc)
764     return ExprError();
765 
766   return DependentScopeDeclRefExpr::Create(
767       Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
768 }
769 
770 
771 /// Determine whether we would be unable to instantiate this template (because
772 /// it either has no definition, or is in the process of being instantiated).
773 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
774                                           NamedDecl *Instantiation,
775                                           bool InstantiatedFromMember,
776                                           const NamedDecl *Pattern,
777                                           const NamedDecl *PatternDef,
778                                           TemplateSpecializationKind TSK,
779                                           bool Complain /*= true*/) {
780   assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
781          isa<VarDecl>(Instantiation));
782 
783   bool IsEntityBeingDefined = false;
784   if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
785     IsEntityBeingDefined = TD->isBeingDefined();
786 
787   if (PatternDef && !IsEntityBeingDefined) {
788     NamedDecl *SuggestedDef = nullptr;
789     if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
790                               /*OnlyNeedComplete*/false)) {
791       // If we're allowed to diagnose this and recover, do so.
792       bool Recover = Complain && !isSFINAEContext();
793       if (Complain)
794         diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
795                               Sema::MissingImportKind::Definition, Recover);
796       return !Recover;
797     }
798     return false;
799   }
800 
801   if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
802     return true;
803 
804   llvm::Optional<unsigned> Note;
805   QualType InstantiationTy;
806   if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
807     InstantiationTy = Context.getTypeDeclType(TD);
808   if (PatternDef) {
809     Diag(PointOfInstantiation,
810          diag::err_template_instantiate_within_definition)
811       << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
812       << InstantiationTy;
813     // Not much point in noting the template declaration here, since
814     // we're lexically inside it.
815     Instantiation->setInvalidDecl();
816   } else if (InstantiatedFromMember) {
817     if (isa<FunctionDecl>(Instantiation)) {
818       Diag(PointOfInstantiation,
819            diag::err_explicit_instantiation_undefined_member)
820         << /*member function*/ 1 << Instantiation->getDeclName()
821         << Instantiation->getDeclContext();
822       Note = diag::note_explicit_instantiation_here;
823     } else {
824       assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
825       Diag(PointOfInstantiation,
826            diag::err_implicit_instantiate_member_undefined)
827         << InstantiationTy;
828       Note = diag::note_member_declared_at;
829     }
830   } else {
831     if (isa<FunctionDecl>(Instantiation)) {
832       Diag(PointOfInstantiation,
833            diag::err_explicit_instantiation_undefined_func_template)
834         << Pattern;
835       Note = diag::note_explicit_instantiation_here;
836     } else if (isa<TagDecl>(Instantiation)) {
837       Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
838         << (TSK != TSK_ImplicitInstantiation)
839         << InstantiationTy;
840       Note = diag::note_template_decl_here;
841     } else {
842       assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
843       if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
844         Diag(PointOfInstantiation,
845              diag::err_explicit_instantiation_undefined_var_template)
846           << Instantiation;
847         Instantiation->setInvalidDecl();
848       } else
849         Diag(PointOfInstantiation,
850              diag::err_explicit_instantiation_undefined_member)
851           << /*static data member*/ 2 << Instantiation->getDeclName()
852           << Instantiation->getDeclContext();
853       Note = diag::note_explicit_instantiation_here;
854     }
855   }
856   if (Note) // Diagnostics were emitted.
857     Diag(Pattern->getLocation(), Note.getValue());
858 
859   // In general, Instantiation isn't marked invalid to get more than one
860   // error for multiple undefined instantiations. But the code that does
861   // explicit declaration -> explicit definition conversion can't handle
862   // invalid declarations, so mark as invalid in that case.
863   if (TSK == TSK_ExplicitInstantiationDeclaration)
864     Instantiation->setInvalidDecl();
865   return true;
866 }
867 
868 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
869 /// that the template parameter 'PrevDecl' is being shadowed by a new
870 /// declaration at location Loc. Returns true to indicate that this is
871 /// an error, and false otherwise.
872 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
873   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
874 
875   // C++ [temp.local]p4:
876   //   A template-parameter shall not be redeclared within its
877   //   scope (including nested scopes).
878   //
879   // Make this a warning when MSVC compatibility is requested.
880   unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
881                                              : diag::err_template_param_shadow;
882   Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName();
883   Diag(PrevDecl->getLocation(), diag::note_template_param_here);
884 }
885 
886 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
887 /// the parameter D to reference the templated declaration and return a pointer
888 /// to the template declaration. Otherwise, do nothing to D and return null.
889 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
890   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
891     D = Temp->getTemplatedDecl();
892     return Temp;
893   }
894   return nullptr;
895 }
896 
897 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
898                                              SourceLocation EllipsisLoc) const {
899   assert(Kind == Template &&
900          "Only template template arguments can be pack expansions here");
901   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
902          "Template template argument pack expansion without packs");
903   ParsedTemplateArgument Result(*this);
904   Result.EllipsisLoc = EllipsisLoc;
905   return Result;
906 }
907 
908 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
909                                             const ParsedTemplateArgument &Arg) {
910 
911   switch (Arg.getKind()) {
912   case ParsedTemplateArgument::Type: {
913     TypeSourceInfo *DI;
914     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
915     if (!DI)
916       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
917     return TemplateArgumentLoc(TemplateArgument(T), DI);
918   }
919 
920   case ParsedTemplateArgument::NonType: {
921     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
922     return TemplateArgumentLoc(TemplateArgument(E), E);
923   }
924 
925   case ParsedTemplateArgument::Template: {
926     TemplateName Template = Arg.getAsTemplate().get();
927     TemplateArgument TArg;
928     if (Arg.getEllipsisLoc().isValid())
929       TArg = TemplateArgument(Template, Optional<unsigned int>());
930     else
931       TArg = Template;
932     return TemplateArgumentLoc(TArg,
933                                Arg.getScopeSpec().getWithLocInContext(
934                                                               SemaRef.Context),
935                                Arg.getLocation(),
936                                Arg.getEllipsisLoc());
937   }
938   }
939 
940   llvm_unreachable("Unhandled parsed template argument");
941 }
942 
943 /// Translates template arguments as provided by the parser
944 /// into template arguments used by semantic analysis.
945 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
946                                       TemplateArgumentListInfo &TemplateArgs) {
947  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
948    TemplateArgs.addArgument(translateTemplateArgument(*this,
949                                                       TemplateArgsIn[I]));
950 }
951 
952 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
953                                                  SourceLocation Loc,
954                                                  IdentifierInfo *Name) {
955   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
956       S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
957   if (PrevDecl && PrevDecl->isTemplateParameter())
958     SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
959 }
960 
961 /// Convert a parsed type into a parsed template argument. This is mostly
962 /// trivial, except that we may have parsed a C++17 deduced class template
963 /// specialization type, in which case we should form a template template
964 /// argument instead of a type template argument.
965 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
966   TypeSourceInfo *TInfo;
967   QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
968   if (T.isNull())
969     return ParsedTemplateArgument();
970   assert(TInfo && "template argument with no location");
971 
972   // If we might have formed a deduced template specialization type, convert
973   // it to a template template argument.
974   if (getLangOpts().CPlusPlus17) {
975     TypeLoc TL = TInfo->getTypeLoc();
976     SourceLocation EllipsisLoc;
977     if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
978       EllipsisLoc = PET.getEllipsisLoc();
979       TL = PET.getPatternLoc();
980     }
981 
982     CXXScopeSpec SS;
983     if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
984       SS.Adopt(ET.getQualifierLoc());
985       TL = ET.getNamedTypeLoc();
986     }
987 
988     if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
989       TemplateName Name = DTST.getTypePtr()->getTemplateName();
990       if (SS.isSet())
991         Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
992                                                 /*HasTemplateKeyword*/ false,
993                                                 Name.getAsTemplateDecl());
994       ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
995                                     DTST.getTemplateNameLoc());
996       if (EllipsisLoc.isValid())
997         Result = Result.getTemplatePackExpansion(EllipsisLoc);
998       return Result;
999     }
1000   }
1001 
1002   // This is a normal type template argument. Note, if the type template
1003   // argument is an injected-class-name for a template, it has a dual nature
1004   // and can be used as either a type or a template. We handle that in
1005   // convertTypeTemplateArgumentToTemplate.
1006   return ParsedTemplateArgument(ParsedTemplateArgument::Type,
1007                                 ParsedType.get().getAsOpaquePtr(),
1008                                 TInfo->getTypeLoc().getBeginLoc());
1009 }
1010 
1011 /// ActOnTypeParameter - Called when a C++ template type parameter
1012 /// (e.g., "typename T") has been parsed. Typename specifies whether
1013 /// the keyword "typename" was used to declare the type parameter
1014 /// (otherwise, "class" was used), and KeyLoc is the location of the
1015 /// "class" or "typename" keyword. ParamName is the name of the
1016 /// parameter (NULL indicates an unnamed template parameter) and
1017 /// ParamNameLoc is the location of the parameter name (if any).
1018 /// If the type parameter has a default argument, it will be added
1019 /// later via ActOnTypeParameterDefault.
1020 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
1021                                     SourceLocation EllipsisLoc,
1022                                     SourceLocation KeyLoc,
1023                                     IdentifierInfo *ParamName,
1024                                     SourceLocation ParamNameLoc,
1025                                     unsigned Depth, unsigned Position,
1026                                     SourceLocation EqualLoc,
1027                                     ParsedType DefaultArg,
1028                                     bool HasTypeConstraint) {
1029   assert(S->isTemplateParamScope() &&
1030          "Template type parameter not in template parameter scope!");
1031 
1032   bool IsParameterPack = EllipsisLoc.isValid();
1033   TemplateTypeParmDecl *Param
1034     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1035                                    KeyLoc, ParamNameLoc, Depth, Position,
1036                                    ParamName, Typename, IsParameterPack,
1037                                    HasTypeConstraint);
1038   Param->setAccess(AS_public);
1039 
1040   if (Param->isParameterPack())
1041     if (auto *LSI = getEnclosingLambda())
1042       LSI->LocalPacks.push_back(Param);
1043 
1044   if (ParamName) {
1045     maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1046 
1047     // Add the template parameter into the current scope.
1048     S->AddDecl(Param);
1049     IdResolver.AddDecl(Param);
1050   }
1051 
1052   // C++0x [temp.param]p9:
1053   //   A default template-argument may be specified for any kind of
1054   //   template-parameter that is not a template parameter pack.
1055   if (DefaultArg && IsParameterPack) {
1056     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1057     DefaultArg = nullptr;
1058   }
1059 
1060   // Handle the default argument, if provided.
1061   if (DefaultArg) {
1062     TypeSourceInfo *DefaultTInfo;
1063     GetTypeFromParser(DefaultArg, &DefaultTInfo);
1064 
1065     assert(DefaultTInfo && "expected source information for type");
1066 
1067     // Check for unexpanded parameter packs.
1068     if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
1069                                         UPPC_DefaultArgument))
1070       return Param;
1071 
1072     // Check the template argument itself.
1073     if (CheckTemplateArgument(Param, DefaultTInfo)) {
1074       Param->setInvalidDecl();
1075       return Param;
1076     }
1077 
1078     Param->setDefaultArgument(DefaultTInfo);
1079   }
1080 
1081   return Param;
1082 }
1083 
1084 /// Convert the parser's template argument list representation into our form.
1085 static TemplateArgumentListInfo
1086 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
1087   TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
1088                                         TemplateId.RAngleLoc);
1089   ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
1090                                      TemplateId.NumArgs);
1091   S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
1092   return TemplateArgs;
1093 }
1094 
1095 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
1096                                TemplateIdAnnotation *TypeConstr,
1097                                TemplateTypeParmDecl *ConstrainedParameter,
1098                                SourceLocation EllipsisLoc) {
1099   ConceptDecl *CD =
1100       cast<ConceptDecl>(TypeConstr->Template.get().getAsTemplateDecl());
1101 
1102   // C++2a [temp.param]p4:
1103   //     [...] The concept designated by a type-constraint shall be a type
1104   //     concept ([temp.concept]).
1105   if (!CD->isTypeConcept()) {
1106     Diag(TypeConstr->TemplateNameLoc,
1107          diag::err_type_constraint_non_type_concept);
1108     return true;
1109   }
1110 
1111   bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
1112 
1113   if (!WereArgsSpecified &&
1114       CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
1115     Diag(TypeConstr->TemplateNameLoc,
1116          diag::err_type_constraint_missing_arguments) << CD;
1117     return true;
1118   }
1119 
1120   TemplateArgumentListInfo TemplateArgs;
1121   if (TypeConstr->LAngleLoc.isValid()) {
1122     TemplateArgs =
1123         makeTemplateArgumentListInfo(*this, *TypeConstr);
1124   }
1125   return AttachTypeConstraint(
1126       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1127       DeclarationNameInfo(DeclarationName(TypeConstr->Name),
1128                           TypeConstr->TemplateNameLoc), CD,
1129       TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
1130       ConstrainedParameter, EllipsisLoc);
1131 }
1132 
1133 template<typename ArgumentLocAppender>
1134 static ExprResult formImmediatelyDeclaredConstraint(
1135     Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
1136     ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
1137     SourceLocation RAngleLoc, QualType ConstrainedType,
1138     SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
1139     SourceLocation EllipsisLoc) {
1140 
1141   TemplateArgumentListInfo ConstraintArgs;
1142   ConstraintArgs.addArgument(
1143     S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
1144                                     /*NTTPType=*/QualType(), ParamNameLoc));
1145 
1146   ConstraintArgs.setRAngleLoc(RAngleLoc);
1147   ConstraintArgs.setLAngleLoc(LAngleLoc);
1148   Appender(ConstraintArgs);
1149 
1150   // C++2a [temp.param]p4:
1151   //     [...] This constraint-expression E is called the immediately-declared
1152   //     constraint of T. [...]
1153   CXXScopeSpec SS;
1154   SS.Adopt(NS);
1155   ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
1156       SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
1157       /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
1158   if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
1159     return ImmediatelyDeclaredConstraint;
1160 
1161   // C++2a [temp.param]p4:
1162   //     [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1163   //
1164   // We have the following case:
1165   //
1166   // template<typename T> concept C1 = true;
1167   // template<C1... T> struct s1;
1168   //
1169   // The constraint: (C1<T> && ...)
1170   return S.BuildCXXFoldExpr(/*LParenLoc=*/SourceLocation(),
1171                             ImmediatelyDeclaredConstraint.get(), BO_LAnd,
1172                             EllipsisLoc, /*RHS=*/nullptr,
1173                             /*RParenLoc=*/SourceLocation(),
1174                             /*NumExpansions=*/None);
1175 }
1176 
1177 /// Attach a type-constraint to a template parameter.
1178 /// \returns true if an error occured. This can happen if the
1179 /// immediately-declared constraint could not be formed (e.g. incorrect number
1180 /// of arguments for the named concept).
1181 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
1182                                 DeclarationNameInfo NameInfo,
1183                                 ConceptDecl *NamedConcept,
1184                                 const TemplateArgumentListInfo *TemplateArgs,
1185                                 TemplateTypeParmDecl *ConstrainedParameter,
1186                                 SourceLocation EllipsisLoc) {
1187   // C++2a [temp.param]p4:
1188   //     [...] If Q is of the form C<A1, ..., An>, then let E' be
1189   //     C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
1190   const ASTTemplateArgumentListInfo *ArgsAsWritten =
1191     TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
1192                                                        *TemplateArgs) : nullptr;
1193 
1194   QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
1195 
1196   ExprResult ImmediatelyDeclaredConstraint =
1197       formImmediatelyDeclaredConstraint(
1198           *this, NS, NameInfo, NamedConcept,
1199           TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
1200           TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
1201           ParamAsArgument, ConstrainedParameter->getLocation(),
1202           [&] (TemplateArgumentListInfo &ConstraintArgs) {
1203             if (TemplateArgs)
1204               for (const auto &ArgLoc : TemplateArgs->arguments())
1205                 ConstraintArgs.addArgument(ArgLoc);
1206           }, EllipsisLoc);
1207   if (ImmediatelyDeclaredConstraint.isInvalid())
1208     return true;
1209 
1210   ConstrainedParameter->setTypeConstraint(NS, NameInfo,
1211                                           /*FoundDecl=*/NamedConcept,
1212                                           NamedConcept, ArgsAsWritten,
1213                                           ImmediatelyDeclaredConstraint.get());
1214   return false;
1215 }
1216 
1217 bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP,
1218                                 SourceLocation EllipsisLoc) {
1219   if (NTTP->getType() != TL.getType() ||
1220       TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
1221     Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1222          diag::err_unsupported_placeholder_constraint)
1223        << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange();
1224     return true;
1225   }
1226   // FIXME: Concepts: This should be the type of the placeholder, but this is
1227   // unclear in the wording right now.
1228   DeclRefExpr *Ref = BuildDeclRefExpr(NTTP, NTTP->getType(), VK_RValue,
1229                                       NTTP->getLocation());
1230   if (!Ref)
1231     return true;
1232   ExprResult ImmediatelyDeclaredConstraint =
1233       formImmediatelyDeclaredConstraint(
1234           *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
1235           TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
1236           BuildDecltypeType(Ref, NTTP->getLocation()), NTTP->getLocation(),
1237           [&] (TemplateArgumentListInfo &ConstraintArgs) {
1238             for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
1239               ConstraintArgs.addArgument(TL.getArgLoc(I));
1240           }, EllipsisLoc);
1241   if (ImmediatelyDeclaredConstraint.isInvalid() ||
1242      !ImmediatelyDeclaredConstraint.isUsable())
1243     return true;
1244 
1245   NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get());
1246   return false;
1247 }
1248 
1249 /// Check that the type of a non-type template parameter is
1250 /// well-formed.
1251 ///
1252 /// \returns the (possibly-promoted) parameter type if valid;
1253 /// otherwise, produces a diagnostic and returns a NULL type.
1254 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1255                                                  SourceLocation Loc) {
1256   if (TSI->getType()->isUndeducedType()) {
1257     // C++17 [temp.dep.expr]p3:
1258     //   An id-expression is type-dependent if it contains
1259     //    - an identifier associated by name lookup with a non-type
1260     //      template-parameter declared with a type that contains a
1261     //      placeholder type (7.1.7.4),
1262     TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy);
1263   }
1264 
1265   return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1266 }
1267 
1268 QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1269                                                  SourceLocation Loc) {
1270   // We don't allow variably-modified types as the type of non-type template
1271   // parameters.
1272   if (T->isVariablyModifiedType()) {
1273     Diag(Loc, diag::err_variably_modified_nontype_template_param)
1274       << T;
1275     return QualType();
1276   }
1277 
1278   // C++ [temp.param]p4:
1279   //
1280   // A non-type template-parameter shall have one of the following
1281   // (optionally cv-qualified) types:
1282   //
1283   //       -- integral or enumeration type,
1284   if (T->isIntegralOrEnumerationType() ||
1285       //   -- pointer to object or pointer to function,
1286       T->isPointerType() ||
1287       //   -- reference to object or reference to function,
1288       T->isReferenceType() ||
1289       //   -- pointer to member,
1290       T->isMemberPointerType() ||
1291       //   -- std::nullptr_t.
1292       T->isNullPtrType() ||
1293       // Allow use of auto in template parameter declarations.
1294       T->isUndeducedType()) {
1295     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1296     // are ignored when determining its type.
1297     return T.getUnqualifiedType();
1298   }
1299 
1300   // C++ [temp.param]p8:
1301   //
1302   //   A non-type template-parameter of type "array of T" or
1303   //   "function returning T" is adjusted to be of type "pointer to
1304   //   T" or "pointer to function returning T", respectively.
1305   if (T->isArrayType() || T->isFunctionType())
1306     return Context.getDecayedType(T);
1307 
1308   // If T is a dependent type, we can't do the check now, so we
1309   // assume that it is well-formed. Note that stripping off the
1310   // qualifiers here is not really correct if T turns out to be
1311   // an array type, but we'll recompute the type everywhere it's
1312   // used during instantiation, so that should be OK. (Using the
1313   // qualified type is equally wrong.)
1314   if (T->isDependentType())
1315     return T.getUnqualifiedType();
1316 
1317   Diag(Loc, diag::err_template_nontype_parm_bad_type)
1318     << T;
1319 
1320   return QualType();
1321 }
1322 
1323 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1324                                           unsigned Depth,
1325                                           unsigned Position,
1326                                           SourceLocation EqualLoc,
1327                                           Expr *Default) {
1328   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
1329 
1330   // Check that we have valid decl-specifiers specified.
1331   auto CheckValidDeclSpecifiers = [this, &D] {
1332     // C++ [temp.param]
1333     // p1
1334     //   template-parameter:
1335     //     ...
1336     //     parameter-declaration
1337     // p2
1338     //   ... A storage class shall not be specified in a template-parameter
1339     //   declaration.
1340     // [dcl.typedef]p1:
1341     //   The typedef specifier [...] shall not be used in the decl-specifier-seq
1342     //   of a parameter-declaration
1343     const DeclSpec &DS = D.getDeclSpec();
1344     auto EmitDiag = [this](SourceLocation Loc) {
1345       Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1346           << FixItHint::CreateRemoval(Loc);
1347     };
1348     if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1349       EmitDiag(DS.getStorageClassSpecLoc());
1350 
1351     if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1352       EmitDiag(DS.getThreadStorageClassSpecLoc());
1353 
1354     // [dcl.inline]p1:
1355     //   The inline specifier can be applied only to the declaration or
1356     //   definition of a variable or function.
1357 
1358     if (DS.isInlineSpecified())
1359       EmitDiag(DS.getInlineSpecLoc());
1360 
1361     // [dcl.constexpr]p1:
1362     //   The constexpr specifier shall be applied only to the definition of a
1363     //   variable or variable template or the declaration of a function or
1364     //   function template.
1365 
1366     if (DS.hasConstexprSpecifier())
1367       EmitDiag(DS.getConstexprSpecLoc());
1368 
1369     // [dcl.fct.spec]p1:
1370     //   Function-specifiers can be used only in function declarations.
1371 
1372     if (DS.isVirtualSpecified())
1373       EmitDiag(DS.getVirtualSpecLoc());
1374 
1375     if (DS.hasExplicitSpecifier())
1376       EmitDiag(DS.getExplicitSpecLoc());
1377 
1378     if (DS.isNoreturnSpecified())
1379       EmitDiag(DS.getNoreturnSpecLoc());
1380   };
1381 
1382   CheckValidDeclSpecifiers();
1383 
1384   if (TInfo->getType()->isUndeducedType()) {
1385     Diag(D.getIdentifierLoc(),
1386          diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1387       << QualType(TInfo->getType()->getContainedAutoType(), 0);
1388   }
1389 
1390   assert(S->isTemplateParamScope() &&
1391          "Non-type template parameter not in template parameter scope!");
1392   bool Invalid = false;
1393 
1394   QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1395   if (T.isNull()) {
1396     T = Context.IntTy; // Recover with an 'int' type.
1397     Invalid = true;
1398   }
1399 
1400   CheckFunctionOrTemplateParamDeclarator(S, D);
1401 
1402   IdentifierInfo *ParamName = D.getIdentifier();
1403   bool IsParameterPack = D.hasEllipsis();
1404   NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1405       Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1406       D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1407       TInfo);
1408   Param->setAccess(AS_public);
1409 
1410   if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
1411     if (TL.isConstrained())
1412       if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc()))
1413         Invalid = true;
1414 
1415   if (Invalid)
1416     Param->setInvalidDecl();
1417 
1418   if (Param->isParameterPack())
1419     if (auto *LSI = getEnclosingLambda())
1420       LSI->LocalPacks.push_back(Param);
1421 
1422   if (ParamName) {
1423     maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1424                                          ParamName);
1425 
1426     // Add the template parameter into the current scope.
1427     S->AddDecl(Param);
1428     IdResolver.AddDecl(Param);
1429   }
1430 
1431   // C++0x [temp.param]p9:
1432   //   A default template-argument may be specified for any kind of
1433   //   template-parameter that is not a template parameter pack.
1434   if (Default && IsParameterPack) {
1435     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1436     Default = nullptr;
1437   }
1438 
1439   // Check the well-formedness of the default template argument, if provided.
1440   if (Default) {
1441     // Check for unexpanded parameter packs.
1442     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1443       return Param;
1444 
1445     TemplateArgument Converted;
1446     ExprResult DefaultRes =
1447         CheckTemplateArgument(Param, Param->getType(), Default, Converted);
1448     if (DefaultRes.isInvalid()) {
1449       Param->setInvalidDecl();
1450       return Param;
1451     }
1452     Default = DefaultRes.get();
1453 
1454     Param->setDefaultArgument(Default);
1455   }
1456 
1457   return Param;
1458 }
1459 
1460 /// ActOnTemplateTemplateParameter - Called when a C++ template template
1461 /// parameter (e.g. T in template <template \<typename> class T> class array)
1462 /// has been parsed. S is the current scope.
1463 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1464                                            SourceLocation TmpLoc,
1465                                            TemplateParameterList *Params,
1466                                            SourceLocation EllipsisLoc,
1467                                            IdentifierInfo *Name,
1468                                            SourceLocation NameLoc,
1469                                            unsigned Depth,
1470                                            unsigned Position,
1471                                            SourceLocation EqualLoc,
1472                                            ParsedTemplateArgument Default) {
1473   assert(S->isTemplateParamScope() &&
1474          "Template template parameter not in template parameter scope!");
1475 
1476   // Construct the parameter object.
1477   bool IsParameterPack = EllipsisLoc.isValid();
1478   TemplateTemplateParmDecl *Param =
1479     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1480                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
1481                                      Depth, Position, IsParameterPack,
1482                                      Name, Params);
1483   Param->setAccess(AS_public);
1484 
1485   if (Param->isParameterPack())
1486     if (auto *LSI = getEnclosingLambda())
1487       LSI->LocalPacks.push_back(Param);
1488 
1489   // If the template template parameter has a name, then link the identifier
1490   // into the scope and lookup mechanisms.
1491   if (Name) {
1492     maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1493 
1494     S->AddDecl(Param);
1495     IdResolver.AddDecl(Param);
1496   }
1497 
1498   if (Params->size() == 0) {
1499     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1500     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1501     Param->setInvalidDecl();
1502   }
1503 
1504   // C++0x [temp.param]p9:
1505   //   A default template-argument may be specified for any kind of
1506   //   template-parameter that is not a template parameter pack.
1507   if (IsParameterPack && !Default.isInvalid()) {
1508     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1509     Default = ParsedTemplateArgument();
1510   }
1511 
1512   if (!Default.isInvalid()) {
1513     // Check only that we have a template template argument. We don't want to
1514     // try to check well-formedness now, because our template template parameter
1515     // might have dependent types in its template parameters, which we wouldn't
1516     // be able to match now.
1517     //
1518     // If none of the template template parameter's template arguments mention
1519     // other template parameters, we could actually perform more checking here.
1520     // However, it isn't worth doing.
1521     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1522     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1523       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1524         << DefaultArg.getSourceRange();
1525       return Param;
1526     }
1527 
1528     // Check for unexpanded parameter packs.
1529     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1530                                         DefaultArg.getArgument().getAsTemplate(),
1531                                         UPPC_DefaultArgument))
1532       return Param;
1533 
1534     Param->setDefaultArgument(Context, DefaultArg);
1535   }
1536 
1537   return Param;
1538 }
1539 
1540 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1541 /// constrained by RequiresClause, that contains the template parameters in
1542 /// Params.
1543 TemplateParameterList *
1544 Sema::ActOnTemplateParameterList(unsigned Depth,
1545                                  SourceLocation ExportLoc,
1546                                  SourceLocation TemplateLoc,
1547                                  SourceLocation LAngleLoc,
1548                                  ArrayRef<NamedDecl *> Params,
1549                                  SourceLocation RAngleLoc,
1550                                  Expr *RequiresClause) {
1551   if (ExportLoc.isValid())
1552     Diag(ExportLoc, diag::warn_template_export_unsupported);
1553 
1554   return TemplateParameterList::Create(
1555       Context, TemplateLoc, LAngleLoc,
1556       llvm::makeArrayRef(Params.data(), Params.size()),
1557       RAngleLoc, RequiresClause);
1558 }
1559 
1560 static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1561                                    const CXXScopeSpec &SS) {
1562   if (SS.isSet())
1563     T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1564 }
1565 
1566 DeclResult Sema::CheckClassTemplate(
1567     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1568     CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1569     const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1570     AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1571     SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1572     TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1573   assert(TemplateParams && TemplateParams->size() > 0 &&
1574          "No template parameters");
1575   assert(TUK != TUK_Reference && "Can only declare or define class templates");
1576   bool Invalid = false;
1577 
1578   // Check that we can declare a template here.
1579   if (CheckTemplateDeclScope(S, TemplateParams))
1580     return true;
1581 
1582   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1583   assert(Kind != TTK_Enum && "can't build template of enumerated type");
1584 
1585   // There is no such thing as an unnamed class template.
1586   if (!Name) {
1587     Diag(KWLoc, diag::err_template_unnamed_class);
1588     return true;
1589   }
1590 
1591   // Find any previous declaration with this name. For a friend with no
1592   // scope explicitly specified, we only look for tag declarations (per
1593   // C++11 [basic.lookup.elab]p2).
1594   DeclContext *SemanticContext;
1595   LookupResult Previous(*this, Name, NameLoc,
1596                         (SS.isEmpty() && TUK == TUK_Friend)
1597                           ? LookupTagName : LookupOrdinaryName,
1598                         forRedeclarationInCurContext());
1599   if (SS.isNotEmpty() && !SS.isInvalid()) {
1600     SemanticContext = computeDeclContext(SS, true);
1601     if (!SemanticContext) {
1602       // FIXME: Horrible, horrible hack! We can't currently represent this
1603       // in the AST, and historically we have just ignored such friend
1604       // class templates, so don't complain here.
1605       Diag(NameLoc, TUK == TUK_Friend
1606                         ? diag::warn_template_qualified_friend_ignored
1607                         : diag::err_template_qualified_declarator_no_match)
1608           << SS.getScopeRep() << SS.getRange();
1609       return TUK != TUK_Friend;
1610     }
1611 
1612     if (RequireCompleteDeclContext(SS, SemanticContext))
1613       return true;
1614 
1615     // If we're adding a template to a dependent context, we may need to
1616     // rebuilding some of the types used within the template parameter list,
1617     // now that we know what the current instantiation is.
1618     if (SemanticContext->isDependentContext()) {
1619       ContextRAII SavedContext(*this, SemanticContext);
1620       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1621         Invalid = true;
1622     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1623       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1624 
1625     LookupQualifiedName(Previous, SemanticContext);
1626   } else {
1627     SemanticContext = CurContext;
1628 
1629     // C++14 [class.mem]p14:
1630     //   If T is the name of a class, then each of the following shall have a
1631     //   name different from T:
1632     //    -- every member template of class T
1633     if (TUK != TUK_Friend &&
1634         DiagnoseClassNameShadow(SemanticContext,
1635                                 DeclarationNameInfo(Name, NameLoc)))
1636       return true;
1637 
1638     LookupName(Previous, S);
1639   }
1640 
1641   if (Previous.isAmbiguous())
1642     return true;
1643 
1644   NamedDecl *PrevDecl = nullptr;
1645   if (Previous.begin() != Previous.end())
1646     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1647 
1648   if (PrevDecl && PrevDecl->isTemplateParameter()) {
1649     // Maybe we will complain about the shadowed template parameter.
1650     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1651     // Just pretend that we didn't see the previous declaration.
1652     PrevDecl = nullptr;
1653   }
1654 
1655   // If there is a previous declaration with the same name, check
1656   // whether this is a valid redeclaration.
1657   ClassTemplateDecl *PrevClassTemplate =
1658       dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1659 
1660   // We may have found the injected-class-name of a class template,
1661   // class template partial specialization, or class template specialization.
1662   // In these cases, grab the template that is being defined or specialized.
1663   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1664       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1665     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1666     PrevClassTemplate
1667       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1668     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1669       PrevClassTemplate
1670         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1671             ->getSpecializedTemplate();
1672     }
1673   }
1674 
1675   if (TUK == TUK_Friend) {
1676     // C++ [namespace.memdef]p3:
1677     //   [...] When looking for a prior declaration of a class or a function
1678     //   declared as a friend, and when the name of the friend class or
1679     //   function is neither a qualified name nor a template-id, scopes outside
1680     //   the innermost enclosing namespace scope are not considered.
1681     if (!SS.isSet()) {
1682       DeclContext *OutermostContext = CurContext;
1683       while (!OutermostContext->isFileContext())
1684         OutermostContext = OutermostContext->getLookupParent();
1685 
1686       if (PrevDecl &&
1687           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1688            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1689         SemanticContext = PrevDecl->getDeclContext();
1690       } else {
1691         // Declarations in outer scopes don't matter. However, the outermost
1692         // context we computed is the semantic context for our new
1693         // declaration.
1694         PrevDecl = PrevClassTemplate = nullptr;
1695         SemanticContext = OutermostContext;
1696 
1697         // Check that the chosen semantic context doesn't already contain a
1698         // declaration of this name as a non-tag type.
1699         Previous.clear(LookupOrdinaryName);
1700         DeclContext *LookupContext = SemanticContext;
1701         while (LookupContext->isTransparentContext())
1702           LookupContext = LookupContext->getLookupParent();
1703         LookupQualifiedName(Previous, LookupContext);
1704 
1705         if (Previous.isAmbiguous())
1706           return true;
1707 
1708         if (Previous.begin() != Previous.end())
1709           PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1710       }
1711     }
1712   } else if (PrevDecl &&
1713              !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1714                             S, SS.isValid()))
1715     PrevDecl = PrevClassTemplate = nullptr;
1716 
1717   if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1718           PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1719     if (SS.isEmpty() &&
1720         !(PrevClassTemplate &&
1721           PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1722               SemanticContext->getRedeclContext()))) {
1723       Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1724       Diag(Shadow->getTargetDecl()->getLocation(),
1725            diag::note_using_decl_target);
1726       Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
1727       // Recover by ignoring the old declaration.
1728       PrevDecl = PrevClassTemplate = nullptr;
1729     }
1730   }
1731 
1732   if (PrevClassTemplate) {
1733     // Ensure that the template parameter lists are compatible. Skip this check
1734     // for a friend in a dependent context: the template parameter list itself
1735     // could be dependent.
1736     if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1737         !TemplateParameterListsAreEqual(TemplateParams,
1738                                    PrevClassTemplate->getTemplateParameters(),
1739                                         /*Complain=*/true,
1740                                         TPL_TemplateMatch))
1741       return true;
1742 
1743     // C++ [temp.class]p4:
1744     //   In a redeclaration, partial specialization, explicit
1745     //   specialization or explicit instantiation of a class template,
1746     //   the class-key shall agree in kind with the original class
1747     //   template declaration (7.1.5.3).
1748     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1749     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1750                                       TUK == TUK_Definition,  KWLoc, Name)) {
1751       Diag(KWLoc, diag::err_use_with_wrong_tag)
1752         << Name
1753         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1754       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1755       Kind = PrevRecordDecl->getTagKind();
1756     }
1757 
1758     // Check for redefinition of this class template.
1759     if (TUK == TUK_Definition) {
1760       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1761         // If we have a prior definition that is not visible, treat this as
1762         // simply making that previous definition visible.
1763         NamedDecl *Hidden = nullptr;
1764         if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1765           SkipBody->ShouldSkip = true;
1766           SkipBody->Previous = Def;
1767           auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1768           assert(Tmpl && "original definition of a class template is not a "
1769                          "class template?");
1770           makeMergedDefinitionVisible(Hidden);
1771           makeMergedDefinitionVisible(Tmpl);
1772         } else {
1773           Diag(NameLoc, diag::err_redefinition) << Name;
1774           Diag(Def->getLocation(), diag::note_previous_definition);
1775           // FIXME: Would it make sense to try to "forget" the previous
1776           // definition, as part of error recovery?
1777           return true;
1778         }
1779       }
1780     }
1781   } else if (PrevDecl) {
1782     // C++ [temp]p5:
1783     //   A class template shall not have the same name as any other
1784     //   template, class, function, object, enumeration, enumerator,
1785     //   namespace, or type in the same scope (3.3), except as specified
1786     //   in (14.5.4).
1787     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1788     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1789     return true;
1790   }
1791 
1792   // Check the template parameter list of this declaration, possibly
1793   // merging in the template parameter list from the previous class
1794   // template declaration. Skip this check for a friend in a dependent
1795   // context, because the template parameter list might be dependent.
1796   if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1797       CheckTemplateParameterList(
1798           TemplateParams,
1799           PrevClassTemplate
1800               ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters()
1801               : nullptr,
1802           (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1803            SemanticContext->isDependentContext())
1804               ? TPC_ClassTemplateMember
1805               : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate,
1806           SkipBody))
1807     Invalid = true;
1808 
1809   if (SS.isSet()) {
1810     // If the name of the template was qualified, we must be defining the
1811     // template out-of-line.
1812     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1813       Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1814                                       : diag::err_member_decl_does_not_match)
1815         << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1816       Invalid = true;
1817     }
1818   }
1819 
1820   // If this is a templated friend in a dependent context we should not put it
1821   // on the redecl chain. In some cases, the templated friend can be the most
1822   // recent declaration tricking the template instantiator to make substitutions
1823   // there.
1824   // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
1825   bool ShouldAddRedecl
1826     = !(TUK == TUK_Friend && CurContext->isDependentContext());
1827 
1828   CXXRecordDecl *NewClass =
1829     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1830                           PrevClassTemplate && ShouldAddRedecl ?
1831                             PrevClassTemplate->getTemplatedDecl() : nullptr,
1832                           /*DelayTypeCreation=*/true);
1833   SetNestedNameSpecifier(*this, NewClass, SS);
1834   if (NumOuterTemplateParamLists > 0)
1835     NewClass->setTemplateParameterListsInfo(
1836         Context, llvm::makeArrayRef(OuterTemplateParamLists,
1837                                     NumOuterTemplateParamLists));
1838 
1839   // Add alignment attributes if necessary; these attributes are checked when
1840   // the ASTContext lays out the structure.
1841   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
1842     AddAlignmentAttributesForRecord(NewClass);
1843     AddMsStructLayoutForRecord(NewClass);
1844   }
1845 
1846   ClassTemplateDecl *NewTemplate
1847     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1848                                 DeclarationName(Name), TemplateParams,
1849                                 NewClass);
1850 
1851   if (ShouldAddRedecl)
1852     NewTemplate->setPreviousDecl(PrevClassTemplate);
1853 
1854   NewClass->setDescribedClassTemplate(NewTemplate);
1855 
1856   if (ModulePrivateLoc.isValid())
1857     NewTemplate->setModulePrivate();
1858 
1859   // Build the type for the class template declaration now.
1860   QualType T = NewTemplate->getInjectedClassNameSpecialization();
1861   T = Context.getInjectedClassNameType(NewClass, T);
1862   assert(T->isDependentType() && "Class template type is not dependent?");
1863   (void)T;
1864 
1865   // If we are providing an explicit specialization of a member that is a
1866   // class template, make a note of that.
1867   if (PrevClassTemplate &&
1868       PrevClassTemplate->getInstantiatedFromMemberTemplate())
1869     PrevClassTemplate->setMemberSpecialization();
1870 
1871   // Set the access specifier.
1872   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1873     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1874 
1875   // Set the lexical context of these templates
1876   NewClass->setLexicalDeclContext(CurContext);
1877   NewTemplate->setLexicalDeclContext(CurContext);
1878 
1879   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
1880     NewClass->startDefinition();
1881 
1882   ProcessDeclAttributeList(S, NewClass, Attr);
1883 
1884   if (PrevClassTemplate)
1885     mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1886 
1887   AddPushedVisibilityAttribute(NewClass);
1888   inferGslOwnerPointerAttribute(NewClass);
1889 
1890   if (TUK != TUK_Friend) {
1891     // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
1892     Scope *Outer = S;
1893     while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
1894       Outer = Outer->getParent();
1895     PushOnScopeChains(NewTemplate, Outer);
1896   } else {
1897     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1898       NewTemplate->setAccess(PrevClassTemplate->getAccess());
1899       NewClass->setAccess(PrevClassTemplate->getAccess());
1900     }
1901 
1902     NewTemplate->setObjectOfFriendDecl();
1903 
1904     // Friend templates are visible in fairly strange ways.
1905     if (!CurContext->isDependentContext()) {
1906       DeclContext *DC = SemanticContext->getRedeclContext();
1907       DC->makeDeclVisibleInContext(NewTemplate);
1908       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1909         PushOnScopeChains(NewTemplate, EnclosingScope,
1910                           /* AddToContext = */ false);
1911     }
1912 
1913     FriendDecl *Friend = FriendDecl::Create(
1914         Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
1915     Friend->setAccess(AS_public);
1916     CurContext->addDecl(Friend);
1917   }
1918 
1919   if (PrevClassTemplate)
1920     CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate);
1921 
1922   if (Invalid) {
1923     NewTemplate->setInvalidDecl();
1924     NewClass->setInvalidDecl();
1925   }
1926 
1927   ActOnDocumentableDecl(NewTemplate);
1928 
1929   if (SkipBody && SkipBody->ShouldSkip)
1930     return SkipBody->Previous;
1931 
1932   return NewTemplate;
1933 }
1934 
1935 namespace {
1936 /// Tree transform to "extract" a transformed type from a class template's
1937 /// constructor to a deduction guide.
1938 class ExtractTypeForDeductionGuide
1939   : public TreeTransform<ExtractTypeForDeductionGuide> {
1940 public:
1941   typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
1942   ExtractTypeForDeductionGuide(Sema &SemaRef) : Base(SemaRef) {}
1943 
1944   TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
1945 
1946   QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
1947     return TransformType(
1948         TLB,
1949         TL.getTypedefNameDecl()->getTypeSourceInfo()->getTypeLoc());
1950   }
1951 };
1952 
1953 /// Transform to convert portions of a constructor declaration into the
1954 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
1955 struct ConvertConstructorToDeductionGuideTransform {
1956   ConvertConstructorToDeductionGuideTransform(Sema &S,
1957                                               ClassTemplateDecl *Template)
1958       : SemaRef(S), Template(Template) {}
1959 
1960   Sema &SemaRef;
1961   ClassTemplateDecl *Template;
1962 
1963   DeclContext *DC = Template->getDeclContext();
1964   CXXRecordDecl *Primary = Template->getTemplatedDecl();
1965   DeclarationName DeductionGuideName =
1966       SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
1967 
1968   QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
1969 
1970   // Index adjustment to apply to convert depth-1 template parameters into
1971   // depth-0 template parameters.
1972   unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
1973 
1974   /// Transform a constructor declaration into a deduction guide.
1975   NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
1976                                   CXXConstructorDecl *CD) {
1977     SmallVector<TemplateArgument, 16> SubstArgs;
1978 
1979     LocalInstantiationScope Scope(SemaRef);
1980 
1981     // C++ [over.match.class.deduct]p1:
1982     // -- For each constructor of the class template designated by the
1983     //    template-name, a function template with the following properties:
1984 
1985     //    -- The template parameters are the template parameters of the class
1986     //       template followed by the template parameters (including default
1987     //       template arguments) of the constructor, if any.
1988     TemplateParameterList *TemplateParams = Template->getTemplateParameters();
1989     if (FTD) {
1990       TemplateParameterList *InnerParams = FTD->getTemplateParameters();
1991       SmallVector<NamedDecl *, 16> AllParams;
1992       AllParams.reserve(TemplateParams->size() + InnerParams->size());
1993       AllParams.insert(AllParams.begin(),
1994                        TemplateParams->begin(), TemplateParams->end());
1995       SubstArgs.reserve(InnerParams->size());
1996 
1997       // Later template parameters could refer to earlier ones, so build up
1998       // a list of substituted template arguments as we go.
1999       for (NamedDecl *Param : *InnerParams) {
2000         MultiLevelTemplateArgumentList Args;
2001         Args.addOuterTemplateArguments(SubstArgs);
2002         Args.addOuterRetainedLevel();
2003         NamedDecl *NewParam = transformTemplateParameter(Param, Args);
2004         if (!NewParam)
2005           return nullptr;
2006         AllParams.push_back(NewParam);
2007         SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2008             SemaRef.Context.getInjectedTemplateArg(NewParam)));
2009       }
2010       TemplateParams = TemplateParameterList::Create(
2011           SemaRef.Context, InnerParams->getTemplateLoc(),
2012           InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
2013           /*FIXME: RequiresClause*/ nullptr);
2014     }
2015 
2016     // If we built a new template-parameter-list, track that we need to
2017     // substitute references to the old parameters into references to the
2018     // new ones.
