1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===// 7 // 8 // This file implements semantic analysis for C++ templates. 9 //===----------------------------------------------------------------------===// 10 11 #include "TreeTransform.h" 12 #include "clang/AST/ASTConsumer.h" 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclFriend.h" 15 #include "clang/AST/DeclTemplate.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/RecursiveASTVisitor.h" 19 #include "clang/AST/TypeVisitor.h" 20 #include "clang/Basic/Builtins.h" 21 #include "clang/Basic/LangOptions.h" 22 #include "clang/Basic/PartialDiagnostic.h" 23 #include "clang/Basic/Stack.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Sema/DeclSpec.h" 26 #include "clang/Sema/Initialization.h" 27 #include "clang/Sema/Lookup.h" 28 #include "clang/Sema/Overload.h" 29 #include "clang/Sema/ParsedTemplate.h" 30 #include "clang/Sema/Scope.h" 31 #include "clang/Sema/SemaInternal.h" 32 #include "clang/Sema/Template.h" 33 #include "clang/Sema/TemplateDeduction.h" 34 #include "llvm/ADT/SmallBitVector.h" 35 #include "llvm/ADT/SmallString.h" 36 #include "llvm/ADT/StringExtras.h" 37 38 #include <iterator> 39 using namespace clang; 40 using namespace sema; 41 42 // Exported for use by Parser. 43 SourceRange 44 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 45 unsigned N) { 46 if (!N) return SourceRange(); 47 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 48 } 49 50 unsigned Sema::getTemplateDepth(Scope *S) const { 51 unsigned Depth = 0; 52 53 // Each template parameter scope represents one level of template parameter 54 // depth. 55 for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope; 56 TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) { 57 ++Depth; 58 } 59 60 // Note that there are template parameters with the given depth. 61 auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); }; 62 63 // Look for parameters of an enclosing generic lambda. We don't create a 64 // template parameter scope for these. 65 for (FunctionScopeInfo *FSI : getFunctionScopes()) { 66 if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) { 67 if (!LSI->TemplateParams.empty()) { 68 ParamsAtDepth(LSI->AutoTemplateParameterDepth); 69 break; 70 } 71 if (LSI->GLTemplateParameterList) { 72 ParamsAtDepth(LSI->GLTemplateParameterList->getDepth()); 73 break; 74 } 75 } 76 } 77 78 // Look for parameters of an enclosing terse function template. We don't 79 // create a template parameter scope for these either. 80 for (const InventedTemplateParameterInfo &Info : 81 getInventedParameterInfos()) { 82 if (!Info.TemplateParams.empty()) { 83 ParamsAtDepth(Info.AutoTemplateParameterDepth); 84 break; 85 } 86 } 87 88 return Depth; 89 } 90 91 /// \brief Determine whether the declaration found is acceptable as the name 92 /// of a template and, if so, return that template declaration. Otherwise, 93 /// returns null. 94 /// 95 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent 96 /// is true. In all other cases it will return a TemplateDecl (or null). 97 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D, 98 bool AllowFunctionTemplates, 99 bool AllowDependent) { 100 D = D->getUnderlyingDecl(); 101 102 if (isa<TemplateDecl>(D)) { 103 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 104 return nullptr; 105 106 return D; 107 } 108 109 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 110 // C++ [temp.local]p1: 111 // Like normal (non-template) classes, class templates have an 112 // injected-class-name (Clause 9). The injected-class-name 113 // can be used with or without a template-argument-list. When 114 // it is used without a template-argument-list, it is 115 // equivalent to the injected-class-name followed by the 116 // template-parameters of the class template enclosed in 117 // <>. When it is used with a template-argument-list, it 118 // refers to the specified class template specialization, 119 // which could be the current specialization or another 120 // specialization. 121 if (Record->isInjectedClassName()) { 122 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 123 if (Record->getDescribedClassTemplate()) 124 return Record->getDescribedClassTemplate(); 125 126 if (ClassTemplateSpecializationDecl *Spec 127 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 128 return Spec->getSpecializedTemplate(); 129 } 130 131 return nullptr; 132 } 133 134 // 'using Dependent::foo;' can resolve to a template name. 135 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an 136 // injected-class-name). 137 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D)) 138 return D; 139 140 return nullptr; 141 } 142 143 void Sema::FilterAcceptableTemplateNames(LookupResult &R, 144 bool AllowFunctionTemplates, 145 bool AllowDependent) { 146 LookupResult::Filter filter = R.makeFilter(); 147 while (filter.hasNext()) { 148 NamedDecl *Orig = filter.next(); 149 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent)) 150 filter.erase(); 151 } 152 filter.done(); 153 } 154 155 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 156 bool AllowFunctionTemplates, 157 bool AllowDependent, 158 bool AllowNonTemplateFunctions) { 159 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 160 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent)) 161 return true; 162 if (AllowNonTemplateFunctions && 163 isa<FunctionDecl>((*I)->getUnderlyingDecl())) 164 return true; 165 } 166 167 return false; 168 } 169 170 TemplateNameKind Sema::isTemplateName(Scope *S, 171 CXXScopeSpec &SS, 172 bool hasTemplateKeyword, 173 const UnqualifiedId &Name, 174 ParsedType ObjectTypePtr, 175 bool EnteringContext, 176 TemplateTy &TemplateResult, 177 bool &MemberOfUnknownSpecialization, 178 bool Disambiguation) { 179 assert(getLangOpts().CPlusPlus && "No template names in C!"); 180 181 DeclarationName TName; 182 MemberOfUnknownSpecialization = false; 183 184 switch (Name.getKind()) { 185 case UnqualifiedIdKind::IK_Identifier: 186 TName = DeclarationName(Name.Identifier); 187 break; 188 189 case UnqualifiedIdKind::IK_OperatorFunctionId: 190 TName = Context.DeclarationNames.getCXXOperatorName( 191 Name.OperatorFunctionId.Operator); 192 break; 193 194 case UnqualifiedIdKind::IK_LiteralOperatorId: 195 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 196 break; 197 198 default: 199 return TNK_Non_template; 200 } 201 202 QualType ObjectType = ObjectTypePtr.get(); 203 204 AssumedTemplateKind AssumedTemplate; 205 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName); 206 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 207 MemberOfUnknownSpecialization, SourceLocation(), 208 &AssumedTemplate, 209 /*AllowTypoCorrection=*/!Disambiguation)) 210 return TNK_Non_template; 211 212 if (AssumedTemplate != AssumedTemplateKind::None) { 213 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName)); 214 // Let the parser know whether we found nothing or found functions; if we 215 // found nothing, we want to more carefully check whether this is actually 216 // a function template name versus some other kind of undeclared identifier. 217 return AssumedTemplate == AssumedTemplateKind::FoundNothing 218 ? TNK_Undeclared_template 219 : TNK_Function_template; 220 } 221 222 if (R.empty()) 223 return TNK_Non_template; 224 225 NamedDecl *D = nullptr; 226 if (R.isAmbiguous()) { 227 // If we got an ambiguity involving a non-function template, treat this 228 // as a template name, and pick an arbitrary template for error recovery. 229 bool AnyFunctionTemplates = false; 230 for (NamedDecl *FoundD : R) { 231 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) { 232 if (isa<FunctionTemplateDecl>(FoundTemplate)) 233 AnyFunctionTemplates = true; 234 else { 235 D = FoundTemplate; 236 break; 237 } 238 } 239 } 240 241 // If we didn't find any templates at all, this isn't a template name. 242 // Leave the ambiguity for a later lookup to diagnose. 243 if (!D && !AnyFunctionTemplates) { 244 R.suppressDiagnostics(); 245 return TNK_Non_template; 246 } 247 248 // If the only templates were function templates, filter out the rest. 249 // We'll diagnose the ambiguity later. 250 if (!D) 251 FilterAcceptableTemplateNames(R); 252 } 253 254 // At this point, we have either picked a single template name declaration D 255 // or we have a non-empty set of results R containing either one template name 256 // declaration or a set of function templates. 257 258 TemplateName Template; 259 TemplateNameKind TemplateKind; 260 261 unsigned ResultCount = R.end() - R.begin(); 262 if (!D && ResultCount > 1) { 263 // We assume that we'll preserve the qualifier from a function 264 // template name in other ways. 265 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 266 TemplateKind = TNK_Function_template; 267 268 // We'll do this lookup again later. 269 R.suppressDiagnostics(); 270 } else { 271 if (!D) { 272 D = getAsTemplateNameDecl(*R.begin()); 273 assert(D && "unambiguous result is not a template name"); 274 } 275 276 if (isa<UnresolvedUsingValueDecl>(D)) { 277 // We don't yet know whether this is a template-name or not. 278 MemberOfUnknownSpecialization = true; 279 return TNK_Non_template; 280 } 281 282 TemplateDecl *TD = cast<TemplateDecl>(D); 283 284 if (SS.isSet() && !SS.isInvalid()) { 285 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 286 Template = Context.getQualifiedTemplateName(Qualifier, 287 hasTemplateKeyword, TD); 288 } else { 289 Template = TemplateName(TD); 290 } 291 292 if (isa<FunctionTemplateDecl>(TD)) { 293 TemplateKind = TNK_Function_template; 294 295 // We'll do this lookup again later. 296 R.suppressDiagnostics(); 297 } else { 298 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 299 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || 300 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)); 301 TemplateKind = 302 isa<VarTemplateDecl>(TD) ? TNK_Var_template : 303 isa<ConceptDecl>(TD) ? TNK_Concept_template : 304 TNK_Type_template; 305 } 306 } 307 308 TemplateResult = TemplateTy::make(Template); 309 return TemplateKind; 310 } 311 312 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, 313 SourceLocation NameLoc, 314 ParsedTemplateTy *Template) { 315 CXXScopeSpec SS; 316 bool MemberOfUnknownSpecialization = false; 317 318 // We could use redeclaration lookup here, but we don't need to: the 319 // syntactic form of a deduction guide is enough to identify it even 320 // if we can't look up the template name at all. 321 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); 322 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), 323 /*EnteringContext*/ false, 324 MemberOfUnknownSpecialization)) 325 return false; 326 327 if (R.empty()) return false; 328 if (R.isAmbiguous()) { 329 // FIXME: Diagnose an ambiguity if we find at least one template. 330 R.suppressDiagnostics(); 331 return false; 332 } 333 334 // We only treat template-names that name type templates as valid deduction 335 // guide names. 336 TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); 337 if (!TD || !getAsTypeTemplateDecl(TD)) 338 return false; 339 340 if (Template) 341 *Template = TemplateTy::make(TemplateName(TD)); 342 return true; 343 } 344 345 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 346 SourceLocation IILoc, 347 Scope *S, 348 const CXXScopeSpec *SS, 349 TemplateTy &SuggestedTemplate, 350 TemplateNameKind &SuggestedKind) { 351 // We can't recover unless there's a dependent scope specifier preceding the 352 // template name. 353 // FIXME: Typo correction? 354 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 355 computeDeclContext(*SS)) 356 return false; 357 358 // The code is missing a 'template' keyword prior to the dependent template 359 // name. 360 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 361 Diag(IILoc, diag::err_template_kw_missing) 362 << Qualifier << II.getName() 363 << FixItHint::CreateInsertion(IILoc, "template "); 364 SuggestedTemplate 365 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 366 SuggestedKind = TNK_Dependent_template_name; 367 return true; 368 } 369 370 bool Sema::LookupTemplateName(LookupResult &Found, 371 Scope *S, CXXScopeSpec &SS, 372 QualType ObjectType, 373 bool EnteringContext, 374 bool &MemberOfUnknownSpecialization, 375 RequiredTemplateKind RequiredTemplate, 376 AssumedTemplateKind *ATK, 377 bool AllowTypoCorrection) { 378 if (ATK) 379 *ATK = AssumedTemplateKind::None; 380 381 if (SS.isInvalid()) 382 return true; 383 384 Found.setTemplateNameLookup(true); 385 386 // Determine where to perform name lookup 387 MemberOfUnknownSpecialization = false; 388 DeclContext *LookupCtx = nullptr; 389 bool IsDependent = false; 390 if (!ObjectType.isNull()) { 391 // This nested-name-specifier occurs in a member access expression, e.g., 392 // x->B::f, and we are looking into the type of the object. 393 assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist"); 394 LookupCtx = computeDeclContext(ObjectType); 395 IsDependent = !LookupCtx && ObjectType->isDependentType(); 396 assert((IsDependent || !ObjectType->isIncompleteType() || 397 ObjectType->castAs<TagType>()->isBeingDefined()) && 398 "Caller should have completed object type"); 399 400 // Template names cannot appear inside an Objective-C class or object type 401 // or a vector type. 402 // 403 // FIXME: This is wrong. For example: 404 // 405 // template<typename T> using Vec = T __attribute__((ext_vector_type(4))); 406 // Vec<int> vi; 407 // vi.Vec<int>::~Vec<int>(); 408 // 409 // ... should be accepted but we will not treat 'Vec' as a template name 410 // here. The right thing to do would be to check if the name is a valid 411 // vector component name, and look up a template name if not. And similarly 412 // for lookups into Objective-C class and object types, where the same 413 // problem can arise. 414 if (ObjectType->isObjCObjectOrInterfaceType() || 415 ObjectType->isVectorType()) { 416 Found.clear(); 417 return false; 418 } 419 } else if (SS.isNotEmpty()) { 420 // This nested-name-specifier occurs after another nested-name-specifier, 421 // so long into the context associated with the prior nested-name-specifier. 422 LookupCtx = computeDeclContext(SS, EnteringContext); 423 IsDependent = !LookupCtx && isDependentScopeSpecifier(SS); 424 425 // The declaration context must be complete. 426 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 427 return true; 428 } 429 430 bool ObjectTypeSearchedInScope = false; 431 bool AllowFunctionTemplatesInLookup = true; 432 if (LookupCtx) { 433 // Perform "qualified" name lookup into the declaration context we 434 // computed, which is either the type of the base of a member access 435 // expression or the declaration context associated with a prior 436 // nested-name-specifier. 437 LookupQualifiedName(Found, LookupCtx); 438 439 // FIXME: The C++ standard does not clearly specify what happens in the 440 // case where the object type is dependent, and implementations vary. In 441 // Clang, we treat a name after a . or -> as a template-name if lookup 442 // finds a non-dependent member or member of the current instantiation that 443 // is a type template, or finds no such members and lookup in the context 444 // of the postfix-expression finds a type template. In the latter case, the 445 // name is nonetheless dependent, and we may resolve it to a member of an 446 // unknown specialization when we come to instantiate the template. 447 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 448 } 449 450 if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) { 451 // C++ [basic.lookup.classref]p1: 452 // In a class member access expression (5.2.5), if the . or -> token is 453 // immediately followed by an identifier followed by a <, the 454 // identifier must be looked up to determine whether the < is the 455 // beginning of a template argument list (14.2) or a less-than operator. 456 // The identifier is first looked up in the class of the object 457 // expression. If the identifier is not found, it is then looked up in 458 // the context of the entire postfix-expression and shall name a class 459 // template. 460 if (S) 461 LookupName(Found, S); 462 463 if (!ObjectType.isNull()) { 464 // FIXME: We should filter out all non-type templates here, particularly 465 // variable templates and concepts. But the exclusion of alias templates 466 // and template template parameters is a wording defect. 467 AllowFunctionTemplatesInLookup = false; 468 ObjectTypeSearchedInScope = true; 469 } 470 471 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 472 } 473 474 if (Found.isAmbiguous()) 475 return false; 476 477 if (ATK && SS.isEmpty() && ObjectType.isNull() && 478 !RequiredTemplate.hasTemplateKeyword()) { 479 // C++2a [temp.names]p2: 480 // A name is also considered to refer to a template if it is an 481 // unqualified-id followed by a < and name lookup finds either one or more 482 // functions or finds nothing. 483 // 484 // To keep our behavior consistent, we apply the "finds nothing" part in 485 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we 486 // successfully form a call to an undeclared template-id. 487 bool AllFunctions = 488 getLangOpts().CPlusPlus20 && 489 std::all_of(Found.begin(), Found.end(), [](NamedDecl *ND) { 490 return isa<FunctionDecl>(ND->getUnderlyingDecl()); 491 }); 492 if (AllFunctions || (Found.empty() && !IsDependent)) { 493 // If lookup found any functions, or if this is a name that can only be 494 // used for a function, then strongly assume this is a function 495 // template-id. 496 *ATK = (Found.empty() && Found.getLookupName().isIdentifier()) 497 ? AssumedTemplateKind::FoundNothing 498 : AssumedTemplateKind::FoundFunctions; 499 Found.clear(); 500 return false; 501 } 502 } 503 504 if (Found.empty() && !IsDependent && AllowTypoCorrection) { 505 // If we did not find any names, and this is not a disambiguation, attempt 506 // to correct any typos. 507 DeclarationName Name = Found.getLookupName(); 508 Found.clear(); 509 // Simple filter callback that, for keywords, only accepts the C++ *_cast 510 DefaultFilterCCC FilterCCC{}; 511 FilterCCC.WantTypeSpecifiers = false; 512 FilterCCC.WantExpressionKeywords = false; 513 FilterCCC.WantRemainingKeywords = false; 514 FilterCCC.WantCXXNamedCasts = true; 515 if (TypoCorrection Corrected = 516 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S, 517 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) { 518 if (auto *ND = Corrected.getFoundDecl()) 519 Found.addDecl(ND); 520 FilterAcceptableTemplateNames(Found); 521 if (Found.isAmbiguous()) { 522 Found.clear(); 523 } else if (!Found.empty()) { 524 Found.setLookupName(Corrected.getCorrection()); 525 if (LookupCtx) { 526 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 527 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 528 Name.getAsString() == CorrectedStr; 529 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) 530 << Name << LookupCtx << DroppedSpecifier 531 << SS.getRange()); 532 } else { 533 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); 534 } 535 } 536 } 537 } 538 539 NamedDecl *ExampleLookupResult = 540 Found.empty() ? nullptr : Found.getRepresentativeDecl(); 541 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 542 if (Found.empty()) { 543 if (IsDependent) { 544 MemberOfUnknownSpecialization = true; 545 return false; 546 } 547 548 // If a 'template' keyword was used, a lookup that finds only non-template 549 // names is an error. 550 if (ExampleLookupResult && RequiredTemplate) { 551 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) 552 << Found.getLookupName() << SS.getRange() 553 << RequiredTemplate.hasTemplateKeyword() 554 << RequiredTemplate.getTemplateKeywordLoc(); 555 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), 556 diag::note_template_kw_refers_to_non_template) 557 << Found.getLookupName(); 558 return true; 559 } 560 561 return false; 562 } 563 564 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 565 !getLangOpts().CPlusPlus11) { 566 // C++03 [basic.lookup.classref]p1: 567 // [...] If the lookup in the class of the object expression finds a 568 // template, the name is also looked up in the context of the entire 569 // postfix-expression and [...] 570 // 571 // Note: C++11 does not perform this second lookup. 572 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 573 LookupOrdinaryName); 574 FoundOuter.setTemplateNameLookup(true); 575 LookupName(FoundOuter, S); 576 // FIXME: We silently accept an ambiguous lookup here, in violation of 577 // [basic.lookup]/1. 578 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 579 580 NamedDecl *OuterTemplate; 581 if (FoundOuter.empty()) { 582 // - if the name is not found, the name found in the class of the 583 // object expression is used, otherwise 584 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() || 585 !(OuterTemplate = 586 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) { 587 // - if the name is found in the context of the entire 588 // postfix-expression and does not name a class template, the name 589 // found in the class of the object expression is used, otherwise 590 FoundOuter.clear(); 591 } else if (!Found.isSuppressingDiagnostics()) { 592 // - if the name found is a class template, it must refer to the same 593 // entity as the one found in the class of the object expression, 594 // otherwise the program is ill-formed. 595 if (!Found.isSingleResult() || 596 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() != 597 OuterTemplate->getCanonicalDecl()) { 598 Diag(Found.getNameLoc(), 599 diag::ext_nested_name_member_ref_lookup_ambiguous) 600 << Found.getLookupName() 601 << ObjectType; 602 Diag(Found.getRepresentativeDecl()->getLocation(), 603 diag::note_ambig_member_ref_object_type) 604 << ObjectType; 605 Diag(FoundOuter.getFoundDecl()->getLocation(), 606 diag::note_ambig_member_ref_scope); 607 608 // Recover by taking the template that we found in the object 609 // expression's type. 610 } 611 } 612 } 613 614 return false; 615 } 616 617 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, 618 SourceLocation Less, 619 SourceLocation Greater) { 620 if (TemplateName.isInvalid()) 621 return; 622 623 DeclarationNameInfo NameInfo; 624 CXXScopeSpec SS; 625 LookupNameKind LookupKind; 626 627 DeclContext *LookupCtx = nullptr; 628 NamedDecl *Found = nullptr; 629 bool MissingTemplateKeyword = false; 630 631 // Figure out what name we looked up. 632 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) { 633 NameInfo = DRE->getNameInfo(); 634 SS.Adopt(DRE->getQualifierLoc()); 635 LookupKind = LookupOrdinaryName; 636 Found = DRE->getFoundDecl(); 637 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) { 638 NameInfo = ME->getMemberNameInfo(); 639 SS.Adopt(ME->getQualifierLoc()); 640 LookupKind = LookupMemberName; 641 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); 642 Found = ME->getMemberDecl(); 643 } else if (auto *DSDRE = 644 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) { 645 NameInfo = DSDRE->getNameInfo(); 646 SS.Adopt(DSDRE->getQualifierLoc()); 647 MissingTemplateKeyword = true; 648 } else if (auto *DSME = 649 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) { 650 NameInfo = DSME->getMemberNameInfo(); 651 SS.Adopt(DSME->getQualifierLoc()); 652 MissingTemplateKeyword = true; 653 } else { 654 llvm_unreachable("unexpected kind of potential template name"); 655 } 656 657 // If this is a dependent-scope lookup, diagnose that the 'template' keyword 658 // was missing. 659 if (MissingTemplateKeyword) { 660 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing) 661 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater); 662 return; 663 } 664 665 // Try to correct the name by looking for templates and C++ named casts. 666 struct TemplateCandidateFilter : CorrectionCandidateCallback { 667 Sema &S; 668 TemplateCandidateFilter(Sema &S) : S(S) { 669 WantTypeSpecifiers = false; 670 WantExpressionKeywords = false; 671 WantRemainingKeywords = false; 672 WantCXXNamedCasts = true; 673 }; 674 bool ValidateCandidate(const TypoCorrection &Candidate) override { 675 if (auto *ND = Candidate.getCorrectionDecl()) 676 return S.getAsTemplateNameDecl(ND); 677 return Candidate.isKeyword(); 678 } 679 680 std::unique_ptr<CorrectionCandidateCallback> clone() override { 681 return std::make_unique<TemplateCandidateFilter>(*this); 682 } 683 }; 684 685 DeclarationName Name = NameInfo.getName(); 686 TemplateCandidateFilter CCC(*this); 687 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC, 688 CTK_ErrorRecovery, LookupCtx)) { 689 auto *ND = Corrected.getFoundDecl(); 690 if (ND) 691 ND = getAsTemplateNameDecl(ND); 692 if (ND || Corrected.isKeyword()) { 693 if (LookupCtx) { 694 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 695 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 696 Name.getAsString() == CorrectedStr; 697 diagnoseTypo(Corrected, 698 PDiag(diag::err_non_template_in_member_template_id_suggest) 699 << Name << LookupCtx << DroppedSpecifier 700 << SS.getRange(), false); 701 } else { 702 diagnoseTypo(Corrected, 703 PDiag(diag::err_non_template_in_template_id_suggest) 704 << Name, false); 705 } 706 if (Found) 707 Diag(Found->getLocation(), 708 diag::note_non_template_in_template_id_found); 709 return; 710 } 711 } 712 713 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) 714 << Name << SourceRange(Less, Greater); 715 if (Found) 716 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); 717 } 718 719 /// ActOnDependentIdExpression - Handle a dependent id-expression that 720 /// was just parsed. This is only possible with an explicit scope 721 /// specifier naming a dependent type. 722 ExprResult 723 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 724 SourceLocation TemplateKWLoc, 725 const DeclarationNameInfo &NameInfo, 726 bool isAddressOfOperand, 727 const TemplateArgumentListInfo *TemplateArgs) { 728 DeclContext *DC = getFunctionLevelDeclContext(); 729 730 // C++11 [expr.prim.general]p12: 731 // An id-expression that denotes a non-static data member or non-static 732 // member function of a class can only be used: 733 // (...) 734 // - if that id-expression denotes a non-static data member and it 735 // appears in an unevaluated operand. 736 // 737 // If this might be the case, form a DependentScopeDeclRefExpr instead of a 738 // CXXDependentScopeMemberExpr. The former can instantiate to either 739 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is 740 // always a MemberExpr. 741 bool MightBeCxx11UnevalField = 742 getLangOpts().CPlusPlus11 && isUnevaluatedContext(); 743 744 // Check if the nested name specifier is an enum type. 745 bool IsEnum = false; 746 if (NestedNameSpecifier *NNS = SS.getScopeRep()) 747 IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType()); 748 749 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum && 750 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) { 751 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(); 752 753 // Since the 'this' expression is synthesized, we don't need to 754 // perform the double-lookup check. 755 NamedDecl *FirstQualifierInScope = nullptr; 756 757 return CXXDependentScopeMemberExpr::Create( 758 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true, 759 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc, 760 FirstQualifierInScope, NameInfo, TemplateArgs); 761 } 762 763 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 764 } 765 766 ExprResult 767 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 768 SourceLocation TemplateKWLoc, 769 const DeclarationNameInfo &NameInfo, 770 const TemplateArgumentListInfo *TemplateArgs) { 771 // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc 772 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 773 if (!QualifierLoc) 774 return ExprError(); 775 776 return DependentScopeDeclRefExpr::Create( 777 Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs); 778 } 779 780 781 /// Determine whether we would be unable to instantiate this template (because 782 /// it either has no definition, or is in the process of being instantiated). 783 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, 784 NamedDecl *Instantiation, 785 bool InstantiatedFromMember, 786 const NamedDecl *Pattern, 787 const NamedDecl *PatternDef, 788 TemplateSpecializationKind TSK, 789 bool Complain /*= true*/) { 790 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || 791 isa<VarDecl>(Instantiation)); 792 793 bool IsEntityBeingDefined = false; 794 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef)) 795 IsEntityBeingDefined = TD->isBeingDefined(); 796 797 if (PatternDef && !IsEntityBeingDefined) { 798 NamedDecl *SuggestedDef = nullptr; 799 if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef, 800 /*OnlyNeedComplete*/false)) { 801 // If we're allowed to diagnose this and recover, do so. 802 bool Recover = Complain && !isSFINAEContext(); 803 if (Complain) 804 diagnoseMissingImport(PointOfInstantiation, SuggestedDef, 805 Sema::MissingImportKind::Definition, Recover); 806 return !Recover; 807 } 808 return false; 809 } 810 811 if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) 812 return true; 813 814 llvm::Optional<unsigned> Note; 815 QualType InstantiationTy; 816 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation)) 817 InstantiationTy = Context.getTypeDeclType(TD); 818 if (PatternDef) { 819 Diag(PointOfInstantiation, 820 diag::err_template_instantiate_within_definition) 821 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) 822 << InstantiationTy; 823 // Not much point in noting the template declaration here, since 824 // we're lexically inside it. 825 Instantiation->setInvalidDecl(); 826 } else if (InstantiatedFromMember) { 827 if (isa<FunctionDecl>(Instantiation)) { 828 Diag(PointOfInstantiation, 829 diag::err_explicit_instantiation_undefined_member) 830 << /*member function*/ 1 << Instantiation->getDeclName() 831 << Instantiation->getDeclContext(); 832 Note = diag::note_explicit_instantiation_here; 833 } else { 834 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!"); 835 Diag(PointOfInstantiation, 836 diag::err_implicit_instantiate_member_undefined) 837 << InstantiationTy; 838 Note = diag::note_member_declared_at; 839 } 840 } else { 841 if (isa<FunctionDecl>(Instantiation)) { 842 Diag(PointOfInstantiation, 843 diag::err_explicit_instantiation_undefined_func_template) 844 << Pattern; 845 Note = diag::note_explicit_instantiation_here; 846 } else if (isa<TagDecl>(Instantiation)) { 847 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) 848 << (TSK != TSK_ImplicitInstantiation) 849 << InstantiationTy; 850 Note = diag::note_template_decl_here; 851 } else { 852 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!"); 853 if (isa<VarTemplateSpecializationDecl>(Instantiation)) { 854 Diag(PointOfInstantiation, 855 diag::err_explicit_instantiation_undefined_var_template) 856 << Instantiation; 857 Instantiation->setInvalidDecl(); 858 } else 859 Diag(PointOfInstantiation, 860 diag::err_explicit_instantiation_undefined_member) 861 << /*static data member*/ 2 << Instantiation->getDeclName() 862 << Instantiation->getDeclContext(); 863 Note = diag::note_explicit_instantiation_here; 864 } 865 } 866 if (Note) // Diagnostics were emitted. 867 Diag(Pattern->getLocation(), Note.getValue()); 868 869 // In general, Instantiation isn't marked invalid to get more than one 870 // error for multiple undefined instantiations. But the code that does 871 // explicit declaration -> explicit definition conversion can't handle 872 // invalid declarations, so mark as invalid in that case. 873 if (TSK == TSK_ExplicitInstantiationDeclaration) 874 Instantiation->setInvalidDecl(); 875 return true; 876 } 877 878 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 879 /// that the template parameter 'PrevDecl' is being shadowed by a new 880 /// declaration at location Loc. Returns true to indicate that this is 881 /// an error, and false otherwise. 882 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 883 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 884 885 // C++ [temp.local]p4: 886 // A template-parameter shall not be redeclared within its 887 // scope (including nested scopes). 888 // 889 // Make this a warning when MSVC compatibility is requested. 890 unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow 891 : diag::err_template_param_shadow; 892 Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName(); 893 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 894 } 895 896 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 897 /// the parameter D to reference the templated declaration and return a pointer 898 /// to the template declaration. Otherwise, do nothing to D and return null. 899 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 900 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 901 D = Temp->getTemplatedDecl(); 902 return Temp; 903 } 904 return nullptr; 905 } 906 907 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 908 SourceLocation EllipsisLoc) const { 909 assert(Kind == Template && 910 "Only template template arguments can be pack expansions here"); 911 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 912 "Template template argument pack expansion without packs"); 913 ParsedTemplateArgument Result(*this); 914 Result.EllipsisLoc = EllipsisLoc; 915 return Result; 916 } 917 918 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 919 const ParsedTemplateArgument &Arg) { 920 921 switch (Arg.getKind()) { 922 case ParsedTemplateArgument::Type: { 923 TypeSourceInfo *DI; 924 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 925 if (!DI) 926 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 927 return TemplateArgumentLoc(TemplateArgument(T), DI); 928 } 929 930 case ParsedTemplateArgument::NonType: { 931 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 932 return TemplateArgumentLoc(TemplateArgument(E), E); 933 } 934 935 case ParsedTemplateArgument::Template: { 936 TemplateName Template = Arg.getAsTemplate().get(); 937 TemplateArgument TArg; 938 if (Arg.getEllipsisLoc().isValid()) 939 TArg = TemplateArgument(Template, Optional<unsigned int>()); 940 else 941 TArg = Template; 942 return TemplateArgumentLoc( 943 SemaRef.Context, TArg, 944 Arg.getScopeSpec().getWithLocInContext(SemaRef.Context), 945 Arg.getLocation(), Arg.getEllipsisLoc()); 946 } 947 } 948 949 llvm_unreachable("Unhandled parsed template argument"); 950 } 951 952 /// Translates template arguments as provided by the parser 953 /// into template arguments used by semantic analysis. 954 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 955 TemplateArgumentListInfo &TemplateArgs) { 956 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 957 TemplateArgs.addArgument(translateTemplateArgument(*this, 958 TemplateArgsIn[I])); 959 } 960 961 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, 962 SourceLocation Loc, 963 IdentifierInfo *Name) { 964 NamedDecl *PrevDecl = SemaRef.LookupSingleName( 965 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 966 if (PrevDecl && PrevDecl->isTemplateParameter()) 967 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); 968 } 969 970 /// Convert a parsed type into a parsed template argument. This is mostly 971 /// trivial, except that we may have parsed a C++17 deduced class template 972 /// specialization type, in which case we should form a template template 973 /// argument instead of a type template argument. 974 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { 975 TypeSourceInfo *TInfo; 976 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo); 977 if (T.isNull()) 978 return ParsedTemplateArgument(); 979 assert(TInfo && "template argument with no location"); 980 981 // If we might have formed a deduced template specialization type, convert 982 // it to a template template argument. 983 if (getLangOpts().CPlusPlus17) { 984 TypeLoc TL = TInfo->getTypeLoc(); 985 SourceLocation EllipsisLoc; 986 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { 987 EllipsisLoc = PET.getEllipsisLoc(); 988 TL = PET.getPatternLoc(); 989 } 990 991 CXXScopeSpec SS; 992 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { 993 SS.Adopt(ET.getQualifierLoc()); 994 TL = ET.getNamedTypeLoc(); 995 } 996 997 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { 998 TemplateName Name = DTST.getTypePtr()->getTemplateName(); 999 if (SS.isSet()) 1000 Name = Context.getQualifiedTemplateName(SS.getScopeRep(), 1001 /*HasTemplateKeyword*/ false, 1002 Name.getAsTemplateDecl()); 1003 ParsedTemplateArgument Result(SS, TemplateTy::make(Name), 1004 DTST.getTemplateNameLoc()); 1005 if (EllipsisLoc.isValid()) 1006 Result = Result.getTemplatePackExpansion(EllipsisLoc); 1007 return Result; 1008 } 1009 } 1010 1011 // This is a normal type template argument. Note, if the type template 1012 // argument is an injected-class-name for a template, it has a dual nature 1013 // and can be used as either a type or a template. We handle that in 1014 // convertTypeTemplateArgumentToTemplate. 1015 return ParsedTemplateArgument(ParsedTemplateArgument::Type, 1016 ParsedType.get().getAsOpaquePtr(), 1017 TInfo->getTypeLoc().getBeginLoc()); 1018 } 1019 1020 /// ActOnTypeParameter - Called when a C++ template type parameter 1021 /// (e.g., "typename T") has been parsed. Typename specifies whether 1022 /// the keyword "typename" was used to declare the type parameter 1023 /// (otherwise, "class" was used), and KeyLoc is the location of the 1024 /// "class" or "typename" keyword. ParamName is the name of the 1025 /// parameter (NULL indicates an unnamed template parameter) and 1026 /// ParamNameLoc is the location of the parameter name (if any). 1027 /// If the type parameter has a default argument, it will be added 1028 /// later via ActOnTypeParameterDefault. 1029 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, 1030 SourceLocation EllipsisLoc, 1031 SourceLocation KeyLoc, 1032 IdentifierInfo *ParamName, 1033 SourceLocation ParamNameLoc, 1034 unsigned Depth, unsigned Position, 1035 SourceLocation EqualLoc, 1036 ParsedType DefaultArg, 1037 bool HasTypeConstraint) { 1038 assert(S->isTemplateParamScope() && 1039 "Template type parameter not in template parameter scope!"); 1040 1041 bool IsParameterPack = EllipsisLoc.isValid(); 1042 TemplateTypeParmDecl *Param 1043 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1044 KeyLoc, ParamNameLoc, Depth, Position, 1045 ParamName, Typename, IsParameterPack, 1046 HasTypeConstraint); 1047 Param->setAccess(AS_public); 1048 1049 if (Param->isParameterPack()) 1050 if (auto *LSI = getEnclosingLambda()) 1051 LSI->LocalPacks.push_back(Param); 1052 1053 if (ParamName) { 1054 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); 1055 1056 // Add the template parameter into the current scope. 1057 S->AddDecl(Param); 1058 IdResolver.AddDecl(Param); 1059 } 1060 1061 // C++0x [temp.param]p9: 1062 // A default template-argument may be specified for any kind of 1063 // template-parameter that is not a template parameter pack. 1064 if (DefaultArg && IsParameterPack) { 1065 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1066 DefaultArg = nullptr; 1067 } 1068 1069 // Handle the default argument, if provided. 1070 if (DefaultArg) { 1071 TypeSourceInfo *DefaultTInfo; 1072 GetTypeFromParser(DefaultArg, &DefaultTInfo); 1073 1074 assert(DefaultTInfo && "expected source information for type"); 1075 1076 // Check for unexpanded parameter packs. 1077 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo, 1078 UPPC_DefaultArgument)) 1079 return Param; 1080 1081 // Check the template argument itself. 1082 if (CheckTemplateArgument(Param, DefaultTInfo)) { 1083 Param->setInvalidDecl(); 1084 return Param; 1085 } 1086 1087 Param->setDefaultArgument(DefaultTInfo); 1088 } 1089 1090 return Param; 1091 } 1092 1093 /// Convert the parser's template argument list representation into our form. 1094 static TemplateArgumentListInfo 1095 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { 1096 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, 1097 TemplateId.RAngleLoc); 1098 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), 1099 TemplateId.NumArgs); 1100 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 1101 return TemplateArgs; 1102 } 1103 1104 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS, 1105 TemplateIdAnnotation *TypeConstr, 1106 TemplateTypeParmDecl *ConstrainedParameter, 1107 SourceLocation EllipsisLoc) { 1108 ConceptDecl *CD = 1109 cast<ConceptDecl>(TypeConstr->Template.get().getAsTemplateDecl()); 1110 1111 // C++2a [temp.param]p4: 1112 // [...] The concept designated by a type-constraint shall be a type 1113 // concept ([temp.concept]). 1114 if (!CD->isTypeConcept()) { 1115 Diag(TypeConstr->TemplateNameLoc, 1116 diag::err_type_constraint_non_type_concept); 1117 return true; 1118 } 1119 1120 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid(); 1121 1122 if (!WereArgsSpecified && 1123 CD->getTemplateParameters()->getMinRequiredArguments() > 1) { 1124 Diag(TypeConstr->TemplateNameLoc, 1125 diag::err_type_constraint_missing_arguments) << CD; 1126 return true; 1127 } 1128 1129 TemplateArgumentListInfo TemplateArgs; 1130 if (TypeConstr->LAngleLoc.isValid()) { 1131 TemplateArgs = 1132 makeTemplateArgumentListInfo(*this, *TypeConstr); 1133 } 1134 return AttachTypeConstraint( 1135 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(), 1136 DeclarationNameInfo(DeclarationName(TypeConstr->Name), 1137 TypeConstr->TemplateNameLoc), CD, 1138 TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr, 1139 ConstrainedParameter, EllipsisLoc); 1140 } 1141 1142 template<typename ArgumentLocAppender> 1143 static ExprResult formImmediatelyDeclaredConstraint( 1144 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, 1145 ConceptDecl *NamedConcept, SourceLocation LAngleLoc, 1146 SourceLocation RAngleLoc, QualType ConstrainedType, 1147 SourceLocation ParamNameLoc, ArgumentLocAppender Appender, 1148 SourceLocation EllipsisLoc) { 1149 1150 TemplateArgumentListInfo ConstraintArgs; 1151 ConstraintArgs.addArgument( 1152 S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType), 1153 /*NTTPType=*/QualType(), ParamNameLoc)); 1154 1155 ConstraintArgs.setRAngleLoc(RAngleLoc); 1156 ConstraintArgs.setLAngleLoc(LAngleLoc); 1157 Appender(ConstraintArgs); 1158 1159 // C++2a [temp.param]p4: 1160 // [...] This constraint-expression E is called the immediately-declared 1161 // constraint of T. [...] 1162 CXXScopeSpec SS; 1163 SS.Adopt(NS); 1164 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId( 1165 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo, 1166 /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs); 1167 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid()) 1168 return ImmediatelyDeclaredConstraint; 1169 1170 // C++2a [temp.param]p4: 1171 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). 1172 // 1173 // We have the following case: 1174 // 1175 // template<typename T> concept C1 = true; 1176 // template<C1... T> struct s1; 1177 // 1178 // The constraint: (C1<T> && ...) 1179 // 1180 // Note that the type of C1<T> is known to be 'bool', so we don't need to do 1181 // any unqualified lookups for 'operator&&' here. 1182 return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr, 1183 /*LParenLoc=*/SourceLocation(), 1184 ImmediatelyDeclaredConstraint.get(), BO_LAnd, 1185 EllipsisLoc, /*RHS=*/nullptr, 1186 /*RParenLoc=*/SourceLocation(), 1187 /*NumExpansions=*/None); 1188 } 1189 1190 /// Attach a type-constraint to a template parameter. 1191 /// \returns true if an error occured. This can happen if the 1192 /// immediately-declared constraint could not be formed (e.g. incorrect number 1193 /// of arguments for the named concept). 1194 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS, 1195 DeclarationNameInfo NameInfo, 1196 ConceptDecl *NamedConcept, 1197 const TemplateArgumentListInfo *TemplateArgs, 1198 TemplateTypeParmDecl *ConstrainedParameter, 1199 SourceLocation EllipsisLoc) { 1200 // C++2a [temp.param]p4: 1201 // [...] If Q is of the form C<A1, ..., An>, then let E' be 1202 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...] 1203 const ASTTemplateArgumentListInfo *ArgsAsWritten = 1204 TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context, 1205 *TemplateArgs) : nullptr; 1206 1207 QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0); 1208 1209 ExprResult ImmediatelyDeclaredConstraint = 1210 formImmediatelyDeclaredConstraint( 1211 *this, NS, NameInfo, NamedConcept, 1212 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(), 1213 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(), 1214 ParamAsArgument, ConstrainedParameter->getLocation(), 1215 [&] (TemplateArgumentListInfo &ConstraintArgs) { 1216 if (TemplateArgs) 1217 for (const auto &ArgLoc : TemplateArgs->arguments()) 1218 ConstraintArgs.addArgument(ArgLoc); 1219 }, EllipsisLoc); 1220 if (ImmediatelyDeclaredConstraint.isInvalid()) 1221 return true; 1222 1223 ConstrainedParameter->setTypeConstraint(NS, NameInfo, 1224 /*FoundDecl=*/NamedConcept, 1225 NamedConcept, ArgsAsWritten, 1226 ImmediatelyDeclaredConstraint.get()); 1227 return false; 1228 } 1229 1230 bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP, 1231 SourceLocation EllipsisLoc) { 1232 if (NTTP->getType() != TL.getType() || 1233 TL.getAutoKeyword() != AutoTypeKeyword::Auto) { 1234 Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1235 diag::err_unsupported_placeholder_constraint) 1236 << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange(); 1237 return true; 1238 } 1239 // FIXME: Concepts: This should be the type of the placeholder, but this is 1240 // unclear in the wording right now. 1241 DeclRefExpr *Ref = BuildDeclRefExpr(NTTP, NTTP->getType(), VK_RValue, 1242 NTTP->getLocation()); 1243 if (!Ref) 1244 return true; 1245 ExprResult ImmediatelyDeclaredConstraint = 1246 formImmediatelyDeclaredConstraint( 1247 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(), 1248 TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(), 1249 BuildDecltypeType(Ref, NTTP->getLocation()), NTTP->getLocation(), 1250 [&] (TemplateArgumentListInfo &ConstraintArgs) { 1251 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I) 1252 ConstraintArgs.addArgument(TL.getArgLoc(I)); 1253 }, EllipsisLoc); 1254 if (ImmediatelyDeclaredConstraint.isInvalid() || 1255 !ImmediatelyDeclaredConstraint.isUsable()) 1256 return true; 1257 1258 NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get()); 1259 return false; 1260 } 1261 1262 /// Check that the type of a non-type template parameter is 1263 /// well-formed. 1264 /// 1265 /// \returns the (possibly-promoted) parameter type if valid; 1266 /// otherwise, produces a diagnostic and returns a NULL type. 1267 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, 1268 SourceLocation Loc) { 1269 if (TSI->getType()->isUndeducedType()) { 1270 // C++17 [temp.dep.expr]p3: 1271 // An id-expression is type-dependent if it contains 1272 // - an identifier associated by name lookup with a non-type 1273 // template-parameter declared with a type that contains a 1274 // placeholder type (7.1.7.4), 1275 TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy); 1276 } 1277 1278 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc); 1279 } 1280 1281 /// Require the given type to be a structural type, and diagnose if it is not. 1282 /// 1283 /// \return \c true if an error was produced. 1284 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) { 1285 if (T->isDependentType()) 1286 return false; 1287 1288 if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete)) 1289 return true; 1290 1291 if (T->isStructuralType()) 1292 return false; 1293 1294 // Structural types are required to be object types or lvalue references. 1295 if (T->isRValueReferenceType()) { 1296 Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T; 1297 return true; 1298 } 1299 1300 // Don't mention structural types in our diagnostic prior to C++20. Also, 1301 // there's not much more we can say about non-scalar non-class types -- 1302 // because we can't see functions or arrays here, those can only be language 1303 // extensions. 1304 if (!getLangOpts().CPlusPlus20 || 1305 (!T->isScalarType() && !T->isRecordType())) { 1306 Diag(Loc, diag::err_template_nontype_parm_bad_type) << T; 1307 return true; 1308 } 1309 1310 // Structural types are required to be literal types. 1311 if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal)) 1312 return true; 1313 1314 Diag(Loc, diag::err_template_nontype_parm_not_structural) << T; 1315 1316 // Drill down into the reason why the class is non-structural. 1317 while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 1318 // All members are required to be public and non-mutable, and can't be of 1319 // rvalue reference type. Check these conditions first to prefer a "local" 1320 // reason over a more distant one. 1321 for (const FieldDecl *FD : RD->fields()) { 1322 if (FD->getAccess() != AS_public) { 1323 Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0; 1324 return true; 1325 } 1326 if (FD->isMutable()) { 1327 Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T; 1328 return true; 1329 } 1330 if (FD->getType()->isRValueReferenceType()) { 1331 Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field) 1332 << T; 1333 return true; 1334 } 1335 } 1336 1337 // All bases are required to be public. 1338 for (const auto &BaseSpec : RD->bases()) { 1339 if (BaseSpec.getAccessSpecifier() != AS_public) { 1340 Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public) 1341 << T << 1; 1342 return true; 1343 } 1344 } 1345 1346 // All subobjects are required to be of structural types. 1347 SourceLocation SubLoc; 1348 QualType SubType; 1349 int Kind = -1; 1350 1351 for (const FieldDecl *FD : RD->fields()) { 1352 QualType T = Context.getBaseElementType(FD->getType()); 1353 if (!T->isStructuralType()) { 1354 SubLoc = FD->getLocation(); 1355 SubType = T; 1356 Kind = 0; 1357 break; 1358 } 1359 } 1360 1361 if (Kind == -1) { 1362 for (const auto &BaseSpec : RD->bases()) { 1363 QualType T = BaseSpec.getType(); 1364 if (!T->isStructuralType()) { 1365 SubLoc = BaseSpec.getBaseTypeLoc(); 1366 SubType = T; 1367 Kind = 1; 1368 break; 1369 } 1370 } 1371 } 1372 1373 assert(Kind != -1 && "couldn't find reason why type is not structural"); 1374 Diag(SubLoc, diag::note_not_structural_subobject) 1375 << T << Kind << SubType; 1376 T = SubType; 1377 RD = T->getAsCXXRecordDecl(); 1378 } 1379 1380 return true; 1381 } 1382 1383 QualType Sema::CheckNonTypeTemplateParameterType(QualType T, 1384 SourceLocation Loc) { 1385 // We don't allow variably-modified types as the type of non-type template 1386 // parameters. 1387 if (T->isVariablyModifiedType()) { 1388 Diag(Loc, diag::err_variably_modified_nontype_template_param) 1389 << T; 1390 return QualType(); 1391 } 1392 1393 // C++ [temp.param]p4: 1394 // 1395 // A non-type template-parameter shall have one of the following 1396 // (optionally cv-qualified) types: 1397 // 1398 // -- integral or enumeration type, 1399 if (T->isIntegralOrEnumerationType() || 1400 // -- pointer to object or pointer to function, 1401 T->isPointerType() || 1402 // -- lvalue reference to object or lvalue reference to function, 1403 T->isLValueReferenceType() || 1404 // -- pointer to member, 1405 T->isMemberPointerType() || 1406 // -- std::nullptr_t, or 1407 T->isNullPtrType() || 1408 // -- a type that contains a placeholder type. 1409 T->isUndeducedType()) { 1410 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 1411 // are ignored when determining its type. 1412 return T.getUnqualifiedType(); 1413 } 1414 1415 // C++ [temp.param]p8: 1416 // 1417 // A non-type template-parameter of type "array of T" or 1418 // "function returning T" is adjusted to be of type "pointer to 1419 // T" or "pointer to function returning T", respectively. 1420 if (T->isArrayType() || T->isFunctionType()) 1421 return Context.getDecayedType(T); 1422 1423 // If T is a dependent type, we can't do the check now, so we 1424 // assume that it is well-formed. Note that stripping off the 1425 // qualifiers here is not really correct if T turns out to be 1426 // an array type, but we'll recompute the type everywhere it's 1427 // used during instantiation, so that should be OK. (Using the 1428 // qualified type is equally wrong.) 1429 if (T->isDependentType()) 1430 return T.getUnqualifiedType(); 1431 1432 // C++20 [temp.param]p6: 1433 // -- a structural type 1434 if (RequireStructuralType(T, Loc)) 1435 return QualType(); 1436 1437 if (!getLangOpts().CPlusPlus20) { 1438 // FIXME: Consider allowing structural types as an extension in C++17. (In 1439 // earlier language modes, the template argument evaluation rules are too 1440 // inflexible.) 1441 Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T; 1442 return QualType(); 1443 } 1444 1445 Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T; 1446 return T.getUnqualifiedType(); 1447 } 1448 1449 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 1450 unsigned Depth, 1451 unsigned Position, 1452 SourceLocation EqualLoc, 1453 Expr *Default) { 1454 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 1455 1456 // Check that we have valid decl-specifiers specified. 