1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===// 7 // 8 // This file implements semantic analysis for C++ templates. 9 //===----------------------------------------------------------------------===// 10 11 #include "TreeTransform.h" 12 #include "clang/AST/ASTConsumer.h" 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclFriend.h" 15 #include "clang/AST/DeclTemplate.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/RecursiveASTVisitor.h" 19 #include "clang/AST/TypeVisitor.h" 20 #include "clang/Basic/Builtins.h" 21 #include "clang/Basic/LangOptions.h" 22 #include "clang/Basic/PartialDiagnostic.h" 23 #include "clang/Basic/Stack.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Sema/DeclSpec.h" 26 #include "clang/Sema/Lookup.h" 27 #include "clang/Sema/Overload.h" 28 #include "clang/Sema/ParsedTemplate.h" 29 #include "clang/Sema/Scope.h" 30 #include "clang/Sema/SemaInternal.h" 31 #include "clang/Sema/Template.h" 32 #include "clang/Sema/TemplateDeduction.h" 33 #include "llvm/ADT/SmallBitVector.h" 34 #include "llvm/ADT/SmallString.h" 35 #include "llvm/ADT/StringExtras.h" 36 37 #include <iterator> 38 using namespace clang; 39 using namespace sema; 40 41 // Exported for use by Parser. 42 SourceRange 43 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 44 unsigned N) { 45 if (!N) return SourceRange(); 46 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 47 } 48 49 /// \brief Determine whether the declaration found is acceptable as the name 50 /// of a template and, if so, return that template declaration. Otherwise, 51 /// returns null. 52 /// 53 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent 54 /// is true. In all other cases it will return a TemplateDecl (or null). 55 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D, 56 bool AllowFunctionTemplates, 57 bool AllowDependent) { 58 D = D->getUnderlyingDecl(); 59 60 if (isa<TemplateDecl>(D)) { 61 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 62 return nullptr; 63 64 return D; 65 } 66 67 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 68 // C++ [temp.local]p1: 69 // Like normal (non-template) classes, class templates have an 70 // injected-class-name (Clause 9). The injected-class-name 71 // can be used with or without a template-argument-list. When 72 // it is used without a template-argument-list, it is 73 // equivalent to the injected-class-name followed by the 74 // template-parameters of the class template enclosed in 75 // <>. When it is used with a template-argument-list, it 76 // refers to the specified class template specialization, 77 // which could be the current specialization or another 78 // specialization. 79 if (Record->isInjectedClassName()) { 80 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 81 if (Record->getDescribedClassTemplate()) 82 return Record->getDescribedClassTemplate(); 83 84 if (ClassTemplateSpecializationDecl *Spec 85 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 86 return Spec->getSpecializedTemplate(); 87 } 88 89 return nullptr; 90 } 91 92 // 'using Dependent::foo;' can resolve to a template name. 93 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an 94 // injected-class-name). 95 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D)) 96 return D; 97 98 return nullptr; 99 } 100 101 void Sema::FilterAcceptableTemplateNames(LookupResult &R, 102 bool AllowFunctionTemplates, 103 bool AllowDependent) { 104 LookupResult::Filter filter = R.makeFilter(); 105 while (filter.hasNext()) { 106 NamedDecl *Orig = filter.next(); 107 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent)) 108 filter.erase(); 109 } 110 filter.done(); 111 } 112 113 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 114 bool AllowFunctionTemplates, 115 bool AllowDependent, 116 bool AllowNonTemplateFunctions) { 117 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 118 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent)) 119 return true; 120 if (AllowNonTemplateFunctions && 121 isa<FunctionDecl>((*I)->getUnderlyingDecl())) 122 return true; 123 } 124 125 return false; 126 } 127 128 TemplateNameKind Sema::isTemplateName(Scope *S, 129 CXXScopeSpec &SS, 130 bool hasTemplateKeyword, 131 const UnqualifiedId &Name, 132 ParsedType ObjectTypePtr, 133 bool EnteringContext, 134 TemplateTy &TemplateResult, 135 bool &MemberOfUnknownSpecialization) { 136 assert(getLangOpts().CPlusPlus && "No template names in C!"); 137 138 DeclarationName TName; 139 MemberOfUnknownSpecialization = false; 140 141 switch (Name.getKind()) { 142 case UnqualifiedIdKind::IK_Identifier: 143 TName = DeclarationName(Name.Identifier); 144 break; 145 146 case UnqualifiedIdKind::IK_OperatorFunctionId: 147 TName = Context.DeclarationNames.getCXXOperatorName( 148 Name.OperatorFunctionId.Operator); 149 break; 150 151 case UnqualifiedIdKind::IK_LiteralOperatorId: 152 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 153 break; 154 155 default: 156 return TNK_Non_template; 157 } 158 159 QualType ObjectType = ObjectTypePtr.get(); 160 161 AssumedTemplateKind AssumedTemplate; 162 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName); 163 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 164 MemberOfUnknownSpecialization, SourceLocation(), 165 &AssumedTemplate)) 166 return TNK_Non_template; 167 168 if (AssumedTemplate != AssumedTemplateKind::None) { 169 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName)); 170 // Let the parser know whether we found nothing or found functions; if we 171 // found nothing, we want to more carefully check whether this is actually 172 // a function template name versus some other kind of undeclared identifier. 173 return AssumedTemplate == AssumedTemplateKind::FoundNothing 174 ? TNK_Undeclared_template 175 : TNK_Function_template; 176 } 177 178 if (R.empty()) 179 return TNK_Non_template; 180 181 NamedDecl *D = nullptr; 182 if (R.isAmbiguous()) { 183 // If we got an ambiguity involving a non-function template, treat this 184 // as a template name, and pick an arbitrary template for error recovery. 185 bool AnyFunctionTemplates = false; 186 for (NamedDecl *FoundD : R) { 187 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) { 188 if (isa<FunctionTemplateDecl>(FoundTemplate)) 189 AnyFunctionTemplates = true; 190 else { 191 D = FoundTemplate; 192 break; 193 } 194 } 195 } 196 197 // If we didn't find any templates at all, this isn't a template name. 198 // Leave the ambiguity for a later lookup to diagnose. 199 if (!D && !AnyFunctionTemplates) { 200 R.suppressDiagnostics(); 201 return TNK_Non_template; 202 } 203 204 // If the only templates were function templates, filter out the rest. 205 // We'll diagnose the ambiguity later. 206 if (!D) 207 FilterAcceptableTemplateNames(R); 208 } 209 210 // At this point, we have either picked a single template name declaration D 211 // or we have a non-empty set of results R containing either one template name 212 // declaration or a set of function templates. 213 214 TemplateName Template; 215 TemplateNameKind TemplateKind; 216 217 unsigned ResultCount = R.end() - R.begin(); 218 if (!D && ResultCount > 1) { 219 // We assume that we'll preserve the qualifier from a function 220 // template name in other ways. 221 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 222 TemplateKind = TNK_Function_template; 223 224 // We'll do this lookup again later. 225 R.suppressDiagnostics(); 226 } else { 227 if (!D) { 228 D = getAsTemplateNameDecl(*R.begin()); 229 assert(D && "unambiguous result is not a template name"); 230 } 231 232 if (isa<UnresolvedUsingValueDecl>(D)) { 233 // We don't yet know whether this is a template-name or not. 234 MemberOfUnknownSpecialization = true; 235 return TNK_Non_template; 236 } 237 238 TemplateDecl *TD = cast<TemplateDecl>(D); 239 240 if (SS.isSet() && !SS.isInvalid()) { 241 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 242 Template = Context.getQualifiedTemplateName(Qualifier, 243 hasTemplateKeyword, TD); 244 } else { 245 Template = TemplateName(TD); 246 } 247 248 if (isa<FunctionTemplateDecl>(TD)) { 249 TemplateKind = TNK_Function_template; 250 251 // We'll do this lookup again later. 252 R.suppressDiagnostics(); 253 } else { 254 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 255 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || 256 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)); 257 TemplateKind = 258 isa<VarTemplateDecl>(TD) ? TNK_Var_template : 259 isa<ConceptDecl>(TD) ? TNK_Concept_template : 260 TNK_Type_template; 261 } 262 } 263 264 TemplateResult = TemplateTy::make(Template); 265 return TemplateKind; 266 } 267 268 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, 269 SourceLocation NameLoc, 270 ParsedTemplateTy *Template) { 271 CXXScopeSpec SS; 272 bool MemberOfUnknownSpecialization = false; 273 274 // We could use redeclaration lookup here, but we don't need to: the 275 // syntactic form of a deduction guide is enough to identify it even 276 // if we can't look up the template name at all. 277 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); 278 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), 279 /*EnteringContext*/ false, 280 MemberOfUnknownSpecialization)) 281 return false; 282 283 if (R.empty()) return false; 284 if (R.isAmbiguous()) { 285 // FIXME: Diagnose an ambiguity if we find at least one template. 286 R.suppressDiagnostics(); 287 return false; 288 } 289 290 // We only treat template-names that name type templates as valid deduction 291 // guide names. 292 TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); 293 if (!TD || !getAsTypeTemplateDecl(TD)) 294 return false; 295 296 if (Template) 297 *Template = TemplateTy::make(TemplateName(TD)); 298 return true; 299 } 300 301 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 302 SourceLocation IILoc, 303 Scope *S, 304 const CXXScopeSpec *SS, 305 TemplateTy &SuggestedTemplate, 306 TemplateNameKind &SuggestedKind) { 307 // We can't recover unless there's a dependent scope specifier preceding the 308 // template name. 309 // FIXME: Typo correction? 310 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 311 computeDeclContext(*SS)) 312 return false; 313 314 // The code is missing a 'template' keyword prior to the dependent template 315 // name. 316 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 317 Diag(IILoc, diag::err_template_kw_missing) 318 << Qualifier << II.getName() 319 << FixItHint::CreateInsertion(IILoc, "template "); 320 SuggestedTemplate 321 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 322 SuggestedKind = TNK_Dependent_template_name; 323 return true; 324 } 325 326 bool Sema::LookupTemplateName(LookupResult &Found, 327 Scope *S, CXXScopeSpec &SS, 328 QualType ObjectType, 329 bool EnteringContext, 330 bool &MemberOfUnknownSpecialization, 331 SourceLocation TemplateKWLoc, 332 AssumedTemplateKind *ATK) { 333 if (ATK) 334 *ATK = AssumedTemplateKind::None; 335 336 Found.setTemplateNameLookup(true); 337 338 // Determine where to perform name lookup 339 MemberOfUnknownSpecialization = false; 340 DeclContext *LookupCtx = nullptr; 341 bool IsDependent = false; 342 if (!ObjectType.isNull()) { 343 // This nested-name-specifier occurs in a member access expression, e.g., 344 // x->B::f, and we are looking into the type of the object. 345 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 346 LookupCtx = computeDeclContext(ObjectType); 347 IsDependent = !LookupCtx && ObjectType->isDependentType(); 348 assert((IsDependent || !ObjectType->isIncompleteType() || 349 ObjectType->castAs<TagType>()->isBeingDefined()) && 350 "Caller should have completed object type"); 351 352 // Template names cannot appear inside an Objective-C class or object type 353 // or a vector type. 354 // 355 // FIXME: This is wrong. For example: 356 // 357 // template<typename T> using Vec = T __attribute__((ext_vector_type(4))); 358 // Vec<int> vi; 359 // vi.Vec<int>::~Vec<int>(); 360 // 361 // ... should be accepted but we will not treat 'Vec' as a template name 362 // here. The right thing to do would be to check if the name is a valid 363 // vector component name, and look up a template name if not. And similarly 364 // for lookups into Objective-C class and object types, where the same 365 // problem can arise. 366 if (ObjectType->isObjCObjectOrInterfaceType() || 367 ObjectType->isVectorType()) { 368 Found.clear(); 369 return false; 370 } 371 } else if (SS.isSet()) { 372 // This nested-name-specifier occurs after another nested-name-specifier, 373 // so long into the context associated with the prior nested-name-specifier. 374 LookupCtx = computeDeclContext(SS, EnteringContext); 375 IsDependent = !LookupCtx; 376 377 // The declaration context must be complete. 378 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 379 return true; 380 } 381 382 bool ObjectTypeSearchedInScope = false; 383 bool AllowFunctionTemplatesInLookup = true; 384 if (LookupCtx) { 385 // Perform "qualified" name lookup into the declaration context we 386 // computed, which is either the type of the base of a member access 387 // expression or the declaration context associated with a prior 388 // nested-name-specifier. 389 LookupQualifiedName(Found, LookupCtx); 390 391 // FIXME: The C++ standard does not clearly specify what happens in the 392 // case where the object type is dependent, and implementations vary. In 393 // Clang, we treat a name after a . or -> as a template-name if lookup 394 // finds a non-dependent member or member of the current instantiation that 395 // is a type template, or finds no such members and lookup in the context 396 // of the postfix-expression finds a type template. In the latter case, the 397 // name is nonetheless dependent, and we may resolve it to a member of an 398 // unknown specialization when we come to instantiate the template. 399 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 400 } 401 402 if (!SS.isSet() && (ObjectType.isNull() || Found.empty())) { 403 // C++ [basic.lookup.classref]p1: 404 // In a class member access expression (5.2.5), if the . or -> token is 405 // immediately followed by an identifier followed by a <, the 406 // identifier must be looked up to determine whether the < is the 407 // beginning of a template argument list (14.2) or a less-than operator. 408 // The identifier is first looked up in the class of the object 409 // expression. If the identifier is not found, it is then looked up in 410 // the context of the entire postfix-expression and shall name a class 411 // template. 412 if (S) 413 LookupName(Found, S); 414 415 if (!ObjectType.isNull()) { 416 // FIXME: We should filter out all non-type templates here, particularly 417 // variable templates and concepts. But the exclusion of alias templates 418 // and template template parameters is a wording defect. 419 AllowFunctionTemplatesInLookup = false; 420 ObjectTypeSearchedInScope = true; 421 } 422 423 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 424 } 425 426 if (Found.isAmbiguous()) 427 return false; 428 429 if (ATK && !SS.isSet() && ObjectType.isNull() && TemplateKWLoc.isInvalid()) { 430 // C++2a [temp.names]p2: 431 // A name is also considered to refer to a template if it is an 432 // unqualified-id followed by a < and name lookup finds either one or more 433 // functions or finds nothing. 434 // 435 // To keep our behavior consistent, we apply the "finds nothing" part in 436 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we 437 // successfully form a call to an undeclared template-id. 438 bool AllFunctions = 439 getLangOpts().CPlusPlus2a && 440 std::all_of(Found.begin(), Found.end(), [](NamedDecl *ND) { 441 return isa<FunctionDecl>(ND->getUnderlyingDecl()); 442 }); 443 if (AllFunctions || (Found.empty() && !IsDependent)) { 444 // If lookup found any functions, or if this is a name that can only be 445 // used for a function, then strongly assume this is a function 446 // template-id. 447 *ATK = (Found.empty() && Found.getLookupName().isIdentifier()) 448 ? AssumedTemplateKind::FoundNothing 449 : AssumedTemplateKind::FoundFunctions; 450 Found.clear(); 451 return false; 452 } 453 } 454 455 if (Found.empty() && !IsDependent) { 456 // If we did not find any names, attempt to correct any typos. 457 DeclarationName Name = Found.getLookupName(); 458 Found.clear(); 459 // Simple filter callback that, for keywords, only accepts the C++ *_cast 460 DefaultFilterCCC FilterCCC{}; 461 FilterCCC.WantTypeSpecifiers = false; 462 FilterCCC.WantExpressionKeywords = false; 463 FilterCCC.WantRemainingKeywords = false; 464 FilterCCC.WantCXXNamedCasts = true; 465 if (TypoCorrection Corrected = 466 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S, 467 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) { 468 if (auto *ND = Corrected.getFoundDecl()) 469 Found.addDecl(ND); 470 FilterAcceptableTemplateNames(Found); 471 if (Found.isAmbiguous()) { 472 Found.clear(); 473 } else if (!Found.empty()) { 474 Found.setLookupName(Corrected.getCorrection()); 475 if (LookupCtx) { 476 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 477 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 478 Name.getAsString() == CorrectedStr; 479 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) 480 << Name << LookupCtx << DroppedSpecifier 481 << SS.getRange()); 482 } else { 483 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); 484 } 485 } 486 } 487 } 488 489 NamedDecl *ExampleLookupResult = 490 Found.empty() ? nullptr : Found.getRepresentativeDecl(); 491 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 492 if (Found.empty()) { 493 if (IsDependent) { 494 MemberOfUnknownSpecialization = true; 495 return false; 496 } 497 498 // If a 'template' keyword was used, a lookup that finds only non-template 499 // names is an error. 500 if (ExampleLookupResult && TemplateKWLoc.isValid()) { 501 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) 502 << Found.getLookupName() << SS.getRange(); 503 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), 504 diag::note_template_kw_refers_to_non_template) 505 << Found.getLookupName(); 506 return true; 507 } 508 509 return false; 510 } 511 512 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 513 !getLangOpts().CPlusPlus11) { 514 // C++03 [basic.lookup.classref]p1: 515 // [...] If the lookup in the class of the object expression finds a 516 // template, the name is also looked up in the context of the entire 517 // postfix-expression and [...] 518 // 519 // Note: C++11 does not perform this second lookup. 520 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 521 LookupOrdinaryName); 522 FoundOuter.setTemplateNameLookup(true); 523 LookupName(FoundOuter, S); 524 // FIXME: We silently accept an ambiguous lookup here, in violation of 525 // [basic.lookup]/1. 526 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 527 528 NamedDecl *OuterTemplate; 529 if (FoundOuter.empty()) { 530 // - if the name is not found, the name found in the class of the 531 // object expression is used, otherwise 532 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() || 533 !(OuterTemplate = 534 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) { 535 // - if the name is found in the context of the entire 536 // postfix-expression and does not name a class template, the name 537 // found in the class of the object expression is used, otherwise 538 FoundOuter.clear(); 539 } else if (!Found.isSuppressingDiagnostics()) { 540 // - if the name found is a class template, it must refer to the same 541 // entity as the one found in the class of the object expression, 542 // otherwise the program is ill-formed. 543 if (!Found.isSingleResult() || 544 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() != 545 OuterTemplate->getCanonicalDecl()) { 546 Diag(Found.getNameLoc(), 547 diag::ext_nested_name_member_ref_lookup_ambiguous) 548 << Found.getLookupName() 549 << ObjectType; 550 Diag(Found.getRepresentativeDecl()->getLocation(), 551 diag::note_ambig_member_ref_object_type) 552 << ObjectType; 553 Diag(FoundOuter.getFoundDecl()->getLocation(), 554 diag::note_ambig_member_ref_scope); 555 556 // Recover by taking the template that we found in the object 557 // expression's type. 558 } 559 } 560 } 561 562 return false; 563 } 564 565 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, 566 SourceLocation Less, 567 SourceLocation Greater) { 568 if (TemplateName.isInvalid()) 569 return; 570 571 DeclarationNameInfo NameInfo; 572 CXXScopeSpec SS; 573 LookupNameKind LookupKind; 574 575 DeclContext *LookupCtx = nullptr; 576 NamedDecl *Found = nullptr; 577 bool MissingTemplateKeyword = false; 578 579 // Figure out what name we looked up. 580 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) { 581 NameInfo = DRE->getNameInfo(); 582 SS.Adopt(DRE->getQualifierLoc()); 583 LookupKind = LookupOrdinaryName; 584 Found = DRE->getFoundDecl(); 585 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) { 586 NameInfo = ME->getMemberNameInfo(); 587 SS.Adopt(ME->getQualifierLoc()); 588 LookupKind = LookupMemberName; 589 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); 590 Found = ME->getMemberDecl(); 591 } else if (auto *DSDRE = 592 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) { 593 NameInfo = DSDRE->getNameInfo(); 594 SS.Adopt(DSDRE->getQualifierLoc()); 595 MissingTemplateKeyword = true; 596 } else if (auto *DSME = 597 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) { 598 NameInfo = DSME->getMemberNameInfo(); 599 SS.Adopt(DSME->getQualifierLoc()); 600 MissingTemplateKeyword = true; 601 } else { 602 llvm_unreachable("unexpected kind of potential template name"); 603 } 604 605 // If this is a dependent-scope lookup, diagnose that the 'template' keyword 606 // was missing. 607 if (MissingTemplateKeyword) { 608 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing) 609 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater); 610 return; 611 } 612 613 // Try to correct the name by looking for templates and C++ named casts. 614 struct TemplateCandidateFilter : CorrectionCandidateCallback { 615 Sema &S; 616 TemplateCandidateFilter(Sema &S) : S(S) { 617 WantTypeSpecifiers = false; 618 WantExpressionKeywords = false; 619 WantRemainingKeywords = false; 620 WantCXXNamedCasts = true; 621 }; 622 bool ValidateCandidate(const TypoCorrection &Candidate) override { 623 if (auto *ND = Candidate.getCorrectionDecl()) 624 return S.getAsTemplateNameDecl(ND); 625 return Candidate.isKeyword(); 626 } 627 628 std::unique_ptr<CorrectionCandidateCallback> clone() override { 629 return std::make_unique<TemplateCandidateFilter>(*this); 630 } 631 }; 632 633 DeclarationName Name = NameInfo.getName(); 634 TemplateCandidateFilter CCC(*this); 635 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC, 636 CTK_ErrorRecovery, LookupCtx)) { 637 auto *ND = Corrected.getFoundDecl(); 638 if (ND) 639 ND = getAsTemplateNameDecl(ND); 640 if (ND || Corrected.isKeyword()) { 641 if (LookupCtx) { 642 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 643 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 644 Name.getAsString() == CorrectedStr; 645 diagnoseTypo(Corrected, 646 PDiag(diag::err_non_template_in_member_template_id_suggest) 647 << Name << LookupCtx << DroppedSpecifier 648 << SS.getRange(), false); 649 } else { 650 diagnoseTypo(Corrected, 651 PDiag(diag::err_non_template_in_template_id_suggest) 652 << Name, false); 653 } 654 if (Found) 655 Diag(Found->getLocation(), 656 diag::note_non_template_in_template_id_found); 657 return; 658 } 659 } 660 661 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) 662 << Name << SourceRange(Less, Greater); 663 if (Found) 664 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); 665 } 666 667 /// ActOnDependentIdExpression - Handle a dependent id-expression that 668 /// was just parsed. This is only possible with an explicit scope 669 /// specifier naming a dependent type. 670 ExprResult 671 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 672 SourceLocation TemplateKWLoc, 673 const DeclarationNameInfo &NameInfo, 674 bool isAddressOfOperand, 675 const TemplateArgumentListInfo *TemplateArgs) { 676 DeclContext *DC = getFunctionLevelDeclContext(); 677 678 // C++11 [expr.prim.general]p12: 679 // An id-expression that denotes a non-static data member or non-static 680 // member function of a class can only be used: 681 // (...) 682 // - if that id-expression denotes a non-static data member and it 683 // appears in an unevaluated operand. 684 // 685 // If this might be the case, form a DependentScopeDeclRefExpr instead of a 686 // CXXDependentScopeMemberExpr. The former can instantiate to either 687 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is 688 // always a MemberExpr. 689 bool MightBeCxx11UnevalField = 690 getLangOpts().CPlusPlus11 && isUnevaluatedContext(); 691 692 // Check if the nested name specifier is an enum type. 693 bool IsEnum = false; 694 if (NestedNameSpecifier *NNS = SS.getScopeRep()) 695 IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType()); 696 697 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum && 698 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) { 699 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(); 700 701 // Since the 'this' expression is synthesized, we don't need to 702 // perform the double-lookup check. 703 NamedDecl *FirstQualifierInScope = nullptr; 704 705 return CXXDependentScopeMemberExpr::Create( 706 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true, 707 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc, 708 FirstQualifierInScope, NameInfo, TemplateArgs); 709 } 710 711 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 712 } 713 714 ExprResult 715 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 716 SourceLocation TemplateKWLoc, 717 const DeclarationNameInfo &NameInfo, 718 const TemplateArgumentListInfo *TemplateArgs) { 719 // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc 720 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 721 if (!QualifierLoc) 722 return ExprError(); 723 724 return DependentScopeDeclRefExpr::Create( 725 Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs); 726 } 727 728 729 /// Determine whether we would be unable to instantiate this template (because 730 /// it either has no definition, or is in the process of being instantiated). 731 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, 732 NamedDecl *Instantiation, 733 bool InstantiatedFromMember, 734 const NamedDecl *Pattern, 735 const NamedDecl *PatternDef, 736 TemplateSpecializationKind TSK, 737 bool Complain /*= true*/) { 738 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || 739 isa<VarDecl>(Instantiation)); 740 741 bool IsEntityBeingDefined = false; 742 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef)) 743 IsEntityBeingDefined = TD->isBeingDefined(); 744 745 if (PatternDef && !IsEntityBeingDefined) { 746 NamedDecl *SuggestedDef = nullptr; 747 if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef, 748 /*OnlyNeedComplete*/false)) { 749 // If we're allowed to diagnose this and recover, do so. 750 bool Recover = Complain && !isSFINAEContext(); 751 if (Complain) 752 diagnoseMissingImport(PointOfInstantiation, SuggestedDef, 753 Sema::MissingImportKind::Definition, Recover); 754 return !Recover; 755 } 756 return false; 757 } 758 759 if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) 760 return true; 761 762 llvm::Optional<unsigned> Note; 763 QualType InstantiationTy; 764 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation)) 765 InstantiationTy = Context.getTypeDeclType(TD); 766 if (PatternDef) { 767 Diag(PointOfInstantiation, 768 diag::err_template_instantiate_within_definition) 769 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) 770 << InstantiationTy; 771 // Not much point in noting the template declaration here, since 772 // we're lexically inside it. 773 Instantiation->setInvalidDecl(); 774 } else if (InstantiatedFromMember) { 775 if (isa<FunctionDecl>(Instantiation)) { 776 Diag(PointOfInstantiation, 777 diag::err_explicit_instantiation_undefined_member) 778 << /*member function*/ 1 << Instantiation->getDeclName() 779 << Instantiation->getDeclContext(); 780 Note = diag::note_explicit_instantiation_here; 781 } else { 782 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!"); 783 Diag(PointOfInstantiation, 784 diag::err_implicit_instantiate_member_undefined) 785 << InstantiationTy; 786 Note = diag::note_member_declared_at; 787 } 788 } else { 789 if (isa<FunctionDecl>(Instantiation)) { 790 Diag(PointOfInstantiation, 791 diag::err_explicit_instantiation_undefined_func_template) 792 << Pattern; 793 Note = diag::note_explicit_instantiation_here; 794 } else if (isa<TagDecl>(Instantiation)) { 795 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) 796 << (TSK != TSK_ImplicitInstantiation) 797 << InstantiationTy; 798 Note = diag::note_template_decl_here; 799 } else { 800 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!"); 801 if (isa<VarTemplateSpecializationDecl>(Instantiation)) { 802 Diag(PointOfInstantiation, 803 diag::err_explicit_instantiation_undefined_var_template) 804 << Instantiation; 805 Instantiation->setInvalidDecl(); 806 } else 807 Diag(PointOfInstantiation, 808 diag::err_explicit_instantiation_undefined_member) 809 << /*static data member*/ 2 << Instantiation->getDeclName() 810 << Instantiation->getDeclContext(); 811 Note = diag::note_explicit_instantiation_here; 812 } 813 } 814 if (Note) // Diagnostics were emitted. 815 Diag(Pattern->getLocation(), Note.getValue()); 816 817 // In general, Instantiation isn't marked invalid to get more than one 818 // error for multiple undefined instantiations. But the code that does 819 // explicit declaration -> explicit definition conversion can't handle 820 // invalid declarations, so mark as invalid in that case. 821 if (TSK == TSK_ExplicitInstantiationDeclaration) 822 Instantiation->setInvalidDecl(); 823 return true; 824 } 825 826 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 827 /// that the template parameter 'PrevDecl' is being shadowed by a new 828 /// declaration at location Loc. Returns true to indicate that this is 829 /// an error, and false otherwise. 830 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 831 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 832 833 // C++ [temp.local]p4: 834 // A template-parameter shall not be redeclared within its 835 // scope (including nested scopes). 836 // 837 // Make this a warning when MSVC compatibility is requested. 838 unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow 839 : diag::err_template_param_shadow; 840 Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName(); 841 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 842 } 843 844 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 845 /// the parameter D to reference the templated declaration and return a pointer 846 /// to the template declaration. Otherwise, do nothing to D and return null. 847 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 848 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 849 D = Temp->getTemplatedDecl(); 850 return Temp; 851 } 852 return nullptr; 853 } 854 855 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 856 SourceLocation EllipsisLoc) const { 857 assert(Kind == Template && 858 "Only template template arguments can be pack expansions here"); 859 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 860 "Template template argument pack expansion without packs"); 861 ParsedTemplateArgument Result(*this); 862 Result.EllipsisLoc = EllipsisLoc; 863 return Result; 864 } 865 866 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 867 const ParsedTemplateArgument &Arg) { 868 869 switch (Arg.getKind()) { 870 case ParsedTemplateArgument::Type: { 871 TypeSourceInfo *DI; 872 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 873 if (!DI) 874 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 875 return TemplateArgumentLoc(TemplateArgument(T), DI); 876 } 877 878 case ParsedTemplateArgument::NonType: { 879 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 880 return TemplateArgumentLoc(TemplateArgument(E), E); 881 } 882 883 case ParsedTemplateArgument::Template: { 884 TemplateName Template = Arg.getAsTemplate().get(); 885 TemplateArgument TArg; 886 if (Arg.getEllipsisLoc().isValid()) 887 TArg = TemplateArgument(Template, Optional<unsigned int>()); 888 else 889 TArg = Template; 890 return TemplateArgumentLoc(TArg, 891 Arg.getScopeSpec().getWithLocInContext( 892 SemaRef.Context), 893 Arg.getLocation(), 894 Arg.getEllipsisLoc()); 895 } 896 } 897 898 llvm_unreachable("Unhandled parsed template argument"); 899 } 900 901 /// Translates template arguments as provided by the parser 902 /// into template arguments used by semantic analysis. 903 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 904 TemplateArgumentListInfo &TemplateArgs) { 905 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 906 TemplateArgs.addArgument(translateTemplateArgument(*this, 907 TemplateArgsIn[I])); 908 } 909 910 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, 911 SourceLocation Loc, 912 IdentifierInfo *Name) { 913 NamedDecl *PrevDecl = SemaRef.LookupSingleName( 914 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 915 if (PrevDecl && PrevDecl->isTemplateParameter()) 916 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); 917 } 918 919 /// Convert a parsed type into a parsed template argument. This is mostly 920 /// trivial, except that we may have parsed a C++17 deduced class template 921 /// specialization type, in which case we should form a template template 922 /// argument instead of a type template argument. 923 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { 924 TypeSourceInfo *TInfo; 925 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo); 926 if (T.isNull()) 927 return ParsedTemplateArgument(); 928 assert(TInfo && "template argument with no location"); 929 930 // If we might have formed a deduced template specialization type, convert 931 // it to a template template argument. 932 if (getLangOpts().CPlusPlus17) { 933 TypeLoc TL = TInfo->getTypeLoc(); 934 SourceLocation EllipsisLoc; 935 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { 936 EllipsisLoc = PET.getEllipsisLoc(); 937 TL = PET.getPatternLoc(); 938 } 939 940 CXXScopeSpec SS; 941 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { 942 SS.Adopt(ET.getQualifierLoc()); 943 TL = ET.getNamedTypeLoc(); 944 } 945 946 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { 947 TemplateName Name = DTST.getTypePtr()->getTemplateName(); 948 if (SS.isSet()) 949 Name = Context.getQualifiedTemplateName(SS.getScopeRep(), 950 /*HasTemplateKeyword*/ false, 951 Name.getAsTemplateDecl()); 952 ParsedTemplateArgument Result(SS, TemplateTy::make(Name), 953 DTST.getTemplateNameLoc()); 954 if (EllipsisLoc.isValid()) 955 Result = Result.getTemplatePackExpansion(EllipsisLoc); 956 return Result; 957 } 958 } 959 960 // This is a normal type template argument. Note, if the type template 961 // argument is an injected-class-name for a template, it has a dual nature 962 // and can be used as either a type or a template. We handle that in 963 // convertTypeTemplateArgumentToTemplate. 964 return ParsedTemplateArgument(ParsedTemplateArgument::Type, 965 ParsedType.get().getAsOpaquePtr(), 966 TInfo->getTypeLoc().getBeginLoc()); 967 } 968 969 /// ActOnTypeParameter - Called when a C++ template type parameter 970 /// (e.g., "typename T") has been parsed. Typename specifies whether 971 /// the keyword "typename" was used to declare the type parameter 972 /// (otherwise, "class" was used), and KeyLoc is the location of the 973 /// "class" or "typename" keyword. ParamName is the name of the 974 /// parameter (NULL indicates an unnamed template parameter) and 975 /// ParamNameLoc is the location of the parameter name (if any). 976 /// If the type parameter has a default argument, it will be added 977 /// later via ActOnTypeParameterDefault. 978 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, 979 SourceLocation EllipsisLoc, 980 SourceLocation KeyLoc, 981 IdentifierInfo *ParamName, 982 SourceLocation ParamNameLoc, 983 unsigned Depth, unsigned Position, 984 SourceLocation EqualLoc, 985 ParsedType DefaultArg) { 986 assert(S->isTemplateParamScope() && 987 "Template type parameter not in template parameter scope!"); 988 989 bool IsParameterPack = EllipsisLoc.isValid(); 990 TemplateTypeParmDecl *Param = TemplateTypeParmDecl::Create( 991 Context, Context.getTranslationUnitDecl(), KeyLoc, ParamNameLoc, Depth, 992 Position, ParamName, Typename, IsParameterPack); 993 Param->setAccess(AS_public); 994 995 if (Param->isParameterPack()) 996 if (auto *LSI = getEnclosingLambda()) 997 LSI->LocalPacks.push_back(Param); 998 999 if (ParamName) { 1000 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); 1001 1002 // Add the template parameter into the current scope. 1003 S->AddDecl(Param); 1004 IdResolver.AddDecl(Param); 1005 } 1006 1007 // C++0x [temp.param]p9: 1008 // A default template-argument may be specified for any kind of 1009 // template-parameter that is not a template parameter pack. 1010 if (DefaultArg && IsParameterPack) { 1011 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1012 DefaultArg = nullptr; 1013 } 1014 1015 // Handle the default argument, if provided. 1016 if (DefaultArg) { 1017 TypeSourceInfo *DefaultTInfo; 1018 GetTypeFromParser(DefaultArg, &DefaultTInfo); 1019 1020 assert(DefaultTInfo && "expected source information for type"); 1021 1022 // Check for unexpanded parameter packs. 1023 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo, 1024 UPPC_DefaultArgument)) 1025 return Param; 1026 1027 // Check the template argument itself. 1028 if (CheckTemplateArgument(Param, DefaultTInfo)) { 1029 Param->setInvalidDecl(); 1030 return Param; 1031 } 1032 1033 Param->setDefaultArgument(DefaultTInfo); 1034 } 1035 1036 return Param; 1037 } 1038 1039 /// Check that the type of a non-type template parameter is 1040 /// well-formed. 1041 /// 1042 /// \returns the (possibly-promoted) parameter type if valid; 1043 /// otherwise, produces a diagnostic and returns a NULL type. 1044 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, 1045 SourceLocation Loc) { 1046 if (TSI->getType()->isUndeducedType()) { 1047 // C++17 [temp.dep.expr]p3: 1048 // An id-expression is type-dependent if it contains 1049 // - an identifier associated by name lookup with a non-type 1050 // template-parameter declared with a type that contains a 1051 // placeholder type (7.1.7.4), 1052 TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy); 1053 } 1054 1055 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc); 1056 } 1057 1058 QualType Sema::CheckNonTypeTemplateParameterType(QualType T, 1059 SourceLocation Loc) { 1060 // We don't allow variably-modified types as the type of non-type template 1061 // parameters. 1062 if (T->isVariablyModifiedType()) { 1063 Diag(Loc, diag::err_variably_modified_nontype_template_param) 1064 << T; 1065 return QualType(); 1066 } 1067 1068 // C++ [temp.param]p4: 1069 // 1070 // A non-type template-parameter shall have one of the following 1071 // (optionally cv-qualified) types: 1072 // 1073 // -- integral or enumeration type, 1074 if (T->isIntegralOrEnumerationType() || 1075 // -- pointer to object or pointer to function, 1076 T->isPointerType() || 1077 // -- reference to object or reference to function, 1078 T->isReferenceType() || 1079 // -- pointer to member, 1080 T->isMemberPointerType() || 1081 // -- std::nullptr_t. 1082 T->isNullPtrType() || 1083 // Allow use of auto in template parameter declarations. 1084 T->isUndeducedType()) { 1085 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 1086 // are ignored when determining its type. 1087 return T.getUnqualifiedType(); 1088 } 1089 1090 // C++ [temp.param]p8: 1091 // 1092 // A non-type template-parameter of type "array of T" or 1093 // "function returning T" is adjusted to be of type "pointer to 1094 // T" or "pointer to function returning T", respectively. 1095 if (T->isArrayType() || T->isFunctionType()) 1096 return Context.getDecayedType(T); 1097 1098 // If T is a dependent type, we can't do the check now, so we 1099 // assume that it is well-formed. Note that stripping off the 1100 // qualifiers here is not really correct if T turns out to be 1101 // an array type, but we'll recompute the type everywhere it's 1102 // used during instantiation, so that should be OK. (Using the 1103 // qualified type is equally wrong.) 1104 if (T->isDependentType()) 1105 return T.getUnqualifiedType(); 1106 1107 Diag(Loc, diag::err_template_nontype_parm_bad_type) 1108 << T; 1109 1110 return QualType(); 1111 } 1112 1113 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 1114 unsigned Depth, 1115 unsigned Position, 1116 SourceLocation EqualLoc, 1117 Expr *Default) { 1118 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 1119 1120 // Check that we have valid decl-specifiers specified. 1121 auto CheckValidDeclSpecifiers = [this, &D] { 1122 // C++ [temp.param] 1123 // p1 1124 // template-parameter: 1125 // ... 1126 // parameter-declaration 1127 // p2 1128 // ... A storage class shall not be specified in a template-parameter 1129 // declaration. 1130 // [dcl.typedef]p1: 1131 // The typedef specifier [...] shall not be used in the decl-specifier-seq 1132 // of a parameter-declaration 1133 const DeclSpec &DS = D.getDeclSpec(); 1134 auto EmitDiag = [this](SourceLocation Loc) { 1135 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) 1136 << FixItHint::CreateRemoval(Loc); 1137 }; 1138 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) 1139 EmitDiag(DS.getStorageClassSpecLoc()); 1140 1141 if (DS.getThreadStorageClassSpec() != TSCS_unspecified) 1142 EmitDiag(DS.getThreadStorageClassSpecLoc()); 1143 1144 // [dcl.inline]p1: 1145 // The inline specifier can be applied only to the declaration or 1146 // definition of a variable or function. 1147 1148 if (DS.isInlineSpecified()) 1149 EmitDiag(DS.getInlineSpecLoc()); 1150 1151 // [dcl.constexpr]p1: 1152 // The constexpr specifier shall be applied only to the definition of a 1153 // variable or variable template or the declaration of a function or 1154 // function template. 1155 1156 if (DS.hasConstexprSpecifier()) 1157 EmitDiag(DS.getConstexprSpecLoc()); 1158 1159 // [dcl.fct.spec]p1: 1160 // Function-specifiers can be used only in function declarations. 1161 1162 if (DS.isVirtualSpecified()) 1163 EmitDiag(DS.getVirtualSpecLoc()); 1164 1165 if (DS.hasExplicitSpecifier()) 1166 EmitDiag(DS.getExplicitSpecLoc()); 1167 1168 if (DS.isNoreturnSpecified()) 1169 EmitDiag(DS.getNoreturnSpecLoc()); 1170 }; 1171 1172 CheckValidDeclSpecifiers(); 1173 1174 if (TInfo->getType()->isUndeducedType()) { 1175 Diag(D.getIdentifierLoc(), 1176 diag::warn_cxx14_compat_template_nontype_parm_auto_type) 1177 << QualType(TInfo->getType()->getContainedAutoType(), 0); 1178 } 1179 1180 assert(S->isTemplateParamScope() && 1181 "Non-type template parameter not in template parameter scope!"); 1182 bool Invalid = false; 1183 1184 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc()); 1185 if (T.isNull()) { 1186 T = Context.IntTy; // Recover with an 'int' type. 1187 Invalid = true; 1188 } 1189 1190 CheckFunctionOrTemplateParamDeclarator(S, D); 1191 1192 IdentifierInfo *ParamName = D.getIdentifier(); 1193 bool IsParameterPack = D.hasEllipsis(); 1194 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create( 1195 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(), 1196 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack, 1197 TInfo); 1198 Param->setAccess(AS_public); 1199 1200 if (Invalid) 1201 Param->setInvalidDecl(); 1202 1203 if (Param->isParameterPack()) 1204 if (auto *LSI = getEnclosingLambda()) 1205 LSI->LocalPacks.push_back(Param); 1206 1207 if (ParamName) { 1208 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), 1209 ParamName); 1210 1211 // Add the template parameter into the current scope. 1212 S->AddDecl(Param); 1213 IdResolver.AddDecl(Param); 1214 } 1215 1216 // C++0x [temp.param]p9: 1217 // A default template-argument may be specified for any kind of 1218 // template-parameter that is not a template parameter pack. 1219 if (Default && IsParameterPack) { 1220 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1221 Default = nullptr; 1222 } 1223 1224 // Check the well-formedness of the default template argument, if provided. 1225 if (Default) { 1226 // Check for unexpanded parameter packs. 1227 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 1228 return Param; 1229 1230 TemplateArgument Converted; 1231 ExprResult DefaultRes = 1232 CheckTemplateArgument(Param, Param->getType(), Default, Converted); 1233 if (DefaultRes.isInvalid()) { 1234 Param->setInvalidDecl(); 1235 return Param; 1236 } 1237 Default = DefaultRes.get(); 1238 1239 Param->setDefaultArgument(Default); 1240 } 1241 1242 return Param; 1243 } 1244 1245 /// ActOnTemplateTemplateParameter - Called when a C++ template template 1246 /// parameter (e.g. T in template <template \<typename> class T> class array) 1247 /// has been parsed. S is the current scope. 1248 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S, 1249 SourceLocation TmpLoc, 1250 TemplateParameterList *Params, 1251 SourceLocation EllipsisLoc, 1252 IdentifierInfo *Name, 1253 SourceLocation NameLoc, 1254 unsigned Depth, 1255 unsigned Position, 1256 SourceLocation EqualLoc, 1257 ParsedTemplateArgument Default) { 1258 assert(S->isTemplateParamScope() && 1259 "Template template parameter not in template parameter scope!"); 1260 1261 // Construct the parameter object. 1262 bool IsParameterPack = EllipsisLoc.isValid(); 1263 TemplateTemplateParmDecl *Param = 1264 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1265 NameLoc.isInvalid()? TmpLoc : NameLoc, 1266 Depth, Position, IsParameterPack, 1267 Name, Params); 1268 Param->setAccess(AS_public); 1269 1270 if (Param->isParameterPack()) 1271 if (auto *LSI = getEnclosingLambda()) 1272 LSI->LocalPacks.push_back(Param); 1273 1274 // If the template template parameter has a name, then link the identifier 1275 // into the scope and lookup mechanisms. 1276 if (Name) { 1277 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); 1278 1279 S->AddDecl(Param); 1280 IdResolver.AddDecl(Param); 1281 } 1282 1283 if (Params->size() == 0) { 1284 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 1285 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 1286 Param->setInvalidDecl(); 1287 } 1288 1289 // C++0x [temp.param]p9: 1290 // A default template-argument may be specified for any kind of 1291 // template-parameter that is not a template parameter pack. 1292 if (IsParameterPack && !Default.isInvalid()) { 1293 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1294 Default = ParsedTemplateArgument(); 1295 } 1296 1297 if (!Default.isInvalid()) { 1298 // Check only that we have a template template argument. We don't want to 1299 // try to check well-formedness now, because our template template parameter 1300 // might have dependent types in its template parameters, which we wouldn't 1301 // be able to match now. 1302 // 1303 // If none of the template template parameter's template arguments mention 1304 // other template parameters, we could actually perform more checking here. 1305 // However, it isn't worth doing. 1306 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 1307 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 1308 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template) 1309 << DefaultArg.getSourceRange(); 1310 return Param; 1311 } 1312 1313 // Check for unexpanded parameter packs. 1314 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 1315 DefaultArg.getArgument().getAsTemplate(), 1316 UPPC_DefaultArgument)) 1317 return Param; 1318 1319 Param->setDefaultArgument(Context, DefaultArg); 1320 } 1321 1322 return Param; 1323 } 1324 1325 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally 1326 /// constrained by RequiresClause, that contains the template parameters in 1327 /// Params. 1328 TemplateParameterList * 1329 Sema::ActOnTemplateParameterList(unsigned Depth, 1330 SourceLocation ExportLoc, 1331 SourceLocation TemplateLoc, 1332 SourceLocation LAngleLoc, 1333 ArrayRef<NamedDecl *> Params, 1334 SourceLocation RAngleLoc, 1335 Expr *RequiresClause) { 1336 if (ExportLoc.isValid()) 1337 Diag(ExportLoc, diag::warn_template_export_unsupported); 1338 1339 return TemplateParameterList::Create( 1340 Context, TemplateLoc, LAngleLoc, 1341 llvm::makeArrayRef(Params.data(), Params.size()), 1342 RAngleLoc, RequiresClause); 1343 } 1344 1345 static void SetNestedNameSpecifier(Sema &S, TagDecl *T, 1346 const CXXScopeSpec &SS) { 1347 if (SS.isSet()) 1348 T->setQualifierInfo(SS.getWithLocInContext(S.Context)); 1349 } 1350 1351 DeclResult Sema::CheckClassTemplate( 1352 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 1353 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, 1354 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, 1355 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 1356 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, 1357 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { 1358 assert(TemplateParams && TemplateParams->size() > 0 && 1359 "No template parameters"); 1360 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 1361 bool Invalid = false; 1362 1363 // Check that we can declare a template here. 1364 if (CheckTemplateDeclScope(S, TemplateParams)) 1365 return true; 1366 1367 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1368 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 1369 1370 // There is no such thing as an unnamed class template. 1371 if (!Name) { 1372 Diag(KWLoc, diag::err_template_unnamed_class); 1373 return true; 1374 } 1375 1376 // Find any previous declaration with this name. For a friend with no 1377 // scope explicitly specified, we only look for tag declarations (per 1378 // C++11 [basic.lookup.elab]p2). 