2019     MultiLevelTemplateArgumentList Args;
2020     if (FTD) {
2021       Args.addOuterTemplateArguments(SubstArgs);
2022       Args.addOuterRetainedLevel();
2023     }
2024 
2025     FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
2026                                    .getAsAdjusted<FunctionProtoTypeLoc>();
2027     assert(FPTL && "no prototype for constructor declaration");
2028 
2029     // Transform the type of the function, adjusting the return type and
2030     // replacing references to the old parameters with references to the
2031     // new ones.
2032     TypeLocBuilder TLB;
2033     SmallVector<ParmVarDecl*, 8> Params;
2034     QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args);
2035     if (NewType.isNull())
2036       return nullptr;
2037     TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
2038 
2039     return buildDeductionGuide(TemplateParams, CD->getExplicitSpecifier(),
2040                                NewTInfo, CD->getBeginLoc(), CD->getLocation(),
2041                                CD->getEndLoc());
2042   }
2043 
2044   /// Build a deduction guide with the specified parameter types.
2045   NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
2046     SourceLocation Loc = Template->getLocation();
2047 
2048     // Build the requested type.
2049     FunctionProtoType::ExtProtoInfo EPI;
2050     EPI.HasTrailingReturn = true;
2051     QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
2052                                                 DeductionGuideName, EPI);
2053     TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
2054 
2055     FunctionProtoTypeLoc FPTL =
2056         TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
2057 
2058     // Build the parameters, needed during deduction / substitution.
2059     SmallVector<ParmVarDecl*, 4> Params;
2060     for (auto T : ParamTypes) {
2061       ParmVarDecl *NewParam = ParmVarDecl::Create(
2062           SemaRef.Context, DC, Loc, Loc, nullptr, T,
2063           SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
2064       NewParam->setScopeInfo(0, Params.size());
2065       FPTL.setParam(Params.size(), NewParam);
2066       Params.push_back(NewParam);
2067     }
2068 
2069     return buildDeductionGuide(Template->getTemplateParameters(),
2070                                ExplicitSpecifier(), TSI, Loc, Loc, Loc);
2071   }
2072 
2073 private:
2074   /// Transform a constructor template parameter into a deduction guide template
2075   /// parameter, rebuilding any internal references to earlier parameters and
2076   /// renumbering as we go.
2077   NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
2078                                         MultiLevelTemplateArgumentList &Args) {
2079     if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
2080       // TemplateTypeParmDecl's index cannot be changed after creation, so
2081       // substitute it directly.
2082       auto *NewTTP = TemplateTypeParmDecl::Create(
2083           SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
2084           /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(),
2085           TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
2086           TTP->isParameterPack(), TTP->hasTypeConstraint(),
2087           TTP->isExpandedParameterPack() ?
2088           llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
2089       if (const auto *TC = TTP->getTypeConstraint()) {
2090         TemplateArgumentListInfo TransformedArgs;
2091         const auto *ArgsAsWritten = TC->getTemplateArgsAsWritten();
2092         if (!ArgsAsWritten ||
2093             SemaRef.Subst(ArgsAsWritten->getTemplateArgs(),
2094                           ArgsAsWritten->NumTemplateArgs, TransformedArgs,
2095                           Args))
2096           SemaRef.AttachTypeConstraint(
2097               TC->getNestedNameSpecifierLoc(), TC->getConceptNameInfo(),
2098               TC->getNamedConcept(), ArgsAsWritten ? &TransformedArgs : nullptr,
2099               NewTTP,
2100               NewTTP->isParameterPack()
2101                  ? cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
2102                      ->getEllipsisLoc()
2103                  : SourceLocation());
2104       }
2105       if (TTP->hasDefaultArgument()) {
2106         TypeSourceInfo *InstantiatedDefaultArg =
2107             SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
2108                               TTP->getDefaultArgumentLoc(), TTP->getDeclName());
2109         if (InstantiatedDefaultArg)
2110           NewTTP->setDefaultArgument(InstantiatedDefaultArg);
2111       }
2112       SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
2113                                                            NewTTP);
2114       return NewTTP;
2115     }
2116 
2117     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
2118       return transformTemplateParameterImpl(TTP, Args);
2119 
2120     return transformTemplateParameterImpl(
2121         cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
2122   }
2123   template<typename TemplateParmDecl>
2124   TemplateParmDecl *
2125   transformTemplateParameterImpl(TemplateParmDecl *OldParam,
2126                                  MultiLevelTemplateArgumentList &Args) {
2127     // Ask the template instantiator to do the heavy lifting for us, then adjust
2128     // the index of the parameter once it's done.
2129     auto *NewParam =
2130         cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
2131     assert(NewParam->getDepth() == 0 && "unexpected template param depth");
2132     NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
2133     return NewParam;
2134   }
2135 
2136   QualType transformFunctionProtoType(TypeLocBuilder &TLB,
2137                                       FunctionProtoTypeLoc TL,
2138                                       SmallVectorImpl<ParmVarDecl*> &Params,
2139                                       MultiLevelTemplateArgumentList &Args) {
2140     SmallVector<QualType, 4> ParamTypes;
2141     const FunctionProtoType *T = TL.getTypePtr();
2142 
2143     //    -- The types of the function parameters are those of the constructor.
2144     for (auto *OldParam : TL.getParams()) {
2145       ParmVarDecl *NewParam = transformFunctionTypeParam(OldParam, Args);
2146       if (!NewParam)
2147         return QualType();
2148       ParamTypes.push_back(NewParam->getType());
2149       Params.push_back(NewParam);
2150     }
2151 
2152     //    -- The return type is the class template specialization designated by
2153     //       the template-name and template arguments corresponding to the
2154     //       template parameters obtained from the class template.
2155     //
2156     // We use the injected-class-name type of the primary template instead.
2157     // This has the convenient property that it is different from any type that
2158     // the user can write in a deduction-guide (because they cannot enter the
2159     // context of the template), so implicit deduction guides can never collide
2160     // with explicit ones.
2161     QualType ReturnType = DeducedType;
2162     TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
2163 
2164     // Resolving a wording defect, we also inherit the variadicness of the
2165     // constructor.
2166     FunctionProtoType::ExtProtoInfo EPI;
2167     EPI.Variadic = T->isVariadic();
2168     EPI.HasTrailingReturn = true;
2169 
2170     QualType Result = SemaRef.BuildFunctionType(
2171         ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
2172     if (Result.isNull())
2173       return QualType();
2174 
2175     FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
2176     NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
2177     NewTL.setLParenLoc(TL.getLParenLoc());
2178     NewTL.setRParenLoc(TL.getRParenLoc());
2179     NewTL.setExceptionSpecRange(SourceRange());
2180     NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
2181     for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
2182       NewTL.setParam(I, Params[I]);
2183 
2184     return Result;
2185   }
2186 
2187   ParmVarDecl *
2188   transformFunctionTypeParam(ParmVarDecl *OldParam,
2189                              MultiLevelTemplateArgumentList &Args) {
2190     TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
2191     TypeSourceInfo *NewDI;
2192     if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
2193       // Expand out the one and only element in each inner pack.
2194       Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
2195       NewDI =
2196           SemaRef.SubstType(PackTL.getPatternLoc(), Args,
2197                             OldParam->getLocation(), OldParam->getDeclName());
2198       if (!NewDI) return nullptr;
2199       NewDI =
2200           SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
2201                                      PackTL.getTypePtr()->getNumExpansions());
2202     } else
2203       NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
2204                                 OldParam->getDeclName());
2205     if (!NewDI)
2206       return nullptr;
2207 
2208     // Extract the type. This (for instance) replaces references to typedef
2209     // members of the current instantiations with the definitions of those
2210     // typedefs, avoiding triggering instantiation of the deduced type during
2211     // deduction.
2212     NewDI = ExtractTypeForDeductionGuide(SemaRef).transform(NewDI);
2213 
2214     // Resolving a wording defect, we also inherit default arguments from the
2215     // constructor.
2216     ExprResult NewDefArg;
2217     if (OldParam->hasDefaultArg()) {
2218       // We don't care what the value is (we won't use it); just create a
2219       // placeholder to indicate there is a default argument.
2220       QualType ParamTy = NewDI->getType();
2221       NewDefArg = new (SemaRef.Context)
2222           OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
2223                           ParamTy.getNonLValueExprType(SemaRef.Context),
2224                           ParamTy->isLValueReferenceType() ? VK_LValue :
2225                           ParamTy->isRValueReferenceType() ? VK_XValue :
2226                           VK_RValue);
2227     }
2228 
2229     ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
2230                                                 OldParam->getInnerLocStart(),
2231                                                 OldParam->getLocation(),
2232                                                 OldParam->getIdentifier(),
2233                                                 NewDI->getType(),
2234                                                 NewDI,
2235                                                 OldParam->getStorageClass(),
2236                                                 NewDefArg.get());
2237     NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
2238                            OldParam->getFunctionScopeIndex());
2239     SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2240     return NewParam;
2241   }
2242 
2243   NamedDecl *buildDeductionGuide(TemplateParameterList *TemplateParams,
2244                                  ExplicitSpecifier ES, TypeSourceInfo *TInfo,
2245                                  SourceLocation LocStart, SourceLocation Loc,
2246                                  SourceLocation LocEnd) {
2247     DeclarationNameInfo Name(DeductionGuideName, Loc);
2248     ArrayRef<ParmVarDecl *> Params =
2249         TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2250 
2251     // Build the implicit deduction guide template.
2252     auto *Guide =
2253         CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
2254                                       TInfo->getType(), TInfo, LocEnd);
2255     Guide->setImplicit();
2256     Guide->setParams(Params);
2257 
2258     for (auto *Param : Params)
2259       Param->setDeclContext(Guide);
2260 
2261     auto *GuideTemplate = FunctionTemplateDecl::Create(
2262         SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2263     GuideTemplate->setImplicit();
2264     Guide->setDescribedFunctionTemplate(GuideTemplate);
2265 
2266     if (isa<CXXRecordDecl>(DC)) {
2267       Guide->setAccess(AS_public);
2268       GuideTemplate->setAccess(AS_public);
2269     }
2270 
2271     DC->addDecl(GuideTemplate);
2272     return GuideTemplate;
2273   }
2274 };
2275 }
2276 
2277 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2278                                           SourceLocation Loc) {
2279   if (CXXRecordDecl *DefRecord =
2280           cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2281     TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate();
2282     Template = DescribedTemplate ? DescribedTemplate : Template;
2283   }
2284 
2285   DeclContext *DC = Template->getDeclContext();
2286   if (DC->isDependentContext())
2287     return;
2288 
2289   ConvertConstructorToDeductionGuideTransform Transform(
2290       *this, cast<ClassTemplateDecl>(Template));
2291   if (!isCompleteType(Loc, Transform.DeducedType))
2292     return;
2293 
2294   // Check whether we've already declared deduction guides for this template.
2295   // FIXME: Consider storing a flag on the template to indicate this.
2296   auto Existing = DC->lookup(Transform.DeductionGuideName);
2297   for (auto *D : Existing)
2298     if (D->isImplicit())
2299       return;
2300 
2301   // In case we were expanding a pack when we attempted to declare deduction
2302   // guides, turn off pack expansion for everything we're about to do.
2303   ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2304   // Create a template instantiation record to track the "instantiation" of
2305   // constructors into deduction guides.
2306   // FIXME: Add a kind for this to give more meaningful diagnostics. But can
2307   // this substitution process actually fail?
2308   InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
2309   if (BuildingDeductionGuides.isInvalid())
2310     return;
2311 
2312   // Convert declared constructors into deduction guide templates.
2313   // FIXME: Skip constructors for which deduction must necessarily fail (those
2314   // for which some class template parameter without a default argument never
2315   // appears in a deduced context).
2316   bool AddedAny = false;
2317   for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
2318     D = D->getUnderlyingDecl();
2319     if (D->isInvalidDecl() || D->isImplicit())
2320       continue;
2321     D = cast<NamedDecl>(D->getCanonicalDecl());
2322 
2323     auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
2324     auto *CD =
2325         dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
2326     // Class-scope explicit specializations (MS extension) do not result in
2327     // deduction guides.
2328     if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
2329       continue;
2330 
2331     Transform.transformConstructor(FTD, CD);
2332     AddedAny = true;
2333   }
2334 
2335   // C++17 [over.match.class.deduct]
2336   //    --  If C is not defined or does not declare any constructors, an
2337   //    additional function template derived as above from a hypothetical
2338   //    constructor C().
2339   if (!AddedAny)
2340     Transform.buildSimpleDeductionGuide(None);
2341 
2342   //    -- An additional function template derived as above from a hypothetical
2343   //    constructor C(C), called the copy deduction candidate.
2344   cast<CXXDeductionGuideDecl>(
2345       cast<FunctionTemplateDecl>(
2346           Transform.buildSimpleDeductionGuide(Transform.DeducedType))
2347           ->getTemplatedDecl())
2348       ->setIsCopyDeductionCandidate();
2349 }
2350 
2351 /// Diagnose the presence of a default template argument on a
2352 /// template parameter, which is ill-formed in certain contexts.
2353 ///
2354 /// \returns true if the default template argument should be dropped.
2355 static bool DiagnoseDefaultTemplateArgument(Sema &S,
2356                                             Sema::TemplateParamListContext TPC,
2357                                             SourceLocation ParamLoc,
2358                                             SourceRange DefArgRange) {
2359   switch (TPC) {
2360   case Sema::TPC_ClassTemplate:
2361   case Sema::TPC_VarTemplate:
2362   case Sema::TPC_TypeAliasTemplate:
2363     return false;
2364 
2365   case Sema::TPC_FunctionTemplate:
2366   case Sema::TPC_FriendFunctionTemplateDefinition:
2367     // C++ [temp.param]p9:
2368     //   A default template-argument shall not be specified in a
2369     //   function template declaration or a function template
2370     //   definition [...]
2371     //   If a friend function template declaration specifies a default
2372     //   template-argument, that declaration shall be a definition and shall be
2373     //   the only declaration of the function template in the translation unit.
2374     // (C++98/03 doesn't have this wording; see DR226).
2375     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2376          diag::warn_cxx98_compat_template_parameter_default_in_function_template
2377            : diag::ext_template_parameter_default_in_function_template)
2378       << DefArgRange;
2379     return false;
2380 
2381   case Sema::TPC_ClassTemplateMember:
2382     // C++0x [temp.param]p9:
2383     //   A default template-argument shall not be specified in the
2384     //   template-parameter-lists of the definition of a member of a
2385     //   class template that appears outside of the member's class.
2386     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2387       << DefArgRange;
2388     return true;
2389 
2390   case Sema::TPC_FriendClassTemplate:
2391   case Sema::TPC_FriendFunctionTemplate:
2392     // C++ [temp.param]p9:
2393     //   A default template-argument shall not be specified in a
2394     //   friend template declaration.
2395     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2396       << DefArgRange;
2397     return true;
2398 
2399     // FIXME: C++0x [temp.param]p9 allows default template-arguments
2400     // for friend function templates if there is only a single
2401     // declaration (and it is a definition). Strange!
2402   }
2403 
2404   llvm_unreachable("Invalid TemplateParamListContext!");
2405 }
2406 
2407 /// Check for unexpanded parameter packs within the template parameters
2408 /// of a template template parameter, recursively.
2409 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2410                                              TemplateTemplateParmDecl *TTP) {
2411   // A template template parameter which is a parameter pack is also a pack
2412   // expansion.
2413   if (TTP->isParameterPack())
2414     return false;
2415 
2416   TemplateParameterList *Params = TTP->getTemplateParameters();
2417   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2418     NamedDecl *P = Params->getParam(I);
2419     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
2420       if (!TTP->isParameterPack())
2421         if (const TypeConstraint *TC = TTP->getTypeConstraint())
2422           if (TC->hasExplicitTemplateArgs())
2423             for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2424               if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
2425                                                     Sema::UPPC_TypeConstraint))
2426                 return true;
2427       continue;
2428     }
2429 
2430     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2431       if (!NTTP->isParameterPack() &&
2432           S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2433                                             NTTP->getTypeSourceInfo(),
2434                                       Sema::UPPC_NonTypeTemplateParameterType))
2435         return true;
2436 
2437       continue;
2438     }
2439 
2440     if (TemplateTemplateParmDecl *InnerTTP
2441                                         = dyn_cast<TemplateTemplateParmDecl>(P))
2442       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2443         return true;
2444   }
2445 
2446   return false;
2447 }
2448 
2449 /// Checks the validity of a template parameter list, possibly
2450 /// considering the template parameter list from a previous
2451 /// declaration.
2452 ///
2453 /// If an "old" template parameter list is provided, it must be
2454 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
2455 /// template parameter list.
2456 ///
2457 /// \param NewParams Template parameter list for a new template
2458 /// declaration. This template parameter list will be updated with any
2459 /// default arguments that are carried through from the previous
2460 /// template parameter list.
2461 ///
2462 /// \param OldParams If provided, template parameter list from a
2463 /// previous declaration of the same template. Default template
2464 /// arguments will be merged from the old template parameter list to
2465 /// the new template parameter list.
2466 ///
2467 /// \param TPC Describes the context in which we are checking the given
2468 /// template parameter list.
2469 ///
2470 /// \param SkipBody If we might have already made a prior merged definition
2471 /// of this template visible, the corresponding body-skipping information.
2472 /// Default argument redefinition is not an error when skipping such a body,
2473 /// because (under the ODR) we can assume the default arguments are the same
2474 /// as the prior merged definition.
2475 ///
2476 /// \returns true if an error occurred, false otherwise.
2477 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2478                                       TemplateParameterList *OldParams,
2479                                       TemplateParamListContext TPC,
2480                                       SkipBodyInfo *SkipBody) {
2481   bool Invalid = false;
2482 
2483   // C++ [temp.param]p10:
2484   //   The set of default template-arguments available for use with a
2485   //   template declaration or definition is obtained by merging the
2486   //   default arguments from the definition (if in scope) and all
2487   //   declarations in scope in the same way default function
2488   //   arguments are (8.3.6).
2489   bool SawDefaultArgument = false;
2490   SourceLocation PreviousDefaultArgLoc;
2491 
2492   // Dummy initialization to avoid warnings.
2493   TemplateParameterList::iterator OldParam = NewParams->end();
2494   if (OldParams)
2495     OldParam = OldParams->begin();
2496 
2497   bool RemoveDefaultArguments = false;
2498   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2499                                     NewParamEnd = NewParams->end();
2500        NewParam != NewParamEnd; ++NewParam) {
2501     // Variables used to diagnose redundant default arguments
2502     bool RedundantDefaultArg = false;
2503     SourceLocation OldDefaultLoc;
2504     SourceLocation NewDefaultLoc;
2505 
2506     // Variable used to diagnose missing default arguments
2507     bool MissingDefaultArg = false;
2508 
2509     // Variable used to diagnose non-final parameter packs
2510     bool SawParameterPack = false;
2511 
2512     if (TemplateTypeParmDecl *NewTypeParm
2513           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2514       // Check the presence of a default argument here.
2515       if (NewTypeParm->hasDefaultArgument() &&
2516           DiagnoseDefaultTemplateArgument(*this, TPC,
2517                                           NewTypeParm->getLocation(),
2518                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2519                                                        .getSourceRange()))
2520         NewTypeParm->removeDefaultArgument();
2521 
2522       // Merge default arguments for template type parameters.
2523       TemplateTypeParmDecl *OldTypeParm
2524           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2525       if (NewTypeParm->isParameterPack()) {
2526         assert(!NewTypeParm->hasDefaultArgument() &&
2527                "Parameter packs can't have a default argument!");
2528         SawParameterPack = true;
2529       } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2530                  NewTypeParm->hasDefaultArgument() &&
2531                  (!SkipBody || !SkipBody->ShouldSkip)) {
2532         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2533         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2534         SawDefaultArgument = true;
2535         RedundantDefaultArg = true;
2536         PreviousDefaultArgLoc = NewDefaultLoc;
2537       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2538         // Merge the default argument from the old declaration to the
2539         // new declaration.
2540         NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2541         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2542       } else if (NewTypeParm->hasDefaultArgument()) {
2543         SawDefaultArgument = true;
2544         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2545       } else if (SawDefaultArgument)
2546         MissingDefaultArg = true;
2547     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2548                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2549       // Check for unexpanded parameter packs.
2550       if (!NewNonTypeParm->isParameterPack() &&
2551           DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2552                                           NewNonTypeParm->getTypeSourceInfo(),
2553                                           UPPC_NonTypeTemplateParameterType)) {
2554         Invalid = true;
2555         continue;
2556       }
2557 
2558       // Check the presence of a default argument here.
2559       if (NewNonTypeParm->hasDefaultArgument() &&
2560           DiagnoseDefaultTemplateArgument(*this, TPC,
2561                                           NewNonTypeParm->getLocation(),
2562                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2563         NewNonTypeParm->removeDefaultArgument();
2564       }
2565 
2566       // Merge default arguments for non-type template parameters
2567       NonTypeTemplateParmDecl *OldNonTypeParm
2568         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2569       if (NewNonTypeParm->isParameterPack()) {
2570         assert(!NewNonTypeParm->hasDefaultArgument() &&
2571                "Parameter packs can't have a default argument!");
2572         if (!NewNonTypeParm->isPackExpansion())
2573           SawParameterPack = true;
2574       } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
2575                  NewNonTypeParm->hasDefaultArgument() &&
2576                  (!SkipBody || !SkipBody->ShouldSkip)) {
2577         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
2578         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
2579         SawDefaultArgument = true;
2580         RedundantDefaultArg = true;
2581         PreviousDefaultArgLoc = NewDefaultLoc;
2582       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2583         // Merge the default argument from the old declaration to the
2584         // new declaration.
2585         NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2586         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2587       } else if (NewNonTypeParm->hasDefaultArgument()) {
2588         SawDefaultArgument = true;
2589         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2590       } else if (SawDefaultArgument)
2591         MissingDefaultArg = true;
2592     } else {
2593       TemplateTemplateParmDecl *NewTemplateParm
2594         = cast<TemplateTemplateParmDecl>(*NewParam);
2595 
2596       // Check for unexpanded parameter packs, recursively.
2597       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2598         Invalid = true;
2599         continue;
2600       }
2601 
2602       // Check the presence of a default argument here.
2603       if (NewTemplateParm->hasDefaultArgument() &&
2604           DiagnoseDefaultTemplateArgument(*this, TPC,
2605                                           NewTemplateParm->getLocation(),
2606                      NewTemplateParm->getDefaultArgument().getSourceRange()))
2607         NewTemplateParm->removeDefaultArgument();
2608 
2609       // Merge default arguments for template template parameters
2610       TemplateTemplateParmDecl *OldTemplateParm
2611         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2612       if (NewTemplateParm->isParameterPack()) {
2613         assert(!NewTemplateParm->hasDefaultArgument() &&
2614                "Parameter packs can't have a default argument!");
2615         if (!NewTemplateParm->isPackExpansion())
2616           SawParameterPack = true;
2617       } else if (OldTemplateParm &&
2618                  hasVisibleDefaultArgument(OldTemplateParm) &&
2619                  NewTemplateParm->hasDefaultArgument() &&
2620                  (!SkipBody || !SkipBody->ShouldSkip)) {
2621         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2622         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2623         SawDefaultArgument = true;
2624         RedundantDefaultArg = true;
2625         PreviousDefaultArgLoc = NewDefaultLoc;
2626       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2627         // Merge the default argument from the old declaration to the
2628         // new declaration.
2629         NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2630         PreviousDefaultArgLoc
2631           = OldTemplateParm->getDefaultArgument().getLocation();
2632       } else if (NewTemplateParm->hasDefaultArgument()) {
2633         SawDefaultArgument = true;
2634         PreviousDefaultArgLoc
2635           = NewTemplateParm->getDefaultArgument().getLocation();
2636       } else if (SawDefaultArgument)
2637         MissingDefaultArg = true;
2638     }
2639 
2640     // C++11 [temp.param]p11:
2641     //   If a template parameter of a primary class template or alias template
2642     //   is a template parameter pack, it shall be the last template parameter.
2643     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2644         (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2645          TPC == TPC_TypeAliasTemplate)) {
2646       Diag((*NewParam)->getLocation(),
2647            diag::err_template_param_pack_must_be_last_template_parameter);
2648       Invalid = true;
2649     }
2650 
2651     if (RedundantDefaultArg) {
2652       // C++ [temp.param]p12:
2653       //   A template-parameter shall not be given default arguments
2654       //   by two different declarations in the same scope.
2655       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
2656       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
2657       Invalid = true;
2658     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
2659       // C++ [temp.param]p11:
2660       //   If a template-parameter of a class template has a default
2661       //   template-argument, each subsequent template-parameter shall either
2662       //   have a default template-argument supplied or be a template parameter
2663       //   pack.
2664       Diag((*NewParam)->getLocation(),
2665            diag::err_template_param_default_arg_missing);
2666       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
2667       Invalid = true;
2668       RemoveDefaultArguments = true;
2669     }
2670 
2671     // If we have an old template parameter list that we're merging
2672     // in, move on to the next parameter.
2673     if (OldParams)
2674       ++OldParam;
2675   }
2676 
2677   // We were missing some default arguments at the end of the list, so remove
2678   // all of the default arguments.
2679   if (RemoveDefaultArguments) {
2680     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2681                                       NewParamEnd = NewParams->end();
2682          NewParam != NewParamEnd; ++NewParam) {
2683       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
2684         TTP->removeDefaultArgument();
2685       else if (NonTypeTemplateParmDecl *NTTP
2686                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
2687         NTTP->removeDefaultArgument();
2688       else
2689         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
2690     }
2691   }
2692 
2693   return Invalid;
2694 }
2695 
2696 namespace {
2697 
2698 /// A class which looks for a use of a certain level of template
2699 /// parameter.
2700 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
2701   typedef RecursiveASTVisitor<DependencyChecker> super;
2702 
2703   unsigned Depth;
2704 
2705   // Whether we're looking for a use of a template parameter that makes the
2706   // overall construct type-dependent / a dependent type. This is strictly
2707   // best-effort for now; we may fail to match at all for a dependent type
2708   // in some cases if this is set.
2709   bool IgnoreNonTypeDependent;
2710 
2711   bool Match;
2712   SourceLocation MatchLoc;
2713 
2714   DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
2715       : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
2716         Match(false) {}
2717 
2718   DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
2719       : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
2720     NamedDecl *ND = Params->getParam(0);
2721     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
2722       Depth = PD->getDepth();
2723     } else if (NonTypeTemplateParmDecl *PD =
2724                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
2725       Depth = PD->getDepth();
2726     } else {
2727       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
2728     }
2729   }
2730 
2731   bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
2732     if (ParmDepth >= Depth) {
2733       Match = true;
2734       MatchLoc = Loc;
2735       return true;
2736     }
2737     return false;
2738   }
2739 
2740   bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
2741     // Prune out non-type-dependent expressions if requested. This can
2742     // sometimes result in us failing to find a template parameter reference
2743     // (if a value-dependent expression creates a dependent type), but this
2744     // mode is best-effort only.
2745     if (auto *E = dyn_cast_or_null<Expr>(S))
2746       if (IgnoreNonTypeDependent && !E->isTypeDependent())
2747         return true;
2748     return super::TraverseStmt(S, Q);
2749   }
2750 
2751   bool TraverseTypeLoc(TypeLoc TL) {
2752     if (IgnoreNonTypeDependent && !TL.isNull() &&
2753         !TL.getType()->isDependentType())
2754       return true;
2755     return super::TraverseTypeLoc(TL);
2756   }
2757 
2758   bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
2759     return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
2760   }
2761 
2762   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
2763     // For a best-effort search, keep looking until we find a location.
2764     return IgnoreNonTypeDependent || !Matches(T->getDepth());
2765   }
2766 
2767   bool TraverseTemplateName(TemplateName N) {
2768     if (TemplateTemplateParmDecl *PD =
2769           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
2770       if (Matches(PD->getDepth()))
2771         return false;
2772     return super::TraverseTemplateName(N);
2773   }
2774 
2775   bool VisitDeclRefExpr(DeclRefExpr *E) {
2776     if (NonTypeTemplateParmDecl *PD =
2777           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
2778       if (Matches(PD->getDepth(), E->getExprLoc()))
2779         return false;
2780     return super::VisitDeclRefExpr(E);
2781   }
2782 
2783   bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
2784     return TraverseType(T->getReplacementType());
2785   }
2786 
2787   bool
2788   VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
2789     return TraverseTemplateArgument(T->getArgumentPack());
2790   }
2791 
2792   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
2793     return TraverseType(T->getInjectedSpecializationType());
2794   }
2795 };
2796 } // end anonymous namespace
2797 
2798 /// Determines whether a given type depends on the given parameter
2799 /// list.
2800 static bool
2801 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
2802   if (!Params->size())
2803     return false;
2804 
2805   DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
2806   Checker.TraverseType(T);
2807   return Checker.Match;
2808 }
2809 
2810 // Find the source range corresponding to the named type in the given
2811 // nested-name-specifier, if any.
2812 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
2813                                                        QualType T,
2814                                                        const CXXScopeSpec &SS) {
2815   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
2816   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
2817     if (const Type *CurType = NNS->getAsType()) {
2818       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
2819         return NNSLoc.getTypeLoc().getSourceRange();
2820     } else
2821       break;
2822 
2823     NNSLoc = NNSLoc.getPrefix();
2824   }
2825 
2826   return SourceRange();
2827 }
2828 
2829 /// Match the given template parameter lists to the given scope
2830 /// specifier, returning the template parameter list that applies to the
2831 /// name.
2832 ///
2833 /// \param DeclStartLoc the start of the declaration that has a scope
2834 /// specifier or a template parameter list.
2835 ///
2836 /// \param DeclLoc The location of the declaration itself.
2837 ///
2838 /// \param SS the scope specifier that will be matched to the given template
2839 /// parameter lists. This scope specifier precedes a qualified name that is
2840 /// being declared.
2841 ///
2842 /// \param TemplateId The template-id following the scope specifier, if there
2843 /// is one. Used to check for a missing 'template<>'.
2844 ///
2845 /// \param ParamLists the template parameter lists, from the outermost to the
2846 /// innermost template parameter lists.
2847 ///
2848 /// \param IsFriend Whether to apply the slightly different rules for
2849 /// matching template parameters to scope specifiers in friend
2850 /// declarations.
2851 ///
2852 /// \param IsMemberSpecialization will be set true if the scope specifier
2853 /// denotes a fully-specialized type, and therefore this is a declaration of
2854 /// a member specialization.
2855 ///
2856 /// \returns the template parameter list, if any, that corresponds to the
2857 /// name that is preceded by the scope specifier @p SS. This template
2858 /// parameter list may have template parameters (if we're declaring a
2859 /// template) or may have no template parameters (if we're declaring a
2860 /// template specialization), or may be NULL (if what we're declaring isn't
2861 /// itself a template).
2862 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
2863     SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
2864     TemplateIdAnnotation *TemplateId,
2865     ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
2866     bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
2867   IsMemberSpecialization = false;
2868   Invalid = false;
2869 
2870   // The sequence of nested types to which we will match up the template
2871   // parameter lists. We first build this list by starting with the type named
2872   // by the nested-name-specifier and walking out until we run out of types.
2873   SmallVector<QualType, 4> NestedTypes;
2874   QualType T;
2875   if (SS.getScopeRep()) {
2876     if (CXXRecordDecl *Record
2877               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
2878       T = Context.getTypeDeclType(Record);
2879     else
2880       T = QualType(SS.getScopeRep()->getAsType(), 0);
2881   }
2882 
2883   // If we found an explicit specialization that prevents us from needing
2884   // 'template<>' headers, this will be set to the location of that
2885   // explicit specialization.
2886   SourceLocation ExplicitSpecLoc;
2887 
2888   while (!T.isNull()) {
2889     NestedTypes.push_back(T);
2890 
2891     // Retrieve the parent of a record type.
2892     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2893       // If this type is an explicit specialization, we're done.
2894       if (ClassTemplateSpecializationDecl *Spec
2895           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2896         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
2897             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
2898           ExplicitSpecLoc = Spec->getLocation();
2899           break;
2900         }
2901       } else if (Record->getTemplateSpecializationKind()
2902                                                 == TSK_ExplicitSpecialization) {
2903         ExplicitSpecLoc = Record->getLocation();
2904         break;
2905       }
2906 
2907       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
2908         T = Context.getTypeDeclType(Parent);
2909       else
2910         T = QualType();
2911       continue;
2912     }
2913 
2914     if (const TemplateSpecializationType *TST
2915                                      = T->getAs<TemplateSpecializationType>()) {
2916       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2917         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
2918           T = Context.getTypeDeclType(Parent);
2919         else
2920           T = QualType();
2921         continue;
2922       }
2923     }
2924 
2925     // Look one step prior in a dependent template specialization type.
2926     if (const DependentTemplateSpecializationType *DependentTST
2927                           = T->getAs<DependentTemplateSpecializationType>()) {
2928       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
2929         T = QualType(NNS->getAsType(), 0);
2930       else
2931         T = QualType();
2932       continue;
2933     }
2934 
2935     // Look one step prior in a dependent name type.
2936     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
2937       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
2938         T = QualType(NNS->getAsType(), 0);
2939       else
2940         T = QualType();
2941       continue;
2942     }
2943 
2944     // Retrieve the parent of an enumeration type.
2945     if (const EnumType *EnumT = T->getAs<EnumType>()) {
2946       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
2947       // check here.
2948       EnumDecl *Enum = EnumT->getDecl();
2949 
2950       // Get to the parent type.
2951       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
2952         T = Context.getTypeDeclType(Parent);
2953       else
2954         T = QualType();
2955       continue;
2956     }
2957 
2958     T = QualType();
2959   }
2960   // Reverse the nested types list, since we want to traverse from the outermost
2961   // to the innermost while checking template-parameter-lists.
2962   std::reverse(NestedTypes.begin(), NestedTypes.end());
2963 
2964   // C++0x [temp.expl.spec]p17:
2965   //   A member or a member template may be nested within many
2966   //   enclosing class templates. In an explicit specialization for
2967   //   such a member, the member declaration shall be preceded by a
2968   //   template<> for each enclosing class template that is
2969   //   explicitly specialized.
2970   bool SawNonEmptyTemplateParameterList = false;
2971 
2972   auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
2973     if (SawNonEmptyTemplateParameterList) {
2974       if (!SuppressDiagnostic)
2975         Diag(DeclLoc, diag::err_specialize_member_of_template)
2976           << !Recovery << Range;
2977       Invalid = true;
2978       IsMemberSpecialization = false;
2979       return true;
2980     }
2981 
2982     return false;
2983   };
2984 
2985   auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
2986     // Check that we can have an explicit specialization here.
2987     if (CheckExplicitSpecialization(Range, true))
2988       return true;
2989 
2990     // We don't have a template header, but we should.
2991     SourceLocation ExpectedTemplateLoc;
2992     if (!ParamLists.empty())
2993       ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
2994     else
2995       ExpectedTemplateLoc = DeclStartLoc;
2996 
2997     if (!SuppressDiagnostic)
2998       Diag(DeclLoc, diag::err_template_spec_needs_header)
2999         << Range
3000         << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
3001     return false;
3002   };
3003 
3004   unsigned ParamIdx = 0;
3005   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
3006        ++TypeIdx) {
3007     T = NestedTypes[TypeIdx];
3008 
3009     // Whether we expect a 'template<>' header.
3010     bool NeedEmptyTemplateHeader = false;
3011 
3012     // Whether we expect a template header with parameters.
3013     bool NeedNonemptyTemplateHeader = false;
3014 
3015     // For a dependent type, the set of template parameters that we
3016     // expect to see.
3017     TemplateParameterList *ExpectedTemplateParams = nullptr;
3018 
3019     // C++0x [temp.expl.spec]p15:
3020     //   A member or a member template may be nested within many enclosing
3021     //   class templates. In an explicit specialization for such a member, the
3022     //   member declaration shall be preceded by a template<> for each
3023     //   enclosing class template that is explicitly specialized.
3024     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3025       if (ClassTemplatePartialSpecializationDecl *Partial
3026             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
3027         ExpectedTemplateParams = Partial->getTemplateParameters();
3028         NeedNonemptyTemplateHeader = true;
3029       } else if (Record->isDependentType()) {
3030         if (Record->getDescribedClassTemplate()) {
3031           ExpectedTemplateParams = Record->getDescribedClassTemplate()
3032                                                       ->getTemplateParameters();
3033           NeedNonemptyTemplateHeader = true;
3034         }
3035       } else if (ClassTemplateSpecializationDecl *Spec
3036                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3037         // C++0x [temp.expl.spec]p4:
3038         //   Members of an explicitly specialized class template are defined
3039         //   in the same manner as members of normal classes, and not using
3040         //   the template<> syntax.
3041         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
3042           NeedEmptyTemplateHeader = true;
3043         else
3044           continue;
3045       } else if (Record->getTemplateSpecializationKind()) {
3046         if (Record->getTemplateSpecializationKind()
3047                                                 != TSK_ExplicitSpecialization &&
3048             TypeIdx == NumTypes - 1)
3049           IsMemberSpecialization = true;
3050 
3051         continue;
3052       }
3053     } else if (const TemplateSpecializationType *TST
3054                                      = T->getAs<TemplateSpecializationType>()) {
3055       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3056         ExpectedTemplateParams = Template->getTemplateParameters();
3057         NeedNonemptyTemplateHeader = true;
3058       }
3059     } else if (T->getAs<DependentTemplateSpecializationType>()) {
3060       // FIXME:  We actually could/should check the template arguments here
3061       // against the corresponding template parameter list.
3062       NeedNonemptyTemplateHeader = false;
3063     }
3064 
3065     // C++ [temp.expl.spec]p16:
3066     //   In an explicit specialization declaration for a member of a class
3067     //   template or a member template that ap- pears in namespace scope, the
3068     //   member template and some of its enclosing class templates may remain
3069     //   unspecialized, except that the declaration shall not explicitly
3070     //   specialize a class member template if its en- closing class templates
3071     //   are not explicitly specialized as well.
3072     if (ParamIdx < ParamLists.size()) {
3073       if (ParamLists[ParamIdx]->size() == 0) {
3074         if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3075                                         false))
3076           return nullptr;
3077       } else
3078         SawNonEmptyTemplateParameterList = true;
3079     }
3080 
3081     if (NeedEmptyTemplateHeader) {
3082       // If we're on the last of the types, and we need a 'template<>' header
3083       // here, then it's a member specialization.
3084       if (TypeIdx == NumTypes - 1)
3085         IsMemberSpecialization = true;
3086 
3087       if (ParamIdx < ParamLists.size()) {
3088         if (ParamLists[ParamIdx]->size() > 0) {
3089           // The header has template parameters when it shouldn't. Complain.
3090           if (!SuppressDiagnostic)
3091             Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3092                  diag::err_template_param_list_matches_nontemplate)
3093               << T
3094               << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
3095                              ParamLists[ParamIdx]->getRAngleLoc())
3096               << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3097           Invalid = true;
3098           return nullptr;
3099         }
3100 
3101         // Consume this template header.
3102         ++ParamIdx;
3103         continue;
3104       }
3105 
3106       if (!IsFriend)
3107         if (DiagnoseMissingExplicitSpecialization(
3108                 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
3109           return nullptr;
3110 
3111       continue;
3112     }
3113 
3114     if (NeedNonemptyTemplateHeader) {
3115       // In friend declarations we can have template-ids which don't
3116       // depend on the corresponding template parameter lists.  But
3117       // assume that empty parameter lists are supposed to match this
3118       // template-id.
3119       if (IsFriend && T->isDependentType()) {
3120         if (ParamIdx < ParamLists.size() &&
3121             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
3122           ExpectedTemplateParams = nullptr;
3123         else
3124           continue;
3125       }
3126 
3127       if (ParamIdx < ParamLists.size()) {
3128         // Check the template parameter list, if we can.
3129         if (ExpectedTemplateParams &&
3130             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
3131                                             ExpectedTemplateParams,
3132                                             !SuppressDiagnostic, TPL_TemplateMatch))
3133           Invalid = true;
3134 
3135         if (!Invalid &&
3136             CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
3137                                        TPC_ClassTemplateMember))
3138           Invalid = true;
3139 
3140         ++ParamIdx;
3141         continue;
3142       }
3143 
3144       if (!SuppressDiagnostic)
3145         Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
3146           << T
3147           << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3148       Invalid = true;
3149       continue;
3150     }
3151   }
3152 
3153   // If there were at least as many template-ids as there were template
3154   // parameter lists, then there are no template parameter lists remaining for
3155   // the declaration itself.
3156   if (ParamIdx >= ParamLists.size()) {
3157     if (TemplateId && !IsFriend) {
3158       // We don't have a template header for the declaration itself, but we
3159       // should.
3160       DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
3161                                                         TemplateId->RAngleLoc));
3162 
3163       // Fabricate an empty template parameter list for the invented header.
3164       return TemplateParameterList::Create(Context, SourceLocation(),
3165                                            SourceLocation(), None,
3166                                            SourceLocation(), nullptr);
3167     }
3168 
3169     return nullptr;
3170   }
3171 
3172   // If there were too many template parameter lists, complain about that now.
3173   if (ParamIdx < ParamLists.size() - 1) {
3174     bool HasAnyExplicitSpecHeader = false;
3175     bool AllExplicitSpecHeaders = true;
3176     for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
3177       if (ParamLists[I]->size() == 0)
3178         HasAnyExplicitSpecHeader = true;
3179       else
3180         AllExplicitSpecHeaders = false;
3181     }
3182 
3183     if (!SuppressDiagnostic)
3184       Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3185            AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
3186                                   : diag::err_template_spec_extra_headers)
3187           << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
3188                          ParamLists[ParamLists.size() - 2]->getRAngleLoc());
3189 
3190     // If there was a specialization somewhere, such that 'template<>' is
3191     // not required, and there were any 'template<>' headers, note where the
3192     // specialization occurred.
3193     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
3194         !SuppressDiagnostic)
3195       Diag(ExplicitSpecLoc,
3196            diag::note_explicit_template_spec_does_not_need_header)
3197         << NestedTypes.back();
3198 
3199     // We have a template parameter list with no corresponding scope, which
3200     // means that the resulting template declaration can't be instantiated
3201     // properly (we'll end up with dependent nodes when we shouldn't).
3202     if (!AllExplicitSpecHeaders)
3203       Invalid = true;
3204   }
3205 
3206   // C++ [temp.expl.spec]p16:
3207   //   In an explicit specialization declaration for a member of a class
3208   //   template or a member template that ap- pears in namespace scope, the
3209   //   member template and some of its enclosing class templates may remain
3210   //   unspecialized, except that the declaration shall not explicitly
3211   //   specialize a class member template if its en- closing class templates
3212   //   are not explicitly specialized as well.
3213   if (ParamLists.back()->size() == 0 &&
3214       CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3215                                   false))
3216     return nullptr;
3217 
3218   // Return the last template parameter list, which corresponds to the
3219   // entity being declared.
3220   return ParamLists.back();
3221 }
3222 
3223 void Sema::NoteAllFoundTemplates(TemplateName Name) {
3224   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3225     Diag(Template->getLocation(), diag::note_template_declared_here)
3226         << (isa<FunctionTemplateDecl>(Template)
3227                 ? 0
3228                 : isa<ClassTemplateDecl>(Template)
3229                       ? 1
3230                       : isa<VarTemplateDecl>(Template)
3231                             ? 2
3232                             : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
3233         << Template->getDeclName();
3234     return;
3235   }
3236 
3237   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
3238     for (OverloadedTemplateStorage::iterator I = OST->begin(),
3239                                           IEnd = OST->end();
3240          I != IEnd; ++I)
3241       Diag((*I)->getLocation(), diag::note_template_declared_here)
3242         << 0 << (*I)->getDeclName();
3243 
3244     return;
3245   }
3246 }
3247 
3248 static QualType
3249 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3250                            const SmallVectorImpl<TemplateArgument> &Converted,
3251                            SourceLocation TemplateLoc,
3252                            TemplateArgumentListInfo &TemplateArgs) {
3253   ASTContext &Context = SemaRef.getASTContext();
3254   switch (BTD->getBuiltinTemplateKind()) {
3255   case BTK__make_integer_seq: {
3256     // Specializations of __make_integer_seq<S, T, N> are treated like
3257     // S<T, 0, ..., N-1>.
3258 
3259     // C++14 [inteseq.intseq]p1:
3260     //   T shall be an integer type.
3261     if (!Converted[1].getAsType()->isIntegralType(Context)) {
3262       SemaRef.Diag(TemplateArgs[1].getLocation(),
3263                    diag::err_integer_sequence_integral_element_type);
3264       return QualType();
3265     }
3266 
3267     // C++14 [inteseq.make]p1:
3268     //   If N is negative the program is ill-formed.