1457 auto CheckValidDeclSpecifiers = [this, &D] { 1458 // C++ [temp.param] 1459 // p1 1460 // template-parameter: 1461 // ... 1462 // parameter-declaration 1463 // p2 1464 // ... A storage class shall not be specified in a template-parameter 1465 // declaration. 1466 // [dcl.typedef]p1: 1467 // The typedef specifier [...] shall not be used in the decl-specifier-seq 1468 // of a parameter-declaration 1469 const DeclSpec &DS = D.getDeclSpec(); 1470 auto EmitDiag = [this](SourceLocation Loc) { 1471 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) 1472 << FixItHint::CreateRemoval(Loc); 1473 }; 1474 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) 1475 EmitDiag(DS.getStorageClassSpecLoc()); 1476 1477 if (DS.getThreadStorageClassSpec() != TSCS_unspecified) 1478 EmitDiag(DS.getThreadStorageClassSpecLoc()); 1479 1480 // [dcl.inline]p1: 1481 // The inline specifier can be applied only to the declaration or 1482 // definition of a variable or function. 1483 1484 if (DS.isInlineSpecified()) 1485 EmitDiag(DS.getInlineSpecLoc()); 1486 1487 // [dcl.constexpr]p1: 1488 // The constexpr specifier shall be applied only to the definition of a 1489 // variable or variable template or the declaration of a function or 1490 // function template. 1491 1492 if (DS.hasConstexprSpecifier()) 1493 EmitDiag(DS.getConstexprSpecLoc()); 1494 1495 // [dcl.fct.spec]p1: 1496 // Function-specifiers can be used only in function declarations. 1497 1498 if (DS.isVirtualSpecified()) 1499 EmitDiag(DS.getVirtualSpecLoc()); 1500 1501 if (DS.hasExplicitSpecifier()) 1502 EmitDiag(DS.getExplicitSpecLoc()); 1503 1504 if (DS.isNoreturnSpecified()) 1505 EmitDiag(DS.getNoreturnSpecLoc()); 1506 }; 1507 1508 CheckValidDeclSpecifiers(); 1509 1510 if (TInfo->getType()->isUndeducedType()) { 1511 Diag(D.getIdentifierLoc(), 1512 diag::warn_cxx14_compat_template_nontype_parm_auto_type) 1513 << QualType(TInfo->getType()->getContainedAutoType(), 0); 1514 } 1515 1516 assert(S->isTemplateParamScope() && 1517 "Non-type template parameter not in template parameter scope!"); 1518 bool Invalid = false; 1519 1520 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc()); 1521 if (T.isNull()) { 1522 T = Context.IntTy; // Recover with an 'int' type. 1523 Invalid = true; 1524 } 1525 1526 CheckFunctionOrTemplateParamDeclarator(S, D); 1527 1528 IdentifierInfo *ParamName = D.getIdentifier(); 1529 bool IsParameterPack = D.hasEllipsis(); 1530 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create( 1531 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(), 1532 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack, 1533 TInfo); 1534 Param->setAccess(AS_public); 1535 1536 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) 1537 if (TL.isConstrained()) 1538 if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc())) 1539 Invalid = true; 1540 1541 if (Invalid) 1542 Param->setInvalidDecl(); 1543 1544 if (Param->isParameterPack()) 1545 if (auto *LSI = getEnclosingLambda()) 1546 LSI->LocalPacks.push_back(Param); 1547 1548 if (ParamName) { 1549 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), 1550 ParamName); 1551 1552 // Add the template parameter into the current scope. 1553 S->AddDecl(Param); 1554 IdResolver.AddDecl(Param); 1555 } 1556 1557 // C++0x [temp.param]p9: 1558 // A default template-argument may be specified for any kind of 1559 // template-parameter that is not a template parameter pack. 1560 if (Default && IsParameterPack) { 1561 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1562 Default = nullptr; 1563 } 1564 1565 // Check the well-formedness of the default template argument, if provided. 1566 if (Default) { 1567 // Check for unexpanded parameter packs. 1568 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 1569 return Param; 1570 1571 TemplateArgument Converted; 1572 ExprResult DefaultRes = 1573 CheckTemplateArgument(Param, Param->getType(), Default, Converted); 1574 if (DefaultRes.isInvalid()) { 1575 Param->setInvalidDecl(); 1576 return Param; 1577 } 1578 Default = DefaultRes.get(); 1579 1580 Param->setDefaultArgument(Default); 1581 } 1582 1583 return Param; 1584 } 1585 1586 /// ActOnTemplateTemplateParameter - Called when a C++ template template 1587 /// parameter (e.g. T in template <template \<typename> class T> class array) 1588 /// has been parsed. S is the current scope. 1589 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S, 1590 SourceLocation TmpLoc, 1591 TemplateParameterList *Params, 1592 SourceLocation EllipsisLoc, 1593 IdentifierInfo *Name, 1594 SourceLocation NameLoc, 1595 unsigned Depth, 1596 unsigned Position, 1597 SourceLocation EqualLoc, 1598 ParsedTemplateArgument Default) { 1599 assert(S->isTemplateParamScope() && 1600 "Template template parameter not in template parameter scope!"); 1601 1602 // Construct the parameter object. 1603 bool IsParameterPack = EllipsisLoc.isValid(); 1604 TemplateTemplateParmDecl *Param = 1605 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1606 NameLoc.isInvalid()? TmpLoc : NameLoc, 1607 Depth, Position, IsParameterPack, 1608 Name, Params); 1609 Param->setAccess(AS_public); 1610 1611 if (Param->isParameterPack()) 1612 if (auto *LSI = getEnclosingLambda()) 1613 LSI->LocalPacks.push_back(Param); 1614 1615 // If the template template parameter has a name, then link the identifier 1616 // into the scope and lookup mechanisms. 1617 if (Name) { 1618 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); 1619 1620 S->AddDecl(Param); 1621 IdResolver.AddDecl(Param); 1622 } 1623 1624 if (Params->size() == 0) { 1625 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 1626 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 1627 Param->setInvalidDecl(); 1628 } 1629 1630 // C++0x [temp.param]p9: 1631 // A default template-argument may be specified for any kind of 1632 // template-parameter that is not a template parameter pack. 1633 if (IsParameterPack && !Default.isInvalid()) { 1634 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1635 Default = ParsedTemplateArgument(); 1636 } 1637 1638 if (!Default.isInvalid()) { 1639 // Check only that we have a template template argument. We don't want to 1640 // try to check well-formedness now, because our template template parameter 1641 // might have dependent types in its template parameters, which we wouldn't 1642 // be able to match now. 1643 // 1644 // If none of the template template parameter's template arguments mention 1645 // other template parameters, we could actually perform more checking here. 1646 // However, it isn't worth doing. 1647 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 1648 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 1649 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template) 1650 << DefaultArg.getSourceRange(); 1651 return Param; 1652 } 1653 1654 // Check for unexpanded parameter packs. 1655 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 1656 DefaultArg.getArgument().getAsTemplate(), 1657 UPPC_DefaultArgument)) 1658 return Param; 1659 1660 Param->setDefaultArgument(Context, DefaultArg); 1661 } 1662 1663 return Param; 1664 } 1665 1666 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally 1667 /// constrained by RequiresClause, that contains the template parameters in 1668 /// Params. 1669 TemplateParameterList * 1670 Sema::ActOnTemplateParameterList(unsigned Depth, 1671 SourceLocation ExportLoc, 1672 SourceLocation TemplateLoc, 1673 SourceLocation LAngleLoc, 1674 ArrayRef<NamedDecl *> Params, 1675 SourceLocation RAngleLoc, 1676 Expr *RequiresClause) { 1677 if (ExportLoc.isValid()) 1678 Diag(ExportLoc, diag::warn_template_export_unsupported); 1679 1680 return TemplateParameterList::Create( 1681 Context, TemplateLoc, LAngleLoc, 1682 llvm::makeArrayRef(Params.data(), Params.size()), 1683 RAngleLoc, RequiresClause); 1684 } 1685 1686 static void SetNestedNameSpecifier(Sema &S, TagDecl *T, 1687 const CXXScopeSpec &SS) { 1688 if (SS.isSet()) 1689 T->setQualifierInfo(SS.getWithLocInContext(S.Context)); 1690 } 1691 1692 DeclResult Sema::CheckClassTemplate( 1693 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 1694 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, 1695 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, 1696 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 1697 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, 1698 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { 1699 assert(TemplateParams && TemplateParams->size() > 0 && 1700 "No template parameters"); 1701 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 1702 bool Invalid = false; 1703 1704 // Check that we can declare a template here. 1705 if (CheckTemplateDeclScope(S, TemplateParams)) 1706 return true; 1707 1708 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1709 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 1710 1711 // There is no such thing as an unnamed class template. 1712 if (!Name) { 1713 Diag(KWLoc, diag::err_template_unnamed_class); 1714 return true; 1715 } 1716 1717 // Find any previous declaration with this name. For a friend with no 1718 // scope explicitly specified, we only look for tag declarations (per 1719 // C++11 [basic.lookup.elab]p2). 1720 DeclContext *SemanticContext; 1721 LookupResult Previous(*this, Name, NameLoc, 1722 (SS.isEmpty() && TUK == TUK_Friend) 1723 ? LookupTagName : LookupOrdinaryName, 1724 forRedeclarationInCurContext()); 1725 if (SS.isNotEmpty() && !SS.isInvalid()) { 1726 SemanticContext = computeDeclContext(SS, true); 1727 if (!SemanticContext) { 1728 // FIXME: Horrible, horrible hack! We can't currently represent this 1729 // in the AST, and historically we have just ignored such friend 1730 // class templates, so don't complain here. 1731 Diag(NameLoc, TUK == TUK_Friend 1732 ? diag::warn_template_qualified_friend_ignored 1733 : diag::err_template_qualified_declarator_no_match) 1734 << SS.getScopeRep() << SS.getRange(); 1735 return TUK != TUK_Friend; 1736 } 1737 1738 if (RequireCompleteDeclContext(SS, SemanticContext)) 1739 return true; 1740 1741 // If we're adding a template to a dependent context, we may need to 1742 // rebuilding some of the types used within the template parameter list, 1743 // now that we know what the current instantiation is. 1744 if (SemanticContext->isDependentContext()) { 1745 ContextRAII SavedContext(*this, SemanticContext); 1746 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 1747 Invalid = true; 1748 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 1749 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false); 1750 1751 LookupQualifiedName(Previous, SemanticContext); 1752 } else { 1753 SemanticContext = CurContext; 1754 1755 // C++14 [class.mem]p14: 1756 // If T is the name of a class, then each of the following shall have a 1757 // name different from T: 1758 // -- every member template of class T 1759 if (TUK != TUK_Friend && 1760 DiagnoseClassNameShadow(SemanticContext, 1761 DeclarationNameInfo(Name, NameLoc))) 1762 return true; 1763 1764 LookupName(Previous, S); 1765 } 1766 1767 if (Previous.isAmbiguous()) 1768 return true; 1769 1770 NamedDecl *PrevDecl = nullptr; 1771 if (Previous.begin() != Previous.end()) 1772 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1773 1774 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1775 // Maybe we will complain about the shadowed template parameter. 1776 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1777 // Just pretend that we didn't see the previous declaration. 1778 PrevDecl = nullptr; 1779 } 1780 1781 // If there is a previous declaration with the same name, check 1782 // whether this is a valid redeclaration. 1783 ClassTemplateDecl *PrevClassTemplate = 1784 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 1785 1786 // We may have found the injected-class-name of a class template, 1787 // class template partial specialization, or class template specialization. 1788 // In these cases, grab the template that is being defined or specialized. 1789 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 1790 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 1791 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 1792 PrevClassTemplate 1793 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 1794 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 1795 PrevClassTemplate 1796 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 1797 ->getSpecializedTemplate(); 1798 } 1799 } 1800 1801 if (TUK == TUK_Friend) { 1802 // C++ [namespace.memdef]p3: 1803 // [...] When looking for a prior declaration of a class or a function 1804 // declared as a friend, and when the name of the friend class or 1805 // function is neither a qualified name nor a template-id, scopes outside 1806 // the innermost enclosing namespace scope are not considered. 1807 if (!SS.isSet()) { 1808 DeclContext *OutermostContext = CurContext; 1809 while (!OutermostContext->isFileContext()) 1810 OutermostContext = OutermostContext->getLookupParent(); 1811 1812 if (PrevDecl && 1813 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 1814 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 1815 SemanticContext = PrevDecl->getDeclContext(); 1816 } else { 1817 // Declarations in outer scopes don't matter. However, the outermost 1818 // context we computed is the semantic context for our new 1819 // declaration. 1820 PrevDecl = PrevClassTemplate = nullptr; 1821 SemanticContext = OutermostContext; 1822 1823 // Check that the chosen semantic context doesn't already contain a 1824 // declaration of this name as a non-tag type. 1825 Previous.clear(LookupOrdinaryName); 1826 DeclContext *LookupContext = SemanticContext; 1827 while (LookupContext->isTransparentContext()) 1828 LookupContext = LookupContext->getLookupParent(); 1829 LookupQualifiedName(Previous, LookupContext); 1830 1831 if (Previous.isAmbiguous()) 1832 return true; 1833 1834 if (Previous.begin() != Previous.end()) 1835 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1836 } 1837 } 1838 } else if (PrevDecl && 1839 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext, 1840 S, SS.isValid())) 1841 PrevDecl = PrevClassTemplate = nullptr; 1842 1843 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( 1844 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { 1845 if (SS.isEmpty() && 1846 !(PrevClassTemplate && 1847 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( 1848 SemanticContext->getRedeclContext()))) { 1849 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 1850 Diag(Shadow->getTargetDecl()->getLocation(), 1851 diag::note_using_decl_target); 1852 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; 1853 // Recover by ignoring the old declaration. 1854 PrevDecl = PrevClassTemplate = nullptr; 1855 } 1856 } 1857 1858 if (PrevClassTemplate) { 1859 // Ensure that the template parameter lists are compatible. Skip this check 1860 // for a friend in a dependent context: the template parameter list itself 1861 // could be dependent. 1862 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1863 !TemplateParameterListsAreEqual(TemplateParams, 1864 PrevClassTemplate->getTemplateParameters(), 1865 /*Complain=*/true, 1866 TPL_TemplateMatch)) 1867 return true; 1868 1869 // C++ [temp.class]p4: 1870 // In a redeclaration, partial specialization, explicit 1871 // specialization or explicit instantiation of a class template, 1872 // the class-key shall agree in kind with the original class 1873 // template declaration (7.1.5.3). 1874 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 1875 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 1876 TUK == TUK_Definition, KWLoc, Name)) { 1877 Diag(KWLoc, diag::err_use_with_wrong_tag) 1878 << Name 1879 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 1880 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 1881 Kind = PrevRecordDecl->getTagKind(); 1882 } 1883 1884 // Check for redefinition of this class template. 1885 if (TUK == TUK_Definition) { 1886 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 1887 // If we have a prior definition that is not visible, treat this as 1888 // simply making that previous definition visible. 1889 NamedDecl *Hidden = nullptr; 1890 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 1891 SkipBody->ShouldSkip = true; 1892 SkipBody->Previous = Def; 1893 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate(); 1894 assert(Tmpl && "original definition of a class template is not a " 1895 "class template?"); 1896 makeMergedDefinitionVisible(Hidden); 1897 makeMergedDefinitionVisible(Tmpl); 1898 } else { 1899 Diag(NameLoc, diag::err_redefinition) << Name; 1900 Diag(Def->getLocation(), diag::note_previous_definition); 1901 // FIXME: Would it make sense to try to "forget" the previous 1902 // definition, as part of error recovery? 1903 return true; 1904 } 1905 } 1906 } 1907 } else if (PrevDecl) { 1908 // C++ [temp]p5: 1909 // A class template shall not have the same name as any other 1910 // template, class, function, object, enumeration, enumerator, 1911 // namespace, or type in the same scope (3.3), except as specified 1912 // in (14.5.4). 1913 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1914 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1915 return true; 1916 } 1917 1918 // Check the template parameter list of this declaration, possibly 1919 // merging in the template parameter list from the previous class 1920 // template declaration. Skip this check for a friend in a dependent 1921 // context, because the template parameter list might be dependent. 1922 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1923 CheckTemplateParameterList( 1924 TemplateParams, 1925 PrevClassTemplate 1926 ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters() 1927 : nullptr, 1928 (SS.isSet() && SemanticContext && SemanticContext->isRecord() && 1929 SemanticContext->isDependentContext()) 1930 ? TPC_ClassTemplateMember 1931 : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate, 1932 SkipBody)) 1933 Invalid = true; 1934 1935 if (SS.isSet()) { 1936 // If the name of the template was qualified, we must be defining the 1937 // template out-of-line. 1938 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 1939 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 1940 : diag::err_member_decl_does_not_match) 1941 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange(); 1942 Invalid = true; 1943 } 1944 } 1945 1946 // If this is a templated friend in a dependent context we should not put it 1947 // on the redecl chain. In some cases, the templated friend can be the most 1948 // recent declaration tricking the template instantiator to make substitutions 1949 // there. 1950 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious 1951 bool ShouldAddRedecl 1952 = !(TUK == TUK_Friend && CurContext->isDependentContext()); 1953 1954 CXXRecordDecl *NewClass = 1955 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1956 PrevClassTemplate && ShouldAddRedecl ? 1957 PrevClassTemplate->getTemplatedDecl() : nullptr, 1958 /*DelayTypeCreation=*/true); 1959 SetNestedNameSpecifier(*this, NewClass, SS); 1960 if (NumOuterTemplateParamLists > 0) 1961 NewClass->setTemplateParameterListsInfo( 1962 Context, llvm::makeArrayRef(OuterTemplateParamLists, 1963 NumOuterTemplateParamLists)); 1964 1965 // Add alignment attributes if necessary; these attributes are checked when 1966 // the ASTContext lays out the structure. 1967 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 1968 AddAlignmentAttributesForRecord(NewClass); 1969 AddMsStructLayoutForRecord(NewClass); 1970 } 1971 1972 ClassTemplateDecl *NewTemplate 1973 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1974 DeclarationName(Name), TemplateParams, 1975 NewClass); 1976 1977 if (ShouldAddRedecl) 1978 NewTemplate->setPreviousDecl(PrevClassTemplate); 1979 1980 NewClass->setDescribedClassTemplate(NewTemplate); 1981 1982 if (ModulePrivateLoc.isValid()) 1983 NewTemplate->setModulePrivate(); 1984 1985 // Build the type for the class template declaration now. 1986 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1987 T = Context.getInjectedClassNameType(NewClass, T); 1988 assert(T->isDependentType() && "Class template type is not dependent?"); 1989 (void)T; 1990 1991 // If we are providing an explicit specialization of a member that is a 1992 // class template, make a note of that. 1993 if (PrevClassTemplate && 1994 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1995 PrevClassTemplate->setMemberSpecialization(); 1996 1997 // Set the access specifier. 1998 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 1999 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 2000 2001 // Set the lexical context of these templates 2002 NewClass->setLexicalDeclContext(CurContext); 2003 NewTemplate->setLexicalDeclContext(CurContext); 2004 2005 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 2006 NewClass->startDefinition(); 2007 2008 ProcessDeclAttributeList(S, NewClass, Attr); 2009 2010 if (PrevClassTemplate) 2011 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 2012 2013 AddPushedVisibilityAttribute(NewClass); 2014 inferGslOwnerPointerAttribute(NewClass); 2015 2016 if (TUK != TUK_Friend) { 2017 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. 2018 Scope *Outer = S; 2019 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) 2020 Outer = Outer->getParent(); 2021 PushOnScopeChains(NewTemplate, Outer); 2022 } else { 2023 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 2024 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 2025 NewClass->setAccess(PrevClassTemplate->getAccess()); 2026 } 2027 2028 NewTemplate->setObjectOfFriendDecl(); 2029 2030 // Friend templates are visible in fairly strange ways. 2031 if (!CurContext->isDependentContext()) { 2032 DeclContext *DC = SemanticContext->getRedeclContext(); 2033 DC->makeDeclVisibleInContext(NewTemplate); 2034 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 2035 PushOnScopeChains(NewTemplate, EnclosingScope, 2036 /* AddToContext = */ false); 2037 } 2038 2039 FriendDecl *Friend = FriendDecl::Create( 2040 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc); 2041 Friend->setAccess(AS_public); 2042 CurContext->addDecl(Friend); 2043 } 2044 2045 if (PrevClassTemplate) 2046 CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate); 2047 2048 if (Invalid) { 2049 NewTemplate->setInvalidDecl(); 2050 NewClass->setInvalidDecl(); 2051 } 2052 2053 ActOnDocumentableDecl(NewTemplate); 2054 2055 if (SkipBody && SkipBody->ShouldSkip) 2056 return SkipBody->Previous; 2057 2058 return NewTemplate; 2059 } 2060 2061 namespace { 2062 /// Tree transform to "extract" a transformed type from a class template's 2063 /// constructor to a deduction guide. 2064 class ExtractTypeForDeductionGuide 2065 : public TreeTransform<ExtractTypeForDeductionGuide> { 2066 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs; 2067 2068 public: 2069 typedef TreeTransform<ExtractTypeForDeductionGuide> Base; 2070 ExtractTypeForDeductionGuide( 2071 Sema &SemaRef, 2072 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) 2073 : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {} 2074 2075 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); } 2076 2077 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) { 2078 ASTContext &Context = SemaRef.getASTContext(); 2079 TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl(); 2080 TypedefNameDecl *Decl = OrigDecl; 2081 // Transform the underlying type of the typedef and clone the Decl only if 2082 // the typedef has a dependent context. 2083 if (OrigDecl->getDeclContext()->isDependentContext()) { 2084 TypeLocBuilder InnerTLB; 2085 QualType Transformed = 2086 TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc()); 2087 TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed); 2088 if (isa<TypeAliasDecl>(OrigDecl)) 2089 Decl = TypeAliasDecl::Create( 2090 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(), 2091 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI); 2092 else { 2093 assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef"); 2094 Decl = TypedefDecl::Create( 2095 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(), 2096 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI); 2097 } 2098 MaterializedTypedefs.push_back(Decl); 2099 } 2100 2101 QualType TDTy = Context.getTypedefType(Decl); 2102 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy); 2103 TypedefTL.setNameLoc(TL.getNameLoc()); 2104 2105 return TDTy; 2106 } 2107 }; 2108 2109 /// Transform to convert portions of a constructor declaration into the 2110 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1. 2111 struct ConvertConstructorToDeductionGuideTransform { 2112 ConvertConstructorToDeductionGuideTransform(Sema &S, 2113 ClassTemplateDecl *Template) 2114 : SemaRef(S), Template(Template) {} 2115 2116 Sema &SemaRef; 2117 ClassTemplateDecl *Template; 2118 2119 DeclContext *DC = Template->getDeclContext(); 2120 CXXRecordDecl *Primary = Template->getTemplatedDecl(); 2121 DeclarationName DeductionGuideName = 2122 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template); 2123 2124 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary); 2125 2126 // Index adjustment to apply to convert depth-1 template parameters into 2127 // depth-0 template parameters. 2128 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size(); 2129 2130 /// Transform a constructor declaration into a deduction guide. 2131 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD, 2132 CXXConstructorDecl *CD) { 2133 SmallVector<TemplateArgument, 16> SubstArgs; 2134 2135 LocalInstantiationScope Scope(SemaRef); 2136 2137 // C++ [over.match.class.deduct]p1: 2138 // -- For each constructor of the class template designated by the 2139 // template-name, a function template with the following properties: 2140 2141 // -- The template parameters are the template parameters of the class 2142 // template followed by the template parameters (including default 2143 // template arguments) of the constructor, if any. 2144 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2145 if (FTD) { 2146 TemplateParameterList *InnerParams = FTD->getTemplateParameters(); 2147 SmallVector<NamedDecl *, 16> AllParams; 2148 AllParams.reserve(TemplateParams->size() + InnerParams->size()); 2149 AllParams.insert(AllParams.begin(), 2150 TemplateParams->begin(), TemplateParams->end()); 2151 SubstArgs.reserve(InnerParams->size()); 2152 2153 // Later template parameters could refer to earlier ones, so build up 2154 // a list of substituted template arguments as we go. 2155 for (NamedDecl *Param : *InnerParams) { 2156 MultiLevelTemplateArgumentList Args; 2157 Args.setKind(TemplateSubstitutionKind::Rewrite); 2158 Args.addOuterTemplateArguments(SubstArgs); 2159 Args.addOuterRetainedLevel(); 2160 NamedDecl *NewParam = transformTemplateParameter(Param, Args); 2161 if (!NewParam) 2162 return nullptr; 2163 AllParams.push_back(NewParam); 2164 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument( 2165 SemaRef.Context.getInjectedTemplateArg(NewParam))); 2166 } 2167 TemplateParams = TemplateParameterList::Create( 2168 SemaRef.Context, InnerParams->getTemplateLoc(), 2169 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(), 2170 /*FIXME: RequiresClause*/ nullptr); 2171 } 2172 2173 // If we built a new template-parameter-list, track that we need to 2174 // substitute references to the old parameters into references to the 2175 // new ones. 2176 MultiLevelTemplateArgumentList Args; 2177 Args.setKind(TemplateSubstitutionKind::Rewrite); 2178 if (FTD) { 2179 Args.addOuterTemplateArguments(SubstArgs); 2180 Args.addOuterRetainedLevel(); 2181 } 2182 2183 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc() 2184 .getAsAdjusted<FunctionProtoTypeLoc>(); 2185 assert(FPTL && "no prototype for constructor declaration"); 2186 2187 // Transform the type of the function, adjusting the return type and 2188 // replacing references to the old parameters with references to the 2189 // new ones. 2190 TypeLocBuilder TLB; 2191 SmallVector<ParmVarDecl*, 8> Params; 2192 SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs; 2193 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args, 2194 MaterializedTypedefs); 2195 if (NewType.isNull()) 2196 return nullptr; 2197 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType); 2198 2199 return buildDeductionGuide(TemplateParams, CD->getExplicitSpecifier(), 2200 NewTInfo, CD->getBeginLoc(), CD->getLocation(), 2201 CD->getEndLoc(), MaterializedTypedefs); 2202 } 2203 2204 /// Build a deduction guide with the specified parameter types. 2205 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) { 2206 SourceLocation Loc = Template->getLocation(); 2207 2208 // Build the requested type. 2209 FunctionProtoType::ExtProtoInfo EPI; 2210 EPI.HasTrailingReturn = true; 2211 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc, 2212 DeductionGuideName, EPI); 2213 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc); 2214 2215 FunctionProtoTypeLoc FPTL = 2216 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>(); 2217 2218 // Build the parameters, needed during deduction / substitution. 2219 SmallVector<ParmVarDecl*, 4> Params; 2220 for (auto T : ParamTypes) { 2221 ParmVarDecl *NewParam = ParmVarDecl::Create( 2222 SemaRef.Context, DC, Loc, Loc, nullptr, T, 2223 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr); 2224 NewParam->setScopeInfo(0, Params.size()); 2225 FPTL.setParam(Params.size(), NewParam); 2226 Params.push_back(NewParam); 2227 } 2228 2229 return buildDeductionGuide(Template->getTemplateParameters(), 2230 ExplicitSpecifier(), TSI, Loc, Loc, Loc); 2231 } 2232 2233 private: 2234 /// Transform a constructor template parameter into a deduction guide template 2235 /// parameter, rebuilding any internal references to earlier parameters and 2236 /// renumbering as we go. 2237 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam, 2238 MultiLevelTemplateArgumentList &Args) { 2239 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) { 2240 // TemplateTypeParmDecl's index cannot be changed after creation, so 2241 // substitute it directly. 2242 auto *NewTTP = TemplateTypeParmDecl::Create( 2243 SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(), 2244 /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(), 2245 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(), 2246 TTP->isParameterPack(), TTP->hasTypeConstraint(), 2247 TTP->isExpandedParameterPack() ? 2248 llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None); 2249 if (const auto *TC = TTP->getTypeConstraint()) { 2250 TemplateArgumentListInfo TransformedArgs; 2251 const auto *ArgsAsWritten = TC->getTemplateArgsAsWritten(); 2252 if (!ArgsAsWritten || 2253 SemaRef.Subst(ArgsAsWritten->getTemplateArgs(), 2254 ArgsAsWritten->NumTemplateArgs, TransformedArgs, 2255 Args)) 2256 SemaRef.AttachTypeConstraint( 2257 TC->getNestedNameSpecifierLoc(), TC->getConceptNameInfo(), 2258 TC->getNamedConcept(), ArgsAsWritten ? &TransformedArgs : nullptr, 2259 NewTTP, 2260 NewTTP->isParameterPack() 2261 ? cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint()) 2262 ->getEllipsisLoc() 2263 : SourceLocation()); 2264 } 2265 if (TTP->hasDefaultArgument()) { 2266 TypeSourceInfo *InstantiatedDefaultArg = 2267 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args, 2268 TTP->getDefaultArgumentLoc(), TTP->getDeclName()); 2269 if (InstantiatedDefaultArg) 2270 NewTTP->setDefaultArgument(InstantiatedDefaultArg); 2271 } 2272 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam, 2273 NewTTP); 2274 return NewTTP; 2275 } 2276 2277 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam)) 2278 return transformTemplateParameterImpl(TTP, Args); 2279 2280 return transformTemplateParameterImpl( 2281 cast<NonTypeTemplateParmDecl>(TemplateParam), Args); 2282 } 2283 template<typename TemplateParmDecl> 2284 TemplateParmDecl * 2285 transformTemplateParameterImpl(TemplateParmDecl *OldParam, 2286 MultiLevelTemplateArgumentList &Args) { 2287 // Ask the template instantiator to do the heavy lifting for us, then adjust 2288 // the index of the parameter once it's done. 2289 auto *NewParam = 2290 cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args)); 2291 assert(NewParam->getDepth() == 0 && "unexpected template param depth"); 2292 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment); 2293 return NewParam; 2294 } 2295 2296 QualType transformFunctionProtoType( 2297 TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, 2298 SmallVectorImpl<ParmVarDecl *> &Params, 2299 MultiLevelTemplateArgumentList &Args, 2300 SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { 2301 SmallVector<QualType, 4> ParamTypes; 2302 const FunctionProtoType *T = TL.getTypePtr(); 2303 2304 // -- The types of the function parameters are those of the constructor. 2305 for (auto *OldParam : TL.getParams()) { 2306 ParmVarDecl *NewParam = 2307 transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs); 2308 if (!NewParam) 2309 return QualType(); 2310 ParamTypes.push_back(NewParam->getType()); 2311 Params.push_back(NewParam); 2312 } 2313 2314 // -- The return type is the class template specialization designated by 2315 // the template-name and template arguments corresponding to the 2316 // template parameters obtained from the class template. 2317 // 2318 // We use the injected-class-name type of the primary template instead. 2319 // This has the convenient property that it is different from any type that 2320 // the user can write in a deduction-guide (because they cannot enter the 2321 // context of the template), so implicit deduction guides can never collide 2322 // with explicit ones. 2323 QualType ReturnType = DeducedType; 2324 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation()); 2325 2326 // Resolving a wording defect, we also inherit the variadicness of the 2327 // constructor. 2328 FunctionProtoType::ExtProtoInfo EPI; 2329 EPI.Variadic = T->isVariadic(); 2330 EPI.HasTrailingReturn = true; 2331 2332 QualType Result = SemaRef.BuildFunctionType( 2333 ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI); 2334 if (Result.isNull()) 2335 return QualType(); 2336 2337 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result); 2338 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); 2339 NewTL.setLParenLoc(TL.getLParenLoc()); 2340 NewTL.setRParenLoc(TL.getRParenLoc()); 2341 NewTL.setExceptionSpecRange(SourceRange()); 2342 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); 2343 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I) 2344 NewTL.setParam(I, Params[I]); 2345 2346 return Result; 2347 } 2348 2349 ParmVarDecl *transformFunctionTypeParam( 2350 ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args, 2351 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { 2352 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo(); 2353 TypeSourceInfo *NewDI; 2354 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) { 2355 // Expand out the one and only element in each inner pack. 2356 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0); 2357 NewDI = 2358 SemaRef.SubstType(PackTL.getPatternLoc(), Args, 2359 OldParam->getLocation(), OldParam->getDeclName()); 2360 if (!NewDI) return nullptr; 2361 NewDI = 2362 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(), 2363 PackTL.getTypePtr()->getNumExpansions()); 2364 } else 2365 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(), 2366 OldParam->getDeclName()); 2367 if (!NewDI) 2368 return nullptr; 2369 2370 // Extract the type. This (for instance) replaces references to typedef 2371 // members of the current instantiations with the definitions of those 2372 // typedefs, avoiding triggering instantiation of the deduced type during 2373 // deduction. 2374 NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs) 2375 .transform(NewDI); 2376 2377 // Resolving a wording defect, we also inherit default arguments from the 2378 // constructor. 2379 ExprResult NewDefArg; 2380 if (OldParam->hasDefaultArg()) { 2381 // We don't care what the value is (we won't use it); just create a 2382 // placeholder to indicate there is a default argument. 2383 QualType ParamTy = NewDI->getType(); 2384 NewDefArg = new (SemaRef.Context) 2385 OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(), 2386 ParamTy.getNonLValueExprType(SemaRef.Context), 2387 ParamTy->isLValueReferenceType() ? VK_LValue : 2388 ParamTy->isRValueReferenceType() ? VK_XValue : 2389 VK_RValue); 2390 } 2391 2392 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC, 2393 OldParam->getInnerLocStart(), 2394 OldParam->getLocation(), 2395 OldParam->getIdentifier(), 2396 NewDI->getType(), 2397 NewDI, 2398 OldParam->getStorageClass(), 2399 NewDefArg.get()); 2400 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(), 2401 OldParam->getFunctionScopeIndex()); 2402 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam); 2403 return NewParam; 2404 } 2405 2406 FunctionTemplateDecl *buildDeductionGuide( 2407 TemplateParameterList *TemplateParams, ExplicitSpecifier ES, 2408 TypeSourceInfo *TInfo, SourceLocation LocStart, SourceLocation Loc, 2409 SourceLocation LocEnd, 2410 llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) { 2411 DeclarationNameInfo Name(DeductionGuideName, Loc); 2412 ArrayRef<ParmVarDecl *> Params = 2413 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(); 2414 2415 // Build the implicit deduction guide template. 2416 auto *Guide = 2417 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name, 2418 TInfo->getType(), TInfo, LocEnd); 2419 Guide->setImplicit(); 2420 Guide->setParams(Params); 2421 2422 for (auto *Param : Params) 2423 Param->setDeclContext(Guide); 2424 for (auto *TD : MaterializedTypedefs) 2425 TD->setDeclContext(Guide); 2426 2427 auto *GuideTemplate = FunctionTemplateDecl::Create( 2428 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide); 2429 GuideTemplate->setImplicit(); 2430 Guide->setDescribedFunctionTemplate(GuideTemplate); 2431 2432 if (isa<CXXRecordDecl>(DC)) { 2433 Guide->setAccess(AS_public); 2434 GuideTemplate->setAccess(AS_public); 2435 } 2436 2437 DC->addDecl(GuideTemplate); 2438 return GuideTemplate; 2439 } 2440 }; 2441 } 2442 2443 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template, 2444 SourceLocation Loc) { 2445 if (CXXRecordDecl *DefRecord = 2446 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) { 2447 TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate(); 2448 Template = DescribedTemplate ? DescribedTemplate : Template; 2449 } 2450 2451 DeclContext *DC = Template->getDeclContext(); 2452 if (DC->isDependentContext()) 2453 return; 2454 2455 ConvertConstructorToDeductionGuideTransform Transform( 2456 *this, cast<ClassTemplateDecl>(Template)); 2457 if (!isCompleteType(Loc, Transform.DeducedType)) 2458 return; 2459 2460 // Check whether we've already declared deduction guides for this template. 2461 // FIXME: Consider storing a flag on the template to indicate this. 2462 auto Existing = DC->lookup(Transform.DeductionGuideName); 2463 for (auto *D : Existing) 2464 if (D->isImplicit()) 2465 return; 2466 2467 // In case we were expanding a pack when we attempted to declare deduction 2468 // guides, turn off pack expansion for everything we're about to do. 2469 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1); 2470 // Create a template instantiation record to track the "instantiation" of 2471 // constructors into deduction guides. 2472 // FIXME: Add a kind for this to give more meaningful diagnostics. But can 2473 // this substitution process actually fail? 2474 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template); 2475 if (BuildingDeductionGuides.isInvalid()) 2476 return; 2477 2478 // Convert declared constructors into deduction guide templates. 2479 // FIXME: Skip constructors for which deduction must necessarily fail (those 2480 // for which some class template parameter without a default argument never 2481 // appears in a deduced context). 2482 bool AddedAny = false; 2483 for (NamedDecl *D : LookupConstructors(Transform.Primary)) { 2484 D = D->getUnderlyingDecl(); 2485 if (D->isInvalidDecl() || D->isImplicit()) 2486 continue; 2487 D = cast<NamedDecl>(D->getCanonicalDecl()); 2488 2489 auto *FTD = dyn_cast<FunctionTemplateDecl>(D); 2490 auto *CD = 2491 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D); 2492 // Class-scope explicit specializations (MS extension) do not result in 2493 // deduction guides. 2494 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization())) 2495 continue; 2496 2497 Transform.transformConstructor(FTD, CD); 2498 AddedAny = true; 2499 } 2500 2501 // C++17 [over.match.class.deduct] 2502 // -- If C is not defined or does not declare any constructors, an 2503 // additional function template derived as above from a hypothetical 2504 // constructor C(). 2505 if (!AddedAny) 2506 Transform.buildSimpleDeductionGuide(None); 2507 2508 // -- An additional function template derived as above from a hypothetical 2509 // constructor C(C), called the copy deduction candidate. 2510 cast<CXXDeductionGuideDecl>( 2511 cast<FunctionTemplateDecl>( 2512 Transform.buildSimpleDeductionGuide(Transform.DeducedType)) 2513 ->getTemplatedDecl()) 2514 ->setIsCopyDeductionCandidate(); 2515 } 2516 2517 /// Diagnose the presence of a default template argument on a 2518 /// template parameter, which is ill-formed in certain contexts. 2519 /// 2520 /// \returns true if the default template argument should be dropped. 2521 static bool DiagnoseDefaultTemplateArgument(Sema &S, 2522 Sema::TemplateParamListContext TPC, 2523 SourceLocation ParamLoc, 2524 SourceRange DefArgRange) { 2525 switch (TPC) { 2526 case Sema::TPC_ClassTemplate: 2527 case Sema::TPC_VarTemplate: 2528 case Sema::TPC_TypeAliasTemplate: 2529 return false; 2530 2531 case Sema::TPC_FunctionTemplate: 2532 case Sema::TPC_FriendFunctionTemplateDefinition: 2533 // C++ [temp.param]p9: 2534 // A default template-argument shall not be specified in a 2535 // function template declaration or a function template 2536 // definition [...] 2537 // If a friend function template declaration specifies a default 2538 // template-argument, that declaration shall be a definition and shall be 2539 // the only declaration of the function template in the translation unit. 2540 // (C++98/03 doesn't have this wording; see DR226). 2541 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 2542 diag::warn_cxx98_compat_template_parameter_default_in_function_template 2543 : diag::ext_template_parameter_default_in_function_template) 2544 << DefArgRange; 2545 return false; 2546 2547 case Sema::TPC_ClassTemplateMember: 2548 // C++0x [temp.param]p9: 2549 // A default template-argument shall not be specified in the 2550 // template-parameter-lists of the definition of a member of a 2551 // class template that appears outside of the member's class. 2552 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 2553 << DefArgRange; 2554 return true; 2555 2556 case Sema::TPC_FriendClassTemplate: 2557 case Sema::TPC_FriendFunctionTemplate: 2558 // C++ [temp.param]p9: 2559 // A default template-argument shall not be specified in a 2560 // friend template declaration. 2561 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 2562 << DefArgRange; 2563 return true; 2564 2565 // FIXME: C++0x [temp.param]p9 allows default template-arguments 2566 // for friend function templates if there is only a single 2567 // declaration (and it is a definition). Strange! 2568 } 2569 2570 llvm_unreachable("Invalid TemplateParamListContext!"); 2571 } 2572 2573 /// Check for unexpanded parameter packs within the template parameters 2574 /// of a template template parameter, recursively. 2575 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 2576 TemplateTemplateParmDecl *TTP) { 2577 // A template template parameter which is a parameter pack is also a pack 2578 // expansion. 2579 if (TTP->isParameterPack()) 2580 return false; 2581 2582 TemplateParameterList *Params = TTP->getTemplateParameters(); 2583 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 2584 NamedDecl *P = Params->getParam(I); 2585 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) { 2586 if (!TTP->isParameterPack()) 2587 if (const TypeConstraint *TC = TTP->getTypeConstraint()) 2588 if (TC->hasExplicitTemplateArgs()) 2589 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) 2590 if (S.DiagnoseUnexpandedParameterPack(ArgLoc, 2591 Sema::UPPC_TypeConstraint)) 2592 return true; 2593 continue; 2594 } 2595 2596 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 2597 if (!NTTP->isParameterPack() && 2598 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 2599 NTTP->getTypeSourceInfo(), 2600 Sema::UPPC_NonTypeTemplateParameterType)) 2601 return true; 2602 2603 continue; 2604 } 2605 2606 if (TemplateTemplateParmDecl *InnerTTP 2607 = dyn_cast<TemplateTemplateParmDecl>(P)) 2608 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 2609 return true; 2610 } 2611 2612 return false; 2613 } 2614 2615 /// Checks the validity of a template parameter list, possibly 2616 /// considering the template parameter list from a previous 2617 /// declaration. 2618 /// 2619 /// If an "old" template parameter list is provided, it must be 2620 /// equivalent (per TemplateParameterListsAreEqual) to the "new" 2621 /// template parameter list. 2622 /// 2623 /// \param NewParams Template parameter list for a new template 2624 /// declaration. This template parameter list will be updated with any 2625 /// default arguments that are carried through from the previous 2626 /// template parameter list. 2627 /// 2628 /// \param OldParams If provided, template parameter list from a 2629 /// previous declaration of the same template. Default template 2630 /// arguments will be merged from the old template parameter list to 2631 /// the new template parameter list. 2632 /// 2633 /// \param TPC Describes the context in which we are checking the given 2634 /// template parameter list. 2635 /// 2636 /// \param SkipBody If we might have already made a prior merged definition 2637 /// of this template visible, the corresponding body-skipping information. 2638 /// Default argument redefinition is not an error when skipping such a body, 2639 /// because (under the ODR) we can assume the default arguments are the same 2640 /// as the prior merged definition. 2641 /// 2642 /// \returns true if an error occurred, false otherwise. 2643 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 2644 TemplateParameterList *OldParams, 2645 TemplateParamListContext TPC, 2646 SkipBodyInfo *SkipBody) { 2647 bool Invalid = false; 2648 2649 // C++ [temp.param]p10: 2650 // The set of default template-arguments available for use with a 2651 // template declaration or definition is obtained by merging the 2652 // default arguments from the definition (if in scope) and all 2653 // declarations in scope in the same way default function 2654 // arguments are (8.3.6). 2655 bool SawDefaultArgument = false; 2656 SourceLocation PreviousDefaultArgLoc; 2657 2658 // Dummy initialization to avoid warnings. 2659 TemplateParameterList::iterator OldParam = NewParams->end(); 2660 if (OldParams) 2661 OldParam = OldParams->begin(); 2662 2663 bool RemoveDefaultArguments = false; 2664 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2665 NewParamEnd = NewParams->end(); 2666 NewParam != NewParamEnd; ++NewParam) { 2667 // Variables used to diagnose redundant default arguments 2668 bool RedundantDefaultArg = false; 2669 SourceLocation OldDefaultLoc; 2670 SourceLocation NewDefaultLoc; 2671 2672 // Variable used to diagnose missing default arguments 2673 bool MissingDefaultArg = false; 2674 2675 // Variable used to diagnose non-final parameter packs 2676 bool SawParameterPack = false; 2677 2678 if (TemplateTypeParmDecl *NewTypeParm 2679 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 2680 // Check the presence of a default argument here. 2681 if (NewTypeParm->hasDefaultArgument() && 2682 DiagnoseDefaultTemplateArgument(*this, TPC, 2683 NewTypeParm->getLocation(), 2684 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 2685 .getSourceRange())) 2686 NewTypeParm->removeDefaultArgument(); 2687 2688 // Merge default arguments for template type parameters. 2689 TemplateTypeParmDecl *OldTypeParm 2690 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr; 2691 if (NewTypeParm->isParameterPack()) { 2692 assert(!NewTypeParm->hasDefaultArgument() && 2693 "Parameter packs can't have a default argument!"); 2694 SawParameterPack = true; 2695 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && 2696 NewTypeParm->hasDefaultArgument() && 2697 (!SkipBody || !SkipBody->ShouldSkip)) { 2698 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 2699 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 2700 SawDefaultArgument = true; 2701 RedundantDefaultArg = true; 2702 PreviousDefaultArgLoc = NewDefaultLoc; 2703 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 2704 // Merge the default argument from the old declaration to the 2705 // new declaration. 2706 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm); 2707 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 2708 } else if (NewTypeParm->hasDefaultArgument()) { 2709 SawDefaultArgument = true; 2710 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 2711 } else if (SawDefaultArgument) 2712 MissingDefaultArg = true; 2713 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 2714 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 2715 // Check for unexpanded parameter packs. 2716 if (!NewNonTypeParm->isParameterPack() && 2717 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 2718 NewNonTypeParm->getTypeSourceInfo(), 2719 UPPC_NonTypeTemplateParameterType)) { 2720 Invalid = true; 2721 continue; 2722 } 2723 2724 // Check the presence of a default argument here. 2725 if (NewNonTypeParm->hasDefaultArgument() && 2726 DiagnoseDefaultTemplateArgument(*this, TPC, 2727 NewNonTypeParm->getLocation(), 2728 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 2729 NewNonTypeParm->removeDefaultArgument(); 2730 } 2731 2732 // Merge default arguments for non-type template parameters 2733 NonTypeTemplateParmDecl *OldNonTypeParm 2734 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr; 2735 if (NewNonTypeParm->isParameterPack()) { 2736 assert(!NewNonTypeParm->hasDefaultArgument() && 2737 "Parameter packs can't have a default argument!"); 2738 if (!NewNonTypeParm->isPackExpansion()) 2739 SawParameterPack = true; 2740 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && 2741 NewNonTypeParm->hasDefaultArgument() && 2742 (!SkipBody || !SkipBody->ShouldSkip)) { 2743 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2744 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2745 SawDefaultArgument = true; 2746 RedundantDefaultArg = true; 2747 PreviousDefaultArgLoc = NewDefaultLoc; 2748 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 2749 // Merge the default argument from the old declaration to the 2750 // new declaration. 2751 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm); 2752 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2753 } else if (NewNonTypeParm->hasDefaultArgument()) { 2754 SawDefaultArgument = true; 2755 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2756 } else if (SawDefaultArgument) 2757 MissingDefaultArg = true; 2758 } else { 2759 TemplateTemplateParmDecl *NewTemplateParm 2760 = cast<TemplateTemplateParmDecl>(*NewParam); 2761 2762 // Check for unexpanded parameter packs, recursively. 2763 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 2764 Invalid = true; 2765 continue; 2766 } 2767 2768 // Check the presence of a default argument here. 2769 if (NewTemplateParm->hasDefaultArgument() && 2770 DiagnoseDefaultTemplateArgument(*this, TPC, 2771 NewTemplateParm->getLocation(), 2772 NewTemplateParm->getDefaultArgument().getSourceRange())) 2773 NewTemplateParm->removeDefaultArgument(); 2774 2775 // Merge default arguments for template template parameters 2776 TemplateTemplateParmDecl *OldTemplateParm 2777 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr; 2778 if (NewTemplateParm->isParameterPack()) { 2779 assert(!NewTemplateParm->hasDefaultArgument() && 2780 "Parameter packs can't have a default argument!"); 2781 if (!NewTemplateParm->isPackExpansion()) 2782 SawParameterPack = true; 2783 } else if (OldTemplateParm && 2784 hasVisibleDefaultArgument(OldTemplateParm) && 2785 NewTemplateParm->hasDefaultArgument() && 2786 (!SkipBody || !SkipBody->ShouldSkip)) { 2787 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 2788 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 2789 SawDefaultArgument = true; 2790 RedundantDefaultArg = true; 2791 PreviousDefaultArgLoc = NewDefaultLoc; 2792 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 2793 // Merge the default argument from the old declaration to the 2794 // new declaration. 