1379 DeclContext *SemanticContext; 1380 LookupResult Previous(*this, Name, NameLoc, 1381 (SS.isEmpty() && TUK == TUK_Friend) 1382 ? LookupTagName : LookupOrdinaryName, 1383 forRedeclarationInCurContext()); 1384 if (SS.isNotEmpty() && !SS.isInvalid()) { 1385 SemanticContext = computeDeclContext(SS, true); 1386 if (!SemanticContext) { 1387 // FIXME: Horrible, horrible hack! We can't currently represent this 1388 // in the AST, and historically we have just ignored such friend 1389 // class templates, so don't complain here. 1390 Diag(NameLoc, TUK == TUK_Friend 1391 ? diag::warn_template_qualified_friend_ignored 1392 : diag::err_template_qualified_declarator_no_match) 1393 << SS.getScopeRep() << SS.getRange(); 1394 return TUK != TUK_Friend; 1395 } 1396 1397 if (RequireCompleteDeclContext(SS, SemanticContext)) 1398 return true; 1399 1400 // If we're adding a template to a dependent context, we may need to 1401 // rebuilding some of the types used within the template parameter list, 1402 // now that we know what the current instantiation is. 1403 if (SemanticContext->isDependentContext()) { 1404 ContextRAII SavedContext(*this, SemanticContext); 1405 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 1406 Invalid = true; 1407 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 1408 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false); 1409 1410 LookupQualifiedName(Previous, SemanticContext); 1411 } else { 1412 SemanticContext = CurContext; 1413 1414 // C++14 [class.mem]p14: 1415 // If T is the name of a class, then each of the following shall have a 1416 // name different from T: 1417 // -- every member template of class T 1418 if (TUK != TUK_Friend && 1419 DiagnoseClassNameShadow(SemanticContext, 1420 DeclarationNameInfo(Name, NameLoc))) 1421 return true; 1422 1423 LookupName(Previous, S); 1424 } 1425 1426 if (Previous.isAmbiguous()) 1427 return true; 1428 1429 NamedDecl *PrevDecl = nullptr; 1430 if (Previous.begin() != Previous.end()) 1431 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1432 1433 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1434 // Maybe we will complain about the shadowed template parameter. 1435 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1436 // Just pretend that we didn't see the previous declaration. 1437 PrevDecl = nullptr; 1438 } 1439 1440 // If there is a previous declaration with the same name, check 1441 // whether this is a valid redeclaration. 1442 ClassTemplateDecl *PrevClassTemplate = 1443 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 1444 1445 // We may have found the injected-class-name of a class template, 1446 // class template partial specialization, or class template specialization. 1447 // In these cases, grab the template that is being defined or specialized. 1448 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 1449 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 1450 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 1451 PrevClassTemplate 1452 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 1453 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 1454 PrevClassTemplate 1455 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 1456 ->getSpecializedTemplate(); 1457 } 1458 } 1459 1460 if (TUK == TUK_Friend) { 1461 // C++ [namespace.memdef]p3: 1462 // [...] When looking for a prior declaration of a class or a function 1463 // declared as a friend, and when the name of the friend class or 1464 // function is neither a qualified name nor a template-id, scopes outside 1465 // the innermost enclosing namespace scope are not considered. 1466 if (!SS.isSet()) { 1467 DeclContext *OutermostContext = CurContext; 1468 while (!OutermostContext->isFileContext()) 1469 OutermostContext = OutermostContext->getLookupParent(); 1470 1471 if (PrevDecl && 1472 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 1473 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 1474 SemanticContext = PrevDecl->getDeclContext(); 1475 } else { 1476 // Declarations in outer scopes don't matter. However, the outermost 1477 // context we computed is the semantic context for our new 1478 // declaration. 1479 PrevDecl = PrevClassTemplate = nullptr; 1480 SemanticContext = OutermostContext; 1481 1482 // Check that the chosen semantic context doesn't already contain a 1483 // declaration of this name as a non-tag type. 1484 Previous.clear(LookupOrdinaryName); 1485 DeclContext *LookupContext = SemanticContext; 1486 while (LookupContext->isTransparentContext()) 1487 LookupContext = LookupContext->getLookupParent(); 1488 LookupQualifiedName(Previous, LookupContext); 1489 1490 if (Previous.isAmbiguous()) 1491 return true; 1492 1493 if (Previous.begin() != Previous.end()) 1494 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1495 } 1496 } 1497 } else if (PrevDecl && 1498 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext, 1499 S, SS.isValid())) 1500 PrevDecl = PrevClassTemplate = nullptr; 1501 1502 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( 1503 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { 1504 if (SS.isEmpty() && 1505 !(PrevClassTemplate && 1506 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( 1507 SemanticContext->getRedeclContext()))) { 1508 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 1509 Diag(Shadow->getTargetDecl()->getLocation(), 1510 diag::note_using_decl_target); 1511 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; 1512 // Recover by ignoring the old declaration. 1513 PrevDecl = PrevClassTemplate = nullptr; 1514 } 1515 } 1516 1517 if (PrevClassTemplate) { 1518 // Ensure that the template parameter lists are compatible. Skip this check 1519 // for a friend in a dependent context: the template parameter list itself 1520 // could be dependent. 1521 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1522 !TemplateParameterListsAreEqual(TemplateParams, 1523 PrevClassTemplate->getTemplateParameters(), 1524 /*Complain=*/true, 1525 TPL_TemplateMatch)) 1526 return true; 1527 1528 // C++ [temp.class]p4: 1529 // In a redeclaration, partial specialization, explicit 1530 // specialization or explicit instantiation of a class template, 1531 // the class-key shall agree in kind with the original class 1532 // template declaration (7.1.5.3). 1533 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 1534 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 1535 TUK == TUK_Definition, KWLoc, Name)) { 1536 Diag(KWLoc, diag::err_use_with_wrong_tag) 1537 << Name 1538 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 1539 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 1540 Kind = PrevRecordDecl->getTagKind(); 1541 } 1542 1543 // Check for redefinition of this class template. 1544 if (TUK == TUK_Definition) { 1545 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 1546 // If we have a prior definition that is not visible, treat this as 1547 // simply making that previous definition visible. 1548 NamedDecl *Hidden = nullptr; 1549 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 1550 SkipBody->ShouldSkip = true; 1551 SkipBody->Previous = Def; 1552 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate(); 1553 assert(Tmpl && "original definition of a class template is not a " 1554 "class template?"); 1555 makeMergedDefinitionVisible(Hidden); 1556 makeMergedDefinitionVisible(Tmpl); 1557 } else { 1558 Diag(NameLoc, diag::err_redefinition) << Name; 1559 Diag(Def->getLocation(), diag::note_previous_definition); 1560 // FIXME: Would it make sense to try to "forget" the previous 1561 // definition, as part of error recovery? 1562 return true; 1563 } 1564 } 1565 } 1566 } else if (PrevDecl) { 1567 // C++ [temp]p5: 1568 // A class template shall not have the same name as any other 1569 // template, class, function, object, enumeration, enumerator, 1570 // namespace, or type in the same scope (3.3), except as specified 1571 // in (14.5.4). 1572 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1573 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1574 return true; 1575 } 1576 1577 // Check the template parameter list of this declaration, possibly 1578 // merging in the template parameter list from the previous class 1579 // template declaration. Skip this check for a friend in a dependent 1580 // context, because the template parameter list might be dependent. 1581 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1582 CheckTemplateParameterList( 1583 TemplateParams, 1584 PrevClassTemplate 1585 ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters() 1586 : nullptr, 1587 (SS.isSet() && SemanticContext && SemanticContext->isRecord() && 1588 SemanticContext->isDependentContext()) 1589 ? TPC_ClassTemplateMember 1590 : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate, 1591 SkipBody)) 1592 Invalid = true; 1593 1594 if (SS.isSet()) { 1595 // If the name of the template was qualified, we must be defining the 1596 // template out-of-line. 1597 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 1598 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 1599 : diag::err_member_decl_does_not_match) 1600 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange(); 1601 Invalid = true; 1602 } 1603 } 1604 1605 // If this is a templated friend in a dependent context we should not put it 1606 // on the redecl chain. In some cases, the templated friend can be the most 1607 // recent declaration tricking the template instantiator to make substitutions 1608 // there. 1609 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious 1610 bool ShouldAddRedecl 1611 = !(TUK == TUK_Friend && CurContext->isDependentContext()); 1612 1613 CXXRecordDecl *NewClass = 1614 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1615 PrevClassTemplate && ShouldAddRedecl ? 1616 PrevClassTemplate->getTemplatedDecl() : nullptr, 1617 /*DelayTypeCreation=*/true); 1618 SetNestedNameSpecifier(*this, NewClass, SS); 1619 if (NumOuterTemplateParamLists > 0) 1620 NewClass->setTemplateParameterListsInfo( 1621 Context, llvm::makeArrayRef(OuterTemplateParamLists, 1622 NumOuterTemplateParamLists)); 1623 1624 // Add alignment attributes if necessary; these attributes are checked when 1625 // the ASTContext lays out the structure. 1626 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 1627 AddAlignmentAttributesForRecord(NewClass); 1628 AddMsStructLayoutForRecord(NewClass); 1629 } 1630 1631 ClassTemplateDecl *NewTemplate 1632 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1633 DeclarationName(Name), TemplateParams, 1634 NewClass); 1635 1636 if (ShouldAddRedecl) 1637 NewTemplate->setPreviousDecl(PrevClassTemplate); 1638 1639 NewClass->setDescribedClassTemplate(NewTemplate); 1640 1641 if (ModulePrivateLoc.isValid()) 1642 NewTemplate->setModulePrivate(); 1643 1644 // Build the type for the class template declaration now. 1645 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1646 T = Context.getInjectedClassNameType(NewClass, T); 1647 assert(T->isDependentType() && "Class template type is not dependent?"); 1648 (void)T; 1649 1650 // If we are providing an explicit specialization of a member that is a 1651 // class template, make a note of that. 1652 if (PrevClassTemplate && 1653 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1654 PrevClassTemplate->setMemberSpecialization(); 1655 1656 // Set the access specifier. 1657 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 1658 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1659 1660 // Set the lexical context of these templates 1661 NewClass->setLexicalDeclContext(CurContext); 1662 NewTemplate->setLexicalDeclContext(CurContext); 1663 1664 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 1665 NewClass->startDefinition(); 1666 1667 ProcessDeclAttributeList(S, NewClass, Attr); 1668 1669 if (PrevClassTemplate) 1670 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 1671 1672 AddPushedVisibilityAttribute(NewClass); 1673 inferGslOwnerPointerAttribute(NewClass); 1674 1675 if (TUK != TUK_Friend) { 1676 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. 1677 Scope *Outer = S; 1678 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) 1679 Outer = Outer->getParent(); 1680 PushOnScopeChains(NewTemplate, Outer); 1681 } else { 1682 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1683 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1684 NewClass->setAccess(PrevClassTemplate->getAccess()); 1685 } 1686 1687 NewTemplate->setObjectOfFriendDecl(); 1688 1689 // Friend templates are visible in fairly strange ways. 1690 if (!CurContext->isDependentContext()) { 1691 DeclContext *DC = SemanticContext->getRedeclContext(); 1692 DC->makeDeclVisibleInContext(NewTemplate); 1693 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1694 PushOnScopeChains(NewTemplate, EnclosingScope, 1695 /* AddToContext = */ false); 1696 } 1697 1698 FriendDecl *Friend = FriendDecl::Create( 1699 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc); 1700 Friend->setAccess(AS_public); 1701 CurContext->addDecl(Friend); 1702 } 1703 1704 if (PrevClassTemplate) 1705 CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate); 1706 1707 if (Invalid) { 1708 NewTemplate->setInvalidDecl(); 1709 NewClass->setInvalidDecl(); 1710 } 1711 1712 ActOnDocumentableDecl(NewTemplate); 1713 1714 if (SkipBody && SkipBody->ShouldSkip) 1715 return SkipBody->Previous; 1716 1717 return NewTemplate; 1718 } 1719 1720 namespace { 1721 /// Tree transform to "extract" a transformed type from a class template's 1722 /// constructor to a deduction guide. 1723 class ExtractTypeForDeductionGuide 1724 : public TreeTransform<ExtractTypeForDeductionGuide> { 1725 public: 1726 typedef TreeTransform<ExtractTypeForDeductionGuide> Base; 1727 ExtractTypeForDeductionGuide(Sema &SemaRef) : Base(SemaRef) {} 1728 1729 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); } 1730 1731 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) { 1732 return TransformType( 1733 TLB, 1734 TL.getTypedefNameDecl()->getTypeSourceInfo()->getTypeLoc()); 1735 } 1736 }; 1737 1738 /// Transform to convert portions of a constructor declaration into the 1739 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1. 1740 struct ConvertConstructorToDeductionGuideTransform { 1741 ConvertConstructorToDeductionGuideTransform(Sema &S, 1742 ClassTemplateDecl *Template) 1743 : SemaRef(S), Template(Template) {} 1744 1745 Sema &SemaRef; 1746 ClassTemplateDecl *Template; 1747 1748 DeclContext *DC = Template->getDeclContext(); 1749 CXXRecordDecl *Primary = Template->getTemplatedDecl(); 1750 DeclarationName DeductionGuideName = 1751 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template); 1752 1753 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary); 1754 1755 // Index adjustment to apply to convert depth-1 template parameters into 1756 // depth-0 template parameters. 1757 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size(); 1758 1759 /// Transform a constructor declaration into a deduction guide. 1760 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD, 1761 CXXConstructorDecl *CD) { 1762 SmallVector<TemplateArgument, 16> SubstArgs; 1763 1764 LocalInstantiationScope Scope(SemaRef); 1765 1766 // C++ [over.match.class.deduct]p1: 1767 // -- For each constructor of the class template designated by the 1768 // template-name, a function template with the following properties: 1769 1770 // -- The template parameters are the template parameters of the class 1771 // template followed by the template parameters (including default 1772 // template arguments) of the constructor, if any. 1773 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 1774 if (FTD) { 1775 TemplateParameterList *InnerParams = FTD->getTemplateParameters(); 1776 SmallVector<NamedDecl *, 16> AllParams; 1777 AllParams.reserve(TemplateParams->size() + InnerParams->size()); 1778 AllParams.insert(AllParams.begin(), 1779 TemplateParams->begin(), TemplateParams->end()); 1780 SubstArgs.reserve(InnerParams->size()); 1781 1782 // Later template parameters could refer to earlier ones, so build up 1783 // a list of substituted template arguments as we go. 1784 for (NamedDecl *Param : *InnerParams) { 1785 MultiLevelTemplateArgumentList Args; 1786 Args.addOuterTemplateArguments(SubstArgs); 1787 Args.addOuterRetainedLevel(); 1788 NamedDecl *NewParam = transformTemplateParameter(Param, Args); 1789 if (!NewParam) 1790 return nullptr; 1791 AllParams.push_back(NewParam); 1792 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument( 1793 SemaRef.Context.getInjectedTemplateArg(NewParam))); 1794 } 1795 TemplateParams = TemplateParameterList::Create( 1796 SemaRef.Context, InnerParams->getTemplateLoc(), 1797 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(), 1798 /*FIXME: RequiresClause*/ nullptr); 1799 } 1800 1801 // If we built a new template-parameter-list, track that we need to 1802 // substitute references to the old parameters into references to the 1803 // new ones. 1804 MultiLevelTemplateArgumentList Args; 1805 if (FTD) { 1806 Args.addOuterTemplateArguments(SubstArgs); 1807 Args.addOuterRetainedLevel(); 1808 } 1809 1810 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc() 1811 .getAsAdjusted<FunctionProtoTypeLoc>(); 1812 assert(FPTL && "no prototype for constructor declaration"); 1813 1814 // Transform the type of the function, adjusting the return type and 1815 // replacing references to the old parameters with references to the 1816 // new ones. 1817 TypeLocBuilder TLB; 1818 SmallVector<ParmVarDecl*, 8> Params; 1819 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args); 1820 if (NewType.isNull()) 1821 return nullptr; 1822 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType); 1823 1824 return buildDeductionGuide(TemplateParams, CD->getExplicitSpecifier(), 1825 NewTInfo, CD->getBeginLoc(), CD->getLocation(), 1826 CD->getEndLoc()); 1827 } 1828 1829 /// Build a deduction guide with the specified parameter types. 1830 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) { 1831 SourceLocation Loc = Template->getLocation(); 1832 1833 // Build the requested type. 1834 FunctionProtoType::ExtProtoInfo EPI; 1835 EPI.HasTrailingReturn = true; 1836 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc, 1837 DeductionGuideName, EPI); 1838 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc); 1839 1840 FunctionProtoTypeLoc FPTL = 1841 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>(); 1842 1843 // Build the parameters, needed during deduction / substitution. 1844 SmallVector<ParmVarDecl*, 4> Params; 1845 for (auto T : ParamTypes) { 1846 ParmVarDecl *NewParam = ParmVarDecl::Create( 1847 SemaRef.Context, DC, Loc, Loc, nullptr, T, 1848 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr); 1849 NewParam->setScopeInfo(0, Params.size()); 1850 FPTL.setParam(Params.size(), NewParam); 1851 Params.push_back(NewParam); 1852 } 1853 1854 return buildDeductionGuide(Template->getTemplateParameters(), 1855 ExplicitSpecifier(), TSI, Loc, Loc, Loc); 1856 } 1857 1858 private: 1859 /// Transform a constructor template parameter into a deduction guide template 1860 /// parameter, rebuilding any internal references to earlier parameters and 1861 /// renumbering as we go. 1862 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam, 1863 MultiLevelTemplateArgumentList &Args) { 1864 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) { 1865 // TemplateTypeParmDecl's index cannot be changed after creation, so 1866 // substitute it directly. 1867 auto *NewTTP = TemplateTypeParmDecl::Create( 1868 SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(), 1869 /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(), 1870 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(), 1871 TTP->isParameterPack()); 1872 if (TTP->hasDefaultArgument()) { 1873 TypeSourceInfo *InstantiatedDefaultArg = 1874 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args, 1875 TTP->getDefaultArgumentLoc(), TTP->getDeclName()); 1876 if (InstantiatedDefaultArg) 1877 NewTTP->setDefaultArgument(InstantiatedDefaultArg); 1878 } 1879 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam, 1880 NewTTP); 1881 return NewTTP; 1882 } 1883 1884 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam)) 1885 return transformTemplateParameterImpl(TTP, Args); 1886 1887 return transformTemplateParameterImpl( 1888 cast<NonTypeTemplateParmDecl>(TemplateParam), Args); 1889 } 1890 template<typename TemplateParmDecl> 1891 TemplateParmDecl * 1892 transformTemplateParameterImpl(TemplateParmDecl *OldParam, 1893 MultiLevelTemplateArgumentList &Args) { 1894 // Ask the template instantiator to do the heavy lifting for us, then adjust 1895 // the index of the parameter once it's done. 1896 auto *NewParam = 1897 cast_or_null<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args)); 1898 assert(NewParam->getDepth() == 0 && "unexpected template param depth"); 1899 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment); 1900 return NewParam; 1901 } 1902 1903 QualType transformFunctionProtoType(TypeLocBuilder &TLB, 1904 FunctionProtoTypeLoc TL, 1905 SmallVectorImpl<ParmVarDecl*> &Params, 1906 MultiLevelTemplateArgumentList &Args) { 1907 SmallVector<QualType, 4> ParamTypes; 1908 const FunctionProtoType *T = TL.getTypePtr(); 1909 1910 // -- The types of the function parameters are those of the constructor. 1911 for (auto *OldParam : TL.getParams()) { 1912 ParmVarDecl *NewParam = transformFunctionTypeParam(OldParam, Args); 1913 if (!NewParam) 1914 return QualType(); 1915 ParamTypes.push_back(NewParam->getType()); 1916 Params.push_back(NewParam); 1917 } 1918 1919 // -- The return type is the class template specialization designated by 1920 // the template-name and template arguments corresponding to the 1921 // template parameters obtained from the class template. 1922 // 1923 // We use the injected-class-name type of the primary template instead. 1924 // This has the convenient property that it is different from any type that 1925 // the user can write in a deduction-guide (because they cannot enter the 1926 // context of the template), so implicit deduction guides can never collide 1927 // with explicit ones. 1928 QualType ReturnType = DeducedType; 1929 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation()); 1930 1931 // Resolving a wording defect, we also inherit the variadicness of the 1932 // constructor. 1933 FunctionProtoType::ExtProtoInfo EPI; 1934 EPI.Variadic = T->isVariadic(); 1935 EPI.HasTrailingReturn = true; 1936 1937 QualType Result = SemaRef.BuildFunctionType( 1938 ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI); 1939 if (Result.isNull()) 1940 return QualType(); 1941 1942 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result); 1943 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); 1944 NewTL.setLParenLoc(TL.getLParenLoc()); 1945 NewTL.setRParenLoc(TL.getRParenLoc()); 1946 NewTL.setExceptionSpecRange(SourceRange()); 1947 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); 1948 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I) 1949 NewTL.setParam(I, Params[I]); 1950 1951 return Result; 1952 } 1953 1954 ParmVarDecl * 1955 transformFunctionTypeParam(ParmVarDecl *OldParam, 1956 MultiLevelTemplateArgumentList &Args) { 1957 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo(); 1958 TypeSourceInfo *NewDI; 1959 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) { 1960 // Expand out the one and only element in each inner pack. 1961 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0); 1962 NewDI = 1963 SemaRef.SubstType(PackTL.getPatternLoc(), Args, 1964 OldParam->getLocation(), OldParam->getDeclName()); 1965 if (!NewDI) return nullptr; 1966 NewDI = 1967 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(), 1968 PackTL.getTypePtr()->getNumExpansions()); 1969 } else 1970 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(), 1971 OldParam->getDeclName()); 1972 if (!NewDI) 1973 return nullptr; 1974 1975 // Extract the type. This (for instance) replaces references to typedef 1976 // members of the current instantiations with the definitions of those 1977 // typedefs, avoiding triggering instantiation of the deduced type during 1978 // deduction. 1979 NewDI = ExtractTypeForDeductionGuide(SemaRef).transform(NewDI); 1980 1981 // Resolving a wording defect, we also inherit default arguments from the 1982 // constructor. 1983 ExprResult NewDefArg; 1984 if (OldParam->hasDefaultArg()) { 1985 NewDefArg = SemaRef.SubstExpr(OldParam->getDefaultArg(), Args); 1986 if (NewDefArg.isInvalid()) 1987 return nullptr; 1988 } 1989 1990 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC, 1991 OldParam->getInnerLocStart(), 1992 OldParam->getLocation(), 1993 OldParam->getIdentifier(), 1994 NewDI->getType(), 1995 NewDI, 1996 OldParam->getStorageClass(), 1997 NewDefArg.get()); 1998 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(), 1999 OldParam->getFunctionScopeIndex()); 2000 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam); 2001 return NewParam; 2002 } 2003 2004 NamedDecl *buildDeductionGuide(TemplateParameterList *TemplateParams, 2005 ExplicitSpecifier ES, TypeSourceInfo *TInfo, 2006 SourceLocation LocStart, SourceLocation Loc, 2007 SourceLocation LocEnd) { 2008 DeclarationNameInfo Name(DeductionGuideName, Loc); 2009 ArrayRef<ParmVarDecl *> Params = 2010 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(); 2011 2012 // Build the implicit deduction guide template. 2013 auto *Guide = 2014 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name, 2015 TInfo->getType(), TInfo, LocEnd); 2016 Guide->setImplicit(); 2017 Guide->setParams(Params); 2018 2019 for (auto *Param : Params) 2020 Param->setDeclContext(Guide); 2021 2022 auto *GuideTemplate = FunctionTemplateDecl::Create( 2023 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide); 2024 GuideTemplate->setImplicit(); 2025 Guide->setDescribedFunctionTemplate(GuideTemplate); 2026 2027 if (isa<CXXRecordDecl>(DC)) { 2028 Guide->setAccess(AS_public); 2029 GuideTemplate->setAccess(AS_public); 2030 } 2031 2032 DC->addDecl(GuideTemplate); 2033 return GuideTemplate; 2034 } 2035 }; 2036 } 2037 2038 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template, 2039 SourceLocation Loc) { 2040 if (CXXRecordDecl *DefRecord = 2041 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) { 2042 TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate(); 2043 Template = DescribedTemplate ? DescribedTemplate : Template; 2044 } 2045 2046 DeclContext *DC = Template->getDeclContext(); 2047 if (DC->isDependentContext()) 2048 return; 2049 2050 ConvertConstructorToDeductionGuideTransform Transform( 2051 *this, cast<ClassTemplateDecl>(Template)); 2052 if (!isCompleteType(Loc, Transform.DeducedType)) 2053 return; 2054 2055 // Check whether we've already declared deduction guides for this template. 2056 // FIXME: Consider storing a flag on the template to indicate this. 2057 auto Existing = DC->lookup(Transform.DeductionGuideName); 2058 for (auto *D : Existing) 2059 if (D->isImplicit()) 2060 return; 2061 2062 // In case we were expanding a pack when we attempted to declare deduction 2063 // guides, turn off pack expansion for everything we're about to do. 2064 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1); 2065 // Create a template instantiation record to track the "instantiation" of 2066 // constructors into deduction guides. 2067 // FIXME: Add a kind for this to give more meaningful diagnostics. But can 2068 // this substitution process actually fail? 2069 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template); 2070 if (BuildingDeductionGuides.isInvalid()) 2071 return; 2072 2073 // Convert declared constructors into deduction guide templates. 2074 // FIXME: Skip constructors for which deduction must necessarily fail (those 2075 // for which some class template parameter without a default argument never 2076 // appears in a deduced context). 2077 bool AddedAny = false; 2078 for (NamedDecl *D : LookupConstructors(Transform.Primary)) { 2079 D = D->getUnderlyingDecl(); 2080 if (D->isInvalidDecl() || D->isImplicit()) 2081 continue; 2082 D = cast<NamedDecl>(D->getCanonicalDecl()); 2083 2084 auto *FTD = dyn_cast<FunctionTemplateDecl>(D); 2085 auto *CD = 2086 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D); 2087 // Class-scope explicit specializations (MS extension) do not result in 2088 // deduction guides. 2089 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization())) 2090 continue; 2091 2092 Transform.transformConstructor(FTD, CD); 2093 AddedAny = true; 2094 } 2095 2096 // C++17 [over.match.class.deduct] 2097 // -- If C is not defined or does not declare any constructors, an 2098 // additional function template derived as above from a hypothetical 2099 // constructor C(). 2100 if (!AddedAny) 2101 Transform.buildSimpleDeductionGuide(None); 2102 2103 // -- An additional function template derived as above from a hypothetical 2104 // constructor C(C), called the copy deduction candidate. 2105 cast<CXXDeductionGuideDecl>( 2106 cast<FunctionTemplateDecl>( 2107 Transform.buildSimpleDeductionGuide(Transform.DeducedType)) 2108 ->getTemplatedDecl()) 2109 ->setIsCopyDeductionCandidate(); 2110 } 2111 2112 /// Diagnose the presence of a default template argument on a 2113 /// template parameter, which is ill-formed in certain contexts. 2114 /// 2115 /// \returns true if the default template argument should be dropped. 2116 static bool DiagnoseDefaultTemplateArgument(Sema &S, 2117 Sema::TemplateParamListContext TPC, 2118 SourceLocation ParamLoc, 2119 SourceRange DefArgRange) { 2120 switch (TPC) { 2121 case Sema::TPC_ClassTemplate: 2122 case Sema::TPC_VarTemplate: 2123 case Sema::TPC_TypeAliasTemplate: 2124 return false; 2125 2126 case Sema::TPC_FunctionTemplate: 2127 case Sema::TPC_FriendFunctionTemplateDefinition: 2128 // C++ [temp.param]p9: 2129 // A default template-argument shall not be specified in a 2130 // function template declaration or a function template 2131 // definition [...] 2132 // If a friend function template declaration specifies a default 2133 // template-argument, that declaration shall be a definition and shall be 2134 // the only declaration of the function template in the translation unit. 2135 // (C++98/03 doesn't have this wording; see DR226). 2136 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 2137 diag::warn_cxx98_compat_template_parameter_default_in_function_template 2138 : diag::ext_template_parameter_default_in_function_template) 2139 << DefArgRange; 2140 return false; 2141 2142 case Sema::TPC_ClassTemplateMember: 2143 // C++0x [temp.param]p9: 2144 // A default template-argument shall not be specified in the 2145 // template-parameter-lists of the definition of a member of a 2146 // class template that appears outside of the member's class. 2147 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 2148 << DefArgRange; 2149 return true; 2150 2151 case Sema::TPC_FriendClassTemplate: 2152 case Sema::TPC_FriendFunctionTemplate: 2153 // C++ [temp.param]p9: 2154 // A default template-argument shall not be specified in a 2155 // friend template declaration. 2156 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 2157 << DefArgRange; 2158 return true; 2159 2160 // FIXME: C++0x [temp.param]p9 allows default template-arguments 2161 // for friend function templates if there is only a single 2162 // declaration (and it is a definition). Strange! 2163 } 2164 2165 llvm_unreachable("Invalid TemplateParamListContext!"); 2166 } 2167 2168 /// Check for unexpanded parameter packs within the template parameters 2169 /// of a template template parameter, recursively. 2170 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 2171 TemplateTemplateParmDecl *TTP) { 2172 // A template template parameter which is a parameter pack is also a pack 2173 // expansion. 2174 if (TTP->isParameterPack()) 2175 return false; 2176 2177 TemplateParameterList *Params = TTP->getTemplateParameters(); 2178 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 2179 NamedDecl *P = Params->getParam(I); 2180 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 2181 if (!NTTP->isParameterPack() && 2182 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 2183 NTTP->getTypeSourceInfo(), 2184 Sema::UPPC_NonTypeTemplateParameterType)) 2185 return true; 2186 2187 continue; 2188 } 2189 2190 if (TemplateTemplateParmDecl *InnerTTP 2191 = dyn_cast<TemplateTemplateParmDecl>(P)) 2192 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 2193 return true; 2194 } 2195 2196 return false; 2197 } 2198 2199 /// Checks the validity of a template parameter list, possibly 2200 /// considering the template parameter list from a previous 2201 /// declaration. 2202 /// 2203 /// If an "old" template parameter list is provided, it must be 2204 /// equivalent (per TemplateParameterListsAreEqual) to the "new" 2205 /// template parameter list. 2206 /// 2207 /// \param NewParams Template parameter list for a new template 2208 /// declaration. This template parameter list will be updated with any 2209 /// default arguments that are carried through from the previous 2210 /// template parameter list. 2211 /// 2212 /// \param OldParams If provided, template parameter list from a 2213 /// previous declaration of the same template. Default template 2214 /// arguments will be merged from the old template parameter list to 2215 /// the new template parameter list. 2216 /// 2217 /// \param TPC Describes the context in which we are checking the given 2218 /// template parameter list. 2219 /// 2220 /// \param SkipBody If we might have already made a prior merged definition 2221 /// of this template visible, the corresponding body-skipping information. 2222 /// Default argument redefinition is not an error when skipping such a body, 2223 /// because (under the ODR) we can assume the default arguments are the same 2224 /// as the prior merged definition. 2225 /// 2226 /// \returns true if an error occurred, false otherwise. 2227 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 2228 TemplateParameterList *OldParams, 2229 TemplateParamListContext TPC, 2230 SkipBodyInfo *SkipBody) { 2231 bool Invalid = false; 2232 2233 // C++ [temp.param]p10: 2234 // The set of default template-arguments available for use with a 2235 // template declaration or definition is obtained by merging the 2236 // default arguments from the definition (if in scope) and all 2237 // declarations in scope in the same way default function 2238 // arguments are (8.3.6). 2239 bool SawDefaultArgument = false; 2240 SourceLocation PreviousDefaultArgLoc; 2241 2242 // Dummy initialization to avoid warnings. 2243 TemplateParameterList::iterator OldParam = NewParams->end(); 2244 if (OldParams) 2245 OldParam = OldParams->begin(); 2246 2247 bool RemoveDefaultArguments = false; 2248 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2249 NewParamEnd = NewParams->end(); 2250 NewParam != NewParamEnd; ++NewParam) { 2251 // Variables used to diagnose redundant default arguments 2252 bool RedundantDefaultArg = false; 2253 SourceLocation OldDefaultLoc; 2254 SourceLocation NewDefaultLoc; 2255 2256 // Variable used to diagnose missing default arguments 2257 bool MissingDefaultArg = false; 2258 2259 // Variable used to diagnose non-final parameter packs 2260 bool SawParameterPack = false; 2261 2262 if (TemplateTypeParmDecl *NewTypeParm 2263 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 2264 // Check the presence of a default argument here. 2265 if (NewTypeParm->hasDefaultArgument() && 2266 DiagnoseDefaultTemplateArgument(*this, TPC, 2267 NewTypeParm->getLocation(), 2268 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 2269 .getSourceRange())) 2270 NewTypeParm->removeDefaultArgument(); 2271 2272 // Merge default arguments for template type parameters. 2273 TemplateTypeParmDecl *OldTypeParm 2274 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr; 2275 if (NewTypeParm->isParameterPack()) { 2276 assert(!NewTypeParm->hasDefaultArgument() && 2277 "Parameter packs can't have a default argument!"); 2278 SawParameterPack = true; 2279 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && 2280 NewTypeParm->hasDefaultArgument() && 2281 (!SkipBody || !SkipBody->ShouldSkip)) { 2282 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 2283 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 2284 SawDefaultArgument = true; 2285 RedundantDefaultArg = true; 2286 PreviousDefaultArgLoc = NewDefaultLoc; 2287 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 2288 // Merge the default argument from the old declaration to the 2289 // new declaration. 2290 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm); 2291 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 2292 } else if (NewTypeParm->hasDefaultArgument()) { 2293 SawDefaultArgument = true; 2294 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 2295 } else if (SawDefaultArgument) 2296 MissingDefaultArg = true; 2297 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 2298 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 2299 // Check for unexpanded parameter packs. 2300 if (!NewNonTypeParm->isParameterPack() && 2301 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 2302 NewNonTypeParm->getTypeSourceInfo(), 2303 UPPC_NonTypeTemplateParameterType)) { 2304 Invalid = true; 2305 continue; 2306 } 2307 2308 // Check the presence of a default argument here. 2309 if (NewNonTypeParm->hasDefaultArgument() && 2310 DiagnoseDefaultTemplateArgument(*this, TPC, 2311 NewNonTypeParm->getLocation(), 2312 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 2313 NewNonTypeParm->removeDefaultArgument(); 2314 } 2315 2316 // Merge default arguments for non-type template parameters 2317 NonTypeTemplateParmDecl *OldNonTypeParm 2318 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr; 2319 if (NewNonTypeParm->isParameterPack()) { 2320 assert(!NewNonTypeParm->hasDefaultArgument() && 2321 "Parameter packs can't have a default argument!"); 2322 if (!NewNonTypeParm->isPackExpansion()) 2323 SawParameterPack = true; 2324 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && 2325 NewNonTypeParm->hasDefaultArgument() && 2326 (!SkipBody || !SkipBody->ShouldSkip)) { 2327 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2328 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2329 SawDefaultArgument = true; 2330 RedundantDefaultArg = true; 2331 PreviousDefaultArgLoc = NewDefaultLoc; 2332 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 2333 // Merge the default argument from the old declaration to the 2334 // new declaration. 2335 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm); 2336 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2337 } else if (NewNonTypeParm->hasDefaultArgument()) { 2338 SawDefaultArgument = true; 2339 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2340 } else if (SawDefaultArgument) 2341 MissingDefaultArg = true; 2342 } else { 2343 TemplateTemplateParmDecl *NewTemplateParm 2344 = cast<TemplateTemplateParmDecl>(*NewParam); 2345 2346 // Check for unexpanded parameter packs, recursively. 2347 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 2348 Invalid = true; 2349 continue; 2350 } 2351 2352 // Check the presence of a default argument here. 2353 if (NewTemplateParm->hasDefaultArgument() && 2354 DiagnoseDefaultTemplateArgument(*this, TPC, 2355 NewTemplateParm->getLocation(), 2356 NewTemplateParm->getDefaultArgument().getSourceRange())) 2357 NewTemplateParm->removeDefaultArgument(); 2358 2359 // Merge default arguments for template template parameters 2360 TemplateTemplateParmDecl *OldTemplateParm 2361 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr; 2362 if (NewTemplateParm->isParameterPack()) { 2363 assert(!NewTemplateParm->hasDefaultArgument() && 2364 "Parameter packs can't have a default argument!"); 2365 if (!NewTemplateParm->isPackExpansion()) 2366 SawParameterPack = true; 2367 } else if (OldTemplateParm && 2368 hasVisibleDefaultArgument(OldTemplateParm) && 2369 NewTemplateParm->hasDefaultArgument() && 2370 (!SkipBody || !SkipBody->ShouldSkip)) { 2371 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 2372 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 2373 SawDefaultArgument = true; 2374 RedundantDefaultArg = true; 2375 PreviousDefaultArgLoc = NewDefaultLoc; 2376 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 2377 // Merge the default argument from the old declaration to the 2378 // new declaration. 2379 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm); 2380 PreviousDefaultArgLoc 2381 = OldTemplateParm->getDefaultArgument().getLocation(); 2382 } else if (NewTemplateParm->hasDefaultArgument()) { 2383 SawDefaultArgument = true; 2384 PreviousDefaultArgLoc 2385 = NewTemplateParm->getDefaultArgument().getLocation(); 2386 } else if (SawDefaultArgument) 2387 MissingDefaultArg = true; 2388 } 2389 2390 // C++11 [temp.param]p11: 2391 // If a template parameter of a primary class template or alias template 2392 // is a template parameter pack, it shall be the last template parameter. 2393 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 2394 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || 2395 TPC == TPC_TypeAliasTemplate)) { 2396 Diag((*NewParam)->getLocation(), 2397 diag::err_template_param_pack_must_be_last_template_parameter); 2398 Invalid = true; 2399 } 2400 2401 if (RedundantDefaultArg) { 2402 // C++ [temp.param]p12: 2403 // A template-parameter shall not be given default arguments 2404 // by two different declarations in the same scope. 2405 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 2406 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 2407 Invalid = true; 2408 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 2409 // C++ [temp.param]p11: 2410 // If a template-parameter of a class template has a default 2411 // template-argument, each subsequent template-parameter shall either 2412 // have a default template-argument supplied or be a template parameter 2413 // pack. 2414 Diag((*NewParam)->getLocation(), 2415 diag::err_template_param_default_arg_missing); 2416 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 2417 Invalid = true; 2418 RemoveDefaultArguments = true; 2419 } 2420 2421 // If we have an old template parameter list that we're merging 2422 // in, move on to the next parameter. 2423 if (OldParams) 2424 ++OldParam; 2425 } 2426 2427 // We were missing some default arguments at the end of the list, so remove 2428 // all of the default arguments. 2429 if (RemoveDefaultArguments) { 2430 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2431 NewParamEnd = NewParams->end(); 2432 NewParam != NewParamEnd; ++NewParam) { 2433 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 2434 TTP->removeDefaultArgument(); 2435 else if (NonTypeTemplateParmDecl *NTTP 2436 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 2437 NTTP->removeDefaultArgument(); 2438 else 2439 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 2440 } 2441 } 2442 2443 return Invalid; 2444 } 2445 2446 namespace { 2447 2448 /// A class which looks for a use of a certain level of template 2449 /// parameter. 2450 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 2451 typedef RecursiveASTVisitor<DependencyChecker> super; 2452 2453 unsigned Depth; 2454 2455 // Whether we're looking for a use of a template parameter that makes the 2456 // overall construct type-dependent / a dependent type. This is strictly 2457 // best-effort for now; we may fail to match at all for a dependent type 2458 // in some cases if this is set. 2459 bool IgnoreNonTypeDependent; 2460 2461 bool Match; 2462 SourceLocation MatchLoc; 2463 2464 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) 2465 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), 2466 Match(false) {} 2467 2468 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) 2469 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { 2470 NamedDecl *ND = Params->getParam(0); 2471 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 2472 Depth = PD->getDepth(); 2473 } else if (NonTypeTemplateParmDecl *PD = 2474 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 2475 Depth = PD->getDepth(); 2476 } else { 2477 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 2478 } 2479 } 2480 2481 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { 2482 if (ParmDepth >= Depth) { 2483 Match = true; 2484 MatchLoc = Loc; 2485 return true; 2486 } 2487 return false; 2488 } 2489 2490 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) { 2491 // Prune out non-type-dependent expressions if requested. This can 2492 // sometimes result in us failing to find a template parameter reference 2493 // (if a value-dependent expression creates a dependent type), but this 2494 // mode is best-effort only. 2495 if (auto *E = dyn_cast_or_null<Expr>(S)) 2496 if (IgnoreNonTypeDependent && !E->isTypeDependent()) 2497 return true; 2498 return super::TraverseStmt(S, Q); 2499 } 2500 2501 bool TraverseTypeLoc(TypeLoc TL) { 2502 if (IgnoreNonTypeDependent && !TL.isNull() && 2503 !TL.getType()->isDependentType()) 2504 return true; 2505 return super::TraverseTypeLoc(TL); 2506 } 2507 2508 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { 2509 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc()); 2510 } 2511 2512 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 2513 // For a best-effort search, keep looking until we find a location. 2514 return IgnoreNonTypeDependent || !Matches(T->getDepth()); 2515 } 2516 2517 bool TraverseTemplateName(TemplateName N) { 2518 if (TemplateTemplateParmDecl *PD = 2519 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 2520 if (Matches(PD->getDepth())) 2521 return false; 2522 return super::TraverseTemplateName(N); 2523 } 2524 2525 bool VisitDeclRefExpr(DeclRefExpr *E) { 2526 if (NonTypeTemplateParmDecl *PD = 2527 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 2528 if (Matches(PD->getDepth(), E->getExprLoc())) 2529 return false; 2530 return super::VisitDeclRefExpr(E); 2531 } 2532 2533 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { 2534 return TraverseType(T->getReplacementType()); 2535 } 2536 2537 bool 2538 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { 2539 return TraverseTemplateArgument(T->getArgumentPack()); 2540 } 2541 2542 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 2543 return TraverseType(T->getInjectedSpecializationType()); 2544 } 2545 }; 2546 } // end anonymous namespace 2547 2548 /// Determines whether a given type depends on the given parameter 2549 /// list. 2550 static bool 2551 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 2552 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); 2553 Checker.TraverseType(T); 2554 return Checker.Match; 2555 } 2556 2557 // Find the source range corresponding to the named type in the given 2558 // nested-name-specifier, if any. 2559 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 2560 QualType T, 2561 const CXXScopeSpec &SS) { 2562 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 2563 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 2564 if (const Type *CurType = NNS->getAsType()) { 2565 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 2566 return NNSLoc.getTypeLoc().getSourceRange(); 2567 } else 2568 break; 2569 2570 NNSLoc = NNSLoc.getPrefix(); 2571 } 2572 2573 return SourceRange(); 2574 } 2575 2576 /// Match the given template parameter lists to the given scope 2577 /// specifier, returning the template parameter list that applies to the 2578 /// name. 2579 /// 2580 /// \param DeclStartLoc the start of the declaration that has a scope 2581 /// specifier or a template parameter list. 2582 /// 2583 /// \param DeclLoc The location of the declaration itself. 2584 /// 2585 /// \param SS the scope specifier that will be matched to the given template 2586 /// parameter lists. This scope specifier precedes a qualified name that is 2587 /// being declared. 2588 /// 2589 /// \param TemplateId The template-id following the scope specifier, if there 2590 /// is one. Used to check for a missing 'template<>'. 2591 /// 2592 /// \param ParamLists the template parameter lists, from the outermost to the 2593 /// innermost template parameter lists. 2594 /// 2595 /// \param IsFriend Whether to apply the slightly different rules for 2596 /// matching template parameters to scope specifiers in friend 2597 /// declarations. 2598 /// 2599 /// \param IsMemberSpecialization will be set true if the scope specifier 2600 /// denotes a fully-specialized type, and therefore this is a declaration of 2601 /// a member specialization. 2602 /// 2603 /// \returns the template parameter list, if any, that corresponds to the 2604 /// name that is preceded by the scope specifier @p SS. This template 2605 /// parameter list may have template parameters (if we're declaring a 2606 /// template) or may have no template parameters (if we're declaring a 2607 /// template specialization), or may be NULL (if what we're declaring isn't 2608 /// itself a template). 2609 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( 2610 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, 2611 TemplateIdAnnotation *TemplateId, 2612 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, 2613 bool &IsMemberSpecialization, bool &Invalid) { 2614 IsMemberSpecialization = false; 2615 Invalid = false; 2616 2617 // The sequence of nested types to which we will match up the template 2618 // parameter lists. We first build this list by starting with the type named 2619 // by the nested-name-specifier and walking out until we run out of types. 2620 SmallVector<QualType, 4> NestedTypes; 2621 QualType T; 2622 if (SS.getScopeRep()) { 2623 if (CXXRecordDecl *Record 2624 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 2625 T = Context.getTypeDeclType(Record); 2626 else 2627 T = QualType(SS.getScopeRep()->getAsType(), 0); 2628 } 2629 2630 // If we found an explicit specialization that prevents us from needing 2631 // 'template<>' headers, this will be set to the location of that 2632 // explicit specialization. 