xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaTemplate.cpp (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===//
7 //
8 //  This file implements semantic analysis for C++ templates.
9 //===----------------------------------------------------------------------===//
10 
11 #include "TreeTransform.h"
12 #include "clang/AST/ASTConsumer.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TemplateName.h"
21 #include "clang/AST/TypeVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/LangOptions.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/SourceLocation.h"
27 #include "clang/Basic/Stack.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/EnterExpressionEvaluationContext.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Overload.h"
34 #include "clang/Sema/ParsedTemplate.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/SemaInternal.h"
37 #include "clang/Sema/Template.h"
38 #include "clang/Sema/TemplateDeduction.h"
39 #include "llvm/ADT/SmallBitVector.h"
40 #include "llvm/ADT/SmallString.h"
41 #include "llvm/ADT/StringExtras.h"
42 
43 #include <iterator>
44 #include <optional>
45 using namespace clang;
46 using namespace sema;
47 
48 // Exported for use by Parser.
49 SourceRange
50 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
51                               unsigned N) {
52   if (!N) return SourceRange();
53   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
54 }
55 
56 unsigned Sema::getTemplateDepth(Scope *S) const {
57   unsigned Depth = 0;
58 
59   // Each template parameter scope represents one level of template parameter
60   // depth.
61   for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope;
62        TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
63     ++Depth;
64   }
65 
66   // Note that there are template parameters with the given depth.
67   auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
68 
69   // Look for parameters of an enclosing generic lambda. We don't create a
70   // template parameter scope for these.
71   for (FunctionScopeInfo *FSI : getFunctionScopes()) {
72     if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
73       if (!LSI->TemplateParams.empty()) {
74         ParamsAtDepth(LSI->AutoTemplateParameterDepth);
75         break;
76       }
77       if (LSI->GLTemplateParameterList) {
78         ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
79         break;
80       }
81     }
82   }
83 
84   // Look for parameters of an enclosing terse function template. We don't
85   // create a template parameter scope for these either.
86   for (const InventedTemplateParameterInfo &Info :
87        getInventedParameterInfos()) {
88     if (!Info.TemplateParams.empty()) {
89       ParamsAtDepth(Info.AutoTemplateParameterDepth);
90       break;
91     }
92   }
93 
94   return Depth;
95 }
96 
97 /// \brief Determine whether the declaration found is acceptable as the name
98 /// of a template and, if so, return that template declaration. Otherwise,
99 /// returns null.
100 ///
101 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
102 /// is true. In all other cases it will return a TemplateDecl (or null).
103 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
104                                        bool AllowFunctionTemplates,
105                                        bool AllowDependent) {
106   D = D->getUnderlyingDecl();
107 
108   if (isa<TemplateDecl>(D)) {
109     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
110       return nullptr;
111 
112     return D;
113   }
114 
115   if (const auto *Record = dyn_cast<CXXRecordDecl>(D)) {
116     // C++ [temp.local]p1:
117     //   Like normal (non-template) classes, class templates have an
118     //   injected-class-name (Clause 9). The injected-class-name
119     //   can be used with or without a template-argument-list. When
120     //   it is used without a template-argument-list, it is
121     //   equivalent to the injected-class-name followed by the
122     //   template-parameters of the class template enclosed in
123     //   <>. When it is used with a template-argument-list, it
124     //   refers to the specified class template specialization,
125     //   which could be the current specialization or another
126     //   specialization.
127     if (Record->isInjectedClassName()) {
128       Record = cast<CXXRecordDecl>(Record->getDeclContext());
129       if (Record->getDescribedClassTemplate())
130         return Record->getDescribedClassTemplate();
131 
132       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Record))
133         return Spec->getSpecializedTemplate();
134     }
135 
136     return nullptr;
137   }
138 
139   // 'using Dependent::foo;' can resolve to a template name.
140   // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
141   // injected-class-name).
142   if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
143     return D;
144 
145   return nullptr;
146 }
147 
148 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
149                                          bool AllowFunctionTemplates,
150                                          bool AllowDependent) {
151   LookupResult::Filter filter = R.makeFilter();
152   while (filter.hasNext()) {
153     NamedDecl *Orig = filter.next();
154     if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
155       filter.erase();
156   }
157   filter.done();
158 }
159 
160 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
161                                          bool AllowFunctionTemplates,
162                                          bool AllowDependent,
163                                          bool AllowNonTemplateFunctions) {
164   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
165     if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
166       return true;
167     if (AllowNonTemplateFunctions &&
168         isa<FunctionDecl>((*I)->getUnderlyingDecl()))
169       return true;
170   }
171 
172   return false;
173 }
174 
175 TemplateNameKind Sema::isTemplateName(Scope *S,
176                                       CXXScopeSpec &SS,
177                                       bool hasTemplateKeyword,
178                                       const UnqualifiedId &Name,
179                                       ParsedType ObjectTypePtr,
180                                       bool EnteringContext,
181                                       TemplateTy &TemplateResult,
182                                       bool &MemberOfUnknownSpecialization,
183                                       bool Disambiguation) {
184   assert(getLangOpts().CPlusPlus && "No template names in C!");
185 
186   DeclarationName TName;
187   MemberOfUnknownSpecialization = false;
188 
189   switch (Name.getKind()) {
190   case UnqualifiedIdKind::IK_Identifier:
191     TName = DeclarationName(Name.Identifier);
192     break;
193 
194   case UnqualifiedIdKind::IK_OperatorFunctionId:
195     TName = Context.DeclarationNames.getCXXOperatorName(
196                                               Name.OperatorFunctionId.Operator);
197     break;
198 
199   case UnqualifiedIdKind::IK_LiteralOperatorId:
200     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
201     break;
202 
203   default:
204     return TNK_Non_template;
205   }
206 
207   QualType ObjectType = ObjectTypePtr.get();
208 
209   AssumedTemplateKind AssumedTemplate;
210   LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
211   if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
212                          MemberOfUnknownSpecialization, SourceLocation(),
213                          &AssumedTemplate,
214                          /*AllowTypoCorrection=*/!Disambiguation))
215     return TNK_Non_template;
216 
217   if (AssumedTemplate != AssumedTemplateKind::None) {
218     TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
219     // Let the parser know whether we found nothing or found functions; if we
220     // found nothing, we want to more carefully check whether this is actually
221     // a function template name versus some other kind of undeclared identifier.
222     return AssumedTemplate == AssumedTemplateKind::FoundNothing
223                ? TNK_Undeclared_template
224                : TNK_Function_template;
225   }
226 
227   if (R.empty())
228     return TNK_Non_template;
229 
230   NamedDecl *D = nullptr;
231   UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(*R.begin());
232   if (R.isAmbiguous()) {
233     // If we got an ambiguity involving a non-function template, treat this
234     // as a template name, and pick an arbitrary template for error recovery.
235     bool AnyFunctionTemplates = false;
236     for (NamedDecl *FoundD : R) {
237       if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
238         if (isa<FunctionTemplateDecl>(FoundTemplate))
239           AnyFunctionTemplates = true;
240         else {
241           D = FoundTemplate;
242           FoundUsingShadow = dyn_cast<UsingShadowDecl>(FoundD);
243           break;
244         }
245       }
246     }
247 
248     // If we didn't find any templates at all, this isn't a template name.
249     // Leave the ambiguity for a later lookup to diagnose.
250     if (!D && !AnyFunctionTemplates) {
251       R.suppressDiagnostics();
252       return TNK_Non_template;
253     }
254 
255     // If the only templates were function templates, filter out the rest.
256     // We'll diagnose the ambiguity later.
257     if (!D)
258       FilterAcceptableTemplateNames(R);
259   }
260 
261   // At this point, we have either picked a single template name declaration D
262   // or we have a non-empty set of results R containing either one template name
263   // declaration or a set of function templates.
264 
265   TemplateName Template;
266   TemplateNameKind TemplateKind;
267 
268   unsigned ResultCount = R.end() - R.begin();
269   if (!D && ResultCount > 1) {
270     // We assume that we'll preserve the qualifier from a function
271     // template name in other ways.
272     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
273     TemplateKind = TNK_Function_template;
274 
275     // We'll do this lookup again later.
276     R.suppressDiagnostics();
277   } else {
278     if (!D) {
279       D = getAsTemplateNameDecl(*R.begin());
280       assert(D && "unambiguous result is not a template name");
281     }
282 
283     if (isa<UnresolvedUsingValueDecl>(D)) {
284       // We don't yet know whether this is a template-name or not.
285       MemberOfUnknownSpecialization = true;
286       return TNK_Non_template;
287     }
288 
289     TemplateDecl *TD = cast<TemplateDecl>(D);
290     Template =
291         FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
292     assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
293     if (SS.isSet() && !SS.isInvalid()) {
294       NestedNameSpecifier *Qualifier = SS.getScopeRep();
295       Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword,
296                                                   Template);
297     }
298 
299     if (isa<FunctionTemplateDecl>(TD)) {
300       TemplateKind = TNK_Function_template;
301 
302       // We'll do this lookup again later.
303       R.suppressDiagnostics();
304     } else {
305       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
306              isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
307              isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
308       TemplateKind =
309           isa<VarTemplateDecl>(TD) ? TNK_Var_template :
310           isa<ConceptDecl>(TD) ? TNK_Concept_template :
311           TNK_Type_template;
312     }
313   }
314 
315   TemplateResult = TemplateTy::make(Template);
316   return TemplateKind;
317 }
318 
319 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
320                                 SourceLocation NameLoc, CXXScopeSpec &SS,
321                                 ParsedTemplateTy *Template /*=nullptr*/) {
322   bool MemberOfUnknownSpecialization = false;
323 
324   // We could use redeclaration lookup here, but we don't need to: the
325   // syntactic form of a deduction guide is enough to identify it even
326   // if we can't look up the template name at all.
327   LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
328   if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
329                          /*EnteringContext*/ false,
330                          MemberOfUnknownSpecialization))
331     return false;
332 
333   if (R.empty()) return false;
334   if (R.isAmbiguous()) {
335     // FIXME: Diagnose an ambiguity if we find at least one template.
336     R.suppressDiagnostics();
337     return false;
338   }
339 
340   // We only treat template-names that name type templates as valid deduction
341   // guide names.
342   TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
343   if (!TD || !getAsTypeTemplateDecl(TD))
344     return false;
345 
346   if (Template)
347     *Template = TemplateTy::make(TemplateName(TD));
348   return true;
349 }
350 
351 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
352                                        SourceLocation IILoc,
353                                        Scope *S,
354                                        const CXXScopeSpec *SS,
355                                        TemplateTy &SuggestedTemplate,
356                                        TemplateNameKind &SuggestedKind) {
357   // We can't recover unless there's a dependent scope specifier preceding the
358   // template name.
359   // FIXME: Typo correction?
360   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
361       computeDeclContext(*SS))
362     return false;
363 
364   // The code is missing a 'template' keyword prior to the dependent template
365   // name.
366   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
367   Diag(IILoc, diag::err_template_kw_missing)
368     << Qualifier << II.getName()
369     << FixItHint::CreateInsertion(IILoc, "template ");
370   SuggestedTemplate
371     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
372   SuggestedKind = TNK_Dependent_template_name;
373   return true;
374 }
375 
376 bool Sema::LookupTemplateName(LookupResult &Found,
377                               Scope *S, CXXScopeSpec &SS,
378                               QualType ObjectType,
379                               bool EnteringContext,
380                               bool &MemberOfUnknownSpecialization,
381                               RequiredTemplateKind RequiredTemplate,
382                               AssumedTemplateKind *ATK,
383                               bool AllowTypoCorrection) {
384   if (ATK)
385     *ATK = AssumedTemplateKind::None;
386 
387   if (SS.isInvalid())
388     return true;
389 
390   Found.setTemplateNameLookup(true);
391 
392   // Determine where to perform name lookup
393   MemberOfUnknownSpecialization = false;
394   DeclContext *LookupCtx = nullptr;
395   bool IsDependent = false;
396   if (!ObjectType.isNull()) {
397     // This nested-name-specifier occurs in a member access expression, e.g.,
398     // x->B::f, and we are looking into the type of the object.
399     assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist");
400     LookupCtx = computeDeclContext(ObjectType);
401     IsDependent = !LookupCtx && ObjectType->isDependentType();
402     assert((IsDependent || !ObjectType->isIncompleteType() ||
403             !ObjectType->getAs<TagType>() ||
404             ObjectType->castAs<TagType>()->isBeingDefined()) &&
405            "Caller should have completed object type");
406 
407     // Template names cannot appear inside an Objective-C class or object type
408     // or a vector type.
409     //
410     // FIXME: This is wrong. For example:
411     //
412     //   template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
413     //   Vec<int> vi;
414     //   vi.Vec<int>::~Vec<int>();
415     //
416     // ... should be accepted but we will not treat 'Vec' as a template name
417     // here. The right thing to do would be to check if the name is a valid
418     // vector component name, and look up a template name if not. And similarly
419     // for lookups into Objective-C class and object types, where the same
420     // problem can arise.
421     if (ObjectType->isObjCObjectOrInterfaceType() ||
422         ObjectType->isVectorType()) {
423       Found.clear();
424       return false;
425     }
426   } else if (SS.isNotEmpty()) {
427     // This nested-name-specifier occurs after another nested-name-specifier,
428     // so long into the context associated with the prior nested-name-specifier.
429     LookupCtx = computeDeclContext(SS, EnteringContext);
430     IsDependent = !LookupCtx && isDependentScopeSpecifier(SS);
431 
432     // The declaration context must be complete.
433     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
434       return true;
435   }
436 
437   bool ObjectTypeSearchedInScope = false;
438   bool AllowFunctionTemplatesInLookup = true;
439   if (LookupCtx) {
440     // Perform "qualified" name lookup into the declaration context we
441     // computed, which is either the type of the base of a member access
442     // expression or the declaration context associated with a prior
443     // nested-name-specifier.
444     LookupQualifiedName(Found, LookupCtx);
445 
446     // FIXME: The C++ standard does not clearly specify what happens in the
447     // case where the object type is dependent, and implementations vary. In
448     // Clang, we treat a name after a . or -> as a template-name if lookup
449     // finds a non-dependent member or member of the current instantiation that
450     // is a type template, or finds no such members and lookup in the context
451     // of the postfix-expression finds a type template. In the latter case, the
452     // name is nonetheless dependent, and we may resolve it to a member of an
453     // unknown specialization when we come to instantiate the template.
454     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
455   }
456 
457   if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) {
458     // C++ [basic.lookup.classref]p1:
459     //   In a class member access expression (5.2.5), if the . or -> token is
460     //   immediately followed by an identifier followed by a <, the
461     //   identifier must be looked up to determine whether the < is the
462     //   beginning of a template argument list (14.2) or a less-than operator.
463     //   The identifier is first looked up in the class of the object
464     //   expression. If the identifier is not found, it is then looked up in
465     //   the context of the entire postfix-expression and shall name a class
466     //   template.
467     if (S)
468       LookupName(Found, S);
469 
470     if (!ObjectType.isNull()) {
471       //  FIXME: We should filter out all non-type templates here, particularly
472       //  variable templates and concepts. But the exclusion of alias templates
473       //  and template template parameters is a wording defect.
474       AllowFunctionTemplatesInLookup = false;
475       ObjectTypeSearchedInScope = true;
476     }
477 
478     IsDependent |= Found.wasNotFoundInCurrentInstantiation();
479   }
480 
481   if (Found.isAmbiguous())
482     return false;
483 
484   if (ATK && SS.isEmpty() && ObjectType.isNull() &&
485       !RequiredTemplate.hasTemplateKeyword()) {
486     // C++2a [temp.names]p2:
487     //   A name is also considered to refer to a template if it is an
488     //   unqualified-id followed by a < and name lookup finds either one or more
489     //   functions or finds nothing.
490     //
491     // To keep our behavior consistent, we apply the "finds nothing" part in
492     // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
493     // successfully form a call to an undeclared template-id.
494     bool AllFunctions =
495         getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) {
496           return isa<FunctionDecl>(ND->getUnderlyingDecl());
497         });
498     if (AllFunctions || (Found.empty() && !IsDependent)) {
499       // If lookup found any functions, or if this is a name that can only be
500       // used for a function, then strongly assume this is a function
501       // template-id.
502       *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
503                  ? AssumedTemplateKind::FoundNothing
504                  : AssumedTemplateKind::FoundFunctions;
505       Found.clear();
506       return false;
507     }
508   }
509 
510   if (Found.empty() && !IsDependent && AllowTypoCorrection) {
511     // If we did not find any names, and this is not a disambiguation, attempt
512     // to correct any typos.
513     DeclarationName Name = Found.getLookupName();
514     Found.clear();
515     // Simple filter callback that, for keywords, only accepts the C++ *_cast
516     DefaultFilterCCC FilterCCC{};
517     FilterCCC.WantTypeSpecifiers = false;
518     FilterCCC.WantExpressionKeywords = false;
519     FilterCCC.WantRemainingKeywords = false;
520     FilterCCC.WantCXXNamedCasts = true;
521     if (TypoCorrection Corrected =
522             CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
523                         &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
524       if (auto *ND = Corrected.getFoundDecl())
525         Found.addDecl(ND);
526       FilterAcceptableTemplateNames(Found);
527       if (Found.isAmbiguous()) {
528         Found.clear();
529       } else if (!Found.empty()) {
530         Found.setLookupName(Corrected.getCorrection());
531         if (LookupCtx) {
532           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
533           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
534                                   Name.getAsString() == CorrectedStr;
535           diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
536                                     << Name << LookupCtx << DroppedSpecifier
537                                     << SS.getRange());
538         } else {
539           diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
540         }
541       }
542     }
543   }
544 
545   NamedDecl *ExampleLookupResult =
546       Found.empty() ? nullptr : Found.getRepresentativeDecl();
547   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
548   if (Found.empty()) {
549     if (IsDependent) {
550       MemberOfUnknownSpecialization = true;
551       return false;
552     }
553 
554     // If a 'template' keyword was used, a lookup that finds only non-template
555     // names is an error.
556     if (ExampleLookupResult && RequiredTemplate) {
557       Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
558           << Found.getLookupName() << SS.getRange()
559           << RequiredTemplate.hasTemplateKeyword()
560           << RequiredTemplate.getTemplateKeywordLoc();
561       Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
562            diag::note_template_kw_refers_to_non_template)
563           << Found.getLookupName();
564       return true;
565     }
566 
567     return false;
568   }
569 
570   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
571       !getLangOpts().CPlusPlus11) {
572     // C++03 [basic.lookup.classref]p1:
573     //   [...] If the lookup in the class of the object expression finds a
574     //   template, the name is also looked up in the context of the entire
575     //   postfix-expression and [...]
576     //
577     // Note: C++11 does not perform this second lookup.
578     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
579                             LookupOrdinaryName);
580     FoundOuter.setTemplateNameLookup(true);
581     LookupName(FoundOuter, S);
582     // FIXME: We silently accept an ambiguous lookup here, in violation of
583     // [basic.lookup]/1.
584     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
585 
586     NamedDecl *OuterTemplate;
587     if (FoundOuter.empty()) {
588       //   - if the name is not found, the name found in the class of the
589       //     object expression is used, otherwise
590     } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
591                !(OuterTemplate =
592                      getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
593       //   - if the name is found in the context of the entire
594       //     postfix-expression and does not name a class template, the name
595       //     found in the class of the object expression is used, otherwise
596       FoundOuter.clear();
597     } else if (!Found.isSuppressingAmbiguousDiagnostics()) {
598       //   - if the name found is a class template, it must refer to the same
599       //     entity as the one found in the class of the object expression,
600       //     otherwise the program is ill-formed.
601       if (!Found.isSingleResult() ||
602           getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
603               OuterTemplate->getCanonicalDecl()) {
604         Diag(Found.getNameLoc(),
605              diag::ext_nested_name_member_ref_lookup_ambiguous)
606           << Found.getLookupName()
607           << ObjectType;
608         Diag(Found.getRepresentativeDecl()->getLocation(),
609              diag::note_ambig_member_ref_object_type)
610           << ObjectType;
611         Diag(FoundOuter.getFoundDecl()->getLocation(),
612              diag::note_ambig_member_ref_scope);
613 
614         // Recover by taking the template that we found in the object
615         // expression's type.
616       }
617     }
618   }
619 
620   return false;
621 }
622 
623 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
624                                               SourceLocation Less,
625                                               SourceLocation Greater) {
626   if (TemplateName.isInvalid())
627     return;
628 
629   DeclarationNameInfo NameInfo;
630   CXXScopeSpec SS;
631   LookupNameKind LookupKind;
632 
633   DeclContext *LookupCtx = nullptr;
634   NamedDecl *Found = nullptr;
635   bool MissingTemplateKeyword = false;
636 
637   // Figure out what name we looked up.
638   if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
639     NameInfo = DRE->getNameInfo();
640     SS.Adopt(DRE->getQualifierLoc());
641     LookupKind = LookupOrdinaryName;
642     Found = DRE->getFoundDecl();
643   } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
644     NameInfo = ME->getMemberNameInfo();
645     SS.Adopt(ME->getQualifierLoc());
646     LookupKind = LookupMemberName;
647     LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
648     Found = ME->getMemberDecl();
649   } else if (auto *DSDRE =
650                  dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
651     NameInfo = DSDRE->getNameInfo();
652     SS.Adopt(DSDRE->getQualifierLoc());
653     MissingTemplateKeyword = true;
654   } else if (auto *DSME =
655                  dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
656     NameInfo = DSME->getMemberNameInfo();
657     SS.Adopt(DSME->getQualifierLoc());
658     MissingTemplateKeyword = true;
659   } else {
660     llvm_unreachable("unexpected kind of potential template name");
661   }
662 
663   // If this is a dependent-scope lookup, diagnose that the 'template' keyword
664   // was missing.
665   if (MissingTemplateKeyword) {
666     Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
667         << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
668     return;
669   }
670 
671   // Try to correct the name by looking for templates and C++ named casts.
672   struct TemplateCandidateFilter : CorrectionCandidateCallback {
673     Sema &S;
674     TemplateCandidateFilter(Sema &S) : S(S) {
675       WantTypeSpecifiers = false;
676       WantExpressionKeywords = false;
677       WantRemainingKeywords = false;
678       WantCXXNamedCasts = true;
679     };
680     bool ValidateCandidate(const TypoCorrection &Candidate) override {
681       if (auto *ND = Candidate.getCorrectionDecl())
682         return S.getAsTemplateNameDecl(ND);
683       return Candidate.isKeyword();
684     }
685 
686     std::unique_ptr<CorrectionCandidateCallback> clone() override {
687       return std::make_unique<TemplateCandidateFilter>(*this);
688     }
689   };
690 
691   DeclarationName Name = NameInfo.getName();
692   TemplateCandidateFilter CCC(*this);
693   if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
694                                              CTK_ErrorRecovery, LookupCtx)) {
695     auto *ND = Corrected.getFoundDecl();
696     if (ND)
697       ND = getAsTemplateNameDecl(ND);
698     if (ND || Corrected.isKeyword()) {
699       if (LookupCtx) {
700         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
701         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
702                                 Name.getAsString() == CorrectedStr;
703         diagnoseTypo(Corrected,
704                      PDiag(diag::err_non_template_in_member_template_id_suggest)
705                          << Name << LookupCtx << DroppedSpecifier
706                          << SS.getRange(), false);
707       } else {
708         diagnoseTypo(Corrected,
709                      PDiag(diag::err_non_template_in_template_id_suggest)
710                          << Name, false);
711       }
712       if (Found)
713         Diag(Found->getLocation(),
714              diag::note_non_template_in_template_id_found);
715       return;
716     }
717   }
718 
719   Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
720     << Name << SourceRange(Less, Greater);
721   if (Found)
722     Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
723 }
724 
725 /// ActOnDependentIdExpression - Handle a dependent id-expression that
726 /// was just parsed.  This is only possible with an explicit scope
727 /// specifier naming a dependent type.
728 ExprResult
729 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
730                                  SourceLocation TemplateKWLoc,
731                                  const DeclarationNameInfo &NameInfo,
732                                  bool isAddressOfOperand,
733                            const TemplateArgumentListInfo *TemplateArgs) {
734   DeclContext *DC = getFunctionLevelDeclContext();
735 
736   // C++11 [expr.prim.general]p12:
737   //   An id-expression that denotes a non-static data member or non-static
738   //   member function of a class can only be used:
739   //   (...)
740   //   - if that id-expression denotes a non-static data member and it
741   //     appears in an unevaluated operand.
742   //
743   // If this might be the case, form a DependentScopeDeclRefExpr instead of a
744   // CXXDependentScopeMemberExpr. The former can instantiate to either
745   // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
746   // always a MemberExpr.
747   bool MightBeCxx11UnevalField =
748       getLangOpts().CPlusPlus11 && isUnevaluatedContext();
749 
750   // Check if the nested name specifier is an enum type.
751   bool IsEnum = false;
752   if (NestedNameSpecifier *NNS = SS.getScopeRep())
753     IsEnum = isa_and_nonnull<EnumType>(NNS->getAsType());
754 
755   if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
756       isa<CXXMethodDecl>(DC) &&
757       cast<CXXMethodDecl>(DC)->isImplicitObjectMemberFunction()) {
758     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType().getNonReferenceType();
759 
760     // Since the 'this' expression is synthesized, we don't need to
761     // perform the double-lookup check.
762     NamedDecl *FirstQualifierInScope = nullptr;
763 
764     return CXXDependentScopeMemberExpr::Create(
765         Context, /*This=*/nullptr, ThisType,
766         /*IsArrow=*/!Context.getLangOpts().HLSL,
767         /*Op=*/SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
768         FirstQualifierInScope, NameInfo, TemplateArgs);
769   }
770 
771   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
772 }
773 
774 ExprResult
775 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
776                                 SourceLocation TemplateKWLoc,
777                                 const DeclarationNameInfo &NameInfo,
778                                 const TemplateArgumentListInfo *TemplateArgs) {
779   // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
780   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
781   if (!QualifierLoc)
782     return ExprError();
783 
784   return DependentScopeDeclRefExpr::Create(
785       Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
786 }
787 
788 
789 /// Determine whether we would be unable to instantiate this template (because
790 /// it either has no definition, or is in the process of being instantiated).
791 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
792                                           NamedDecl *Instantiation,
793                                           bool InstantiatedFromMember,
794                                           const NamedDecl *Pattern,
795                                           const NamedDecl *PatternDef,
796                                           TemplateSpecializationKind TSK,
797                                           bool Complain /*= true*/) {
798   assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
799          isa<VarDecl>(Instantiation));
800 
801   bool IsEntityBeingDefined = false;
802   if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
803     IsEntityBeingDefined = TD->isBeingDefined();
804 
805   if (PatternDef && !IsEntityBeingDefined) {
806     NamedDecl *SuggestedDef = nullptr;
807     if (!hasReachableDefinition(const_cast<NamedDecl *>(PatternDef),
808                                 &SuggestedDef,
809                                 /*OnlyNeedComplete*/ false)) {
810       // If we're allowed to diagnose this and recover, do so.
811       bool Recover = Complain && !isSFINAEContext();
812       if (Complain)
813         diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
814                               Sema::MissingImportKind::Definition, Recover);
815       return !Recover;
816     }
817     return false;
818   }
819 
820   if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
821     return true;
822 
823   QualType InstantiationTy;
824   if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
825     InstantiationTy = Context.getTypeDeclType(TD);
826   if (PatternDef) {
827     Diag(PointOfInstantiation,
828          diag::err_template_instantiate_within_definition)
829       << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
830       << InstantiationTy;
831     // Not much point in noting the template declaration here, since
832     // we're lexically inside it.
833     Instantiation->setInvalidDecl();
834   } else if (InstantiatedFromMember) {
835     if (isa<FunctionDecl>(Instantiation)) {
836       Diag(PointOfInstantiation,
837            diag::err_explicit_instantiation_undefined_member)
838         << /*member function*/ 1 << Instantiation->getDeclName()
839         << Instantiation->getDeclContext();
840       Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
841     } else {
842       assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
843       Diag(PointOfInstantiation,
844            diag::err_implicit_instantiate_member_undefined)
845         << InstantiationTy;
846       Diag(Pattern->getLocation(), diag::note_member_declared_at);
847     }
848   } else {
849     if (isa<FunctionDecl>(Instantiation)) {
850       Diag(PointOfInstantiation,
851            diag::err_explicit_instantiation_undefined_func_template)
852         << Pattern;
853       Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
854     } else if (isa<TagDecl>(Instantiation)) {
855       Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
856         << (TSK != TSK_ImplicitInstantiation)
857         << InstantiationTy;
858       NoteTemplateLocation(*Pattern);
859     } else {
860       assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
861       if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
862         Diag(PointOfInstantiation,
863              diag::err_explicit_instantiation_undefined_var_template)
864           << Instantiation;
865         Instantiation->setInvalidDecl();
866       } else
867         Diag(PointOfInstantiation,
868              diag::err_explicit_instantiation_undefined_member)
869           << /*static data member*/ 2 << Instantiation->getDeclName()
870           << Instantiation->getDeclContext();
871       Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
872     }
873   }
874 
875   // In general, Instantiation isn't marked invalid to get more than one
876   // error for multiple undefined instantiations. But the code that does
877   // explicit declaration -> explicit definition conversion can't handle
878   // invalid declarations, so mark as invalid in that case.
879   if (TSK == TSK_ExplicitInstantiationDeclaration)
880     Instantiation->setInvalidDecl();
881   return true;
882 }
883 
884 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
885 /// that the template parameter 'PrevDecl' is being shadowed by a new
886 /// declaration at location Loc. Returns true to indicate that this is
887 /// an error, and false otherwise.
888 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
889   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
890 
891   // C++ [temp.local]p4:
892   //   A template-parameter shall not be redeclared within its
893   //   scope (including nested scopes).
894   //
895   // Make this a warning when MSVC compatibility is requested.
896   unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
897                                              : diag::err_template_param_shadow;
898   const auto *ND = cast<NamedDecl>(PrevDecl);
899   Diag(Loc, DiagId) << ND->getDeclName();
900   NoteTemplateParameterLocation(*ND);
901 }
902 
903 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
904 /// the parameter D to reference the templated declaration and return a pointer
905 /// to the template declaration. Otherwise, do nothing to D and return null.
906 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
907   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
908     D = Temp->getTemplatedDecl();
909     return Temp;
910   }
911   return nullptr;
912 }
913 
914 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
915                                              SourceLocation EllipsisLoc) const {
916   assert(Kind == Template &&
917          "Only template template arguments can be pack expansions here");
918   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
919          "Template template argument pack expansion without packs");
920   ParsedTemplateArgument Result(*this);
921   Result.EllipsisLoc = EllipsisLoc;
922   return Result;
923 }
924 
925 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
926                                             const ParsedTemplateArgument &Arg) {
927 
928   switch (Arg.getKind()) {
929   case ParsedTemplateArgument::Type: {
930     TypeSourceInfo *DI;
931     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
932     if (!DI)
933       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
934     return TemplateArgumentLoc(TemplateArgument(T), DI);
935   }
936 
937   case ParsedTemplateArgument::NonType: {
938     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
939     return TemplateArgumentLoc(TemplateArgument(E), E);
940   }
941 
942   case ParsedTemplateArgument::Template: {
943     TemplateName Template = Arg.getAsTemplate().get();
944     TemplateArgument TArg;
945     if (Arg.getEllipsisLoc().isValid())
946       TArg = TemplateArgument(Template, std::optional<unsigned int>());
947     else
948       TArg = Template;
949     return TemplateArgumentLoc(
950         SemaRef.Context, TArg,
951         Arg.getScopeSpec().getWithLocInContext(SemaRef.Context),
952         Arg.getLocation(), Arg.getEllipsisLoc());
953   }
954   }
955 
956   llvm_unreachable("Unhandled parsed template argument");
957 }
958 
959 /// Translates template arguments as provided by the parser
960 /// into template arguments used by semantic analysis.
961 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
962                                       TemplateArgumentListInfo &TemplateArgs) {
963  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
964    TemplateArgs.addArgument(translateTemplateArgument(*this,
965                                                       TemplateArgsIn[I]));
966 }
967 
968 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
969                                                  SourceLocation Loc,
970                                                  IdentifierInfo *Name) {
971   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
972       S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
973   if (PrevDecl && PrevDecl->isTemplateParameter())
974     SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
975 }
976 
977 /// Convert a parsed type into a parsed template argument. This is mostly
978 /// trivial, except that we may have parsed a C++17 deduced class template
979 /// specialization type, in which case we should form a template template
980 /// argument instead of a type template argument.
981 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
982   TypeSourceInfo *TInfo;
983   QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
984   if (T.isNull())
985     return ParsedTemplateArgument();
986   assert(TInfo && "template argument with no location");
987 
988   // If we might have formed a deduced template specialization type, convert
989   // it to a template template argument.
990   if (getLangOpts().CPlusPlus17) {
991     TypeLoc TL = TInfo->getTypeLoc();
992     SourceLocation EllipsisLoc;
993     if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
994       EllipsisLoc = PET.getEllipsisLoc();
995       TL = PET.getPatternLoc();
996     }
997 
998     CXXScopeSpec SS;
999     if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
1000       SS.Adopt(ET.getQualifierLoc());
1001       TL = ET.getNamedTypeLoc();
1002     }
1003 
1004     if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
1005       TemplateName Name = DTST.getTypePtr()->getTemplateName();
1006       if (SS.isSet())
1007         Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
1008                                                 /*HasTemplateKeyword=*/false,
1009                                                 Name);
1010       ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
1011                                     DTST.getTemplateNameLoc());
1012       if (EllipsisLoc.isValid())
1013         Result = Result.getTemplatePackExpansion(EllipsisLoc);
1014       return Result;
1015     }
1016   }
1017 
1018   // This is a normal type template argument. Note, if the type template
1019   // argument is an injected-class-name for a template, it has a dual nature
1020   // and can be used as either a type or a template. We handle that in
1021   // convertTypeTemplateArgumentToTemplate.
1022   return ParsedTemplateArgument(ParsedTemplateArgument::Type,
1023                                 ParsedType.get().getAsOpaquePtr(),
1024                                 TInfo->getTypeLoc().getBeginLoc());
1025 }
1026 
1027 /// ActOnTypeParameter - Called when a C++ template type parameter
1028 /// (e.g., "typename T") has been parsed. Typename specifies whether
1029 /// the keyword "typename" was used to declare the type parameter
1030 /// (otherwise, "class" was used), and KeyLoc is the location of the
1031 /// "class" or "typename" keyword. ParamName is the name of the
1032 /// parameter (NULL indicates an unnamed template parameter) and
1033 /// ParamNameLoc is the location of the parameter name (if any).
1034 /// If the type parameter has a default argument, it will be added
1035 /// later via ActOnTypeParameterDefault.
1036 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
1037                                     SourceLocation EllipsisLoc,
1038                                     SourceLocation KeyLoc,
1039                                     IdentifierInfo *ParamName,
1040                                     SourceLocation ParamNameLoc,
1041                                     unsigned Depth, unsigned Position,
1042                                     SourceLocation EqualLoc,
1043                                     ParsedType DefaultArg,
1044                                     bool HasTypeConstraint) {
1045   assert(S->isTemplateParamScope() &&
1046          "Template type parameter not in template parameter scope!");
1047 
1048   bool IsParameterPack = EllipsisLoc.isValid();
1049   TemplateTypeParmDecl *Param
1050     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1051                                    KeyLoc, ParamNameLoc, Depth, Position,
1052                                    ParamName, Typename, IsParameterPack,
1053                                    HasTypeConstraint);
1054   Param->setAccess(AS_public);
1055 
1056   if (Param->isParameterPack())
1057     if (auto *LSI = getEnclosingLambda())
1058       LSI->LocalPacks.push_back(Param);
1059 
1060   if (ParamName) {
1061     maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1062 
1063     // Add the template parameter into the current scope.
1064     S->AddDecl(Param);
1065     IdResolver.AddDecl(Param);
1066   }
1067 
1068   // C++0x [temp.param]p9:
1069   //   A default template-argument may be specified for any kind of
1070   //   template-parameter that is not a template parameter pack.
1071   if (DefaultArg && IsParameterPack) {
1072     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1073     DefaultArg = nullptr;
1074   }
1075 
1076   // Handle the default argument, if provided.
1077   if (DefaultArg) {
1078     TypeSourceInfo *DefaultTInfo;
1079     GetTypeFromParser(DefaultArg, &DefaultTInfo);
1080 
1081     assert(DefaultTInfo && "expected source information for type");
1082 
1083     // Check for unexpanded parameter packs.
1084     if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
1085                                         UPPC_DefaultArgument))
1086       return Param;
1087 
1088     // Check the template argument itself.
1089     if (CheckTemplateArgument(DefaultTInfo)) {
1090       Param->setInvalidDecl();
1091       return Param;
1092     }
1093 
1094     Param->setDefaultArgument(DefaultTInfo);
1095   }
1096 
1097   return Param;
1098 }
1099 
1100 /// Convert the parser's template argument list representation into our form.
1101 static TemplateArgumentListInfo
1102 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
1103   TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
1104                                         TemplateId.RAngleLoc);
1105   ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
1106                                      TemplateId.NumArgs);
1107   S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
1108   return TemplateArgs;
1109 }
1110 
1111 bool Sema::CheckTypeConstraint(TemplateIdAnnotation *TypeConstr) {
1112 
1113   TemplateName TN = TypeConstr->Template.get();
1114   ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
1115 
1116   // C++2a [temp.param]p4:
1117   //     [...] The concept designated by a type-constraint shall be a type
1118   //     concept ([temp.concept]).
1119   if (!CD->isTypeConcept()) {
1120     Diag(TypeConstr->TemplateNameLoc,
1121          diag::err_type_constraint_non_type_concept);
1122     return true;
1123   }
1124 
1125   bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
1126 
1127   if (!WereArgsSpecified &&
1128       CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
1129     Diag(TypeConstr->TemplateNameLoc,
1130          diag::err_type_constraint_missing_arguments)
1131         << CD;
1132     return true;
1133   }
1134   return false;
1135 }
1136 
1137 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
1138                                TemplateIdAnnotation *TypeConstr,
1139                                TemplateTypeParmDecl *ConstrainedParameter,
1140                                SourceLocation EllipsisLoc) {
1141   return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc,
1142                              false);
1143 }
1144 
1145 bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS,
1146                                TemplateIdAnnotation *TypeConstr,
1147                                TemplateTypeParmDecl *ConstrainedParameter,
1148                                SourceLocation EllipsisLoc,
1149                                bool AllowUnexpandedPack) {
1150 
1151   if (CheckTypeConstraint(TypeConstr))
1152     return true;
1153 
1154   TemplateName TN = TypeConstr->Template.get();
1155   ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
1156 
1157   DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name),
1158                                   TypeConstr->TemplateNameLoc);
1159 
1160   TemplateArgumentListInfo TemplateArgs;
1161   if (TypeConstr->LAngleLoc.isValid()) {
1162     TemplateArgs =
1163         makeTemplateArgumentListInfo(*this, *TypeConstr);
1164 
1165     if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) {
1166       for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) {
1167         if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint))
1168           return true;
1169       }
1170     }
1171   }
1172   return AttachTypeConstraint(
1173       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1174       ConceptName, CD,
1175       TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
1176       ConstrainedParameter, EllipsisLoc);
1177 }
1178 
1179 template<typename ArgumentLocAppender>
1180 static ExprResult formImmediatelyDeclaredConstraint(
1181     Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
1182     ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
1183     SourceLocation RAngleLoc, QualType ConstrainedType,
1184     SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
1185     SourceLocation EllipsisLoc) {
1186 
1187   TemplateArgumentListInfo ConstraintArgs;
1188   ConstraintArgs.addArgument(
1189     S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
1190                                     /*NTTPType=*/QualType(), ParamNameLoc));
1191 
1192   ConstraintArgs.setRAngleLoc(RAngleLoc);
1193   ConstraintArgs.setLAngleLoc(LAngleLoc);
1194   Appender(ConstraintArgs);
1195 
1196   // C++2a [temp.param]p4:
1197   //     [...] This constraint-expression E is called the immediately-declared
1198   //     constraint of T. [...]
1199   CXXScopeSpec SS;
1200   SS.Adopt(NS);
1201   ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
1202       SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
1203       /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
1204   if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
1205     return ImmediatelyDeclaredConstraint;
1206 
1207   // C++2a [temp.param]p4:
1208   //     [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1209   //
1210   // We have the following case:
1211   //
1212   // template<typename T> concept C1 = true;
1213   // template<C1... T> struct s1;
1214   //
1215   // The constraint: (C1<T> && ...)
1216   //
1217   // Note that the type of C1<T> is known to be 'bool', so we don't need to do
1218   // any unqualified lookups for 'operator&&' here.
1219   return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr,
1220                             /*LParenLoc=*/SourceLocation(),
1221                             ImmediatelyDeclaredConstraint.get(), BO_LAnd,
1222                             EllipsisLoc, /*RHS=*/nullptr,
1223                             /*RParenLoc=*/SourceLocation(),
1224                             /*NumExpansions=*/std::nullopt);
1225 }
1226 
1227 /// Attach a type-constraint to a template parameter.
1228 /// \returns true if an error occurred. This can happen if the
1229 /// immediately-declared constraint could not be formed (e.g. incorrect number
1230 /// of arguments for the named concept).
1231 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
1232                                 DeclarationNameInfo NameInfo,
1233                                 ConceptDecl *NamedConcept,
1234                                 const TemplateArgumentListInfo *TemplateArgs,
1235                                 TemplateTypeParmDecl *ConstrainedParameter,
1236                                 SourceLocation EllipsisLoc) {
1237   // C++2a [temp.param]p4:
1238   //     [...] If Q is of the form C<A1, ..., An>, then let E' be
1239   //     C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
1240   const ASTTemplateArgumentListInfo *ArgsAsWritten =
1241     TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
1242                                                        *TemplateArgs) : nullptr;
1243 
1244   QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
1245 
1246   ExprResult ImmediatelyDeclaredConstraint =
1247       formImmediatelyDeclaredConstraint(
1248           *this, NS, NameInfo, NamedConcept,
1249           TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
1250           TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
1251           ParamAsArgument, ConstrainedParameter->getLocation(),
1252           [&] (TemplateArgumentListInfo &ConstraintArgs) {
1253             if (TemplateArgs)
1254               for (const auto &ArgLoc : TemplateArgs->arguments())
1255                 ConstraintArgs.addArgument(ArgLoc);
1256           }, EllipsisLoc);
1257   if (ImmediatelyDeclaredConstraint.isInvalid())
1258     return true;
1259 
1260   auto *CL = ConceptReference::Create(Context, /*NNS=*/NS,
1261                                       /*TemplateKWLoc=*/SourceLocation{},
1262                                       /*ConceptNameInfo=*/NameInfo,
1263                                       /*FoundDecl=*/NamedConcept,
1264                                       /*NamedConcept=*/NamedConcept,
1265                                       /*ArgsWritten=*/ArgsAsWritten);
1266   ConstrainedParameter->setTypeConstraint(CL,
1267                                           ImmediatelyDeclaredConstraint.get());
1268   return false;
1269 }
1270 
1271 bool Sema::AttachTypeConstraint(AutoTypeLoc TL,
1272                                 NonTypeTemplateParmDecl *NewConstrainedParm,
1273                                 NonTypeTemplateParmDecl *OrigConstrainedParm,
1274                                 SourceLocation EllipsisLoc) {
1275   if (NewConstrainedParm->getType() != TL.getType() ||
1276       TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
1277     Diag(NewConstrainedParm->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1278          diag::err_unsupported_placeholder_constraint)
1279         << NewConstrainedParm->getTypeSourceInfo()
1280                ->getTypeLoc()
1281                .getSourceRange();
1282     return true;
1283   }
1284   // FIXME: Concepts: This should be the type of the placeholder, but this is
1285   // unclear in the wording right now.
1286   DeclRefExpr *Ref =
1287       BuildDeclRefExpr(OrigConstrainedParm, OrigConstrainedParm->getType(),
1288                        VK_PRValue, OrigConstrainedParm->getLocation());
1289   if (!Ref)
1290     return true;
1291   ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint(
1292       *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
1293       TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
1294       BuildDecltypeType(Ref), OrigConstrainedParm->getLocation(),
1295       [&](TemplateArgumentListInfo &ConstraintArgs) {
1296         for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
1297           ConstraintArgs.addArgument(TL.getArgLoc(I));
1298       },
1299       EllipsisLoc);
1300   if (ImmediatelyDeclaredConstraint.isInvalid() ||
1301       !ImmediatelyDeclaredConstraint.isUsable())
1302     return true;
1303 
1304   NewConstrainedParm->setPlaceholderTypeConstraint(
1305       ImmediatelyDeclaredConstraint.get());
1306   return false;
1307 }
1308 
1309 /// Check that the type of a non-type template parameter is
1310 /// well-formed.
1311 ///
1312 /// \returns the (possibly-promoted) parameter type if valid;
1313 /// otherwise, produces a diagnostic and returns a NULL type.