2795 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm); 2796 PreviousDefaultArgLoc 2797 = OldTemplateParm->getDefaultArgument().getLocation(); 2798 } else if (NewTemplateParm->hasDefaultArgument()) { 2799 SawDefaultArgument = true; 2800 PreviousDefaultArgLoc 2801 = NewTemplateParm->getDefaultArgument().getLocation(); 2802 } else if (SawDefaultArgument) 2803 MissingDefaultArg = true; 2804 } 2805 2806 // C++11 [temp.param]p11: 2807 // If a template parameter of a primary class template or alias template 2808 // is a template parameter pack, it shall be the last template parameter. 2809 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 2810 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || 2811 TPC == TPC_TypeAliasTemplate)) { 2812 Diag((*NewParam)->getLocation(), 2813 diag::err_template_param_pack_must_be_last_template_parameter); 2814 Invalid = true; 2815 } 2816 2817 if (RedundantDefaultArg) { 2818 // C++ [temp.param]p12: 2819 // A template-parameter shall not be given default arguments 2820 // by two different declarations in the same scope. 2821 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 2822 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 2823 Invalid = true; 2824 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 2825 // C++ [temp.param]p11: 2826 // If a template-parameter of a class template has a default 2827 // template-argument, each subsequent template-parameter shall either 2828 // have a default template-argument supplied or be a template parameter 2829 // pack. 2830 Diag((*NewParam)->getLocation(), 2831 diag::err_template_param_default_arg_missing); 2832 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 2833 Invalid = true; 2834 RemoveDefaultArguments = true; 2835 } 2836 2837 // If we have an old template parameter list that we're merging 2838 // in, move on to the next parameter. 2839 if (OldParams) 2840 ++OldParam; 2841 } 2842 2843 // We were missing some default arguments at the end of the list, so remove 2844 // all of the default arguments. 2845 if (RemoveDefaultArguments) { 2846 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2847 NewParamEnd = NewParams->end(); 2848 NewParam != NewParamEnd; ++NewParam) { 2849 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 2850 TTP->removeDefaultArgument(); 2851 else if (NonTypeTemplateParmDecl *NTTP 2852 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 2853 NTTP->removeDefaultArgument(); 2854 else 2855 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 2856 } 2857 } 2858 2859 return Invalid; 2860 } 2861 2862 namespace { 2863 2864 /// A class which looks for a use of a certain level of template 2865 /// parameter. 2866 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 2867 typedef RecursiveASTVisitor<DependencyChecker> super; 2868 2869 unsigned Depth; 2870 2871 // Whether we're looking for a use of a template parameter that makes the 2872 // overall construct type-dependent / a dependent type. This is strictly 2873 // best-effort for now; we may fail to match at all for a dependent type 2874 // in some cases if this is set. 2875 bool IgnoreNonTypeDependent; 2876 2877 bool Match; 2878 SourceLocation MatchLoc; 2879 2880 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) 2881 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), 2882 Match(false) {} 2883 2884 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) 2885 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { 2886 NamedDecl *ND = Params->getParam(0); 2887 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 2888 Depth = PD->getDepth(); 2889 } else if (NonTypeTemplateParmDecl *PD = 2890 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 2891 Depth = PD->getDepth(); 2892 } else { 2893 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 2894 } 2895 } 2896 2897 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { 2898 if (ParmDepth >= Depth) { 2899 Match = true; 2900 MatchLoc = Loc; 2901 return true; 2902 } 2903 return false; 2904 } 2905 2906 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) { 2907 // Prune out non-type-dependent expressions if requested. This can 2908 // sometimes result in us failing to find a template parameter reference 2909 // (if a value-dependent expression creates a dependent type), but this 2910 // mode is best-effort only. 2911 if (auto *E = dyn_cast_or_null<Expr>(S)) 2912 if (IgnoreNonTypeDependent && !E->isTypeDependent()) 2913 return true; 2914 return super::TraverseStmt(S, Q); 2915 } 2916 2917 bool TraverseTypeLoc(TypeLoc TL) { 2918 if (IgnoreNonTypeDependent && !TL.isNull() && 2919 !TL.getType()->isDependentType()) 2920 return true; 2921 return super::TraverseTypeLoc(TL); 2922 } 2923 2924 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { 2925 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc()); 2926 } 2927 2928 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 2929 // For a best-effort search, keep looking until we find a location. 2930 return IgnoreNonTypeDependent || !Matches(T->getDepth()); 2931 } 2932 2933 bool TraverseTemplateName(TemplateName N) { 2934 if (TemplateTemplateParmDecl *PD = 2935 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 2936 if (Matches(PD->getDepth())) 2937 return false; 2938 return super::TraverseTemplateName(N); 2939 } 2940 2941 bool VisitDeclRefExpr(DeclRefExpr *E) { 2942 if (NonTypeTemplateParmDecl *PD = 2943 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 2944 if (Matches(PD->getDepth(), E->getExprLoc())) 2945 return false; 2946 return super::VisitDeclRefExpr(E); 2947 } 2948 2949 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { 2950 return TraverseType(T->getReplacementType()); 2951 } 2952 2953 bool 2954 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { 2955 return TraverseTemplateArgument(T->getArgumentPack()); 2956 } 2957 2958 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 2959 return TraverseType(T->getInjectedSpecializationType()); 2960 } 2961 }; 2962 } // end anonymous namespace 2963 2964 /// Determines whether a given type depends on the given parameter 2965 /// list. 2966 static bool 2967 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 2968 if (!Params->size()) 2969 return false; 2970 2971 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); 2972 Checker.TraverseType(T); 2973 return Checker.Match; 2974 } 2975 2976 // Find the source range corresponding to the named type in the given 2977 // nested-name-specifier, if any. 2978 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 2979 QualType T, 2980 const CXXScopeSpec &SS) { 2981 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 2982 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 2983 if (const Type *CurType = NNS->getAsType()) { 2984 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 2985 return NNSLoc.getTypeLoc().getSourceRange(); 2986 } else 2987 break; 2988 2989 NNSLoc = NNSLoc.getPrefix(); 2990 } 2991 2992 return SourceRange(); 2993 } 2994 2995 /// Match the given template parameter lists to the given scope 2996 /// specifier, returning the template parameter list that applies to the 2997 /// name. 2998 /// 2999 /// \param DeclStartLoc the start of the declaration that has a scope 3000 /// specifier or a template parameter list. 3001 /// 3002 /// \param DeclLoc The location of the declaration itself. 3003 /// 3004 /// \param SS the scope specifier that will be matched to the given template 3005 /// parameter lists. This scope specifier precedes a qualified name that is 3006 /// being declared. 3007 /// 3008 /// \param TemplateId The template-id following the scope specifier, if there 3009 /// is one. Used to check for a missing 'template<>'. 3010 /// 3011 /// \param ParamLists the template parameter lists, from the outermost to the 3012 /// innermost template parameter lists. 3013 /// 3014 /// \param IsFriend Whether to apply the slightly different rules for 3015 /// matching template parameters to scope specifiers in friend 3016 /// declarations. 3017 /// 3018 /// \param IsMemberSpecialization will be set true if the scope specifier 3019 /// denotes a fully-specialized type, and therefore this is a declaration of 3020 /// a member specialization. 3021 /// 3022 /// \returns the template parameter list, if any, that corresponds to the 3023 /// name that is preceded by the scope specifier @p SS. This template 3024 /// parameter list may have template parameters (if we're declaring a 3025 /// template) or may have no template parameters (if we're declaring a 3026 /// template specialization), or may be NULL (if what we're declaring isn't 3027 /// itself a template). 3028 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( 3029 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, 3030 TemplateIdAnnotation *TemplateId, 3031 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, 3032 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) { 3033 IsMemberSpecialization = false; 3034 Invalid = false; 3035 3036 // The sequence of nested types to which we will match up the template 3037 // parameter lists. We first build this list by starting with the type named 3038 // by the nested-name-specifier and walking out until we run out of types. 3039 SmallVector<QualType, 4> NestedTypes; 3040 QualType T; 3041 if (SS.getScopeRep()) { 3042 if (CXXRecordDecl *Record 3043 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 3044 T = Context.getTypeDeclType(Record); 3045 else 3046 T = QualType(SS.getScopeRep()->getAsType(), 0); 3047 } 3048 3049 // If we found an explicit specialization that prevents us from needing 3050 // 'template<>' headers, this will be set to the location of that 3051 // explicit specialization. 3052 SourceLocation ExplicitSpecLoc; 3053 3054 while (!T.isNull()) { 3055 NestedTypes.push_back(T); 3056 3057 // Retrieve the parent of a record type. 3058 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 3059 // If this type is an explicit specialization, we're done. 3060 if (ClassTemplateSpecializationDecl *Spec 3061 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 3062 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 3063 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 3064 ExplicitSpecLoc = Spec->getLocation(); 3065 break; 3066 } 3067 } else if (Record->getTemplateSpecializationKind() 3068 == TSK_ExplicitSpecialization) { 3069 ExplicitSpecLoc = Record->getLocation(); 3070 break; 3071 } 3072 3073 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 3074 T = Context.getTypeDeclType(Parent); 3075 else 3076 T = QualType(); 3077 continue; 3078 } 3079 3080 if (const TemplateSpecializationType *TST 3081 = T->getAs<TemplateSpecializationType>()) { 3082 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 3083 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 3084 T = Context.getTypeDeclType(Parent); 3085 else 3086 T = QualType(); 3087 continue; 3088 } 3089 } 3090 3091 // Look one step prior in a dependent template specialization type. 3092 if (const DependentTemplateSpecializationType *DependentTST 3093 = T->getAs<DependentTemplateSpecializationType>()) { 3094 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 3095 T = QualType(NNS->getAsType(), 0); 3096 else 3097 T = QualType(); 3098 continue; 3099 } 3100 3101 // Look one step prior in a dependent name type. 3102 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 3103 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 3104 T = QualType(NNS->getAsType(), 0); 3105 else 3106 T = QualType(); 3107 continue; 3108 } 3109 3110 // Retrieve the parent of an enumeration type. 3111 if (const EnumType *EnumT = T->getAs<EnumType>()) { 3112 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 3113 // check here. 3114 EnumDecl *Enum = EnumT->getDecl(); 3115 3116 // Get to the parent type. 3117 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 3118 T = Context.getTypeDeclType(Parent); 3119 else 3120 T = QualType(); 3121 continue; 3122 } 3123 3124 T = QualType(); 3125 } 3126 // Reverse the nested types list, since we want to traverse from the outermost 3127 // to the innermost while checking template-parameter-lists. 3128 std::reverse(NestedTypes.begin(), NestedTypes.end()); 3129 3130 // C++0x [temp.expl.spec]p17: 3131 // A member or a member template may be nested within many 3132 // enclosing class templates. In an explicit specialization for 3133 // such a member, the member declaration shall be preceded by a 3134 // template<> for each enclosing class template that is 3135 // explicitly specialized. 3136 bool SawNonEmptyTemplateParameterList = false; 3137 3138 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { 3139 if (SawNonEmptyTemplateParameterList) { 3140 if (!SuppressDiagnostic) 3141 Diag(DeclLoc, diag::err_specialize_member_of_template) 3142 << !Recovery << Range; 3143 Invalid = true; 3144 IsMemberSpecialization = false; 3145 return true; 3146 } 3147 3148 return false; 3149 }; 3150 3151 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { 3152 // Check that we can have an explicit specialization here. 3153 if (CheckExplicitSpecialization(Range, true)) 3154 return true; 3155 3156 // We don't have a template header, but we should. 3157 SourceLocation ExpectedTemplateLoc; 3158 if (!ParamLists.empty()) 3159 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 3160 else 3161 ExpectedTemplateLoc = DeclStartLoc; 3162 3163 if (!SuppressDiagnostic) 3164 Diag(DeclLoc, diag::err_template_spec_needs_header) 3165 << Range 3166 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 3167 return false; 3168 }; 3169 3170 unsigned ParamIdx = 0; 3171 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 3172 ++TypeIdx) { 3173 T = NestedTypes[TypeIdx]; 3174 3175 // Whether we expect a 'template<>' header. 3176 bool NeedEmptyTemplateHeader = false; 3177 3178 // Whether we expect a template header with parameters. 3179 bool NeedNonemptyTemplateHeader = false; 3180 3181 // For a dependent type, the set of template parameters that we 3182 // expect to see. 3183 TemplateParameterList *ExpectedTemplateParams = nullptr; 3184 3185 // C++0x [temp.expl.spec]p15: 3186 // A member or a member template may be nested within many enclosing 3187 // class templates. In an explicit specialization for such a member, the 3188 // member declaration shall be preceded by a template<> for each 3189 // enclosing class template that is explicitly specialized. 3190 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 3191 if (ClassTemplatePartialSpecializationDecl *Partial 3192 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 3193 ExpectedTemplateParams = Partial->getTemplateParameters(); 3194 NeedNonemptyTemplateHeader = true; 3195 } else if (Record->isDependentType()) { 3196 if (Record->getDescribedClassTemplate()) { 3197 ExpectedTemplateParams = Record->getDescribedClassTemplate() 3198 ->getTemplateParameters(); 3199 NeedNonemptyTemplateHeader = true; 3200 } 3201 } else if (ClassTemplateSpecializationDecl *Spec 3202 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 3203 // C++0x [temp.expl.spec]p4: 3204 // Members of an explicitly specialized class template are defined 3205 // in the same manner as members of normal classes, and not using 3206 // the template<> syntax. 3207 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 3208 NeedEmptyTemplateHeader = true; 3209 else 3210 continue; 3211 } else if (Record->getTemplateSpecializationKind()) { 3212 if (Record->getTemplateSpecializationKind() 3213 != TSK_ExplicitSpecialization && 3214 TypeIdx == NumTypes - 1) 3215 IsMemberSpecialization = true; 3216 3217 continue; 3218 } 3219 } else if (const TemplateSpecializationType *TST 3220 = T->getAs<TemplateSpecializationType>()) { 3221 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 3222 ExpectedTemplateParams = Template->getTemplateParameters(); 3223 NeedNonemptyTemplateHeader = true; 3224 } 3225 } else if (T->getAs<DependentTemplateSpecializationType>()) { 3226 // FIXME: We actually could/should check the template arguments here 3227 // against the corresponding template parameter list. 3228 NeedNonemptyTemplateHeader = false; 3229 } 3230 3231 // C++ [temp.expl.spec]p16: 3232 // In an explicit specialization declaration for a member of a class 3233 // template or a member template that ap- pears in namespace scope, the 3234 // member template and some of its enclosing class templates may remain 3235 // unspecialized, except that the declaration shall not explicitly 3236 // specialize a class member template if its en- closing class templates 3237 // are not explicitly specialized as well. 3238 if (ParamIdx < ParamLists.size()) { 3239 if (ParamLists[ParamIdx]->size() == 0) { 3240 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3241 false)) 3242 return nullptr; 3243 } else 3244 SawNonEmptyTemplateParameterList = true; 3245 } 3246 3247 if (NeedEmptyTemplateHeader) { 3248 // If we're on the last of the types, and we need a 'template<>' header 3249 // here, then it's a member specialization. 3250 if (TypeIdx == NumTypes - 1) 3251 IsMemberSpecialization = true; 3252 3253 if (ParamIdx < ParamLists.size()) { 3254 if (ParamLists[ParamIdx]->size() > 0) { 3255 // The header has template parameters when it shouldn't. Complain. 3256 if (!SuppressDiagnostic) 3257 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3258 diag::err_template_param_list_matches_nontemplate) 3259 << T 3260 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 3261 ParamLists[ParamIdx]->getRAngleLoc()) 3262 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 3263 Invalid = true; 3264 return nullptr; 3265 } 3266 3267 // Consume this template header. 3268 ++ParamIdx; 3269 continue; 3270 } 3271 3272 if (!IsFriend) 3273 if (DiagnoseMissingExplicitSpecialization( 3274 getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) 3275 return nullptr; 3276 3277 continue; 3278 } 3279 3280 if (NeedNonemptyTemplateHeader) { 3281 // In friend declarations we can have template-ids which don't 3282 // depend on the corresponding template parameter lists. But 3283 // assume that empty parameter lists are supposed to match this 3284 // template-id. 3285 if (IsFriend && T->isDependentType()) { 3286 if (ParamIdx < ParamLists.size() && 3287 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 3288 ExpectedTemplateParams = nullptr; 3289 else 3290 continue; 3291 } 3292 3293 if (ParamIdx < ParamLists.size()) { 3294 // Check the template parameter list, if we can. 3295 if (ExpectedTemplateParams && 3296 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 3297 ExpectedTemplateParams, 3298 !SuppressDiagnostic, TPL_TemplateMatch)) 3299 Invalid = true; 3300 3301 if (!Invalid && 3302 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr, 3303 TPC_ClassTemplateMember)) 3304 Invalid = true; 3305 3306 ++ParamIdx; 3307 continue; 3308 } 3309 3310 if (!SuppressDiagnostic) 3311 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 3312 << T 3313 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 3314 Invalid = true; 3315 continue; 3316 } 3317 } 3318 3319 // If there were at least as many template-ids as there were template 3320 // parameter lists, then there are no template parameter lists remaining for 3321 // the declaration itself. 3322 if (ParamIdx >= ParamLists.size()) { 3323 if (TemplateId && !IsFriend) { 3324 // We don't have a template header for the declaration itself, but we 3325 // should. 3326 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, 3327 TemplateId->RAngleLoc)); 3328 3329 // Fabricate an empty template parameter list for the invented header. 3330 return TemplateParameterList::Create(Context, SourceLocation(), 3331 SourceLocation(), None, 3332 SourceLocation(), nullptr); 3333 } 3334 3335 return nullptr; 3336 } 3337 3338 // If there were too many template parameter lists, complain about that now. 3339 if (ParamIdx < ParamLists.size() - 1) { 3340 bool HasAnyExplicitSpecHeader = false; 3341 bool AllExplicitSpecHeaders = true; 3342 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { 3343 if (ParamLists[I]->size() == 0) 3344 HasAnyExplicitSpecHeader = true; 3345 else 3346 AllExplicitSpecHeaders = false; 3347 } 3348 3349 if (!SuppressDiagnostic) 3350 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3351 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers 3352 : diag::err_template_spec_extra_headers) 3353 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 3354 ParamLists[ParamLists.size() - 2]->getRAngleLoc()); 3355 3356 // If there was a specialization somewhere, such that 'template<>' is 3357 // not required, and there were any 'template<>' headers, note where the 3358 // specialization occurred. 3359 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader && 3360 !SuppressDiagnostic) 3361 Diag(ExplicitSpecLoc, 3362 diag::note_explicit_template_spec_does_not_need_header) 3363 << NestedTypes.back(); 3364 3365 // We have a template parameter list with no corresponding scope, which 3366 // means that the resulting template declaration can't be instantiated 3367 // properly (we'll end up with dependent nodes when we shouldn't). 3368 if (!AllExplicitSpecHeaders) 3369 Invalid = true; 3370 } 3371 3372 // C++ [temp.expl.spec]p16: 3373 // In an explicit specialization declaration for a member of a class 3374 // template or a member template that ap- pears in namespace scope, the 3375 // member template and some of its enclosing class templates may remain 3376 // unspecialized, except that the declaration shall not explicitly 3377 // specialize a class member template if its en- closing class templates 3378 // are not explicitly specialized as well. 3379 if (ParamLists.back()->size() == 0 && 3380 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3381 false)) 3382 return nullptr; 3383 3384 // Return the last template parameter list, which corresponds to the 3385 // entity being declared. 3386 return ParamLists.back(); 3387 } 3388 3389 void Sema::NoteAllFoundTemplates(TemplateName Name) { 3390 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 3391 Diag(Template->getLocation(), diag::note_template_declared_here) 3392 << (isa<FunctionTemplateDecl>(Template) 3393 ? 0 3394 : isa<ClassTemplateDecl>(Template) 3395 ? 1 3396 : isa<VarTemplateDecl>(Template) 3397 ? 2 3398 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) 3399 << Template->getDeclName(); 3400 return; 3401 } 3402 3403 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 3404 for (OverloadedTemplateStorage::iterator I = OST->begin(), 3405 IEnd = OST->end(); 3406 I != IEnd; ++I) 3407 Diag((*I)->getLocation(), diag::note_template_declared_here) 3408 << 0 << (*I)->getDeclName(); 3409 3410 return; 3411 } 3412 } 3413 3414 static QualType 3415 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, 3416 const SmallVectorImpl<TemplateArgument> &Converted, 3417 SourceLocation TemplateLoc, 3418 TemplateArgumentListInfo &TemplateArgs) { 3419 ASTContext &Context = SemaRef.getASTContext(); 3420 switch (BTD->getBuiltinTemplateKind()) { 3421 case BTK__make_integer_seq: { 3422 // Specializations of __make_integer_seq<S, T, N> are treated like 3423 // S<T, 0, ..., N-1>. 3424 3425 // C++14 [inteseq.intseq]p1: 3426 // T shall be an integer type. 3427 if (!Converted[1].getAsType()->isIntegralType(Context)) { 3428 SemaRef.Diag(TemplateArgs[1].getLocation(), 3429 diag::err_integer_sequence_integral_element_type); 3430 return QualType(); 3431 } 3432 3433 // C++14 [inteseq.make]p1: 3434 // If N is negative the program is ill-formed. 3435 TemplateArgument NumArgsArg = Converted[2]; 3436 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); 3437 if (NumArgs < 0) { 3438 SemaRef.Diag(TemplateArgs[2].getLocation(), 3439 diag::err_integer_sequence_negative_length); 3440 return QualType(); 3441 } 3442 3443 QualType ArgTy = NumArgsArg.getIntegralType(); 3444 TemplateArgumentListInfo SyntheticTemplateArgs; 3445 // The type argument gets reused as the first template argument in the 3446 // synthetic template argument list. 3447 SyntheticTemplateArgs.addArgument(TemplateArgs[1]); 3448 // Expand N into 0 ... N-1. 3449 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); 3450 I < NumArgs; ++I) { 3451 TemplateArgument TA(Context, I, ArgTy); 3452 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc( 3453 TA, ArgTy, TemplateArgs[2].getLocation())); 3454 } 3455 // The first template argument will be reused as the template decl that 3456 // our synthetic template arguments will be applied to. 3457 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(), 3458 TemplateLoc, SyntheticTemplateArgs); 3459 } 3460 3461 case BTK__type_pack_element: 3462 // Specializations of 3463 // __type_pack_element<Index, T_1, ..., T_N> 3464 // are treated like T_Index. 3465 assert(Converted.size() == 2 && 3466 "__type_pack_element should be given an index and a parameter pack"); 3467 3468 // If the Index is out of bounds, the program is ill-formed. 3469 TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; 3470 llvm::APSInt Index = IndexArg.getAsIntegral(); 3471 assert(Index >= 0 && "the index used with __type_pack_element should be of " 3472 "type std::size_t, and hence be non-negative"); 3473 if (Index >= Ts.pack_size()) { 3474 SemaRef.Diag(TemplateArgs[0].getLocation(), 3475 diag::err_type_pack_element_out_of_bounds); 3476 return QualType(); 3477 } 3478 3479 // We simply return the type at index `Index`. 3480 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue()); 3481 return Nth->getAsType(); 3482 } 3483 llvm_unreachable("unexpected BuiltinTemplateDecl!"); 3484 } 3485 3486 /// Determine whether this alias template is "enable_if_t". 3487 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { 3488 return AliasTemplate->getName().equals("enable_if_t"); 3489 } 3490 3491 /// Collect all of the separable terms in the given condition, which 3492 /// might be a conjunction. 3493 /// 3494 /// FIXME: The right answer is to convert the logical expression into 3495 /// disjunctive normal form, so we can find the first failed term 3496 /// within each possible clause. 3497 static void collectConjunctionTerms(Expr *Clause, 3498 SmallVectorImpl<Expr *> &Terms) { 3499 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) { 3500 if (BinOp->getOpcode() == BO_LAnd) { 3501 collectConjunctionTerms(BinOp->getLHS(), Terms); 3502 collectConjunctionTerms(BinOp->getRHS(), Terms); 3503 } 3504 3505 return; 3506 } 3507 3508 Terms.push_back(Clause); 3509 } 3510 3511 // The ranges-v3 library uses an odd pattern of a top-level "||" with 3512 // a left-hand side that is value-dependent but never true. Identify 3513 // the idiom and ignore that term. 3514 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { 3515 // Top-level '||'. 3516 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts()); 3517 if (!BinOp) return Cond; 3518 3519 if (BinOp->getOpcode() != BO_LOr) return Cond; 3520 3521 // With an inner '==' that has a literal on the right-hand side. 3522 Expr *LHS = BinOp->getLHS(); 3523 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts()); 3524 if (!InnerBinOp) return Cond; 3525 3526 if (InnerBinOp->getOpcode() != BO_EQ || 3527 !isa<IntegerLiteral>(InnerBinOp->getRHS())) 3528 return Cond; 3529 3530 // If the inner binary operation came from a macro expansion named 3531 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side 3532 // of the '||', which is the real, user-provided condition. 3533 SourceLocation Loc = InnerBinOp->getExprLoc(); 3534 if (!Loc.isMacroID()) return Cond; 3535 3536 StringRef MacroName = PP.getImmediateMacroName(Loc); 3537 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_") 3538 return BinOp->getRHS(); 3539 3540 return Cond; 3541 } 3542 3543 namespace { 3544 3545 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions 3546 // within failing boolean expression, such as substituting template parameters 3547 // for actual types. 3548 class FailedBooleanConditionPrinterHelper : public PrinterHelper { 3549 public: 3550 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P) 3551 : Policy(P) {} 3552 3553 bool handledStmt(Stmt *E, raw_ostream &OS) override { 3554 const auto *DR = dyn_cast<DeclRefExpr>(E); 3555 if (DR && DR->getQualifier()) { 3556 // If this is a qualified name, expand the template arguments in nested 3557 // qualifiers. 3558 DR->getQualifier()->print(OS, Policy, true); 3559 // Then print the decl itself. 3560 const ValueDecl *VD = DR->getDecl(); 3561 OS << VD->getName(); 3562 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 3563 // This is a template variable, print the expanded template arguments. 3564 printTemplateArgumentList(OS, IV->getTemplateArgs().asArray(), Policy); 3565 } 3566 return true; 3567 } 3568 return false; 3569 } 3570 3571 private: 3572 const PrintingPolicy Policy; 3573 }; 3574 3575 } // end anonymous namespace 3576 3577 std::pair<Expr *, std::string> 3578 Sema::findFailedBooleanCondition(Expr *Cond) { 3579 Cond = lookThroughRangesV3Condition(PP, Cond); 3580 3581 // Separate out all of the terms in a conjunction. 3582 SmallVector<Expr *, 4> Terms; 3583 collectConjunctionTerms(Cond, Terms); 3584 3585 // Determine which term failed. 3586 Expr *FailedCond = nullptr; 3587 for (Expr *Term : Terms) { 3588 Expr *TermAsWritten = Term->IgnoreParenImpCasts(); 3589 3590 // Literals are uninteresting. 3591 if (isa<CXXBoolLiteralExpr>(TermAsWritten) || 3592 isa<IntegerLiteral>(TermAsWritten)) 3593 continue; 3594 3595 // The initialization of the parameter from the argument is 3596 // a constant-evaluated context. 3597 EnterExpressionEvaluationContext ConstantEvaluated( 3598 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 3599 3600 bool Succeeded; 3601 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) && 3602 !Succeeded) { 3603 FailedCond = TermAsWritten; 3604 break; 3605 } 3606 } 3607 if (!FailedCond) 3608 FailedCond = Cond->IgnoreParenImpCasts(); 3609 3610 std::string Description; 3611 { 3612 llvm::raw_string_ostream Out(Description); 3613 PrintingPolicy Policy = getPrintingPolicy(); 3614 Policy.PrintCanonicalTypes = true; 3615 FailedBooleanConditionPrinterHelper Helper(Policy); 3616 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr); 3617 } 3618 return { FailedCond, Description }; 3619 } 3620 3621 QualType Sema::CheckTemplateIdType(TemplateName Name, 3622 SourceLocation TemplateLoc, 3623 TemplateArgumentListInfo &TemplateArgs) { 3624 DependentTemplateName *DTN 3625 = Name.getUnderlying().getAsDependentTemplateName(); 3626 if (DTN && DTN->isIdentifier()) 3627 // When building a template-id where the template-name is dependent, 3628 // assume the template is a type template. Either our assumption is 3629 // correct, or the code is ill-formed and will be diagnosed when the 3630 // dependent name is substituted. 3631 return Context.getDependentTemplateSpecializationType(ETK_None, 3632 DTN->getQualifier(), 3633 DTN->getIdentifier(), 3634 TemplateArgs); 3635 3636 if (Name.getAsAssumedTemplateName() && 3637 resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc)) 3638 return QualType(); 3639 3640 TemplateDecl *Template = Name.getAsTemplateDecl(); 3641 if (!Template || isa<FunctionTemplateDecl>(Template) || 3642 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) { 3643 // We might have a substituted template template parameter pack. If so, 3644 // build a template specialization type for it. 3645 if (Name.getAsSubstTemplateTemplateParmPack()) 3646 return Context.getTemplateSpecializationType(Name, TemplateArgs); 3647 3648 Diag(TemplateLoc, diag::err_template_id_not_a_type) 3649 << Name; 3650 NoteAllFoundTemplates(Name); 3651 return QualType(); 3652 } 3653 3654 // Check that the template argument list is well-formed for this 3655 // template. 3656 SmallVector<TemplateArgument, 4> Converted; 3657 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 3658 false, Converted, 3659 /*UpdateArgsWithConversion=*/true)) 3660 return QualType(); 3661 3662 QualType CanonType; 3663 3664 if (TypeAliasTemplateDecl *AliasTemplate = 3665 dyn_cast<TypeAliasTemplateDecl>(Template)) { 3666 3667 // Find the canonical type for this type alias template specialization. 3668 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 3669 if (Pattern->isInvalidDecl()) 3670 return QualType(); 3671 3672 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack, 3673 Converted); 3674 3675 // Only substitute for the innermost template argument list. 3676 MultiLevelTemplateArgumentList TemplateArgLists; 3677 TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs); 3678 TemplateArgLists.addOuterRetainedLevels( 3679 AliasTemplate->getTemplateParameters()->getDepth()); 3680 3681 LocalInstantiationScope Scope(*this); 3682 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 3683 if (Inst.isInvalid()) 3684 return QualType(); 3685 3686 CanonType = SubstType(Pattern->getUnderlyingType(), 3687 TemplateArgLists, AliasTemplate->getLocation(), 3688 AliasTemplate->getDeclName()); 3689 if (CanonType.isNull()) { 3690 // If this was enable_if and we failed to find the nested type 3691 // within enable_if in a SFINAE context, dig out the specific 3692 // enable_if condition that failed and present that instead. 3693 if (isEnableIfAliasTemplate(AliasTemplate)) { 3694 if (auto DeductionInfo = isSFINAEContext()) { 3695 if (*DeductionInfo && 3696 (*DeductionInfo)->hasSFINAEDiagnostic() && 3697 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == 3698 diag::err_typename_nested_not_found_enable_if && 3699 TemplateArgs[0].getArgument().getKind() 3700 == TemplateArgument::Expression) { 3701 Expr *FailedCond; 3702 std::string FailedDescription; 3703 std::tie(FailedCond, FailedDescription) = 3704 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression()); 3705 3706 // Remove the old SFINAE diagnostic. 3707 PartialDiagnosticAt OldDiag = 3708 {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; 3709 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag); 3710 3711 // Add a new SFINAE diagnostic specifying which condition 3712 // failed. 3713 (*DeductionInfo)->addSFINAEDiagnostic( 3714 OldDiag.first, 3715 PDiag(diag::err_typename_nested_not_found_requirement) 3716 << FailedDescription 3717 << FailedCond->getSourceRange()); 3718 } 3719 } 3720 } 3721 3722 return QualType(); 3723 } 3724 } else if (Name.isDependent() || 3725 TemplateSpecializationType::anyDependentTemplateArguments( 3726 TemplateArgs, Converted)) { 3727 // This class template specialization is a dependent 3728 // type. Therefore, its canonical type is another class template 3729 // specialization type that contains all of the converted 3730 // arguments in canonical form. This ensures that, e.g., A<T> and 3731 // A<T, T> have identical types when A is declared as: 3732 // 3733 // template<typename T, typename U = T> struct A; 3734 CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted); 3735 3736 // This might work out to be a current instantiation, in which 3737 // case the canonical type needs to be the InjectedClassNameType. 3738 // 3739 // TODO: in theory this could be a simple hashtable lookup; most 3740 // changes to CurContext don't change the set of current 3741 // instantiations. 3742 if (isa<ClassTemplateDecl>(Template)) { 3743 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 3744 // If we get out to a namespace, we're done. 3745 if (Ctx->isFileContext()) break; 3746 3747 // If this isn't a record, keep looking. 3748 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 3749 if (!Record) continue; 3750 3751 // Look for one of the two cases with InjectedClassNameTypes 3752 // and check whether it's the same template. 3753 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 3754 !Record->getDescribedClassTemplate()) 3755 continue; 3756 3757 // Fetch the injected class name type and check whether its 3758 // injected type is equal to the type we just built. 3759 QualType ICNT = Context.getTypeDeclType(Record); 3760 QualType Injected = cast<InjectedClassNameType>(ICNT) 3761 ->getInjectedSpecializationType(); 3762 3763 if (CanonType != Injected->getCanonicalTypeInternal()) 3764 continue; 3765 3766 // If so, the canonical type of this TST is the injected 3767 // class name type of the record we just found. 3768 assert(ICNT.isCanonical()); 3769 CanonType = ICNT; 3770 break; 3771 } 3772 } 3773 } else if (ClassTemplateDecl *ClassTemplate 3774 = dyn_cast<ClassTemplateDecl>(Template)) { 3775 // Find the class template specialization declaration that 3776 // corresponds to these arguments. 3777 void *InsertPos = nullptr; 3778 ClassTemplateSpecializationDecl *Decl 3779 = ClassTemplate->findSpecialization(Converted, InsertPos); 3780 if (!Decl) { 3781 // This is the first time we have referenced this class template 3782 // specialization. Create the canonical declaration and add it to 3783 // the set of specializations. 3784 Decl = ClassTemplateSpecializationDecl::Create( 3785 Context, ClassTemplate->getTemplatedDecl()->getTagKind(), 3786 ClassTemplate->getDeclContext(), 3787 ClassTemplate->getTemplatedDecl()->getBeginLoc(), 3788 ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr); 3789 ClassTemplate->AddSpecialization(Decl, InsertPos); 3790 if (ClassTemplate->isOutOfLine()) 3791 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 3792 } 3793 3794 if (Decl->getSpecializationKind() == TSK_Undeclared && 3795 ClassTemplate->getTemplatedDecl()->hasAttrs()) { 3796 InstantiatingTemplate Inst(*this, TemplateLoc, Decl); 3797 if (!Inst.isInvalid()) { 3798 MultiLevelTemplateArgumentList TemplateArgLists; 3799 TemplateArgLists.addOuterTemplateArguments(Converted); 3800 InstantiateAttrsForDecl(TemplateArgLists, 3801 ClassTemplate->getTemplatedDecl(), Decl); 3802 } 3803 } 3804 3805 // Diagnose uses of this specialization. 3806 (void)DiagnoseUseOfDecl(Decl, TemplateLoc); 3807 3808 CanonType = Context.getTypeDeclType(Decl); 3809 assert(isa<RecordType>(CanonType) && 3810 "type of non-dependent specialization is not a RecordType"); 3811 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) { 3812 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc, 3813 TemplateArgs); 3814 } 3815 3816 // Build the fully-sugared type for this class template 3817 // specialization, which refers back to the class template 3818 // specialization we created or found. 3819 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 3820 } 3821 3822 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName, 3823 TemplateNameKind &TNK, 3824 SourceLocation NameLoc, 3825 IdentifierInfo *&II) { 3826 assert(TNK == TNK_Undeclared_template && "not an undeclared template name"); 3827 3828 TemplateName Name = ParsedName.get(); 3829 auto *ATN = Name.getAsAssumedTemplateName(); 3830 assert(ATN && "not an assumed template name"); 3831 II = ATN->getDeclName().getAsIdentifierInfo(); 3832 3833 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) { 3834 // Resolved to a type template name. 3835 ParsedName = TemplateTy::make(Name); 3836 TNK = TNK_Type_template; 3837 } 3838 } 3839 3840 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, 3841 SourceLocation NameLoc, 3842 bool Diagnose) { 3843 // We assumed this undeclared identifier to be an (ADL-only) function 3844 // template name, but it was used in a context where a type was required. 3845 // Try to typo-correct it now. 3846 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName(); 3847 assert(ATN && "not an assumed template name"); 3848 3849 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName); 3850 struct CandidateCallback : CorrectionCandidateCallback { 3851 bool ValidateCandidate(const TypoCorrection &TC) override { 3852 return TC.getCorrectionDecl() && 3853 getAsTypeTemplateDecl(TC.getCorrectionDecl()); 3854 } 3855 std::unique_ptr<CorrectionCandidateCallback> clone() override { 3856 return std::make_unique<CandidateCallback>(*this); 3857 } 3858 } FilterCCC; 3859 3860 TypoCorrection Corrected = 3861 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr, 3862 FilterCCC, CTK_ErrorRecovery); 3863 if (Corrected && Corrected.getFoundDecl()) { 3864 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) 3865 << ATN->getDeclName()); 3866 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>()); 3867 return false; 3868 } 3869 3870 if (Diagnose) 3871 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName(); 3872 return true; 3873 } 3874 3875 TypeResult Sema::ActOnTemplateIdType( 3876 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 3877 TemplateTy TemplateD, IdentifierInfo *TemplateII, 3878 SourceLocation TemplateIILoc, SourceLocation LAngleLoc, 3879 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc, 3880 bool IsCtorOrDtorName, bool IsClassName) { 3881 if (SS.isInvalid()) 3882 return true; 3883 3884 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { 3885 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); 3886 3887 // C++ [temp.res]p3: 3888 // A qualified-id that refers to a type and in which the 3889 // nested-name-specifier depends on a template-parameter (14.6.2) 3890 // shall be prefixed by the keyword typename to indicate that the 3891 // qualified-id denotes a type, forming an 3892 // elaborated-type-specifier (7.1.5.3). 3893 if (!LookupCtx && isDependentScopeSpecifier(SS)) { 3894 Diag(SS.getBeginLoc(), diag::err_typename_missing_template) 3895 << SS.getScopeRep() << TemplateII->getName(); 3896 // Recover as if 'typename' were specified. 3897 // FIXME: This is not quite correct recovery as we don't transform SS 3898 // into the corresponding dependent form (and we don't diagnose missing 3899 // 'template' keywords within SS as a result). 3900 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc, 3901 TemplateD, TemplateII, TemplateIILoc, LAngleLoc, 3902 TemplateArgsIn, RAngleLoc); 3903 } 3904 3905 // Per C++ [class.qual]p2, if the template-id was an injected-class-name, 3906 // it's not actually allowed to be used as a type in most cases. Because 3907 // we annotate it before we know whether it's valid, we have to check for 3908 // this case here. 3909 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 3910 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 3911 Diag(TemplateIILoc, 3912 TemplateKWLoc.isInvalid() 3913 ? diag::err_out_of_line_qualified_id_type_names_constructor 3914 : diag::ext_out_of_line_qualified_id_type_names_constructor) 3915 << TemplateII << 0 /*injected-class-name used as template name*/ 3916 << 1 /*if any keyword was present, it was 'template'*/; 3917 } 3918 } 3919 3920 TemplateName Template = TemplateD.get(); 3921 if (Template.getAsAssumedTemplateName() && 3922 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc)) 3923 return true; 3924 3925 // Translate the parser's template argument list in our AST format. 3926 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 3927 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3928 3929 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 3930 QualType T 3931 = Context.getDependentTemplateSpecializationType(ETK_None, 3932 DTN->getQualifier(), 3933 DTN->getIdentifier(), 3934 TemplateArgs); 3935 // Build type-source information. 3936 TypeLocBuilder TLB; 3937 DependentTemplateSpecializationTypeLoc SpecTL 3938 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 3939 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 3940 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3941 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3942 SpecTL.setTemplateNameLoc(TemplateIILoc); 3943 SpecTL.setLAngleLoc(LAngleLoc); 3944 SpecTL.setRAngleLoc(RAngleLoc); 3945 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 3946 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 3947 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 3948 } 3949 3950 QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 3951 if (Result.isNull()) 3952 return true; 3953 3954 // Build type-source information. 3955 TypeLocBuilder TLB; 3956 TemplateSpecializationTypeLoc SpecTL 3957 = TLB.push<TemplateSpecializationTypeLoc>(Result); 3958 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3959 SpecTL.setTemplateNameLoc(TemplateIILoc); 3960 SpecTL.setLAngleLoc(LAngleLoc); 3961 SpecTL.setRAngleLoc(RAngleLoc); 3962 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 3963 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 3964 3965 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 3966 // constructor or destructor name (in such a case, the scope specifier 3967 // will be attached to the enclosing Decl or Expr node). 3968 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 3969 // Create an elaborated-type-specifier containing the nested-name-specifier. 3970 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 3971 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 3972 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 3973 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3974 } 3975 3976 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 3977 } 3978 3979 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 3980 TypeSpecifierType TagSpec, 3981 SourceLocation TagLoc, 3982 CXXScopeSpec &SS, 3983 SourceLocation TemplateKWLoc, 3984 TemplateTy TemplateD, 3985 SourceLocation TemplateLoc, 3986 SourceLocation LAngleLoc, 3987 ASTTemplateArgsPtr TemplateArgsIn, 3988 SourceLocation RAngleLoc) { 3989 if (SS.isInvalid()) 3990 return TypeResult(true); 3991 3992 TemplateName Template = TemplateD.get(); 3993 3994 // Translate the parser's template argument list in our AST format. 3995 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 3996 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3997 3998 // Determine the tag kind 3999 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4000 ElaboratedTypeKeyword Keyword 4001 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 4002 4003 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 4004 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 4005 DTN->getQualifier(), 4006 DTN->getIdentifier(), 4007 TemplateArgs); 4008 4009 // Build type-source information. 4010 TypeLocBuilder TLB; 4011 DependentTemplateSpecializationTypeLoc SpecTL 4012 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 4013 SpecTL.setElaboratedKeywordLoc(TagLoc); 4014 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4015 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 4016 SpecTL.setTemplateNameLoc(TemplateLoc); 4017 SpecTL.setLAngleLoc(LAngleLoc); 4018 SpecTL.setRAngleLoc(RAngleLoc); 4019 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 4020 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 4021 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 4022 } 4023 4024 if (TypeAliasTemplateDecl *TAT = 4025 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 4026 // C++0x [dcl.type.elab]p2: 4027 // If the identifier resolves to a typedef-name or the simple-template-id 4028 // resolves to an alias template specialization, the 4029 // elaborated-type-specifier is ill-formed. 4030 Diag(TemplateLoc, diag::err_tag_reference_non_tag) 4031 << TAT << NTK_TypeAliasTemplate << TagKind; 4032 Diag(TAT->getLocation(), diag::note_declared_at); 4033 } 4034 4035 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 4036 if (Result.isNull()) 4037 return TypeResult(true); 4038 4039 // Check the tag kind 4040 if (const RecordType *RT = Result->getAs<RecordType>()) { 4041 RecordDecl *D = RT->getDecl(); 4042 4043 IdentifierInfo *Id = D->getIdentifier(); 4044 assert(Id && "templated class must have an identifier"); 4045 4046 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 4047 TagLoc, Id)) { 4048 Diag(TagLoc, diag::err_use_with_wrong_tag) 4049 << Result 4050 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 4051 Diag(D->getLocation(), diag::note_previous_use); 4052 } 4053 } 4054 4055 // Provide source-location information for the template specialization. 4056 TypeLocBuilder TLB; 4057 TemplateSpecializationTypeLoc SpecTL 4058 = TLB.push<TemplateSpecializationTypeLoc>(Result); 4059 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 4060 SpecTL.setTemplateNameLoc(TemplateLoc); 4061 SpecTL.setLAngleLoc(LAngleLoc); 4062 SpecTL.setRAngleLoc(RAngleLoc); 4063 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 4064 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 4065 4066 // Construct an elaborated type containing the nested-name-specifier (if any) 4067 // and tag keyword. 4068 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 4069 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 4070 ElabTL.setElaboratedKeywordLoc(TagLoc); 4071 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4072 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 4073 } 4074 4075 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, 4076 NamedDecl *PrevDecl, 4077 SourceLocation Loc, 4078 bool IsPartialSpecialization); 4079 4080 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); 4081 4082 static bool isTemplateArgumentTemplateParameter( 4083 const TemplateArgument &Arg, unsigned Depth, unsigned Index) { 4084 switch (Arg.getKind()) { 4085 case TemplateArgument::Null: 4086 case TemplateArgument::NullPtr: 4087 case TemplateArgument::Integral: 4088 case TemplateArgument::Declaration: 4089 case TemplateArgument::Pack: 4090 case TemplateArgument::TemplateExpansion: 4091 return false; 4092 4093 case TemplateArgument::Type: { 4094 QualType Type = Arg.getAsType(); 4095 const TemplateTypeParmType *TPT = 4096 Arg.getAsType()->getAs<TemplateTypeParmType>(); 4097 return TPT && !Type.hasQualifiers() && 4098 TPT->getDepth() == Depth && TPT->getIndex() == Index; 4099 } 4100 4101 case TemplateArgument::Expression: { 4102 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr()); 4103 if (!DRE || !DRE->getDecl()) 4104 return false; 4105 const NonTypeTemplateParmDecl *NTTP = 4106 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 4107 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; 4108 } 4109 4110 case TemplateArgument::Template: 4111 const TemplateTemplateParmDecl *TTP = 4112 dyn_cast_or_null<TemplateTemplateParmDecl>( 4113 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); 4114 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; 4115 } 4116 llvm_unreachable("unexpected kind of template argument"); 4117 } 4118 4119 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, 4120 ArrayRef<TemplateArgument> Args) { 4121 if (Params->size() != Args.size()) 4122 return false; 4123 4124 unsigned Depth = Params->getDepth(); 4125 4126 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 4127 TemplateArgument Arg = Args[I]; 4128 4129 // If the parameter is a pack expansion, the argument must be a pack 4130 // whose only element is a pack expansion. 4131 if (Params->getParam(I)->isParameterPack()) { 4132 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || 4133 !Arg.pack_begin()->isPackExpansion()) 4134 return false; 4135 Arg = Arg.pack_begin()->getPackExpansionPattern(); 4136 } 4137 4138 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I)) 4139 return false; 4140 } 4141 4142 return true; 4143 } 4144 4145 template<typename PartialSpecDecl> 4146 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { 4147 if (Partial->getDeclContext()->isDependentContext()) 4148 return; 4149 4150 // FIXME: Get the TDK from deduction in order to provide better diagnostics 4151 // for non-substitution-failure issues? 4152 TemplateDeductionInfo Info(Partial->getLocation()); 4153 if (S.isMoreSpecializedThanPrimary(Partial, Info)) 4154 return; 4155 4156 auto *Template = Partial->getSpecializedTemplate(); 4157 S.Diag(Partial->getLocation(), 4158 diag::ext_partial_spec_not_more_specialized_than_primary) 4159 << isa<VarTemplateDecl>(Template); 4160 4161 if (Info.hasSFINAEDiagnostic()) { 4162 PartialDiagnosticAt Diag = {SourceLocation(), 4163 PartialDiagnostic::NullDiagnostic()}; 4164 Info.takeSFINAEDiagnostic(Diag); 4165 SmallString<128> SFINAEArgString; 4166 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString); 4167 S.Diag(Diag.first, 4168 diag::note_partial_spec_not_more_specialized_than_primary) 4169 << SFINAEArgString; 4170 } 4171 4172 S.Diag(Template->getLocation(), diag::note_template_decl_here); 4173 SmallVector<const Expr *, 3> PartialAC, TemplateAC; 4174 Template->getAssociatedConstraints(TemplateAC); 4175 Partial->getAssociatedConstraints(PartialAC); 4176 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template, 4177 TemplateAC); 4178 } 4179 4180 static void 4181 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, 4182 const llvm::SmallBitVector &DeducibleParams) { 4183 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4184 if (!DeducibleParams[I]) { 4185 NamedDecl *Param = TemplateParams->getParam(I); 4186 if (Param->getDeclName()) 4187 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4188 << Param->getDeclName(); 4189 else 4190 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4191 << "(anonymous)"; 4192 } 4193 } 4194 } 4195 4196 4197 template<typename PartialSpecDecl> 4198 static void checkTemplatePartialSpecialization(Sema &S, 4199 PartialSpecDecl *Partial) { 4200 // C++1z [temp.class.spec]p8: (DR1495) 4201 // - The specialization shall be more specialized than the primary 4202 // template (14.5.5.2). 