3269     TemplateArgument NumArgsArg = Converted[2];
3270     llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
3271     if (NumArgs < 0) {
3272       SemaRef.Diag(TemplateArgs[2].getLocation(),
3273                    diag::err_integer_sequence_negative_length);
3274       return QualType();
3275     }
3276 
3277     QualType ArgTy = NumArgsArg.getIntegralType();
3278     TemplateArgumentListInfo SyntheticTemplateArgs;
3279     // The type argument gets reused as the first template argument in the
3280     // synthetic template argument list.
3281     SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
3282     // Expand N into 0 ... N-1.
3283     for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3284          I < NumArgs; ++I) {
3285       TemplateArgument TA(Context, I, ArgTy);
3286       SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3287           TA, ArgTy, TemplateArgs[2].getLocation()));
3288     }
3289     // The first template argument will be reused as the template decl that
3290     // our synthetic template arguments will be applied to.
3291     return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3292                                        TemplateLoc, SyntheticTemplateArgs);
3293   }
3294 
3295   case BTK__type_pack_element:
3296     // Specializations of
3297     //    __type_pack_element<Index, T_1, ..., T_N>
3298     // are treated like T_Index.
3299     assert(Converted.size() == 2 &&
3300       "__type_pack_element should be given an index and a parameter pack");
3301 
3302     // If the Index is out of bounds, the program is ill-formed.
3303     TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3304     llvm::APSInt Index = IndexArg.getAsIntegral();
3305     assert(Index >= 0 && "the index used with __type_pack_element should be of "
3306                          "type std::size_t, and hence be non-negative");
3307     if (Index >= Ts.pack_size()) {
3308       SemaRef.Diag(TemplateArgs[0].getLocation(),
3309                    diag::err_type_pack_element_out_of_bounds);
3310       return QualType();
3311     }
3312 
3313     // We simply return the type at index `Index`.
3314     auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
3315     return Nth->getAsType();
3316   }
3317   llvm_unreachable("unexpected BuiltinTemplateDecl!");
3318 }
3319 
3320 /// Determine whether this alias template is "enable_if_t".
3321 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3322   return AliasTemplate->getName().equals("enable_if_t");
3323 }
3324 
3325 /// Collect all of the separable terms in the given condition, which
3326 /// might be a conjunction.
3327 ///
3328 /// FIXME: The right answer is to convert the logical expression into
3329 /// disjunctive normal form, so we can find the first failed term
3330 /// within each possible clause.
3331 static void collectConjunctionTerms(Expr *Clause,
3332                                     SmallVectorImpl<Expr *> &Terms) {
3333   if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3334     if (BinOp->getOpcode() == BO_LAnd) {
3335       collectConjunctionTerms(BinOp->getLHS(), Terms);
3336       collectConjunctionTerms(BinOp->getRHS(), Terms);
3337     }
3338 
3339     return;
3340   }
3341 
3342   Terms.push_back(Clause);
3343 }
3344 
3345 // The ranges-v3 library uses an odd pattern of a top-level "||" with
3346 // a left-hand side that is value-dependent but never true. Identify
3347 // the idiom and ignore that term.
3348 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3349   // Top-level '||'.
3350   auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3351   if (!BinOp) return Cond;
3352 
3353   if (BinOp->getOpcode() != BO_LOr) return Cond;
3354 
3355   // With an inner '==' that has a literal on the right-hand side.
3356   Expr *LHS = BinOp->getLHS();
3357   auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3358   if (!InnerBinOp) return Cond;
3359 
3360   if (InnerBinOp->getOpcode() != BO_EQ ||
3361       !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3362     return Cond;
3363 
3364   // If the inner binary operation came from a macro expansion named
3365   // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3366   // of the '||', which is the real, user-provided condition.
3367   SourceLocation Loc = InnerBinOp->getExprLoc();
3368   if (!Loc.isMacroID()) return Cond;
3369 
3370   StringRef MacroName = PP.getImmediateMacroName(Loc);
3371   if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3372     return BinOp->getRHS();
3373 
3374   return Cond;
3375 }
3376 
3377 namespace {
3378 
3379 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3380 // within failing boolean expression, such as substituting template parameters
3381 // for actual types.
3382 class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3383 public:
3384   explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3385       : Policy(P) {}
3386 
3387   bool handledStmt(Stmt *E, raw_ostream &OS) override {
3388     const auto *DR = dyn_cast<DeclRefExpr>(E);
3389     if (DR && DR->getQualifier()) {
3390       // If this is a qualified name, expand the template arguments in nested
3391       // qualifiers.
3392       DR->getQualifier()->print(OS, Policy, true);
3393       // Then print the decl itself.
3394       const ValueDecl *VD = DR->getDecl();
3395       OS << VD->getName();
3396       if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3397         // This is a template variable, print the expanded template arguments.
3398         printTemplateArgumentList(OS, IV->getTemplateArgs().asArray(), Policy);
3399       }
3400       return true;
3401     }
3402     return false;
3403   }
3404 
3405 private:
3406   const PrintingPolicy Policy;
3407 };
3408 
3409 } // end anonymous namespace
3410 
3411 std::pair<Expr *, std::string>
3412 Sema::findFailedBooleanCondition(Expr *Cond) {
3413   Cond = lookThroughRangesV3Condition(PP, Cond);
3414 
3415   // Separate out all of the terms in a conjunction.
3416   SmallVector<Expr *, 4> Terms;
3417   collectConjunctionTerms(Cond, Terms);
3418 
3419   // Determine which term failed.
3420   Expr *FailedCond = nullptr;
3421   for (Expr *Term : Terms) {
3422     Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3423 
3424     // Literals are uninteresting.
3425     if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3426         isa<IntegerLiteral>(TermAsWritten))
3427       continue;
3428 
3429     // The initialization of the parameter from the argument is
3430     // a constant-evaluated context.
3431     EnterExpressionEvaluationContext ConstantEvaluated(
3432       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3433 
3434     bool Succeeded;
3435     if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3436         !Succeeded) {
3437       FailedCond = TermAsWritten;
3438       break;
3439     }
3440   }
3441   if (!FailedCond)
3442     FailedCond = Cond->IgnoreParenImpCasts();
3443 
3444   std::string Description;
3445   {
3446     llvm::raw_string_ostream Out(Description);
3447     PrintingPolicy Policy = getPrintingPolicy();
3448     Policy.PrintCanonicalTypes = true;
3449     FailedBooleanConditionPrinterHelper Helper(Policy);
3450     FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3451   }
3452   return { FailedCond, Description };
3453 }
3454 
3455 QualType Sema::CheckTemplateIdType(TemplateName Name,
3456                                    SourceLocation TemplateLoc,
3457                                    TemplateArgumentListInfo &TemplateArgs) {
3458   DependentTemplateName *DTN
3459     = Name.getUnderlying().getAsDependentTemplateName();
3460   if (DTN && DTN->isIdentifier())
3461     // When building a template-id where the template-name is dependent,
3462     // assume the template is a type template. Either our assumption is
3463     // correct, or the code is ill-formed and will be diagnosed when the
3464     // dependent name is substituted.
3465     return Context.getDependentTemplateSpecializationType(ETK_None,
3466                                                           DTN->getQualifier(),
3467                                                           DTN->getIdentifier(),
3468                                                           TemplateArgs);
3469 
3470   TemplateDecl *Template = Name.getAsTemplateDecl();
3471   if (!Template || isa<FunctionTemplateDecl>(Template) ||
3472       isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
3473     // We might have a substituted template template parameter pack. If so,
3474     // build a template specialization type for it.
3475     if (Name.getAsSubstTemplateTemplateParmPack())
3476       return Context.getTemplateSpecializationType(Name, TemplateArgs);
3477 
3478     Diag(TemplateLoc, diag::err_template_id_not_a_type)
3479       << Name;
3480     NoteAllFoundTemplates(Name);
3481     return QualType();
3482   }
3483 
3484   // Check that the template argument list is well-formed for this
3485   // template.
3486   SmallVector<TemplateArgument, 4> Converted;
3487   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
3488                                 false, Converted,
3489                                 /*UpdateArgsWithConversion=*/true))
3490     return QualType();
3491 
3492   QualType CanonType;
3493 
3494   bool InstantiationDependent = false;
3495   if (TypeAliasTemplateDecl *AliasTemplate =
3496           dyn_cast<TypeAliasTemplateDecl>(Template)) {
3497 
3498     // Find the canonical type for this type alias template specialization.
3499     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3500     if (Pattern->isInvalidDecl())
3501       return QualType();
3502 
3503     TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
3504                                            Converted);
3505 
3506     // Only substitute for the innermost template argument list.
3507     MultiLevelTemplateArgumentList TemplateArgLists;
3508     TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs);
3509     unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
3510     for (unsigned I = 0; I < Depth; ++I)
3511       TemplateArgLists.addOuterTemplateArguments(None);
3512 
3513     LocalInstantiationScope Scope(*this);
3514     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
3515     if (Inst.isInvalid())
3516       return QualType();
3517 
3518     CanonType = SubstType(Pattern->getUnderlyingType(),
3519                           TemplateArgLists, AliasTemplate->getLocation(),
3520                           AliasTemplate->getDeclName());
3521     if (CanonType.isNull()) {
3522       // If this was enable_if and we failed to find the nested type
3523       // within enable_if in a SFINAE context, dig out the specific
3524       // enable_if condition that failed and present that instead.
3525       if (isEnableIfAliasTemplate(AliasTemplate)) {
3526         if (auto DeductionInfo = isSFINAEContext()) {
3527           if (*DeductionInfo &&
3528               (*DeductionInfo)->hasSFINAEDiagnostic() &&
3529               (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
3530                 diag::err_typename_nested_not_found_enable_if &&
3531               TemplateArgs[0].getArgument().getKind()
3532                 == TemplateArgument::Expression) {
3533             Expr *FailedCond;
3534             std::string FailedDescription;
3535             std::tie(FailedCond, FailedDescription) =
3536               findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
3537 
3538             // Remove the old SFINAE diagnostic.
3539             PartialDiagnosticAt OldDiag =
3540               {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
3541             (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
3542 
3543             // Add a new SFINAE diagnostic specifying which condition
3544             // failed.
3545             (*DeductionInfo)->addSFINAEDiagnostic(
3546               OldDiag.first,
3547               PDiag(diag::err_typename_nested_not_found_requirement)
3548                 << FailedDescription
3549                 << FailedCond->getSourceRange());
3550           }
3551         }
3552       }
3553 
3554       return QualType();
3555     }
3556   } else if (Name.isDependent() ||
3557              TemplateSpecializationType::anyDependentTemplateArguments(
3558                TemplateArgs, InstantiationDependent)) {
3559     // This class template specialization is a dependent
3560     // type. Therefore, its canonical type is another class template
3561     // specialization type that contains all of the converted
3562     // arguments in canonical form. This ensures that, e.g., A<T> and
3563     // A<T, T> have identical types when A is declared as:
3564     //
3565     //   template<typename T, typename U = T> struct A;
3566     CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
3567 
3568     // This might work out to be a current instantiation, in which
3569     // case the canonical type needs to be the InjectedClassNameType.
3570     //
3571     // TODO: in theory this could be a simple hashtable lookup; most
3572     // changes to CurContext don't change the set of current
3573     // instantiations.
3574     if (isa<ClassTemplateDecl>(Template)) {
3575       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
3576         // If we get out to a namespace, we're done.
3577         if (Ctx->isFileContext()) break;
3578 
3579         // If this isn't a record, keep looking.
3580         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
3581         if (!Record) continue;
3582 
3583         // Look for one of the two cases with InjectedClassNameTypes
3584         // and check whether it's the same template.
3585         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
3586             !Record->getDescribedClassTemplate())
3587           continue;
3588 
3589         // Fetch the injected class name type and check whether its
3590         // injected type is equal to the type we just built.
3591         QualType ICNT = Context.getTypeDeclType(Record);
3592         QualType Injected = cast<InjectedClassNameType>(ICNT)
3593           ->getInjectedSpecializationType();
3594 
3595         if (CanonType != Injected->getCanonicalTypeInternal())
3596           continue;
3597 
3598         // If so, the canonical type of this TST is the injected
3599         // class name type of the record we just found.
3600         assert(ICNT.isCanonical());
3601         CanonType = ICNT;
3602         break;
3603       }
3604     }
3605   } else if (ClassTemplateDecl *ClassTemplate
3606                = dyn_cast<ClassTemplateDecl>(Template)) {
3607     // Find the class template specialization declaration that
3608     // corresponds to these arguments.
3609     void *InsertPos = nullptr;
3610     ClassTemplateSpecializationDecl *Decl
3611       = ClassTemplate->findSpecialization(Converted, InsertPos);
3612     if (!Decl) {
3613       // This is the first time we have referenced this class template
3614       // specialization. Create the canonical declaration and add it to
3615       // the set of specializations.
3616       Decl = ClassTemplateSpecializationDecl::Create(
3617           Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
3618           ClassTemplate->getDeclContext(),
3619           ClassTemplate->getTemplatedDecl()->getBeginLoc(),
3620           ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr);
3621       ClassTemplate->AddSpecialization(Decl, InsertPos);
3622       if (ClassTemplate->isOutOfLine())
3623         Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
3624     }
3625 
3626     if (Decl->getSpecializationKind() == TSK_Undeclared) {
3627       MultiLevelTemplateArgumentList TemplateArgLists;
3628       TemplateArgLists.addOuterTemplateArguments(Converted);
3629       InstantiateAttrsForDecl(TemplateArgLists, ClassTemplate->getTemplatedDecl(),
3630                               Decl);
3631     }
3632 
3633     // Diagnose uses of this specialization.
3634     (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
3635 
3636     CanonType = Context.getTypeDeclType(Decl);
3637     assert(isa<RecordType>(CanonType) &&
3638            "type of non-dependent specialization is not a RecordType");
3639   } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
3640     CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
3641                                            TemplateArgs);
3642   }
3643 
3644   // Build the fully-sugared type for this class template
3645   // specialization, which refers back to the class template
3646   // specialization we created or found.
3647   return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3648 }
3649 
3650 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
3651                                            TemplateNameKind &TNK,
3652                                            SourceLocation NameLoc,
3653                                            IdentifierInfo *&II) {
3654   assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
3655 
3656   TemplateName Name = ParsedName.get();
3657   auto *ATN = Name.getAsAssumedTemplateName();
3658   assert(ATN && "not an assumed template name");
3659   II = ATN->getDeclName().getAsIdentifierInfo();
3660 
3661   if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
3662     // Resolved to a type template name.
3663     ParsedName = TemplateTy::make(Name);
3664     TNK = TNK_Type_template;
3665   }
3666 }
3667 
3668 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
3669                                             SourceLocation NameLoc,
3670                                             bool Diagnose) {
3671   // We assumed this undeclared identifier to be an (ADL-only) function
3672   // template name, but it was used in a context where a type was required.
3673   // Try to typo-correct it now.
3674   AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
3675   assert(ATN && "not an assumed template name");
3676 
3677   LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
3678   struct CandidateCallback : CorrectionCandidateCallback {
3679     bool ValidateCandidate(const TypoCorrection &TC) override {
3680       return TC.getCorrectionDecl() &&
3681              getAsTypeTemplateDecl(TC.getCorrectionDecl());
3682     }
3683     std::unique_ptr<CorrectionCandidateCallback> clone() override {
3684       return std::make_unique<CandidateCallback>(*this);
3685     }
3686   } FilterCCC;
3687 
3688   TypoCorrection Corrected =
3689       CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
3690                   FilterCCC, CTK_ErrorRecovery);
3691   if (Corrected && Corrected.getFoundDecl()) {
3692     diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
3693                                 << ATN->getDeclName());
3694     Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
3695     return false;
3696   }
3697 
3698   if (Diagnose)
3699     Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
3700   return true;
3701 }
3702 
3703 TypeResult Sema::ActOnTemplateIdType(
3704     Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
3705     TemplateTy TemplateD, IdentifierInfo *TemplateII,
3706     SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
3707     ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
3708     bool IsCtorOrDtorName, bool IsClassName) {
3709   if (SS.isInvalid())
3710     return true;
3711 
3712   if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
3713     DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
3714 
3715     // C++ [temp.res]p3:
3716     //   A qualified-id that refers to a type and in which the
3717     //   nested-name-specifier depends on a template-parameter (14.6.2)
3718     //   shall be prefixed by the keyword typename to indicate that the
3719     //   qualified-id denotes a type, forming an
3720     //   elaborated-type-specifier (7.1.5.3).
3721     if (!LookupCtx && isDependentScopeSpecifier(SS)) {
3722       Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
3723         << SS.getScopeRep() << TemplateII->getName();
3724       // Recover as if 'typename' were specified.
3725       // FIXME: This is not quite correct recovery as we don't transform SS
3726       // into the corresponding dependent form (and we don't diagnose missing
3727       // 'template' keywords within SS as a result).
3728       return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
3729                                TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
3730                                TemplateArgsIn, RAngleLoc);
3731     }
3732 
3733     // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
3734     // it's not actually allowed to be used as a type in most cases. Because
3735     // we annotate it before we know whether it's valid, we have to check for
3736     // this case here.
3737     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
3738     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
3739       Diag(TemplateIILoc,
3740            TemplateKWLoc.isInvalid()
3741                ? diag::err_out_of_line_qualified_id_type_names_constructor
3742                : diag::ext_out_of_line_qualified_id_type_names_constructor)
3743         << TemplateII << 0 /*injected-class-name used as template name*/
3744         << 1 /*if any keyword was present, it was 'template'*/;
3745     }
3746   }
3747 
3748   TemplateName Template = TemplateD.get();
3749   if (Template.getAsAssumedTemplateName() &&
3750       resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
3751     return true;
3752 
3753   // Translate the parser's template argument list in our AST format.
3754   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3755   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3756 
3757   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3758     QualType T
3759       = Context.getDependentTemplateSpecializationType(ETK_None,
3760                                                        DTN->getQualifier(),
3761                                                        DTN->getIdentifier(),
3762                                                        TemplateArgs);
3763     // Build type-source information.
3764     TypeLocBuilder TLB;
3765     DependentTemplateSpecializationTypeLoc SpecTL
3766       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3767     SpecTL.setElaboratedKeywordLoc(SourceLocation());
3768     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3769     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3770     SpecTL.setTemplateNameLoc(TemplateIILoc);
3771     SpecTL.setLAngleLoc(LAngleLoc);
3772     SpecTL.setRAngleLoc(RAngleLoc);
3773     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3774       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3775     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3776   }
3777 
3778   QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
3779   if (Result.isNull())
3780     return true;
3781 
3782   // Build type-source information.
3783   TypeLocBuilder TLB;
3784   TemplateSpecializationTypeLoc SpecTL
3785     = TLB.push<TemplateSpecializationTypeLoc>(Result);
3786   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3787   SpecTL.setTemplateNameLoc(TemplateIILoc);
3788   SpecTL.setLAngleLoc(LAngleLoc);
3789   SpecTL.setRAngleLoc(RAngleLoc);
3790   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3791     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3792 
3793   // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
3794   // constructor or destructor name (in such a case, the scope specifier
3795   // will be attached to the enclosing Decl or Expr node).
3796   if (SS.isNotEmpty() && !IsCtorOrDtorName) {
3797     // Create an elaborated-type-specifier containing the nested-name-specifier.
3798     Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
3799     ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3800     ElabTL.setElaboratedKeywordLoc(SourceLocation());
3801     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3802   }
3803 
3804   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3805 }
3806 
3807 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
3808                                         TypeSpecifierType TagSpec,
3809                                         SourceLocation TagLoc,
3810                                         CXXScopeSpec &SS,
3811                                         SourceLocation TemplateKWLoc,
3812                                         TemplateTy TemplateD,
3813                                         SourceLocation TemplateLoc,
3814                                         SourceLocation LAngleLoc,
3815                                         ASTTemplateArgsPtr TemplateArgsIn,
3816                                         SourceLocation RAngleLoc) {
3817   TemplateName Template = TemplateD.get();
3818 
3819   // Translate the parser's template argument list in our AST format.
3820   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3821   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3822 
3823   // Determine the tag kind
3824   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3825   ElaboratedTypeKeyword Keyword
3826     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
3827 
3828   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3829     QualType T = Context.getDependentTemplateSpecializationType(Keyword,
3830                                                           DTN->getQualifier(),
3831                                                           DTN->getIdentifier(),
3832                                                                 TemplateArgs);
3833 
3834     // Build type-source information.
3835     TypeLocBuilder TLB;
3836     DependentTemplateSpecializationTypeLoc SpecTL
3837       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3838     SpecTL.setElaboratedKeywordLoc(TagLoc);
3839     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3840     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3841     SpecTL.setTemplateNameLoc(TemplateLoc);
3842     SpecTL.setLAngleLoc(LAngleLoc);
3843     SpecTL.setRAngleLoc(RAngleLoc);
3844     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3845       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3846     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3847   }
3848 
3849   if (TypeAliasTemplateDecl *TAT =
3850         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
3851     // C++0x [dcl.type.elab]p2:
3852     //   If the identifier resolves to a typedef-name or the simple-template-id
3853     //   resolves to an alias template specialization, the
3854     //   elaborated-type-specifier is ill-formed.
3855     Diag(TemplateLoc, diag::err_tag_reference_non_tag)
3856         << TAT << NTK_TypeAliasTemplate << TagKind;
3857     Diag(TAT->getLocation(), diag::note_declared_at);
3858   }
3859 
3860   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
3861   if (Result.isNull())
3862     return TypeResult(true);
3863 
3864   // Check the tag kind
3865   if (const RecordType *RT = Result->getAs<RecordType>()) {
3866     RecordDecl *D = RT->getDecl();
3867 
3868     IdentifierInfo *Id = D->getIdentifier();
3869     assert(Id && "templated class must have an identifier");
3870 
3871     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
3872                                       TagLoc, Id)) {
3873       Diag(TagLoc, diag::err_use_with_wrong_tag)
3874         << Result
3875         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
3876       Diag(D->getLocation(), diag::note_previous_use);
3877     }
3878   }
3879 
3880   // Provide source-location information for the template specialization.
3881   TypeLocBuilder TLB;
3882   TemplateSpecializationTypeLoc SpecTL
3883     = TLB.push<TemplateSpecializationTypeLoc>(Result);
3884   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3885   SpecTL.setTemplateNameLoc(TemplateLoc);
3886   SpecTL.setLAngleLoc(LAngleLoc);
3887   SpecTL.setRAngleLoc(RAngleLoc);
3888   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3889     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3890 
3891   // Construct an elaborated type containing the nested-name-specifier (if any)
3892   // and tag keyword.
3893   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
3894   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3895   ElabTL.setElaboratedKeywordLoc(TagLoc);
3896   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3897   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3898 }
3899 
3900 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
3901                                              NamedDecl *PrevDecl,
3902                                              SourceLocation Loc,
3903                                              bool IsPartialSpecialization);
3904 
3905 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
3906 
3907 static bool isTemplateArgumentTemplateParameter(
3908     const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
3909   switch (Arg.getKind()) {
3910   case TemplateArgument::Null:
3911   case TemplateArgument::NullPtr:
3912   case TemplateArgument::Integral:
3913   case TemplateArgument::Declaration:
3914   case TemplateArgument::Pack:
3915   case TemplateArgument::TemplateExpansion:
3916     return false;
3917 
3918   case TemplateArgument::Type: {
3919     QualType Type = Arg.getAsType();
3920     const TemplateTypeParmType *TPT =
3921         Arg.getAsType()->getAs<TemplateTypeParmType>();
3922     return TPT && !Type.hasQualifiers() &&
3923            TPT->getDepth() == Depth && TPT->getIndex() == Index;
3924   }
3925 
3926   case TemplateArgument::Expression: {
3927     DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
3928     if (!DRE || !DRE->getDecl())
3929       return false;
3930     const NonTypeTemplateParmDecl *NTTP =
3931         dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
3932     return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
3933   }
3934 
3935   case TemplateArgument::Template:
3936     const TemplateTemplateParmDecl *TTP =
3937         dyn_cast_or_null<TemplateTemplateParmDecl>(
3938             Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
3939     return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
3940   }
3941   llvm_unreachable("unexpected kind of template argument");
3942 }
3943 
3944 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
3945                                     ArrayRef<TemplateArgument> Args) {
3946   if (Params->size() != Args.size())
3947     return false;
3948 
3949   unsigned Depth = Params->getDepth();
3950 
3951   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3952     TemplateArgument Arg = Args[I];
3953 
3954     // If the parameter is a pack expansion, the argument must be a pack
3955     // whose only element is a pack expansion.
3956     if (Params->getParam(I)->isParameterPack()) {
3957       if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
3958           !Arg.pack_begin()->isPackExpansion())
3959         return false;
3960       Arg = Arg.pack_begin()->getPackExpansionPattern();
3961     }
3962 
3963     if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
3964       return false;
3965   }
3966 
3967   return true;
3968 }
3969 
3970 template<typename PartialSpecDecl>
3971 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
3972   if (Partial->getDeclContext()->isDependentContext())
3973     return;
3974 
3975   // FIXME: Get the TDK from deduction in order to provide better diagnostics
3976   // for non-substitution-failure issues?
3977   TemplateDeductionInfo Info(Partial->getLocation());
3978   if (S.isMoreSpecializedThanPrimary(Partial, Info))
3979     return;
3980 
3981   auto *Template = Partial->getSpecializedTemplate();
3982   S.Diag(Partial->getLocation(),
3983          diag::ext_partial_spec_not_more_specialized_than_primary)
3984       << isa<VarTemplateDecl>(Template);
3985 
3986   if (Info.hasSFINAEDiagnostic()) {
3987     PartialDiagnosticAt Diag = {SourceLocation(),
3988                                 PartialDiagnostic::NullDiagnostic()};
3989     Info.takeSFINAEDiagnostic(Diag);
3990     SmallString<128> SFINAEArgString;
3991     Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
3992     S.Diag(Diag.first,
3993            diag::note_partial_spec_not_more_specialized_than_primary)
3994       << SFINAEArgString;
3995   }
3996 
3997   S.Diag(Template->getLocation(), diag::note_template_decl_here);
3998   SmallVector<const Expr *, 3> PartialAC, TemplateAC;
3999   Template->getAssociatedConstraints(TemplateAC);
4000   Partial->getAssociatedConstraints(PartialAC);
4001   S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
4002                                                   TemplateAC);
4003 }
4004 
4005 static void
4006 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
4007                            const llvm::SmallBitVector &DeducibleParams) {
4008   for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4009     if (!DeducibleParams[I]) {
4010       NamedDecl *Param = TemplateParams->getParam(I);
4011       if (Param->getDeclName())
4012         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4013             << Param->getDeclName();
4014       else
4015         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4016             << "(anonymous)";
4017     }
4018   }
4019 }
4020 
4021 
4022 template<typename PartialSpecDecl>
4023 static void checkTemplatePartialSpecialization(Sema &S,
4024                                                PartialSpecDecl *Partial) {
4025   // C++1z [temp.class.spec]p8: (DR1495)
4026   //   - The specialization shall be more specialized than the primary
4027   //     template (14.5.5.2).
4028   checkMoreSpecializedThanPrimary(S, Partial);
4029 
4030   // C++ [temp.class.spec]p8: (DR1315)
4031   //   - Each template-parameter shall appear at least once in the
4032   //     template-id outside a non-deduced context.
4033   // C++1z [temp.class.spec.match]p3 (P0127R2)
4034   //   If the template arguments of a partial specialization cannot be
4035   //   deduced because of the structure of its template-parameter-list
4036   //   and the template-id, the program is ill-formed.
4037   auto *TemplateParams = Partial->getTemplateParameters();
4038   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4039   S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4040                                TemplateParams->getDepth(), DeducibleParams);
4041 
4042   if (!DeducibleParams.all()) {
4043     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4044     S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
4045       << isa<VarTemplatePartialSpecializationDecl>(Partial)
4046       << (NumNonDeducible > 1)
4047       << SourceRange(Partial->getLocation(),
4048                      Partial->getTemplateArgsAsWritten()->RAngleLoc);
4049     noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
4050   }
4051 }
4052 
4053 void Sema::CheckTemplatePartialSpecialization(
4054     ClassTemplatePartialSpecializationDecl *Partial) {
4055   checkTemplatePartialSpecialization(*this, Partial);
4056 }
4057 
4058 void Sema::CheckTemplatePartialSpecialization(
4059     VarTemplatePartialSpecializationDecl *Partial) {
4060   checkTemplatePartialSpecialization(*this, Partial);
4061 }
4062 
4063 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
4064   // C++1z [temp.param]p11:
4065   //   A template parameter of a deduction guide template that does not have a
4066   //   default-argument shall be deducible from the parameter-type-list of the
4067   //   deduction guide template.
4068   auto *TemplateParams = TD->getTemplateParameters();
4069   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4070   MarkDeducedTemplateParameters(TD, DeducibleParams);
4071   for (unsigned I = 0; I != TemplateParams->size(); ++I) {
4072     // A parameter pack is deducible (to an empty pack).
4073     auto *Param = TemplateParams->getParam(I);
4074     if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
4075       DeducibleParams[I] = true;
4076   }
4077 
4078   if (!DeducibleParams.all()) {
4079     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4080     Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
4081       << (NumNonDeducible > 1);
4082     noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
4083   }
4084 }
4085 
4086 DeclResult Sema::ActOnVarTemplateSpecialization(
4087     Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
4088     TemplateParameterList *TemplateParams, StorageClass SC,
4089     bool IsPartialSpecialization) {
4090   // D must be variable template id.
4091   assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
4092          "Variable template specialization is declared with a template it.");
4093 
4094   TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4095   TemplateArgumentListInfo TemplateArgs =
4096       makeTemplateArgumentListInfo(*this, *TemplateId);
4097   SourceLocation TemplateNameLoc = D.getIdentifierLoc();
4098   SourceLocation LAngleLoc = TemplateId->LAngleLoc;
4099   SourceLocation RAngleLoc = TemplateId->RAngleLoc;
4100 
4101   TemplateName Name = TemplateId->Template.get();
4102 
4103   // The template-id must name a variable template.
4104   VarTemplateDecl *VarTemplate =
4105       dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
4106   if (!VarTemplate) {
4107     NamedDecl *FnTemplate;
4108     if (auto *OTS = Name.getAsOverloadedTemplate())
4109       FnTemplate = *OTS->begin();
4110     else
4111       FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4112     if (FnTemplate)
4113       return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
4114                << FnTemplate->getDeclName();
4115     return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
4116              << IsPartialSpecialization;
4117   }
4118 
4119   // Check for unexpanded parameter packs in any of the template arguments.
4120   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4121     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4122                                         UPPC_PartialSpecialization))
4123       return true;
4124 
4125   // Check that the template argument list is well-formed for this
4126   // template.
4127   SmallVector<TemplateArgument, 4> Converted;
4128   if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
4129                                 false, Converted,
4130                                 /*UpdateArgsWithConversion=*/true))
4131     return true;
4132 
4133   // Find the variable template (partial) specialization declaration that
4134   // corresponds to these arguments.
4135   if (IsPartialSpecialization) {
4136     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
4137                                                TemplateArgs.size(), Converted))
4138       return true;
4139 
4140     // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
4141     // also do them during instantiation.
4142     bool InstantiationDependent;
4143     if (!Name.isDependent() &&
4144         !TemplateSpecializationType::anyDependentTemplateArguments(
4145             TemplateArgs.arguments(),
4146             InstantiationDependent)) {
4147       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4148           << VarTemplate->getDeclName();
4149       IsPartialSpecialization = false;
4150     }
4151 
4152     if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
4153                                 Converted) &&
4154         (!Context.getLangOpts().CPlusPlus2a ||
4155          !TemplateParams->hasAssociatedConstraints())) {
4156       // C++ [temp.class.spec]p9b3:
4157       //
4158       //   -- The argument list of the specialization shall not be identical
4159       //      to the implicit argument list of the primary template.
4160       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4161         << /*variable template*/ 1
4162         << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
4163         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4164       // FIXME: Recover from this by treating the declaration as a redeclaration
4165       // of the primary template.
4166       return true;
4167     }
4168   }
4169 
4170   void *InsertPos = nullptr;
4171   VarTemplateSpecializationDecl *PrevDecl = nullptr;
4172 
4173   if (IsPartialSpecialization)
4174     PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams,
4175                                                       InsertPos);
4176   else
4177     PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
4178 
4179   VarTemplateSpecializationDecl *Specialization = nullptr;
4180 
4181   // Check whether we can declare a variable template specialization in
4182   // the current scope.
4183   if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
4184                                        TemplateNameLoc,
4185                                        IsPartialSpecialization))
4186     return true;
4187 
4188   if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4189     // Since the only prior variable template specialization with these
4190     // arguments was referenced but not declared,  reuse that
4191     // declaration node as our own, updating its source location and
4192     // the list of outer template parameters to reflect our new declaration.
4193     Specialization = PrevDecl;
4194     Specialization->setLocation(TemplateNameLoc);
4195     PrevDecl = nullptr;
4196   } else if (IsPartialSpecialization) {
4197     // Create a new class template partial specialization declaration node.
4198     VarTemplatePartialSpecializationDecl *PrevPartial =
4199         cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
4200     VarTemplatePartialSpecializationDecl *Partial =
4201         VarTemplatePartialSpecializationDecl::Create(
4202             Context, VarTemplate->getDeclContext(), TemplateKWLoc,
4203             TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
4204             Converted, TemplateArgs);
4205 
4206     if (!PrevPartial)
4207       VarTemplate->AddPartialSpecialization(Partial, InsertPos);
4208     Specialization = Partial;
4209 
4210     // If we are providing an explicit specialization of a member variable
4211     // template specialization, make a note of that.
4212     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4213       PrevPartial->setMemberSpecialization();
4214 
4215     CheckTemplatePartialSpecialization(Partial);
4216   } else {
4217     // Create a new class template specialization declaration node for
4218     // this explicit specialization or friend declaration.
4219     Specialization = VarTemplateSpecializationDecl::Create(
4220         Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
4221         VarTemplate, DI->getType(), DI, SC, Converted);
4222     Specialization->setTemplateArgsInfo(TemplateArgs);
4223 
4224     if (!PrevDecl)
4225       VarTemplate->AddSpecialization(Specialization, InsertPos);
4226   }
4227 
4228   // C++ [temp.expl.spec]p6:
4229   //   If a template, a member template or the member of a class template is
4230   //   explicitly specialized then that specialization shall be declared
4231   //   before the first use of that specialization that would cause an implicit
4232   //   instantiation to take place, in every translation unit in which such a
4233   //   use occurs; no diagnostic is required.
4234   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4235     bool Okay = false;
4236     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
4237       // Is there any previous explicit specialization declaration?
4238       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4239         Okay = true;
4240         break;
4241       }
4242     }
4243 
4244     if (!Okay) {
4245       SourceRange Range(TemplateNameLoc, RAngleLoc);
4246       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4247           << Name << Range;
4248 
4249       Diag(PrevDecl->getPointOfInstantiation(),
4250            diag::note_instantiation_required_here)
4251           << (PrevDecl->getTemplateSpecializationKind() !=
4252               TSK_ImplicitInstantiation);
4253       return true;
4254     }
4255   }
4256 
4257   Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4258   Specialization->setLexicalDeclContext(CurContext);
4259 
4260   // Add the specialization into its lexical context, so that it can
4261   // be seen when iterating through the list of declarations in that
4262   // context. However, specializations are not found by name lookup.
4263   CurContext->addDecl(Specialization);
4264 
4265   // Note that this is an explicit specialization.
4266   Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4267 
4268   if (PrevDecl) {
4269     // Check that this isn't a redefinition of this specialization,
4270     // merging with previous declarations.
4271     LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
4272                           forRedeclarationInCurContext());
4273     PrevSpec.addDecl(PrevDecl);
4274     D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
4275   } else if (Specialization->isStaticDataMember() &&
4276              Specialization->isOutOfLine()) {
4277     Specialization->setAccess(VarTemplate->getAccess());
4278   }
4279 
4280   return Specialization;
4281 }
4282 
4283 namespace {
4284 /// A partial specialization whose template arguments have matched
4285 /// a given template-id.
4286 struct PartialSpecMatchResult {
4287   VarTemplatePartialSpecializationDecl *Partial;
4288   TemplateArgumentList *Args;
4289 };
4290 } // end anonymous namespace
4291 
4292 DeclResult
4293 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4294                          SourceLocation TemplateNameLoc,
4295                          const TemplateArgumentListInfo &TemplateArgs) {
4296   assert(Template && "A variable template id without template?");
4297 
4298   // Check that the template argument list is well-formed for this template.
4299   SmallVector<TemplateArgument, 4> Converted;
4300   if (CheckTemplateArgumentList(
4301           Template, TemplateNameLoc,
4302           const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4303           Converted, /*UpdateArgsWithConversion=*/true))
4304     return true;
4305 
4306   // Find the variable template specialization declaration that
4307   // corresponds to these arguments.
4308   void *InsertPos = nullptr;
4309   if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
4310           Converted, InsertPos)) {
4311     checkSpecializationVisibility(TemplateNameLoc, Spec);
4312     // If we already have a variable template specialization, return it.
4313     return Spec;
4314   }
4315 
4316   // This is the first time we have referenced this variable template
4317   // specialization. Create the canonical declaration and add it to
4318   // the set of specializations, based on the closest partial specialization
4319   // that it represents. That is,
4320   VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4321   TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
4322                                        Converted);
4323   TemplateArgumentList *InstantiationArgs = &TemplateArgList;
4324   bool AmbiguousPartialSpec = false;
4325   typedef PartialSpecMatchResult MatchResult;
4326   SmallVector<MatchResult, 4> Matched;
4327   SourceLocation PointOfInstantiation = TemplateNameLoc;
4328   TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4329                                             /*ForTakingAddress=*/false);
4330 
4331   // 1. Attempt to find the closest partial specialization that this
4332   // specializes, if any.
4333   // If any of the template arguments is dependent, then this is probably
4334   // a placeholder for an incomplete declarative context; which must be
4335   // complete by instantiation time. Thus, do not search through the partial
4336   // specializations yet.
4337   // TODO: Unify with InstantiateClassTemplateSpecialization()?
4338   //       Perhaps better after unification of DeduceTemplateArguments() and
4339   //       getMoreSpecializedPartialSpecialization().
4340   bool InstantiationDependent = false;
4341   if (!TemplateSpecializationType::anyDependentTemplateArguments(
4342           TemplateArgs, InstantiationDependent)) {
4343 
4344     SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4345     Template->getPartialSpecializations(PartialSpecs);
4346 
4347     for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4348       VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4349       TemplateDeductionInfo Info(FailedCandidates.getLocation());
4350 
4351       if (TemplateDeductionResult Result =
4352               DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
4353         // Store the failed-deduction information for use in diagnostics, later.
4354         // TODO: Actually use the failed-deduction info?
4355         FailedCandidates.addCandidate().set(
4356             DeclAccessPair::make(Template, AS_public), Partial,
4357             MakeDeductionFailureInfo(Context, Result, Info));
4358         (void)Result;
4359       } else {
4360         Matched.push_back(PartialSpecMatchResult());
4361         Matched.back().Partial = Partial;
4362         Matched.back().Args = Info.take();
4363       }
4364     }
4365 
4366     if (Matched.size() >= 1) {
4367       SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4368       if (Matched.size() == 1) {
4369         //   -- If exactly one matching specialization is found, the
4370         //      instantiation is generated from that specialization.
4371         // We don't need to do anything for this.
4372       } else {
4373         //   -- If more than one matching specialization is found, the
4374         //      partial order rules (14.5.4.2) are used to determine
4375         //      whether one of the specializations is more specialized
4376         //      than the others. If none of the specializations is more
4377         //      specialized than all of the other matching
4378         //      specializations, then the use of the variable template is
4379         //      ambiguous and the program is ill-formed.
4380         for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4381                                                    PEnd = Matched.end();
4382              P != PEnd; ++P) {
4383           if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4384                                                       PointOfInstantiation) ==
4385               P->Partial)
4386             Best = P;
4387         }
4388 
4389         // Determine if the best partial specialization is more specialized than
4390         // the others.
4391         for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4392                                                    PEnd = Matched.end();
4393              P != PEnd; ++P) {
4394           if (P != Best && getMoreSpecializedPartialSpecialization(
4395                                P->Partial, Best->Partial,
4396                                PointOfInstantiation) != Best->Partial) {
4397             AmbiguousPartialSpec = true;
4398             break;
4399           }
4400         }
4401       }
4402 
4403       // Instantiate using the best variable template partial specialization.
4404       InstantiationPattern = Best->Partial;
4405       InstantiationArgs = Best->Args;
4406     } else {
4407       //   -- If no match is found, the instantiation is generated
4408       //      from the primary template.
4409       // InstantiationPattern = Template->getTemplatedDecl();
4410     }
4411   }
4412 
4413   // 2. Create the canonical declaration.
4414   // Note that we do not instantiate a definition until we see an odr-use
4415   // in DoMarkVarDeclReferenced().
4416   // FIXME: LateAttrs et al.?
4417   VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4418       Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
4419       Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
4420   if (!Decl)
4421     return true;
4422 
4423   if (AmbiguousPartialSpec) {
4424     // Partial ordering did not produce a clear winner. Complain.
4425     Decl->setInvalidDecl();
4426     Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4427         << Decl;
4428 
4429     // Print the matching partial specializations.
4430     for (MatchResult P : Matched)
4431       Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4432           << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4433                                              *P.Args);
4434     return true;
4435   }
4436 
4437   if (VarTemplatePartialSpecializationDecl *D =
4438           dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4439     Decl->setInstantiationOf(D, InstantiationArgs);
4440 
4441   checkSpecializationVisibility(TemplateNameLoc, Decl);
4442 
4443   assert(Decl && "No variable template specialization?");
4444   return Decl;
4445 }
4446 
4447 ExprResult
4448 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4449                          const DeclarationNameInfo &NameInfo,
4450                          VarTemplateDecl *Template, SourceLocation TemplateLoc,
4451                          const TemplateArgumentListInfo *TemplateArgs) {
4452 
4453   DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
4454                                        *TemplateArgs);
4455   if (Decl.isInvalid())
4456     return ExprError();
4457 
4458   VarDecl *Var = cast<VarDecl>(Decl.get());
4459   if (!Var->getTemplateSpecializationKind())
4460     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
4461                                        NameInfo.getLoc());
4462 
4463   // Build an ordinary singleton decl ref.
4464   return BuildDeclarationNameExpr(SS, NameInfo, Var,
4465                                   /*FoundD=*/nullptr, TemplateArgs);
4466 }
4467 
4468 void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4469                                             SourceLocation Loc) {
4470   Diag(Loc, diag::err_template_missing_args)
4471     << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4472   if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4473     Diag(TD->getLocation(), diag::note_template_decl_here)
4474       << TD->getTemplateParameters()->getSourceRange();
4475   }
4476 }
4477 
4478 ExprResult
4479 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
4480                              SourceLocation TemplateKWLoc,
4481                              const DeclarationNameInfo &ConceptNameInfo,
4482                              NamedDecl *FoundDecl,
4483                              ConceptDecl *NamedConcept,
4484                              const TemplateArgumentListInfo *TemplateArgs) {
4485   assert(NamedConcept && "A concept template id without a template?");
4486 
4487   llvm::SmallVector<TemplateArgument, 4> Converted;
4488   if (CheckTemplateArgumentList(NamedConcept, ConceptNameInfo.getLoc(),
4489                            const_cast<TemplateArgumentListInfo&>(*TemplateArgs),
4490                                 /*PartialTemplateArgs=*/false, Converted,
4491                                 /*UpdateArgsWithConversion=*/false))
4492     return ExprError();
4493 
4494   ConstraintSatisfaction Satisfaction;
4495   bool AreArgsDependent = false;
4496   for (TemplateArgument &Arg : Converted) {
4497     if (Arg.isDependent()) {
4498       AreArgsDependent = true;
4499       break;
4500     }
4501   }
4502   if (!AreArgsDependent &&
4503       CheckConstraintSatisfaction(NamedConcept,
4504                                   {NamedConcept->getConstraintExpr()},
4505                                   Converted,
4506                                   SourceRange(SS.isSet() ? SS.getBeginLoc() :
4507                                                        ConceptNameInfo.getLoc(),
4508                                                 TemplateArgs->getRAngleLoc()),
4509                                     Satisfaction))
4510       return ExprError();
4511 
4512   return ConceptSpecializationExpr::Create(Context,
4513       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
4514       TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
4515       ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted,
4516       AreArgsDependent ? nullptr : &Satisfaction);
4517 }
4518 
4519 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
4520                                      SourceLocation TemplateKWLoc,
4521                                      LookupResult &R,
4522                                      bool RequiresADL,
4523                                  const TemplateArgumentListInfo *TemplateArgs) {
4524   // FIXME: Can we do any checking at this point? I guess we could check the
4525   // template arguments that we have against the template name, if the template
4526   // name refers to a single template. That's not a terribly common case,
4527   // though.