1314 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1315                                                  SourceLocation Loc) {
1316   if (TSI->getType()->isUndeducedType()) {
1317     // C++17 [temp.dep.expr]p3:
1318     //   An id-expression is type-dependent if it contains
1319     //    - an identifier associated by name lookup with a non-type
1320     //      template-parameter declared with a type that contains a
1321     //      placeholder type (7.1.7.4),
1322     TSI = SubstAutoTypeSourceInfoDependent(TSI);
1323   }
1324 
1325   return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1326 }
1327 
1328 /// Require the given type to be a structural type, and diagnose if it is not.
1329 ///
1330 /// \return \c true if an error was produced.
1331 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) {
1332   if (T->isDependentType())
1333     return false;
1334 
1335   if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete))
1336     return true;
1337 
1338   if (T->isStructuralType())
1339     return false;
1340 
1341   // Structural types are required to be object types or lvalue references.
1342   if (T->isRValueReferenceType()) {
1343     Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T;
1344     return true;
1345   }
1346 
1347   // Don't mention structural types in our diagnostic prior to C++20. Also,
1348   // there's not much more we can say about non-scalar non-class types --
1349   // because we can't see functions or arrays here, those can only be language
1350   // extensions.
1351   if (!getLangOpts().CPlusPlus20 ||
1352       (!T->isScalarType() && !T->isRecordType())) {
1353     Diag(Loc, diag::err_template_nontype_parm_bad_type) << T;
1354     return true;
1355   }
1356 
1357   // Structural types are required to be literal types.
1358   if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal))
1359     return true;
1360 
1361   Diag(Loc, diag::err_template_nontype_parm_not_structural) << T;
1362 
1363   // Drill down into the reason why the class is non-structural.
1364   while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
1365     // All members are required to be public and non-mutable, and can't be of
1366     // rvalue reference type. Check these conditions first to prefer a "local"
1367     // reason over a more distant one.
1368     for (const FieldDecl *FD : RD->fields()) {
1369       if (FD->getAccess() != AS_public) {
1370         Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0;
1371         return true;
1372       }
1373       if (FD->isMutable()) {
1374         Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T;
1375         return true;
1376       }
1377       if (FD->getType()->isRValueReferenceType()) {
1378         Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field)
1379             << T;
1380         return true;
1381       }
1382     }
1383 
1384     // All bases are required to be public.
1385     for (const auto &BaseSpec : RD->bases()) {
1386       if (BaseSpec.getAccessSpecifier() != AS_public) {
1387         Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public)
1388             << T << 1;
1389         return true;
1390       }
1391     }
1392 
1393     // All subobjects are required to be of structural types.
1394     SourceLocation SubLoc;
1395     QualType SubType;
1396     int Kind = -1;
1397 
1398     for (const FieldDecl *FD : RD->fields()) {
1399       QualType T = Context.getBaseElementType(FD->getType());
1400       if (!T->isStructuralType()) {
1401         SubLoc = FD->getLocation();
1402         SubType = T;
1403         Kind = 0;
1404         break;
1405       }
1406     }
1407 
1408     if (Kind == -1) {
1409       for (const auto &BaseSpec : RD->bases()) {
1410         QualType T = BaseSpec.getType();
1411         if (!T->isStructuralType()) {
1412           SubLoc = BaseSpec.getBaseTypeLoc();
1413           SubType = T;
1414           Kind = 1;
1415           break;
1416         }
1417       }
1418     }
1419 
1420     assert(Kind != -1 && "couldn't find reason why type is not structural");
1421     Diag(SubLoc, diag::note_not_structural_subobject)
1422         << T << Kind << SubType;
1423     T = SubType;
1424     RD = T->getAsCXXRecordDecl();
1425   }
1426 
1427   return true;
1428 }
1429 
1430 QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1431                                                  SourceLocation Loc) {
1432   // We don't allow variably-modified types as the type of non-type template
1433   // parameters.
1434   if (T->isVariablyModifiedType()) {
1435     Diag(Loc, diag::err_variably_modified_nontype_template_param)
1436       << T;
1437     return QualType();
1438   }
1439 
1440   // C++ [temp.param]p4:
1441   //
1442   // A non-type template-parameter shall have one of the following
1443   // (optionally cv-qualified) types:
1444   //
1445   //       -- integral or enumeration type,
1446   if (T->isIntegralOrEnumerationType() ||
1447       //   -- pointer to object or pointer to function,
1448       T->isPointerType() ||
1449       //   -- lvalue reference to object or lvalue reference to function,
1450       T->isLValueReferenceType() ||
1451       //   -- pointer to member,
1452       T->isMemberPointerType() ||
1453       //   -- std::nullptr_t, or
1454       T->isNullPtrType() ||
1455       //   -- a type that contains a placeholder type.
1456       T->isUndeducedType()) {
1457     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1458     // are ignored when determining its type.
1459     return T.getUnqualifiedType();
1460   }
1461 
1462   // C++ [temp.param]p8:
1463   //
1464   //   A non-type template-parameter of type "array of T" or
1465   //   "function returning T" is adjusted to be of type "pointer to
1466   //   T" or "pointer to function returning T", respectively.
1467   if (T->isArrayType() || T->isFunctionType())
1468     return Context.getDecayedType(T);
1469 
1470   // If T is a dependent type, we can't do the check now, so we
1471   // assume that it is well-formed. Note that stripping off the
1472   // qualifiers here is not really correct if T turns out to be
1473   // an array type, but we'll recompute the type everywhere it's
1474   // used during instantiation, so that should be OK. (Using the
1475   // qualified type is equally wrong.)
1476   if (T->isDependentType())
1477     return T.getUnqualifiedType();
1478 
1479   // C++20 [temp.param]p6:
1480   //   -- a structural type
1481   if (RequireStructuralType(T, Loc))
1482     return QualType();
1483 
1484   if (!getLangOpts().CPlusPlus20) {
1485     // FIXME: Consider allowing structural types as an extension in C++17. (In
1486     // earlier language modes, the template argument evaluation rules are too
1487     // inflexible.)
1488     Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T;
1489     return QualType();
1490   }
1491 
1492   Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T;
1493   return T.getUnqualifiedType();
1494 }
1495 
1496 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1497                                           unsigned Depth,
1498                                           unsigned Position,
1499                                           SourceLocation EqualLoc,
1500                                           Expr *Default) {
1501   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
1502 
1503   // Check that we have valid decl-specifiers specified.
1504   auto CheckValidDeclSpecifiers = [this, &D] {
1505     // C++ [temp.param]
1506     // p1
1507     //   template-parameter:
1508     //     ...
1509     //     parameter-declaration
1510     // p2
1511     //   ... A storage class shall not be specified in a template-parameter
1512     //   declaration.
1513     // [dcl.typedef]p1:
1514     //   The typedef specifier [...] shall not be used in the decl-specifier-seq
1515     //   of a parameter-declaration
1516     const DeclSpec &DS = D.getDeclSpec();
1517     auto EmitDiag = [this](SourceLocation Loc) {
1518       Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1519           << FixItHint::CreateRemoval(Loc);
1520     };
1521     if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1522       EmitDiag(DS.getStorageClassSpecLoc());
1523 
1524     if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1525       EmitDiag(DS.getThreadStorageClassSpecLoc());
1526 
1527     // [dcl.inline]p1:
1528     //   The inline specifier can be applied only to the declaration or
1529     //   definition of a variable or function.
1530 
1531     if (DS.isInlineSpecified())
1532       EmitDiag(DS.getInlineSpecLoc());
1533 
1534     // [dcl.constexpr]p1:
1535     //   The constexpr specifier shall be applied only to the definition of a
1536     //   variable or variable template or the declaration of a function or
1537     //   function template.
1538 
1539     if (DS.hasConstexprSpecifier())
1540       EmitDiag(DS.getConstexprSpecLoc());
1541 
1542     // [dcl.fct.spec]p1:
1543     //   Function-specifiers can be used only in function declarations.
1544 
1545     if (DS.isVirtualSpecified())
1546       EmitDiag(DS.getVirtualSpecLoc());
1547 
1548     if (DS.hasExplicitSpecifier())
1549       EmitDiag(DS.getExplicitSpecLoc());
1550 
1551     if (DS.isNoreturnSpecified())
1552       EmitDiag(DS.getNoreturnSpecLoc());
1553   };
1554 
1555   CheckValidDeclSpecifiers();
1556 
1557   if (const auto *T = TInfo->getType()->getContainedDeducedType())
1558     if (isa<AutoType>(T))
1559       Diag(D.getIdentifierLoc(),
1560            diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1561           << QualType(TInfo->getType()->getContainedAutoType(), 0);
1562 
1563   assert(S->isTemplateParamScope() &&
1564          "Non-type template parameter not in template parameter scope!");
1565   bool Invalid = false;
1566 
1567   QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1568   if (T.isNull()) {
1569     T = Context.IntTy; // Recover with an 'int' type.
1570     Invalid = true;
1571   }
1572 
1573   CheckFunctionOrTemplateParamDeclarator(S, D);
1574 
1575   IdentifierInfo *ParamName = D.getIdentifier();
1576   bool IsParameterPack = D.hasEllipsis();
1577   NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1578       Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1579       D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1580       TInfo);
1581   Param->setAccess(AS_public);
1582 
1583   if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
1584     if (TL.isConstrained())
1585       if (AttachTypeConstraint(TL, Param, Param, D.getEllipsisLoc()))
1586         Invalid = true;
1587 
1588   if (Invalid)
1589     Param->setInvalidDecl();
1590 
1591   if (Param->isParameterPack())
1592     if (auto *LSI = getEnclosingLambda())
1593       LSI->LocalPacks.push_back(Param);
1594 
1595   if (ParamName) {
1596     maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1597                                          ParamName);
1598 
1599     // Add the template parameter into the current scope.
1600     S->AddDecl(Param);
1601     IdResolver.AddDecl(Param);
1602   }
1603 
1604   // C++0x [temp.param]p9:
1605   //   A default template-argument may be specified for any kind of
1606   //   template-parameter that is not a template parameter pack.
1607   if (Default && IsParameterPack) {
1608     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1609     Default = nullptr;
1610   }
1611 
1612   // Check the well-formedness of the default template argument, if provided.
1613   if (Default) {
1614     // Check for unexpanded parameter packs.
1615     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1616       return Param;
1617 
1618     Param->setDefaultArgument(Default);
1619   }
1620 
1621   return Param;
1622 }
1623 
1624 /// ActOnTemplateTemplateParameter - Called when a C++ template template
1625 /// parameter (e.g. T in template <template \<typename> class T> class array)
1626 /// has been parsed. S is the current scope.
1627 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1628                                            SourceLocation TmpLoc,
1629                                            TemplateParameterList *Params,
1630                                            SourceLocation EllipsisLoc,
1631                                            IdentifierInfo *Name,
1632                                            SourceLocation NameLoc,
1633                                            unsigned Depth,
1634                                            unsigned Position,
1635                                            SourceLocation EqualLoc,
1636                                            ParsedTemplateArgument Default) {
1637   assert(S->isTemplateParamScope() &&
1638          "Template template parameter not in template parameter scope!");
1639 
1640   // Construct the parameter object.
1641   bool IsParameterPack = EllipsisLoc.isValid();
1642   TemplateTemplateParmDecl *Param =
1643     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1644                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
1645                                      Depth, Position, IsParameterPack,
1646                                      Name, Params);
1647   Param->setAccess(AS_public);
1648 
1649   if (Param->isParameterPack())
1650     if (auto *LSI = getEnclosingLambda())
1651       LSI->LocalPacks.push_back(Param);
1652 
1653   // If the template template parameter has a name, then link the identifier
1654   // into the scope and lookup mechanisms.
1655   if (Name) {
1656     maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1657 
1658     S->AddDecl(Param);
1659     IdResolver.AddDecl(Param);
1660   }
1661 
1662   if (Params->size() == 0) {
1663     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1664     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1665     Param->setInvalidDecl();
1666   }
1667 
1668   // C++0x [temp.param]p9:
1669   //   A default template-argument may be specified for any kind of
1670   //   template-parameter that is not a template parameter pack.
1671   if (IsParameterPack && !Default.isInvalid()) {
1672     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1673     Default = ParsedTemplateArgument();
1674   }
1675 
1676   if (!Default.isInvalid()) {
1677     // Check only that we have a template template argument. We don't want to
1678     // try to check well-formedness now, because our template template parameter
1679     // might have dependent types in its template parameters, which we wouldn't
1680     // be able to match now.
1681     //
1682     // If none of the template template parameter's template arguments mention
1683     // other template parameters, we could actually perform more checking here.
1684     // However, it isn't worth doing.
1685     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1686     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1687       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1688         << DefaultArg.getSourceRange();
1689       return Param;
1690     }
1691 
1692     // Check for unexpanded parameter packs.
1693     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1694                                         DefaultArg.getArgument().getAsTemplate(),
1695                                         UPPC_DefaultArgument))
1696       return Param;
1697 
1698     Param->setDefaultArgument(Context, DefaultArg);
1699   }
1700 
1701   return Param;
1702 }
1703 
1704 namespace {
1705 class ConstraintRefersToContainingTemplateChecker
1706     : public TreeTransform<ConstraintRefersToContainingTemplateChecker> {
1707   bool Result = false;
1708   const FunctionDecl *Friend = nullptr;
1709   unsigned TemplateDepth = 0;
1710 
1711   // Check a record-decl that we've seen to see if it is a lexical parent of the
1712   // Friend, likely because it was referred to without its template arguments.
1713   void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) {
1714     CheckingRD = CheckingRD->getMostRecentDecl();
1715     if (!CheckingRD->isTemplated())
1716       return;
1717 
1718     for (const DeclContext *DC = Friend->getLexicalDeclContext();
1719          DC && !DC->isFileContext(); DC = DC->getParent())
1720       if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
1721         if (CheckingRD == RD->getMostRecentDecl())
1722           Result = true;
1723   }
1724 
1725   void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
1726     assert(D->getDepth() <= TemplateDepth &&
1727            "Nothing should reference a value below the actual template depth, "
1728            "depth is likely wrong");
1729     if (D->getDepth() != TemplateDepth)
1730       Result = true;
1731 
1732     // Necessary because the type of the NTTP might be what refers to the parent
1733     // constriant.
1734     TransformType(D->getType());
1735   }
1736 
1737 public:
1738   using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>;
1739 
1740   ConstraintRefersToContainingTemplateChecker(Sema &SemaRef,
1741                                               const FunctionDecl *Friend,
1742                                               unsigned TemplateDepth)
1743       : inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {}
1744   bool getResult() const { return Result; }
1745 
1746   // This should be the only template parm type that we have to deal with.
1747   // SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and
1748   // FunctionParmPackExpr are all partially substituted, which cannot happen
1749   // with concepts at this point in translation.
1750   using inherited::TransformTemplateTypeParmType;
1751   QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
1752                                          TemplateTypeParmTypeLoc TL, bool) {
1753     assert(TL.getDecl()->getDepth() <= TemplateDepth &&
1754            "Nothing should reference a value below the actual template depth, "
1755            "depth is likely wrong");
1756     if (TL.getDecl()->getDepth() != TemplateDepth)
1757       Result = true;
1758     return inherited::TransformTemplateTypeParmType(
1759         TLB, TL,
1760         /*SuppressObjCLifetime=*/false);
1761   }
1762 
1763   Decl *TransformDecl(SourceLocation Loc, Decl *D) {
1764     if (!D)
1765       return D;
1766     // FIXME : This is possibly an incomplete list, but it is unclear what other
1767     // Decl kinds could be used to refer to the template parameters.  This is a
1768     // best guess so far based on examples currently available, but the
1769     // unreachable should catch future instances/cases.
1770     if (auto *TD = dyn_cast<TypedefNameDecl>(D))
1771       TransformType(TD->getUnderlyingType());
1772     else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(D))
1773       CheckNonTypeTemplateParmDecl(NTTPD);
1774     else if (auto *VD = dyn_cast<ValueDecl>(D))
1775       TransformType(VD->getType());
1776     else if (auto *TD = dyn_cast<TemplateDecl>(D))
1777       TransformTemplateParameterList(TD->getTemplateParameters());
1778     else if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1779       CheckIfContainingRecord(RD);
1780     else if (isa<NamedDecl>(D)) {
1781       // No direct types to visit here I believe.
1782     } else
1783       llvm_unreachable("Don't know how to handle this declaration type yet");
1784     return D;
1785   }
1786 };
1787 } // namespace
1788 
1789 bool Sema::ConstraintExpressionDependsOnEnclosingTemplate(
1790     const FunctionDecl *Friend, unsigned TemplateDepth,
1791     const Expr *Constraint) {
1792   assert(Friend->getFriendObjectKind() && "Only works on a friend");
1793   ConstraintRefersToContainingTemplateChecker Checker(*this, Friend,
1794                                                       TemplateDepth);
1795   Checker.TransformExpr(const_cast<Expr *>(Constraint));
1796   return Checker.getResult();
1797 }
1798 
1799 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1800 /// constrained by RequiresClause, that contains the template parameters in
1801 /// Params.
1802 TemplateParameterList *
1803 Sema::ActOnTemplateParameterList(unsigned Depth,
1804                                  SourceLocation ExportLoc,
1805                                  SourceLocation TemplateLoc,
1806                                  SourceLocation LAngleLoc,
1807                                  ArrayRef<NamedDecl *> Params,
1808                                  SourceLocation RAngleLoc,
1809                                  Expr *RequiresClause) {
1810   if (ExportLoc.isValid())
1811     Diag(ExportLoc, diag::warn_template_export_unsupported);
1812 
1813   for (NamedDecl *P : Params)
1814     warnOnReservedIdentifier(P);
1815 
1816   return TemplateParameterList::Create(
1817       Context, TemplateLoc, LAngleLoc,
1818       llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause);
1819 }
1820 
1821 static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1822                                    const CXXScopeSpec &SS) {
1823   if (SS.isSet())
1824     T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1825 }
1826 
1827 // Returns the template parameter list with all default template argument
1828 // information.
1829 static TemplateParameterList *GetTemplateParameterList(TemplateDecl *TD) {
1830   // Make sure we get the template parameter list from the most
1831   // recent declaration, since that is the only one that is guaranteed to
1832   // have all the default template argument information.
1833   Decl *D = TD->getMostRecentDecl();
1834   // C++11 [temp.param]p12:
1835   // A default template argument shall not be specified in a friend class
1836   // template declaration.
1837   //
1838   // Skip past friend *declarations* because they are not supposed to contain
1839   // default template arguments. Moreover, these declarations may introduce
1840   // template parameters living in different template depths than the
1841   // corresponding template parameters in TD, causing unmatched constraint
1842   // substitution.
1843   //
1844   // FIXME: Diagnose such cases within a class template:
1845   //  template <class T>
1846   //  struct S {
1847   //    template <class = void> friend struct C;
1848   //  };
1849   //  template struct S<int>;
1850   while (D->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None &&
1851          D->getPreviousDecl())
1852     D = D->getPreviousDecl();
1853   return cast<TemplateDecl>(D)->getTemplateParameters();
1854 }
1855 
1856 DeclResult Sema::CheckClassTemplate(
1857     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1858     CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1859     const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1860     AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1861     SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1862     TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1863   assert(TemplateParams && TemplateParams->size() > 0 &&
1864          "No template parameters");
1865   assert(TUK != TUK_Reference && "Can only declare or define class templates");
1866   bool Invalid = false;
1867 
1868   // Check that we can declare a template here.
1869   if (CheckTemplateDeclScope(S, TemplateParams))
1870     return true;
1871 
1872   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1873   assert(Kind != TagTypeKind::Enum &&
1874          "can't build template of enumerated type");
1875 
1876   // There is no such thing as an unnamed class template.
1877   if (!Name) {
1878     Diag(KWLoc, diag::err_template_unnamed_class);
1879     return true;
1880   }
1881 
1882   // Find any previous declaration with this name. For a friend with no
1883   // scope explicitly specified, we only look for tag declarations (per
1884   // C++11 [basic.lookup.elab]p2).
1885   DeclContext *SemanticContext;
1886   LookupResult Previous(*this, Name, NameLoc,
1887                         (SS.isEmpty() && TUK == TUK_Friend)
1888                           ? LookupTagName : LookupOrdinaryName,
1889                         forRedeclarationInCurContext());
1890   if (SS.isNotEmpty() && !SS.isInvalid()) {
1891     SemanticContext = computeDeclContext(SS, true);
1892     if (!SemanticContext) {
1893       // FIXME: Horrible, horrible hack! We can't currently represent this
1894       // in the AST, and historically we have just ignored such friend
1895       // class templates, so don't complain here.
1896       Diag(NameLoc, TUK == TUK_Friend
1897                         ? diag::warn_template_qualified_friend_ignored
1898                         : diag::err_template_qualified_declarator_no_match)
1899           << SS.getScopeRep() << SS.getRange();
1900       return TUK != TUK_Friend;
1901     }
1902 
1903     if (RequireCompleteDeclContext(SS, SemanticContext))
1904       return true;
1905 
1906     // If we're adding a template to a dependent context, we may need to
1907     // rebuilding some of the types used within the template parameter list,
1908     // now that we know what the current instantiation is.
1909     if (SemanticContext->isDependentContext()) {
1910       ContextRAII SavedContext(*this, SemanticContext);
1911       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1912         Invalid = true;
1913     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1914       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1915 
1916     LookupQualifiedName(Previous, SemanticContext);
1917   } else {
1918     SemanticContext = CurContext;
1919 
1920     // C++14 [class.mem]p14:
1921     //   If T is the name of a class, then each of the following shall have a
1922     //   name different from T:
1923     //    -- every member template of class T
1924     if (TUK != TUK_Friend &&
1925         DiagnoseClassNameShadow(SemanticContext,
1926                                 DeclarationNameInfo(Name, NameLoc)))
1927       return true;
1928 
1929     LookupName(Previous, S);
1930   }
1931 
1932   if (Previous.isAmbiguous())
1933     return true;
1934 
1935   NamedDecl *PrevDecl = nullptr;
1936   if (Previous.begin() != Previous.end())
1937     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1938 
1939   if (PrevDecl && PrevDecl->isTemplateParameter()) {
1940     // Maybe we will complain about the shadowed template parameter.
1941     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1942     // Just pretend that we didn't see the previous declaration.
1943     PrevDecl = nullptr;
1944   }
1945 
1946   // If there is a previous declaration with the same name, check
1947   // whether this is a valid redeclaration.
1948   ClassTemplateDecl *PrevClassTemplate =
1949       dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1950 
1951   // We may have found the injected-class-name of a class template,
1952   // class template partial specialization, or class template specialization.
1953   // In these cases, grab the template that is being defined or specialized.
1954   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1955       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1956     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1957     PrevClassTemplate
1958       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1959     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1960       PrevClassTemplate
1961         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1962             ->getSpecializedTemplate();
1963     }
1964   }
1965 
1966   if (TUK == TUK_Friend) {
1967     // C++ [namespace.memdef]p3:
1968     //   [...] When looking for a prior declaration of a class or a function
1969     //   declared as a friend, and when the name of the friend class or
1970     //   function is neither a qualified name nor a template-id, scopes outside
1971     //   the innermost enclosing namespace scope are not considered.
1972     if (!SS.isSet()) {
1973       DeclContext *OutermostContext = CurContext;
1974       while (!OutermostContext->isFileContext())
1975         OutermostContext = OutermostContext->getLookupParent();
1976 
1977       if (PrevDecl &&
1978           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1979            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1980         SemanticContext = PrevDecl->getDeclContext();
1981       } else {
1982         // Declarations in outer scopes don't matter. However, the outermost
1983         // context we computed is the semantic context for our new
1984         // declaration.
1985         PrevDecl = PrevClassTemplate = nullptr;
1986         SemanticContext = OutermostContext;
1987 
1988         // Check that the chosen semantic context doesn't already contain a
1989         // declaration of this name as a non-tag type.
1990         Previous.clear(LookupOrdinaryName);
1991         DeclContext *LookupContext = SemanticContext;
1992         while (LookupContext->isTransparentContext())
1993           LookupContext = LookupContext->getLookupParent();
1994         LookupQualifiedName(Previous, LookupContext);
1995 
1996         if (Previous.isAmbiguous())
1997           return true;
1998 
1999         if (Previous.begin() != Previous.end())
2000           PrevDecl = (*Previous.begin())->getUnderlyingDecl();
2001       }
2002     }
2003   } else if (PrevDecl &&
2004              !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
2005                             S, SS.isValid()))
2006     PrevDecl = PrevClassTemplate = nullptr;
2007 
2008   if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
2009           PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
2010     if (SS.isEmpty() &&
2011         !(PrevClassTemplate &&
2012           PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
2013               SemanticContext->getRedeclContext()))) {
2014       Diag(KWLoc, diag::err_using_decl_conflict_reverse);
2015       Diag(Shadow->getTargetDecl()->getLocation(),
2016            diag::note_using_decl_target);
2017       Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
2018       // Recover by ignoring the old declaration.
2019       PrevDecl = PrevClassTemplate = nullptr;
2020     }
2021   }
2022 
2023   if (PrevClassTemplate) {
2024     // Ensure that the template parameter lists are compatible. Skip this check
2025     // for a friend in a dependent context: the template parameter list itself
2026     // could be dependent.
2027     if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
2028         !TemplateParameterListsAreEqual(
2029             TemplateCompareNewDeclInfo(SemanticContext ? SemanticContext
2030                                                        : CurContext,
2031                                        CurContext, KWLoc),
2032             TemplateParams, PrevClassTemplate,
2033             PrevClassTemplate->getTemplateParameters(), /*Complain=*/true,
2034             TPL_TemplateMatch))
2035       return true;
2036 
2037     // C++ [temp.class]p4:
2038     //   In a redeclaration, partial specialization, explicit
2039     //   specialization or explicit instantiation of a class template,
2040     //   the class-key shall agree in kind with the original class
2041     //   template declaration (7.1.5.3).
2042     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
2043     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
2044                                       TUK == TUK_Definition,  KWLoc, Name)) {
2045       Diag(KWLoc, diag::err_use_with_wrong_tag)
2046         << Name
2047         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
2048       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
2049       Kind = PrevRecordDecl->getTagKind();
2050     }
2051 
2052     // Check for redefinition of this class template.
2053     if (TUK == TUK_Definition) {
2054       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
2055         // If we have a prior definition that is not visible, treat this as
2056         // simply making that previous definition visible.
2057         NamedDecl *Hidden = nullptr;
2058         if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
2059           SkipBody->ShouldSkip = true;
2060           SkipBody->Previous = Def;
2061           auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
2062           assert(Tmpl && "original definition of a class template is not a "
2063                          "class template?");
2064           makeMergedDefinitionVisible(Hidden);
2065           makeMergedDefinitionVisible(Tmpl);
2066         } else {
2067           Diag(NameLoc, diag::err_redefinition) << Name;
2068           Diag(Def->getLocation(), diag::note_previous_definition);
2069           // FIXME: Would it make sense to try to "forget" the previous
2070           // definition, as part of error recovery?
2071           return true;
2072         }
2073       }
2074     }
2075   } else if (PrevDecl) {
2076     // C++ [temp]p5:
2077     //   A class template shall not have the same name as any other
2078     //   template, class, function, object, enumeration, enumerator,
2079     //   namespace, or type in the same scope (3.3), except as specified
2080     //   in (14.5.4).
2081     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2082     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2083     return true;
2084   }
2085 
2086   // Check the template parameter list of this declaration, possibly
2087   // merging in the template parameter list from the previous class
2088   // template declaration. Skip this check for a friend in a dependent
2089   // context, because the template parameter list might be dependent.
2090   if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
2091       CheckTemplateParameterList(
2092           TemplateParams,
2093           PrevClassTemplate ? GetTemplateParameterList(PrevClassTemplate)
2094                             : nullptr,
2095           (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
2096            SemanticContext->isDependentContext())
2097               ? TPC_ClassTemplateMember
2098           : TUK == TUK_Friend ? TPC_FriendClassTemplate
2099                               : TPC_ClassTemplate,
2100           SkipBody))
2101     Invalid = true;
2102 
2103   if (SS.isSet()) {
2104     // If the name of the template was qualified, we must be defining the
2105     // template out-of-line.
2106     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
2107       Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
2108                                       : diag::err_member_decl_does_not_match)
2109         << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
2110       Invalid = true;
2111     }
2112   }
2113 
2114   // If this is a templated friend in a dependent context we should not put it
2115   // on the redecl chain. In some cases, the templated friend can be the most
2116   // recent declaration tricking the template instantiator to make substitutions
2117   // there.
2118   // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
2119   bool ShouldAddRedecl
2120     = !(TUK == TUK_Friend && CurContext->isDependentContext());
2121 
2122   CXXRecordDecl *NewClass =
2123     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
2124                           PrevClassTemplate && ShouldAddRedecl ?
2125                             PrevClassTemplate->getTemplatedDecl() : nullptr,
2126                           /*DelayTypeCreation=*/true);
2127   SetNestedNameSpecifier(*this, NewClass, SS);
2128   if (NumOuterTemplateParamLists > 0)
2129     NewClass->setTemplateParameterListsInfo(
2130         Context,
2131         llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists));
2132 
2133   // Add alignment attributes if necessary; these attributes are checked when
2134   // the ASTContext lays out the structure.
2135   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
2136     AddAlignmentAttributesForRecord(NewClass);
2137     AddMsStructLayoutForRecord(NewClass);
2138   }
2139 
2140   ClassTemplateDecl *NewTemplate
2141     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
2142                                 DeclarationName(Name), TemplateParams,
2143                                 NewClass);
2144 
2145   if (ShouldAddRedecl)
2146     NewTemplate->setPreviousDecl(PrevClassTemplate);
2147 
2148   NewClass->setDescribedClassTemplate(NewTemplate);
2149 
2150   if (ModulePrivateLoc.isValid())
2151     NewTemplate->setModulePrivate();
2152 
2153   // Build the type for the class template declaration now.
2154   QualType T = NewTemplate->getInjectedClassNameSpecialization();
2155   T = Context.getInjectedClassNameType(NewClass, T);
2156   assert(T->isDependentType() && "Class template type is not dependent?");
2157   (void)T;
2158 
2159   // If we are providing an explicit specialization of a member that is a
2160   // class template, make a note of that.
2161   if (PrevClassTemplate &&
2162       PrevClassTemplate->getInstantiatedFromMemberTemplate())
2163     PrevClassTemplate->setMemberSpecialization();
2164 
2165   // Set the access specifier.
2166   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
2167     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
2168 
2169   // Set the lexical context of these templates
2170   NewClass->setLexicalDeclContext(CurContext);
2171   NewTemplate->setLexicalDeclContext(CurContext);
2172 
2173   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
2174     NewClass->startDefinition();
2175 
2176   ProcessDeclAttributeList(S, NewClass, Attr);
2177 
2178   if (PrevClassTemplate)
2179     mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
2180 
2181   AddPushedVisibilityAttribute(NewClass);
2182   inferGslOwnerPointerAttribute(NewClass);
2183 
2184   if (TUK != TUK_Friend) {
2185     // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
2186     Scope *Outer = S;
2187     while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
2188       Outer = Outer->getParent();
2189     PushOnScopeChains(NewTemplate, Outer);
2190   } else {
2191     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
2192       NewTemplate->setAccess(PrevClassTemplate->getAccess());
2193       NewClass->setAccess(PrevClassTemplate->getAccess());
2194     }
2195 
2196     NewTemplate->setObjectOfFriendDecl();
2197 
2198     // Friend templates are visible in fairly strange ways.
2199     if (!CurContext->isDependentContext()) {
2200       DeclContext *DC = SemanticContext->getRedeclContext();
2201       DC->makeDeclVisibleInContext(NewTemplate);
2202       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
2203         PushOnScopeChains(NewTemplate, EnclosingScope,
2204                           /* AddToContext = */ false);
2205     }
2206 
2207     FriendDecl *Friend = FriendDecl::Create(
2208         Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
2209     Friend->setAccess(AS_public);
2210     CurContext->addDecl(Friend);
2211   }
2212 
2213   if (PrevClassTemplate)
2214     CheckRedeclarationInModule(NewTemplate, PrevClassTemplate);
2215 
2216   if (Invalid) {
2217     NewTemplate->setInvalidDecl();
2218     NewClass->setInvalidDecl();
2219   }
2220 
2221   ActOnDocumentableDecl(NewTemplate);
2222 
2223   if (SkipBody && SkipBody->ShouldSkip)
2224     return SkipBody->Previous;
2225 
2226   return NewTemplate;
2227 }
2228 
2229 namespace {
2230 /// Tree transform to "extract" a transformed type from a class template's
2231 /// constructor to a deduction guide.
2232 class ExtractTypeForDeductionGuide
2233   : public TreeTransform<ExtractTypeForDeductionGuide> {
2234   llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs;
2235 
2236 public:
2237   typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
2238   ExtractTypeForDeductionGuide(
2239       Sema &SemaRef,
2240       llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs)
2241       : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {}
2242 
2243   TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
2244 
2245   QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
2246     ASTContext &Context = SemaRef.getASTContext();
2247     TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl();
2248     TypedefNameDecl *Decl = OrigDecl;
2249     // Transform the underlying type of the typedef and clone the Decl only if
2250     // the typedef has a dependent context.
2251     if (OrigDecl->getDeclContext()->isDependentContext()) {
2252       TypeLocBuilder InnerTLB;
2253       QualType Transformed =
2254           TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc());
2255       TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed);
2256       if (isa<TypeAliasDecl>(OrigDecl))
2257         Decl = TypeAliasDecl::Create(
2258             Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2259             OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2260       else {
2261         assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef");
2262         Decl = TypedefDecl::Create(
2263             Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
2264             OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
2265       }
2266       MaterializedTypedefs.push_back(Decl);
2267     }
2268 
2269     QualType TDTy = Context.getTypedefType(Decl);
2270     TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy);
2271     TypedefTL.setNameLoc(TL.getNameLoc());
2272 
2273     return TDTy;
2274   }
2275 };
2276 
2277 /// Transform to convert portions of a constructor declaration into the
2278 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
2279 struct ConvertConstructorToDeductionGuideTransform {
2280   ConvertConstructorToDeductionGuideTransform(Sema &S,
2281                                               ClassTemplateDecl *Template)
2282       : SemaRef(S), Template(Template) {
2283     // If the template is nested, then we need to use the original
2284     // pattern to iterate over the constructors.
2285     ClassTemplateDecl *Pattern = Template;
2286     while (Pattern->getInstantiatedFromMemberTemplate()) {
2287       if (Pattern->isMemberSpecialization())
2288         break;
2289       Pattern = Pattern->getInstantiatedFromMemberTemplate();
2290       NestedPattern = Pattern;
2291     }
2292 
2293     if (NestedPattern)
2294       OuterInstantiationArgs = SemaRef.getTemplateInstantiationArgs(Template);
2295   }
2296 
2297   Sema &SemaRef;
2298   ClassTemplateDecl *Template;
2299   ClassTemplateDecl *NestedPattern = nullptr;
2300 
2301   DeclContext *DC = Template->getDeclContext();
2302   CXXRecordDecl *Primary = Template->getTemplatedDecl();
2303   DeclarationName DeductionGuideName =
2304       SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
2305 
2306   QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
2307 
2308   // Index adjustment to apply to convert depth-1 template parameters into
2309   // depth-0 template parameters.
2310   unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
2311 
2312   // Instantiation arguments for the outermost depth-1 templates
2313   // when the template is nested
2314   MultiLevelTemplateArgumentList OuterInstantiationArgs;
2315 
2316   /// Transform a constructor declaration into a deduction guide.
2317   NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
2318                                   CXXConstructorDecl *CD) {
2319     SmallVector<TemplateArgument, 16> SubstArgs;
2320 
2321     LocalInstantiationScope Scope(SemaRef);
2322 
2323     // C++ [over.match.class.deduct]p1:
2324     // -- For each constructor of the class template designated by the
2325     //    template-name, a function template with the following properties:
2326 
2327     //    -- The template parameters are the template parameters of the class
2328     //       template followed by the template parameters (including default
2329     //       template arguments) of the constructor, if any.
2330     TemplateParameterList *TemplateParams = GetTemplateParameterList(Template);
2331     if (FTD) {
2332       TemplateParameterList *InnerParams = FTD->getTemplateParameters();
2333       SmallVector<NamedDecl *, 16> AllParams;
2334       SmallVector<TemplateArgument, 16> Depth1Args;
2335       AllParams.reserve(TemplateParams->size() + InnerParams->size());
2336       AllParams.insert(AllParams.begin(),
2337                        TemplateParams->begin(), TemplateParams->end());
2338       SubstArgs.reserve(InnerParams->size());
2339       Depth1Args.reserve(InnerParams->size());
2340 
2341       // Later template parameters could refer to earlier ones, so build up
2342       // a list of substituted template arguments as we go.
2343       for (NamedDecl *Param : *InnerParams) {
2344         MultiLevelTemplateArgumentList Args;
2345         Args.setKind(TemplateSubstitutionKind::Rewrite);
2346         Args.addOuterTemplateArguments(Depth1Args);
2347         Args.addOuterRetainedLevel();
2348         if (NestedPattern)
2349           Args.addOuterRetainedLevels(NestedPattern->getTemplateDepth());
2350         NamedDecl *NewParam = transformTemplateParameter(Param, Args);
2351         if (!NewParam)
2352           return nullptr;
2353 
2354         // Constraints require that we substitute depth-1 arguments
2355         // to match depths when substituted for evaluation later
2356         Depth1Args.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2357             SemaRef.Context.getInjectedTemplateArg(NewParam)));
2358 
2359         if (NestedPattern) {
2360           TemplateDeclInstantiator Instantiator(SemaRef, DC,
2361                                                 OuterInstantiationArgs);
2362           Instantiator.setEvaluateConstraints(false);
2363           SemaRef.runWithSufficientStackSpace(NewParam->getLocation(), [&] {
2364             NewParam = cast<NamedDecl>(Instantiator.Visit(NewParam));
2365           });
2366         }
2367 
2368         assert(NewParam->getTemplateDepth() == 0 &&
2369                "Unexpected template parameter depth");
2370 
2371         AllParams.push_back(NewParam);
2372         SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2373             SemaRef.Context.getInjectedTemplateArg(NewParam)));
2374       }
2375 
2376       // Substitute new template parameters into requires-clause if present.
2377       Expr *RequiresClause = nullptr;
2378       if (Expr *InnerRC = InnerParams->getRequiresClause()) {
2379         MultiLevelTemplateArgumentList Args;
2380         Args.setKind(TemplateSubstitutionKind::Rewrite);
2381         Args.addOuterTemplateArguments(Depth1Args);
2382         Args.addOuterRetainedLevel();
2383         if (NestedPattern)
2384           Args.addOuterRetainedLevels(NestedPattern->getTemplateDepth());
2385         ExprResult E = SemaRef.SubstExpr(InnerRC, Args);
2386         if (E.isInvalid())
2387           return nullptr;
2388         RequiresClause = E.getAs<Expr>();
2389       }
2390 
2391       TemplateParams = TemplateParameterList::Create(
2392           SemaRef.Context, InnerParams->getTemplateLoc(),
2393           InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
2394           RequiresClause);
2395     }
2396 
2397     // If we built a new template-parameter-list, track that we need to
2398     // substitute references to the old parameters into references to the
2399     // new ones.
2400     MultiLevelTemplateArgumentList Args;
2401     Args.setKind(TemplateSubstitutionKind::Rewrite);
2402     if (FTD) {
2403       Args.addOuterTemplateArguments(SubstArgs);
2404       Args.addOuterRetainedLevel();
2405     }
2406 
2407     if (NestedPattern)
2408       Args.addOuterRetainedLevels(NestedPattern->getTemplateDepth());
2409 
2410     FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
2411                                    .getAsAdjusted<FunctionProtoTypeLoc>();
2412     assert(FPTL && "no prototype for constructor declaration");
2413 
2414     // Transform the type of the function, adjusting the return type and
2415     // replacing references to the old parameters with references to the
2416     // new ones.
2417     TypeLocBuilder TLB;
2418     SmallVector<ParmVarDecl*, 8> Params;
2419     SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs;
2420     QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args,
2421                                                   MaterializedTypedefs);
2422     if (NewType.isNull())
2423       return nullptr;
2424     TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
2425 
2426     return buildDeductionGuide(TemplateParams, CD, CD->getExplicitSpecifier(),
2427                                NewTInfo, CD->getBeginLoc(), CD->getLocation(),
2428                                CD->getEndLoc(), MaterializedTypedefs);
2429   }
2430 
2431   /// Build a deduction guide with the specified parameter types.
2432   NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
2433     SourceLocation Loc = Template->getLocation();
2434 
2435     // Build the requested type.
2436     FunctionProtoType::ExtProtoInfo EPI;
2437     EPI.HasTrailingReturn = true;
2438     QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
2439                                                 DeductionGuideName, EPI);
2440     TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
2441     if (NestedPattern)
2442       TSI = SemaRef.SubstType(TSI, OuterInstantiationArgs, Loc,
2443                               DeductionGuideName);
2444 
2445     FunctionProtoTypeLoc FPTL =
2446         TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
2447 
2448     // Build the parameters, needed during deduction / substitution.
2449     SmallVector<ParmVarDecl*, 4> Params;
2450     for (auto T : ParamTypes) {
2451       auto *TSI = SemaRef.Context.getTrivialTypeSourceInfo(T, Loc);
2452       if (NestedPattern)
2453         TSI = SemaRef.SubstType(TSI, OuterInstantiationArgs, Loc,
2454                                 DeclarationName());
2455       ParmVarDecl *NewParam =
2456           ParmVarDecl::Create(SemaRef.Context, DC, Loc, Loc, nullptr,
2457                               TSI->getType(), TSI, SC_None, nullptr);
2458       NewParam->setScopeInfo(0, Params.size());
2459       FPTL.setParam(Params.size(), NewParam);
2460       Params.push_back(NewParam);
2461     }
2462 
2463     return buildDeductionGuide(GetTemplateParameterList(Template), nullptr,
2464                                ExplicitSpecifier(), TSI, Loc, Loc, Loc);
2465   }
2466 
2467 private:
2468   /// Transform a constructor template parameter into a deduction guide template
2469   /// parameter, rebuilding any internal references to earlier parameters and
2470   /// renumbering as we go.
2471   NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
2472                                         MultiLevelTemplateArgumentList &Args) {
2473     if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
2474       // TemplateTypeParmDecl's index cannot be changed after creation, so
2475       // substitute it directly.
2476       auto *NewTTP = TemplateTypeParmDecl::Create(
2477           SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
2478           TTP->getDepth() - 1, Depth1IndexAdjustment + TTP->getIndex(),
2479           TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
2480           TTP->isParameterPack(), TTP->hasTypeConstraint(),
2481           TTP->isExpandedParameterPack()
2482               ? std::optional<unsigned>(TTP->getNumExpansionParameters())
2483               : std::nullopt);
2484       if (const auto *TC = TTP->getTypeConstraint())
2485         SemaRef.SubstTypeConstraint(NewTTP, TC, Args,
2486                                     /*EvaluateConstraint*/ true);
2487       if (TTP->hasDefaultArgument()) {
2488         TypeSourceInfo *InstantiatedDefaultArg =
2489             SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
2490                               TTP->getDefaultArgumentLoc(), TTP->getDeclName());
2491         if (InstantiatedDefaultArg)
2492           NewTTP->setDefaultArgument(InstantiatedDefaultArg);
2493       }
2494       SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
2495                                                            NewTTP);
2496       return NewTTP;
2497     }
2498 
2499     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
2500       return transformTemplateParameterImpl(TTP, Args);
2501 
2502     return transformTemplateParameterImpl(
2503         cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
2504   }
2505   template<typename TemplateParmDecl>
2506   TemplateParmDecl *
2507   transformTemplateParameterImpl(TemplateParmDecl *OldParam,
2508                                  MultiLevelTemplateArgumentList &Args) {
2509     // Ask the template instantiator to do the heavy lifting for us, then adjust
2510     // the index of the parameter once it's done.
2511     auto *NewParam =
2512         cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
2513     assert(NewParam->getDepth() == OldParam->getDepth() - 1 &&
2514            "unexpected template param depth");
2515     NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
2516     return NewParam;
2517   }
2518 
2519   QualType transformFunctionProtoType(
2520       TypeLocBuilder &TLB, FunctionProtoTypeLoc TL,
2521       SmallVectorImpl<ParmVarDecl *> &Params,
2522       MultiLevelTemplateArgumentList &Args,
2523       SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2524     SmallVector<QualType, 4> ParamTypes;
2525     const FunctionProtoType *T = TL.getTypePtr();
2526 
2527     //    -- The types of the function parameters are those of the constructor.
2528     for (auto *OldParam : TL.getParams()) {
2529       ParmVarDecl *NewParam =
2530           transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs);
2531       if (NestedPattern && NewParam)
2532         NewParam = transformFunctionTypeParam(NewParam, OuterInstantiationArgs,
2533                                               MaterializedTypedefs);
2534       if (!NewParam)
2535         return QualType();
2536       ParamTypes.push_back(NewParam->getType());
2537       Params.push_back(NewParam);
2538     }
2539 
2540     //    -- The return type is the class template specialization designated by
2541     //       the template-name and template arguments corresponding to the
2542     //       template parameters obtained from the class template.
2543     //
2544     // We use the injected-class-name type of the primary template instead.