4203 checkMoreSpecializedThanPrimary(S, Partial); 4204 4205 // C++ [temp.class.spec]p8: (DR1315) 4206 // - Each template-parameter shall appear at least once in the 4207 // template-id outside a non-deduced context. 4208 // C++1z [temp.class.spec.match]p3 (P0127R2) 4209 // If the template arguments of a partial specialization cannot be 4210 // deduced because of the structure of its template-parameter-list 4211 // and the template-id, the program is ill-formed. 4212 auto *TemplateParams = Partial->getTemplateParameters(); 4213 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4214 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4215 TemplateParams->getDepth(), DeducibleParams); 4216 4217 if (!DeducibleParams.all()) { 4218 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4219 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) 4220 << isa<VarTemplatePartialSpecializationDecl>(Partial) 4221 << (NumNonDeducible > 1) 4222 << SourceRange(Partial->getLocation(), 4223 Partial->getTemplateArgsAsWritten()->RAngleLoc); 4224 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); 4225 } 4226 } 4227 4228 void Sema::CheckTemplatePartialSpecialization( 4229 ClassTemplatePartialSpecializationDecl *Partial) { 4230 checkTemplatePartialSpecialization(*this, Partial); 4231 } 4232 4233 void Sema::CheckTemplatePartialSpecialization( 4234 VarTemplatePartialSpecializationDecl *Partial) { 4235 checkTemplatePartialSpecialization(*this, Partial); 4236 } 4237 4238 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { 4239 // C++1z [temp.param]p11: 4240 // A template parameter of a deduction guide template that does not have a 4241 // default-argument shall be deducible from the parameter-type-list of the 4242 // deduction guide template. 4243 auto *TemplateParams = TD->getTemplateParameters(); 4244 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4245 MarkDeducedTemplateParameters(TD, DeducibleParams); 4246 for (unsigned I = 0; I != TemplateParams->size(); ++I) { 4247 // A parameter pack is deducible (to an empty pack). 4248 auto *Param = TemplateParams->getParam(I); 4249 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param)) 4250 DeducibleParams[I] = true; 4251 } 4252 4253 if (!DeducibleParams.all()) { 4254 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4255 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible) 4256 << (NumNonDeducible > 1); 4257 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams); 4258 } 4259 } 4260 4261 DeclResult Sema::ActOnVarTemplateSpecialization( 4262 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, 4263 TemplateParameterList *TemplateParams, StorageClass SC, 4264 bool IsPartialSpecialization) { 4265 // D must be variable template id. 4266 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && 4267 "Variable template specialization is declared with a template it."); 4268 4269 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4270 TemplateArgumentListInfo TemplateArgs = 4271 makeTemplateArgumentListInfo(*this, *TemplateId); 4272 SourceLocation TemplateNameLoc = D.getIdentifierLoc(); 4273 SourceLocation LAngleLoc = TemplateId->LAngleLoc; 4274 SourceLocation RAngleLoc = TemplateId->RAngleLoc; 4275 4276 TemplateName Name = TemplateId->Template.get(); 4277 4278 // The template-id must name a variable template. 4279 VarTemplateDecl *VarTemplate = 4280 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl()); 4281 if (!VarTemplate) { 4282 NamedDecl *FnTemplate; 4283 if (auto *OTS = Name.getAsOverloadedTemplate()) 4284 FnTemplate = *OTS->begin(); 4285 else 4286 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); 4287 if (FnTemplate) 4288 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) 4289 << FnTemplate->getDeclName(); 4290 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) 4291 << IsPartialSpecialization; 4292 } 4293 4294 // Check for unexpanded parameter packs in any of the template arguments. 4295 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4296 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4297 UPPC_PartialSpecialization)) 4298 return true; 4299 4300 // Check that the template argument list is well-formed for this 4301 // template. 4302 SmallVector<TemplateArgument, 4> Converted; 4303 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, 4304 false, Converted, 4305 /*UpdateArgsWithConversion=*/true)) 4306 return true; 4307 4308 // Find the variable template (partial) specialization declaration that 4309 // corresponds to these arguments. 4310 if (IsPartialSpecialization) { 4311 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate, 4312 TemplateArgs.size(), Converted)) 4313 return true; 4314 4315 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we 4316 // also do them during instantiation. 4317 if (!Name.isDependent() && 4318 !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs, 4319 Converted)) { 4320 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4321 << VarTemplate->getDeclName(); 4322 IsPartialSpecialization = false; 4323 } 4324 4325 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), 4326 Converted) && 4327 (!Context.getLangOpts().CPlusPlus20 || 4328 !TemplateParams->hasAssociatedConstraints())) { 4329 // C++ [temp.class.spec]p9b3: 4330 // 4331 // -- The argument list of the specialization shall not be identical 4332 // to the implicit argument list of the primary template. 4333 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4334 << /*variable template*/ 1 4335 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) 4336 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4337 // FIXME: Recover from this by treating the declaration as a redeclaration 4338 // of the primary template. 4339 return true; 4340 } 4341 } 4342 4343 void *InsertPos = nullptr; 4344 VarTemplateSpecializationDecl *PrevDecl = nullptr; 4345 4346 if (IsPartialSpecialization) 4347 PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams, 4348 InsertPos); 4349 else 4350 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos); 4351 4352 VarTemplateSpecializationDecl *Specialization = nullptr; 4353 4354 // Check whether we can declare a variable template specialization in 4355 // the current scope. 4356 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, 4357 TemplateNameLoc, 4358 IsPartialSpecialization)) 4359 return true; 4360 4361 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4362 // Since the only prior variable template specialization with these 4363 // arguments was referenced but not declared, reuse that 4364 // declaration node as our own, updating its source location and 4365 // the list of outer template parameters to reflect our new declaration. 4366 Specialization = PrevDecl; 4367 Specialization->setLocation(TemplateNameLoc); 4368 PrevDecl = nullptr; 4369 } else if (IsPartialSpecialization) { 4370 // Create a new class template partial specialization declaration node. 4371 VarTemplatePartialSpecializationDecl *PrevPartial = 4372 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); 4373 VarTemplatePartialSpecializationDecl *Partial = 4374 VarTemplatePartialSpecializationDecl::Create( 4375 Context, VarTemplate->getDeclContext(), TemplateKWLoc, 4376 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, 4377 Converted, TemplateArgs); 4378 4379 if (!PrevPartial) 4380 VarTemplate->AddPartialSpecialization(Partial, InsertPos); 4381 Specialization = Partial; 4382 4383 // If we are providing an explicit specialization of a member variable 4384 // template specialization, make a note of that. 4385 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4386 PrevPartial->setMemberSpecialization(); 4387 4388 CheckTemplatePartialSpecialization(Partial); 4389 } else { 4390 // Create a new class template specialization declaration node for 4391 // this explicit specialization or friend declaration. 4392 Specialization = VarTemplateSpecializationDecl::Create( 4393 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, 4394 VarTemplate, DI->getType(), DI, SC, Converted); 4395 Specialization->setTemplateArgsInfo(TemplateArgs); 4396 4397 if (!PrevDecl) 4398 VarTemplate->AddSpecialization(Specialization, InsertPos); 4399 } 4400 4401 // C++ [temp.expl.spec]p6: 4402 // If a template, a member template or the member of a class template is 4403 // explicitly specialized then that specialization shall be declared 4404 // before the first use of that specialization that would cause an implicit 4405 // instantiation to take place, in every translation unit in which such a 4406 // use occurs; no diagnostic is required. 4407 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4408 bool Okay = false; 4409 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 4410 // Is there any previous explicit specialization declaration? 4411 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4412 Okay = true; 4413 break; 4414 } 4415 } 4416 4417 if (!Okay) { 4418 SourceRange Range(TemplateNameLoc, RAngleLoc); 4419 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4420 << Name << Range; 4421 4422 Diag(PrevDecl->getPointOfInstantiation(), 4423 diag::note_instantiation_required_here) 4424 << (PrevDecl->getTemplateSpecializationKind() != 4425 TSK_ImplicitInstantiation); 4426 return true; 4427 } 4428 } 4429 4430 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 4431 Specialization->setLexicalDeclContext(CurContext); 4432 4433 // Add the specialization into its lexical context, so that it can 4434 // be seen when iterating through the list of declarations in that 4435 // context. However, specializations are not found by name lookup. 4436 CurContext->addDecl(Specialization); 4437 4438 // Note that this is an explicit specialization. 4439 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4440 4441 if (PrevDecl) { 4442 // Check that this isn't a redefinition of this specialization, 4443 // merging with previous declarations. 4444 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName, 4445 forRedeclarationInCurContext()); 4446 PrevSpec.addDecl(PrevDecl); 4447 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec)); 4448 } else if (Specialization->isStaticDataMember() && 4449 Specialization->isOutOfLine()) { 4450 Specialization->setAccess(VarTemplate->getAccess()); 4451 } 4452 4453 return Specialization; 4454 } 4455 4456 namespace { 4457 /// A partial specialization whose template arguments have matched 4458 /// a given template-id. 4459 struct PartialSpecMatchResult { 4460 VarTemplatePartialSpecializationDecl *Partial; 4461 TemplateArgumentList *Args; 4462 }; 4463 } // end anonymous namespace 4464 4465 DeclResult 4466 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, 4467 SourceLocation TemplateNameLoc, 4468 const TemplateArgumentListInfo &TemplateArgs) { 4469 assert(Template && "A variable template id without template?"); 4470 4471 // Check that the template argument list is well-formed for this template. 4472 SmallVector<TemplateArgument, 4> Converted; 4473 if (CheckTemplateArgumentList( 4474 Template, TemplateNameLoc, 4475 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, 4476 Converted, /*UpdateArgsWithConversion=*/true)) 4477 return true; 4478 4479 // Produce a placeholder value if the specialization is dependent. 4480 if (Template->getDeclContext()->isDependentContext() || 4481 TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs, 4482 Converted)) 4483 return DeclResult(); 4484 4485 // Find the variable template specialization declaration that 4486 // corresponds to these arguments. 4487 void *InsertPos = nullptr; 4488 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization( 4489 Converted, InsertPos)) { 4490 checkSpecializationVisibility(TemplateNameLoc, Spec); 4491 // If we already have a variable template specialization, return it. 4492 return Spec; 4493 } 4494 4495 // This is the first time we have referenced this variable template 4496 // specialization. Create the canonical declaration and add it to 4497 // the set of specializations, based on the closest partial specialization 4498 // that it represents. That is, 4499 VarDecl *InstantiationPattern = Template->getTemplatedDecl(); 4500 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, 4501 Converted); 4502 TemplateArgumentList *InstantiationArgs = &TemplateArgList; 4503 bool AmbiguousPartialSpec = false; 4504 typedef PartialSpecMatchResult MatchResult; 4505 SmallVector<MatchResult, 4> Matched; 4506 SourceLocation PointOfInstantiation = TemplateNameLoc; 4507 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, 4508 /*ForTakingAddress=*/false); 4509 4510 // 1. Attempt to find the closest partial specialization that this 4511 // specializes, if any. 4512 // TODO: Unify with InstantiateClassTemplateSpecialization()? 4513 // Perhaps better after unification of DeduceTemplateArguments() and 4514 // getMoreSpecializedPartialSpecialization(). 4515 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 4516 Template->getPartialSpecializations(PartialSpecs); 4517 4518 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { 4519 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; 4520 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 4521 4522 if (TemplateDeductionResult Result = 4523 DeduceTemplateArguments(Partial, TemplateArgList, Info)) { 4524 // Store the failed-deduction information for use in diagnostics, later. 4525 // TODO: Actually use the failed-deduction info? 4526 FailedCandidates.addCandidate().set( 4527 DeclAccessPair::make(Template, AS_public), Partial, 4528 MakeDeductionFailureInfo(Context, Result, Info)); 4529 (void)Result; 4530 } else { 4531 Matched.push_back(PartialSpecMatchResult()); 4532 Matched.back().Partial = Partial; 4533 Matched.back().Args = Info.take(); 4534 } 4535 } 4536 4537 if (Matched.size() >= 1) { 4538 SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); 4539 if (Matched.size() == 1) { 4540 // -- If exactly one matching specialization is found, the 4541 // instantiation is generated from that specialization. 4542 // We don't need to do anything for this. 4543 } else { 4544 // -- If more than one matching specialization is found, the 4545 // partial order rules (14.5.4.2) are used to determine 4546 // whether one of the specializations is more specialized 4547 // than the others. If none of the specializations is more 4548 // specialized than all of the other matching 4549 // specializations, then the use of the variable template is 4550 // ambiguous and the program is ill-formed. 4551 for (SmallVector<MatchResult, 4>::iterator P = Best + 1, 4552 PEnd = Matched.end(); 4553 P != PEnd; ++P) { 4554 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, 4555 PointOfInstantiation) == 4556 P->Partial) 4557 Best = P; 4558 } 4559 4560 // Determine if the best partial specialization is more specialized than 4561 // the others. 4562 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 4563 PEnd = Matched.end(); 4564 P != PEnd; ++P) { 4565 if (P != Best && getMoreSpecializedPartialSpecialization( 4566 P->Partial, Best->Partial, 4567 PointOfInstantiation) != Best->Partial) { 4568 AmbiguousPartialSpec = true; 4569 break; 4570 } 4571 } 4572 } 4573 4574 // Instantiate using the best variable template partial specialization. 4575 InstantiationPattern = Best->Partial; 4576 InstantiationArgs = Best->Args; 4577 } else { 4578 // -- If no match is found, the instantiation is generated 4579 // from the primary template. 4580 // InstantiationPattern = Template->getTemplatedDecl(); 4581 } 4582 4583 // 2. Create the canonical declaration. 4584 // Note that we do not instantiate a definition until we see an odr-use 4585 // in DoMarkVarDeclReferenced(). 4586 // FIXME: LateAttrs et al.? 4587 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( 4588 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs, 4589 Converted, TemplateNameLoc /*, LateAttrs, StartingScope*/); 4590 if (!Decl) 4591 return true; 4592 4593 if (AmbiguousPartialSpec) { 4594 // Partial ordering did not produce a clear winner. Complain. 4595 Decl->setInvalidDecl(); 4596 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) 4597 << Decl; 4598 4599 // Print the matching partial specializations. 4600 for (MatchResult P : Matched) 4601 Diag(P.Partial->getLocation(), diag::note_partial_spec_match) 4602 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(), 4603 *P.Args); 4604 return true; 4605 } 4606 4607 if (VarTemplatePartialSpecializationDecl *D = 4608 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) 4609 Decl->setInstantiationOf(D, InstantiationArgs); 4610 4611 checkSpecializationVisibility(TemplateNameLoc, Decl); 4612 4613 assert(Decl && "No variable template specialization?"); 4614 return Decl; 4615 } 4616 4617 ExprResult 4618 Sema::CheckVarTemplateId(const CXXScopeSpec &SS, 4619 const DeclarationNameInfo &NameInfo, 4620 VarTemplateDecl *Template, SourceLocation TemplateLoc, 4621 const TemplateArgumentListInfo *TemplateArgs) { 4622 4623 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), 4624 *TemplateArgs); 4625 if (Decl.isInvalid()) 4626 return ExprError(); 4627 4628 if (!Decl.get()) 4629 return ExprResult(); 4630 4631 VarDecl *Var = cast<VarDecl>(Decl.get()); 4632 if (!Var->getTemplateSpecializationKind()) 4633 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, 4634 NameInfo.getLoc()); 4635 4636 // Build an ordinary singleton decl ref. 4637 return BuildDeclarationNameExpr(SS, NameInfo, Var, 4638 /*FoundD=*/nullptr, TemplateArgs); 4639 } 4640 4641 void Sema::diagnoseMissingTemplateArguments(TemplateName Name, 4642 SourceLocation Loc) { 4643 Diag(Loc, diag::err_template_missing_args) 4644 << (int)getTemplateNameKindForDiagnostics(Name) << Name; 4645 if (TemplateDecl *TD = Name.getAsTemplateDecl()) { 4646 Diag(TD->getLocation(), diag::note_template_decl_here) 4647 << TD->getTemplateParameters()->getSourceRange(); 4648 } 4649 } 4650 4651 ExprResult 4652 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS, 4653 SourceLocation TemplateKWLoc, 4654 const DeclarationNameInfo &ConceptNameInfo, 4655 NamedDecl *FoundDecl, 4656 ConceptDecl *NamedConcept, 4657 const TemplateArgumentListInfo *TemplateArgs) { 4658 assert(NamedConcept && "A concept template id without a template?"); 4659 4660 llvm::SmallVector<TemplateArgument, 4> Converted; 4661 if (CheckTemplateArgumentList(NamedConcept, ConceptNameInfo.getLoc(), 4662 const_cast<TemplateArgumentListInfo&>(*TemplateArgs), 4663 /*PartialTemplateArgs=*/false, Converted, 4664 /*UpdateArgsWithConversion=*/false)) 4665 return ExprError(); 4666 4667 ConstraintSatisfaction Satisfaction; 4668 bool AreArgsDependent = 4669 TemplateSpecializationType::anyDependentTemplateArguments(*TemplateArgs, 4670 Converted); 4671 if (!AreArgsDependent && 4672 CheckConstraintSatisfaction( 4673 NamedConcept, {NamedConcept->getConstraintExpr()}, Converted, 4674 SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(), 4675 TemplateArgs->getRAngleLoc()), 4676 Satisfaction)) 4677 return ExprError(); 4678 4679 return ConceptSpecializationExpr::Create(Context, 4680 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{}, 4681 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept, 4682 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted, 4683 AreArgsDependent ? nullptr : &Satisfaction); 4684 } 4685 4686 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 4687 SourceLocation TemplateKWLoc, 4688 LookupResult &R, 4689 bool RequiresADL, 4690 const TemplateArgumentListInfo *TemplateArgs) { 4691 // FIXME: Can we do any checking at this point? I guess we could check the 4692 // template arguments that we have against the template name, if the template 4693 // name refers to a single template. That's not a terribly common case, 4694 // though. 4695 // foo<int> could identify a single function unambiguously 4696 // This approach does NOT work, since f<int>(1); 4697 // gets resolved prior to resorting to overload resolution 4698 // i.e., template<class T> void f(double); 4699 // vs template<class T, class U> void f(U); 4700 4701 // These should be filtered out by our callers. 4702 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 4703 4704 // Non-function templates require a template argument list. 4705 if (auto *TD = R.getAsSingle<TemplateDecl>()) { 4706 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) { 4707 diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc()); 4708 return ExprError(); 4709 } 4710 } 4711 4712 // In C++1y, check variable template ids. 4713 if (R.getAsSingle<VarTemplateDecl>()) { 4714 ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(), 4715 R.getAsSingle<VarTemplateDecl>(), 4716 TemplateKWLoc, TemplateArgs); 4717 if (Res.isInvalid() || Res.isUsable()) 4718 return Res; 4719 // Result is dependent. Carry on to build an UnresolvedLookupEpxr. 4720 } 4721 4722 if (R.getAsSingle<ConceptDecl>()) { 4723 return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(), 4724 R.getFoundDecl(), 4725 R.getAsSingle<ConceptDecl>(), TemplateArgs); 4726 } 4727 4728 // We don't want lookup warnings at this point. 4729 R.suppressDiagnostics(); 4730 4731 UnresolvedLookupExpr *ULE 4732 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 4733 SS.getWithLocInContext(Context), 4734 TemplateKWLoc, 4735 R.getLookupNameInfo(), 4736 RequiresADL, TemplateArgs, 4737 R.begin(), R.end()); 4738 4739 return ULE; 4740 } 4741 4742 // We actually only call this from template instantiation. 4743 ExprResult 4744 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 4745 SourceLocation TemplateKWLoc, 4746 const DeclarationNameInfo &NameInfo, 4747 const TemplateArgumentListInfo *TemplateArgs) { 4748 4749 assert(TemplateArgs || TemplateKWLoc.isValid()); 4750 DeclContext *DC; 4751 if (!(DC = computeDeclContext(SS, false)) || 4752 DC->isDependentContext() || 4753 RequireCompleteDeclContext(SS, DC)) 4754 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 4755 4756 bool MemberOfUnknownSpecialization; 4757 LookupResult R(*this, NameInfo, LookupOrdinaryName); 4758 if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(), 4759 /*Entering*/false, MemberOfUnknownSpecialization, 4760 TemplateKWLoc)) 4761 return ExprError(); 4762 4763 if (R.isAmbiguous()) 4764 return ExprError(); 4765 4766 if (R.empty()) { 4767 Diag(NameInfo.getLoc(), diag::err_no_member) 4768 << NameInfo.getName() << DC << SS.getRange(); 4769 return ExprError(); 4770 } 4771 4772 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 4773 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 4774 << SS.getScopeRep() 4775 << NameInfo.getName().getAsString() << SS.getRange(); 4776 Diag(Temp->getLocation(), diag::note_referenced_class_template); 4777 return ExprError(); 4778 } 4779 4780 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 4781 } 4782 4783 /// Form a template name from a name that is syntactically required to name a 4784 /// template, either due to use of the 'template' keyword or because a name in 4785 /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4). 4786 /// 4787 /// This action forms a template name given the name of the template and its 4788 /// optional scope specifier. This is used when the 'template' keyword is used 4789 /// or when the parsing context unambiguously treats a following '<' as 4790 /// introducing a template argument list. Note that this may produce a 4791 /// non-dependent template name if we can perform the lookup now and identify 4792 /// the named template. 4793 /// 4794 /// For example, given "x.MetaFun::template apply", the scope specifier 4795 /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location 4796 /// of the "template" keyword, and "apply" is the \p Name. 4797 TemplateNameKind Sema::ActOnTemplateName(Scope *S, 4798 CXXScopeSpec &SS, 4799 SourceLocation TemplateKWLoc, 4800 const UnqualifiedId &Name, 4801 ParsedType ObjectType, 4802 bool EnteringContext, 4803 TemplateTy &Result, 4804 bool AllowInjectedClassName) { 4805 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 4806 Diag(TemplateKWLoc, 4807 getLangOpts().CPlusPlus11 ? 4808 diag::warn_cxx98_compat_template_outside_of_template : 4809 diag::ext_template_outside_of_template) 4810 << FixItHint::CreateRemoval(TemplateKWLoc); 4811 4812 if (SS.isInvalid()) 4813 return TNK_Non_template; 4814 4815 // Figure out where isTemplateName is going to look. 4816 DeclContext *LookupCtx = nullptr; 4817 if (SS.isNotEmpty()) 4818 LookupCtx = computeDeclContext(SS, EnteringContext); 4819 else if (ObjectType) 4820 LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType)); 4821 4822 // C++0x [temp.names]p5: 4823 // If a name prefixed by the keyword template is not the name of 4824 // a template, the program is ill-formed. [Note: the keyword 4825 // template may not be applied to non-template members of class 4826 // templates. -end note ] [ Note: as is the case with the 4827 // typename prefix, the template prefix is allowed in cases 4828 // where it is not strictly necessary; i.e., when the 4829 // nested-name-specifier or the expression on the left of the -> 4830 // or . is not dependent on a template-parameter, or the use 4831 // does not appear in the scope of a template. -end note] 4832 // 4833 // Note: C++03 was more strict here, because it banned the use of 4834 // the "template" keyword prior to a template-name that was not a 4835 // dependent name. C++ DR468 relaxed this requirement (the 4836 // "template" keyword is now permitted). We follow the C++0x 4837 // rules, even in C++03 mode with a warning, retroactively applying the DR. 4838 bool MemberOfUnknownSpecialization; 4839 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 4840 ObjectType, EnteringContext, Result, 4841 MemberOfUnknownSpecialization); 4842 if (TNK != TNK_Non_template) { 4843 // We resolved this to a (non-dependent) template name. Return it. 4844 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 4845 if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD && 4846 Name.getKind() == UnqualifiedIdKind::IK_Identifier && 4847 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { 4848 // C++14 [class.qual]p2: 4849 // In a lookup in which function names are not ignored and the 4850 // nested-name-specifier nominates a class C, if the name specified 4851 // [...] is the injected-class-name of C, [...] the name is instead 4852 // considered to name the constructor 4853 // 4854 // We don't get here if naming the constructor would be valid, so we 4855 // just reject immediately and recover by treating the 4856 // injected-class-name as naming the template. 4857 Diag(Name.getBeginLoc(), 4858 diag::ext_out_of_line_qualified_id_type_names_constructor) 4859 << Name.Identifier 4860 << 0 /*injected-class-name used as template name*/ 4861 << TemplateKWLoc.isValid(); 4862 } 4863 return TNK; 4864 } 4865 4866 if (!MemberOfUnknownSpecialization) { 4867 // Didn't find a template name, and the lookup wasn't dependent. 4868 // Do the lookup again to determine if this is a "nothing found" case or 4869 // a "not a template" case. FIXME: Refactor isTemplateName so we don't 4870 // need to do this. 4871 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); 4872 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(), 4873 LookupOrdinaryName); 4874 bool MOUS; 4875 // Tell LookupTemplateName that we require a template so that it diagnoses 4876 // cases where it finds a non-template. 4877 RequiredTemplateKind RTK = TemplateKWLoc.isValid() 4878 ? RequiredTemplateKind(TemplateKWLoc) 4879 : TemplateNameIsRequired; 4880 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS, 4881 RTK, nullptr, /*AllowTypoCorrection=*/false) && 4882 !R.isAmbiguous()) { 4883 if (LookupCtx) 4884 Diag(Name.getBeginLoc(), diag::err_no_member) 4885 << DNI.getName() << LookupCtx << SS.getRange(); 4886 else 4887 Diag(Name.getBeginLoc(), diag::err_undeclared_use) 4888 << DNI.getName() << SS.getRange(); 4889 } 4890 return TNK_Non_template; 4891 } 4892 4893 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 4894 4895 switch (Name.getKind()) { 4896 case UnqualifiedIdKind::IK_Identifier: 4897 Result = TemplateTy::make( 4898 Context.getDependentTemplateName(Qualifier, Name.Identifier)); 4899 return TNK_Dependent_template_name; 4900 4901 case UnqualifiedIdKind::IK_OperatorFunctionId: 4902 Result = TemplateTy::make(Context.getDependentTemplateName( 4903 Qualifier, Name.OperatorFunctionId.Operator)); 4904 return TNK_Function_template; 4905 4906 case UnqualifiedIdKind::IK_LiteralOperatorId: 4907 // This is a kind of template name, but can never occur in a dependent 4908 // scope (literal operators can only be declared at namespace scope). 4909 break; 4910 4911 default: 4912 break; 4913 } 4914 4915 // This name cannot possibly name a dependent template. Diagnose this now 4916 // rather than building a dependent template name that can never be valid. 4917 Diag(Name.getBeginLoc(), 4918 diag::err_template_kw_refers_to_dependent_non_template) 4919 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange() 4920 << TemplateKWLoc.isValid() << TemplateKWLoc; 4921 return TNK_Non_template; 4922 } 4923 4924 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 4925 TemplateArgumentLoc &AL, 4926 SmallVectorImpl<TemplateArgument> &Converted) { 4927 const TemplateArgument &Arg = AL.getArgument(); 4928 QualType ArgType; 4929 TypeSourceInfo *TSI = nullptr; 4930 4931 // Check template type parameter. 4932 switch(Arg.getKind()) { 4933 case TemplateArgument::Type: 4934 // C++ [temp.arg.type]p1: 4935 // A template-argument for a template-parameter which is a 4936 // type shall be a type-id. 4937 ArgType = Arg.getAsType(); 4938 TSI = AL.getTypeSourceInfo(); 4939 break; 4940 case TemplateArgument::Template: 4941 case TemplateArgument::TemplateExpansion: { 4942 // We have a template type parameter but the template argument 4943 // is a template without any arguments. 4944 SourceRange SR = AL.getSourceRange(); 4945 TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); 4946 diagnoseMissingTemplateArguments(Name, SR.getEnd()); 4947 return true; 4948 } 4949 case TemplateArgument::Expression: { 4950 // We have a template type parameter but the template argument is an 4951 // expression; see if maybe it is missing the "typename" keyword. 4952 CXXScopeSpec SS; 4953 DeclarationNameInfo NameInfo; 4954 4955 if (DependentScopeDeclRefExpr *ArgExpr = 4956 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 4957 SS.Adopt(ArgExpr->getQualifierLoc()); 4958 NameInfo = ArgExpr->getNameInfo(); 4959 } else if (CXXDependentScopeMemberExpr *ArgExpr = 4960 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 4961 if (ArgExpr->isImplicitAccess()) { 4962 SS.Adopt(ArgExpr->getQualifierLoc()); 4963 NameInfo = ArgExpr->getMemberNameInfo(); 4964 } 4965 } 4966 4967 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { 4968 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 4969 LookupParsedName(Result, CurScope, &SS); 4970 4971 if (Result.getAsSingle<TypeDecl>() || 4972 Result.getResultKind() == 4973 LookupResult::NotFoundInCurrentInstantiation) { 4974 assert(SS.getScopeRep() && "dependent scope expr must has a scope!"); 4975 // Suggest that the user add 'typename' before the NNS. 4976 SourceLocation Loc = AL.getSourceRange().getBegin(); 4977 Diag(Loc, getLangOpts().MSVCCompat 4978 ? diag::ext_ms_template_type_arg_missing_typename 4979 : diag::err_template_arg_must_be_type_suggest) 4980 << FixItHint::CreateInsertion(Loc, "typename "); 4981 Diag(Param->getLocation(), diag::note_template_param_here); 4982 4983 // Recover by synthesizing a type using the location information that we 4984 // already have. 4985 ArgType = 4986 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II); 4987 TypeLocBuilder TLB; 4988 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType); 4989 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); 4990 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4991 TL.setNameLoc(NameInfo.getLoc()); 4992 TSI = TLB.getTypeSourceInfo(Context, ArgType); 4993 4994 // Overwrite our input TemplateArgumentLoc so that we can recover 4995 // properly. 4996 AL = TemplateArgumentLoc(TemplateArgument(ArgType), 4997 TemplateArgumentLocInfo(TSI)); 4998 4999 break; 5000 } 5001 } 5002 // fallthrough 5003 LLVM_FALLTHROUGH; 5004 } 5005 default: { 5006 // We have a template type parameter but the template argument 5007 // is not a type. 5008 SourceRange SR = AL.getSourceRange(); 5009 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 5010 Diag(Param->getLocation(), diag::note_template_param_here); 5011 5012 return true; 5013 } 5014 } 5015 5016 if (CheckTemplateArgument(Param, TSI)) 5017 return true; 5018 5019 // Add the converted template type argument. 5020 ArgType = Context.getCanonicalType(ArgType); 5021 5022 // Objective-C ARC: 5023 // If an explicitly-specified template argument type is a lifetime type 5024 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 5025 if (getLangOpts().ObjCAutoRefCount && 5026 ArgType->isObjCLifetimeType() && 5027 !ArgType.getObjCLifetime()) { 5028 Qualifiers Qs; 5029 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 5030 ArgType = Context.getQualifiedType(ArgType, Qs); 5031 } 5032 5033 Converted.push_back(TemplateArgument(ArgType)); 5034 return false; 5035 } 5036 5037 /// Substitute template arguments into the default template argument for 5038 /// the given template type parameter. 5039 /// 5040 /// \param SemaRef the semantic analysis object for which we are performing 5041 /// the substitution. 5042 /// 5043 /// \param Template the template that we are synthesizing template arguments 5044 /// for. 5045 /// 5046 /// \param TemplateLoc the location of the template name that started the 5047 /// template-id we are checking. 5048 /// 5049 /// \param RAngleLoc the location of the right angle bracket ('>') that 5050 /// terminates the template-id. 5051 /// 5052 /// \param Param the template template parameter whose default we are 5053 /// substituting into. 5054 /// 5055 /// \param Converted the list of template arguments provided for template 5056 /// parameters that precede \p Param in the template parameter list. 5057 /// \returns the substituted template argument, or NULL if an error occurred. 5058 static TypeSourceInfo * 5059 SubstDefaultTemplateArgument(Sema &SemaRef, 5060 TemplateDecl *Template, 5061 SourceLocation TemplateLoc, 5062 SourceLocation RAngleLoc, 5063 TemplateTypeParmDecl *Param, 5064 SmallVectorImpl<TemplateArgument> &Converted) { 5065 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 5066 5067 // If the argument type is dependent, instantiate it now based 5068 // on the previously-computed template arguments. 5069 if (ArgType->getType()->isInstantiationDependentType()) { 5070 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 5071 Param, Template, Converted, 5072 SourceRange(TemplateLoc, RAngleLoc)); 5073 if (Inst.isInvalid()) 5074 return nullptr; 5075 5076 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5077 5078 // Only substitute for the innermost template argument list. 5079 MultiLevelTemplateArgumentList TemplateArgLists; 5080 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 5081 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5082 TemplateArgLists.addOuterTemplateArguments(None); 5083 5084 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5085 ArgType = 5086 SemaRef.SubstType(ArgType, TemplateArgLists, 5087 Param->getDefaultArgumentLoc(), Param->getDeclName()); 5088 } 5089 5090 return ArgType; 5091 } 5092 5093 /// Substitute template arguments into the default template argument for 5094 /// the given non-type template parameter. 5095 /// 5096 /// \param SemaRef the semantic analysis object for which we are performing 5097 /// the substitution. 5098 /// 5099 /// \param Template the template that we are synthesizing template arguments 5100 /// for. 5101 /// 5102 /// \param TemplateLoc the location of the template name that started the 5103 /// template-id we are checking. 5104 /// 5105 /// \param RAngleLoc the location of the right angle bracket ('>') that 5106 /// terminates the template-id. 5107 /// 5108 /// \param Param the non-type template parameter whose default we are 5109 /// substituting into. 5110 /// 5111 /// \param Converted the list of template arguments provided for template 5112 /// parameters that precede \p Param in the template parameter list. 5113 /// 5114 /// \returns the substituted template argument, or NULL if an error occurred. 5115 static ExprResult 5116 SubstDefaultTemplateArgument(Sema &SemaRef, 5117 TemplateDecl *Template, 5118 SourceLocation TemplateLoc, 5119 SourceLocation RAngleLoc, 5120 NonTypeTemplateParmDecl *Param, 5121 SmallVectorImpl<TemplateArgument> &Converted) { 5122 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 5123 Param, Template, Converted, 5124 SourceRange(TemplateLoc, RAngleLoc)); 5125 if (Inst.isInvalid()) 5126 return ExprError(); 5127 5128 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5129 5130 // Only substitute for the innermost template argument list. 5131 MultiLevelTemplateArgumentList TemplateArgLists; 5132 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 5133 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5134 TemplateArgLists.addOuterTemplateArguments(None); 5135 5136 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5137 EnterExpressionEvaluationContext ConstantEvaluated( 5138 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 5139 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists); 5140 } 5141 5142 /// Substitute template arguments into the default template argument for 5143 /// the given template template parameter. 5144 /// 5145 /// \param SemaRef the semantic analysis object for which we are performing 5146 /// the substitution. 5147 /// 5148 /// \param Template the template that we are synthesizing template arguments 5149 /// for. 5150 /// 5151 /// \param TemplateLoc the location of the template name that started the 5152 /// template-id we are checking. 5153 /// 5154 /// \param RAngleLoc the location of the right angle bracket ('>') that 5155 /// terminates the template-id. 5156 /// 5157 /// \param Param the template template parameter whose default we are 5158 /// substituting into. 5159 /// 5160 /// \param Converted the list of template arguments provided for template 5161 /// parameters that precede \p Param in the template parameter list. 5162 /// 5163 /// \param QualifierLoc Will be set to the nested-name-specifier (with 5164 /// source-location information) that precedes the template name. 5165 /// 5166 /// \returns the substituted template argument, or NULL if an error occurred. 5167 static TemplateName 5168 SubstDefaultTemplateArgument(Sema &SemaRef, 5169 TemplateDecl *Template, 5170 SourceLocation TemplateLoc, 5171 SourceLocation RAngleLoc, 5172 TemplateTemplateParmDecl *Param, 5173 SmallVectorImpl<TemplateArgument> &Converted, 5174 NestedNameSpecifierLoc &QualifierLoc) { 5175 Sema::InstantiatingTemplate Inst( 5176 SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted, 5177 SourceRange(TemplateLoc, RAngleLoc)); 5178 if (Inst.isInvalid()) 5179 return TemplateName(); 5180 5181 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5182 5183 // Only substitute for the innermost template argument list. 5184 MultiLevelTemplateArgumentList TemplateArgLists; 5185 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 5186 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5187 TemplateArgLists.addOuterTemplateArguments(None); 5188 5189 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5190 // Substitute into the nested-name-specifier first, 5191 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 5192 if (QualifierLoc) { 5193 QualifierLoc = 5194 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); 5195 if (!QualifierLoc) 5196 return TemplateName(); 5197 } 5198 5199 return SemaRef.SubstTemplateName( 5200 QualifierLoc, 5201 Param->getDefaultArgument().getArgument().getAsTemplate(), 5202 Param->getDefaultArgument().getTemplateNameLoc(), 5203 TemplateArgLists); 5204 } 5205 5206 /// If the given template parameter has a default template 5207 /// argument, substitute into that default template argument and 5208 /// return the corresponding template argument. 5209 TemplateArgumentLoc 5210 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 5211 SourceLocation TemplateLoc, 5212 SourceLocation RAngleLoc, 5213 Decl *Param, 5214 SmallVectorImpl<TemplateArgument> 5215 &Converted, 5216 bool &HasDefaultArg) { 5217 HasDefaultArg = false; 5218 5219 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 5220 if (!hasVisibleDefaultArgument(TypeParm)) 5221 return TemplateArgumentLoc(); 5222 5223 HasDefaultArg = true; 5224 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 5225 TemplateLoc, 5226 RAngleLoc, 5227 TypeParm, 5228 Converted); 5229 if (DI) 5230 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 5231 5232 return TemplateArgumentLoc(); 5233 } 5234 5235 if (NonTypeTemplateParmDecl *NonTypeParm 5236 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5237 if (!hasVisibleDefaultArgument(NonTypeParm)) 5238 return TemplateArgumentLoc(); 5239 5240 HasDefaultArg = true; 5241 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 5242 TemplateLoc, 5243 RAngleLoc, 5244 NonTypeParm, 5245 Converted); 5246 if (Arg.isInvalid()) 5247 return TemplateArgumentLoc(); 5248 5249 Expr *ArgE = Arg.getAs<Expr>(); 5250 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 5251 } 5252 5253 TemplateTemplateParmDecl *TempTempParm 5254 = cast<TemplateTemplateParmDecl>(Param); 5255 if (!hasVisibleDefaultArgument(TempTempParm)) 5256 return TemplateArgumentLoc(); 5257 5258 HasDefaultArg = true; 5259 NestedNameSpecifierLoc QualifierLoc; 5260 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 5261 TemplateLoc, 5262 RAngleLoc, 5263 TempTempParm, 5264 Converted, 5265 QualifierLoc); 5266 if (TName.isNull()) 5267 return TemplateArgumentLoc(); 5268 5269 return TemplateArgumentLoc( 5270 Context, TemplateArgument(TName), 5271 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 5272 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 5273 } 5274 5275 /// Convert a template-argument that we parsed as a type into a template, if 5276 /// possible. C++ permits injected-class-names to perform dual service as 5277 /// template template arguments and as template type arguments. 5278 static TemplateArgumentLoc 5279 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) { 5280 // Extract and step over any surrounding nested-name-specifier. 5281 NestedNameSpecifierLoc QualLoc; 5282 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { 5283 if (ETLoc.getTypePtr()->getKeyword() != ETK_None) 5284 return TemplateArgumentLoc(); 5285 5286 QualLoc = ETLoc.getQualifierLoc(); 5287 TLoc = ETLoc.getNamedTypeLoc(); 5288 } 5289 // If this type was written as an injected-class-name, it can be used as a 5290 // template template argument. 5291 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) 5292 return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(), 5293 QualLoc, InjLoc.getNameLoc()); 5294 5295 // If this type was written as an injected-class-name, it may have been 5296 // converted to a RecordType during instantiation. If the RecordType is 5297 // *not* wrapped in a TemplateSpecializationType and denotes a class 5298 // template specialization, it must have come from an injected-class-name. 5299 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) 5300 if (auto *CTSD = 5301 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl())) 5302 return TemplateArgumentLoc(Context, 5303 TemplateName(CTSD->getSpecializedTemplate()), 5304 QualLoc, RecLoc.getNameLoc()); 5305 5306 return TemplateArgumentLoc(); 5307 } 5308 5309 /// Check that the given template argument corresponds to the given 5310 /// template parameter. 5311 /// 5312 /// \param Param The template parameter against which the argument will be 5313 /// checked. 5314 /// 5315 /// \param Arg The template argument, which may be updated due to conversions. 5316 /// 5317 /// \param Template The template in which the template argument resides. 5318 /// 5319 /// \param TemplateLoc The location of the template name for the template 5320 /// whose argument list we're matching. 5321 /// 5322 /// \param RAngleLoc The location of the right angle bracket ('>') that closes 5323 /// the template argument list. 5324 /// 5325 /// \param ArgumentPackIndex The index into the argument pack where this 5326 /// argument will be placed. Only valid if the parameter is a parameter pack. 5327 /// 5328 /// \param Converted The checked, converted argument will be added to the 5329 /// end of this small vector. 5330 /// 5331 /// \param CTAK Describes how we arrived at this particular template argument: 5332 /// explicitly written, deduced, etc. 5333 /// 5334 /// \returns true on error, false otherwise. 5335 bool Sema::CheckTemplateArgument(NamedDecl *Param, 5336 TemplateArgumentLoc &Arg, 5337 NamedDecl *Template, 5338 SourceLocation TemplateLoc, 5339 SourceLocation RAngleLoc, 5340 unsigned ArgumentPackIndex, 5341 SmallVectorImpl<TemplateArgument> &Converted, 5342 CheckTemplateArgumentKind CTAK) { 5343 // Check template type parameters. 5344 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 5345 return CheckTemplateTypeArgument(TTP, Arg, Converted); 5346 5347 // Check non-type template parameters. 5348 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5349 // Do substitution on the type of the non-type template parameter 5350 // with the template arguments we've seen thus far. But if the 5351 // template has a dependent context then we cannot substitute yet. 5352 QualType NTTPType = NTTP->getType(); 5353 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 5354 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 5355 5356 if (NTTPType->isInstantiationDependentType() && 5357 !isa<TemplateTemplateParmDecl>(Template) && 5358 !Template->getDeclContext()->isDependentContext()) { 5359 // Do substitution on the type of the non-type template parameter. 5360 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 5361 NTTP, Converted, 5362 SourceRange(TemplateLoc, RAngleLoc)); 5363 if (Inst.isInvalid()) 5364 return true; 5365 5366 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 5367 Converted); 5368 5369 // If the parameter is a pack expansion, expand this slice of the pack. 5370 if (auto *PET = NTTPType->getAs<PackExpansionType>()) { 5371 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, 5372 ArgumentPackIndex); 5373 NTTPType = SubstType(PET->getPattern(), 5374 MultiLevelTemplateArgumentList(TemplateArgs), 5375 NTTP->getLocation(), 5376 NTTP->getDeclName()); 5377 } else { 5378 NTTPType = SubstType(NTTPType, 5379 MultiLevelTemplateArgumentList(TemplateArgs), 5380 NTTP->getLocation(), 5381 NTTP->getDeclName()); 5382 } 5383 5384 // If that worked, check the non-type template parameter type 5385 // for validity. 5386 if (!NTTPType.isNull()) 5387 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 5388 NTTP->getLocation()); 5389 if (NTTPType.isNull()) 5390 return true; 5391 } 5392 5393 switch (Arg.getArgument().getKind()) { 5394 case TemplateArgument::Null: 5395 llvm_unreachable("Should never see a NULL template argument here"); 5396 5397 case TemplateArgument::Expression: { 5398 TemplateArgument Result; 5399 unsigned CurSFINAEErrors = NumSFINAEErrors; 5400 ExprResult Res = 5401 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 5402 Result, CTAK); 5403 if (Res.isInvalid()) 5404 return true; 5405 // If the current template argument causes an error, give up now. 5406 if (CurSFINAEErrors < NumSFINAEErrors) 5407 return true; 5408 5409 // If the resulting expression is new, then use it in place of the 5410 // old expression in the template argument. 5411 if (Res.get() != Arg.getArgument().getAsExpr()) { 5412 TemplateArgument TA(Res.get()); 5413 Arg = TemplateArgumentLoc(TA, Res.get()); 5414 } 5415 5416 Converted.push_back(Result); 5417 break; 5418 } 5419 5420 case TemplateArgument::Declaration: 5421 case TemplateArgument::Integral: 5422 case TemplateArgument::NullPtr: 5423 // We've already checked this template argument, so just copy 5424 // it to the list of converted arguments. 5425 Converted.push_back(Arg.getArgument()); 5426 break; 5427 5428 case TemplateArgument::Template: 5429 case TemplateArgument::TemplateExpansion: 5430 // We were given a template template argument. It may not be ill-formed; 5431 // see below. 5432 if (DependentTemplateName *DTN 5433 = Arg.getArgument().getAsTemplateOrTemplatePattern() 5434 .getAsDependentTemplateName()) { 5435 // We have a template argument such as \c T::template X, which we 5436 // parsed as a template template argument. However, since we now 5437 // know that we need a non-type template argument, convert this 5438 // template name into an expression. 5439 5440 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 5441 Arg.getTemplateNameLoc()); 5442 5443 CXXScopeSpec SS; 5444 SS.Adopt(Arg.getTemplateQualifierLoc()); 5445 // FIXME: the template-template arg was a DependentTemplateName, 5446 // so it was provided with a template keyword. However, its source 5447 // location is not stored in the template argument structure. 5448 SourceLocation TemplateKWLoc; 5449 ExprResult E = DependentScopeDeclRefExpr::Create( 5450 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 5451 nullptr); 5452 5453 // If we parsed the template argument as a pack expansion, create a 5454 // pack expansion expression. 5455 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 5456 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc()); 5457 if (E.isInvalid()) 5458 return true; 5459 } 5460 5461 TemplateArgument Result; 5462 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result); 5463 if (E.isInvalid()) 5464 return true; 5465 5466 Converted.push_back(Result); 5467 break; 5468 } 5469 5470 // We have a template argument that actually does refer to a class 5471 // template, alias template, or template template parameter, and 5472 // therefore cannot be a non-type template argument. 5473 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 5474 << Arg.getSourceRange(); 5475 5476 Diag(Param->getLocation(), diag::note_template_param_here); 5477 return true; 5478 5479 case TemplateArgument::Type: { 5480 // We have a non-type template parameter but the template 5481 // argument is a type. 5482 5483 // C++ [temp.arg]p2: 5484 // In a template-argument, an ambiguity between a type-id and 5485 // an expression is resolved to a type-id, regardless of the 5486 // form of the corresponding template-parameter. 5487 // 5488 // We warn specifically about this case, since it can be rather 5489 // confusing for users. 5490 QualType T = Arg.getArgument().getAsType(); 5491 SourceRange SR = Arg.getSourceRange(); 5492 if (T->isFunctionType()) 5493 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 5494 else 5495 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 5496 Diag(Param->getLocation(), diag::note_template_param_here); 5497 return true; 5498 } 5499 5500 case TemplateArgument::Pack: 5501 llvm_unreachable("Caller must expand template argument packs"); 5502 } 5503 5504 return false; 5505 } 5506 5507 5508 // Check template template parameters. 5509 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 5510 5511 TemplateParameterList *Params = TempParm->getTemplateParameters(); 5512 if (TempParm->isExpandedParameterPack()) 5513 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex); 5514 5515 // Substitute into the template parameter list of the template 5516 // template parameter, since previously-supplied template arguments 5517 // may appear within the template template parameter. 5518 // 5519 // FIXME: Skip this if the parameters aren't instantiation-dependent. 5520 { 5521 // Set up a template instantiation context. 5522 LocalInstantiationScope Scope(*this); 5523 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 5524 TempParm, Converted, 5525 SourceRange(TemplateLoc, RAngleLoc)); 5526 if (Inst.isInvalid()) 5527 return true; 5528 5529 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5530 Params = SubstTemplateParams(Params, CurContext, 5531 MultiLevelTemplateArgumentList(TemplateArgs)); 5532 if (!Params) 5533 return true; 5534 } 5535 5536 // C++1z [temp.local]p1: (DR1004) 5537 // When [the injected-class-name] is used [...] as a template-argument for 5538 // a template template-parameter [...] it refers to the class template 5539 // itself. 5540 if (Arg.getArgument().getKind() == TemplateArgument::Type) { 5541 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( 5542 Context, Arg.getTypeSourceInfo()->getTypeLoc()); 5543 if (!ConvertedArg.getArgument().isNull()) 5544 Arg = ConvertedArg; 5545 } 5546 5547 switch (Arg.getArgument().getKind()) { 5548 case TemplateArgument::Null: 5549 llvm_unreachable("Should never see a NULL template argument here"); 5550 5551 case TemplateArgument::Template: 5552 case TemplateArgument::TemplateExpansion: 5553 if (CheckTemplateTemplateArgument(TempParm, Params, Arg)) 5554 return true; 5555 5556 Converted.push_back(Arg.getArgument()); 5557 break; 5558 5559 case TemplateArgument::Expression: 5560 case TemplateArgument::Type: 5561 // We have a template template parameter but the template 5562 // argument does not refer to a template. 