4528   // foo<int> could identify a single function unambiguously
4529   // This approach does NOT work, since f<int>(1);
4530   // gets resolved prior to resorting to overload resolution
4531   // i.e., template<class T> void f(double);
4532   //       vs template<class T, class U> void f(U);
4533 
4534   // These should be filtered out by our callers.
4535   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
4536 
4537   // Non-function templates require a template argument list.
4538   if (auto *TD = R.getAsSingle<TemplateDecl>()) {
4539     if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
4540       diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
4541       return ExprError();
4542     }
4543   }
4544 
4545   auto AnyDependentArguments = [&]() -> bool {
4546     bool InstantiationDependent;
4547     return TemplateArgs &&
4548            TemplateSpecializationType::anyDependentTemplateArguments(
4549                *TemplateArgs, InstantiationDependent);
4550   };
4551 
4552   // In C++1y, check variable template ids.
4553   if (R.getAsSingle<VarTemplateDecl>() && !AnyDependentArguments()) {
4554     return CheckVarTemplateId(SS, R.getLookupNameInfo(),
4555                               R.getAsSingle<VarTemplateDecl>(),
4556                               TemplateKWLoc, TemplateArgs);
4557   }
4558 
4559   if (R.getAsSingle<ConceptDecl>()) {
4560     return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
4561                                   R.getFoundDecl(),
4562                                   R.getAsSingle<ConceptDecl>(), TemplateArgs);
4563   }
4564 
4565   // We don't want lookup warnings at this point.
4566   R.suppressDiagnostics();
4567 
4568   UnresolvedLookupExpr *ULE
4569     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
4570                                    SS.getWithLocInContext(Context),
4571                                    TemplateKWLoc,
4572                                    R.getLookupNameInfo(),
4573                                    RequiresADL, TemplateArgs,
4574                                    R.begin(), R.end());
4575 
4576   return ULE;
4577 }
4578 
4579 // We actually only call this from template instantiation.
4580 ExprResult
4581 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
4582                                    SourceLocation TemplateKWLoc,
4583                                    const DeclarationNameInfo &NameInfo,
4584                              const TemplateArgumentListInfo *TemplateArgs) {
4585 
4586   assert(TemplateArgs || TemplateKWLoc.isValid());
4587   DeclContext *DC;
4588   if (!(DC = computeDeclContext(SS, false)) ||
4589       DC->isDependentContext() ||
4590       RequireCompleteDeclContext(SS, DC))
4591     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
4592 
4593   bool MemberOfUnknownSpecialization;
4594   LookupResult R(*this, NameInfo, LookupOrdinaryName);
4595   if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
4596                          /*Entering*/false, MemberOfUnknownSpecialization,
4597                          TemplateKWLoc))
4598     return ExprError();
4599 
4600   if (R.isAmbiguous())
4601     return ExprError();
4602 
4603   if (R.empty()) {
4604     Diag(NameInfo.getLoc(), diag::err_no_member)
4605       << NameInfo.getName() << DC << SS.getRange();
4606     return ExprError();
4607   }
4608 
4609   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
4610     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
4611       << SS.getScopeRep()
4612       << NameInfo.getName().getAsString() << SS.getRange();
4613     Diag(Temp->getLocation(), diag::note_referenced_class_template);
4614     return ExprError();
4615   }
4616 
4617   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
4618 }
4619 
4620 /// Form a dependent template name.
4621 ///
4622 /// This action forms a dependent template name given the template
4623 /// name and its (presumably dependent) scope specifier. For
4624 /// example, given "MetaFun::template apply", the scope specifier \p
4625 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
4626 /// of the "template" keyword, and "apply" is the \p Name.
4627 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
4628                                                   CXXScopeSpec &SS,
4629                                                   SourceLocation TemplateKWLoc,
4630                                                   const UnqualifiedId &Name,
4631                                                   ParsedType ObjectType,
4632                                                   bool EnteringContext,
4633                                                   TemplateTy &Result,
4634                                                   bool AllowInjectedClassName) {
4635   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
4636     Diag(TemplateKWLoc,
4637          getLangOpts().CPlusPlus11 ?
4638            diag::warn_cxx98_compat_template_outside_of_template :
4639            diag::ext_template_outside_of_template)
4640       << FixItHint::CreateRemoval(TemplateKWLoc);
4641 
4642   DeclContext *LookupCtx = nullptr;
4643   if (SS.isSet())
4644     LookupCtx = computeDeclContext(SS, EnteringContext);
4645   if (!LookupCtx && ObjectType)
4646     LookupCtx = computeDeclContext(ObjectType.get());
4647   if (LookupCtx) {
4648     // C++0x [temp.names]p5:
4649     //   If a name prefixed by the keyword template is not the name of
4650     //   a template, the program is ill-formed. [Note: the keyword
4651     //   template may not be applied to non-template members of class
4652     //   templates. -end note ] [ Note: as is the case with the
4653     //   typename prefix, the template prefix is allowed in cases
4654     //   where it is not strictly necessary; i.e., when the
4655     //   nested-name-specifier or the expression on the left of the ->
4656     //   or . is not dependent on a template-parameter, or the use
4657     //   does not appear in the scope of a template. -end note]
4658     //
4659     // Note: C++03 was more strict here, because it banned the use of
4660     // the "template" keyword prior to a template-name that was not a
4661     // dependent name. C++ DR468 relaxed this requirement (the
4662     // "template" keyword is now permitted). We follow the C++0x
4663     // rules, even in C++03 mode with a warning, retroactively applying the DR.
4664     bool MemberOfUnknownSpecialization;
4665     TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
4666                                           ObjectType, EnteringContext, Result,
4667                                           MemberOfUnknownSpecialization);
4668     if (TNK == TNK_Non_template && MemberOfUnknownSpecialization) {
4669       // This is a dependent template. Handle it below.
4670     } else if (TNK == TNK_Non_template) {
4671       // Do the lookup again to determine if this is a "nothing found" case or
4672       // a "not a template" case. FIXME: Refactor isTemplateName so we don't
4673       // need to do this.
4674       DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
4675       LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
4676                      LookupOrdinaryName);
4677       bool MOUS;
4678       if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext,
4679                               MOUS, TemplateKWLoc) && !R.isAmbiguous())
4680         Diag(Name.getBeginLoc(), diag::err_no_member)
4681             << DNI.getName() << LookupCtx << SS.getRange();
4682       return TNK_Non_template;
4683     } else {
4684       // We found something; return it.
4685       auto *LookupRD = dyn_cast<CXXRecordDecl>(LookupCtx);
4686       if (!AllowInjectedClassName && SS.isSet() && LookupRD &&
4687           Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
4688           Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
4689         // C++14 [class.qual]p2:
4690         //   In a lookup in which function names are not ignored and the
4691         //   nested-name-specifier nominates a class C, if the name specified
4692         //   [...] is the injected-class-name of C, [...] the name is instead
4693         //   considered to name the constructor
4694         //
4695         // We don't get here if naming the constructor would be valid, so we
4696         // just reject immediately and recover by treating the
4697         // injected-class-name as naming the template.
4698         Diag(Name.getBeginLoc(),
4699              diag::ext_out_of_line_qualified_id_type_names_constructor)
4700             << Name.Identifier
4701             << 0 /*injected-class-name used as template name*/
4702             << 1 /*'template' keyword was used*/;
4703       }
4704       return TNK;
4705     }
4706   }
4707 
4708   NestedNameSpecifier *Qualifier = SS.getScopeRep();
4709 
4710   switch (Name.getKind()) {
4711   case UnqualifiedIdKind::IK_Identifier:
4712     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
4713                                                               Name.Identifier));
4714     return TNK_Dependent_template_name;
4715 
4716   case UnqualifiedIdKind::IK_OperatorFunctionId:
4717     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
4718                                              Name.OperatorFunctionId.Operator));
4719     return TNK_Function_template;
4720 
4721   case UnqualifiedIdKind::IK_LiteralOperatorId:
4722     llvm_unreachable("literal operator id cannot have a dependent scope");
4723 
4724   default:
4725     break;
4726   }
4727 
4728   Diag(Name.getBeginLoc(), diag::err_template_kw_refers_to_non_template)
4729       << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
4730       << TemplateKWLoc;
4731   return TNK_Non_template;
4732 }
4733 
4734 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
4735                                      TemplateArgumentLoc &AL,
4736                           SmallVectorImpl<TemplateArgument> &Converted) {
4737   const TemplateArgument &Arg = AL.getArgument();
4738   QualType ArgType;
4739   TypeSourceInfo *TSI = nullptr;
4740 
4741   // Check template type parameter.
4742   switch(Arg.getKind()) {
4743   case TemplateArgument::Type:
4744     // C++ [temp.arg.type]p1:
4745     //   A template-argument for a template-parameter which is a
4746     //   type shall be a type-id.
4747     ArgType = Arg.getAsType();
4748     TSI = AL.getTypeSourceInfo();
4749     break;
4750   case TemplateArgument::Template:
4751   case TemplateArgument::TemplateExpansion: {
4752     // We have a template type parameter but the template argument
4753     // is a template without any arguments.
4754     SourceRange SR = AL.getSourceRange();
4755     TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
4756     diagnoseMissingTemplateArguments(Name, SR.getEnd());
4757     return true;
4758   }
4759   case TemplateArgument::Expression: {
4760     // We have a template type parameter but the template argument is an
4761     // expression; see if maybe it is missing the "typename" keyword.
4762     CXXScopeSpec SS;
4763     DeclarationNameInfo NameInfo;
4764 
4765     if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
4766       SS.Adopt(ArgExpr->getQualifierLoc());
4767       NameInfo = ArgExpr->getNameInfo();
4768     } else if (DependentScopeDeclRefExpr *ArgExpr =
4769                dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
4770       SS.Adopt(ArgExpr->getQualifierLoc());
4771       NameInfo = ArgExpr->getNameInfo();
4772     } else if (CXXDependentScopeMemberExpr *ArgExpr =
4773                dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
4774       if (ArgExpr->isImplicitAccess()) {
4775         SS.Adopt(ArgExpr->getQualifierLoc());
4776         NameInfo = ArgExpr->getMemberNameInfo();
4777       }
4778     }
4779 
4780     if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
4781       LookupResult Result(*this, NameInfo, LookupOrdinaryName);
4782       LookupParsedName(Result, CurScope, &SS);
4783 
4784       if (Result.getAsSingle<TypeDecl>() ||
4785           Result.getResultKind() ==
4786               LookupResult::NotFoundInCurrentInstantiation) {
4787         // Suggest that the user add 'typename' before the NNS.
4788         SourceLocation Loc = AL.getSourceRange().getBegin();
4789         Diag(Loc, getLangOpts().MSVCCompat
4790                       ? diag::ext_ms_template_type_arg_missing_typename
4791                       : diag::err_template_arg_must_be_type_suggest)
4792             << FixItHint::CreateInsertion(Loc, "typename ");
4793         Diag(Param->getLocation(), diag::note_template_param_here);
4794 
4795         // Recover by synthesizing a type using the location information that we
4796         // already have.
4797         ArgType =
4798             Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
4799         TypeLocBuilder TLB;
4800         DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
4801         TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
4802         TL.setQualifierLoc(SS.getWithLocInContext(Context));
4803         TL.setNameLoc(NameInfo.getLoc());
4804         TSI = TLB.getTypeSourceInfo(Context, ArgType);
4805 
4806         // Overwrite our input TemplateArgumentLoc so that we can recover
4807         // properly.
4808         AL = TemplateArgumentLoc(TemplateArgument(ArgType),
4809                                  TemplateArgumentLocInfo(TSI));
4810 
4811         break;
4812       }
4813     }
4814     // fallthrough
4815     LLVM_FALLTHROUGH;
4816   }
4817   default: {
4818     // We have a template type parameter but the template argument
4819     // is not a type.
4820     SourceRange SR = AL.getSourceRange();
4821     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
4822     Diag(Param->getLocation(), diag::note_template_param_here);
4823 
4824     return true;
4825   }
4826   }
4827 
4828   if (CheckTemplateArgument(Param, TSI))
4829     return true;
4830 
4831   // Add the converted template type argument.
4832   ArgType = Context.getCanonicalType(ArgType);
4833 
4834   // Objective-C ARC:
4835   //   If an explicitly-specified template argument type is a lifetime type
4836   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
4837   if (getLangOpts().ObjCAutoRefCount &&
4838       ArgType->isObjCLifetimeType() &&
4839       !ArgType.getObjCLifetime()) {
4840     Qualifiers Qs;
4841     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
4842     ArgType = Context.getQualifiedType(ArgType, Qs);
4843   }
4844 
4845   Converted.push_back(TemplateArgument(ArgType));
4846   return false;
4847 }
4848 
4849 /// Substitute template arguments into the default template argument for
4850 /// the given template type parameter.
4851 ///
4852 /// \param SemaRef the semantic analysis object for which we are performing
4853 /// the substitution.
4854 ///
4855 /// \param Template the template that we are synthesizing template arguments
4856 /// for.
4857 ///
4858 /// \param TemplateLoc the location of the template name that started the
4859 /// template-id we are checking.
4860 ///
4861 /// \param RAngleLoc the location of the right angle bracket ('>') that
4862 /// terminates the template-id.
4863 ///
4864 /// \param Param the template template parameter whose default we are
4865 /// substituting into.
4866 ///
4867 /// \param Converted the list of template arguments provided for template
4868 /// parameters that precede \p Param in the template parameter list.
4869 /// \returns the substituted template argument, or NULL if an error occurred.
4870 static TypeSourceInfo *
4871 SubstDefaultTemplateArgument(Sema &SemaRef,
4872                              TemplateDecl *Template,
4873                              SourceLocation TemplateLoc,
4874                              SourceLocation RAngleLoc,
4875                              TemplateTypeParmDecl *Param,
4876                              SmallVectorImpl<TemplateArgument> &Converted) {
4877   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
4878 
4879   // If the argument type is dependent, instantiate it now based
4880   // on the previously-computed template arguments.
4881   if (ArgType->getType()->isInstantiationDependentType()) {
4882     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
4883                                      Param, Template, Converted,
4884                                      SourceRange(TemplateLoc, RAngleLoc));
4885     if (Inst.isInvalid())
4886       return nullptr;
4887 
4888     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4889 
4890     // Only substitute for the innermost template argument list.
4891     MultiLevelTemplateArgumentList TemplateArgLists;
4892     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4893     for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4894       TemplateArgLists.addOuterTemplateArguments(None);
4895 
4896     Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4897     ArgType =
4898         SemaRef.SubstType(ArgType, TemplateArgLists,
4899                           Param->getDefaultArgumentLoc(), Param->getDeclName());
4900   }
4901 
4902   return ArgType;
4903 }
4904 
4905 /// Substitute template arguments into the default template argument for
4906 /// the given non-type template parameter.
4907 ///
4908 /// \param SemaRef the semantic analysis object for which we are performing
4909 /// the substitution.
4910 ///
4911 /// \param Template the template that we are synthesizing template arguments
4912 /// for.
4913 ///
4914 /// \param TemplateLoc the location of the template name that started the
4915 /// template-id we are checking.
4916 ///
4917 /// \param RAngleLoc the location of the right angle bracket ('>') that
4918 /// terminates the template-id.
4919 ///
4920 /// \param Param the non-type template parameter whose default we are
4921 /// substituting into.
4922 ///
4923 /// \param Converted the list of template arguments provided for template
4924 /// parameters that precede \p Param in the template parameter list.
4925 ///
4926 /// \returns the substituted template argument, or NULL if an error occurred.
4927 static ExprResult
4928 SubstDefaultTemplateArgument(Sema &SemaRef,
4929                              TemplateDecl *Template,
4930                              SourceLocation TemplateLoc,
4931                              SourceLocation RAngleLoc,
4932                              NonTypeTemplateParmDecl *Param,
4933                         SmallVectorImpl<TemplateArgument> &Converted) {
4934   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
4935                                    Param, Template, Converted,
4936                                    SourceRange(TemplateLoc, RAngleLoc));
4937   if (Inst.isInvalid())
4938     return ExprError();
4939 
4940   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4941 
4942   // Only substitute for the innermost template argument list.
4943   MultiLevelTemplateArgumentList TemplateArgLists;
4944   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4945   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4946     TemplateArgLists.addOuterTemplateArguments(None);
4947 
4948   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4949   EnterExpressionEvaluationContext ConstantEvaluated(
4950       SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4951   return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
4952 }
4953 
4954 /// Substitute template arguments into the default template argument for
4955 /// the given template template parameter.
4956 ///
4957 /// \param SemaRef the semantic analysis object for which we are performing
4958 /// the substitution.
4959 ///
4960 /// \param Template the template that we are synthesizing template arguments
4961 /// for.
4962 ///
4963 /// \param TemplateLoc the location of the template name that started the
4964 /// template-id we are checking.
4965 ///
4966 /// \param RAngleLoc the location of the right angle bracket ('>') that
4967 /// terminates the template-id.
4968 ///
4969 /// \param Param the template template parameter whose default we are
4970 /// substituting into.
4971 ///
4972 /// \param Converted the list of template arguments provided for template
4973 /// parameters that precede \p Param in the template parameter list.
4974 ///
4975 /// \param QualifierLoc Will be set to the nested-name-specifier (with
4976 /// source-location information) that precedes the template name.
4977 ///
4978 /// \returns the substituted template argument, or NULL if an error occurred.
4979 static TemplateName
4980 SubstDefaultTemplateArgument(Sema &SemaRef,
4981                              TemplateDecl *Template,
4982                              SourceLocation TemplateLoc,
4983                              SourceLocation RAngleLoc,
4984                              TemplateTemplateParmDecl *Param,
4985                        SmallVectorImpl<TemplateArgument> &Converted,
4986                              NestedNameSpecifierLoc &QualifierLoc) {
4987   Sema::InstantiatingTemplate Inst(
4988       SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
4989       SourceRange(TemplateLoc, RAngleLoc));
4990   if (Inst.isInvalid())
4991     return TemplateName();
4992 
4993   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4994 
4995   // Only substitute for the innermost template argument list.
4996   MultiLevelTemplateArgumentList TemplateArgLists;
4997   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4998   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4999     TemplateArgLists.addOuterTemplateArguments(None);
5000 
5001   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5002   // Substitute into the nested-name-specifier first,
5003   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
5004   if (QualifierLoc) {
5005     QualifierLoc =
5006         SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
5007     if (!QualifierLoc)
5008       return TemplateName();
5009   }
5010 
5011   return SemaRef.SubstTemplateName(
5012              QualifierLoc,
5013              Param->getDefaultArgument().getArgument().getAsTemplate(),
5014              Param->getDefaultArgument().getTemplateNameLoc(),
5015              TemplateArgLists);
5016 }
5017 
5018 /// If the given template parameter has a default template
5019 /// argument, substitute into that default template argument and
5020 /// return the corresponding template argument.
5021 TemplateArgumentLoc
5022 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
5023                                               SourceLocation TemplateLoc,
5024                                               SourceLocation RAngleLoc,
5025                                               Decl *Param,
5026                                               SmallVectorImpl<TemplateArgument>
5027                                                 &Converted,
5028                                               bool &HasDefaultArg) {
5029   HasDefaultArg = false;
5030 
5031   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
5032     if (!hasVisibleDefaultArgument(TypeParm))
5033       return TemplateArgumentLoc();
5034 
5035     HasDefaultArg = true;
5036     TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
5037                                                       TemplateLoc,
5038                                                       RAngleLoc,
5039                                                       TypeParm,
5040                                                       Converted);
5041     if (DI)
5042       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
5043 
5044     return TemplateArgumentLoc();
5045   }
5046 
5047   if (NonTypeTemplateParmDecl *NonTypeParm
5048         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5049     if (!hasVisibleDefaultArgument(NonTypeParm))
5050       return TemplateArgumentLoc();
5051 
5052     HasDefaultArg = true;
5053     ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
5054                                                   TemplateLoc,
5055                                                   RAngleLoc,
5056                                                   NonTypeParm,
5057                                                   Converted);
5058     if (Arg.isInvalid())
5059       return TemplateArgumentLoc();
5060 
5061     Expr *ArgE = Arg.getAs<Expr>();
5062     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
5063   }
5064 
5065   TemplateTemplateParmDecl *TempTempParm
5066     = cast<TemplateTemplateParmDecl>(Param);
5067   if (!hasVisibleDefaultArgument(TempTempParm))
5068     return TemplateArgumentLoc();
5069 
5070   HasDefaultArg = true;
5071   NestedNameSpecifierLoc QualifierLoc;
5072   TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
5073                                                     TemplateLoc,
5074                                                     RAngleLoc,
5075                                                     TempTempParm,
5076                                                     Converted,
5077                                                     QualifierLoc);
5078   if (TName.isNull())
5079     return TemplateArgumentLoc();
5080 
5081   return TemplateArgumentLoc(TemplateArgument(TName),
5082                 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
5083                 TempTempParm->getDefaultArgument().getTemplateNameLoc());
5084 }
5085 
5086 /// Convert a template-argument that we parsed as a type into a template, if
5087 /// possible. C++ permits injected-class-names to perform dual service as
5088 /// template template arguments and as template type arguments.
5089 static TemplateArgumentLoc convertTypeTemplateArgumentToTemplate(TypeLoc TLoc) {
5090   // Extract and step over any surrounding nested-name-specifier.
5091   NestedNameSpecifierLoc QualLoc;
5092   if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
5093     if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
5094       return TemplateArgumentLoc();
5095 
5096     QualLoc = ETLoc.getQualifierLoc();
5097     TLoc = ETLoc.getNamedTypeLoc();
5098   }
5099 
5100   // If this type was written as an injected-class-name, it can be used as a
5101   // template template argument.
5102   if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
5103     return TemplateArgumentLoc(InjLoc.getTypePtr()->getTemplateName(),
5104                                QualLoc, InjLoc.getNameLoc());
5105 
5106   // If this type was written as an injected-class-name, it may have been
5107   // converted to a RecordType during instantiation. If the RecordType is
5108   // *not* wrapped in a TemplateSpecializationType and denotes a class
5109   // template specialization, it must have come from an injected-class-name.
5110   if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
5111     if (auto *CTSD =
5112             dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
5113       return TemplateArgumentLoc(TemplateName(CTSD->getSpecializedTemplate()),
5114                                  QualLoc, RecLoc.getNameLoc());
5115 
5116   return TemplateArgumentLoc();
5117 }
5118 
5119 /// Check that the given template argument corresponds to the given
5120 /// template parameter.
5121 ///
5122 /// \param Param The template parameter against which the argument will be
5123 /// checked.
5124 ///
5125 /// \param Arg The template argument, which may be updated due to conversions.
5126 ///
5127 /// \param Template The template in which the template argument resides.
5128 ///
5129 /// \param TemplateLoc The location of the template name for the template
5130 /// whose argument list we're matching.
5131 ///
5132 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
5133 /// the template argument list.
5134 ///
5135 /// \param ArgumentPackIndex The index into the argument pack where this
5136 /// argument will be placed. Only valid if the parameter is a parameter pack.
5137 ///
5138 /// \param Converted The checked, converted argument will be added to the
5139 /// end of this small vector.
5140 ///
5141 /// \param CTAK Describes how we arrived at this particular template argument:
5142 /// explicitly written, deduced, etc.
5143 ///
5144 /// \returns true on error, false otherwise.
5145 bool Sema::CheckTemplateArgument(NamedDecl *Param,
5146                                  TemplateArgumentLoc &Arg,
5147                                  NamedDecl *Template,
5148                                  SourceLocation TemplateLoc,
5149                                  SourceLocation RAngleLoc,
5150                                  unsigned ArgumentPackIndex,
5151                             SmallVectorImpl<TemplateArgument> &Converted,
5152                                  CheckTemplateArgumentKind CTAK) {
5153   // Check template type parameters.
5154   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
5155     return CheckTemplateTypeArgument(TTP, Arg, Converted);
5156 
5157   // Check non-type template parameters.
5158   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5159     // Do substitution on the type of the non-type template parameter
5160     // with the template arguments we've seen thus far.  But if the
5161     // template has a dependent context then we cannot substitute yet.
5162     QualType NTTPType = NTTP->getType();
5163     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
5164       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
5165 
5166     if (NTTPType->isInstantiationDependentType() &&
5167         !isa<TemplateTemplateParmDecl>(Template) &&
5168         !Template->getDeclContext()->isDependentContext()) {
5169       // Do substitution on the type of the non-type template parameter.
5170       InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5171                                  NTTP, Converted,
5172                                  SourceRange(TemplateLoc, RAngleLoc));
5173       if (Inst.isInvalid())
5174         return true;
5175 
5176       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
5177                                         Converted);
5178 
5179       // If the parameter is a pack expansion, expand this slice of the pack.
5180       if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
5181         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
5182                                                            ArgumentPackIndex);
5183         NTTPType = SubstType(PET->getPattern(),
5184                              MultiLevelTemplateArgumentList(TemplateArgs),
5185                              NTTP->getLocation(),
5186                              NTTP->getDeclName());
5187       } else {
5188         NTTPType = SubstType(NTTPType,
5189                              MultiLevelTemplateArgumentList(TemplateArgs),
5190                              NTTP->getLocation(),
5191                              NTTP->getDeclName());
5192       }
5193 
5194       // If that worked, check the non-type template parameter type
5195       // for validity.
5196       if (!NTTPType.isNull())
5197         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
5198                                                      NTTP->getLocation());
5199       if (NTTPType.isNull())
5200         return true;
5201     }
5202 
5203     switch (Arg.getArgument().getKind()) {
5204     case TemplateArgument::Null:
5205       llvm_unreachable("Should never see a NULL template argument here");
5206 
5207     case TemplateArgument::Expression: {
5208       TemplateArgument Result;
5209       unsigned CurSFINAEErrors = NumSFINAEErrors;
5210       ExprResult Res =
5211         CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
5212                               Result, CTAK);
5213       if (Res.isInvalid())
5214         return true;
5215       // If the current template argument causes an error, give up now.
5216       if (CurSFINAEErrors < NumSFINAEErrors)
5217         return true;
5218 
5219       // If the resulting expression is new, then use it in place of the
5220       // old expression in the template argument.
5221       if (Res.get() != Arg.getArgument().getAsExpr()) {
5222         TemplateArgument TA(Res.get());
5223         Arg = TemplateArgumentLoc(TA, Res.get());
5224       }
5225 
5226       Converted.push_back(Result);
5227       break;
5228     }
5229 
5230     case TemplateArgument::Declaration:
5231     case TemplateArgument::Integral:
5232     case TemplateArgument::NullPtr:
5233       // We've already checked this template argument, so just copy
5234       // it to the list of converted arguments.
5235       Converted.push_back(Arg.getArgument());
5236       break;
5237 
5238     case TemplateArgument::Template:
5239     case TemplateArgument::TemplateExpansion:
5240       // We were given a template template argument. It may not be ill-formed;
5241       // see below.
5242       if (DependentTemplateName *DTN
5243             = Arg.getArgument().getAsTemplateOrTemplatePattern()
5244                                               .getAsDependentTemplateName()) {
5245         // We have a template argument such as \c T::template X, which we
5246         // parsed as a template template argument. However, since we now
5247         // know that we need a non-type template argument, convert this
5248         // template name into an expression.
5249 
5250         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5251                                      Arg.getTemplateNameLoc());
5252 
5253         CXXScopeSpec SS;
5254         SS.Adopt(Arg.getTemplateQualifierLoc());
5255         // FIXME: the template-template arg was a DependentTemplateName,
5256         // so it was provided with a template keyword. However, its source
5257         // location is not stored in the template argument structure.
5258         SourceLocation TemplateKWLoc;
5259         ExprResult E = DependentScopeDeclRefExpr::Create(
5260             Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5261             nullptr);
5262 
5263         // If we parsed the template argument as a pack expansion, create a
5264         // pack expansion expression.
5265         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5266           E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
5267           if (E.isInvalid())
5268             return true;
5269         }
5270 
5271         TemplateArgument Result;
5272         E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
5273         if (E.isInvalid())
5274           return true;
5275 
5276         Converted.push_back(Result);
5277         break;
5278       }
5279 
5280       // We have a template argument that actually does refer to a class
5281       // template, alias template, or template template parameter, and
5282       // therefore cannot be a non-type template argument.
5283       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5284         << Arg.getSourceRange();
5285 
5286       Diag(Param->getLocation(), diag::note_template_param_here);
5287       return true;
5288 
5289     case TemplateArgument::Type: {
5290       // We have a non-type template parameter but the template
5291       // argument is a type.
5292 
5293       // C++ [temp.arg]p2:
5294       //   In a template-argument, an ambiguity between a type-id and
5295       //   an expression is resolved to a type-id, regardless of the
5296       //   form of the corresponding template-parameter.
5297       //
5298       // We warn specifically about this case, since it can be rather
5299       // confusing for users.
5300       QualType T = Arg.getArgument().getAsType();
5301       SourceRange SR = Arg.getSourceRange();
5302       if (T->isFunctionType())
5303         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5304       else
5305         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5306       Diag(Param->getLocation(), diag::note_template_param_here);
5307       return true;
5308     }
5309 
5310     case TemplateArgument::Pack:
5311       llvm_unreachable("Caller must expand template argument packs");
5312     }
5313 
5314     return false;
5315   }
5316 
5317 
5318   // Check template template parameters.
5319   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5320 
5321   TemplateParameterList *Params = TempParm->getTemplateParameters();
5322   if (TempParm->isExpandedParameterPack())
5323     Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5324 
5325   // Substitute into the template parameter list of the template
5326   // template parameter, since previously-supplied template arguments
5327   // may appear within the template template parameter.
5328   //
5329   // FIXME: Skip this if the parameters aren't instantiation-dependent.
5330   {
5331     // Set up a template instantiation context.
5332     LocalInstantiationScope Scope(*this);
5333     InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5334                                TempParm, Converted,
5335                                SourceRange(TemplateLoc, RAngleLoc));
5336     if (Inst.isInvalid())
5337       return true;
5338 
5339     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5340     Params = SubstTemplateParams(Params, CurContext,
5341                                  MultiLevelTemplateArgumentList(TemplateArgs));
5342     if (!Params)
5343       return true;
5344   }
5345 
5346   // C++1z [temp.local]p1: (DR1004)
5347   //   When [the injected-class-name] is used [...] as a template-argument for
5348   //   a template template-parameter [...] it refers to the class template
5349   //   itself.
5350   if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5351     TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5352         Arg.getTypeSourceInfo()->getTypeLoc());
5353     if (!ConvertedArg.getArgument().isNull())
5354       Arg = ConvertedArg;
5355   }
5356 
5357   switch (Arg.getArgument().getKind()) {
5358   case TemplateArgument::Null:
5359     llvm_unreachable("Should never see a NULL template argument here");
5360 
5361   case TemplateArgument::Template:
5362   case TemplateArgument::TemplateExpansion:
5363     if (CheckTemplateTemplateArgument(TempParm, Params, Arg))
5364       return true;
5365 
5366     Converted.push_back(Arg.getArgument());
5367     break;
5368 
5369   case TemplateArgument::Expression:
5370   case TemplateArgument::Type:
5371     // We have a template template parameter but the template
5372     // argument does not refer to a template.
5373     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5374       << getLangOpts().CPlusPlus11;
5375     return true;
5376 
5377   case TemplateArgument::Declaration:
5378     llvm_unreachable("Declaration argument with template template parameter");
5379   case TemplateArgument::Integral:
5380     llvm_unreachable("Integral argument with template template parameter");
5381   case TemplateArgument::NullPtr:
5382     llvm_unreachable("Null pointer argument with template template parameter");
5383 
5384   case TemplateArgument::Pack:
5385     llvm_unreachable("Caller must expand template argument packs");
5386   }
5387 
5388   return false;
5389 }
5390 
5391 /// Check whether the template parameter is a pack expansion, and if so,
5392 /// determine the number of parameters produced by that expansion. For instance:
5393 ///
5394 /// \code
5395 /// template<typename ...Ts> struct A {
5396 ///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
5397 /// };
5398 /// \endcode
5399 ///
5400 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
5401 /// is not a pack expansion, so returns an empty Optional.
5402 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
5403   if (TemplateTypeParmDecl *TTP
5404         = dyn_cast<TemplateTypeParmDecl>(Param)) {
5405     if (TTP->isExpandedParameterPack())
5406       return TTP->getNumExpansionParameters();
5407   }
5408 
5409   if (NonTypeTemplateParmDecl *NTTP
5410         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5411     if (NTTP->isExpandedParameterPack())
5412       return NTTP->getNumExpansionTypes();
5413   }
5414 
5415   if (TemplateTemplateParmDecl *TTP
5416         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
5417     if (TTP->isExpandedParameterPack())
5418       return TTP->getNumExpansionTemplateParameters();
5419   }
5420 
5421   return None;
5422 }
5423 
5424 /// Diagnose a missing template argument.
5425 template<typename TemplateParmDecl>
5426 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5427                                     TemplateDecl *TD,
5428                                     const TemplateParmDecl *D,
5429                                     TemplateArgumentListInfo &Args) {
5430   // Dig out the most recent declaration of the template parameter; there may be
5431   // declarations of the template that are more recent than TD.
5432   D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5433                                  ->getTemplateParameters()
5434                                  ->getParam(D->getIndex()));
5435 
5436   // If there's a default argument that's not visible, diagnose that we're
5437   // missing a module import.
5438   llvm::SmallVector<Module*, 8> Modules;
5439   if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
5440     S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5441                             D->getDefaultArgumentLoc(), Modules,
5442                             Sema::MissingImportKind::DefaultArgument,
5443                             /*Recover*/true);
5444     return true;
5445   }
5446 
5447   // FIXME: If there's a more recent default argument that *is* visible,
5448   // diagnose that it was declared too late.
5449 
5450   TemplateParameterList *Params = TD->getTemplateParameters();
5451 
5452   S.Diag(Loc, diag::err_template_arg_list_different_arity)
5453     << /*not enough args*/0
5454     << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5455     << TD;
5456   S.Diag(TD->getLocation(), diag::note_template_decl_here)
5457     << Params->getSourceRange();
5458   return true;
5459 }
5460 
5461 /// Check that the given template argument list is well-formed
5462 /// for specializing the given template.
5463 bool Sema::CheckTemplateArgumentList(
5464     TemplateDecl *Template, SourceLocation TemplateLoc,
5465     TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5466     SmallVectorImpl<TemplateArgument> &Converted,
5467     bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
5468 
5469   if (ConstraintsNotSatisfied)
5470     *ConstraintsNotSatisfied = false;
5471 
5472   // Make a copy of the template arguments for processing.  Only make the
5473   // changes at the end when successful in matching the arguments to the
5474   // template.
5475   TemplateArgumentListInfo NewArgs = TemplateArgs;
5476 
5477   // Make sure we get the template parameter list from the most
5478   // recentdeclaration, since that is the only one that has is guaranteed to
5479   // have all the default template argument information.
5480   TemplateParameterList *Params =
5481       cast<TemplateDecl>(Template->getMostRecentDecl())
5482           ->getTemplateParameters();
5483 
5484   SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5485 
5486   // C++ [temp.arg]p1:
5487   //   [...] The type and form of each template-argument specified in
5488   //   a template-id shall match the type and form specified for the
5489   //   corresponding parameter declared by the template in its
5490   //   template-parameter-list.
5491   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
5492   SmallVector<TemplateArgument, 2> ArgumentPack;
5493   unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5494   LocalInstantiationScope InstScope(*this, true);
5495   for (TemplateParameterList::iterator Param = Params->begin(),
5496                                        ParamEnd = Params->end();
5497        Param != ParamEnd; /* increment in loop */) {
5498     // If we have an expanded parameter pack, make sure we don't have too
5499     // many arguments.
5500     if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
5501       if (*Expansions == ArgumentPack.size()) {
5502         // We're done with this parameter pack. Pack up its arguments and add
5503         // them to the list.
5504         Converted.push_back(
5505             TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5506         ArgumentPack.clear();
5507 
5508         // This argument is assigned to the next parameter.
5509         ++Param;
5510         continue;
5511       } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
5512         // Not enough arguments for this parameter pack.
5513         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5514           << /*not enough args*/0
5515           << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5516           << Template;
5517         Diag(Template->getLocation(), diag::note_template_decl_here)
5518           << Params->getSourceRange();
5519         return true;
5520       }
5521     }
5522 
5523     if (ArgIdx < NumArgs) {
5524       // Check the template argument we were given.
5525       if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
5526                                 TemplateLoc, RAngleLoc,
5527                                 ArgumentPack.size(), Converted))
5528         return true;
5529 
5530       bool PackExpansionIntoNonPack =
5531           NewArgs[ArgIdx].getArgument().isPackExpansion() &&
5532           (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
5533       if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
5534                                        isa<ConceptDecl>(Template))) {
5535         // Core issue 1430: we have a pack expansion as an argument to an
5536         // alias template, and it's not part of a parameter pack. This
5537         // can't be canonicalized, so reject it now.
5538         // As for concepts - we cannot normalize constraints where this
5539         // situation exists.
5540         Diag(NewArgs[ArgIdx].getLocation(),
5541              diag::err_template_expansion_into_fixed_list)
5542           << (isa<ConceptDecl>(Template) ? 1 : 0)
5543           << NewArgs[ArgIdx].getSourceRange();
5544         Diag((*Param)->getLocation(), diag::note_template_param_here);
5545         return true;
5546       }
5547 
5548       // We're now done with this argument.
5549       ++ArgIdx;
5550 
5551       if ((*Param)->isTemplateParameterPack()) {
5552         // The template parameter was a template parameter pack, so take the
5553         // deduced argument and place it on the argument pack. Note that we
5554         // stay on the same template parameter so that we can deduce more
5555         // arguments.
5556         ArgumentPack.push_back(Converted.pop_back_val());
5557       } else {
5558         // Move to the next template parameter.
5559         ++Param;
5560       }
5561 
5562       // If we just saw a pack expansion into a non-pack, then directly convert
5563       // the remaining arguments, because we don't know what parameters they'll
5564       // match up with.
5565       if (PackExpansionIntoNonPack) {
5566         if (!ArgumentPack.empty()) {
5567           // If we were part way through filling in an expanded parameter pack,
5568           // fall back to just producing individual arguments.
5569           Converted.insert(Converted.end(),
5570                            ArgumentPack.begin(), ArgumentPack.end());
5571           ArgumentPack.clear();
5572         }
5573 
5574         while (ArgIdx < NumArgs) {
5575           Converted.push_back(NewArgs[ArgIdx].getArgument());
5576           ++ArgIdx;
5577         }
5578 
5579         return false;
5580       }
5581 
5582       continue;
5583     }
5584 
5585     // If we're checking a partial template argument list, we're done.
5586     if (PartialTemplateArgs) {
5587       if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
5588         Converted.push_back(
5589             TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5590       return false;
5591     }
5592 
5593     // If we have a template parameter pack with no more corresponding
5594     // arguments, just break out now and we'll fill in the argument pack below.
5595     if ((*Param)->isTemplateParameterPack()) {
5596       assert(!getExpandedPackSize(*Param) &&
5597              "Should have dealt with this already");
5598 
5599       // A non-expanded parameter pack before the end of the parameter list
5600       // only occurs for an ill-formed template parameter list, unless we've
5601       // got a partial argument list for a function template, so just bail out.
5602       if (Param + 1 != ParamEnd)
5603         return true;
5604 
5605       Converted.push_back(
5606           TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5607       ArgumentPack.clear();
5608 
5609       ++Param;
5610       continue;
5611     }
5612 
5613     // Check whether we have a default argument.
5614     TemplateArgumentLoc Arg;
5615 
5616     // Retrieve the default template argument from the template
5617     // parameter. For each kind of template parameter, we substitute the
5618     // template arguments provided thus far and any "outer" template arguments
5619     // (when the template parameter was part of a nested template) into
5620     // the default argument.
5621     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
5622       if (!hasVisibleDefaultArgument(TTP))
5623         return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
5624                                        NewArgs);
5625 
5626       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
5627                                                              Template,
5628                                                              TemplateLoc,
5629                                                              RAngleLoc,
5630                                                              TTP,
5631                                                              Converted);
5632       if (!ArgType)
5633         return true;
5634 
5635       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
5636                                 ArgType);
5637     } else if (NonTypeTemplateParmDecl *NTTP
5638                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
5639       if (!hasVisibleDefaultArgument(NTTP))
5640         return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
5641                                        NewArgs);
5642 
5643       ExprResult E = SubstDefaultTemplateArgument(*this, Template,
5644                                                               TemplateLoc,
5645                                                               RAngleLoc,
5646                                                               NTTP,
5647                                                               Converted);
5648       if (E.isInvalid())
5649         return true;
5650 
5651       Expr *Ex = E.getAs<Expr>();
5652       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
5653     } else {
5654       TemplateTemplateParmDecl *TempParm
5655         = cast<TemplateTemplateParmDecl>(*Param);
5656 
5657       if (!hasVisibleDefaultArgument(TempParm))
5658         return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
5659                                        NewArgs);
5660 
5661       NestedNameSpecifierLoc QualifierLoc;
5662       TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
5663                                                        TemplateLoc,
5664                                                        RAngleLoc,
5665                                                        TempParm,
5666                                                        Converted,
5667                                                        QualifierLoc);
5668       if (Name.isNull())
5669         return true;
5670 
5671       Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
5672                            TempParm->getDefaultArgument().getTemplateNameLoc());
5673     }
5674 
5675     // Introduce an instantiation record that describes where we are using
5676     // the default template argument. We're not actually instantiating a
5677     // template here, we just create this object to put a note into the
5678     // context stack.
5679     InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
5680                                SourceRange(TemplateLoc, RAngleLoc));
5681     if (Inst.isInvalid())
5682       return true;
5683 
5684     // Check the default template argument.
5685     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
5686                               RAngleLoc, 0, Converted))
5687       return true;
5688 
5689     // Core issue 150 (assumed resolution): if this is a template template
5690     // parameter, keep track of the default template arguments from the
5691     // template definition.
5692     if (isTemplateTemplateParameter)
5693       NewArgs.addArgument(Arg);
5694 
5695     // Move to the next template parameter and argument.
5696     ++Param;
5697     ++ArgIdx;
5698   }
5699 
5700   // If we're performing a partial argument substitution, allow any trailing
5701   // pack expansions; they might be empty. This can happen even if
5702   // PartialTemplateArgs is false (the list of arguments is complete but
5703   // still dependent).
5704   if (ArgIdx < NumArgs && CurrentInstantiationScope &&
5705       CurrentInstantiationScope->getPartiallySubstitutedPack()) {
5706     while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
5707       Converted.push_back(NewArgs[ArgIdx++].getArgument());
5708   }
5709 
5710   // If we have any leftover arguments, then there were too many arguments.
5711   // Complain and fail.
5712   if (ArgIdx < NumArgs) {
5713     Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5714         << /*too many args*/1
5715         << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5716         << Template
5717         << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
5718     Diag(Template->getLocation(), diag::note_template_decl_here)
5719         << Params->getSourceRange();
5720     return true;
5721   }
5722 
5723   // No problems found with the new argument list, propagate changes back
5724   // to caller.