2633 SourceLocation ExplicitSpecLoc; 2634 2635 while (!T.isNull()) { 2636 NestedTypes.push_back(T); 2637 2638 // Retrieve the parent of a record type. 2639 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 2640 // If this type is an explicit specialization, we're done. 2641 if (ClassTemplateSpecializationDecl *Spec 2642 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 2643 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 2644 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 2645 ExplicitSpecLoc = Spec->getLocation(); 2646 break; 2647 } 2648 } else if (Record->getTemplateSpecializationKind() 2649 == TSK_ExplicitSpecialization) { 2650 ExplicitSpecLoc = Record->getLocation(); 2651 break; 2652 } 2653 2654 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 2655 T = Context.getTypeDeclType(Parent); 2656 else 2657 T = QualType(); 2658 continue; 2659 } 2660 2661 if (const TemplateSpecializationType *TST 2662 = T->getAs<TemplateSpecializationType>()) { 2663 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 2664 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 2665 T = Context.getTypeDeclType(Parent); 2666 else 2667 T = QualType(); 2668 continue; 2669 } 2670 } 2671 2672 // Look one step prior in a dependent template specialization type. 2673 if (const DependentTemplateSpecializationType *DependentTST 2674 = T->getAs<DependentTemplateSpecializationType>()) { 2675 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 2676 T = QualType(NNS->getAsType(), 0); 2677 else 2678 T = QualType(); 2679 continue; 2680 } 2681 2682 // Look one step prior in a dependent name type. 2683 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 2684 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 2685 T = QualType(NNS->getAsType(), 0); 2686 else 2687 T = QualType(); 2688 continue; 2689 } 2690 2691 // Retrieve the parent of an enumeration type. 2692 if (const EnumType *EnumT = T->getAs<EnumType>()) { 2693 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 2694 // check here. 2695 EnumDecl *Enum = EnumT->getDecl(); 2696 2697 // Get to the parent type. 2698 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 2699 T = Context.getTypeDeclType(Parent); 2700 else 2701 T = QualType(); 2702 continue; 2703 } 2704 2705 T = QualType(); 2706 } 2707 // Reverse the nested types list, since we want to traverse from the outermost 2708 // to the innermost while checking template-parameter-lists. 2709 std::reverse(NestedTypes.begin(), NestedTypes.end()); 2710 2711 // C++0x [temp.expl.spec]p17: 2712 // A member or a member template may be nested within many 2713 // enclosing class templates. In an explicit specialization for 2714 // such a member, the member declaration shall be preceded by a 2715 // template<> for each enclosing class template that is 2716 // explicitly specialized. 2717 bool SawNonEmptyTemplateParameterList = false; 2718 2719 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { 2720 if (SawNonEmptyTemplateParameterList) { 2721 Diag(DeclLoc, diag::err_specialize_member_of_template) 2722 << !Recovery << Range; 2723 Invalid = true; 2724 IsMemberSpecialization = false; 2725 return true; 2726 } 2727 2728 return false; 2729 }; 2730 2731 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { 2732 // Check that we can have an explicit specialization here. 2733 if (CheckExplicitSpecialization(Range, true)) 2734 return true; 2735 2736 // We don't have a template header, but we should. 2737 SourceLocation ExpectedTemplateLoc; 2738 if (!ParamLists.empty()) 2739 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 2740 else 2741 ExpectedTemplateLoc = DeclStartLoc; 2742 2743 Diag(DeclLoc, diag::err_template_spec_needs_header) 2744 << Range 2745 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 2746 return false; 2747 }; 2748 2749 unsigned ParamIdx = 0; 2750 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 2751 ++TypeIdx) { 2752 T = NestedTypes[TypeIdx]; 2753 2754 // Whether we expect a 'template<>' header. 2755 bool NeedEmptyTemplateHeader = false; 2756 2757 // Whether we expect a template header with parameters. 2758 bool NeedNonemptyTemplateHeader = false; 2759 2760 // For a dependent type, the set of template parameters that we 2761 // expect to see. 2762 TemplateParameterList *ExpectedTemplateParams = nullptr; 2763 2764 // C++0x [temp.expl.spec]p15: 2765 // A member or a member template may be nested within many enclosing 2766 // class templates. In an explicit specialization for such a member, the 2767 // member declaration shall be preceded by a template<> for each 2768 // enclosing class template that is explicitly specialized. 2769 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 2770 if (ClassTemplatePartialSpecializationDecl *Partial 2771 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 2772 ExpectedTemplateParams = Partial->getTemplateParameters(); 2773 NeedNonemptyTemplateHeader = true; 2774 } else if (Record->isDependentType()) { 2775 if (Record->getDescribedClassTemplate()) { 2776 ExpectedTemplateParams = Record->getDescribedClassTemplate() 2777 ->getTemplateParameters(); 2778 NeedNonemptyTemplateHeader = true; 2779 } 2780 } else if (ClassTemplateSpecializationDecl *Spec 2781 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 2782 // C++0x [temp.expl.spec]p4: 2783 // Members of an explicitly specialized class template are defined 2784 // in the same manner as members of normal classes, and not using 2785 // the template<> syntax. 2786 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 2787 NeedEmptyTemplateHeader = true; 2788 else 2789 continue; 2790 } else if (Record->getTemplateSpecializationKind()) { 2791 if (Record->getTemplateSpecializationKind() 2792 != TSK_ExplicitSpecialization && 2793 TypeIdx == NumTypes - 1) 2794 IsMemberSpecialization = true; 2795 2796 continue; 2797 } 2798 } else if (const TemplateSpecializationType *TST 2799 = T->getAs<TemplateSpecializationType>()) { 2800 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 2801 ExpectedTemplateParams = Template->getTemplateParameters(); 2802 NeedNonemptyTemplateHeader = true; 2803 } 2804 } else if (T->getAs<DependentTemplateSpecializationType>()) { 2805 // FIXME: We actually could/should check the template arguments here 2806 // against the corresponding template parameter list. 2807 NeedNonemptyTemplateHeader = false; 2808 } 2809 2810 // C++ [temp.expl.spec]p16: 2811 // In an explicit specialization declaration for a member of a class 2812 // template or a member template that ap- pears in namespace scope, the 2813 // member template and some of its enclosing class templates may remain 2814 // unspecialized, except that the declaration shall not explicitly 2815 // specialize a class member template if its en- closing class templates 2816 // are not explicitly specialized as well. 2817 if (ParamIdx < ParamLists.size()) { 2818 if (ParamLists[ParamIdx]->size() == 0) { 2819 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 2820 false)) 2821 return nullptr; 2822 } else 2823 SawNonEmptyTemplateParameterList = true; 2824 } 2825 2826 if (NeedEmptyTemplateHeader) { 2827 // If we're on the last of the types, and we need a 'template<>' header 2828 // here, then it's a member specialization. 2829 if (TypeIdx == NumTypes - 1) 2830 IsMemberSpecialization = true; 2831 2832 if (ParamIdx < ParamLists.size()) { 2833 if (ParamLists[ParamIdx]->size() > 0) { 2834 // The header has template parameters when it shouldn't. Complain. 2835 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 2836 diag::err_template_param_list_matches_nontemplate) 2837 << T 2838 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 2839 ParamLists[ParamIdx]->getRAngleLoc()) 2840 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 2841 Invalid = true; 2842 return nullptr; 2843 } 2844 2845 // Consume this template header. 2846 ++ParamIdx; 2847 continue; 2848 } 2849 2850 if (!IsFriend) 2851 if (DiagnoseMissingExplicitSpecialization( 2852 getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) 2853 return nullptr; 2854 2855 continue; 2856 } 2857 2858 if (NeedNonemptyTemplateHeader) { 2859 // In friend declarations we can have template-ids which don't 2860 // depend on the corresponding template parameter lists. But 2861 // assume that empty parameter lists are supposed to match this 2862 // template-id. 2863 if (IsFriend && T->isDependentType()) { 2864 if (ParamIdx < ParamLists.size() && 2865 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 2866 ExpectedTemplateParams = nullptr; 2867 else 2868 continue; 2869 } 2870 2871 if (ParamIdx < ParamLists.size()) { 2872 // Check the template parameter list, if we can. 2873 if (ExpectedTemplateParams && 2874 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 2875 ExpectedTemplateParams, 2876 true, TPL_TemplateMatch)) 2877 Invalid = true; 2878 2879 if (!Invalid && 2880 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr, 2881 TPC_ClassTemplateMember)) 2882 Invalid = true; 2883 2884 ++ParamIdx; 2885 continue; 2886 } 2887 2888 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 2889 << T 2890 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 2891 Invalid = true; 2892 continue; 2893 } 2894 } 2895 2896 // If there were at least as many template-ids as there were template 2897 // parameter lists, then there are no template parameter lists remaining for 2898 // the declaration itself. 2899 if (ParamIdx >= ParamLists.size()) { 2900 if (TemplateId && !IsFriend) { 2901 // We don't have a template header for the declaration itself, but we 2902 // should. 2903 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, 2904 TemplateId->RAngleLoc)); 2905 2906 // Fabricate an empty template parameter list for the invented header. 2907 return TemplateParameterList::Create(Context, SourceLocation(), 2908 SourceLocation(), None, 2909 SourceLocation(), nullptr); 2910 } 2911 2912 return nullptr; 2913 } 2914 2915 // If there were too many template parameter lists, complain about that now. 2916 if (ParamIdx < ParamLists.size() - 1) { 2917 bool HasAnyExplicitSpecHeader = false; 2918 bool AllExplicitSpecHeaders = true; 2919 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { 2920 if (ParamLists[I]->size() == 0) 2921 HasAnyExplicitSpecHeader = true; 2922 else 2923 AllExplicitSpecHeaders = false; 2924 } 2925 2926 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 2927 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers 2928 : diag::err_template_spec_extra_headers) 2929 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 2930 ParamLists[ParamLists.size() - 2]->getRAngleLoc()); 2931 2932 // If there was a specialization somewhere, such that 'template<>' is 2933 // not required, and there were any 'template<>' headers, note where the 2934 // specialization occurred. 2935 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 2936 Diag(ExplicitSpecLoc, 2937 diag::note_explicit_template_spec_does_not_need_header) 2938 << NestedTypes.back(); 2939 2940 // We have a template parameter list with no corresponding scope, which 2941 // means that the resulting template declaration can't be instantiated 2942 // properly (we'll end up with dependent nodes when we shouldn't). 2943 if (!AllExplicitSpecHeaders) 2944 Invalid = true; 2945 } 2946 2947 // C++ [temp.expl.spec]p16: 2948 // In an explicit specialization declaration for a member of a class 2949 // template or a member template that ap- pears in namespace scope, the 2950 // member template and some of its enclosing class templates may remain 2951 // unspecialized, except that the declaration shall not explicitly 2952 // specialize a class member template if its en- closing class templates 2953 // are not explicitly specialized as well. 2954 if (ParamLists.back()->size() == 0 && 2955 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 2956 false)) 2957 return nullptr; 2958 2959 // Return the last template parameter list, which corresponds to the 2960 // entity being declared. 2961 return ParamLists.back(); 2962 } 2963 2964 void Sema::NoteAllFoundTemplates(TemplateName Name) { 2965 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 2966 Diag(Template->getLocation(), diag::note_template_declared_here) 2967 << (isa<FunctionTemplateDecl>(Template) 2968 ? 0 2969 : isa<ClassTemplateDecl>(Template) 2970 ? 1 2971 : isa<VarTemplateDecl>(Template) 2972 ? 2 2973 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) 2974 << Template->getDeclName(); 2975 return; 2976 } 2977 2978 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 2979 for (OverloadedTemplateStorage::iterator I = OST->begin(), 2980 IEnd = OST->end(); 2981 I != IEnd; ++I) 2982 Diag((*I)->getLocation(), diag::note_template_declared_here) 2983 << 0 << (*I)->getDeclName(); 2984 2985 return; 2986 } 2987 } 2988 2989 static QualType 2990 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, 2991 const SmallVectorImpl<TemplateArgument> &Converted, 2992 SourceLocation TemplateLoc, 2993 TemplateArgumentListInfo &TemplateArgs) { 2994 ASTContext &Context = SemaRef.getASTContext(); 2995 switch (BTD->getBuiltinTemplateKind()) { 2996 case BTK__make_integer_seq: { 2997 // Specializations of __make_integer_seq<S, T, N> are treated like 2998 // S<T, 0, ..., N-1>. 2999 3000 // C++14 [inteseq.intseq]p1: 3001 // T shall be an integer type. 3002 if (!Converted[1].getAsType()->isIntegralType(Context)) { 3003 SemaRef.Diag(TemplateArgs[1].getLocation(), 3004 diag::err_integer_sequence_integral_element_type); 3005 return QualType(); 3006 } 3007 3008 // C++14 [inteseq.make]p1: 3009 // If N is negative the program is ill-formed. 3010 TemplateArgument NumArgsArg = Converted[2]; 3011 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); 3012 if (NumArgs < 0) { 3013 SemaRef.Diag(TemplateArgs[2].getLocation(), 3014 diag::err_integer_sequence_negative_length); 3015 return QualType(); 3016 } 3017 3018 QualType ArgTy = NumArgsArg.getIntegralType(); 3019 TemplateArgumentListInfo SyntheticTemplateArgs; 3020 // The type argument gets reused as the first template argument in the 3021 // synthetic template argument list. 3022 SyntheticTemplateArgs.addArgument(TemplateArgs[1]); 3023 // Expand N into 0 ... N-1. 3024 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); 3025 I < NumArgs; ++I) { 3026 TemplateArgument TA(Context, I, ArgTy); 3027 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc( 3028 TA, ArgTy, TemplateArgs[2].getLocation())); 3029 } 3030 // The first template argument will be reused as the template decl that 3031 // our synthetic template arguments will be applied to. 3032 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(), 3033 TemplateLoc, SyntheticTemplateArgs); 3034 } 3035 3036 case BTK__type_pack_element: 3037 // Specializations of 3038 // __type_pack_element<Index, T_1, ..., T_N> 3039 // are treated like T_Index. 3040 assert(Converted.size() == 2 && 3041 "__type_pack_element should be given an index and a parameter pack"); 3042 3043 // If the Index is out of bounds, the program is ill-formed. 3044 TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; 3045 llvm::APSInt Index = IndexArg.getAsIntegral(); 3046 assert(Index >= 0 && "the index used with __type_pack_element should be of " 3047 "type std::size_t, and hence be non-negative"); 3048 if (Index >= Ts.pack_size()) { 3049 SemaRef.Diag(TemplateArgs[0].getLocation(), 3050 diag::err_type_pack_element_out_of_bounds); 3051 return QualType(); 3052 } 3053 3054 // We simply return the type at index `Index`. 3055 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue()); 3056 return Nth->getAsType(); 3057 } 3058 llvm_unreachable("unexpected BuiltinTemplateDecl!"); 3059 } 3060 3061 /// Determine whether this alias template is "enable_if_t". 3062 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { 3063 return AliasTemplate->getName().equals("enable_if_t"); 3064 } 3065 3066 /// Collect all of the separable terms in the given condition, which 3067 /// might be a conjunction. 3068 /// 3069 /// FIXME: The right answer is to convert the logical expression into 3070 /// disjunctive normal form, so we can find the first failed term 3071 /// within each possible clause. 3072 static void collectConjunctionTerms(Expr *Clause, 3073 SmallVectorImpl<Expr *> &Terms) { 3074 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) { 3075 if (BinOp->getOpcode() == BO_LAnd) { 3076 collectConjunctionTerms(BinOp->getLHS(), Terms); 3077 collectConjunctionTerms(BinOp->getRHS(), Terms); 3078 } 3079 3080 return; 3081 } 3082 3083 Terms.push_back(Clause); 3084 } 3085 3086 // The ranges-v3 library uses an odd pattern of a top-level "||" with 3087 // a left-hand side that is value-dependent but never true. Identify 3088 // the idiom and ignore that term. 3089 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { 3090 // Top-level '||'. 3091 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts()); 3092 if (!BinOp) return Cond; 3093 3094 if (BinOp->getOpcode() != BO_LOr) return Cond; 3095 3096 // With an inner '==' that has a literal on the right-hand side. 3097 Expr *LHS = BinOp->getLHS(); 3098 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts()); 3099 if (!InnerBinOp) return Cond; 3100 3101 if (InnerBinOp->getOpcode() != BO_EQ || 3102 !isa<IntegerLiteral>(InnerBinOp->getRHS())) 3103 return Cond; 3104 3105 // If the inner binary operation came from a macro expansion named 3106 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side 3107 // of the '||', which is the real, user-provided condition. 3108 SourceLocation Loc = InnerBinOp->getExprLoc(); 3109 if (!Loc.isMacroID()) return Cond; 3110 3111 StringRef MacroName = PP.getImmediateMacroName(Loc); 3112 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_") 3113 return BinOp->getRHS(); 3114 3115 return Cond; 3116 } 3117 3118 namespace { 3119 3120 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions 3121 // within failing boolean expression, such as substituting template parameters 3122 // for actual types. 3123 class FailedBooleanConditionPrinterHelper : public PrinterHelper { 3124 public: 3125 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P) 3126 : Policy(P) {} 3127 3128 bool handledStmt(Stmt *E, raw_ostream &OS) override { 3129 const auto *DR = dyn_cast<DeclRefExpr>(E); 3130 if (DR && DR->getQualifier()) { 3131 // If this is a qualified name, expand the template arguments in nested 3132 // qualifiers. 3133 DR->getQualifier()->print(OS, Policy, true); 3134 // Then print the decl itself. 3135 const ValueDecl *VD = DR->getDecl(); 3136 OS << VD->getName(); 3137 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 3138 // This is a template variable, print the expanded template arguments. 3139 printTemplateArgumentList(OS, IV->getTemplateArgs().asArray(), Policy); 3140 } 3141 return true; 3142 } 3143 return false; 3144 } 3145 3146 private: 3147 const PrintingPolicy Policy; 3148 }; 3149 3150 } // end anonymous namespace 3151 3152 std::pair<Expr *, std::string> 3153 Sema::findFailedBooleanCondition(Expr *Cond) { 3154 Cond = lookThroughRangesV3Condition(PP, Cond); 3155 3156 // Separate out all of the terms in a conjunction. 3157 SmallVector<Expr *, 4> Terms; 3158 collectConjunctionTerms(Cond, Terms); 3159 3160 // Determine which term failed. 3161 Expr *FailedCond = nullptr; 3162 for (Expr *Term : Terms) { 3163 Expr *TermAsWritten = Term->IgnoreParenImpCasts(); 3164 3165 // Literals are uninteresting. 3166 if (isa<CXXBoolLiteralExpr>(TermAsWritten) || 3167 isa<IntegerLiteral>(TermAsWritten)) 3168 continue; 3169 3170 // The initialization of the parameter from the argument is 3171 // a constant-evaluated context. 3172 EnterExpressionEvaluationContext ConstantEvaluated( 3173 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 3174 3175 bool Succeeded; 3176 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) && 3177 !Succeeded) { 3178 FailedCond = TermAsWritten; 3179 break; 3180 } 3181 } 3182 if (!FailedCond) 3183 FailedCond = Cond->IgnoreParenImpCasts(); 3184 3185 std::string Description; 3186 { 3187 llvm::raw_string_ostream Out(Description); 3188 PrintingPolicy Policy = getPrintingPolicy(); 3189 Policy.PrintCanonicalTypes = true; 3190 FailedBooleanConditionPrinterHelper Helper(Policy); 3191 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr); 3192 } 3193 return { FailedCond, Description }; 3194 } 3195 3196 QualType Sema::CheckTemplateIdType(TemplateName Name, 3197 SourceLocation TemplateLoc, 3198 TemplateArgumentListInfo &TemplateArgs) { 3199 DependentTemplateName *DTN 3200 = Name.getUnderlying().getAsDependentTemplateName(); 3201 if (DTN && DTN->isIdentifier()) 3202 // When building a template-id where the template-name is dependent, 3203 // assume the template is a type template. Either our assumption is 3204 // correct, or the code is ill-formed and will be diagnosed when the 3205 // dependent name is substituted. 3206 return Context.getDependentTemplateSpecializationType(ETK_None, 3207 DTN->getQualifier(), 3208 DTN->getIdentifier(), 3209 TemplateArgs); 3210 3211 TemplateDecl *Template = Name.getAsTemplateDecl(); 3212 if (!Template || isa<FunctionTemplateDecl>(Template) || 3213 isa<VarTemplateDecl>(Template) || 3214 isa<ConceptDecl>(Template)) { 3215 // We might have a substituted template template parameter pack. If so, 3216 // build a template specialization type for it. 3217 if (Name.getAsSubstTemplateTemplateParmPack()) 3218 return Context.getTemplateSpecializationType(Name, TemplateArgs); 3219 3220 Diag(TemplateLoc, diag::err_template_id_not_a_type) 3221 << Name; 3222 NoteAllFoundTemplates(Name); 3223 return QualType(); 3224 } 3225 3226 // Check that the template argument list is well-formed for this 3227 // template. 3228 SmallVector<TemplateArgument, 4> Converted; 3229 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 3230 false, Converted)) 3231 return QualType(); 3232 3233 QualType CanonType; 3234 3235 bool InstantiationDependent = false; 3236 if (TypeAliasTemplateDecl *AliasTemplate = 3237 dyn_cast<TypeAliasTemplateDecl>(Template)) { 3238 // Find the canonical type for this type alias template specialization. 3239 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 3240 if (Pattern->isInvalidDecl()) 3241 return QualType(); 3242 3243 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack, 3244 Converted); 3245 3246 // Only substitute for the innermost template argument list. 3247 MultiLevelTemplateArgumentList TemplateArgLists; 3248 TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs); 3249 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 3250 for (unsigned I = 0; I < Depth; ++I) 3251 TemplateArgLists.addOuterTemplateArguments(None); 3252 3253 LocalInstantiationScope Scope(*this); 3254 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 3255 if (Inst.isInvalid()) 3256 return QualType(); 3257 3258 CanonType = SubstType(Pattern->getUnderlyingType(), 3259 TemplateArgLists, AliasTemplate->getLocation(), 3260 AliasTemplate->getDeclName()); 3261 if (CanonType.isNull()) { 3262 // If this was enable_if and we failed to find the nested type 3263 // within enable_if in a SFINAE context, dig out the specific 3264 // enable_if condition that failed and present that instead. 3265 if (isEnableIfAliasTemplate(AliasTemplate)) { 3266 if (auto DeductionInfo = isSFINAEContext()) { 3267 if (*DeductionInfo && 3268 (*DeductionInfo)->hasSFINAEDiagnostic() && 3269 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == 3270 diag::err_typename_nested_not_found_enable_if && 3271 TemplateArgs[0].getArgument().getKind() 3272 == TemplateArgument::Expression) { 3273 Expr *FailedCond; 3274 std::string FailedDescription; 3275 std::tie(FailedCond, FailedDescription) = 3276 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression()); 3277 3278 // Remove the old SFINAE diagnostic. 3279 PartialDiagnosticAt OldDiag = 3280 {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; 3281 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag); 3282 3283 // Add a new SFINAE diagnostic specifying which condition 3284 // failed. 3285 (*DeductionInfo)->addSFINAEDiagnostic( 3286 OldDiag.first, 3287 PDiag(diag::err_typename_nested_not_found_requirement) 3288 << FailedDescription 3289 << FailedCond->getSourceRange()); 3290 } 3291 } 3292 } 3293 3294 return QualType(); 3295 } 3296 } else if (Name.isDependent() || 3297 TemplateSpecializationType::anyDependentTemplateArguments( 3298 TemplateArgs, InstantiationDependent)) { 3299 // This class template specialization is a dependent 3300 // type. Therefore, its canonical type is another class template 3301 // specialization type that contains all of the converted 3302 // arguments in canonical form. This ensures that, e.g., A<T> and 3303 // A<T, T> have identical types when A is declared as: 3304 // 3305 // template<typename T, typename U = T> struct A; 3306 CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted); 3307 3308 // This might work out to be a current instantiation, in which 3309 // case the canonical type needs to be the InjectedClassNameType. 3310 // 3311 // TODO: in theory this could be a simple hashtable lookup; most 3312 // changes to CurContext don't change the set of current 3313 // instantiations. 3314 if (isa<ClassTemplateDecl>(Template)) { 3315 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 3316 // If we get out to a namespace, we're done. 3317 if (Ctx->isFileContext()) break; 3318 3319 // If this isn't a record, keep looking. 3320 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 3321 if (!Record) continue; 3322 3323 // Look for one of the two cases with InjectedClassNameTypes 3324 // and check whether it's the same template. 3325 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 3326 !Record->getDescribedClassTemplate()) 3327 continue; 3328 3329 // Fetch the injected class name type and check whether its 3330 // injected type is equal to the type we just built. 3331 QualType ICNT = Context.getTypeDeclType(Record); 3332 QualType Injected = cast<InjectedClassNameType>(ICNT) 3333 ->getInjectedSpecializationType(); 3334 3335 if (CanonType != Injected->getCanonicalTypeInternal()) 3336 continue; 3337 3338 // If so, the canonical type of this TST is the injected 3339 // class name type of the record we just found. 3340 assert(ICNT.isCanonical()); 3341 CanonType = ICNT; 3342 break; 3343 } 3344 } 3345 } else if (ClassTemplateDecl *ClassTemplate 3346 = dyn_cast<ClassTemplateDecl>(Template)) { 3347 // Find the class template specialization declaration that 3348 // corresponds to these arguments. 3349 void *InsertPos = nullptr; 3350 ClassTemplateSpecializationDecl *Decl 3351 = ClassTemplate->findSpecialization(Converted, InsertPos); 3352 if (!Decl) { 3353 // This is the first time we have referenced this class template 3354 // specialization. Create the canonical declaration and add it to 3355 // the set of specializations. 3356 Decl = ClassTemplateSpecializationDecl::Create( 3357 Context, ClassTemplate->getTemplatedDecl()->getTagKind(), 3358 ClassTemplate->getDeclContext(), 3359 ClassTemplate->getTemplatedDecl()->getBeginLoc(), 3360 ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr); 3361 ClassTemplate->AddSpecialization(Decl, InsertPos); 3362 if (ClassTemplate->isOutOfLine()) 3363 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 3364 } 3365 3366 if (Decl->getSpecializationKind() == TSK_Undeclared) { 3367 MultiLevelTemplateArgumentList TemplateArgLists; 3368 TemplateArgLists.addOuterTemplateArguments(Converted); 3369 InstantiateAttrsForDecl(TemplateArgLists, ClassTemplate->getTemplatedDecl(), 3370 Decl); 3371 } 3372 3373 // Diagnose uses of this specialization. 3374 (void)DiagnoseUseOfDecl(Decl, TemplateLoc); 3375 3376 CanonType = Context.getTypeDeclType(Decl); 3377 assert(isa<RecordType>(CanonType) && 3378 "type of non-dependent specialization is not a RecordType"); 3379 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) { 3380 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc, 3381 TemplateArgs); 3382 } 3383 3384 // Build the fully-sugared type for this class template 3385 // specialization, which refers back to the class template 3386 // specialization we created or found. 3387 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 3388 } 3389 3390 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName, 3391 TemplateNameKind &TNK, 3392 SourceLocation NameLoc, 3393 IdentifierInfo *&II) { 3394 assert(TNK == TNK_Undeclared_template && "not an undeclared template name"); 3395 3396 TemplateName Name = ParsedName.get(); 3397 auto *ATN = Name.getAsAssumedTemplateName(); 3398 assert(ATN && "not an assumed template name"); 3399 II = ATN->getDeclName().getAsIdentifierInfo(); 3400 3401 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) { 3402 // Resolved to a type template name. 3403 ParsedName = TemplateTy::make(Name); 3404 TNK = TNK_Type_template; 3405 } 3406 } 3407 3408 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, 3409 SourceLocation NameLoc, 3410 bool Diagnose) { 3411 // We assumed this undeclared identifier to be an (ADL-only) function 3412 // template name, but it was used in a context where a type was required. 3413 // Try to typo-correct it now. 3414 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName(); 3415 assert(ATN && "not an assumed template name"); 3416 3417 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName); 3418 struct CandidateCallback : CorrectionCandidateCallback { 3419 bool ValidateCandidate(const TypoCorrection &TC) override { 3420 return TC.getCorrectionDecl() && 3421 getAsTypeTemplateDecl(TC.getCorrectionDecl()); 3422 } 3423 std::unique_ptr<CorrectionCandidateCallback> clone() override { 3424 return std::make_unique<CandidateCallback>(*this); 3425 } 3426 } FilterCCC; 3427 3428 TypoCorrection Corrected = 3429 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr, 3430 FilterCCC, CTK_ErrorRecovery); 3431 if (Corrected && Corrected.getFoundDecl()) { 3432 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) 3433 << ATN->getDeclName()); 3434 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>()); 3435 return false; 3436 } 3437 3438 if (Diagnose) 3439 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName(); 3440 return true; 3441 } 3442 3443 TypeResult Sema::ActOnTemplateIdType( 3444 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 3445 TemplateTy TemplateD, IdentifierInfo *TemplateII, 3446 SourceLocation TemplateIILoc, SourceLocation LAngleLoc, 3447 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc, 3448 bool IsCtorOrDtorName, bool IsClassName) { 3449 if (SS.isInvalid()) 3450 return true; 3451 3452 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { 3453 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); 3454 3455 // C++ [temp.res]p3: 3456 // A qualified-id that refers to a type and in which the 3457 // nested-name-specifier depends on a template-parameter (14.6.2) 3458 // shall be prefixed by the keyword typename to indicate that the 3459 // qualified-id denotes a type, forming an 3460 // elaborated-type-specifier (7.1.5.3). 3461 if (!LookupCtx && isDependentScopeSpecifier(SS)) { 3462 Diag(SS.getBeginLoc(), diag::err_typename_missing_template) 3463 << SS.getScopeRep() << TemplateII->getName(); 3464 // Recover as if 'typename' were specified. 3465 // FIXME: This is not quite correct recovery as we don't transform SS 3466 // into the corresponding dependent form (and we don't diagnose missing 3467 // 'template' keywords within SS as a result). 3468 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc, 3469 TemplateD, TemplateII, TemplateIILoc, LAngleLoc, 3470 TemplateArgsIn, RAngleLoc); 3471 } 3472 3473 // Per C++ [class.qual]p2, if the template-id was an injected-class-name, 3474 // it's not actually allowed to be used as a type in most cases. Because 3475 // we annotate it before we know whether it's valid, we have to check for 3476 // this case here. 3477 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 3478 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 3479 Diag(TemplateIILoc, 3480 TemplateKWLoc.isInvalid() 3481 ? diag::err_out_of_line_qualified_id_type_names_constructor 3482 : diag::ext_out_of_line_qualified_id_type_names_constructor) 3483 << TemplateII << 0 /*injected-class-name used as template name*/ 3484 << 1 /*if any keyword was present, it was 'template'*/; 3485 } 3486 } 3487 3488 TemplateName Template = TemplateD.get(); 3489 if (Template.getAsAssumedTemplateName() && 3490 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc)) 3491 return true; 3492 3493 // Translate the parser's template argument list in our AST format. 3494 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 3495 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3496 3497 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 3498 QualType T 3499 = Context.getDependentTemplateSpecializationType(ETK_None, 3500 DTN->getQualifier(), 3501 DTN->getIdentifier(), 3502 TemplateArgs); 3503 // Build type-source information. 3504 TypeLocBuilder TLB; 3505 DependentTemplateSpecializationTypeLoc SpecTL 3506 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 3507 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 3508 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3509 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3510 SpecTL.setTemplateNameLoc(TemplateIILoc); 3511 SpecTL.setLAngleLoc(LAngleLoc); 3512 SpecTL.setRAngleLoc(RAngleLoc); 3513 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 3514 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 3515 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 3516 } 3517 3518 QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 3519 if (Result.isNull()) 3520 return true; 3521 3522 // Build type-source information. 3523 TypeLocBuilder TLB; 3524 TemplateSpecializationTypeLoc SpecTL 3525 = TLB.push<TemplateSpecializationTypeLoc>(Result); 3526 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3527 SpecTL.setTemplateNameLoc(TemplateIILoc); 3528 SpecTL.setLAngleLoc(LAngleLoc); 3529 SpecTL.setRAngleLoc(RAngleLoc); 3530 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 3531 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 3532 3533 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 3534 // constructor or destructor name (in such a case, the scope specifier 3535 // will be attached to the enclosing Decl or Expr node). 3536 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 3537 // Create an elaborated-type-specifier containing the nested-name-specifier. 3538 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 3539 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 3540 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 3541 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3542 } 3543 3544 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 3545 } 3546 3547 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 3548 TypeSpecifierType TagSpec, 3549 SourceLocation TagLoc, 3550 CXXScopeSpec &SS, 3551 SourceLocation TemplateKWLoc, 3552 TemplateTy TemplateD, 3553 SourceLocation TemplateLoc, 3554 SourceLocation LAngleLoc, 3555 ASTTemplateArgsPtr TemplateArgsIn, 3556 SourceLocation RAngleLoc) { 3557 TemplateName Template = TemplateD.get(); 3558 3559 // Translate the parser's template argument list in our AST format. 3560 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 3561 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3562 3563 // Determine the tag kind 3564 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 3565 ElaboratedTypeKeyword Keyword 3566 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 3567 3568 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 3569 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 3570 DTN->getQualifier(), 3571 DTN->getIdentifier(), 3572 TemplateArgs); 3573 3574 // Build type-source information. 3575 TypeLocBuilder TLB; 3576 DependentTemplateSpecializationTypeLoc SpecTL 3577 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 3578 SpecTL.setElaboratedKeywordLoc(TagLoc); 3579 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3580 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3581 SpecTL.setTemplateNameLoc(TemplateLoc); 3582 SpecTL.setLAngleLoc(LAngleLoc); 3583 SpecTL.setRAngleLoc(RAngleLoc); 3584 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 3585 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 3586 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 3587 } 3588 3589 if (TypeAliasTemplateDecl *TAT = 3590 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 3591 // C++0x [dcl.type.elab]p2: 3592 // If the identifier resolves to a typedef-name or the simple-template-id 3593 // resolves to an alias template specialization, the 3594 // elaborated-type-specifier is ill-formed. 3595 Diag(TemplateLoc, diag::err_tag_reference_non_tag) 3596 << TAT << NTK_TypeAliasTemplate << TagKind; 3597 Diag(TAT->getLocation(), diag::note_declared_at); 3598 } 3599 3600 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 3601 if (Result.isNull()) 3602 return TypeResult(true); 3603 3604 // Check the tag kind 3605 if (const RecordType *RT = Result->getAs<RecordType>()) { 3606 RecordDecl *D = RT->getDecl(); 3607 3608 IdentifierInfo *Id = D->getIdentifier(); 3609 assert(Id && "templated class must have an identifier"); 3610 3611 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 3612 TagLoc, Id)) { 3613 Diag(TagLoc, diag::err_use_with_wrong_tag) 3614 << Result 3615 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 3616 Diag(D->getLocation(), diag::note_previous_use); 3617 } 3618 } 3619 3620 // Provide source-location information for the template specialization. 3621 TypeLocBuilder TLB; 3622 TemplateSpecializationTypeLoc SpecTL 3623 = TLB.push<TemplateSpecializationTypeLoc>(Result); 3624 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3625 SpecTL.setTemplateNameLoc(TemplateLoc); 3626 SpecTL.setLAngleLoc(LAngleLoc); 3627 SpecTL.setRAngleLoc(RAngleLoc); 3628 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 3629 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 3630 3631 // Construct an elaborated type containing the nested-name-specifier (if any) 3632 // and tag keyword. 3633 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 3634 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 3635 ElabTL.setElaboratedKeywordLoc(TagLoc); 3636 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3637 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 3638 } 3639 3640 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, 3641 NamedDecl *PrevDecl, 3642 SourceLocation Loc, 3643 bool IsPartialSpecialization); 3644 3645 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); 3646 3647 static bool isTemplateArgumentTemplateParameter( 3648 const TemplateArgument &Arg, unsigned Depth, unsigned Index) { 3649 switch (Arg.getKind()) { 3650 case TemplateArgument::Null: 3651 case TemplateArgument::NullPtr: 3652 case TemplateArgument::Integral: 3653 case TemplateArgument::Declaration: 3654 case TemplateArgument::Pack: 3655 case TemplateArgument::TemplateExpansion: 3656 return false; 3657 3658 case TemplateArgument::Type: { 3659 QualType Type = Arg.getAsType(); 3660 const TemplateTypeParmType *TPT = 3661 Arg.getAsType()->getAs<TemplateTypeParmType>(); 3662 return TPT && !Type.hasQualifiers() && 3663 TPT->getDepth() == Depth && TPT->getIndex() == Index; 3664 } 3665 3666 case TemplateArgument::Expression: { 3667 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr()); 3668 if (!DRE || !DRE->getDecl()) 3669 return false; 3670 const NonTypeTemplateParmDecl *NTTP = 3671 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 3672 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; 3673 } 3674 3675 case TemplateArgument::Template: 3676 const TemplateTemplateParmDecl *TTP = 3677 dyn_cast_or_null<TemplateTemplateParmDecl>( 3678 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); 3679 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; 3680 } 3681 llvm_unreachable("unexpected kind of template argument"); 3682 } 3683 3684 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, 3685 ArrayRef<TemplateArgument> Args) { 3686 if (Params->size() != Args.size()) 3687 return false; 3688 3689 unsigned Depth = Params->getDepth(); 3690 3691 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 3692 TemplateArgument Arg = Args[I]; 3693 3694 // If the parameter is a pack expansion, the argument must be a pack 3695 // whose only element is a pack expansion. 3696 if (Params->getParam(I)->isParameterPack()) { 3697 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || 3698 !Arg.pack_begin()->isPackExpansion()) 3699 return false; 3700 Arg = Arg.pack_begin()->getPackExpansionPattern(); 3701 } 3702 3703 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I)) 3704 return false; 3705 } 3706 3707 return true; 3708 } 3709 3710 /// Convert the parser's template argument list representation into our form. 3711 static TemplateArgumentListInfo 3712 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { 3713 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, 3714 TemplateId.RAngleLoc); 3715 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), 3716 TemplateId.NumArgs); 3717 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 3718 return TemplateArgs; 3719 } 3720 3721 template<typename PartialSpecDecl> 3722 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { 3723 if (Partial->getDeclContext()->isDependentContext()) 3724 return; 3725 3726 // FIXME: Get the TDK from deduction in order to provide better diagnostics 3727 // for non-substitution-failure issues? 3728 TemplateDeductionInfo Info(Partial->getLocation()); 3729 if (S.isMoreSpecializedThanPrimary(Partial, Info)) 3730 return; 3731 3732 auto *Template = Partial->getSpecializedTemplate(); 3733 S.Diag(Partial->getLocation(), 3734 diag::ext_partial_spec_not_more_specialized_than_primary) 3735 << isa<VarTemplateDecl>(Template); 3736 3737 if (Info.hasSFINAEDiagnostic()) { 3738 PartialDiagnosticAt Diag = {SourceLocation(), 3739 PartialDiagnostic::NullDiagnostic()}; 3740 Info.takeSFINAEDiagnostic(Diag); 3741 SmallString<128> SFINAEArgString; 3742 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString); 3743 S.Diag(Diag.first, 3744 diag::note_partial_spec_not_more_specialized_than_primary) 3745 << SFINAEArgString; 3746 } 3747 3748 S.Diag(Template->getLocation(), diag::note_template_decl_here); 3749 } 3750 3751 static void 3752 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, 3753 const llvm::SmallBitVector &DeducibleParams) { 3754 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3755 if (!DeducibleParams[I]) { 3756 NamedDecl *Param = TemplateParams->getParam(I); 3757 if (Param->getDeclName()) 3758 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 3759 << Param->getDeclName(); 3760 else 3761 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 3762 << "(anonymous)"; 3763 } 3764 } 3765 } 3766 3767 3768 template<typename PartialSpecDecl> 3769 static void checkTemplatePartialSpecialization(Sema &S, 3770 PartialSpecDecl *Partial) { 3771 // C++1z [temp.class.spec]p8: (DR1495) 3772 // - The specialization shall be more specialized than the primary 3773 // template (14.5.5.2). 3774 checkMoreSpecializedThanPrimary(S, Partial); 3775 3776 // C++ [temp.class.spec]p8: (DR1315) 3777 // - Each template-parameter shall appear at least once in the 3778 // template-id outside a non-deduced context. 3779 // C++1z [temp.class.spec.match]p3 (P0127R2) 3780 // If the template arguments of a partial specialization cannot be 3781 // deduced because of the structure of its template-parameter-list 3782 // and the template-id, the program is ill-formed. 3783 auto *TemplateParams = Partial->getTemplateParameters(); 3784 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 3785 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3786 TemplateParams->getDepth(), DeducibleParams); 3787 3788 if (!DeducibleParams.all()) { 3789 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 3790 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) 3791 << isa<VarTemplatePartialSpecializationDecl>(Partial) 3792 << (NumNonDeducible > 1) 3793 << SourceRange(Partial->getLocation(), 3794 Partial->getTemplateArgsAsWritten()->RAngleLoc); 3795 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); 3796 } 3797 } 3798 3799 void Sema::CheckTemplatePartialSpecialization( 3800 ClassTemplatePartialSpecializationDecl *Partial) { 3801 checkTemplatePartialSpecialization(*this, Partial); 3802 } 3803 3804 void Sema::CheckTemplatePartialSpecialization( 3805 VarTemplatePartialSpecializationDecl *Partial) { 3806 checkTemplatePartialSpecialization(*this, Partial); 3807 } 3808 3809 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { 3810 // C++1z [temp.param]p11: 3811 // A template parameter of a deduction guide template that does not have a 3812 // default-argument shall be deducible from the parameter-type-list of the 3813 // deduction guide template. 3814 auto *TemplateParams = TD->getTemplateParameters(); 3815 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 3816 MarkDeducedTemplateParameters(TD, DeducibleParams); 3817 for (unsigned I = 0; I != TemplateParams->size(); ++I) { 3818 // A parameter pack is deducible (to an empty pack). 3819 auto *Param = TemplateParams->getParam(I); 3820 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param)) 3821 DeducibleParams[I] = true; 3822 } 3823 3824 if (!DeducibleParams.all()) { 3825 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 3826 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible) 3827 << (NumNonDeducible > 1); 3828 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams); 3829 } 3830 } 3831 3832 DeclResult Sema::ActOnVarTemplateSpecialization( 3833 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, 3834 TemplateParameterList *TemplateParams, StorageClass SC, 3835 bool IsPartialSpecialization) { 3836 // D must be variable template id. 3837 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && 3838 "Variable template specialization is declared with a template it."); 3839 3840 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 3841 TemplateArgumentListInfo TemplateArgs = 3842 makeTemplateArgumentListInfo(*this, *TemplateId); 3843 SourceLocation TemplateNameLoc = D.getIdentifierLoc(); 3844 SourceLocation LAngleLoc = TemplateId->LAngleLoc; 3845 SourceLocation RAngleLoc = TemplateId->RAngleLoc; 3846 3847 TemplateName Name = TemplateId->Template.get(); 3848 3849 // The template-id must name a variable template. 3850 VarTemplateDecl *VarTemplate = 3851 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl()); 3852 if (!VarTemplate) { 3853 NamedDecl *FnTemplate; 3854 if (auto *OTS = Name.getAsOverloadedTemplate()) 3855 FnTemplate = *OTS->begin(); 3856 else 3857 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); 3858 if (FnTemplate) 3859 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) 3860 << FnTemplate->getDeclName(); 3861 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) 3862 << IsPartialSpecialization; 3863 } 3864 3865 // Check for unexpanded parameter packs in any of the template arguments. 3866 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 3867 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 3868 UPPC_PartialSpecialization)) 3869 return true; 3870 3871 // Check that the template argument list is well-formed for this 3872 // template. 3873 SmallVector<TemplateArgument, 4> Converted; 3874 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, 3875 false, Converted)) 3876 return true; 3877 3878 // Find the variable template (partial) specialization declaration that 3879 // corresponds to these arguments. 3880 if (IsPartialSpecialization) { 3881 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate, 3882 TemplateArgs.size(), Converted)) 3883 return true; 3884 3885 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we 3886 // also do them during instantiation. 3887 bool InstantiationDependent; 3888 if (!Name.isDependent() && 3889 !TemplateSpecializationType::anyDependentTemplateArguments( 3890 TemplateArgs.arguments(), 3891 InstantiationDependent)) { 3892 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 3893 << VarTemplate->getDeclName(); 3894 IsPartialSpecialization = false; 3895 } 3896 3897 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), 3898 Converted)) { 3899 // C++ [temp.class.spec]p9b3: 3900 // 3901 // -- The argument list of the specialization shall not be identical 3902 // to the implicit argument list of the primary template. 3903 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3904 << /*variable template*/ 1 3905 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) 3906 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 3907 // FIXME: Recover from this by treating the declaration as a redeclaration 3908 // of the primary template. 3909 return true; 3910 } 3911 } 3912 3913 void *InsertPos = nullptr; 3914 VarTemplateSpecializationDecl *PrevDecl = nullptr; 3915 3916 if (IsPartialSpecialization) 3917 // FIXME: Template parameter list matters too 3918 PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos); 3919 else 3920 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos); 3921 3922 VarTemplateSpecializationDecl *Specialization = nullptr; 3923 3924 // Check whether we can declare a variable template specialization in 3925 // the current scope. 3926 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, 3927 TemplateNameLoc, 3928 IsPartialSpecialization)) 3929 return true; 3930 3931 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 3932 // Since the only prior variable template specialization with these 3933 // arguments was referenced but not declared, reuse that 3934 // declaration node as our own, updating its source location and 3935 // the list of outer template parameters to reflect our new declaration. 