2545     // This has the convenient property that it is different from any type that
2546     // the user can write in a deduction-guide (because they cannot enter the
2547     // context of the template), so implicit deduction guides can never collide
2548     // with explicit ones.
2549     QualType ReturnType = DeducedType;
2550     TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
2551 
2552     // Resolving a wording defect, we also inherit the variadicness of the
2553     // constructor.
2554     FunctionProtoType::ExtProtoInfo EPI;
2555     EPI.Variadic = T->isVariadic();
2556     EPI.HasTrailingReturn = true;
2557 
2558     QualType Result = SemaRef.BuildFunctionType(
2559         ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
2560     if (Result.isNull())
2561       return QualType();
2562 
2563     FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
2564     NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
2565     NewTL.setLParenLoc(TL.getLParenLoc());
2566     NewTL.setRParenLoc(TL.getRParenLoc());
2567     NewTL.setExceptionSpecRange(SourceRange());
2568     NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
2569     for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
2570       NewTL.setParam(I, Params[I]);
2571 
2572     return Result;
2573   }
2574 
2575   ParmVarDecl *transformFunctionTypeParam(
2576       ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args,
2577       llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2578     TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
2579     TypeSourceInfo *NewDI;
2580     if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
2581       // Expand out the one and only element in each inner pack.
2582       Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
2583       NewDI =
2584           SemaRef.SubstType(PackTL.getPatternLoc(), Args,
2585                             OldParam->getLocation(), OldParam->getDeclName());
2586       if (!NewDI) return nullptr;
2587       NewDI =
2588           SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
2589                                      PackTL.getTypePtr()->getNumExpansions());
2590     } else
2591       NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
2592                                 OldParam->getDeclName());
2593     if (!NewDI)
2594       return nullptr;
2595 
2596     // Extract the type. This (for instance) replaces references to typedef
2597     // members of the current instantiations with the definitions of those
2598     // typedefs, avoiding triggering instantiation of the deduced type during
2599     // deduction.
2600     NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs)
2601                 .transform(NewDI);
2602 
2603     // Resolving a wording defect, we also inherit default arguments from the
2604     // constructor.
2605     ExprResult NewDefArg;
2606     if (OldParam->hasDefaultArg()) {
2607       // We don't care what the value is (we won't use it); just create a
2608       // placeholder to indicate there is a default argument.
2609       QualType ParamTy = NewDI->getType();
2610       NewDefArg = new (SemaRef.Context)
2611           OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
2612                           ParamTy.getNonLValueExprType(SemaRef.Context),
2613                           ParamTy->isLValueReferenceType()   ? VK_LValue
2614                           : ParamTy->isRValueReferenceType() ? VK_XValue
2615                                                              : VK_PRValue);
2616     }
2617     // Handle arrays and functions decay.
2618     auto NewType = NewDI->getType();
2619     if (NewType->isArrayType() || NewType->isFunctionType())
2620       NewType = SemaRef.Context.getDecayedType(NewType);
2621 
2622     ParmVarDecl *NewParam = ParmVarDecl::Create(
2623         SemaRef.Context, DC, OldParam->getInnerLocStart(),
2624         OldParam->getLocation(), OldParam->getIdentifier(), NewType, NewDI,
2625         OldParam->getStorageClass(), NewDefArg.get());
2626     NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
2627                            OldParam->getFunctionScopeIndex());
2628     SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2629     return NewParam;
2630   }
2631 
2632   FunctionTemplateDecl *buildDeductionGuide(
2633       TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor,
2634       ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart,
2635       SourceLocation Loc, SourceLocation LocEnd,
2636       llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) {
2637     DeclarationNameInfo Name(DeductionGuideName, Loc);
2638     ArrayRef<ParmVarDecl *> Params =
2639         TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2640 
2641     // Build the implicit deduction guide template.
2642     auto *Guide =
2643         CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
2644                                       TInfo->getType(), TInfo, LocEnd, Ctor);
2645     Guide->setImplicit();
2646     Guide->setParams(Params);
2647 
2648     for (auto *Param : Params)
2649       Param->setDeclContext(Guide);
2650     for (auto *TD : MaterializedTypedefs)
2651       TD->setDeclContext(Guide);
2652 
2653     auto *GuideTemplate = FunctionTemplateDecl::Create(
2654         SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2655     GuideTemplate->setImplicit();
2656     Guide->setDescribedFunctionTemplate(GuideTemplate);
2657 
2658     if (isa<CXXRecordDecl>(DC)) {
2659       Guide->setAccess(AS_public);
2660       GuideTemplate->setAccess(AS_public);
2661     }
2662 
2663     DC->addDecl(GuideTemplate);
2664     return GuideTemplate;
2665   }
2666 };
2667 }
2668 
2669 FunctionTemplateDecl *Sema::DeclareImplicitDeductionGuideFromInitList(
2670     TemplateDecl *Template, MutableArrayRef<QualType> ParamTypes,
2671     SourceLocation Loc) {
2672   if (CXXRecordDecl *DefRecord =
2673           cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2674     if (TemplateDecl *DescribedTemplate =
2675             DefRecord->getDescribedClassTemplate())
2676       Template = DescribedTemplate;
2677   }
2678 
2679   DeclContext *DC = Template->getDeclContext();
2680   if (DC->isDependentContext())
2681     return nullptr;
2682 
2683   ConvertConstructorToDeductionGuideTransform Transform(
2684       *this, cast<ClassTemplateDecl>(Template));
2685   if (!isCompleteType(Loc, Transform.DeducedType))
2686     return nullptr;
2687 
2688   // In case we were expanding a pack when we attempted to declare deduction
2689   // guides, turn off pack expansion for everything we're about to do.
2690   ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
2691                                                /*NewSubstitutionIndex=*/-1);
2692   // Create a template instantiation record to track the "instantiation" of
2693   // constructors into deduction guides.
2694   InstantiatingTemplate BuildingDeductionGuides(
2695       *this, Loc, Template,
2696       Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{});
2697   if (BuildingDeductionGuides.isInvalid())
2698     return nullptr;
2699 
2700   ClassTemplateDecl *Pattern =
2701       Transform.NestedPattern ? Transform.NestedPattern : Transform.Template;
2702   ContextRAII SavedContext(*this, Pattern->getTemplatedDecl());
2703 
2704   auto *DG = cast<FunctionTemplateDecl>(
2705       Transform.buildSimpleDeductionGuide(ParamTypes));
2706   SavedContext.pop();
2707   return DG;
2708 }
2709 
2710 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2711                                           SourceLocation Loc) {
2712   if (CXXRecordDecl *DefRecord =
2713           cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2714     if (TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate())
2715       Template = DescribedTemplate;
2716   }
2717 
2718   DeclContext *DC = Template->getDeclContext();
2719   if (DC->isDependentContext())
2720     return;
2721 
2722   ConvertConstructorToDeductionGuideTransform Transform(
2723       *this, cast<ClassTemplateDecl>(Template));
2724   if (!isCompleteType(Loc, Transform.DeducedType))
2725     return;
2726 
2727   // Check whether we've already declared deduction guides for this template.
2728   // FIXME: Consider storing a flag on the template to indicate this.
2729   auto Existing = DC->lookup(Transform.DeductionGuideName);
2730   for (auto *D : Existing)
2731     if (D->isImplicit())
2732       return;
2733 
2734   // In case we were expanding a pack when we attempted to declare deduction
2735   // guides, turn off pack expansion for everything we're about to do.
2736   ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2737   // Create a template instantiation record to track the "instantiation" of
2738   // constructors into deduction guides.
2739   InstantiatingTemplate BuildingDeductionGuides(
2740       *this, Loc, Template,
2741       Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{});
2742   if (BuildingDeductionGuides.isInvalid())
2743     return;
2744 
2745   // Convert declared constructors into deduction guide templates.
2746   // FIXME: Skip constructors for which deduction must necessarily fail (those
2747   // for which some class template parameter without a default argument never
2748   // appears in a deduced context).
2749   ClassTemplateDecl *Pattern =
2750       Transform.NestedPattern ? Transform.NestedPattern : Transform.Template;
2751   ContextRAII SavedContext(*this, Pattern->getTemplatedDecl());
2752   llvm::SmallPtrSet<NamedDecl *, 8> ProcessedCtors;
2753   bool AddedAny = false;
2754   for (NamedDecl *D : LookupConstructors(Pattern->getTemplatedDecl())) {
2755     D = D->getUnderlyingDecl();
2756     if (D->isInvalidDecl() || D->isImplicit())
2757       continue;
2758 
2759     D = cast<NamedDecl>(D->getCanonicalDecl());
2760 
2761     // Within C++20 modules, we may have multiple same constructors in
2762     // multiple same RecordDecls. And it doesn't make sense to create
2763     // duplicated deduction guides for the duplicated constructors.
2764     if (ProcessedCtors.count(D))
2765       continue;
2766 
2767     auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
2768     auto *CD =
2769         dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
2770     // Class-scope explicit specializations (MS extension) do not result in
2771     // deduction guides.
2772     if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
2773       continue;
2774 
2775     // Cannot make a deduction guide when unparsed arguments are present.
2776     if (llvm::any_of(CD->parameters(), [](ParmVarDecl *P) {
2777           return !P || P->hasUnparsedDefaultArg();
2778         }))
2779       continue;
2780 
2781     ProcessedCtors.insert(D);
2782     Transform.transformConstructor(FTD, CD);
2783     AddedAny = true;
2784   }
2785 
2786   // C++17 [over.match.class.deduct]
2787   //    --  If C is not defined or does not declare any constructors, an
2788   //    additional function template derived as above from a hypothetical
2789   //    constructor C().
2790   if (!AddedAny)
2791     Transform.buildSimpleDeductionGuide(std::nullopt);
2792 
2793   //    -- An additional function template derived as above from a hypothetical
2794   //    constructor C(C), called the copy deduction candidate.
2795   cast<CXXDeductionGuideDecl>(
2796       cast<FunctionTemplateDecl>(
2797           Transform.buildSimpleDeductionGuide(Transform.DeducedType))
2798           ->getTemplatedDecl())
2799       ->setDeductionCandidateKind(DeductionCandidate::Copy);
2800 
2801   SavedContext.pop();
2802 }
2803 
2804 /// Diagnose the presence of a default template argument on a
2805 /// template parameter, which is ill-formed in certain contexts.
2806 ///
2807 /// \returns true if the default template argument should be dropped.
2808 static bool DiagnoseDefaultTemplateArgument(Sema &S,
2809                                             Sema::TemplateParamListContext TPC,
2810                                             SourceLocation ParamLoc,
2811                                             SourceRange DefArgRange) {
2812   switch (TPC) {
2813   case Sema::TPC_ClassTemplate:
2814   case Sema::TPC_VarTemplate:
2815   case Sema::TPC_TypeAliasTemplate:
2816     return false;
2817 
2818   case Sema::TPC_FunctionTemplate:
2819   case Sema::TPC_FriendFunctionTemplateDefinition:
2820     // C++ [temp.param]p9:
2821     //   A default template-argument shall not be specified in a
2822     //   function template declaration or a function template
2823     //   definition [...]
2824     //   If a friend function template declaration specifies a default
2825     //   template-argument, that declaration shall be a definition and shall be
2826     //   the only declaration of the function template in the translation unit.
2827     // (C++98/03 doesn't have this wording; see DR226).
2828     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2829          diag::warn_cxx98_compat_template_parameter_default_in_function_template
2830            : diag::ext_template_parameter_default_in_function_template)
2831       << DefArgRange;
2832     return false;
2833 
2834   case Sema::TPC_ClassTemplateMember:
2835     // C++0x [temp.param]p9:
2836     //   A default template-argument shall not be specified in the
2837     //   template-parameter-lists of the definition of a member of a
2838     //   class template that appears outside of the member's class.
2839     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2840       << DefArgRange;
2841     return true;
2842 
2843   case Sema::TPC_FriendClassTemplate:
2844   case Sema::TPC_FriendFunctionTemplate:
2845     // C++ [temp.param]p9:
2846     //   A default template-argument shall not be specified in a
2847     //   friend template declaration.
2848     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2849       << DefArgRange;
2850     return true;
2851 
2852     // FIXME: C++0x [temp.param]p9 allows default template-arguments
2853     // for friend function templates if there is only a single
2854     // declaration (and it is a definition). Strange!
2855   }
2856 
2857   llvm_unreachable("Invalid TemplateParamListContext!");
2858 }
2859 
2860 /// Check for unexpanded parameter packs within the template parameters
2861 /// of a template template parameter, recursively.
2862 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2863                                              TemplateTemplateParmDecl *TTP) {
2864   // A template template parameter which is a parameter pack is also a pack
2865   // expansion.
2866   if (TTP->isParameterPack())
2867     return false;
2868 
2869   TemplateParameterList *Params = TTP->getTemplateParameters();
2870   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2871     NamedDecl *P = Params->getParam(I);
2872     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
2873       if (!TTP->isParameterPack())
2874         if (const TypeConstraint *TC = TTP->getTypeConstraint())
2875           if (TC->hasExplicitTemplateArgs())
2876             for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2877               if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
2878                                                     Sema::UPPC_TypeConstraint))
2879                 return true;
2880       continue;
2881     }
2882 
2883     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2884       if (!NTTP->isParameterPack() &&
2885           S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2886                                             NTTP->getTypeSourceInfo(),
2887                                       Sema::UPPC_NonTypeTemplateParameterType))
2888         return true;
2889 
2890       continue;
2891     }
2892 
2893     if (TemplateTemplateParmDecl *InnerTTP
2894                                         = dyn_cast<TemplateTemplateParmDecl>(P))
2895       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2896         return true;
2897   }
2898 
2899   return false;
2900 }
2901 
2902 /// Checks the validity of a template parameter list, possibly
2903 /// considering the template parameter list from a previous
2904 /// declaration.
2905 ///
2906 /// If an "old" template parameter list is provided, it must be
2907 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
2908 /// template parameter list.
2909 ///
2910 /// \param NewParams Template parameter list for a new template
2911 /// declaration. This template parameter list will be updated with any
2912 /// default arguments that are carried through from the previous
2913 /// template parameter list.
2914 ///
2915 /// \param OldParams If provided, template parameter list from a
2916 /// previous declaration of the same template. Default template
2917 /// arguments will be merged from the old template parameter list to
2918 /// the new template parameter list.
2919 ///
2920 /// \param TPC Describes the context in which we are checking the given
2921 /// template parameter list.
2922 ///
2923 /// \param SkipBody If we might have already made a prior merged definition
2924 /// of this template visible, the corresponding body-skipping information.
2925 /// Default argument redefinition is not an error when skipping such a body,
2926 /// because (under the ODR) we can assume the default arguments are the same
2927 /// as the prior merged definition.
2928 ///
2929 /// \returns true if an error occurred, false otherwise.
2930 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2931                                       TemplateParameterList *OldParams,
2932                                       TemplateParamListContext TPC,
2933                                       SkipBodyInfo *SkipBody) {
2934   bool Invalid = false;
2935 
2936   // C++ [temp.param]p10:
2937   //   The set of default template-arguments available for use with a
2938   //   template declaration or definition is obtained by merging the
2939   //   default arguments from the definition (if in scope) and all
2940   //   declarations in scope in the same way default function
2941   //   arguments are (8.3.6).
2942   bool SawDefaultArgument = false;
2943   SourceLocation PreviousDefaultArgLoc;
2944 
2945   // Dummy initialization to avoid warnings.
2946   TemplateParameterList::iterator OldParam = NewParams->end();
2947   if (OldParams)
2948     OldParam = OldParams->begin();
2949 
2950   bool RemoveDefaultArguments = false;
2951   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2952                                     NewParamEnd = NewParams->end();
2953        NewParam != NewParamEnd; ++NewParam) {
2954     // Whether we've seen a duplicate default argument in the same translation
2955     // unit.
2956     bool RedundantDefaultArg = false;
2957     // Whether we've found inconsis inconsitent default arguments in different
2958     // translation unit.
2959     bool InconsistentDefaultArg = false;
2960     // The name of the module which contains the inconsistent default argument.
2961     std::string PrevModuleName;
2962 
2963     SourceLocation OldDefaultLoc;
2964     SourceLocation NewDefaultLoc;
2965 
2966     // Variable used to diagnose missing default arguments
2967     bool MissingDefaultArg = false;
2968 
2969     // Variable used to diagnose non-final parameter packs
2970     bool SawParameterPack = false;
2971 
2972     if (TemplateTypeParmDecl *NewTypeParm
2973           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2974       // Check the presence of a default argument here.
2975       if (NewTypeParm->hasDefaultArgument() &&
2976           DiagnoseDefaultTemplateArgument(*this, TPC,
2977                                           NewTypeParm->getLocation(),
2978                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2979                                                        .getSourceRange()))
2980         NewTypeParm->removeDefaultArgument();
2981 
2982       // Merge default arguments for template type parameters.
2983       TemplateTypeParmDecl *OldTypeParm
2984           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2985       if (NewTypeParm->isParameterPack()) {
2986         assert(!NewTypeParm->hasDefaultArgument() &&
2987                "Parameter packs can't have a default argument!");
2988         SawParameterPack = true;
2989       } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2990                  NewTypeParm->hasDefaultArgument() &&
2991                  (!SkipBody || !SkipBody->ShouldSkip)) {
2992         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2993         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2994         SawDefaultArgument = true;
2995 
2996         if (!OldTypeParm->getOwningModule())
2997           RedundantDefaultArg = true;
2998         else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm,
2999                                                                 NewTypeParm)) {
3000           InconsistentDefaultArg = true;
3001           PrevModuleName =
3002               OldTypeParm->getImportedOwningModule()->getFullModuleName();
3003         }
3004         PreviousDefaultArgLoc = NewDefaultLoc;
3005       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
3006         // Merge the default argument from the old declaration to the
3007         // new declaration.
3008         NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
3009         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
3010       } else if (NewTypeParm->hasDefaultArgument()) {
3011         SawDefaultArgument = true;
3012         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
3013       } else if (SawDefaultArgument)
3014         MissingDefaultArg = true;
3015     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
3016                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
3017       // Check for unexpanded parameter packs.
3018       if (!NewNonTypeParm->isParameterPack() &&
3019           DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
3020                                           NewNonTypeParm->getTypeSourceInfo(),
3021                                           UPPC_NonTypeTemplateParameterType)) {
3022         Invalid = true;
3023         continue;
3024       }
3025 
3026       // Check the presence of a default argument here.
3027       if (NewNonTypeParm->hasDefaultArgument() &&
3028           DiagnoseDefaultTemplateArgument(*this, TPC,
3029                                           NewNonTypeParm->getLocation(),
3030                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
3031         NewNonTypeParm->removeDefaultArgument();
3032       }
3033 
3034       // Merge default arguments for non-type template parameters
3035       NonTypeTemplateParmDecl *OldNonTypeParm
3036         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
3037       if (NewNonTypeParm->isParameterPack()) {
3038         assert(!NewNonTypeParm->hasDefaultArgument() &&
3039                "Parameter packs can't have a default argument!");
3040         if (!NewNonTypeParm->isPackExpansion())
3041           SawParameterPack = true;
3042       } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
3043                  NewNonTypeParm->hasDefaultArgument() &&
3044                  (!SkipBody || !SkipBody->ShouldSkip)) {
3045         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
3046         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
3047         SawDefaultArgument = true;
3048         if (!OldNonTypeParm->getOwningModule())
3049           RedundantDefaultArg = true;
3050         else if (!getASTContext().isSameDefaultTemplateArgument(
3051                      OldNonTypeParm, NewNonTypeParm)) {
3052           InconsistentDefaultArg = true;
3053           PrevModuleName =
3054               OldNonTypeParm->getImportedOwningModule()->getFullModuleName();
3055         }
3056         PreviousDefaultArgLoc = NewDefaultLoc;
3057       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
3058         // Merge the default argument from the old declaration to the
3059         // new declaration.
3060         NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
3061         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
3062       } else if (NewNonTypeParm->hasDefaultArgument()) {
3063         SawDefaultArgument = true;
3064         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
3065       } else if (SawDefaultArgument)
3066         MissingDefaultArg = true;
3067     } else {
3068       TemplateTemplateParmDecl *NewTemplateParm
3069         = cast<TemplateTemplateParmDecl>(*NewParam);
3070 
3071       // Check for unexpanded parameter packs, recursively.
3072       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
3073         Invalid = true;
3074         continue;
3075       }
3076 
3077       // Check the presence of a default argument here.
3078       if (NewTemplateParm->hasDefaultArgument() &&
3079           DiagnoseDefaultTemplateArgument(*this, TPC,
3080                                           NewTemplateParm->getLocation(),
3081                      NewTemplateParm->getDefaultArgument().getSourceRange()))
3082         NewTemplateParm->removeDefaultArgument();
3083 
3084       // Merge default arguments for template template parameters
3085       TemplateTemplateParmDecl *OldTemplateParm
3086         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
3087       if (NewTemplateParm->isParameterPack()) {
3088         assert(!NewTemplateParm->hasDefaultArgument() &&
3089                "Parameter packs can't have a default argument!");
3090         if (!NewTemplateParm->isPackExpansion())
3091           SawParameterPack = true;
3092       } else if (OldTemplateParm &&
3093                  hasVisibleDefaultArgument(OldTemplateParm) &&
3094                  NewTemplateParm->hasDefaultArgument() &&
3095                  (!SkipBody || !SkipBody->ShouldSkip)) {
3096         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
3097         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
3098         SawDefaultArgument = true;
3099         if (!OldTemplateParm->getOwningModule())
3100           RedundantDefaultArg = true;
3101         else if (!getASTContext().isSameDefaultTemplateArgument(
3102                      OldTemplateParm, NewTemplateParm)) {
3103           InconsistentDefaultArg = true;
3104           PrevModuleName =
3105               OldTemplateParm->getImportedOwningModule()->getFullModuleName();
3106         }
3107         PreviousDefaultArgLoc = NewDefaultLoc;
3108       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
3109         // Merge the default argument from the old declaration to the
3110         // new declaration.
3111         NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
3112         PreviousDefaultArgLoc
3113           = OldTemplateParm->getDefaultArgument().getLocation();
3114       } else if (NewTemplateParm->hasDefaultArgument()) {
3115         SawDefaultArgument = true;
3116         PreviousDefaultArgLoc
3117           = NewTemplateParm->getDefaultArgument().getLocation();
3118       } else if (SawDefaultArgument)
3119         MissingDefaultArg = true;
3120     }
3121 
3122     // C++11 [temp.param]p11:
3123     //   If a template parameter of a primary class template or alias template
3124     //   is a template parameter pack, it shall be the last template parameter.
3125     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
3126         (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
3127          TPC == TPC_TypeAliasTemplate)) {
3128       Diag((*NewParam)->getLocation(),
3129            diag::err_template_param_pack_must_be_last_template_parameter);
3130       Invalid = true;
3131     }
3132 
3133     // [basic.def.odr]/13:
3134     //     There can be more than one definition of a
3135     //     ...
3136     //     default template argument
3137     //     ...
3138     //     in a program provided that each definition appears in a different
3139     //     translation unit and the definitions satisfy the [same-meaning
3140     //     criteria of the ODR].
3141     //
3142     // Simply, the design of modules allows the definition of template default
3143     // argument to be repeated across translation unit. Note that the ODR is
3144     // checked elsewhere. But it is still not allowed to repeat template default
3145     // argument in the same translation unit.
3146     if (RedundantDefaultArg) {
3147       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
3148       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
3149       Invalid = true;
3150     } else if (InconsistentDefaultArg) {
3151       // We could only diagnose about the case that the OldParam is imported.
3152       // The case NewParam is imported should be handled in ASTReader.
3153       Diag(NewDefaultLoc,
3154            diag::err_template_param_default_arg_inconsistent_redefinition);
3155       Diag(OldDefaultLoc,
3156            diag::note_template_param_prev_default_arg_in_other_module)
3157           << PrevModuleName;
3158       Invalid = true;
3159     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
3160       // C++ [temp.param]p11:
3161       //   If a template-parameter of a class template has a default
3162       //   template-argument, each subsequent template-parameter shall either
3163       //   have a default template-argument supplied or be a template parameter
3164       //   pack.
3165       Diag((*NewParam)->getLocation(),
3166            diag::err_template_param_default_arg_missing);
3167       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
3168       Invalid = true;
3169       RemoveDefaultArguments = true;
3170     }
3171 
3172     // If we have an old template parameter list that we're merging
3173     // in, move on to the next parameter.
3174     if (OldParams)
3175       ++OldParam;
3176   }
3177 
3178   // We were missing some default arguments at the end of the list, so remove
3179   // all of the default arguments.
3180   if (RemoveDefaultArguments) {
3181     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
3182                                       NewParamEnd = NewParams->end();
3183          NewParam != NewParamEnd; ++NewParam) {
3184       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
3185         TTP->removeDefaultArgument();
3186       else if (NonTypeTemplateParmDecl *NTTP
3187                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
3188         NTTP->removeDefaultArgument();
3189       else
3190         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
3191     }
3192   }
3193 
3194   return Invalid;
3195 }
3196 
3197 namespace {
3198 
3199 /// A class which looks for a use of a certain level of template
3200 /// parameter.
3201 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
3202   typedef RecursiveASTVisitor<DependencyChecker> super;
3203 
3204   unsigned Depth;
3205 
3206   // Whether we're looking for a use of a template parameter that makes the
3207   // overall construct type-dependent / a dependent type. This is strictly
3208   // best-effort for now; we may fail to match at all for a dependent type
3209   // in some cases if this is set.
3210   bool IgnoreNonTypeDependent;
3211 
3212   bool Match;
3213   SourceLocation MatchLoc;
3214 
3215   DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
3216       : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
3217         Match(false) {}
3218 
3219   DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
3220       : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
3221     NamedDecl *ND = Params->getParam(0);
3222     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
3223       Depth = PD->getDepth();
3224     } else if (NonTypeTemplateParmDecl *PD =
3225                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
3226       Depth = PD->getDepth();
3227     } else {
3228       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
3229     }
3230   }
3231 
3232   bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
3233     if (ParmDepth >= Depth) {
3234       Match = true;
3235       MatchLoc = Loc;
3236       return true;
3237     }
3238     return false;
3239   }
3240 
3241   bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
3242     // Prune out non-type-dependent expressions if requested. This can
3243     // sometimes result in us failing to find a template parameter reference
3244     // (if a value-dependent expression creates a dependent type), but this
3245     // mode is best-effort only.
3246     if (auto *E = dyn_cast_or_null<Expr>(S))
3247       if (IgnoreNonTypeDependent && !E->isTypeDependent())
3248         return true;
3249     return super::TraverseStmt(S, Q);
3250   }
3251 
3252   bool TraverseTypeLoc(TypeLoc TL) {
3253     if (IgnoreNonTypeDependent && !TL.isNull() &&
3254         !TL.getType()->isDependentType())
3255       return true;
3256     return super::TraverseTypeLoc(TL);
3257   }
3258 
3259   bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
3260     return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
3261   }
3262 
3263   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
3264     // For a best-effort search, keep looking until we find a location.
3265     return IgnoreNonTypeDependent || !Matches(T->getDepth());
3266   }
3267 
3268   bool TraverseTemplateName(TemplateName N) {
3269     if (TemplateTemplateParmDecl *PD =
3270           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
3271       if (Matches(PD->getDepth()))
3272         return false;
3273     return super::TraverseTemplateName(N);
3274   }
3275 
3276   bool VisitDeclRefExpr(DeclRefExpr *E) {
3277     if (NonTypeTemplateParmDecl *PD =
3278           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
3279       if (Matches(PD->getDepth(), E->getExprLoc()))
3280         return false;
3281     return super::VisitDeclRefExpr(E);
3282   }
3283 
3284   bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
3285     return TraverseType(T->getReplacementType());
3286   }
3287 
3288   bool
3289   VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
3290     return TraverseTemplateArgument(T->getArgumentPack());
3291   }
3292 
3293   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
3294     return TraverseType(T->getInjectedSpecializationType());
3295   }
3296 };
3297 } // end anonymous namespace
3298 
3299 /// Determines whether a given type depends on the given parameter
3300 /// list.
3301 static bool
3302 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
3303   if (!Params->size())
3304     return false;
3305 
3306   DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
3307   Checker.TraverseType(T);
3308   return Checker.Match;
3309 }
3310 
3311 // Find the source range corresponding to the named type in the given
3312 // nested-name-specifier, if any.
3313 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
3314                                                        QualType T,
3315                                                        const CXXScopeSpec &SS) {
3316   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
3317   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
3318     if (const Type *CurType = NNS->getAsType()) {
3319       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
3320         return NNSLoc.getTypeLoc().getSourceRange();
3321     } else
3322       break;
3323 
3324     NNSLoc = NNSLoc.getPrefix();
3325   }
3326 
3327   return SourceRange();
3328 }
3329 
3330 /// Match the given template parameter lists to the given scope
3331 /// specifier, returning the template parameter list that applies to the
3332 /// name.
3333 ///
3334 /// \param DeclStartLoc the start of the declaration that has a scope
3335 /// specifier or a template parameter list.
3336 ///
3337 /// \param DeclLoc The location of the declaration itself.
3338 ///
3339 /// \param SS the scope specifier that will be matched to the given template
3340 /// parameter lists. This scope specifier precedes a qualified name that is
3341 /// being declared.
3342 ///
3343 /// \param TemplateId The template-id following the scope specifier, if there
3344 /// is one. Used to check for a missing 'template<>'.
3345 ///
3346 /// \param ParamLists the template parameter lists, from the outermost to the
3347 /// innermost template parameter lists.
3348 ///
3349 /// \param IsFriend Whether to apply the slightly different rules for
3350 /// matching template parameters to scope specifiers in friend
3351 /// declarations.
3352 ///
3353 /// \param IsMemberSpecialization will be set true if the scope specifier
3354 /// denotes a fully-specialized type, and therefore this is a declaration of
3355 /// a member specialization.
3356 ///
3357 /// \returns the template parameter list, if any, that corresponds to the
3358 /// name that is preceded by the scope specifier @p SS. This template
3359 /// parameter list may have template parameters (if we're declaring a
3360 /// template) or may have no template parameters (if we're declaring a
3361 /// template specialization), or may be NULL (if what we're declaring isn't
3362 /// itself a template).
3363 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
3364     SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
3365     TemplateIdAnnotation *TemplateId,
3366     ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
3367     bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
3368   IsMemberSpecialization = false;
3369   Invalid = false;
3370 
3371   // The sequence of nested types to which we will match up the template
3372   // parameter lists. We first build this list by starting with the type named
3373   // by the nested-name-specifier and walking out until we run out of types.
3374   SmallVector<QualType, 4> NestedTypes;
3375   QualType T;
3376   if (SS.getScopeRep()) {
3377     if (CXXRecordDecl *Record
3378               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
3379       T = Context.getTypeDeclType(Record);
3380     else
3381       T = QualType(SS.getScopeRep()->getAsType(), 0);
3382   }
3383 
3384   // If we found an explicit specialization that prevents us from needing
3385   // 'template<>' headers, this will be set to the location of that
3386   // explicit specialization.
3387   SourceLocation ExplicitSpecLoc;
3388 
3389   while (!T.isNull()) {
3390     NestedTypes.push_back(T);
3391 
3392     // Retrieve the parent of a record type.
3393     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3394       // If this type is an explicit specialization, we're done.
3395       if (ClassTemplateSpecializationDecl *Spec
3396           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3397         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
3398             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
3399           ExplicitSpecLoc = Spec->getLocation();
3400           break;
3401         }
3402       } else if (Record->getTemplateSpecializationKind()
3403                                                 == TSK_ExplicitSpecialization) {
3404         ExplicitSpecLoc = Record->getLocation();
3405         break;
3406       }
3407 
3408       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
3409         T = Context.getTypeDeclType(Parent);
3410       else
3411         T = QualType();
3412       continue;
3413     }
3414 
3415     if (const TemplateSpecializationType *TST
3416                                      = T->getAs<TemplateSpecializationType>()) {
3417       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3418         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
3419           T = Context.getTypeDeclType(Parent);
3420         else
3421           T = QualType();
3422         continue;
3423       }
3424     }
3425 
3426     // Look one step prior in a dependent template specialization type.
3427     if (const DependentTemplateSpecializationType *DependentTST
3428                           = T->getAs<DependentTemplateSpecializationType>()) {
3429       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
3430         T = QualType(NNS->getAsType(), 0);
3431       else
3432         T = QualType();
3433       continue;
3434     }
3435 
3436     // Look one step prior in a dependent name type.
3437     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
3438       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
3439         T = QualType(NNS->getAsType(), 0);
3440       else
3441         T = QualType();
3442       continue;
3443     }
3444 
3445     // Retrieve the parent of an enumeration type.
3446     if (const EnumType *EnumT = T->getAs<EnumType>()) {
3447       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
3448       // check here.
3449       EnumDecl *Enum = EnumT->getDecl();
3450 
3451       // Get to the parent type.
3452       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
3453         T = Context.getTypeDeclType(Parent);
3454       else
3455         T = QualType();
3456       continue;
3457     }
3458 
3459     T = QualType();
3460   }
3461   // Reverse the nested types list, since we want to traverse from the outermost
3462   // to the innermost while checking template-parameter-lists.
3463   std::reverse(NestedTypes.begin(), NestedTypes.end());
3464 
3465   // C++0x [temp.expl.spec]p17:
3466   //   A member or a member template may be nested within many
3467   //   enclosing class templates. In an explicit specialization for
3468   //   such a member, the member declaration shall be preceded by a
3469   //   template<> for each enclosing class template that is
3470   //   explicitly specialized.
3471   bool SawNonEmptyTemplateParameterList = false;
3472 
3473   auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
3474     if (SawNonEmptyTemplateParameterList) {
3475       if (!SuppressDiagnostic)
3476         Diag(DeclLoc, diag::err_specialize_member_of_template)
3477           << !Recovery << Range;
3478       Invalid = true;
3479       IsMemberSpecialization = false;
3480       return true;
3481     }
3482 
3483     return false;
3484   };
3485 
3486   auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
3487     // Check that we can have an explicit specialization here.
3488     if (CheckExplicitSpecialization(Range, true))
3489       return true;
3490 
3491     // We don't have a template header, but we should.
3492     SourceLocation ExpectedTemplateLoc;
3493     if (!ParamLists.empty())
3494       ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
3495     else
3496       ExpectedTemplateLoc = DeclStartLoc;
3497 
3498     if (!SuppressDiagnostic)
3499       Diag(DeclLoc, diag::err_template_spec_needs_header)
3500         << Range
3501         << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
3502     return false;
3503   };
3504 
3505   unsigned ParamIdx = 0;
3506   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
3507        ++TypeIdx) {
3508     T = NestedTypes[TypeIdx];
3509 
3510     // Whether we expect a 'template<>' header.
3511     bool NeedEmptyTemplateHeader = false;
3512 
3513     // Whether we expect a template header with parameters.
3514     bool NeedNonemptyTemplateHeader = false;
3515 
3516     // For a dependent type, the set of template parameters that we
3517     // expect to see.
3518     TemplateParameterList *ExpectedTemplateParams = nullptr;
3519 
3520     // C++0x [temp.expl.spec]p15:
3521     //   A member or a member template may be nested within many enclosing
3522     //   class templates. In an explicit specialization for such a member, the
3523     //   member declaration shall be preceded by a template<> for each
3524     //   enclosing class template that is explicitly specialized.
3525     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3526       if (ClassTemplatePartialSpecializationDecl *Partial
3527             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
3528         ExpectedTemplateParams = Partial->getTemplateParameters();
3529         NeedNonemptyTemplateHeader = true;
3530       } else if (Record->isDependentType()) {
3531         if (Record->getDescribedClassTemplate()) {
3532           ExpectedTemplateParams = Record->getDescribedClassTemplate()
3533                                                       ->getTemplateParameters();
3534           NeedNonemptyTemplateHeader = true;
3535         }
3536       } else if (ClassTemplateSpecializationDecl *Spec
3537                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3538         // C++0x [temp.expl.spec]p4:
3539         //   Members of an explicitly specialized class template are defined
3540         //   in the same manner as members of normal classes, and not using
3541         //   the template<> syntax.
3542         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
3543           NeedEmptyTemplateHeader = true;
3544         else
3545           continue;
3546       } else if (Record->getTemplateSpecializationKind()) {
3547         if (Record->getTemplateSpecializationKind()
3548                                                 != TSK_ExplicitSpecialization &&
3549             TypeIdx == NumTypes - 1)
3550           IsMemberSpecialization = true;
3551 
3552         continue;
3553       }
3554     } else if (const TemplateSpecializationType *TST
3555                                      = T->getAs<TemplateSpecializationType>()) {
3556       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3557         ExpectedTemplateParams = Template->getTemplateParameters();
3558         NeedNonemptyTemplateHeader = true;
3559       }
3560     } else if (T->getAs<DependentTemplateSpecializationType>()) {
3561       // FIXME:  We actually could/should check the template arguments here
3562       // against the corresponding template parameter list.
3563       NeedNonemptyTemplateHeader = false;
3564     }
3565 
3566     // C++ [temp.expl.spec]p16:
3567     //   In an explicit specialization declaration for a member of a class
3568     //   template or a member template that ap- pears in namespace scope, the
3569     //   member template and some of its enclosing class templates may remain
3570     //   unspecialized, except that the declaration shall not explicitly
3571     //   specialize a class member template if its en- closing class templates
3572     //   are not explicitly specialized as well.
3573     if (ParamIdx < ParamLists.size()) {
3574       if (ParamLists[ParamIdx]->size() == 0) {
3575         if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3576                                         false))
3577           return nullptr;
3578       } else
3579         SawNonEmptyTemplateParameterList = true;
3580     }
3581 
3582     if (NeedEmptyTemplateHeader) {
3583       // If we're on the last of the types, and we need a 'template<>' header
3584       // here, then it's a member specialization.
3585       if (TypeIdx == NumTypes - 1)
3586         IsMemberSpecialization = true;
3587 
3588       if (ParamIdx < ParamLists.size()) {
3589         if (ParamLists[ParamIdx]->size() > 0) {
3590           // The header has template parameters when it shouldn't. Complain.
3591           if (!SuppressDiagnostic)
3592             Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3593                  diag::err_template_param_list_matches_nontemplate)
3594               << T
3595               << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
3596                              ParamLists[ParamIdx]->getRAngleLoc())
3597               << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3598           Invalid = true;
3599           return nullptr;
3600         }
3601 
3602         // Consume this template header.
3603         ++ParamIdx;
3604         continue;
3605       }
3606 
3607       if (!IsFriend)
3608         if (DiagnoseMissingExplicitSpecialization(
3609                 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
3610           return nullptr;
3611 
3612       continue;
3613     }
3614 
3615     if (NeedNonemptyTemplateHeader) {
3616       // In friend declarations we can have template-ids which don't
3617       // depend on the corresponding template parameter lists.  But
3618       // assume that empty parameter lists are supposed to match this
3619       // template-id.
3620       if (IsFriend && T->isDependentType()) {
3621         if (ParamIdx < ParamLists.size() &&
3622             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
3623           ExpectedTemplateParams = nullptr;
3624         else
3625           continue;
3626       }
3627 
3628       if (ParamIdx < ParamLists.size()) {
3629         // Check the template parameter list, if we can.
3630         if (ExpectedTemplateParams &&
3631             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
3632                                             ExpectedTemplateParams,
3633                                             !SuppressDiagnostic, TPL_TemplateMatch))
3634           Invalid = true;
3635 
3636         if (!Invalid &&
3637             CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
3638                                        TPC_ClassTemplateMember))
3639           Invalid = true;
3640 
3641         ++ParamIdx;
3642         continue;
3643       }
3644 
3645       if (!SuppressDiagnostic)
3646         Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
3647           << T
3648           << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3649       Invalid = true;
3650       continue;
3651     }
3652   }
3653 
3654   // If there were at least as many template-ids as there were template
3655   // parameter lists, then there are no template parameter lists remaining for
3656   // the declaration itself.
3657   if (ParamIdx >= ParamLists.size()) {
3658     if (TemplateId && !IsFriend) {
3659       // We don't have a template header for the declaration itself, but we
3660       // should.
3661       DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
3662                                                         TemplateId->RAngleLoc));
3663 
3664       // Fabricate an empty template parameter list for the invented header.
3665       return TemplateParameterList::Create(Context, SourceLocation(),
3666                                            SourceLocation(), std::nullopt,
3667                                            SourceLocation(), nullptr);
3668     }
3669 
3670     return nullptr;
3671   }
3672 
3673   // If there were too many template parameter lists, complain about that now.
3674   if (ParamIdx < ParamLists.size() - 1) {
3675     bool HasAnyExplicitSpecHeader = false;
3676     bool AllExplicitSpecHeaders = true;
3677     for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
3678       if (ParamLists[I]->size() == 0)
3679         HasAnyExplicitSpecHeader = true;
3680       else
3681         AllExplicitSpecHeaders = false;
3682     }
3683 
3684     if (!SuppressDiagnostic)
3685       Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3686            AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
3687                                   : diag::err_template_spec_extra_headers)
3688           << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
3689                          ParamLists[ParamLists.size() - 2]->getRAngleLoc());
3690 
3691     // If there was a specialization somewhere, such that 'template<>' is
3692     // not required, and there were any 'template<>' headers, note where the
3693     // specialization occurred.
3694     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
3695         !SuppressDiagnostic)
3696       Diag(ExplicitSpecLoc,
3697            diag::note_explicit_template_spec_does_not_need_header)
3698         << NestedTypes.back();
3699 
3700     // We have a template parameter list with no corresponding scope, which
3701     // means that the resulting template declaration can't be instantiated
3702     // properly (we'll end up with dependent nodes when we shouldn't).
3703     if (!AllExplicitSpecHeaders)
3704       Invalid = true;
3705   }
3706 
3707   // C++ [temp.expl.spec]p16:
3708   //   In an explicit specialization declaration for a member of a class
3709   //   template or a member template that ap- pears in namespace scope, the
3710   //   member template and some of its enclosing class templates may remain
3711   //   unspecialized, except that the declaration shall not explicitly
3712   //   specialize a class member template if its en- closing class templates
3713   //   are not explicitly specialized as well.
3714   if (ParamLists.back()->size() == 0 &&
3715       CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3716                                   false))
3717     return nullptr;
3718 
3719   // Return the last template parameter list, which corresponds to the
3720   // entity being declared.
3721   return ParamLists.back();
3722 }
3723 
3724 void Sema::NoteAllFoundTemplates(TemplateName Name) {
3725   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3726     Diag(Template->getLocation(), diag::note_template_declared_here)
3727         << (isa<FunctionTemplateDecl>(Template)
3728                 ? 0
3729                 : isa<ClassTemplateDecl>(Template)
3730                       ? 1
3731                       : isa<VarTemplateDecl>(Template)
3732                             ? 2
3733                             : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
3734         << Template->getDeclName();
3735     return;
3736   }
3737 
3738   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
3739     for (OverloadedTemplateStorage::iterator I = OST->begin(),
3740                                           IEnd = OST->end();
3741          I != IEnd; ++I)
3742       Diag((*I)->getLocation(), diag::note_template_declared_here)
3743         << 0 << (*I)->getDeclName();
3744 
3745     return;
3746   }
3747 }
3748 
3749 static QualType
3750 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3751                            ArrayRef<TemplateArgument> Converted,
3752                            SourceLocation TemplateLoc,
3753                            TemplateArgumentListInfo &TemplateArgs) {
3754   ASTContext &Context = SemaRef.getASTContext();
3755 
3756   switch (BTD->getBuiltinTemplateKind()) {
3757   case BTK__make_integer_seq: {
3758     // Specializations of __make_integer_seq<S, T, N> are treated like
3759     // S<T, 0, ..., N-1>.
3760 
3761     QualType OrigType = Converted[1].getAsType();
3762     // C++14 [inteseq.intseq]p1:
3763     //   T shall be an integer type.
3764     if (!OrigType->isDependentType() && !OrigType->isIntegralType(Context)) {
3765       SemaRef.Diag(TemplateArgs[1].getLocation(),
3766                    diag::err_integer_sequence_integral_element_type);
3767       return QualType();
3768     }
3769 
3770     TemplateArgument NumArgsArg = Converted[2];
3771     if (NumArgsArg.isDependent())
3772       return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD),
3773                                                             Converted);
3774 
3775     TemplateArgumentListInfo SyntheticTemplateArgs;
3776     // The type argument, wrapped in substitution sugar, gets reused as the
3777     // first template argument in the synthetic template argument list.
3778     SyntheticTemplateArgs.addArgument(
3779         TemplateArgumentLoc(TemplateArgument(OrigType),
3780                             SemaRef.Context.getTrivialTypeSourceInfo(
3781                                 OrigType, TemplateArgs[1].getLocation())));
3782 
3783     if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) {
3784       // Expand N into 0 ... N-1.
3785       for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3786            I < NumArgs; ++I) {
3787         TemplateArgument TA(Context, I, OrigType);
3788         SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3789             TA, OrigType, TemplateArgs[2].getLocation()));
3790       }
3791     } else {
3792       // C++14 [inteseq.make]p1:
3793       //   If N is negative the program is ill-formed.