5725   if (UpdateArgsWithConversions)
5726     TemplateArgs = std::move(NewArgs);
5727 
5728   if (!PartialTemplateArgs &&
5729       EnsureTemplateArgumentListConstraints(
5730         Template, Converted, SourceRange(TemplateLoc,
5731                                          TemplateArgs.getRAngleLoc()))) {
5732     if (ConstraintsNotSatisfied)
5733       *ConstraintsNotSatisfied = true;
5734     return true;
5735   }
5736 
5737   return false;
5738 }
5739 
5740 namespace {
5741   class UnnamedLocalNoLinkageFinder
5742     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
5743   {
5744     Sema &S;
5745     SourceRange SR;
5746 
5747     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
5748 
5749   public:
5750     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
5751 
5752     bool Visit(QualType T) {
5753       return T.isNull() ? false : inherited::Visit(T.getTypePtr());
5754     }
5755 
5756 #define TYPE(Class, Parent) \
5757     bool Visit##Class##Type(const Class##Type *);
5758 #define ABSTRACT_TYPE(Class, Parent) \
5759     bool Visit##Class##Type(const Class##Type *) { return false; }
5760 #define NON_CANONICAL_TYPE(Class, Parent) \
5761     bool Visit##Class##Type(const Class##Type *) { return false; }
5762 #include "clang/AST/TypeNodes.inc"
5763 
5764     bool VisitTagDecl(const TagDecl *Tag);
5765     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
5766   };
5767 } // end anonymous namespace
5768 
5769 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
5770   return false;
5771 }
5772 
5773 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
5774   return Visit(T->getElementType());
5775 }
5776 
5777 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
5778   return Visit(T->getPointeeType());
5779 }
5780 
5781 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
5782                                                     const BlockPointerType* T) {
5783   return Visit(T->getPointeeType());
5784 }
5785 
5786 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
5787                                                 const LValueReferenceType* T) {
5788   return Visit(T->getPointeeType());
5789 }
5790 
5791 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
5792                                                 const RValueReferenceType* T) {
5793   return Visit(T->getPointeeType());
5794 }
5795 
5796 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
5797                                                   const MemberPointerType* T) {
5798   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
5799 }
5800 
5801 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
5802                                                   const ConstantArrayType* T) {
5803   return Visit(T->getElementType());
5804 }
5805 
5806 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
5807                                                  const IncompleteArrayType* T) {
5808   return Visit(T->getElementType());
5809 }
5810 
5811 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
5812                                                    const VariableArrayType* T) {
5813   return Visit(T->getElementType());
5814 }
5815 
5816 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
5817                                             const DependentSizedArrayType* T) {
5818   return Visit(T->getElementType());
5819 }
5820 
5821 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
5822                                          const DependentSizedExtVectorType* T) {
5823   return Visit(T->getElementType());
5824 }
5825 
5826 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
5827     const DependentAddressSpaceType *T) {
5828   return Visit(T->getPointeeType());
5829 }
5830 
5831 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
5832   return Visit(T->getElementType());
5833 }
5834 
5835 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
5836     const DependentVectorType *T) {
5837   return Visit(T->getElementType());
5838 }
5839 
5840 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
5841   return Visit(T->getElementType());
5842 }
5843 
5844 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
5845                                                   const FunctionProtoType* T) {
5846   for (const auto &A : T->param_types()) {
5847     if (Visit(A))
5848       return true;
5849   }
5850 
5851   return Visit(T->getReturnType());
5852 }
5853 
5854 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
5855                                                const FunctionNoProtoType* T) {
5856   return Visit(T->getReturnType());
5857 }
5858 
5859 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
5860                                                   const UnresolvedUsingType*) {
5861   return false;
5862 }
5863 
5864 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
5865   return false;
5866 }
5867 
5868 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
5869   return Visit(T->getUnderlyingType());
5870 }
5871 
5872 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
5873   return false;
5874 }
5875 
5876 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
5877                                                     const UnaryTransformType*) {
5878   return false;
5879 }
5880 
5881 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
5882   return Visit(T->getDeducedType());
5883 }
5884 
5885 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
5886     const DeducedTemplateSpecializationType *T) {
5887   return Visit(T->getDeducedType());
5888 }
5889 
5890 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
5891   return VisitTagDecl(T->getDecl());
5892 }
5893 
5894 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
5895   return VisitTagDecl(T->getDecl());
5896 }
5897 
5898 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
5899                                                  const TemplateTypeParmType*) {
5900   return false;
5901 }
5902 
5903 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
5904                                         const SubstTemplateTypeParmPackType *) {
5905   return false;
5906 }
5907 
5908 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
5909                                             const TemplateSpecializationType*) {
5910   return false;
5911 }
5912 
5913 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
5914                                               const InjectedClassNameType* T) {
5915   return VisitTagDecl(T->getDecl());
5916 }
5917 
5918 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
5919                                                    const DependentNameType* T) {
5920   return VisitNestedNameSpecifier(T->getQualifier());
5921 }
5922 
5923 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
5924                                  const DependentTemplateSpecializationType* T) {
5925   return VisitNestedNameSpecifier(T->getQualifier());
5926 }
5927 
5928 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
5929                                                    const PackExpansionType* T) {
5930   return Visit(T->getPattern());
5931 }
5932 
5933 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
5934   return false;
5935 }
5936 
5937 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
5938                                                    const ObjCInterfaceType *) {
5939   return false;
5940 }
5941 
5942 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
5943                                                 const ObjCObjectPointerType *) {
5944   return false;
5945 }
5946 
5947 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
5948   return Visit(T->getValueType());
5949 }
5950 
5951 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
5952   return false;
5953 }
5954 
5955 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
5956   if (Tag->getDeclContext()->isFunctionOrMethod()) {
5957     S.Diag(SR.getBegin(),
5958            S.getLangOpts().CPlusPlus11 ?
5959              diag::warn_cxx98_compat_template_arg_local_type :
5960              diag::ext_template_arg_local_type)
5961       << S.Context.getTypeDeclType(Tag) << SR;
5962     return true;
5963   }
5964 
5965   if (!Tag->hasNameForLinkage()) {
5966     S.Diag(SR.getBegin(),
5967            S.getLangOpts().CPlusPlus11 ?
5968              diag::warn_cxx98_compat_template_arg_unnamed_type :
5969              diag::ext_template_arg_unnamed_type) << SR;
5970     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
5971     return true;
5972   }
5973 
5974   return false;
5975 }
5976 
5977 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
5978                                                     NestedNameSpecifier *NNS) {
5979   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
5980     return true;
5981 
5982   switch (NNS->getKind()) {
5983   case NestedNameSpecifier::Identifier:
5984   case NestedNameSpecifier::Namespace:
5985   case NestedNameSpecifier::NamespaceAlias:
5986   case NestedNameSpecifier::Global:
5987   case NestedNameSpecifier::Super:
5988     return false;
5989 
5990   case NestedNameSpecifier::TypeSpec:
5991   case NestedNameSpecifier::TypeSpecWithTemplate:
5992     return Visit(QualType(NNS->getAsType(), 0));
5993   }
5994   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
5995 }
5996 
5997 /// Check a template argument against its corresponding
5998 /// template type parameter.
5999 ///
6000 /// This routine implements the semantics of C++ [temp.arg.type]. It
6001 /// returns true if an error occurred, and false otherwise.
6002 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
6003                                  TypeSourceInfo *ArgInfo) {
6004   assert(ArgInfo && "invalid TypeSourceInfo");
6005   QualType Arg = ArgInfo->getType();
6006   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
6007 
6008   if (Arg->isVariablyModifiedType()) {
6009     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
6010   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
6011     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
6012   }
6013 
6014   // C++03 [temp.arg.type]p2:
6015   //   A local type, a type with no linkage, an unnamed type or a type
6016   //   compounded from any of these types shall not be used as a
6017   //   template-argument for a template type-parameter.
6018   //
6019   // C++11 allows these, and even in C++03 we allow them as an extension with
6020   // a warning.
6021   if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
6022     UnnamedLocalNoLinkageFinder Finder(*this, SR);
6023     (void)Finder.Visit(Context.getCanonicalType(Arg));
6024   }
6025 
6026   return false;
6027 }
6028 
6029 enum NullPointerValueKind {
6030   NPV_NotNullPointer,
6031   NPV_NullPointer,
6032   NPV_Error
6033 };
6034 
6035 /// Determine whether the given template argument is a null pointer
6036 /// value of the appropriate type.
6037 static NullPointerValueKind
6038 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
6039                                    QualType ParamType, Expr *Arg,
6040                                    Decl *Entity = nullptr) {
6041   if (Arg->isValueDependent() || Arg->isTypeDependent())
6042     return NPV_NotNullPointer;
6043 
6044   // dllimport'd entities aren't constant but are available inside of template
6045   // arguments.
6046   if (Entity && Entity->hasAttr<DLLImportAttr>())
6047     return NPV_NotNullPointer;
6048 
6049   if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
6050     llvm_unreachable(
6051         "Incomplete parameter type in isNullPointerValueTemplateArgument!");
6052 
6053   if (!S.getLangOpts().CPlusPlus11)
6054     return NPV_NotNullPointer;
6055 
6056   // Determine whether we have a constant expression.
6057   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
6058   if (ArgRV.isInvalid())
6059     return NPV_Error;
6060   Arg = ArgRV.get();
6061 
6062   Expr::EvalResult EvalResult;
6063   SmallVector<PartialDiagnosticAt, 8> Notes;
6064   EvalResult.Diag = &Notes;
6065   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
6066       EvalResult.HasSideEffects) {
6067     SourceLocation DiagLoc = Arg->getExprLoc();
6068 
6069     // If our only note is the usual "invalid subexpression" note, just point
6070     // the caret at its location rather than producing an essentially
6071     // redundant note.
6072     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6073         diag::note_invalid_subexpr_in_const_expr) {
6074       DiagLoc = Notes[0].first;
6075       Notes.clear();
6076     }
6077 
6078     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
6079       << Arg->getType() << Arg->getSourceRange();
6080     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6081       S.Diag(Notes[I].first, Notes[I].second);
6082 
6083     S.Diag(Param->getLocation(), diag::note_template_param_here);
6084     return NPV_Error;
6085   }
6086 
6087   // C++11 [temp.arg.nontype]p1:
6088   //   - an address constant expression of type std::nullptr_t
6089   if (Arg->getType()->isNullPtrType())
6090     return NPV_NullPointer;
6091 
6092   //   - a constant expression that evaluates to a null pointer value (4.10); or
6093   //   - a constant expression that evaluates to a null member pointer value
6094   //     (4.11); or
6095   if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
6096       (EvalResult.Val.isMemberPointer() &&
6097        !EvalResult.Val.getMemberPointerDecl())) {
6098     // If our expression has an appropriate type, we've succeeded.
6099     bool ObjCLifetimeConversion;
6100     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
6101         S.IsQualificationConversion(Arg->getType(), ParamType, false,
6102                                      ObjCLifetimeConversion))
6103       return NPV_NullPointer;
6104 
6105     // The types didn't match, but we know we got a null pointer; complain,
6106     // then recover as if the types were correct.
6107     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
6108       << Arg->getType() << ParamType << Arg->getSourceRange();
6109     S.Diag(Param->getLocation(), diag::note_template_param_here);
6110     return NPV_NullPointer;
6111   }
6112 
6113   // If we don't have a null pointer value, but we do have a NULL pointer
6114   // constant, suggest a cast to the appropriate type.
6115   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
6116     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
6117     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
6118         << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
6119         << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
6120                                       ")");
6121     S.Diag(Param->getLocation(), diag::note_template_param_here);
6122     return NPV_NullPointer;
6123   }
6124 
6125   // FIXME: If we ever want to support general, address-constant expressions
6126   // as non-type template arguments, we should return the ExprResult here to
6127   // be interpreted by the caller.
6128   return NPV_NotNullPointer;
6129 }
6130 
6131 /// Checks whether the given template argument is compatible with its
6132 /// template parameter.
6133 static bool CheckTemplateArgumentIsCompatibleWithParameter(
6134     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6135     Expr *Arg, QualType ArgType) {
6136   bool ObjCLifetimeConversion;
6137   if (ParamType->isPointerType() &&
6138       !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
6139       S.IsQualificationConversion(ArgType, ParamType, false,
6140                                   ObjCLifetimeConversion)) {
6141     // For pointer-to-object types, qualification conversions are
6142     // permitted.
6143   } else {
6144     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
6145       if (!ParamRef->getPointeeType()->isFunctionType()) {
6146         // C++ [temp.arg.nontype]p5b3:
6147         //   For a non-type template-parameter of type reference to
6148         //   object, no conversions apply. The type referred to by the
6149         //   reference may be more cv-qualified than the (otherwise
6150         //   identical) type of the template- argument. The
6151         //   template-parameter is bound directly to the
6152         //   template-argument, which shall be an lvalue.
6153 
6154         // FIXME: Other qualifiers?
6155         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
6156         unsigned ArgQuals = ArgType.getCVRQualifiers();
6157 
6158         if ((ParamQuals | ArgQuals) != ParamQuals) {
6159           S.Diag(Arg->getBeginLoc(),
6160                  diag::err_template_arg_ref_bind_ignores_quals)
6161               << ParamType << Arg->getType() << Arg->getSourceRange();
6162           S.Diag(Param->getLocation(), diag::note_template_param_here);
6163           return true;
6164         }
6165       }
6166     }
6167 
6168     // At this point, the template argument refers to an object or
6169     // function with external linkage. We now need to check whether the
6170     // argument and parameter types are compatible.
6171     if (!S.Context.hasSameUnqualifiedType(ArgType,
6172                                           ParamType.getNonReferenceType())) {
6173       // We can't perform this conversion or binding.
6174       if (ParamType->isReferenceType())
6175         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
6176             << ParamType << ArgIn->getType() << Arg->getSourceRange();
6177       else
6178         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6179             << ArgIn->getType() << ParamType << Arg->getSourceRange();
6180       S.Diag(Param->getLocation(), diag::note_template_param_here);
6181       return true;
6182     }
6183   }
6184 
6185   return false;
6186 }
6187 
6188 /// Checks whether the given template argument is the address
6189 /// of an object or function according to C++ [temp.arg.nontype]p1.
6190 static bool
6191 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
6192                                                NonTypeTemplateParmDecl *Param,
6193                                                QualType ParamType,
6194                                                Expr *ArgIn,
6195                                                TemplateArgument &Converted) {
6196   bool Invalid = false;
6197   Expr *Arg = ArgIn;
6198   QualType ArgType = Arg->getType();
6199 
6200   bool AddressTaken = false;
6201   SourceLocation AddrOpLoc;
6202   if (S.getLangOpts().MicrosoftExt) {
6203     // Microsoft Visual C++ strips all casts, allows an arbitrary number of
6204     // dereference and address-of operators.
6205     Arg = Arg->IgnoreParenCasts();
6206 
6207     bool ExtWarnMSTemplateArg = false;
6208     UnaryOperatorKind FirstOpKind;
6209     SourceLocation FirstOpLoc;
6210     while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6211       UnaryOperatorKind UnOpKind = UnOp->getOpcode();
6212       if (UnOpKind == UO_Deref)
6213         ExtWarnMSTemplateArg = true;
6214       if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
6215         Arg = UnOp->getSubExpr()->IgnoreParenCasts();
6216         if (!AddrOpLoc.isValid()) {
6217           FirstOpKind = UnOpKind;
6218           FirstOpLoc = UnOp->getOperatorLoc();
6219         }
6220       } else
6221         break;
6222     }
6223     if (FirstOpLoc.isValid()) {
6224       if (ExtWarnMSTemplateArg)
6225         S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
6226             << ArgIn->getSourceRange();
6227 
6228       if (FirstOpKind == UO_AddrOf)
6229         AddressTaken = true;
6230       else if (Arg->getType()->isPointerType()) {
6231         // We cannot let pointers get dereferenced here, that is obviously not a
6232         // constant expression.
6233         assert(FirstOpKind == UO_Deref);
6234         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6235             << Arg->getSourceRange();
6236       }
6237     }
6238   } else {
6239     // See through any implicit casts we added to fix the type.
6240     Arg = Arg->IgnoreImpCasts();
6241 
6242     // C++ [temp.arg.nontype]p1:
6243     //
6244     //   A template-argument for a non-type, non-template
6245     //   template-parameter shall be one of: [...]
6246     //
6247     //     -- the address of an object or function with external
6248     //        linkage, including function templates and function
6249     //        template-ids but excluding non-static class members,
6250     //        expressed as & id-expression where the & is optional if
6251     //        the name refers to a function or array, or if the
6252     //        corresponding template-parameter is a reference; or
6253 
6254     // In C++98/03 mode, give an extension warning on any extra parentheses.
6255     // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6256     bool ExtraParens = false;
6257     while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6258       if (!Invalid && !ExtraParens) {
6259         S.Diag(Arg->getBeginLoc(),
6260                S.getLangOpts().CPlusPlus11
6261                    ? diag::warn_cxx98_compat_template_arg_extra_parens
6262                    : diag::ext_template_arg_extra_parens)
6263             << Arg->getSourceRange();
6264         ExtraParens = true;
6265       }
6266 
6267       Arg = Parens->getSubExpr();
6268     }
6269 
6270     while (SubstNonTypeTemplateParmExpr *subst =
6271                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6272       Arg = subst->getReplacement()->IgnoreImpCasts();
6273 
6274     if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6275       if (UnOp->getOpcode() == UO_AddrOf) {
6276         Arg = UnOp->getSubExpr();
6277         AddressTaken = true;
6278         AddrOpLoc = UnOp->getOperatorLoc();
6279       }
6280     }
6281 
6282     while (SubstNonTypeTemplateParmExpr *subst =
6283                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6284       Arg = subst->getReplacement()->IgnoreImpCasts();
6285   }
6286 
6287   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
6288   ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
6289 
6290   // If our parameter has pointer type, check for a null template value.
6291   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
6292     switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
6293                                                Entity)) {
6294     case NPV_NullPointer:
6295       S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6296       Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6297                                    /*isNullPtr=*/true);
6298       return false;
6299 
6300     case NPV_Error:
6301       return true;
6302 
6303     case NPV_NotNullPointer:
6304       break;
6305     }
6306   }
6307 
6308   // Stop checking the precise nature of the argument if it is value dependent,
6309   // it should be checked when instantiated.
6310   if (Arg->isValueDependent()) {
6311     Converted = TemplateArgument(ArgIn);
6312     return false;
6313   }
6314 
6315   if (isa<CXXUuidofExpr>(Arg)) {
6316     if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
6317                                                        ArgIn, Arg, ArgType))
6318       return true;
6319 
6320     Converted = TemplateArgument(ArgIn);
6321     return false;
6322   }
6323 
6324   if (!DRE) {
6325     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6326         << Arg->getSourceRange();
6327     S.Diag(Param->getLocation(), diag::note_template_param_here);
6328     return true;
6329   }
6330 
6331   // Cannot refer to non-static data members
6332   if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
6333     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6334         << Entity << Arg->getSourceRange();
6335     S.Diag(Param->getLocation(), diag::note_template_param_here);
6336     return true;
6337   }
6338 
6339   // Cannot refer to non-static member functions
6340   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
6341     if (!Method->isStatic()) {
6342       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6343           << Method << Arg->getSourceRange();
6344       S.Diag(Param->getLocation(), diag::note_template_param_here);
6345       return true;
6346     }
6347   }
6348 
6349   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
6350   VarDecl *Var = dyn_cast<VarDecl>(Entity);
6351 
6352   // A non-type template argument must refer to an object or function.
6353   if (!Func && !Var) {
6354     // We found something, but we don't know specifically what it is.
6355     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6356         << Arg->getSourceRange();
6357     S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
6358     return true;
6359   }
6360 
6361   // Address / reference template args must have external linkage in C++98.
6362   if (Entity->getFormalLinkage() == InternalLinkage) {
6363     S.Diag(Arg->getBeginLoc(),
6364            S.getLangOpts().CPlusPlus11
6365                ? diag::warn_cxx98_compat_template_arg_object_internal
6366                : diag::ext_template_arg_object_internal)
6367         << !Func << Entity << Arg->getSourceRange();
6368     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6369       << !Func;
6370   } else if (!Entity->hasLinkage()) {
6371     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6372         << !Func << Entity << Arg->getSourceRange();
6373     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6374       << !Func;
6375     return true;
6376   }
6377 
6378   if (Func) {
6379     // If the template parameter has pointer type, the function decays.
6380     if (ParamType->isPointerType() && !AddressTaken)
6381       ArgType = S.Context.getPointerType(Func->getType());
6382     else if (AddressTaken && ParamType->isReferenceType()) {
6383       // If we originally had an address-of operator, but the
6384       // parameter has reference type, complain and (if things look
6385       // like they will work) drop the address-of operator.
6386       if (!S.Context.hasSameUnqualifiedType(Func->getType(),
6387                                             ParamType.getNonReferenceType())) {
6388         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6389           << ParamType;
6390         S.Diag(Param->getLocation(), diag::note_template_param_here);
6391         return true;
6392       }
6393 
6394       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6395         << ParamType
6396         << FixItHint::CreateRemoval(AddrOpLoc);
6397       S.Diag(Param->getLocation(), diag::note_template_param_here);
6398 
6399       ArgType = Func->getType();
6400     }
6401   } else {
6402     // A value of reference type is not an object.
6403     if (Var->getType()->isReferenceType()) {
6404       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6405           << Var->getType() << Arg->getSourceRange();
6406       S.Diag(Param->getLocation(), diag::note_template_param_here);
6407       return true;
6408     }
6409 
6410     // A template argument must have static storage duration.
6411     if (Var->getTLSKind()) {
6412       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6413           << Arg->getSourceRange();
6414       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6415       return true;
6416     }
6417 
6418     // If the template parameter has pointer type, we must have taken
6419     // the address of this object.
6420     if (ParamType->isReferenceType()) {
6421       if (AddressTaken) {
6422         // If we originally had an address-of operator, but the
6423         // parameter has reference type, complain and (if things look
6424         // like they will work) drop the address-of operator.
6425         if (!S.Context.hasSameUnqualifiedType(Var->getType(),
6426                                             ParamType.getNonReferenceType())) {
6427           S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6428             << ParamType;
6429           S.Diag(Param->getLocation(), diag::note_template_param_here);
6430           return true;
6431         }
6432 
6433         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6434           << ParamType
6435           << FixItHint::CreateRemoval(AddrOpLoc);
6436         S.Diag(Param->getLocation(), diag::note_template_param_here);
6437 
6438         ArgType = Var->getType();
6439       }
6440     } else if (!AddressTaken && ParamType->isPointerType()) {
6441       if (Var->getType()->isArrayType()) {
6442         // Array-to-pointer decay.
6443         ArgType = S.Context.getArrayDecayedType(Var->getType());
6444       } else {
6445         // If the template parameter has pointer type but the address of
6446         // this object was not taken, complain and (possibly) recover by
6447         // taking the address of the entity.
6448         ArgType = S.Context.getPointerType(Var->getType());
6449         if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
6450           S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6451               << ParamType;
6452           S.Diag(Param->getLocation(), diag::note_template_param_here);
6453           return true;
6454         }
6455 
6456         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6457             << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
6458 
6459         S.Diag(Param->getLocation(), diag::note_template_param_here);
6460       }
6461     }
6462   }
6463 
6464   if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
6465                                                      Arg, ArgType))
6466     return true;
6467 
6468   // Create the template argument.
6469   Converted =
6470       TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
6471   S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
6472   return false;
6473 }
6474 
6475 /// Checks whether the given template argument is a pointer to
6476 /// member constant according to C++ [temp.arg.nontype]p1.
6477 static bool CheckTemplateArgumentPointerToMember(Sema &S,
6478                                                  NonTypeTemplateParmDecl *Param,
6479                                                  QualType ParamType,
6480                                                  Expr *&ResultArg,
6481                                                  TemplateArgument &Converted) {
6482   bool Invalid = false;
6483 
6484   Expr *Arg = ResultArg;
6485   bool ObjCLifetimeConversion;
6486 
6487   // C++ [temp.arg.nontype]p1:
6488   //
6489   //   A template-argument for a non-type, non-template
6490   //   template-parameter shall be one of: [...]
6491   //
6492   //     -- a pointer to member expressed as described in 5.3.1.
6493   DeclRefExpr *DRE = nullptr;
6494 
6495   // In C++98/03 mode, give an extension warning on any extra parentheses.
6496   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6497   bool ExtraParens = false;
6498   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6499     if (!Invalid && !ExtraParens) {
6500       S.Diag(Arg->getBeginLoc(),
6501              S.getLangOpts().CPlusPlus11
6502                  ? diag::warn_cxx98_compat_template_arg_extra_parens
6503                  : diag::ext_template_arg_extra_parens)
6504           << Arg->getSourceRange();
6505       ExtraParens = true;
6506     }
6507 
6508     Arg = Parens->getSubExpr();
6509   }
6510 
6511   while (SubstNonTypeTemplateParmExpr *subst =
6512            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6513     Arg = subst->getReplacement()->IgnoreImpCasts();
6514 
6515   // A pointer-to-member constant written &Class::member.
6516   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6517     if (UnOp->getOpcode() == UO_AddrOf) {
6518       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
6519       if (DRE && !DRE->getQualifier())
6520         DRE = nullptr;
6521     }
6522   }
6523   // A constant of pointer-to-member type.
6524   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
6525     ValueDecl *VD = DRE->getDecl();
6526     if (VD->getType()->isMemberPointerType()) {
6527       if (isa<NonTypeTemplateParmDecl>(VD)) {
6528         if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6529           Converted = TemplateArgument(Arg);
6530         } else {
6531           VD = cast<ValueDecl>(VD->getCanonicalDecl());
6532           Converted = TemplateArgument(VD, ParamType);
6533         }
6534         return Invalid;
6535       }
6536     }
6537 
6538     DRE = nullptr;
6539   }
6540 
6541   ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
6542 
6543   // Check for a null pointer value.
6544   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
6545                                              Entity)) {
6546   case NPV_Error:
6547     return true;
6548   case NPV_NullPointer:
6549     S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6550     Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6551                                  /*isNullPtr*/true);
6552     return false;
6553   case NPV_NotNullPointer:
6554     break;
6555   }
6556 
6557   if (S.IsQualificationConversion(ResultArg->getType(),
6558                                   ParamType.getNonReferenceType(), false,
6559                                   ObjCLifetimeConversion)) {
6560     ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
6561                                     ResultArg->getValueKind())
6562                     .get();
6563   } else if (!S.Context.hasSameUnqualifiedType(
6564                  ResultArg->getType(), ParamType.getNonReferenceType())) {
6565     // We can't perform this conversion.
6566     S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
6567         << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
6568     S.Diag(Param->getLocation(), diag::note_template_param_here);
6569     return true;
6570   }
6571 
6572   if (!DRE)
6573     return S.Diag(Arg->getBeginLoc(),
6574                   diag::err_template_arg_not_pointer_to_member_form)
6575            << Arg->getSourceRange();
6576 
6577   if (isa<FieldDecl>(DRE->getDecl()) ||
6578       isa<IndirectFieldDecl>(DRE->getDecl()) ||
6579       isa<CXXMethodDecl>(DRE->getDecl())) {
6580     assert((isa<FieldDecl>(DRE->getDecl()) ||
6581             isa<IndirectFieldDecl>(DRE->getDecl()) ||
6582             !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
6583            "Only non-static member pointers can make it here");
6584 
6585     // Okay: this is the address of a non-static member, and therefore
6586     // a member pointer constant.
6587     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6588       Converted = TemplateArgument(Arg);
6589     } else {
6590       ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
6591       Converted = TemplateArgument(D, ParamType);
6592     }
6593     return Invalid;
6594   }
6595 
6596   // We found something else, but we don't know specifically what it is.
6597   S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
6598       << Arg->getSourceRange();
6599   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
6600   return true;
6601 }
6602 
6603 /// Check a template argument against its corresponding
6604 /// non-type template parameter.
6605 ///
6606 /// This routine implements the semantics of C++ [temp.arg.nontype].
6607 /// If an error occurred, it returns ExprError(); otherwise, it
6608 /// returns the converted template argument. \p ParamType is the
6609 /// type of the non-type template parameter after it has been instantiated.
6610 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
6611                                        QualType ParamType, Expr *Arg,
6612                                        TemplateArgument &Converted,
6613                                        CheckTemplateArgumentKind CTAK) {
6614   SourceLocation StartLoc = Arg->getBeginLoc();
6615 
6616   // If the parameter type somehow involves auto, deduce the type now.
6617   if (getLangOpts().CPlusPlus17 && ParamType->isUndeducedType()) {
6618     // During template argument deduction, we allow 'decltype(auto)' to
6619     // match an arbitrary dependent argument.
6620     // FIXME: The language rules don't say what happens in this case.
6621     // FIXME: We get an opaque dependent type out of decltype(auto) if the
6622     // expression is merely instantiation-dependent; is this enough?
6623     if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
6624       auto *AT = dyn_cast<AutoType>(ParamType);
6625       if (AT && AT->isDecltypeAuto()) {
6626         Converted = TemplateArgument(Arg);
6627         return Arg;
6628       }
6629     }
6630 
6631     // When checking a deduced template argument, deduce from its type even if
6632     // the type is dependent, in order to check the types of non-type template
6633     // arguments line up properly in partial ordering.
6634     Optional<unsigned> Depth = Param->getDepth() + 1;
6635     Expr *DeductionArg = Arg;
6636     if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
6637       DeductionArg = PE->getPattern();
6638     if (DeduceAutoType(
6639             Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()),
6640             DeductionArg, ParamType, Depth,
6641             // We do not check constraints right now because the
6642             // immediately-declared constraint of the auto type is also an
6643             // associated constraint, and will be checked along with the other
6644             // associated constraints after checking the template argument list.
6645             /*IgnoreConstraints=*/true) == DAR_Failed) {
6646       Diag(Arg->getExprLoc(),
6647            diag::err_non_type_template_parm_type_deduction_failure)
6648         << Param->getDeclName() << Param->getType() << Arg->getType()
6649         << Arg->getSourceRange();
6650       Diag(Param->getLocation(), diag::note_template_param_here);
6651       return ExprError();
6652     }
6653     // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
6654     // an error. The error message normally references the parameter
6655     // declaration, but here we'll pass the argument location because that's
6656     // where the parameter type is deduced.
6657     ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
6658     if (ParamType.isNull()) {
6659       Diag(Param->getLocation(), diag::note_template_param_here);
6660       return ExprError();
6661     }
6662   }
6663 
6664   // We should have already dropped all cv-qualifiers by now.
6665   assert(!ParamType.hasQualifiers() &&
6666          "non-type template parameter type cannot be qualified");
6667 
6668   if (CTAK == CTAK_Deduced &&
6669       !Context.hasSameType(ParamType.getNonLValueExprType(Context),
6670                            Arg->getType())) {
6671     // FIXME: If either type is dependent, we skip the check. This isn't
6672     // correct, since during deduction we're supposed to have replaced each
6673     // template parameter with some unique (non-dependent) placeholder.
6674     // FIXME: If the argument type contains 'auto', we carry on and fail the
6675     // type check in order to force specific types to be more specialized than
6676     // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
6677     // work.
6678     if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
6679         !Arg->getType()->getContainedAutoType()) {
6680       Converted = TemplateArgument(Arg);
6681       return Arg;
6682     }
6683     // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
6684     // we should actually be checking the type of the template argument in P,
6685     // not the type of the template argument deduced from A, against the
6686     // template parameter type.
6687     Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
6688       << Arg->getType()
6689       << ParamType.getUnqualifiedType();
6690     Diag(Param->getLocation(), diag::note_template_param_here);
6691     return ExprError();
6692   }
6693 
6694   // If either the parameter has a dependent type or the argument is
6695   // type-dependent, there's nothing we can check now. The argument only
6696   // contains an unexpanded pack during partial ordering, and there's
6697   // nothing more we can check in that case.
6698   if (ParamType->isDependentType() || Arg->isTypeDependent() ||
6699       Arg->containsUnexpandedParameterPack()) {
6700     // Force the argument to the type of the parameter to maintain invariants.
6701     auto *PE = dyn_cast<PackExpansionExpr>(Arg);
6702     if (PE)
6703       Arg = PE->getPattern();
6704     ExprResult E = ImpCastExprToType(
6705         Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
6706         ParamType->isLValueReferenceType() ? VK_LValue :
6707         ParamType->isRValueReferenceType() ? VK_XValue : VK_RValue);
6708     if (E.isInvalid())
6709       return ExprError();
6710     if (PE) {
6711       // Recreate a pack expansion if we unwrapped one.
6712       E = new (Context)
6713           PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
6714                             PE->getNumExpansions());
6715     }
6716     Converted = TemplateArgument(E.get());
6717     return E;
6718   }
6719 
6720   // The initialization of the parameter from the argument is
6721   // a constant-evaluated context.
6722   EnterExpressionEvaluationContext ConstantEvaluated(
6723       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6724 
6725   if (getLangOpts().CPlusPlus17) {
6726     // C++17 [temp.arg.nontype]p1:
6727     //   A template-argument for a non-type template parameter shall be
6728     //   a converted constant expression of the type of the template-parameter.
6729     APValue Value;
6730     ExprResult ArgResult = CheckConvertedConstantExpression(
6731         Arg, ParamType, Value, CCEK_TemplateArg);
6732     if (ArgResult.isInvalid())
6733       return ExprError();
6734 
6735     // For a value-dependent argument, CheckConvertedConstantExpression is
6736     // permitted (and expected) to be unable to determine a value.
6737     if (ArgResult.get()->isValueDependent()) {
6738       Converted = TemplateArgument(ArgResult.get());
6739       return ArgResult;
6740     }
6741 
6742     QualType CanonParamType = Context.getCanonicalType(ParamType);
6743 
6744     // Convert the APValue to a TemplateArgument.
6745     switch (Value.getKind()) {
6746     case APValue::None:
6747       assert(ParamType->isNullPtrType());
6748       Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
6749       break;
6750     case APValue::Indeterminate:
6751       llvm_unreachable("result of constant evaluation should be initialized");
6752       break;
6753     case APValue::Int:
6754       assert(ParamType->isIntegralOrEnumerationType());
6755       Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
6756       break;
6757     case APValue::MemberPointer: {
6758       assert(ParamType->isMemberPointerType());
6759 
6760       // FIXME: We need TemplateArgument representation and mangling for these.
6761       if (!Value.getMemberPointerPath().empty()) {
6762         Diag(Arg->getBeginLoc(),
6763              diag::err_template_arg_member_ptr_base_derived_not_supported)
6764             << Value.getMemberPointerDecl() << ParamType
6765             << Arg->getSourceRange();
6766         return ExprError();
6767       }
6768 
6769       auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
6770       Converted = VD ? TemplateArgument(VD, CanonParamType)
6771                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
6772       break;
6773     }
6774     case APValue::LValue: {
6775       //   For a non-type template-parameter of pointer or reference type,
6776       //   the value of the constant expression shall not refer to
6777       assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
6778              ParamType->isNullPtrType());
6779       // -- a temporary object
6780       // -- a string literal
6781       // -- the result of a typeid expression, or
6782       // -- a predefined __func__ variable
6783       APValue::LValueBase Base = Value.getLValueBase();
6784       auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
6785       if (Base && !VD) {
6786         auto *E = Base.dyn_cast<const Expr *>();
6787         if (E && isa<CXXUuidofExpr>(E)) {
6788           Converted = TemplateArgument(ArgResult.get()->IgnoreImpCasts());
6789           break;
6790         }
6791         Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6792             << Arg->getSourceRange();
6793         return ExprError();
6794       }
6795       // -- a subobject
6796       if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
6797           VD && VD->getType()->isArrayType() &&
6798           Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
6799           !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
6800         // Per defect report (no number yet):
6801         //   ... other than a pointer to the first element of a complete array
6802         //       object.
6803       } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
6804                  Value.isLValueOnePastTheEnd()) {
6805         Diag(StartLoc, diag::err_non_type_template_arg_subobject)
6806           << Value.getAsString(Context, ParamType);
6807         return ExprError();
6808       }
6809       assert((VD || !ParamType->isReferenceType()) &&
6810              "null reference should not be a constant expression");
6811       assert((!VD || !ParamType->isNullPtrType()) &&
6812              "non-null value of type nullptr_t?");
6813       Converted = VD ? TemplateArgument(VD, CanonParamType)
6814                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
6815       break;
6816     }
6817     case APValue::AddrLabelDiff:
6818       return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
6819     case APValue::FixedPoint:
6820     case APValue::Float:
6821     case APValue::ComplexInt:
6822     case APValue::ComplexFloat:
6823     case APValue::Vector:
6824     case APValue::Array:
6825     case APValue::Struct:
6826     case APValue::Union:
6827       llvm_unreachable("invalid kind for template argument");
6828     }
6829 
6830     return ArgResult.get();
6831   }
6832 
6833   // C++ [temp.arg.nontype]p5:
6834   //   The following conversions are performed on each expression used
6835   //   as a non-type template-argument. If a non-type
6836   //   template-argument cannot be converted to the type of the
6837   //   corresponding template-parameter then the program is
6838   //   ill-formed.
6839   if (ParamType->isIntegralOrEnumerationType()) {
6840     // C++11:
6841     //   -- for a non-type template-parameter of integral or
6842     //      enumeration type, conversions permitted in a converted
6843     //      constant expression are applied.
6844     //
6845     // C++98:
6846     //   -- for a non-type template-parameter of integral or
6847     //      enumeration type, integral promotions (4.5) and integral
6848     //      conversions (4.7) are applied.
6849 
6850     if (getLangOpts().CPlusPlus11) {
6851       // C++ [temp.arg.nontype]p1:
6852       //   A template-argument for a non-type, non-template template-parameter
6853       //   shall be one of:
6854       //
6855       //     -- for a non-type template-parameter of integral or enumeration
6856       //        type, a converted constant expression of the type of the
6857       //        template-parameter; or
6858       llvm::APSInt Value;
6859       ExprResult ArgResult =
6860         CheckConvertedConstantExpression(Arg, ParamType, Value,
6861                                          CCEK_TemplateArg);
6862       if (ArgResult.isInvalid())
6863         return ExprError();
6864 
6865       // We can't check arbitrary value-dependent arguments.
6866       if (ArgResult.get()->isValueDependent()) {
6867         Converted = TemplateArgument(ArgResult.get());
6868         return ArgResult;
6869       }
6870 
6871       // Widen the argument value to sizeof(parameter type). This is almost
6872       // always a no-op, except when the parameter type is bool. In
6873       // that case, this may extend the argument from 1 bit to 8 bits.
6874       QualType IntegerType = ParamType;
6875       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
6876         IntegerType = Enum->getDecl()->getIntegerType();
6877       Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
6878 
6879       Converted = TemplateArgument(Context, Value,
6880                                    Context.getCanonicalType(ParamType));
6881       return ArgResult;
6882     }
6883 
6884     ExprResult ArgResult = DefaultLvalueConversion(Arg);
6885     if (ArgResult.isInvalid())
6886       return ExprError();
6887     Arg = ArgResult.get();
6888 
6889     QualType ArgType = Arg->getType();
6890 
6891     // C++ [temp.arg.nontype]p1:
6892     //   A template-argument for a non-type, non-template
6893     //   template-parameter shall be one of:
6894     //
6895     //     -- an integral constant-expression of integral or enumeration
6896     //        type; or
6897     //     -- the name of a non-type template-parameter; or
6898     llvm::APSInt Value;
6899     if (!ArgType->isIntegralOrEnumerationType()) {
6900       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
6901           << ArgType << Arg->getSourceRange();
6902       Diag(Param->getLocation(), diag::note_template_param_here);
6903       return ExprError();
6904     } else if (!Arg->isValueDependent()) {
6905       class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
6906         QualType T;
6907 
6908       public:
6909         TmplArgICEDiagnoser(QualType T) : T(T) { }
6910 
6911         void diagnoseNotICE(Sema &S, SourceLocation Loc,
6912                             SourceRange SR) override {
6913           S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
6914         }
6915       } Diagnoser(ArgType);
6916 
6917       Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
6918                                             false).get();
6919       if (!Arg)
6920         return ExprError();
6921     }
6922 
6923     // From here on out, all we care about is the unqualified form
6924     // of the argument type.
6925     ArgType = ArgType.getUnqualifiedType();
6926 
6927     // Try to convert the argument to the parameter's type.
6928     if (Context.hasSameType(ParamType, ArgType)) {
6929       // Okay: no conversion necessary
6930     } else if (ParamType->isBooleanType()) {
6931       // This is an integral-to-boolean conversion.
6932       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
6933     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
6934                !ParamType->isEnumeralType()) {
6935       // This is an integral promotion or conversion.
6936       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
6937     } else {
6938       // We can't perform this conversion.
6939       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6940           << Arg->getType() << ParamType << Arg->getSourceRange();
6941       Diag(Param->getLocation(), diag::note_template_param_here);
6942       return ExprError();
6943     }
6944 
6945     // Add the value of this argument to the list of converted
6946     // arguments. We use the bitwidth and signedness of the template
6947     // parameter.
6948     if (Arg->isValueDependent()) {
6949       // The argument is value-dependent. Create a new
6950       // TemplateArgument with the converted expression.
6951       Converted = TemplateArgument(Arg);
6952       return Arg;
6953     }
6954 
6955     QualType IntegerType = Context.getCanonicalType(ParamType);
6956     if (const EnumType *Enum = IntegerType->getAs<EnumType>())
6957       IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
6958 
6959     if (ParamType->isBooleanType()) {
6960       // Value must be zero or one.
6961       Value = Value != 0;
6962       unsigned AllowedBits = Context.getTypeSize(IntegerType);
6963       if (Value.getBitWidth() != AllowedBits)
6964         Value = Value.extOrTrunc(AllowedBits);
6965       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6966     } else {
6967       llvm::APSInt OldValue = Value;
6968 
6969       // Coerce the template argument's value to the value it will have
6970       // based on the template parameter's type.
6971       unsigned AllowedBits = Context.getTypeSize(IntegerType);
6972       if (Value.getBitWidth() != AllowedBits)
6973         Value = Value.extOrTrunc(AllowedBits);
6974       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6975 
6976       // Complain if an unsigned parameter received a negative value.
6977       if (IntegerType->isUnsignedIntegerOrEnumerationType()
6978                && (OldValue.isSigned() && OldValue.isNegative())) {
6979         Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
6980             << OldValue.toString(10) << Value.toString(10) << Param->getType()
6981             << Arg->getSourceRange();
6982         Diag(Param->getLocation(), diag::note_template_param_here);
6983       }
6984 
6985       // Complain if we overflowed the template parameter's type.
6986       unsigned RequiredBits;
6987       if (IntegerType->isUnsignedIntegerOrEnumerationType())
6988         RequiredBits = OldValue.getActiveBits();
6989       else if (OldValue.isUnsigned())
6990         RequiredBits = OldValue.getActiveBits() + 1;
6991       else
6992         RequiredBits = OldValue.getMinSignedBits();
6993       if (RequiredBits > AllowedBits) {
6994         Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
6995             << OldValue.toString(10) << Value.toString(10) << Param->getType()
6996             << Arg->getSourceRange();
6997         Diag(Param->getLocation(), diag::note_template_param_here);
6998       }
6999     }
7000 
7001     Converted = TemplateArgument(Context, Value,
7002                                  ParamType->isEnumeralType()
7003                                    ? Context.getCanonicalType(ParamType)
7004                                    : IntegerType);
7005     return Arg;
7006   }
7007 
7008   QualType ArgType = Arg->getType();
7009   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
7010 
7011   // Handle pointer-to-function, reference-to-function, and
7012   // pointer-to-member-function all in (roughly) the same way.
7013   if (// -- For a non-type template-parameter of type pointer to
7014       //    function, only the function-to-pointer conversion (4.3) is
7015       //    applied. If the template-argument represents a set of
7016       //    overloaded functions (or a pointer to such), the matching
7017       //    function is selected from the set (13.4).
7018       (ParamType->isPointerType() &&
7019        ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
7020       // -- For a non-type template-parameter of type reference to
7021       //    function, no conversions apply. If the template-argument
7022       //    represents a set of overloaded functions, the matching
7023       //    function is selected from the set (13.4).
7024       (ParamType->isReferenceType() &&
7025        ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
7026       // -- For a non-type template-parameter of type pointer to
7027       //    member function, no conversions apply. If the
7028       //    template-argument represents a set of overloaded member
7029       //    functions, the matching member function is selected from
7030       //    the set (13.4).
7031       (ParamType->isMemberPointerType() &&
7032        ParamType->castAs<MemberPointerType>()->getPointeeType()
7033          ->isFunctionType())) {
7034 
7035     if (Arg->getType() == Context.OverloadTy) {
7036       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
7037                                                                 true,
7038                                                                 FoundResult)) {
7039         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7040           return ExprError();
7041 
7042         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7043         ArgType = Arg->getType();
7044       } else
7045         return ExprError();
7046     }
7047 
7048     if (!ParamType->isMemberPointerType()) {
7049       if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7050                                                          ParamType,
7051                                                          Arg, Converted))
7052         return ExprError();
7053       return Arg;
7054     }
7055 
7056     if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
7057                                              Converted))
7058       return ExprError();
7059     return Arg;
7060   }
7061 
7062   if (ParamType->isPointerType()) {
7063     //   -- for a non-type template-parameter of type pointer to
7064     //      object, qualification conversions (4.4) and the
7065     //      array-to-pointer conversion (4.2) are applied.
7066     // C++0x also allows a value of std::nullptr_t.
7067     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
7068            "Only object pointers allowed here");
7069 
7070     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7071                                                        ParamType,
7072                                                        Arg, Converted))
7073       return ExprError();
7074     return Arg;
7075   }
7076 
7077   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
7078     //   -- For a non-type template-parameter of type reference to
7079     //      object, no conversions apply. The type referred to by the
7080     //      reference may be more cv-qualified than the (otherwise
7081     //      identical) type of the template-argument. The
7082     //      template-parameter is bound directly to the
7083     //      template-argument, which must be an lvalue.