3936 Specialization = PrevDecl; 3937 Specialization->setLocation(TemplateNameLoc); 3938 PrevDecl = nullptr; 3939 } else if (IsPartialSpecialization) { 3940 // Create a new class template partial specialization declaration node. 3941 VarTemplatePartialSpecializationDecl *PrevPartial = 3942 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); 3943 VarTemplatePartialSpecializationDecl *Partial = 3944 VarTemplatePartialSpecializationDecl::Create( 3945 Context, VarTemplate->getDeclContext(), TemplateKWLoc, 3946 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, 3947 Converted, TemplateArgs); 3948 3949 if (!PrevPartial) 3950 VarTemplate->AddPartialSpecialization(Partial, InsertPos); 3951 Specialization = Partial; 3952 3953 // If we are providing an explicit specialization of a member variable 3954 // template specialization, make a note of that. 3955 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3956 PrevPartial->setMemberSpecialization(); 3957 3958 CheckTemplatePartialSpecialization(Partial); 3959 } else { 3960 // Create a new class template specialization declaration node for 3961 // this explicit specialization or friend declaration. 3962 Specialization = VarTemplateSpecializationDecl::Create( 3963 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, 3964 VarTemplate, DI->getType(), DI, SC, Converted); 3965 Specialization->setTemplateArgsInfo(TemplateArgs); 3966 3967 if (!PrevDecl) 3968 VarTemplate->AddSpecialization(Specialization, InsertPos); 3969 } 3970 3971 // C++ [temp.expl.spec]p6: 3972 // If a template, a member template or the member of a class template is 3973 // explicitly specialized then that specialization shall be declared 3974 // before the first use of that specialization that would cause an implicit 3975 // instantiation to take place, in every translation unit in which such a 3976 // use occurs; no diagnostic is required. 3977 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3978 bool Okay = false; 3979 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 3980 // Is there any previous explicit specialization declaration? 3981 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 3982 Okay = true; 3983 break; 3984 } 3985 } 3986 3987 if (!Okay) { 3988 SourceRange Range(TemplateNameLoc, RAngleLoc); 3989 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3990 << Name << Range; 3991 3992 Diag(PrevDecl->getPointOfInstantiation(), 3993 diag::note_instantiation_required_here) 3994 << (PrevDecl->getTemplateSpecializationKind() != 3995 TSK_ImplicitInstantiation); 3996 return true; 3997 } 3998 } 3999 4000 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 4001 Specialization->setLexicalDeclContext(CurContext); 4002 4003 // Add the specialization into its lexical context, so that it can 4004 // be seen when iterating through the list of declarations in that 4005 // context. However, specializations are not found by name lookup. 4006 CurContext->addDecl(Specialization); 4007 4008 // Note that this is an explicit specialization. 4009 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4010 4011 if (PrevDecl) { 4012 // Check that this isn't a redefinition of this specialization, 4013 // merging with previous declarations. 4014 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName, 4015 forRedeclarationInCurContext()); 4016 PrevSpec.addDecl(PrevDecl); 4017 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec)); 4018 } else if (Specialization->isStaticDataMember() && 4019 Specialization->isOutOfLine()) { 4020 Specialization->setAccess(VarTemplate->getAccess()); 4021 } 4022 4023 return Specialization; 4024 } 4025 4026 namespace { 4027 /// A partial specialization whose template arguments have matched 4028 /// a given template-id. 4029 struct PartialSpecMatchResult { 4030 VarTemplatePartialSpecializationDecl *Partial; 4031 TemplateArgumentList *Args; 4032 }; 4033 } // end anonymous namespace 4034 4035 DeclResult 4036 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, 4037 SourceLocation TemplateNameLoc, 4038 const TemplateArgumentListInfo &TemplateArgs) { 4039 assert(Template && "A variable template id without template?"); 4040 4041 // Check that the template argument list is well-formed for this template. 4042 SmallVector<TemplateArgument, 4> Converted; 4043 if (CheckTemplateArgumentList( 4044 Template, TemplateNameLoc, 4045 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, 4046 Converted)) 4047 return true; 4048 4049 // Find the variable template specialization declaration that 4050 // corresponds to these arguments. 4051 void *InsertPos = nullptr; 4052 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization( 4053 Converted, InsertPos)) { 4054 checkSpecializationVisibility(TemplateNameLoc, Spec); 4055 // If we already have a variable template specialization, return it. 4056 return Spec; 4057 } 4058 4059 // This is the first time we have referenced this variable template 4060 // specialization. Create the canonical declaration and add it to 4061 // the set of specializations, based on the closest partial specialization 4062 // that it represents. That is, 4063 VarDecl *InstantiationPattern = Template->getTemplatedDecl(); 4064 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, 4065 Converted); 4066 TemplateArgumentList *InstantiationArgs = &TemplateArgList; 4067 bool AmbiguousPartialSpec = false; 4068 typedef PartialSpecMatchResult MatchResult; 4069 SmallVector<MatchResult, 4> Matched; 4070 SourceLocation PointOfInstantiation = TemplateNameLoc; 4071 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, 4072 /*ForTakingAddress=*/false); 4073 4074 // 1. Attempt to find the closest partial specialization that this 4075 // specializes, if any. 4076 // If any of the template arguments is dependent, then this is probably 4077 // a placeholder for an incomplete declarative context; which must be 4078 // complete by instantiation time. Thus, do not search through the partial 4079 // specializations yet. 4080 // TODO: Unify with InstantiateClassTemplateSpecialization()? 4081 // Perhaps better after unification of DeduceTemplateArguments() and 4082 // getMoreSpecializedPartialSpecialization(). 4083 bool InstantiationDependent = false; 4084 if (!TemplateSpecializationType::anyDependentTemplateArguments( 4085 TemplateArgs, InstantiationDependent)) { 4086 4087 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 4088 Template->getPartialSpecializations(PartialSpecs); 4089 4090 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { 4091 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; 4092 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 4093 4094 if (TemplateDeductionResult Result = 4095 DeduceTemplateArguments(Partial, TemplateArgList, Info)) { 4096 // Store the failed-deduction information for use in diagnostics, later. 4097 // TODO: Actually use the failed-deduction info? 4098 FailedCandidates.addCandidate().set( 4099 DeclAccessPair::make(Template, AS_public), Partial, 4100 MakeDeductionFailureInfo(Context, Result, Info)); 4101 (void)Result; 4102 } else { 4103 Matched.push_back(PartialSpecMatchResult()); 4104 Matched.back().Partial = Partial; 4105 Matched.back().Args = Info.take(); 4106 } 4107 } 4108 4109 if (Matched.size() >= 1) { 4110 SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); 4111 if (Matched.size() == 1) { 4112 // -- If exactly one matching specialization is found, the 4113 // instantiation is generated from that specialization. 4114 // We don't need to do anything for this. 4115 } else { 4116 // -- If more than one matching specialization is found, the 4117 // partial order rules (14.5.4.2) are used to determine 4118 // whether one of the specializations is more specialized 4119 // than the others. If none of the specializations is more 4120 // specialized than all of the other matching 4121 // specializations, then the use of the variable template is 4122 // ambiguous and the program is ill-formed. 4123 for (SmallVector<MatchResult, 4>::iterator P = Best + 1, 4124 PEnd = Matched.end(); 4125 P != PEnd; ++P) { 4126 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, 4127 PointOfInstantiation) == 4128 P->Partial) 4129 Best = P; 4130 } 4131 4132 // Determine if the best partial specialization is more specialized than 4133 // the others. 4134 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 4135 PEnd = Matched.end(); 4136 P != PEnd; ++P) { 4137 if (P != Best && getMoreSpecializedPartialSpecialization( 4138 P->Partial, Best->Partial, 4139 PointOfInstantiation) != Best->Partial) { 4140 AmbiguousPartialSpec = true; 4141 break; 4142 } 4143 } 4144 } 4145 4146 // Instantiate using the best variable template partial specialization. 4147 InstantiationPattern = Best->Partial; 4148 InstantiationArgs = Best->Args; 4149 } else { 4150 // -- If no match is found, the instantiation is generated 4151 // from the primary template. 4152 // InstantiationPattern = Template->getTemplatedDecl(); 4153 } 4154 } 4155 4156 // 2. Create the canonical declaration. 4157 // Note that we do not instantiate a definition until we see an odr-use 4158 // in DoMarkVarDeclReferenced(). 4159 // FIXME: LateAttrs et al.? 4160 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( 4161 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs, 4162 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/); 4163 if (!Decl) 4164 return true; 4165 4166 if (AmbiguousPartialSpec) { 4167 // Partial ordering did not produce a clear winner. Complain. 4168 Decl->setInvalidDecl(); 4169 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) 4170 << Decl; 4171 4172 // Print the matching partial specializations. 4173 for (MatchResult P : Matched) 4174 Diag(P.Partial->getLocation(), diag::note_partial_spec_match) 4175 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(), 4176 *P.Args); 4177 return true; 4178 } 4179 4180 if (VarTemplatePartialSpecializationDecl *D = 4181 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) 4182 Decl->setInstantiationOf(D, InstantiationArgs); 4183 4184 checkSpecializationVisibility(TemplateNameLoc, Decl); 4185 4186 assert(Decl && "No variable template specialization?"); 4187 return Decl; 4188 } 4189 4190 ExprResult 4191 Sema::CheckVarTemplateId(const CXXScopeSpec &SS, 4192 const DeclarationNameInfo &NameInfo, 4193 VarTemplateDecl *Template, SourceLocation TemplateLoc, 4194 const TemplateArgumentListInfo *TemplateArgs) { 4195 4196 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), 4197 *TemplateArgs); 4198 if (Decl.isInvalid()) 4199 return ExprError(); 4200 4201 VarDecl *Var = cast<VarDecl>(Decl.get()); 4202 if (!Var->getTemplateSpecializationKind()) 4203 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, 4204 NameInfo.getLoc()); 4205 4206 // Build an ordinary singleton decl ref. 4207 return BuildDeclarationNameExpr(SS, NameInfo, Var, 4208 /*FoundD=*/nullptr, TemplateArgs); 4209 } 4210 4211 void Sema::diagnoseMissingTemplateArguments(TemplateName Name, 4212 SourceLocation Loc) { 4213 Diag(Loc, diag::err_template_missing_args) 4214 << (int)getTemplateNameKindForDiagnostics(Name) << Name; 4215 if (TemplateDecl *TD = Name.getAsTemplateDecl()) { 4216 Diag(TD->getLocation(), diag::note_template_decl_here) 4217 << TD->getTemplateParameters()->getSourceRange(); 4218 } 4219 } 4220 4221 ExprResult 4222 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS, 4223 SourceLocation TemplateKWLoc, 4224 SourceLocation ConceptNameLoc, 4225 NamedDecl *FoundDecl, 4226 ConceptDecl *NamedConcept, 4227 const TemplateArgumentListInfo *TemplateArgs) { 4228 assert(NamedConcept && "A concept template id without a template?"); 4229 4230 llvm::SmallVector<TemplateArgument, 4> Converted; 4231 if (CheckTemplateArgumentList(NamedConcept, ConceptNameLoc, 4232 const_cast<TemplateArgumentListInfo&>(*TemplateArgs), 4233 /*PartialTemplateArgs=*/false, Converted, 4234 /*UpdateArgsWithConversion=*/false)) 4235 return ExprError(); 4236 4237 Optional<bool> IsSatisfied; 4238 bool AreArgsDependent = false; 4239 for (TemplateArgument &Arg : Converted) { 4240 if (Arg.isDependent()) { 4241 AreArgsDependent = true; 4242 break; 4243 } 4244 } 4245 if (!AreArgsDependent) { 4246 InstantiatingTemplate Inst(*this, ConceptNameLoc, 4247 InstantiatingTemplate::ConstraintsCheck{}, NamedConcept, Converted, 4248 SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameLoc, 4249 TemplateArgs->getRAngleLoc())); 4250 MultiLevelTemplateArgumentList MLTAL; 4251 MLTAL.addOuterTemplateArguments(Converted); 4252 bool Satisfied; 4253 if (CalculateConstraintSatisfaction(NamedConcept, MLTAL, 4254 NamedConcept->getConstraintExpr(), 4255 Satisfied)) 4256 return ExprError(); 4257 IsSatisfied = Satisfied; 4258 } 4259 return ConceptSpecializationExpr::Create(Context, 4260 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{}, 4261 TemplateKWLoc, ConceptNameLoc, FoundDecl, NamedConcept, 4262 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted, 4263 IsSatisfied); 4264 } 4265 4266 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 4267 SourceLocation TemplateKWLoc, 4268 LookupResult &R, 4269 bool RequiresADL, 4270 const TemplateArgumentListInfo *TemplateArgs) { 4271 // FIXME: Can we do any checking at this point? I guess we could check the 4272 // template arguments that we have against the template name, if the template 4273 // name refers to a single template. That's not a terribly common case, 4274 // though. 4275 // foo<int> could identify a single function unambiguously 4276 // This approach does NOT work, since f<int>(1); 4277 // gets resolved prior to resorting to overload resolution 4278 // i.e., template<class T> void f(double); 4279 // vs template<class T, class U> void f(U); 4280 4281 // These should be filtered out by our callers. 4282 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 4283 4284 // Non-function templates require a template argument list. 4285 if (auto *TD = R.getAsSingle<TemplateDecl>()) { 4286 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) { 4287 diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc()); 4288 return ExprError(); 4289 } 4290 } 4291 4292 auto AnyDependentArguments = [&]() -> bool { 4293 bool InstantiationDependent; 4294 return TemplateArgs && 4295 TemplateSpecializationType::anyDependentTemplateArguments( 4296 *TemplateArgs, InstantiationDependent); 4297 }; 4298 4299 // In C++1y, check variable template ids. 4300 if (R.getAsSingle<VarTemplateDecl>() && !AnyDependentArguments()) { 4301 return CheckVarTemplateId(SS, R.getLookupNameInfo(), 4302 R.getAsSingle<VarTemplateDecl>(), 4303 TemplateKWLoc, TemplateArgs); 4304 } 4305 4306 if (R.getAsSingle<ConceptDecl>()) { 4307 return CheckConceptTemplateId(SS, TemplateKWLoc, 4308 R.getLookupNameInfo().getBeginLoc(), 4309 R.getFoundDecl(), 4310 R.getAsSingle<ConceptDecl>(), TemplateArgs); 4311 } 4312 4313 // We don't want lookup warnings at this point. 4314 R.suppressDiagnostics(); 4315 4316 UnresolvedLookupExpr *ULE 4317 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 4318 SS.getWithLocInContext(Context), 4319 TemplateKWLoc, 4320 R.getLookupNameInfo(), 4321 RequiresADL, TemplateArgs, 4322 R.begin(), R.end()); 4323 4324 return ULE; 4325 } 4326 4327 // We actually only call this from template instantiation. 4328 ExprResult 4329 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 4330 SourceLocation TemplateKWLoc, 4331 const DeclarationNameInfo &NameInfo, 4332 const TemplateArgumentListInfo *TemplateArgs) { 4333 4334 assert(TemplateArgs || TemplateKWLoc.isValid()); 4335 DeclContext *DC; 4336 if (!(DC = computeDeclContext(SS, false)) || 4337 DC->isDependentContext() || 4338 RequireCompleteDeclContext(SS, DC)) 4339 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 4340 4341 bool MemberOfUnknownSpecialization; 4342 LookupResult R(*this, NameInfo, LookupOrdinaryName); 4343 if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(), 4344 /*Entering*/false, MemberOfUnknownSpecialization, 4345 TemplateKWLoc)) 4346 return ExprError(); 4347 4348 if (R.isAmbiguous()) 4349 return ExprError(); 4350 4351 if (R.empty()) { 4352 Diag(NameInfo.getLoc(), diag::err_no_member) 4353 << NameInfo.getName() << DC << SS.getRange(); 4354 return ExprError(); 4355 } 4356 4357 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 4358 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 4359 << SS.getScopeRep() 4360 << NameInfo.getName().getAsString() << SS.getRange(); 4361 Diag(Temp->getLocation(), diag::note_referenced_class_template); 4362 return ExprError(); 4363 } 4364 4365 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 4366 } 4367 4368 /// Form a dependent template name. 4369 /// 4370 /// This action forms a dependent template name given the template 4371 /// name and its (presumably dependent) scope specifier. For 4372 /// example, given "MetaFun::template apply", the scope specifier \p 4373 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location 4374 /// of the "template" keyword, and "apply" is the \p Name. 4375 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 4376 CXXScopeSpec &SS, 4377 SourceLocation TemplateKWLoc, 4378 const UnqualifiedId &Name, 4379 ParsedType ObjectType, 4380 bool EnteringContext, 4381 TemplateTy &Result, 4382 bool AllowInjectedClassName) { 4383 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 4384 Diag(TemplateKWLoc, 4385 getLangOpts().CPlusPlus11 ? 4386 diag::warn_cxx98_compat_template_outside_of_template : 4387 diag::ext_template_outside_of_template) 4388 << FixItHint::CreateRemoval(TemplateKWLoc); 4389 4390 DeclContext *LookupCtx = nullptr; 4391 if (SS.isSet()) 4392 LookupCtx = computeDeclContext(SS, EnteringContext); 4393 if (!LookupCtx && ObjectType) 4394 LookupCtx = computeDeclContext(ObjectType.get()); 4395 if (LookupCtx) { 4396 // C++0x [temp.names]p5: 4397 // If a name prefixed by the keyword template is not the name of 4398 // a template, the program is ill-formed. [Note: the keyword 4399 // template may not be applied to non-template members of class 4400 // templates. -end note ] [ Note: as is the case with the 4401 // typename prefix, the template prefix is allowed in cases 4402 // where it is not strictly necessary; i.e., when the 4403 // nested-name-specifier or the expression on the left of the -> 4404 // or . is not dependent on a template-parameter, or the use 4405 // does not appear in the scope of a template. -end note] 4406 // 4407 // Note: C++03 was more strict here, because it banned the use of 4408 // the "template" keyword prior to a template-name that was not a 4409 // dependent name. C++ DR468 relaxed this requirement (the 4410 // "template" keyword is now permitted). We follow the C++0x 4411 // rules, even in C++03 mode with a warning, retroactively applying the DR. 4412 bool MemberOfUnknownSpecialization; 4413 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 4414 ObjectType, EnteringContext, Result, 4415 MemberOfUnknownSpecialization); 4416 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization) { 4417 // This is a dependent template. Handle it below. 4418 } else if (TNK == TNK_Non_template) { 4419 // Do the lookup again to determine if this is a "nothing found" case or 4420 // a "not a template" case. FIXME: Refactor isTemplateName so we don't 4421 // need to do this. 4422 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); 4423 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(), 4424 LookupOrdinaryName); 4425 bool MOUS; 4426 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, 4427 MOUS, TemplateKWLoc) && !R.isAmbiguous()) 4428 Diag(Name.getBeginLoc(), diag::err_no_member) 4429 << DNI.getName() << LookupCtx << SS.getRange(); 4430 return TNK_Non_template; 4431 } else { 4432 // We found something; return it. 4433 auto *LookupRD = dyn_cast<CXXRecordDecl>(LookupCtx); 4434 if (!AllowInjectedClassName && SS.isSet() && LookupRD && 4435 Name.getKind() == UnqualifiedIdKind::IK_Identifier && 4436 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { 4437 // C++14 [class.qual]p2: 4438 // In a lookup in which function names are not ignored and the 4439 // nested-name-specifier nominates a class C, if the name specified 4440 // [...] is the injected-class-name of C, [...] the name is instead 4441 // considered to name the constructor 4442 // 4443 // We don't get here if naming the constructor would be valid, so we 4444 // just reject immediately and recover by treating the 4445 // injected-class-name as naming the template. 4446 Diag(Name.getBeginLoc(), 4447 diag::ext_out_of_line_qualified_id_type_names_constructor) 4448 << Name.Identifier 4449 << 0 /*injected-class-name used as template name*/ 4450 << 1 /*'template' keyword was used*/; 4451 } 4452 return TNK; 4453 } 4454 } 4455 4456 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 4457 4458 switch (Name.getKind()) { 4459 case UnqualifiedIdKind::IK_Identifier: 4460 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 4461 Name.Identifier)); 4462 return TNK_Dependent_template_name; 4463 4464 case UnqualifiedIdKind::IK_OperatorFunctionId: 4465 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 4466 Name.OperatorFunctionId.Operator)); 4467 return TNK_Function_template; 4468 4469 case UnqualifiedIdKind::IK_LiteralOperatorId: 4470 llvm_unreachable("literal operator id cannot have a dependent scope"); 4471 4472 default: 4473 break; 4474 } 4475 4476 Diag(Name.getBeginLoc(), diag::err_template_kw_refers_to_non_template) 4477 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange() 4478 << TemplateKWLoc; 4479 return TNK_Non_template; 4480 } 4481 4482 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 4483 TemplateArgumentLoc &AL, 4484 SmallVectorImpl<TemplateArgument> &Converted) { 4485 const TemplateArgument &Arg = AL.getArgument(); 4486 QualType ArgType; 4487 TypeSourceInfo *TSI = nullptr; 4488 4489 // Check template type parameter. 4490 switch(Arg.getKind()) { 4491 case TemplateArgument::Type: 4492 // C++ [temp.arg.type]p1: 4493 // A template-argument for a template-parameter which is a 4494 // type shall be a type-id. 4495 ArgType = Arg.getAsType(); 4496 TSI = AL.getTypeSourceInfo(); 4497 break; 4498 case TemplateArgument::Template: 4499 case TemplateArgument::TemplateExpansion: { 4500 // We have a template type parameter but the template argument 4501 // is a template without any arguments. 4502 SourceRange SR = AL.getSourceRange(); 4503 TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); 4504 diagnoseMissingTemplateArguments(Name, SR.getEnd()); 4505 return true; 4506 } 4507 case TemplateArgument::Expression: { 4508 // We have a template type parameter but the template argument is an 4509 // expression; see if maybe it is missing the "typename" keyword. 4510 CXXScopeSpec SS; 4511 DeclarationNameInfo NameInfo; 4512 4513 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) { 4514 SS.Adopt(ArgExpr->getQualifierLoc()); 4515 NameInfo = ArgExpr->getNameInfo(); 4516 } else if (DependentScopeDeclRefExpr *ArgExpr = 4517 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 4518 SS.Adopt(ArgExpr->getQualifierLoc()); 4519 NameInfo = ArgExpr->getNameInfo(); 4520 } else if (CXXDependentScopeMemberExpr *ArgExpr = 4521 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 4522 if (ArgExpr->isImplicitAccess()) { 4523 SS.Adopt(ArgExpr->getQualifierLoc()); 4524 NameInfo = ArgExpr->getMemberNameInfo(); 4525 } 4526 } 4527 4528 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { 4529 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 4530 LookupParsedName(Result, CurScope, &SS); 4531 4532 if (Result.getAsSingle<TypeDecl>() || 4533 Result.getResultKind() == 4534 LookupResult::NotFoundInCurrentInstantiation) { 4535 // Suggest that the user add 'typename' before the NNS. 4536 SourceLocation Loc = AL.getSourceRange().getBegin(); 4537 Diag(Loc, getLangOpts().MSVCCompat 4538 ? diag::ext_ms_template_type_arg_missing_typename 4539 : diag::err_template_arg_must_be_type_suggest) 4540 << FixItHint::CreateInsertion(Loc, "typename "); 4541 Diag(Param->getLocation(), diag::note_template_param_here); 4542 4543 // Recover by synthesizing a type using the location information that we 4544 // already have. 4545 ArgType = 4546 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II); 4547 TypeLocBuilder TLB; 4548 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType); 4549 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); 4550 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4551 TL.setNameLoc(NameInfo.getLoc()); 4552 TSI = TLB.getTypeSourceInfo(Context, ArgType); 4553 4554 // Overwrite our input TemplateArgumentLoc so that we can recover 4555 // properly. 4556 AL = TemplateArgumentLoc(TemplateArgument(ArgType), 4557 TemplateArgumentLocInfo(TSI)); 4558 4559 break; 4560 } 4561 } 4562 // fallthrough 4563 LLVM_FALLTHROUGH; 4564 } 4565 default: { 4566 // We have a template type parameter but the template argument 4567 // is not a type. 4568 SourceRange SR = AL.getSourceRange(); 4569 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 4570 Diag(Param->getLocation(), diag::note_template_param_here); 4571 4572 return true; 4573 } 4574 } 4575 4576 if (CheckTemplateArgument(Param, TSI)) 4577 return true; 4578 4579 // Add the converted template type argument. 4580 ArgType = Context.getCanonicalType(ArgType); 4581 4582 // Objective-C ARC: 4583 // If an explicitly-specified template argument type is a lifetime type 4584 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 4585 if (getLangOpts().ObjCAutoRefCount && 4586 ArgType->isObjCLifetimeType() && 4587 !ArgType.getObjCLifetime()) { 4588 Qualifiers Qs; 4589 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 4590 ArgType = Context.getQualifiedType(ArgType, Qs); 4591 } 4592 4593 Converted.push_back(TemplateArgument(ArgType)); 4594 return false; 4595 } 4596 4597 /// Substitute template arguments into the default template argument for 4598 /// the given template type parameter. 4599 /// 4600 /// \param SemaRef the semantic analysis object for which we are performing 4601 /// the substitution. 4602 /// 4603 /// \param Template the template that we are synthesizing template arguments 4604 /// for. 4605 /// 4606 /// \param TemplateLoc the location of the template name that started the 4607 /// template-id we are checking. 4608 /// 4609 /// \param RAngleLoc the location of the right angle bracket ('>') that 4610 /// terminates the template-id. 4611 /// 4612 /// \param Param the template template parameter whose default we are 4613 /// substituting into. 4614 /// 4615 /// \param Converted the list of template arguments provided for template 4616 /// parameters that precede \p Param in the template parameter list. 4617 /// \returns the substituted template argument, or NULL if an error occurred. 4618 static TypeSourceInfo * 4619 SubstDefaultTemplateArgument(Sema &SemaRef, 4620 TemplateDecl *Template, 4621 SourceLocation TemplateLoc, 4622 SourceLocation RAngleLoc, 4623 TemplateTypeParmDecl *Param, 4624 SmallVectorImpl<TemplateArgument> &Converted) { 4625 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 4626 4627 // If the argument type is dependent, instantiate it now based 4628 // on the previously-computed template arguments. 4629 if (ArgType->getType()->isInstantiationDependentType()) { 4630 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 4631 Param, Template, Converted, 4632 SourceRange(TemplateLoc, RAngleLoc)); 4633 if (Inst.isInvalid()) 4634 return nullptr; 4635 4636 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 4637 4638 // Only substitute for the innermost template argument list. 4639 MultiLevelTemplateArgumentList TemplateArgLists; 4640 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 4641 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 4642 TemplateArgLists.addOuterTemplateArguments(None); 4643 4644 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 4645 ArgType = 4646 SemaRef.SubstType(ArgType, TemplateArgLists, 4647 Param->getDefaultArgumentLoc(), Param->getDeclName()); 4648 } 4649 4650 return ArgType; 4651 } 4652 4653 /// Substitute template arguments into the default template argument for 4654 /// the given non-type template parameter. 4655 /// 4656 /// \param SemaRef the semantic analysis object for which we are performing 4657 /// the substitution. 4658 /// 4659 /// \param Template the template that we are synthesizing template arguments 4660 /// for. 4661 /// 4662 /// \param TemplateLoc the location of the template name that started the 4663 /// template-id we are checking. 4664 /// 4665 /// \param RAngleLoc the location of the right angle bracket ('>') that 4666 /// terminates the template-id. 4667 /// 4668 /// \param Param the non-type template parameter whose default we are 4669 /// substituting into. 4670 /// 4671 /// \param Converted the list of template arguments provided for template 4672 /// parameters that precede \p Param in the template parameter list. 4673 /// 4674 /// \returns the substituted template argument, or NULL if an error occurred. 4675 static ExprResult 4676 SubstDefaultTemplateArgument(Sema &SemaRef, 4677 TemplateDecl *Template, 4678 SourceLocation TemplateLoc, 4679 SourceLocation RAngleLoc, 4680 NonTypeTemplateParmDecl *Param, 4681 SmallVectorImpl<TemplateArgument> &Converted) { 4682 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 4683 Param, Template, Converted, 4684 SourceRange(TemplateLoc, RAngleLoc)); 4685 if (Inst.isInvalid()) 4686 return ExprError(); 4687 4688 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 4689 4690 // Only substitute for the innermost template argument list. 4691 MultiLevelTemplateArgumentList TemplateArgLists; 4692 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 4693 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 4694 TemplateArgLists.addOuterTemplateArguments(None); 4695 4696 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 4697 EnterExpressionEvaluationContext ConstantEvaluated( 4698 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 4699 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists); 4700 } 4701 4702 /// Substitute template arguments into the default template argument for 4703 /// the given template template parameter. 4704 /// 4705 /// \param SemaRef the semantic analysis object for which we are performing 4706 /// the substitution. 4707 /// 4708 /// \param Template the template that we are synthesizing template arguments 4709 /// for. 4710 /// 4711 /// \param TemplateLoc the location of the template name that started the 4712 /// template-id we are checking. 4713 /// 4714 /// \param RAngleLoc the location of the right angle bracket ('>') that 4715 /// terminates the template-id. 4716 /// 4717 /// \param Param the template template parameter whose default we are 4718 /// substituting into. 4719 /// 4720 /// \param Converted the list of template arguments provided for template 4721 /// parameters that precede \p Param in the template parameter list. 4722 /// 4723 /// \param QualifierLoc Will be set to the nested-name-specifier (with 4724 /// source-location information) that precedes the template name. 4725 /// 4726 /// \returns the substituted template argument, or NULL if an error occurred. 4727 static TemplateName 4728 SubstDefaultTemplateArgument(Sema &SemaRef, 4729 TemplateDecl *Template, 4730 SourceLocation TemplateLoc, 4731 SourceLocation RAngleLoc, 4732 TemplateTemplateParmDecl *Param, 4733 SmallVectorImpl<TemplateArgument> &Converted, 4734 NestedNameSpecifierLoc &QualifierLoc) { 4735 Sema::InstantiatingTemplate Inst( 4736 SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted, 4737 SourceRange(TemplateLoc, RAngleLoc)); 4738 if (Inst.isInvalid()) 4739 return TemplateName(); 4740 4741 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 4742 4743 // Only substitute for the innermost template argument list. 4744 MultiLevelTemplateArgumentList TemplateArgLists; 4745 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 4746 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 4747 TemplateArgLists.addOuterTemplateArguments(None); 4748 4749 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 4750 // Substitute into the nested-name-specifier first, 4751 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 4752 if (QualifierLoc) { 4753 QualifierLoc = 4754 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); 4755 if (!QualifierLoc) 4756 return TemplateName(); 4757 } 4758 4759 return SemaRef.SubstTemplateName( 4760 QualifierLoc, 4761 Param->getDefaultArgument().getArgument().getAsTemplate(), 4762 Param->getDefaultArgument().getTemplateNameLoc(), 4763 TemplateArgLists); 4764 } 4765 4766 /// If the given template parameter has a default template 4767 /// argument, substitute into that default template argument and 4768 /// return the corresponding template argument. 4769 TemplateArgumentLoc 4770 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 4771 SourceLocation TemplateLoc, 4772 SourceLocation RAngleLoc, 4773 Decl *Param, 4774 SmallVectorImpl<TemplateArgument> 4775 &Converted, 4776 bool &HasDefaultArg) { 4777 HasDefaultArg = false; 4778 4779 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 4780 if (!hasVisibleDefaultArgument(TypeParm)) 4781 return TemplateArgumentLoc(); 4782 4783 HasDefaultArg = true; 4784 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 4785 TemplateLoc, 4786 RAngleLoc, 4787 TypeParm, 4788 Converted); 4789 if (DI) 4790 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 4791 4792 return TemplateArgumentLoc(); 4793 } 4794 4795 if (NonTypeTemplateParmDecl *NonTypeParm 4796 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4797 if (!hasVisibleDefaultArgument(NonTypeParm)) 4798 return TemplateArgumentLoc(); 4799 4800 HasDefaultArg = true; 4801 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 4802 TemplateLoc, 4803 RAngleLoc, 4804 NonTypeParm, 4805 Converted); 4806 if (Arg.isInvalid()) 4807 return TemplateArgumentLoc(); 4808 4809 Expr *ArgE = Arg.getAs<Expr>(); 4810 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 4811 } 4812 4813 TemplateTemplateParmDecl *TempTempParm 4814 = cast<TemplateTemplateParmDecl>(Param); 4815 if (!hasVisibleDefaultArgument(TempTempParm)) 4816 return TemplateArgumentLoc(); 4817 4818 HasDefaultArg = true; 4819 NestedNameSpecifierLoc QualifierLoc; 4820 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 4821 TemplateLoc, 4822 RAngleLoc, 4823 TempTempParm, 4824 Converted, 4825 QualifierLoc); 4826 if (TName.isNull()) 4827 return TemplateArgumentLoc(); 4828 4829 return TemplateArgumentLoc(TemplateArgument(TName), 4830 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 4831 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 4832 } 4833 4834 /// Convert a template-argument that we parsed as a type into a template, if 4835 /// possible. C++ permits injected-class-names to perform dual service as 4836 /// template template arguments and as template type arguments. 4837 static TemplateArgumentLoc convertTypeTemplateArgumentToTemplate(TypeLoc TLoc) { 4838 // Extract and step over any surrounding nested-name-specifier. 4839 NestedNameSpecifierLoc QualLoc; 4840 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { 4841 if (ETLoc.getTypePtr()->getKeyword() != ETK_None) 4842 return TemplateArgumentLoc(); 4843 4844 QualLoc = ETLoc.getQualifierLoc(); 4845 TLoc = ETLoc.getNamedTypeLoc(); 4846 } 4847 4848 // If this type was written as an injected-class-name, it can be used as a 4849 // template template argument. 4850 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) 4851 return TemplateArgumentLoc(InjLoc.getTypePtr()->getTemplateName(), 4852 QualLoc, InjLoc.getNameLoc()); 4853 4854 // If this type was written as an injected-class-name, it may have been 4855 // converted to a RecordType during instantiation. If the RecordType is 4856 // *not* wrapped in a TemplateSpecializationType and denotes a class 4857 // template specialization, it must have come from an injected-class-name. 4858 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) 4859 if (auto *CTSD = 4860 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl())) 4861 return TemplateArgumentLoc(TemplateName(CTSD->getSpecializedTemplate()), 4862 QualLoc, RecLoc.getNameLoc()); 4863 4864 return TemplateArgumentLoc(); 4865 } 4866 4867 /// Check that the given template argument corresponds to the given 4868 /// template parameter. 4869 /// 4870 /// \param Param The template parameter against which the argument will be 4871 /// checked. 4872 /// 4873 /// \param Arg The template argument, which may be updated due to conversions. 4874 /// 4875 /// \param Template The template in which the template argument resides. 4876 /// 4877 /// \param TemplateLoc The location of the template name for the template 4878 /// whose argument list we're matching. 4879 /// 4880 /// \param RAngleLoc The location of the right angle bracket ('>') that closes 4881 /// the template argument list. 4882 /// 4883 /// \param ArgumentPackIndex The index into the argument pack where this 4884 /// argument will be placed. Only valid if the parameter is a parameter pack. 4885 /// 4886 /// \param Converted The checked, converted argument will be added to the 4887 /// end of this small vector. 4888 /// 4889 /// \param CTAK Describes how we arrived at this particular template argument: 4890 /// explicitly written, deduced, etc. 4891 /// 4892 /// \returns true on error, false otherwise. 4893 bool Sema::CheckTemplateArgument(NamedDecl *Param, 4894 TemplateArgumentLoc &Arg, 4895 NamedDecl *Template, 4896 SourceLocation TemplateLoc, 4897 SourceLocation RAngleLoc, 4898 unsigned ArgumentPackIndex, 4899 SmallVectorImpl<TemplateArgument> &Converted, 4900 CheckTemplateArgumentKind CTAK) { 4901 // Check template type parameters. 4902 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 4903 return CheckTemplateTypeArgument(TTP, Arg, Converted); 4904 4905 // Check non-type template parameters. 4906 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4907 // Do substitution on the type of the non-type template parameter 4908 // with the template arguments we've seen thus far. But if the 4909 // template has a dependent context then we cannot substitute yet. 4910 QualType NTTPType = NTTP->getType(); 4911 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 4912 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 4913 4914 if (NTTPType->isInstantiationDependentType() && 4915 !isa<TemplateTemplateParmDecl>(Template) && 4916 !Template->getDeclContext()->isDependentContext()) { 4917 // Do substitution on the type of the non-type template parameter. 4918 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 4919 NTTP, Converted, 4920 SourceRange(TemplateLoc, RAngleLoc)); 4921 if (Inst.isInvalid()) 4922 return true; 4923 4924 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 4925 Converted); 4926 4927 // If the parameter is a pack expansion, expand this slice of the pack. 4928 if (auto *PET = NTTPType->getAs<PackExpansionType>()) { 4929 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, 4930 ArgumentPackIndex); 4931 NTTPType = SubstType(PET->getPattern(), 4932 MultiLevelTemplateArgumentList(TemplateArgs), 4933 NTTP->getLocation(), 4934 NTTP->getDeclName()); 4935 } else { 4936 NTTPType = SubstType(NTTPType, 4937 MultiLevelTemplateArgumentList(TemplateArgs), 4938 NTTP->getLocation(), 4939 NTTP->getDeclName()); 4940 } 4941 4942 // If that worked, check the non-type template parameter type 4943 // for validity. 4944 if (!NTTPType.isNull()) 4945 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 4946 NTTP->getLocation()); 4947 if (NTTPType.isNull()) 4948 return true; 4949 } 4950 4951 switch (Arg.getArgument().getKind()) { 4952 case TemplateArgument::Null: 4953 llvm_unreachable("Should never see a NULL template argument here"); 4954 4955 case TemplateArgument::Expression: { 4956 TemplateArgument Result; 4957 unsigned CurSFINAEErrors = NumSFINAEErrors; 4958 ExprResult Res = 4959 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 4960 Result, CTAK); 4961 if (Res.isInvalid()) 4962 return true; 4963 // If the current template argument causes an error, give up now. 4964 if (CurSFINAEErrors < NumSFINAEErrors) 4965 return true; 4966 4967 // If the resulting expression is new, then use it in place of the 4968 // old expression in the template argument. 4969 if (Res.get() != Arg.getArgument().getAsExpr()) { 4970 TemplateArgument TA(Res.get()); 4971 Arg = TemplateArgumentLoc(TA, Res.get()); 4972 } 4973 4974 Converted.push_back(Result); 4975 break; 4976 } 4977 4978 case TemplateArgument::Declaration: 4979 case TemplateArgument::Integral: 4980 case TemplateArgument::NullPtr: 4981 // We've already checked this template argument, so just copy 4982 // it to the list of converted arguments. 4983 Converted.push_back(Arg.getArgument()); 4984 break; 4985 4986 case TemplateArgument::Template: 4987 case TemplateArgument::TemplateExpansion: 4988 // We were given a template template argument. It may not be ill-formed; 4989 // see below. 4990 if (DependentTemplateName *DTN 4991 = Arg.getArgument().getAsTemplateOrTemplatePattern() 4992 .getAsDependentTemplateName()) { 4993 // We have a template argument such as \c T::template X, which we 4994 // parsed as a template template argument. However, since we now 4995 // know that we need a non-type template argument, convert this 4996 // template name into an expression. 4997 4998 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 4999 Arg.getTemplateNameLoc()); 5000 5001 CXXScopeSpec SS; 5002 SS.Adopt(Arg.getTemplateQualifierLoc()); 5003 // FIXME: the template-template arg was a DependentTemplateName, 5004 // so it was provided with a template keyword. However, its source 5005 // location is not stored in the template argument structure. 5006 SourceLocation TemplateKWLoc; 5007 ExprResult E = DependentScopeDeclRefExpr::Create( 5008 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 5009 nullptr); 5010 5011 // If we parsed the template argument as a pack expansion, create a 5012 // pack expansion expression. 5013 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 5014 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc()); 5015 if (E.isInvalid()) 5016 return true; 5017 } 5018 5019 TemplateArgument Result; 5020 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result); 5021 if (E.isInvalid()) 5022 return true; 5023 5024 Converted.push_back(Result); 5025 break; 5026 } 5027 5028 // We have a template argument that actually does refer to a class 5029 // template, alias template, or template template parameter, and 5030 // therefore cannot be a non-type template argument. 5031 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 5032 << Arg.getSourceRange(); 5033 5034 Diag(Param->getLocation(), diag::note_template_param_here); 5035 return true; 5036 5037 case TemplateArgument::Type: { 5038 // We have a non-type template parameter but the template 5039 // argument is a type. 5040 5041 // C++ [temp.arg]p2: 5042 // In a template-argument, an ambiguity between a type-id and 5043 // an expression is resolved to a type-id, regardless of the 5044 // form of the corresponding template-parameter. 5045 // 5046 // We warn specifically about this case, since it can be rather 5047 // confusing for users. 5048 QualType T = Arg.getArgument().getAsType(); 5049 SourceRange SR = Arg.getSourceRange(); 5050 if (T->isFunctionType()) 5051 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 5052 else 5053 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 5054 Diag(Param->getLocation(), diag::note_template_param_here); 5055 return true; 5056 } 5057 5058 case TemplateArgument::Pack: 5059 llvm_unreachable("Caller must expand template argument packs"); 5060 } 5061 5062 return false; 5063 } 5064 5065 5066 // Check template template parameters. 5067 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 5068 5069 TemplateParameterList *Params = TempParm->getTemplateParameters(); 5070 if (TempParm->isExpandedParameterPack()) 5071 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex); 5072 5073 // Substitute into the template parameter list of the template 5074 // template parameter, since previously-supplied template arguments 5075 // may appear within the template template parameter. 5076 // 5077 // FIXME: Skip this if the parameters aren't instantiation-dependent. 5078 { 5079 // Set up a template instantiation context. 5080 LocalInstantiationScope Scope(*this); 5081 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 5082 TempParm, Converted, 5083 SourceRange(TemplateLoc, RAngleLoc)); 5084 if (Inst.isInvalid()) 5085 return true; 5086 5087 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5088 Params = SubstTemplateParams(Params, CurContext, 5089 MultiLevelTemplateArgumentList(TemplateArgs)); 5090 if (!Params) 5091 return true; 5092 } 5093 5094 // C++1z [temp.local]p1: (DR1004) 5095 // When [the injected-class-name] is used [...] as a template-argument for 5096 // a template template-parameter [...] it refers to the class template 5097 // itself. 5098 if (Arg.getArgument().getKind() == TemplateArgument::Type) { 5099 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( 5100 Arg.getTypeSourceInfo()->getTypeLoc()); 5101 if (!ConvertedArg.getArgument().isNull()) 5102 Arg = ConvertedArg; 5103 } 5104 5105 switch (Arg.getArgument().getKind()) { 5106 case TemplateArgument::Null: 5107 llvm_unreachable("Should never see a NULL template argument here"); 5108 5109 case TemplateArgument::Template: 5110 case TemplateArgument::TemplateExpansion: 5111 if (CheckTemplateTemplateArgument(Params, Arg)) 5112 return true; 5113 5114 Converted.push_back(Arg.getArgument()); 5115 break; 5116 5117 case TemplateArgument::Expression: 5118 case TemplateArgument::Type: 5119 // We have a template template parameter but the template 5120 // argument does not refer to a template. 5121 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 5122 << getLangOpts().CPlusPlus11; 5123 return true; 5124 5125 case TemplateArgument::Declaration: 5126 llvm_unreachable("Declaration argument with template template parameter"); 5127 case TemplateArgument::Integral: 5128 llvm_unreachable("Integral argument with template template parameter"); 5129 case TemplateArgument::NullPtr: 5130 llvm_unreachable("Null pointer argument with template template parameter"); 5131 5132 case TemplateArgument::Pack: 5133 llvm_unreachable("Caller must expand template argument packs"); 5134 } 5135 5136 return false; 5137 } 5138 5139 /// Check whether the template parameter is a pack expansion, and if so, 5140 /// determine the number of parameters produced by that expansion. For instance: 5141 /// 5142 /// \code 5143 /// template<typename ...Ts> struct A { 5144 /// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B; 5145 /// }; 5146 /// \endcode 5147 /// 5148 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us 5149 /// is not a pack expansion, so returns an empty Optional. 5150 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 5151 if (NonTypeTemplateParmDecl *NTTP 5152 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5153 if (NTTP->isExpandedParameterPack()) 5154 return NTTP->getNumExpansionTypes(); 5155 } 5156 5157 if (TemplateTemplateParmDecl *TTP 5158 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 5159 if (TTP->isExpandedParameterPack()) 5160 return TTP->getNumExpansionTemplateParameters(); 5161 } 5162 5163 return None; 5164 } 5165 5166 /// Diagnose a missing template argument. 5167 template<typename TemplateParmDecl> 5168 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, 5169 TemplateDecl *TD, 5170 const TemplateParmDecl *D, 5171 TemplateArgumentListInfo &Args) { 5172 // Dig out the most recent declaration of the template parameter; there may be 5173 // declarations of the template that are more recent than TD. 5174 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) 5175 ->getTemplateParameters() 5176 ->getParam(D->getIndex())); 5177 5178 // If there's a default argument that's not visible, diagnose that we're 5179 // missing a module import. 5180 llvm::SmallVector<Module*, 8> Modules; 5181 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) { 5182 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD), 5183 D->getDefaultArgumentLoc(), Modules, 5184 Sema::MissingImportKind::DefaultArgument, 5185 /*Recover*/true); 5186 return true; 5187 } 5188 5189 // FIXME: If there's a more recent default argument that *is* visible, 5190 // diagnose that it was declared too late. 5191 5192 TemplateParameterList *Params = TD->getTemplateParameters(); 5193 5194 S.Diag(Loc, diag::err_template_arg_list_different_arity) 5195 << /*not enough args*/0 5196 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD)) 5197 << TD; 5198 S.Diag(TD->getLocation(), diag::note_template_decl_here) 5199 << Params->getSourceRange(); 5200 return true; 5201 } 5202 5203 /// Check that the given template argument list is well-formed 5204 /// for specializing the given template. 5205 bool Sema::CheckTemplateArgumentList( 5206 TemplateDecl *Template, SourceLocation TemplateLoc, 5207 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, 5208 SmallVectorImpl<TemplateArgument> &Converted, 5209 bool UpdateArgsWithConversions) { 5210 // Make a copy of the template arguments for processing. Only make the 5211 // changes at the end when successful in matching the arguments to the 5212 // template. 5213 TemplateArgumentListInfo NewArgs = TemplateArgs; 5214 5215 // Make sure we get the template parameter list from the most 5216 // recentdeclaration, since that is the only one that has is guaranteed to 5217 // have all the default template argument information. 5218 TemplateParameterList *Params = 5219 cast<TemplateDecl>(Template->getMostRecentDecl()) 5220 ->getTemplateParameters(); 5221 5222 SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); 5223 5224 // C++ [temp.arg]p1: 5225 // [...] The type and form of each template-argument specified in 5226 // a template-id shall match the type and form specified for the 5227 // corresponding parameter declared by the template in its 5228 // template-parameter-list. 5229 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 5230 SmallVector<TemplateArgument, 2> ArgumentPack; 5231 unsigned ArgIdx = 0, NumArgs = NewArgs.size(); 5232 LocalInstantiationScope InstScope(*this, true); 5233 for (TemplateParameterList::iterator Param = Params->begin(), 5234 ParamEnd = Params->end(); 5235 Param != ParamEnd; /* increment in loop */) { 5236 // If we have an expanded parameter pack, make sure we don't have too 5237 // many arguments. 