5563 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 5564 << getLangOpts().CPlusPlus11; 5565 return true; 5566 5567 case TemplateArgument::Declaration: 5568 llvm_unreachable("Declaration argument with template template parameter"); 5569 case TemplateArgument::Integral: 5570 llvm_unreachable("Integral argument with template template parameter"); 5571 case TemplateArgument::NullPtr: 5572 llvm_unreachable("Null pointer argument with template template parameter"); 5573 5574 case TemplateArgument::Pack: 5575 llvm_unreachable("Caller must expand template argument packs"); 5576 } 5577 5578 return false; 5579 } 5580 5581 /// Diagnose a missing template argument. 5582 template<typename TemplateParmDecl> 5583 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, 5584 TemplateDecl *TD, 5585 const TemplateParmDecl *D, 5586 TemplateArgumentListInfo &Args) { 5587 // Dig out the most recent declaration of the template parameter; there may be 5588 // declarations of the template that are more recent than TD. 5589 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) 5590 ->getTemplateParameters() 5591 ->getParam(D->getIndex())); 5592 5593 // If there's a default argument that's not visible, diagnose that we're 5594 // missing a module import. 5595 llvm::SmallVector<Module*, 8> Modules; 5596 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) { 5597 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD), 5598 D->getDefaultArgumentLoc(), Modules, 5599 Sema::MissingImportKind::DefaultArgument, 5600 /*Recover*/true); 5601 return true; 5602 } 5603 5604 // FIXME: If there's a more recent default argument that *is* visible, 5605 // diagnose that it was declared too late. 5606 5607 TemplateParameterList *Params = TD->getTemplateParameters(); 5608 5609 S.Diag(Loc, diag::err_template_arg_list_different_arity) 5610 << /*not enough args*/0 5611 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD)) 5612 << TD; 5613 S.Diag(TD->getLocation(), diag::note_template_decl_here) 5614 << Params->getSourceRange(); 5615 return true; 5616 } 5617 5618 /// Check that the given template argument list is well-formed 5619 /// for specializing the given template. 5620 bool Sema::CheckTemplateArgumentList( 5621 TemplateDecl *Template, SourceLocation TemplateLoc, 5622 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, 5623 SmallVectorImpl<TemplateArgument> &Converted, 5624 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) { 5625 5626 if (ConstraintsNotSatisfied) 5627 *ConstraintsNotSatisfied = false; 5628 5629 // Make a copy of the template arguments for processing. Only make the 5630 // changes at the end when successful in matching the arguments to the 5631 // template. 5632 TemplateArgumentListInfo NewArgs = TemplateArgs; 5633 5634 // Make sure we get the template parameter list from the most 5635 // recentdeclaration, since that is the only one that has is guaranteed to 5636 // have all the default template argument information. 5637 TemplateParameterList *Params = 5638 cast<TemplateDecl>(Template->getMostRecentDecl()) 5639 ->getTemplateParameters(); 5640 5641 SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); 5642 5643 // C++ [temp.arg]p1: 5644 // [...] The type and form of each template-argument specified in 5645 // a template-id shall match the type and form specified for the 5646 // corresponding parameter declared by the template in its 5647 // template-parameter-list. 5648 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 5649 SmallVector<TemplateArgument, 2> ArgumentPack; 5650 unsigned ArgIdx = 0, NumArgs = NewArgs.size(); 5651 LocalInstantiationScope InstScope(*this, true); 5652 for (TemplateParameterList::iterator Param = Params->begin(), 5653 ParamEnd = Params->end(); 5654 Param != ParamEnd; /* increment in loop */) { 5655 // If we have an expanded parameter pack, make sure we don't have too 5656 // many arguments. 5657 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 5658 if (*Expansions == ArgumentPack.size()) { 5659 // We're done with this parameter pack. Pack up its arguments and add 5660 // them to the list. 5661 Converted.push_back( 5662 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5663 ArgumentPack.clear(); 5664 5665 // This argument is assigned to the next parameter. 5666 ++Param; 5667 continue; 5668 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 5669 // Not enough arguments for this parameter pack. 5670 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5671 << /*not enough args*/0 5672 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5673 << Template; 5674 Diag(Template->getLocation(), diag::note_template_decl_here) 5675 << Params->getSourceRange(); 5676 return true; 5677 } 5678 } 5679 5680 if (ArgIdx < NumArgs) { 5681 // Check the template argument we were given. 5682 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, 5683 TemplateLoc, RAngleLoc, 5684 ArgumentPack.size(), Converted)) 5685 return true; 5686 5687 bool PackExpansionIntoNonPack = 5688 NewArgs[ArgIdx].getArgument().isPackExpansion() && 5689 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param)); 5690 if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) || 5691 isa<ConceptDecl>(Template))) { 5692 // Core issue 1430: we have a pack expansion as an argument to an 5693 // alias template, and it's not part of a parameter pack. This 5694 // can't be canonicalized, so reject it now. 5695 // As for concepts - we cannot normalize constraints where this 5696 // situation exists. 5697 Diag(NewArgs[ArgIdx].getLocation(), 5698 diag::err_template_expansion_into_fixed_list) 5699 << (isa<ConceptDecl>(Template) ? 1 : 0) 5700 << NewArgs[ArgIdx].getSourceRange(); 5701 Diag((*Param)->getLocation(), diag::note_template_param_here); 5702 return true; 5703 } 5704 5705 // We're now done with this argument. 5706 ++ArgIdx; 5707 5708 if ((*Param)->isTemplateParameterPack()) { 5709 // The template parameter was a template parameter pack, so take the 5710 // deduced argument and place it on the argument pack. Note that we 5711 // stay on the same template parameter so that we can deduce more 5712 // arguments. 5713 ArgumentPack.push_back(Converted.pop_back_val()); 5714 } else { 5715 // Move to the next template parameter. 5716 ++Param; 5717 } 5718 5719 // If we just saw a pack expansion into a non-pack, then directly convert 5720 // the remaining arguments, because we don't know what parameters they'll 5721 // match up with. 5722 if (PackExpansionIntoNonPack) { 5723 if (!ArgumentPack.empty()) { 5724 // If we were part way through filling in an expanded parameter pack, 5725 // fall back to just producing individual arguments. 5726 Converted.insert(Converted.end(), 5727 ArgumentPack.begin(), ArgumentPack.end()); 5728 ArgumentPack.clear(); 5729 } 5730 5731 while (ArgIdx < NumArgs) { 5732 Converted.push_back(NewArgs[ArgIdx].getArgument()); 5733 ++ArgIdx; 5734 } 5735 5736 return false; 5737 } 5738 5739 continue; 5740 } 5741 5742 // If we're checking a partial template argument list, we're done. 5743 if (PartialTemplateArgs) { 5744 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 5745 Converted.push_back( 5746 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5747 return false; 5748 } 5749 5750 // If we have a template parameter pack with no more corresponding 5751 // arguments, just break out now and we'll fill in the argument pack below. 5752 if ((*Param)->isTemplateParameterPack()) { 5753 assert(!getExpandedPackSize(*Param) && 5754 "Should have dealt with this already"); 5755 5756 // A non-expanded parameter pack before the end of the parameter list 5757 // only occurs for an ill-formed template parameter list, unless we've 5758 // got a partial argument list for a function template, so just bail out. 5759 if (Param + 1 != ParamEnd) 5760 return true; 5761 5762 Converted.push_back( 5763 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5764 ArgumentPack.clear(); 5765 5766 ++Param; 5767 continue; 5768 } 5769 5770 // Check whether we have a default argument. 5771 TemplateArgumentLoc Arg; 5772 5773 // Retrieve the default template argument from the template 5774 // parameter. For each kind of template parameter, we substitute the 5775 // template arguments provided thus far and any "outer" template arguments 5776 // (when the template parameter was part of a nested template) into 5777 // the default argument. 5778 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 5779 if (!hasVisibleDefaultArgument(TTP)) 5780 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP, 5781 NewArgs); 5782 5783 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 5784 Template, 5785 TemplateLoc, 5786 RAngleLoc, 5787 TTP, 5788 Converted); 5789 if (!ArgType) 5790 return true; 5791 5792 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 5793 ArgType); 5794 } else if (NonTypeTemplateParmDecl *NTTP 5795 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 5796 if (!hasVisibleDefaultArgument(NTTP)) 5797 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP, 5798 NewArgs); 5799 5800 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 5801 TemplateLoc, 5802 RAngleLoc, 5803 NTTP, 5804 Converted); 5805 if (E.isInvalid()) 5806 return true; 5807 5808 Expr *Ex = E.getAs<Expr>(); 5809 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 5810 } else { 5811 TemplateTemplateParmDecl *TempParm 5812 = cast<TemplateTemplateParmDecl>(*Param); 5813 5814 if (!hasVisibleDefaultArgument(TempParm)) 5815 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm, 5816 NewArgs); 5817 5818 NestedNameSpecifierLoc QualifierLoc; 5819 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 5820 TemplateLoc, 5821 RAngleLoc, 5822 TempParm, 5823 Converted, 5824 QualifierLoc); 5825 if (Name.isNull()) 5826 return true; 5827 5828 Arg = TemplateArgumentLoc( 5829 Context, TemplateArgument(Name), QualifierLoc, 5830 TempParm->getDefaultArgument().getTemplateNameLoc()); 5831 } 5832 5833 // Introduce an instantiation record that describes where we are using 5834 // the default template argument. We're not actually instantiating a 5835 // template here, we just create this object to put a note into the 5836 // context stack. 5837 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted, 5838 SourceRange(TemplateLoc, RAngleLoc)); 5839 if (Inst.isInvalid()) 5840 return true; 5841 5842 // Check the default template argument. 5843 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 5844 RAngleLoc, 0, Converted)) 5845 return true; 5846 5847 // Core issue 150 (assumed resolution): if this is a template template 5848 // parameter, keep track of the default template arguments from the 5849 // template definition. 5850 if (isTemplateTemplateParameter) 5851 NewArgs.addArgument(Arg); 5852 5853 // Move to the next template parameter and argument. 5854 ++Param; 5855 ++ArgIdx; 5856 } 5857 5858 // If we're performing a partial argument substitution, allow any trailing 5859 // pack expansions; they might be empty. This can happen even if 5860 // PartialTemplateArgs is false (the list of arguments is complete but 5861 // still dependent). 5862 if (ArgIdx < NumArgs && CurrentInstantiationScope && 5863 CurrentInstantiationScope->getPartiallySubstitutedPack()) { 5864 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion()) 5865 Converted.push_back(NewArgs[ArgIdx++].getArgument()); 5866 } 5867 5868 // If we have any leftover arguments, then there were too many arguments. 5869 // Complain and fail. 5870 if (ArgIdx < NumArgs) { 5871 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5872 << /*too many args*/1 5873 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5874 << Template 5875 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); 5876 Diag(Template->getLocation(), diag::note_template_decl_here) 5877 << Params->getSourceRange(); 5878 return true; 5879 } 5880 5881 // No problems found with the new argument list, propagate changes back 5882 // to caller. 5883 if (UpdateArgsWithConversions) 5884 TemplateArgs = std::move(NewArgs); 5885 5886 if (!PartialTemplateArgs && 5887 EnsureTemplateArgumentListConstraints( 5888 Template, Converted, SourceRange(TemplateLoc, 5889 TemplateArgs.getRAngleLoc()))) { 5890 if (ConstraintsNotSatisfied) 5891 *ConstraintsNotSatisfied = true; 5892 return true; 5893 } 5894 5895 return false; 5896 } 5897 5898 namespace { 5899 class UnnamedLocalNoLinkageFinder 5900 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 5901 { 5902 Sema &S; 5903 SourceRange SR; 5904 5905 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 5906 5907 public: 5908 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 5909 5910 bool Visit(QualType T) { 5911 return T.isNull() ? false : inherited::Visit(T.getTypePtr()); 5912 } 5913 5914 #define TYPE(Class, Parent) \ 5915 bool Visit##Class##Type(const Class##Type *); 5916 #define ABSTRACT_TYPE(Class, Parent) \ 5917 bool Visit##Class##Type(const Class##Type *) { return false; } 5918 #define NON_CANONICAL_TYPE(Class, Parent) \ 5919 bool Visit##Class##Type(const Class##Type *) { return false; } 5920 #include "clang/AST/TypeNodes.inc" 5921 5922 bool VisitTagDecl(const TagDecl *Tag); 5923 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 5924 }; 5925 } // end anonymous namespace 5926 5927 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 5928 return false; 5929 } 5930 5931 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 5932 return Visit(T->getElementType()); 5933 } 5934 5935 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 5936 return Visit(T->getPointeeType()); 5937 } 5938 5939 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 5940 const BlockPointerType* T) { 5941 return Visit(T->getPointeeType()); 5942 } 5943 5944 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 5945 const LValueReferenceType* T) { 5946 return Visit(T->getPointeeType()); 5947 } 5948 5949 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 5950 const RValueReferenceType* T) { 5951 return Visit(T->getPointeeType()); 5952 } 5953 5954 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 5955 const MemberPointerType* T) { 5956 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 5957 } 5958 5959 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 5960 const ConstantArrayType* T) { 5961 return Visit(T->getElementType()); 5962 } 5963 5964 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 5965 const IncompleteArrayType* T) { 5966 return Visit(T->getElementType()); 5967 } 5968 5969 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 5970 const VariableArrayType* T) { 5971 return Visit(T->getElementType()); 5972 } 5973 5974 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 5975 const DependentSizedArrayType* T) { 5976 return Visit(T->getElementType()); 5977 } 5978 5979 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 5980 const DependentSizedExtVectorType* T) { 5981 return Visit(T->getElementType()); 5982 } 5983 5984 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType( 5985 const DependentSizedMatrixType *T) { 5986 return Visit(T->getElementType()); 5987 } 5988 5989 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( 5990 const DependentAddressSpaceType *T) { 5991 return Visit(T->getPointeeType()); 5992 } 5993 5994 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 5995 return Visit(T->getElementType()); 5996 } 5997 5998 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( 5999 const DependentVectorType *T) { 6000 return Visit(T->getElementType()); 6001 } 6002 6003 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 6004 return Visit(T->getElementType()); 6005 } 6006 6007 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType( 6008 const ConstantMatrixType *T) { 6009 return Visit(T->getElementType()); 6010 } 6011 6012 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 6013 const FunctionProtoType* T) { 6014 for (const auto &A : T->param_types()) { 6015 if (Visit(A)) 6016 return true; 6017 } 6018 6019 return Visit(T->getReturnType()); 6020 } 6021 6022 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 6023 const FunctionNoProtoType* T) { 6024 return Visit(T->getReturnType()); 6025 } 6026 6027 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 6028 const UnresolvedUsingType*) { 6029 return false; 6030 } 6031 6032 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 6033 return false; 6034 } 6035 6036 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 6037 return Visit(T->getUnderlyingType()); 6038 } 6039 6040 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 6041 return false; 6042 } 6043 6044 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 6045 const UnaryTransformType*) { 6046 return false; 6047 } 6048 6049 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 6050 return Visit(T->getDeducedType()); 6051 } 6052 6053 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( 6054 const DeducedTemplateSpecializationType *T) { 6055 return Visit(T->getDeducedType()); 6056 } 6057 6058 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 6059 return VisitTagDecl(T->getDecl()); 6060 } 6061 6062 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 6063 return VisitTagDecl(T->getDecl()); 6064 } 6065 6066 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 6067 const TemplateTypeParmType*) { 6068 return false; 6069 } 6070 6071 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 6072 const SubstTemplateTypeParmPackType *) { 6073 return false; 6074 } 6075 6076 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 6077 const TemplateSpecializationType*) { 6078 return false; 6079 } 6080 6081 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 6082 const InjectedClassNameType* T) { 6083 return VisitTagDecl(T->getDecl()); 6084 } 6085 6086 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 6087 const DependentNameType* T) { 6088 return VisitNestedNameSpecifier(T->getQualifier()); 6089 } 6090 6091 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 6092 const DependentTemplateSpecializationType* T) { 6093 if (auto *Q = T->getQualifier()) 6094 return VisitNestedNameSpecifier(Q); 6095 return false; 6096 } 6097 6098 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 6099 const PackExpansionType* T) { 6100 return Visit(T->getPattern()); 6101 } 6102 6103 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 6104 return false; 6105 } 6106 6107 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 6108 const ObjCInterfaceType *) { 6109 return false; 6110 } 6111 6112 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 6113 const ObjCObjectPointerType *) { 6114 return false; 6115 } 6116 6117 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 6118 return Visit(T->getValueType()); 6119 } 6120 6121 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { 6122 return false; 6123 } 6124 6125 bool UnnamedLocalNoLinkageFinder::VisitExtIntType(const ExtIntType *T) { 6126 return false; 6127 } 6128 6129 bool UnnamedLocalNoLinkageFinder::VisitDependentExtIntType( 6130 const DependentExtIntType *T) { 6131 return false; 6132 } 6133 6134 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 6135 if (Tag->getDeclContext()->isFunctionOrMethod()) { 6136 S.Diag(SR.getBegin(), 6137 S.getLangOpts().CPlusPlus11 ? 6138 diag::warn_cxx98_compat_template_arg_local_type : 6139 diag::ext_template_arg_local_type) 6140 << S.Context.getTypeDeclType(Tag) << SR; 6141 return true; 6142 } 6143 6144 if (!Tag->hasNameForLinkage()) { 6145 S.Diag(SR.getBegin(), 6146 S.getLangOpts().CPlusPlus11 ? 6147 diag::warn_cxx98_compat_template_arg_unnamed_type : 6148 diag::ext_template_arg_unnamed_type) << SR; 6149 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 6150 return true; 6151 } 6152 6153 return false; 6154 } 6155 6156 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 6157 NestedNameSpecifier *NNS) { 6158 assert(NNS); 6159 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 6160 return true; 6161 6162 switch (NNS->getKind()) { 6163 case NestedNameSpecifier::Identifier: 6164 case NestedNameSpecifier::Namespace: 6165 case NestedNameSpecifier::NamespaceAlias: 6166 case NestedNameSpecifier::Global: 6167 case NestedNameSpecifier::Super: 6168 return false; 6169 6170 case NestedNameSpecifier::TypeSpec: 6171 case NestedNameSpecifier::TypeSpecWithTemplate: 6172 return Visit(QualType(NNS->getAsType(), 0)); 6173 } 6174 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 6175 } 6176 6177 /// Check a template argument against its corresponding 6178 /// template type parameter. 6179 /// 6180 /// This routine implements the semantics of C++ [temp.arg.type]. It 6181 /// returns true if an error occurred, and false otherwise. 6182 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 6183 TypeSourceInfo *ArgInfo) { 6184 assert(ArgInfo && "invalid TypeSourceInfo"); 6185 QualType Arg = ArgInfo->getType(); 6186 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 6187 6188 if (Arg->isVariablyModifiedType()) { 6189 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 6190 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 6191 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 6192 } 6193 6194 // C++03 [temp.arg.type]p2: 6195 // A local type, a type with no linkage, an unnamed type or a type 6196 // compounded from any of these types shall not be used as a 6197 // template-argument for a template type-parameter. 6198 // 6199 // C++11 allows these, and even in C++03 we allow them as an extension with 6200 // a warning. 6201 if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) { 6202 UnnamedLocalNoLinkageFinder Finder(*this, SR); 6203 (void)Finder.Visit(Context.getCanonicalType(Arg)); 6204 } 6205 6206 return false; 6207 } 6208 6209 enum NullPointerValueKind { 6210 NPV_NotNullPointer, 6211 NPV_NullPointer, 6212 NPV_Error 6213 }; 6214 6215 /// Determine whether the given template argument is a null pointer 6216 /// value of the appropriate type. 6217 static NullPointerValueKind 6218 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 6219 QualType ParamType, Expr *Arg, 6220 Decl *Entity = nullptr) { 6221 if (Arg->isValueDependent() || Arg->isTypeDependent()) 6222 return NPV_NotNullPointer; 6223 6224 // dllimport'd entities aren't constant but are available inside of template 6225 // arguments. 6226 if (Entity && Entity->hasAttr<DLLImportAttr>()) 6227 return NPV_NotNullPointer; 6228 6229 if (!S.isCompleteType(Arg->getExprLoc(), ParamType)) 6230 llvm_unreachable( 6231 "Incomplete parameter type in isNullPointerValueTemplateArgument!"); 6232 6233 if (!S.getLangOpts().CPlusPlus11) 6234 return NPV_NotNullPointer; 6235 6236 // Determine whether we have a constant expression. 6237 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 6238 if (ArgRV.isInvalid()) 6239 return NPV_Error; 6240 Arg = ArgRV.get(); 6241 6242 Expr::EvalResult EvalResult; 6243 SmallVector<PartialDiagnosticAt, 8> Notes; 6244 EvalResult.Diag = &Notes; 6245 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 6246 EvalResult.HasSideEffects) { 6247 SourceLocation DiagLoc = Arg->getExprLoc(); 6248 6249 // If our only note is the usual "invalid subexpression" note, just point 6250 // the caret at its location rather than producing an essentially 6251 // redundant note. 6252 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 6253 diag::note_invalid_subexpr_in_const_expr) { 6254 DiagLoc = Notes[0].first; 6255 Notes.clear(); 6256 } 6257 6258 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 6259 << Arg->getType() << Arg->getSourceRange(); 6260 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 6261 S.Diag(Notes[I].first, Notes[I].second); 6262 6263 S.Diag(Param->getLocation(), diag::note_template_param_here); 6264 return NPV_Error; 6265 } 6266 6267 // C++11 [temp.arg.nontype]p1: 6268 // - an address constant expression of type std::nullptr_t 6269 if (Arg->getType()->isNullPtrType()) 6270 return NPV_NullPointer; 6271 6272 // - a constant expression that evaluates to a null pointer value (4.10); or 6273 // - a constant expression that evaluates to a null member pointer value 6274 // (4.11); or 6275 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 6276 (EvalResult.Val.isMemberPointer() && 6277 !EvalResult.Val.getMemberPointerDecl())) { 6278 // If our expression has an appropriate type, we've succeeded. 6279 bool ObjCLifetimeConversion; 6280 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 6281 S.IsQualificationConversion(Arg->getType(), ParamType, false, 6282 ObjCLifetimeConversion)) 6283 return NPV_NullPointer; 6284 6285 // The types didn't match, but we know we got a null pointer; complain, 6286 // then recover as if the types were correct. 6287 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 6288 << Arg->getType() << ParamType << Arg->getSourceRange(); 6289 S.Diag(Param->getLocation(), diag::note_template_param_here); 6290 return NPV_NullPointer; 6291 } 6292 6293 // If we don't have a null pointer value, but we do have a NULL pointer 6294 // constant, suggest a cast to the appropriate type. 6295 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 6296 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 6297 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 6298 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code) 6299 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()), 6300 ")"); 6301 S.Diag(Param->getLocation(), diag::note_template_param_here); 6302 return NPV_NullPointer; 6303 } 6304 6305 // FIXME: If we ever want to support general, address-constant expressions 6306 // as non-type template arguments, we should return the ExprResult here to 6307 // be interpreted by the caller. 6308 return NPV_NotNullPointer; 6309 } 6310 6311 /// Checks whether the given template argument is compatible with its 6312 /// template parameter. 6313 static bool CheckTemplateArgumentIsCompatibleWithParameter( 6314 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 6315 Expr *Arg, QualType ArgType) { 6316 bool ObjCLifetimeConversion; 6317 if (ParamType->isPointerType() && 6318 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() && 6319 S.IsQualificationConversion(ArgType, ParamType, false, 6320 ObjCLifetimeConversion)) { 6321 // For pointer-to-object types, qualification conversions are 6322 // permitted. 6323 } else { 6324 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 6325 if (!ParamRef->getPointeeType()->isFunctionType()) { 6326 // C++ [temp.arg.nontype]p5b3: 6327 // For a non-type template-parameter of type reference to 6328 // object, no conversions apply. The type referred to by the 6329 // reference may be more cv-qualified than the (otherwise 6330 // identical) type of the template- argument. The 6331 // template-parameter is bound directly to the 6332 // template-argument, which shall be an lvalue. 6333 6334 // FIXME: Other qualifiers? 6335 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 6336 unsigned ArgQuals = ArgType.getCVRQualifiers(); 6337 6338 if ((ParamQuals | ArgQuals) != ParamQuals) { 6339 S.Diag(Arg->getBeginLoc(), 6340 diag::err_template_arg_ref_bind_ignores_quals) 6341 << ParamType << Arg->getType() << Arg->getSourceRange(); 6342 S.Diag(Param->getLocation(), diag::note_template_param_here); 6343 return true; 6344 } 6345 } 6346 } 6347 6348 // At this point, the template argument refers to an object or 6349 // function with external linkage. We now need to check whether the 6350 // argument and parameter types are compatible. 6351 if (!S.Context.hasSameUnqualifiedType(ArgType, 6352 ParamType.getNonReferenceType())) { 6353 // We can't perform this conversion or binding. 6354 if (ParamType->isReferenceType()) 6355 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind) 6356 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 6357 else 6358 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 6359 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 6360 S.Diag(Param->getLocation(), diag::note_template_param_here); 6361 return true; 6362 } 6363 } 6364 6365 return false; 6366 } 6367 6368 /// Checks whether the given template argument is the address 6369 /// of an object or function according to C++ [temp.arg.nontype]p1. 6370 static bool 6371 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 6372 NonTypeTemplateParmDecl *Param, 6373 QualType ParamType, 6374 Expr *ArgIn, 6375 TemplateArgument &Converted) { 6376 bool Invalid = false; 6377 Expr *Arg = ArgIn; 6378 QualType ArgType = Arg->getType(); 6379 6380 bool AddressTaken = false; 6381 SourceLocation AddrOpLoc; 6382 if (S.getLangOpts().MicrosoftExt) { 6383 // Microsoft Visual C++ strips all casts, allows an arbitrary number of 6384 // dereference and address-of operators. 6385 Arg = Arg->IgnoreParenCasts(); 6386 6387 bool ExtWarnMSTemplateArg = false; 6388 UnaryOperatorKind FirstOpKind; 6389 SourceLocation FirstOpLoc; 6390 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6391 UnaryOperatorKind UnOpKind = UnOp->getOpcode(); 6392 if (UnOpKind == UO_Deref) 6393 ExtWarnMSTemplateArg = true; 6394 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { 6395 Arg = UnOp->getSubExpr()->IgnoreParenCasts(); 6396 if (!AddrOpLoc.isValid()) { 6397 FirstOpKind = UnOpKind; 6398 FirstOpLoc = UnOp->getOperatorLoc(); 6399 } 6400 } else 6401 break; 6402 } 6403 if (FirstOpLoc.isValid()) { 6404 if (ExtWarnMSTemplateArg) 6405 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument) 6406 << ArgIn->getSourceRange(); 6407 6408 if (FirstOpKind == UO_AddrOf) 6409 AddressTaken = true; 6410 else if (Arg->getType()->isPointerType()) { 6411 // We cannot let pointers get dereferenced here, that is obviously not a 6412 // constant expression. 6413 assert(FirstOpKind == UO_Deref); 6414 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6415 << Arg->getSourceRange(); 6416 } 6417 } 6418 } else { 6419 // See through any implicit casts we added to fix the type. 6420 Arg = Arg->IgnoreImpCasts(); 6421 6422 // C++ [temp.arg.nontype]p1: 6423 // 6424 // A template-argument for a non-type, non-template 6425 // template-parameter shall be one of: [...] 6426 // 6427 // -- the address of an object or function with external 6428 // linkage, including function templates and function 6429 // template-ids but excluding non-static class members, 6430 // expressed as & id-expression where the & is optional if 6431 // the name refers to a function or array, or if the 6432 // corresponding template-parameter is a reference; or 6433 6434 // In C++98/03 mode, give an extension warning on any extra parentheses. 6435 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6436 bool ExtraParens = false; 6437 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6438 if (!Invalid && !ExtraParens) { 6439 S.Diag(Arg->getBeginLoc(), 6440 S.getLangOpts().CPlusPlus11 6441 ? diag::warn_cxx98_compat_template_arg_extra_parens 6442 : diag::ext_template_arg_extra_parens) 6443 << Arg->getSourceRange(); 6444 ExtraParens = true; 6445 } 6446 6447 Arg = Parens->getSubExpr(); 6448 } 6449 6450 while (SubstNonTypeTemplateParmExpr *subst = 6451 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6452 Arg = subst->getReplacement()->IgnoreImpCasts(); 6453 6454 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6455 if (UnOp->getOpcode() == UO_AddrOf) { 6456 Arg = UnOp->getSubExpr(); 6457 AddressTaken = true; 6458 AddrOpLoc = UnOp->getOperatorLoc(); 6459 } 6460 } 6461 6462 while (SubstNonTypeTemplateParmExpr *subst = 6463 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6464 Arg = subst->getReplacement()->IgnoreImpCasts(); 6465 } 6466 6467 ValueDecl *Entity = nullptr; 6468 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg)) 6469 Entity = DRE->getDecl(); 6470 else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg)) 6471 Entity = CUE->getGuidDecl(); 6472 6473 // If our parameter has pointer type, check for a null template value. 6474 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 6475 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn, 6476 Entity)) { 6477 case NPV_NullPointer: 6478 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6479 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 6480 /*isNullPtr=*/true); 6481 return false; 6482 6483 case NPV_Error: 6484 return true; 6485 6486 case NPV_NotNullPointer: 6487 break; 6488 } 6489 } 6490 6491 // Stop checking the precise nature of the argument if it is value dependent, 6492 // it should be checked when instantiated. 6493 if (Arg->isValueDependent()) { 6494 Converted = TemplateArgument(ArgIn); 6495 return false; 6496 } 6497 6498 if (!Entity) { 6499 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6500 << Arg->getSourceRange(); 6501 S.Diag(Param->getLocation(), diag::note_template_param_here); 6502 return true; 6503 } 6504 6505 // Cannot refer to non-static data members 6506 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) { 6507 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field) 6508 << Entity << Arg->getSourceRange(); 6509 S.Diag(Param->getLocation(), diag::note_template_param_here); 6510 return true; 6511 } 6512 6513 // Cannot refer to non-static member functions 6514 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 6515 if (!Method->isStatic()) { 6516 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method) 6517 << Method << Arg->getSourceRange(); 6518 S.Diag(Param->getLocation(), diag::note_template_param_here); 6519 return true; 6520 } 6521 } 6522 6523 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 6524 VarDecl *Var = dyn_cast<VarDecl>(Entity); 6525 MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity); 6526 6527 // A non-type template argument must refer to an object or function. 6528 if (!Func && !Var && !Guid) { 6529 // We found something, but we don't know specifically what it is. 6530 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func) 6531 << Arg->getSourceRange(); 6532 S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here); 6533 return true; 6534 } 6535 6536 // Address / reference template args must have external linkage in C++98. 6537 if (Entity->getFormalLinkage() == InternalLinkage) { 6538 S.Diag(Arg->getBeginLoc(), 6539 S.getLangOpts().CPlusPlus11 6540 ? diag::warn_cxx98_compat_template_arg_object_internal 6541 : diag::ext_template_arg_object_internal) 6542 << !Func << Entity << Arg->getSourceRange(); 6543 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6544 << !Func; 6545 } else if (!Entity->hasLinkage()) { 6546 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage) 6547 << !Func << Entity << Arg->getSourceRange(); 6548 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6549 << !Func; 6550 return true; 6551 } 6552 6553 if (Var) { 6554 // A value of reference type is not an object. 6555 if (Var->getType()->isReferenceType()) { 6556 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var) 6557 << Var->getType() << Arg->getSourceRange(); 6558 S.Diag(Param->getLocation(), diag::note_template_param_here); 6559 return true; 6560 } 6561 6562 // A template argument must have static storage duration. 6563 if (Var->getTLSKind()) { 6564 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local) 6565 << Arg->getSourceRange(); 6566 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 6567 return true; 6568 } 6569 } 6570 6571 if (AddressTaken && ParamType->isReferenceType()) { 6572 // If we originally had an address-of operator, but the 6573 // parameter has reference type, complain and (if things look 6574 // like they will work) drop the address-of operator. 6575 if (!S.Context.hasSameUnqualifiedType(Entity->getType(), 6576 ParamType.getNonReferenceType())) { 6577 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6578 << ParamType; 6579 S.Diag(Param->getLocation(), diag::note_template_param_here); 6580 return true; 6581 } 6582 6583 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6584 << ParamType 6585 << FixItHint::CreateRemoval(AddrOpLoc); 6586 S.Diag(Param->getLocation(), diag::note_template_param_here); 6587 6588 ArgType = Entity->getType(); 6589 } 6590 6591 // If the template parameter has pointer type, either we must have taken the 6592 // address or the argument must decay to a pointer. 6593 if (!AddressTaken && ParamType->isPointerType()) { 6594 if (Func) { 6595 // Function-to-pointer decay. 6596 ArgType = S.Context.getPointerType(Func->getType()); 6597 } else if (Entity->getType()->isArrayType()) { 6598 // Array-to-pointer decay. 6599 ArgType = S.Context.getArrayDecayedType(Entity->getType()); 6600 } else { 6601 // If the template parameter has pointer type but the address of 6602 // this object was not taken, complain and (possibly) recover by 6603 // taking the address of the entity. 6604 ArgType = S.Context.getPointerType(Entity->getType()); 6605 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 6606 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6607 << ParamType; 6608 S.Diag(Param->getLocation(), diag::note_template_param_here); 6609 return true; 6610 } 6611 6612 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6613 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&"); 6614 6615 S.Diag(Param->getLocation(), diag::note_template_param_here); 6616 } 6617 } 6618 6619 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, 6620 Arg, ArgType)) 6621 return true; 6622 6623 // Create the template argument. 6624 Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), 6625 S.Context.getCanonicalType(ParamType)); 6626 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false); 6627 return false; 6628 } 6629 6630 /// Checks whether the given template argument is a pointer to 6631 /// member constant according to C++ [temp.arg.nontype]p1. 6632 static bool CheckTemplateArgumentPointerToMember(Sema &S, 6633 NonTypeTemplateParmDecl *Param, 6634 QualType ParamType, 6635 Expr *&ResultArg, 6636 TemplateArgument &Converted) { 6637 bool Invalid = false; 6638 6639 Expr *Arg = ResultArg; 6640 bool ObjCLifetimeConversion; 6641 6642 // C++ [temp.arg.nontype]p1: 6643 // 6644 // A template-argument for a non-type, non-template 6645 // template-parameter shall be one of: [...] 6646 // 6647 // -- a pointer to member expressed as described in 5.3.1. 6648 DeclRefExpr *DRE = nullptr; 6649 6650 // In C++98/03 mode, give an extension warning on any extra parentheses. 6651 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6652 bool ExtraParens = false; 6653 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6654 if (!Invalid && !ExtraParens) { 6655 S.Diag(Arg->getBeginLoc(), 6656 S.getLangOpts().CPlusPlus11 6657 ? diag::warn_cxx98_compat_template_arg_extra_parens 6658 : diag::ext_template_arg_extra_parens) 6659 << Arg->getSourceRange(); 6660 ExtraParens = true; 6661 } 6662 6663 Arg = Parens->getSubExpr(); 6664 } 6665 6666 while (SubstNonTypeTemplateParmExpr *subst = 6667 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6668 Arg = subst->getReplacement()->IgnoreImpCasts(); 6669 6670 // A pointer-to-member constant written &Class::member. 6671 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6672 if (UnOp->getOpcode() == UO_AddrOf) { 6673 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 6674 if (DRE && !DRE->getQualifier()) 6675 DRE = nullptr; 6676 } 6677 } 6678 // A constant of pointer-to-member type. 6679 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 6680 ValueDecl *VD = DRE->getDecl(); 6681 if (VD->getType()->isMemberPointerType()) { 6682 if (isa<NonTypeTemplateParmDecl>(VD)) { 6683 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6684 Converted = TemplateArgument(Arg); 6685 } else { 6686 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 6687 Converted = TemplateArgument(VD, ParamType); 6688 } 6689 return Invalid; 6690 } 6691 } 6692 6693 DRE = nullptr; 6694 } 6695 6696 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; 6697 6698 // Check for a null pointer value. 6699 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg, 6700 Entity)) { 6701 case NPV_Error: 6702 return true; 6703 case NPV_NullPointer: 6704 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6705 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 6706 /*isNullPtr*/true); 6707 return false; 6708 case NPV_NotNullPointer: 6709 break; 6710 } 6711 6712 if (S.IsQualificationConversion(ResultArg->getType(), 6713 ParamType.getNonReferenceType(), false, 6714 ObjCLifetimeConversion)) { 6715 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp, 6716 ResultArg->getValueKind()) 6717 .get(); 6718 } else if (!S.Context.hasSameUnqualifiedType( 6719 ResultArg->getType(), ParamType.getNonReferenceType())) { 6720 // We can't perform this conversion. 6721 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible) 6722 << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); 6723 S.Diag(Param->getLocation(), diag::note_template_param_here); 6724 return true; 6725 } 6726 6727 if (!DRE) 6728 return S.Diag(Arg->getBeginLoc(), 6729 diag::err_template_arg_not_pointer_to_member_form) 6730 << Arg->getSourceRange(); 6731 6732 if (isa<FieldDecl>(DRE->getDecl()) || 6733 isa<IndirectFieldDecl>(DRE->getDecl()) || 6734 isa<CXXMethodDecl>(DRE->getDecl())) { 6735 assert((isa<FieldDecl>(DRE->getDecl()) || 6736 isa<IndirectFieldDecl>(DRE->getDecl()) || 6737 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 6738 "Only non-static member pointers can make it here"); 6739 6740 // Okay: this is the address of a non-static member, and therefore 6741 // a member pointer constant. 6742 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6743 Converted = TemplateArgument(Arg); 6744 } else { 6745 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 6746 Converted = TemplateArgument(D, S.Context.getCanonicalType(ParamType)); 6747 } 6748 return Invalid; 6749 } 6750 6751 // We found something else, but we don't know specifically what it is. 6752 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form) 6753 << Arg->getSourceRange(); 6754 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 6755 return true; 6756 } 6757 6758 /// Check a template argument against its corresponding 6759 /// non-type template parameter. 6760 /// 6761 /// This routine implements the semantics of C++ [temp.arg.nontype]. 6762 /// If an error occurred, it returns ExprError(); otherwise, it 6763 /// returns the converted template argument. \p ParamType is the 6764 /// type of the non-type template parameter after it has been instantiated. 6765 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 6766 QualType ParamType, Expr *Arg, 6767 TemplateArgument &Converted, 6768 CheckTemplateArgumentKind CTAK) { 6769 SourceLocation StartLoc = Arg->getBeginLoc(); 6770 6771 // If the parameter type somehow involves auto, deduce the type now. 6772 DeducedType *DeducedT = ParamType->getContainedDeducedType(); 6773 if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) { 6774 // During template argument deduction, we allow 'decltype(auto)' to 6775 // match an arbitrary dependent argument. 6776 // FIXME: The language rules don't say what happens in this case. 6777 // FIXME: We get an opaque dependent type out of decltype(auto) if the 6778 // expression is merely instantiation-dependent; is this enough? 6779 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) { 6780 auto *AT = dyn_cast<AutoType>(DeducedT); 6781 if (AT && AT->isDecltypeAuto()) { 6782 Converted = TemplateArgument(Arg); 6783 return Arg; 6784 } 6785 } 6786 6787 // When checking a deduced template argument, deduce from its type even if 6788 // the type is dependent, in order to check the types of non-type template 6789 // arguments line up properly in partial ordering. 6790 Optional<unsigned> Depth = Param->getDepth() + 1; 6791 Expr *DeductionArg = Arg; 6792 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg)) 6793 DeductionArg = PE->getPattern(); 6794 TypeSourceInfo *TSI = 6795 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()); 6796 if (isa<DeducedTemplateSpecializationType>(DeducedT)) { 6797 InitializedEntity Entity = 6798 InitializedEntity::InitializeTemplateParameter(ParamType, Param); 6799 InitializationKind Kind = InitializationKind::CreateForInit( 6800 DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg); 6801 Expr *Inits[1] = {DeductionArg}; 6802 ParamType = 6803 DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits); 6804 if (ParamType.isNull()) 6805 return ExprError(); 6806 } else if (DeduceAutoType( 6807 TSI, DeductionArg, ParamType, Depth, 6808 // We do not check constraints right now because the 6809 // immediately-declared constraint of the auto type is also 6810 // an associated constraint, and will be checked along with 6811 // the other associated constraints after checking the 6812 // template argument list. 6813 /*IgnoreConstraints=*/true) == DAR_Failed) { 6814 Diag(Arg->getExprLoc(), 6815 diag::err_non_type_template_parm_type_deduction_failure) 6816 << Param->getDeclName() << Param->getType() << Arg->getType() 6817 << Arg->getSourceRange(); 6818 Diag(Param->getLocation(), diag::note_template_param_here); 6819 return ExprError(); 6820 } 6821 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's 6822 // an error. The error message normally references the parameter 6823 // declaration, but here we'll pass the argument location because that's 6824 // where the parameter type is deduced. 6825 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc()); 6826 if (ParamType.isNull()) { 6827 Diag(Param->getLocation(), diag::note_template_param_here); 6828 return ExprError(); 6829 } 6830 } 6831 6832 // We should have already dropped all cv-qualifiers by now. 6833 assert(!ParamType.hasQualifiers() && 6834 "non-type template parameter type cannot be qualified"); 6835 6836 // FIXME: When Param is a reference, should we check that Arg is an lvalue? 6837 if (CTAK == CTAK_Deduced && 6838 (ParamType->isReferenceType() 6839 ? !Context.hasSameType(ParamType.getNonReferenceType(), 6840 Arg->getType()) 6841 : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) { 6842 // FIXME: If either type is dependent, we skip the check. This isn't 6843 // correct, since during deduction we're supposed to have replaced each 6844 // template parameter with some unique (non-dependent) placeholder. 6845 // FIXME: If the argument type contains 'auto', we carry on and fail the 6846 // type check in order to force specific types to be more specialized than 6847 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to 6848 // work. Similarly for CTAD, when comparing 'A<x>' against 'A'. 6849 if ((ParamType->isDependentType() || Arg->isTypeDependent()) && 6850 !Arg->getType()->getContainedDeducedType()) { 6851 Converted = TemplateArgument(Arg); 6852 return Arg; 6853 } 6854 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, 6855 // we should actually be checking the type of the template argument in P, 6856 // not the type of the template argument deduced from A, against the 6857 // template parameter type. 6858 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 6859 << Arg->getType() 6860 << ParamType.getUnqualifiedType(); 6861 Diag(Param->getLocation(), diag::note_template_param_here); 6862 return ExprError(); 6863 } 6864 6865 // If either the parameter has a dependent type or the argument is 6866 // type-dependent, there's nothing we can check now. The argument only 6867 // contains an unexpanded pack during partial ordering, and there's 6868 // nothing more we can check in that case. 6869 if (ParamType->isDependentType() || Arg->isTypeDependent() || 6870 Arg->containsUnexpandedParameterPack()) { 6871 // Force the argument to the type of the parameter to maintain invariants. 6872 auto *PE = dyn_cast<PackExpansionExpr>(Arg); 6873 if (PE) 6874 Arg = PE->getPattern(); 6875 ExprResult E = ImpCastExprToType( 6876 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent, 6877 ParamType->isLValueReferenceType() ? VK_LValue : 6878 ParamType->isRValueReferenceType() ? VK_XValue : VK_RValue); 6879 if (E.isInvalid()) 6880 return ExprError(); 6881 if (PE) { 6882 // Recreate a pack expansion if we unwrapped one. 6883 E = new (Context) 6884 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(), 6885 PE->getNumExpansions()); 6886 } 6887 Converted = TemplateArgument(E.get()); 6888 return E; 6889 } 6890 6891 // The initialization of the parameter from the argument is 6892 // a constant-evaluated context. 6893 EnterExpressionEvaluationContext ConstantEvaluated( 6894 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 6895 6896 if (getLangOpts().CPlusPlus17) { 6897 QualType CanonParamType = Context.getCanonicalType(ParamType); 6898 6899 // Avoid making a copy when initializing a template parameter of class type 6900 // from a template parameter object of the same type. This is going beyond 6901 // the standard, but is required for soundness: in 6902 // template<A a> struct X { X *p; X<a> *q; }; 6903 // ... we need p and q to have the same type. 6904 // 6905 // Similarly, don't inject a call to a copy constructor when initializing 6906 // from a template parameter of the same type. 6907 Expr *InnerArg = Arg->IgnoreParenImpCasts(); 6908 if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) && 6909 Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) { 6910 NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl(); 6911 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 6912 Converted = TemplateArgument(TPO, CanonParamType); 6913 return Arg; 6914 } 6915 if (isa<NonTypeTemplateParmDecl>(ND)) { 6916 Converted = TemplateArgument(Arg); 6917 return Arg; 6918 } 6919 } 6920 6921 // C++17 [temp.arg.nontype]p1: 6922 // A template-argument for a non-type template parameter shall be 6923 // a converted constant expression of the type of the template-parameter. 6924 APValue Value; 6925 ExprResult ArgResult = CheckConvertedConstantExpression( 6926 Arg, ParamType, Value, CCEK_TemplateArg, Param); 6927 if (ArgResult.isInvalid()) 6928 return ExprError(); 6929 6930 // For a value-dependent argument, CheckConvertedConstantExpression is 6931 // permitted (and expected) to be unable to determine a value. 6932 if (ArgResult.get()->isValueDependent()) { 6933 Converted = TemplateArgument(ArgResult.get()); 6934 return ArgResult; 6935 } 6936 6937 // Convert the APValue to a TemplateArgument. 6938 switch (Value.getKind()) { 6939 case APValue::None: 6940 assert(ParamType->isNullPtrType()); 6941 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true); 6942 break; 6943 case APValue::Indeterminate: 6944 llvm_unreachable("result of constant evaluation should be initialized"); 6945 break; 6946 case APValue::Int: 6947 assert(ParamType->isIntegralOrEnumerationType()); 6948 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType); 6949 break; 6950 case APValue::MemberPointer: { 6951 assert(ParamType->isMemberPointerType()); 6952 6953 // FIXME: We need TemplateArgument representation and mangling for these. 6954 if (!Value.getMemberPointerPath().empty()) { 6955 Diag(Arg->getBeginLoc(), 6956 diag::err_template_arg_member_ptr_base_derived_not_supported) 6957 << Value.getMemberPointerDecl() << ParamType 6958 << Arg->getSourceRange(); 6959 return ExprError(); 6960 } 6961 6962 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl()); 6963 Converted = VD ? TemplateArgument(VD, CanonParamType) 6964 : TemplateArgument(CanonParamType, /*isNullPtr*/true); 6965 break; 6966 } 6967 case APValue::LValue: { 6968 // For a non-type template-parameter of pointer or reference type, 6969 // the value of the constant expression shall not refer to 6970 assert(ParamType->isPointerType() || ParamType->isReferenceType() || 6971 ParamType->isNullPtrType()); 6972 // -- a temporary object 6973 // -- a string literal 6974 // -- the result of a typeid expression, or 6975 // -- a predefined __func__ variable 6976 APValue::LValueBase Base = Value.getLValueBase(); 6977 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>()); 6978 if (Base && (!VD || isa<LifetimeExtendedTemporaryDecl>(VD))) { 6979 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6980 << Arg->getSourceRange(); 6981 return ExprError(); 6982 } 6983 // -- a subobject 6984 // FIXME: Until C++20 6985 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && 6986 VD && VD->getType()->isArrayType() && 6987 Value.getLValuePath()[0].getAsArrayIndex() == 0 && 6988 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { 6989 // Per defect report (no number yet): 6990 // ... other than a pointer to the first element of a complete array 6991 // object. 