7084     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
7085            "Only object references allowed here");
7086 
7087     if (Arg->getType() == Context.OverloadTy) {
7088       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
7089                                                  ParamRefType->getPointeeType(),
7090                                                                 true,
7091                                                                 FoundResult)) {
7092         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7093           return ExprError();
7094 
7095         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7096         ArgType = Arg->getType();
7097       } else
7098         return ExprError();
7099     }
7100 
7101     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7102                                                        ParamType,
7103                                                        Arg, Converted))
7104       return ExprError();
7105     return Arg;
7106   }
7107 
7108   // Deal with parameters of type std::nullptr_t.
7109   if (ParamType->isNullPtrType()) {
7110     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7111       Converted = TemplateArgument(Arg);
7112       return Arg;
7113     }
7114 
7115     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
7116     case NPV_NotNullPointer:
7117       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
7118         << Arg->getType() << ParamType;
7119       Diag(Param->getLocation(), diag::note_template_param_here);
7120       return ExprError();
7121 
7122     case NPV_Error:
7123       return ExprError();
7124 
7125     case NPV_NullPointer:
7126       Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7127       Converted = TemplateArgument(Context.getCanonicalType(ParamType),
7128                                    /*isNullPtr*/true);
7129       return Arg;
7130     }
7131   }
7132 
7133   //     -- For a non-type template-parameter of type pointer to data
7134   //        member, qualification conversions (4.4) are applied.
7135   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
7136 
7137   if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
7138                                            Converted))
7139     return ExprError();
7140   return Arg;
7141 }
7142 
7143 static void DiagnoseTemplateParameterListArityMismatch(
7144     Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
7145     Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
7146 
7147 /// Check a template argument against its corresponding
7148 /// template template parameter.
7149 ///
7150 /// This routine implements the semantics of C++ [temp.arg.template].
7151 /// It returns true if an error occurred, and false otherwise.
7152 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7153                                          TemplateParameterList *Params,
7154                                          TemplateArgumentLoc &Arg) {
7155   TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
7156   TemplateDecl *Template = Name.getAsTemplateDecl();
7157   if (!Template) {
7158     // Any dependent template name is fine.
7159     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
7160     return false;
7161   }
7162 
7163   if (Template->isInvalidDecl())
7164     return true;
7165 
7166   // C++0x [temp.arg.template]p1:
7167   //   A template-argument for a template template-parameter shall be
7168   //   the name of a class template or an alias template, expressed as an
7169   //   id-expression. When the template-argument names a class template, only
7170   //   primary class templates are considered when matching the
7171   //   template template argument with the corresponding parameter;
7172   //   partial specializations are not considered even if their
7173   //   parameter lists match that of the template template parameter.
7174   //
7175   // Note that we also allow template template parameters here, which
7176   // will happen when we are dealing with, e.g., class template
7177   // partial specializations.
7178   if (!isa<ClassTemplateDecl>(Template) &&
7179       !isa<TemplateTemplateParmDecl>(Template) &&
7180       !isa<TypeAliasTemplateDecl>(Template) &&
7181       !isa<BuiltinTemplateDecl>(Template)) {
7182     assert(isa<FunctionTemplateDecl>(Template) &&
7183            "Only function templates are possible here");
7184     Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
7185     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
7186       << Template;
7187   }
7188 
7189   // C++1z [temp.arg.template]p3: (DR 150)
7190   //   A template-argument matches a template template-parameter P when P
7191   //   is at least as specialized as the template-argument A.
7192   // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a
7193   //  defect report resolution from C++17 and shouldn't be introduced by
7194   //  concepts.
7195   if (getLangOpts().RelaxedTemplateTemplateArgs) {
7196     // Quick check for the common case:
7197     //   If P contains a parameter pack, then A [...] matches P if each of A's
7198     //   template parameters matches the corresponding template parameter in
7199     //   the template-parameter-list of P.
7200     if (TemplateParameterListsAreEqual(
7201             Template->getTemplateParameters(), Params, false,
7202             TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) &&
7203         // If the argument has no associated constraints, then the parameter is
7204         // definitely at least as specialized as the argument.
7205         // Otherwise - we need a more thorough check.
7206         !Template->hasAssociatedConstraints())
7207       return false;
7208 
7209     if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
7210                                                           Arg.getLocation())) {
7211       // C++2a[temp.func.order]p2
7212       //   [...] If both deductions succeed, the partial ordering selects the
7213       //   more constrained template as described by the rules in
7214       //   [temp.constr.order].
7215       SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
7216       Params->getAssociatedConstraints(ParamsAC);
7217       // C++2a[temp.arg.template]p3
7218       //   [...] In this comparison, if P is unconstrained, the constraints on A
7219       //   are not considered.
7220       if (ParamsAC.empty())
7221         return false;
7222       Template->getAssociatedConstraints(TemplateAC);
7223       bool IsParamAtLeastAsConstrained;
7224       if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
7225                                  IsParamAtLeastAsConstrained))
7226         return true;
7227       if (!IsParamAtLeastAsConstrained) {
7228         Diag(Arg.getLocation(),
7229              diag::err_template_template_parameter_not_at_least_as_constrained)
7230             << Template << Param << Arg.getSourceRange();
7231         Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
7232         Diag(Template->getLocation(), diag::note_entity_declared_at)
7233             << Template;
7234         MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
7235                                                       TemplateAC);
7236         return true;
7237       }
7238       return false;
7239     }
7240     // FIXME: Produce better diagnostics for deduction failures.
7241   }
7242 
7243   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
7244                                          Params,
7245                                          true,
7246                                          TPL_TemplateTemplateArgumentMatch,
7247                                          Arg.getLocation());
7248 }
7249 
7250 /// Given a non-type template argument that refers to a
7251 /// declaration and the type of its corresponding non-type template
7252 /// parameter, produce an expression that properly refers to that
7253 /// declaration.
7254 ExprResult
7255 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7256                                               QualType ParamType,
7257                                               SourceLocation Loc) {
7258   // C++ [temp.param]p8:
7259   //
7260   //   A non-type template-parameter of type "array of T" or
7261   //   "function returning T" is adjusted to be of type "pointer to
7262   //   T" or "pointer to function returning T", respectively.
7263   if (ParamType->isArrayType())
7264     ParamType = Context.getArrayDecayedType(ParamType);
7265   else if (ParamType->isFunctionType())
7266     ParamType = Context.getPointerType(ParamType);
7267 
7268   // For a NULL non-type template argument, return nullptr casted to the
7269   // parameter's type.
7270   if (Arg.getKind() == TemplateArgument::NullPtr) {
7271     return ImpCastExprToType(
7272              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
7273                              ParamType,
7274                              ParamType->getAs<MemberPointerType>()
7275                                ? CK_NullToMemberPointer
7276                                : CK_NullToPointer);
7277   }
7278   assert(Arg.getKind() == TemplateArgument::Declaration &&
7279          "Only declaration template arguments permitted here");
7280 
7281   ValueDecl *VD = Arg.getAsDecl();
7282 
7283   CXXScopeSpec SS;
7284   if (ParamType->isMemberPointerType()) {
7285     // If this is a pointer to member, we need to use a qualified name to
7286     // form a suitable pointer-to-member constant.
7287     assert(VD->getDeclContext()->isRecord() &&
7288            (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
7289             isa<IndirectFieldDecl>(VD)));
7290     QualType ClassType
7291       = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
7292     NestedNameSpecifier *Qualifier
7293       = NestedNameSpecifier::Create(Context, nullptr, false,
7294                                     ClassType.getTypePtr());
7295     SS.MakeTrivial(Context, Qualifier, Loc);
7296   }
7297 
7298   ExprResult RefExpr = BuildDeclarationNameExpr(
7299       SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
7300   if (RefExpr.isInvalid())
7301     return ExprError();
7302 
7303   // For a pointer, the argument declaration is the pointee. Take its address.
7304   QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
7305   if (ParamType->isPointerType() && !ElemT.isNull() &&
7306       Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
7307     // Decay an array argument if we want a pointer to its first element.
7308     RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
7309     if (RefExpr.isInvalid())
7310       return ExprError();
7311   } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
7312     // For any other pointer, take the address (or form a pointer-to-member).
7313     RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
7314     if (RefExpr.isInvalid())
7315       return ExprError();
7316   } else {
7317     assert(ParamType->isReferenceType() &&
7318            "unexpected type for decl template argument");
7319   }
7320 
7321   // At this point we should have the right value category.
7322   assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
7323          "value kind mismatch for non-type template argument");
7324 
7325   // The type of the template parameter can differ from the type of the
7326   // argument in various ways; convert it now if necessary.
7327   QualType DestExprType = ParamType.getNonLValueExprType(Context);
7328   if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
7329     CastKind CK;
7330     QualType Ignored;
7331     if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
7332         IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
7333       CK = CK_NoOp;
7334     } else if (ParamType->isVoidPointerType() &&
7335                RefExpr.get()->getType()->isPointerType()) {
7336       CK = CK_BitCast;
7337     } else {
7338       // FIXME: Pointers to members can need conversion derived-to-base or
7339       // base-to-derived conversions. We currently don't retain enough
7340       // information to convert properly (we need to track a cast path or
7341       // subobject number in the template argument).
7342       llvm_unreachable(
7343           "unexpected conversion required for non-type template argument");
7344     }
7345     RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
7346                                 RefExpr.get()->getValueKind());
7347   }
7348 
7349   return RefExpr;
7350 }
7351 
7352 /// Construct a new expression that refers to the given
7353 /// integral template argument with the given source-location
7354 /// information.
7355 ///
7356 /// This routine takes care of the mapping from an integral template
7357 /// argument (which may have any integral type) to the appropriate
7358 /// literal value.
7359 ExprResult
7360 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7361                                                   SourceLocation Loc) {
7362   assert(Arg.getKind() == TemplateArgument::Integral &&
7363          "Operation is only valid for integral template arguments");
7364   QualType OrigT = Arg.getIntegralType();
7365 
7366   // If this is an enum type that we're instantiating, we need to use an integer
7367   // type the same size as the enumerator.  We don't want to build an
7368   // IntegerLiteral with enum type.  The integer type of an enum type can be of
7369   // any integral type with C++11 enum classes, make sure we create the right
7370   // type of literal for it.
7371   QualType T = OrigT;
7372   if (const EnumType *ET = OrigT->getAs<EnumType>())
7373     T = ET->getDecl()->getIntegerType();
7374 
7375   Expr *E;
7376   if (T->isAnyCharacterType()) {
7377     CharacterLiteral::CharacterKind Kind;
7378     if (T->isWideCharType())
7379       Kind = CharacterLiteral::Wide;
7380     else if (T->isChar8Type() && getLangOpts().Char8)
7381       Kind = CharacterLiteral::UTF8;
7382     else if (T->isChar16Type())
7383       Kind = CharacterLiteral::UTF16;
7384     else if (T->isChar32Type())
7385       Kind = CharacterLiteral::UTF32;
7386     else
7387       Kind = CharacterLiteral::Ascii;
7388 
7389     E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
7390                                        Kind, T, Loc);
7391   } else if (T->isBooleanType()) {
7392     E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
7393                                          T, Loc);
7394   } else if (T->isNullPtrType()) {
7395     E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
7396   } else {
7397     E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
7398   }
7399 
7400   if (OrigT->isEnumeralType()) {
7401     // FIXME: This is a hack. We need a better way to handle substituted
7402     // non-type template parameters.
7403     E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
7404                                nullptr,
7405                                Context.getTrivialTypeSourceInfo(OrigT, Loc),
7406                                Loc, Loc);
7407   }
7408 
7409   return E;
7410 }
7411 
7412 /// Match two template parameters within template parameter lists.
7413 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
7414                                        bool Complain,
7415                                      Sema::TemplateParameterListEqualKind Kind,
7416                                        SourceLocation TemplateArgLoc) {
7417   // Check the actual kind (type, non-type, template).
7418   if (Old->getKind() != New->getKind()) {
7419     if (Complain) {
7420       unsigned NextDiag = diag::err_template_param_different_kind;
7421       if (TemplateArgLoc.isValid()) {
7422         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7423         NextDiag = diag::note_template_param_different_kind;
7424       }
7425       S.Diag(New->getLocation(), NextDiag)
7426         << (Kind != Sema::TPL_TemplateMatch);
7427       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
7428         << (Kind != Sema::TPL_TemplateMatch);
7429     }
7430 
7431     return false;
7432   }
7433 
7434   // Check that both are parameter packs or neither are parameter packs.
7435   // However, if we are matching a template template argument to a
7436   // template template parameter, the template template parameter can have
7437   // a parameter pack where the template template argument does not.
7438   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
7439       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
7440         Old->isTemplateParameterPack())) {
7441     if (Complain) {
7442       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
7443       if (TemplateArgLoc.isValid()) {
7444         S.Diag(TemplateArgLoc,
7445              diag::err_template_arg_template_params_mismatch);
7446         NextDiag = diag::note_template_parameter_pack_non_pack;
7447       }
7448 
7449       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
7450                       : isa<NonTypeTemplateParmDecl>(New)? 1
7451                       : 2;
7452       S.Diag(New->getLocation(), NextDiag)
7453         << ParamKind << New->isParameterPack();
7454       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
7455         << ParamKind << Old->isParameterPack();
7456     }
7457 
7458     return false;
7459   }
7460 
7461   // For non-type template parameters, check the type of the parameter.
7462   if (NonTypeTemplateParmDecl *OldNTTP
7463                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
7464     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
7465 
7466     // If we are matching a template template argument to a template
7467     // template parameter and one of the non-type template parameter types
7468     // is dependent, then we must wait until template instantiation time
7469     // to actually compare the arguments.
7470     if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
7471         (!OldNTTP->getType()->isDependentType() &&
7472          !NewNTTP->getType()->isDependentType()))
7473       if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
7474         if (Complain) {
7475           unsigned NextDiag = diag::err_template_nontype_parm_different_type;
7476           if (TemplateArgLoc.isValid()) {
7477             S.Diag(TemplateArgLoc,
7478                    diag::err_template_arg_template_params_mismatch);
7479             NextDiag = diag::note_template_nontype_parm_different_type;
7480           }
7481           S.Diag(NewNTTP->getLocation(), NextDiag)
7482             << NewNTTP->getType()
7483             << (Kind != Sema::TPL_TemplateMatch);
7484           S.Diag(OldNTTP->getLocation(),
7485                  diag::note_template_nontype_parm_prev_declaration)
7486             << OldNTTP->getType();
7487         }
7488 
7489         return false;
7490       }
7491   }
7492   // For template template parameters, check the template parameter types.
7493   // The template parameter lists of template template
7494   // parameters must agree.
7495   else if (TemplateTemplateParmDecl *OldTTP
7496                                     = dyn_cast<TemplateTemplateParmDecl>(Old)) {
7497     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
7498     if (!S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
7499                                           OldTTP->getTemplateParameters(),
7500                                           Complain,
7501                                         (Kind == Sema::TPL_TemplateMatch
7502                                            ? Sema::TPL_TemplateTemplateParmMatch
7503                                            : Kind),
7504                                           TemplateArgLoc))
7505       return false;
7506   } else if (Kind != Sema::TPL_TemplateTemplateArgumentMatch) {
7507     const Expr *NewC = nullptr, *OldC = nullptr;
7508     if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
7509       NewC = TC->getImmediatelyDeclaredConstraint();
7510     if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
7511       OldC = TC->getImmediatelyDeclaredConstraint();
7512 
7513     auto Diagnose = [&] {
7514       S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
7515            diag::err_template_different_type_constraint);
7516       S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
7517            diag::note_template_prev_declaration) << /*declaration*/0;
7518     };
7519 
7520     if (!NewC != !OldC) {
7521       if (Complain)
7522         Diagnose();
7523       return false;
7524     }
7525 
7526     if (NewC) {
7527       llvm::FoldingSetNodeID OldCID, NewCID;
7528       OldC->Profile(OldCID, S.Context, /*Canonical=*/true);
7529       NewC->Profile(NewCID, S.Context, /*Canonical=*/true);
7530       if (OldCID != NewCID) {
7531         if (Complain)
7532           Diagnose();
7533         return false;
7534       }
7535     }
7536   }
7537 
7538   return true;
7539 }
7540 
7541 /// Diagnose a known arity mismatch when comparing template argument
7542 /// lists.
7543 static
7544 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
7545                                                 TemplateParameterList *New,
7546                                                 TemplateParameterList *Old,
7547                                       Sema::TemplateParameterListEqualKind Kind,
7548                                                 SourceLocation TemplateArgLoc) {
7549   unsigned NextDiag = diag::err_template_param_list_different_arity;
7550   if (TemplateArgLoc.isValid()) {
7551     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7552     NextDiag = diag::note_template_param_list_different_arity;
7553   }
7554   S.Diag(New->getTemplateLoc(), NextDiag)
7555     << (New->size() > Old->size())
7556     << (Kind != Sema::TPL_TemplateMatch)
7557     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
7558   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
7559     << (Kind != Sema::TPL_TemplateMatch)
7560     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
7561 }
7562 
7563 /// Determine whether the given template parameter lists are
7564 /// equivalent.
7565 ///
7566 /// \param New  The new template parameter list, typically written in the
7567 /// source code as part of a new template declaration.
7568 ///
7569 /// \param Old  The old template parameter list, typically found via
7570 /// name lookup of the template declared with this template parameter
7571 /// list.
7572 ///
7573 /// \param Complain  If true, this routine will produce a diagnostic if
7574 /// the template parameter lists are not equivalent.
7575 ///
7576 /// \param Kind describes how we are to match the template parameter lists.
7577 ///
7578 /// \param TemplateArgLoc If this source location is valid, then we
7579 /// are actually checking the template parameter list of a template
7580 /// argument (New) against the template parameter list of its
7581 /// corresponding template template parameter (Old). We produce
7582 /// slightly different diagnostics in this scenario.
7583 ///
7584 /// \returns True if the template parameter lists are equal, false
7585 /// otherwise.
7586 bool
7587 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
7588                                      TemplateParameterList *Old,
7589                                      bool Complain,
7590                                      TemplateParameterListEqualKind Kind,
7591                                      SourceLocation TemplateArgLoc) {
7592   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
7593     if (Complain)
7594       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7595                                                  TemplateArgLoc);
7596 
7597     return false;
7598   }
7599 
7600   // C++0x [temp.arg.template]p3:
7601   //   A template-argument matches a template template-parameter (call it P)
7602   //   when each of the template parameters in the template-parameter-list of
7603   //   the template-argument's corresponding class template or alias template
7604   //   (call it A) matches the corresponding template parameter in the
7605   //   template-parameter-list of P. [...]
7606   TemplateParameterList::iterator NewParm = New->begin();
7607   TemplateParameterList::iterator NewParmEnd = New->end();
7608   for (TemplateParameterList::iterator OldParm = Old->begin(),
7609                                     OldParmEnd = Old->end();
7610        OldParm != OldParmEnd; ++OldParm) {
7611     if (Kind != TPL_TemplateTemplateArgumentMatch ||
7612         !(*OldParm)->isTemplateParameterPack()) {
7613       if (NewParm == NewParmEnd) {
7614         if (Complain)
7615           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7616                                                      TemplateArgLoc);
7617 
7618         return false;
7619       }
7620 
7621       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7622                                       Kind, TemplateArgLoc))
7623         return false;
7624 
7625       ++NewParm;
7626       continue;
7627     }
7628 
7629     // C++0x [temp.arg.template]p3:
7630     //   [...] When P's template- parameter-list contains a template parameter
7631     //   pack (14.5.3), the template parameter pack will match zero or more
7632     //   template parameters or template parameter packs in the
7633     //   template-parameter-list of A with the same type and form as the
7634     //   template parameter pack in P (ignoring whether those template
7635     //   parameters are template parameter packs).
7636     for (; NewParm != NewParmEnd; ++NewParm) {
7637       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7638                                       Kind, TemplateArgLoc))
7639         return false;
7640     }
7641   }
7642 
7643   // Make sure we exhausted all of the arguments.
7644   if (NewParm != NewParmEnd) {
7645     if (Complain)
7646       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7647                                                  TemplateArgLoc);
7648 
7649     return false;
7650   }
7651 
7652   if (Kind != TPL_TemplateTemplateArgumentMatch) {
7653     const Expr *NewRC = New->getRequiresClause();
7654     const Expr *OldRC = Old->getRequiresClause();
7655 
7656     auto Diagnose = [&] {
7657       Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
7658            diag::err_template_different_requires_clause);
7659       Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
7660            diag::note_template_prev_declaration) << /*declaration*/0;
7661     };
7662 
7663     if (!NewRC != !OldRC) {
7664       if (Complain)
7665         Diagnose();
7666       return false;
7667     }
7668 
7669     if (NewRC) {
7670       llvm::FoldingSetNodeID OldRCID, NewRCID;
7671       OldRC->Profile(OldRCID, Context, /*Canonical=*/true);
7672       NewRC->Profile(NewRCID, Context, /*Canonical=*/true);
7673       if (OldRCID != NewRCID) {
7674         if (Complain)
7675           Diagnose();
7676         return false;
7677       }
7678     }
7679   }
7680 
7681   return true;
7682 }
7683 
7684 /// Check whether a template can be declared within this scope.
7685 ///
7686 /// If the template declaration is valid in this scope, returns
7687 /// false. Otherwise, issues a diagnostic and returns true.
7688 bool
7689 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
7690   if (!S)
7691     return false;
7692 
7693   // Find the nearest enclosing declaration scope.
7694   while ((S->getFlags() & Scope::DeclScope) == 0 ||
7695          (S->getFlags() & Scope::TemplateParamScope) != 0)
7696     S = S->getParent();
7697 
7698   // C++ [temp]p4:
7699   //   A template [...] shall not have C linkage.
7700   DeclContext *Ctx = S->getEntity();
7701   assert(Ctx && "Unknown context");
7702   if (Ctx->isExternCContext()) {
7703     Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
7704         << TemplateParams->getSourceRange();
7705     if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
7706       Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
7707     return true;
7708   }
7709   Ctx = Ctx->getRedeclContext();
7710 
7711   // C++ [temp]p2:
7712   //   A template-declaration can appear only as a namespace scope or
7713   //   class scope declaration.
7714   if (Ctx) {
7715     if (Ctx->isFileContext())
7716       return false;
7717     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
7718       // C++ [temp.mem]p2:
7719       //   A local class shall not have member templates.
7720       if (RD->isLocalClass())
7721         return Diag(TemplateParams->getTemplateLoc(),
7722                     diag::err_template_inside_local_class)
7723           << TemplateParams->getSourceRange();
7724       else
7725         return false;
7726     }
7727   }
7728 
7729   return Diag(TemplateParams->getTemplateLoc(),
7730               diag::err_template_outside_namespace_or_class_scope)
7731     << TemplateParams->getSourceRange();
7732 }
7733 
7734 /// Determine what kind of template specialization the given declaration
7735 /// is.
7736 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
7737   if (!D)
7738     return TSK_Undeclared;
7739 
7740   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
7741     return Record->getTemplateSpecializationKind();
7742   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
7743     return Function->getTemplateSpecializationKind();
7744   if (VarDecl *Var = dyn_cast<VarDecl>(D))
7745     return Var->getTemplateSpecializationKind();
7746 
7747   return TSK_Undeclared;
7748 }
7749 
7750 /// Check whether a specialization is well-formed in the current
7751 /// context.
7752 ///
7753 /// This routine determines whether a template specialization can be declared
7754 /// in the current context (C++ [temp.expl.spec]p2).
7755 ///
7756 /// \param S the semantic analysis object for which this check is being
7757 /// performed.
7758 ///
7759 /// \param Specialized the entity being specialized or instantiated, which
7760 /// may be a kind of template (class template, function template, etc.) or
7761 /// a member of a class template (member function, static data member,
7762 /// member class).
7763 ///
7764 /// \param PrevDecl the previous declaration of this entity, if any.
7765 ///
7766 /// \param Loc the location of the explicit specialization or instantiation of
7767 /// this entity.
7768 ///
7769 /// \param IsPartialSpecialization whether this is a partial specialization of
7770 /// a class template.
7771 ///
7772 /// \returns true if there was an error that we cannot recover from, false
7773 /// otherwise.
7774 static bool CheckTemplateSpecializationScope(Sema &S,
7775                                              NamedDecl *Specialized,
7776                                              NamedDecl *PrevDecl,
7777                                              SourceLocation Loc,
7778                                              bool IsPartialSpecialization) {
7779   // Keep these "kind" numbers in sync with the %select statements in the
7780   // various diagnostics emitted by this routine.
7781   int EntityKind = 0;
7782   if (isa<ClassTemplateDecl>(Specialized))
7783     EntityKind = IsPartialSpecialization? 1 : 0;
7784   else if (isa<VarTemplateDecl>(Specialized))
7785     EntityKind = IsPartialSpecialization ? 3 : 2;
7786   else if (isa<FunctionTemplateDecl>(Specialized))
7787     EntityKind = 4;
7788   else if (isa<CXXMethodDecl>(Specialized))
7789     EntityKind = 5;
7790   else if (isa<VarDecl>(Specialized))
7791     EntityKind = 6;
7792   else if (isa<RecordDecl>(Specialized))
7793     EntityKind = 7;
7794   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
7795     EntityKind = 8;
7796   else {
7797     S.Diag(Loc, diag::err_template_spec_unknown_kind)
7798       << S.getLangOpts().CPlusPlus11;
7799     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
7800     return true;
7801   }
7802 
7803   // C++ [temp.expl.spec]p2:
7804   //   An explicit specialization may be declared in any scope in which
7805   //   the corresponding primary template may be defined.
7806   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7807     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
7808       << Specialized;
7809     return true;
7810   }
7811 
7812   // C++ [temp.class.spec]p6:
7813   //   A class template partial specialization may be declared in any
7814   //   scope in which the primary template may be defined.
7815   DeclContext *SpecializedContext =
7816       Specialized->getDeclContext()->getRedeclContext();
7817   DeclContext *DC = S.CurContext->getRedeclContext();
7818 
7819   // Make sure that this redeclaration (or definition) occurs in the same
7820   // scope or an enclosing namespace.
7821   if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
7822                             : DC->Equals(SpecializedContext))) {
7823     if (isa<TranslationUnitDecl>(SpecializedContext))
7824       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
7825         << EntityKind << Specialized;
7826     else {
7827       auto *ND = cast<NamedDecl>(SpecializedContext);
7828       int Diag = diag::err_template_spec_redecl_out_of_scope;
7829       if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
7830         Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
7831       S.Diag(Loc, Diag) << EntityKind << Specialized
7832                         << ND << isa<CXXRecordDecl>(ND);
7833     }
7834 
7835     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
7836 
7837     // Don't allow specializing in the wrong class during error recovery.
7838     // Otherwise, things can go horribly wrong.
7839     if (DC->isRecord())
7840       return true;
7841   }
7842 
7843   return false;
7844 }
7845 
7846 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
7847   if (!E->isTypeDependent())
7848     return SourceLocation();
7849   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
7850   Checker.TraverseStmt(E);
7851   if (Checker.MatchLoc.isInvalid())
7852     return E->getSourceRange();
7853   return Checker.MatchLoc;
7854 }
7855 
7856 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
7857   if (!TL.getType()->isDependentType())
7858     return SourceLocation();
7859   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
7860   Checker.TraverseTypeLoc(TL);
7861   if (Checker.MatchLoc.isInvalid())
7862     return TL.getSourceRange();
7863   return Checker.MatchLoc;
7864 }
7865 
7866 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
7867 /// that checks non-type template partial specialization arguments.
7868 static bool CheckNonTypeTemplatePartialSpecializationArgs(
7869     Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
7870     const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
7871   for (unsigned I = 0; I != NumArgs; ++I) {
7872     if (Args[I].getKind() == TemplateArgument::Pack) {
7873       if (CheckNonTypeTemplatePartialSpecializationArgs(
7874               S, TemplateNameLoc, Param, Args[I].pack_begin(),
7875               Args[I].pack_size(), IsDefaultArgument))
7876         return true;
7877 
7878       continue;
7879     }
7880 
7881     if (Args[I].getKind() != TemplateArgument::Expression)
7882       continue;
7883 
7884     Expr *ArgExpr = Args[I].getAsExpr();
7885 
7886     // We can have a pack expansion of any of the bullets below.
7887     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
7888       ArgExpr = Expansion->getPattern();
7889 
7890     // Strip off any implicit casts we added as part of type checking.
7891     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
7892       ArgExpr = ICE->getSubExpr();
7893 
7894     // C++ [temp.class.spec]p8:
7895     //   A non-type argument is non-specialized if it is the name of a
7896     //   non-type parameter. All other non-type arguments are
7897     //   specialized.
7898     //
7899     // Below, we check the two conditions that only apply to
7900     // specialized non-type arguments, so skip any non-specialized
7901     // arguments.
7902     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
7903       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
7904         continue;
7905 
7906     // C++ [temp.class.spec]p9:
7907     //   Within the argument list of a class template partial
7908     //   specialization, the following restrictions apply:
7909     //     -- A partially specialized non-type argument expression
7910     //        shall not involve a template parameter of the partial
7911     //        specialization except when the argument expression is a
7912     //        simple identifier.
7913     //     -- The type of a template parameter corresponding to a
7914     //        specialized non-type argument shall not be dependent on a
7915     //        parameter of the specialization.
7916     // DR1315 removes the first bullet, leaving an incoherent set of rules.
7917     // We implement a compromise between the original rules and DR1315:
7918     //     --  A specialized non-type template argument shall not be
7919     //         type-dependent and the corresponding template parameter
7920     //         shall have a non-dependent type.
7921     SourceRange ParamUseRange =
7922         findTemplateParameterInType(Param->getDepth(), ArgExpr);
7923     if (ParamUseRange.isValid()) {
7924       if (IsDefaultArgument) {
7925         S.Diag(TemplateNameLoc,
7926                diag::err_dependent_non_type_arg_in_partial_spec);
7927         S.Diag(ParamUseRange.getBegin(),
7928                diag::note_dependent_non_type_default_arg_in_partial_spec)
7929           << ParamUseRange;
7930       } else {
7931         S.Diag(ParamUseRange.getBegin(),
7932                diag::err_dependent_non_type_arg_in_partial_spec)
7933           << ParamUseRange;
7934       }
7935       return true;
7936     }
7937 
7938     ParamUseRange = findTemplateParameter(
7939         Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
7940     if (ParamUseRange.isValid()) {
7941       S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
7942              diag::err_dependent_typed_non_type_arg_in_partial_spec)
7943           << Param->getType();
7944       S.Diag(Param->getLocation(), diag::note_template_param_here)
7945         << (IsDefaultArgument ? ParamUseRange : SourceRange())
7946         << ParamUseRange;
7947       return true;
7948     }
7949   }
7950 
7951   return false;
7952 }
7953 
7954 /// Check the non-type template arguments of a class template
7955 /// partial specialization according to C++ [temp.class.spec]p9.
7956 ///
7957 /// \param TemplateNameLoc the location of the template name.
7958 /// \param PrimaryTemplate the template parameters of the primary class
7959 ///        template.
7960 /// \param NumExplicit the number of explicitly-specified template arguments.
7961 /// \param TemplateArgs the template arguments of the class template
7962 ///        partial specialization.
7963 ///
7964 /// \returns \c true if there was an error, \c false otherwise.
7965 bool Sema::CheckTemplatePartialSpecializationArgs(
7966     SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
7967     unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
7968   // We have to be conservative when checking a template in a dependent
7969   // context.
7970   if (PrimaryTemplate->getDeclContext()->isDependentContext())
7971     return false;
7972 
7973   TemplateParameterList *TemplateParams =
7974       PrimaryTemplate->getTemplateParameters();
7975   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
7976     NonTypeTemplateParmDecl *Param
7977       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
7978     if (!Param)
7979       continue;
7980 
7981     if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
7982                                                       Param, &TemplateArgs[I],
7983                                                       1, I >= NumExplicit))
7984       return true;
7985   }
7986 
7987   return false;
7988 }
7989 
7990 DeclResult Sema::ActOnClassTemplateSpecialization(
7991     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7992     SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
7993     TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
7994     MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
7995   assert(TUK != TUK_Reference && "References are not specializations");
7996 
7997   // NOTE: KWLoc is the location of the tag keyword. This will instead
7998   // store the location of the outermost template keyword in the declaration.
7999   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
8000     ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
8001   SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
8002   SourceLocation LAngleLoc = TemplateId.LAngleLoc;
8003   SourceLocation RAngleLoc = TemplateId.RAngleLoc;
8004 
8005   // Find the class template we're specializing
8006   TemplateName Name = TemplateId.Template.get();
8007   ClassTemplateDecl *ClassTemplate
8008     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
8009 
8010   if (!ClassTemplate) {
8011     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
8012       << (Name.getAsTemplateDecl() &&
8013           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
8014     return true;
8015   }
8016 
8017   bool isMemberSpecialization = false;
8018   bool isPartialSpecialization = false;
8019 
8020   // Check the validity of the template headers that introduce this
8021   // template.
8022   // FIXME: We probably shouldn't complain about these headers for
8023   // friend declarations.
8024   bool Invalid = false;
8025   TemplateParameterList *TemplateParams =
8026       MatchTemplateParametersToScopeSpecifier(
8027           KWLoc, TemplateNameLoc, SS, &TemplateId,
8028           TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
8029           Invalid);
8030   if (Invalid)
8031     return true;
8032 
8033   if (TemplateParams && TemplateParams->size() > 0) {
8034     isPartialSpecialization = true;
8035 
8036     if (TUK == TUK_Friend) {
8037       Diag(KWLoc, diag::err_partial_specialization_friend)
8038         << SourceRange(LAngleLoc, RAngleLoc);
8039       return true;
8040     }
8041 
8042     // C++ [temp.class.spec]p10:
8043     //   The template parameter list of a specialization shall not
8044     //   contain default template argument values.
8045     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8046       Decl *Param = TemplateParams->getParam(I);
8047       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
8048         if (TTP->hasDefaultArgument()) {
8049           Diag(TTP->getDefaultArgumentLoc(),
8050                diag::err_default_arg_in_partial_spec);
8051           TTP->removeDefaultArgument();
8052         }
8053       } else if (NonTypeTemplateParmDecl *NTTP
8054                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
8055         if (Expr *DefArg = NTTP->getDefaultArgument()) {
8056           Diag(NTTP->getDefaultArgumentLoc(),
8057                diag::err_default_arg_in_partial_spec)
8058             << DefArg->getSourceRange();
8059           NTTP->removeDefaultArgument();
8060         }
8061       } else {
8062         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
8063         if (TTP->hasDefaultArgument()) {
8064           Diag(TTP->getDefaultArgument().getLocation(),
8065                diag::err_default_arg_in_partial_spec)
8066             << TTP->getDefaultArgument().getSourceRange();
8067           TTP->removeDefaultArgument();
8068         }
8069       }
8070     }
8071   } else if (TemplateParams) {
8072     if (TUK == TUK_Friend)
8073       Diag(KWLoc, diag::err_template_spec_friend)
8074         << FixItHint::CreateRemoval(
8075                                 SourceRange(TemplateParams->getTemplateLoc(),
8076                                             TemplateParams->getRAngleLoc()))
8077         << SourceRange(LAngleLoc, RAngleLoc);
8078   } else {
8079     assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
8080   }
8081 
8082   // Check that the specialization uses the same tag kind as the
8083   // original template.
8084   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8085   assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
8086   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
8087                                     Kind, TUK == TUK_Definition, KWLoc,
8088                                     ClassTemplate->getIdentifier())) {
8089     Diag(KWLoc, diag::err_use_with_wrong_tag)
8090       << ClassTemplate
8091       << FixItHint::CreateReplacement(KWLoc,
8092                             ClassTemplate->getTemplatedDecl()->getKindName());
8093     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8094          diag::note_previous_use);
8095     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8096   }
8097 
8098   // Translate the parser's template argument list in our AST format.
8099   TemplateArgumentListInfo TemplateArgs =
8100       makeTemplateArgumentListInfo(*this, TemplateId);
8101 
8102   // Check for unexpanded parameter packs in any of the template arguments.
8103   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8104     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
8105                                         UPPC_PartialSpecialization))
8106       return true;
8107 
8108   // Check that the template argument list is well-formed for this
8109   // template.
8110   SmallVector<TemplateArgument, 4> Converted;
8111   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
8112                                 TemplateArgs, false, Converted,
8113                                 /*UpdateArgsWithConversion=*/true))
8114     return true;
8115 
8116   // Find the class template (partial) specialization declaration that
8117   // corresponds to these arguments.
8118   if (isPartialSpecialization) {
8119     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
8120                                                TemplateArgs.size(), Converted))
8121       return true;
8122 
8123     // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
8124     // also do it during instantiation.
8125     bool InstantiationDependent;
8126     if (!Name.isDependent() &&
8127         !TemplateSpecializationType::anyDependentTemplateArguments(
8128             TemplateArgs.arguments(), InstantiationDependent)) {
8129       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
8130         << ClassTemplate->getDeclName();
8131       isPartialSpecialization = false;
8132     }
8133   }
8134 
8135   void *InsertPos = nullptr;
8136   ClassTemplateSpecializationDecl *PrevDecl = nullptr;
8137 
8138   if (isPartialSpecialization)
8139     PrevDecl = ClassTemplate->findPartialSpecialization(Converted,
8140                                                         TemplateParams,
8141                                                         InsertPos);
8142   else
8143     PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
8144 
8145   ClassTemplateSpecializationDecl *Specialization = nullptr;
8146 
8147   // Check whether we can declare a class template specialization in
8148   // the current scope.
8149   if (TUK != TUK_Friend &&
8150       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
8151                                        TemplateNameLoc,
8152                                        isPartialSpecialization))
8153     return true;
8154 
8155   // The canonical type
8156   QualType CanonType;
8157   if (isPartialSpecialization) {
8158     // Build the canonical type that describes the converted template
8159     // arguments of the class template partial specialization.
8160     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8161     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8162                                                       Converted);
8163 
8164     if (Context.hasSameType(CanonType,
8165                         ClassTemplate->getInjectedClassNameSpecialization()) &&
8166         (!Context.getLangOpts().CPlusPlus2a ||
8167          !TemplateParams->hasAssociatedConstraints())) {
8168       // C++ [temp.class.spec]p9b3:
8169       //
8170       //   -- The argument list of the specialization shall not be identical
8171       //      to the implicit argument list of the primary template.
8172       //
8173       // This rule has since been removed, because it's redundant given DR1495,
8174       // but we keep it because it produces better diagnostics and recovery.
8175       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
8176         << /*class template*/0 << (TUK == TUK_Definition)
8177         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
8178       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
8179                                 ClassTemplate->getIdentifier(),
8180                                 TemplateNameLoc,
8181                                 Attr,
8182                                 TemplateParams,
8183                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
8184                                 /*FriendLoc*/SourceLocation(),
8185                                 TemplateParameterLists.size() - 1,
8186                                 TemplateParameterLists.data());
8187     }
8188 
8189     // Create a new class template partial specialization declaration node.
8190     ClassTemplatePartialSpecializationDecl *PrevPartial
8191       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
8192     ClassTemplatePartialSpecializationDecl *Partial
8193       = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
8194                                              ClassTemplate->getDeclContext(),
8195                                                        KWLoc, TemplateNameLoc,
8196                                                        TemplateParams,
8197                                                        ClassTemplate,
8198                                                        Converted,
8199                                                        TemplateArgs,
8200                                                        CanonType,
8201                                                        PrevPartial);
8202     SetNestedNameSpecifier(*this, Partial, SS);
8203     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
8204       Partial->setTemplateParameterListsInfo(
8205           Context, TemplateParameterLists.drop_back(1));
8206     }
8207 
8208     if (!PrevPartial)
8209       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
8210     Specialization = Partial;
8211 
8212     // If we are providing an explicit specialization of a member class
8213     // template specialization, make a note of that.
8214     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
8215       PrevPartial->setMemberSpecialization();
8216 
8217     CheckTemplatePartialSpecialization(Partial);
8218   } else {
8219     // Create a new class template specialization declaration node for
8220     // this explicit specialization or friend declaration.
8221     Specialization
8222       = ClassTemplateSpecializationDecl::Create(Context, Kind,
8223                                              ClassTemplate->getDeclContext(),
8224                                                 KWLoc, TemplateNameLoc,
8225                                                 ClassTemplate,
8226                                                 Converted,
8227                                                 PrevDecl);
8228     SetNestedNameSpecifier(*this, Specialization, SS);
8229     if (TemplateParameterLists.size() > 0) {
8230       Specialization->setTemplateParameterListsInfo(Context,
8231                                                     TemplateParameterLists);
8232     }
8233 
8234     if (!PrevDecl)
8235       ClassTemplate->AddSpecialization(Specialization, InsertPos);
8236 
8237     if (CurContext->isDependentContext()) {
8238       TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8239       CanonType = Context.getTemplateSpecializationType(
8240           CanonTemplate, Converted);
8241     } else {
8242       CanonType = Context.getTypeDeclType(Specialization);
8243     }
8244   }
8245 
8246   // C++ [temp.expl.spec]p6:
8247   //   If a template, a member template or the member of a class template is
8248   //   explicitly specialized then that specialization shall be declared
8249   //   before the first use of that specialization that would cause an implicit
8250   //   instantiation to take place, in every translation unit in which such a
8251   //   use occurs; no diagnostic is required.
8252   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
8253     bool Okay = false;
8254     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8255       // Is there any previous explicit specialization declaration?
8256       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8257         Okay = true;
8258         break;
8259       }
8260     }
8261 
8262     if (!Okay) {
8263       SourceRange Range(TemplateNameLoc, RAngleLoc);
8264       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
8265         << Context.getTypeDeclType(Specialization) << Range;
8266 
8267       Diag(PrevDecl->getPointOfInstantiation(),
8268            diag::note_instantiation_required_here)
8269         << (PrevDecl->getTemplateSpecializationKind()
8270                                                 != TSK_ImplicitInstantiation);
8271       return true;
8272     }
8273   }
8274 
8275   // If this is not a friend, note that this is an explicit specialization.
8276   if (TUK != TUK_Friend)
8277     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
8278 
8279   // Check that this isn't a redefinition of this specialization.
8280   if (TUK == TUK_Definition) {
8281     RecordDecl *Def = Specialization->getDefinition();
8282     NamedDecl *Hidden = nullptr;
8283     if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
8284       SkipBody->ShouldSkip = true;
8285       SkipBody->Previous = Def;
8286       makeMergedDefinitionVisible(Hidden);
8287     } else if (Def) {
8288       SourceRange Range(TemplateNameLoc, RAngleLoc);
8289       Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
8290       Diag(Def->getLocation(), diag::note_previous_definition);
8291       Specialization->setInvalidDecl();
8292       return true;
8293     }
8294   }
8295 
8296   ProcessDeclAttributeList(S, Specialization, Attr);
8297 
8298   // Add alignment attributes if necessary; these attributes are checked when
8299   // the ASTContext lays out the structure.
8300   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
8301     AddAlignmentAttributesForRecord(Specialization);
8302     AddMsStructLayoutForRecord(Specialization);
8303   }
8304 
8305   if (ModulePrivateLoc.isValid())
8306     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
8307       << (isPartialSpecialization? 1 : 0)
8308       << FixItHint::CreateRemoval(ModulePrivateLoc);
8309 
8310   // Build the fully-sugared type for this class template
8311   // specialization as the user wrote in the specialization
8312   // itself. This means that we'll pretty-print the type retrieved
8313   // from the specialization's declaration the way that the user
8314   // actually wrote the specialization, rather than formatting the
8315   // name based on the "canonical" representation used to store the
8316   // template arguments in the specialization.
8317   TypeSourceInfo *WrittenTy
8318     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
8319                                                 TemplateArgs, CanonType);
8320   if (TUK != TUK_Friend) {
8321     Specialization->setTypeAsWritten(WrittenTy);
8322     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
8323   }
8324 
8325   // C++ [temp.expl.spec]p9:
8326   //   A template explicit specialization is in the scope of the
8327   //   namespace in which the template was defined.
8328   //
8329   // We actually implement this paragraph where we set the semantic
8330   // context (in the creation of the ClassTemplateSpecializationDecl),
8331   // but we also maintain the lexical context where the actual
8332   // definition occurs.
8333   Specialization->setLexicalDeclContext(CurContext);
8334 
8335   // We may be starting the definition of this specialization.
8336   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
8337     Specialization->startDefinition();
8338 
8339   if (TUK == TUK_Friend) {
8340     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
8341                                             TemplateNameLoc,
8342                                             WrittenTy,
8343                                             /*FIXME:*/KWLoc);
8344     Friend->setAccess(AS_public);
8345     CurContext->addDecl(Friend);
8346   } else {
8347     // Add the specialization into its lexical context, so that it can
8348     // be seen when iterating through the list of declarations in that
8349     // context. However, specializations are not found by name lookup.