5238 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 5239 if (*Expansions == ArgumentPack.size()) { 5240 // We're done with this parameter pack. Pack up its arguments and add 5241 // them to the list. 5242 Converted.push_back( 5243 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5244 ArgumentPack.clear(); 5245 5246 // This argument is assigned to the next parameter. 5247 ++Param; 5248 continue; 5249 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 5250 // Not enough arguments for this parameter pack. 5251 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5252 << /*not enough args*/0 5253 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5254 << Template; 5255 Diag(Template->getLocation(), diag::note_template_decl_here) 5256 << Params->getSourceRange(); 5257 return true; 5258 } 5259 } 5260 5261 if (ArgIdx < NumArgs) { 5262 // Check the template argument we were given. 5263 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, 5264 TemplateLoc, RAngleLoc, 5265 ArgumentPack.size(), Converted)) 5266 return true; 5267 5268 bool PackExpansionIntoNonPack = 5269 NewArgs[ArgIdx].getArgument().isPackExpansion() && 5270 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param)); 5271 if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) { 5272 // Core issue 1430: we have a pack expansion as an argument to an 5273 // alias template, and it's not part of a parameter pack. This 5274 // can't be canonicalized, so reject it now. 5275 Diag(NewArgs[ArgIdx].getLocation(), 5276 diag::err_alias_template_expansion_into_fixed_list) 5277 << NewArgs[ArgIdx].getSourceRange(); 5278 Diag((*Param)->getLocation(), diag::note_template_param_here); 5279 return true; 5280 } 5281 5282 // We're now done with this argument. 5283 ++ArgIdx; 5284 5285 if ((*Param)->isTemplateParameterPack()) { 5286 // The template parameter was a template parameter pack, so take the 5287 // deduced argument and place it on the argument pack. Note that we 5288 // stay on the same template parameter so that we can deduce more 5289 // arguments. 5290 ArgumentPack.push_back(Converted.pop_back_val()); 5291 } else { 5292 // Move to the next template parameter. 5293 ++Param; 5294 } 5295 5296 // If we just saw a pack expansion into a non-pack, then directly convert 5297 // the remaining arguments, because we don't know what parameters they'll 5298 // match up with. 5299 if (PackExpansionIntoNonPack) { 5300 if (!ArgumentPack.empty()) { 5301 // If we were part way through filling in an expanded parameter pack, 5302 // fall back to just producing individual arguments. 5303 Converted.insert(Converted.end(), 5304 ArgumentPack.begin(), ArgumentPack.end()); 5305 ArgumentPack.clear(); 5306 } 5307 5308 while (ArgIdx < NumArgs) { 5309 Converted.push_back(NewArgs[ArgIdx].getArgument()); 5310 ++ArgIdx; 5311 } 5312 5313 return false; 5314 } 5315 5316 continue; 5317 } 5318 5319 // If we're checking a partial template argument list, we're done. 5320 if (PartialTemplateArgs) { 5321 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 5322 Converted.push_back( 5323 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5324 5325 return false; 5326 } 5327 5328 // If we have a template parameter pack with no more corresponding 5329 // arguments, just break out now and we'll fill in the argument pack below. 5330 if ((*Param)->isTemplateParameterPack()) { 5331 assert(!getExpandedPackSize(*Param) && 5332 "Should have dealt with this already"); 5333 5334 // A non-expanded parameter pack before the end of the parameter list 5335 // only occurs for an ill-formed template parameter list, unless we've 5336 // got a partial argument list for a function template, so just bail out. 5337 if (Param + 1 != ParamEnd) 5338 return true; 5339 5340 Converted.push_back( 5341 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5342 ArgumentPack.clear(); 5343 5344 ++Param; 5345 continue; 5346 } 5347 5348 // Check whether we have a default argument. 5349 TemplateArgumentLoc Arg; 5350 5351 // Retrieve the default template argument from the template 5352 // parameter. For each kind of template parameter, we substitute the 5353 // template arguments provided thus far and any "outer" template arguments 5354 // (when the template parameter was part of a nested template) into 5355 // the default argument. 5356 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 5357 if (!hasVisibleDefaultArgument(TTP)) 5358 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP, 5359 NewArgs); 5360 5361 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 5362 Template, 5363 TemplateLoc, 5364 RAngleLoc, 5365 TTP, 5366 Converted); 5367 if (!ArgType) 5368 return true; 5369 5370 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 5371 ArgType); 5372 } else if (NonTypeTemplateParmDecl *NTTP 5373 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 5374 if (!hasVisibleDefaultArgument(NTTP)) 5375 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP, 5376 NewArgs); 5377 5378 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 5379 TemplateLoc, 5380 RAngleLoc, 5381 NTTP, 5382 Converted); 5383 if (E.isInvalid()) 5384 return true; 5385 5386 Expr *Ex = E.getAs<Expr>(); 5387 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 5388 } else { 5389 TemplateTemplateParmDecl *TempParm 5390 = cast<TemplateTemplateParmDecl>(*Param); 5391 5392 if (!hasVisibleDefaultArgument(TempParm)) 5393 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm, 5394 NewArgs); 5395 5396 NestedNameSpecifierLoc QualifierLoc; 5397 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 5398 TemplateLoc, 5399 RAngleLoc, 5400 TempParm, 5401 Converted, 5402 QualifierLoc); 5403 if (Name.isNull()) 5404 return true; 5405 5406 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 5407 TempParm->getDefaultArgument().getTemplateNameLoc()); 5408 } 5409 5410 // Introduce an instantiation record that describes where we are using 5411 // the default template argument. We're not actually instantiating a 5412 // template here, we just create this object to put a note into the 5413 // context stack. 5414 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted, 5415 SourceRange(TemplateLoc, RAngleLoc)); 5416 if (Inst.isInvalid()) 5417 return true; 5418 5419 // Check the default template argument. 5420 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 5421 RAngleLoc, 0, Converted)) 5422 return true; 5423 5424 // Core issue 150 (assumed resolution): if this is a template template 5425 // parameter, keep track of the default template arguments from the 5426 // template definition. 5427 if (isTemplateTemplateParameter) 5428 NewArgs.addArgument(Arg); 5429 5430 // Move to the next template parameter and argument. 5431 ++Param; 5432 ++ArgIdx; 5433 } 5434 5435 // If we're performing a partial argument substitution, allow any trailing 5436 // pack expansions; they might be empty. This can happen even if 5437 // PartialTemplateArgs is false (the list of arguments is complete but 5438 // still dependent). 5439 if (ArgIdx < NumArgs && CurrentInstantiationScope && 5440 CurrentInstantiationScope->getPartiallySubstitutedPack()) { 5441 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion()) 5442 Converted.push_back(NewArgs[ArgIdx++].getArgument()); 5443 } 5444 5445 // If we have any leftover arguments, then there were too many arguments. 5446 // Complain and fail. 5447 if (ArgIdx < NumArgs) { 5448 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5449 << /*too many args*/1 5450 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5451 << Template 5452 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); 5453 Diag(Template->getLocation(), diag::note_template_decl_here) 5454 << Params->getSourceRange(); 5455 return true; 5456 } 5457 5458 // No problems found with the new argument list, propagate changes back 5459 // to caller. 5460 if (UpdateArgsWithConversions) 5461 TemplateArgs = std::move(NewArgs); 5462 5463 return false; 5464 } 5465 5466 namespace { 5467 class UnnamedLocalNoLinkageFinder 5468 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 5469 { 5470 Sema &S; 5471 SourceRange SR; 5472 5473 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 5474 5475 public: 5476 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 5477 5478 bool Visit(QualType T) { 5479 return T.isNull() ? false : inherited::Visit(T.getTypePtr()); 5480 } 5481 5482 #define TYPE(Class, Parent) \ 5483 bool Visit##Class##Type(const Class##Type *); 5484 #define ABSTRACT_TYPE(Class, Parent) \ 5485 bool Visit##Class##Type(const Class##Type *) { return false; } 5486 #define NON_CANONICAL_TYPE(Class, Parent) \ 5487 bool Visit##Class##Type(const Class##Type *) { return false; } 5488 #include "clang/AST/TypeNodes.inc" 5489 5490 bool VisitTagDecl(const TagDecl *Tag); 5491 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 5492 }; 5493 } // end anonymous namespace 5494 5495 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 5496 return false; 5497 } 5498 5499 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 5500 return Visit(T->getElementType()); 5501 } 5502 5503 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 5504 return Visit(T->getPointeeType()); 5505 } 5506 5507 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 5508 const BlockPointerType* T) { 5509 return Visit(T->getPointeeType()); 5510 } 5511 5512 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 5513 const LValueReferenceType* T) { 5514 return Visit(T->getPointeeType()); 5515 } 5516 5517 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 5518 const RValueReferenceType* T) { 5519 return Visit(T->getPointeeType()); 5520 } 5521 5522 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 5523 const MemberPointerType* T) { 5524 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 5525 } 5526 5527 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 5528 const ConstantArrayType* T) { 5529 return Visit(T->getElementType()); 5530 } 5531 5532 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 5533 const IncompleteArrayType* T) { 5534 return Visit(T->getElementType()); 5535 } 5536 5537 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 5538 const VariableArrayType* T) { 5539 return Visit(T->getElementType()); 5540 } 5541 5542 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 5543 const DependentSizedArrayType* T) { 5544 return Visit(T->getElementType()); 5545 } 5546 5547 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 5548 const DependentSizedExtVectorType* T) { 5549 return Visit(T->getElementType()); 5550 } 5551 5552 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( 5553 const DependentAddressSpaceType *T) { 5554 return Visit(T->getPointeeType()); 5555 } 5556 5557 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 5558 return Visit(T->getElementType()); 5559 } 5560 5561 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( 5562 const DependentVectorType *T) { 5563 return Visit(T->getElementType()); 5564 } 5565 5566 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 5567 return Visit(T->getElementType()); 5568 } 5569 5570 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 5571 const FunctionProtoType* T) { 5572 for (const auto &A : T->param_types()) { 5573 if (Visit(A)) 5574 return true; 5575 } 5576 5577 return Visit(T->getReturnType()); 5578 } 5579 5580 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 5581 const FunctionNoProtoType* T) { 5582 return Visit(T->getReturnType()); 5583 } 5584 5585 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 5586 const UnresolvedUsingType*) { 5587 return false; 5588 } 5589 5590 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 5591 return false; 5592 } 5593 5594 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 5595 return Visit(T->getUnderlyingType()); 5596 } 5597 5598 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 5599 return false; 5600 } 5601 5602 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 5603 const UnaryTransformType*) { 5604 return false; 5605 } 5606 5607 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 5608 return Visit(T->getDeducedType()); 5609 } 5610 5611 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( 5612 const DeducedTemplateSpecializationType *T) { 5613 return Visit(T->getDeducedType()); 5614 } 5615 5616 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 5617 return VisitTagDecl(T->getDecl()); 5618 } 5619 5620 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 5621 return VisitTagDecl(T->getDecl()); 5622 } 5623 5624 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 5625 const TemplateTypeParmType*) { 5626 return false; 5627 } 5628 5629 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 5630 const SubstTemplateTypeParmPackType *) { 5631 return false; 5632 } 5633 5634 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 5635 const TemplateSpecializationType*) { 5636 return false; 5637 } 5638 5639 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 5640 const InjectedClassNameType* T) { 5641 return VisitTagDecl(T->getDecl()); 5642 } 5643 5644 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 5645 const DependentNameType* T) { 5646 return VisitNestedNameSpecifier(T->getQualifier()); 5647 } 5648 5649 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 5650 const DependentTemplateSpecializationType* T) { 5651 return VisitNestedNameSpecifier(T->getQualifier()); 5652 } 5653 5654 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 5655 const PackExpansionType* T) { 5656 return Visit(T->getPattern()); 5657 } 5658 5659 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 5660 return false; 5661 } 5662 5663 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 5664 const ObjCInterfaceType *) { 5665 return false; 5666 } 5667 5668 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 5669 const ObjCObjectPointerType *) { 5670 return false; 5671 } 5672 5673 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 5674 return Visit(T->getValueType()); 5675 } 5676 5677 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { 5678 return false; 5679 } 5680 5681 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 5682 if (Tag->getDeclContext()->isFunctionOrMethod()) { 5683 S.Diag(SR.getBegin(), 5684 S.getLangOpts().CPlusPlus11 ? 5685 diag::warn_cxx98_compat_template_arg_local_type : 5686 diag::ext_template_arg_local_type) 5687 << S.Context.getTypeDeclType(Tag) << SR; 5688 return true; 5689 } 5690 5691 if (!Tag->hasNameForLinkage()) { 5692 S.Diag(SR.getBegin(), 5693 S.getLangOpts().CPlusPlus11 ? 5694 diag::warn_cxx98_compat_template_arg_unnamed_type : 5695 diag::ext_template_arg_unnamed_type) << SR; 5696 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 5697 return true; 5698 } 5699 5700 return false; 5701 } 5702 5703 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 5704 NestedNameSpecifier *NNS) { 5705 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 5706 return true; 5707 5708 switch (NNS->getKind()) { 5709 case NestedNameSpecifier::Identifier: 5710 case NestedNameSpecifier::Namespace: 5711 case NestedNameSpecifier::NamespaceAlias: 5712 case NestedNameSpecifier::Global: 5713 case NestedNameSpecifier::Super: 5714 return false; 5715 5716 case NestedNameSpecifier::TypeSpec: 5717 case NestedNameSpecifier::TypeSpecWithTemplate: 5718 return Visit(QualType(NNS->getAsType(), 0)); 5719 } 5720 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 5721 } 5722 5723 /// Check a template argument against its corresponding 5724 /// template type parameter. 5725 /// 5726 /// This routine implements the semantics of C++ [temp.arg.type]. It 5727 /// returns true if an error occurred, and false otherwise. 5728 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 5729 TypeSourceInfo *ArgInfo) { 5730 assert(ArgInfo && "invalid TypeSourceInfo"); 5731 QualType Arg = ArgInfo->getType(); 5732 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 5733 5734 if (Arg->isVariablyModifiedType()) { 5735 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 5736 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 5737 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 5738 } 5739 5740 // C++03 [temp.arg.type]p2: 5741 // A local type, a type with no linkage, an unnamed type or a type 5742 // compounded from any of these types shall not be used as a 5743 // template-argument for a template type-parameter. 5744 // 5745 // C++11 allows these, and even in C++03 we allow them as an extension with 5746 // a warning. 5747 if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) { 5748 UnnamedLocalNoLinkageFinder Finder(*this, SR); 5749 (void)Finder.Visit(Context.getCanonicalType(Arg)); 5750 } 5751 5752 return false; 5753 } 5754 5755 enum NullPointerValueKind { 5756 NPV_NotNullPointer, 5757 NPV_NullPointer, 5758 NPV_Error 5759 }; 5760 5761 /// Determine whether the given template argument is a null pointer 5762 /// value of the appropriate type. 5763 static NullPointerValueKind 5764 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 5765 QualType ParamType, Expr *Arg, 5766 Decl *Entity = nullptr) { 5767 if (Arg->isValueDependent() || Arg->isTypeDependent()) 5768 return NPV_NotNullPointer; 5769 5770 // dllimport'd entities aren't constant but are available inside of template 5771 // arguments. 5772 if (Entity && Entity->hasAttr<DLLImportAttr>()) 5773 return NPV_NotNullPointer; 5774 5775 if (!S.isCompleteType(Arg->getExprLoc(), ParamType)) 5776 llvm_unreachable( 5777 "Incomplete parameter type in isNullPointerValueTemplateArgument!"); 5778 5779 if (!S.getLangOpts().CPlusPlus11) 5780 return NPV_NotNullPointer; 5781 5782 // Determine whether we have a constant expression. 5783 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 5784 if (ArgRV.isInvalid()) 5785 return NPV_Error; 5786 Arg = ArgRV.get(); 5787 5788 Expr::EvalResult EvalResult; 5789 SmallVector<PartialDiagnosticAt, 8> Notes; 5790 EvalResult.Diag = &Notes; 5791 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 5792 EvalResult.HasSideEffects) { 5793 SourceLocation DiagLoc = Arg->getExprLoc(); 5794 5795 // If our only note is the usual "invalid subexpression" note, just point 5796 // the caret at its location rather than producing an essentially 5797 // redundant note. 5798 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 5799 diag::note_invalid_subexpr_in_const_expr) { 5800 DiagLoc = Notes[0].first; 5801 Notes.clear(); 5802 } 5803 5804 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 5805 << Arg->getType() << Arg->getSourceRange(); 5806 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 5807 S.Diag(Notes[I].first, Notes[I].second); 5808 5809 S.Diag(Param->getLocation(), diag::note_template_param_here); 5810 return NPV_Error; 5811 } 5812 5813 // C++11 [temp.arg.nontype]p1: 5814 // - an address constant expression of type std::nullptr_t 5815 if (Arg->getType()->isNullPtrType()) 5816 return NPV_NullPointer; 5817 5818 // - a constant expression that evaluates to a null pointer value (4.10); or 5819 // - a constant expression that evaluates to a null member pointer value 5820 // (4.11); or 5821 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 5822 (EvalResult.Val.isMemberPointer() && 5823 !EvalResult.Val.getMemberPointerDecl())) { 5824 // If our expression has an appropriate type, we've succeeded. 5825 bool ObjCLifetimeConversion; 5826 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 5827 S.IsQualificationConversion(Arg->getType(), ParamType, false, 5828 ObjCLifetimeConversion)) 5829 return NPV_NullPointer; 5830 5831 // The types didn't match, but we know we got a null pointer; complain, 5832 // then recover as if the types were correct. 5833 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 5834 << Arg->getType() << ParamType << Arg->getSourceRange(); 5835 S.Diag(Param->getLocation(), diag::note_template_param_here); 5836 return NPV_NullPointer; 5837 } 5838 5839 // If we don't have a null pointer value, but we do have a NULL pointer 5840 // constant, suggest a cast to the appropriate type. 5841 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 5842 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 5843 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 5844 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code) 5845 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()), 5846 ")"); 5847 S.Diag(Param->getLocation(), diag::note_template_param_here); 5848 return NPV_NullPointer; 5849 } 5850 5851 // FIXME: If we ever want to support general, address-constant expressions 5852 // as non-type template arguments, we should return the ExprResult here to 5853 // be interpreted by the caller. 5854 return NPV_NotNullPointer; 5855 } 5856 5857 /// Checks whether the given template argument is compatible with its 5858 /// template parameter. 5859 static bool CheckTemplateArgumentIsCompatibleWithParameter( 5860 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 5861 Expr *Arg, QualType ArgType) { 5862 bool ObjCLifetimeConversion; 5863 if (ParamType->isPointerType() && 5864 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() && 5865 S.IsQualificationConversion(ArgType, ParamType, false, 5866 ObjCLifetimeConversion)) { 5867 // For pointer-to-object types, qualification conversions are 5868 // permitted. 5869 } else { 5870 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 5871 if (!ParamRef->getPointeeType()->isFunctionType()) { 5872 // C++ [temp.arg.nontype]p5b3: 5873 // For a non-type template-parameter of type reference to 5874 // object, no conversions apply. The type referred to by the 5875 // reference may be more cv-qualified than the (otherwise 5876 // identical) type of the template- argument. The 5877 // template-parameter is bound directly to the 5878 // template-argument, which shall be an lvalue. 5879 5880 // FIXME: Other qualifiers? 5881 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 5882 unsigned ArgQuals = ArgType.getCVRQualifiers(); 5883 5884 if ((ParamQuals | ArgQuals) != ParamQuals) { 5885 S.Diag(Arg->getBeginLoc(), 5886 diag::err_template_arg_ref_bind_ignores_quals) 5887 << ParamType << Arg->getType() << Arg->getSourceRange(); 5888 S.Diag(Param->getLocation(), diag::note_template_param_here); 5889 return true; 5890 } 5891 } 5892 } 5893 5894 // At this point, the template argument refers to an object or 5895 // function with external linkage. We now need to check whether the 5896 // argument and parameter types are compatible. 5897 if (!S.Context.hasSameUnqualifiedType(ArgType, 5898 ParamType.getNonReferenceType())) { 5899 // We can't perform this conversion or binding. 5900 if (ParamType->isReferenceType()) 5901 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind) 5902 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 5903 else 5904 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 5905 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 5906 S.Diag(Param->getLocation(), diag::note_template_param_here); 5907 return true; 5908 } 5909 } 5910 5911 return false; 5912 } 5913 5914 /// Checks whether the given template argument is the address 5915 /// of an object or function according to C++ [temp.arg.nontype]p1. 5916 static bool 5917 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 5918 NonTypeTemplateParmDecl *Param, 5919 QualType ParamType, 5920 Expr *ArgIn, 5921 TemplateArgument &Converted) { 5922 bool Invalid = false; 5923 Expr *Arg = ArgIn; 5924 QualType ArgType = Arg->getType(); 5925 5926 bool AddressTaken = false; 5927 SourceLocation AddrOpLoc; 5928 if (S.getLangOpts().MicrosoftExt) { 5929 // Microsoft Visual C++ strips all casts, allows an arbitrary number of 5930 // dereference and address-of operators. 5931 Arg = Arg->IgnoreParenCasts(); 5932 5933 bool ExtWarnMSTemplateArg = false; 5934 UnaryOperatorKind FirstOpKind; 5935 SourceLocation FirstOpLoc; 5936 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 5937 UnaryOperatorKind UnOpKind = UnOp->getOpcode(); 5938 if (UnOpKind == UO_Deref) 5939 ExtWarnMSTemplateArg = true; 5940 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { 5941 Arg = UnOp->getSubExpr()->IgnoreParenCasts(); 5942 if (!AddrOpLoc.isValid()) { 5943 FirstOpKind = UnOpKind; 5944 FirstOpLoc = UnOp->getOperatorLoc(); 5945 } 5946 } else 5947 break; 5948 } 5949 if (FirstOpLoc.isValid()) { 5950 if (ExtWarnMSTemplateArg) 5951 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument) 5952 << ArgIn->getSourceRange(); 5953 5954 if (FirstOpKind == UO_AddrOf) 5955 AddressTaken = true; 5956 else if (Arg->getType()->isPointerType()) { 5957 // We cannot let pointers get dereferenced here, that is obviously not a 5958 // constant expression. 5959 assert(FirstOpKind == UO_Deref); 5960 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 5961 << Arg->getSourceRange(); 5962 } 5963 } 5964 } else { 5965 // See through any implicit casts we added to fix the type. 5966 Arg = Arg->IgnoreImpCasts(); 5967 5968 // C++ [temp.arg.nontype]p1: 5969 // 5970 // A template-argument for a non-type, non-template 5971 // template-parameter shall be one of: [...] 5972 // 5973 // -- the address of an object or function with external 5974 // linkage, including function templates and function 5975 // template-ids but excluding non-static class members, 5976 // expressed as & id-expression where the & is optional if 5977 // the name refers to a function or array, or if the 5978 // corresponding template-parameter is a reference; or 5979 5980 // In C++98/03 mode, give an extension warning on any extra parentheses. 5981 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 5982 bool ExtraParens = false; 5983 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 5984 if (!Invalid && !ExtraParens) { 5985 S.Diag(Arg->getBeginLoc(), 5986 S.getLangOpts().CPlusPlus11 5987 ? diag::warn_cxx98_compat_template_arg_extra_parens 5988 : diag::ext_template_arg_extra_parens) 5989 << Arg->getSourceRange(); 5990 ExtraParens = true; 5991 } 5992 5993 Arg = Parens->getSubExpr(); 5994 } 5995 5996 while (SubstNonTypeTemplateParmExpr *subst = 5997 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 5998 Arg = subst->getReplacement()->IgnoreImpCasts(); 5999 6000 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6001 if (UnOp->getOpcode() == UO_AddrOf) { 6002 Arg = UnOp->getSubExpr(); 6003 AddressTaken = true; 6004 AddrOpLoc = UnOp->getOperatorLoc(); 6005 } 6006 } 6007 6008 while (SubstNonTypeTemplateParmExpr *subst = 6009 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6010 Arg = subst->getReplacement()->IgnoreImpCasts(); 6011 } 6012 6013 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 6014 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; 6015 6016 // If our parameter has pointer type, check for a null template value. 6017 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 6018 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn, 6019 Entity)) { 6020 case NPV_NullPointer: 6021 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6022 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 6023 /*isNullPtr=*/true); 6024 return false; 6025 6026 case NPV_Error: 6027 return true; 6028 6029 case NPV_NotNullPointer: 6030 break; 6031 } 6032 } 6033 6034 // Stop checking the precise nature of the argument if it is value dependent, 6035 // it should be checked when instantiated. 6036 if (Arg->isValueDependent()) { 6037 Converted = TemplateArgument(ArgIn); 6038 return false; 6039 } 6040 6041 if (isa<CXXUuidofExpr>(Arg)) { 6042 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, 6043 ArgIn, Arg, ArgType)) 6044 return true; 6045 6046 Converted = TemplateArgument(ArgIn); 6047 return false; 6048 } 6049 6050 if (!DRE) { 6051 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6052 << Arg->getSourceRange(); 6053 S.Diag(Param->getLocation(), diag::note_template_param_here); 6054 return true; 6055 } 6056 6057 // Cannot refer to non-static data members 6058 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) { 6059 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field) 6060 << Entity << Arg->getSourceRange(); 6061 S.Diag(Param->getLocation(), diag::note_template_param_here); 6062 return true; 6063 } 6064 6065 // Cannot refer to non-static member functions 6066 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 6067 if (!Method->isStatic()) { 6068 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method) 6069 << Method << Arg->getSourceRange(); 6070 S.Diag(Param->getLocation(), diag::note_template_param_here); 6071 return true; 6072 } 6073 } 6074 6075 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 6076 VarDecl *Var = dyn_cast<VarDecl>(Entity); 6077 6078 // A non-type template argument must refer to an object or function. 6079 if (!Func && !Var) { 6080 // We found something, but we don't know specifically what it is. 6081 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func) 6082 << Arg->getSourceRange(); 6083 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 6084 return true; 6085 } 6086 6087 // Address / reference template args must have external linkage in C++98. 6088 if (Entity->getFormalLinkage() == InternalLinkage) { 6089 S.Diag(Arg->getBeginLoc(), 6090 S.getLangOpts().CPlusPlus11 6091 ? diag::warn_cxx98_compat_template_arg_object_internal 6092 : diag::ext_template_arg_object_internal) 6093 << !Func << Entity << Arg->getSourceRange(); 6094 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6095 << !Func; 6096 } else if (!Entity->hasLinkage()) { 6097 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage) 6098 << !Func << Entity << Arg->getSourceRange(); 6099 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6100 << !Func; 6101 return true; 6102 } 6103 6104 if (Func) { 6105 // If the template parameter has pointer type, the function decays. 6106 if (ParamType->isPointerType() && !AddressTaken) 6107 ArgType = S.Context.getPointerType(Func->getType()); 6108 else if (AddressTaken && ParamType->isReferenceType()) { 6109 // If we originally had an address-of operator, but the 6110 // parameter has reference type, complain and (if things look 6111 // like they will work) drop the address-of operator. 6112 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 6113 ParamType.getNonReferenceType())) { 6114 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6115 << ParamType; 6116 S.Diag(Param->getLocation(), diag::note_template_param_here); 6117 return true; 6118 } 6119 6120 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6121 << ParamType 6122 << FixItHint::CreateRemoval(AddrOpLoc); 6123 S.Diag(Param->getLocation(), diag::note_template_param_here); 6124 6125 ArgType = Func->getType(); 6126 } 6127 } else { 6128 // A value of reference type is not an object. 6129 if (Var->getType()->isReferenceType()) { 6130 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var) 6131 << Var->getType() << Arg->getSourceRange(); 6132 S.Diag(Param->getLocation(), diag::note_template_param_here); 6133 return true; 6134 } 6135 6136 // A template argument must have static storage duration. 6137 if (Var->getTLSKind()) { 6138 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local) 6139 << Arg->getSourceRange(); 6140 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 6141 return true; 6142 } 6143 6144 // If the template parameter has pointer type, we must have taken 6145 // the address of this object. 6146 if (ParamType->isReferenceType()) { 6147 if (AddressTaken) { 6148 // If we originally had an address-of operator, but the 6149 // parameter has reference type, complain and (if things look 6150 // like they will work) drop the address-of operator. 6151 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 6152 ParamType.getNonReferenceType())) { 6153 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6154 << ParamType; 6155 S.Diag(Param->getLocation(), diag::note_template_param_here); 6156 return true; 6157 } 6158 6159 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6160 << ParamType 6161 << FixItHint::CreateRemoval(AddrOpLoc); 6162 S.Diag(Param->getLocation(), diag::note_template_param_here); 6163 6164 ArgType = Var->getType(); 6165 } 6166 } else if (!AddressTaken && ParamType->isPointerType()) { 6167 if (Var->getType()->isArrayType()) { 6168 // Array-to-pointer decay. 6169 ArgType = S.Context.getArrayDecayedType(Var->getType()); 6170 } else { 6171 // If the template parameter has pointer type but the address of 6172 // this object was not taken, complain and (possibly) recover by 6173 // taking the address of the entity. 6174 ArgType = S.Context.getPointerType(Var->getType()); 6175 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 6176 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6177 << ParamType; 6178 S.Diag(Param->getLocation(), diag::note_template_param_here); 6179 return true; 6180 } 6181 6182 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6183 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&"); 6184 6185 S.Diag(Param->getLocation(), diag::note_template_param_here); 6186 } 6187 } 6188 } 6189 6190 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, 6191 Arg, ArgType)) 6192 return true; 6193 6194 // Create the template argument. 6195 Converted = 6196 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType); 6197 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false); 6198 return false; 6199 } 6200 6201 /// Checks whether the given template argument is a pointer to 6202 /// member constant according to C++ [temp.arg.nontype]p1. 6203 static bool CheckTemplateArgumentPointerToMember(Sema &S, 6204 NonTypeTemplateParmDecl *Param, 6205 QualType ParamType, 6206 Expr *&ResultArg, 6207 TemplateArgument &Converted) { 6208 bool Invalid = false; 6209 6210 Expr *Arg = ResultArg; 6211 bool ObjCLifetimeConversion; 6212 6213 // C++ [temp.arg.nontype]p1: 6214 // 6215 // A template-argument for a non-type, non-template 6216 // template-parameter shall be one of: [...] 6217 // 6218 // -- a pointer to member expressed as described in 5.3.1. 6219 DeclRefExpr *DRE = nullptr; 6220 6221 // In C++98/03 mode, give an extension warning on any extra parentheses. 6222 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6223 bool ExtraParens = false; 6224 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6225 if (!Invalid && !ExtraParens) { 6226 S.Diag(Arg->getBeginLoc(), 6227 S.getLangOpts().CPlusPlus11 6228 ? diag::warn_cxx98_compat_template_arg_extra_parens 6229 : diag::ext_template_arg_extra_parens) 6230 << Arg->getSourceRange(); 6231 ExtraParens = true; 6232 } 6233 6234 Arg = Parens->getSubExpr(); 6235 } 6236 6237 while (SubstNonTypeTemplateParmExpr *subst = 6238 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6239 Arg = subst->getReplacement()->IgnoreImpCasts(); 6240 6241 // A pointer-to-member constant written &Class::member. 6242 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6243 if (UnOp->getOpcode() == UO_AddrOf) { 6244 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 6245 if (DRE && !DRE->getQualifier()) 6246 DRE = nullptr; 6247 } 6248 } 6249 // A constant of pointer-to-member type. 6250 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 6251 ValueDecl *VD = DRE->getDecl(); 6252 if (VD->getType()->isMemberPointerType()) { 6253 if (isa<NonTypeTemplateParmDecl>(VD)) { 6254 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6255 Converted = TemplateArgument(Arg); 6256 } else { 6257 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 6258 Converted = TemplateArgument(VD, ParamType); 6259 } 6260 return Invalid; 6261 } 6262 } 6263 6264 DRE = nullptr; 6265 } 6266 6267 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; 6268 6269 // Check for a null pointer value. 6270 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg, 6271 Entity)) { 6272 case NPV_Error: 6273 return true; 6274 case NPV_NullPointer: 6275 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6276 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 6277 /*isNullPtr*/true); 6278 return false; 6279 case NPV_NotNullPointer: 6280 break; 6281 } 6282 6283 if (S.IsQualificationConversion(ResultArg->getType(), 6284 ParamType.getNonReferenceType(), false, 6285 ObjCLifetimeConversion)) { 6286 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp, 6287 ResultArg->getValueKind()) 6288 .get(); 6289 } else if (!S.Context.hasSameUnqualifiedType( 6290 ResultArg->getType(), ParamType.getNonReferenceType())) { 6291 // We can't perform this conversion. 6292 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible) 6293 << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); 6294 S.Diag(Param->getLocation(), diag::note_template_param_here); 6295 return true; 6296 } 6297 6298 if (!DRE) 6299 return S.Diag(Arg->getBeginLoc(), 6300 diag::err_template_arg_not_pointer_to_member_form) 6301 << Arg->getSourceRange(); 6302 6303 if (isa<FieldDecl>(DRE->getDecl()) || 6304 isa<IndirectFieldDecl>(DRE->getDecl()) || 6305 isa<CXXMethodDecl>(DRE->getDecl())) { 6306 assert((isa<FieldDecl>(DRE->getDecl()) || 6307 isa<IndirectFieldDecl>(DRE->getDecl()) || 6308 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 6309 "Only non-static member pointers can make it here"); 6310 6311 // Okay: this is the address of a non-static member, and therefore 6312 // a member pointer constant. 6313 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6314 Converted = TemplateArgument(Arg); 6315 } else { 6316 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 6317 Converted = TemplateArgument(D, ParamType); 6318 } 6319 return Invalid; 6320 } 6321 6322 // We found something else, but we don't know specifically what it is. 6323 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form) 6324 << Arg->getSourceRange(); 6325 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 6326 return true; 6327 } 6328 6329 /// Check a template argument against its corresponding 6330 /// non-type template parameter. 6331 /// 6332 /// This routine implements the semantics of C++ [temp.arg.nontype]. 6333 /// If an error occurred, it returns ExprError(); otherwise, it 6334 /// returns the converted template argument. \p ParamType is the 6335 /// type of the non-type template parameter after it has been instantiated. 6336 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 6337 QualType ParamType, Expr *Arg, 6338 TemplateArgument &Converted, 6339 CheckTemplateArgumentKind CTAK) { 6340 SourceLocation StartLoc = Arg->getBeginLoc(); 6341 6342 // If the parameter type somehow involves auto, deduce the type now. 6343 if (getLangOpts().CPlusPlus17 && ParamType->isUndeducedType()) { 6344 // During template argument deduction, we allow 'decltype(auto)' to 6345 // match an arbitrary dependent argument. 6346 // FIXME: The language rules don't say what happens in this case. 6347 // FIXME: We get an opaque dependent type out of decltype(auto) if the 6348 // expression is merely instantiation-dependent; is this enough? 6349 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) { 6350 auto *AT = dyn_cast<AutoType>(ParamType); 6351 if (AT && AT->isDecltypeAuto()) { 6352 Converted = TemplateArgument(Arg); 6353 return Arg; 6354 } 6355 } 6356 6357 // When checking a deduced template argument, deduce from its type even if 6358 // the type is dependent, in order to check the types of non-type template 6359 // arguments line up properly in partial ordering. 6360 Optional<unsigned> Depth = Param->getDepth() + 1; 6361 Expr *DeductionArg = Arg; 6362 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg)) 6363 DeductionArg = PE->getPattern(); 6364 if (DeduceAutoType( 6365 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()), 6366 DeductionArg, ParamType, Depth) == DAR_Failed) { 6367 Diag(Arg->getExprLoc(), 6368 diag::err_non_type_template_parm_type_deduction_failure) 6369 << Param->getDeclName() << Param->getType() << Arg->getType() 6370 << Arg->getSourceRange(); 6371 Diag(Param->getLocation(), diag::note_template_param_here); 6372 return ExprError(); 6373 } 6374 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's 6375 // an error. The error message normally references the parameter 6376 // declaration, but here we'll pass the argument location because that's 6377 // where the parameter type is deduced. 6378 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc()); 6379 if (ParamType.isNull()) { 6380 Diag(Param->getLocation(), diag::note_template_param_here); 6381 return ExprError(); 6382 } 6383 } 6384 6385 // We should have already dropped all cv-qualifiers by now. 6386 assert(!ParamType.hasQualifiers() && 6387 "non-type template parameter type cannot be qualified"); 6388 6389 if (CTAK == CTAK_Deduced && 6390 !Context.hasSameType(ParamType.getNonLValueExprType(Context), 6391 Arg->getType())) { 6392 // FIXME: If either type is dependent, we skip the check. This isn't 6393 // correct, since during deduction we're supposed to have replaced each 6394 // template parameter with some unique (non-dependent) placeholder. 6395 // FIXME: If the argument type contains 'auto', we carry on and fail the 6396 // type check in order to force specific types to be more specialized than 6397 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to 6398 // work. 6399 if ((ParamType->isDependentType() || Arg->isTypeDependent()) && 6400 !Arg->getType()->getContainedAutoType()) { 6401 Converted = TemplateArgument(Arg); 6402 return Arg; 6403 } 6404 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, 6405 // we should actually be checking the type of the template argument in P, 6406 // not the type of the template argument deduced from A, against the 6407 // template parameter type. 6408 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 6409 << Arg->getType() 6410 << ParamType.getUnqualifiedType(); 6411 Diag(Param->getLocation(), diag::note_template_param_here); 6412 return ExprError(); 6413 } 6414 6415 // If either the parameter has a dependent type or the argument is 6416 // type-dependent, there's nothing we can check now. The argument only 6417 // contains an unexpanded pack during partial ordering, and there's 6418 // nothing more we can check in that case. 6419 if (ParamType->isDependentType() || Arg->isTypeDependent() || 6420 Arg->containsUnexpandedParameterPack()) { 6421 // Force the argument to the type of the parameter to maintain invariants. 6422 auto *PE = dyn_cast<PackExpansionExpr>(Arg); 6423 if (PE) 6424 Arg = PE->getPattern(); 6425 ExprResult E = ImpCastExprToType( 6426 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent, 6427 ParamType->isLValueReferenceType() ? VK_LValue : 6428 ParamType->isRValueReferenceType() ? VK_XValue : VK_RValue); 6429 if (E.isInvalid()) 6430 return ExprError(); 6431 if (PE) { 6432 // Recreate a pack expansion if we unwrapped one. 6433 E = new (Context) 6434 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(), 6435 PE->getNumExpansions()); 6436 } 6437 Converted = TemplateArgument(E.get()); 6438 return E; 6439 } 6440 6441 // The initialization of the parameter from the argument is 6442 // a constant-evaluated context. 6443 EnterExpressionEvaluationContext ConstantEvaluated( 6444 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 6445 6446 if (getLangOpts().CPlusPlus17) { 6447 // C++17 [temp.arg.nontype]p1: 6448 // A template-argument for a non-type template parameter shall be 6449 // a converted constant expression of the type of the template-parameter. 6450 APValue Value; 6451 ExprResult ArgResult = CheckConvertedConstantExpression( 6452 Arg, ParamType, Value, CCEK_TemplateArg); 6453 if (ArgResult.isInvalid()) 6454 return ExprError(); 6455 6456 // For a value-dependent argument, CheckConvertedConstantExpression is 6457 // permitted (and expected) to be unable to determine a value. 6458 if (ArgResult.get()->isValueDependent()) { 6459 Converted = TemplateArgument(ArgResult.get()); 6460 return ArgResult; 6461 } 6462 6463 QualType CanonParamType = Context.getCanonicalType(ParamType); 6464 6465 // Convert the APValue to a TemplateArgument. 6466 switch (Value.getKind()) { 6467 case APValue::None: 6468 assert(ParamType->isNullPtrType()); 6469 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true); 6470 break; 6471 case APValue::Indeterminate: 6472 llvm_unreachable("result of constant evaluation should be initialized"); 6473 break; 6474 case APValue::Int: 6475 assert(ParamType->isIntegralOrEnumerationType()); 6476 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType); 6477 break; 6478 case APValue::MemberPointer: { 6479 assert(ParamType->isMemberPointerType()); 6480 6481 // FIXME: We need TemplateArgument representation and mangling for these. 6482 if (!Value.getMemberPointerPath().empty()) { 6483 Diag(Arg->getBeginLoc(), 6484 diag::err_template_arg_member_ptr_base_derived_not_supported) 6485 << Value.getMemberPointerDecl() << ParamType 6486 << Arg->getSourceRange(); 6487 return ExprError(); 6488 } 6489 6490 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl()); 6491 Converted = VD ? TemplateArgument(VD, CanonParamType) 6492 : TemplateArgument(CanonParamType, /*isNullPtr*/true); 6493 break; 6494 } 6495 case APValue::LValue: { 6496 // For a non-type template-parameter of pointer or reference type, 6497 // the value of the constant expression shall not refer to 6498 assert(ParamType->isPointerType() || ParamType->isReferenceType() || 6499 ParamType->isNullPtrType()); 6500 // -- a temporary object 6501 // -- a string literal 6502 // -- the result of a typeid expression, or 6503 // -- a predefined __func__ variable 6504 APValue::LValueBase Base = Value.getLValueBase(); 6505 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>()); 6506 if (Base && !VD) { 6507 auto *E = Base.dyn_cast<const Expr *>(); 6508 if (E && isa<CXXUuidofExpr>(E)) { 6509 Converted = TemplateArgument(ArgResult.get()->IgnoreImpCasts()); 6510 break; 6511 } 6512 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6513 << Arg->getSourceRange(); 6514 return ExprError(); 6515 } 6516 // -- a subobject 6517 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && 6518 VD && VD->getType()->isArrayType() && 6519 Value.getLValuePath()[0].getAsArrayIndex() == 0 && 6520 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { 6521 // Per defect report (no number yet): 6522 // ... other than a pointer to the first element of a complete array 6523 // object. 6524 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() || 6525 Value.isLValueOnePastTheEnd()) { 6526 Diag(StartLoc, diag::err_non_type_template_arg_subobject) 6527 << Value.getAsString(Context, ParamType); 6528 return ExprError(); 6529 } 6530 assert((VD || !ParamType->isReferenceType()) && 6531 "null reference should not be a constant expression"); 6532 assert((!VD || !ParamType->isNullPtrType()) && 6533 "non-null value of type nullptr_t?"); 6534 Converted = VD ? TemplateArgument(VD, CanonParamType) 6535 : TemplateArgument(CanonParamType, /*isNullPtr*/true); 6536 break; 6537 } 6538 case APValue::AddrLabelDiff: 6539 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); 6540 case APValue::FixedPoint: 6541 case APValue::Float: 6542 case APValue::ComplexInt: 6543 case APValue::ComplexFloat: 6544 case APValue::Vector: 6545 case APValue::Array: 6546 case APValue::Struct: 6547 case APValue::Union: 6548 llvm_unreachable("invalid kind for template argument"); 6549 } 6550 6551 return ArgResult.get(); 6552 } 6553 6554 // C++ [temp.arg.nontype]p5: 6555 // The following conversions are performed on each expression used 6556 // as a non-type template-argument. If a non-type 6557 // template-argument cannot be converted to the type of the 6558 // corresponding template-parameter then the program is 6559 // ill-formed. 6560 if (ParamType->isIntegralOrEnumerationType()) { 6561 // C++11: 6562 // -- for a non-type template-parameter of integral or 6563 // enumeration type, conversions permitted in a converted 6564 // constant expression are applied. 6565 // 6566 // C++98: 6567 // -- for a non-type template-parameter of integral or 6568 // enumeration type, integral promotions (4.5) and integral 6569 // conversions (4.7) are applied. 6570 6571 if (getLangOpts().CPlusPlus11) { 6572 // C++ [temp.arg.nontype]p1: 6573 // A template-argument for a non-type, non-template template-parameter 6574 // shall be one of: 6575 // 6576 // -- for a non-type template-parameter of integral or enumeration 6577 // type, a converted constant expression of the type of the 6578 // template-parameter; or 6579 llvm::APSInt Value; 6580 ExprResult ArgResult = 6581 CheckConvertedConstantExpression(Arg, ParamType, Value, 6582 CCEK_TemplateArg); 6583 if (ArgResult.isInvalid()) 6584 return ExprError(); 6585 6586 // We can't check arbitrary value-dependent arguments. 6587 if (ArgResult.get()->isValueDependent()) { 6588 Converted = TemplateArgument(ArgResult.get()); 6589 return ArgResult; 6590 } 6591 6592 // Widen the argument value to sizeof(parameter type). This is almost 6593 // always a no-op, except when the parameter type is bool. In 6594 // that case, this may extend the argument from 1 bit to 8 bits. 6595 QualType IntegerType = ParamType; 6596 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 6597 IntegerType = Enum->getDecl()->getIntegerType(); 6598 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 6599 6600 Converted = TemplateArgument(Context, Value, 6601 Context.getCanonicalType(ParamType)); 6602 return ArgResult; 6603 } 6604 6605 ExprResult ArgResult = DefaultLvalueConversion(Arg); 6606 if (ArgResult.isInvalid()) 6607 return ExprError(); 6608 Arg = ArgResult.get(); 6609 6610 QualType ArgType = Arg->getType(); 6611 6612 // C++ [temp.arg.nontype]p1: 6613 // A template-argument for a non-type, non-template 6614 // template-parameter shall be one of: 6615 // 6616 // -- an integral constant-expression of integral or enumeration 6617 // type; or 6618 // -- the name of a non-type template-parameter; or 6619 llvm::APSInt Value; 6620 if (!ArgType->isIntegralOrEnumerationType()) { 6621 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral) 6622 << ArgType << Arg->getSourceRange(); 6623 Diag(Param->getLocation(), diag::note_template_param_here); 6624 return ExprError(); 6625 } else if (!Arg->isValueDependent()) { 6626 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 6627 QualType T; 6628 6629 public: 6630 TmplArgICEDiagnoser(QualType T) : T(T) { } 6631 6632 void diagnoseNotICE(Sema &S, SourceLocation Loc, 6633 SourceRange SR) override { 6634 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR; 6635 } 6636 } Diagnoser(ArgType); 6637 6638 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser, 6639 false).get(); 6640 if (!Arg) 6641 return ExprError(); 6642 } 6643 6644 // From here on out, all we care about is the unqualified form 6645 // of the argument type. 6646 ArgType = ArgType.getUnqualifiedType(); 6647 6648 // Try to convert the argument to the parameter's type. 6649 if (Context.hasSameType(ParamType, ArgType)) { 6650 // Okay: no conversion necessary 6651 } else if (ParamType->isBooleanType()) { 6652 // This is an integral-to-boolean conversion. 