6992 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() || 6993 Value.isLValueOnePastTheEnd()) { 6994 Diag(StartLoc, diag::err_non_type_template_arg_subobject) 6995 << Value.getAsString(Context, ParamType); 6996 return ExprError(); 6997 } 6998 assert((VD || !ParamType->isReferenceType()) && 6999 "null reference should not be a constant expression"); 7000 assert((!VD || !ParamType->isNullPtrType()) && 7001 "non-null value of type nullptr_t?"); 7002 Converted = VD ? TemplateArgument(VD, CanonParamType) 7003 : TemplateArgument(CanonParamType, /*isNullPtr*/true); 7004 break; 7005 } 7006 case APValue::Struct: 7007 case APValue::Union: 7008 // Get or create the corresponding template parameter object. 7009 Converted = TemplateArgument( 7010 Context.getTemplateParamObjectDecl(CanonParamType, Value), 7011 CanonParamType); 7012 break; 7013 case APValue::AddrLabelDiff: 7014 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); 7015 case APValue::FixedPoint: 7016 case APValue::Float: 7017 case APValue::ComplexInt: 7018 case APValue::ComplexFloat: 7019 case APValue::Vector: 7020 case APValue::Array: 7021 return Diag(StartLoc, diag::err_non_type_template_arg_unsupported) 7022 << ParamType; 7023 } 7024 7025 return ArgResult.get(); 7026 } 7027 7028 // C++ [temp.arg.nontype]p5: 7029 // The following conversions are performed on each expression used 7030 // as a non-type template-argument. If a non-type 7031 // template-argument cannot be converted to the type of the 7032 // corresponding template-parameter then the program is 7033 // ill-formed. 7034 if (ParamType->isIntegralOrEnumerationType()) { 7035 // C++11: 7036 // -- for a non-type template-parameter of integral or 7037 // enumeration type, conversions permitted in a converted 7038 // constant expression are applied. 7039 // 7040 // C++98: 7041 // -- for a non-type template-parameter of integral or 7042 // enumeration type, integral promotions (4.5) and integral 7043 // conversions (4.7) are applied. 7044 7045 if (getLangOpts().CPlusPlus11) { 7046 // C++ [temp.arg.nontype]p1: 7047 // A template-argument for a non-type, non-template template-parameter 7048 // shall be one of: 7049 // 7050 // -- for a non-type template-parameter of integral or enumeration 7051 // type, a converted constant expression of the type of the 7052 // template-parameter; or 7053 llvm::APSInt Value; 7054 ExprResult ArgResult = 7055 CheckConvertedConstantExpression(Arg, ParamType, Value, 7056 CCEK_TemplateArg); 7057 if (ArgResult.isInvalid()) 7058 return ExprError(); 7059 7060 // We can't check arbitrary value-dependent arguments. 7061 if (ArgResult.get()->isValueDependent()) { 7062 Converted = TemplateArgument(ArgResult.get()); 7063 return ArgResult; 7064 } 7065 7066 // Widen the argument value to sizeof(parameter type). This is almost 7067 // always a no-op, except when the parameter type is bool. In 7068 // that case, this may extend the argument from 1 bit to 8 bits. 7069 QualType IntegerType = ParamType; 7070 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 7071 IntegerType = Enum->getDecl()->getIntegerType(); 7072 Value = Value.extOrTrunc(IntegerType->isExtIntType() 7073 ? Context.getIntWidth(IntegerType) 7074 : Context.getTypeSize(IntegerType)); 7075 7076 Converted = TemplateArgument(Context, Value, 7077 Context.getCanonicalType(ParamType)); 7078 return ArgResult; 7079 } 7080 7081 ExprResult ArgResult = DefaultLvalueConversion(Arg); 7082 if (ArgResult.isInvalid()) 7083 return ExprError(); 7084 Arg = ArgResult.get(); 7085 7086 QualType ArgType = Arg->getType(); 7087 7088 // C++ [temp.arg.nontype]p1: 7089 // A template-argument for a non-type, non-template 7090 // template-parameter shall be one of: 7091 // 7092 // -- an integral constant-expression of integral or enumeration 7093 // type; or 7094 // -- the name of a non-type template-parameter; or 7095 llvm::APSInt Value; 7096 if (!ArgType->isIntegralOrEnumerationType()) { 7097 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral) 7098 << ArgType << Arg->getSourceRange(); 7099 Diag(Param->getLocation(), diag::note_template_param_here); 7100 return ExprError(); 7101 } else if (!Arg->isValueDependent()) { 7102 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 7103 QualType T; 7104 7105 public: 7106 TmplArgICEDiagnoser(QualType T) : T(T) { } 7107 7108 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, 7109 SourceLocation Loc) override { 7110 return S.Diag(Loc, diag::err_template_arg_not_ice) << T; 7111 } 7112 } Diagnoser(ArgType); 7113 7114 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get(); 7115 if (!Arg) 7116 return ExprError(); 7117 } 7118 7119 // From here on out, all we care about is the unqualified form 7120 // of the argument type. 7121 ArgType = ArgType.getUnqualifiedType(); 7122 7123 // Try to convert the argument to the parameter's type. 7124 if (Context.hasSameType(ParamType, ArgType)) { 7125 // Okay: no conversion necessary 7126 } else if (ParamType->isBooleanType()) { 7127 // This is an integral-to-boolean conversion. 7128 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get(); 7129 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 7130 !ParamType->isEnumeralType()) { 7131 // This is an integral promotion or conversion. 7132 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get(); 7133 } else { 7134 // We can't perform this conversion. 7135 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 7136 << Arg->getType() << ParamType << Arg->getSourceRange(); 7137 Diag(Param->getLocation(), diag::note_template_param_here); 7138 return ExprError(); 7139 } 7140 7141 // Add the value of this argument to the list of converted 7142 // arguments. We use the bitwidth and signedness of the template 7143 // parameter. 7144 if (Arg->isValueDependent()) { 7145 // The argument is value-dependent. Create a new 7146 // TemplateArgument with the converted expression. 7147 Converted = TemplateArgument(Arg); 7148 return Arg; 7149 } 7150 7151 QualType IntegerType = Context.getCanonicalType(ParamType); 7152 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 7153 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 7154 7155 if (ParamType->isBooleanType()) { 7156 // Value must be zero or one. 7157 Value = Value != 0; 7158 unsigned AllowedBits = Context.getTypeSize(IntegerType); 7159 if (Value.getBitWidth() != AllowedBits) 7160 Value = Value.extOrTrunc(AllowedBits); 7161 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7162 } else { 7163 llvm::APSInt OldValue = Value; 7164 7165 // Coerce the template argument's value to the value it will have 7166 // based on the template parameter's type. 7167 unsigned AllowedBits = IntegerType->isExtIntType() 7168 ? Context.getIntWidth(IntegerType) 7169 : Context.getTypeSize(IntegerType); 7170 if (Value.getBitWidth() != AllowedBits) 7171 Value = Value.extOrTrunc(AllowedBits); 7172 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7173 7174 // Complain if an unsigned parameter received a negative value. 7175 if (IntegerType->isUnsignedIntegerOrEnumerationType() 7176 && (OldValue.isSigned() && OldValue.isNegative())) { 7177 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative) 7178 << OldValue.toString(10) << Value.toString(10) << Param->getType() 7179 << Arg->getSourceRange(); 7180 Diag(Param->getLocation(), diag::note_template_param_here); 7181 } 7182 7183 // Complain if we overflowed the template parameter's type. 7184 unsigned RequiredBits; 7185 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 7186 RequiredBits = OldValue.getActiveBits(); 7187 else if (OldValue.isUnsigned()) 7188 RequiredBits = OldValue.getActiveBits() + 1; 7189 else 7190 RequiredBits = OldValue.getMinSignedBits(); 7191 if (RequiredBits > AllowedBits) { 7192 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large) 7193 << OldValue.toString(10) << Value.toString(10) << Param->getType() 7194 << Arg->getSourceRange(); 7195 Diag(Param->getLocation(), diag::note_template_param_here); 7196 } 7197 } 7198 7199 Converted = TemplateArgument(Context, Value, 7200 ParamType->isEnumeralType() 7201 ? Context.getCanonicalType(ParamType) 7202 : IntegerType); 7203 return Arg; 7204 } 7205 7206 QualType ArgType = Arg->getType(); 7207 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 7208 7209 // Handle pointer-to-function, reference-to-function, and 7210 // pointer-to-member-function all in (roughly) the same way. 7211 if (// -- For a non-type template-parameter of type pointer to 7212 // function, only the function-to-pointer conversion (4.3) is 7213 // applied. If the template-argument represents a set of 7214 // overloaded functions (or a pointer to such), the matching 7215 // function is selected from the set (13.4). 7216 (ParamType->isPointerType() && 7217 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) || 7218 // -- For a non-type template-parameter of type reference to 7219 // function, no conversions apply. If the template-argument 7220 // represents a set of overloaded functions, the matching 7221 // function is selected from the set (13.4). 7222 (ParamType->isReferenceType() && 7223 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 7224 // -- For a non-type template-parameter of type pointer to 7225 // member function, no conversions apply. If the 7226 // template-argument represents a set of overloaded member 7227 // functions, the matching member function is selected from 7228 // the set (13.4). 7229 (ParamType->isMemberPointerType() && 7230 ParamType->castAs<MemberPointerType>()->getPointeeType() 7231 ->isFunctionType())) { 7232 7233 if (Arg->getType() == Context.OverloadTy) { 7234 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 7235 true, 7236 FoundResult)) { 7237 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7238 return ExprError(); 7239 7240 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7241 ArgType = Arg->getType(); 7242 } else 7243 return ExprError(); 7244 } 7245 7246 if (!ParamType->isMemberPointerType()) { 7247 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 7248 ParamType, 7249 Arg, Converted)) 7250 return ExprError(); 7251 return Arg; 7252 } 7253 7254 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 7255 Converted)) 7256 return ExprError(); 7257 return Arg; 7258 } 7259 7260 if (ParamType->isPointerType()) { 7261 // -- for a non-type template-parameter of type pointer to 7262 // object, qualification conversions (4.4) and the 7263 // array-to-pointer conversion (4.2) are applied. 7264 // C++0x also allows a value of std::nullptr_t. 7265 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 7266 "Only object pointers allowed here"); 7267 7268 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 7269 ParamType, 7270 Arg, Converted)) 7271 return ExprError(); 7272 return Arg; 7273 } 7274 7275 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 7276 // -- For a non-type template-parameter of type reference to 7277 // object, no conversions apply. The type referred to by the 7278 // reference may be more cv-qualified than the (otherwise 7279 // identical) type of the template-argument. The 7280 // template-parameter is bound directly to the 7281 // template-argument, which must be an lvalue. 7282 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 7283 "Only object references allowed here"); 7284 7285 if (Arg->getType() == Context.OverloadTy) { 7286 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 7287 ParamRefType->getPointeeType(), 7288 true, 7289 FoundResult)) { 7290 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7291 return ExprError(); 7292 7293 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7294 ArgType = Arg->getType(); 7295 } else 7296 return ExprError(); 7297 } 7298 7299 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 7300 ParamType, 7301 Arg, Converted)) 7302 return ExprError(); 7303 return Arg; 7304 } 7305 7306 // Deal with parameters of type std::nullptr_t. 7307 if (ParamType->isNullPtrType()) { 7308 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 7309 Converted = TemplateArgument(Arg); 7310 return Arg; 7311 } 7312 7313 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 7314 case NPV_NotNullPointer: 7315 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 7316 << Arg->getType() << ParamType; 7317 Diag(Param->getLocation(), diag::note_template_param_here); 7318 return ExprError(); 7319 7320 case NPV_Error: 7321 return ExprError(); 7322 7323 case NPV_NullPointer: 7324 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 7325 Converted = TemplateArgument(Context.getCanonicalType(ParamType), 7326 /*isNullPtr*/true); 7327 return Arg; 7328 } 7329 } 7330 7331 // -- For a non-type template-parameter of type pointer to data 7332 // member, qualification conversions (4.4) are applied. 7333 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 7334 7335 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 7336 Converted)) 7337 return ExprError(); 7338 return Arg; 7339 } 7340 7341 static void DiagnoseTemplateParameterListArityMismatch( 7342 Sema &S, TemplateParameterList *New, TemplateParameterList *Old, 7343 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); 7344 7345 /// Check a template argument against its corresponding 7346 /// template template parameter. 7347 /// 7348 /// This routine implements the semantics of C++ [temp.arg.template]. 7349 /// It returns true if an error occurred, and false otherwise. 7350 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param, 7351 TemplateParameterList *Params, 7352 TemplateArgumentLoc &Arg) { 7353 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 7354 TemplateDecl *Template = Name.getAsTemplateDecl(); 7355 if (!Template) { 7356 // Any dependent template name is fine. 7357 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 7358 return false; 7359 } 7360 7361 if (Template->isInvalidDecl()) 7362 return true; 7363 7364 // C++0x [temp.arg.template]p1: 7365 // A template-argument for a template template-parameter shall be 7366 // the name of a class template or an alias template, expressed as an 7367 // id-expression. When the template-argument names a class template, only 7368 // primary class templates are considered when matching the 7369 // template template argument with the corresponding parameter; 7370 // partial specializations are not considered even if their 7371 // parameter lists match that of the template template parameter. 7372 // 7373 // Note that we also allow template template parameters here, which 7374 // will happen when we are dealing with, e.g., class template 7375 // partial specializations. 7376 if (!isa<ClassTemplateDecl>(Template) && 7377 !isa<TemplateTemplateParmDecl>(Template) && 7378 !isa<TypeAliasTemplateDecl>(Template) && 7379 !isa<BuiltinTemplateDecl>(Template)) { 7380 assert(isa<FunctionTemplateDecl>(Template) && 7381 "Only function templates are possible here"); 7382 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template); 7383 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 7384 << Template; 7385 } 7386 7387 // C++1z [temp.arg.template]p3: (DR 150) 7388 // A template-argument matches a template template-parameter P when P 7389 // is at least as specialized as the template-argument A. 7390 // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a 7391 // defect report resolution from C++17 and shouldn't be introduced by 7392 // concepts. 7393 if (getLangOpts().RelaxedTemplateTemplateArgs) { 7394 // Quick check for the common case: 7395 // If P contains a parameter pack, then A [...] matches P if each of A's 7396 // template parameters matches the corresponding template parameter in 7397 // the template-parameter-list of P. 7398 if (TemplateParameterListsAreEqual( 7399 Template->getTemplateParameters(), Params, false, 7400 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) && 7401 // If the argument has no associated constraints, then the parameter is 7402 // definitely at least as specialized as the argument. 7403 // Otherwise - we need a more thorough check. 7404 !Template->hasAssociatedConstraints()) 7405 return false; 7406 7407 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template, 7408 Arg.getLocation())) { 7409 // C++2a[temp.func.order]p2 7410 // [...] If both deductions succeed, the partial ordering selects the 7411 // more constrained template as described by the rules in 7412 // [temp.constr.order]. 7413 SmallVector<const Expr *, 3> ParamsAC, TemplateAC; 7414 Params->getAssociatedConstraints(ParamsAC); 7415 // C++2a[temp.arg.template]p3 7416 // [...] In this comparison, if P is unconstrained, the constraints on A 7417 // are not considered. 7418 if (ParamsAC.empty()) 7419 return false; 7420 Template->getAssociatedConstraints(TemplateAC); 7421 bool IsParamAtLeastAsConstrained; 7422 if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC, 7423 IsParamAtLeastAsConstrained)) 7424 return true; 7425 if (!IsParamAtLeastAsConstrained) { 7426 Diag(Arg.getLocation(), 7427 diag::err_template_template_parameter_not_at_least_as_constrained) 7428 << Template << Param << Arg.getSourceRange(); 7429 Diag(Param->getLocation(), diag::note_entity_declared_at) << Param; 7430 Diag(Template->getLocation(), diag::note_entity_declared_at) 7431 << Template; 7432 MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template, 7433 TemplateAC); 7434 return true; 7435 } 7436 return false; 7437 } 7438 // FIXME: Produce better diagnostics for deduction failures. 7439 } 7440 7441 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 7442 Params, 7443 true, 7444 TPL_TemplateTemplateArgumentMatch, 7445 Arg.getLocation()); 7446 } 7447 7448 /// Given a non-type template argument that refers to a 7449 /// declaration and the type of its corresponding non-type template 7450 /// parameter, produce an expression that properly refers to that 7451 /// declaration. 7452 ExprResult 7453 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 7454 QualType ParamType, 7455 SourceLocation Loc) { 7456 // C++ [temp.param]p8: 7457 // 7458 // A non-type template-parameter of type "array of T" or 7459 // "function returning T" is adjusted to be of type "pointer to 7460 // T" or "pointer to function returning T", respectively. 7461 if (ParamType->isArrayType()) 7462 ParamType = Context.getArrayDecayedType(ParamType); 7463 else if (ParamType->isFunctionType()) 7464 ParamType = Context.getPointerType(ParamType); 7465 7466 // For a NULL non-type template argument, return nullptr casted to the 7467 // parameter's type. 7468 if (Arg.getKind() == TemplateArgument::NullPtr) { 7469 return ImpCastExprToType( 7470 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 7471 ParamType, 7472 ParamType->getAs<MemberPointerType>() 7473 ? CK_NullToMemberPointer 7474 : CK_NullToPointer); 7475 } 7476 assert(Arg.getKind() == TemplateArgument::Declaration && 7477 "Only declaration template arguments permitted here"); 7478 7479 ValueDecl *VD = Arg.getAsDecl(); 7480 7481 CXXScopeSpec SS; 7482 if (ParamType->isMemberPointerType()) { 7483 // If this is a pointer to member, we need to use a qualified name to 7484 // form a suitable pointer-to-member constant. 7485 assert(VD->getDeclContext()->isRecord() && 7486 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || 7487 isa<IndirectFieldDecl>(VD))); 7488 QualType ClassType 7489 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 7490 NestedNameSpecifier *Qualifier 7491 = NestedNameSpecifier::Create(Context, nullptr, false, 7492 ClassType.getTypePtr()); 7493 SS.MakeTrivial(Context, Qualifier, Loc); 7494 } 7495 7496 ExprResult RefExpr = BuildDeclarationNameExpr( 7497 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD); 7498 if (RefExpr.isInvalid()) 7499 return ExprError(); 7500 7501 // For a pointer, the argument declaration is the pointee. Take its address. 7502 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0); 7503 if (ParamType->isPointerType() && !ElemT.isNull() && 7504 Context.hasSimilarType(ElemT, ParamType->getPointeeType())) { 7505 // Decay an array argument if we want a pointer to its first element. 7506 RefExpr = DefaultFunctionArrayConversion(RefExpr.get()); 7507 if (RefExpr.isInvalid()) 7508 return ExprError(); 7509 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 7510 // For any other pointer, take the address (or form a pointer-to-member). 7511 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 7512 if (RefExpr.isInvalid()) 7513 return ExprError(); 7514 } else if (ParamType->isRecordType()) { 7515 assert(isa<TemplateParamObjectDecl>(VD) && 7516 "arg for class template param not a template parameter object"); 7517 // No conversions apply in this case. 7518 return RefExpr; 7519 } else { 7520 assert(ParamType->isReferenceType() && 7521 "unexpected type for decl template argument"); 7522 } 7523 7524 // At this point we should have the right value category. 7525 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() && 7526 "value kind mismatch for non-type template argument"); 7527 7528 // The type of the template parameter can differ from the type of the 7529 // argument in various ways; convert it now if necessary. 7530 QualType DestExprType = ParamType.getNonLValueExprType(Context); 7531 if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) { 7532 CastKind CK; 7533 QualType Ignored; 7534 if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) || 7535 IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) { 7536 CK = CK_NoOp; 7537 } else if (ParamType->isVoidPointerType() && 7538 RefExpr.get()->getType()->isPointerType()) { 7539 CK = CK_BitCast; 7540 } else { 7541 // FIXME: Pointers to members can need conversion derived-to-base or 7542 // base-to-derived conversions. We currently don't retain enough 7543 // information to convert properly (we need to track a cast path or 7544 // subobject number in the template argument). 7545 llvm_unreachable( 7546 "unexpected conversion required for non-type template argument"); 7547 } 7548 RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK, 7549 RefExpr.get()->getValueKind()); 7550 } 7551 7552 return RefExpr; 7553 } 7554 7555 /// Construct a new expression that refers to the given 7556 /// integral template argument with the given source-location 7557 /// information. 7558 /// 7559 /// This routine takes care of the mapping from an integral template 7560 /// argument (which may have any integral type) to the appropriate 7561 /// literal value. 7562 ExprResult 7563 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 7564 SourceLocation Loc) { 7565 assert(Arg.getKind() == TemplateArgument::Integral && 7566 "Operation is only valid for integral template arguments"); 7567 QualType OrigT = Arg.getIntegralType(); 7568 7569 // If this is an enum type that we're instantiating, we need to use an integer 7570 // type the same size as the enumerator. We don't want to build an 7571 // IntegerLiteral with enum type. The integer type of an enum type can be of 7572 // any integral type with C++11 enum classes, make sure we create the right 7573 // type of literal for it. 7574 QualType T = OrigT; 7575 if (const EnumType *ET = OrigT->getAs<EnumType>()) 7576 T = ET->getDecl()->getIntegerType(); 7577 7578 Expr *E; 7579 if (T->isAnyCharacterType()) { 7580 CharacterLiteral::CharacterKind Kind; 7581 if (T->isWideCharType()) 7582 Kind = CharacterLiteral::Wide; 7583 else if (T->isChar8Type() && getLangOpts().Char8) 7584 Kind = CharacterLiteral::UTF8; 7585 else if (T->isChar16Type()) 7586 Kind = CharacterLiteral::UTF16; 7587 else if (T->isChar32Type()) 7588 Kind = CharacterLiteral::UTF32; 7589 else 7590 Kind = CharacterLiteral::Ascii; 7591 7592 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), 7593 Kind, T, Loc); 7594 } else if (T->isBooleanType()) { 7595 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), 7596 T, Loc); 7597 } else if (T->isNullPtrType()) { 7598 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 7599 } else { 7600 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); 7601 } 7602 7603 if (OrigT->isEnumeralType()) { 7604 // FIXME: This is a hack. We need a better way to handle substituted 7605 // non-type template parameters. 7606 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 7607 nullptr, CurFPFeatureOverrides(), 7608 Context.getTrivialTypeSourceInfo(OrigT, Loc), 7609 Loc, Loc); 7610 } 7611 7612 return E; 7613 } 7614 7615 /// Match two template parameters within template parameter lists. 7616 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 7617 bool Complain, 7618 Sema::TemplateParameterListEqualKind Kind, 7619 SourceLocation TemplateArgLoc) { 7620 // Check the actual kind (type, non-type, template). 7621 if (Old->getKind() != New->getKind()) { 7622 if (Complain) { 7623 unsigned NextDiag = diag::err_template_param_different_kind; 7624 if (TemplateArgLoc.isValid()) { 7625 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7626 NextDiag = diag::note_template_param_different_kind; 7627 } 7628 S.Diag(New->getLocation(), NextDiag) 7629 << (Kind != Sema::TPL_TemplateMatch); 7630 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 7631 << (Kind != Sema::TPL_TemplateMatch); 7632 } 7633 7634 return false; 7635 } 7636 7637 // Check that both are parameter packs or neither are parameter packs. 7638 // However, if we are matching a template template argument to a 7639 // template template parameter, the template template parameter can have 7640 // a parameter pack where the template template argument does not. 7641 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 7642 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 7643 Old->isTemplateParameterPack())) { 7644 if (Complain) { 7645 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 7646 if (TemplateArgLoc.isValid()) { 7647 S.Diag(TemplateArgLoc, 7648 diag::err_template_arg_template_params_mismatch); 7649 NextDiag = diag::note_template_parameter_pack_non_pack; 7650 } 7651 7652 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 7653 : isa<NonTypeTemplateParmDecl>(New)? 1 7654 : 2; 7655 S.Diag(New->getLocation(), NextDiag) 7656 << ParamKind << New->isParameterPack(); 7657 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 7658 << ParamKind << Old->isParameterPack(); 7659 } 7660 7661 return false; 7662 } 7663 7664 // For non-type template parameters, check the type of the parameter. 7665 if (NonTypeTemplateParmDecl *OldNTTP 7666 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 7667 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 7668 7669 // If we are matching a template template argument to a template 7670 // template parameter and one of the non-type template parameter types 7671 // is dependent, then we must wait until template instantiation time 7672 // to actually compare the arguments. 7673 if (Kind != Sema::TPL_TemplateTemplateArgumentMatch || 7674 (!OldNTTP->getType()->isDependentType() && 7675 !NewNTTP->getType()->isDependentType())) 7676 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 7677 if (Complain) { 7678 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 7679 if (TemplateArgLoc.isValid()) { 7680 S.Diag(TemplateArgLoc, 7681 diag::err_template_arg_template_params_mismatch); 7682 NextDiag = diag::note_template_nontype_parm_different_type; 7683 } 7684 S.Diag(NewNTTP->getLocation(), NextDiag) 7685 << NewNTTP->getType() 7686 << (Kind != Sema::TPL_TemplateMatch); 7687 S.Diag(OldNTTP->getLocation(), 7688 diag::note_template_nontype_parm_prev_declaration) 7689 << OldNTTP->getType(); 7690 } 7691 7692 return false; 7693 } 7694 } 7695 // For template template parameters, check the template parameter types. 7696 // The template parameter lists of template template 7697 // parameters must agree. 7698 else if (TemplateTemplateParmDecl *OldTTP 7699 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 7700 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 7701 if (!S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 7702 OldTTP->getTemplateParameters(), 7703 Complain, 7704 (Kind == Sema::TPL_TemplateMatch 7705 ? Sema::TPL_TemplateTemplateParmMatch 7706 : Kind), 7707 TemplateArgLoc)) 7708 return false; 7709 } else if (Kind != Sema::TPL_TemplateTemplateArgumentMatch) { 7710 const Expr *NewC = nullptr, *OldC = nullptr; 7711 if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint()) 7712 NewC = TC->getImmediatelyDeclaredConstraint(); 7713 if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint()) 7714 OldC = TC->getImmediatelyDeclaredConstraint(); 7715 7716 auto Diagnose = [&] { 7717 S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(), 7718 diag::err_template_different_type_constraint); 7719 S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(), 7720 diag::note_template_prev_declaration) << /*declaration*/0; 7721 }; 7722 7723 if (!NewC != !OldC) { 7724 if (Complain) 7725 Diagnose(); 7726 return false; 7727 } 7728 7729 if (NewC) { 7730 llvm::FoldingSetNodeID OldCID, NewCID; 7731 OldC->Profile(OldCID, S.Context, /*Canonical=*/true); 7732 NewC->Profile(NewCID, S.Context, /*Canonical=*/true); 7733 if (OldCID != NewCID) { 7734 if (Complain) 7735 Diagnose(); 7736 return false; 7737 } 7738 } 7739 } 7740 7741 return true; 7742 } 7743 7744 /// Diagnose a known arity mismatch when comparing template argument 7745 /// lists. 7746 static 7747 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 7748 TemplateParameterList *New, 7749 TemplateParameterList *Old, 7750 Sema::TemplateParameterListEqualKind Kind, 7751 SourceLocation TemplateArgLoc) { 7752 unsigned NextDiag = diag::err_template_param_list_different_arity; 7753 if (TemplateArgLoc.isValid()) { 7754 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7755 NextDiag = diag::note_template_param_list_different_arity; 7756 } 7757 S.Diag(New->getTemplateLoc(), NextDiag) 7758 << (New->size() > Old->size()) 7759 << (Kind != Sema::TPL_TemplateMatch) 7760 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 7761 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 7762 << (Kind != Sema::TPL_TemplateMatch) 7763 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 7764 } 7765 7766 /// Determine whether the given template parameter lists are 7767 /// equivalent. 7768 /// 7769 /// \param New The new template parameter list, typically written in the 7770 /// source code as part of a new template declaration. 7771 /// 7772 /// \param Old The old template parameter list, typically found via 7773 /// name lookup of the template declared with this template parameter 7774 /// list. 7775 /// 7776 /// \param Complain If true, this routine will produce a diagnostic if 7777 /// the template parameter lists are not equivalent. 7778 /// 7779 /// \param Kind describes how we are to match the template parameter lists. 7780 /// 7781 /// \param TemplateArgLoc If this source location is valid, then we 7782 /// are actually checking the template parameter list of a template 7783 /// argument (New) against the template parameter list of its 7784 /// corresponding template template parameter (Old). We produce 7785 /// slightly different diagnostics in this scenario. 7786 /// 7787 /// \returns True if the template parameter lists are equal, false 7788 /// otherwise. 7789 bool 7790 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 7791 TemplateParameterList *Old, 7792 bool Complain, 7793 TemplateParameterListEqualKind Kind, 7794 SourceLocation TemplateArgLoc) { 7795 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 7796 if (Complain) 7797 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7798 TemplateArgLoc); 7799 7800 return false; 7801 } 7802 7803 // C++0x [temp.arg.template]p3: 7804 // A template-argument matches a template template-parameter (call it P) 7805 // when each of the template parameters in the template-parameter-list of 7806 // the template-argument's corresponding class template or alias template 7807 // (call it A) matches the corresponding template parameter in the 7808 // template-parameter-list of P. [...] 7809 TemplateParameterList::iterator NewParm = New->begin(); 7810 TemplateParameterList::iterator NewParmEnd = New->end(); 7811 for (TemplateParameterList::iterator OldParm = Old->begin(), 7812 OldParmEnd = Old->end(); 7813 OldParm != OldParmEnd; ++OldParm) { 7814 if (Kind != TPL_TemplateTemplateArgumentMatch || 7815 !(*OldParm)->isTemplateParameterPack()) { 7816 if (NewParm == NewParmEnd) { 7817 if (Complain) 7818 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7819 TemplateArgLoc); 7820 7821 return false; 7822 } 7823 7824 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 7825 Kind, TemplateArgLoc)) 7826 return false; 7827 7828 ++NewParm; 7829 continue; 7830 } 7831 7832 // C++0x [temp.arg.template]p3: 7833 // [...] When P's template- parameter-list contains a template parameter 7834 // pack (14.5.3), the template parameter pack will match zero or more 7835 // template parameters or template parameter packs in the 7836 // template-parameter-list of A with the same type and form as the 7837 // template parameter pack in P (ignoring whether those template 7838 // parameters are template parameter packs). 7839 for (; NewParm != NewParmEnd; ++NewParm) { 7840 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 7841 Kind, TemplateArgLoc)) 7842 return false; 7843 } 7844 } 7845 7846 // Make sure we exhausted all of the arguments. 7847 if (NewParm != NewParmEnd) { 7848 if (Complain) 7849 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7850 TemplateArgLoc); 7851 7852 return false; 7853 } 7854 7855 if (Kind != TPL_TemplateTemplateArgumentMatch) { 7856 const Expr *NewRC = New->getRequiresClause(); 7857 const Expr *OldRC = Old->getRequiresClause(); 7858 7859 auto Diagnose = [&] { 7860 Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(), 7861 diag::err_template_different_requires_clause); 7862 Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(), 7863 diag::note_template_prev_declaration) << /*declaration*/0; 7864 }; 7865 7866 if (!NewRC != !OldRC) { 7867 if (Complain) 7868 Diagnose(); 7869 return false; 7870 } 7871 7872 if (NewRC) { 7873 llvm::FoldingSetNodeID OldRCID, NewRCID; 7874 OldRC->Profile(OldRCID, Context, /*Canonical=*/true); 7875 NewRC->Profile(NewRCID, Context, /*Canonical=*/true); 7876 if (OldRCID != NewRCID) { 7877 if (Complain) 7878 Diagnose(); 7879 return false; 7880 } 7881 } 7882 } 7883 7884 return true; 7885 } 7886 7887 /// Check whether a template can be declared within this scope. 7888 /// 7889 /// If the template declaration is valid in this scope, returns 7890 /// false. Otherwise, issues a diagnostic and returns true. 7891 bool 7892 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 7893 if (!S) 7894 return false; 7895 7896 // Find the nearest enclosing declaration scope. 7897 while ((S->getFlags() & Scope::DeclScope) == 0 || 7898 (S->getFlags() & Scope::TemplateParamScope) != 0) 7899 S = S->getParent(); 7900 7901 // C++ [temp.pre]p6: [P2096] 7902 // A template, explicit specialization, or partial specialization shall not 7903 // have C linkage. 7904 DeclContext *Ctx = S->getEntity(); 7905 if (Ctx && Ctx->isExternCContext()) { 7906 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 7907 << TemplateParams->getSourceRange(); 7908 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) 7909 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 7910 return true; 7911 } 7912 Ctx = Ctx ? Ctx->getRedeclContext() : nullptr; 7913 7914 // C++ [temp]p2: 7915 // A template-declaration can appear only as a namespace scope or 7916 // class scope declaration. 7917 // C++ [temp.expl.spec]p3: 7918 // An explicit specialization may be declared in any scope in which the 7919 // corresponding primary template may be defined. 7920 // C++ [temp.class.spec]p6: [P2096] 7921 // A partial specialization may be declared in any scope in which the 7922 // corresponding primary template may be defined. 7923 if (Ctx) { 7924 if (Ctx->isFileContext()) 7925 return false; 7926 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) { 7927 // C++ [temp.mem]p2: 7928 // A local class shall not have member templates. 7929 if (RD->isLocalClass()) 7930 return Diag(TemplateParams->getTemplateLoc(), 7931 diag::err_template_inside_local_class) 7932 << TemplateParams->getSourceRange(); 7933 else 7934 return false; 7935 } 7936 } 7937 7938 return Diag(TemplateParams->getTemplateLoc(), 7939 diag::err_template_outside_namespace_or_class_scope) 7940 << TemplateParams->getSourceRange(); 7941 } 7942 7943 /// Determine what kind of template specialization the given declaration 7944 /// is. 7945 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 7946 if (!D) 7947 return TSK_Undeclared; 7948 7949 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 7950 return Record->getTemplateSpecializationKind(); 7951 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 7952 return Function->getTemplateSpecializationKind(); 7953 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 7954 return Var->getTemplateSpecializationKind(); 7955 7956 return TSK_Undeclared; 7957 } 7958 7959 /// Check whether a specialization is well-formed in the current 7960 /// context. 7961 /// 7962 /// This routine determines whether a template specialization can be declared 7963 /// in the current context (C++ [temp.expl.spec]p2). 7964 /// 7965 /// \param S the semantic analysis object for which this check is being 7966 /// performed. 7967 /// 7968 /// \param Specialized the entity being specialized or instantiated, which 7969 /// may be a kind of template (class template, function template, etc.) or 7970 /// a member of a class template (member function, static data member, 7971 /// member class). 7972 /// 7973 /// \param PrevDecl the previous declaration of this entity, if any. 7974 /// 7975 /// \param Loc the location of the explicit specialization or instantiation of 7976 /// this entity. 7977 /// 7978 /// \param IsPartialSpecialization whether this is a partial specialization of 7979 /// a class template. 7980 /// 7981 /// \returns true if there was an error that we cannot recover from, false 7982 /// otherwise. 7983 static bool CheckTemplateSpecializationScope(Sema &S, 7984 NamedDecl *Specialized, 7985 NamedDecl *PrevDecl, 7986 SourceLocation Loc, 7987 bool IsPartialSpecialization) { 7988 // Keep these "kind" numbers in sync with the %select statements in the 7989 // various diagnostics emitted by this routine. 7990 int EntityKind = 0; 7991 if (isa<ClassTemplateDecl>(Specialized)) 7992 EntityKind = IsPartialSpecialization? 1 : 0; 7993 else if (isa<VarTemplateDecl>(Specialized)) 7994 EntityKind = IsPartialSpecialization ? 3 : 2; 7995 else if (isa<FunctionTemplateDecl>(Specialized)) 7996 EntityKind = 4; 7997 else if (isa<CXXMethodDecl>(Specialized)) 7998 EntityKind = 5; 7999 else if (isa<VarDecl>(Specialized)) 8000 EntityKind = 6; 8001 else if (isa<RecordDecl>(Specialized)) 8002 EntityKind = 7; 8003 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 8004 EntityKind = 8; 8005 else { 8006 S.Diag(Loc, diag::err_template_spec_unknown_kind) 8007 << S.getLangOpts().CPlusPlus11; 8008 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 8009 return true; 8010 } 8011 8012 // C++ [temp.expl.spec]p2: 8013 // An explicit specialization may be declared in any scope in which 8014 // the corresponding primary template may be defined. 8015 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 8016 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 8017 << Specialized; 8018 return true; 8019 } 8020 8021 // C++ [temp.class.spec]p6: 8022 // A class template partial specialization may be declared in any 8023 // scope in which the primary template may be defined. 8024 DeclContext *SpecializedContext = 8025 Specialized->getDeclContext()->getRedeclContext(); 8026 DeclContext *DC = S.CurContext->getRedeclContext(); 8027 8028 // Make sure that this redeclaration (or definition) occurs in the same 8029 // scope or an enclosing namespace. 8030 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext) 8031 : DC->Equals(SpecializedContext))) { 8032 if (isa<TranslationUnitDecl>(SpecializedContext)) 8033 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 8034 << EntityKind << Specialized; 8035 else { 8036 auto *ND = cast<NamedDecl>(SpecializedContext); 8037 int Diag = diag::err_template_spec_redecl_out_of_scope; 8038 if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) 8039 Diag = diag::ext_ms_template_spec_redecl_out_of_scope; 8040 S.Diag(Loc, Diag) << EntityKind << Specialized 8041 << ND << isa<CXXRecordDecl>(ND); 8042 } 8043 8044 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 8045 8046 // Don't allow specializing in the wrong class during error recovery. 8047 // Otherwise, things can go horribly wrong. 8048 if (DC->isRecord()) 8049 return true; 8050 } 8051 8052 return false; 8053 } 8054 8055 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { 8056 if (!E->isTypeDependent()) 8057 return SourceLocation(); 8058 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 8059 Checker.TraverseStmt(E); 8060 if (Checker.MatchLoc.isInvalid()) 8061 return E->getSourceRange(); 8062 return Checker.MatchLoc; 8063 } 8064 8065 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { 8066 if (!TL.getType()->isDependentType()) 8067 return SourceLocation(); 8068 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 8069 Checker.TraverseTypeLoc(TL); 8070 if (Checker.MatchLoc.isInvalid()) 8071 return TL.getSourceRange(); 8072 return Checker.MatchLoc; 8073 } 8074 8075 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs 8076 /// that checks non-type template partial specialization arguments. 8077 static bool CheckNonTypeTemplatePartialSpecializationArgs( 8078 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, 8079 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { 8080 for (unsigned I = 0; I != NumArgs; ++I) { 8081 if (Args[I].getKind() == TemplateArgument::Pack) { 8082 if (CheckNonTypeTemplatePartialSpecializationArgs( 8083 S, TemplateNameLoc, Param, Args[I].pack_begin(), 8084 Args[I].pack_size(), IsDefaultArgument)) 8085 return true; 8086 8087 continue; 8088 } 8089 8090 if (Args[I].getKind() != TemplateArgument::Expression) 8091 continue; 8092 8093 Expr *ArgExpr = Args[I].getAsExpr(); 8094 8095 // We can have a pack expansion of any of the bullets below. 8096 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 8097 ArgExpr = Expansion->getPattern(); 8098 8099 // Strip off any implicit casts we added as part of type checking. 8100 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 8101 ArgExpr = ICE->getSubExpr(); 8102 8103 // C++ [temp.class.spec]p8: 8104 // A non-type argument is non-specialized if it is the name of a 8105 // non-type parameter. All other non-type arguments are 8106 // specialized. 8107 // 8108 // Below, we check the two conditions that only apply to 8109 // specialized non-type arguments, so skip any non-specialized 8110 // arguments. 8111 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 8112 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 8113 continue; 8114 8115 // C++ [temp.class.spec]p9: 8116 // Within the argument list of a class template partial 8117 // specialization, the following restrictions apply: 8118 // -- A partially specialized non-type argument expression 8119 // shall not involve a template parameter of the partial 8120 // specialization except when the argument expression is a 8121 // simple identifier. 8122 // -- The type of a template parameter corresponding to a 8123 // specialized non-type argument shall not be dependent on a 8124 // parameter of the specialization. 8125 // DR1315 removes the first bullet, leaving an incoherent set of rules. 8126 // We implement a compromise between the original rules and DR1315: 8127 // -- A specialized non-type template argument shall not be 8128 // type-dependent and the corresponding template parameter 8129 // shall have a non-dependent type. 8130 SourceRange ParamUseRange = 8131 findTemplateParameterInType(Param->getDepth(), ArgExpr); 8132 if (ParamUseRange.isValid()) { 8133 if (IsDefaultArgument) { 8134 S.Diag(TemplateNameLoc, 8135 diag::err_dependent_non_type_arg_in_partial_spec); 8136 S.Diag(ParamUseRange.getBegin(), 8137 diag::note_dependent_non_type_default_arg_in_partial_spec) 8138 << ParamUseRange; 8139 } else { 8140 S.Diag(ParamUseRange.getBegin(), 8141 diag::err_dependent_non_type_arg_in_partial_spec) 8142 << ParamUseRange; 8143 } 8144 return true; 8145 } 8146 8147 ParamUseRange = findTemplateParameter( 8148 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); 8149 if (ParamUseRange.isValid()) { 8150 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(), 8151 diag::err_dependent_typed_non_type_arg_in_partial_spec) 8152 << Param->getType(); 8153 S.Diag(Param->getLocation(), diag::note_template_param_here) 8154 << (IsDefaultArgument ? ParamUseRange : SourceRange()) 8155 << ParamUseRange; 8156 return true; 8157 } 8158 } 8159 8160 return false; 8161 } 8162 8163 /// Check the non-type template arguments of a class template 8164 /// partial specialization according to C++ [temp.class.spec]p9. 8165 /// 8166 /// \param TemplateNameLoc the location of the template name. 8167 /// \param PrimaryTemplate the template parameters of the primary class 8168 /// template. 8169 /// \param NumExplicit the number of explicitly-specified template arguments. 8170 /// \param TemplateArgs the template arguments of the class template 8171 /// partial specialization. 8172 /// 8173 /// \returns \c true if there was an error, \c false otherwise. 8174 bool Sema::CheckTemplatePartialSpecializationArgs( 8175 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, 8176 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { 8177 // We have to be conservative when checking a template in a dependent 8178 // context. 8179 if (PrimaryTemplate->getDeclContext()->isDependentContext()) 8180 return false; 8181 8182 TemplateParameterList *TemplateParams = 8183 PrimaryTemplate->getTemplateParameters(); 8184 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8185 NonTypeTemplateParmDecl *Param 8186 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 8187 if (!Param) 8188 continue; 8189 8190 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc, 8191 Param, &TemplateArgs[I], 8192 1, I >= NumExplicit)) 8193 return true; 8194 } 8195 8196 return false; 8197 } 8198 8199 DeclResult Sema::ActOnClassTemplateSpecialization( 8200 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 8201 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, 8202 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, 8203 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { 8204 assert(TUK != TUK_Reference && "References are not specializations"); 8205 8206 // NOTE: KWLoc is the location of the tag keyword. This will instead 8207 // store the location of the outermost template keyword in the declaration. 8208 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 8209 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc; 8210 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; 8211 SourceLocation LAngleLoc = TemplateId.LAngleLoc; 8212 SourceLocation RAngleLoc = TemplateId.RAngleLoc; 8213 8214 // Find the class template we're specializing 8215 TemplateName Name = TemplateId.Template.get(); 8216 ClassTemplateDecl *ClassTemplate 8217 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 8218 8219 if (!ClassTemplate) { 8220 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 8221 << (Name.getAsTemplateDecl() && 8222 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 8223 return true; 8224 } 8225 8226 bool isMemberSpecialization = false; 8227 bool isPartialSpecialization = false; 8228 8229 // Check the validity of the template headers that introduce this 8230 // template. 8231 // FIXME: We probably shouldn't complain about these headers for 8232 // friend declarations. 8233 bool Invalid = false; 8234 TemplateParameterList *TemplateParams = 8235 MatchTemplateParametersToScopeSpecifier( 8236 KWLoc, TemplateNameLoc, SS, &TemplateId, 8237 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization, 8238 Invalid); 8239 if (Invalid) 8240 return true; 8241 8242 // Check that we can declare a template specialization here. 8243 if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams)) 8244 return true; 8245 8246 if (TemplateParams && TemplateParams->size() > 0) { 8247 isPartialSpecialization = true; 8248 8249 if (TUK == TUK_Friend) { 8250 Diag(KWLoc, diag::err_partial_specialization_friend) 8251 << SourceRange(LAngleLoc, RAngleLoc); 8252 return true; 8253 } 8254 8255 // C++ [temp.class.spec]p10: 8256 // The template parameter list of a specialization shall not 8257 // contain default template argument values. 8258 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8259 Decl *Param = TemplateParams->getParam(I); 8260 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 8261 if (TTP->hasDefaultArgument()) { 8262 Diag(TTP->getDefaultArgumentLoc(), 8263 diag::err_default_arg_in_partial_spec); 8264 TTP->removeDefaultArgument(); 8265 } 8266 } else if (NonTypeTemplateParmDecl *NTTP 8267 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 8268 if (Expr *DefArg = NTTP->getDefaultArgument()) { 8269 Diag(NTTP->getDefaultArgumentLoc(), 8270 diag::err_default_arg_in_partial_spec) 8271 << DefArg->getSourceRange(); 8272 NTTP->removeDefaultArgument(); 8273 } 8274 } else { 8275 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 8276 if (TTP->hasDefaultArgument()) { 8277 Diag(TTP->getDefaultArgument().getLocation(), 8278 diag::err_default_arg_in_partial_spec) 8279 << TTP->getDefaultArgument().getSourceRange(); 8280 TTP->removeDefaultArgument(); 8281 } 8282 } 8283 } 8284 } else if (TemplateParams) { 8285 if (TUK == TUK_Friend) 8286 Diag(KWLoc, diag::err_template_spec_friend) 8287 << FixItHint::CreateRemoval( 8288 SourceRange(TemplateParams->getTemplateLoc(), 8289 TemplateParams->getRAngleLoc())) 8290 << SourceRange(LAngleLoc, RAngleLoc); 8291 } else { 8292 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl"); 8293 } 8294 8295 // Check that the specialization uses the same tag kind as the 8296 // original template. 8297 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 8298 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 8299 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 8300 Kind, TUK == TUK_Definition, KWLoc, 8301 ClassTemplate->getIdentifier())) { 8302 Diag(KWLoc, diag::err_use_with_wrong_tag) 8303 << ClassTemplate 8304 << FixItHint::CreateReplacement(KWLoc, 8305 ClassTemplate->getTemplatedDecl()->getKindName()); 8306 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 8307 diag::note_previous_use); 8308 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 8309 } 8310 8311 // Translate the parser's template argument list in our AST format. 8312 TemplateArgumentListInfo TemplateArgs = 8313 makeTemplateArgumentListInfo(*this, TemplateId); 8314 8315 // Check for unexpanded parameter packs in any of the template arguments. 8316 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 8317 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 8318 UPPC_PartialSpecialization)) 8319 return true; 8320 8321 // Check that the template argument list is well-formed for this 8322 // template. 8323 SmallVector<TemplateArgument, 4> Converted; 8324 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 8325 TemplateArgs, false, Converted, 8326 /*UpdateArgsWithConversion=*/true)) 8327 return true; 8328 8329 // Find the class template (partial) specialization declaration that 8330 // corresponds to these arguments. 8331 if (isPartialSpecialization) { 8332 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate, 8333 TemplateArgs.size(), Converted)) 8334 return true; 8335 8336 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we 8337 // also do it during instantiation. 8338 if (!Name.isDependent() && 8339 !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs, 8340 Converted)) { 8341 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 8342 << ClassTemplate->getDeclName(); 8343 isPartialSpecialization = false; 8344 } 8345 } 8346 8347 void *InsertPos = nullptr; 8348 ClassTemplateSpecializationDecl *PrevDecl = nullptr; 8349 8350 if (isPartialSpecialization) 8351 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, 8352 TemplateParams, 8353 InsertPos); 8354 else 8355 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos); 8356 8357 ClassTemplateSpecializationDecl *Specialization = nullptr; 8358 8359 // Check whether we can declare a class template specialization in 8360 // the current scope. 8361 if (TUK != TUK_Friend && 8362 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 8363 TemplateNameLoc, 8364 isPartialSpecialization)) 8365 return true; 8366 8367 // The canonical type 8368 QualType CanonType; 8369 if (isPartialSpecialization) { 8370 // Build the canonical type that describes the converted template 8371 // arguments of the class template partial specialization. 8372 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8373 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 8374 Converted); 8375 8376 if (Context.hasSameType(CanonType, 8377 ClassTemplate->getInjectedClassNameSpecialization()) && 8378 (!Context.getLangOpts().CPlusPlus20 || 8379 !TemplateParams->hasAssociatedConstraints())) { 8380 // C++ [temp.class.spec]p9b3: 8381 // 8382 // -- The argument list of the specialization shall not be identical 8383 // to the implicit argument list of the primary template. 