3794       SemaRef.Diag(TemplateArgs[2].getLocation(),
3795                    diag::err_integer_sequence_negative_length);
3796       return QualType();
3797     }
3798 
3799     // The first template argument will be reused as the template decl that
3800     // our synthetic template arguments will be applied to.
3801     return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3802                                        TemplateLoc, SyntheticTemplateArgs);
3803   }
3804 
3805   case BTK__type_pack_element:
3806     // Specializations of
3807     //    __type_pack_element<Index, T_1, ..., T_N>
3808     // are treated like T_Index.
3809     assert(Converted.size() == 2 &&
3810       "__type_pack_element should be given an index and a parameter pack");
3811 
3812     TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3813     if (IndexArg.isDependent() || Ts.isDependent())
3814       return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD),
3815                                                             Converted);
3816 
3817     llvm::APSInt Index = IndexArg.getAsIntegral();
3818     assert(Index >= 0 && "the index used with __type_pack_element should be of "
3819                          "type std::size_t, and hence be non-negative");
3820     // If the Index is out of bounds, the program is ill-formed.
3821     if (Index >= Ts.pack_size()) {
3822       SemaRef.Diag(TemplateArgs[0].getLocation(),
3823                    diag::err_type_pack_element_out_of_bounds);
3824       return QualType();
3825     }
3826 
3827     // We simply return the type at index `Index`.
3828     int64_t N = Index.getExtValue();
3829     return Ts.getPackAsArray()[N].getAsType();
3830   }
3831   llvm_unreachable("unexpected BuiltinTemplateDecl!");
3832 }
3833 
3834 /// Determine whether this alias template is "enable_if_t".
3835 /// libc++ >=14 uses "__enable_if_t" in C++11 mode.
3836 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3837   return AliasTemplate->getName().equals("enable_if_t") ||
3838          AliasTemplate->getName().equals("__enable_if_t");
3839 }
3840 
3841 /// Collect all of the separable terms in the given condition, which
3842 /// might be a conjunction.
3843 ///
3844 /// FIXME: The right answer is to convert the logical expression into
3845 /// disjunctive normal form, so we can find the first failed term
3846 /// within each possible clause.
3847 static void collectConjunctionTerms(Expr *Clause,
3848                                     SmallVectorImpl<Expr *> &Terms) {
3849   if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3850     if (BinOp->getOpcode() == BO_LAnd) {
3851       collectConjunctionTerms(BinOp->getLHS(), Terms);
3852       collectConjunctionTerms(BinOp->getRHS(), Terms);
3853       return;
3854     }
3855   }
3856 
3857   Terms.push_back(Clause);
3858 }
3859 
3860 // The ranges-v3 library uses an odd pattern of a top-level "||" with
3861 // a left-hand side that is value-dependent but never true. Identify
3862 // the idiom and ignore that term.
3863 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3864   // Top-level '||'.
3865   auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3866   if (!BinOp) return Cond;
3867 
3868   if (BinOp->getOpcode() != BO_LOr) return Cond;
3869 
3870   // With an inner '==' that has a literal on the right-hand side.
3871   Expr *LHS = BinOp->getLHS();
3872   auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3873   if (!InnerBinOp) return Cond;
3874 
3875   if (InnerBinOp->getOpcode() != BO_EQ ||
3876       !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3877     return Cond;
3878 
3879   // If the inner binary operation came from a macro expansion named
3880   // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3881   // of the '||', which is the real, user-provided condition.
3882   SourceLocation Loc = InnerBinOp->getExprLoc();
3883   if (!Loc.isMacroID()) return Cond;
3884 
3885   StringRef MacroName = PP.getImmediateMacroName(Loc);
3886   if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3887     return BinOp->getRHS();
3888 
3889   return Cond;
3890 }
3891 
3892 namespace {
3893 
3894 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3895 // within failing boolean expression, such as substituting template parameters
3896 // for actual types.
3897 class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3898 public:
3899   explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3900       : Policy(P) {}
3901 
3902   bool handledStmt(Stmt *E, raw_ostream &OS) override {
3903     const auto *DR = dyn_cast<DeclRefExpr>(E);
3904     if (DR && DR->getQualifier()) {
3905       // If this is a qualified name, expand the template arguments in nested
3906       // qualifiers.
3907       DR->getQualifier()->print(OS, Policy, true);
3908       // Then print the decl itself.
3909       const ValueDecl *VD = DR->getDecl();
3910       OS << VD->getName();
3911       if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3912         // This is a template variable, print the expanded template arguments.
3913         printTemplateArgumentList(
3914             OS, IV->getTemplateArgs().asArray(), Policy,
3915             IV->getSpecializedTemplate()->getTemplateParameters());
3916       }
3917       return true;
3918     }
3919     return false;
3920   }
3921 
3922 private:
3923   const PrintingPolicy Policy;
3924 };
3925 
3926 } // end anonymous namespace
3927 
3928 std::pair<Expr *, std::string>
3929 Sema::findFailedBooleanCondition(Expr *Cond) {
3930   Cond = lookThroughRangesV3Condition(PP, Cond);
3931 
3932   // Separate out all of the terms in a conjunction.
3933   SmallVector<Expr *, 4> Terms;
3934   collectConjunctionTerms(Cond, Terms);
3935 
3936   // Determine which term failed.
3937   Expr *FailedCond = nullptr;
3938   for (Expr *Term : Terms) {
3939     Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3940 
3941     // Literals are uninteresting.
3942     if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3943         isa<IntegerLiteral>(TermAsWritten))
3944       continue;
3945 
3946     // The initialization of the parameter from the argument is
3947     // a constant-evaluated context.
3948     EnterExpressionEvaluationContext ConstantEvaluated(
3949       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3950 
3951     bool Succeeded;
3952     if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3953         !Succeeded) {
3954       FailedCond = TermAsWritten;
3955       break;
3956     }
3957   }
3958   if (!FailedCond)
3959     FailedCond = Cond->IgnoreParenImpCasts();
3960 
3961   std::string Description;
3962   {
3963     llvm::raw_string_ostream Out(Description);
3964     PrintingPolicy Policy = getPrintingPolicy();
3965     Policy.PrintCanonicalTypes = true;
3966     FailedBooleanConditionPrinterHelper Helper(Policy);
3967     FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3968   }
3969   return { FailedCond, Description };
3970 }
3971 
3972 QualType Sema::CheckTemplateIdType(TemplateName Name,
3973                                    SourceLocation TemplateLoc,
3974                                    TemplateArgumentListInfo &TemplateArgs) {
3975   DependentTemplateName *DTN
3976     = Name.getUnderlying().getAsDependentTemplateName();
3977   if (DTN && DTN->isIdentifier())
3978     // When building a template-id where the template-name is dependent,
3979     // assume the template is a type template. Either our assumption is
3980     // correct, or the code is ill-formed and will be diagnosed when the
3981     // dependent name is substituted.
3982     return Context.getDependentTemplateSpecializationType(
3983         ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(),
3984         TemplateArgs.arguments());
3985 
3986   if (Name.getAsAssumedTemplateName() &&
3987       resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc))
3988     return QualType();
3989 
3990   TemplateDecl *Template = Name.getAsTemplateDecl();
3991   if (!Template || isa<FunctionTemplateDecl>(Template) ||
3992       isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
3993     // We might have a substituted template template parameter pack. If so,
3994     // build a template specialization type for it.
3995     if (Name.getAsSubstTemplateTemplateParmPack())
3996       return Context.getTemplateSpecializationType(Name,
3997                                                    TemplateArgs.arguments());
3998 
3999     Diag(TemplateLoc, diag::err_template_id_not_a_type)
4000       << Name;
4001     NoteAllFoundTemplates(Name);
4002     return QualType();
4003   }
4004 
4005   // Check that the template argument list is well-formed for this
4006   // template.
4007   SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4008   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, false,
4009                                 SugaredConverted, CanonicalConverted,
4010                                 /*UpdateArgsWithConversions=*/true))
4011     return QualType();
4012 
4013   QualType CanonType;
4014 
4015   if (TypeAliasTemplateDecl *AliasTemplate =
4016           dyn_cast<TypeAliasTemplateDecl>(Template)) {
4017 
4018     // Find the canonical type for this type alias template specialization.
4019     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
4020     if (Pattern->isInvalidDecl())
4021       return QualType();
4022 
4023     // Only substitute for the innermost template argument list.
4024     MultiLevelTemplateArgumentList TemplateArgLists;
4025     TemplateArgLists.addOuterTemplateArguments(Template, CanonicalConverted,
4026                                                /*Final=*/false);
4027     TemplateArgLists.addOuterRetainedLevels(
4028         AliasTemplate->getTemplateParameters()->getDepth());
4029 
4030     LocalInstantiationScope Scope(*this);
4031     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
4032     if (Inst.isInvalid())
4033       return QualType();
4034 
4035     CanonType = SubstType(Pattern->getUnderlyingType(),
4036                           TemplateArgLists, AliasTemplate->getLocation(),
4037                           AliasTemplate->getDeclName());
4038     if (CanonType.isNull()) {
4039       // If this was enable_if and we failed to find the nested type
4040       // within enable_if in a SFINAE context, dig out the specific
4041       // enable_if condition that failed and present that instead.
4042       if (isEnableIfAliasTemplate(AliasTemplate)) {
4043         if (auto DeductionInfo = isSFINAEContext()) {
4044           if (*DeductionInfo &&
4045               (*DeductionInfo)->hasSFINAEDiagnostic() &&
4046               (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
4047                 diag::err_typename_nested_not_found_enable_if &&
4048               TemplateArgs[0].getArgument().getKind()
4049                 == TemplateArgument::Expression) {
4050             Expr *FailedCond;
4051             std::string FailedDescription;
4052             std::tie(FailedCond, FailedDescription) =
4053               findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
4054 
4055             // Remove the old SFINAE diagnostic.
4056             PartialDiagnosticAt OldDiag =
4057               {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
4058             (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
4059 
4060             // Add a new SFINAE diagnostic specifying which condition
4061             // failed.
4062             (*DeductionInfo)->addSFINAEDiagnostic(
4063               OldDiag.first,
4064               PDiag(diag::err_typename_nested_not_found_requirement)
4065                 << FailedDescription
4066                 << FailedCond->getSourceRange());
4067           }
4068         }
4069       }
4070 
4071       return QualType();
4072     }
4073   } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
4074     CanonType = checkBuiltinTemplateIdType(*this, BTD, SugaredConverted,
4075                                            TemplateLoc, TemplateArgs);
4076   } else if (Name.isDependent() ||
4077              TemplateSpecializationType::anyDependentTemplateArguments(
4078                  TemplateArgs, CanonicalConverted)) {
4079     // This class template specialization is a dependent
4080     // type. Therefore, its canonical type is another class template
4081     // specialization type that contains all of the converted
4082     // arguments in canonical form. This ensures that, e.g., A<T> and
4083     // A<T, T> have identical types when A is declared as:
4084     //
4085     //   template<typename T, typename U = T> struct A;
4086     CanonType = Context.getCanonicalTemplateSpecializationType(
4087         Name, CanonicalConverted);
4088 
4089     // This might work out to be a current instantiation, in which
4090     // case the canonical type needs to be the InjectedClassNameType.
4091     //
4092     // TODO: in theory this could be a simple hashtable lookup; most
4093     // changes to CurContext don't change the set of current
4094     // instantiations.
4095     if (isa<ClassTemplateDecl>(Template)) {
4096       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
4097         // If we get out to a namespace, we're done.
4098         if (Ctx->isFileContext()) break;
4099 
4100         // If this isn't a record, keep looking.
4101         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
4102         if (!Record) continue;
4103 
4104         // Look for one of the two cases with InjectedClassNameTypes
4105         // and check whether it's the same template.
4106         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
4107             !Record->getDescribedClassTemplate())
4108           continue;
4109 
4110         // Fetch the injected class name type and check whether its
4111         // injected type is equal to the type we just built.
4112         QualType ICNT = Context.getTypeDeclType(Record);
4113         QualType Injected = cast<InjectedClassNameType>(ICNT)
4114           ->getInjectedSpecializationType();
4115 
4116         if (CanonType != Injected->getCanonicalTypeInternal())
4117           continue;
4118 
4119         // If so, the canonical type of this TST is the injected
4120         // class name type of the record we just found.
4121         assert(ICNT.isCanonical());
4122         CanonType = ICNT;
4123         break;
4124       }
4125     }
4126   } else if (ClassTemplateDecl *ClassTemplate =
4127                  dyn_cast<ClassTemplateDecl>(Template)) {
4128     // Find the class template specialization declaration that
4129     // corresponds to these arguments.
4130     void *InsertPos = nullptr;
4131     ClassTemplateSpecializationDecl *Decl =
4132         ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
4133     if (!Decl) {
4134       // This is the first time we have referenced this class template
4135       // specialization. Create the canonical declaration and add it to
4136       // the set of specializations.
4137       Decl = ClassTemplateSpecializationDecl::Create(
4138           Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
4139           ClassTemplate->getDeclContext(),
4140           ClassTemplate->getTemplatedDecl()->getBeginLoc(),
4141           ClassTemplate->getLocation(), ClassTemplate, CanonicalConverted,
4142           nullptr);
4143       ClassTemplate->AddSpecialization(Decl, InsertPos);
4144       if (ClassTemplate->isOutOfLine())
4145         Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
4146     }
4147 
4148     if (Decl->getSpecializationKind() == TSK_Undeclared &&
4149         ClassTemplate->getTemplatedDecl()->hasAttrs()) {
4150       InstantiatingTemplate Inst(*this, TemplateLoc, Decl);
4151       if (!Inst.isInvalid()) {
4152         MultiLevelTemplateArgumentList TemplateArgLists(Template,
4153                                                         CanonicalConverted,
4154                                                         /*Final=*/false);
4155         InstantiateAttrsForDecl(TemplateArgLists,
4156                                 ClassTemplate->getTemplatedDecl(), Decl);
4157       }
4158     }
4159 
4160     // Diagnose uses of this specialization.
4161     (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
4162 
4163     CanonType = Context.getTypeDeclType(Decl);
4164     assert(isa<RecordType>(CanonType) &&
4165            "type of non-dependent specialization is not a RecordType");
4166   } else {
4167     llvm_unreachable("Unhandled template kind");
4168   }
4169 
4170   // Build the fully-sugared type for this class template
4171   // specialization, which refers back to the class template
4172   // specialization we created or found.
4173   return Context.getTemplateSpecializationType(Name, TemplateArgs.arguments(),
4174                                                CanonType);
4175 }
4176 
4177 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
4178                                            TemplateNameKind &TNK,
4179                                            SourceLocation NameLoc,
4180                                            IdentifierInfo *&II) {
4181   assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
4182 
4183   TemplateName Name = ParsedName.get();
4184   auto *ATN = Name.getAsAssumedTemplateName();
4185   assert(ATN && "not an assumed template name");
4186   II = ATN->getDeclName().getAsIdentifierInfo();
4187 
4188   if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
4189     // Resolved to a type template name.
4190     ParsedName = TemplateTy::make(Name);
4191     TNK = TNK_Type_template;
4192   }
4193 }
4194 
4195 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
4196                                             SourceLocation NameLoc,
4197                                             bool Diagnose) {
4198   // We assumed this undeclared identifier to be an (ADL-only) function
4199   // template name, but it was used in a context where a type was required.
4200   // Try to typo-correct it now.
4201   AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
4202   assert(ATN && "not an assumed template name");
4203 
4204   LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
4205   struct CandidateCallback : CorrectionCandidateCallback {
4206     bool ValidateCandidate(const TypoCorrection &TC) override {
4207       return TC.getCorrectionDecl() &&
4208              getAsTypeTemplateDecl(TC.getCorrectionDecl());
4209     }
4210     std::unique_ptr<CorrectionCandidateCallback> clone() override {
4211       return std::make_unique<CandidateCallback>(*this);
4212     }
4213   } FilterCCC;
4214 
4215   TypoCorrection Corrected =
4216       CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
4217                   FilterCCC, CTK_ErrorRecovery);
4218   if (Corrected && Corrected.getFoundDecl()) {
4219     diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
4220                                 << ATN->getDeclName());
4221     Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
4222     return false;
4223   }
4224 
4225   if (Diagnose)
4226     Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
4227   return true;
4228 }
4229 
4230 TypeResult Sema::ActOnTemplateIdType(
4231     Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
4232     TemplateTy TemplateD, IdentifierInfo *TemplateII,
4233     SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
4234     ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
4235     bool IsCtorOrDtorName, bool IsClassName,
4236     ImplicitTypenameContext AllowImplicitTypename) {
4237   if (SS.isInvalid())
4238     return true;
4239 
4240   if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
4241     DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
4242 
4243     // C++ [temp.res]p3:
4244     //   A qualified-id that refers to a type and in which the
4245     //   nested-name-specifier depends on a template-parameter (14.6.2)
4246     //   shall be prefixed by the keyword typename to indicate that the
4247     //   qualified-id denotes a type, forming an
4248     //   elaborated-type-specifier (7.1.5.3).
4249     if (!LookupCtx && isDependentScopeSpecifier(SS)) {
4250       // C++2a relaxes some of those restrictions in [temp.res]p5.
4251       if (AllowImplicitTypename == ImplicitTypenameContext::Yes) {
4252         if (getLangOpts().CPlusPlus20)
4253           Diag(SS.getBeginLoc(), diag::warn_cxx17_compat_implicit_typename);
4254         else
4255           Diag(SS.getBeginLoc(), diag::ext_implicit_typename)
4256               << SS.getScopeRep() << TemplateII->getName()
4257               << FixItHint::CreateInsertion(SS.getBeginLoc(), "typename ");
4258       } else
4259         Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
4260             << SS.getScopeRep() << TemplateII->getName();
4261 
4262       // FIXME: This is not quite correct recovery as we don't transform SS
4263       // into the corresponding dependent form (and we don't diagnose missing
4264       // 'template' keywords within SS as a result).
4265       return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
4266                                TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
4267                                TemplateArgsIn, RAngleLoc);
4268     }
4269 
4270     // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
4271     // it's not actually allowed to be used as a type in most cases. Because
4272     // we annotate it before we know whether it's valid, we have to check for
4273     // this case here.
4274     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
4275     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
4276       Diag(TemplateIILoc,
4277            TemplateKWLoc.isInvalid()
4278                ? diag::err_out_of_line_qualified_id_type_names_constructor
4279                : diag::ext_out_of_line_qualified_id_type_names_constructor)
4280         << TemplateII << 0 /*injected-class-name used as template name*/
4281         << 1 /*if any keyword was present, it was 'template'*/;
4282     }
4283   }
4284 
4285   TemplateName Template = TemplateD.get();
4286   if (Template.getAsAssumedTemplateName() &&
4287       resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
4288     return true;
4289 
4290   // Translate the parser's template argument list in our AST format.
4291   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4292   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4293 
4294   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4295     assert(SS.getScopeRep() == DTN->getQualifier());
4296     QualType T = Context.getDependentTemplateSpecializationType(
4297         ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(),
4298         TemplateArgs.arguments());
4299     // Build type-source information.
4300     TypeLocBuilder TLB;
4301     DependentTemplateSpecializationTypeLoc SpecTL
4302       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4303     SpecTL.setElaboratedKeywordLoc(SourceLocation());
4304     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4305     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4306     SpecTL.setTemplateNameLoc(TemplateIILoc);
4307     SpecTL.setLAngleLoc(LAngleLoc);
4308     SpecTL.setRAngleLoc(RAngleLoc);
4309     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4310       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4311     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4312   }
4313 
4314   QualType SpecTy = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
4315   if (SpecTy.isNull())
4316     return true;
4317 
4318   // Build type-source information.
4319   TypeLocBuilder TLB;
4320   TemplateSpecializationTypeLoc SpecTL =
4321       TLB.push<TemplateSpecializationTypeLoc>(SpecTy);
4322   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4323   SpecTL.setTemplateNameLoc(TemplateIILoc);
4324   SpecTL.setLAngleLoc(LAngleLoc);
4325   SpecTL.setRAngleLoc(RAngleLoc);
4326   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4327     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4328 
4329   // Create an elaborated-type-specifier containing the nested-name-specifier.
4330   QualType ElTy =
4331       getElaboratedType(ElaboratedTypeKeyword::None,
4332                         !IsCtorOrDtorName ? SS : CXXScopeSpec(), SpecTy);
4333   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(ElTy);
4334   ElabTL.setElaboratedKeywordLoc(SourceLocation());
4335   if (!ElabTL.isEmpty())
4336     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4337   return CreateParsedType(ElTy, TLB.getTypeSourceInfo(Context, ElTy));
4338 }
4339 
4340 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
4341                                         TypeSpecifierType TagSpec,
4342                                         SourceLocation TagLoc,
4343                                         CXXScopeSpec &SS,
4344                                         SourceLocation TemplateKWLoc,
4345                                         TemplateTy TemplateD,
4346                                         SourceLocation TemplateLoc,
4347                                         SourceLocation LAngleLoc,
4348                                         ASTTemplateArgsPtr TemplateArgsIn,
4349                                         SourceLocation RAngleLoc) {
4350   if (SS.isInvalid())
4351     return TypeResult(true);
4352 
4353   TemplateName Template = TemplateD.get();
4354 
4355   // Translate the parser's template argument list in our AST format.
4356   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4357   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4358 
4359   // Determine the tag kind
4360   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4361   ElaboratedTypeKeyword Keyword
4362     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
4363 
4364   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4365     assert(SS.getScopeRep() == DTN->getQualifier());
4366     QualType T = Context.getDependentTemplateSpecializationType(
4367         Keyword, DTN->getQualifier(), DTN->getIdentifier(),
4368         TemplateArgs.arguments());
4369 
4370     // Build type-source information.
4371     TypeLocBuilder TLB;
4372     DependentTemplateSpecializationTypeLoc SpecTL
4373       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4374     SpecTL.setElaboratedKeywordLoc(TagLoc);
4375     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4376     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4377     SpecTL.setTemplateNameLoc(TemplateLoc);
4378     SpecTL.setLAngleLoc(LAngleLoc);
4379     SpecTL.setRAngleLoc(RAngleLoc);
4380     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4381       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
4382     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
4383   }
4384 
4385   if (TypeAliasTemplateDecl *TAT =
4386         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
4387     // C++0x [dcl.type.elab]p2:
4388     //   If the identifier resolves to a typedef-name or the simple-template-id
4389     //   resolves to an alias template specialization, the
4390     //   elaborated-type-specifier is ill-formed.
4391     Diag(TemplateLoc, diag::err_tag_reference_non_tag)
4392         << TAT << NTK_TypeAliasTemplate << llvm::to_underlying(TagKind);
4393     Diag(TAT->getLocation(), diag::note_declared_at);
4394   }
4395 
4396   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
4397   if (Result.isNull())
4398     return TypeResult(true);
4399 
4400   // Check the tag kind
4401   if (const RecordType *RT = Result->getAs<RecordType>()) {
4402     RecordDecl *D = RT->getDecl();
4403 
4404     IdentifierInfo *Id = D->getIdentifier();
4405     assert(Id && "templated class must have an identifier");
4406 
4407     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
4408                                       TagLoc, Id)) {
4409       Diag(TagLoc, diag::err_use_with_wrong_tag)
4410         << Result
4411         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
4412       Diag(D->getLocation(), diag::note_previous_use);
4413     }
4414   }
4415 
4416   // Provide source-location information for the template specialization.
4417   TypeLocBuilder TLB;
4418   TemplateSpecializationTypeLoc SpecTL
4419     = TLB.push<TemplateSpecializationTypeLoc>(Result);
4420   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4421   SpecTL.setTemplateNameLoc(TemplateLoc);
4422   SpecTL.setLAngleLoc(LAngleLoc);
4423   SpecTL.setRAngleLoc(RAngleLoc);
4424   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4425     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
4426 
4427   // Construct an elaborated type containing the nested-name-specifier (if any)
4428   // and tag keyword.
4429   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
4430   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
4431   ElabTL.setElaboratedKeywordLoc(TagLoc);
4432   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4433   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
4434 }
4435 
4436 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
4437                                              NamedDecl *PrevDecl,
4438                                              SourceLocation Loc,
4439                                              bool IsPartialSpecialization);
4440 
4441 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
4442 
4443 static bool isTemplateArgumentTemplateParameter(
4444     const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
4445   switch (Arg.getKind()) {
4446   case TemplateArgument::Null:
4447   case TemplateArgument::NullPtr:
4448   case TemplateArgument::Integral:
4449   case TemplateArgument::Declaration:
4450   case TemplateArgument::StructuralValue:
4451   case TemplateArgument::Pack:
4452   case TemplateArgument::TemplateExpansion:
4453     return false;
4454 
4455   case TemplateArgument::Type: {
4456     QualType Type = Arg.getAsType();
4457     const TemplateTypeParmType *TPT =
4458         Arg.getAsType()->getAs<TemplateTypeParmType>();
4459     return TPT && !Type.hasQualifiers() &&
4460            TPT->getDepth() == Depth && TPT->getIndex() == Index;
4461   }
4462 
4463   case TemplateArgument::Expression: {
4464     DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
4465     if (!DRE || !DRE->getDecl())
4466       return false;
4467     const NonTypeTemplateParmDecl *NTTP =
4468         dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4469     return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
4470   }
4471 
4472   case TemplateArgument::Template:
4473     const TemplateTemplateParmDecl *TTP =
4474         dyn_cast_or_null<TemplateTemplateParmDecl>(
4475             Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
4476     return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
4477   }
4478   llvm_unreachable("unexpected kind of template argument");
4479 }
4480 
4481 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
4482                                     ArrayRef<TemplateArgument> Args) {
4483   if (Params->size() != Args.size())
4484     return false;
4485 
4486   unsigned Depth = Params->getDepth();
4487 
4488   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4489     TemplateArgument Arg = Args[I];
4490 
4491     // If the parameter is a pack expansion, the argument must be a pack
4492     // whose only element is a pack expansion.
4493     if (Params->getParam(I)->isParameterPack()) {
4494       if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
4495           !Arg.pack_begin()->isPackExpansion())
4496         return false;
4497       Arg = Arg.pack_begin()->getPackExpansionPattern();
4498     }
4499 
4500     if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
4501       return false;
4502   }
4503 
4504   return true;
4505 }
4506 
4507 template<typename PartialSpecDecl>
4508 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
4509   if (Partial->getDeclContext()->isDependentContext())
4510     return;
4511 
4512   // FIXME: Get the TDK from deduction in order to provide better diagnostics
4513   // for non-substitution-failure issues?
4514   TemplateDeductionInfo Info(Partial->getLocation());
4515   if (S.isMoreSpecializedThanPrimary(Partial, Info))
4516     return;
4517 
4518   auto *Template = Partial->getSpecializedTemplate();
4519   S.Diag(Partial->getLocation(),
4520          diag::ext_partial_spec_not_more_specialized_than_primary)
4521       << isa<VarTemplateDecl>(Template);
4522 
4523   if (Info.hasSFINAEDiagnostic()) {
4524     PartialDiagnosticAt Diag = {SourceLocation(),
4525                                 PartialDiagnostic::NullDiagnostic()};
4526     Info.takeSFINAEDiagnostic(Diag);
4527     SmallString<128> SFINAEArgString;
4528     Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
4529     S.Diag(Diag.first,
4530            diag::note_partial_spec_not_more_specialized_than_primary)
4531       << SFINAEArgString;
4532   }
4533 
4534   S.NoteTemplateLocation(*Template);
4535   SmallVector<const Expr *, 3> PartialAC, TemplateAC;
4536   Template->getAssociatedConstraints(TemplateAC);
4537   Partial->getAssociatedConstraints(PartialAC);
4538   S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
4539                                                   TemplateAC);
4540 }
4541 
4542 static void
4543 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
4544                            const llvm::SmallBitVector &DeducibleParams) {
4545   for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4546     if (!DeducibleParams[I]) {
4547       NamedDecl *Param = TemplateParams->getParam(I);
4548       if (Param->getDeclName())
4549         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4550             << Param->getDeclName();
4551       else
4552         S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4553             << "(anonymous)";
4554     }
4555   }
4556 }
4557 
4558 
4559 template<typename PartialSpecDecl>
4560 static void checkTemplatePartialSpecialization(Sema &S,
4561                                                PartialSpecDecl *Partial) {
4562   // C++1z [temp.class.spec]p8: (DR1495)
4563   //   - The specialization shall be more specialized than the primary
4564   //     template (14.5.5.2).
4565   checkMoreSpecializedThanPrimary(S, Partial);
4566 
4567   // C++ [temp.class.spec]p8: (DR1315)
4568   //   - Each template-parameter shall appear at least once in the
4569   //     template-id outside a non-deduced context.
4570   // C++1z [temp.class.spec.match]p3 (P0127R2)
4571   //   If the template arguments of a partial specialization cannot be
4572   //   deduced because of the structure of its template-parameter-list
4573   //   and the template-id, the program is ill-formed.
4574   auto *TemplateParams = Partial->getTemplateParameters();
4575   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4576   S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4577                                TemplateParams->getDepth(), DeducibleParams);
4578 
4579   if (!DeducibleParams.all()) {
4580     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4581     S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
4582       << isa<VarTemplatePartialSpecializationDecl>(Partial)
4583       << (NumNonDeducible > 1)
4584       << SourceRange(Partial->getLocation(),
4585                      Partial->getTemplateArgsAsWritten()->RAngleLoc);
4586     noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
4587   }
4588 }
4589 
4590 void Sema::CheckTemplatePartialSpecialization(
4591     ClassTemplatePartialSpecializationDecl *Partial) {
4592   checkTemplatePartialSpecialization(*this, Partial);
4593 }
4594 
4595 void Sema::CheckTemplatePartialSpecialization(
4596     VarTemplatePartialSpecializationDecl *Partial) {
4597   checkTemplatePartialSpecialization(*this, Partial);
4598 }
4599 
4600 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
4601   // C++1z [temp.param]p11:
4602   //   A template parameter of a deduction guide template that does not have a
4603   //   default-argument shall be deducible from the parameter-type-list of the
4604   //   deduction guide template.
4605   auto *TemplateParams = TD->getTemplateParameters();
4606   llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4607   MarkDeducedTemplateParameters(TD, DeducibleParams);
4608   for (unsigned I = 0; I != TemplateParams->size(); ++I) {
4609     // A parameter pack is deducible (to an empty pack).
4610     auto *Param = TemplateParams->getParam(I);
4611     if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
4612       DeducibleParams[I] = true;
4613   }
4614 
4615   if (!DeducibleParams.all()) {
4616     unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4617     Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
4618       << (NumNonDeducible > 1);
4619     noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
4620   }
4621 }
4622 
4623 DeclResult Sema::ActOnVarTemplateSpecialization(
4624     Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
4625     TemplateParameterList *TemplateParams, StorageClass SC,
4626     bool IsPartialSpecialization) {
4627   // D must be variable template id.
4628   assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
4629          "Variable template specialization is declared with a template id.");
4630 
4631   TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4632   TemplateArgumentListInfo TemplateArgs =
4633       makeTemplateArgumentListInfo(*this, *TemplateId);
4634   SourceLocation TemplateNameLoc = D.getIdentifierLoc();
4635   SourceLocation LAngleLoc = TemplateId->LAngleLoc;
4636   SourceLocation RAngleLoc = TemplateId->RAngleLoc;
4637 
4638   TemplateName Name = TemplateId->Template.get();
4639 
4640   // The template-id must name a variable template.
4641   VarTemplateDecl *VarTemplate =
4642       dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
4643   if (!VarTemplate) {
4644     NamedDecl *FnTemplate;
4645     if (auto *OTS = Name.getAsOverloadedTemplate())
4646       FnTemplate = *OTS->begin();
4647     else
4648       FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4649     if (FnTemplate)
4650       return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
4651                << FnTemplate->getDeclName();
4652     return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
4653              << IsPartialSpecialization;
4654   }
4655 
4656   // Check for unexpanded parameter packs in any of the template arguments.
4657   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4658     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4659                                         IsPartialSpecialization
4660                                             ? UPPC_PartialSpecialization
4661                                             : UPPC_ExplicitSpecialization))
4662       return true;
4663 
4664   // Check that the template argument list is well-formed for this
4665   // template.
4666   SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4667   if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
4668                                 false, SugaredConverted, CanonicalConverted,
4669                                 /*UpdateArgsWithConversions=*/true))
4670     return true;
4671 
4672   // Find the variable template (partial) specialization declaration that
4673   // corresponds to these arguments.
4674   if (IsPartialSpecialization) {
4675     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
4676                                                TemplateArgs.size(),
4677                                                CanonicalConverted))
4678       return true;
4679 
4680     // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
4681     // also do them during instantiation.
4682     if (!Name.isDependent() &&
4683         !TemplateSpecializationType::anyDependentTemplateArguments(
4684             TemplateArgs, CanonicalConverted)) {
4685       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4686           << VarTemplate->getDeclName();
4687       IsPartialSpecialization = false;
4688     }
4689 
4690     if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
4691                                 CanonicalConverted) &&
4692         (!Context.getLangOpts().CPlusPlus20 ||
4693          !TemplateParams->hasAssociatedConstraints())) {
4694       // C++ [temp.class.spec]p9b3:
4695       //
4696       //   -- The argument list of the specialization shall not be identical
4697       //      to the implicit argument list of the primary template.
4698       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4699         << /*variable template*/ 1
4700         << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
4701         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4702       // FIXME: Recover from this by treating the declaration as a redeclaration
4703       // of the primary template.
4704       return true;
4705     }
4706   }
4707 
4708   void *InsertPos = nullptr;
4709   VarTemplateSpecializationDecl *PrevDecl = nullptr;
4710 
4711   if (IsPartialSpecialization)
4712     PrevDecl = VarTemplate->findPartialSpecialization(
4713         CanonicalConverted, TemplateParams, InsertPos);
4714   else
4715     PrevDecl = VarTemplate->findSpecialization(CanonicalConverted, InsertPos);
4716 
4717   VarTemplateSpecializationDecl *Specialization = nullptr;
4718 
4719   // Check whether we can declare a variable template specialization in
4720   // the current scope.
4721   if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
4722                                        TemplateNameLoc,
4723                                        IsPartialSpecialization))
4724     return true;
4725 
4726   if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4727     // Since the only prior variable template specialization with these
4728     // arguments was referenced but not declared,  reuse that
4729     // declaration node as our own, updating its source location and
4730     // the list of outer template parameters to reflect our new declaration.
4731     Specialization = PrevDecl;
4732     Specialization->setLocation(TemplateNameLoc);
4733     PrevDecl = nullptr;
4734   } else if (IsPartialSpecialization) {
4735     // Create a new class template partial specialization declaration node.
4736     VarTemplatePartialSpecializationDecl *PrevPartial =
4737         cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
4738     VarTemplatePartialSpecializationDecl *Partial =
4739         VarTemplatePartialSpecializationDecl::Create(
4740             Context, VarTemplate->getDeclContext(), TemplateKWLoc,
4741             TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
4742             CanonicalConverted, TemplateArgs);
4743 
4744     if (!PrevPartial)
4745       VarTemplate->AddPartialSpecialization(Partial, InsertPos);
4746     Specialization = Partial;
4747 
4748     // If we are providing an explicit specialization of a member variable
4749     // template specialization, make a note of that.
4750     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4751       PrevPartial->setMemberSpecialization();
4752 
4753     CheckTemplatePartialSpecialization(Partial);
4754   } else {
4755     // Create a new class template specialization declaration node for
4756     // this explicit specialization or friend declaration.
4757     Specialization = VarTemplateSpecializationDecl::Create(
4758         Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
4759         VarTemplate, DI->getType(), DI, SC, CanonicalConverted);
4760     Specialization->setTemplateArgsInfo(TemplateArgs);
4761 
4762     if (!PrevDecl)
4763       VarTemplate->AddSpecialization(Specialization, InsertPos);
4764   }
4765 
4766   // C++ [temp.expl.spec]p6:
4767   //   If a template, a member template or the member of a class template is
4768   //   explicitly specialized then that specialization shall be declared
4769   //   before the first use of that specialization that would cause an implicit
4770   //   instantiation to take place, in every translation unit in which such a
4771   //   use occurs; no diagnostic is required.
4772   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4773     bool Okay = false;
4774     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
4775       // Is there any previous explicit specialization declaration?
4776       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4777         Okay = true;
4778         break;
4779       }
4780     }
4781 
4782     if (!Okay) {
4783       SourceRange Range(TemplateNameLoc, RAngleLoc);
4784       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4785           << Name << Range;
4786 
4787       Diag(PrevDecl->getPointOfInstantiation(),
4788            diag::note_instantiation_required_here)
4789           << (PrevDecl->getTemplateSpecializationKind() !=
4790               TSK_ImplicitInstantiation);
4791       return true;
4792     }
4793   }
4794 
4795   Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4796   Specialization->setLexicalDeclContext(CurContext);
4797 
4798   // Add the specialization into its lexical context, so that it can
4799   // be seen when iterating through the list of declarations in that
4800   // context. However, specializations are not found by name lookup.
4801   CurContext->addDecl(Specialization);
4802 
4803   // Note that this is an explicit specialization.
4804   Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4805 
4806   if (PrevDecl) {
4807     // Check that this isn't a redefinition of this specialization,
4808     // merging with previous declarations.
4809     LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
4810                           forRedeclarationInCurContext());
4811     PrevSpec.addDecl(PrevDecl);
4812     D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
4813   } else if (Specialization->isStaticDataMember() &&
4814              Specialization->isOutOfLine()) {
4815     Specialization->setAccess(VarTemplate->getAccess());
4816   }
4817 
4818   return Specialization;
4819 }
4820 
4821 namespace {
4822 /// A partial specialization whose template arguments have matched
4823 /// a given template-id.
4824 struct PartialSpecMatchResult {
4825   VarTemplatePartialSpecializationDecl *Partial;
4826   TemplateArgumentList *Args;
4827 };
4828 } // end anonymous namespace
4829 
4830 DeclResult
4831 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4832                          SourceLocation TemplateNameLoc,
4833                          const TemplateArgumentListInfo &TemplateArgs) {
4834   assert(Template && "A variable template id without template?");
4835 
4836   // Check that the template argument list is well-formed for this template.
4837   SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4838   if (CheckTemplateArgumentList(
4839           Template, TemplateNameLoc,
4840           const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4841           SugaredConverted, CanonicalConverted,
4842           /*UpdateArgsWithConversions=*/true))
4843     return true;
4844 
4845   // Produce a placeholder value if the specialization is dependent.
4846   if (Template->getDeclContext()->isDependentContext() ||
4847       TemplateSpecializationType::anyDependentTemplateArguments(
4848           TemplateArgs, CanonicalConverted))
4849     return DeclResult();
4850 
4851   // Find the variable template specialization declaration that
4852   // corresponds to these arguments.
4853   void *InsertPos = nullptr;
4854   if (VarTemplateSpecializationDecl *Spec =
4855           Template->findSpecialization(CanonicalConverted, InsertPos)) {
4856     checkSpecializationReachability(TemplateNameLoc, Spec);
4857     // If we already have a variable template specialization, return it.
4858     return Spec;
4859   }
4860 
4861   // This is the first time we have referenced this variable template
4862   // specialization. Create the canonical declaration and add it to
4863   // the set of specializations, based on the closest partial specialization
4864   // that it represents. That is,
4865   VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4866   TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
4867                                        CanonicalConverted);
4868   TemplateArgumentList *InstantiationArgs = &TemplateArgList;
4869   bool AmbiguousPartialSpec = false;
4870   typedef PartialSpecMatchResult MatchResult;
4871   SmallVector<MatchResult, 4> Matched;
4872   SourceLocation PointOfInstantiation = TemplateNameLoc;
4873   TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4874                                             /*ForTakingAddress=*/false);
4875 
4876   // 1. Attempt to find the closest partial specialization that this
4877   // specializes, if any.
4878   // TODO: Unify with InstantiateClassTemplateSpecialization()?
4879   //       Perhaps better after unification of DeduceTemplateArguments() and
4880   //       getMoreSpecializedPartialSpecialization().
4881   SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4882   Template->getPartialSpecializations(PartialSpecs);
4883 
4884   for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4885     VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4886     TemplateDeductionInfo Info(FailedCandidates.getLocation());
4887 
4888     if (TemplateDeductionResult Result =
4889             DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
4890       // Store the failed-deduction information for use in diagnostics, later.
4891       // TODO: Actually use the failed-deduction info?
4892       FailedCandidates.addCandidate().set(
4893           DeclAccessPair::make(Template, AS_public), Partial,
4894           MakeDeductionFailureInfo(Context, Result, Info));
4895       (void)Result;
4896     } else {
4897       Matched.push_back(PartialSpecMatchResult());
4898       Matched.back().Partial = Partial;
4899       Matched.back().Args = Info.takeCanonical();
4900     }
4901   }
4902 
4903   if (Matched.size() >= 1) {
4904     SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4905     if (Matched.size() == 1) {
4906       //   -- If exactly one matching specialization is found, the
4907       //      instantiation is generated from that specialization.
4908       // We don't need to do anything for this.
4909     } else {
4910       //   -- If more than one matching specialization is found, the
4911       //      partial order rules (14.5.4.2) are used to determine
4912       //      whether one of the specializations is more specialized
4913       //      than the others. If none of the specializations is more
4914       //      specialized than all of the other matching
4915       //      specializations, then the use of the variable template is
4916       //      ambiguous and the program is ill-formed.
4917       for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4918                                                  PEnd = Matched.end();
4919            P != PEnd; ++P) {
4920         if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4921                                                     PointOfInstantiation) ==
4922             P->Partial)
4923           Best = P;
4924       }
4925 
4926       // Determine if the best partial specialization is more specialized than
4927       // the others.
4928       for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4929                                                  PEnd = Matched.end();
4930            P != PEnd; ++P) {
4931         if (P != Best && getMoreSpecializedPartialSpecialization(
4932                              P->Partial, Best->Partial,
4933                              PointOfInstantiation) != Best->Partial) {
4934           AmbiguousPartialSpec = true;
4935           break;
4936         }
4937       }
4938     }
4939 
4940     // Instantiate using the best variable template partial specialization.
4941     InstantiationPattern = Best->Partial;
4942     InstantiationArgs = Best->Args;
4943   } else {
4944     //   -- If no match is found, the instantiation is generated
4945     //      from the primary template.
4946     // InstantiationPattern = Template->getTemplatedDecl();
4947   }
4948 
4949   // 2. Create the canonical declaration.
4950   // Note that we do not instantiate a definition until we see an odr-use
4951   // in DoMarkVarDeclReferenced().
4952   // FIXME: LateAttrs et al.?
4953   VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4954       Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
4955       CanonicalConverted, TemplateNameLoc /*, LateAttrs, StartingScope*/);
4956   if (!Decl)
4957     return true;
4958 
4959   if (AmbiguousPartialSpec) {
4960     // Partial ordering did not produce a clear winner. Complain.
4961     Decl->setInvalidDecl();
4962     Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4963         << Decl;
4964 
4965     // Print the matching partial specializations.
4966     for (MatchResult P : Matched)
4967       Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4968           << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4969                                              *P.Args);
4970     return true;
4971   }
4972 
4973   if (VarTemplatePartialSpecializationDecl *D =
4974           dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4975     Decl->setInstantiationOf(D, InstantiationArgs);
4976 
4977   checkSpecializationReachability(TemplateNameLoc, Decl);
4978 
4979   assert(Decl && "No variable template specialization?");
4980   return Decl;
4981 }
4982 
4983 ExprResult
4984 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4985                          const DeclarationNameInfo &NameInfo,
4986                          VarTemplateDecl *Template, SourceLocation TemplateLoc,
4987                          const TemplateArgumentListInfo *TemplateArgs) {
4988 
4989   DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
4990                                        *TemplateArgs);
4991   if (Decl.isInvalid())
4992     return ExprError();
4993 
4994   if (!Decl.get())
4995     return ExprResult();
4996 
4997   VarDecl *Var = cast<VarDecl>(Decl.get());
4998   if (!Var->getTemplateSpecializationKind())
4999     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
5000                                        NameInfo.getLoc());
5001 
5002   // Build an ordinary singleton decl ref.