8350     CurContext->addDecl(Specialization);
8351   }
8352 
8353   if (SkipBody && SkipBody->ShouldSkip)
8354     return SkipBody->Previous;
8355 
8356   return Specialization;
8357 }
8358 
8359 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
8360                               MultiTemplateParamsArg TemplateParameterLists,
8361                                     Declarator &D) {
8362   Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
8363   ActOnDocumentableDecl(NewDecl);
8364   return NewDecl;
8365 }
8366 
8367 Decl *Sema::ActOnConceptDefinition(Scope *S,
8368                               MultiTemplateParamsArg TemplateParameterLists,
8369                                    IdentifierInfo *Name, SourceLocation NameLoc,
8370                                    Expr *ConstraintExpr) {
8371   DeclContext *DC = CurContext;
8372 
8373   if (!DC->getRedeclContext()->isFileContext()) {
8374     Diag(NameLoc,
8375       diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
8376     return nullptr;
8377   }
8378 
8379   if (TemplateParameterLists.size() > 1) {
8380     Diag(NameLoc, diag::err_concept_extra_headers);
8381     return nullptr;
8382   }
8383 
8384   if (TemplateParameterLists.front()->size() == 0) {
8385     Diag(NameLoc, diag::err_concept_no_parameters);
8386     return nullptr;
8387   }
8388 
8389   ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name,
8390                                              TemplateParameterLists.front(),
8391                                              ConstraintExpr);
8392 
8393   if (NewDecl->hasAssociatedConstraints()) {
8394     // C++2a [temp.concept]p4:
8395     // A concept shall not have associated constraints.
8396     Diag(NameLoc, diag::err_concept_no_associated_constraints);
8397     NewDecl->setInvalidDecl();
8398   }
8399 
8400   // Check for conflicting previous declaration.
8401   DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
8402   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8403                         ForVisibleRedeclaration);
8404   LookupName(Previous, S);
8405 
8406   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
8407                        /*AllowInlineNamespace*/false);
8408   if (!Previous.empty()) {
8409     auto *Old = Previous.getRepresentativeDecl();
8410     Diag(NameLoc, isa<ConceptDecl>(Old) ? diag::err_redefinition :
8411          diag::err_redefinition_different_kind) << NewDecl->getDeclName();
8412     Diag(Old->getLocation(), diag::note_previous_definition);
8413   }
8414 
8415   ActOnDocumentableDecl(NewDecl);
8416   PushOnScopeChains(NewDecl, S);
8417   return NewDecl;
8418 }
8419 
8420 /// \brief Strips various properties off an implicit instantiation
8421 /// that has just been explicitly specialized.
8422 static void StripImplicitInstantiation(NamedDecl *D) {
8423   D->dropAttr<DLLImportAttr>();
8424   D->dropAttr<DLLExportAttr>();
8425 
8426   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
8427     FD->setInlineSpecified(false);
8428 }
8429 
8430 /// Compute the diagnostic location for an explicit instantiation
8431 //  declaration or definition.
8432 static SourceLocation DiagLocForExplicitInstantiation(
8433     NamedDecl* D, SourceLocation PointOfInstantiation) {
8434   // Explicit instantiations following a specialization have no effect and
8435   // hence no PointOfInstantiation. In that case, walk decl backwards
8436   // until a valid name loc is found.
8437   SourceLocation PrevDiagLoc = PointOfInstantiation;
8438   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
8439        Prev = Prev->getPreviousDecl()) {
8440     PrevDiagLoc = Prev->getLocation();
8441   }
8442   assert(PrevDiagLoc.isValid() &&
8443          "Explicit instantiation without point of instantiation?");
8444   return PrevDiagLoc;
8445 }
8446 
8447 /// Diagnose cases where we have an explicit template specialization
8448 /// before/after an explicit template instantiation, producing diagnostics
8449 /// for those cases where they are required and determining whether the
8450 /// new specialization/instantiation will have any effect.
8451 ///
8452 /// \param NewLoc the location of the new explicit specialization or
8453 /// instantiation.
8454 ///
8455 /// \param NewTSK the kind of the new explicit specialization or instantiation.
8456 ///
8457 /// \param PrevDecl the previous declaration of the entity.
8458 ///
8459 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
8460 ///
8461 /// \param PrevPointOfInstantiation if valid, indicates where the previus
8462 /// declaration was instantiated (either implicitly or explicitly).
8463 ///
8464 /// \param HasNoEffect will be set to true to indicate that the new
8465 /// specialization or instantiation has no effect and should be ignored.
8466 ///
8467 /// \returns true if there was an error that should prevent the introduction of
8468 /// the new declaration into the AST, false otherwise.
8469 bool
8470 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
8471                                              TemplateSpecializationKind NewTSK,
8472                                              NamedDecl *PrevDecl,
8473                                              TemplateSpecializationKind PrevTSK,
8474                                         SourceLocation PrevPointOfInstantiation,
8475                                              bool &HasNoEffect) {
8476   HasNoEffect = false;
8477 
8478   switch (NewTSK) {
8479   case TSK_Undeclared:
8480   case TSK_ImplicitInstantiation:
8481     assert(
8482         (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
8483         "previous declaration must be implicit!");
8484     return false;
8485 
8486   case TSK_ExplicitSpecialization:
8487     switch (PrevTSK) {
8488     case TSK_Undeclared:
8489     case TSK_ExplicitSpecialization:
8490       // Okay, we're just specializing something that is either already
8491       // explicitly specialized or has merely been mentioned without any
8492       // instantiation.
8493       return false;
8494 
8495     case TSK_ImplicitInstantiation:
8496       if (PrevPointOfInstantiation.isInvalid()) {
8497         // The declaration itself has not actually been instantiated, so it is
8498         // still okay to specialize it.
8499         StripImplicitInstantiation(PrevDecl);
8500         return false;
8501       }
8502       // Fall through
8503       LLVM_FALLTHROUGH;
8504 
8505     case TSK_ExplicitInstantiationDeclaration:
8506     case TSK_ExplicitInstantiationDefinition:
8507       assert((PrevTSK == TSK_ImplicitInstantiation ||
8508               PrevPointOfInstantiation.isValid()) &&
8509              "Explicit instantiation without point of instantiation?");
8510 
8511       // C++ [temp.expl.spec]p6:
8512       //   If a template, a member template or the member of a class template
8513       //   is explicitly specialized then that specialization shall be declared
8514       //   before the first use of that specialization that would cause an
8515       //   implicit instantiation to take place, in every translation unit in
8516       //   which such a use occurs; no diagnostic is required.
8517       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8518         // Is there any previous explicit specialization declaration?
8519         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
8520           return false;
8521       }
8522 
8523       Diag(NewLoc, diag::err_specialization_after_instantiation)
8524         << PrevDecl;
8525       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
8526         << (PrevTSK != TSK_ImplicitInstantiation);
8527 
8528       return true;
8529     }
8530     llvm_unreachable("The switch over PrevTSK must be exhaustive.");
8531 
8532   case TSK_ExplicitInstantiationDeclaration:
8533     switch (PrevTSK) {
8534     case TSK_ExplicitInstantiationDeclaration:
8535       // This explicit instantiation declaration is redundant (that's okay).
8536       HasNoEffect = true;
8537       return false;
8538 
8539     case TSK_Undeclared:
8540     case TSK_ImplicitInstantiation:
8541       // We're explicitly instantiating something that may have already been
8542       // implicitly instantiated; that's fine.
8543       return false;
8544 
8545     case TSK_ExplicitSpecialization:
8546       // C++0x [temp.explicit]p4:
8547       //   For a given set of template parameters, if an explicit instantiation
8548       //   of a template appears after a declaration of an explicit
8549       //   specialization for that template, the explicit instantiation has no
8550       //   effect.
8551       HasNoEffect = true;
8552       return false;
8553 
8554     case TSK_ExplicitInstantiationDefinition:
8555       // C++0x [temp.explicit]p10:
8556       //   If an entity is the subject of both an explicit instantiation
8557       //   declaration and an explicit instantiation definition in the same
8558       //   translation unit, the definition shall follow the declaration.
8559       Diag(NewLoc,
8560            diag::err_explicit_instantiation_declaration_after_definition);
8561 
8562       // Explicit instantiations following a specialization have no effect and
8563       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
8564       // until a valid name loc is found.
8565       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8566            diag::note_explicit_instantiation_definition_here);
8567       HasNoEffect = true;
8568       return false;
8569     }
8570     llvm_unreachable("Unexpected TemplateSpecializationKind!");
8571 
8572   case TSK_ExplicitInstantiationDefinition:
8573     switch (PrevTSK) {
8574     case TSK_Undeclared:
8575     case TSK_ImplicitInstantiation:
8576       // We're explicitly instantiating something that may have already been
8577       // implicitly instantiated; that's fine.
8578       return false;
8579 
8580     case TSK_ExplicitSpecialization:
8581       // C++ DR 259, C++0x [temp.explicit]p4:
8582       //   For a given set of template parameters, if an explicit
8583       //   instantiation of a template appears after a declaration of
8584       //   an explicit specialization for that template, the explicit
8585       //   instantiation has no effect.
8586       Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
8587         << PrevDecl;
8588       Diag(PrevDecl->getLocation(),
8589            diag::note_previous_template_specialization);
8590       HasNoEffect = true;
8591       return false;
8592 
8593     case TSK_ExplicitInstantiationDeclaration:
8594       // We're explicitly instantiating a definition for something for which we
8595       // were previously asked to suppress instantiations. That's fine.
8596 
8597       // C++0x [temp.explicit]p4:
8598       //   For a given set of template parameters, if an explicit instantiation
8599       //   of a template appears after a declaration of an explicit
8600       //   specialization for that template, the explicit instantiation has no
8601       //   effect.
8602       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8603         // Is there any previous explicit specialization declaration?
8604         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8605           HasNoEffect = true;
8606           break;
8607         }
8608       }
8609 
8610       return false;
8611 
8612     case TSK_ExplicitInstantiationDefinition:
8613       // C++0x [temp.spec]p5:
8614       //   For a given template and a given set of template-arguments,
8615       //     - an explicit instantiation definition shall appear at most once
8616       //       in a program,
8617 
8618       // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
8619       Diag(NewLoc, (getLangOpts().MSVCCompat)
8620                        ? diag::ext_explicit_instantiation_duplicate
8621                        : diag::err_explicit_instantiation_duplicate)
8622           << PrevDecl;
8623       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8624            diag::note_previous_explicit_instantiation);
8625       HasNoEffect = true;
8626       return false;
8627     }
8628   }
8629 
8630   llvm_unreachable("Missing specialization/instantiation case?");
8631 }
8632 
8633 /// Perform semantic analysis for the given dependent function
8634 /// template specialization.
8635 ///
8636 /// The only possible way to get a dependent function template specialization
8637 /// is with a friend declaration, like so:
8638 ///
8639 /// \code
8640 ///   template \<class T> void foo(T);
8641 ///   template \<class T> class A {
8642 ///     friend void foo<>(T);
8643 ///   };
8644 /// \endcode
8645 ///
8646 /// There really isn't any useful analysis we can do here, so we
8647 /// just store the information.
8648 bool
8649 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
8650                    const TemplateArgumentListInfo &ExplicitTemplateArgs,
8651                                                    LookupResult &Previous) {
8652   // Remove anything from Previous that isn't a function template in
8653   // the correct context.
8654   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8655   LookupResult::Filter F = Previous.makeFilter();
8656   enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
8657   SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
8658   while (F.hasNext()) {
8659     NamedDecl *D = F.next()->getUnderlyingDecl();
8660     if (!isa<FunctionTemplateDecl>(D)) {
8661       F.erase();
8662       DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
8663       continue;
8664     }
8665 
8666     if (!FDLookupContext->InEnclosingNamespaceSetOf(
8667             D->getDeclContext()->getRedeclContext())) {
8668       F.erase();
8669       DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
8670       continue;
8671     }
8672   }
8673   F.done();
8674 
8675   if (Previous.empty()) {
8676     Diag(FD->getLocation(),
8677          diag::err_dependent_function_template_spec_no_match);
8678     for (auto &P : DiscardedCandidates)
8679       Diag(P.second->getLocation(),
8680            diag::note_dependent_function_template_spec_discard_reason)
8681           << P.first;
8682     return true;
8683   }
8684 
8685   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
8686                                          ExplicitTemplateArgs);
8687   return false;
8688 }
8689 
8690 /// Perform semantic analysis for the given function template
8691 /// specialization.
8692 ///
8693 /// This routine performs all of the semantic analysis required for an
8694 /// explicit function template specialization. On successful completion,
8695 /// the function declaration \p FD will become a function template
8696 /// specialization.
8697 ///
8698 /// \param FD the function declaration, which will be updated to become a
8699 /// function template specialization.
8700 ///
8701 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
8702 /// if any. Note that this may be valid info even when 0 arguments are
8703 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
8704 /// as it anyway contains info on the angle brackets locations.
8705 ///
8706 /// \param Previous the set of declarations that may be specialized by
8707 /// this function specialization.
8708 ///
8709 /// \param QualifiedFriend whether this is a lookup for a qualified friend
8710 /// declaration with no explicit template argument list that might be
8711 /// befriending a function template specialization.
8712 bool Sema::CheckFunctionTemplateSpecialization(
8713     FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
8714     LookupResult &Previous, bool QualifiedFriend) {
8715   // The set of function template specializations that could match this
8716   // explicit function template specialization.
8717   UnresolvedSet<8> Candidates;
8718   TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
8719                                             /*ForTakingAddress=*/false);
8720 
8721   llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
8722       ConvertedTemplateArgs;
8723 
8724   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8725   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8726          I != E; ++I) {
8727     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
8728     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
8729       // Only consider templates found within the same semantic lookup scope as
8730       // FD.
8731       if (!FDLookupContext->InEnclosingNamespaceSetOf(
8732                                 Ovl->getDeclContext()->getRedeclContext()))
8733         continue;
8734 
8735       // When matching a constexpr member function template specialization
8736       // against the primary template, we don't yet know whether the
8737       // specialization has an implicit 'const' (because we don't know whether
8738       // it will be a static member function until we know which template it
8739       // specializes), so adjust it now assuming it specializes this template.
8740       QualType FT = FD->getType();
8741       if (FD->isConstexpr()) {
8742         CXXMethodDecl *OldMD =
8743           dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
8744         if (OldMD && OldMD->isConst()) {
8745           const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
8746           FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8747           EPI.TypeQuals.addConst();
8748           FT = Context.getFunctionType(FPT->getReturnType(),
8749                                        FPT->getParamTypes(), EPI);
8750         }
8751       }
8752 
8753       TemplateArgumentListInfo Args;
8754       if (ExplicitTemplateArgs)
8755         Args = *ExplicitTemplateArgs;
8756 
8757       // C++ [temp.expl.spec]p11:
8758       //   A trailing template-argument can be left unspecified in the
8759       //   template-id naming an explicit function template specialization
8760       //   provided it can be deduced from the function argument type.
8761       // Perform template argument deduction to determine whether we may be
8762       // specializing this template.
8763       // FIXME: It is somewhat wasteful to build
8764       TemplateDeductionInfo Info(FailedCandidates.getLocation());
8765       FunctionDecl *Specialization = nullptr;
8766       if (TemplateDeductionResult TDK = DeduceTemplateArguments(
8767               cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
8768               ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
8769               Info)) {
8770         // Template argument deduction failed; record why it failed, so
8771         // that we can provide nifty diagnostics.
8772         FailedCandidates.addCandidate().set(
8773             I.getPair(), FunTmpl->getTemplatedDecl(),
8774             MakeDeductionFailureInfo(Context, TDK, Info));
8775         (void)TDK;
8776         continue;
8777       }
8778 
8779       // Target attributes are part of the cuda function signature, so
8780       // the deduced template's cuda target must match that of the
8781       // specialization.  Given that C++ template deduction does not
8782       // take target attributes into account, we reject candidates
8783       // here that have a different target.
8784       if (LangOpts.CUDA &&
8785           IdentifyCUDATarget(Specialization,
8786                              /* IgnoreImplicitHDAttr = */ true) !=
8787               IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
8788         FailedCandidates.addCandidate().set(
8789             I.getPair(), FunTmpl->getTemplatedDecl(),
8790             MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
8791         continue;
8792       }
8793 
8794       // Record this candidate.
8795       if (ExplicitTemplateArgs)
8796         ConvertedTemplateArgs[Specialization] = std::move(Args);
8797       Candidates.addDecl(Specialization, I.getAccess());
8798     }
8799   }
8800 
8801   // For a qualified friend declaration (with no explicit marker to indicate
8802   // that a template specialization was intended), note all (template and
8803   // non-template) candidates.
8804   if (QualifiedFriend && Candidates.empty()) {
8805     Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
8806         << FD->getDeclName() << FDLookupContext;
8807     // FIXME: We should form a single candidate list and diagnose all
8808     // candidates at once, to get proper sorting and limiting.
8809     for (auto *OldND : Previous) {
8810       if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
8811         NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
8812     }
8813     FailedCandidates.NoteCandidates(*this, FD->getLocation());
8814     return true;
8815   }
8816 
8817   // Find the most specialized function template.
8818   UnresolvedSetIterator Result = getMostSpecialized(
8819       Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
8820       PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
8821       PDiag(diag::err_function_template_spec_ambiguous)
8822           << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
8823       PDiag(diag::note_function_template_spec_matched));
8824 
8825   if (Result == Candidates.end())
8826     return true;
8827 
8828   // Ignore access information;  it doesn't figure into redeclaration checking.
8829   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
8830 
8831   FunctionTemplateSpecializationInfo *SpecInfo
8832     = Specialization->getTemplateSpecializationInfo();
8833   assert(SpecInfo && "Function template specialization info missing?");
8834 
8835   // Note: do not overwrite location info if previous template
8836   // specialization kind was explicit.
8837   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
8838   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
8839     Specialization->setLocation(FD->getLocation());
8840     Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
8841     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
8842     // function can differ from the template declaration with respect to
8843     // the constexpr specifier.
8844     // FIXME: We need an update record for this AST mutation.
8845     // FIXME: What if there are multiple such prior declarations (for instance,
8846     // from different modules)?
8847     Specialization->setConstexprKind(FD->getConstexprKind());
8848   }
8849 
8850   // FIXME: Check if the prior specialization has a point of instantiation.
8851   // If so, we have run afoul of .
8852 
8853   // If this is a friend declaration, then we're not really declaring
8854   // an explicit specialization.
8855   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
8856 
8857   // Check the scope of this explicit specialization.
8858   if (!isFriend &&
8859       CheckTemplateSpecializationScope(*this,
8860                                        Specialization->getPrimaryTemplate(),
8861                                        Specialization, FD->getLocation(),
8862                                        false))
8863     return true;
8864 
8865   // C++ [temp.expl.spec]p6:
8866   //   If a template, a member template or the member of a class template is
8867   //   explicitly specialized then that specialization shall be declared
8868   //   before the first use of that specialization that would cause an implicit
8869   //   instantiation to take place, in every translation unit in which such a
8870   //   use occurs; no diagnostic is required.
8871   bool HasNoEffect = false;
8872   if (!isFriend &&
8873       CheckSpecializationInstantiationRedecl(FD->getLocation(),
8874                                              TSK_ExplicitSpecialization,
8875                                              Specialization,
8876                                    SpecInfo->getTemplateSpecializationKind(),
8877                                          SpecInfo->getPointOfInstantiation(),
8878                                              HasNoEffect))
8879     return true;
8880 
8881   // Mark the prior declaration as an explicit specialization, so that later
8882   // clients know that this is an explicit specialization.
8883   if (!isFriend) {
8884     // Since explicit specializations do not inherit '=delete' from their
8885     // primary function template - check if the 'specialization' that was
8886     // implicitly generated (during template argument deduction for partial
8887     // ordering) from the most specialized of all the function templates that
8888     // 'FD' could have been specializing, has a 'deleted' definition.  If so,
8889     // first check that it was implicitly generated during template argument
8890     // deduction by making sure it wasn't referenced, and then reset the deleted
8891     // flag to not-deleted, so that we can inherit that information from 'FD'.
8892     if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
8893         !Specialization->getCanonicalDecl()->isReferenced()) {
8894       // FIXME: This assert will not hold in the presence of modules.
8895       assert(
8896           Specialization->getCanonicalDecl() == Specialization &&
8897           "This must be the only existing declaration of this specialization");
8898       // FIXME: We need an update record for this AST mutation.
8899       Specialization->setDeletedAsWritten(false);
8900     }
8901     // FIXME: We need an update record for this AST mutation.
8902     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
8903     MarkUnusedFileScopedDecl(Specialization);
8904   }
8905 
8906   // Turn the given function declaration into a function template
8907   // specialization, with the template arguments from the previous
8908   // specialization.
8909   // Take copies of (semantic and syntactic) template argument lists.
8910   const TemplateArgumentList* TemplArgs = new (Context)
8911     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
8912   FD->setFunctionTemplateSpecialization(
8913       Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
8914       SpecInfo->getTemplateSpecializationKind(),
8915       ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
8916 
8917   // A function template specialization inherits the target attributes
8918   // of its template.  (We require the attributes explicitly in the
8919   // code to match, but a template may have implicit attributes by
8920   // virtue e.g. of being constexpr, and it passes these implicit
8921   // attributes on to its specializations.)
8922   if (LangOpts.CUDA)
8923     inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
8924 
8925   // The "previous declaration" for this function template specialization is
8926   // the prior function template specialization.
8927   Previous.clear();
8928   Previous.addDecl(Specialization);
8929   return false;
8930 }
8931 
8932 /// Perform semantic analysis for the given non-template member
8933 /// specialization.
8934 ///
8935 /// This routine performs all of the semantic analysis required for an
8936 /// explicit member function specialization. On successful completion,
8937 /// the function declaration \p FD will become a member function
8938 /// specialization.
8939 ///
8940 /// \param Member the member declaration, which will be updated to become a
8941 /// specialization.
8942 ///
8943 /// \param Previous the set of declarations, one of which may be specialized
8944 /// by this function specialization;  the set will be modified to contain the
8945 /// redeclared member.
8946 bool
8947 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
8948   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
8949 
8950   // Try to find the member we are instantiating.
8951   NamedDecl *FoundInstantiation = nullptr;
8952   NamedDecl *Instantiation = nullptr;
8953   NamedDecl *InstantiatedFrom = nullptr;
8954   MemberSpecializationInfo *MSInfo = nullptr;
8955 
8956   if (Previous.empty()) {
8957     // Nowhere to look anyway.
8958   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
8959     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8960            I != E; ++I) {
8961       NamedDecl *D = (*I)->getUnderlyingDecl();
8962       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
8963         QualType Adjusted = Function->getType();
8964         if (!hasExplicitCallingConv(Adjusted))
8965           Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
8966         // This doesn't handle deduced return types, but both function
8967         // declarations should be undeduced at this point.
8968         if (Context.hasSameType(Adjusted, Method->getType())) {
8969           FoundInstantiation = *I;
8970           Instantiation = Method;
8971           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
8972           MSInfo = Method->getMemberSpecializationInfo();
8973           break;
8974         }
8975       }
8976     }
8977   } else if (isa<VarDecl>(Member)) {
8978     VarDecl *PrevVar;
8979     if (Previous.isSingleResult() &&
8980         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
8981       if (PrevVar->isStaticDataMember()) {
8982         FoundInstantiation = Previous.getRepresentativeDecl();
8983         Instantiation = PrevVar;
8984         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
8985         MSInfo = PrevVar->getMemberSpecializationInfo();
8986       }
8987   } else if (isa<RecordDecl>(Member)) {
8988     CXXRecordDecl *PrevRecord;
8989     if (Previous.isSingleResult() &&
8990         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
8991       FoundInstantiation = Previous.getRepresentativeDecl();
8992       Instantiation = PrevRecord;
8993       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
8994       MSInfo = PrevRecord->getMemberSpecializationInfo();
8995     }
8996   } else if (isa<EnumDecl>(Member)) {
8997     EnumDecl *PrevEnum;
8998     if (Previous.isSingleResult() &&
8999         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
9000       FoundInstantiation = Previous.getRepresentativeDecl();
9001       Instantiation = PrevEnum;
9002       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
9003       MSInfo = PrevEnum->getMemberSpecializationInfo();
9004     }
9005   }
9006 
9007   if (!Instantiation) {
9008     // There is no previous declaration that matches. Since member
9009     // specializations are always out-of-line, the caller will complain about
9010     // this mismatch later.
9011     return false;
9012   }
9013 
9014   // A member specialization in a friend declaration isn't really declaring
9015   // an explicit specialization, just identifying a specific (possibly implicit)
9016   // specialization. Don't change the template specialization kind.
9017   //
9018   // FIXME: Is this really valid? Other compilers reject.
9019   if (Member->getFriendObjectKind() != Decl::FOK_None) {
9020     // Preserve instantiation information.
9021     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
9022       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
9023                                       cast<CXXMethodDecl>(InstantiatedFrom),
9024         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
9025     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
9026       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
9027                                       cast<CXXRecordDecl>(InstantiatedFrom),
9028         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
9029     }
9030 
9031     Previous.clear();
9032     Previous.addDecl(FoundInstantiation);
9033     return false;
9034   }
9035 
9036   // Make sure that this is a specialization of a member.
9037   if (!InstantiatedFrom) {
9038     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
9039       << Member;
9040     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
9041     return true;
9042   }
9043 
9044   // C++ [temp.expl.spec]p6:
9045   //   If a template, a member template or the member of a class template is
9046   //   explicitly specialized then that specialization shall be declared
9047   //   before the first use of that specialization that would cause an implicit
9048   //   instantiation to take place, in every translation unit in which such a
9049   //   use occurs; no diagnostic is required.
9050   assert(MSInfo && "Member specialization info missing?");
9051 
9052   bool HasNoEffect = false;
9053   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
9054                                              TSK_ExplicitSpecialization,
9055                                              Instantiation,
9056                                      MSInfo->getTemplateSpecializationKind(),
9057                                            MSInfo->getPointOfInstantiation(),
9058                                              HasNoEffect))
9059     return true;
9060 
9061   // Check the scope of this explicit specialization.
9062   if (CheckTemplateSpecializationScope(*this,
9063                                        InstantiatedFrom,
9064                                        Instantiation, Member->getLocation(),
9065                                        false))
9066     return true;
9067 
9068   // Note that this member specialization is an "instantiation of" the
9069   // corresponding member of the original template.
9070   if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
9071     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
9072     if (InstantiationFunction->getTemplateSpecializationKind() ==
9073           TSK_ImplicitInstantiation) {
9074       // Explicit specializations of member functions of class templates do not
9075       // inherit '=delete' from the member function they are specializing.
9076       if (InstantiationFunction->isDeleted()) {
9077         // FIXME: This assert will not hold in the presence of modules.
9078         assert(InstantiationFunction->getCanonicalDecl() ==
9079                InstantiationFunction);
9080         // FIXME: We need an update record for this AST mutation.
9081         InstantiationFunction->setDeletedAsWritten(false);
9082       }
9083     }
9084 
9085     MemberFunction->setInstantiationOfMemberFunction(
9086         cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9087   } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
9088     MemberVar->setInstantiationOfStaticDataMember(
9089         cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9090   } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
9091     MemberClass->setInstantiationOfMemberClass(
9092         cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9093   } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
9094     MemberEnum->setInstantiationOfMemberEnum(
9095         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9096   } else {
9097     llvm_unreachable("unknown member specialization kind");
9098   }
9099 
9100   // Save the caller the trouble of having to figure out which declaration
9101   // this specialization matches.
9102   Previous.clear();
9103   Previous.addDecl(FoundInstantiation);
9104   return false;
9105 }
9106 
9107 /// Complete the explicit specialization of a member of a class template by
9108 /// updating the instantiated member to be marked as an explicit specialization.
9109 ///
9110 /// \param OrigD The member declaration instantiated from the template.
9111 /// \param Loc The location of the explicit specialization of the member.
9112 template<typename DeclT>
9113 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
9114                                              SourceLocation Loc) {
9115   if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
9116     return;
9117 
9118   // FIXME: Inform AST mutation listeners of this AST mutation.
9119   // FIXME: If there are multiple in-class declarations of the member (from
9120   // multiple modules, or a declaration and later definition of a member type),
9121   // should we update all of them?
9122   OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9123   OrigD->setLocation(Loc);
9124 }
9125 
9126 void Sema::CompleteMemberSpecialization(NamedDecl *Member,
9127                                         LookupResult &Previous) {
9128   NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
9129   if (Instantiation == Member)
9130     return;
9131 
9132   if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
9133     completeMemberSpecializationImpl(*this, Function, Member->getLocation());
9134   else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
9135     completeMemberSpecializationImpl(*this, Var, Member->getLocation());
9136   else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
9137     completeMemberSpecializationImpl(*this, Record, Member->getLocation());
9138   else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
9139     completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
9140   else
9141     llvm_unreachable("unknown member specialization kind");
9142 }
9143 
9144 /// Check the scope of an explicit instantiation.
9145 ///
9146 /// \returns true if a serious error occurs, false otherwise.
9147 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
9148                                             SourceLocation InstLoc,
9149                                             bool WasQualifiedName) {
9150   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
9151   DeclContext *CurContext = S.CurContext->getRedeclContext();
9152 
9153   if (CurContext->isRecord()) {
9154     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
9155       << D;
9156     return true;
9157   }
9158 
9159   // C++11 [temp.explicit]p3:
9160   //   An explicit instantiation shall appear in an enclosing namespace of its
9161   //   template. If the name declared in the explicit instantiation is an
9162   //   unqualified name, the explicit instantiation shall appear in the
9163   //   namespace where its template is declared or, if that namespace is inline
9164   //   (7.3.1), any namespace from its enclosing namespace set.
9165   //
9166   // This is DR275, which we do not retroactively apply to C++98/03.
9167   if (WasQualifiedName) {
9168     if (CurContext->Encloses(OrigContext))
9169       return false;
9170   } else {
9171     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
9172       return false;
9173   }
9174 
9175   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
9176     if (WasQualifiedName)
9177       S.Diag(InstLoc,
9178              S.getLangOpts().CPlusPlus11?
9179                diag::err_explicit_instantiation_out_of_scope :
9180                diag::warn_explicit_instantiation_out_of_scope_0x)
9181         << D << NS;
9182     else
9183       S.Diag(InstLoc,
9184              S.getLangOpts().CPlusPlus11?
9185                diag::err_explicit_instantiation_unqualified_wrong_namespace :
9186                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
9187         << D << NS;
9188   } else
9189     S.Diag(InstLoc,
9190            S.getLangOpts().CPlusPlus11?
9191              diag::err_explicit_instantiation_must_be_global :
9192              diag::warn_explicit_instantiation_must_be_global_0x)
9193       << D;
9194   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
9195   return false;
9196 }
9197 
9198 /// Common checks for whether an explicit instantiation of \p D is valid.
9199 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
9200                                        SourceLocation InstLoc,
9201                                        bool WasQualifiedName,
9202                                        TemplateSpecializationKind TSK) {
9203   // C++ [temp.explicit]p13:
9204   //   An explicit instantiation declaration shall not name a specialization of
9205   //   a template with internal linkage.
9206   if (TSK == TSK_ExplicitInstantiationDeclaration &&
9207       D->getFormalLinkage() == InternalLinkage) {
9208     S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
9209     return true;
9210   }
9211 
9212   // C++11 [temp.explicit]p3: [DR 275]
9213   //   An explicit instantiation shall appear in an enclosing namespace of its
9214   //   template.
9215   if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
9216     return true;
9217 
9218   return false;
9219 }
9220 
9221 /// Determine whether the given scope specifier has a template-id in it.
9222 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
9223   if (!SS.isSet())
9224     return false;
9225 
9226   // C++11 [temp.explicit]p3:
9227   //   If the explicit instantiation is for a member function, a member class
9228   //   or a static data member of a class template specialization, the name of
9229   //   the class template specialization in the qualified-id for the member
9230   //   name shall be a simple-template-id.
9231   //
9232   // C++98 has the same restriction, just worded differently.
9233   for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
9234        NNS = NNS->getPrefix())
9235     if (const Type *T = NNS->getAsType())
9236       if (isa<TemplateSpecializationType>(T))
9237         return true;
9238 
9239   return false;
9240 }
9241 
9242 /// Make a dllexport or dllimport attr on a class template specialization take
9243 /// effect.
9244 static void dllExportImportClassTemplateSpecialization(
9245     Sema &S, ClassTemplateSpecializationDecl *Def) {
9246   auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
9247   assert(A && "dllExportImportClassTemplateSpecialization called "
9248               "on Def without dllexport or dllimport");
9249 
9250   // We reject explicit instantiations in class scope, so there should
9251   // never be any delayed exported classes to worry about.
9252   assert(S.DelayedDllExportClasses.empty() &&
9253          "delayed exports present at explicit instantiation");
9254   S.checkClassLevelDLLAttribute(Def);
9255 
9256   // Propagate attribute to base class templates.
9257   for (auto &B : Def->bases()) {
9258     if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
9259             B.getType()->getAsCXXRecordDecl()))
9260       S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
9261   }
9262 
9263   S.referenceDLLExportedClassMethods();
9264 }
9265 
9266 // Explicit instantiation of a class template specialization
9267 DeclResult Sema::ActOnExplicitInstantiation(
9268     Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
9269     unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
9270     TemplateTy TemplateD, SourceLocation TemplateNameLoc,
9271     SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
9272     SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
9273   // Find the class template we're specializing
9274   TemplateName Name = TemplateD.get();
9275   TemplateDecl *TD = Name.getAsTemplateDecl();
9276   // Check that the specialization uses the same tag kind as the
9277   // original template.
9278   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9279   assert(Kind != TTK_Enum &&
9280          "Invalid enum tag in class template explicit instantiation!");
9281 
9282   ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
9283 
9284   if (!ClassTemplate) {
9285     NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
9286     Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind;
9287     Diag(TD->getLocation(), diag::note_previous_use);
9288     return true;
9289   }
9290 
9291   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
9292                                     Kind, /*isDefinition*/false, KWLoc,
9293                                     ClassTemplate->getIdentifier())) {
9294     Diag(KWLoc, diag::err_use_with_wrong_tag)
9295       << ClassTemplate
9296       << FixItHint::CreateReplacement(KWLoc,
9297                             ClassTemplate->getTemplatedDecl()->getKindName());
9298     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
9299          diag::note_previous_use);
9300     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
9301   }
9302 
9303   // C++0x [temp.explicit]p2:
9304   //   There are two forms of explicit instantiation: an explicit instantiation
9305   //   definition and an explicit instantiation declaration. An explicit
9306   //   instantiation declaration begins with the extern keyword. [...]
9307   TemplateSpecializationKind TSK = ExternLoc.isInvalid()
9308                                        ? TSK_ExplicitInstantiationDefinition
9309                                        : TSK_ExplicitInstantiationDeclaration;
9310 
9311   if (TSK == TSK_ExplicitInstantiationDeclaration &&
9312       !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9313     // Check for dllexport class template instantiation declarations,
9314     // except for MinGW mode.
9315     for (const ParsedAttr &AL : Attr) {
9316       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9317         Diag(ExternLoc,
9318              diag::warn_attribute_dllexport_explicit_instantiation_decl);
9319         Diag(AL.getLoc(), diag::note_attribute);
9320         break;
9321       }
9322     }
9323 
9324     if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
9325       Diag(ExternLoc,
9326            diag::warn_attribute_dllexport_explicit_instantiation_decl);
9327       Diag(A->getLocation(), diag::note_attribute);
9328     }
9329   }
9330 
9331   // In MSVC mode, dllimported explicit instantiation definitions are treated as
9332   // instantiation declarations for most purposes.
9333   bool DLLImportExplicitInstantiationDef = false;
9334   if (TSK == TSK_ExplicitInstantiationDefinition &&
9335       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9336     // Check for dllimport class template instantiation definitions.
9337     bool DLLImport =
9338         ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
9339     for (const ParsedAttr &AL : Attr) {
9340       if (AL.getKind() == ParsedAttr::AT_DLLImport)
9341         DLLImport = true;
9342       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9343         // dllexport trumps dllimport here.
9344         DLLImport = false;
9345         break;
9346       }
9347     }
9348     if (DLLImport) {
9349       TSK = TSK_ExplicitInstantiationDeclaration;
9350       DLLImportExplicitInstantiationDef = true;
9351     }
9352   }
9353 
9354   // Translate the parser's template argument list in our AST format.
9355   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
9356   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
9357 
9358   // Check that the template argument list is well-formed for this
9359   // template.
9360   SmallVector<TemplateArgument, 4> Converted;
9361   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
9362                                 TemplateArgs, false, Converted,
9363                                 /*UpdateArgsWithConversion=*/true))
9364     return true;
9365 
9366   // Find the class template specialization declaration that
9367   // corresponds to these arguments.
9368   void *InsertPos = nullptr;
9369   ClassTemplateSpecializationDecl *PrevDecl
9370     = ClassTemplate->findSpecialization(Converted, InsertPos);
9371 
9372   TemplateSpecializationKind PrevDecl_TSK
9373     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
9374 
9375   if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
9376       Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9377     // Check for dllexport class template instantiation definitions in MinGW
9378     // mode, if a previous declaration of the instantiation was seen.
9379     for (const ParsedAttr &AL : Attr) {
9380       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9381         Diag(AL.getLoc(),
9382              diag::warn_attribute_dllexport_explicit_instantiation_def);
9383         break;
9384       }
9385     }
9386   }
9387 
9388   if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
9389                                  SS.isSet(), TSK))
9390     return true;
9391 
9392   ClassTemplateSpecializationDecl *Specialization = nullptr;
9393 
9394   bool HasNoEffect = false;
9395   if (PrevDecl) {
9396     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
9397                                                PrevDecl, PrevDecl_TSK,
9398                                             PrevDecl->getPointOfInstantiation(),
9399                                                HasNoEffect))
9400       return PrevDecl;
9401 
9402     // Even though HasNoEffect == true means that this explicit instantiation
9403     // has no effect on semantics, we go on to put its syntax in the AST.
9404 
9405     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
9406         PrevDecl_TSK == TSK_Undeclared) {
9407       // Since the only prior class template specialization with these
9408       // arguments was referenced but not declared, reuse that
9409       // declaration node as our own, updating the source location
9410       // for the template name to reflect our new declaration.
9411       // (Other source locations will be updated later.)
9412       Specialization = PrevDecl;
9413       Specialization->setLocation(TemplateNameLoc);
9414       PrevDecl = nullptr;
9415     }
9416 
9417     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9418         DLLImportExplicitInstantiationDef) {
9419       // The new specialization might add a dllimport attribute.
9420       HasNoEffect = false;
9421     }
9422   }
9423 
9424   if (!Specialization) {
9425     // Create a new class template specialization declaration node for
9426     // this explicit specialization.
9427     Specialization
9428       = ClassTemplateSpecializationDecl::Create(Context, Kind,
9429                                              ClassTemplate->getDeclContext(),
9430                                                 KWLoc, TemplateNameLoc,
9431                                                 ClassTemplate,
9432                                                 Converted,
9433                                                 PrevDecl);
9434     SetNestedNameSpecifier(*this, Specialization, SS);
9435 
9436     if (!HasNoEffect && !PrevDecl) {
9437       // Insert the new specialization.
9438       ClassTemplate->AddSpecialization(Specialization, InsertPos);
9439     }
9440   }
9441 
9442   // Build the fully-sugared type for this explicit instantiation as
9443   // the user wrote in the explicit instantiation itself. This means
9444   // that we'll pretty-print the type retrieved from the
9445   // specialization's declaration the way that the user actually wrote
9446   // the explicit instantiation, rather than formatting the name based
9447   // on the "canonical" representation used to store the template
9448   // arguments in the specialization.
9449   TypeSourceInfo *WrittenTy
9450     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
9451                                                 TemplateArgs,
9452                                   Context.getTypeDeclType(Specialization));
9453   Specialization->setTypeAsWritten(WrittenTy);
9454 
9455   // Set source locations for keywords.
9456   Specialization->setExternLoc(ExternLoc);
9457   Specialization->setTemplateKeywordLoc(TemplateLoc);
9458   Specialization->setBraceRange(SourceRange());
9459 
9460   bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
9461   ProcessDeclAttributeList(S, Specialization, Attr);
9462 
9463   // Add the explicit instantiation into its lexical context. However,
9464   // since explicit instantiations are never found by name lookup, we
9465   // just put it into the declaration context directly.
9466   Specialization->setLexicalDeclContext(CurContext);
9467   CurContext->addDecl(Specialization);
9468 
9469   // Syntax is now OK, so return if it has no other effect on semantics.
9470   if (HasNoEffect) {
9471     // Set the template specialization kind.
9472     Specialization->setTemplateSpecializationKind(TSK);
9473     return Specialization;
9474   }
9475 
9476   // C++ [temp.explicit]p3:
9477   //   A definition of a class template or class member template
9478   //   shall be in scope at the point of the explicit instantiation of
9479   //   the class template or class member template.
9480   //
9481   // This check comes when we actually try to perform the
9482   // instantiation.
9483   ClassTemplateSpecializationDecl *Def
9484     = cast_or_null<ClassTemplateSpecializationDecl>(
9485                                               Specialization->getDefinition());
9486   if (!Def)
9487     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
9488   else if (TSK == TSK_ExplicitInstantiationDefinition) {
9489     MarkVTableUsed(TemplateNameLoc, Specialization, true);
9490     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
9491   }
9492 
9493   // Instantiate the members of this class template specialization.
9494   Def = cast_or_null<ClassTemplateSpecializationDecl>(
9495                                        Specialization->getDefinition());
9496   if (Def) {
9497     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
9498     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
9499     // TSK_ExplicitInstantiationDefinition
9500     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
9501         (TSK == TSK_ExplicitInstantiationDefinition ||
9502          DLLImportExplicitInstantiationDef)) {
9503       // FIXME: Need to notify the ASTMutationListener that we did this.
9504       Def->setTemplateSpecializationKind(TSK);
9505 
9506       if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
9507           (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
9508            Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) {
9509         // In the MS ABI, an explicit instantiation definition can add a dll
9510         // attribute to a template with a previous instantiation declaration.
9511         // MinGW doesn't allow this.
9512         auto *A = cast<InheritableAttr>(
9513             getDLLAttr(Specialization)->clone(getASTContext()));
9514         A->setInherited(true);
9515         Def->addAttr(A);
9516         dllExportImportClassTemplateSpecialization(*this, Def);
9517       }
9518     }
9519 
9520     // Fix a TSK_ImplicitInstantiation followed by a
9521     // TSK_ExplicitInstantiationDefinition
9522     bool NewlyDLLExported =
9523         !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
9524     if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
9525         (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
9526          Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) {
9527       // In the MS ABI, an explicit instantiation definition can add a dll
9528       // attribute to a template with a previous implicit instantiation.
9529       // MinGW doesn't allow this. We limit clang to only adding dllexport, to
9530       // avoid potentially strange codegen behavior.  For example, if we extend
9531       // this conditional to dllimport, and we have a source file calling a
9532       // method on an implicitly instantiated template class instance and then
9533       // declaring a dllimport explicit instantiation definition for the same
9534       // template class, the codegen for the method call will not respect the
9535       // dllimport, while it will with cl. The Def will already have the DLL
9536       // attribute, since the Def and Specialization will be the same in the
9537       // case of Old_TSK == TSK_ImplicitInstantiation, and we already added the
9538       // attribute to the Specialization; we just need to make it take effect.
9539       assert(Def == Specialization &&
9540              "Def and Specialization should match for implicit instantiation");
9541       dllExportImportClassTemplateSpecialization(*this, Def);
9542     }
9543 
9544     // In MinGW mode, export the template instantiation if the declaration
9545     // was marked dllexport.
9546     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9547         Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
9548         PrevDecl->hasAttr<DLLExportAttr>()) {
9549       dllExportImportClassTemplateSpecialization(*this, Def);
9550     }
9551 
9552     // Set the template specialization kind. Make sure it is set before
9553     // instantiating the members which will trigger ASTConsumer callbacks.
9554     Specialization->setTemplateSpecializationKind(TSK);
9555     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
9556   } else {
9557 
9558     // Set the template specialization kind.
9559     Specialization->setTemplateSpecializationKind(TSK);
9560   }
9561 
9562   return Specialization;
9563 }
9564 
9565 // Explicit instantiation of a member class of a class template.