8384 // 8385 // This rule has since been removed, because it's redundant given DR1495, 8386 // but we keep it because it produces better diagnostics and recovery. 8387 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 8388 << /*class template*/0 << (TUK == TUK_Definition) 8389 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 8390 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 8391 ClassTemplate->getIdentifier(), 8392 TemplateNameLoc, 8393 Attr, 8394 TemplateParams, 8395 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 8396 /*FriendLoc*/SourceLocation(), 8397 TemplateParameterLists.size() - 1, 8398 TemplateParameterLists.data()); 8399 } 8400 8401 // Create a new class template partial specialization declaration node. 8402 ClassTemplatePartialSpecializationDecl *PrevPartial 8403 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 8404 ClassTemplatePartialSpecializationDecl *Partial 8405 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 8406 ClassTemplate->getDeclContext(), 8407 KWLoc, TemplateNameLoc, 8408 TemplateParams, 8409 ClassTemplate, 8410 Converted, 8411 TemplateArgs, 8412 CanonType, 8413 PrevPartial); 8414 SetNestedNameSpecifier(*this, Partial, SS); 8415 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 8416 Partial->setTemplateParameterListsInfo( 8417 Context, TemplateParameterLists.drop_back(1)); 8418 } 8419 8420 if (!PrevPartial) 8421 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 8422 Specialization = Partial; 8423 8424 // If we are providing an explicit specialization of a member class 8425 // template specialization, make a note of that. 8426 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 8427 PrevPartial->setMemberSpecialization(); 8428 8429 CheckTemplatePartialSpecialization(Partial); 8430 } else { 8431 // Create a new class template specialization declaration node for 8432 // this explicit specialization or friend declaration. 8433 Specialization 8434 = ClassTemplateSpecializationDecl::Create(Context, Kind, 8435 ClassTemplate->getDeclContext(), 8436 KWLoc, TemplateNameLoc, 8437 ClassTemplate, 8438 Converted, 8439 PrevDecl); 8440 SetNestedNameSpecifier(*this, Specialization, SS); 8441 if (TemplateParameterLists.size() > 0) { 8442 Specialization->setTemplateParameterListsInfo(Context, 8443 TemplateParameterLists); 8444 } 8445 8446 if (!PrevDecl) 8447 ClassTemplate->AddSpecialization(Specialization, InsertPos); 8448 8449 if (CurContext->isDependentContext()) { 8450 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8451 CanonType = Context.getTemplateSpecializationType( 8452 CanonTemplate, Converted); 8453 } else { 8454 CanonType = Context.getTypeDeclType(Specialization); 8455 } 8456 } 8457 8458 // C++ [temp.expl.spec]p6: 8459 // If a template, a member template or the member of a class template is 8460 // explicitly specialized then that specialization shall be declared 8461 // before the first use of that specialization that would cause an implicit 8462 // instantiation to take place, in every translation unit in which such a 8463 // use occurs; no diagnostic is required. 8464 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 8465 bool Okay = false; 8466 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8467 // Is there any previous explicit specialization declaration? 8468 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8469 Okay = true; 8470 break; 8471 } 8472 } 8473 8474 if (!Okay) { 8475 SourceRange Range(TemplateNameLoc, RAngleLoc); 8476 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 8477 << Context.getTypeDeclType(Specialization) << Range; 8478 8479 Diag(PrevDecl->getPointOfInstantiation(), 8480 diag::note_instantiation_required_here) 8481 << (PrevDecl->getTemplateSpecializationKind() 8482 != TSK_ImplicitInstantiation); 8483 return true; 8484 } 8485 } 8486 8487 // If this is not a friend, note that this is an explicit specialization. 8488 if (TUK != TUK_Friend) 8489 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 8490 8491 // Check that this isn't a redefinition of this specialization. 8492 if (TUK == TUK_Definition) { 8493 RecordDecl *Def = Specialization->getDefinition(); 8494 NamedDecl *Hidden = nullptr; 8495 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 8496 SkipBody->ShouldSkip = true; 8497 SkipBody->Previous = Def; 8498 makeMergedDefinitionVisible(Hidden); 8499 } else if (Def) { 8500 SourceRange Range(TemplateNameLoc, RAngleLoc); 8501 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range; 8502 Diag(Def->getLocation(), diag::note_previous_definition); 8503 Specialization->setInvalidDecl(); 8504 return true; 8505 } 8506 } 8507 8508 ProcessDeclAttributeList(S, Specialization, Attr); 8509 8510 // Add alignment attributes if necessary; these attributes are checked when 8511 // the ASTContext lays out the structure. 8512 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 8513 AddAlignmentAttributesForRecord(Specialization); 8514 AddMsStructLayoutForRecord(Specialization); 8515 } 8516 8517 if (ModulePrivateLoc.isValid()) 8518 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 8519 << (isPartialSpecialization? 1 : 0) 8520 << FixItHint::CreateRemoval(ModulePrivateLoc); 8521 8522 // Build the fully-sugared type for this class template 8523 // specialization as the user wrote in the specialization 8524 // itself. This means that we'll pretty-print the type retrieved 8525 // from the specialization's declaration the way that the user 8526 // actually wrote the specialization, rather than formatting the 8527 // name based on the "canonical" representation used to store the 8528 // template arguments in the specialization. 8529 TypeSourceInfo *WrittenTy 8530 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 8531 TemplateArgs, CanonType); 8532 if (TUK != TUK_Friend) { 8533 Specialization->setTypeAsWritten(WrittenTy); 8534 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 8535 } 8536 8537 // C++ [temp.expl.spec]p9: 8538 // A template explicit specialization is in the scope of the 8539 // namespace in which the template was defined. 8540 // 8541 // We actually implement this paragraph where we set the semantic 8542 // context (in the creation of the ClassTemplateSpecializationDecl), 8543 // but we also maintain the lexical context where the actual 8544 // definition occurs. 8545 Specialization->setLexicalDeclContext(CurContext); 8546 8547 // We may be starting the definition of this specialization. 8548 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 8549 Specialization->startDefinition(); 8550 8551 if (TUK == TUK_Friend) { 8552 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 8553 TemplateNameLoc, 8554 WrittenTy, 8555 /*FIXME:*/KWLoc); 8556 Friend->setAccess(AS_public); 8557 CurContext->addDecl(Friend); 8558 } else { 8559 // Add the specialization into its lexical context, so that it can 8560 // be seen when iterating through the list of declarations in that 8561 // context. However, specializations are not found by name lookup. 8562 CurContext->addDecl(Specialization); 8563 } 8564 8565 if (SkipBody && SkipBody->ShouldSkip) 8566 return SkipBody->Previous; 8567 8568 return Specialization; 8569 } 8570 8571 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 8572 MultiTemplateParamsArg TemplateParameterLists, 8573 Declarator &D) { 8574 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 8575 ActOnDocumentableDecl(NewDecl); 8576 return NewDecl; 8577 } 8578 8579 Decl *Sema::ActOnConceptDefinition(Scope *S, 8580 MultiTemplateParamsArg TemplateParameterLists, 8581 IdentifierInfo *Name, SourceLocation NameLoc, 8582 Expr *ConstraintExpr) { 8583 DeclContext *DC = CurContext; 8584 8585 if (!DC->getRedeclContext()->isFileContext()) { 8586 Diag(NameLoc, 8587 diag::err_concept_decls_may_only_appear_in_global_namespace_scope); 8588 return nullptr; 8589 } 8590 8591 if (TemplateParameterLists.size() > 1) { 8592 Diag(NameLoc, diag::err_concept_extra_headers); 8593 return nullptr; 8594 } 8595 8596 if (TemplateParameterLists.front()->size() == 0) { 8597 Diag(NameLoc, diag::err_concept_no_parameters); 8598 return nullptr; 8599 } 8600 8601 if (DiagnoseUnexpandedParameterPack(ConstraintExpr)) 8602 return nullptr; 8603 8604 ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name, 8605 TemplateParameterLists.front(), 8606 ConstraintExpr); 8607 8608 if (NewDecl->hasAssociatedConstraints()) { 8609 // C++2a [temp.concept]p4: 8610 // A concept shall not have associated constraints. 8611 Diag(NameLoc, diag::err_concept_no_associated_constraints); 8612 NewDecl->setInvalidDecl(); 8613 } 8614 8615 // Check for conflicting previous declaration. 8616 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc); 8617 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 8618 ForVisibleRedeclaration); 8619 LookupName(Previous, S); 8620 8621 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false, 8622 /*AllowInlineNamespace*/false); 8623 if (!Previous.empty()) { 8624 auto *Old = Previous.getRepresentativeDecl(); 8625 Diag(NameLoc, isa<ConceptDecl>(Old) ? diag::err_redefinition : 8626 diag::err_redefinition_different_kind) << NewDecl->getDeclName(); 8627 Diag(Old->getLocation(), diag::note_previous_definition); 8628 } 8629 8630 ActOnDocumentableDecl(NewDecl); 8631 PushOnScopeChains(NewDecl, S); 8632 return NewDecl; 8633 } 8634 8635 /// \brief Strips various properties off an implicit instantiation 8636 /// that has just been explicitly specialized. 8637 static void StripImplicitInstantiation(NamedDecl *D) { 8638 D->dropAttr<DLLImportAttr>(); 8639 D->dropAttr<DLLExportAttr>(); 8640 8641 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 8642 FD->setInlineSpecified(false); 8643 } 8644 8645 /// Compute the diagnostic location for an explicit instantiation 8646 // declaration or definition. 8647 static SourceLocation DiagLocForExplicitInstantiation( 8648 NamedDecl* D, SourceLocation PointOfInstantiation) { 8649 // Explicit instantiations following a specialization have no effect and 8650 // hence no PointOfInstantiation. In that case, walk decl backwards 8651 // until a valid name loc is found. 8652 SourceLocation PrevDiagLoc = PointOfInstantiation; 8653 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 8654 Prev = Prev->getPreviousDecl()) { 8655 PrevDiagLoc = Prev->getLocation(); 8656 } 8657 assert(PrevDiagLoc.isValid() && 8658 "Explicit instantiation without point of instantiation?"); 8659 return PrevDiagLoc; 8660 } 8661 8662 /// Diagnose cases where we have an explicit template specialization 8663 /// before/after an explicit template instantiation, producing diagnostics 8664 /// for those cases where they are required and determining whether the 8665 /// new specialization/instantiation will have any effect. 8666 /// 8667 /// \param NewLoc the location of the new explicit specialization or 8668 /// instantiation. 8669 /// 8670 /// \param NewTSK the kind of the new explicit specialization or instantiation. 8671 /// 8672 /// \param PrevDecl the previous declaration of the entity. 8673 /// 8674 /// \param PrevTSK the kind of the old explicit specialization or instantiatin. 8675 /// 8676 /// \param PrevPointOfInstantiation if valid, indicates where the previus 8677 /// declaration was instantiated (either implicitly or explicitly). 8678 /// 8679 /// \param HasNoEffect will be set to true to indicate that the new 8680 /// specialization or instantiation has no effect and should be ignored. 8681 /// 8682 /// \returns true if there was an error that should prevent the introduction of 8683 /// the new declaration into the AST, false otherwise. 8684 bool 8685 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 8686 TemplateSpecializationKind NewTSK, 8687 NamedDecl *PrevDecl, 8688 TemplateSpecializationKind PrevTSK, 8689 SourceLocation PrevPointOfInstantiation, 8690 bool &HasNoEffect) { 8691 HasNoEffect = false; 8692 8693 switch (NewTSK) { 8694 case TSK_Undeclared: 8695 case TSK_ImplicitInstantiation: 8696 assert( 8697 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && 8698 "previous declaration must be implicit!"); 8699 return false; 8700 8701 case TSK_ExplicitSpecialization: 8702 switch (PrevTSK) { 8703 case TSK_Undeclared: 8704 case TSK_ExplicitSpecialization: 8705 // Okay, we're just specializing something that is either already 8706 // explicitly specialized or has merely been mentioned without any 8707 // instantiation. 8708 return false; 8709 8710 case TSK_ImplicitInstantiation: 8711 if (PrevPointOfInstantiation.isInvalid()) { 8712 // The declaration itself has not actually been instantiated, so it is 8713 // still okay to specialize it. 8714 StripImplicitInstantiation(PrevDecl); 8715 return false; 8716 } 8717 // Fall through 8718 LLVM_FALLTHROUGH; 8719 8720 case TSK_ExplicitInstantiationDeclaration: 8721 case TSK_ExplicitInstantiationDefinition: 8722 assert((PrevTSK == TSK_ImplicitInstantiation || 8723 PrevPointOfInstantiation.isValid()) && 8724 "Explicit instantiation without point of instantiation?"); 8725 8726 // C++ [temp.expl.spec]p6: 8727 // If a template, a member template or the member of a class template 8728 // is explicitly specialized then that specialization shall be declared 8729 // before the first use of that specialization that would cause an 8730 // implicit instantiation to take place, in every translation unit in 8731 // which such a use occurs; no diagnostic is required. 8732 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8733 // Is there any previous explicit specialization declaration? 8734 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 8735 return false; 8736 } 8737 8738 Diag(NewLoc, diag::err_specialization_after_instantiation) 8739 << PrevDecl; 8740 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 8741 << (PrevTSK != TSK_ImplicitInstantiation); 8742 8743 return true; 8744 } 8745 llvm_unreachable("The switch over PrevTSK must be exhaustive."); 8746 8747 case TSK_ExplicitInstantiationDeclaration: 8748 switch (PrevTSK) { 8749 case TSK_ExplicitInstantiationDeclaration: 8750 // This explicit instantiation declaration is redundant (that's okay). 8751 HasNoEffect = true; 8752 return false; 8753 8754 case TSK_Undeclared: 8755 case TSK_ImplicitInstantiation: 8756 // We're explicitly instantiating something that may have already been 8757 // implicitly instantiated; that's fine. 8758 return false; 8759 8760 case TSK_ExplicitSpecialization: 8761 // C++0x [temp.explicit]p4: 8762 // For a given set of template parameters, if an explicit instantiation 8763 // of a template appears after a declaration of an explicit 8764 // specialization for that template, the explicit instantiation has no 8765 // effect. 8766 HasNoEffect = true; 8767 return false; 8768 8769 case TSK_ExplicitInstantiationDefinition: 8770 // C++0x [temp.explicit]p10: 8771 // If an entity is the subject of both an explicit instantiation 8772 // declaration and an explicit instantiation definition in the same 8773 // translation unit, the definition shall follow the declaration. 8774 Diag(NewLoc, 8775 diag::err_explicit_instantiation_declaration_after_definition); 8776 8777 // Explicit instantiations following a specialization have no effect and 8778 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 8779 // until a valid name loc is found. 8780 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 8781 diag::note_explicit_instantiation_definition_here); 8782 HasNoEffect = true; 8783 return false; 8784 } 8785 llvm_unreachable("Unexpected TemplateSpecializationKind!"); 8786 8787 case TSK_ExplicitInstantiationDefinition: 8788 switch (PrevTSK) { 8789 case TSK_Undeclared: 8790 case TSK_ImplicitInstantiation: 8791 // We're explicitly instantiating something that may have already been 8792 // implicitly instantiated; that's fine. 8793 return false; 8794 8795 case TSK_ExplicitSpecialization: 8796 // C++ DR 259, C++0x [temp.explicit]p4: 8797 // For a given set of template parameters, if an explicit 8798 // instantiation of a template appears after a declaration of 8799 // an explicit specialization for that template, the explicit 8800 // instantiation has no effect. 8801 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization) 8802 << PrevDecl; 8803 Diag(PrevDecl->getLocation(), 8804 diag::note_previous_template_specialization); 8805 HasNoEffect = true; 8806 return false; 8807 8808 case TSK_ExplicitInstantiationDeclaration: 8809 // We're explicitly instantiating a definition for something for which we 8810 // were previously asked to suppress instantiations. That's fine. 8811 8812 // C++0x [temp.explicit]p4: 8813 // For a given set of template parameters, if an explicit instantiation 8814 // of a template appears after a declaration of an explicit 8815 // specialization for that template, the explicit instantiation has no 8816 // effect. 8817 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8818 // Is there any previous explicit specialization declaration? 8819 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8820 HasNoEffect = true; 8821 break; 8822 } 8823 } 8824 8825 return false; 8826 8827 case TSK_ExplicitInstantiationDefinition: 8828 // C++0x [temp.spec]p5: 8829 // For a given template and a given set of template-arguments, 8830 // - an explicit instantiation definition shall appear at most once 8831 // in a program, 8832 8833 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. 8834 Diag(NewLoc, (getLangOpts().MSVCCompat) 8835 ? diag::ext_explicit_instantiation_duplicate 8836 : diag::err_explicit_instantiation_duplicate) 8837 << PrevDecl; 8838 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 8839 diag::note_previous_explicit_instantiation); 8840 HasNoEffect = true; 8841 return false; 8842 } 8843 } 8844 8845 llvm_unreachable("Missing specialization/instantiation case?"); 8846 } 8847 8848 /// Perform semantic analysis for the given dependent function 8849 /// template specialization. 8850 /// 8851 /// The only possible way to get a dependent function template specialization 8852 /// is with a friend declaration, like so: 8853 /// 8854 /// \code 8855 /// template \<class T> void foo(T); 8856 /// template \<class T> class A { 8857 /// friend void foo<>(T); 8858 /// }; 8859 /// \endcode 8860 /// 8861 /// There really isn't any useful analysis we can do here, so we 8862 /// just store the information. 8863 bool 8864 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 8865 const TemplateArgumentListInfo &ExplicitTemplateArgs, 8866 LookupResult &Previous) { 8867 // Remove anything from Previous that isn't a function template in 8868 // the correct context. 8869 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 8870 LookupResult::Filter F = Previous.makeFilter(); 8871 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; 8872 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; 8873 while (F.hasNext()) { 8874 NamedDecl *D = F.next()->getUnderlyingDecl(); 8875 if (!isa<FunctionTemplateDecl>(D)) { 8876 F.erase(); 8877 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D)); 8878 continue; 8879 } 8880 8881 if (!FDLookupContext->InEnclosingNamespaceSetOf( 8882 D->getDeclContext()->getRedeclContext())) { 8883 F.erase(); 8884 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D)); 8885 continue; 8886 } 8887 } 8888 F.done(); 8889 8890 if (Previous.empty()) { 8891 Diag(FD->getLocation(), 8892 diag::err_dependent_function_template_spec_no_match); 8893 for (auto &P : DiscardedCandidates) 8894 Diag(P.second->getLocation(), 8895 diag::note_dependent_function_template_spec_discard_reason) 8896 << P.first; 8897 return true; 8898 } 8899 8900 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 8901 ExplicitTemplateArgs); 8902 return false; 8903 } 8904 8905 /// Perform semantic analysis for the given function template 8906 /// specialization. 8907 /// 8908 /// This routine performs all of the semantic analysis required for an 8909 /// explicit function template specialization. On successful completion, 8910 /// the function declaration \p FD will become a function template 8911 /// specialization. 8912 /// 8913 /// \param FD the function declaration, which will be updated to become a 8914 /// function template specialization. 8915 /// 8916 /// \param ExplicitTemplateArgs the explicitly-provided template arguments, 8917 /// if any. Note that this may be valid info even when 0 arguments are 8918 /// explicitly provided as in, e.g., \c void sort<>(char*, char*); 8919 /// as it anyway contains info on the angle brackets locations. 8920 /// 8921 /// \param Previous the set of declarations that may be specialized by 8922 /// this function specialization. 8923 /// 8924 /// \param QualifiedFriend whether this is a lookup for a qualified friend 8925 /// declaration with no explicit template argument list that might be 8926 /// befriending a function template specialization. 8927 bool Sema::CheckFunctionTemplateSpecialization( 8928 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, 8929 LookupResult &Previous, bool QualifiedFriend) { 8930 // The set of function template specializations that could match this 8931 // explicit function template specialization. 8932 UnresolvedSet<8> Candidates; 8933 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), 8934 /*ForTakingAddress=*/false); 8935 8936 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> 8937 ConvertedTemplateArgs; 8938 8939 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 8940 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 8941 I != E; ++I) { 8942 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 8943 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 8944 // Only consider templates found within the same semantic lookup scope as 8945 // FD. 8946 if (!FDLookupContext->InEnclosingNamespaceSetOf( 8947 Ovl->getDeclContext()->getRedeclContext())) 8948 continue; 8949 8950 // When matching a constexpr member function template specialization 8951 // against the primary template, we don't yet know whether the 8952 // specialization has an implicit 'const' (because we don't know whether 8953 // it will be a static member function until we know which template it 8954 // specializes), so adjust it now assuming it specializes this template. 8955 QualType FT = FD->getType(); 8956 if (FD->isConstexpr()) { 8957 CXXMethodDecl *OldMD = 8958 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 8959 if (OldMD && OldMD->isConst()) { 8960 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 8961 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8962 EPI.TypeQuals.addConst(); 8963 FT = Context.getFunctionType(FPT->getReturnType(), 8964 FPT->getParamTypes(), EPI); 8965 } 8966 } 8967 8968 TemplateArgumentListInfo Args; 8969 if (ExplicitTemplateArgs) 8970 Args = *ExplicitTemplateArgs; 8971 8972 // C++ [temp.expl.spec]p11: 8973 // A trailing template-argument can be left unspecified in the 8974 // template-id naming an explicit function template specialization 8975 // provided it can be deduced from the function argument type. 8976 // Perform template argument deduction to determine whether we may be 8977 // specializing this template. 8978 // FIXME: It is somewhat wasteful to build 8979 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 8980 FunctionDecl *Specialization = nullptr; 8981 if (TemplateDeductionResult TDK = DeduceTemplateArguments( 8982 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), 8983 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, 8984 Info)) { 8985 // Template argument deduction failed; record why it failed, so 8986 // that we can provide nifty diagnostics. 8987 FailedCandidates.addCandidate().set( 8988 I.getPair(), FunTmpl->getTemplatedDecl(), 8989 MakeDeductionFailureInfo(Context, TDK, Info)); 8990 (void)TDK; 8991 continue; 8992 } 8993 8994 // Target attributes are part of the cuda function signature, so 8995 // the deduced template's cuda target must match that of the 8996 // specialization. Given that C++ template deduction does not 8997 // take target attributes into account, we reject candidates 8998 // here that have a different target. 8999 if (LangOpts.CUDA && 9000 IdentifyCUDATarget(Specialization, 9001 /* IgnoreImplicitHDAttr = */ true) != 9002 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) { 9003 FailedCandidates.addCandidate().set( 9004 I.getPair(), FunTmpl->getTemplatedDecl(), 9005 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 9006 continue; 9007 } 9008 9009 // Record this candidate. 9010 if (ExplicitTemplateArgs) 9011 ConvertedTemplateArgs[Specialization] = std::move(Args); 9012 Candidates.addDecl(Specialization, I.getAccess()); 9013 } 9014 } 9015 9016 // For a qualified friend declaration (with no explicit marker to indicate 9017 // that a template specialization was intended), note all (template and 9018 // non-template) candidates. 9019 if (QualifiedFriend && Candidates.empty()) { 9020 Diag(FD->getLocation(), diag::err_qualified_friend_no_match) 9021 << FD->getDeclName() << FDLookupContext; 9022 // FIXME: We should form a single candidate list and diagnose all 9023 // candidates at once, to get proper sorting and limiting. 9024 for (auto *OldND : Previous) { 9025 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl())) 9026 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false); 9027 } 9028 FailedCandidates.NoteCandidates(*this, FD->getLocation()); 9029 return true; 9030 } 9031 9032 // Find the most specialized function template. 9033 UnresolvedSetIterator Result = getMostSpecialized( 9034 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(), 9035 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), 9036 PDiag(diag::err_function_template_spec_ambiguous) 9037 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), 9038 PDiag(diag::note_function_template_spec_matched)); 9039 9040 if (Result == Candidates.end()) 9041 return true; 9042 9043 // Ignore access information; it doesn't figure into redeclaration checking. 9044 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 9045 9046 FunctionTemplateSpecializationInfo *SpecInfo 9047 = Specialization->getTemplateSpecializationInfo(); 9048 assert(SpecInfo && "Function template specialization info missing?"); 9049 9050 // Note: do not overwrite location info if previous template 9051 // specialization kind was explicit. 9052 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 9053 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 9054 Specialization->setLocation(FD->getLocation()); 9055 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); 9056 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 9057 // function can differ from the template declaration with respect to 9058 // the constexpr specifier. 9059 // FIXME: We need an update record for this AST mutation. 9060 // FIXME: What if there are multiple such prior declarations (for instance, 9061 // from different modules)? 9062 Specialization->setConstexprKind(FD->getConstexprKind()); 9063 } 9064 9065 // FIXME: Check if the prior specialization has a point of instantiation. 9066 // If so, we have run afoul of . 9067 9068 // If this is a friend declaration, then we're not really declaring 9069 // an explicit specialization. 9070 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 9071 9072 // Check the scope of this explicit specialization. 9073 if (!isFriend && 9074 CheckTemplateSpecializationScope(*this, 9075 Specialization->getPrimaryTemplate(), 9076 Specialization, FD->getLocation(), 9077 false)) 9078 return true; 9079 9080 // C++ [temp.expl.spec]p6: 9081 // If a template, a member template or the member of a class template is 9082 // explicitly specialized then that specialization shall be declared 9083 // before the first use of that specialization that would cause an implicit 9084 // instantiation to take place, in every translation unit in which such a 9085 // use occurs; no diagnostic is required. 9086 bool HasNoEffect = false; 9087 if (!isFriend && 9088 CheckSpecializationInstantiationRedecl(FD->getLocation(), 9089 TSK_ExplicitSpecialization, 9090 Specialization, 9091 SpecInfo->getTemplateSpecializationKind(), 9092 SpecInfo->getPointOfInstantiation(), 9093 HasNoEffect)) 9094 return true; 9095 9096 // Mark the prior declaration as an explicit specialization, so that later 9097 // clients know that this is an explicit specialization. 9098 if (!isFriend) { 9099 // Since explicit specializations do not inherit '=delete' from their 9100 // primary function template - check if the 'specialization' that was 9101 // implicitly generated (during template argument deduction for partial 9102 // ordering) from the most specialized of all the function templates that 9103 // 'FD' could have been specializing, has a 'deleted' definition. If so, 9104 // first check that it was implicitly generated during template argument 9105 // deduction by making sure it wasn't referenced, and then reset the deleted 9106 // flag to not-deleted, so that we can inherit that information from 'FD'. 9107 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && 9108 !Specialization->getCanonicalDecl()->isReferenced()) { 9109 // FIXME: This assert will not hold in the presence of modules. 9110 assert( 9111 Specialization->getCanonicalDecl() == Specialization && 9112 "This must be the only existing declaration of this specialization"); 9113 // FIXME: We need an update record for this AST mutation. 9114 Specialization->setDeletedAsWritten(false); 9115 } 9116 // FIXME: We need an update record for this AST mutation. 9117 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 9118 MarkUnusedFileScopedDecl(Specialization); 9119 } 9120 9121 // Turn the given function declaration into a function template 9122 // specialization, with the template arguments from the previous 9123 // specialization. 9124 // Take copies of (semantic and syntactic) template argument lists. 9125 const TemplateArgumentList* TemplArgs = new (Context) 9126 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 9127 FD->setFunctionTemplateSpecialization( 9128 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr, 9129 SpecInfo->getTemplateSpecializationKind(), 9130 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); 9131 9132 // A function template specialization inherits the target attributes 9133 // of its template. (We require the attributes explicitly in the 9134 // code to match, but a template may have implicit attributes by 9135 // virtue e.g. of being constexpr, and it passes these implicit 9136 // attributes on to its specializations.) 9137 if (LangOpts.CUDA) 9138 inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate()); 9139 9140 // The "previous declaration" for this function template specialization is 9141 // the prior function template specialization. 9142 Previous.clear(); 9143 Previous.addDecl(Specialization); 9144 return false; 9145 } 9146 9147 /// Perform semantic analysis for the given non-template member 9148 /// specialization. 9149 /// 9150 /// This routine performs all of the semantic analysis required for an 9151 /// explicit member function specialization. On successful completion, 9152 /// the function declaration \p FD will become a member function 9153 /// specialization. 9154 /// 9155 /// \param Member the member declaration, which will be updated to become a 9156 /// specialization. 9157 /// 9158 /// \param Previous the set of declarations, one of which may be specialized 9159 /// by this function specialization; the set will be modified to contain the 9160 /// redeclared member. 9161 bool 9162 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 9163 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 9164 9165 // Try to find the member we are instantiating. 9166 NamedDecl *FoundInstantiation = nullptr; 9167 NamedDecl *Instantiation = nullptr; 9168 NamedDecl *InstantiatedFrom = nullptr; 9169 MemberSpecializationInfo *MSInfo = nullptr; 9170 9171 if (Previous.empty()) { 9172 // Nowhere to look anyway. 9173 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 9174 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 9175 I != E; ++I) { 9176 NamedDecl *D = (*I)->getUnderlyingDecl(); 9177 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 9178 QualType Adjusted = Function->getType(); 9179 if (!hasExplicitCallingConv(Adjusted)) 9180 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType()); 9181 // This doesn't handle deduced return types, but both function 9182 // declarations should be undeduced at this point. 9183 if (Context.hasSameType(Adjusted, Method->getType())) { 9184 FoundInstantiation = *I; 9185 Instantiation = Method; 9186 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 9187 MSInfo = Method->getMemberSpecializationInfo(); 9188 break; 9189 } 9190 } 9191 } 9192 } else if (isa<VarDecl>(Member)) { 9193 VarDecl *PrevVar; 9194 if (Previous.isSingleResult() && 9195 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 9196 if (PrevVar->isStaticDataMember()) { 9197 FoundInstantiation = Previous.getRepresentativeDecl(); 9198 Instantiation = PrevVar; 9199 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 9200 MSInfo = PrevVar->getMemberSpecializationInfo(); 9201 } 9202 } else if (isa<RecordDecl>(Member)) { 9203 CXXRecordDecl *PrevRecord; 9204 if (Previous.isSingleResult() && 9205 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 9206 FoundInstantiation = Previous.getRepresentativeDecl(); 9207 Instantiation = PrevRecord; 9208 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 9209 MSInfo = PrevRecord->getMemberSpecializationInfo(); 9210 } 9211 } else if (isa<EnumDecl>(Member)) { 9212 EnumDecl *PrevEnum; 9213 if (Previous.isSingleResult() && 9214 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 9215 FoundInstantiation = Previous.getRepresentativeDecl(); 9216 Instantiation = PrevEnum; 9217 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 9218 MSInfo = PrevEnum->getMemberSpecializationInfo(); 9219 } 9220 } 9221 9222 if (!Instantiation) { 9223 // There is no previous declaration that matches. Since member 9224 // specializations are always out-of-line, the caller will complain about 9225 // this mismatch later. 9226 return false; 9227 } 9228 9229 // A member specialization in a friend declaration isn't really declaring 9230 // an explicit specialization, just identifying a specific (possibly implicit) 9231 // specialization. Don't change the template specialization kind. 9232 // 9233 // FIXME: Is this really valid? Other compilers reject. 9234 if (Member->getFriendObjectKind() != Decl::FOK_None) { 9235 // Preserve instantiation information. 9236 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 9237 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 9238 cast<CXXMethodDecl>(InstantiatedFrom), 9239 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 9240 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 9241 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 9242 cast<CXXRecordDecl>(InstantiatedFrom), 9243 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 9244 } 9245 9246 Previous.clear(); 9247 Previous.addDecl(FoundInstantiation); 9248 return false; 9249 } 9250 9251 // Make sure that this is a specialization of a member. 9252 if (!InstantiatedFrom) { 9253 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 9254 << Member; 9255 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 9256 return true; 9257 } 9258 9259 // C++ [temp.expl.spec]p6: 9260 // If a template, a member template or the member of a class template is 9261 // explicitly specialized then that specialization shall be declared 9262 // before the first use of that specialization that would cause an implicit 9263 // instantiation to take place, in every translation unit in which such a 9264 // use occurs; no diagnostic is required. 9265 assert(MSInfo && "Member specialization info missing?"); 9266 9267 bool HasNoEffect = false; 9268 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 9269 TSK_ExplicitSpecialization, 9270 Instantiation, 9271 MSInfo->getTemplateSpecializationKind(), 9272 MSInfo->getPointOfInstantiation(), 9273 HasNoEffect)) 9274 return true; 9275 9276 // Check the scope of this explicit specialization. 9277 if (CheckTemplateSpecializationScope(*this, 9278 InstantiatedFrom, 9279 Instantiation, Member->getLocation(), 9280 false)) 9281 return true; 9282 9283 // Note that this member specialization is an "instantiation of" the 9284 // corresponding member of the original template. 9285 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) { 9286 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 9287 if (InstantiationFunction->getTemplateSpecializationKind() == 9288 TSK_ImplicitInstantiation) { 9289 // Explicit specializations of member functions of class templates do not 9290 // inherit '=delete' from the member function they are specializing. 9291 if (InstantiationFunction->isDeleted()) { 9292 // FIXME: This assert will not hold in the presence of modules. 9293 assert(InstantiationFunction->getCanonicalDecl() == 9294 InstantiationFunction); 9295 // FIXME: We need an update record for this AST mutation. 9296 InstantiationFunction->setDeletedAsWritten(false); 9297 } 9298 } 9299 9300 MemberFunction->setInstantiationOfMemberFunction( 9301 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9302 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) { 9303 MemberVar->setInstantiationOfStaticDataMember( 9304 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9305 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) { 9306 MemberClass->setInstantiationOfMemberClass( 9307 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9308 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) { 9309 MemberEnum->setInstantiationOfMemberEnum( 9310 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9311 } else { 9312 llvm_unreachable("unknown member specialization kind"); 9313 } 9314 9315 // Save the caller the trouble of having to figure out which declaration 9316 // this specialization matches. 9317 Previous.clear(); 9318 Previous.addDecl(FoundInstantiation); 9319 return false; 9320 } 9321 9322 /// Complete the explicit specialization of a member of a class template by 9323 /// updating the instantiated member to be marked as an explicit specialization. 9324 /// 9325 /// \param OrigD The member declaration instantiated from the template. 9326 /// \param Loc The location of the explicit specialization of the member. 9327 template<typename DeclT> 9328 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, 9329 SourceLocation Loc) { 9330 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 9331 return; 9332 9333 // FIXME: Inform AST mutation listeners of this AST mutation. 9334 // FIXME: If there are multiple in-class declarations of the member (from 9335 // multiple modules, or a declaration and later definition of a member type), 9336 // should we update all of them? 9337 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 9338 OrigD->setLocation(Loc); 9339 } 9340 9341 void Sema::CompleteMemberSpecialization(NamedDecl *Member, 9342 LookupResult &Previous) { 9343 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl()); 9344 if (Instantiation == Member) 9345 return; 9346 9347 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation)) 9348 completeMemberSpecializationImpl(*this, Function, Member->getLocation()); 9349 else if (auto *Var = dyn_cast<VarDecl>(Instantiation)) 9350 completeMemberSpecializationImpl(*this, Var, Member->getLocation()); 9351 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation)) 9352 completeMemberSpecializationImpl(*this, Record, Member->getLocation()); 9353 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation)) 9354 completeMemberSpecializationImpl(*this, Enum, Member->getLocation()); 9355 else 9356 llvm_unreachable("unknown member specialization kind"); 9357 } 9358 9359 /// Check the scope of an explicit instantiation. 9360 /// 9361 /// \returns true if a serious error occurs, false otherwise. 9362 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 9363 SourceLocation InstLoc, 9364 bool WasQualifiedName) { 9365 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 9366 DeclContext *CurContext = S.CurContext->getRedeclContext(); 9367 9368 if (CurContext->isRecord()) { 9369 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 9370 << D; 9371 return true; 9372 } 9373 9374 // C++11 [temp.explicit]p3: 9375 // An explicit instantiation shall appear in an enclosing namespace of its 9376 // template. If the name declared in the explicit instantiation is an 9377 // unqualified name, the explicit instantiation shall appear in the 9378 // namespace where its template is declared or, if that namespace is inline 9379 // (7.3.1), any namespace from its enclosing namespace set. 9380 // 9381 // This is DR275, which we do not retroactively apply to C++98/03. 9382 if (WasQualifiedName) { 9383 if (CurContext->Encloses(OrigContext)) 9384 return false; 9385 } else { 9386 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 9387 return false; 9388 } 9389 9390 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 9391 if (WasQualifiedName) 9392 S.Diag(InstLoc, 9393 S.getLangOpts().CPlusPlus11? 9394 diag::err_explicit_instantiation_out_of_scope : 9395 diag::warn_explicit_instantiation_out_of_scope_0x) 9396 << D << NS; 9397 else 9398 S.Diag(InstLoc, 9399 S.getLangOpts().CPlusPlus11? 9400 diag::err_explicit_instantiation_unqualified_wrong_namespace : 9401 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 9402 << D << NS; 9403 } else 9404 S.Diag(InstLoc, 9405 S.getLangOpts().CPlusPlus11? 9406 diag::err_explicit_instantiation_must_be_global : 9407 diag::warn_explicit_instantiation_must_be_global_0x) 9408 << D; 9409 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 9410 return false; 9411 } 9412 9413 /// Common checks for whether an explicit instantiation of \p D is valid. 9414 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D, 9415 SourceLocation InstLoc, 9416 bool WasQualifiedName, 9417 TemplateSpecializationKind TSK) { 9418 // C++ [temp.explicit]p13: 9419 // An explicit instantiation declaration shall not name a specialization of 9420 // a template with internal linkage. 9421 if (TSK == TSK_ExplicitInstantiationDeclaration && 9422 D->getFormalLinkage() == InternalLinkage) { 9423 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D; 9424 return true; 9425 } 9426 9427 // C++11 [temp.explicit]p3: [DR 275] 9428 // An explicit instantiation shall appear in an enclosing namespace of its 9429 // template. 9430 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName)) 9431 return true; 9432 9433 return false; 9434 } 9435 9436 /// Determine whether the given scope specifier has a template-id in it. 9437 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 9438 if (!SS.isSet()) 9439 return false; 9440 9441 // C++11 [temp.explicit]p3: 9442 // If the explicit instantiation is for a member function, a member class 9443 // or a static data member of a class template specialization, the name of 9444 // the class template specialization in the qualified-id for the member 9445 // name shall be a simple-template-id. 9446 // 9447 // C++98 has the same restriction, just worded differently. 9448 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; 9449 NNS = NNS->getPrefix()) 9450 if (const Type *T = NNS->getAsType()) 9451 if (isa<TemplateSpecializationType>(T)) 9452 return true; 9453 9454 return false; 9455 } 9456 9457 /// Make a dllexport or dllimport attr on a class template specialization take 9458 /// effect. 9459 static void dllExportImportClassTemplateSpecialization( 9460 Sema &S, ClassTemplateSpecializationDecl *Def) { 9461 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def)); 9462 assert(A && "dllExportImportClassTemplateSpecialization called " 9463 "on Def without dllexport or dllimport"); 9464 9465 // We reject explicit instantiations in class scope, so there should 9466 // never be any delayed exported classes to worry about. 9467 assert(S.DelayedDllExportClasses.empty() && 9468 "delayed exports present at explicit instantiation"); 9469 S.checkClassLevelDLLAttribute(Def); 9470 9471 // Propagate attribute to base class templates. 9472 for (auto &B : Def->bases()) { 9473 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 9474 B.getType()->getAsCXXRecordDecl())) 9475 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc()); 9476 } 9477 9478 S.referenceDLLExportedClassMethods(); 9479 } 9480 9481 // Explicit instantiation of a class template specialization 9482 DeclResult Sema::ActOnExplicitInstantiation( 9483 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, 9484 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, 9485 TemplateTy TemplateD, SourceLocation TemplateNameLoc, 9486 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, 9487 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { 9488 // Find the class template we're specializing 9489 TemplateName Name = TemplateD.get(); 9490 TemplateDecl *TD = Name.getAsTemplateDecl(); 9491 // Check that the specialization uses the same tag kind as the 9492 // original template. 9493 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 9494 assert(Kind != TTK_Enum && 9495 "Invalid enum tag in class template explicit instantiation!"); 9496 9497 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD); 9498 9499 if (!ClassTemplate) { 9500 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind); 9501 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind; 9502 Diag(TD->getLocation(), diag::note_previous_use); 9503 return true; 9504 } 9505 9506 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 9507 Kind, /*isDefinition*/false, KWLoc, 9508 ClassTemplate->getIdentifier())) { 9509 Diag(KWLoc, diag::err_use_with_wrong_tag) 9510 << ClassTemplate 9511 << FixItHint::CreateReplacement(KWLoc, 9512 ClassTemplate->getTemplatedDecl()->getKindName()); 9513 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 9514 diag::note_previous_use); 9515 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 9516 } 9517 9518 // C++0x [temp.explicit]p2: 9519 // There are two forms of explicit instantiation: an explicit instantiation 9520 // definition and an explicit instantiation declaration. An explicit 9521 // instantiation declaration begins with the extern keyword. [...] 9522 TemplateSpecializationKind TSK = ExternLoc.isInvalid() 9523 ? TSK_ExplicitInstantiationDefinition 9524 : TSK_ExplicitInstantiationDeclaration; 9525 9526 if (TSK == TSK_ExplicitInstantiationDeclaration && 9527 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9528 // Check for dllexport class template instantiation declarations, 9529 // except for MinGW mode. 9530 for (const ParsedAttr &AL : Attr) { 9531 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9532 Diag(ExternLoc, 9533 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9534 Diag(AL.getLoc(), diag::note_attribute); 9535 break; 9536 } 9537 } 9538 9539 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { 9540 Diag(ExternLoc, 9541 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9542 Diag(A->getLocation(), diag::note_attribute); 9543 } 9544 } 9545 9546 // In MSVC mode, dllimported explicit instantiation definitions are treated as 9547 // instantiation declarations for most purposes. 9548 bool DLLImportExplicitInstantiationDef = false; 9549 if (TSK == TSK_ExplicitInstantiationDefinition && 9550 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 9551 // Check for dllimport class template instantiation definitions. 9552 bool DLLImport = 9553 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); 9554 for (const ParsedAttr &AL : Attr) { 9555 if (AL.getKind() == ParsedAttr::AT_DLLImport) 9556 DLLImport = true; 9557 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9558 // dllexport trumps dllimport here. 9559 DLLImport = false; 9560 break; 9561 } 9562 } 9563 if (DLLImport) { 9564 TSK = TSK_ExplicitInstantiationDeclaration; 9565 DLLImportExplicitInstantiationDef = true; 9566 } 9567 } 9568 9569 // Translate the parser's template argument list in our AST format. 9570 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 9571 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 9572 9573 // Check that the template argument list is well-formed for this 9574 // template. 9575 SmallVector<TemplateArgument, 4> Converted; 9576 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 9577 TemplateArgs, false, Converted, 9578 /*UpdateArgsWithConversion=*/true)) 9579 return true; 9580 9581 // Find the class template specialization declaration that 9582 // corresponds to these arguments. 9583 void *InsertPos = nullptr; 9584 ClassTemplateSpecializationDecl *PrevDecl 9585 = ClassTemplate->findSpecialization(Converted, InsertPos); 9586 9587 TemplateSpecializationKind PrevDecl_TSK 9588 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 9589 9590 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr && 9591 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9592 // Check for dllexport class template instantiation definitions in MinGW 9593 // mode, if a previous declaration of the instantiation was seen. 9594 for (const ParsedAttr &AL : Attr) { 9595 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9596 Diag(AL.getLoc(), 9597 diag::warn_attribute_dllexport_explicit_instantiation_def); 9598 break; 9599 } 9600 } 9601 } 9602 9603 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc, 9604 SS.isSet(), TSK)) 9605 return true; 9606 9607 ClassTemplateSpecializationDecl *Specialization = nullptr; 9608 9609 bool HasNoEffect = false; 9610 if (PrevDecl) { 9611 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 9612 PrevDecl, PrevDecl_TSK, 9613 PrevDecl->getPointOfInstantiation(), 9614 HasNoEffect)) 9615 return PrevDecl; 9616 9617 // Even though HasNoEffect == true means that this explicit instantiation 9618 // has no effect on semantics, we go on to put its syntax in the AST. 9619 9620 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 9621 PrevDecl_TSK == TSK_Undeclared) { 9622 // Since the only prior class template specialization with these 9623 // arguments was referenced but not declared, reuse that 9624 // declaration node as our own, updating the source location 9625 // for the template name to reflect our new declaration. 9626 // (Other source locations will be updated later.) 9627 Specialization = PrevDecl; 9628 Specialization->setLocation(TemplateNameLoc); 9629 PrevDecl = nullptr; 9630 } 9631 9632 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9633 DLLImportExplicitInstantiationDef) { 9634 // The new specialization might add a dllimport attribute. 9635 HasNoEffect = false; 9636 } 9637 } 9638 9639 if (!Specialization) { 9640 // Create a new class template specialization declaration node for 9641 // this explicit specialization. 9642 Specialization 9643 = ClassTemplateSpecializationDecl::Create(Context, Kind, 9644 ClassTemplate->getDeclContext(), 9645 KWLoc, TemplateNameLoc, 9646 ClassTemplate, 9647 Converted, 9648 PrevDecl); 9649 SetNestedNameSpecifier(*this, Specialization, SS); 9650 9651 if (!HasNoEffect && !PrevDecl) { 9652 // Insert the new specialization. 9653 ClassTemplate->AddSpecialization(Specialization, InsertPos); 9654 } 9655 } 9656 9657 // Build the fully-sugared type for this explicit instantiation as 9658 // the user wrote in the explicit instantiation itself. This means 9659 // that we'll pretty-print the type retrieved from the 9660 // specialization's declaration the way that the user actually wrote 9661 // the explicit instantiation, rather than formatting the name based 9662 // on the "canonical" representation used to store the template 9663 // arguments in the specialization. 9664 TypeSourceInfo *WrittenTy 9665 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 9666 TemplateArgs, 9667 Context.getTypeDeclType(Specialization)); 9668 Specialization->setTypeAsWritten(WrittenTy); 9669 9670 // Set source locations for keywords. 9671 Specialization->setExternLoc(ExternLoc); 9672 Specialization->setTemplateKeywordLoc(TemplateLoc); 9673 Specialization->setBraceRange(SourceRange()); 9674 9675 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); 9676 ProcessDeclAttributeList(S, Specialization, Attr); 9677 9678 // Add the explicit instantiation into its lexical context. However, 9679 // since explicit instantiations are never found by name lookup, we 9680 // just put it into the declaration context directly. 9681 Specialization->setLexicalDeclContext(CurContext); 9682 CurContext->addDecl(Specialization); 9683 9684 // Syntax is now OK, so return if it has no other effect on semantics. 9685 if (HasNoEffect) { 9686 // Set the template specialization kind. 9687 Specialization->setTemplateSpecializationKind(TSK); 9688 return Specialization; 9689 } 9690 9691 // C++ [temp.explicit]p3: 9692 // A definition of a class template or class member template 9693 // shall be in scope at the point of the explicit instantiation of 9694 // the class template or class member template. 9695 // 9696 // This check comes when we actually try to perform the 9697 // instantiation. 