5003   return BuildDeclarationNameExpr(SS, NameInfo, Var,
5004                                   /*FoundD=*/nullptr, TemplateArgs);
5005 }
5006 
5007 void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
5008                                             SourceLocation Loc) {
5009   Diag(Loc, diag::err_template_missing_args)
5010     << (int)getTemplateNameKindForDiagnostics(Name) << Name;
5011   if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
5012     NoteTemplateLocation(*TD, TD->getTemplateParameters()->getSourceRange());
5013   }
5014 }
5015 
5016 ExprResult
5017 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
5018                              SourceLocation TemplateKWLoc,
5019                              const DeclarationNameInfo &ConceptNameInfo,
5020                              NamedDecl *FoundDecl,
5021                              ConceptDecl *NamedConcept,
5022                              const TemplateArgumentListInfo *TemplateArgs) {
5023   assert(NamedConcept && "A concept template id without a template?");
5024 
5025   llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
5026   if (CheckTemplateArgumentList(
5027           NamedConcept, ConceptNameInfo.getLoc(),
5028           const_cast<TemplateArgumentListInfo &>(*TemplateArgs),
5029           /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted,
5030           /*UpdateArgsWithConversions=*/false))
5031     return ExprError();
5032 
5033   auto *CSD = ImplicitConceptSpecializationDecl::Create(
5034       Context, NamedConcept->getDeclContext(), NamedConcept->getLocation(),
5035       CanonicalConverted);
5036   ConstraintSatisfaction Satisfaction;
5037   bool AreArgsDependent =
5038       TemplateSpecializationType::anyDependentTemplateArguments(
5039           *TemplateArgs, CanonicalConverted);
5040   MultiLevelTemplateArgumentList MLTAL(NamedConcept, CanonicalConverted,
5041                                        /*Final=*/false);
5042   LocalInstantiationScope Scope(*this);
5043 
5044   EnterExpressionEvaluationContext EECtx{
5045       *this, ExpressionEvaluationContext::ConstantEvaluated, CSD};
5046 
5047   if (!AreArgsDependent &&
5048       CheckConstraintSatisfaction(
5049           NamedConcept, {NamedConcept->getConstraintExpr()}, MLTAL,
5050           SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(),
5051                       TemplateArgs->getRAngleLoc()),
5052           Satisfaction))
5053     return ExprError();
5054   auto *CL = ConceptReference::Create(
5055       Context,
5056       SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
5057       TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
5058       ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs));
5059   return ConceptSpecializationExpr::Create(
5060       Context, CL, CSD, AreArgsDependent ? nullptr : &Satisfaction);
5061 }
5062 
5063 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
5064                                      SourceLocation TemplateKWLoc,
5065                                      LookupResult &R,
5066                                      bool RequiresADL,
5067                                  const TemplateArgumentListInfo *TemplateArgs) {
5068   // FIXME: Can we do any checking at this point? I guess we could check the
5069   // template arguments that we have against the template name, if the template
5070   // name refers to a single template. That's not a terribly common case,
5071   // though.
5072   // foo<int> could identify a single function unambiguously
5073   // This approach does NOT work, since f<int>(1);
5074   // gets resolved prior to resorting to overload resolution
5075   // i.e., template<class T> void f(double);
5076   //       vs template<class T, class U> void f(U);
5077 
5078   // These should be filtered out by our callers.
5079   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
5080 
5081   // Non-function templates require a template argument list.
5082   if (auto *TD = R.getAsSingle<TemplateDecl>()) {
5083     if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
5084       diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
5085       return ExprError();
5086     }
5087   }
5088   bool KnownDependent = false;
5089   // In C++1y, check variable template ids.
5090   if (R.getAsSingle<VarTemplateDecl>()) {
5091     ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(),
5092                                         R.getAsSingle<VarTemplateDecl>(),
5093                                         TemplateKWLoc, TemplateArgs);
5094     if (Res.isInvalid() || Res.isUsable())
5095       return Res;
5096     // Result is dependent. Carry on to build an UnresolvedLookupEpxr.
5097     KnownDependent = true;
5098   }
5099 
5100   if (R.getAsSingle<ConceptDecl>()) {
5101     return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
5102                                   R.getFoundDecl(),
5103                                   R.getAsSingle<ConceptDecl>(), TemplateArgs);
5104   }
5105 
5106   // We don't want lookup warnings at this point.
5107   R.suppressDiagnostics();
5108 
5109   UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(
5110       Context, R.getNamingClass(), SS.getWithLocInContext(Context),
5111       TemplateKWLoc, R.getLookupNameInfo(), RequiresADL, TemplateArgs,
5112       R.begin(), R.end(), KnownDependent);
5113 
5114   return ULE;
5115 }
5116 
5117 // We actually only call this from template instantiation.
5118 ExprResult
5119 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
5120                                    SourceLocation TemplateKWLoc,
5121                                    const DeclarationNameInfo &NameInfo,
5122                              const TemplateArgumentListInfo *TemplateArgs) {
5123 
5124   assert(TemplateArgs || TemplateKWLoc.isValid());
5125   DeclContext *DC;
5126   if (!(DC = computeDeclContext(SS, false)) ||
5127       DC->isDependentContext() ||
5128       RequireCompleteDeclContext(SS, DC))
5129     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
5130 
5131   bool MemberOfUnknownSpecialization;
5132   LookupResult R(*this, NameInfo, LookupOrdinaryName);
5133   if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
5134                          /*Entering*/false, MemberOfUnknownSpecialization,
5135                          TemplateKWLoc))
5136     return ExprError();
5137 
5138   if (R.isAmbiguous())
5139     return ExprError();
5140 
5141   if (R.empty()) {
5142     Diag(NameInfo.getLoc(), diag::err_no_member)
5143       << NameInfo.getName() << DC << SS.getRange();
5144     return ExprError();
5145   }
5146 
5147   auto DiagnoseTypeTemplateDecl = [&](TemplateDecl *Temp,
5148                                       bool isTypeAliasTemplateDecl) {
5149     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template)
5150         << SS.getScopeRep() << NameInfo.getName().getAsString() << SS.getRange()
5151         << isTypeAliasTemplateDecl;
5152     Diag(Temp->getLocation(), diag::note_referenced_type_template) << 0;
5153     return ExprError();
5154   };
5155 
5156   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>())
5157     return DiagnoseTypeTemplateDecl(Temp, false);
5158 
5159   if (TypeAliasTemplateDecl *Temp = R.getAsSingle<TypeAliasTemplateDecl>())
5160     return DiagnoseTypeTemplateDecl(Temp, true);
5161 
5162   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
5163 }
5164 
5165 /// Form a template name from a name that is syntactically required to name a
5166 /// template, either due to use of the 'template' keyword or because a name in
5167 /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4).
5168 ///
5169 /// This action forms a template name given the name of the template and its
5170 /// optional scope specifier. This is used when the 'template' keyword is used
5171 /// or when the parsing context unambiguously treats a following '<' as
5172 /// introducing a template argument list. Note that this may produce a
5173 /// non-dependent template name if we can perform the lookup now and identify
5174 /// the named template.
5175 ///
5176 /// For example, given "x.MetaFun::template apply", the scope specifier
5177 /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location
5178 /// of the "template" keyword, and "apply" is the \p Name.
5179 TemplateNameKind Sema::ActOnTemplateName(Scope *S,
5180                                          CXXScopeSpec &SS,
5181                                          SourceLocation TemplateKWLoc,
5182                                          const UnqualifiedId &Name,
5183                                          ParsedType ObjectType,
5184                                          bool EnteringContext,
5185                                          TemplateTy &Result,
5186                                          bool AllowInjectedClassName) {
5187   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
5188     Diag(TemplateKWLoc,
5189          getLangOpts().CPlusPlus11 ?
5190            diag::warn_cxx98_compat_template_outside_of_template :
5191            diag::ext_template_outside_of_template)
5192       << FixItHint::CreateRemoval(TemplateKWLoc);
5193 
5194   if (SS.isInvalid())
5195     return TNK_Non_template;
5196 
5197   // Figure out where isTemplateName is going to look.
5198   DeclContext *LookupCtx = nullptr;
5199   if (SS.isNotEmpty())
5200     LookupCtx = computeDeclContext(SS, EnteringContext);
5201   else if (ObjectType)
5202     LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType));
5203 
5204   // C++0x [temp.names]p5:
5205   //   If a name prefixed by the keyword template is not the name of
5206   //   a template, the program is ill-formed. [Note: the keyword
5207   //   template may not be applied to non-template members of class
5208   //   templates. -end note ] [ Note: as is the case with the
5209   //   typename prefix, the template prefix is allowed in cases
5210   //   where it is not strictly necessary; i.e., when the
5211   //   nested-name-specifier or the expression on the left of the ->
5212   //   or . is not dependent on a template-parameter, or the use
5213   //   does not appear in the scope of a template. -end note]
5214   //
5215   // Note: C++03 was more strict here, because it banned the use of
5216   // the "template" keyword prior to a template-name that was not a
5217   // dependent name. C++ DR468 relaxed this requirement (the
5218   // "template" keyword is now permitted). We follow the C++0x
5219   // rules, even in C++03 mode with a warning, retroactively applying the DR.
5220   bool MemberOfUnknownSpecialization;
5221   TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
5222                                         ObjectType, EnteringContext, Result,
5223                                         MemberOfUnknownSpecialization);
5224   if (TNK != TNK_Non_template) {
5225     // We resolved this to a (non-dependent) template name. Return it.
5226     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
5227     if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD &&
5228         Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
5229         Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
5230       // C++14 [class.qual]p2:
5231       //   In a lookup in which function names are not ignored and the
5232       //   nested-name-specifier nominates a class C, if the name specified
5233       //   [...] is the injected-class-name of C, [...] the name is instead
5234       //   considered to name the constructor
5235       //
5236       // We don't get here if naming the constructor would be valid, so we
5237       // just reject immediately and recover by treating the
5238       // injected-class-name as naming the template.
5239       Diag(Name.getBeginLoc(),
5240            diag::ext_out_of_line_qualified_id_type_names_constructor)
5241           << Name.Identifier
5242           << 0 /*injected-class-name used as template name*/
5243           << TemplateKWLoc.isValid();
5244     }
5245     return TNK;
5246   }
5247 
5248   if (!MemberOfUnknownSpecialization) {
5249     // Didn't find a template name, and the lookup wasn't dependent.
5250     // Do the lookup again to determine if this is a "nothing found" case or
5251     // a "not a template" case. FIXME: Refactor isTemplateName so we don't
5252     // need to do this.
5253     DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
5254     LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
5255                    LookupOrdinaryName);
5256     bool MOUS;
5257     // Tell LookupTemplateName that we require a template so that it diagnoses
5258     // cases where it finds a non-template.
5259     RequiredTemplateKind RTK = TemplateKWLoc.isValid()
5260                                    ? RequiredTemplateKind(TemplateKWLoc)
5261                                    : TemplateNameIsRequired;
5262     if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS,
5263                             RTK, nullptr, /*AllowTypoCorrection=*/false) &&
5264         !R.isAmbiguous()) {
5265       if (LookupCtx)
5266         Diag(Name.getBeginLoc(), diag::err_no_member)
5267             << DNI.getName() << LookupCtx << SS.getRange();
5268       else
5269         Diag(Name.getBeginLoc(), diag::err_undeclared_use)
5270             << DNI.getName() << SS.getRange();
5271     }
5272     return TNK_Non_template;
5273   }
5274 
5275   NestedNameSpecifier *Qualifier = SS.getScopeRep();
5276 
5277   switch (Name.getKind()) {
5278   case UnqualifiedIdKind::IK_Identifier:
5279     Result = TemplateTy::make(
5280         Context.getDependentTemplateName(Qualifier, Name.Identifier));
5281     return TNK_Dependent_template_name;
5282 
5283   case UnqualifiedIdKind::IK_OperatorFunctionId:
5284     Result = TemplateTy::make(Context.getDependentTemplateName(
5285         Qualifier, Name.OperatorFunctionId.Operator));
5286     return TNK_Function_template;
5287 
5288   case UnqualifiedIdKind::IK_LiteralOperatorId:
5289     // This is a kind of template name, but can never occur in a dependent
5290     // scope (literal operators can only be declared at namespace scope).
5291     break;
5292 
5293   default:
5294     break;
5295   }
5296 
5297   // This name cannot possibly name a dependent template. Diagnose this now
5298   // rather than building a dependent template name that can never be valid.
5299   Diag(Name.getBeginLoc(),
5300        diag::err_template_kw_refers_to_dependent_non_template)
5301       << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
5302       << TemplateKWLoc.isValid() << TemplateKWLoc;
5303   return TNK_Non_template;
5304 }
5305 
5306 bool Sema::CheckTemplateTypeArgument(
5307     TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL,
5308     SmallVectorImpl<TemplateArgument> &SugaredConverted,
5309     SmallVectorImpl<TemplateArgument> &CanonicalConverted) {
5310   const TemplateArgument &Arg = AL.getArgument();
5311   QualType ArgType;
5312   TypeSourceInfo *TSI = nullptr;
5313 
5314   // Check template type parameter.
5315   switch(Arg.getKind()) {
5316   case TemplateArgument::Type:
5317     // C++ [temp.arg.type]p1:
5318     //   A template-argument for a template-parameter which is a
5319     //   type shall be a type-id.
5320     ArgType = Arg.getAsType();
5321     TSI = AL.getTypeSourceInfo();
5322     break;
5323   case TemplateArgument::Template:
5324   case TemplateArgument::TemplateExpansion: {
5325     // We have a template type parameter but the template argument
5326     // is a template without any arguments.
5327     SourceRange SR = AL.getSourceRange();
5328     TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
5329     diagnoseMissingTemplateArguments(Name, SR.getEnd());
5330     return true;
5331   }
5332   case TemplateArgument::Expression: {
5333     // We have a template type parameter but the template argument is an
5334     // expression; see if maybe it is missing the "typename" keyword.
5335     CXXScopeSpec SS;
5336     DeclarationNameInfo NameInfo;
5337 
5338    if (DependentScopeDeclRefExpr *ArgExpr =
5339                dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
5340       SS.Adopt(ArgExpr->getQualifierLoc());
5341       NameInfo = ArgExpr->getNameInfo();
5342     } else if (CXXDependentScopeMemberExpr *ArgExpr =
5343                dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
5344       if (ArgExpr->isImplicitAccess()) {
5345         SS.Adopt(ArgExpr->getQualifierLoc());
5346         NameInfo = ArgExpr->getMemberNameInfo();
5347       }
5348     }
5349 
5350     if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
5351       LookupResult Result(*this, NameInfo, LookupOrdinaryName);
5352       LookupParsedName(Result, CurScope, &SS);
5353 
5354       if (Result.getAsSingle<TypeDecl>() ||
5355           Result.getResultKind() ==
5356               LookupResult::NotFoundInCurrentInstantiation) {
5357         assert(SS.getScopeRep() && "dependent scope expr must has a scope!");
5358         // Suggest that the user add 'typename' before the NNS.
5359         SourceLocation Loc = AL.getSourceRange().getBegin();
5360         Diag(Loc, getLangOpts().MSVCCompat
5361                       ? diag::ext_ms_template_type_arg_missing_typename
5362                       : diag::err_template_arg_must_be_type_suggest)
5363             << FixItHint::CreateInsertion(Loc, "typename ");
5364         NoteTemplateParameterLocation(*Param);
5365 
5366         // Recover by synthesizing a type using the location information that we
5367         // already have.
5368         ArgType = Context.getDependentNameType(ElaboratedTypeKeyword::Typename,
5369                                                SS.getScopeRep(), II);
5370         TypeLocBuilder TLB;
5371         DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
5372         TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
5373         TL.setQualifierLoc(SS.getWithLocInContext(Context));
5374         TL.setNameLoc(NameInfo.getLoc());
5375         TSI = TLB.getTypeSourceInfo(Context, ArgType);
5376 
5377         // Overwrite our input TemplateArgumentLoc so that we can recover
5378         // properly.
5379         AL = TemplateArgumentLoc(TemplateArgument(ArgType),
5380                                  TemplateArgumentLocInfo(TSI));
5381 
5382         break;
5383       }
5384     }
5385     // fallthrough
5386     [[fallthrough]];
5387   }
5388   default: {
5389     // We have a template type parameter but the template argument
5390     // is not a type.
5391     SourceRange SR = AL.getSourceRange();
5392     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
5393     NoteTemplateParameterLocation(*Param);
5394 
5395     return true;
5396   }
5397   }
5398 
5399   if (CheckTemplateArgument(TSI))
5400     return true;
5401 
5402   // Objective-C ARC:
5403   //   If an explicitly-specified template argument type is a lifetime type
5404   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
5405   if (getLangOpts().ObjCAutoRefCount &&
5406       ArgType->isObjCLifetimeType() &&
5407       !ArgType.getObjCLifetime()) {
5408     Qualifiers Qs;
5409     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
5410     ArgType = Context.getQualifiedType(ArgType, Qs);
5411   }
5412 
5413   SugaredConverted.push_back(TemplateArgument(ArgType));
5414   CanonicalConverted.push_back(
5415       TemplateArgument(Context.getCanonicalType(ArgType)));
5416   return false;
5417 }
5418 
5419 /// Substitute template arguments into the default template argument for
5420 /// the given template type parameter.
5421 ///
5422 /// \param SemaRef the semantic analysis object for which we are performing
5423 /// the substitution.
5424 ///
5425 /// \param Template the template that we are synthesizing template arguments
5426 /// for.
5427 ///
5428 /// \param TemplateLoc the location of the template name that started the
5429 /// template-id we are checking.
5430 ///
5431 /// \param RAngleLoc the location of the right angle bracket ('>') that
5432 /// terminates the template-id.
5433 ///
5434 /// \param Param the template template parameter whose default we are
5435 /// substituting into.
5436 ///
5437 /// \param Converted the list of template arguments provided for template
5438 /// parameters that precede \p Param in the template parameter list.
5439 /// \returns the substituted template argument, or NULL if an error occurred.
5440 static TypeSourceInfo *SubstDefaultTemplateArgument(
5441     Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5442     SourceLocation RAngleLoc, TemplateTypeParmDecl *Param,
5443     ArrayRef<TemplateArgument> SugaredConverted,
5444     ArrayRef<TemplateArgument> CanonicalConverted) {
5445   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
5446 
5447   // If the argument type is dependent, instantiate it now based
5448   // on the previously-computed template arguments.
5449   if (ArgType->getType()->isInstantiationDependentType()) {
5450     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
5451                                      SugaredConverted,
5452                                      SourceRange(TemplateLoc, RAngleLoc));
5453     if (Inst.isInvalid())
5454       return nullptr;
5455 
5456     // Only substitute for the innermost template argument list.
5457     MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5458                                                     /*Final=*/true);
5459     for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5460       TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5461 
5462     bool ForLambdaCallOperator = false;
5463     if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext()))
5464       ForLambdaCallOperator = Rec->isLambda();
5465     Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(),
5466                                    !ForLambdaCallOperator);
5467     ArgType =
5468         SemaRef.SubstType(ArgType, TemplateArgLists,
5469                           Param->getDefaultArgumentLoc(), Param->getDeclName());
5470   }
5471 
5472   return ArgType;
5473 }
5474 
5475 /// Substitute template arguments into the default template argument for
5476 /// the given non-type template parameter.
5477 ///
5478 /// \param SemaRef the semantic analysis object for which we are performing
5479 /// the substitution.
5480 ///
5481 /// \param Template the template that we are synthesizing template arguments
5482 /// for.
5483 ///
5484 /// \param TemplateLoc the location of the template name that started the
5485 /// template-id we are checking.
5486 ///
5487 /// \param RAngleLoc the location of the right angle bracket ('>') that
5488 /// terminates the template-id.
5489 ///
5490 /// \param Param the non-type template parameter whose default we are
5491 /// substituting into.
5492 ///
5493 /// \param Converted the list of template arguments provided for template
5494 /// parameters that precede \p Param in the template parameter list.
5495 ///
5496 /// \returns the substituted template argument, or NULL if an error occurred.
5497 static ExprResult SubstDefaultTemplateArgument(
5498     Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5499     SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param,
5500     ArrayRef<TemplateArgument> SugaredConverted,
5501     ArrayRef<TemplateArgument> CanonicalConverted) {
5502   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
5503                                    SugaredConverted,
5504                                    SourceRange(TemplateLoc, RAngleLoc));
5505   if (Inst.isInvalid())
5506     return ExprError();
5507 
5508   // Only substitute for the innermost template argument list.
5509   MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5510                                                   /*Final=*/true);
5511   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5512     TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5513 
5514   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5515   EnterExpressionEvaluationContext ConstantEvaluated(
5516       SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5517   return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
5518 }
5519 
5520 /// Substitute template arguments into the default template argument for
5521 /// the given template template parameter.
5522 ///
5523 /// \param SemaRef the semantic analysis object for which we are performing
5524 /// the substitution.
5525 ///
5526 /// \param Template the template that we are synthesizing template arguments
5527 /// for.
5528 ///
5529 /// \param TemplateLoc the location of the template name that started the
5530 /// template-id we are checking.
5531 ///
5532 /// \param RAngleLoc the location of the right angle bracket ('>') that
5533 /// terminates the template-id.
5534 ///
5535 /// \param Param the template template parameter whose default we are
5536 /// substituting into.
5537 ///
5538 /// \param Converted the list of template arguments provided for template
5539 /// parameters that precede \p Param in the template parameter list.
5540 ///
5541 /// \param QualifierLoc Will be set to the nested-name-specifier (with
5542 /// source-location information) that precedes the template name.
5543 ///
5544 /// \returns the substituted template argument, or NULL if an error occurred.
5545 static TemplateName SubstDefaultTemplateArgument(
5546     Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5547     SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param,
5548     ArrayRef<TemplateArgument> SugaredConverted,
5549     ArrayRef<TemplateArgument> CanonicalConverted,
5550     NestedNameSpecifierLoc &QualifierLoc) {
5551   Sema::InstantiatingTemplate Inst(
5552       SemaRef, TemplateLoc, TemplateParameter(Param), Template,
5553       SugaredConverted, SourceRange(TemplateLoc, RAngleLoc));
5554   if (Inst.isInvalid())
5555     return TemplateName();
5556 
5557   // Only substitute for the innermost template argument list.
5558   MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5559                                                   /*Final=*/true);
5560   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5561     TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5562 
5563   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5564   // Substitute into the nested-name-specifier first,
5565   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
5566   if (QualifierLoc) {
5567     QualifierLoc =
5568         SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
5569     if (!QualifierLoc)
5570       return TemplateName();
5571   }
5572 
5573   return SemaRef.SubstTemplateName(
5574              QualifierLoc,
5575              Param->getDefaultArgument().getArgument().getAsTemplate(),
5576              Param->getDefaultArgument().getTemplateNameLoc(),
5577              TemplateArgLists);
5578 }
5579 
5580 /// If the given template parameter has a default template
5581 /// argument, substitute into that default template argument and
5582 /// return the corresponding template argument.
5583 TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable(
5584     TemplateDecl *Template, SourceLocation TemplateLoc,
5585     SourceLocation RAngleLoc, Decl *Param,
5586     ArrayRef<TemplateArgument> SugaredConverted,
5587     ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) {
5588   HasDefaultArg = false;
5589 
5590   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
5591     if (!hasReachableDefaultArgument(TypeParm))
5592       return TemplateArgumentLoc();
5593 
5594     HasDefaultArg = true;
5595     TypeSourceInfo *DI = SubstDefaultTemplateArgument(
5596         *this, Template, TemplateLoc, RAngleLoc, TypeParm, SugaredConverted,
5597         CanonicalConverted);
5598     if (DI)
5599       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
5600 
5601     return TemplateArgumentLoc();
5602   }
5603 
5604   if (NonTypeTemplateParmDecl *NonTypeParm
5605         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5606     if (!hasReachableDefaultArgument(NonTypeParm))
5607       return TemplateArgumentLoc();
5608 
5609     HasDefaultArg = true;
5610     ExprResult Arg = SubstDefaultTemplateArgument(
5611         *this, Template, TemplateLoc, RAngleLoc, NonTypeParm, SugaredConverted,
5612         CanonicalConverted);
5613     if (Arg.isInvalid())
5614       return TemplateArgumentLoc();
5615 
5616     Expr *ArgE = Arg.getAs<Expr>();
5617     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
5618   }
5619 
5620   TemplateTemplateParmDecl *TempTempParm
5621     = cast<TemplateTemplateParmDecl>(Param);
5622   if (!hasReachableDefaultArgument(TempTempParm))
5623     return TemplateArgumentLoc();
5624 
5625   HasDefaultArg = true;
5626   NestedNameSpecifierLoc QualifierLoc;
5627   TemplateName TName = SubstDefaultTemplateArgument(
5628       *this, Template, TemplateLoc, RAngleLoc, TempTempParm, SugaredConverted,
5629       CanonicalConverted, QualifierLoc);
5630   if (TName.isNull())
5631     return TemplateArgumentLoc();
5632 
5633   return TemplateArgumentLoc(
5634       Context, TemplateArgument(TName),
5635       TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
5636       TempTempParm->getDefaultArgument().getTemplateNameLoc());
5637 }
5638 
5639 /// Convert a template-argument that we parsed as a type into a template, if
5640 /// possible. C++ permits injected-class-names to perform dual service as
5641 /// template template arguments and as template type arguments.
5642 static TemplateArgumentLoc
5643 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) {
5644   // Extract and step over any surrounding nested-name-specifier.
5645   NestedNameSpecifierLoc QualLoc;
5646   if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
5647     if (ETLoc.getTypePtr()->getKeyword() != ElaboratedTypeKeyword::None)
5648       return TemplateArgumentLoc();
5649 
5650     QualLoc = ETLoc.getQualifierLoc();
5651     TLoc = ETLoc.getNamedTypeLoc();
5652   }
5653   // If this type was written as an injected-class-name, it can be used as a
5654   // template template argument.
5655   if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
5656     return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(),
5657                                QualLoc, InjLoc.getNameLoc());
5658 
5659   // If this type was written as an injected-class-name, it may have been
5660   // converted to a RecordType during instantiation. If the RecordType is
5661   // *not* wrapped in a TemplateSpecializationType and denotes a class
5662   // template specialization, it must have come from an injected-class-name.
5663   if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
5664     if (auto *CTSD =
5665             dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
5666       return TemplateArgumentLoc(Context,
5667                                  TemplateName(CTSD->getSpecializedTemplate()),
5668                                  QualLoc, RecLoc.getNameLoc());
5669 
5670   return TemplateArgumentLoc();
5671 }
5672 
5673 /// Check that the given template argument corresponds to the given
5674 /// template parameter.
5675 ///
5676 /// \param Param The template parameter against which the argument will be
5677 /// checked.
5678 ///
5679 /// \param Arg The template argument, which may be updated due to conversions.
5680 ///
5681 /// \param Template The template in which the template argument resides.
5682 ///
5683 /// \param TemplateLoc The location of the template name for the template
5684 /// whose argument list we're matching.
5685 ///
5686 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
5687 /// the template argument list.
5688 ///
5689 /// \param ArgumentPackIndex The index into the argument pack where this
5690 /// argument will be placed. Only valid if the parameter is a parameter pack.
5691 ///
5692 /// \param Converted The checked, converted argument will be added to the
5693 /// end of this small vector.
5694 ///
5695 /// \param CTAK Describes how we arrived at this particular template argument:
5696 /// explicitly written, deduced, etc.
5697 ///
5698 /// \returns true on error, false otherwise.
5699 bool Sema::CheckTemplateArgument(
5700     NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template,
5701     SourceLocation TemplateLoc, SourceLocation RAngleLoc,
5702     unsigned ArgumentPackIndex,
5703     SmallVectorImpl<TemplateArgument> &SugaredConverted,
5704     SmallVectorImpl<TemplateArgument> &CanonicalConverted,
5705     CheckTemplateArgumentKind CTAK) {
5706   // Check template type parameters.
5707   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
5708     return CheckTemplateTypeArgument(TTP, Arg, SugaredConverted,
5709                                      CanonicalConverted);
5710 
5711   // Check non-type template parameters.
5712   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5713     // Do substitution on the type of the non-type template parameter
5714     // with the template arguments we've seen thus far.  But if the
5715     // template has a dependent context then we cannot substitute yet.
5716     QualType NTTPType = NTTP->getType();
5717     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
5718       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
5719 
5720     if (NTTPType->isInstantiationDependentType() &&
5721         !isa<TemplateTemplateParmDecl>(Template) &&
5722         !Template->getDeclContext()->isDependentContext()) {
5723       // Do substitution on the type of the non-type template parameter.
5724       InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP,
5725                                  SugaredConverted,
5726                                  SourceRange(TemplateLoc, RAngleLoc));
5727       if (Inst.isInvalid())
5728         return true;
5729 
5730       MultiLevelTemplateArgumentList MLTAL(Template, SugaredConverted,
5731                                            /*Final=*/true);
5732       // If the parameter is a pack expansion, expand this slice of the pack.
5733       if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
5734         Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
5735                                                            ArgumentPackIndex);
5736         NTTPType = SubstType(PET->getPattern(), MLTAL, NTTP->getLocation(),
5737                              NTTP->getDeclName());
5738       } else {
5739         NTTPType = SubstType(NTTPType, MLTAL, NTTP->getLocation(),
5740                              NTTP->getDeclName());
5741       }
5742 
5743       // If that worked, check the non-type template parameter type
5744       // for validity.
5745       if (!NTTPType.isNull())
5746         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
5747                                                      NTTP->getLocation());
5748       if (NTTPType.isNull())
5749         return true;
5750     }
5751 
5752     switch (Arg.getArgument().getKind()) {
5753     case TemplateArgument::Null:
5754       llvm_unreachable("Should never see a NULL template argument here");
5755 
5756     case TemplateArgument::Expression: {
5757       Expr *E = Arg.getArgument().getAsExpr();
5758       TemplateArgument SugaredResult, CanonicalResult;
5759       unsigned CurSFINAEErrors = NumSFINAEErrors;
5760       ExprResult Res = CheckTemplateArgument(NTTP, NTTPType, E, SugaredResult,
5761                                              CanonicalResult, CTAK);
5762       if (Res.isInvalid())
5763         return true;
5764       // If the current template argument causes an error, give up now.
5765       if (CurSFINAEErrors < NumSFINAEErrors)
5766         return true;
5767 
5768       // If the resulting expression is new, then use it in place of the
5769       // old expression in the template argument.
5770       if (Res.get() != E) {
5771         TemplateArgument TA(Res.get());
5772         Arg = TemplateArgumentLoc(TA, Res.get());
5773       }
5774 
5775       SugaredConverted.push_back(SugaredResult);
5776       CanonicalConverted.push_back(CanonicalResult);
5777       break;
5778     }
5779 
5780     case TemplateArgument::Declaration:
5781     case TemplateArgument::Integral:
5782     case TemplateArgument::StructuralValue:
5783     case TemplateArgument::NullPtr:
5784       // We've already checked this template argument, so just copy
5785       // it to the list of converted arguments.
5786       SugaredConverted.push_back(Arg.getArgument());
5787       CanonicalConverted.push_back(
5788           Context.getCanonicalTemplateArgument(Arg.getArgument()));
5789       break;
5790 
5791     case TemplateArgument::Template:
5792     case TemplateArgument::TemplateExpansion:
5793       // We were given a template template argument. It may not be ill-formed;
5794       // see below.
5795       if (DependentTemplateName *DTN
5796             = Arg.getArgument().getAsTemplateOrTemplatePattern()
5797                                               .getAsDependentTemplateName()) {
5798         // We have a template argument such as \c T::template X, which we
5799         // parsed as a template template argument. However, since we now
5800         // know that we need a non-type template argument, convert this
5801         // template name into an expression.
5802 
5803         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5804                                      Arg.getTemplateNameLoc());
5805 
5806         CXXScopeSpec SS;
5807         SS.Adopt(Arg.getTemplateQualifierLoc());
5808         // FIXME: the template-template arg was a DependentTemplateName,
5809         // so it was provided with a template keyword. However, its source
5810         // location is not stored in the template argument structure.
5811         SourceLocation TemplateKWLoc;
5812         ExprResult E = DependentScopeDeclRefExpr::Create(
5813             Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5814             nullptr);
5815 
5816         // If we parsed the template argument as a pack expansion, create a
5817         // pack expansion expression.
5818         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5819           E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
5820           if (E.isInvalid())
5821             return true;
5822         }
5823 
5824         TemplateArgument SugaredResult, CanonicalResult;
5825         E = CheckTemplateArgument(NTTP, NTTPType, E.get(), SugaredResult,
5826                                   CanonicalResult, CTAK_Specified);
5827         if (E.isInvalid())
5828           return true;
5829 
5830         SugaredConverted.push_back(SugaredResult);
5831         CanonicalConverted.push_back(CanonicalResult);
5832         break;
5833       }
5834 
5835       // We have a template argument that actually does refer to a class
5836       // template, alias template, or template template parameter, and
5837       // therefore cannot be a non-type template argument.
5838       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5839         << Arg.getSourceRange();
5840       NoteTemplateParameterLocation(*Param);
5841 
5842       return true;
5843 
5844     case TemplateArgument::Type: {
5845       // We have a non-type template parameter but the template
5846       // argument is a type.
5847 
5848       // C++ [temp.arg]p2:
5849       //   In a template-argument, an ambiguity between a type-id and
5850       //   an expression is resolved to a type-id, regardless of the
5851       //   form of the corresponding template-parameter.
5852       //
5853       // We warn specifically about this case, since it can be rather
5854       // confusing for users.
5855       QualType T = Arg.getArgument().getAsType();
5856       SourceRange SR = Arg.getSourceRange();
5857       if (T->isFunctionType())
5858         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5859       else
5860         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5861       NoteTemplateParameterLocation(*Param);
5862       return true;
5863     }
5864 
5865     case TemplateArgument::Pack:
5866       llvm_unreachable("Caller must expand template argument packs");
5867     }
5868 
5869     return false;
5870   }
5871 
5872 
5873   // Check template template parameters.
5874   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5875 
5876   TemplateParameterList *Params = TempParm->getTemplateParameters();
5877   if (TempParm->isExpandedParameterPack())
5878     Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5879 
5880   // Substitute into the template parameter list of the template
5881   // template parameter, since previously-supplied template arguments
5882   // may appear within the template template parameter.
5883   //
5884   // FIXME: Skip this if the parameters aren't instantiation-dependent.
5885   {
5886     // Set up a template instantiation context.
5887     LocalInstantiationScope Scope(*this);
5888     InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm,
5889                                SugaredConverted,
5890                                SourceRange(TemplateLoc, RAngleLoc));
5891     if (Inst.isInvalid())
5892       return true;
5893 
5894     Params =
5895         SubstTemplateParams(Params, CurContext,
5896                             MultiLevelTemplateArgumentList(
5897                                 Template, SugaredConverted, /*Final=*/true),
5898                             /*EvaluateConstraints=*/false);
5899     if (!Params)
5900       return true;
5901   }
5902 
5903   // C++1z [temp.local]p1: (DR1004)
5904   //   When [the injected-class-name] is used [...] as a template-argument for
5905   //   a template template-parameter [...] it refers to the class template
5906   //   itself.
5907   if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5908     TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5909         Context, Arg.getTypeSourceInfo()->getTypeLoc());
5910     if (!ConvertedArg.getArgument().isNull())
5911       Arg = ConvertedArg;
5912   }
5913 
5914   switch (Arg.getArgument().getKind()) {
5915   case TemplateArgument::Null:
5916     llvm_unreachable("Should never see a NULL template argument here");
5917 
5918   case TemplateArgument::Template:
5919   case TemplateArgument::TemplateExpansion:
5920     if (CheckTemplateTemplateArgument(TempParm, Params, Arg))
5921       return true;
5922 
5923     SugaredConverted.push_back(Arg.getArgument());
5924     CanonicalConverted.push_back(
5925         Context.getCanonicalTemplateArgument(Arg.getArgument()));
5926     break;
5927 
5928   case TemplateArgument::Expression:
5929   case TemplateArgument::Type:
5930     // We have a template template parameter but the template
5931     // argument does not refer to a template.
5932     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5933       << getLangOpts().CPlusPlus11;
5934     return true;
5935 
5936   case TemplateArgument::Declaration:
5937   case TemplateArgument::Integral:
5938   case TemplateArgument::StructuralValue:
5939   case TemplateArgument::NullPtr:
5940     llvm_unreachable("non-type argument with template template parameter");
5941 
5942   case TemplateArgument::Pack:
5943     llvm_unreachable("Caller must expand template argument packs");
5944   }
5945 
5946   return false;
5947 }
5948 
5949 /// Diagnose a missing template argument.
5950 template<typename TemplateParmDecl>
5951 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5952                                     TemplateDecl *TD,
5953                                     const TemplateParmDecl *D,
5954                                     TemplateArgumentListInfo &Args) {
5955   // Dig out the most recent declaration of the template parameter; there may be
5956   // declarations of the template that are more recent than TD.
5957   D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5958                                  ->getTemplateParameters()
5959                                  ->getParam(D->getIndex()));
5960 
5961   // If there's a default argument that's not reachable, diagnose that we're
5962   // missing a module import.
5963   llvm::SmallVector<Module*, 8> Modules;
5964   if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, &Modules)) {
5965     S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5966                             D->getDefaultArgumentLoc(), Modules,
5967                             Sema::MissingImportKind::DefaultArgument,
5968                             /*Recover*/true);
5969     return true;
5970   }
5971 
5972   // FIXME: If there's a more recent default argument that *is* visible,
5973   // diagnose that it was declared too late.
5974 
5975   TemplateParameterList *Params = TD->getTemplateParameters();
5976 
5977   S.Diag(Loc, diag::err_template_arg_list_different_arity)
5978     << /*not enough args*/0
5979     << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5980     << TD;
5981   S.NoteTemplateLocation(*TD, Params->getSourceRange());
5982   return true;
5983 }
5984 
5985 /// Check that the given template argument list is well-formed
5986 /// for specializing the given template.
5987 bool Sema::CheckTemplateArgumentList(
5988     TemplateDecl *Template, SourceLocation TemplateLoc,
5989     TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5990     SmallVectorImpl<TemplateArgument> &SugaredConverted,
5991     SmallVectorImpl<TemplateArgument> &CanonicalConverted,
5992     bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
5993 
5994   if (ConstraintsNotSatisfied)
5995     *ConstraintsNotSatisfied = false;
5996 
5997   // Make a copy of the template arguments for processing.  Only make the
5998   // changes at the end when successful in matching the arguments to the
5999   // template.
6000   TemplateArgumentListInfo NewArgs = TemplateArgs;
6001 
6002   TemplateParameterList *Params = GetTemplateParameterList(Template);
6003 
6004   SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
6005 
6006   // C++ [temp.arg]p1:
6007   //   [...] The type and form of each template-argument specified in
6008   //   a template-id shall match the type and form specified for the
6009   //   corresponding parameter declared by the template in its
6010   //   template-parameter-list.
6011   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
6012   SmallVector<TemplateArgument, 2> SugaredArgumentPack;
6013   SmallVector<TemplateArgument, 2> CanonicalArgumentPack;
6014   unsigned ArgIdx = 0, NumArgs = NewArgs.size();
6015   LocalInstantiationScope InstScope(*this, true);
6016   for (TemplateParameterList::iterator Param = Params->begin(),
6017                                        ParamEnd = Params->end();
6018        Param != ParamEnd; /* increment in loop */) {
6019     // If we have an expanded parameter pack, make sure we don't have too
6020     // many arguments.
6021     if (std::optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
6022       if (*Expansions == SugaredArgumentPack.size()) {
6023         // We're done with this parameter pack. Pack up its arguments and add
6024         // them to the list.
6025         SugaredConverted.push_back(
6026             TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
6027         SugaredArgumentPack.clear();
6028 
6029         CanonicalConverted.push_back(
6030             TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
6031         CanonicalArgumentPack.clear();
6032 
6033         // This argument is assigned to the next parameter.
6034         ++Param;
6035         continue;
6036       } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
6037         // Not enough arguments for this parameter pack.
6038         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
6039           << /*not enough args*/0
6040           << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
6041           << Template;
6042         NoteTemplateLocation(*Template, Params->getSourceRange());
6043         return true;
6044       }
6045     }
6046 
6047     if (ArgIdx < NumArgs) {
6048       // Check the template argument we were given.
6049       if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, TemplateLoc,
6050                                 RAngleLoc, SugaredArgumentPack.size(),
6051                                 SugaredConverted, CanonicalConverted,
6052                                 CTAK_Specified))
6053         return true;
6054 
6055       CanonicalConverted.back().setIsDefaulted(
6056           clang::isSubstitutedDefaultArgument(
6057               Context, NewArgs[ArgIdx].getArgument(), *Param,
6058               CanonicalConverted, Params->getDepth()));
6059 
6060       bool PackExpansionIntoNonPack =
6061           NewArgs[ArgIdx].getArgument().isPackExpansion() &&
6062           (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
6063       if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
6064                                        isa<ConceptDecl>(Template))) {
6065         // Core issue 1430: we have a pack expansion as an argument to an
6066         // alias template, and it's not part of a parameter pack. This
6067         // can't be canonicalized, so reject it now.
6068         // As for concepts - we cannot normalize constraints where this
6069         // situation exists.
6070         Diag(NewArgs[ArgIdx].getLocation(),
6071              diag::err_template_expansion_into_fixed_list)
6072           << (isa<ConceptDecl>(Template) ? 1 : 0)
6073           << NewArgs[ArgIdx].getSourceRange();
6074         NoteTemplateParameterLocation(**Param);
6075         return true;
6076       }
6077 
6078       // We're now done with this argument.
6079       ++ArgIdx;
6080 
6081       if ((*Param)->isTemplateParameterPack()) {
6082         // The template parameter was a template parameter pack, so take the
6083         // deduced argument and place it on the argument pack. Note that we
6084         // stay on the same template parameter so that we can deduce more
6085         // arguments.
6086         SugaredArgumentPack.push_back(SugaredConverted.pop_back_val());
6087         CanonicalArgumentPack.push_back(CanonicalConverted.pop_back_val());
6088       } else {
6089         // Move to the next template parameter.
6090         ++Param;
6091       }
6092 
6093       // If we just saw a pack expansion into a non-pack, then directly convert
6094       // the remaining arguments, because we don't know what parameters they'll
6095       // match up with.
6096       if (PackExpansionIntoNonPack) {
6097         if (!SugaredArgumentPack.empty()) {
6098           // If we were part way through filling in an expanded parameter pack,
6099           // fall back to just producing individual arguments.
6100           SugaredConverted.insert(SugaredConverted.end(),
6101                                   SugaredArgumentPack.begin(),
6102                                   SugaredArgumentPack.end());
6103           SugaredArgumentPack.clear();
6104 
6105           CanonicalConverted.insert(CanonicalConverted.end(),
6106                                     CanonicalArgumentPack.begin(),
6107                                     CanonicalArgumentPack.end());
6108           CanonicalArgumentPack.clear();
6109         }
6110 
6111         while (ArgIdx < NumArgs) {
6112           const TemplateArgument &Arg = NewArgs[ArgIdx].getArgument();
6113           SugaredConverted.push_back(Arg);
6114           CanonicalConverted.push_back(
6115               Context.getCanonicalTemplateArgument(Arg));
6116           ++ArgIdx;
6117         }
6118 
6119         return false;
6120       }
6121 
6122       continue;
6123     }
6124 
6125     // If we're checking a partial template argument list, we're done.
6126     if (PartialTemplateArgs) {
6127       if ((*Param)->isTemplateParameterPack() && !SugaredArgumentPack.empty()) {
6128         SugaredConverted.push_back(
6129             TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
6130         CanonicalConverted.push_back(
6131             TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
6132       }
6133       return false;
6134     }
6135 
6136     // If we have a template parameter pack with no more corresponding
6137     // arguments, just break out now and we'll fill in the argument pack below.
6138     if ((*Param)->isTemplateParameterPack()) {
6139       assert(!getExpandedPackSize(*Param) &&
6140              "Should have dealt with this already");
6141 
6142       // A non-expanded parameter pack before the end of the parameter list
6143       // only occurs for an ill-formed template parameter list, unless we've
6144       // got a partial argument list for a function template, so just bail out.
6145       if (Param + 1 != ParamEnd) {
6146         assert(
6147             (Template->getMostRecentDecl()->getKind() != Decl::Kind::Concept) &&
6148             "Concept templates must have parameter packs at the end.");
6149         return true;
6150       }
6151 
6152       SugaredConverted.push_back(
6153           TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack));
6154       SugaredArgumentPack.clear();
6155 
6156       CanonicalConverted.push_back(
6157           TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack));
6158       CanonicalArgumentPack.clear();
6159 
6160       ++Param;
6161       continue;
6162     }
6163 
6164     // Check whether we have a default argument.
6165     TemplateArgumentLoc Arg;
6166 
6167     // Retrieve the default template argument from the template
6168     // parameter. For each kind of template parameter, we substitute the
6169     // template arguments provided thus far and any "outer" template arguments
6170     // (when the template parameter was part of a nested template) into
6171     // the default argument.
6172     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
6173       if (!hasReachableDefaultArgument(TTP))
6174         return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
6175                                        NewArgs);
6176 
6177       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(
6178           *this, Template, TemplateLoc, RAngleLoc, TTP, SugaredConverted,
6179           CanonicalConverted);
6180       if (!ArgType)
6181         return true;
6182 
6183       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
6184                                 ArgType);
6185     } else if (NonTypeTemplateParmDecl *NTTP
6186                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
6187       if (!hasReachableDefaultArgument(NTTP))
6188         return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
6189                                        NewArgs);
6190 
6191       ExprResult E = SubstDefaultTemplateArgument(
6192           *this, Template, TemplateLoc, RAngleLoc, NTTP, SugaredConverted,
6193           CanonicalConverted);
6194       if (E.isInvalid())
6195         return true;
6196 
6197       Expr *Ex = E.getAs<Expr>();
6198       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
6199     } else {
6200       TemplateTemplateParmDecl *TempParm
6201         = cast<TemplateTemplateParmDecl>(*Param);
6202 
6203       if (!hasReachableDefaultArgument(TempParm))
6204         return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
6205                                        NewArgs);
6206 
6207       NestedNameSpecifierLoc QualifierLoc;
6208       TemplateName Name = SubstDefaultTemplateArgument(
6209           *this, Template, TemplateLoc, RAngleLoc, TempParm, SugaredConverted,
6210           CanonicalConverted, QualifierLoc);
6211       if (Name.isNull())
6212         return true;
6213 
6214       Arg = TemplateArgumentLoc(
6215           Context, TemplateArgument(Name), QualifierLoc,
6216           TempParm->getDefaultArgument().getTemplateNameLoc());
6217     }
6218 
6219     // Introduce an instantiation record that describes where we are using
6220     // the default template argument. We're not actually instantiating a
6221     // template here, we just create this object to put a note into the
6222     // context stack.