6653 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get(); 6654 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 6655 !ParamType->isEnumeralType()) { 6656 // This is an integral promotion or conversion. 6657 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get(); 6658 } else { 6659 // We can't perform this conversion. 6660 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 6661 << Arg->getType() << ParamType << Arg->getSourceRange(); 6662 Diag(Param->getLocation(), diag::note_template_param_here); 6663 return ExprError(); 6664 } 6665 6666 // Add the value of this argument to the list of converted 6667 // arguments. We use the bitwidth and signedness of the template 6668 // parameter. 6669 if (Arg->isValueDependent()) { 6670 // The argument is value-dependent. Create a new 6671 // TemplateArgument with the converted expression. 6672 Converted = TemplateArgument(Arg); 6673 return Arg; 6674 } 6675 6676 QualType IntegerType = Context.getCanonicalType(ParamType); 6677 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 6678 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 6679 6680 if (ParamType->isBooleanType()) { 6681 // Value must be zero or one. 6682 Value = Value != 0; 6683 unsigned AllowedBits = Context.getTypeSize(IntegerType); 6684 if (Value.getBitWidth() != AllowedBits) 6685 Value = Value.extOrTrunc(AllowedBits); 6686 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 6687 } else { 6688 llvm::APSInt OldValue = Value; 6689 6690 // Coerce the template argument's value to the value it will have 6691 // based on the template parameter's type. 6692 unsigned AllowedBits = Context.getTypeSize(IntegerType); 6693 if (Value.getBitWidth() != AllowedBits) 6694 Value = Value.extOrTrunc(AllowedBits); 6695 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 6696 6697 // Complain if an unsigned parameter received a negative value. 6698 if (IntegerType->isUnsignedIntegerOrEnumerationType() 6699 && (OldValue.isSigned() && OldValue.isNegative())) { 6700 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative) 6701 << OldValue.toString(10) << Value.toString(10) << Param->getType() 6702 << Arg->getSourceRange(); 6703 Diag(Param->getLocation(), diag::note_template_param_here); 6704 } 6705 6706 // Complain if we overflowed the template parameter's type. 6707 unsigned RequiredBits; 6708 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 6709 RequiredBits = OldValue.getActiveBits(); 6710 else if (OldValue.isUnsigned()) 6711 RequiredBits = OldValue.getActiveBits() + 1; 6712 else 6713 RequiredBits = OldValue.getMinSignedBits(); 6714 if (RequiredBits > AllowedBits) { 6715 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large) 6716 << OldValue.toString(10) << Value.toString(10) << Param->getType() 6717 << Arg->getSourceRange(); 6718 Diag(Param->getLocation(), diag::note_template_param_here); 6719 } 6720 } 6721 6722 Converted = TemplateArgument(Context, Value, 6723 ParamType->isEnumeralType() 6724 ? Context.getCanonicalType(ParamType) 6725 : IntegerType); 6726 return Arg; 6727 } 6728 6729 QualType ArgType = Arg->getType(); 6730 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 6731 6732 // Handle pointer-to-function, reference-to-function, and 6733 // pointer-to-member-function all in (roughly) the same way. 6734 if (// -- For a non-type template-parameter of type pointer to 6735 // function, only the function-to-pointer conversion (4.3) is 6736 // applied. If the template-argument represents a set of 6737 // overloaded functions (or a pointer to such), the matching 6738 // function is selected from the set (13.4). 6739 (ParamType->isPointerType() && 6740 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) || 6741 // -- For a non-type template-parameter of type reference to 6742 // function, no conversions apply. If the template-argument 6743 // represents a set of overloaded functions, the matching 6744 // function is selected from the set (13.4). 6745 (ParamType->isReferenceType() && 6746 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 6747 // -- For a non-type template-parameter of type pointer to 6748 // member function, no conversions apply. If the 6749 // template-argument represents a set of overloaded member 6750 // functions, the matching member function is selected from 6751 // the set (13.4). 6752 (ParamType->isMemberPointerType() && 6753 ParamType->castAs<MemberPointerType>()->getPointeeType() 6754 ->isFunctionType())) { 6755 6756 if (Arg->getType() == Context.OverloadTy) { 6757 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 6758 true, 6759 FoundResult)) { 6760 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 6761 return ExprError(); 6762 6763 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 6764 ArgType = Arg->getType(); 6765 } else 6766 return ExprError(); 6767 } 6768 6769 if (!ParamType->isMemberPointerType()) { 6770 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 6771 ParamType, 6772 Arg, Converted)) 6773 return ExprError(); 6774 return Arg; 6775 } 6776 6777 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 6778 Converted)) 6779 return ExprError(); 6780 return Arg; 6781 } 6782 6783 if (ParamType->isPointerType()) { 6784 // -- for a non-type template-parameter of type pointer to 6785 // object, qualification conversions (4.4) and the 6786 // array-to-pointer conversion (4.2) are applied. 6787 // C++0x also allows a value of std::nullptr_t. 6788 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 6789 "Only object pointers allowed here"); 6790 6791 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 6792 ParamType, 6793 Arg, Converted)) 6794 return ExprError(); 6795 return Arg; 6796 } 6797 6798 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 6799 // -- For a non-type template-parameter of type reference to 6800 // object, no conversions apply. The type referred to by the 6801 // reference may be more cv-qualified than the (otherwise 6802 // identical) type of the template-argument. The 6803 // template-parameter is bound directly to the 6804 // template-argument, which must be an lvalue. 6805 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 6806 "Only object references allowed here"); 6807 6808 if (Arg->getType() == Context.OverloadTy) { 6809 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 6810 ParamRefType->getPointeeType(), 6811 true, 6812 FoundResult)) { 6813 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 6814 return ExprError(); 6815 6816 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 6817 ArgType = Arg->getType(); 6818 } else 6819 return ExprError(); 6820 } 6821 6822 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 6823 ParamType, 6824 Arg, Converted)) 6825 return ExprError(); 6826 return Arg; 6827 } 6828 6829 // Deal with parameters of type std::nullptr_t. 6830 if (ParamType->isNullPtrType()) { 6831 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6832 Converted = TemplateArgument(Arg); 6833 return Arg; 6834 } 6835 6836 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 6837 case NPV_NotNullPointer: 6838 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 6839 << Arg->getType() << ParamType; 6840 Diag(Param->getLocation(), diag::note_template_param_here); 6841 return ExprError(); 6842 6843 case NPV_Error: 6844 return ExprError(); 6845 6846 case NPV_NullPointer: 6847 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6848 Converted = TemplateArgument(Context.getCanonicalType(ParamType), 6849 /*isNullPtr*/true); 6850 return Arg; 6851 } 6852 } 6853 6854 // -- For a non-type template-parameter of type pointer to data 6855 // member, qualification conversions (4.4) are applied. 6856 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 6857 6858 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 6859 Converted)) 6860 return ExprError(); 6861 return Arg; 6862 } 6863 6864 static void DiagnoseTemplateParameterListArityMismatch( 6865 Sema &S, TemplateParameterList *New, TemplateParameterList *Old, 6866 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); 6867 6868 /// Check a template argument against its corresponding 6869 /// template template parameter. 6870 /// 6871 /// This routine implements the semantics of C++ [temp.arg.template]. 6872 /// It returns true if an error occurred, and false otherwise. 6873 bool Sema::CheckTemplateTemplateArgument(TemplateParameterList *Params, 6874 TemplateArgumentLoc &Arg) { 6875 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 6876 TemplateDecl *Template = Name.getAsTemplateDecl(); 6877 if (!Template) { 6878 // Any dependent template name is fine. 6879 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 6880 return false; 6881 } 6882 6883 if (Template->isInvalidDecl()) 6884 return true; 6885 6886 // C++0x [temp.arg.template]p1: 6887 // A template-argument for a template template-parameter shall be 6888 // the name of a class template or an alias template, expressed as an 6889 // id-expression. When the template-argument names a class template, only 6890 // primary class templates are considered when matching the 6891 // template template argument with the corresponding parameter; 6892 // partial specializations are not considered even if their 6893 // parameter lists match that of the template template parameter. 6894 // 6895 // Note that we also allow template template parameters here, which 6896 // will happen when we are dealing with, e.g., class template 6897 // partial specializations. 6898 if (!isa<ClassTemplateDecl>(Template) && 6899 !isa<TemplateTemplateParmDecl>(Template) && 6900 !isa<TypeAliasTemplateDecl>(Template) && 6901 !isa<BuiltinTemplateDecl>(Template)) { 6902 assert(isa<FunctionTemplateDecl>(Template) && 6903 "Only function templates are possible here"); 6904 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template); 6905 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 6906 << Template; 6907 } 6908 6909 // C++1z [temp.arg.template]p3: (DR 150) 6910 // A template-argument matches a template template-parameter P when P 6911 // is at least as specialized as the template-argument A. 6912 if (getLangOpts().RelaxedTemplateTemplateArgs) { 6913 // Quick check for the common case: 6914 // If P contains a parameter pack, then A [...] matches P if each of A's 6915 // template parameters matches the corresponding template parameter in 6916 // the template-parameter-list of P. 6917 if (TemplateParameterListsAreEqual( 6918 Template->getTemplateParameters(), Params, false, 6919 TPL_TemplateTemplateArgumentMatch, Arg.getLocation())) 6920 return false; 6921 6922 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template, 6923 Arg.getLocation())) 6924 return false; 6925 // FIXME: Produce better diagnostics for deduction failures. 6926 } 6927 6928 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 6929 Params, 6930 true, 6931 TPL_TemplateTemplateArgumentMatch, 6932 Arg.getLocation()); 6933 } 6934 6935 /// Given a non-type template argument that refers to a 6936 /// declaration and the type of its corresponding non-type template 6937 /// parameter, produce an expression that properly refers to that 6938 /// declaration. 6939 ExprResult 6940 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 6941 QualType ParamType, 6942 SourceLocation Loc) { 6943 // C++ [temp.param]p8: 6944 // 6945 // A non-type template-parameter of type "array of T" or 6946 // "function returning T" is adjusted to be of type "pointer to 6947 // T" or "pointer to function returning T", respectively. 6948 if (ParamType->isArrayType()) 6949 ParamType = Context.getArrayDecayedType(ParamType); 6950 else if (ParamType->isFunctionType()) 6951 ParamType = Context.getPointerType(ParamType); 6952 6953 // For a NULL non-type template argument, return nullptr casted to the 6954 // parameter's type. 6955 if (Arg.getKind() == TemplateArgument::NullPtr) { 6956 return ImpCastExprToType( 6957 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 6958 ParamType, 6959 ParamType->getAs<MemberPointerType>() 6960 ? CK_NullToMemberPointer 6961 : CK_NullToPointer); 6962 } 6963 assert(Arg.getKind() == TemplateArgument::Declaration && 6964 "Only declaration template arguments permitted here"); 6965 6966 ValueDecl *VD = Arg.getAsDecl(); 6967 6968 if (VD->getDeclContext()->isRecord() && 6969 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || 6970 isa<IndirectFieldDecl>(VD))) { 6971 // If the value is a class member, we might have a pointer-to-member. 6972 // Determine whether the non-type template template parameter is of 6973 // pointer-to-member type. If so, we need to build an appropriate 6974 // expression for a pointer-to-member, since a "normal" DeclRefExpr 6975 // would refer to the member itself. 6976 if (ParamType->isMemberPointerType()) { 6977 QualType ClassType 6978 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 6979 NestedNameSpecifier *Qualifier 6980 = NestedNameSpecifier::Create(Context, nullptr, false, 6981 ClassType.getTypePtr()); 6982 CXXScopeSpec SS; 6983 SS.MakeTrivial(Context, Qualifier, Loc); 6984 6985 // The actual value-ness of this is unimportant, but for 6986 // internal consistency's sake, references to instance methods 6987 // are r-values. 6988 ExprValueKind VK = VK_LValue; 6989 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 6990 VK = VK_RValue; 6991 6992 ExprResult RefExpr = BuildDeclRefExpr(VD, 6993 VD->getType().getNonReferenceType(), 6994 VK, 6995 Loc, 6996 &SS); 6997 if (RefExpr.isInvalid()) 6998 return ExprError(); 6999 7000 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 7001 7002 // We might need to perform a trailing qualification conversion, since 7003 // the element type on the parameter could be more qualified than the 7004 // element type in the expression we constructed. 7005 bool ObjCLifetimeConversion; 7006 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 7007 ParamType.getUnqualifiedType(), false, 7008 ObjCLifetimeConversion)) 7009 RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp); 7010 7011 assert(!RefExpr.isInvalid() && 7012 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 7013 ParamType.getUnqualifiedType())); 7014 return RefExpr; 7015 } 7016 } 7017 7018 QualType T = VD->getType().getNonReferenceType(); 7019 7020 if (ParamType->isPointerType()) { 7021 // When the non-type template parameter is a pointer, take the 7022 // address of the declaration. 7023 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 7024 if (RefExpr.isInvalid()) 7025 return ExprError(); 7026 7027 if (!Context.hasSameUnqualifiedType(ParamType->getPointeeType(), T) && 7028 (T->isFunctionType() || T->isArrayType())) { 7029 // Decay functions and arrays unless we're forming a pointer to array. 7030 RefExpr = DefaultFunctionArrayConversion(RefExpr.get()); 7031 if (RefExpr.isInvalid()) 7032 return ExprError(); 7033 7034 return RefExpr; 7035 } 7036 7037 // Take the address of everything else 7038 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 7039 } 7040 7041 ExprValueKind VK = VK_RValue; 7042 7043 // If the non-type template parameter has reference type, qualify the 7044 // resulting declaration reference with the extra qualifiers on the 7045 // type that the reference refers to. 7046 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 7047 VK = VK_LValue; 7048 T = Context.getQualifiedType(T, 7049 TargetRef->getPointeeType().getQualifiers()); 7050 } else if (isa<FunctionDecl>(VD)) { 7051 // References to functions are always lvalues. 7052 VK = VK_LValue; 7053 } 7054 7055 return BuildDeclRefExpr(VD, T, VK, Loc); 7056 } 7057 7058 /// Construct a new expression that refers to the given 7059 /// integral template argument with the given source-location 7060 /// information. 7061 /// 7062 /// This routine takes care of the mapping from an integral template 7063 /// argument (which may have any integral type) to the appropriate 7064 /// literal value. 7065 ExprResult 7066 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 7067 SourceLocation Loc) { 7068 assert(Arg.getKind() == TemplateArgument::Integral && 7069 "Operation is only valid for integral template arguments"); 7070 QualType OrigT = Arg.getIntegralType(); 7071 7072 // If this is an enum type that we're instantiating, we need to use an integer 7073 // type the same size as the enumerator. We don't want to build an 7074 // IntegerLiteral with enum type. The integer type of an enum type can be of 7075 // any integral type with C++11 enum classes, make sure we create the right 7076 // type of literal for it. 7077 QualType T = OrigT; 7078 if (const EnumType *ET = OrigT->getAs<EnumType>()) 7079 T = ET->getDecl()->getIntegerType(); 7080 7081 Expr *E; 7082 if (T->isAnyCharacterType()) { 7083 CharacterLiteral::CharacterKind Kind; 7084 if (T->isWideCharType()) 7085 Kind = CharacterLiteral::Wide; 7086 else if (T->isChar8Type() && getLangOpts().Char8) 7087 Kind = CharacterLiteral::UTF8; 7088 else if (T->isChar16Type()) 7089 Kind = CharacterLiteral::UTF16; 7090 else if (T->isChar32Type()) 7091 Kind = CharacterLiteral::UTF32; 7092 else 7093 Kind = CharacterLiteral::Ascii; 7094 7095 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), 7096 Kind, T, Loc); 7097 } else if (T->isBooleanType()) { 7098 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), 7099 T, Loc); 7100 } else if (T->isNullPtrType()) { 7101 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 7102 } else { 7103 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); 7104 } 7105 7106 if (OrigT->isEnumeralType()) { 7107 // FIXME: This is a hack. We need a better way to handle substituted 7108 // non-type template parameters. 7109 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 7110 nullptr, 7111 Context.getTrivialTypeSourceInfo(OrigT, Loc), 7112 Loc, Loc); 7113 } 7114 7115 return E; 7116 } 7117 7118 /// Match two template parameters within template parameter lists. 7119 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 7120 bool Complain, 7121 Sema::TemplateParameterListEqualKind Kind, 7122 SourceLocation TemplateArgLoc) { 7123 // Check the actual kind (type, non-type, template). 7124 if (Old->getKind() != New->getKind()) { 7125 if (Complain) { 7126 unsigned NextDiag = diag::err_template_param_different_kind; 7127 if (TemplateArgLoc.isValid()) { 7128 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7129 NextDiag = diag::note_template_param_different_kind; 7130 } 7131 S.Diag(New->getLocation(), NextDiag) 7132 << (Kind != Sema::TPL_TemplateMatch); 7133 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 7134 << (Kind != Sema::TPL_TemplateMatch); 7135 } 7136 7137 return false; 7138 } 7139 7140 // Check that both are parameter packs or neither are parameter packs. 7141 // However, if we are matching a template template argument to a 7142 // template template parameter, the template template parameter can have 7143 // a parameter pack where the template template argument does not. 7144 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 7145 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 7146 Old->isTemplateParameterPack())) { 7147 if (Complain) { 7148 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 7149 if (TemplateArgLoc.isValid()) { 7150 S.Diag(TemplateArgLoc, 7151 diag::err_template_arg_template_params_mismatch); 7152 NextDiag = diag::note_template_parameter_pack_non_pack; 7153 } 7154 7155 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 7156 : isa<NonTypeTemplateParmDecl>(New)? 1 7157 : 2; 7158 S.Diag(New->getLocation(), NextDiag) 7159 << ParamKind << New->isParameterPack(); 7160 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 7161 << ParamKind << Old->isParameterPack(); 7162 } 7163 7164 return false; 7165 } 7166 7167 // For non-type template parameters, check the type of the parameter. 7168 if (NonTypeTemplateParmDecl *OldNTTP 7169 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 7170 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 7171 7172 // If we are matching a template template argument to a template 7173 // template parameter and one of the non-type template parameter types 7174 // is dependent, then we must wait until template instantiation time 7175 // to actually compare the arguments. 7176 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 7177 (OldNTTP->getType()->isDependentType() || 7178 NewNTTP->getType()->isDependentType())) 7179 return true; 7180 7181 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 7182 if (Complain) { 7183 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 7184 if (TemplateArgLoc.isValid()) { 7185 S.Diag(TemplateArgLoc, 7186 diag::err_template_arg_template_params_mismatch); 7187 NextDiag = diag::note_template_nontype_parm_different_type; 7188 } 7189 S.Diag(NewNTTP->getLocation(), NextDiag) 7190 << NewNTTP->getType() 7191 << (Kind != Sema::TPL_TemplateMatch); 7192 S.Diag(OldNTTP->getLocation(), 7193 diag::note_template_nontype_parm_prev_declaration) 7194 << OldNTTP->getType(); 7195 } 7196 7197 return false; 7198 } 7199 7200 return true; 7201 } 7202 7203 // For template template parameters, check the template parameter types. 7204 // The template parameter lists of template template 7205 // parameters must agree. 7206 if (TemplateTemplateParmDecl *OldTTP 7207 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 7208 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 7209 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 7210 OldTTP->getTemplateParameters(), 7211 Complain, 7212 (Kind == Sema::TPL_TemplateMatch 7213 ? Sema::TPL_TemplateTemplateParmMatch 7214 : Kind), 7215 TemplateArgLoc); 7216 } 7217 7218 // TODO: Concepts: Match immediately-introduced-constraint for type 7219 // constraints 7220 7221 return true; 7222 } 7223 7224 /// Diagnose a known arity mismatch when comparing template argument 7225 /// lists. 7226 static 7227 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 7228 TemplateParameterList *New, 7229 TemplateParameterList *Old, 7230 Sema::TemplateParameterListEqualKind Kind, 7231 SourceLocation TemplateArgLoc) { 7232 unsigned NextDiag = diag::err_template_param_list_different_arity; 7233 if (TemplateArgLoc.isValid()) { 7234 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7235 NextDiag = diag::note_template_param_list_different_arity; 7236 } 7237 S.Diag(New->getTemplateLoc(), NextDiag) 7238 << (New->size() > Old->size()) 7239 << (Kind != Sema::TPL_TemplateMatch) 7240 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 7241 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 7242 << (Kind != Sema::TPL_TemplateMatch) 7243 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 7244 } 7245 7246 static void 7247 DiagnoseTemplateParameterListRequiresClauseMismatch(Sema &S, 7248 TemplateParameterList *New, 7249 TemplateParameterList *Old){ 7250 S.Diag(New->getTemplateLoc(), diag::err_template_different_requires_clause); 7251 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 7252 << /*declaration*/0; 7253 } 7254 7255 /// Determine whether the given template parameter lists are 7256 /// equivalent. 7257 /// 7258 /// \param New The new template parameter list, typically written in the 7259 /// source code as part of a new template declaration. 7260 /// 7261 /// \param Old The old template parameter list, typically found via 7262 /// name lookup of the template declared with this template parameter 7263 /// list. 7264 /// 7265 /// \param Complain If true, this routine will produce a diagnostic if 7266 /// the template parameter lists are not equivalent. 7267 /// 7268 /// \param Kind describes how we are to match the template parameter lists. 7269 /// 7270 /// \param TemplateArgLoc If this source location is valid, then we 7271 /// are actually checking the template parameter list of a template 7272 /// argument (New) against the template parameter list of its 7273 /// corresponding template template parameter (Old). We produce 7274 /// slightly different diagnostics in this scenario. 7275 /// 7276 /// \returns True if the template parameter lists are equal, false 7277 /// otherwise. 7278 bool 7279 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 7280 TemplateParameterList *Old, 7281 bool Complain, 7282 TemplateParameterListEqualKind Kind, 7283 SourceLocation TemplateArgLoc) { 7284 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 7285 if (Complain) 7286 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7287 TemplateArgLoc); 7288 7289 return false; 7290 } 7291 7292 // C++0x [temp.arg.template]p3: 7293 // A template-argument matches a template template-parameter (call it P) 7294 // when each of the template parameters in the template-parameter-list of 7295 // the template-argument's corresponding class template or alias template 7296 // (call it A) matches the corresponding template parameter in the 7297 // template-parameter-list of P. [...] 7298 TemplateParameterList::iterator NewParm = New->begin(); 7299 TemplateParameterList::iterator NewParmEnd = New->end(); 7300 for (TemplateParameterList::iterator OldParm = Old->begin(), 7301 OldParmEnd = Old->end(); 7302 OldParm != OldParmEnd; ++OldParm) { 7303 if (Kind != TPL_TemplateTemplateArgumentMatch || 7304 !(*OldParm)->isTemplateParameterPack()) { 7305 if (NewParm == NewParmEnd) { 7306 if (Complain) 7307 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7308 TemplateArgLoc); 7309 7310 return false; 7311 } 7312 7313 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 7314 Kind, TemplateArgLoc)) 7315 return false; 7316 7317 ++NewParm; 7318 continue; 7319 } 7320 7321 // C++0x [temp.arg.template]p3: 7322 // [...] When P's template- parameter-list contains a template parameter 7323 // pack (14.5.3), the template parameter pack will match zero or more 7324 // template parameters or template parameter packs in the 7325 // template-parameter-list of A with the same type and form as the 7326 // template parameter pack in P (ignoring whether those template 7327 // parameters are template parameter packs). 7328 for (; NewParm != NewParmEnd; ++NewParm) { 7329 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 7330 Kind, TemplateArgLoc)) 7331 return false; 7332 } 7333 } 7334 7335 // Make sure we exhausted all of the arguments. 7336 if (NewParm != NewParmEnd) { 7337 if (Complain) 7338 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7339 TemplateArgLoc); 7340 7341 return false; 7342 } 7343 7344 if (Kind != TPL_TemplateTemplateArgumentMatch) { 7345 const Expr *NewRC = New->getRequiresClause(); 7346 const Expr *OldRC = Old->getRequiresClause(); 7347 if (!NewRC != !OldRC) { 7348 if (Complain) 7349 DiagnoseTemplateParameterListRequiresClauseMismatch(*this, New, Old); 7350 return false; 7351 } 7352 7353 if (NewRC) { 7354 llvm::FoldingSetNodeID OldRCID, NewRCID; 7355 OldRC->Profile(OldRCID, Context, /*Canonical=*/true); 7356 NewRC->Profile(NewRCID, Context, /*Canonical=*/true); 7357 if (OldRCID != NewRCID) { 7358 if (Complain) 7359 DiagnoseTemplateParameterListRequiresClauseMismatch(*this, New, Old); 7360 return false; 7361 } 7362 } 7363 } 7364 7365 return true; 7366 } 7367 7368 /// Check whether a template can be declared within this scope. 7369 /// 7370 /// If the template declaration is valid in this scope, returns 7371 /// false. Otherwise, issues a diagnostic and returns true. 7372 bool 7373 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 7374 if (!S) 7375 return false; 7376 7377 // Find the nearest enclosing declaration scope. 7378 while ((S->getFlags() & Scope::DeclScope) == 0 || 7379 (S->getFlags() & Scope::TemplateParamScope) != 0) 7380 S = S->getParent(); 7381 7382 // C++ [temp]p4: 7383 // A template [...] shall not have C linkage. 7384 DeclContext *Ctx = S->getEntity(); 7385 if (Ctx && Ctx->isExternCContext()) { 7386 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 7387 << TemplateParams->getSourceRange(); 7388 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) 7389 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 7390 return true; 7391 } 7392 Ctx = Ctx->getRedeclContext(); 7393 7394 // C++ [temp]p2: 7395 // A template-declaration can appear only as a namespace scope or 7396 // class scope declaration. 7397 if (Ctx) { 7398 if (Ctx->isFileContext()) 7399 return false; 7400 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) { 7401 // C++ [temp.mem]p2: 7402 // A local class shall not have member templates. 7403 if (RD->isLocalClass()) 7404 return Diag(TemplateParams->getTemplateLoc(), 7405 diag::err_template_inside_local_class) 7406 << TemplateParams->getSourceRange(); 7407 else 7408 return false; 7409 } 7410 } 7411 7412 return Diag(TemplateParams->getTemplateLoc(), 7413 diag::err_template_outside_namespace_or_class_scope) 7414 << TemplateParams->getSourceRange(); 7415 } 7416 7417 /// Determine what kind of template specialization the given declaration 7418 /// is. 7419 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 7420 if (!D) 7421 return TSK_Undeclared; 7422 7423 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 7424 return Record->getTemplateSpecializationKind(); 7425 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 7426 return Function->getTemplateSpecializationKind(); 7427 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 7428 return Var->getTemplateSpecializationKind(); 7429 7430 return TSK_Undeclared; 7431 } 7432 7433 /// Check whether a specialization is well-formed in the current 7434 /// context. 7435 /// 7436 /// This routine determines whether a template specialization can be declared 7437 /// in the current context (C++ [temp.expl.spec]p2). 7438 /// 7439 /// \param S the semantic analysis object for which this check is being 7440 /// performed. 7441 /// 7442 /// \param Specialized the entity being specialized or instantiated, which 7443 /// may be a kind of template (class template, function template, etc.) or 7444 /// a member of a class template (member function, static data member, 7445 /// member class). 7446 /// 7447 /// \param PrevDecl the previous declaration of this entity, if any. 7448 /// 7449 /// \param Loc the location of the explicit specialization or instantiation of 7450 /// this entity. 7451 /// 7452 /// \param IsPartialSpecialization whether this is a partial specialization of 7453 /// a class template. 7454 /// 7455 /// \returns true if there was an error that we cannot recover from, false 7456 /// otherwise. 7457 static bool CheckTemplateSpecializationScope(Sema &S, 7458 NamedDecl *Specialized, 7459 NamedDecl *PrevDecl, 7460 SourceLocation Loc, 7461 bool IsPartialSpecialization) { 7462 // Keep these "kind" numbers in sync with the %select statements in the 7463 // various diagnostics emitted by this routine. 7464 int EntityKind = 0; 7465 if (isa<ClassTemplateDecl>(Specialized)) 7466 EntityKind = IsPartialSpecialization? 1 : 0; 7467 else if (isa<VarTemplateDecl>(Specialized)) 7468 EntityKind = IsPartialSpecialization ? 3 : 2; 7469 else if (isa<FunctionTemplateDecl>(Specialized)) 7470 EntityKind = 4; 7471 else if (isa<CXXMethodDecl>(Specialized)) 7472 EntityKind = 5; 7473 else if (isa<VarDecl>(Specialized)) 7474 EntityKind = 6; 7475 else if (isa<RecordDecl>(Specialized)) 7476 EntityKind = 7; 7477 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 7478 EntityKind = 8; 7479 else { 7480 S.Diag(Loc, diag::err_template_spec_unknown_kind) 7481 << S.getLangOpts().CPlusPlus11; 7482 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 7483 return true; 7484 } 7485 7486 // C++ [temp.expl.spec]p2: 7487 // An explicit specialization may be declared in any scope in which 7488 // the corresponding primary template may be defined. 7489 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 7490 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 7491 << Specialized; 7492 return true; 7493 } 7494 7495 // C++ [temp.class.spec]p6: 7496 // A class template partial specialization may be declared in any 7497 // scope in which the primary template may be defined. 7498 DeclContext *SpecializedContext = 7499 Specialized->getDeclContext()->getRedeclContext(); 7500 DeclContext *DC = S.CurContext->getRedeclContext(); 7501 7502 // Make sure that this redeclaration (or definition) occurs in the same 7503 // scope or an enclosing namespace. 7504 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext) 7505 : DC->Equals(SpecializedContext))) { 7506 if (isa<TranslationUnitDecl>(SpecializedContext)) 7507 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 7508 << EntityKind << Specialized; 7509 else { 7510 auto *ND = cast<NamedDecl>(SpecializedContext); 7511 int Diag = diag::err_template_spec_redecl_out_of_scope; 7512 if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) 7513 Diag = diag::ext_ms_template_spec_redecl_out_of_scope; 7514 S.Diag(Loc, Diag) << EntityKind << Specialized 7515 << ND << isa<CXXRecordDecl>(ND); 7516 } 7517 7518 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 7519 7520 // Don't allow specializing in the wrong class during error recovery. 7521 // Otherwise, things can go horribly wrong. 7522 if (DC->isRecord()) 7523 return true; 7524 } 7525 7526 return false; 7527 } 7528 7529 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { 7530 if (!E->isTypeDependent()) 7531 return SourceLocation(); 7532 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 7533 Checker.TraverseStmt(E); 7534 if (Checker.MatchLoc.isInvalid()) 7535 return E->getSourceRange(); 7536 return Checker.MatchLoc; 7537 } 7538 7539 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { 7540 if (!TL.getType()->isDependentType()) 7541 return SourceLocation(); 7542 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 7543 Checker.TraverseTypeLoc(TL); 7544 if (Checker.MatchLoc.isInvalid()) 7545 return TL.getSourceRange(); 7546 return Checker.MatchLoc; 7547 } 7548 7549 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs 7550 /// that checks non-type template partial specialization arguments. 7551 static bool CheckNonTypeTemplatePartialSpecializationArgs( 7552 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, 7553 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { 7554 for (unsigned I = 0; I != NumArgs; ++I) { 7555 if (Args[I].getKind() == TemplateArgument::Pack) { 7556 if (CheckNonTypeTemplatePartialSpecializationArgs( 7557 S, TemplateNameLoc, Param, Args[I].pack_begin(), 7558 Args[I].pack_size(), IsDefaultArgument)) 7559 return true; 7560 7561 continue; 7562 } 7563 7564 if (Args[I].getKind() != TemplateArgument::Expression) 7565 continue; 7566 7567 Expr *ArgExpr = Args[I].getAsExpr(); 7568 7569 // We can have a pack expansion of any of the bullets below. 7570 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 7571 ArgExpr = Expansion->getPattern(); 7572 7573 // Strip off any implicit casts we added as part of type checking. 7574 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 7575 ArgExpr = ICE->getSubExpr(); 7576 7577 // C++ [temp.class.spec]p8: 7578 // A non-type argument is non-specialized if it is the name of a 7579 // non-type parameter. All other non-type arguments are 7580 // specialized. 7581 // 7582 // Below, we check the two conditions that only apply to 7583 // specialized non-type arguments, so skip any non-specialized 7584 // arguments. 7585 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 7586 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 7587 continue; 7588 7589 // C++ [temp.class.spec]p9: 7590 // Within the argument list of a class template partial 7591 // specialization, the following restrictions apply: 7592 // -- A partially specialized non-type argument expression 7593 // shall not involve a template parameter of the partial 7594 // specialization except when the argument expression is a 7595 // simple identifier. 7596 // -- The type of a template parameter corresponding to a 7597 // specialized non-type argument shall not be dependent on a 7598 // parameter of the specialization. 7599 // DR1315 removes the first bullet, leaving an incoherent set of rules. 7600 // We implement a compromise between the original rules and DR1315: 7601 // -- A specialized non-type template argument shall not be 7602 // type-dependent and the corresponding template parameter 7603 // shall have a non-dependent type. 7604 SourceRange ParamUseRange = 7605 findTemplateParameterInType(Param->getDepth(), ArgExpr); 7606 if (ParamUseRange.isValid()) { 7607 if (IsDefaultArgument) { 7608 S.Diag(TemplateNameLoc, 7609 diag::err_dependent_non_type_arg_in_partial_spec); 7610 S.Diag(ParamUseRange.getBegin(), 7611 diag::note_dependent_non_type_default_arg_in_partial_spec) 7612 << ParamUseRange; 7613 } else { 7614 S.Diag(ParamUseRange.getBegin(), 7615 diag::err_dependent_non_type_arg_in_partial_spec) 7616 << ParamUseRange; 7617 } 7618 return true; 7619 } 7620 7621 ParamUseRange = findTemplateParameter( 7622 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); 7623 if (ParamUseRange.isValid()) { 7624 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(), 7625 diag::err_dependent_typed_non_type_arg_in_partial_spec) 7626 << Param->getType(); 7627 S.Diag(Param->getLocation(), diag::note_template_param_here) 7628 << (IsDefaultArgument ? ParamUseRange : SourceRange()) 7629 << ParamUseRange; 7630 return true; 7631 } 7632 } 7633 7634 return false; 7635 } 7636 7637 /// Check the non-type template arguments of a class template 7638 /// partial specialization according to C++ [temp.class.spec]p9. 7639 /// 7640 /// \param TemplateNameLoc the location of the template name. 7641 /// \param PrimaryTemplate the template parameters of the primary class 7642 /// template. 7643 /// \param NumExplicit the number of explicitly-specified template arguments. 7644 /// \param TemplateArgs the template arguments of the class template 7645 /// partial specialization. 7646 /// 7647 /// \returns \c true if there was an error, \c false otherwise. 7648 bool Sema::CheckTemplatePartialSpecializationArgs( 7649 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, 7650 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { 7651 // We have to be conservative when checking a template in a dependent 7652 // context. 7653 if (PrimaryTemplate->getDeclContext()->isDependentContext()) 7654 return false; 7655 7656 TemplateParameterList *TemplateParams = 7657 PrimaryTemplate->getTemplateParameters(); 7658 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 7659 NonTypeTemplateParmDecl *Param 7660 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 7661 if (!Param) 7662 continue; 7663 7664 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc, 7665 Param, &TemplateArgs[I], 7666 1, I >= NumExplicit)) 7667 return true; 7668 } 7669 7670 return false; 7671 } 7672 7673 DeclResult Sema::ActOnClassTemplateSpecialization( 7674 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 7675 SourceLocation ModulePrivateLoc, TemplateIdAnnotation &TemplateId, 7676 const ParsedAttributesView &Attr, 7677 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { 7678 assert(TUK != TUK_Reference && "References are not specializations"); 7679 7680 CXXScopeSpec &SS = TemplateId.SS; 7681 7682 // NOTE: KWLoc is the location of the tag keyword. This will instead 7683 // store the location of the outermost template keyword in the declaration. 7684 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 7685 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc; 7686 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; 7687 SourceLocation LAngleLoc = TemplateId.LAngleLoc; 7688 SourceLocation RAngleLoc = TemplateId.RAngleLoc; 7689 7690 // Find the class template we're specializing 7691 TemplateName Name = TemplateId.Template.get(); 7692 ClassTemplateDecl *ClassTemplate 7693 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 7694 7695 if (!ClassTemplate) { 7696 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 7697 << (Name.getAsTemplateDecl() && 7698 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 7699 return true; 7700 } 7701 7702 bool isMemberSpecialization = false; 7703 bool isPartialSpecialization = false; 7704 7705 // Check the validity of the template headers that introduce this 7706 // template. 7707 // FIXME: We probably shouldn't complain about these headers for 7708 // friend declarations. 7709 bool Invalid = false; 7710 TemplateParameterList *TemplateParams = 7711 MatchTemplateParametersToScopeSpecifier( 7712 KWLoc, TemplateNameLoc, SS, &TemplateId, 7713 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization, 7714 Invalid); 7715 if (Invalid) 7716 return true; 7717 7718 if (TemplateParams && TemplateParams->size() > 0) { 7719 isPartialSpecialization = true; 7720 7721 if (TUK == TUK_Friend) { 7722 Diag(KWLoc, diag::err_partial_specialization_friend) 7723 << SourceRange(LAngleLoc, RAngleLoc); 7724 return true; 7725 } 7726 7727 // C++ [temp.class.spec]p10: 7728 // The template parameter list of a specialization shall not 7729 // contain default template argument values. 7730 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 7731 Decl *Param = TemplateParams->getParam(I); 7732 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 7733 if (TTP->hasDefaultArgument()) { 7734 Diag(TTP->getDefaultArgumentLoc(), 7735 diag::err_default_arg_in_partial_spec); 7736 TTP->removeDefaultArgument(); 7737 } 7738 } else if (NonTypeTemplateParmDecl *NTTP 7739 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 7740 if (Expr *DefArg = NTTP->getDefaultArgument()) { 7741 Diag(NTTP->getDefaultArgumentLoc(), 7742 diag::err_default_arg_in_partial_spec) 7743 << DefArg->getSourceRange(); 7744 NTTP->removeDefaultArgument(); 7745 } 7746 } else { 7747 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 7748 if (TTP->hasDefaultArgument()) { 7749 Diag(TTP->getDefaultArgument().getLocation(), 7750 diag::err_default_arg_in_partial_spec) 7751 << TTP->getDefaultArgument().getSourceRange(); 7752 TTP->removeDefaultArgument(); 7753 } 7754 } 7755 } 7756 } else if (TemplateParams) { 7757 if (TUK == TUK_Friend) 7758 Diag(KWLoc, diag::err_template_spec_friend) 7759 << FixItHint::CreateRemoval( 7760 SourceRange(TemplateParams->getTemplateLoc(), 7761 TemplateParams->getRAngleLoc())) 7762 << SourceRange(LAngleLoc, RAngleLoc); 7763 } else { 7764 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl"); 7765 } 7766 7767 // Check that the specialization uses the same tag kind as the 7768 // original template. 7769 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 7770 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 7771 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 7772 Kind, TUK == TUK_Definition, KWLoc, 7773 ClassTemplate->getIdentifier())) { 7774 Diag(KWLoc, diag::err_use_with_wrong_tag) 7775 << ClassTemplate 7776 << FixItHint::CreateReplacement(KWLoc, 7777 ClassTemplate->getTemplatedDecl()->getKindName()); 7778 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 7779 diag::note_previous_use); 7780 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 7781 } 7782 7783 // Translate the parser's template argument list in our AST format. 7784 TemplateArgumentListInfo TemplateArgs = 7785 makeTemplateArgumentListInfo(*this, TemplateId); 7786 7787 // Check for unexpanded parameter packs in any of the template arguments. 7788 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 7789 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 7790 UPPC_PartialSpecialization)) 7791 return true; 7792 7793 // Check that the template argument list is well-formed for this 7794 // template. 7795 SmallVector<TemplateArgument, 4> Converted; 7796 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 7797 TemplateArgs, false, Converted)) 7798 return true; 7799 7800 // Find the class template (partial) specialization declaration that 7801 // corresponds to these arguments. 7802 if (isPartialSpecialization) { 7803 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate, 7804 TemplateArgs.size(), Converted)) 7805 return true; 7806 7807 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we 7808 // also do it during instantiation. 7809 bool InstantiationDependent; 7810 if (!Name.isDependent() && 7811 !TemplateSpecializationType::anyDependentTemplateArguments( 7812 TemplateArgs.arguments(), InstantiationDependent)) { 7813 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 7814 << ClassTemplate->getDeclName(); 7815 isPartialSpecialization = false; 7816 } 7817 } 7818 7819 void *InsertPos = nullptr; 7820 ClassTemplateSpecializationDecl *PrevDecl = nullptr; 7821 7822 if (isPartialSpecialization) 7823 // FIXME: Template parameter list matters, too 7824 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos); 7825 else 7826 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos); 7827 7828 ClassTemplateSpecializationDecl *Specialization = nullptr; 7829 7830 // Check whether we can declare a class template specialization in 7831 // the current scope. 7832 if (TUK != TUK_Friend && 7833 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 7834 TemplateNameLoc, 7835 isPartialSpecialization)) 7836 return true; 7837 7838 // The canonical type 7839 QualType CanonType; 7840 if (isPartialSpecialization) { 7841 // Build the canonical type that describes the converted template 7842 // arguments of the class template partial specialization. 7843 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 7844 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 7845 Converted); 7846 7847 if (Context.hasSameType(CanonType, 7848 ClassTemplate->getInjectedClassNameSpecialization())) { 7849 // C++ [temp.class.spec]p9b3: 7850 // 7851 // -- The argument list of the specialization shall not be identical 7852 // to the implicit argument list of the primary template. 7853 // 7854 // This rule has since been removed, because it's redundant given DR1495, 7855 // but we keep it because it produces better diagnostics and recovery. 7856 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 7857 << /*class template*/0 << (TUK == TUK_Definition) 7858 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 7859 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 7860 ClassTemplate->getIdentifier(), 7861 TemplateNameLoc, 7862 Attr, 7863 TemplateParams, 7864 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 7865 /*FriendLoc*/SourceLocation(), 7866 TemplateParameterLists.size() - 1, 7867 TemplateParameterLists.data()); 7868 } 7869 7870 // Create a new class template partial specialization declaration node. 7871 ClassTemplatePartialSpecializationDecl *PrevPartial 7872 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 7873 ClassTemplatePartialSpecializationDecl *Partial 7874 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 7875 ClassTemplate->getDeclContext(), 7876 KWLoc, TemplateNameLoc, 7877 TemplateParams, 7878 ClassTemplate, 7879 Converted, 7880 TemplateArgs, 7881 CanonType, 7882 PrevPartial); 7883 SetNestedNameSpecifier(*this, Partial, SS); 7884 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 7885 Partial->setTemplateParameterListsInfo( 7886 Context, TemplateParameterLists.drop_back(1)); 7887 } 7888 7889 if (!PrevPartial) 7890 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 7891 Specialization = Partial; 7892 7893 // If we are providing an explicit specialization of a member class 7894 // template specialization, make a note of that. 7895 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 7896 PrevPartial->setMemberSpecialization(); 7897 7898 CheckTemplatePartialSpecialization(Partial); 7899 } else { 7900 // Create a new class template specialization declaration node for 7901 // this explicit specialization or friend declaration. 7902 Specialization 7903 = ClassTemplateSpecializationDecl::Create(Context, Kind, 7904 ClassTemplate->getDeclContext(), 7905 KWLoc, TemplateNameLoc, 7906 ClassTemplate, 7907 Converted, 7908 PrevDecl); 7909 SetNestedNameSpecifier(*this, Specialization, SS); 7910 if (TemplateParameterLists.size() > 0) { 7911 Specialization->setTemplateParameterListsInfo(Context, 7912 TemplateParameterLists); 7913 } 7914 7915 if (!PrevDecl) 7916 ClassTemplate->AddSpecialization(Specialization, InsertPos); 7917 7918 if (CurContext->isDependentContext()) { 7919 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 7920 CanonType = Context.getTemplateSpecializationType( 7921 CanonTemplate, Converted); 7922 } else { 7923 CanonType = Context.getTypeDeclType(Specialization); 7924 } 7925 } 7926 7927 // C++ [temp.expl.spec]p6: 7928 // If a template, a member template or the member of a class template is 7929 // explicitly specialized then that specialization shall be declared 7930 // before the first use of that specialization that would cause an implicit 7931 // instantiation to take place, in every translation unit in which such a 7932 // use occurs; no diagnostic is required. 7933 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 7934 bool Okay = false; 7935 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 7936 // Is there any previous explicit specialization declaration? 7937 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 7938 Okay = true; 7939 break; 7940 } 7941 } 7942 7943 if (!Okay) { 7944 SourceRange Range(TemplateNameLoc, RAngleLoc); 7945 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 7946 << Context.getTypeDeclType(Specialization) << Range; 7947 7948 Diag(PrevDecl->getPointOfInstantiation(), 7949 diag::note_instantiation_required_here) 7950 << (PrevDecl->getTemplateSpecializationKind() 7951 != TSK_ImplicitInstantiation); 7952 return true; 7953 } 7954 } 7955 7956 // If this is not a friend, note that this is an explicit specialization. 