9698 ClassTemplateSpecializationDecl *Def 9699 = cast_or_null<ClassTemplateSpecializationDecl>( 9700 Specialization->getDefinition()); 9701 if (!Def) 9702 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 9703 else if (TSK == TSK_ExplicitInstantiationDefinition) { 9704 MarkVTableUsed(TemplateNameLoc, Specialization, true); 9705 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 9706 } 9707 9708 // Instantiate the members of this class template specialization. 9709 Def = cast_or_null<ClassTemplateSpecializationDecl>( 9710 Specialization->getDefinition()); 9711 if (Def) { 9712 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 9713 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 9714 // TSK_ExplicitInstantiationDefinition 9715 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 9716 (TSK == TSK_ExplicitInstantiationDefinition || 9717 DLLImportExplicitInstantiationDef)) { 9718 // FIXME: Need to notify the ASTMutationListener that we did this. 9719 Def->setTemplateSpecializationKind(TSK); 9720 9721 if (!getDLLAttr(Def) && getDLLAttr(Specialization) && 9722 (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 9723 !Context.getTargetInfo().getTriple().isPS4CPU())) { 9724 // An explicit instantiation definition can add a dll attribute to a 9725 // template with a previous instantiation declaration. MinGW doesn't 9726 // allow this. 9727 auto *A = cast<InheritableAttr>( 9728 getDLLAttr(Specialization)->clone(getASTContext())); 9729 A->setInherited(true); 9730 Def->addAttr(A); 9731 dllExportImportClassTemplateSpecialization(*this, Def); 9732 } 9733 } 9734 9735 // Fix a TSK_ImplicitInstantiation followed by a 9736 // TSK_ExplicitInstantiationDefinition 9737 bool NewlyDLLExported = 9738 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); 9739 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && 9740 (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 9741 !Context.getTargetInfo().getTriple().isPS4CPU())) { 9742 // An explicit instantiation definition can add a dll attribute to a 9743 // template with a previous implicit instantiation. MinGW doesn't allow 9744 // this. We limit clang to only adding dllexport, to avoid potentially 9745 // strange codegen behavior. For example, if we extend this conditional 9746 // to dllimport, and we have a source file calling a method on an 9747 // implicitly instantiated template class instance and then declaring a 9748 // dllimport explicit instantiation definition for the same template 9749 // class, the codegen for the method call will not respect the dllimport, 9750 // while it will with cl. The Def will already have the DLL attribute, 9751 // since the Def and Specialization will be the same in the case of 9752 // Old_TSK == TSK_ImplicitInstantiation, and we already added the 9753 // attribute to the Specialization; we just need to make it take effect. 9754 assert(Def == Specialization && 9755 "Def and Specialization should match for implicit instantiation"); 9756 dllExportImportClassTemplateSpecialization(*this, Def); 9757 } 9758 9759 // In MinGW mode, export the template instantiation if the declaration 9760 // was marked dllexport. 9761 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9762 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() && 9763 PrevDecl->hasAttr<DLLExportAttr>()) { 9764 dllExportImportClassTemplateSpecialization(*this, Def); 9765 } 9766 9767 if (Def->hasAttr<MSInheritanceAttr>()) { 9768 Specialization->addAttr(Def->getAttr<MSInheritanceAttr>()); 9769 Consumer.AssignInheritanceModel(Specialization); 9770 } 9771 9772 // Set the template specialization kind. Make sure it is set before 9773 // instantiating the members which will trigger ASTConsumer callbacks. 9774 Specialization->setTemplateSpecializationKind(TSK); 9775 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 9776 } else { 9777 9778 // Set the template specialization kind. 9779 Specialization->setTemplateSpecializationKind(TSK); 9780 } 9781 9782 return Specialization; 9783 } 9784 9785 // Explicit instantiation of a member class of a class template. 9786 DeclResult 9787 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, 9788 SourceLocation TemplateLoc, unsigned TagSpec, 9789 SourceLocation KWLoc, CXXScopeSpec &SS, 9790 IdentifierInfo *Name, SourceLocation NameLoc, 9791 const ParsedAttributesView &Attr) { 9792 9793 bool Owned = false; 9794 bool IsDependent = false; 9795 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 9796 KWLoc, SS, Name, NameLoc, Attr, AS_none, 9797 /*ModulePrivateLoc=*/SourceLocation(), 9798 MultiTemplateParamsArg(), Owned, IsDependent, 9799 SourceLocation(), false, TypeResult(), 9800 /*IsTypeSpecifier*/false, 9801 /*IsTemplateParamOrArg*/false); 9802 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 9803 9804 if (!TagD) 9805 return true; 9806 9807 TagDecl *Tag = cast<TagDecl>(TagD); 9808 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 9809 9810 if (Tag->isInvalidDecl()) 9811 return true; 9812 9813 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 9814 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 9815 if (!Pattern) { 9816 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 9817 << Context.getTypeDeclType(Record); 9818 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 9819 return true; 9820 } 9821 9822 // C++0x [temp.explicit]p2: 9823 // If the explicit instantiation is for a class or member class, the 9824 // elaborated-type-specifier in the declaration shall include a 9825 // simple-template-id. 9826 // 9827 // C++98 has the same restriction, just worded differently. 9828 if (!ScopeSpecifierHasTemplateId(SS)) 9829 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 9830 << Record << SS.getRange(); 9831 9832 // C++0x [temp.explicit]p2: 9833 // There are two forms of explicit instantiation: an explicit instantiation 9834 // definition and an explicit instantiation declaration. An explicit 9835 // instantiation declaration begins with the extern keyword. [...] 9836 TemplateSpecializationKind TSK 9837 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 9838 : TSK_ExplicitInstantiationDeclaration; 9839 9840 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK); 9841 9842 // Verify that it is okay to explicitly instantiate here. 9843 CXXRecordDecl *PrevDecl 9844 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 9845 if (!PrevDecl && Record->getDefinition()) 9846 PrevDecl = Record; 9847 if (PrevDecl) { 9848 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 9849 bool HasNoEffect = false; 9850 assert(MSInfo && "No member specialization information?"); 9851 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 9852 PrevDecl, 9853 MSInfo->getTemplateSpecializationKind(), 9854 MSInfo->getPointOfInstantiation(), 9855 HasNoEffect)) 9856 return true; 9857 if (HasNoEffect) 9858 return TagD; 9859 } 9860 9861 CXXRecordDecl *RecordDef 9862 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 9863 if (!RecordDef) { 9864 // C++ [temp.explicit]p3: 9865 // A definition of a member class of a class template shall be in scope 9866 // at the point of an explicit instantiation of the member class. 9867 CXXRecordDecl *Def 9868 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 9869 if (!Def) { 9870 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 9871 << 0 << Record->getDeclName() << Record->getDeclContext(); 9872 Diag(Pattern->getLocation(), diag::note_forward_declaration) 9873 << Pattern; 9874 return true; 9875 } else { 9876 if (InstantiateClass(NameLoc, Record, Def, 9877 getTemplateInstantiationArgs(Record), 9878 TSK)) 9879 return true; 9880 9881 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 9882 if (!RecordDef) 9883 return true; 9884 } 9885 } 9886 9887 // Instantiate all of the members of the class. 9888 InstantiateClassMembers(NameLoc, RecordDef, 9889 getTemplateInstantiationArgs(Record), TSK); 9890 9891 if (TSK == TSK_ExplicitInstantiationDefinition) 9892 MarkVTableUsed(NameLoc, RecordDef, true); 9893 9894 // FIXME: We don't have any representation for explicit instantiations of 9895 // member classes. Such a representation is not needed for compilation, but it 9896 // should be available for clients that want to see all of the declarations in 9897 // the source code. 9898 return TagD; 9899 } 9900 9901 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 9902 SourceLocation ExternLoc, 9903 SourceLocation TemplateLoc, 9904 Declarator &D) { 9905 // Explicit instantiations always require a name. 9906 // TODO: check if/when DNInfo should replace Name. 9907 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 9908 DeclarationName Name = NameInfo.getName(); 9909 if (!Name) { 9910 if (!D.isInvalidType()) 9911 Diag(D.getDeclSpec().getBeginLoc(), 9912 diag::err_explicit_instantiation_requires_name) 9913 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 9914 9915 return true; 9916 } 9917 9918 // The scope passed in may not be a decl scope. Zip up the scope tree until 9919 // we find one that is. 9920 while ((S->getFlags() & Scope::DeclScope) == 0 || 9921 (S->getFlags() & Scope::TemplateParamScope) != 0) 9922 S = S->getParent(); 9923 9924 // Determine the type of the declaration. 9925 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 9926 QualType R = T->getType(); 9927 if (R.isNull()) 9928 return true; 9929 9930 // C++ [dcl.stc]p1: 9931 // A storage-class-specifier shall not be specified in [...] an explicit 9932 // instantiation (14.7.2) directive. 9933 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 9934 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 9935 << Name; 9936 return true; 9937 } else if (D.getDeclSpec().getStorageClassSpec() 9938 != DeclSpec::SCS_unspecified) { 9939 // Complain about then remove the storage class specifier. 9940 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 9941 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 9942 9943 D.getMutableDeclSpec().ClearStorageClassSpecs(); 9944 } 9945 9946 // C++0x [temp.explicit]p1: 9947 // [...] An explicit instantiation of a function template shall not use the 9948 // inline or constexpr specifiers. 9949 // Presumably, this also applies to member functions of class templates as 9950 // well. 9951 if (D.getDeclSpec().isInlineSpecified()) 9952 Diag(D.getDeclSpec().getInlineSpecLoc(), 9953 getLangOpts().CPlusPlus11 ? 9954 diag::err_explicit_instantiation_inline : 9955 diag::warn_explicit_instantiation_inline_0x) 9956 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 9957 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType()) 9958 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 9959 // not already specified. 9960 Diag(D.getDeclSpec().getConstexprSpecLoc(), 9961 diag::err_explicit_instantiation_constexpr); 9962 9963 // A deduction guide is not on the list of entities that can be explicitly 9964 // instantiated. 9965 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { 9966 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized) 9967 << /*explicit instantiation*/ 0; 9968 return true; 9969 } 9970 9971 // C++0x [temp.explicit]p2: 9972 // There are two forms of explicit instantiation: an explicit instantiation 9973 // definition and an explicit instantiation declaration. An explicit 9974 // instantiation declaration begins with the extern keyword. [...] 9975 TemplateSpecializationKind TSK 9976 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 9977 : TSK_ExplicitInstantiationDeclaration; 9978 9979 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 9980 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 9981 9982 if (!R->isFunctionType()) { 9983 // C++ [temp.explicit]p1: 9984 // A [...] static data member of a class template can be explicitly 9985 // instantiated from the member definition associated with its class 9986 // template. 9987 // C++1y [temp.explicit]p1: 9988 // A [...] variable [...] template specialization can be explicitly 9989 // instantiated from its template. 9990 if (Previous.isAmbiguous()) 9991 return true; 9992 9993 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 9994 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); 9995 9996 if (!PrevTemplate) { 9997 if (!Prev || !Prev->isStaticDataMember()) { 9998 // We expect to see a static data member here. 9999 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 10000 << Name; 10001 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 10002 P != PEnd; ++P) 10003 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 10004 return true; 10005 } 10006 10007 if (!Prev->getInstantiatedFromStaticDataMember()) { 10008 // FIXME: Check for explicit specialization? 10009 Diag(D.getIdentifierLoc(), 10010 diag::err_explicit_instantiation_data_member_not_instantiated) 10011 << Prev; 10012 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 10013 // FIXME: Can we provide a note showing where this was declared? 10014 return true; 10015 } 10016 } else { 10017 // Explicitly instantiate a variable template. 10018 10019 // C++1y [dcl.spec.auto]p6: 10020 // ... A program that uses auto or decltype(auto) in a context not 10021 // explicitly allowed in this section is ill-formed. 10022 // 10023 // This includes auto-typed variable template instantiations. 10024 if (R->isUndeducedType()) { 10025 Diag(T->getTypeLoc().getBeginLoc(), 10026 diag::err_auto_not_allowed_var_inst); 10027 return true; 10028 } 10029 10030 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 10031 // C++1y [temp.explicit]p3: 10032 // If the explicit instantiation is for a variable, the unqualified-id 10033 // in the declaration shall be a template-id. 10034 Diag(D.getIdentifierLoc(), 10035 diag::err_explicit_instantiation_without_template_id) 10036 << PrevTemplate; 10037 Diag(PrevTemplate->getLocation(), 10038 diag::note_explicit_instantiation_here); 10039 return true; 10040 } 10041 10042 // Translate the parser's template argument list into our AST format. 10043 TemplateArgumentListInfo TemplateArgs = 10044 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 10045 10046 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, 10047 D.getIdentifierLoc(), TemplateArgs); 10048 if (Res.isInvalid()) 10049 return true; 10050 10051 if (!Res.isUsable()) { 10052 // We somehow specified dependent template arguments in an explicit 10053 // instantiation. This should probably only happen during error 10054 // recovery. 10055 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent); 10056 return true; 10057 } 10058 10059 // Ignore access control bits, we don't need them for redeclaration 10060 // checking. 10061 Prev = cast<VarDecl>(Res.get()); 10062 } 10063 10064 // C++0x [temp.explicit]p2: 10065 // If the explicit instantiation is for a member function, a member class 10066 // or a static data member of a class template specialization, the name of 10067 // the class template specialization in the qualified-id for the member 10068 // name shall be a simple-template-id. 10069 // 10070 // C++98 has the same restriction, just worded differently. 10071 // 10072 // This does not apply to variable template specializations, where the 10073 // template-id is in the unqualified-id instead. 10074 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) 10075 Diag(D.getIdentifierLoc(), 10076 diag::ext_explicit_instantiation_without_qualified_id) 10077 << Prev << D.getCXXScopeSpec().getRange(); 10078 10079 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK); 10080 10081 // Verify that it is okay to explicitly instantiate here. 10082 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); 10083 SourceLocation POI = Prev->getPointOfInstantiation(); 10084 bool HasNoEffect = false; 10085 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 10086 PrevTSK, POI, HasNoEffect)) 10087 return true; 10088 10089 if (!HasNoEffect) { 10090 // Instantiate static data member or variable template. 10091 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10092 // Merge attributes. 10093 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes()); 10094 if (TSK == TSK_ExplicitInstantiationDefinition) 10095 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); 10096 } 10097 10098 // Check the new variable specialization against the parsed input. 10099 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) { 10100 Diag(T->getTypeLoc().getBeginLoc(), 10101 diag::err_invalid_var_template_spec_type) 10102 << 0 << PrevTemplate << R << Prev->getType(); 10103 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) 10104 << 2 << PrevTemplate->getDeclName(); 10105 return true; 10106 } 10107 10108 // FIXME: Create an ExplicitInstantiation node? 10109 return (Decl*) nullptr; 10110 } 10111 10112 // If the declarator is a template-id, translate the parser's template 10113 // argument list into our AST format. 10114 bool HasExplicitTemplateArgs = false; 10115 TemplateArgumentListInfo TemplateArgs; 10116 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 10117 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 10118 HasExplicitTemplateArgs = true; 10119 } 10120 10121 // C++ [temp.explicit]p1: 10122 // A [...] function [...] can be explicitly instantiated from its template. 10123 // A member function [...] of a class template can be explicitly 10124 // instantiated from the member definition associated with its class 10125 // template. 10126 UnresolvedSet<8> TemplateMatches; 10127 FunctionDecl *NonTemplateMatch = nullptr; 10128 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); 10129 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 10130 P != PEnd; ++P) { 10131 NamedDecl *Prev = *P; 10132 if (!HasExplicitTemplateArgs) { 10133 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 10134 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(), 10135 /*AdjustExceptionSpec*/true); 10136 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) { 10137 if (Method->getPrimaryTemplate()) { 10138 TemplateMatches.addDecl(Method, P.getAccess()); 10139 } else { 10140 // FIXME: Can this assert ever happen? Needs a test. 10141 assert(!NonTemplateMatch && "Multiple NonTemplateMatches"); 10142 NonTemplateMatch = Method; 10143 } 10144 } 10145 } 10146 } 10147 10148 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 10149 if (!FunTmpl) 10150 continue; 10151 10152 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 10153 FunctionDecl *Specialization = nullptr; 10154 if (TemplateDeductionResult TDK 10155 = DeduceTemplateArguments(FunTmpl, 10156 (HasExplicitTemplateArgs ? &TemplateArgs 10157 : nullptr), 10158 R, Specialization, Info)) { 10159 // Keep track of almost-matches. 10160 FailedCandidates.addCandidate() 10161 .set(P.getPair(), FunTmpl->getTemplatedDecl(), 10162 MakeDeductionFailureInfo(Context, TDK, Info)); 10163 (void)TDK; 10164 continue; 10165 } 10166 10167 // Target attributes are part of the cuda function signature, so 10168 // the cuda target of the instantiated function must match that of its 10169 // template. Given that C++ template deduction does not take 10170 // target attributes into account, we reject candidates here that 10171 // have a different target. 10172 if (LangOpts.CUDA && 10173 IdentifyCUDATarget(Specialization, 10174 /* IgnoreImplicitHDAttr = */ true) != 10175 IdentifyCUDATarget(D.getDeclSpec().getAttributes())) { 10176 FailedCandidates.addCandidate().set( 10177 P.getPair(), FunTmpl->getTemplatedDecl(), 10178 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 10179 continue; 10180 } 10181 10182 TemplateMatches.addDecl(Specialization, P.getAccess()); 10183 } 10184 10185 FunctionDecl *Specialization = NonTemplateMatch; 10186 if (!Specialization) { 10187 // Find the most specialized function template specialization. 10188 UnresolvedSetIterator Result = getMostSpecialized( 10189 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates, 10190 D.getIdentifierLoc(), 10191 PDiag(diag::err_explicit_instantiation_not_known) << Name, 10192 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 10193 PDiag(diag::note_explicit_instantiation_candidate)); 10194 10195 if (Result == TemplateMatches.end()) 10196 return true; 10197 10198 // Ignore access control bits, we don't need them for redeclaration checking. 10199 Specialization = cast<FunctionDecl>(*Result); 10200 } 10201 10202 // C++11 [except.spec]p4 10203 // In an explicit instantiation an exception-specification may be specified, 10204 // but is not required. 10205 // If an exception-specification is specified in an explicit instantiation 10206 // directive, it shall be compatible with the exception-specifications of 10207 // other declarations of that function. 10208 if (auto *FPT = R->getAs<FunctionProtoType>()) 10209 if (FPT->hasExceptionSpec()) { 10210 unsigned DiagID = 10211 diag::err_mismatched_exception_spec_explicit_instantiation; 10212 if (getLangOpts().MicrosoftExt) 10213 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; 10214 bool Result = CheckEquivalentExceptionSpec( 10215 PDiag(DiagID) << Specialization->getType(), 10216 PDiag(diag::note_explicit_instantiation_here), 10217 Specialization->getType()->getAs<FunctionProtoType>(), 10218 Specialization->getLocation(), FPT, D.getBeginLoc()); 10219 // In Microsoft mode, mismatching exception specifications just cause a 10220 // warning. 10221 if (!getLangOpts().MicrosoftExt && Result) 10222 return true; 10223 } 10224 10225 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 10226 Diag(D.getIdentifierLoc(), 10227 diag::err_explicit_instantiation_member_function_not_instantiated) 10228 << Specialization 10229 << (Specialization->getTemplateSpecializationKind() == 10230 TSK_ExplicitSpecialization); 10231 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 10232 return true; 10233 } 10234 10235 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 10236 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 10237 PrevDecl = Specialization; 10238 10239 if (PrevDecl) { 10240 bool HasNoEffect = false; 10241 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 10242 PrevDecl, 10243 PrevDecl->getTemplateSpecializationKind(), 10244 PrevDecl->getPointOfInstantiation(), 10245 HasNoEffect)) 10246 return true; 10247 10248 // FIXME: We may still want to build some representation of this 10249 // explicit specialization. 10250 if (HasNoEffect) 10251 return (Decl*) nullptr; 10252 } 10253 10254 // HACK: libc++ has a bug where it attempts to explicitly instantiate the 10255 // functions 10256 // valarray<size_t>::valarray(size_t) and 10257 // valarray<size_t>::~valarray() 10258 // that it declared to have internal linkage with the internal_linkage 10259 // attribute. Ignore the explicit instantiation declaration in this case. 10260 if (Specialization->hasAttr<InternalLinkageAttr>() && 10261 TSK == TSK_ExplicitInstantiationDeclaration) { 10262 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext())) 10263 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") && 10264 RD->isInStdNamespace()) 10265 return (Decl*) nullptr; 10266 } 10267 10268 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes()); 10269 10270 // In MSVC mode, dllimported explicit instantiation definitions are treated as 10271 // instantiation declarations. 10272 if (TSK == TSK_ExplicitInstantiationDefinition && 10273 Specialization->hasAttr<DLLImportAttr>() && 10274 Context.getTargetInfo().getCXXABI().isMicrosoft()) 10275 TSK = TSK_ExplicitInstantiationDeclaration; 10276 10277 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10278 10279 if (Specialization->isDefined()) { 10280 // Let the ASTConsumer know that this function has been explicitly 10281 // instantiated now, and its linkage might have changed. 10282 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization)); 10283 } else if (TSK == TSK_ExplicitInstantiationDefinition) 10284 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 10285 10286 // C++0x [temp.explicit]p2: 10287 // If the explicit instantiation is for a member function, a member class 10288 // or a static data member of a class template specialization, the name of 10289 // the class template specialization in the qualified-id for the member 10290 // name shall be a simple-template-id. 10291 // 10292 // C++98 has the same restriction, just worded differently. 10293 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 10294 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && 10295 D.getCXXScopeSpec().isSet() && 10296 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 10297 Diag(D.getIdentifierLoc(), 10298 diag::ext_explicit_instantiation_without_qualified_id) 10299 << Specialization << D.getCXXScopeSpec().getRange(); 10300 10301 CheckExplicitInstantiation( 10302 *this, 10303 FunTmpl ? (NamedDecl *)FunTmpl 10304 : Specialization->getInstantiatedFromMemberFunction(), 10305 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK); 10306 10307 // FIXME: Create some kind of ExplicitInstantiationDecl here. 10308 return (Decl*) nullptr; 10309 } 10310 10311 TypeResult 10312 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 10313 const CXXScopeSpec &SS, IdentifierInfo *Name, 10314 SourceLocation TagLoc, SourceLocation NameLoc) { 10315 // This has to hold, because SS is expected to be defined. 10316 assert(Name && "Expected a name in a dependent tag"); 10317 10318 NestedNameSpecifier *NNS = SS.getScopeRep(); 10319 if (!NNS) 10320 return true; 10321 10322 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 10323 10324 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 10325 Diag(NameLoc, diag::err_dependent_tag_decl) 10326 << (TUK == TUK_Definition) << Kind << SS.getRange(); 10327 return true; 10328 } 10329 10330 // Create the resulting type. 10331 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 10332 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 10333 10334 // Create type-source location information for this type. 10335 TypeLocBuilder TLB; 10336 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 10337 TL.setElaboratedKeywordLoc(TagLoc); 10338 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10339 TL.setNameLoc(NameLoc); 10340 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 10341 } 10342 10343 TypeResult 10344 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 10345 const CXXScopeSpec &SS, const IdentifierInfo &II, 10346 SourceLocation IdLoc) { 10347 if (SS.isInvalid()) 10348 return true; 10349 10350 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10351 Diag(TypenameLoc, 10352 getLangOpts().CPlusPlus11 ? 10353 diag::warn_cxx98_compat_typename_outside_of_template : 10354 diag::ext_typename_outside_of_template) 10355 << FixItHint::CreateRemoval(TypenameLoc); 10356 10357 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 10358 TypeSourceInfo *TSI = nullptr; 10359 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 10360 TypenameLoc, QualifierLoc, II, IdLoc, &TSI, 10361 /*DeducedTSTContext=*/true); 10362 if (T.isNull()) 10363 return true; 10364 return CreateParsedType(T, TSI); 10365 } 10366 10367 TypeResult 10368 Sema::ActOnTypenameType(Scope *S, 10369 SourceLocation TypenameLoc, 10370 const CXXScopeSpec &SS, 10371 SourceLocation TemplateKWLoc, 10372 TemplateTy TemplateIn, 10373 IdentifierInfo *TemplateII, 10374 SourceLocation TemplateIILoc, 10375 SourceLocation LAngleLoc, 10376 ASTTemplateArgsPtr TemplateArgsIn, 10377 SourceLocation RAngleLoc) { 10378 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10379 Diag(TypenameLoc, 10380 getLangOpts().CPlusPlus11 ? 10381 diag::warn_cxx98_compat_typename_outside_of_template : 10382 diag::ext_typename_outside_of_template) 10383 << FixItHint::CreateRemoval(TypenameLoc); 10384 10385 // Strangely, non-type results are not ignored by this lookup, so the 10386 // program is ill-formed if it finds an injected-class-name. 10387 if (TypenameLoc.isValid()) { 10388 auto *LookupRD = 10389 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false)); 10390 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 10391 Diag(TemplateIILoc, 10392 diag::ext_out_of_line_qualified_id_type_names_constructor) 10393 << TemplateII << 0 /*injected-class-name used as template name*/ 10394 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); 10395 } 10396 } 10397 10398 // Translate the parser's template argument list in our AST format. 10399 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 10400 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 10401 10402 TemplateName Template = TemplateIn.get(); 10403 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 10404 // Construct a dependent template specialization type. 10405 assert(DTN && "dependent template has non-dependent name?"); 10406 assert(DTN->getQualifier() == SS.getScopeRep()); 10407 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 10408 DTN->getQualifier(), 10409 DTN->getIdentifier(), 10410 TemplateArgs); 10411 10412 // Create source-location information for this type. 10413 TypeLocBuilder Builder; 10414 DependentTemplateSpecializationTypeLoc SpecTL 10415 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 10416 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 10417 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 10418 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10419 SpecTL.setTemplateNameLoc(TemplateIILoc); 10420 SpecTL.setLAngleLoc(LAngleLoc); 10421 SpecTL.setRAngleLoc(RAngleLoc); 10422 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10423 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10424 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 10425 } 10426 10427 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 10428 if (T.isNull()) 10429 return true; 10430 10431 // Provide source-location information for the template specialization type. 10432 TypeLocBuilder Builder; 10433 TemplateSpecializationTypeLoc SpecTL 10434 = Builder.push<TemplateSpecializationTypeLoc>(T); 10435 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10436 SpecTL.setTemplateNameLoc(TemplateIILoc); 10437 SpecTL.setLAngleLoc(LAngleLoc); 10438 SpecTL.setRAngleLoc(RAngleLoc); 10439 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10440 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10441 10442 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 10443 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 10444 TL.setElaboratedKeywordLoc(TypenameLoc); 10445 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10446 10447 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 10448 return CreateParsedType(T, TSI); 10449 } 10450 10451 10452 /// Determine whether this failed name lookup should be treated as being 10453 /// disabled by a usage of std::enable_if. 10454 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 10455 SourceRange &CondRange, Expr *&Cond) { 10456 // We must be looking for a ::type... 10457 if (!II.isStr("type")) 10458 return false; 10459 10460 // ... within an explicitly-written template specialization... 10461 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 10462 return false; 10463 TypeLoc EnableIfTy = NNS.getTypeLoc(); 10464 TemplateSpecializationTypeLoc EnableIfTSTLoc = 10465 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 10466 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 10467 return false; 10468 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); 10469 10470 // ... which names a complete class template declaration... 10471 const TemplateDecl *EnableIfDecl = 10472 EnableIfTST->getTemplateName().getAsTemplateDecl(); 10473 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 10474 return false; 10475 10476 // ... called "enable_if". 10477 const IdentifierInfo *EnableIfII = 10478 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 10479 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 10480 return false; 10481 10482 // Assume the first template argument is the condition. 10483 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 10484 10485 // Dig out the condition. 10486 Cond = nullptr; 10487 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind() 10488 != TemplateArgument::Expression) 10489 return true; 10490 10491 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression(); 10492 10493 // Ignore Boolean literals; they add no value. 10494 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts())) 10495 Cond = nullptr; 10496 10497 return true; 10498 } 10499 10500 QualType 10501 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10502 SourceLocation KeywordLoc, 10503 NestedNameSpecifierLoc QualifierLoc, 10504 const IdentifierInfo &II, 10505 SourceLocation IILoc, 10506 TypeSourceInfo **TSI, 10507 bool DeducedTSTContext) { 10508 QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc, 10509 DeducedTSTContext); 10510 if (T.isNull()) 10511 return QualType(); 10512 10513 *TSI = Context.CreateTypeSourceInfo(T); 10514 if (isa<DependentNameType>(T)) { 10515 DependentNameTypeLoc TL = 10516 (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>(); 10517 TL.setElaboratedKeywordLoc(KeywordLoc); 10518 TL.setQualifierLoc(QualifierLoc); 10519 TL.setNameLoc(IILoc); 10520 } else { 10521 ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>(); 10522 TL.setElaboratedKeywordLoc(KeywordLoc); 10523 TL.setQualifierLoc(QualifierLoc); 10524 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc); 10525 } 10526 return T; 10527 } 10528 10529 /// Build the type that describes a C++ typename specifier, 10530 /// e.g., "typename T::type". 10531 QualType 10532 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10533 SourceLocation KeywordLoc, 10534 NestedNameSpecifierLoc QualifierLoc, 10535 const IdentifierInfo &II, 10536 SourceLocation IILoc, bool DeducedTSTContext) { 10537 CXXScopeSpec SS; 10538 SS.Adopt(QualifierLoc); 10539 10540 DeclContext *Ctx = nullptr; 10541 if (QualifierLoc) { 10542 Ctx = computeDeclContext(SS); 10543 if (!Ctx) { 10544 // If the nested-name-specifier is dependent and couldn't be 10545 // resolved to a type, build a typename type. 10546 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 10547 return Context.getDependentNameType(Keyword, 10548 QualifierLoc.getNestedNameSpecifier(), 10549 &II); 10550 } 10551 10552 // If the nested-name-specifier refers to the current instantiation, 10553 // the "typename" keyword itself is superfluous. In C++03, the 10554 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 10555 // allows such extraneous "typename" keywords, and we retroactively 10556 // apply this DR to C++03 code with only a warning. In any case we continue. 10557 10558 if (RequireCompleteDeclContext(SS, Ctx)) 10559 return QualType(); 10560 } 10561 10562 DeclarationName Name(&II); 10563 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 10564 if (Ctx) 10565 LookupQualifiedName(Result, Ctx, SS); 10566 else 10567 LookupName(Result, CurScope); 10568 unsigned DiagID = 0; 10569 Decl *Referenced = nullptr; 10570 switch (Result.getResultKind()) { 10571 case LookupResult::NotFound: { 10572 // If we're looking up 'type' within a template named 'enable_if', produce 10573 // a more specific diagnostic. 10574 SourceRange CondRange; 10575 Expr *Cond = nullptr; 10576 if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) { 10577 // If we have a condition, narrow it down to the specific failed 10578 // condition. 10579 if (Cond) { 10580 Expr *FailedCond; 10581 std::string FailedDescription; 10582 std::tie(FailedCond, FailedDescription) = 10583 findFailedBooleanCondition(Cond); 10584 10585 Diag(FailedCond->getExprLoc(), 10586 diag::err_typename_nested_not_found_requirement) 10587 << FailedDescription 10588 << FailedCond->getSourceRange(); 10589 return QualType(); 10590 } 10591 10592 Diag(CondRange.getBegin(), 10593 diag::err_typename_nested_not_found_enable_if) 10594 << Ctx << CondRange; 10595 return QualType(); 10596 } 10597 10598 DiagID = Ctx ? diag::err_typename_nested_not_found 10599 : diag::err_unknown_typename; 10600 break; 10601 } 10602 10603 case LookupResult::FoundUnresolvedValue: { 10604 // We found a using declaration that is a value. Most likely, the using 10605 // declaration itself is meant to have the 'typename' keyword. 10606 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10607 IILoc); 10608 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 10609 << Name << Ctx << FullRange; 10610 if (UnresolvedUsingValueDecl *Using 10611 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 10612 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 10613 Diag(Loc, diag::note_using_value_decl_missing_typename) 10614 << FixItHint::CreateInsertion(Loc, "typename "); 10615 } 10616 } 10617 // Fall through to create a dependent typename type, from which we can recover 10618 // better. 10619 LLVM_FALLTHROUGH; 10620 10621 case LookupResult::NotFoundInCurrentInstantiation: 10622 // Okay, it's a member of an unknown instantiation. 10623 return Context.getDependentNameType(Keyword, 10624 QualifierLoc.getNestedNameSpecifier(), 10625 &II); 10626 10627 case LookupResult::Found: 10628 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 10629 // C++ [class.qual]p2: 10630 // In a lookup in which function names are not ignored and the 10631 // nested-name-specifier nominates a class C, if the name specified 10632 // after the nested-name-specifier, when looked up in C, is the 10633 // injected-class-name of C [...] then the name is instead considered 10634 // to name the constructor of class C. 10635 // 10636 // Unlike in an elaborated-type-specifier, function names are not ignored 10637 // in typename-specifier lookup. However, they are ignored in all the 10638 // contexts where we form a typename type with no keyword (that is, in 10639 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). 10640 // 10641 // FIXME: That's not strictly true: mem-initializer-id lookup does not 10642 // ignore functions, but that appears to be an oversight. 10643 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx); 10644 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type); 10645 if (Keyword == ETK_Typename && LookupRD && FoundRD && 10646 FoundRD->isInjectedClassName() && 10647 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) 10648 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor) 10649 << &II << 1 << 0 /*'typename' keyword used*/; 10650 10651 // We found a type. Build an ElaboratedType, since the 10652 // typename-specifier was just sugar. 10653 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 10654 return Context.getElaboratedType(Keyword, 10655 QualifierLoc.getNestedNameSpecifier(), 10656 Context.getTypeDeclType(Type)); 10657 } 10658 10659 // C++ [dcl.type.simple]p2: 10660 // A type-specifier of the form 10661 // typename[opt] nested-name-specifier[opt] template-name 10662 // is a placeholder for a deduced class type [...]. 10663 if (getLangOpts().CPlusPlus17) { 10664 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) { 10665 if (!DeducedTSTContext) { 10666 QualType T(QualifierLoc 10667 ? QualifierLoc.getNestedNameSpecifier()->getAsType() 10668 : nullptr, 0); 10669 if (!T.isNull()) 10670 Diag(IILoc, diag::err_dependent_deduced_tst) 10671 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T; 10672 else 10673 Diag(IILoc, diag::err_deduced_tst) 10674 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)); 10675 Diag(TD->getLocation(), diag::note_template_decl_here); 10676 return QualType(); 10677 } 10678 return Context.getElaboratedType( 10679 Keyword, QualifierLoc.getNestedNameSpecifier(), 10680 Context.getDeducedTemplateSpecializationType(TemplateName(TD), 10681 QualType(), false)); 10682 } 10683 } 10684 10685 DiagID = Ctx ? diag::err_typename_nested_not_type 10686 : diag::err_typename_not_type; 10687 Referenced = Result.getFoundDecl(); 10688 break; 10689 10690 case LookupResult::FoundOverloaded: 10691 DiagID = Ctx ? diag::err_typename_nested_not_type 10692 : diag::err_typename_not_type; 10693 Referenced = *Result.begin(); 10694 break; 10695 10696 case LookupResult::Ambiguous: 10697 return QualType(); 10698 } 10699 10700 // If we get here, it's because name lookup did not find a 10701 // type. Emit an appropriate diagnostic and return an error. 10702 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10703 IILoc); 10704 if (Ctx) 10705 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 10706 else 10707 Diag(IILoc, DiagID) << FullRange << Name; 10708 if (Referenced) 10709 Diag(Referenced->getLocation(), 10710 Ctx ? diag::note_typename_member_refers_here 10711 : diag::note_typename_refers_here) 10712 << Name; 10713 return QualType(); 10714 } 10715 10716 namespace { 10717 // See Sema::RebuildTypeInCurrentInstantiation 10718 class CurrentInstantiationRebuilder 10719 : public TreeTransform<CurrentInstantiationRebuilder> { 10720 SourceLocation Loc; 10721 DeclarationName Entity; 10722 10723 public: 10724 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 10725 10726 CurrentInstantiationRebuilder(Sema &SemaRef, 10727 SourceLocation Loc, 10728 DeclarationName Entity) 10729 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 10730 Loc(Loc), Entity(Entity) { } 10731 10732 /// Determine whether the given type \p T has already been 10733 /// transformed. 10734 /// 10735 /// For the purposes of type reconstruction, a type has already been 10736 /// transformed if it is NULL or if it is not dependent. 10737 bool AlreadyTransformed(QualType T) { 10738 return T.isNull() || !T->isInstantiationDependentType(); 10739 } 10740 10741 /// Returns the location of the entity whose type is being 10742 /// rebuilt. 10743 SourceLocation getBaseLocation() { return Loc; } 10744 10745 /// Returns the name of the entity whose type is being rebuilt. 10746 DeclarationName getBaseEntity() { return Entity; } 10747 10748 /// Sets the "base" location and entity when that 10749 /// information is known based on another transformation. 10750 void setBase(SourceLocation Loc, DeclarationName Entity) { 10751 this->Loc = Loc; 10752 this->Entity = Entity; 10753 } 10754 10755 ExprResult TransformLambdaExpr(LambdaExpr *E) { 10756 // Lambdas never need to be transformed. 10757 return E; 10758 } 10759 }; 10760 } // end anonymous namespace 10761 10762 /// Rebuilds a type within the context of the current instantiation. 10763 /// 10764 /// The type \p T is part of the type of an out-of-line member definition of 10765 /// a class template (or class template partial specialization) that was parsed 10766 /// and constructed before we entered the scope of the class template (or 10767 /// partial specialization thereof). This routine will rebuild that type now 10768 /// that we have entered the declarator's scope, which may produce different 10769 /// canonical types, e.g., 10770 /// 10771 /// \code 10772 /// template<typename T> 10773 /// struct X { 10774 /// typedef T* pointer; 10775 /// pointer data(); 10776 /// }; 10777 /// 10778 /// template<typename T> 10779 /// typename X<T>::pointer X<T>::data() { ... } 10780 /// \endcode 10781 /// 10782 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 10783 /// since we do not know that we can look into X<T> when we parsed the type. 10784 /// This function will rebuild the type, performing the lookup of "pointer" 10785 /// in X<T> and returning an ElaboratedType whose canonical type is the same 10786 /// as the canonical type of T*, allowing the return types of the out-of-line 10787 /// definition and the declaration to match. 10788 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 10789 SourceLocation Loc, 10790 DeclarationName Name) { 10791 if (!T || !T->getType()->isInstantiationDependentType()) 10792 return T; 10793 10794 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 10795 return Rebuilder.TransformType(T); 10796 } 10797 10798 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 10799 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 10800 DeclarationName()); 10801 return Rebuilder.TransformExpr(E); 10802 } 10803 10804 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 10805 if (SS.isInvalid()) 10806 return true; 10807 10808 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 10809 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 10810 DeclarationName()); 10811 NestedNameSpecifierLoc Rebuilt 10812 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 10813 if (!Rebuilt) 10814 return true; 10815 10816 SS.Adopt(Rebuilt); 10817 return false; 10818 } 10819 10820 /// Rebuild the template parameters now that we know we're in a current 10821 /// instantiation. 10822 bool Sema::RebuildTemplateParamsInCurrentInstantiation( 10823 TemplateParameterList *Params) { 10824 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 10825 Decl *Param = Params->getParam(I); 10826 10827 // There is nothing to rebuild in a type parameter. 10828 if (isa<TemplateTypeParmDecl>(Param)) 10829 continue; 10830 10831 // Rebuild the template parameter list of a template template parameter. 10832 if (TemplateTemplateParmDecl *TTP 10833 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 10834 if (RebuildTemplateParamsInCurrentInstantiation( 10835 TTP->getTemplateParameters())) 10836 return true; 10837 10838 continue; 10839 } 10840 10841 // Rebuild the type of a non-type template parameter. 10842 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 10843 TypeSourceInfo *NewTSI 10844 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 10845 NTTP->getLocation(), 10846 NTTP->getDeclName()); 10847 if (!NewTSI) 10848 return true; 10849 10850 if (NewTSI->getType()->isUndeducedType()) { 10851 // C++17 [temp.dep.expr]p3: 10852 // An id-expression is type-dependent if it contains 10853 // - an identifier associated by name lookup with a non-type 10854 // template-parameter declared with a type that contains a 10855 // placeholder type (7.1.7.4), 10856 NewTSI = SubstAutoTypeSourceInfo(NewTSI, Context.DependentTy); 10857 } 10858 10859 if (NewTSI != NTTP->getTypeSourceInfo()) { 10860 NTTP->setTypeSourceInfo(NewTSI); 10861 NTTP->setType(NewTSI->getType()); 10862 } 10863 } 10864 10865 return false; 10866 } 10867 10868 /// Produces a formatted string that describes the binding of 10869 /// template parameters to template arguments. 10870 std::string 10871 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 10872 const TemplateArgumentList &Args) { 10873 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 10874 } 10875 10876 std::string 10877 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 10878 const TemplateArgument *Args, 10879 unsigned NumArgs) { 10880 SmallString<128> Str; 10881 llvm::raw_svector_ostream Out(Str); 10882 10883 if (!Params || Params->size() == 0 || NumArgs == 0) 10884 return std::string(); 10885 10886 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 10887 if (I >= NumArgs) 10888 break; 10889 10890 if (I == 0) 10891 Out << "[with "; 10892 else 10893 Out << ", "; 10894 10895 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 10896 Out << Id->getName(); 10897 } else { 10898 Out << '$' << I; 10899 } 10900 10901 Out << " = "; 10902 Args[I].print(getPrintingPolicy(), Out); 10903 } 10904 10905 Out << ']'; 10906 return std::string(Out.str()); 10907 } 10908 10909 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, 10910 CachedTokens &Toks) { 10911 if (!FD) 10912 return; 10913 10914 auto LPT = std::make_unique<LateParsedTemplate>(); 10915 10916 // Take tokens to avoid allocations 10917 LPT->Toks.swap(Toks); 10918 LPT->D = FnD; 10919 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT))); 10920 10921 FD->setLateTemplateParsed(true); 10922 } 10923 10924 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { 10925 if (!FD) 10926 return; 10927 FD->setLateTemplateParsed(false); 10928 } 10929 10930 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 10931 DeclContext *DC = CurContext; 10932 10933 while (DC) { 10934 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 10935 const FunctionDecl *FD = RD->isLocalClass(); 10936 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 10937 } else if (DC->isTranslationUnit() || DC->isNamespace()) 10938 return false; 10939 10940 DC = DC->getParent(); 10941 } 10942 return false; 10943 } 10944 10945 namespace { 10946 /// Walk the path from which a declaration was instantiated, and check 10947 /// that every explicit specialization along that path is visible. This enforces 10948 /// C++ [temp.expl.spec]/6: 10949 /// 10950 /// If a template, a member template or a member of a class template is 10951 /// explicitly specialized then that specialization shall be declared before 10952 /// the first use of that specialization that would cause an implicit 10953 /// instantiation to take place, in every translation unit in which such a 10954 /// use occurs; no diagnostic is required. 10955 /// 10956 /// and also C++ [temp.class.spec]/1: 10957 /// 10958 /// A partial specialization shall be declared before the first use of a 10959 /// class template specialization that would make use of the partial 10960 /// specialization as the result of an implicit or explicit instantiation 10961 /// in every translation unit in which such a use occurs; no diagnostic is 10962 /// required. 10963 class ExplicitSpecializationVisibilityChecker { 10964 Sema &S; 10965 SourceLocation Loc; 10966 llvm::SmallVector<Module *, 8> Modules; 10967 10968 public: 10969 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc) 10970 : S(S), Loc(Loc) {} 10971 10972 void check(NamedDecl *ND) { 10973 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 10974 return checkImpl(FD); 10975 if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) 10976 return checkImpl(RD); 10977 if (auto *VD = dyn_cast<VarDecl>(ND)) 10978 return checkImpl(VD); 10979 if (auto *ED = dyn_cast<EnumDecl>(ND)) 10980 return checkImpl(ED); 10981 } 10982 10983 private: 10984 void diagnose(NamedDecl *D, bool IsPartialSpec) { 10985 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization 10986 : Sema::MissingImportKind::ExplicitSpecialization; 10987 const bool Recover = true; 10988 10989 // If we got a custom set of modules (because only a subset of the 10990 // declarations are interesting), use them, otherwise let 10991 // diagnoseMissingImport intelligently pick some. 10992 if (Modules.empty()) 10993 S.diagnoseMissingImport(Loc, D, Kind, Recover); 10994 else 10995 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover); 10996 } 10997 10998 // Check a specific declaration. There are three problematic cases: 10999 // 11000 // 1) The declaration is an explicit specialization of a template 11001 // specialization. 11002 // 2) The declaration is an explicit specialization of a member of an 11003 // templated class. 11004 // 3) The declaration is an instantiation of a template, and that template 11005 // is an explicit specialization of a member of a templated class. 11006 // 11007 // We don't need to go any deeper than that, as the instantiation of the 11008 // surrounding class / etc is not triggered by whatever triggered this 11009 // instantiation, and thus should be checked elsewhere. 11010 template<typename SpecDecl> 11011 void checkImpl(SpecDecl *Spec) { 11012 bool IsHiddenExplicitSpecialization = false; 11013 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { 11014 IsHiddenExplicitSpecialization = 11015 Spec->getMemberSpecializationInfo() 11016 ? !S.hasVisibleMemberSpecialization(Spec, &Modules) 11017 : !S.hasVisibleExplicitSpecialization(Spec, &Modules); 11018 } else { 11019 checkInstantiated(Spec); 11020 } 11021 11022 if (IsHiddenExplicitSpecialization) 11023 diagnose(Spec->getMostRecentDecl(), false); 11024 } 11025 11026 void checkInstantiated(FunctionDecl *FD) { 11027 if (auto *TD = FD->getPrimaryTemplate()) 11028 checkTemplate(TD); 11029 } 11030 11031 void checkInstantiated(CXXRecordDecl *RD) { 11032 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD); 11033 if (!SD) 11034 return; 11035 11036 auto From = SD->getSpecializedTemplateOrPartial(); 11037 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) 11038 checkTemplate(TD); 11039 else if (auto *TD = 11040 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 11041 if (!S.hasVisibleDeclaration(TD)) 11042 diagnose(TD, true); 11043 checkTemplate(TD); 11044 } 11045 } 11046 11047 void checkInstantiated(VarDecl *RD) { 11048 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD); 11049 if (!SD) 11050 return; 11051 11052 auto From = SD->getSpecializedTemplateOrPartial(); 11053 if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) 11054 checkTemplate(TD); 11055 else if (auto *TD = 11056 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 11057 if (!S.hasVisibleDeclaration(TD)) 11058 diagnose(TD, true); 11059 checkTemplate(TD); 11060 } 11061 } 11062 11063 void checkInstantiated(EnumDecl *FD) {} 11064 11065 template<typename TemplDecl> 11066 void checkTemplate(TemplDecl *TD) { 11067 if (TD->isMemberSpecialization()) { 11068 if (!S.hasVisibleMemberSpecialization(TD, &Modules)) 11069 diagnose(TD->getMostRecentDecl(), false); 11070 } 11071 } 11072 }; 11073 } // end anonymous namespace 11074 11075 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { 11076 if (!getLangOpts().Modules) 11077 return; 11078 11079 ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec); 11080 } 11081