6223     InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param,
6224                                SugaredConverted,
6225                                SourceRange(TemplateLoc, RAngleLoc));
6226     if (Inst.isInvalid())
6227       return true;
6228 
6229     // Check the default template argument.
6230     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, RAngleLoc, 0,
6231                               SugaredConverted, CanonicalConverted,
6232                               CTAK_Specified))
6233       return true;
6234 
6235     CanonicalConverted.back().setIsDefaulted(true);
6236 
6237     // Core issue 150 (assumed resolution): if this is a template template
6238     // parameter, keep track of the default template arguments from the
6239     // template definition.
6240     if (isTemplateTemplateParameter)
6241       NewArgs.addArgument(Arg);
6242 
6243     // Move to the next template parameter and argument.
6244     ++Param;
6245     ++ArgIdx;
6246   }
6247 
6248   // If we're performing a partial argument substitution, allow any trailing
6249   // pack expansions; they might be empty. This can happen even if
6250   // PartialTemplateArgs is false (the list of arguments is complete but
6251   // still dependent).
6252   if (ArgIdx < NumArgs && CurrentInstantiationScope &&
6253       CurrentInstantiationScope->getPartiallySubstitutedPack()) {
6254     while (ArgIdx < NumArgs &&
6255            NewArgs[ArgIdx].getArgument().isPackExpansion()) {
6256       const TemplateArgument &Arg = NewArgs[ArgIdx++].getArgument();
6257       SugaredConverted.push_back(Arg);
6258       CanonicalConverted.push_back(Context.getCanonicalTemplateArgument(Arg));
6259     }
6260   }
6261 
6262   // If we have any leftover arguments, then there were too many arguments.
6263   // Complain and fail.
6264   if (ArgIdx < NumArgs) {
6265     Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
6266         << /*too many args*/1
6267         << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
6268         << Template
6269         << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
6270     NoteTemplateLocation(*Template, Params->getSourceRange());
6271     return true;
6272   }
6273 
6274   // No problems found with the new argument list, propagate changes back
6275   // to caller.
6276   if (UpdateArgsWithConversions)
6277     TemplateArgs = std::move(NewArgs);
6278 
6279   if (!PartialTemplateArgs) {
6280     TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
6281                                            CanonicalConverted);
6282     // Setup the context/ThisScope for the case where we are needing to
6283     // re-instantiate constraints outside of normal instantiation.
6284     DeclContext *NewContext = Template->getDeclContext();
6285 
6286     // If this template is in a template, make sure we extract the templated
6287     // decl.
6288     if (auto *TD = dyn_cast<TemplateDecl>(NewContext))
6289       NewContext = Decl::castToDeclContext(TD->getTemplatedDecl());
6290     auto *RD = dyn_cast<CXXRecordDecl>(NewContext);
6291 
6292     Qualifiers ThisQuals;
6293     if (const auto *Method =
6294             dyn_cast_or_null<CXXMethodDecl>(Template->getTemplatedDecl()))
6295       ThisQuals = Method->getMethodQualifiers();
6296 
6297     ContextRAII Context(*this, NewContext);
6298     CXXThisScopeRAII(*this, RD, ThisQuals, RD != nullptr);
6299 
6300     MultiLevelTemplateArgumentList MLTAL = getTemplateInstantiationArgs(
6301         Template, NewContext, /*Final=*/false, &StackTemplateArgs,
6302         /*RelativeToPrimary=*/true,
6303         /*Pattern=*/nullptr,
6304         /*ForConceptInstantiation=*/true);
6305     if (EnsureTemplateArgumentListConstraints(
6306             Template, MLTAL,
6307             SourceRange(TemplateLoc, TemplateArgs.getRAngleLoc()))) {
6308       if (ConstraintsNotSatisfied)
6309         *ConstraintsNotSatisfied = true;
6310       return true;
6311     }
6312   }
6313 
6314   return false;
6315 }
6316 
6317 namespace {
6318   class UnnamedLocalNoLinkageFinder
6319     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
6320   {
6321     Sema &S;
6322     SourceRange SR;
6323 
6324     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
6325 
6326   public:
6327     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
6328 
6329     bool Visit(QualType T) {
6330       return T.isNull() ? false : inherited::Visit(T.getTypePtr());
6331     }
6332 
6333 #define TYPE(Class, Parent) \
6334     bool Visit##Class##Type(const Class##Type *);
6335 #define ABSTRACT_TYPE(Class, Parent) \
6336     bool Visit##Class##Type(const Class##Type *) { return false; }
6337 #define NON_CANONICAL_TYPE(Class, Parent) \
6338     bool Visit##Class##Type(const Class##Type *) { return false; }
6339 #include "clang/AST/TypeNodes.inc"
6340 
6341     bool VisitTagDecl(const TagDecl *Tag);
6342     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
6343   };
6344 } // end anonymous namespace
6345 
6346 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
6347   return false;
6348 }
6349 
6350 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
6351   return Visit(T->getElementType());
6352 }
6353 
6354 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
6355   return Visit(T->getPointeeType());
6356 }
6357 
6358 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
6359                                                     const BlockPointerType* T) {
6360   return Visit(T->getPointeeType());
6361 }
6362 
6363 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
6364                                                 const LValueReferenceType* T) {
6365   return Visit(T->getPointeeType());
6366 }
6367 
6368 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
6369                                                 const RValueReferenceType* T) {
6370   return Visit(T->getPointeeType());
6371 }
6372 
6373 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
6374                                                   const MemberPointerType* T) {
6375   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
6376 }
6377 
6378 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
6379                                                   const ConstantArrayType* T) {
6380   return Visit(T->getElementType());
6381 }
6382 
6383 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
6384                                                  const IncompleteArrayType* T) {
6385   return Visit(T->getElementType());
6386 }
6387 
6388 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
6389                                                    const VariableArrayType* T) {
6390   return Visit(T->getElementType());
6391 }
6392 
6393 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
6394                                             const DependentSizedArrayType* T) {
6395   return Visit(T->getElementType());
6396 }
6397 
6398 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
6399                                          const DependentSizedExtVectorType* T) {
6400   return Visit(T->getElementType());
6401 }
6402 
6403 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType(
6404     const DependentSizedMatrixType *T) {
6405   return Visit(T->getElementType());
6406 }
6407 
6408 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
6409     const DependentAddressSpaceType *T) {
6410   return Visit(T->getPointeeType());
6411 }
6412 
6413 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
6414   return Visit(T->getElementType());
6415 }
6416 
6417 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
6418     const DependentVectorType *T) {
6419   return Visit(T->getElementType());
6420 }
6421 
6422 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
6423   return Visit(T->getElementType());
6424 }
6425 
6426 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType(
6427     const ConstantMatrixType *T) {
6428   return Visit(T->getElementType());
6429 }
6430 
6431 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
6432                                                   const FunctionProtoType* T) {
6433   for (const auto &A : T->param_types()) {
6434     if (Visit(A))
6435       return true;
6436   }
6437 
6438   return Visit(T->getReturnType());
6439 }
6440 
6441 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
6442                                                const FunctionNoProtoType* T) {
6443   return Visit(T->getReturnType());
6444 }
6445 
6446 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
6447                                                   const UnresolvedUsingType*) {
6448   return false;
6449 }
6450 
6451 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
6452   return false;
6453 }
6454 
6455 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
6456   return Visit(T->getUnmodifiedType());
6457 }
6458 
6459 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
6460   return false;
6461 }
6462 
6463 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
6464                                                     const UnaryTransformType*) {
6465   return false;
6466 }
6467 
6468 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
6469   return Visit(T->getDeducedType());
6470 }
6471 
6472 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
6473     const DeducedTemplateSpecializationType *T) {
6474   return Visit(T->getDeducedType());
6475 }
6476 
6477 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
6478   return VisitTagDecl(T->getDecl());
6479 }
6480 
6481 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
6482   return VisitTagDecl(T->getDecl());
6483 }
6484 
6485 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
6486                                                  const TemplateTypeParmType*) {
6487   return false;
6488 }
6489 
6490 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
6491                                         const SubstTemplateTypeParmPackType *) {
6492   return false;
6493 }
6494 
6495 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
6496                                             const TemplateSpecializationType*) {
6497   return false;
6498 }
6499 
6500 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
6501                                               const InjectedClassNameType* T) {
6502   return VisitTagDecl(T->getDecl());
6503 }
6504 
6505 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
6506                                                    const DependentNameType* T) {
6507   return VisitNestedNameSpecifier(T->getQualifier());
6508 }
6509 
6510 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
6511                                  const DependentTemplateSpecializationType* T) {
6512   if (auto *Q = T->getQualifier())
6513     return VisitNestedNameSpecifier(Q);
6514   return false;
6515 }
6516 
6517 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
6518                                                    const PackExpansionType* T) {
6519   return Visit(T->getPattern());
6520 }
6521 
6522 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
6523   return false;
6524 }
6525 
6526 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
6527                                                    const ObjCInterfaceType *) {
6528   return false;
6529 }
6530 
6531 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
6532                                                 const ObjCObjectPointerType *) {
6533   return false;
6534 }
6535 
6536 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
6537   return Visit(T->getValueType());
6538 }
6539 
6540 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
6541   return false;
6542 }
6543 
6544 bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) {
6545   return false;
6546 }
6547 
6548 bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType(
6549     const DependentBitIntType *T) {
6550   return false;
6551 }
6552 
6553 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
6554   if (Tag->getDeclContext()->isFunctionOrMethod()) {
6555     S.Diag(SR.getBegin(),
6556            S.getLangOpts().CPlusPlus11 ?
6557              diag::warn_cxx98_compat_template_arg_local_type :
6558              diag::ext_template_arg_local_type)
6559       << S.Context.getTypeDeclType(Tag) << SR;
6560     return true;
6561   }
6562 
6563   if (!Tag->hasNameForLinkage()) {
6564     S.Diag(SR.getBegin(),
6565            S.getLangOpts().CPlusPlus11 ?
6566              diag::warn_cxx98_compat_template_arg_unnamed_type :
6567              diag::ext_template_arg_unnamed_type) << SR;
6568     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
6569     return true;
6570   }
6571 
6572   return false;
6573 }
6574 
6575 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
6576                                                     NestedNameSpecifier *NNS) {
6577   assert(NNS);
6578   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
6579     return true;
6580 
6581   switch (NNS->getKind()) {
6582   case NestedNameSpecifier::Identifier:
6583   case NestedNameSpecifier::Namespace:
6584   case NestedNameSpecifier::NamespaceAlias:
6585   case NestedNameSpecifier::Global:
6586   case NestedNameSpecifier::Super:
6587     return false;
6588 
6589   case NestedNameSpecifier::TypeSpec:
6590   case NestedNameSpecifier::TypeSpecWithTemplate:
6591     return Visit(QualType(NNS->getAsType(), 0));
6592   }
6593   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6594 }
6595 
6596 /// Check a template argument against its corresponding
6597 /// template type parameter.
6598 ///
6599 /// This routine implements the semantics of C++ [temp.arg.type]. It
6600 /// returns true if an error occurred, and false otherwise.
6601 bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) {
6602   assert(ArgInfo && "invalid TypeSourceInfo");
6603   QualType Arg = ArgInfo->getType();
6604   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
6605   QualType CanonArg = Context.getCanonicalType(Arg);
6606 
6607   if (CanonArg->isVariablyModifiedType()) {
6608     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
6609   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
6610     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
6611   }
6612 
6613   // C++03 [temp.arg.type]p2:
6614   //   A local type, a type with no linkage, an unnamed type or a type
6615   //   compounded from any of these types shall not be used as a
6616   //   template-argument for a template type-parameter.
6617   //
6618   // C++11 allows these, and even in C++03 we allow them as an extension with
6619   // a warning.
6620   if (LangOpts.CPlusPlus11 || CanonArg->hasUnnamedOrLocalType()) {
6621     UnnamedLocalNoLinkageFinder Finder(*this, SR);
6622     (void)Finder.Visit(CanonArg);
6623   }
6624 
6625   return false;
6626 }
6627 
6628 enum NullPointerValueKind {
6629   NPV_NotNullPointer,
6630   NPV_NullPointer,
6631   NPV_Error
6632 };
6633 
6634 /// Determine whether the given template argument is a null pointer
6635 /// value of the appropriate type.
6636 static NullPointerValueKind
6637 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
6638                                    QualType ParamType, Expr *Arg,
6639                                    Decl *Entity = nullptr) {
6640   if (Arg->isValueDependent() || Arg->isTypeDependent())
6641     return NPV_NotNullPointer;
6642 
6643   // dllimport'd entities aren't constant but are available inside of template
6644   // arguments.
6645   if (Entity && Entity->hasAttr<DLLImportAttr>())
6646     return NPV_NotNullPointer;
6647 
6648   if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
6649     llvm_unreachable(
6650         "Incomplete parameter type in isNullPointerValueTemplateArgument!");
6651 
6652   if (!S.getLangOpts().CPlusPlus11)
6653     return NPV_NotNullPointer;
6654 
6655   // Determine whether we have a constant expression.
6656   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
6657   if (ArgRV.isInvalid())
6658     return NPV_Error;
6659   Arg = ArgRV.get();
6660 
6661   Expr::EvalResult EvalResult;
6662   SmallVector<PartialDiagnosticAt, 8> Notes;
6663   EvalResult.Diag = &Notes;
6664   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
6665       EvalResult.HasSideEffects) {
6666     SourceLocation DiagLoc = Arg->getExprLoc();
6667 
6668     // If our only note is the usual "invalid subexpression" note, just point
6669     // the caret at its location rather than producing an essentially
6670     // redundant note.
6671     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6672         diag::note_invalid_subexpr_in_const_expr) {
6673       DiagLoc = Notes[0].first;
6674       Notes.clear();
6675     }
6676 
6677     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
6678       << Arg->getType() << Arg->getSourceRange();
6679     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6680       S.Diag(Notes[I].first, Notes[I].second);
6681 
6682     S.NoteTemplateParameterLocation(*Param);
6683     return NPV_Error;
6684   }
6685 
6686   // C++11 [temp.arg.nontype]p1:
6687   //   - an address constant expression of type std::nullptr_t
6688   if (Arg->getType()->isNullPtrType())
6689     return NPV_NullPointer;
6690 
6691   //   - a constant expression that evaluates to a null pointer value (4.10); or
6692   //   - a constant expression that evaluates to a null member pointer value
6693   //     (4.11); or
6694   if ((EvalResult.Val.isLValue() && EvalResult.Val.isNullPointer()) ||
6695       (EvalResult.Val.isMemberPointer() &&
6696        !EvalResult.Val.getMemberPointerDecl())) {
6697     // If our expression has an appropriate type, we've succeeded.
6698     bool ObjCLifetimeConversion;
6699     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
6700         S.IsQualificationConversion(Arg->getType(), ParamType, false,
6701                                      ObjCLifetimeConversion))
6702       return NPV_NullPointer;
6703 
6704     // The types didn't match, but we know we got a null pointer; complain,
6705     // then recover as if the types were correct.
6706     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
6707       << Arg->getType() << ParamType << Arg->getSourceRange();
6708     S.NoteTemplateParameterLocation(*Param);
6709     return NPV_NullPointer;
6710   }
6711 
6712   if (EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) {
6713     // We found a pointer that isn't null, but doesn't refer to an object.
6714     // We could just return NPV_NotNullPointer, but we can print a better
6715     // message with the information we have here.
6716     S.Diag(Arg->getExprLoc(), diag::err_template_arg_invalid)
6717       << EvalResult.Val.getAsString(S.Context, ParamType);
6718     S.NoteTemplateParameterLocation(*Param);
6719     return NPV_Error;
6720   }
6721 
6722   // If we don't have a null pointer value, but we do have a NULL pointer
6723   // constant, suggest a cast to the appropriate type.
6724   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
6725     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
6726     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
6727         << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
6728         << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
6729                                       ")");
6730     S.NoteTemplateParameterLocation(*Param);
6731     return NPV_NullPointer;
6732   }
6733 
6734   // FIXME: If we ever want to support general, address-constant expressions
6735   // as non-type template arguments, we should return the ExprResult here to
6736   // be interpreted by the caller.
6737   return NPV_NotNullPointer;
6738 }
6739 
6740 /// Checks whether the given template argument is compatible with its
6741 /// template parameter.
6742 static bool CheckTemplateArgumentIsCompatibleWithParameter(
6743     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6744     Expr *Arg, QualType ArgType) {
6745   bool ObjCLifetimeConversion;
6746   if (ParamType->isPointerType() &&
6747       !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
6748       S.IsQualificationConversion(ArgType, ParamType, false,
6749                                   ObjCLifetimeConversion)) {
6750     // For pointer-to-object types, qualification conversions are
6751     // permitted.
6752   } else {
6753     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
6754       if (!ParamRef->getPointeeType()->isFunctionType()) {
6755         // C++ [temp.arg.nontype]p5b3:
6756         //   For a non-type template-parameter of type reference to
6757         //   object, no conversions apply. The type referred to by the
6758         //   reference may be more cv-qualified than the (otherwise
6759         //   identical) type of the template- argument. The
6760         //   template-parameter is bound directly to the
6761         //   template-argument, which shall be an lvalue.
6762 
6763         // FIXME: Other qualifiers?
6764         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
6765         unsigned ArgQuals = ArgType.getCVRQualifiers();
6766 
6767         if ((ParamQuals | ArgQuals) != ParamQuals) {
6768           S.Diag(Arg->getBeginLoc(),
6769                  diag::err_template_arg_ref_bind_ignores_quals)
6770               << ParamType << Arg->getType() << Arg->getSourceRange();
6771           S.NoteTemplateParameterLocation(*Param);
6772           return true;
6773         }
6774       }
6775     }
6776 
6777     // At this point, the template argument refers to an object or
6778     // function with external linkage. We now need to check whether the
6779     // argument and parameter types are compatible.
6780     if (!S.Context.hasSameUnqualifiedType(ArgType,
6781                                           ParamType.getNonReferenceType())) {
6782       // We can't perform this conversion or binding.
6783       if (ParamType->isReferenceType())
6784         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
6785             << ParamType << ArgIn->getType() << Arg->getSourceRange();
6786       else
6787         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6788             << ArgIn->getType() << ParamType << Arg->getSourceRange();
6789       S.NoteTemplateParameterLocation(*Param);
6790       return true;
6791     }
6792   }
6793 
6794   return false;
6795 }
6796 
6797 /// Checks whether the given template argument is the address
6798 /// of an object or function according to C++ [temp.arg.nontype]p1.
6799 static bool CheckTemplateArgumentAddressOfObjectOrFunction(
6800     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6801     TemplateArgument &SugaredConverted, TemplateArgument &CanonicalConverted) {
6802   bool Invalid = false;
6803   Expr *Arg = ArgIn;
6804   QualType ArgType = Arg->getType();
6805 
6806   bool AddressTaken = false;
6807   SourceLocation AddrOpLoc;
6808   if (S.getLangOpts().MicrosoftExt) {
6809     // Microsoft Visual C++ strips all casts, allows an arbitrary number of
6810     // dereference and address-of operators.
6811     Arg = Arg->IgnoreParenCasts();
6812 
6813     bool ExtWarnMSTemplateArg = false;
6814     UnaryOperatorKind FirstOpKind;
6815     SourceLocation FirstOpLoc;
6816     while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6817       UnaryOperatorKind UnOpKind = UnOp->getOpcode();
6818       if (UnOpKind == UO_Deref)
6819         ExtWarnMSTemplateArg = true;
6820       if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
6821         Arg = UnOp->getSubExpr()->IgnoreParenCasts();
6822         if (!AddrOpLoc.isValid()) {
6823           FirstOpKind = UnOpKind;
6824           FirstOpLoc = UnOp->getOperatorLoc();
6825         }
6826       } else
6827         break;
6828     }
6829     if (FirstOpLoc.isValid()) {
6830       if (ExtWarnMSTemplateArg)
6831         S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
6832             << ArgIn->getSourceRange();
6833 
6834       if (FirstOpKind == UO_AddrOf)
6835         AddressTaken = true;
6836       else if (Arg->getType()->isPointerType()) {
6837         // We cannot let pointers get dereferenced here, that is obviously not a
6838         // constant expression.
6839         assert(FirstOpKind == UO_Deref);
6840         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6841             << Arg->getSourceRange();
6842       }
6843     }
6844   } else {
6845     // See through any implicit casts we added to fix the type.
6846     Arg = Arg->IgnoreImpCasts();
6847 
6848     // C++ [temp.arg.nontype]p1:
6849     //
6850     //   A template-argument for a non-type, non-template
6851     //   template-parameter shall be one of: [...]
6852     //
6853     //     -- the address of an object or function with external
6854     //        linkage, including function templates and function
6855     //        template-ids but excluding non-static class members,
6856     //        expressed as & id-expression where the & is optional if
6857     //        the name refers to a function or array, or if the
6858     //        corresponding template-parameter is a reference; or
6859 
6860     // In C++98/03 mode, give an extension warning on any extra parentheses.
6861     // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6862     bool ExtraParens = false;
6863     while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6864       if (!Invalid && !ExtraParens) {
6865         S.Diag(Arg->getBeginLoc(),
6866                S.getLangOpts().CPlusPlus11
6867                    ? diag::warn_cxx98_compat_template_arg_extra_parens
6868                    : diag::ext_template_arg_extra_parens)
6869             << Arg->getSourceRange();
6870         ExtraParens = true;
6871       }
6872 
6873       Arg = Parens->getSubExpr();
6874     }
6875 
6876     while (SubstNonTypeTemplateParmExpr *subst =
6877                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6878       Arg = subst->getReplacement()->IgnoreImpCasts();
6879 
6880     if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6881       if (UnOp->getOpcode() == UO_AddrOf) {
6882         Arg = UnOp->getSubExpr();
6883         AddressTaken = true;
6884         AddrOpLoc = UnOp->getOperatorLoc();
6885       }
6886     }
6887 
6888     while (SubstNonTypeTemplateParmExpr *subst =
6889                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6890       Arg = subst->getReplacement()->IgnoreImpCasts();
6891   }
6892 
6893   ValueDecl *Entity = nullptr;
6894   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg))
6895     Entity = DRE->getDecl();
6896   else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg))
6897     Entity = CUE->getGuidDecl();
6898 
6899   // If our parameter has pointer type, check for a null template value.
6900   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
6901     switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
6902                                                Entity)) {
6903     case NPV_NullPointer:
6904       S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6905       SugaredConverted = TemplateArgument(ParamType,
6906                                           /*isNullPtr=*/true);
6907       CanonicalConverted =
6908           TemplateArgument(S.Context.getCanonicalType(ParamType),
6909                            /*isNullPtr=*/true);
6910       return false;
6911 
6912     case NPV_Error:
6913       return true;
6914 
6915     case NPV_NotNullPointer:
6916       break;
6917     }
6918   }
6919 
6920   // Stop checking the precise nature of the argument if it is value dependent,
6921   // it should be checked when instantiated.
6922   if (Arg->isValueDependent()) {
6923     SugaredConverted = TemplateArgument(ArgIn);
6924     CanonicalConverted =
6925         S.Context.getCanonicalTemplateArgument(SugaredConverted);
6926     return false;
6927   }
6928 
6929   if (!Entity) {
6930     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6931         << Arg->getSourceRange();
6932     S.NoteTemplateParameterLocation(*Param);
6933     return true;
6934   }
6935 
6936   // Cannot refer to non-static data members
6937   if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
6938     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6939         << Entity << Arg->getSourceRange();
6940     S.NoteTemplateParameterLocation(*Param);
6941     return true;
6942   }
6943 
6944   // Cannot refer to non-static member functions
6945   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
6946     if (!Method->isStatic()) {
6947       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6948           << Method << Arg->getSourceRange();
6949       S.NoteTemplateParameterLocation(*Param);
6950       return true;
6951     }
6952   }
6953 
6954   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
6955   VarDecl *Var = dyn_cast<VarDecl>(Entity);
6956   MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity);
6957 
6958   // A non-type template argument must refer to an object or function.
6959   if (!Func && !Var && !Guid) {
6960     // We found something, but we don't know specifically what it is.
6961     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6962         << Arg->getSourceRange();
6963     S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here);
6964     return true;
6965   }
6966 
6967   // Address / reference template args must have external linkage in C++98.
6968   if (Entity->getFormalLinkage() == Linkage::Internal) {
6969     S.Diag(Arg->getBeginLoc(),
6970            S.getLangOpts().CPlusPlus11
6971                ? diag::warn_cxx98_compat_template_arg_object_internal
6972                : diag::ext_template_arg_object_internal)
6973         << !Func << Entity << Arg->getSourceRange();
6974     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6975       << !Func;
6976   } else if (!Entity->hasLinkage()) {
6977     S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6978         << !Func << Entity << Arg->getSourceRange();
6979     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6980       << !Func;
6981     return true;
6982   }
6983 
6984   if (Var) {
6985     // A value of reference type is not an object.
6986     if (Var->getType()->isReferenceType()) {
6987       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6988           << Var->getType() << Arg->getSourceRange();
6989       S.NoteTemplateParameterLocation(*Param);
6990       return true;
6991     }
6992 
6993     // A template argument must have static storage duration.
6994     if (Var->getTLSKind()) {
6995       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6996           << Arg->getSourceRange();
6997       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6998       return true;
6999     }
7000   }
7001 
7002   if (AddressTaken && ParamType->isReferenceType()) {
7003     // If we originally had an address-of operator, but the
7004     // parameter has reference type, complain and (if things look
7005     // like they will work) drop the address-of operator.
7006     if (!S.Context.hasSameUnqualifiedType(Entity->getType(),
7007                                           ParamType.getNonReferenceType())) {
7008       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
7009         << ParamType;
7010       S.NoteTemplateParameterLocation(*Param);
7011       return true;
7012     }
7013 
7014     S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
7015       << ParamType
7016       << FixItHint::CreateRemoval(AddrOpLoc);
7017     S.NoteTemplateParameterLocation(*Param);
7018 
7019     ArgType = Entity->getType();
7020   }
7021 
7022   // If the template parameter has pointer type, either we must have taken the
7023   // address or the argument must decay to a pointer.
7024   if (!AddressTaken && ParamType->isPointerType()) {
7025     if (Func) {
7026       // Function-to-pointer decay.
7027       ArgType = S.Context.getPointerType(Func->getType());
7028     } else if (Entity->getType()->isArrayType()) {
7029       // Array-to-pointer decay.
7030       ArgType = S.Context.getArrayDecayedType(Entity->getType());
7031     } else {
7032       // If the template parameter has pointer type but the address of
7033       // this object was not taken, complain and (possibly) recover by
7034       // taking the address of the entity.
7035       ArgType = S.Context.getPointerType(Entity->getType());
7036       if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
7037         S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
7038           << ParamType;
7039         S.NoteTemplateParameterLocation(*Param);
7040         return true;
7041       }
7042 
7043       S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
7044         << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
7045 
7046       S.NoteTemplateParameterLocation(*Param);
7047     }
7048   }
7049 
7050   if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
7051                                                      Arg, ArgType))
7052     return true;
7053 
7054   // Create the template argument.
7055   SugaredConverted = TemplateArgument(Entity, ParamType);
7056   CanonicalConverted =
7057       TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
7058                        S.Context.getCanonicalType(ParamType));
7059   S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
7060   return false;
7061 }
7062 
7063 /// Checks whether the given template argument is a pointer to
7064 /// member constant according to C++ [temp.arg.nontype]p1.
7065 static bool
7066 CheckTemplateArgumentPointerToMember(Sema &S, NonTypeTemplateParmDecl *Param,
7067                                      QualType ParamType, Expr *&ResultArg,
7068                                      TemplateArgument &SugaredConverted,
7069                                      TemplateArgument &CanonicalConverted) {
7070   bool Invalid = false;
7071 
7072   Expr *Arg = ResultArg;
7073   bool ObjCLifetimeConversion;
7074 
7075   // C++ [temp.arg.nontype]p1:
7076   //
7077   //   A template-argument for a non-type, non-template
7078   //   template-parameter shall be one of: [...]
7079   //
7080   //     -- a pointer to member expressed as described in 5.3.1.
7081   DeclRefExpr *DRE = nullptr;
7082 
7083   // In C++98/03 mode, give an extension warning on any extra parentheses.
7084   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
7085   bool ExtraParens = false;
7086   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
7087     if (!Invalid && !ExtraParens) {
7088       S.Diag(Arg->getBeginLoc(),
7089              S.getLangOpts().CPlusPlus11
7090                  ? diag::warn_cxx98_compat_template_arg_extra_parens
7091                  : diag::ext_template_arg_extra_parens)
7092           << Arg->getSourceRange();
7093       ExtraParens = true;
7094     }
7095 
7096     Arg = Parens->getSubExpr();
7097   }
7098 
7099   while (SubstNonTypeTemplateParmExpr *subst =
7100            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
7101     Arg = subst->getReplacement()->IgnoreImpCasts();
7102 
7103   // A pointer-to-member constant written &Class::member.
7104   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
7105     if (UnOp->getOpcode() == UO_AddrOf) {
7106       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
7107       if (DRE && !DRE->getQualifier())
7108         DRE = nullptr;
7109     }
7110   }
7111   // A constant of pointer-to-member type.
7112   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
7113     ValueDecl *VD = DRE->getDecl();
7114     if (VD->getType()->isMemberPointerType()) {
7115       if (isa<NonTypeTemplateParmDecl>(VD)) {
7116         if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7117           SugaredConverted = TemplateArgument(Arg);
7118           CanonicalConverted =
7119               S.Context.getCanonicalTemplateArgument(SugaredConverted);
7120         } else {
7121           SugaredConverted = TemplateArgument(VD, ParamType);
7122           CanonicalConverted =
7123               TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
7124                                S.Context.getCanonicalType(ParamType));
7125         }
7126         return Invalid;
7127       }
7128     }
7129 
7130     DRE = nullptr;
7131   }
7132 
7133   ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
7134 
7135   // Check for a null pointer value.
7136   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
7137                                              Entity)) {
7138   case NPV_Error:
7139     return true;
7140   case NPV_NullPointer:
7141     S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7142     SugaredConverted = TemplateArgument(ParamType,
7143                                         /*isNullPtr*/ true);
7144     CanonicalConverted = TemplateArgument(S.Context.getCanonicalType(ParamType),
7145                                           /*isNullPtr*/ true);
7146     return false;
7147   case NPV_NotNullPointer:
7148     break;
7149   }
7150 
7151   if (S.IsQualificationConversion(ResultArg->getType(),
7152                                   ParamType.getNonReferenceType(), false,
7153                                   ObjCLifetimeConversion)) {
7154     ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
7155                                     ResultArg->getValueKind())
7156                     .get();
7157   } else if (!S.Context.hasSameUnqualifiedType(
7158                  ResultArg->getType(), ParamType.getNonReferenceType())) {
7159     // We can't perform this conversion.
7160     S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
7161         << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
7162     S.NoteTemplateParameterLocation(*Param);
7163     return true;
7164   }
7165 
7166   if (!DRE)
7167     return S.Diag(Arg->getBeginLoc(),
7168                   diag::err_template_arg_not_pointer_to_member_form)
7169            << Arg->getSourceRange();
7170 
7171   if (isa<FieldDecl>(DRE->getDecl()) ||
7172       isa<IndirectFieldDecl>(DRE->getDecl()) ||
7173       isa<CXXMethodDecl>(DRE->getDecl())) {
7174     assert((isa<FieldDecl>(DRE->getDecl()) ||
7175             isa<IndirectFieldDecl>(DRE->getDecl()) ||
7176             cast<CXXMethodDecl>(DRE->getDecl())
7177                 ->isImplicitObjectMemberFunction()) &&
7178            "Only non-static member pointers can make it here");
7179 
7180     // Okay: this is the address of a non-static member, and therefore
7181     // a member pointer constant.
7182     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7183       SugaredConverted = TemplateArgument(Arg);
7184       CanonicalConverted =
7185           S.Context.getCanonicalTemplateArgument(SugaredConverted);
7186     } else {
7187       ValueDecl *D = DRE->getDecl();
7188       SugaredConverted = TemplateArgument(D, ParamType);
7189       CanonicalConverted =
7190           TemplateArgument(cast<ValueDecl>(D->getCanonicalDecl()),
7191                            S.Context.getCanonicalType(ParamType));
7192     }
7193     return Invalid;
7194   }
7195 
7196   // We found something else, but we don't know specifically what it is.
7197   S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
7198       << Arg->getSourceRange();
7199   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
7200   return true;
7201 }
7202 
7203 /// Check a template argument against its corresponding
7204 /// non-type template parameter.
7205 ///
7206 /// This routine implements the semantics of C++ [temp.arg.nontype].
7207 /// If an error occurred, it returns ExprError(); otherwise, it
7208 /// returns the converted template argument. \p ParamType is the
7209 /// type of the non-type template parameter after it has been instantiated.
7210 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
7211                                        QualType ParamType, Expr *Arg,
7212                                        TemplateArgument &SugaredConverted,
7213                                        TemplateArgument &CanonicalConverted,
7214                                        CheckTemplateArgumentKind CTAK) {
7215   SourceLocation StartLoc = Arg->getBeginLoc();
7216 
7217   // If the parameter type somehow involves auto, deduce the type now.
7218   DeducedType *DeducedT = ParamType->getContainedDeducedType();
7219   if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) {
7220     // During template argument deduction, we allow 'decltype(auto)' to
7221     // match an arbitrary dependent argument.
7222     // FIXME: The language rules don't say what happens in this case.
7223     // FIXME: We get an opaque dependent type out of decltype(auto) if the
7224     // expression is merely instantiation-dependent; is this enough?
7225     if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
7226       auto *AT = dyn_cast<AutoType>(DeducedT);
7227       if (AT && AT->isDecltypeAuto()) {
7228         SugaredConverted = TemplateArgument(Arg);
7229         CanonicalConverted = TemplateArgument(
7230             Context.getCanonicalTemplateArgument(SugaredConverted));
7231         return Arg;
7232       }
7233     }
7234 
7235     // When checking a deduced template argument, deduce from its type even if
7236     // the type is dependent, in order to check the types of non-type template
7237     // arguments line up properly in partial ordering.
7238     Expr *DeductionArg = Arg;
7239     if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
7240       DeductionArg = PE->getPattern();
7241     TypeSourceInfo *TSI =
7242         Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation());
7243     if (isa<DeducedTemplateSpecializationType>(DeducedT)) {
7244       InitializedEntity Entity =
7245           InitializedEntity::InitializeTemplateParameter(ParamType, Param);
7246       InitializationKind Kind = InitializationKind::CreateForInit(
7247           DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg);
7248       Expr *Inits[1] = {DeductionArg};
7249       ParamType =
7250           DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits);
7251       if (ParamType.isNull())
7252         return ExprError();
7253     } else {
7254       TemplateDeductionInfo Info(DeductionArg->getExprLoc(),
7255                                  Param->getDepth() + 1);
7256       ParamType = QualType();
7257       TemplateDeductionResult Result =
7258           DeduceAutoType(TSI->getTypeLoc(), DeductionArg, ParamType, Info,
7259                          /*DependentDeduction=*/true,
7260                          // We do not check constraints right now because the
7261                          // immediately-declared constraint of the auto type is
7262                          // also an associated constraint, and will be checked
7263                          // along with the other associated constraints after
7264                          // checking the template argument list.
7265                          /*IgnoreConstraints=*/true);
7266       if (Result == TDK_AlreadyDiagnosed) {
7267         if (ParamType.isNull())
7268           return ExprError();
7269       } else if (Result != TDK_Success) {
7270         Diag(Arg->getExprLoc(),
7271              diag::err_non_type_template_parm_type_deduction_failure)
7272             << Param->getDeclName() << Param->getType() << Arg->getType()
7273             << Arg->getSourceRange();
7274         NoteTemplateParameterLocation(*Param);
7275         return ExprError();
7276       }
7277     }
7278     // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
7279     // an error. The error message normally references the parameter
7280     // declaration, but here we'll pass the argument location because that's
7281     // where the parameter type is deduced.
7282     ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
7283     if (ParamType.isNull()) {
7284       NoteTemplateParameterLocation(*Param);
7285       return ExprError();
7286     }
7287   }
7288 
7289   // We should have already dropped all cv-qualifiers by now.
7290   assert(!ParamType.hasQualifiers() &&
7291          "non-type template parameter type cannot be qualified");
7292 
7293   // FIXME: When Param is a reference, should we check that Arg is an lvalue?
7294   if (CTAK == CTAK_Deduced &&
7295       (ParamType->isReferenceType()
7296            ? !Context.hasSameType(ParamType.getNonReferenceType(),
7297                                   Arg->getType())
7298            : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) {
7299     // FIXME: If either type is dependent, we skip the check. This isn't
7300     // correct, since during deduction we're supposed to have replaced each
7301     // template parameter with some unique (non-dependent) placeholder.
7302     // FIXME: If the argument type contains 'auto', we carry on and fail the
7303     // type check in order to force specific types to be more specialized than
7304     // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
7305     // work. Similarly for CTAD, when comparing 'A<x>' against 'A'.
7306     if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
7307         !Arg->getType()->getContainedDeducedType()) {
7308       SugaredConverted = TemplateArgument(Arg);
7309       CanonicalConverted = TemplateArgument(
7310           Context.getCanonicalTemplateArgument(SugaredConverted));
7311       return Arg;
7312     }
7313     // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
7314     // we should actually be checking the type of the template argument in P,
7315     // not the type of the template argument deduced from A, against the
7316     // template parameter type.
7317     Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
7318       << Arg->getType()
7319       << ParamType.getUnqualifiedType();
7320     NoteTemplateParameterLocation(*Param);
7321     return ExprError();
7322   }
7323 
7324   // If either the parameter has a dependent type or the argument is
7325   // type-dependent, there's nothing we can check now.
7326   if (ParamType->isDependentType() || Arg->isTypeDependent()) {
7327     // Force the argument to the type of the parameter to maintain invariants.
7328     auto *PE = dyn_cast<PackExpansionExpr>(Arg);
7329     if (PE)
7330       Arg = PE->getPattern();
7331     ExprResult E = ImpCastExprToType(
7332         Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
7333         ParamType->isLValueReferenceType()   ? VK_LValue
7334         : ParamType->isRValueReferenceType() ? VK_XValue
7335                                              : VK_PRValue);
7336     if (E.isInvalid())
7337       return ExprError();
7338     if (PE) {
7339       // Recreate a pack expansion if we unwrapped one.
7340       E = new (Context)
7341           PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
7342                             PE->getNumExpansions());
7343     }
7344     SugaredConverted = TemplateArgument(E.get());
7345     CanonicalConverted = TemplateArgument(
7346         Context.getCanonicalTemplateArgument(SugaredConverted));
7347     return E;
7348   }
7349 
7350   QualType CanonParamType = Context.getCanonicalType(ParamType);
7351   // Avoid making a copy when initializing a template parameter of class type
7352   // from a template parameter object of the same type. This is going beyond
7353   // the standard, but is required for soundness: in
7354   //   template<A a> struct X { X *p; X<a> *q; };
7355   // ... we need p and q to have the same type.
7356   //
7357   // Similarly, don't inject a call to a copy constructor when initializing
7358   // from a template parameter of the same type.
7359   Expr *InnerArg = Arg->IgnoreParenImpCasts();
7360   if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) &&
7361       Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) {
7362     NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl();
7363     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
7364 
7365       SugaredConverted = TemplateArgument(TPO, ParamType);
7366       CanonicalConverted =
7367           TemplateArgument(TPO->getCanonicalDecl(), CanonParamType);
7368       return Arg;
7369     }
7370     if (isa<NonTypeTemplateParmDecl>(ND)) {
7371       SugaredConverted = TemplateArgument(Arg);
7372       CanonicalConverted =
7373           Context.getCanonicalTemplateArgument(SugaredConverted);
7374       return Arg;
7375     }
7376   }
7377 
7378   // The initialization of the parameter from the argument is
7379   // a constant-evaluated context.
7380   EnterExpressionEvaluationContext ConstantEvaluated(
7381       *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
7382 
7383   bool IsConvertedConstantExpression = true;
7384   if (isa<InitListExpr>(Arg) || ParamType->isRecordType()) {
7385     InitializationKind Kind = InitializationKind::CreateForInit(
7386         Arg->getBeginLoc(), /*DirectInit=*/false, Arg);
7387     Expr *Inits[1] = {Arg};
7388     InitializedEntity Entity =
7389         InitializedEntity::InitializeTemplateParameter(ParamType, Param);
7390     InitializationSequence InitSeq(*this, Entity, Kind, Inits);
7391     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Inits);
7392     if (Result.isInvalid() || !Result.get())
7393       return ExprError();
7394     Result = ActOnConstantExpression(Result.get());
7395     if (Result.isInvalid() || !Result.get())
7396       return ExprError();
7397     Arg = ActOnFinishFullExpr(Result.get(), Arg->getBeginLoc(),
7398                               /*DiscardedValue=*/false,
7399                               /*IsConstexpr=*/true, /*IsTemplateArgument=*/true)
7400               .get();
7401     IsConvertedConstantExpression = false;
7402   }
7403 
7404   if (getLangOpts().CPlusPlus17) {
7405     // C++17 [temp.arg.nontype]p1:
7406     //   A template-argument for a non-type template parameter shall be
7407     //   a converted constant expression of the type of the template-parameter.
7408     APValue Value;
7409     ExprResult ArgResult;
7410     if (IsConvertedConstantExpression) {
7411       ArgResult = BuildConvertedConstantExpression(Arg, ParamType,
7412                                                    CCEK_TemplateArg, Param);
7413       if (ArgResult.isInvalid())
7414         return ExprError();
7415     } else {
7416       ArgResult = Arg;
7417     }
7418 
7419     // For a value-dependent argument, CheckConvertedConstantExpression is
7420     // permitted (and expected) to be unable to determine a value.
7421     if (ArgResult.get()->isValueDependent()) {
7422       SugaredConverted = TemplateArgument(ArgResult.get());
7423       CanonicalConverted =
7424           Context.getCanonicalTemplateArgument(SugaredConverted);
7425       return ArgResult;
7426     }
7427 
7428     APValue PreNarrowingValue;
7429     ArgResult = EvaluateConvertedConstantExpression(
7430         ArgResult.get(), ParamType, Value, CCEK_TemplateArg, /*RequireInt=*/
7431         false, PreNarrowingValue);
7432     if (ArgResult.isInvalid())
7433       return ExprError();
7434 
7435     if (Value.isLValue()) {
7436       APValue::LValueBase Base = Value.getLValueBase();
7437       auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
7438       //   For a non-type template-parameter of pointer or reference type,
7439       //   the value of the constant expression shall not refer to
7440       assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
7441              ParamType->isNullPtrType());
7442       // -- a temporary object
7443       // -- a string literal
7444       // -- the result of a typeid expression, or
7445       // -- a predefined __func__ variable
7446       if (Base &&
7447           (!VD ||
7448            isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(VD))) {
7449         Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
7450             << Arg->getSourceRange();
7451         return ExprError();
7452       }
7453 
7454       if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && VD &&
7455           VD->getType()->isArrayType() &&
7456           Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
7457           !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
7458         SugaredConverted = TemplateArgument(VD, ParamType);
7459         CanonicalConverted = TemplateArgument(
7460             cast<ValueDecl>(VD->getCanonicalDecl()), CanonParamType);
7461         return ArgResult.get();
7462       }
7463 
7464       // -- a subobject [until C++20]
7465       if (!getLangOpts().CPlusPlus20) {
7466         if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
7467             Value.isLValueOnePastTheEnd()) {
7468           Diag(StartLoc, diag::err_non_type_template_arg_subobject)
7469               << Value.getAsString(Context, ParamType);
7470           return ExprError();
7471         }
7472         assert((VD || !ParamType->isReferenceType()) &&
7473                "null reference should not be a constant expression");
7474         assert((!VD || !ParamType->isNullPtrType()) &&
7475                "non-null value of type nullptr_t?");
7476       }
7477     }
7478 
7479     if (Value.isAddrLabelDiff())
7480       return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
7481 
7482     SugaredConverted = TemplateArgument(Context, ParamType, Value);
7483     CanonicalConverted = TemplateArgument(Context, CanonParamType, Value);
7484     return ArgResult.get();
7485   }
7486 
7487   // C++ [temp.arg.nontype]p5:
7488   //   The following conversions are performed on each expression used
7489   //   as a non-type template-argument. If a non-type
7490   //   template-argument cannot be converted to the type of the
7491   //   corresponding template-parameter then the program is
7492   //   ill-formed.