7957 if (TUK != TUK_Friend) 7958 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 7959 7960 // Check that this isn't a redefinition of this specialization. 7961 if (TUK == TUK_Definition) { 7962 RecordDecl *Def = Specialization->getDefinition(); 7963 NamedDecl *Hidden = nullptr; 7964 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 7965 SkipBody->ShouldSkip = true; 7966 SkipBody->Previous = Def; 7967 makeMergedDefinitionVisible(Hidden); 7968 } else if (Def) { 7969 SourceRange Range(TemplateNameLoc, RAngleLoc); 7970 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range; 7971 Diag(Def->getLocation(), diag::note_previous_definition); 7972 Specialization->setInvalidDecl(); 7973 return true; 7974 } 7975 } 7976 7977 ProcessDeclAttributeList(S, Specialization, Attr); 7978 7979 // Add alignment attributes if necessary; these attributes are checked when 7980 // the ASTContext lays out the structure. 7981 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 7982 AddAlignmentAttributesForRecord(Specialization); 7983 AddMsStructLayoutForRecord(Specialization); 7984 } 7985 7986 if (ModulePrivateLoc.isValid()) 7987 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 7988 << (isPartialSpecialization? 1 : 0) 7989 << FixItHint::CreateRemoval(ModulePrivateLoc); 7990 7991 // Build the fully-sugared type for this class template 7992 // specialization as the user wrote in the specialization 7993 // itself. This means that we'll pretty-print the type retrieved 7994 // from the specialization's declaration the way that the user 7995 // actually wrote the specialization, rather than formatting the 7996 // name based on the "canonical" representation used to store the 7997 // template arguments in the specialization. 7998 TypeSourceInfo *WrittenTy 7999 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 8000 TemplateArgs, CanonType); 8001 if (TUK != TUK_Friend) { 8002 Specialization->setTypeAsWritten(WrittenTy); 8003 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 8004 } 8005 8006 // C++ [temp.expl.spec]p9: 8007 // A template explicit specialization is in the scope of the 8008 // namespace in which the template was defined. 8009 // 8010 // We actually implement this paragraph where we set the semantic 8011 // context (in the creation of the ClassTemplateSpecializationDecl), 8012 // but we also maintain the lexical context where the actual 8013 // definition occurs. 8014 Specialization->setLexicalDeclContext(CurContext); 8015 8016 // We may be starting the definition of this specialization. 8017 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 8018 Specialization->startDefinition(); 8019 8020 if (TUK == TUK_Friend) { 8021 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 8022 TemplateNameLoc, 8023 WrittenTy, 8024 /*FIXME:*/KWLoc); 8025 Friend->setAccess(AS_public); 8026 CurContext->addDecl(Friend); 8027 } else { 8028 // Add the specialization into its lexical context, so that it can 8029 // be seen when iterating through the list of declarations in that 8030 // context. However, specializations are not found by name lookup. 8031 CurContext->addDecl(Specialization); 8032 } 8033 8034 if (SkipBody && SkipBody->ShouldSkip) 8035 return SkipBody->Previous; 8036 8037 return Specialization; 8038 } 8039 8040 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 8041 MultiTemplateParamsArg TemplateParameterLists, 8042 Declarator &D) { 8043 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 8044 ActOnDocumentableDecl(NewDecl); 8045 return NewDecl; 8046 } 8047 8048 Decl *Sema::ActOnConceptDefinition(Scope *S, 8049 MultiTemplateParamsArg TemplateParameterLists, 8050 IdentifierInfo *Name, SourceLocation NameLoc, 8051 Expr *ConstraintExpr) { 8052 DeclContext *DC = CurContext; 8053 8054 if (!DC->getRedeclContext()->isFileContext()) { 8055 Diag(NameLoc, 8056 diag::err_concept_decls_may_only_appear_in_global_namespace_scope); 8057 return nullptr; 8058 } 8059 8060 if (TemplateParameterLists.size() > 1) { 8061 Diag(NameLoc, diag::err_concept_extra_headers); 8062 return nullptr; 8063 } 8064 8065 if (TemplateParameterLists.front()->size() == 0) { 8066 Diag(NameLoc, diag::err_concept_no_parameters); 8067 return nullptr; 8068 } 8069 8070 ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name, 8071 TemplateParameterLists.front(), 8072 ConstraintExpr); 8073 8074 if (NewDecl->hasAssociatedConstraints()) { 8075 // C++2a [temp.concept]p4: 8076 // A concept shall not have associated constraints. 8077 Diag(NameLoc, diag::err_concept_no_associated_constraints); 8078 NewDecl->setInvalidDecl(); 8079 } 8080 8081 // Check for conflicting previous declaration. 8082 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc); 8083 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 8084 ForVisibleRedeclaration); 8085 LookupName(Previous, S); 8086 8087 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false, 8088 /*AllowInlineNamespace*/false); 8089 if (!Previous.empty()) { 8090 auto *Old = Previous.getRepresentativeDecl(); 8091 Diag(NameLoc, isa<ConceptDecl>(Old) ? diag::err_redefinition : 8092 diag::err_redefinition_different_kind) << NewDecl->getDeclName(); 8093 Diag(Old->getLocation(), diag::note_previous_definition); 8094 } 8095 8096 ActOnDocumentableDecl(NewDecl); 8097 PushOnScopeChains(NewDecl, S); 8098 return NewDecl; 8099 } 8100 8101 /// \brief Strips various properties off an implicit instantiation 8102 /// that has just been explicitly specialized. 8103 static void StripImplicitInstantiation(NamedDecl *D) { 8104 D->dropAttr<DLLImportAttr>(); 8105 D->dropAttr<DLLExportAttr>(); 8106 8107 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 8108 FD->setInlineSpecified(false); 8109 } 8110 8111 /// Compute the diagnostic location for an explicit instantiation 8112 // declaration or definition. 8113 static SourceLocation DiagLocForExplicitInstantiation( 8114 NamedDecl* D, SourceLocation PointOfInstantiation) { 8115 // Explicit instantiations following a specialization have no effect and 8116 // hence no PointOfInstantiation. In that case, walk decl backwards 8117 // until a valid name loc is found. 8118 SourceLocation PrevDiagLoc = PointOfInstantiation; 8119 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 8120 Prev = Prev->getPreviousDecl()) { 8121 PrevDiagLoc = Prev->getLocation(); 8122 } 8123 assert(PrevDiagLoc.isValid() && 8124 "Explicit instantiation without point of instantiation?"); 8125 return PrevDiagLoc; 8126 } 8127 8128 /// Diagnose cases where we have an explicit template specialization 8129 /// before/after an explicit template instantiation, producing diagnostics 8130 /// for those cases where they are required and determining whether the 8131 /// new specialization/instantiation will have any effect. 8132 /// 8133 /// \param NewLoc the location of the new explicit specialization or 8134 /// instantiation. 8135 /// 8136 /// \param NewTSK the kind of the new explicit specialization or instantiation. 8137 /// 8138 /// \param PrevDecl the previous declaration of the entity. 8139 /// 8140 /// \param PrevTSK the kind of the old explicit specialization or instantiatin. 8141 /// 8142 /// \param PrevPointOfInstantiation if valid, indicates where the previus 8143 /// declaration was instantiated (either implicitly or explicitly). 8144 /// 8145 /// \param HasNoEffect will be set to true to indicate that the new 8146 /// specialization or instantiation has no effect and should be ignored. 8147 /// 8148 /// \returns true if there was an error that should prevent the introduction of 8149 /// the new declaration into the AST, false otherwise. 8150 bool 8151 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 8152 TemplateSpecializationKind NewTSK, 8153 NamedDecl *PrevDecl, 8154 TemplateSpecializationKind PrevTSK, 8155 SourceLocation PrevPointOfInstantiation, 8156 bool &HasNoEffect) { 8157 HasNoEffect = false; 8158 8159 switch (NewTSK) { 8160 case TSK_Undeclared: 8161 case TSK_ImplicitInstantiation: 8162 assert( 8163 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && 8164 "previous declaration must be implicit!"); 8165 return false; 8166 8167 case TSK_ExplicitSpecialization: 8168 switch (PrevTSK) { 8169 case TSK_Undeclared: 8170 case TSK_ExplicitSpecialization: 8171 // Okay, we're just specializing something that is either already 8172 // explicitly specialized or has merely been mentioned without any 8173 // instantiation. 8174 return false; 8175 8176 case TSK_ImplicitInstantiation: 8177 if (PrevPointOfInstantiation.isInvalid()) { 8178 // The declaration itself has not actually been instantiated, so it is 8179 // still okay to specialize it. 8180 StripImplicitInstantiation(PrevDecl); 8181 return false; 8182 } 8183 // Fall through 8184 LLVM_FALLTHROUGH; 8185 8186 case TSK_ExplicitInstantiationDeclaration: 8187 case TSK_ExplicitInstantiationDefinition: 8188 assert((PrevTSK == TSK_ImplicitInstantiation || 8189 PrevPointOfInstantiation.isValid()) && 8190 "Explicit instantiation without point of instantiation?"); 8191 8192 // C++ [temp.expl.spec]p6: 8193 // If a template, a member template or the member of a class template 8194 // is explicitly specialized then that specialization shall be declared 8195 // before the first use of that specialization that would cause an 8196 // implicit instantiation to take place, in every translation unit in 8197 // which such a use occurs; no diagnostic is required. 8198 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8199 // Is there any previous explicit specialization declaration? 8200 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 8201 return false; 8202 } 8203 8204 Diag(NewLoc, diag::err_specialization_after_instantiation) 8205 << PrevDecl; 8206 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 8207 << (PrevTSK != TSK_ImplicitInstantiation); 8208 8209 return true; 8210 } 8211 llvm_unreachable("The switch over PrevTSK must be exhaustive."); 8212 8213 case TSK_ExplicitInstantiationDeclaration: 8214 switch (PrevTSK) { 8215 case TSK_ExplicitInstantiationDeclaration: 8216 // This explicit instantiation declaration is redundant (that's okay). 8217 HasNoEffect = true; 8218 return false; 8219 8220 case TSK_Undeclared: 8221 case TSK_ImplicitInstantiation: 8222 // We're explicitly instantiating something that may have already been 8223 // implicitly instantiated; that's fine. 8224 return false; 8225 8226 case TSK_ExplicitSpecialization: 8227 // C++0x [temp.explicit]p4: 8228 // For a given set of template parameters, if an explicit instantiation 8229 // of a template appears after a declaration of an explicit 8230 // specialization for that template, the explicit instantiation has no 8231 // effect. 8232 HasNoEffect = true; 8233 return false; 8234 8235 case TSK_ExplicitInstantiationDefinition: 8236 // C++0x [temp.explicit]p10: 8237 // If an entity is the subject of both an explicit instantiation 8238 // declaration and an explicit instantiation definition in the same 8239 // translation unit, the definition shall follow the declaration. 8240 Diag(NewLoc, 8241 diag::err_explicit_instantiation_declaration_after_definition); 8242 8243 // Explicit instantiations following a specialization have no effect and 8244 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 8245 // until a valid name loc is found. 8246 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 8247 diag::note_explicit_instantiation_definition_here); 8248 HasNoEffect = true; 8249 return false; 8250 } 8251 llvm_unreachable("Unexpected TemplateSpecializationKind!"); 8252 8253 case TSK_ExplicitInstantiationDefinition: 8254 switch (PrevTSK) { 8255 case TSK_Undeclared: 8256 case TSK_ImplicitInstantiation: 8257 // We're explicitly instantiating something that may have already been 8258 // implicitly instantiated; that's fine. 8259 return false; 8260 8261 case TSK_ExplicitSpecialization: 8262 // C++ DR 259, C++0x [temp.explicit]p4: 8263 // For a given set of template parameters, if an explicit 8264 // instantiation of a template appears after a declaration of 8265 // an explicit specialization for that template, the explicit 8266 // instantiation has no effect. 8267 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization) 8268 << PrevDecl; 8269 Diag(PrevDecl->getLocation(), 8270 diag::note_previous_template_specialization); 8271 HasNoEffect = true; 8272 return false; 8273 8274 case TSK_ExplicitInstantiationDeclaration: 8275 // We're explicitly instantiating a definition for something for which we 8276 // were previously asked to suppress instantiations. That's fine. 8277 8278 // C++0x [temp.explicit]p4: 8279 // For a given set of template parameters, if an explicit instantiation 8280 // of a template appears after a declaration of an explicit 8281 // specialization for that template, the explicit instantiation has no 8282 // effect. 8283 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8284 // Is there any previous explicit specialization declaration? 8285 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8286 HasNoEffect = true; 8287 break; 8288 } 8289 } 8290 8291 return false; 8292 8293 case TSK_ExplicitInstantiationDefinition: 8294 // C++0x [temp.spec]p5: 8295 // For a given template and a given set of template-arguments, 8296 // - an explicit instantiation definition shall appear at most once 8297 // in a program, 8298 8299 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. 8300 Diag(NewLoc, (getLangOpts().MSVCCompat) 8301 ? diag::ext_explicit_instantiation_duplicate 8302 : diag::err_explicit_instantiation_duplicate) 8303 << PrevDecl; 8304 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 8305 diag::note_previous_explicit_instantiation); 8306 HasNoEffect = true; 8307 return false; 8308 } 8309 } 8310 8311 llvm_unreachable("Missing specialization/instantiation case?"); 8312 } 8313 8314 /// Perform semantic analysis for the given dependent function 8315 /// template specialization. 8316 /// 8317 /// The only possible way to get a dependent function template specialization 8318 /// is with a friend declaration, like so: 8319 /// 8320 /// \code 8321 /// template \<class T> void foo(T); 8322 /// template \<class T> class A { 8323 /// friend void foo<>(T); 8324 /// }; 8325 /// \endcode 8326 /// 8327 /// There really isn't any useful analysis we can do here, so we 8328 /// just store the information. 8329 bool 8330 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 8331 const TemplateArgumentListInfo &ExplicitTemplateArgs, 8332 LookupResult &Previous) { 8333 // Remove anything from Previous that isn't a function template in 8334 // the correct context. 8335 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 8336 LookupResult::Filter F = Previous.makeFilter(); 8337 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; 8338 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; 8339 while (F.hasNext()) { 8340 NamedDecl *D = F.next()->getUnderlyingDecl(); 8341 if (!isa<FunctionTemplateDecl>(D)) { 8342 F.erase(); 8343 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D)); 8344 continue; 8345 } 8346 8347 if (!FDLookupContext->InEnclosingNamespaceSetOf( 8348 D->getDeclContext()->getRedeclContext())) { 8349 F.erase(); 8350 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D)); 8351 continue; 8352 } 8353 } 8354 F.done(); 8355 8356 if (Previous.empty()) { 8357 Diag(FD->getLocation(), 8358 diag::err_dependent_function_template_spec_no_match); 8359 for (auto &P : DiscardedCandidates) 8360 Diag(P.second->getLocation(), 8361 diag::note_dependent_function_template_spec_discard_reason) 8362 << P.first; 8363 return true; 8364 } 8365 8366 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 8367 ExplicitTemplateArgs); 8368 return false; 8369 } 8370 8371 /// Perform semantic analysis for the given function template 8372 /// specialization. 8373 /// 8374 /// This routine performs all of the semantic analysis required for an 8375 /// explicit function template specialization. On successful completion, 8376 /// the function declaration \p FD will become a function template 8377 /// specialization. 8378 /// 8379 /// \param FD the function declaration, which will be updated to become a 8380 /// function template specialization. 8381 /// 8382 /// \param ExplicitTemplateArgs the explicitly-provided template arguments, 8383 /// if any. Note that this may be valid info even when 0 arguments are 8384 /// explicitly provided as in, e.g., \c void sort<>(char*, char*); 8385 /// as it anyway contains info on the angle brackets locations. 8386 /// 8387 /// \param Previous the set of declarations that may be specialized by 8388 /// this function specialization. 8389 /// 8390 /// \param QualifiedFriend whether this is a lookup for a qualified friend 8391 /// declaration with no explicit template argument list that might be 8392 /// befriending a function template specialization. 8393 bool Sema::CheckFunctionTemplateSpecialization( 8394 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, 8395 LookupResult &Previous, bool QualifiedFriend) { 8396 // The set of function template specializations that could match this 8397 // explicit function template specialization. 8398 UnresolvedSet<8> Candidates; 8399 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), 8400 /*ForTakingAddress=*/false); 8401 8402 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> 8403 ConvertedTemplateArgs; 8404 8405 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 8406 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 8407 I != E; ++I) { 8408 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 8409 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 8410 // Only consider templates found within the same semantic lookup scope as 8411 // FD. 8412 if (!FDLookupContext->InEnclosingNamespaceSetOf( 8413 Ovl->getDeclContext()->getRedeclContext())) 8414 continue; 8415 8416 // When matching a constexpr member function template specialization 8417 // against the primary template, we don't yet know whether the 8418 // specialization has an implicit 'const' (because we don't know whether 8419 // it will be a static member function until we know which template it 8420 // specializes), so adjust it now assuming it specializes this template. 8421 QualType FT = FD->getType(); 8422 if (FD->isConstexpr()) { 8423 CXXMethodDecl *OldMD = 8424 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 8425 if (OldMD && OldMD->isConst()) { 8426 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 8427 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8428 EPI.TypeQuals.addConst(); 8429 FT = Context.getFunctionType(FPT->getReturnType(), 8430 FPT->getParamTypes(), EPI); 8431 } 8432 } 8433 8434 TemplateArgumentListInfo Args; 8435 if (ExplicitTemplateArgs) 8436 Args = *ExplicitTemplateArgs; 8437 8438 // C++ [temp.expl.spec]p11: 8439 // A trailing template-argument can be left unspecified in the 8440 // template-id naming an explicit function template specialization 8441 // provided it can be deduced from the function argument type. 8442 // Perform template argument deduction to determine whether we may be 8443 // specializing this template. 8444 // FIXME: It is somewhat wasteful to build 8445 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 8446 FunctionDecl *Specialization = nullptr; 8447 if (TemplateDeductionResult TDK = DeduceTemplateArguments( 8448 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), 8449 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, 8450 Info)) { 8451 // Template argument deduction failed; record why it failed, so 8452 // that we can provide nifty diagnostics. 8453 FailedCandidates.addCandidate().set( 8454 I.getPair(), FunTmpl->getTemplatedDecl(), 8455 MakeDeductionFailureInfo(Context, TDK, Info)); 8456 (void)TDK; 8457 continue; 8458 } 8459 8460 // Target attributes are part of the cuda function signature, so 8461 // the deduced template's cuda target must match that of the 8462 // specialization. Given that C++ template deduction does not 8463 // take target attributes into account, we reject candidates 8464 // here that have a different target. 8465 if (LangOpts.CUDA && 8466 IdentifyCUDATarget(Specialization, 8467 /* IgnoreImplicitHDAttr = */ true) != 8468 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) { 8469 FailedCandidates.addCandidate().set( 8470 I.getPair(), FunTmpl->getTemplatedDecl(), 8471 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 8472 continue; 8473 } 8474 8475 // Record this candidate. 8476 if (ExplicitTemplateArgs) 8477 ConvertedTemplateArgs[Specialization] = std::move(Args); 8478 Candidates.addDecl(Specialization, I.getAccess()); 8479 } 8480 } 8481 8482 // For a qualified friend declaration (with no explicit marker to indicate 8483 // that a template specialization was intended), note all (template and 8484 // non-template) candidates. 8485 if (QualifiedFriend && Candidates.empty()) { 8486 Diag(FD->getLocation(), diag::err_qualified_friend_no_match) 8487 << FD->getDeclName() << FDLookupContext; 8488 // FIXME: We should form a single candidate list and diagnose all 8489 // candidates at once, to get proper sorting and limiting. 8490 for (auto *OldND : Previous) { 8491 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl())) 8492 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false); 8493 } 8494 FailedCandidates.NoteCandidates(*this, FD->getLocation()); 8495 return true; 8496 } 8497 8498 // Find the most specialized function template. 8499 UnresolvedSetIterator Result = getMostSpecialized( 8500 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(), 8501 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), 8502 PDiag(diag::err_function_template_spec_ambiguous) 8503 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), 8504 PDiag(diag::note_function_template_spec_matched)); 8505 8506 if (Result == Candidates.end()) 8507 return true; 8508 8509 // Ignore access information; it doesn't figure into redeclaration checking. 8510 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 8511 8512 FunctionTemplateSpecializationInfo *SpecInfo 8513 = Specialization->getTemplateSpecializationInfo(); 8514 assert(SpecInfo && "Function template specialization info missing?"); 8515 8516 // Note: do not overwrite location info if previous template 8517 // specialization kind was explicit. 8518 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 8519 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 8520 Specialization->setLocation(FD->getLocation()); 8521 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); 8522 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 8523 // function can differ from the template declaration with respect to 8524 // the constexpr specifier. 8525 // FIXME: We need an update record for this AST mutation. 8526 // FIXME: What if there are multiple such prior declarations (for instance, 8527 // from different modules)? 8528 Specialization->setConstexprKind(FD->getConstexprKind()); 8529 } 8530 8531 // FIXME: Check if the prior specialization has a point of instantiation. 8532 // If so, we have run afoul of . 8533 8534 // If this is a friend declaration, then we're not really declaring 8535 // an explicit specialization. 8536 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 8537 8538 // Check the scope of this explicit specialization. 8539 if (!isFriend && 8540 CheckTemplateSpecializationScope(*this, 8541 Specialization->getPrimaryTemplate(), 8542 Specialization, FD->getLocation(), 8543 false)) 8544 return true; 8545 8546 // C++ [temp.expl.spec]p6: 8547 // If a template, a member template or the member of a class template is 8548 // explicitly specialized then that specialization shall be declared 8549 // before the first use of that specialization that would cause an implicit 8550 // instantiation to take place, in every translation unit in which such a 8551 // use occurs; no diagnostic is required. 8552 bool HasNoEffect = false; 8553 if (!isFriend && 8554 CheckSpecializationInstantiationRedecl(FD->getLocation(), 8555 TSK_ExplicitSpecialization, 8556 Specialization, 8557 SpecInfo->getTemplateSpecializationKind(), 8558 SpecInfo->getPointOfInstantiation(), 8559 HasNoEffect)) 8560 return true; 8561 8562 // Mark the prior declaration as an explicit specialization, so that later 8563 // clients know that this is an explicit specialization. 8564 if (!isFriend) { 8565 // Since explicit specializations do not inherit '=delete' from their 8566 // primary function template - check if the 'specialization' that was 8567 // implicitly generated (during template argument deduction for partial 8568 // ordering) from the most specialized of all the function templates that 8569 // 'FD' could have been specializing, has a 'deleted' definition. If so, 8570 // first check that it was implicitly generated during template argument 8571 // deduction by making sure it wasn't referenced, and then reset the deleted 8572 // flag to not-deleted, so that we can inherit that information from 'FD'. 8573 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && 8574 !Specialization->getCanonicalDecl()->isReferenced()) { 8575 // FIXME: This assert will not hold in the presence of modules. 8576 assert( 8577 Specialization->getCanonicalDecl() == Specialization && 8578 "This must be the only existing declaration of this specialization"); 8579 // FIXME: We need an update record for this AST mutation. 8580 Specialization->setDeletedAsWritten(false); 8581 } 8582 // FIXME: We need an update record for this AST mutation. 8583 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 8584 MarkUnusedFileScopedDecl(Specialization); 8585 } 8586 8587 // Turn the given function declaration into a function template 8588 // specialization, with the template arguments from the previous 8589 // specialization. 8590 // Take copies of (semantic and syntactic) template argument lists. 8591 const TemplateArgumentList* TemplArgs = new (Context) 8592 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 8593 FD->setFunctionTemplateSpecialization( 8594 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr, 8595 SpecInfo->getTemplateSpecializationKind(), 8596 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); 8597 8598 // A function template specialization inherits the target attributes 8599 // of its template. (We require the attributes explicitly in the 8600 // code to match, but a template may have implicit attributes by 8601 // virtue e.g. of being constexpr, and it passes these implicit 8602 // attributes on to its specializations.) 8603 if (LangOpts.CUDA) 8604 inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate()); 8605 8606 // The "previous declaration" for this function template specialization is 8607 // the prior function template specialization. 8608 Previous.clear(); 8609 Previous.addDecl(Specialization); 8610 return false; 8611 } 8612 8613 /// Perform semantic analysis for the given non-template member 8614 /// specialization. 8615 /// 8616 /// This routine performs all of the semantic analysis required for an 8617 /// explicit member function specialization. On successful completion, 8618 /// the function declaration \p FD will become a member function 8619 /// specialization. 8620 /// 8621 /// \param Member the member declaration, which will be updated to become a 8622 /// specialization. 8623 /// 8624 /// \param Previous the set of declarations, one of which may be specialized 8625 /// by this function specialization; the set will be modified to contain the 8626 /// redeclared member. 8627 bool 8628 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 8629 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 8630 8631 // Try to find the member we are instantiating. 8632 NamedDecl *FoundInstantiation = nullptr; 8633 NamedDecl *Instantiation = nullptr; 8634 NamedDecl *InstantiatedFrom = nullptr; 8635 MemberSpecializationInfo *MSInfo = nullptr; 8636 8637 if (Previous.empty()) { 8638 // Nowhere to look anyway. 8639 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 8640 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 8641 I != E; ++I) { 8642 NamedDecl *D = (*I)->getUnderlyingDecl(); 8643 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 8644 QualType Adjusted = Function->getType(); 8645 if (!hasExplicitCallingConv(Adjusted)) 8646 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType()); 8647 // This doesn't handle deduced return types, but both function 8648 // declarations should be undeduced at this point. 8649 if (Context.hasSameType(Adjusted, Method->getType())) { 8650 FoundInstantiation = *I; 8651 Instantiation = Method; 8652 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 8653 MSInfo = Method->getMemberSpecializationInfo(); 8654 break; 8655 } 8656 } 8657 } 8658 } else if (isa<VarDecl>(Member)) { 8659 VarDecl *PrevVar; 8660 if (Previous.isSingleResult() && 8661 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 8662 if (PrevVar->isStaticDataMember()) { 8663 FoundInstantiation = Previous.getRepresentativeDecl(); 8664 Instantiation = PrevVar; 8665 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 8666 MSInfo = PrevVar->getMemberSpecializationInfo(); 8667 } 8668 } else if (isa<RecordDecl>(Member)) { 8669 CXXRecordDecl *PrevRecord; 8670 if (Previous.isSingleResult() && 8671 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 8672 FoundInstantiation = Previous.getRepresentativeDecl(); 8673 Instantiation = PrevRecord; 8674 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 8675 MSInfo = PrevRecord->getMemberSpecializationInfo(); 8676 } 8677 } else if (isa<EnumDecl>(Member)) { 8678 EnumDecl *PrevEnum; 8679 if (Previous.isSingleResult() && 8680 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 8681 FoundInstantiation = Previous.getRepresentativeDecl(); 8682 Instantiation = PrevEnum; 8683 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 8684 MSInfo = PrevEnum->getMemberSpecializationInfo(); 8685 } 8686 } 8687 8688 if (!Instantiation) { 8689 // There is no previous declaration that matches. Since member 8690 // specializations are always out-of-line, the caller will complain about 8691 // this mismatch later. 8692 return false; 8693 } 8694 8695 // A member specialization in a friend declaration isn't really declaring 8696 // an explicit specialization, just identifying a specific (possibly implicit) 8697 // specialization. Don't change the template specialization kind. 8698 // 8699 // FIXME: Is this really valid? Other compilers reject. 8700 if (Member->getFriendObjectKind() != Decl::FOK_None) { 8701 // Preserve instantiation information. 8702 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 8703 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 8704 cast<CXXMethodDecl>(InstantiatedFrom), 8705 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 8706 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 8707 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 8708 cast<CXXRecordDecl>(InstantiatedFrom), 8709 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 8710 } 8711 8712 Previous.clear(); 8713 Previous.addDecl(FoundInstantiation); 8714 return false; 8715 } 8716 8717 // Make sure that this is a specialization of a member. 8718 if (!InstantiatedFrom) { 8719 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 8720 << Member; 8721 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 8722 return true; 8723 } 8724 8725 // C++ [temp.expl.spec]p6: 8726 // If a template, a member template or the member of a class template is 8727 // explicitly specialized then that specialization shall be declared 8728 // before the first use of that specialization that would cause an implicit 8729 // instantiation to take place, in every translation unit in which such a 8730 // use occurs; no diagnostic is required. 8731 assert(MSInfo && "Member specialization info missing?"); 8732 8733 bool HasNoEffect = false; 8734 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 8735 TSK_ExplicitSpecialization, 8736 Instantiation, 8737 MSInfo->getTemplateSpecializationKind(), 8738 MSInfo->getPointOfInstantiation(), 8739 HasNoEffect)) 8740 return true; 8741 8742 // Check the scope of this explicit specialization. 8743 if (CheckTemplateSpecializationScope(*this, 8744 InstantiatedFrom, 8745 Instantiation, Member->getLocation(), 8746 false)) 8747 return true; 8748 8749 // Note that this member specialization is an "instantiation of" the 8750 // corresponding member of the original template. 8751 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) { 8752 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 8753 if (InstantiationFunction->getTemplateSpecializationKind() == 8754 TSK_ImplicitInstantiation) { 8755 // Explicit specializations of member functions of class templates do not 8756 // inherit '=delete' from the member function they are specializing. 8757 if (InstantiationFunction->isDeleted()) { 8758 // FIXME: This assert will not hold in the presence of modules. 8759 assert(InstantiationFunction->getCanonicalDecl() == 8760 InstantiationFunction); 8761 // FIXME: We need an update record for this AST mutation. 8762 InstantiationFunction->setDeletedAsWritten(false); 8763 } 8764 } 8765 8766 MemberFunction->setInstantiationOfMemberFunction( 8767 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 8768 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) { 8769 MemberVar->setInstantiationOfStaticDataMember( 8770 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 8771 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) { 8772 MemberClass->setInstantiationOfMemberClass( 8773 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 8774 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) { 8775 MemberEnum->setInstantiationOfMemberEnum( 8776 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 8777 } else { 8778 llvm_unreachable("unknown member specialization kind"); 8779 } 8780 8781 // Save the caller the trouble of having to figure out which declaration 8782 // this specialization matches. 8783 Previous.clear(); 8784 Previous.addDecl(FoundInstantiation); 8785 return false; 8786 } 8787 8788 /// Complete the explicit specialization of a member of a class template by 8789 /// updating the instantiated member to be marked as an explicit specialization. 8790 /// 8791 /// \param OrigD The member declaration instantiated from the template. 8792 /// \param Loc The location of the explicit specialization of the member. 8793 template<typename DeclT> 8794 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, 8795 SourceLocation Loc) { 8796 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 8797 return; 8798 8799 // FIXME: Inform AST mutation listeners of this AST mutation. 8800 // FIXME: If there are multiple in-class declarations of the member (from 8801 // multiple modules, or a declaration and later definition of a member type), 8802 // should we update all of them? 8803 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 8804 OrigD->setLocation(Loc); 8805 } 8806 8807 void Sema::CompleteMemberSpecialization(NamedDecl *Member, 8808 LookupResult &Previous) { 8809 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl()); 8810 if (Instantiation == Member) 8811 return; 8812 8813 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation)) 8814 completeMemberSpecializationImpl(*this, Function, Member->getLocation()); 8815 else if (auto *Var = dyn_cast<VarDecl>(Instantiation)) 8816 completeMemberSpecializationImpl(*this, Var, Member->getLocation()); 8817 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation)) 8818 completeMemberSpecializationImpl(*this, Record, Member->getLocation()); 8819 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation)) 8820 completeMemberSpecializationImpl(*this, Enum, Member->getLocation()); 8821 else 8822 llvm_unreachable("unknown member specialization kind"); 8823 } 8824 8825 /// Check the scope of an explicit instantiation. 8826 /// 8827 /// \returns true if a serious error occurs, false otherwise. 8828 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 8829 SourceLocation InstLoc, 8830 bool WasQualifiedName) { 8831 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 8832 DeclContext *CurContext = S.CurContext->getRedeclContext(); 8833 8834 if (CurContext->isRecord()) { 8835 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 8836 << D; 8837 return true; 8838 } 8839 8840 // C++11 [temp.explicit]p3: 8841 // An explicit instantiation shall appear in an enclosing namespace of its 8842 // template. If the name declared in the explicit instantiation is an 8843 // unqualified name, the explicit instantiation shall appear in the 8844 // namespace where its template is declared or, if that namespace is inline 8845 // (7.3.1), any namespace from its enclosing namespace set. 8846 // 8847 // This is DR275, which we do not retroactively apply to C++98/03. 8848 if (WasQualifiedName) { 8849 if (CurContext->Encloses(OrigContext)) 8850 return false; 8851 } else { 8852 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 8853 return false; 8854 } 8855 8856 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 8857 if (WasQualifiedName) 8858 S.Diag(InstLoc, 8859 S.getLangOpts().CPlusPlus11? 8860 diag::err_explicit_instantiation_out_of_scope : 8861 diag::warn_explicit_instantiation_out_of_scope_0x) 8862 << D << NS; 8863 else 8864 S.Diag(InstLoc, 8865 S.getLangOpts().CPlusPlus11? 8866 diag::err_explicit_instantiation_unqualified_wrong_namespace : 8867 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 8868 << D << NS; 8869 } else 8870 S.Diag(InstLoc, 8871 S.getLangOpts().CPlusPlus11? 8872 diag::err_explicit_instantiation_must_be_global : 8873 diag::warn_explicit_instantiation_must_be_global_0x) 8874 << D; 8875 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 8876 return false; 8877 } 8878 8879 /// Common checks for whether an explicit instantiation of \p D is valid. 8880 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D, 8881 SourceLocation InstLoc, 8882 bool WasQualifiedName, 8883 TemplateSpecializationKind TSK) { 8884 // C++ [temp.explicit]p13: 8885 // An explicit instantiation declaration shall not name a specialization of 8886 // a template with internal linkage. 8887 if (TSK == TSK_ExplicitInstantiationDeclaration && 8888 D->getFormalLinkage() == InternalLinkage) { 8889 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D; 8890 return true; 8891 } 8892 8893 // C++11 [temp.explicit]p3: [DR 275] 8894 // An explicit instantiation shall appear in an enclosing namespace of its 8895 // template. 8896 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName)) 8897 return true; 8898 8899 return false; 8900 } 8901 8902 /// Determine whether the given scope specifier has a template-id in it. 8903 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 8904 if (!SS.isSet()) 8905 return false; 8906 8907 // C++11 [temp.explicit]p3: 8908 // If the explicit instantiation is for a member function, a member class 8909 // or a static data member of a class template specialization, the name of 8910 // the class template specialization in the qualified-id for the member 8911 // name shall be a simple-template-id. 8912 // 8913 // C++98 has the same restriction, just worded differently. 8914 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; 8915 NNS = NNS->getPrefix()) 8916 if (const Type *T = NNS->getAsType()) 8917 if (isa<TemplateSpecializationType>(T)) 8918 return true; 8919 8920 return false; 8921 } 8922 8923 /// Make a dllexport or dllimport attr on a class template specialization take 8924 /// effect. 8925 static void dllExportImportClassTemplateSpecialization( 8926 Sema &S, ClassTemplateSpecializationDecl *Def) { 8927 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def)); 8928 assert(A && "dllExportImportClassTemplateSpecialization called " 8929 "on Def without dllexport or dllimport"); 8930 8931 // We reject explicit instantiations in class scope, so there should 8932 // never be any delayed exported classes to worry about. 8933 assert(S.DelayedDllExportClasses.empty() && 8934 "delayed exports present at explicit instantiation"); 8935 S.checkClassLevelDLLAttribute(Def); 8936 8937 // Propagate attribute to base class templates. 8938 for (auto &B : Def->bases()) { 8939 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 8940 B.getType()->getAsCXXRecordDecl())) 8941 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc()); 8942 } 8943 8944 S.referenceDLLExportedClassMethods(); 8945 } 8946 8947 // Explicit instantiation of a class template specialization 8948 DeclResult Sema::ActOnExplicitInstantiation( 8949 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, 8950 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, 8951 TemplateTy TemplateD, SourceLocation TemplateNameLoc, 8952 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, 8953 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { 8954 // Find the class template we're specializing 8955 TemplateName Name = TemplateD.get(); 8956 TemplateDecl *TD = Name.getAsTemplateDecl(); 8957 // Check that the specialization uses the same tag kind as the 8958 // original template. 8959 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 8960 assert(Kind != TTK_Enum && 8961 "Invalid enum tag in class template explicit instantiation!"); 8962 8963 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD); 8964 8965 if (!ClassTemplate) { 8966 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind); 8967 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind; 8968 Diag(TD->getLocation(), diag::note_previous_use); 8969 return true; 8970 } 8971 8972 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 8973 Kind, /*isDefinition*/false, KWLoc, 8974 ClassTemplate->getIdentifier())) { 8975 Diag(KWLoc, diag::err_use_with_wrong_tag) 8976 << ClassTemplate 8977 << FixItHint::CreateReplacement(KWLoc, 8978 ClassTemplate->getTemplatedDecl()->getKindName()); 8979 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 8980 diag::note_previous_use); 8981 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 8982 } 8983 8984 // C++0x [temp.explicit]p2: 8985 // There are two forms of explicit instantiation: an explicit instantiation 8986 // definition and an explicit instantiation declaration. An explicit 8987 // instantiation declaration begins with the extern keyword. [...] 8988 TemplateSpecializationKind TSK = ExternLoc.isInvalid() 8989 ? TSK_ExplicitInstantiationDefinition 8990 : TSK_ExplicitInstantiationDeclaration; 8991 8992 if (TSK == TSK_ExplicitInstantiationDeclaration && 8993 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 8994 // Check for dllexport class template instantiation declarations, 8995 // except for MinGW mode. 8996 for (const ParsedAttr &AL : Attr) { 8997 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 8998 Diag(ExternLoc, 8999 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9000 Diag(AL.getLoc(), diag::note_attribute); 9001 break; 9002 } 9003 } 9004 9005 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { 9006 Diag(ExternLoc, 9007 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9008 Diag(A->getLocation(), diag::note_attribute); 9009 } 9010 } 9011 9012 // In MSVC mode, dllimported explicit instantiation definitions are treated as 9013 // instantiation declarations for most purposes. 9014 bool DLLImportExplicitInstantiationDef = false; 9015 if (TSK == TSK_ExplicitInstantiationDefinition && 9016 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 9017 // Check for dllimport class template instantiation definitions. 9018 bool DLLImport = 9019 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); 9020 for (const ParsedAttr &AL : Attr) { 9021 if (AL.getKind() == ParsedAttr::AT_DLLImport) 9022 DLLImport = true; 9023 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9024 // dllexport trumps dllimport here. 9025 DLLImport = false; 9026 break; 9027 } 9028 } 9029 if (DLLImport) { 9030 TSK = TSK_ExplicitInstantiationDeclaration; 9031 DLLImportExplicitInstantiationDef = true; 9032 } 9033 } 9034 9035 // Translate the parser's template argument list in our AST format. 9036 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 9037 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 9038 9039 // Check that the template argument list is well-formed for this 9040 // template. 9041 SmallVector<TemplateArgument, 4> Converted; 9042 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 9043 TemplateArgs, false, Converted)) 9044 return true; 9045 9046 // Find the class template specialization declaration that 9047 // corresponds to these arguments. 9048 void *InsertPos = nullptr; 9049 ClassTemplateSpecializationDecl *PrevDecl 9050 = ClassTemplate->findSpecialization(Converted, InsertPos); 9051 9052 TemplateSpecializationKind PrevDecl_TSK 9053 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 9054 9055 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr && 9056 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9057 // Check for dllexport class template instantiation definitions in MinGW 9058 // mode, if a previous declaration of the instantiation was seen. 9059 for (const ParsedAttr &AL : Attr) { 9060 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9061 Diag(AL.getLoc(), 9062 diag::warn_attribute_dllexport_explicit_instantiation_def); 9063 break; 9064 } 9065 } 9066 } 9067 9068 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc, 9069 SS.isSet(), TSK)) 9070 return true; 9071 9072 ClassTemplateSpecializationDecl *Specialization = nullptr; 9073 9074 bool HasNoEffect = false; 9075 if (PrevDecl) { 9076 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 9077 PrevDecl, PrevDecl_TSK, 9078 PrevDecl->getPointOfInstantiation(), 9079 HasNoEffect)) 9080 return PrevDecl; 9081 9082 // Even though HasNoEffect == true means that this explicit instantiation 9083 // has no effect on semantics, we go on to put its syntax in the AST. 9084 9085 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 9086 PrevDecl_TSK == TSK_Undeclared) { 9087 // Since the only prior class template specialization with these 9088 // arguments was referenced but not declared, reuse that 9089 // declaration node as our own, updating the source location 9090 // for the template name to reflect our new declaration. 9091 // (Other source locations will be updated later.) 9092 Specialization = PrevDecl; 9093 Specialization->setLocation(TemplateNameLoc); 9094 PrevDecl = nullptr; 9095 } 9096 9097 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9098 DLLImportExplicitInstantiationDef) { 9099 // The new specialization might add a dllimport attribute. 9100 HasNoEffect = false; 9101 } 9102 } 9103 9104 if (!Specialization) { 9105 // Create a new class template specialization declaration node for 9106 // this explicit specialization. 9107 Specialization 9108 = ClassTemplateSpecializationDecl::Create(Context, Kind, 9109 ClassTemplate->getDeclContext(), 9110 KWLoc, TemplateNameLoc, 9111 ClassTemplate, 9112 Converted, 9113 PrevDecl); 9114 SetNestedNameSpecifier(*this, Specialization, SS); 9115 9116 if (!HasNoEffect && !PrevDecl) { 9117 // Insert the new specialization. 9118 ClassTemplate->AddSpecialization(Specialization, InsertPos); 9119 } 9120 } 9121 9122 // Build the fully-sugared type for this explicit instantiation as 9123 // the user wrote in the explicit instantiation itself. This means 9124 // that we'll pretty-print the type retrieved from the 9125 // specialization's declaration the way that the user actually wrote 9126 // the explicit instantiation, rather than formatting the name based 9127 // on the "canonical" representation used to store the template 9128 // arguments in the specialization. 9129 TypeSourceInfo *WrittenTy 9130 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 9131 TemplateArgs, 9132 Context.getTypeDeclType(Specialization)); 9133 Specialization->setTypeAsWritten(WrittenTy); 9134 9135 // Set source locations for keywords. 9136 Specialization->setExternLoc(ExternLoc); 9137 Specialization->setTemplateKeywordLoc(TemplateLoc); 9138 Specialization->setBraceRange(SourceRange()); 9139 9140 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); 9141 ProcessDeclAttributeList(S, Specialization, Attr); 9142 9143 // Add the explicit instantiation into its lexical context. However, 9144 // since explicit instantiations are never found by name lookup, we 9145 // just put it into the declaration context directly. 9146 Specialization->setLexicalDeclContext(CurContext); 9147 CurContext->addDecl(Specialization); 9148 9149 // Syntax is now OK, so return if it has no other effect on semantics. 9150 if (HasNoEffect) { 9151 // Set the template specialization kind. 9152 Specialization->setTemplateSpecializationKind(TSK); 9153 return Specialization; 9154 } 9155 9156 // C++ [temp.explicit]p3: 9157 // A definition of a class template or class member template 9158 // shall be in scope at the point of the explicit instantiation of 9159 // the class template or class member template. 9160 // 9161 // This check comes when we actually try to perform the 9162 // instantiation. 9163 ClassTemplateSpecializationDecl *Def 9164 = cast_or_null<ClassTemplateSpecializationDecl>( 9165 Specialization->getDefinition()); 9166 if (!Def) 9167 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 9168 else if (TSK == TSK_ExplicitInstantiationDefinition) { 9169 MarkVTableUsed(TemplateNameLoc, Specialization, true); 9170 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 9171 } 9172 9173 // Instantiate the members of this class template specialization. 9174 Def = cast_or_null<ClassTemplateSpecializationDecl>( 9175 Specialization->getDefinition()); 9176 if (Def) { 9177 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 9178 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 9179 // TSK_ExplicitInstantiationDefinition 9180 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 9181 (TSK == TSK_ExplicitInstantiationDefinition || 9182 DLLImportExplicitInstantiationDef)) { 9183 // FIXME: Need to notify the ASTMutationListener that we did this. 9184 Def->setTemplateSpecializationKind(TSK); 9185 9186 if (!getDLLAttr(Def) && getDLLAttr(Specialization) && 9187 (Context.getTargetInfo().getCXXABI().isMicrosoft() || 9188 Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) { 9189 // In the MS ABI, an explicit instantiation definition can add a dll 9190 // attribute to a template with a previous instantiation declaration. 