9566 DeclResult
9567 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
9568                                  SourceLocation TemplateLoc, unsigned TagSpec,
9569                                  SourceLocation KWLoc, CXXScopeSpec &SS,
9570                                  IdentifierInfo *Name, SourceLocation NameLoc,
9571                                  const ParsedAttributesView &Attr) {
9572 
9573   bool Owned = false;
9574   bool IsDependent = false;
9575   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
9576                         KWLoc, SS, Name, NameLoc, Attr, AS_none,
9577                         /*ModulePrivateLoc=*/SourceLocation(),
9578                         MultiTemplateParamsArg(), Owned, IsDependent,
9579                         SourceLocation(), false, TypeResult(),
9580                         /*IsTypeSpecifier*/false,
9581                         /*IsTemplateParamOrArg*/false);
9582   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
9583 
9584   if (!TagD)
9585     return true;
9586 
9587   TagDecl *Tag = cast<TagDecl>(TagD);
9588   assert(!Tag->isEnum() && "shouldn't see enumerations here");
9589 
9590   if (Tag->isInvalidDecl())
9591     return true;
9592 
9593   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
9594   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
9595   if (!Pattern) {
9596     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
9597       << Context.getTypeDeclType(Record);
9598     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
9599     return true;
9600   }
9601 
9602   // C++0x [temp.explicit]p2:
9603   //   If the explicit instantiation is for a class or member class, the
9604   //   elaborated-type-specifier in the declaration shall include a
9605   //   simple-template-id.
9606   //
9607   // C++98 has the same restriction, just worded differently.
9608   if (!ScopeSpecifierHasTemplateId(SS))
9609     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
9610       << Record << SS.getRange();
9611 
9612   // C++0x [temp.explicit]p2:
9613   //   There are two forms of explicit instantiation: an explicit instantiation
9614   //   definition and an explicit instantiation declaration. An explicit
9615   //   instantiation declaration begins with the extern keyword. [...]
9616   TemplateSpecializationKind TSK
9617     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
9618                            : TSK_ExplicitInstantiationDeclaration;
9619 
9620   CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
9621 
9622   // Verify that it is okay to explicitly instantiate here.
9623   CXXRecordDecl *PrevDecl
9624     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
9625   if (!PrevDecl && Record->getDefinition())
9626     PrevDecl = Record;
9627   if (PrevDecl) {
9628     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
9629     bool HasNoEffect = false;
9630     assert(MSInfo && "No member specialization information?");
9631     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
9632                                                PrevDecl,
9633                                         MSInfo->getTemplateSpecializationKind(),
9634                                              MSInfo->getPointOfInstantiation(),
9635                                                HasNoEffect))
9636       return true;
9637     if (HasNoEffect)
9638       return TagD;
9639   }
9640 
9641   CXXRecordDecl *RecordDef
9642     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9643   if (!RecordDef) {
9644     // C++ [temp.explicit]p3:
9645     //   A definition of a member class of a class template shall be in scope
9646     //   at the point of an explicit instantiation of the member class.
9647     CXXRecordDecl *Def
9648       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
9649     if (!Def) {
9650       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
9651         << 0 << Record->getDeclName() << Record->getDeclContext();
9652       Diag(Pattern->getLocation(), diag::note_forward_declaration)
9653         << Pattern;
9654       return true;
9655     } else {
9656       if (InstantiateClass(NameLoc, Record, Def,
9657                            getTemplateInstantiationArgs(Record),
9658                            TSK))
9659         return true;
9660 
9661       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9662       if (!RecordDef)
9663         return true;
9664     }
9665   }
9666 
9667   // Instantiate all of the members of the class.
9668   InstantiateClassMembers(NameLoc, RecordDef,
9669                           getTemplateInstantiationArgs(Record), TSK);
9670 
9671   if (TSK == TSK_ExplicitInstantiationDefinition)
9672     MarkVTableUsed(NameLoc, RecordDef, true);
9673 
9674   // FIXME: We don't have any representation for explicit instantiations of
9675   // member classes. Such a representation is not needed for compilation, but it
9676   // should be available for clients that want to see all of the declarations in
9677   // the source code.
9678   return TagD;
9679 }
9680 
9681 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
9682                                             SourceLocation ExternLoc,
9683                                             SourceLocation TemplateLoc,
9684                                             Declarator &D) {
9685   // Explicit instantiations always require a name.
9686   // TODO: check if/when DNInfo should replace Name.
9687   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9688   DeclarationName Name = NameInfo.getName();
9689   if (!Name) {
9690     if (!D.isInvalidType())
9691       Diag(D.getDeclSpec().getBeginLoc(),
9692            diag::err_explicit_instantiation_requires_name)
9693           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
9694 
9695     return true;
9696   }
9697 
9698   // The scope passed in may not be a decl scope.  Zip up the scope tree until
9699   // we find one that is.
9700   while ((S->getFlags() & Scope::DeclScope) == 0 ||
9701          (S->getFlags() & Scope::TemplateParamScope) != 0)
9702     S = S->getParent();
9703 
9704   // Determine the type of the declaration.
9705   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
9706   QualType R = T->getType();
9707   if (R.isNull())
9708     return true;
9709 
9710   // C++ [dcl.stc]p1:
9711   //   A storage-class-specifier shall not be specified in [...] an explicit
9712   //   instantiation (14.7.2) directive.
9713   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
9714     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
9715       << Name;
9716     return true;
9717   } else if (D.getDeclSpec().getStorageClassSpec()
9718                                                 != DeclSpec::SCS_unspecified) {
9719     // Complain about then remove the storage class specifier.
9720     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
9721       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9722 
9723     D.getMutableDeclSpec().ClearStorageClassSpecs();
9724   }
9725 
9726   // C++0x [temp.explicit]p1:
9727   //   [...] An explicit instantiation of a function template shall not use the
9728   //   inline or constexpr specifiers.
9729   // Presumably, this also applies to member functions of class templates as
9730   // well.
9731   if (D.getDeclSpec().isInlineSpecified())
9732     Diag(D.getDeclSpec().getInlineSpecLoc(),
9733          getLangOpts().CPlusPlus11 ?
9734            diag::err_explicit_instantiation_inline :
9735            diag::warn_explicit_instantiation_inline_0x)
9736       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9737   if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
9738     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
9739     // not already specified.
9740     Diag(D.getDeclSpec().getConstexprSpecLoc(),
9741          diag::err_explicit_instantiation_constexpr);
9742 
9743   // A deduction guide is not on the list of entities that can be explicitly
9744   // instantiated.
9745   if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
9746     Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
9747         << /*explicit instantiation*/ 0;
9748     return true;
9749   }
9750 
9751   // C++0x [temp.explicit]p2:
9752   //   There are two forms of explicit instantiation: an explicit instantiation
9753   //   definition and an explicit instantiation declaration. An explicit
9754   //   instantiation declaration begins with the extern keyword. [...]
9755   TemplateSpecializationKind TSK
9756     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
9757                            : TSK_ExplicitInstantiationDeclaration;
9758 
9759   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
9760   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
9761 
9762   if (!R->isFunctionType()) {
9763     // C++ [temp.explicit]p1:
9764     //   A [...] static data member of a class template can be explicitly
9765     //   instantiated from the member definition associated with its class
9766     //   template.
9767     // C++1y [temp.explicit]p1:
9768     //   A [...] variable [...] template specialization can be explicitly
9769     //   instantiated from its template.
9770     if (Previous.isAmbiguous())
9771       return true;
9772 
9773     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
9774     VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
9775 
9776     if (!PrevTemplate) {
9777       if (!Prev || !Prev->isStaticDataMember()) {
9778         // We expect to see a static data member here.
9779         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
9780             << Name;
9781         for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
9782              P != PEnd; ++P)
9783           Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
9784         return true;
9785       }
9786 
9787       if (!Prev->getInstantiatedFromStaticDataMember()) {
9788         // FIXME: Check for explicit specialization?
9789         Diag(D.getIdentifierLoc(),
9790              diag::err_explicit_instantiation_data_member_not_instantiated)
9791             << Prev;
9792         Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
9793         // FIXME: Can we provide a note showing where this was declared?
9794         return true;
9795       }
9796     } else {
9797       // Explicitly instantiate a variable template.
9798 
9799       // C++1y [dcl.spec.auto]p6:
9800       //   ... A program that uses auto or decltype(auto) in a context not
9801       //   explicitly allowed in this section is ill-formed.
9802       //
9803       // This includes auto-typed variable template instantiations.
9804       if (R->isUndeducedType()) {
9805         Diag(T->getTypeLoc().getBeginLoc(),
9806              diag::err_auto_not_allowed_var_inst);
9807         return true;
9808       }
9809 
9810       if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9811         // C++1y [temp.explicit]p3:
9812         //   If the explicit instantiation is for a variable, the unqualified-id
9813         //   in the declaration shall be a template-id.
9814         Diag(D.getIdentifierLoc(),
9815              diag::err_explicit_instantiation_without_template_id)
9816           << PrevTemplate;
9817         Diag(PrevTemplate->getLocation(),
9818              diag::note_explicit_instantiation_here);
9819         return true;
9820       }
9821 
9822       // Translate the parser's template argument list into our AST format.
9823       TemplateArgumentListInfo TemplateArgs =
9824           makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
9825 
9826       DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
9827                                           D.getIdentifierLoc(), TemplateArgs);
9828       if (Res.isInvalid())
9829         return true;
9830 
9831       // Ignore access control bits, we don't need them for redeclaration
9832       // checking.
9833       Prev = cast<VarDecl>(Res.get());
9834     }
9835 
9836     // C++0x [temp.explicit]p2:
9837     //   If the explicit instantiation is for a member function, a member class
9838     //   or a static data member of a class template specialization, the name of
9839     //   the class template specialization in the qualified-id for the member
9840     //   name shall be a simple-template-id.
9841     //
9842     // C++98 has the same restriction, just worded differently.
9843     //
9844     // This does not apply to variable template specializations, where the
9845     // template-id is in the unqualified-id instead.
9846     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
9847       Diag(D.getIdentifierLoc(),
9848            diag::ext_explicit_instantiation_without_qualified_id)
9849         << Prev << D.getCXXScopeSpec().getRange();
9850 
9851     CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
9852 
9853     // Verify that it is okay to explicitly instantiate here.
9854     TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
9855     SourceLocation POI = Prev->getPointOfInstantiation();
9856     bool HasNoEffect = false;
9857     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
9858                                                PrevTSK, POI, HasNoEffect))
9859       return true;
9860 
9861     if (!HasNoEffect) {
9862       // Instantiate static data member or variable template.
9863       Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
9864       // Merge attributes.
9865       ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
9866       if (TSK == TSK_ExplicitInstantiationDefinition)
9867         InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
9868     }
9869 
9870     // Check the new variable specialization against the parsed input.
9871     if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
9872       Diag(T->getTypeLoc().getBeginLoc(),
9873            diag::err_invalid_var_template_spec_type)
9874           << 0 << PrevTemplate << R << Prev->getType();
9875       Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
9876           << 2 << PrevTemplate->getDeclName();
9877       return true;
9878     }
9879 
9880     // FIXME: Create an ExplicitInstantiation node?
9881     return (Decl*) nullptr;
9882   }
9883 
9884   // If the declarator is a template-id, translate the parser's template
9885   // argument list into our AST format.
9886   bool HasExplicitTemplateArgs = false;
9887   TemplateArgumentListInfo TemplateArgs;
9888   if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9889     TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
9890     HasExplicitTemplateArgs = true;
9891   }
9892 
9893   // C++ [temp.explicit]p1:
9894   //   A [...] function [...] can be explicitly instantiated from its template.
9895   //   A member function [...] of a class template can be explicitly
9896   //  instantiated from the member definition associated with its class
9897   //  template.
9898   UnresolvedSet<8> TemplateMatches;
9899   FunctionDecl *NonTemplateMatch = nullptr;
9900   TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
9901   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
9902        P != PEnd; ++P) {
9903     NamedDecl *Prev = *P;
9904     if (!HasExplicitTemplateArgs) {
9905       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
9906         QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
9907                                                 /*AdjustExceptionSpec*/true);
9908         if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
9909           if (Method->getPrimaryTemplate()) {
9910             TemplateMatches.addDecl(Method, P.getAccess());
9911           } else {
9912             // FIXME: Can this assert ever happen?  Needs a test.
9913             assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
9914             NonTemplateMatch = Method;
9915           }
9916         }
9917       }
9918     }
9919 
9920     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
9921     if (!FunTmpl)
9922       continue;
9923 
9924     TemplateDeductionInfo Info(FailedCandidates.getLocation());
9925     FunctionDecl *Specialization = nullptr;
9926     if (TemplateDeductionResult TDK
9927           = DeduceTemplateArguments(FunTmpl,
9928                                (HasExplicitTemplateArgs ? &TemplateArgs
9929                                                         : nullptr),
9930                                     R, Specialization, Info)) {
9931       // Keep track of almost-matches.
9932       FailedCandidates.addCandidate()
9933           .set(P.getPair(), FunTmpl->getTemplatedDecl(),
9934                MakeDeductionFailureInfo(Context, TDK, Info));
9935       (void)TDK;
9936       continue;
9937     }
9938 
9939     // Target attributes are part of the cuda function signature, so
9940     // the cuda target of the instantiated function must match that of its
9941     // template.  Given that C++ template deduction does not take
9942     // target attributes into account, we reject candidates here that
9943     // have a different target.
9944     if (LangOpts.CUDA &&
9945         IdentifyCUDATarget(Specialization,
9946                            /* IgnoreImplicitHDAttr = */ true) !=
9947             IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
9948       FailedCandidates.addCandidate().set(
9949           P.getPair(), FunTmpl->getTemplatedDecl(),
9950           MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
9951       continue;
9952     }
9953 
9954     TemplateMatches.addDecl(Specialization, P.getAccess());
9955   }
9956 
9957   FunctionDecl *Specialization = NonTemplateMatch;
9958   if (!Specialization) {
9959     // Find the most specialized function template specialization.
9960     UnresolvedSetIterator Result = getMostSpecialized(
9961         TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
9962         D.getIdentifierLoc(),
9963         PDiag(diag::err_explicit_instantiation_not_known) << Name,
9964         PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
9965         PDiag(diag::note_explicit_instantiation_candidate));
9966 
9967     if (Result == TemplateMatches.end())
9968       return true;
9969 
9970     // Ignore access control bits, we don't need them for redeclaration checking.
9971     Specialization = cast<FunctionDecl>(*Result);
9972   }
9973 
9974   // C++11 [except.spec]p4
9975   // In an explicit instantiation an exception-specification may be specified,
9976   // but is not required.
9977   // If an exception-specification is specified in an explicit instantiation
9978   // directive, it shall be compatible with the exception-specifications of
9979   // other declarations of that function.
9980   if (auto *FPT = R->getAs<FunctionProtoType>())
9981     if (FPT->hasExceptionSpec()) {
9982       unsigned DiagID =
9983           diag::err_mismatched_exception_spec_explicit_instantiation;
9984       if (getLangOpts().MicrosoftExt)
9985         DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
9986       bool Result = CheckEquivalentExceptionSpec(
9987           PDiag(DiagID) << Specialization->getType(),
9988           PDiag(diag::note_explicit_instantiation_here),
9989           Specialization->getType()->getAs<FunctionProtoType>(),
9990           Specialization->getLocation(), FPT, D.getBeginLoc());
9991       // In Microsoft mode, mismatching exception specifications just cause a
9992       // warning.
9993       if (!getLangOpts().MicrosoftExt && Result)
9994         return true;
9995     }
9996 
9997   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
9998     Diag(D.getIdentifierLoc(),
9999          diag::err_explicit_instantiation_member_function_not_instantiated)
10000       << Specialization
10001       << (Specialization->getTemplateSpecializationKind() ==
10002           TSK_ExplicitSpecialization);
10003     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
10004     return true;
10005   }
10006 
10007   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
10008   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
10009     PrevDecl = Specialization;
10010 
10011   if (PrevDecl) {
10012     bool HasNoEffect = false;
10013     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
10014                                                PrevDecl,
10015                                      PrevDecl->getTemplateSpecializationKind(),
10016                                           PrevDecl->getPointOfInstantiation(),
10017                                                HasNoEffect))
10018       return true;
10019 
10020     // FIXME: We may still want to build some representation of this
10021     // explicit specialization.
10022     if (HasNoEffect)
10023       return (Decl*) nullptr;
10024   }
10025 
10026   // HACK: libc++ has a bug where it attempts to explicitly instantiate the
10027   // functions
10028   //     valarray<size_t>::valarray(size_t) and
10029   //     valarray<size_t>::~valarray()
10030   // that it declared to have internal linkage with the internal_linkage
10031   // attribute. Ignore the explicit instantiation declaration in this case.
10032   if (Specialization->hasAttr<InternalLinkageAttr>() &&
10033       TSK == TSK_ExplicitInstantiationDeclaration) {
10034     if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
10035       if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
10036           RD->isInStdNamespace())
10037         return (Decl*) nullptr;
10038   }
10039 
10040   ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
10041 
10042   // In MSVC mode, dllimported explicit instantiation definitions are treated as
10043   // instantiation declarations.
10044   if (TSK == TSK_ExplicitInstantiationDefinition &&
10045       Specialization->hasAttr<DLLImportAttr>() &&
10046       Context.getTargetInfo().getCXXABI().isMicrosoft())
10047     TSK = TSK_ExplicitInstantiationDeclaration;
10048 
10049   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10050 
10051   if (Specialization->isDefined()) {
10052     // Let the ASTConsumer know that this function has been explicitly
10053     // instantiated now, and its linkage might have changed.
10054     Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
10055   } else if (TSK == TSK_ExplicitInstantiationDefinition)
10056     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
10057 
10058   // C++0x [temp.explicit]p2:
10059   //   If the explicit instantiation is for a member function, a member class
10060   //   or a static data member of a class template specialization, the name of
10061   //   the class template specialization in the qualified-id for the member
10062   //   name shall be a simple-template-id.
10063   //
10064   // C++98 has the same restriction, just worded differently.
10065   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
10066   if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
10067       D.getCXXScopeSpec().isSet() &&
10068       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
10069     Diag(D.getIdentifierLoc(),
10070          diag::ext_explicit_instantiation_without_qualified_id)
10071     << Specialization << D.getCXXScopeSpec().getRange();
10072 
10073   CheckExplicitInstantiation(
10074       *this,
10075       FunTmpl ? (NamedDecl *)FunTmpl
10076               : Specialization->getInstantiatedFromMemberFunction(),
10077       D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
10078 
10079   // FIXME: Create some kind of ExplicitInstantiationDecl here.
10080   return (Decl*) nullptr;
10081 }
10082 
10083 TypeResult
10084 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10085                         const CXXScopeSpec &SS, IdentifierInfo *Name,
10086                         SourceLocation TagLoc, SourceLocation NameLoc) {
10087   // This has to hold, because SS is expected to be defined.
10088   assert(Name && "Expected a name in a dependent tag");
10089 
10090   NestedNameSpecifier *NNS = SS.getScopeRep();
10091   if (!NNS)
10092     return true;
10093 
10094   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10095 
10096   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
10097     Diag(NameLoc, diag::err_dependent_tag_decl)
10098       << (TUK == TUK_Definition) << Kind << SS.getRange();
10099     return true;
10100   }
10101 
10102   // Create the resulting type.
10103   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10104   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
10105 
10106   // Create type-source location information for this type.
10107   TypeLocBuilder TLB;
10108   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
10109   TL.setElaboratedKeywordLoc(TagLoc);
10110   TL.setQualifierLoc(SS.getWithLocInContext(Context));
10111   TL.setNameLoc(NameLoc);
10112   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
10113 }
10114 
10115 TypeResult
10116 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
10117                         const CXXScopeSpec &SS, const IdentifierInfo &II,
10118                         SourceLocation IdLoc) {
10119   if (SS.isInvalid())
10120     return true;
10121 
10122   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10123     Diag(TypenameLoc,
10124          getLangOpts().CPlusPlus11 ?
10125            diag::warn_cxx98_compat_typename_outside_of_template :
10126            diag::ext_typename_outside_of_template)
10127       << FixItHint::CreateRemoval(TypenameLoc);
10128 
10129   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10130   TypeSourceInfo *TSI = nullptr;
10131   QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
10132                                  TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
10133                                  /*DeducedTSTContext=*/true);
10134   if (T.isNull())
10135     return true;
10136   return CreateParsedType(T, TSI);
10137 }
10138 
10139 TypeResult
10140 Sema::ActOnTypenameType(Scope *S,
10141                         SourceLocation TypenameLoc,
10142                         const CXXScopeSpec &SS,
10143                         SourceLocation TemplateKWLoc,
10144                         TemplateTy TemplateIn,
10145                         IdentifierInfo *TemplateII,
10146                         SourceLocation TemplateIILoc,
10147                         SourceLocation LAngleLoc,
10148                         ASTTemplateArgsPtr TemplateArgsIn,
10149                         SourceLocation RAngleLoc) {
10150   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10151     Diag(TypenameLoc,
10152          getLangOpts().CPlusPlus11 ?
10153            diag::warn_cxx98_compat_typename_outside_of_template :
10154            diag::ext_typename_outside_of_template)
10155       << FixItHint::CreateRemoval(TypenameLoc);
10156 
10157   // Strangely, non-type results are not ignored by this lookup, so the
10158   // program is ill-formed if it finds an injected-class-name.
10159   if (TypenameLoc.isValid()) {
10160     auto *LookupRD =
10161         dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
10162     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
10163       Diag(TemplateIILoc,
10164            diag::ext_out_of_line_qualified_id_type_names_constructor)
10165         << TemplateII << 0 /*injected-class-name used as template name*/
10166         << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
10167     }
10168   }
10169 
10170   // Translate the parser's template argument list in our AST format.
10171   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
10172   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
10173 
10174   TemplateName Template = TemplateIn.get();
10175   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
10176     // Construct a dependent template specialization type.
10177     assert(DTN && "dependent template has non-dependent name?");
10178     assert(DTN->getQualifier() == SS.getScopeRep());
10179     QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
10180                                                           DTN->getQualifier(),
10181                                                           DTN->getIdentifier(),
10182                                                                 TemplateArgs);
10183 
10184     // Create source-location information for this type.
10185     TypeLocBuilder Builder;
10186     DependentTemplateSpecializationTypeLoc SpecTL
10187     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
10188     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
10189     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
10190     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10191     SpecTL.setTemplateNameLoc(TemplateIILoc);
10192     SpecTL.setLAngleLoc(LAngleLoc);
10193     SpecTL.setRAngleLoc(RAngleLoc);
10194     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10195       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10196     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
10197   }
10198 
10199   QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
10200   if (T.isNull())
10201     return true;
10202 
10203   // Provide source-location information for the template specialization type.
10204   TypeLocBuilder Builder;
10205   TemplateSpecializationTypeLoc SpecTL
10206     = Builder.push<TemplateSpecializationTypeLoc>(T);
10207   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10208   SpecTL.setTemplateNameLoc(TemplateIILoc);
10209   SpecTL.setLAngleLoc(LAngleLoc);
10210   SpecTL.setRAngleLoc(RAngleLoc);
10211   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10212     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10213 
10214   T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
10215   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
10216   TL.setElaboratedKeywordLoc(TypenameLoc);
10217   TL.setQualifierLoc(SS.getWithLocInContext(Context));
10218 
10219   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
10220   return CreateParsedType(T, TSI);
10221 }
10222 
10223 
10224 /// Determine whether this failed name lookup should be treated as being
10225 /// disabled by a usage of std::enable_if.
10226 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
10227                        SourceRange &CondRange, Expr *&Cond) {
10228   // We must be looking for a ::type...
10229   if (!II.isStr("type"))
10230     return false;
10231 
10232   // ... within an explicitly-written template specialization...
10233   if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
10234     return false;
10235   TypeLoc EnableIfTy = NNS.getTypeLoc();
10236   TemplateSpecializationTypeLoc EnableIfTSTLoc =
10237       EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
10238   if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
10239     return false;
10240   const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
10241 
10242   // ... which names a complete class template declaration...
10243   const TemplateDecl *EnableIfDecl =
10244     EnableIfTST->getTemplateName().getAsTemplateDecl();
10245   if (!EnableIfDecl || EnableIfTST->isIncompleteType())
10246     return false;
10247 
10248   // ... called "enable_if".
10249   const IdentifierInfo *EnableIfII =
10250     EnableIfDecl->getDeclName().getAsIdentifierInfo();
10251   if (!EnableIfII || !EnableIfII->isStr("enable_if"))
10252     return false;
10253 
10254   // Assume the first template argument is the condition.
10255   CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
10256 
10257   // Dig out the condition.
10258   Cond = nullptr;
10259   if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
10260         != TemplateArgument::Expression)
10261     return true;
10262 
10263   Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
10264 
10265   // Ignore Boolean literals; they add no value.
10266   if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
10267     Cond = nullptr;
10268 
10269   return true;
10270 }
10271 
10272 QualType
10273 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10274                         SourceLocation KeywordLoc,
10275                         NestedNameSpecifierLoc QualifierLoc,
10276                         const IdentifierInfo &II,
10277                         SourceLocation IILoc,
10278                         TypeSourceInfo **TSI,
10279                         bool DeducedTSTContext) {
10280   QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
10281                                  DeducedTSTContext);
10282   if (T.isNull())
10283     return QualType();
10284 
10285   *TSI = Context.CreateTypeSourceInfo(T);
10286   if (isa<DependentNameType>(T)) {
10287     DependentNameTypeLoc TL =
10288         (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
10289     TL.setElaboratedKeywordLoc(KeywordLoc);
10290     TL.setQualifierLoc(QualifierLoc);
10291     TL.setNameLoc(IILoc);
10292   } else {
10293     ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
10294     TL.setElaboratedKeywordLoc(KeywordLoc);
10295     TL.setQualifierLoc(QualifierLoc);
10296     TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
10297   }
10298   return T;
10299 }
10300 
10301 /// Build the type that describes a C++ typename specifier,
10302 /// e.g., "typename T::type".
10303 QualType
10304 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10305                         SourceLocation KeywordLoc,
10306                         NestedNameSpecifierLoc QualifierLoc,
10307                         const IdentifierInfo &II,
10308                         SourceLocation IILoc, bool DeducedTSTContext) {
10309   CXXScopeSpec SS;
10310   SS.Adopt(QualifierLoc);
10311 
10312   DeclContext *Ctx = nullptr;
10313   if (QualifierLoc) {
10314     Ctx = computeDeclContext(SS);
10315     if (!Ctx) {
10316       // If the nested-name-specifier is dependent and couldn't be
10317       // resolved to a type, build a typename type.
10318       assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
10319       return Context.getDependentNameType(Keyword,
10320                                           QualifierLoc.getNestedNameSpecifier(),
10321                                           &II);
10322     }
10323 
10324     // If the nested-name-specifier refers to the current instantiation,
10325     // the "typename" keyword itself is superfluous. In C++03, the
10326     // program is actually ill-formed. However, DR 382 (in C++0x CD1)
10327     // allows such extraneous "typename" keywords, and we retroactively
10328     // apply this DR to C++03 code with only a warning. In any case we continue.
10329 
10330     if (RequireCompleteDeclContext(SS, Ctx))
10331       return QualType();
10332   }
10333 
10334   DeclarationName Name(&II);
10335   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
10336   if (Ctx)
10337     LookupQualifiedName(Result, Ctx, SS);
10338   else
10339     LookupName(Result, CurScope);
10340   unsigned DiagID = 0;
10341   Decl *Referenced = nullptr;
10342   switch (Result.getResultKind()) {
10343   case LookupResult::NotFound: {
10344     // If we're looking up 'type' within a template named 'enable_if', produce
10345     // a more specific diagnostic.
10346     SourceRange CondRange;
10347     Expr *Cond = nullptr;
10348     if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
10349       // If we have a condition, narrow it down to the specific failed
10350       // condition.
10351       if (Cond) {
10352         Expr *FailedCond;
10353         std::string FailedDescription;
10354         std::tie(FailedCond, FailedDescription) =
10355           findFailedBooleanCondition(Cond);
10356 
10357         Diag(FailedCond->getExprLoc(),
10358              diag::err_typename_nested_not_found_requirement)
10359           << FailedDescription
10360           << FailedCond->getSourceRange();
10361         return QualType();
10362       }
10363 
10364       Diag(CondRange.getBegin(),
10365            diag::err_typename_nested_not_found_enable_if)
10366           << Ctx << CondRange;
10367       return QualType();
10368     }
10369 
10370     DiagID = Ctx ? diag::err_typename_nested_not_found
10371                  : diag::err_unknown_typename;
10372     break;
10373   }
10374 
10375   case LookupResult::FoundUnresolvedValue: {
10376     // We found a using declaration that is a value. Most likely, the using
10377     // declaration itself is meant to have the 'typename' keyword.
10378     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10379                           IILoc);
10380     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
10381       << Name << Ctx << FullRange;
10382     if (UnresolvedUsingValueDecl *Using
10383           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
10384       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
10385       Diag(Loc, diag::note_using_value_decl_missing_typename)
10386         << FixItHint::CreateInsertion(Loc, "typename ");
10387     }
10388   }
10389   // Fall through to create a dependent typename type, from which we can recover
10390   // better.
10391   LLVM_FALLTHROUGH;
10392 
10393   case LookupResult::NotFoundInCurrentInstantiation:
10394     // Okay, it's a member of an unknown instantiation.
10395     return Context.getDependentNameType(Keyword,
10396                                         QualifierLoc.getNestedNameSpecifier(),
10397                                         &II);
10398 
10399   case LookupResult::Found:
10400     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
10401       // C++ [class.qual]p2:
10402       //   In a lookup in which function names are not ignored and the
10403       //   nested-name-specifier nominates a class C, if the name specified
10404       //   after the nested-name-specifier, when looked up in C, is the
10405       //   injected-class-name of C [...] then the name is instead considered
10406       //   to name the constructor of class C.
10407       //
10408       // Unlike in an elaborated-type-specifier, function names are not ignored
10409       // in typename-specifier lookup. However, they are ignored in all the
10410       // contexts where we form a typename type with no keyword (that is, in
10411       // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
10412       //
10413       // FIXME: That's not strictly true: mem-initializer-id lookup does not
10414       // ignore functions, but that appears to be an oversight.
10415       auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
10416       auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
10417       if (Keyword == ETK_Typename && LookupRD && FoundRD &&
10418           FoundRD->isInjectedClassName() &&
10419           declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
10420         Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
10421             << &II << 1 << 0 /*'typename' keyword used*/;
10422 
10423       // We found a type. Build an ElaboratedType, since the
10424       // typename-specifier was just sugar.
10425       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
10426       return Context.getElaboratedType(Keyword,
10427                                        QualifierLoc.getNestedNameSpecifier(),
10428                                        Context.getTypeDeclType(Type));
10429     }
10430 
10431     // C++ [dcl.type.simple]p2:
10432     //   A type-specifier of the form
10433     //     typename[opt] nested-name-specifier[opt] template-name
10434     //   is a placeholder for a deduced class type [...].
10435     if (getLangOpts().CPlusPlus17) {
10436       if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
10437         if (!DeducedTSTContext) {
10438           QualType T(QualifierLoc
10439                          ? QualifierLoc.getNestedNameSpecifier()->getAsType()
10440                          : nullptr, 0);
10441           if (!T.isNull())
10442             Diag(IILoc, diag::err_dependent_deduced_tst)
10443               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
10444           else
10445             Diag(IILoc, diag::err_deduced_tst)
10446               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
10447           Diag(TD->getLocation(), diag::note_template_decl_here);
10448           return QualType();
10449         }
10450         return Context.getElaboratedType(
10451             Keyword, QualifierLoc.getNestedNameSpecifier(),
10452             Context.getDeducedTemplateSpecializationType(TemplateName(TD),
10453                                                          QualType(), false));
10454       }
10455     }
10456 
10457     DiagID = Ctx ? diag::err_typename_nested_not_type
10458                  : diag::err_typename_not_type;
10459     Referenced = Result.getFoundDecl();
10460     break;
10461 
10462   case LookupResult::FoundOverloaded:
10463     DiagID = Ctx ? diag::err_typename_nested_not_type
10464                  : diag::err_typename_not_type;
10465     Referenced = *Result.begin();
10466     break;
10467 
10468   case LookupResult::Ambiguous:
10469     return QualType();
10470   }
10471 
10472   // If we get here, it's because name lookup did not find a
10473   // type. Emit an appropriate diagnostic and return an error.
10474   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10475                         IILoc);
10476   if (Ctx)
10477     Diag(IILoc, DiagID) << FullRange << Name << Ctx;
10478   else
10479     Diag(IILoc, DiagID) << FullRange << Name;
10480   if (Referenced)
10481     Diag(Referenced->getLocation(),
10482          Ctx ? diag::note_typename_member_refers_here
10483              : diag::note_typename_refers_here)
10484       << Name;
10485   return QualType();
10486 }
10487 
10488 namespace {
10489   // See Sema::RebuildTypeInCurrentInstantiation
10490   class CurrentInstantiationRebuilder
10491     : public TreeTransform<CurrentInstantiationRebuilder> {
10492     SourceLocation Loc;
10493     DeclarationName Entity;
10494 
10495   public:
10496     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
10497 
10498     CurrentInstantiationRebuilder(Sema &SemaRef,
10499                                   SourceLocation Loc,
10500                                   DeclarationName Entity)
10501     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
10502       Loc(Loc), Entity(Entity) { }
10503 
10504     /// Determine whether the given type \p T has already been
10505     /// transformed.
10506     ///
10507     /// For the purposes of type reconstruction, a type has already been
10508     /// transformed if it is NULL or if it is not dependent.
10509     bool AlreadyTransformed(QualType T) {
10510       return T.isNull() || !T->isDependentType();
10511     }
10512 
10513     /// Returns the location of the entity whose type is being
10514     /// rebuilt.
10515     SourceLocation getBaseLocation() { return Loc; }
10516 
10517     /// Returns the name of the entity whose type is being rebuilt.
10518     DeclarationName getBaseEntity() { return Entity; }
10519 
10520     /// Sets the "base" location and entity when that
10521     /// information is known based on another transformation.
10522     void setBase(SourceLocation Loc, DeclarationName Entity) {
10523       this->Loc = Loc;
10524       this->Entity = Entity;
10525     }
10526 
10527     ExprResult TransformLambdaExpr(LambdaExpr *E) {
10528       // Lambdas never need to be transformed.
10529       return E;
10530     }
10531   };
10532 } // end anonymous namespace
10533 
10534 /// Rebuilds a type within the context of the current instantiation.
10535 ///
10536 /// The type \p T is part of the type of an out-of-line member definition of
10537 /// a class template (or class template partial specialization) that was parsed
10538 /// and constructed before we entered the scope of the class template (or
10539 /// partial specialization thereof). This routine will rebuild that type now
10540 /// that we have entered the declarator's scope, which may produce different
10541 /// canonical types, e.g.,
10542 ///
10543 /// \code
10544 /// template<typename T>
10545 /// struct X {
10546 ///   typedef T* pointer;
10547 ///   pointer data();
10548 /// };
10549 ///
10550 /// template<typename T>
10551 /// typename X<T>::pointer X<T>::data() { ... }
10552 /// \endcode
10553 ///
10554 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
10555 /// since we do not know that we can look into X<T> when we parsed the type.
10556 /// This function will rebuild the type, performing the lookup of "pointer"
10557 /// in X<T> and returning an ElaboratedType whose canonical type is the same
10558 /// as the canonical type of T*, allowing the return types of the out-of-line
10559 /// definition and the declaration to match.
10560 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
10561                                                         SourceLocation Loc,
10562                                                         DeclarationName Name) {
10563   if (!T || !T->getType()->isDependentType())
10564     return T;
10565 
10566   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
10567   return Rebuilder.TransformType(T);
10568 }
10569 
10570 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
10571   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
10572                                           DeclarationName());
10573   return Rebuilder.TransformExpr(E);
10574 }
10575 
10576 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
10577   if (SS.isInvalid())
10578     return true;
10579 
10580   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10581   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
10582                                           DeclarationName());
10583   NestedNameSpecifierLoc Rebuilt
10584     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
10585   if (!Rebuilt)
10586     return true;
10587 
10588   SS.Adopt(Rebuilt);
10589   return false;
10590 }
10591 
10592 /// Rebuild the template parameters now that we know we're in a current
10593 /// instantiation.
10594 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
10595                                                TemplateParameterList *Params) {
10596   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10597     Decl *Param = Params->getParam(I);
10598 
10599     // There is nothing to rebuild in a type parameter.
10600     if (isa<TemplateTypeParmDecl>(Param))
10601       continue;
10602 
10603     // Rebuild the template parameter list of a template template parameter.
10604     if (TemplateTemplateParmDecl *TTP
10605         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
10606       if (RebuildTemplateParamsInCurrentInstantiation(
10607             TTP->getTemplateParameters()))
10608         return true;
10609 
10610       continue;
10611     }
10612 
10613     // Rebuild the type of a non-type template parameter.
10614     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
10615     TypeSourceInfo *NewTSI
10616       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
10617                                           NTTP->getLocation(),
10618                                           NTTP->getDeclName());
10619     if (!NewTSI)
10620       return true;
10621 
10622     if (NewTSI->getType()->isUndeducedType()) {
10623       // C++17 [temp.dep.expr]p3:
10624       //   An id-expression is type-dependent if it contains
10625       //    - an identifier associated by name lookup with a non-type
10626       //      template-parameter declared with a type that contains a
10627       //      placeholder type (7.1.7.4),
10628       NewTSI = SubstAutoTypeSourceInfo(NewTSI, Context.DependentTy);
10629     }
10630 
10631     if (NewTSI != NTTP->getTypeSourceInfo()) {
10632       NTTP->setTypeSourceInfo(NewTSI);
10633       NTTP->setType(NewTSI->getType());
10634     }
10635   }
10636 
10637   return false;
10638 }
10639 
10640 /// Produces a formatted string that describes the binding of
10641 /// template parameters to template arguments.
10642 std::string
10643 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10644                                       const TemplateArgumentList &Args) {
10645   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
10646 }
10647 
10648 std::string
10649 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10650                                       const TemplateArgument *Args,
10651                                       unsigned NumArgs) {
10652   SmallString<128> Str;
10653   llvm::raw_svector_ostream Out(Str);
10654 
10655   if (!Params || Params->size() == 0 || NumArgs == 0)
10656     return std::string();
10657 
10658   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10659     if (I >= NumArgs)
10660       break;
10661 
10662     if (I == 0)
10663       Out << "[with ";
10664     else
10665       Out << ", ";
10666 
10667     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
10668       Out << Id->getName();
10669     } else {
10670       Out << '$' << I;
10671     }
10672 
10673     Out << " = ";
10674     Args[I].print(getPrintingPolicy(), Out);
10675   }
10676 
10677   Out << ']';
10678   return Out.str();
10679 }
10680 
10681 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
10682                                     CachedTokens &Toks) {
10683   if (!FD)
10684     return;
10685 
10686   auto LPT = std::make_unique<LateParsedTemplate>();
10687 
10688   // Take tokens to avoid allocations
10689   LPT->Toks.swap(Toks);
10690   LPT->D = FnD;
10691   LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
10692 
10693   FD->setLateTemplateParsed(true);
10694 }
10695 
10696 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
10697   if (!FD)
10698     return;
10699   FD->setLateTemplateParsed(false);
10700 }
10701 
10702 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
10703   DeclContext *DC = CurContext;
10704 
10705   while (DC) {
10706     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
10707       const FunctionDecl *FD = RD->isLocalClass();
10708       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
10709     } else if (DC->isTranslationUnit() || DC->isNamespace())
10710       return false;
10711 
10712     DC = DC->getParent();
10713   }
10714   return false;
10715 }
10716 
10717 namespace {
10718 /// Walk the path from which a declaration was instantiated, and check
10719 /// that every explicit specialization along that path is visible. This enforces
10720 /// C++ [temp.expl.spec]/6:
10721 ///
10722 ///   If a template, a member template or a member of a class template is
10723 ///   explicitly specialized then that specialization shall be declared before
10724 ///   the first use of that specialization that would cause an implicit
10725 ///   instantiation to take place, in every translation unit in which such a
10726 ///   use occurs; no diagnostic is required.
10727 ///
10728 /// and also C++ [temp.class.spec]/1:
10729 ///
10730 ///   A partial specialization shall be declared before the first use of a
10731 ///   class template specialization that would make use of the partial
10732 ///   specialization as the result of an implicit or explicit instantiation
10733 ///   in every translation unit in which such a use occurs; no diagnostic is
10734 ///   required.
10735 class ExplicitSpecializationVisibilityChecker {
10736   Sema &S;
10737   SourceLocation Loc;
10738   llvm::SmallVector<Module *, 8> Modules;
10739 
10740 public:
10741   ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc)
10742       : S(S), Loc(Loc) {}
10743 
10744   void check(NamedDecl *ND) {
10745     if (auto *FD = dyn_cast<FunctionDecl>(ND))
10746       return checkImpl(FD);
10747     if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
10748       return checkImpl(RD);
10749     if (auto *VD = dyn_cast<VarDecl>(ND))
10750       return checkImpl(VD);
10751     if (auto *ED = dyn_cast<EnumDecl>(ND))
10752       return checkImpl(ED);
10753   }
10754 
10755 private:
10756   void diagnose(NamedDecl *D, bool IsPartialSpec) {
10757     auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
10758                               : Sema::MissingImportKind::ExplicitSpecialization;
10759     const bool Recover = true;
10760 
10761     // If we got a custom set of modules (because only a subset of the
10762     // declarations are interesting), use them, otherwise let
10763     // diagnoseMissingImport intelligently pick some.
10764     if (Modules.empty())
10765       S.diagnoseMissingImport(Loc, D, Kind, Recover);
10766     else
10767       S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
10768   }
10769 
10770   // Check a specific declaration. There are three problematic cases:
10771   //
10772   //  1) The declaration is an explicit specialization of a template
10773   //     specialization.
10774   //  2) The declaration is an explicit specialization of a member of an
10775   //     templated class.
10776   //  3) The declaration is an instantiation of a template, and that template
10777   //     is an explicit specialization of a member of a templated class.
10778   //
10779   // We don't need to go any deeper than that, as the instantiation of the
10780   // surrounding class / etc is not triggered by whatever triggered this
10781   // instantiation, and thus should be checked elsewhere.
10782   template<typename SpecDecl>
10783   void checkImpl(SpecDecl *Spec) {
10784     bool IsHiddenExplicitSpecialization = false;
10785     if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
10786       IsHiddenExplicitSpecialization =
10787           Spec->getMemberSpecializationInfo()
10788               ? !S.hasVisibleMemberSpecialization(Spec, &Modules)
10789               : !S.hasVisibleExplicitSpecialization(Spec, &Modules);
10790     } else {
10791       checkInstantiated(Spec);
10792     }
10793 
10794     if (IsHiddenExplicitSpecialization)
10795       diagnose(Spec->getMostRecentDecl(), false);
10796   }
10797 
10798   void checkInstantiated(FunctionDecl *FD) {
10799     if (auto *TD = FD->getPrimaryTemplate())
10800       checkTemplate(TD);
10801   }
10802 
10803   void checkInstantiated(CXXRecordDecl *RD) {
10804     auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
10805     if (!SD)
10806       return;
10807 
10808     auto From = SD->getSpecializedTemplateOrPartial();
10809     if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
10810       checkTemplate(TD);
10811     else if (auto *TD =
10812                  From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
10813       if (!S.hasVisibleDeclaration(TD))
10814         diagnose(TD, true);
10815       checkTemplate(TD);
10816     }
10817   }
10818 
10819   void checkInstantiated(VarDecl *RD) {
10820     auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
10821     if (!SD)
10822       return;
10823 
10824     auto From = SD->getSpecializedTemplateOrPartial();
10825     if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
10826       checkTemplate(TD);
10827     else if (auto *TD =
10828                  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
10829       if (!S.hasVisibleDeclaration(TD))
10830         diagnose(TD, true);
10831       checkTemplate(TD);
10832     }
10833   }
10834 
10835   void checkInstantiated(EnumDecl *FD) {}
10836 
10837   template<typename TemplDecl>
10838   void checkTemplate(TemplDecl *TD) {
10839     if (TD->isMemberSpecialization()) {
10840       if (!S.hasVisibleMemberSpecialization(TD, &Modules))
10841         diagnose(TD->getMostRecentDecl(), false);
10842     }
10843   }
10844 };
10845 } // end anonymous namespace
10846 
10847 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
10848   if (!getLangOpts().Modules)
10849     return;
10850 
10851   ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec);
10852 }
10853 
10854 /// Check whether a template partial specialization that we've discovered
10855 /// is hidden, and produce suitable diagnostics if so.
10856 void Sema::checkPartialSpecializationVisibility(SourceLocation Loc,
10857                                                 NamedDecl *Spec) {
10858   llvm::SmallVector<Module *, 8> Modules;
10859   if (!hasVisibleDeclaration(Spec, &Modules))
10860     diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules,
10861                           MissingImportKind::PartialSpecialization,
10862                           /*Recover*/true);
10863 }
10864