7493   if (ParamType->isIntegralOrEnumerationType()) {
7494     // C++11:
7495     //   -- for a non-type template-parameter of integral or
7496     //      enumeration type, conversions permitted in a converted
7497     //      constant expression are applied.
7498     //
7499     // C++98:
7500     //   -- for a non-type template-parameter of integral or
7501     //      enumeration type, integral promotions (4.5) and integral
7502     //      conversions (4.7) are applied.
7503 
7504     if (getLangOpts().CPlusPlus11) {
7505       // C++ [temp.arg.nontype]p1:
7506       //   A template-argument for a non-type, non-template template-parameter
7507       //   shall be one of:
7508       //
7509       //     -- for a non-type template-parameter of integral or enumeration
7510       //        type, a converted constant expression of the type of the
7511       //        template-parameter; or
7512       llvm::APSInt Value;
7513       ExprResult ArgResult =
7514         CheckConvertedConstantExpression(Arg, ParamType, Value,
7515                                          CCEK_TemplateArg);
7516       if (ArgResult.isInvalid())
7517         return ExprError();
7518 
7519       // We can't check arbitrary value-dependent arguments.
7520       if (ArgResult.get()->isValueDependent()) {
7521         SugaredConverted = TemplateArgument(ArgResult.get());
7522         CanonicalConverted =
7523             Context.getCanonicalTemplateArgument(SugaredConverted);
7524         return ArgResult;
7525       }
7526 
7527       // Widen the argument value to sizeof(parameter type). This is almost
7528       // always a no-op, except when the parameter type is bool. In
7529       // that case, this may extend the argument from 1 bit to 8 bits.
7530       QualType IntegerType = ParamType;
7531       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7532         IntegerType = Enum->getDecl()->getIntegerType();
7533       Value = Value.extOrTrunc(IntegerType->isBitIntType()
7534                                    ? Context.getIntWidth(IntegerType)
7535                                    : Context.getTypeSize(IntegerType));
7536 
7537       SugaredConverted = TemplateArgument(Context, Value, ParamType);
7538       CanonicalConverted =
7539           TemplateArgument(Context, Value, Context.getCanonicalType(ParamType));
7540       return ArgResult;
7541     }
7542 
7543     ExprResult ArgResult = DefaultLvalueConversion(Arg);
7544     if (ArgResult.isInvalid())
7545       return ExprError();
7546     Arg = ArgResult.get();
7547 
7548     QualType ArgType = Arg->getType();
7549 
7550     // C++ [temp.arg.nontype]p1:
7551     //   A template-argument for a non-type, non-template
7552     //   template-parameter shall be one of:
7553     //
7554     //     -- an integral constant-expression of integral or enumeration
7555     //        type; or
7556     //     -- the name of a non-type template-parameter; or
7557     llvm::APSInt Value;
7558     if (!ArgType->isIntegralOrEnumerationType()) {
7559       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
7560           << ArgType << Arg->getSourceRange();
7561       NoteTemplateParameterLocation(*Param);
7562       return ExprError();
7563     } else if (!Arg->isValueDependent()) {
7564       class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
7565         QualType T;
7566 
7567       public:
7568         TmplArgICEDiagnoser(QualType T) : T(T) { }
7569 
7570         SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
7571                                              SourceLocation Loc) override {
7572           return S.Diag(Loc, diag::err_template_arg_not_ice) << T;
7573         }
7574       } Diagnoser(ArgType);
7575 
7576       Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get();
7577       if (!Arg)
7578         return ExprError();
7579     }
7580 
7581     // From here on out, all we care about is the unqualified form
7582     // of the argument type.
7583     ArgType = ArgType.getUnqualifiedType();
7584 
7585     // Try to convert the argument to the parameter's type.
7586     if (Context.hasSameType(ParamType, ArgType)) {
7587       // Okay: no conversion necessary
7588     } else if (ParamType->isBooleanType()) {
7589       // This is an integral-to-boolean conversion.
7590       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
7591     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
7592                !ParamType->isEnumeralType()) {
7593       // This is an integral promotion or conversion.
7594       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
7595     } else {
7596       // We can't perform this conversion.
7597       Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
7598           << Arg->getType() << ParamType << Arg->getSourceRange();
7599       NoteTemplateParameterLocation(*Param);
7600       return ExprError();
7601     }
7602 
7603     // Add the value of this argument to the list of converted
7604     // arguments. We use the bitwidth and signedness of the template
7605     // parameter.
7606     if (Arg->isValueDependent()) {
7607       // The argument is value-dependent. Create a new
7608       // TemplateArgument with the converted expression.
7609       SugaredConverted = TemplateArgument(Arg);
7610       CanonicalConverted =
7611           Context.getCanonicalTemplateArgument(SugaredConverted);
7612       return Arg;
7613     }
7614 
7615     QualType IntegerType = ParamType;
7616     if (const EnumType *Enum = IntegerType->getAs<EnumType>()) {
7617       IntegerType = Enum->getDecl()->getIntegerType();
7618     }
7619 
7620     if (ParamType->isBooleanType()) {
7621       // Value must be zero or one.
7622       Value = Value != 0;
7623       unsigned AllowedBits = Context.getTypeSize(IntegerType);
7624       if (Value.getBitWidth() != AllowedBits)
7625         Value = Value.extOrTrunc(AllowedBits);
7626       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7627     } else {
7628       llvm::APSInt OldValue = Value;
7629 
7630       // Coerce the template argument's value to the value it will have
7631       // based on the template parameter's type.
7632       unsigned AllowedBits = IntegerType->isBitIntType()
7633                                  ? Context.getIntWidth(IntegerType)
7634                                  : Context.getTypeSize(IntegerType);
7635       if (Value.getBitWidth() != AllowedBits)
7636         Value = Value.extOrTrunc(AllowedBits);
7637       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7638 
7639       // Complain if an unsigned parameter received a negative value.
7640       if (IntegerType->isUnsignedIntegerOrEnumerationType() &&
7641           (OldValue.isSigned() && OldValue.isNegative())) {
7642         Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
7643             << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7644             << Arg->getSourceRange();
7645         NoteTemplateParameterLocation(*Param);
7646       }
7647 
7648       // Complain if we overflowed the template parameter's type.
7649       unsigned RequiredBits;
7650       if (IntegerType->isUnsignedIntegerOrEnumerationType())
7651         RequiredBits = OldValue.getActiveBits();
7652       else if (OldValue.isUnsigned())
7653         RequiredBits = OldValue.getActiveBits() + 1;
7654       else
7655         RequiredBits = OldValue.getSignificantBits();
7656       if (RequiredBits > AllowedBits) {
7657         Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
7658             << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7659             << Arg->getSourceRange();
7660         NoteTemplateParameterLocation(*Param);
7661       }
7662     }
7663 
7664     QualType T = ParamType->isEnumeralType() ? ParamType : IntegerType;
7665     SugaredConverted = TemplateArgument(Context, Value, T);
7666     CanonicalConverted =
7667         TemplateArgument(Context, Value, Context.getCanonicalType(T));
7668     return Arg;
7669   }
7670 
7671   QualType ArgType = Arg->getType();
7672   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
7673 
7674   // Handle pointer-to-function, reference-to-function, and
7675   // pointer-to-member-function all in (roughly) the same way.
7676   if (// -- For a non-type template-parameter of type pointer to
7677       //    function, only the function-to-pointer conversion (4.3) is
7678       //    applied. If the template-argument represents a set of
7679       //    overloaded functions (or a pointer to such), the matching
7680       //    function is selected from the set (13.4).
7681       (ParamType->isPointerType() &&
7682        ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
7683       // -- For a non-type template-parameter of type reference to
7684       //    function, no conversions apply. If the template-argument
7685       //    represents a set of overloaded functions, the matching
7686       //    function is selected from the set (13.4).
7687       (ParamType->isReferenceType() &&
7688        ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
7689       // -- For a non-type template-parameter of type pointer to
7690       //    member function, no conversions apply. If the
7691       //    template-argument represents a set of overloaded member
7692       //    functions, the matching member function is selected from
7693       //    the set (13.4).
7694       (ParamType->isMemberPointerType() &&
7695        ParamType->castAs<MemberPointerType>()->getPointeeType()
7696          ->isFunctionType())) {
7697 
7698     if (Arg->getType() == Context.OverloadTy) {
7699       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
7700                                                                 true,
7701                                                                 FoundResult)) {
7702         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7703           return ExprError();
7704 
7705         ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7706         if (Res.isInvalid())
7707           return ExprError();
7708         Arg = Res.get();
7709         ArgType = Arg->getType();
7710       } else
7711         return ExprError();
7712     }
7713 
7714     if (!ParamType->isMemberPointerType()) {
7715       if (CheckTemplateArgumentAddressOfObjectOrFunction(
7716               *this, Param, ParamType, Arg, SugaredConverted,
7717               CanonicalConverted))
7718         return ExprError();
7719       return Arg;
7720     }
7721 
7722     if (CheckTemplateArgumentPointerToMember(
7723             *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7724       return ExprError();
7725     return Arg;
7726   }
7727 
7728   if (ParamType->isPointerType()) {
7729     //   -- for a non-type template-parameter of type pointer to
7730     //      object, qualification conversions (4.4) and the
7731     //      array-to-pointer conversion (4.2) are applied.
7732     // C++0x also allows a value of std::nullptr_t.
7733     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
7734            "Only object pointers allowed here");
7735 
7736     if (CheckTemplateArgumentAddressOfObjectOrFunction(
7737             *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7738       return ExprError();
7739     return Arg;
7740   }
7741 
7742   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
7743     //   -- For a non-type template-parameter of type reference to
7744     //      object, no conversions apply. The type referred to by the
7745     //      reference may be more cv-qualified than the (otherwise
7746     //      identical) type of the template-argument. The
7747     //      template-parameter is bound directly to the
7748     //      template-argument, which must be an lvalue.
7749     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
7750            "Only object references allowed here");
7751 
7752     if (Arg->getType() == Context.OverloadTy) {
7753       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
7754                                                  ParamRefType->getPointeeType(),
7755                                                                 true,
7756                                                                 FoundResult)) {
7757         if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7758           return ExprError();
7759         ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7760         if (Res.isInvalid())
7761           return ExprError();
7762         Arg = Res.get();
7763         ArgType = Arg->getType();
7764       } else
7765         return ExprError();
7766     }
7767 
7768     if (CheckTemplateArgumentAddressOfObjectOrFunction(
7769             *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7770       return ExprError();
7771     return Arg;
7772   }
7773 
7774   // Deal with parameters of type std::nullptr_t.
7775   if (ParamType->isNullPtrType()) {
7776     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7777       SugaredConverted = TemplateArgument(Arg);
7778       CanonicalConverted =
7779           Context.getCanonicalTemplateArgument(SugaredConverted);
7780       return Arg;
7781     }
7782 
7783     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
7784     case NPV_NotNullPointer:
7785       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
7786         << Arg->getType() << ParamType;
7787       NoteTemplateParameterLocation(*Param);
7788       return ExprError();
7789 
7790     case NPV_Error:
7791       return ExprError();
7792 
7793     case NPV_NullPointer:
7794       Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7795       SugaredConverted = TemplateArgument(ParamType,
7796                                           /*isNullPtr=*/true);
7797       CanonicalConverted = TemplateArgument(Context.getCanonicalType(ParamType),
7798                                             /*isNullPtr=*/true);
7799       return Arg;
7800     }
7801   }
7802 
7803   //     -- For a non-type template-parameter of type pointer to data
7804   //        member, qualification conversions (4.4) are applied.
7805   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
7806 
7807   if (CheckTemplateArgumentPointerToMember(
7808           *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted))
7809     return ExprError();
7810   return Arg;
7811 }
7812 
7813 static void DiagnoseTemplateParameterListArityMismatch(
7814     Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
7815     Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
7816 
7817 /// Check a template argument against its corresponding
7818 /// template template parameter.
7819 ///
7820 /// This routine implements the semantics of C++ [temp.arg.template].
7821 /// It returns true if an error occurred, and false otherwise.
7822 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7823                                          TemplateParameterList *Params,
7824                                          TemplateArgumentLoc &Arg) {
7825   TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
7826   TemplateDecl *Template = Name.getAsTemplateDecl();
7827   if (!Template) {
7828     // Any dependent template name is fine.
7829     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
7830     return false;
7831   }
7832 
7833   if (Template->isInvalidDecl())
7834     return true;
7835 
7836   // C++0x [temp.arg.template]p1:
7837   //   A template-argument for a template template-parameter shall be
7838   //   the name of a class template or an alias template, expressed as an
7839   //   id-expression. When the template-argument names a class template, only
7840   //   primary class templates are considered when matching the
7841   //   template template argument with the corresponding parameter;
7842   //   partial specializations are not considered even if their
7843   //   parameter lists match that of the template template parameter.
7844   //
7845   // Note that we also allow template template parameters here, which
7846   // will happen when we are dealing with, e.g., class template
7847   // partial specializations.
7848   if (!isa<ClassTemplateDecl>(Template) &&
7849       !isa<TemplateTemplateParmDecl>(Template) &&
7850       !isa<TypeAliasTemplateDecl>(Template) &&
7851       !isa<BuiltinTemplateDecl>(Template)) {
7852     assert(isa<FunctionTemplateDecl>(Template) &&
7853            "Only function templates are possible here");
7854     Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
7855     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
7856       << Template;
7857   }
7858 
7859   // C++1z [temp.arg.template]p3: (DR 150)
7860   //   A template-argument matches a template template-parameter P when P
7861   //   is at least as specialized as the template-argument A.
7862   // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a
7863   //  defect report resolution from C++17 and shouldn't be introduced by
7864   //  concepts.
7865   if (getLangOpts().RelaxedTemplateTemplateArgs) {
7866     // Quick check for the common case:
7867     //   If P contains a parameter pack, then A [...] matches P if each of A's
7868     //   template parameters matches the corresponding template parameter in
7869     //   the template-parameter-list of P.
7870     if (TemplateParameterListsAreEqual(
7871             Template->getTemplateParameters(), Params, false,
7872             TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) &&
7873         // If the argument has no associated constraints, then the parameter is
7874         // definitely at least as specialized as the argument.
7875         // Otherwise - we need a more thorough check.
7876         !Template->hasAssociatedConstraints())
7877       return false;
7878 
7879     if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
7880                                                           Arg.getLocation())) {
7881       // P2113
7882       // C++20[temp.func.order]p2
7883       //   [...] If both deductions succeed, the partial ordering selects the
7884       // more constrained template (if one exists) as determined below.
7885       SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
7886       Params->getAssociatedConstraints(ParamsAC);
7887       // C++2a[temp.arg.template]p3
7888       //   [...] In this comparison, if P is unconstrained, the constraints on A
7889       //   are not considered.
7890       if (ParamsAC.empty())
7891         return false;
7892 
7893       Template->getAssociatedConstraints(TemplateAC);
7894 
7895       bool IsParamAtLeastAsConstrained;
7896       if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
7897                                  IsParamAtLeastAsConstrained))
7898         return true;
7899       if (!IsParamAtLeastAsConstrained) {
7900         Diag(Arg.getLocation(),
7901              diag::err_template_template_parameter_not_at_least_as_constrained)
7902             << Template << Param << Arg.getSourceRange();
7903         Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
7904         Diag(Template->getLocation(), diag::note_entity_declared_at)
7905             << Template;
7906         MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
7907                                                       TemplateAC);
7908         return true;
7909       }
7910       return false;
7911     }
7912     // FIXME: Produce better diagnostics for deduction failures.
7913   }
7914 
7915   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
7916                                          Params,
7917                                          true,
7918                                          TPL_TemplateTemplateArgumentMatch,
7919                                          Arg.getLocation());
7920 }
7921 
7922 static Sema::SemaDiagnosticBuilder noteLocation(Sema &S, const NamedDecl &Decl,
7923                                                 unsigned HereDiagID,
7924                                                 unsigned ExternalDiagID) {
7925   if (Decl.getLocation().isValid())
7926     return S.Diag(Decl.getLocation(), HereDiagID);
7927 
7928   SmallString<128> Str;
7929   llvm::raw_svector_ostream Out(Str);
7930   PrintingPolicy PP = S.getPrintingPolicy();
7931   PP.TerseOutput = 1;
7932   Decl.print(Out, PP);
7933   return S.Diag(Decl.getLocation(), ExternalDiagID) << Out.str();
7934 }
7935 
7936 void Sema::NoteTemplateLocation(const NamedDecl &Decl,
7937                                 std::optional<SourceRange> ParamRange) {
7938   SemaDiagnosticBuilder DB =
7939       noteLocation(*this, Decl, diag::note_template_decl_here,
7940                    diag::note_template_decl_external);
7941   if (ParamRange && ParamRange->isValid()) {
7942     assert(Decl.getLocation().isValid() &&
7943            "Parameter range has location when Decl does not");
7944     DB << *ParamRange;
7945   }
7946 }
7947 
7948 void Sema::NoteTemplateParameterLocation(const NamedDecl &Decl) {
7949   noteLocation(*this, Decl, diag::note_template_param_here,
7950                diag::note_template_param_external);
7951 }
7952 
7953 /// Given a non-type template argument that refers to a
7954 /// declaration and the type of its corresponding non-type template
7955 /// parameter, produce an expression that properly refers to that
7956 /// declaration.
7957 ExprResult
7958 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7959                                               QualType ParamType,
7960                                               SourceLocation Loc) {
7961   // C++ [temp.param]p8:
7962   //
7963   //   A non-type template-parameter of type "array of T" or
7964   //   "function returning T" is adjusted to be of type "pointer to
7965   //   T" or "pointer to function returning T", respectively.
7966   if (ParamType->isArrayType())
7967     ParamType = Context.getArrayDecayedType(ParamType);
7968   else if (ParamType->isFunctionType())
7969     ParamType = Context.getPointerType(ParamType);
7970 
7971   // For a NULL non-type template argument, return nullptr casted to the
7972   // parameter's type.
7973   if (Arg.getKind() == TemplateArgument::NullPtr) {
7974     return ImpCastExprToType(
7975              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
7976                              ParamType,
7977                              ParamType->getAs<MemberPointerType>()
7978                                ? CK_NullToMemberPointer
7979                                : CK_NullToPointer);
7980   }
7981   assert(Arg.getKind() == TemplateArgument::Declaration &&
7982          "Only declaration template arguments permitted here");
7983 
7984   ValueDecl *VD = Arg.getAsDecl();
7985 
7986   CXXScopeSpec SS;
7987   if (ParamType->isMemberPointerType()) {
7988     // If this is a pointer to member, we need to use a qualified name to
7989     // form a suitable pointer-to-member constant.
7990     assert(VD->getDeclContext()->isRecord() &&
7991            (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
7992             isa<IndirectFieldDecl>(VD)));
7993     QualType ClassType
7994       = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
7995     NestedNameSpecifier *Qualifier
7996       = NestedNameSpecifier::Create(Context, nullptr, false,
7997                                     ClassType.getTypePtr());
7998     SS.MakeTrivial(Context, Qualifier, Loc);
7999   }
8000 
8001   ExprResult RefExpr = BuildDeclarationNameExpr(
8002       SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
8003   if (RefExpr.isInvalid())
8004     return ExprError();
8005 
8006   // For a pointer, the argument declaration is the pointee. Take its address.
8007   QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
8008   if (ParamType->isPointerType() && !ElemT.isNull() &&
8009       Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
8010     // Decay an array argument if we want a pointer to its first element.
8011     RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
8012     if (RefExpr.isInvalid())
8013       return ExprError();
8014   } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
8015     // For any other pointer, take the address (or form a pointer-to-member).
8016     RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
8017     if (RefExpr.isInvalid())
8018       return ExprError();
8019   } else if (ParamType->isRecordType()) {
8020     assert(isa<TemplateParamObjectDecl>(VD) &&
8021            "arg for class template param not a template parameter object");
8022     // No conversions apply in this case.
8023     return RefExpr;
8024   } else {
8025     assert(ParamType->isReferenceType() &&
8026            "unexpected type for decl template argument");
8027   }
8028 
8029   // At this point we should have the right value category.
8030   assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
8031          "value kind mismatch for non-type template argument");
8032 
8033   // The type of the template parameter can differ from the type of the
8034   // argument in various ways; convert it now if necessary.
8035   QualType DestExprType = ParamType.getNonLValueExprType(Context);
8036   if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
8037     CastKind CK;
8038     QualType Ignored;
8039     if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
8040         IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
8041       CK = CK_NoOp;
8042     } else if (ParamType->isVoidPointerType() &&
8043                RefExpr.get()->getType()->isPointerType()) {
8044       CK = CK_BitCast;
8045     } else {
8046       // FIXME: Pointers to members can need conversion derived-to-base or
8047       // base-to-derived conversions. We currently don't retain enough
8048       // information to convert properly (we need to track a cast path or
8049       // subobject number in the template argument).
8050       llvm_unreachable(
8051           "unexpected conversion required for non-type template argument");
8052     }
8053     RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
8054                                 RefExpr.get()->getValueKind());
8055   }
8056 
8057   return RefExpr;
8058 }
8059 
8060 /// Construct a new expression that refers to the given
8061 /// integral template argument with the given source-location
8062 /// information.
8063 ///
8064 /// This routine takes care of the mapping from an integral template
8065 /// argument (which may have any integral type) to the appropriate
8066 /// literal value.
8067 static Expr *BuildExpressionFromIntegralTemplateArgumentValue(
8068     Sema &S, QualType OrigT, const llvm::APSInt &Int, SourceLocation Loc) {
8069   assert(OrigT->isIntegralOrEnumerationType());
8070 
8071   // If this is an enum type that we're instantiating, we need to use an integer
8072   // type the same size as the enumerator.  We don't want to build an
8073   // IntegerLiteral with enum type.  The integer type of an enum type can be of
8074   // any integral type with C++11 enum classes, make sure we create the right
8075   // type of literal for it.
8076   QualType T = OrigT;
8077   if (const EnumType *ET = OrigT->getAs<EnumType>())
8078     T = ET->getDecl()->getIntegerType();
8079 
8080   Expr *E;
8081   if (T->isAnyCharacterType()) {
8082     CharacterLiteralKind Kind;
8083     if (T->isWideCharType())
8084       Kind = CharacterLiteralKind::Wide;
8085     else if (T->isChar8Type() && S.getLangOpts().Char8)
8086       Kind = CharacterLiteralKind::UTF8;
8087     else if (T->isChar16Type())
8088       Kind = CharacterLiteralKind::UTF16;
8089     else if (T->isChar32Type())
8090       Kind = CharacterLiteralKind::UTF32;
8091     else
8092       Kind = CharacterLiteralKind::Ascii;
8093 
8094     E = new (S.Context) CharacterLiteral(Int.getZExtValue(), Kind, T, Loc);
8095   } else if (T->isBooleanType()) {
8096     E = CXXBoolLiteralExpr::Create(S.Context, Int.getBoolValue(), T, Loc);
8097   } else {
8098     E = IntegerLiteral::Create(S.Context, Int, T, Loc);
8099   }
8100 
8101   if (OrigT->isEnumeralType()) {
8102     // FIXME: This is a hack. We need a better way to handle substituted
8103     // non-type template parameters.
8104     E = CStyleCastExpr::Create(S.Context, OrigT, VK_PRValue, CK_IntegralCast, E,
8105                                nullptr, S.CurFPFeatureOverrides(),
8106                                S.Context.getTrivialTypeSourceInfo(OrigT, Loc),
8107                                Loc, Loc);
8108   }
8109 
8110   return E;
8111 }
8112 
8113 static Expr *BuildExpressionFromNonTypeTemplateArgumentValue(
8114     Sema &S, QualType T, const APValue &Val, SourceLocation Loc) {
8115   auto MakeInitList = [&](ArrayRef<Expr *> Elts) -> Expr * {
8116     auto *ILE = new (S.Context) InitListExpr(S.Context, Loc, Elts, Loc);
8117     ILE->setType(T);
8118     return ILE;
8119   };
8120 
8121   switch (Val.getKind()) {
8122   case APValue::AddrLabelDiff:
8123     // This cannot occur in a template argument at all.
8124   case APValue::Array:
8125   case APValue::Struct:
8126   case APValue::Union:
8127     // These can only occur within a template parameter object, which is
8128     // represented as a TemplateArgument::Declaration.
8129     llvm_unreachable("unexpected template argument value");
8130 
8131   case APValue::Int:
8132     return BuildExpressionFromIntegralTemplateArgumentValue(S, T, Val.getInt(),
8133                                                             Loc);
8134 
8135   case APValue::Float:
8136     return FloatingLiteral::Create(S.Context, Val.getFloat(), /*IsExact=*/true,
8137                                    T, Loc);
8138 
8139   case APValue::FixedPoint:
8140     return FixedPointLiteral::CreateFromRawInt(
8141         S.Context, Val.getFixedPoint().getValue(), T, Loc,
8142         Val.getFixedPoint().getScale());
8143 
8144   case APValue::ComplexInt: {
8145     QualType ElemT = T->castAs<ComplexType>()->getElementType();
8146     return MakeInitList({BuildExpressionFromIntegralTemplateArgumentValue(
8147                              S, ElemT, Val.getComplexIntReal(), Loc),
8148                          BuildExpressionFromIntegralTemplateArgumentValue(
8149                              S, ElemT, Val.getComplexIntImag(), Loc)});
8150   }
8151 
8152   case APValue::ComplexFloat: {
8153     QualType ElemT = T->castAs<ComplexType>()->getElementType();
8154     return MakeInitList(
8155         {FloatingLiteral::Create(S.Context, Val.getComplexFloatReal(), true,
8156                                  ElemT, Loc),
8157          FloatingLiteral::Create(S.Context, Val.getComplexFloatImag(), true,
8158                                  ElemT, Loc)});
8159   }
8160 
8161   case APValue::Vector: {
8162     QualType ElemT = T->castAs<VectorType>()->getElementType();
8163     llvm::SmallVector<Expr *, 8> Elts;
8164     for (unsigned I = 0, N = Val.getVectorLength(); I != N; ++I)
8165       Elts.push_back(BuildExpressionFromNonTypeTemplateArgumentValue(
8166           S, ElemT, Val.getVectorElt(I), Loc));
8167     return MakeInitList(Elts);
8168   }
8169 
8170   case APValue::None:
8171   case APValue::Indeterminate:
8172     llvm_unreachable("Unexpected APValue kind.");
8173   case APValue::LValue:
8174   case APValue::MemberPointer:
8175     // There isn't necessarily a valid equivalent source-level syntax for
8176     // these; in particular, a naive lowering might violate access control.
8177     // So for now we lower to a ConstantExpr holding the value, wrapped around
8178     // an OpaqueValueExpr.
8179     // FIXME: We should have a better representation for this.
8180     ExprValueKind VK = VK_PRValue;
8181     if (T->isReferenceType()) {
8182       T = T->getPointeeType();
8183       VK = VK_LValue;
8184     }
8185     auto *OVE = new (S.Context) OpaqueValueExpr(Loc, T, VK);
8186     return ConstantExpr::Create(S.Context, OVE, Val);
8187   }
8188   llvm_unreachable("Unhandled APValue::ValueKind enum");
8189 }
8190 
8191 ExprResult
8192 Sema::BuildExpressionFromNonTypeTemplateArgument(const TemplateArgument &Arg,
8193                                                  SourceLocation Loc) {
8194   switch (Arg.getKind()) {
8195   case TemplateArgument::Null:
8196   case TemplateArgument::Type:
8197   case TemplateArgument::Template:
8198   case TemplateArgument::TemplateExpansion:
8199   case TemplateArgument::Pack:
8200     llvm_unreachable("not a non-type template argument");
8201 
8202   case TemplateArgument::Expression:
8203     return Arg.getAsExpr();
8204 
8205   case TemplateArgument::NullPtr:
8206   case TemplateArgument::Declaration:
8207     return BuildExpressionFromDeclTemplateArgument(
8208         Arg, Arg.getNonTypeTemplateArgumentType(), Loc);
8209 
8210   case TemplateArgument::Integral:
8211     return BuildExpressionFromIntegralTemplateArgumentValue(
8212         *this, Arg.getIntegralType(), Arg.getAsIntegral(), Loc);
8213 
8214   case TemplateArgument::StructuralValue:
8215     return BuildExpressionFromNonTypeTemplateArgumentValue(
8216         *this, Arg.getStructuralValueType(), Arg.getAsStructuralValue(), Loc);
8217   }
8218   llvm_unreachable("Unhandled TemplateArgument::ArgKind enum");
8219 }
8220 
8221 /// Match two template parameters within template parameter lists.
8222 static bool MatchTemplateParameterKind(
8223     Sema &S, NamedDecl *New,
8224     const Sema::TemplateCompareNewDeclInfo &NewInstFrom, NamedDecl *Old,
8225     const NamedDecl *OldInstFrom, bool Complain,
8226     Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) {
8227   // Check the actual kind (type, non-type, template).
8228   if (Old->getKind() != New->getKind()) {
8229     if (Complain) {
8230       unsigned NextDiag = diag::err_template_param_different_kind;
8231       if (TemplateArgLoc.isValid()) {
8232         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
8233         NextDiag = diag::note_template_param_different_kind;
8234       }
8235       S.Diag(New->getLocation(), NextDiag)
8236         << (Kind != Sema::TPL_TemplateMatch);
8237       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
8238         << (Kind != Sema::TPL_TemplateMatch);
8239     }
8240 
8241     return false;
8242   }
8243 
8244   // Check that both are parameter packs or neither are parameter packs.
8245   // However, if we are matching a template template argument to a
8246   // template template parameter, the template template parameter can have
8247   // a parameter pack where the template template argument does not.
8248   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
8249       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
8250         Old->isTemplateParameterPack())) {
8251     if (Complain) {
8252       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
8253       if (TemplateArgLoc.isValid()) {
8254         S.Diag(TemplateArgLoc,
8255              diag::err_template_arg_template_params_mismatch);
8256         NextDiag = diag::note_template_parameter_pack_non_pack;
8257       }
8258 
8259       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
8260                       : isa<NonTypeTemplateParmDecl>(New)? 1
8261                       : 2;
8262       S.Diag(New->getLocation(), NextDiag)
8263         << ParamKind << New->isParameterPack();
8264       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
8265         << ParamKind << Old->isParameterPack();
8266     }
8267 
8268     return false;
8269   }
8270 
8271   // For non-type template parameters, check the type of the parameter.
8272   if (NonTypeTemplateParmDecl *OldNTTP
8273                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
8274     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
8275 
8276     // If we are matching a template template argument to a template
8277     // template parameter and one of the non-type template parameter types
8278     // is dependent, then we must wait until template instantiation time
8279     // to actually compare the arguments.
8280     if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
8281         (!OldNTTP->getType()->isDependentType() &&
8282          !NewNTTP->getType()->isDependentType())) {
8283       // C++20 [temp.over.link]p6:
8284       //   Two [non-type] template-parameters are equivalent [if] they have
8285       //   equivalent types ignoring the use of type-constraints for
8286       //   placeholder types
8287       QualType OldType = S.Context.getUnconstrainedType(OldNTTP->getType());
8288       QualType NewType = S.Context.getUnconstrainedType(NewNTTP->getType());
8289       if (!S.Context.hasSameType(OldType, NewType)) {
8290         if (Complain) {
8291           unsigned NextDiag = diag::err_template_nontype_parm_different_type;
8292           if (TemplateArgLoc.isValid()) {
8293             S.Diag(TemplateArgLoc,
8294                    diag::err_template_arg_template_params_mismatch);
8295             NextDiag = diag::note_template_nontype_parm_different_type;
8296           }
8297           S.Diag(NewNTTP->getLocation(), NextDiag)
8298             << NewNTTP->getType()
8299             << (Kind != Sema::TPL_TemplateMatch);
8300           S.Diag(OldNTTP->getLocation(),
8301                  diag::note_template_nontype_parm_prev_declaration)
8302             << OldNTTP->getType();
8303         }
8304 
8305         return false;
8306       }
8307     }
8308   }
8309   // For template template parameters, check the template parameter types.
8310   // The template parameter lists of template template
8311   // parameters must agree.
8312   else if (TemplateTemplateParmDecl *OldTTP =
8313                dyn_cast<TemplateTemplateParmDecl>(Old)) {
8314     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
8315     if (!S.TemplateParameterListsAreEqual(
8316             NewInstFrom, NewTTP->getTemplateParameters(), OldInstFrom,
8317             OldTTP->getTemplateParameters(), Complain,
8318             (Kind == Sema::TPL_TemplateMatch
8319                  ? Sema::TPL_TemplateTemplateParmMatch
8320                  : Kind),
8321             TemplateArgLoc))
8322       return false;
8323   }
8324 
8325   if (Kind != Sema::TPL_TemplateParamsEquivalent &&
8326       Kind != Sema::TPL_TemplateTemplateArgumentMatch &&
8327       !isa<TemplateTemplateParmDecl>(Old)) {
8328     const Expr *NewC = nullptr, *OldC = nullptr;
8329 
8330     if (isa<TemplateTypeParmDecl>(New)) {
8331       if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
8332         NewC = TC->getImmediatelyDeclaredConstraint();
8333       if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
8334         OldC = TC->getImmediatelyDeclaredConstraint();
8335     } else if (isa<NonTypeTemplateParmDecl>(New)) {
8336       if (const Expr *E = cast<NonTypeTemplateParmDecl>(New)
8337                               ->getPlaceholderTypeConstraint())
8338         NewC = E;
8339       if (const Expr *E = cast<NonTypeTemplateParmDecl>(Old)
8340                               ->getPlaceholderTypeConstraint())
8341         OldC = E;
8342     } else
8343       llvm_unreachable("unexpected template parameter type");
8344 
8345     auto Diagnose = [&] {
8346       S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
8347            diag::err_template_different_type_constraint);
8348       S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
8349            diag::note_template_prev_declaration) << /*declaration*/0;
8350     };
8351 
8352     if (!NewC != !OldC) {
8353       if (Complain)
8354         Diagnose();
8355       return false;
8356     }
8357 
8358     if (NewC) {
8359       if (!S.AreConstraintExpressionsEqual(OldInstFrom, OldC, NewInstFrom,
8360                                            NewC)) {
8361         if (Complain)
8362           Diagnose();
8363         return false;
8364       }
8365     }
8366   }
8367 
8368   return true;
8369 }
8370 
8371 /// Diagnose a known arity mismatch when comparing template argument
8372 /// lists.
8373 static
8374 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
8375                                                 TemplateParameterList *New,
8376                                                 TemplateParameterList *Old,
8377                                       Sema::TemplateParameterListEqualKind Kind,
8378                                                 SourceLocation TemplateArgLoc) {
8379   unsigned NextDiag = diag::err_template_param_list_different_arity;
8380   if (TemplateArgLoc.isValid()) {
8381     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
8382     NextDiag = diag::note_template_param_list_different_arity;
8383   }
8384   S.Diag(New->getTemplateLoc(), NextDiag)
8385     << (New->size() > Old->size())
8386     << (Kind != Sema::TPL_TemplateMatch)
8387     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
8388   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
8389     << (Kind != Sema::TPL_TemplateMatch)
8390     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
8391 }
8392 
8393 /// Determine whether the given template parameter lists are
8394 /// equivalent.
8395 ///
8396 /// \param New  The new template parameter list, typically written in the
8397 /// source code as part of a new template declaration.
8398 ///
8399 /// \param Old  The old template parameter list, typically found via
8400 /// name lookup of the template declared with this template parameter
8401 /// list.
8402 ///
8403 /// \param Complain  If true, this routine will produce a diagnostic if
8404 /// the template parameter lists are not equivalent.
8405 ///
8406 /// \param Kind describes how we are to match the template parameter lists.
8407 ///
8408 /// \param TemplateArgLoc If this source location is valid, then we
8409 /// are actually checking the template parameter list of a template
8410 /// argument (New) against the template parameter list of its
8411 /// corresponding template template parameter (Old). We produce
8412 /// slightly different diagnostics in this scenario.
8413 ///
8414 /// \returns True if the template parameter lists are equal, false
8415 /// otherwise.
8416 bool Sema::TemplateParameterListsAreEqual(
8417     const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New,
8418     const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain,
8419     TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) {
8420   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
8421     if (Complain)
8422       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
8423                                                  TemplateArgLoc);
8424 
8425     return false;
8426   }
8427 
8428   // C++0x [temp.arg.template]p3:
8429   //   A template-argument matches a template template-parameter (call it P)
8430   //   when each of the template parameters in the template-parameter-list of
8431   //   the template-argument's corresponding class template or alias template
8432   //   (call it A) matches the corresponding template parameter in the
8433   //   template-parameter-list of P. [...]
8434   TemplateParameterList::iterator NewParm = New->begin();
8435   TemplateParameterList::iterator NewParmEnd = New->end();
8436   for (TemplateParameterList::iterator OldParm = Old->begin(),
8437                                     OldParmEnd = Old->end();
8438        OldParm != OldParmEnd; ++OldParm) {
8439     if (Kind != TPL_TemplateTemplateArgumentMatch ||
8440         !(*OldParm)->isTemplateParameterPack()) {
8441       if (NewParm == NewParmEnd) {
8442         if (Complain)
8443           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
8444                                                      TemplateArgLoc);
8445 
8446         return false;
8447       }
8448 
8449       if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm,
8450                                       OldInstFrom, Complain, Kind,
8451                                       TemplateArgLoc))
8452         return false;
8453 
8454       ++NewParm;
8455       continue;
8456     }
8457 
8458     // C++0x [temp.arg.template]p3:
8459     //   [...] When P's template- parameter-list contains a template parameter
8460     //   pack (14.5.3), the template parameter pack will match zero or more
8461     //   template parameters or template parameter packs in the
8462     //   template-parameter-list of A with the same type and form as the
8463     //   template parameter pack in P (ignoring whether those template
8464     //   parameters are template parameter packs).
8465     for (; NewParm != NewParmEnd; ++NewParm) {
8466       if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm,
8467                                       OldInstFrom, Complain, Kind,
8468                                       TemplateArgLoc))
8469         return false;
8470     }
8471   }
8472 
8473   // Make sure we exhausted all of the arguments.
8474   if (NewParm != NewParmEnd) {
8475     if (Complain)
8476       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
8477                                                  TemplateArgLoc);
8478 
8479     return false;
8480   }
8481 
8482   if (Kind != TPL_TemplateTemplateArgumentMatch &&
8483       Kind != TPL_TemplateParamsEquivalent) {
8484     const Expr *NewRC = New->getRequiresClause();
8485     const Expr *OldRC = Old->getRequiresClause();
8486 
8487     auto Diagnose = [&] {
8488       Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
8489            diag::err_template_different_requires_clause);
8490       Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
8491            diag::note_template_prev_declaration) << /*declaration*/0;
8492     };
8493 
8494     if (!NewRC != !OldRC) {
8495       if (Complain)
8496         Diagnose();
8497       return false;
8498     }
8499 
8500     if (NewRC) {
8501       if (!AreConstraintExpressionsEqual(OldInstFrom, OldRC, NewInstFrom,
8502                                          NewRC)) {
8503         if (Complain)
8504           Diagnose();
8505         return false;
8506       }
8507     }
8508   }
8509 
8510   return true;
8511 }
8512 
8513 /// Check whether a template can be declared within this scope.
8514 ///
8515 /// If the template declaration is valid in this scope, returns
8516 /// false. Otherwise, issues a diagnostic and returns true.
8517 bool
8518 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
8519   if (!S)
8520     return false;
8521 
8522   // Find the nearest enclosing declaration scope.
8523   while ((S->getFlags() & Scope::DeclScope) == 0 ||
8524          (S->getFlags() & Scope::TemplateParamScope) != 0)
8525     S = S->getParent();
8526 
8527   // C++ [temp.pre]p6: [P2096]
8528   //   A template, explicit specialization, or partial specialization shall not
8529   //   have C linkage.
8530   DeclContext *Ctx = S->getEntity();
8531   if (Ctx && Ctx->isExternCContext()) {
8532     Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
8533         << TemplateParams->getSourceRange();
8534     if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
8535       Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
8536     return true;
8537   }
8538   Ctx = Ctx ? Ctx->getRedeclContext() : nullptr;
8539 
8540   // C++ [temp]p2:
8541   //   A template-declaration can appear only as a namespace scope or
8542   //   class scope declaration.
8543   // C++ [temp.expl.spec]p3:
8544   //   An explicit specialization may be declared in any scope in which the
8545   //   corresponding primary template may be defined.
8546   // C++ [temp.class.spec]p6: [P2096]
8547   //   A partial specialization may be declared in any scope in which the
8548   //   corresponding primary template may be defined.
8549   if (Ctx) {
8550     if (Ctx->isFileContext())
8551       return false;
8552     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
8553       // C++ [temp.mem]p2:
8554       //   A local class shall not have member templates.
8555       if (RD->isLocalClass())
8556         return Diag(TemplateParams->getTemplateLoc(),
8557                     diag::err_template_inside_local_class)
8558           << TemplateParams->getSourceRange();
8559       else
8560         return false;
8561     }
8562   }
8563 
8564   return Diag(TemplateParams->getTemplateLoc(),
8565               diag::err_template_outside_namespace_or_class_scope)
8566     << TemplateParams->getSourceRange();
8567 }
8568 
8569 /// Determine what kind of template specialization the given declaration
8570 /// is.
8571 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
8572   if (!D)
8573     return TSK_Undeclared;
8574 
8575   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
8576     return Record->getTemplateSpecializationKind();
8577   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
8578     return Function->getTemplateSpecializationKind();
8579   if (VarDecl *Var = dyn_cast<VarDecl>(D))
8580     return Var->getTemplateSpecializationKind();
8581 
8582   return TSK_Undeclared;
8583 }
8584 
8585 /// Check whether a specialization is well-formed in the current
8586 /// context.
8587 ///
8588 /// This routine determines whether a template specialization can be declared
8589 /// in the current context (C++ [temp.expl.spec]p2).
8590 ///
8591 /// \param S the semantic analysis object for which this check is being
8592 /// performed.
8593 ///
8594 /// \param Specialized the entity being specialized or instantiated, which
8595 /// may be a kind of template (class template, function template, etc.) or
8596 /// a member of a class template (member function, static data member,
8597 /// member class).
8598 ///
8599 /// \param PrevDecl the previous declaration of this entity, if any.
8600 ///
8601 /// \param Loc the location of the explicit specialization or instantiation of
8602 /// this entity.
8603 ///
8604 /// \param IsPartialSpecialization whether this is a partial specialization of
8605 /// a class template.
8606 ///
8607 /// \returns true if there was an error that we cannot recover from, false
8608 /// otherwise.
8609 static bool CheckTemplateSpecializationScope(Sema &S,
8610                                              NamedDecl *Specialized,
8611                                              NamedDecl *PrevDecl,
8612                                              SourceLocation Loc,
8613                                              bool IsPartialSpecialization) {
8614   // Keep these "kind" numbers in sync with the %select statements in the
8615   // various diagnostics emitted by this routine.
8616   int EntityKind = 0;
8617   if (isa<ClassTemplateDecl>(Specialized))
8618     EntityKind = IsPartialSpecialization? 1 : 0;
8619   else if (isa<VarTemplateDecl>(Specialized))
8620     EntityKind = IsPartialSpecialization ? 3 : 2;
8621   else if (isa<FunctionTemplateDecl>(Specialized))
8622     EntityKind = 4;
8623   else if (isa<CXXMethodDecl>(Specialized))
8624     EntityKind = 5;
8625   else if (isa<VarDecl>(Specialized))
8626     EntityKind = 6;
8627   else if (isa<RecordDecl>(Specialized))
8628     EntityKind = 7;
8629   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
8630     EntityKind = 8;
8631   else {
8632     S.Diag(Loc, diag::err_template_spec_unknown_kind)
8633       << S.getLangOpts().CPlusPlus11;
8634     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8635     return true;
8636   }
8637 
8638   // C++ [temp.expl.spec]p2:
8639   //   An explicit specialization may be declared in any scope in which
8640   //   the corresponding primary template may be defined.
8641   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8642     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
8643       << Specialized;
8644     return true;
8645   }
8646 
8647   // C++ [temp.class.spec]p6:
8648   //   A class template partial specialization may be declared in any
8649   //   scope in which the primary template may be defined.
8650   DeclContext *SpecializedContext =
8651       Specialized->getDeclContext()->getRedeclContext();
8652   DeclContext *DC = S.CurContext->getRedeclContext();
8653 
8654   // Make sure that this redeclaration (or definition) occurs in the same
8655   // scope or an enclosing namespace.
8656   if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
8657                             : DC->Equals(SpecializedContext))) {
8658     if (isa<TranslationUnitDecl>(SpecializedContext))
8659       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
8660         << EntityKind << Specialized;
8661     else {
8662       auto *ND = cast<NamedDecl>(SpecializedContext);
8663       int Diag = diag::err_template_spec_redecl_out_of_scope;
8664       if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
8665         Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
8666       S.Diag(Loc, Diag) << EntityKind << Specialized
8667                         << ND << isa<CXXRecordDecl>(ND);
8668     }
8669 
8670     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8671 
8672     // Don't allow specializing in the wrong class during error recovery.
8673     // Otherwise, things can go horribly wrong.