9191 // MinGW doesn't allow this. 9192 auto *A = cast<InheritableAttr>( 9193 getDLLAttr(Specialization)->clone(getASTContext())); 9194 A->setInherited(true); 9195 Def->addAttr(A); 9196 dllExportImportClassTemplateSpecialization(*this, Def); 9197 } 9198 } 9199 9200 // Fix a TSK_ImplicitInstantiation followed by a 9201 // TSK_ExplicitInstantiationDefinition 9202 bool NewlyDLLExported = 9203 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); 9204 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && 9205 (Context.getTargetInfo().getCXXABI().isMicrosoft() || 9206 Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) { 9207 // In the MS ABI, an explicit instantiation definition can add a dll 9208 // attribute to a template with a previous implicit instantiation. 9209 // MinGW doesn't allow this. We limit clang to only adding dllexport, to 9210 // avoid potentially strange codegen behavior. For example, if we extend 9211 // this conditional to dllimport, and we have a source file calling a 9212 // method on an implicitly instantiated template class instance and then 9213 // declaring a dllimport explicit instantiation definition for the same 9214 // template class, the codegen for the method call will not respect the 9215 // dllimport, while it will with cl. The Def will already have the DLL 9216 // attribute, since the Def and Specialization will be the same in the 9217 // case of Old_TSK == TSK_ImplicitInstantiation, and we already added the 9218 // attribute to the Specialization; we just need to make it take effect. 9219 assert(Def == Specialization && 9220 "Def and Specialization should match for implicit instantiation"); 9221 dllExportImportClassTemplateSpecialization(*this, Def); 9222 } 9223 9224 // In MinGW mode, export the template instantiation if the declaration 9225 // was marked dllexport. 9226 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9227 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() && 9228 PrevDecl->hasAttr<DLLExportAttr>()) { 9229 dllExportImportClassTemplateSpecialization(*this, Def); 9230 } 9231 9232 // Set the template specialization kind. Make sure it is set before 9233 // instantiating the members which will trigger ASTConsumer callbacks. 9234 Specialization->setTemplateSpecializationKind(TSK); 9235 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 9236 } else { 9237 9238 // Set the template specialization kind. 9239 Specialization->setTemplateSpecializationKind(TSK); 9240 } 9241 9242 return Specialization; 9243 } 9244 9245 // Explicit instantiation of a member class of a class template. 9246 DeclResult 9247 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, 9248 SourceLocation TemplateLoc, unsigned TagSpec, 9249 SourceLocation KWLoc, CXXScopeSpec &SS, 9250 IdentifierInfo *Name, SourceLocation NameLoc, 9251 const ParsedAttributesView &Attr) { 9252 9253 bool Owned = false; 9254 bool IsDependent = false; 9255 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 9256 KWLoc, SS, Name, NameLoc, Attr, AS_none, 9257 /*ModulePrivateLoc=*/SourceLocation(), 9258 MultiTemplateParamsArg(), Owned, IsDependent, 9259 SourceLocation(), false, TypeResult(), 9260 /*IsTypeSpecifier*/false, 9261 /*IsTemplateParamOrArg*/false); 9262 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 9263 9264 if (!TagD) 9265 return true; 9266 9267 TagDecl *Tag = cast<TagDecl>(TagD); 9268 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 9269 9270 if (Tag->isInvalidDecl()) 9271 return true; 9272 9273 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 9274 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 9275 if (!Pattern) { 9276 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 9277 << Context.getTypeDeclType(Record); 9278 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 9279 return true; 9280 } 9281 9282 // C++0x [temp.explicit]p2: 9283 // If the explicit instantiation is for a class or member class, the 9284 // elaborated-type-specifier in the declaration shall include a 9285 // simple-template-id. 9286 // 9287 // C++98 has the same restriction, just worded differently. 9288 if (!ScopeSpecifierHasTemplateId(SS)) 9289 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 9290 << Record << SS.getRange(); 9291 9292 // C++0x [temp.explicit]p2: 9293 // There are two forms of explicit instantiation: an explicit instantiation 9294 // definition and an explicit instantiation declaration. An explicit 9295 // instantiation declaration begins with the extern keyword. [...] 9296 TemplateSpecializationKind TSK 9297 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 9298 : TSK_ExplicitInstantiationDeclaration; 9299 9300 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK); 9301 9302 // Verify that it is okay to explicitly instantiate here. 9303 CXXRecordDecl *PrevDecl 9304 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 9305 if (!PrevDecl && Record->getDefinition()) 9306 PrevDecl = Record; 9307 if (PrevDecl) { 9308 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 9309 bool HasNoEffect = false; 9310 assert(MSInfo && "No member specialization information?"); 9311 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 9312 PrevDecl, 9313 MSInfo->getTemplateSpecializationKind(), 9314 MSInfo->getPointOfInstantiation(), 9315 HasNoEffect)) 9316 return true; 9317 if (HasNoEffect) 9318 return TagD; 9319 } 9320 9321 CXXRecordDecl *RecordDef 9322 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 9323 if (!RecordDef) { 9324 // C++ [temp.explicit]p3: 9325 // A definition of a member class of a class template shall be in scope 9326 // at the point of an explicit instantiation of the member class. 9327 CXXRecordDecl *Def 9328 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 9329 if (!Def) { 9330 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 9331 << 0 << Record->getDeclName() << Record->getDeclContext(); 9332 Diag(Pattern->getLocation(), diag::note_forward_declaration) 9333 << Pattern; 9334 return true; 9335 } else { 9336 if (InstantiateClass(NameLoc, Record, Def, 9337 getTemplateInstantiationArgs(Record), 9338 TSK)) 9339 return true; 9340 9341 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 9342 if (!RecordDef) 9343 return true; 9344 } 9345 } 9346 9347 // Instantiate all of the members of the class. 9348 InstantiateClassMembers(NameLoc, RecordDef, 9349 getTemplateInstantiationArgs(Record), TSK); 9350 9351 if (TSK == TSK_ExplicitInstantiationDefinition) 9352 MarkVTableUsed(NameLoc, RecordDef, true); 9353 9354 // FIXME: We don't have any representation for explicit instantiations of 9355 // member classes. Such a representation is not needed for compilation, but it 9356 // should be available for clients that want to see all of the declarations in 9357 // the source code. 9358 return TagD; 9359 } 9360 9361 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 9362 SourceLocation ExternLoc, 9363 SourceLocation TemplateLoc, 9364 Declarator &D) { 9365 // Explicit instantiations always require a name. 9366 // TODO: check if/when DNInfo should replace Name. 9367 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 9368 DeclarationName Name = NameInfo.getName(); 9369 if (!Name) { 9370 if (!D.isInvalidType()) 9371 Diag(D.getDeclSpec().getBeginLoc(), 9372 diag::err_explicit_instantiation_requires_name) 9373 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 9374 9375 return true; 9376 } 9377 9378 // The scope passed in may not be a decl scope. Zip up the scope tree until 9379 // we find one that is. 9380 while ((S->getFlags() & Scope::DeclScope) == 0 || 9381 (S->getFlags() & Scope::TemplateParamScope) != 0) 9382 S = S->getParent(); 9383 9384 // Determine the type of the declaration. 9385 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 9386 QualType R = T->getType(); 9387 if (R.isNull()) 9388 return true; 9389 9390 // C++ [dcl.stc]p1: 9391 // A storage-class-specifier shall not be specified in [...] an explicit 9392 // instantiation (14.7.2) directive. 9393 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 9394 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 9395 << Name; 9396 return true; 9397 } else if (D.getDeclSpec().getStorageClassSpec() 9398 != DeclSpec::SCS_unspecified) { 9399 // Complain about then remove the storage class specifier. 9400 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 9401 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 9402 9403 D.getMutableDeclSpec().ClearStorageClassSpecs(); 9404 } 9405 9406 // C++0x [temp.explicit]p1: 9407 // [...] An explicit instantiation of a function template shall not use the 9408 // inline or constexpr specifiers. 9409 // Presumably, this also applies to member functions of class templates as 9410 // well. 9411 if (D.getDeclSpec().isInlineSpecified()) 9412 Diag(D.getDeclSpec().getInlineSpecLoc(), 9413 getLangOpts().CPlusPlus11 ? 9414 diag::err_explicit_instantiation_inline : 9415 diag::warn_explicit_instantiation_inline_0x) 9416 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 9417 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType()) 9418 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 9419 // not already specified. 9420 Diag(D.getDeclSpec().getConstexprSpecLoc(), 9421 diag::err_explicit_instantiation_constexpr); 9422 9423 // A deduction guide is not on the list of entities that can be explicitly 9424 // instantiated. 9425 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { 9426 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized) 9427 << /*explicit instantiation*/ 0; 9428 return true; 9429 } 9430 9431 // C++0x [temp.explicit]p2: 9432 // There are two forms of explicit instantiation: an explicit instantiation 9433 // definition and an explicit instantiation declaration. An explicit 9434 // instantiation declaration begins with the extern keyword. [...] 9435 TemplateSpecializationKind TSK 9436 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 9437 : TSK_ExplicitInstantiationDeclaration; 9438 9439 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 9440 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 9441 9442 if (!R->isFunctionType()) { 9443 // C++ [temp.explicit]p1: 9444 // A [...] static data member of a class template can be explicitly 9445 // instantiated from the member definition associated with its class 9446 // template. 9447 // C++1y [temp.explicit]p1: 9448 // A [...] variable [...] template specialization can be explicitly 9449 // instantiated from its template. 9450 if (Previous.isAmbiguous()) 9451 return true; 9452 9453 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 9454 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); 9455 9456 if (!PrevTemplate) { 9457 if (!Prev || !Prev->isStaticDataMember()) { 9458 // We expect to see a static data member here. 9459 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 9460 << Name; 9461 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 9462 P != PEnd; ++P) 9463 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 9464 return true; 9465 } 9466 9467 if (!Prev->getInstantiatedFromStaticDataMember()) { 9468 // FIXME: Check for explicit specialization? 9469 Diag(D.getIdentifierLoc(), 9470 diag::err_explicit_instantiation_data_member_not_instantiated) 9471 << Prev; 9472 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 9473 // FIXME: Can we provide a note showing where this was declared? 9474 return true; 9475 } 9476 } else { 9477 // Explicitly instantiate a variable template. 9478 9479 // C++1y [dcl.spec.auto]p6: 9480 // ... A program that uses auto or decltype(auto) in a context not 9481 // explicitly allowed in this section is ill-formed. 9482 // 9483 // This includes auto-typed variable template instantiations. 9484 if (R->isUndeducedType()) { 9485 Diag(T->getTypeLoc().getBeginLoc(), 9486 diag::err_auto_not_allowed_var_inst); 9487 return true; 9488 } 9489 9490 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 9491 // C++1y [temp.explicit]p3: 9492 // If the explicit instantiation is for a variable, the unqualified-id 9493 // in the declaration shall be a template-id. 9494 Diag(D.getIdentifierLoc(), 9495 diag::err_explicit_instantiation_without_template_id) 9496 << PrevTemplate; 9497 Diag(PrevTemplate->getLocation(), 9498 diag::note_explicit_instantiation_here); 9499 return true; 9500 } 9501 9502 // Translate the parser's template argument list into our AST format. 9503 TemplateArgumentListInfo TemplateArgs = 9504 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 9505 9506 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, 9507 D.getIdentifierLoc(), TemplateArgs); 9508 if (Res.isInvalid()) 9509 return true; 9510 9511 // Ignore access control bits, we don't need them for redeclaration 9512 // checking. 9513 Prev = cast<VarDecl>(Res.get()); 9514 } 9515 9516 // C++0x [temp.explicit]p2: 9517 // If the explicit instantiation is for a member function, a member class 9518 // or a static data member of a class template specialization, the name of 9519 // the class template specialization in the qualified-id for the member 9520 // name shall be a simple-template-id. 9521 // 9522 // C++98 has the same restriction, just worded differently. 9523 // 9524 // This does not apply to variable template specializations, where the 9525 // template-id is in the unqualified-id instead. 9526 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) 9527 Diag(D.getIdentifierLoc(), 9528 diag::ext_explicit_instantiation_without_qualified_id) 9529 << Prev << D.getCXXScopeSpec().getRange(); 9530 9531 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK); 9532 9533 // Verify that it is okay to explicitly instantiate here. 9534 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); 9535 SourceLocation POI = Prev->getPointOfInstantiation(); 9536 bool HasNoEffect = false; 9537 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 9538 PrevTSK, POI, HasNoEffect)) 9539 return true; 9540 9541 if (!HasNoEffect) { 9542 // Instantiate static data member or variable template. 9543 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 9544 // Merge attributes. 9545 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes()); 9546 if (TSK == TSK_ExplicitInstantiationDefinition) 9547 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); 9548 } 9549 9550 // Check the new variable specialization against the parsed input. 9551 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) { 9552 Diag(T->getTypeLoc().getBeginLoc(), 9553 diag::err_invalid_var_template_spec_type) 9554 << 0 << PrevTemplate << R << Prev->getType(); 9555 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) 9556 << 2 << PrevTemplate->getDeclName(); 9557 return true; 9558 } 9559 9560 // FIXME: Create an ExplicitInstantiation node? 9561 return (Decl*) nullptr; 9562 } 9563 9564 // If the declarator is a template-id, translate the parser's template 9565 // argument list into our AST format. 9566 bool HasExplicitTemplateArgs = false; 9567 TemplateArgumentListInfo TemplateArgs; 9568 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 9569 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 9570 HasExplicitTemplateArgs = true; 9571 } 9572 9573 // C++ [temp.explicit]p1: 9574 // A [...] function [...] can be explicitly instantiated from its template. 9575 // A member function [...] of a class template can be explicitly 9576 // instantiated from the member definition associated with its class 9577 // template. 9578 UnresolvedSet<8> TemplateMatches; 9579 FunctionDecl *NonTemplateMatch = nullptr; 9580 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); 9581 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 9582 P != PEnd; ++P) { 9583 NamedDecl *Prev = *P; 9584 if (!HasExplicitTemplateArgs) { 9585 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 9586 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(), 9587 /*AdjustExceptionSpec*/true); 9588 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) { 9589 if (Method->getPrimaryTemplate()) { 9590 TemplateMatches.addDecl(Method, P.getAccess()); 9591 } else { 9592 // FIXME: Can this assert ever happen? Needs a test. 9593 assert(!NonTemplateMatch && "Multiple NonTemplateMatches"); 9594 NonTemplateMatch = Method; 9595 } 9596 } 9597 } 9598 } 9599 9600 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 9601 if (!FunTmpl) 9602 continue; 9603 9604 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 9605 FunctionDecl *Specialization = nullptr; 9606 if (TemplateDeductionResult TDK 9607 = DeduceTemplateArguments(FunTmpl, 9608 (HasExplicitTemplateArgs ? &TemplateArgs 9609 : nullptr), 9610 R, Specialization, Info)) { 9611 // Keep track of almost-matches. 9612 FailedCandidates.addCandidate() 9613 .set(P.getPair(), FunTmpl->getTemplatedDecl(), 9614 MakeDeductionFailureInfo(Context, TDK, Info)); 9615 (void)TDK; 9616 continue; 9617 } 9618 9619 // Target attributes are part of the cuda function signature, so 9620 // the cuda target of the instantiated function must match that of its 9621 // template. Given that C++ template deduction does not take 9622 // target attributes into account, we reject candidates here that 9623 // have a different target. 9624 if (LangOpts.CUDA && 9625 IdentifyCUDATarget(Specialization, 9626 /* IgnoreImplicitHDAttr = */ true) != 9627 IdentifyCUDATarget(D.getDeclSpec().getAttributes())) { 9628 FailedCandidates.addCandidate().set( 9629 P.getPair(), FunTmpl->getTemplatedDecl(), 9630 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 9631 continue; 9632 } 9633 9634 TemplateMatches.addDecl(Specialization, P.getAccess()); 9635 } 9636 9637 FunctionDecl *Specialization = NonTemplateMatch; 9638 if (!Specialization) { 9639 // Find the most specialized function template specialization. 9640 UnresolvedSetIterator Result = getMostSpecialized( 9641 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates, 9642 D.getIdentifierLoc(), 9643 PDiag(diag::err_explicit_instantiation_not_known) << Name, 9644 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 9645 PDiag(diag::note_explicit_instantiation_candidate)); 9646 9647 if (Result == TemplateMatches.end()) 9648 return true; 9649 9650 // Ignore access control bits, we don't need them for redeclaration checking. 9651 Specialization = cast<FunctionDecl>(*Result); 9652 } 9653 9654 // C++11 [except.spec]p4 9655 // In an explicit instantiation an exception-specification may be specified, 9656 // but is not required. 9657 // If an exception-specification is specified in an explicit instantiation 9658 // directive, it shall be compatible with the exception-specifications of 9659 // other declarations of that function. 9660 if (auto *FPT = R->getAs<FunctionProtoType>()) 9661 if (FPT->hasExceptionSpec()) { 9662 unsigned DiagID = 9663 diag::err_mismatched_exception_spec_explicit_instantiation; 9664 if (getLangOpts().MicrosoftExt) 9665 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; 9666 bool Result = CheckEquivalentExceptionSpec( 9667 PDiag(DiagID) << Specialization->getType(), 9668 PDiag(diag::note_explicit_instantiation_here), 9669 Specialization->getType()->getAs<FunctionProtoType>(), 9670 Specialization->getLocation(), FPT, D.getBeginLoc()); 9671 // In Microsoft mode, mismatching exception specifications just cause a 9672 // warning. 9673 if (!getLangOpts().MicrosoftExt && Result) 9674 return true; 9675 } 9676 9677 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 9678 Diag(D.getIdentifierLoc(), 9679 diag::err_explicit_instantiation_member_function_not_instantiated) 9680 << Specialization 9681 << (Specialization->getTemplateSpecializationKind() == 9682 TSK_ExplicitSpecialization); 9683 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 9684 return true; 9685 } 9686 9687 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 9688 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 9689 PrevDecl = Specialization; 9690 9691 if (PrevDecl) { 9692 bool HasNoEffect = false; 9693 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 9694 PrevDecl, 9695 PrevDecl->getTemplateSpecializationKind(), 9696 PrevDecl->getPointOfInstantiation(), 9697 HasNoEffect)) 9698 return true; 9699 9700 // FIXME: We may still want to build some representation of this 9701 // explicit specialization. 9702 if (HasNoEffect) 9703 return (Decl*) nullptr; 9704 } 9705 9706 // HACK: libc++ has a bug where it attempts to explicitly instantiate the 9707 // functions 9708 // valarray<size_t>::valarray(size_t) and 9709 // valarray<size_t>::~valarray() 9710 // that it declared to have internal linkage with the internal_linkage 9711 // attribute. Ignore the explicit instantiation declaration in this case. 9712 if (Specialization->hasAttr<InternalLinkageAttr>() && 9713 TSK == TSK_ExplicitInstantiationDeclaration) { 9714 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext())) 9715 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") && 9716 RD->isInStdNamespace()) 9717 return (Decl*) nullptr; 9718 } 9719 9720 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes()); 9721 9722 // In MSVC mode, dllimported explicit instantiation definitions are treated as 9723 // instantiation declarations. 9724 if (TSK == TSK_ExplicitInstantiationDefinition && 9725 Specialization->hasAttr<DLLImportAttr>() && 9726 Context.getTargetInfo().getCXXABI().isMicrosoft()) 9727 TSK = TSK_ExplicitInstantiationDeclaration; 9728 9729 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 9730 9731 if (Specialization->isDefined()) { 9732 // Let the ASTConsumer know that this function has been explicitly 9733 // instantiated now, and its linkage might have changed. 9734 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization)); 9735 } else if (TSK == TSK_ExplicitInstantiationDefinition) 9736 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 9737 9738 // C++0x [temp.explicit]p2: 9739 // If the explicit instantiation is for a member function, a member class 9740 // or a static data member of a class template specialization, the name of 9741 // the class template specialization in the qualified-id for the member 9742 // name shall be a simple-template-id. 9743 // 9744 // C++98 has the same restriction, just worded differently. 9745 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 9746 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && 9747 D.getCXXScopeSpec().isSet() && 9748 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 9749 Diag(D.getIdentifierLoc(), 9750 diag::ext_explicit_instantiation_without_qualified_id) 9751 << Specialization << D.getCXXScopeSpec().getRange(); 9752 9753 CheckExplicitInstantiation( 9754 *this, 9755 FunTmpl ? (NamedDecl *)FunTmpl 9756 : Specialization->getInstantiatedFromMemberFunction(), 9757 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK); 9758 9759 // FIXME: Create some kind of ExplicitInstantiationDecl here. 9760 return (Decl*) nullptr; 9761 } 9762 9763 TypeResult 9764 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 9765 const CXXScopeSpec &SS, IdentifierInfo *Name, 9766 SourceLocation TagLoc, SourceLocation NameLoc) { 9767 // This has to hold, because SS is expected to be defined. 9768 assert(Name && "Expected a name in a dependent tag"); 9769 9770 NestedNameSpecifier *NNS = SS.getScopeRep(); 9771 if (!NNS) 9772 return true; 9773 9774 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 9775 9776 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 9777 Diag(NameLoc, diag::err_dependent_tag_decl) 9778 << (TUK == TUK_Definition) << Kind << SS.getRange(); 9779 return true; 9780 } 9781 9782 // Create the resulting type. 9783 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 9784 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 9785 9786 // Create type-source location information for this type. 9787 TypeLocBuilder TLB; 9788 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 9789 TL.setElaboratedKeywordLoc(TagLoc); 9790 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 9791 TL.setNameLoc(NameLoc); 9792 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 9793 } 9794 9795 TypeResult 9796 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 9797 const CXXScopeSpec &SS, const IdentifierInfo &II, 9798 SourceLocation IdLoc) { 9799 if (SS.isInvalid()) 9800 return true; 9801 9802 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 9803 Diag(TypenameLoc, 9804 getLangOpts().CPlusPlus11 ? 9805 diag::warn_cxx98_compat_typename_outside_of_template : 9806 diag::ext_typename_outside_of_template) 9807 << FixItHint::CreateRemoval(TypenameLoc); 9808 9809 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 9810 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 9811 TypenameLoc, QualifierLoc, II, IdLoc); 9812 if (T.isNull()) 9813 return true; 9814 9815 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 9816 if (isa<DependentNameType>(T)) { 9817 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 9818 TL.setElaboratedKeywordLoc(TypenameLoc); 9819 TL.setQualifierLoc(QualifierLoc); 9820 TL.setNameLoc(IdLoc); 9821 } else { 9822 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 9823 TL.setElaboratedKeywordLoc(TypenameLoc); 9824 TL.setQualifierLoc(QualifierLoc); 9825 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 9826 } 9827 9828 return CreateParsedType(T, TSI); 9829 } 9830 9831 TypeResult 9832 Sema::ActOnTypenameType(Scope *S, 9833 SourceLocation TypenameLoc, 9834 const CXXScopeSpec &SS, 9835 SourceLocation TemplateKWLoc, 9836 TemplateTy TemplateIn, 9837 IdentifierInfo *TemplateII, 9838 SourceLocation TemplateIILoc, 9839 SourceLocation LAngleLoc, 9840 ASTTemplateArgsPtr TemplateArgsIn, 9841 SourceLocation RAngleLoc) { 9842 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 9843 Diag(TypenameLoc, 9844 getLangOpts().CPlusPlus11 ? 9845 diag::warn_cxx98_compat_typename_outside_of_template : 9846 diag::ext_typename_outside_of_template) 9847 << FixItHint::CreateRemoval(TypenameLoc); 9848 9849 // Strangely, non-type results are not ignored by this lookup, so the 9850 // program is ill-formed if it finds an injected-class-name. 9851 if (TypenameLoc.isValid()) { 9852 auto *LookupRD = 9853 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false)); 9854 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 9855 Diag(TemplateIILoc, 9856 diag::ext_out_of_line_qualified_id_type_names_constructor) 9857 << TemplateII << 0 /*injected-class-name used as template name*/ 9858 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); 9859 } 9860 } 9861 9862 // Translate the parser's template argument list in our AST format. 9863 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 9864 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 9865 9866 TemplateName Template = TemplateIn.get(); 9867 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 9868 // Construct a dependent template specialization type. 9869 assert(DTN && "dependent template has non-dependent name?"); 9870 assert(DTN->getQualifier() == SS.getScopeRep()); 9871 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 9872 DTN->getQualifier(), 9873 DTN->getIdentifier(), 9874 TemplateArgs); 9875 9876 // Create source-location information for this type. 9877 TypeLocBuilder Builder; 9878 DependentTemplateSpecializationTypeLoc SpecTL 9879 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 9880 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 9881 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 9882 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 9883 SpecTL.setTemplateNameLoc(TemplateIILoc); 9884 SpecTL.setLAngleLoc(LAngleLoc); 9885 SpecTL.setRAngleLoc(RAngleLoc); 9886 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 9887 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 9888 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 9889 } 9890 9891 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 9892 if (T.isNull()) 9893 return true; 9894 9895 // Provide source-location information for the template specialization type. 9896 TypeLocBuilder Builder; 9897 TemplateSpecializationTypeLoc SpecTL 9898 = Builder.push<TemplateSpecializationTypeLoc>(T); 9899 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 9900 SpecTL.setTemplateNameLoc(TemplateIILoc); 9901 SpecTL.setLAngleLoc(LAngleLoc); 9902 SpecTL.setRAngleLoc(RAngleLoc); 9903 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 9904 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 9905 9906 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 9907 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 9908 TL.setElaboratedKeywordLoc(TypenameLoc); 9909 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 9910 9911 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 9912 return CreateParsedType(T, TSI); 9913 } 9914 9915 9916 /// Determine whether this failed name lookup should be treated as being 9917 /// disabled by a usage of std::enable_if. 9918 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 9919 SourceRange &CondRange, Expr *&Cond) { 9920 // We must be looking for a ::type... 9921 if (!II.isStr("type")) 9922 return false; 9923 9924 // ... within an explicitly-written template specialization... 9925 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 9926 return false; 9927 TypeLoc EnableIfTy = NNS.getTypeLoc(); 9928 TemplateSpecializationTypeLoc EnableIfTSTLoc = 9929 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 9930 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 9931 return false; 9932 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); 9933 9934 // ... which names a complete class template declaration... 9935 const TemplateDecl *EnableIfDecl = 9936 EnableIfTST->getTemplateName().getAsTemplateDecl(); 9937 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 9938 return false; 9939 9940 // ... called "enable_if". 9941 const IdentifierInfo *EnableIfII = 9942 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 9943 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 9944 return false; 9945 9946 // Assume the first template argument is the condition. 9947 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 9948 9949 // Dig out the condition. 9950 Cond = nullptr; 9951 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind() 9952 != TemplateArgument::Expression) 9953 return true; 9954 9955 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression(); 9956 9957 // Ignore Boolean literals; they add no value. 9958 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts())) 9959 Cond = nullptr; 9960 9961 return true; 9962 } 9963 9964 /// Build the type that describes a C++ typename specifier, 9965 /// e.g., "typename T::type". 9966 QualType 9967 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 9968 SourceLocation KeywordLoc, 9969 NestedNameSpecifierLoc QualifierLoc, 9970 const IdentifierInfo &II, 9971 SourceLocation IILoc) { 9972 CXXScopeSpec SS; 9973 SS.Adopt(QualifierLoc); 9974 9975 DeclContext *Ctx = computeDeclContext(SS); 9976 if (!Ctx) { 9977 // If the nested-name-specifier is dependent and couldn't be 9978 // resolved to a type, build a typename type. 9979 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 9980 return Context.getDependentNameType(Keyword, 9981 QualifierLoc.getNestedNameSpecifier(), 9982 &II); 9983 } 9984 9985 // If the nested-name-specifier refers to the current instantiation, 9986 // the "typename" keyword itself is superfluous. In C++03, the 9987 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 9988 // allows such extraneous "typename" keywords, and we retroactively 9989 // apply this DR to C++03 code with only a warning. In any case we continue. 9990 9991 if (RequireCompleteDeclContext(SS, Ctx)) 9992 return QualType(); 9993 9994 DeclarationName Name(&II); 9995 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 9996 LookupQualifiedName(Result, Ctx, SS); 9997 unsigned DiagID = 0; 9998 Decl *Referenced = nullptr; 9999 switch (Result.getResultKind()) { 10000 case LookupResult::NotFound: { 10001 // If we're looking up 'type' within a template named 'enable_if', produce 10002 // a more specific diagnostic. 10003 SourceRange CondRange; 10004 Expr *Cond = nullptr; 10005 if (isEnableIf(QualifierLoc, II, CondRange, Cond)) { 10006 // If we have a condition, narrow it down to the specific failed 10007 // condition. 10008 if (Cond) { 10009 Expr *FailedCond; 10010 std::string FailedDescription; 10011 std::tie(FailedCond, FailedDescription) = 10012 findFailedBooleanCondition(Cond); 10013 10014 Diag(FailedCond->getExprLoc(), 10015 diag::err_typename_nested_not_found_requirement) 10016 << FailedDescription 10017 << FailedCond->getSourceRange(); 10018 return QualType(); 10019 } 10020 10021 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if) 10022 << Ctx << CondRange; 10023 return QualType(); 10024 } 10025 10026 DiagID = diag::err_typename_nested_not_found; 10027 break; 10028 } 10029 10030 case LookupResult::FoundUnresolvedValue: { 10031 // We found a using declaration that is a value. Most likely, the using 10032 // declaration itself is meant to have the 'typename' keyword. 10033 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10034 IILoc); 10035 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 10036 << Name << Ctx << FullRange; 10037 if (UnresolvedUsingValueDecl *Using 10038 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 10039 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 10040 Diag(Loc, diag::note_using_value_decl_missing_typename) 10041 << FixItHint::CreateInsertion(Loc, "typename "); 10042 } 10043 } 10044 // Fall through to create a dependent typename type, from which we can recover 10045 // better. 10046 LLVM_FALLTHROUGH; 10047 10048 case LookupResult::NotFoundInCurrentInstantiation: 10049 // Okay, it's a member of an unknown instantiation. 10050 return Context.getDependentNameType(Keyword, 10051 QualifierLoc.getNestedNameSpecifier(), 10052 &II); 10053 10054 case LookupResult::Found: 10055 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 10056 // C++ [class.qual]p2: 10057 // In a lookup in which function names are not ignored and the 10058 // nested-name-specifier nominates a class C, if the name specified 10059 // after the nested-name-specifier, when looked up in C, is the 10060 // injected-class-name of C [...] then the name is instead considered 10061 // to name the constructor of class C. 10062 // 10063 // Unlike in an elaborated-type-specifier, function names are not ignored 10064 // in typename-specifier lookup. However, they are ignored in all the 10065 // contexts where we form a typename type with no keyword (that is, in 10066 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). 10067 // 10068 // FIXME: That's not strictly true: mem-initializer-id lookup does not 10069 // ignore functions, but that appears to be an oversight. 10070 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx); 10071 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type); 10072 if (Keyword == ETK_Typename && LookupRD && FoundRD && 10073 FoundRD->isInjectedClassName() && 10074 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) 10075 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor) 10076 << &II << 1 << 0 /*'typename' keyword used*/; 10077 10078 // We found a type. Build an ElaboratedType, since the 10079 // typename-specifier was just sugar. 10080 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 10081 return Context.getElaboratedType(Keyword, 10082 QualifierLoc.getNestedNameSpecifier(), 10083 Context.getTypeDeclType(Type)); 10084 } 10085 10086 // C++ [dcl.type.simple]p2: 10087 // A type-specifier of the form 10088 // typename[opt] nested-name-specifier[opt] template-name 10089 // is a placeholder for a deduced class type [...]. 10090 if (getLangOpts().CPlusPlus17) { 10091 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) { 10092 return Context.getElaboratedType( 10093 Keyword, QualifierLoc.getNestedNameSpecifier(), 10094 Context.getDeducedTemplateSpecializationType(TemplateName(TD), 10095 QualType(), false)); 10096 } 10097 } 10098 10099 DiagID = diag::err_typename_nested_not_type; 10100 Referenced = Result.getFoundDecl(); 10101 break; 10102 10103 case LookupResult::FoundOverloaded: 10104 DiagID = diag::err_typename_nested_not_type; 10105 Referenced = *Result.begin(); 10106 break; 10107 10108 case LookupResult::Ambiguous: 10109 return QualType(); 10110 } 10111 10112 // If we get here, it's because name lookup did not find a 10113 // type. Emit an appropriate diagnostic and return an error. 10114 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10115 IILoc); 10116 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 10117 if (Referenced) 10118 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 10119 << Name; 10120 return QualType(); 10121 } 10122 10123 namespace { 10124 // See Sema::RebuildTypeInCurrentInstantiation 10125 class CurrentInstantiationRebuilder 10126 : public TreeTransform<CurrentInstantiationRebuilder> { 10127 SourceLocation Loc; 10128 DeclarationName Entity; 10129 10130 public: 10131 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 10132 10133 CurrentInstantiationRebuilder(Sema &SemaRef, 10134 SourceLocation Loc, 10135 DeclarationName Entity) 10136 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 10137 Loc(Loc), Entity(Entity) { } 10138 10139 /// Determine whether the given type \p T has already been 10140 /// transformed. 10141 /// 10142 /// For the purposes of type reconstruction, a type has already been 10143 /// transformed if it is NULL or if it is not dependent. 10144 bool AlreadyTransformed(QualType T) { 10145 return T.isNull() || !T->isDependentType(); 10146 } 10147 10148 /// Returns the location of the entity whose type is being 10149 /// rebuilt. 10150 SourceLocation getBaseLocation() { return Loc; } 10151 10152 /// Returns the name of the entity whose type is being rebuilt. 10153 DeclarationName getBaseEntity() { return Entity; } 10154 10155 /// Sets the "base" location and entity when that 10156 /// information is known based on another transformation. 10157 void setBase(SourceLocation Loc, DeclarationName Entity) { 10158 this->Loc = Loc; 10159 this->Entity = Entity; 10160 } 10161 10162 ExprResult TransformLambdaExpr(LambdaExpr *E) { 10163 // Lambdas never need to be transformed. 10164 return E; 10165 } 10166 }; 10167 } // end anonymous namespace 10168 10169 /// Rebuilds a type within the context of the current instantiation. 10170 /// 10171 /// The type \p T is part of the type of an out-of-line member definition of 10172 /// a class template (or class template partial specialization) that was parsed 10173 /// and constructed before we entered the scope of the class template (or 10174 /// partial specialization thereof). This routine will rebuild that type now 10175 /// that we have entered the declarator's scope, which may produce different 10176 /// canonical types, e.g., 10177 /// 10178 /// \code 10179 /// template<typename T> 10180 /// struct X { 10181 /// typedef T* pointer; 10182 /// pointer data(); 10183 /// }; 10184 /// 10185 /// template<typename T> 10186 /// typename X<T>::pointer X<T>::data() { ... } 10187 /// \endcode 10188 /// 10189 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 10190 /// since we do not know that we can look into X<T> when we parsed the type. 10191 /// This function will rebuild the type, performing the lookup of "pointer" 10192 /// in X<T> and returning an ElaboratedType whose canonical type is the same 10193 /// as the canonical type of T*, allowing the return types of the out-of-line 10194 /// definition and the declaration to match. 10195 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 10196 SourceLocation Loc, 10197 DeclarationName Name) { 10198 if (!T || !T->getType()->isDependentType()) 10199 return T; 10200 10201 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 10202 return Rebuilder.TransformType(T); 10203 } 10204 10205 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 10206 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 10207 DeclarationName()); 10208 return Rebuilder.TransformExpr(E); 10209 } 10210 10211 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 10212 if (SS.isInvalid()) 10213 return true; 10214 10215 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 10216 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 10217 DeclarationName()); 10218 NestedNameSpecifierLoc Rebuilt 10219 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 10220 if (!Rebuilt) 10221 return true; 10222 10223 SS.Adopt(Rebuilt); 10224 return false; 10225 } 10226 10227 /// Rebuild the template parameters now that we know we're in a current 10228 /// instantiation. 10229 bool Sema::RebuildTemplateParamsInCurrentInstantiation( 10230 TemplateParameterList *Params) { 10231 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 10232 Decl *Param = Params->getParam(I); 10233 10234 // There is nothing to rebuild in a type parameter. 10235 if (isa<TemplateTypeParmDecl>(Param)) 10236 continue; 10237 10238 // Rebuild the template parameter list of a template template parameter. 10239 if (TemplateTemplateParmDecl *TTP 10240 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 10241 if (RebuildTemplateParamsInCurrentInstantiation( 10242 TTP->getTemplateParameters())) 10243 return true; 10244 10245 continue; 10246 } 10247 10248 // Rebuild the type of a non-type template parameter. 10249 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 10250 TypeSourceInfo *NewTSI 10251 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 10252 NTTP->getLocation(), 10253 NTTP->getDeclName()); 10254 if (!NewTSI) 10255 return true; 10256 10257 if (NewTSI->getType()->isUndeducedType()) { 10258 // C++17 [temp.dep.expr]p3: 10259 // An id-expression is type-dependent if it contains 10260 // - an identifier associated by name lookup with a non-type 10261 // template-parameter declared with a type that contains a 10262 // placeholder type (7.1.7.4), 10263 NewTSI = SubstAutoTypeSourceInfo(NewTSI, Context.DependentTy); 10264 } 10265 10266 if (NewTSI != NTTP->getTypeSourceInfo()) { 10267 NTTP->setTypeSourceInfo(NewTSI); 10268 NTTP->setType(NewTSI->getType()); 10269 } 10270 } 10271 10272 return false; 10273 } 10274 10275 /// Produces a formatted string that describes the binding of 10276 /// template parameters to template arguments. 10277 std::string 10278 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 10279 const TemplateArgumentList &Args) { 10280 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 10281 } 10282 10283 std::string 10284 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 10285 const TemplateArgument *Args, 10286 unsigned NumArgs) { 10287 SmallString<128> Str; 10288 llvm::raw_svector_ostream Out(Str); 10289 10290 if (!Params || Params->size() == 0 || NumArgs == 0) 10291 return std::string(); 10292 10293 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 10294 if (I >= NumArgs) 10295 break; 10296 10297 if (I == 0) 10298 Out << "[with "; 10299 else 10300 Out << ", "; 10301 10302 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 10303 Out << Id->getName(); 10304 } else { 10305 Out << '$' << I; 10306 } 10307 10308 Out << " = "; 10309 Args[I].print(getPrintingPolicy(), Out); 10310 } 10311 10312 Out << ']'; 10313 return Out.str(); 10314 } 10315 10316 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, 10317 CachedTokens &Toks) { 10318 if (!FD) 10319 return; 10320 10321 auto LPT = std::make_unique<LateParsedTemplate>(); 10322 10323 // Take tokens to avoid allocations 10324 LPT->Toks.swap(Toks); 10325 LPT->D = FnD; 10326 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT))); 10327 10328 FD->setLateTemplateParsed(true); 10329 } 10330 10331 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { 10332 if (!FD) 10333 return; 10334 FD->setLateTemplateParsed(false); 10335 } 10336 10337 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 10338 DeclContext *DC = CurContext; 10339 10340 while (DC) { 10341 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 10342 const FunctionDecl *FD = RD->isLocalClass(); 10343 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 10344 } else if (DC->isTranslationUnit() || DC->isNamespace()) 10345 return false; 10346 10347 DC = DC->getParent(); 10348 } 10349 return false; 10350 } 10351 10352 namespace { 10353 /// Walk the path from which a declaration was instantiated, and check 10354 /// that every explicit specialization along that path is visible. This enforces 10355 /// C++ [temp.expl.spec]/6: 10356 /// 10357 /// If a template, a member template or a member of a class template is 10358 /// explicitly specialized then that specialization shall be declared before 10359 /// the first use of that specialization that would cause an implicit 10360 /// instantiation to take place, in every translation unit in which such a 10361 /// use occurs; no diagnostic is required. 10362 /// 10363 /// and also C++ [temp.class.spec]/1: 10364 /// 10365 /// A partial specialization shall be declared before the first use of a 10366 /// class template specialization that would make use of the partial 10367 /// specialization as the result of an implicit or explicit instantiation 10368 /// in every translation unit in which such a use occurs; no diagnostic is 10369 /// required. 10370 class ExplicitSpecializationVisibilityChecker { 10371 Sema &S; 10372 SourceLocation Loc; 10373 llvm::SmallVector<Module *, 8> Modules; 10374 10375 public: 10376 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc) 10377 : S(S), Loc(Loc) {} 10378 10379 void check(NamedDecl *ND) { 10380 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 10381 return checkImpl(FD); 10382 if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) 10383 return checkImpl(RD); 10384 if (auto *VD = dyn_cast<VarDecl>(ND)) 10385 return checkImpl(VD); 10386 if (auto *ED = dyn_cast<EnumDecl>(ND)) 10387 return checkImpl(ED); 10388 } 10389 10390 private: 10391 void diagnose(NamedDecl *D, bool IsPartialSpec) { 10392 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization 10393 : Sema::MissingImportKind::ExplicitSpecialization; 10394 const bool Recover = true; 10395 10396 // If we got a custom set of modules (because only a subset of the 10397 // declarations are interesting), use them, otherwise let 10398 // diagnoseMissingImport intelligently pick some. 10399 if (Modules.empty()) 10400 S.diagnoseMissingImport(Loc, D, Kind, Recover); 10401 else 10402 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover); 10403 } 10404 10405 // Check a specific declaration. There are three problematic cases: 10406 // 10407 // 1) The declaration is an explicit specialization of a template 10408 // specialization. 10409 // 2) The declaration is an explicit specialization of a member of an 10410 // templated class. 10411 // 3) The declaration is an instantiation of a template, and that template 10412 // is an explicit specialization of a member of a templated class. 10413 // 10414 // We don't need to go any deeper than that, as the instantiation of the 10415 // surrounding class / etc is not triggered by whatever triggered this 10416 // instantiation, and thus should be checked elsewhere. 10417 template<typename SpecDecl> 10418 void checkImpl(SpecDecl *Spec) { 10419 bool IsHiddenExplicitSpecialization = false; 10420 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { 10421 IsHiddenExplicitSpecialization = 10422 Spec->getMemberSpecializationInfo() 10423 ? !S.hasVisibleMemberSpecialization(Spec, &Modules) 10424 : !S.hasVisibleExplicitSpecialization(Spec, &Modules); 10425 } else { 10426 checkInstantiated(Spec); 10427 } 10428 10429 if (IsHiddenExplicitSpecialization) 10430 diagnose(Spec->getMostRecentDecl(), false); 10431 } 10432 10433 void checkInstantiated(FunctionDecl *FD) { 10434 if (auto *TD = FD->getPrimaryTemplate()) 10435 checkTemplate(TD); 10436 } 10437 10438 void checkInstantiated(CXXRecordDecl *RD) { 10439 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD); 10440 if (!SD) 10441 return; 10442 10443 auto From = SD->getSpecializedTemplateOrPartial(); 10444 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) 10445 checkTemplate(TD); 10446 else if (auto *TD = 10447 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 10448 if (!S.hasVisibleDeclaration(TD)) 10449 diagnose(TD, true); 10450 checkTemplate(TD); 10451 } 10452 } 10453 10454 void checkInstantiated(VarDecl *RD) { 10455 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD); 10456 if (!SD) 10457 return; 10458 10459 auto From = SD->getSpecializedTemplateOrPartial(); 10460 if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) 10461 checkTemplate(TD); 10462 else if (auto *TD = 10463 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 10464 if (!S.hasVisibleDeclaration(TD)) 10465 diagnose(TD, true); 10466 checkTemplate(TD); 10467 } 10468 } 10469 10470 void checkInstantiated(EnumDecl *FD) {} 10471 10472 template<typename TemplDecl> 10473 void checkTemplate(TemplDecl *TD) { 10474 if (TD->isMemberSpecialization()) { 10475 if (!S.hasVisibleMemberSpecialization(TD, &Modules)) 10476 diagnose(TD->getMostRecentDecl(), false); 10477 } 10478 } 10479 }; 10480 } // end anonymous namespace 10481 10482 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { 10483 if (!getLangOpts().Modules) 10484 return; 10485 10486 ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec); 10487 } 10488 10489 /// Check whether a template partial specialization that we've discovered 10490 /// is hidden, and produce suitable diagnostics if so. 10491 void Sema::checkPartialSpecializationVisibility(SourceLocation Loc, 10492 NamedDecl *Spec) { 10493 llvm::SmallVector<Module *, 8> Modules; 10494 if (!hasVisibleDeclaration(Spec, &Modules)) 10495 diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules, 10496 MissingImportKind::PartialSpecialization, 10497 /*Recover*/true); 10498 } 10499