8674     if (DC->isRecord())
8675       return true;
8676   }
8677 
8678   return false;
8679 }
8680 
8681 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
8682   if (!E->isTypeDependent())
8683     return SourceLocation();
8684   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8685   Checker.TraverseStmt(E);
8686   if (Checker.MatchLoc.isInvalid())
8687     return E->getSourceRange();
8688   return Checker.MatchLoc;
8689 }
8690 
8691 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
8692   if (!TL.getType()->isDependentType())
8693     return SourceLocation();
8694   DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8695   Checker.TraverseTypeLoc(TL);
8696   if (Checker.MatchLoc.isInvalid())
8697     return TL.getSourceRange();
8698   return Checker.MatchLoc;
8699 }
8700 
8701 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
8702 /// that checks non-type template partial specialization arguments.
8703 static bool CheckNonTypeTemplatePartialSpecializationArgs(
8704     Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
8705     const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
8706   for (unsigned I = 0; I != NumArgs; ++I) {
8707     if (Args[I].getKind() == TemplateArgument::Pack) {
8708       if (CheckNonTypeTemplatePartialSpecializationArgs(
8709               S, TemplateNameLoc, Param, Args[I].pack_begin(),
8710               Args[I].pack_size(), IsDefaultArgument))
8711         return true;
8712 
8713       continue;
8714     }
8715 
8716     if (Args[I].getKind() != TemplateArgument::Expression)
8717       continue;
8718 
8719     Expr *ArgExpr = Args[I].getAsExpr();
8720 
8721     // We can have a pack expansion of any of the bullets below.
8722     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
8723       ArgExpr = Expansion->getPattern();
8724 
8725     // Strip off any implicit casts we added as part of type checking.
8726     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8727       ArgExpr = ICE->getSubExpr();
8728 
8729     // C++ [temp.class.spec]p8:
8730     //   A non-type argument is non-specialized if it is the name of a
8731     //   non-type parameter. All other non-type arguments are
8732     //   specialized.
8733     //
8734     // Below, we check the two conditions that only apply to
8735     // specialized non-type arguments, so skip any non-specialized
8736     // arguments.
8737     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
8738       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
8739         continue;
8740 
8741     // C++ [temp.class.spec]p9:
8742     //   Within the argument list of a class template partial
8743     //   specialization, the following restrictions apply:
8744     //     -- A partially specialized non-type argument expression
8745     //        shall not involve a template parameter of the partial
8746     //        specialization except when the argument expression is a
8747     //        simple identifier.
8748     //     -- The type of a template parameter corresponding to a
8749     //        specialized non-type argument shall not be dependent on a
8750     //        parameter of the specialization.
8751     // DR1315 removes the first bullet, leaving an incoherent set of rules.
8752     // We implement a compromise between the original rules and DR1315:
8753     //     --  A specialized non-type template argument shall not be
8754     //         type-dependent and the corresponding template parameter
8755     //         shall have a non-dependent type.
8756     SourceRange ParamUseRange =
8757         findTemplateParameterInType(Param->getDepth(), ArgExpr);
8758     if (ParamUseRange.isValid()) {
8759       if (IsDefaultArgument) {
8760         S.Diag(TemplateNameLoc,
8761                diag::err_dependent_non_type_arg_in_partial_spec);
8762         S.Diag(ParamUseRange.getBegin(),
8763                diag::note_dependent_non_type_default_arg_in_partial_spec)
8764           << ParamUseRange;
8765       } else {
8766         S.Diag(ParamUseRange.getBegin(),
8767                diag::err_dependent_non_type_arg_in_partial_spec)
8768           << ParamUseRange;
8769       }
8770       return true;
8771     }
8772 
8773     ParamUseRange = findTemplateParameter(
8774         Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
8775     if (ParamUseRange.isValid()) {
8776       S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
8777              diag::err_dependent_typed_non_type_arg_in_partial_spec)
8778           << Param->getType();
8779       S.NoteTemplateParameterLocation(*Param);
8780       return true;
8781     }
8782   }
8783 
8784   return false;
8785 }
8786 
8787 /// Check the non-type template arguments of a class template
8788 /// partial specialization according to C++ [temp.class.spec]p9.
8789 ///
8790 /// \param TemplateNameLoc the location of the template name.
8791 /// \param PrimaryTemplate the template parameters of the primary class
8792 ///        template.
8793 /// \param NumExplicit the number of explicitly-specified template arguments.
8794 /// \param TemplateArgs the template arguments of the class template
8795 ///        partial specialization.
8796 ///
8797 /// \returns \c true if there was an error, \c false otherwise.
8798 bool Sema::CheckTemplatePartialSpecializationArgs(
8799     SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
8800     unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
8801   // We have to be conservative when checking a template in a dependent
8802   // context.
8803   if (PrimaryTemplate->getDeclContext()->isDependentContext())
8804     return false;
8805 
8806   TemplateParameterList *TemplateParams =
8807       PrimaryTemplate->getTemplateParameters();
8808   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8809     NonTypeTemplateParmDecl *Param
8810       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
8811     if (!Param)
8812       continue;
8813 
8814     if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
8815                                                       Param, &TemplateArgs[I],
8816                                                       1, I >= NumExplicit))
8817       return true;
8818   }
8819 
8820   return false;
8821 }
8822 
8823 DeclResult Sema::ActOnClassTemplateSpecialization(
8824     Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
8825     SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
8826     TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
8827     MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
8828   assert(TUK != TUK_Reference && "References are not specializations");
8829 
8830   // NOTE: KWLoc is the location of the tag keyword. This will instead
8831   // store the location of the outermost template keyword in the declaration.
8832   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
8833     ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
8834   SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
8835   SourceLocation LAngleLoc = TemplateId.LAngleLoc;
8836   SourceLocation RAngleLoc = TemplateId.RAngleLoc;
8837 
8838   // Find the class template we're specializing
8839   TemplateName Name = TemplateId.Template.get();
8840   ClassTemplateDecl *ClassTemplate
8841     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
8842 
8843   if (!ClassTemplate) {
8844     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
8845       << (Name.getAsTemplateDecl() &&
8846           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
8847     return true;
8848   }
8849 
8850   bool isMemberSpecialization = false;
8851   bool isPartialSpecialization = false;
8852 
8853   // Check the validity of the template headers that introduce this
8854   // template.
8855   // FIXME: We probably shouldn't complain about these headers for
8856   // friend declarations.
8857   bool Invalid = false;
8858   TemplateParameterList *TemplateParams =
8859       MatchTemplateParametersToScopeSpecifier(
8860           KWLoc, TemplateNameLoc, SS, &TemplateId,
8861           TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
8862           Invalid);
8863   if (Invalid)
8864     return true;
8865 
8866   // Check that we can declare a template specialization here.
8867   if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams))
8868     return true;
8869 
8870   if (TemplateParams && TemplateParams->size() > 0) {
8871     isPartialSpecialization = true;
8872 
8873     if (TUK == TUK_Friend) {
8874       Diag(KWLoc, diag::err_partial_specialization_friend)
8875         << SourceRange(LAngleLoc, RAngleLoc);
8876       return true;
8877     }
8878 
8879     // C++ [temp.class.spec]p10:
8880     //   The template parameter list of a specialization shall not
8881     //   contain default template argument values.
8882     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8883       Decl *Param = TemplateParams->getParam(I);
8884       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
8885         if (TTP->hasDefaultArgument()) {
8886           Diag(TTP->getDefaultArgumentLoc(),
8887                diag::err_default_arg_in_partial_spec);
8888           TTP->removeDefaultArgument();
8889         }
8890       } else if (NonTypeTemplateParmDecl *NTTP
8891                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
8892         if (Expr *DefArg = NTTP->getDefaultArgument()) {
8893           Diag(NTTP->getDefaultArgumentLoc(),
8894                diag::err_default_arg_in_partial_spec)
8895             << DefArg->getSourceRange();
8896           NTTP->removeDefaultArgument();
8897         }
8898       } else {
8899         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
8900         if (TTP->hasDefaultArgument()) {
8901           Diag(TTP->getDefaultArgument().getLocation(),
8902                diag::err_default_arg_in_partial_spec)
8903             << TTP->getDefaultArgument().getSourceRange();
8904           TTP->removeDefaultArgument();
8905         }
8906       }
8907     }
8908   } else if (TemplateParams) {
8909     if (TUK == TUK_Friend)
8910       Diag(KWLoc, diag::err_template_spec_friend)
8911         << FixItHint::CreateRemoval(
8912                                 SourceRange(TemplateParams->getTemplateLoc(),
8913                                             TemplateParams->getRAngleLoc()))
8914         << SourceRange(LAngleLoc, RAngleLoc);
8915   } else {
8916     assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
8917   }
8918 
8919   // Check that the specialization uses the same tag kind as the
8920   // original template.
8921   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8922   assert(Kind != TagTypeKind::Enum &&
8923          "Invalid enum tag in class template spec!");
8924   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
8925                                     Kind, TUK == TUK_Definition, KWLoc,
8926                                     ClassTemplate->getIdentifier())) {
8927     Diag(KWLoc, diag::err_use_with_wrong_tag)
8928       << ClassTemplate
8929       << FixItHint::CreateReplacement(KWLoc,
8930                             ClassTemplate->getTemplatedDecl()->getKindName());
8931     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8932          diag::note_previous_use);
8933     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8934   }
8935 
8936   // Translate the parser's template argument list in our AST format.
8937   TemplateArgumentListInfo TemplateArgs =
8938       makeTemplateArgumentListInfo(*this, TemplateId);
8939 
8940   // Check for unexpanded parameter packs in any of the template arguments.
8941   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8942     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
8943                                         isPartialSpecialization
8944                                             ? UPPC_PartialSpecialization
8945                                             : UPPC_ExplicitSpecialization))
8946       return true;
8947 
8948   // Check that the template argument list is well-formed for this
8949   // template.
8950   SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
8951   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
8952                                 false, SugaredConverted, CanonicalConverted,
8953                                 /*UpdateArgsWithConversions=*/true))
8954     return true;
8955 
8956   // Find the class template (partial) specialization declaration that
8957   // corresponds to these arguments.
8958   if (isPartialSpecialization) {
8959     if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
8960                                                TemplateArgs.size(),
8961                                                CanonicalConverted))
8962       return true;
8963 
8964     // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
8965     // also do it during instantiation.
8966     if (!Name.isDependent() &&
8967         !TemplateSpecializationType::anyDependentTemplateArguments(
8968             TemplateArgs, CanonicalConverted)) {
8969       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
8970         << ClassTemplate->getDeclName();
8971       isPartialSpecialization = false;
8972     }
8973   }
8974 
8975   void *InsertPos = nullptr;
8976   ClassTemplateSpecializationDecl *PrevDecl = nullptr;
8977 
8978   if (isPartialSpecialization)
8979     PrevDecl = ClassTemplate->findPartialSpecialization(
8980         CanonicalConverted, TemplateParams, InsertPos);
8981   else
8982     PrevDecl = ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
8983 
8984   ClassTemplateSpecializationDecl *Specialization = nullptr;
8985 
8986   // Check whether we can declare a class template specialization in
8987   // the current scope.
8988   if (TUK != TUK_Friend &&
8989       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
8990                                        TemplateNameLoc,
8991                                        isPartialSpecialization))
8992     return true;
8993 
8994   // The canonical type
8995   QualType CanonType;
8996   if (isPartialSpecialization) {
8997     // Build the canonical type that describes the converted template
8998     // arguments of the class template partial specialization.
8999     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
9000     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
9001                                                       CanonicalConverted);
9002 
9003     if (Context.hasSameType(CanonType,
9004                         ClassTemplate->getInjectedClassNameSpecialization()) &&
9005         (!Context.getLangOpts().CPlusPlus20 ||
9006          !TemplateParams->hasAssociatedConstraints())) {
9007       // C++ [temp.class.spec]p9b3:
9008       //
9009       //   -- The argument list of the specialization shall not be identical
9010       //      to the implicit argument list of the primary template.
9011       //
9012       // This rule has since been removed, because it's redundant given DR1495,
9013       // but we keep it because it produces better diagnostics and recovery.
9014       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
9015         << /*class template*/0 << (TUK == TUK_Definition)
9016         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
9017       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
9018                                 ClassTemplate->getIdentifier(),
9019                                 TemplateNameLoc,
9020                                 Attr,
9021                                 TemplateParams,
9022                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
9023                                 /*FriendLoc*/SourceLocation(),
9024                                 TemplateParameterLists.size() - 1,
9025                                 TemplateParameterLists.data());
9026     }
9027 
9028     // Create a new class template partial specialization declaration node.
9029     ClassTemplatePartialSpecializationDecl *PrevPartial
9030       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
9031     ClassTemplatePartialSpecializationDecl *Partial =
9032         ClassTemplatePartialSpecializationDecl::Create(
9033             Context, Kind, ClassTemplate->getDeclContext(), KWLoc,
9034             TemplateNameLoc, TemplateParams, ClassTemplate, CanonicalConverted,
9035             TemplateArgs, CanonType, PrevPartial);
9036     SetNestedNameSpecifier(*this, Partial, SS);
9037     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
9038       Partial->setTemplateParameterListsInfo(
9039           Context, TemplateParameterLists.drop_back(1));
9040     }
9041 
9042     if (!PrevPartial)
9043       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
9044     Specialization = Partial;
9045 
9046     // If we are providing an explicit specialization of a member class
9047     // template specialization, make a note of that.
9048     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
9049       PrevPartial->setMemberSpecialization();
9050 
9051     CheckTemplatePartialSpecialization(Partial);
9052   } else {
9053     // Create a new class template specialization declaration node for
9054     // this explicit specialization or friend declaration.
9055     Specialization = ClassTemplateSpecializationDecl::Create(
9056         Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc,
9057         ClassTemplate, CanonicalConverted, PrevDecl);
9058     SetNestedNameSpecifier(*this, Specialization, SS);
9059     if (TemplateParameterLists.size() > 0) {
9060       Specialization->setTemplateParameterListsInfo(Context,
9061                                                     TemplateParameterLists);
9062     }
9063 
9064     if (!PrevDecl)
9065       ClassTemplate->AddSpecialization(Specialization, InsertPos);
9066 
9067     if (CurContext->isDependentContext()) {
9068       TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
9069       CanonType = Context.getTemplateSpecializationType(CanonTemplate,
9070                                                         CanonicalConverted);
9071     } else {
9072       CanonType = Context.getTypeDeclType(Specialization);
9073     }
9074   }
9075 
9076   // C++ [temp.expl.spec]p6:
9077   //   If a template, a member template or the member of a class template is
9078   //   explicitly specialized then that specialization shall be declared
9079   //   before the first use of that specialization that would cause an implicit
9080   //   instantiation to take place, in every translation unit in which such a
9081   //   use occurs; no diagnostic is required.
9082   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
9083     bool Okay = false;
9084     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9085       // Is there any previous explicit specialization declaration?
9086       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
9087         Okay = true;
9088         break;
9089       }
9090     }
9091 
9092     if (!Okay) {
9093       SourceRange Range(TemplateNameLoc, RAngleLoc);
9094       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
9095         << Context.getTypeDeclType(Specialization) << Range;
9096 
9097       Diag(PrevDecl->getPointOfInstantiation(),
9098            diag::note_instantiation_required_here)
9099         << (PrevDecl->getTemplateSpecializationKind()
9100                                                 != TSK_ImplicitInstantiation);
9101       return true;
9102     }
9103   }
9104 
9105   // If this is not a friend, note that this is an explicit specialization.
9106   if (TUK != TUK_Friend)
9107     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
9108 
9109   // Check that this isn't a redefinition of this specialization.
9110   if (TUK == TUK_Definition) {
9111     RecordDecl *Def = Specialization->getDefinition();
9112     NamedDecl *Hidden = nullptr;
9113     if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
9114       SkipBody->ShouldSkip = true;
9115       SkipBody->Previous = Def;
9116       makeMergedDefinitionVisible(Hidden);
9117     } else if (Def) {
9118       SourceRange Range(TemplateNameLoc, RAngleLoc);
9119       Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
9120       Diag(Def->getLocation(), diag::note_previous_definition);
9121       Specialization->setInvalidDecl();
9122       return true;
9123     }
9124   }
9125 
9126   ProcessDeclAttributeList(S, Specialization, Attr);
9127 
9128   // Add alignment attributes if necessary; these attributes are checked when
9129   // the ASTContext lays out the structure.
9130   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
9131     AddAlignmentAttributesForRecord(Specialization);
9132     AddMsStructLayoutForRecord(Specialization);
9133   }
9134 
9135   if (ModulePrivateLoc.isValid())
9136     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
9137       << (isPartialSpecialization? 1 : 0)
9138       << FixItHint::CreateRemoval(ModulePrivateLoc);
9139 
9140   // Build the fully-sugared type for this class template
9141   // specialization as the user wrote in the specialization
9142   // itself. This means that we'll pretty-print the type retrieved
9143   // from the specialization's declaration the way that the user
9144   // actually wrote the specialization, rather than formatting the
9145   // name based on the "canonical" representation used to store the
9146   // template arguments in the specialization.
9147   TypeSourceInfo *WrittenTy
9148     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
9149                                                 TemplateArgs, CanonType);
9150   if (TUK != TUK_Friend) {
9151     Specialization->setTypeAsWritten(WrittenTy);
9152     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
9153   }
9154 
9155   // C++ [temp.expl.spec]p9:
9156   //   A template explicit specialization is in the scope of the
9157   //   namespace in which the template was defined.
9158   //
9159   // We actually implement this paragraph where we set the semantic
9160   // context (in the creation of the ClassTemplateSpecializationDecl),
9161   // but we also maintain the lexical context where the actual
9162   // definition occurs.
9163   Specialization->setLexicalDeclContext(CurContext);
9164 
9165   // We may be starting the definition of this specialization.
9166   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
9167     Specialization->startDefinition();
9168 
9169   if (TUK == TUK_Friend) {
9170     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
9171                                             TemplateNameLoc,
9172                                             WrittenTy,
9173                                             /*FIXME:*/KWLoc);
9174     Friend->setAccess(AS_public);
9175     CurContext->addDecl(Friend);
9176   } else {
9177     // Add the specialization into its lexical context, so that it can
9178     // be seen when iterating through the list of declarations in that
9179     // context. However, specializations are not found by name lookup.
9180     CurContext->addDecl(Specialization);
9181   }
9182 
9183   if (SkipBody && SkipBody->ShouldSkip)
9184     return SkipBody->Previous;
9185 
9186   return Specialization;
9187 }
9188 
9189 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
9190                               MultiTemplateParamsArg TemplateParameterLists,
9191                                     Declarator &D) {
9192   Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
9193   ActOnDocumentableDecl(NewDecl);
9194   return NewDecl;
9195 }
9196 
9197 Decl *Sema::ActOnConceptDefinition(Scope *S,
9198                               MultiTemplateParamsArg TemplateParameterLists,
9199                                    IdentifierInfo *Name, SourceLocation NameLoc,
9200                                    Expr *ConstraintExpr) {
9201   DeclContext *DC = CurContext;
9202 
9203   if (!DC->getRedeclContext()->isFileContext()) {
9204     Diag(NameLoc,
9205       diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
9206     return nullptr;
9207   }
9208 
9209   if (TemplateParameterLists.size() > 1) {
9210     Diag(NameLoc, diag::err_concept_extra_headers);
9211     return nullptr;
9212   }
9213 
9214   TemplateParameterList *Params = TemplateParameterLists.front();
9215 
9216   if (Params->size() == 0) {
9217     Diag(NameLoc, diag::err_concept_no_parameters);
9218     return nullptr;
9219   }
9220 
9221   // Ensure that the parameter pack, if present, is the last parameter in the
9222   // template.
9223   for (TemplateParameterList::const_iterator ParamIt = Params->begin(),
9224                                              ParamEnd = Params->end();
9225        ParamIt != ParamEnd; ++ParamIt) {
9226     Decl const *Param = *ParamIt;
9227     if (Param->isParameterPack()) {
9228       if (++ParamIt == ParamEnd)
9229         break;
9230       Diag(Param->getLocation(),
9231            diag::err_template_param_pack_must_be_last_template_parameter);
9232       return nullptr;
9233     }
9234   }
9235 
9236   if (DiagnoseUnexpandedParameterPack(ConstraintExpr))
9237     return nullptr;
9238 
9239   ConceptDecl *NewDecl =
9240       ConceptDecl::Create(Context, DC, NameLoc, Name, Params, ConstraintExpr);
9241 
9242   if (NewDecl->hasAssociatedConstraints()) {
9243     // C++2a [temp.concept]p4:
9244     // A concept shall not have associated constraints.
9245     Diag(NameLoc, diag::err_concept_no_associated_constraints);
9246     NewDecl->setInvalidDecl();
9247   }
9248 
9249   // Check for conflicting previous declaration.
9250   DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
9251   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
9252                         forRedeclarationInCurContext());
9253   LookupName(Previous, S);
9254   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
9255                        /*AllowInlineNamespace*/false);
9256   bool AddToScope = true;
9257   CheckConceptRedefinition(NewDecl, Previous, AddToScope);
9258 
9259   ActOnDocumentableDecl(NewDecl);
9260   if (AddToScope)
9261     PushOnScopeChains(NewDecl, S);
9262   return NewDecl;
9263 }
9264 
9265 void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl,
9266                                     LookupResult &Previous, bool &AddToScope) {
9267   AddToScope = true;
9268 
9269   if (Previous.empty())
9270     return;
9271 
9272   auto *OldConcept = dyn_cast<ConceptDecl>(Previous.getRepresentativeDecl()->getUnderlyingDecl());
9273   if (!OldConcept) {
9274     auto *Old = Previous.getRepresentativeDecl();
9275     Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind)
9276         << NewDecl->getDeclName();
9277     notePreviousDefinition(Old, NewDecl->getLocation());
9278     AddToScope = false;
9279     return;
9280   }
9281   // Check if we can merge with a concept declaration.
9282   bool IsSame = Context.isSameEntity(NewDecl, OldConcept);
9283   if (!IsSame) {
9284     Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept)
9285         << NewDecl->getDeclName();
9286     notePreviousDefinition(OldConcept, NewDecl->getLocation());
9287     AddToScope = false;
9288     return;
9289   }
9290   if (hasReachableDefinition(OldConcept) &&
9291       IsRedefinitionInModule(NewDecl, OldConcept)) {
9292     Diag(NewDecl->getLocation(), diag::err_redefinition)
9293         << NewDecl->getDeclName();
9294     notePreviousDefinition(OldConcept, NewDecl->getLocation());
9295     AddToScope = false;
9296     return;
9297   }
9298   if (!Previous.isSingleResult()) {
9299     // FIXME: we should produce an error in case of ambig and failed lookups.
9300     //        Other decls (e.g. namespaces) also have this shortcoming.
9301     return;
9302   }
9303   // We unwrap canonical decl late to check for module visibility.
9304   Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl());
9305 }
9306 
9307 /// \brief Strips various properties off an implicit instantiation
9308 /// that has just been explicitly specialized.
9309 static void StripImplicitInstantiation(NamedDecl *D, bool MinGW) {
9310   if (MinGW || (isa<FunctionDecl>(D) &&
9311                 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()))
9312     D->dropAttrs<DLLImportAttr, DLLExportAttr>();
9313 
9314   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
9315     FD->setInlineSpecified(false);
9316 }
9317 
9318 /// Compute the diagnostic location for an explicit instantiation
9319 //  declaration or definition.
9320 static SourceLocation DiagLocForExplicitInstantiation(
9321     NamedDecl* D, SourceLocation PointOfInstantiation) {
9322   // Explicit instantiations following a specialization have no effect and
9323   // hence no PointOfInstantiation. In that case, walk decl backwards
9324   // until a valid name loc is found.
9325   SourceLocation PrevDiagLoc = PointOfInstantiation;
9326   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
9327        Prev = Prev->getPreviousDecl()) {
9328     PrevDiagLoc = Prev->getLocation();
9329   }
9330   assert(PrevDiagLoc.isValid() &&
9331          "Explicit instantiation without point of instantiation?");
9332   return PrevDiagLoc;
9333 }
9334 
9335 /// Diagnose cases where we have an explicit template specialization
9336 /// before/after an explicit template instantiation, producing diagnostics
9337 /// for those cases where they are required and determining whether the
9338 /// new specialization/instantiation will have any effect.
9339 ///
9340 /// \param NewLoc the location of the new explicit specialization or
9341 /// instantiation.
9342 ///
9343 /// \param NewTSK the kind of the new explicit specialization or instantiation.
9344 ///
9345 /// \param PrevDecl the previous declaration of the entity.
9346 ///
9347 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
9348 ///
9349 /// \param PrevPointOfInstantiation if valid, indicates where the previous
9350 /// declaration was instantiated (either implicitly or explicitly).
9351 ///
9352 /// \param HasNoEffect will be set to true to indicate that the new
9353 /// specialization or instantiation has no effect and should be ignored.
9354 ///
9355 /// \returns true if there was an error that should prevent the introduction of
9356 /// the new declaration into the AST, false otherwise.
9357 bool
9358 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
9359                                              TemplateSpecializationKind NewTSK,
9360                                              NamedDecl *PrevDecl,
9361                                              TemplateSpecializationKind PrevTSK,
9362                                         SourceLocation PrevPointOfInstantiation,
9363                                              bool &HasNoEffect) {
9364   HasNoEffect = false;
9365 
9366   switch (NewTSK) {
9367   case TSK_Undeclared:
9368   case TSK_ImplicitInstantiation:
9369     assert(
9370         (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
9371         "previous declaration must be implicit!");
9372     return false;
9373 
9374   case TSK_ExplicitSpecialization:
9375     switch (PrevTSK) {
9376     case TSK_Undeclared:
9377     case TSK_ExplicitSpecialization:
9378       // Okay, we're just specializing something that is either already
9379       // explicitly specialized or has merely been mentioned without any
9380       // instantiation.
9381       return false;
9382 
9383     case TSK_ImplicitInstantiation:
9384       if (PrevPointOfInstantiation.isInvalid()) {
9385         // The declaration itself has not actually been instantiated, so it is
9386         // still okay to specialize it.
9387         StripImplicitInstantiation(
9388             PrevDecl,
9389             Context.getTargetInfo().getTriple().isWindowsGNUEnvironment());
9390         return false;
9391       }
9392       // Fall through
9393       [[fallthrough]];
9394 
9395     case TSK_ExplicitInstantiationDeclaration:
9396     case TSK_ExplicitInstantiationDefinition:
9397       assert((PrevTSK == TSK_ImplicitInstantiation ||
9398               PrevPointOfInstantiation.isValid()) &&
9399              "Explicit instantiation without point of instantiation?");
9400 
9401       // C++ [temp.expl.spec]p6:
9402       //   If a template, a member template or the member of a class template
9403       //   is explicitly specialized then that specialization shall be declared
9404       //   before the first use of that specialization that would cause an
9405       //   implicit instantiation to take place, in every translation unit in
9406       //   which such a use occurs; no diagnostic is required.
9407       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9408         // Is there any previous explicit specialization declaration?
9409         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
9410           return false;
9411       }
9412 
9413       Diag(NewLoc, diag::err_specialization_after_instantiation)
9414         << PrevDecl;
9415       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
9416         << (PrevTSK != TSK_ImplicitInstantiation);
9417 
9418       return true;
9419     }
9420     llvm_unreachable("The switch over PrevTSK must be exhaustive.");
9421 
9422   case TSK_ExplicitInstantiationDeclaration:
9423     switch (PrevTSK) {
9424     case TSK_ExplicitInstantiationDeclaration:
9425       // This explicit instantiation declaration is redundant (that's okay).
9426       HasNoEffect = true;
9427       return false;
9428 
9429     case TSK_Undeclared:
9430     case TSK_ImplicitInstantiation:
9431       // We're explicitly instantiating something that may have already been
9432       // implicitly instantiated; that's fine.
9433       return false;
9434 
9435     case TSK_ExplicitSpecialization:
9436       // C++0x [temp.explicit]p4:
9437       //   For a given set of template parameters, if an explicit instantiation
9438       //   of a template appears after a declaration of an explicit
9439       //   specialization for that template, the explicit instantiation has no
9440       //   effect.
9441       HasNoEffect = true;
9442       return false;
9443 
9444     case TSK_ExplicitInstantiationDefinition:
9445       // C++0x [temp.explicit]p10:
9446       //   If an entity is the subject of both an explicit instantiation
9447       //   declaration and an explicit instantiation definition in the same
9448       //   translation unit, the definition shall follow the declaration.
9449       Diag(NewLoc,
9450            diag::err_explicit_instantiation_declaration_after_definition);
9451 
9452       // Explicit instantiations following a specialization have no effect and
9453       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
9454       // until a valid name loc is found.
9455       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
9456            diag::note_explicit_instantiation_definition_here);
9457       HasNoEffect = true;
9458       return false;
9459     }
9460     llvm_unreachable("Unexpected TemplateSpecializationKind!");
9461 
9462   case TSK_ExplicitInstantiationDefinition:
9463     switch (PrevTSK) {
9464     case TSK_Undeclared:
9465     case TSK_ImplicitInstantiation:
9466       // We're explicitly instantiating something that may have already been
9467       // implicitly instantiated; that's fine.
9468       return false;
9469 
9470     case TSK_ExplicitSpecialization:
9471       // C++ DR 259, C++0x [temp.explicit]p4:
9472       //   For a given set of template parameters, if an explicit
9473       //   instantiation of a template appears after a declaration of
9474       //   an explicit specialization for that template, the explicit
9475       //   instantiation has no effect.
9476       Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
9477         << PrevDecl;
9478       Diag(PrevDecl->getLocation(),
9479            diag::note_previous_template_specialization);
9480       HasNoEffect = true;
9481       return false;
9482 
9483     case TSK_ExplicitInstantiationDeclaration:
9484       // We're explicitly instantiating a definition for something for which we
9485       // were previously asked to suppress instantiations. That's fine.
9486 
9487       // C++0x [temp.explicit]p4:
9488       //   For a given set of template parameters, if an explicit instantiation
9489       //   of a template appears after a declaration of an explicit
9490       //   specialization for that template, the explicit instantiation has no
9491       //   effect.
9492       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9493         // Is there any previous explicit specialization declaration?
9494         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
9495           HasNoEffect = true;
9496           break;
9497         }
9498       }
9499 
9500       return false;
9501 
9502     case TSK_ExplicitInstantiationDefinition:
9503       // C++0x [temp.spec]p5:
9504       //   For a given template and a given set of template-arguments,
9505       //     - an explicit instantiation definition shall appear at most once
9506       //       in a program,
9507 
9508       // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
9509       Diag(NewLoc, (getLangOpts().MSVCCompat)
9510                        ? diag::ext_explicit_instantiation_duplicate
9511                        : diag::err_explicit_instantiation_duplicate)
9512           << PrevDecl;
9513       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
9514            diag::note_previous_explicit_instantiation);
9515       HasNoEffect = true;
9516       return false;
9517     }
9518   }
9519 
9520   llvm_unreachable("Missing specialization/instantiation case?");
9521 }
9522 
9523 /// Perform semantic analysis for the given dependent function
9524 /// template specialization.
9525 ///
9526 /// The only possible way to get a dependent function template specialization
9527 /// is with a friend declaration, like so:
9528 ///
9529 /// \code
9530 ///   template \<class T> void foo(T);
9531 ///   template \<class T> class A {
9532 ///     friend void foo<>(T);
9533 ///   };
9534 /// \endcode
9535 ///
9536 /// There really isn't any useful analysis we can do here, so we
9537 /// just store the information.
9538 bool Sema::CheckDependentFunctionTemplateSpecialization(
9539     FunctionDecl *FD, const TemplateArgumentListInfo *ExplicitTemplateArgs,
9540     LookupResult &Previous) {
9541   // Remove anything from Previous that isn't a function template in
9542   // the correct context.
9543   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9544   LookupResult::Filter F = Previous.makeFilter();
9545   enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
9546   SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
9547   while (F.hasNext()) {
9548     NamedDecl *D = F.next()->getUnderlyingDecl();
9549     if (!isa<FunctionTemplateDecl>(D)) {
9550       F.erase();
9551       DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
9552       continue;
9553     }
9554 
9555     if (!FDLookupContext->InEnclosingNamespaceSetOf(
9556             D->getDeclContext()->getRedeclContext())) {
9557       F.erase();
9558       DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
9559       continue;
9560     }
9561   }
9562   F.done();
9563 
9564   bool IsFriend = FD->getFriendObjectKind() != Decl::FOK_None;
9565   if (Previous.empty()) {
9566     Diag(FD->getLocation(), diag::err_dependent_function_template_spec_no_match)
9567         << IsFriend;
9568     for (auto &P : DiscardedCandidates)
9569       Diag(P.second->getLocation(),
9570            diag::note_dependent_function_template_spec_discard_reason)
9571           << P.first << IsFriend;
9572     return true;
9573   }
9574 
9575   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
9576                                          ExplicitTemplateArgs);
9577   return false;
9578 }
9579 
9580 /// Perform semantic analysis for the given function template
9581 /// specialization.
9582 ///
9583 /// This routine performs all of the semantic analysis required for an
9584 /// explicit function template specialization. On successful completion,
9585 /// the function declaration \p FD will become a function template
9586 /// specialization.
9587 ///
9588 /// \param FD the function declaration, which will be updated to become a
9589 /// function template specialization.
9590 ///
9591 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
9592 /// if any. Note that this may be valid info even when 0 arguments are
9593 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
9594 /// as it anyway contains info on the angle brackets locations.
9595 ///
9596 /// \param Previous the set of declarations that may be specialized by
9597 /// this function specialization.
9598 ///
9599 /// \param QualifiedFriend whether this is a lookup for a qualified friend
9600 /// declaration with no explicit template argument list that might be
9601 /// befriending a function template specialization.
9602 bool Sema::CheckFunctionTemplateSpecialization(
9603     FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
9604     LookupResult &Previous, bool QualifiedFriend) {
9605   // The set of function template specializations that could match this
9606   // explicit function template specialization.
9607   UnresolvedSet<8> Candidates;
9608   TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
9609                                             /*ForTakingAddress=*/false);
9610 
9611   llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
9612       ConvertedTemplateArgs;
9613 
9614   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9615   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9616          I != E; ++I) {
9617     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
9618     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
9619       // Only consider templates found within the same semantic lookup scope as
9620       // FD.
9621       if (!FDLookupContext->InEnclosingNamespaceSetOf(
9622                                 Ovl->getDeclContext()->getRedeclContext()))
9623         continue;
9624 
9625       // When matching a constexpr member function template specialization
9626       // against the primary template, we don't yet know whether the
9627       // specialization has an implicit 'const' (because we don't know whether
9628       // it will be a static member function until we know which template it
9629       // specializes), so adjust it now assuming it specializes this template.
9630       QualType FT = FD->getType();
9631       if (FD->isConstexpr()) {
9632         CXXMethodDecl *OldMD =
9633           dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
9634         if (OldMD && OldMD->isConst()) {
9635           const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
9636           FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9637           EPI.TypeQuals.addConst();
9638           FT = Context.getFunctionType(FPT->getReturnType(),
9639                                        FPT->getParamTypes(), EPI);
9640         }
9641       }
9642 
9643       TemplateArgumentListInfo Args;
9644       if (ExplicitTemplateArgs)
9645         Args = *ExplicitTemplateArgs;
9646 
9647       // C++ [temp.expl.spec]p11:
9648       //   A trailing template-argument can be left unspecified in the
9649       //   template-id naming an explicit function template specialization
9650       //   provided it can be deduced from the function argument type.
9651       // Perform template argument deduction to determine whether we may be
9652       // specializing this template.
9653       // FIXME: It is somewhat wasteful to build
9654       TemplateDeductionInfo Info(FailedCandidates.getLocation());
9655       FunctionDecl *Specialization = nullptr;
9656       if (TemplateDeductionResult TDK = DeduceTemplateArguments(
9657               cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
9658               ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
9659               Info)) {
9660         // Template argument deduction failed; record why it failed, so
9661         // that we can provide nifty diagnostics.
9662         FailedCandidates.addCandidate().set(
9663             I.getPair(), FunTmpl->getTemplatedDecl(),
9664             MakeDeductionFailureInfo(Context, TDK, Info));
9665         (void)TDK;
9666         continue;
9667       }
9668 
9669       // Target attributes are part of the cuda function signature, so
9670       // the deduced template's cuda target must match that of the
9671       // specialization.  Given that C++ template deduction does not
9672       // take target attributes into account, we reject candidates
9673       // here that have a different target.
9674       if (LangOpts.CUDA &&
9675           IdentifyCUDATarget(Specialization,
9676                              /* IgnoreImplicitHDAttr = */ true) !=
9677               IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
9678         FailedCandidates.addCandidate().set(
9679             I.getPair(), FunTmpl->getTemplatedDecl(),
9680             MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
9681         continue;
9682       }
9683 
9684       // Record this candidate.
9685       if (ExplicitTemplateArgs)
9686         ConvertedTemplateArgs[Specialization] = std::move(Args);
9687       Candidates.addDecl(Specialization, I.getAccess());
9688     }
9689   }
9690 
9691   // For a qualified friend declaration (with no explicit marker to indicate
9692   // that a template specialization was intended), note all (template and
9693   // non-template) candidates.
9694   if (QualifiedFriend && Candidates.empty()) {
9695     Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
9696         << FD->getDeclName() << FDLookupContext;
9697     // FIXME: We should form a single candidate list and diagnose all
9698     // candidates at once, to get proper sorting and limiting.
9699     for (auto *OldND : Previous) {
9700       if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
9701         NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
9702     }
9703     FailedCandidates.NoteCandidates(*this, FD->getLocation());
9704     return true;
9705   }
9706 
9707   // Find the most specialized function template.
9708   UnresolvedSetIterator Result = getMostSpecialized(
9709       Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
9710       PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
9711       PDiag(diag::err_function_template_spec_ambiguous)
9712           << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
9713       PDiag(diag::note_function_template_spec_matched));
9714 
9715   if (Result == Candidates.end())
9716     return true;
9717 
9718   // Ignore access information;  it doesn't figure into redeclaration checking.
9719   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
9720 
9721   FunctionTemplateSpecializationInfo *SpecInfo
9722     = Specialization->getTemplateSpecializationInfo();
9723   assert(SpecInfo && "Function template specialization info missing?");
9724 
9725   // Note: do not overwrite location info if previous template
9726   // specialization kind was explicit.
9727   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
9728   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
9729     Specialization->setLocation(FD->getLocation());
9730     Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
9731     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
9732     // function can differ from the template declaration with respect to
9733     // the constexpr specifier.
9734     // FIXME: We need an update record for this AST mutation.
9735     // FIXME: What if there are multiple such prior declarations (for instance,
9736     // from different modules)?
9737     Specialization->setConstexprKind(FD->getConstexprKind());
9738   }
9739 
9740   // FIXME: Check if the prior specialization has a point of instantiation.
9741   // If so, we have run afoul of .
9742 
9743   // If this is a friend declaration, then we're not really declaring
9744   // an explicit specialization.
9745   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
9746 
9747   // Check the scope of this explicit specialization.
9748   if (!isFriend &&
9749       CheckTemplateSpecializationScope(*this,
9750                                        Specialization->getPrimaryTemplate(),
9751                                        Specialization, FD->getLocation(),
9752                                        false))
9753     return true;
9754 
9755   // C++ [temp.expl.spec]p6:
9756   //   If a template, a member template or the member of a class template is
9757   //   explicitly specialized then that specialization shall be declared
9758   //   before the first use of that specialization that would cause an implicit
9759   //   instantiation to take place, in every translation unit in which such a
9760   //   use occurs; no diagnostic is required.
9761   bool HasNoEffect = false;
9762   if (!isFriend &&
9763       CheckSpecializationInstantiationRedecl(FD->getLocation(),
9764                                              TSK_ExplicitSpecialization,
9765                                              Specialization,
9766                                    SpecInfo->getTemplateSpecializationKind(),
9767                                          SpecInfo->getPointOfInstantiation(),
9768                                              HasNoEffect))
9769     return true;
9770 
9771   // Mark the prior declaration as an explicit specialization, so that later
9772   // clients know that this is an explicit specialization.
9773   if (!isFriend) {
9774     // Since explicit specializations do not inherit '=delete' from their
9775     // primary function template - check if the 'specialization' that was
9776     // implicitly generated (during template argument deduction for partial
9777     // ordering) from the most specialized of all the function templates that
9778     // 'FD' could have been specializing, has a 'deleted' definition.  If so,
9779     // first check that it was implicitly generated during template argument
9780     // deduction by making sure it wasn't referenced, and then reset the deleted
9781     // flag to not-deleted, so that we can inherit that information from 'FD'.
9782     if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
9783         !Specialization->getCanonicalDecl()->isReferenced()) {
9784       // FIXME: This assert will not hold in the presence of modules.
9785       assert(
9786           Specialization->getCanonicalDecl() == Specialization &&
9787           "This must be the only existing declaration of this specialization");
9788       // FIXME: We need an update record for this AST mutation.
9789       Specialization->setDeletedAsWritten(false);
9790     }
9791     // FIXME: We need an update record for this AST mutation.
9792     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9793     MarkUnusedFileScopedDecl(Specialization);
9794   }
9795 
9796   // Turn the given function declaration into a function template
9797   // specialization, with the template arguments from the previous
9798   // specialization.
9799   // Take copies of (semantic and syntactic) template argument lists.
9800   const TemplateArgumentList* TemplArgs = new (Context)
9801     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
9802   FD->setFunctionTemplateSpecialization(
9803       Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
9804       SpecInfo->getTemplateSpecializationKind(),
9805       ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
9806 
9807   // A function template specialization inherits the target attributes
9808   // of its template.  (We require the attributes explicitly in the
9809   // code to match, but a template may have implicit attributes by
9810   // virtue e.g. of being constexpr, and it passes these implicit
9811   // attributes on to its specializations.)
9812   if (LangOpts.CUDA)
9813     inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
9814 
9815   // The "previous declaration" for this function template specialization is
9816   // the prior function template specialization.
9817   Previous.clear();
9818   Previous.addDecl(Specialization);
9819   return false;
9820 }
9821 
9822 /// Perform semantic analysis for the given non-template member
9823 /// specialization.
9824 ///
9825 /// This routine performs all of the semantic analysis required for an
9826 /// explicit member function specialization. On successful completion,
9827 /// the function declaration \p FD will become a member function
9828 /// specialization.
9829 ///
9830 /// \param Member the member declaration, which will be updated to become a
9831 /// specialization.
9832 ///
9833 /// \param Previous the set of declarations, one of which may be specialized
9834 /// by this function specialization;  the set will be modified to contain the
9835 /// redeclared member.
9836 bool
9837 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
9838   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
9839 
9840   // Try to find the member we are instantiating.
9841   NamedDecl *FoundInstantiation = nullptr;
9842   NamedDecl *Instantiation = nullptr;
9843   NamedDecl *InstantiatedFrom = nullptr;
9844   MemberSpecializationInfo *MSInfo = nullptr;
9845 
9846   if (Previous.empty()) {
9847     // Nowhere to look anyway.
9848   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
9849     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9850            I != E; ++I) {
9851       NamedDecl *D = (*I)->getUnderlyingDecl();
9852       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
9853         QualType Adjusted = Function->getType();
9854         if (!hasExplicitCallingConv(Adjusted))
9855           Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
9856         // This doesn't handle deduced return types, but both function
9857         // declarations should be undeduced at this point.
9858         if (Context.hasSameType(Adjusted, Method->getType())) {
9859           FoundInstantiation = *I;
9860           Instantiation = Method;
9861           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
9862           MSInfo = Method->getMemberSpecializationInfo();
9863           break;
9864         }
9865       }
9866     }
9867   } else if (isa<VarDecl>(Member)) {
9868     VarDecl *PrevVar;
9869     if (Previous.isSingleResult() &&
9870         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
9871       if (PrevVar->isStaticDataMember()) {
9872         FoundInstantiation = Previous.getRepresentativeDecl();
9873         Instantiation = PrevVar;
9874         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
9875         MSInfo = PrevVar->getMemberSpecializationInfo();
9876       }
9877   } else if (isa<RecordDecl>(Member)) {
9878     CXXRecordDecl *PrevRecord;
9879     if (Previous.isSingleResult() &&
9880         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
9881       FoundInstantiation = Previous.getRepresentativeDecl();
9882       Instantiation = PrevRecord;
9883       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
9884       MSInfo = PrevRecord->getMemberSpecializationInfo();
9885     }
9886   } else if (isa<EnumDecl>(Member)) {
9887     EnumDecl *PrevEnum;
9888     if (Previous.isSingleResult() &&
9889         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
9890       FoundInstantiation = Previous.getRepresentativeDecl();
9891       Instantiation = PrevEnum;
9892       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
9893       MSInfo = PrevEnum->getMemberSpecializationInfo();
9894     }
9895   }
9896 
9897   if (!Instantiation) {
9898     // There is no previous declaration that matches. Since member
9899     // specializations are always out-of-line, the caller will complain about
9900     // this mismatch later.
9901     return false;
9902   }
9903 
9904   // A member specialization in a friend declaration isn't really declaring
9905   // an explicit specialization, just identifying a specific (possibly implicit)
9906   // specialization. Don't change the template specialization kind.
9907   //
9908   // FIXME: Is this really valid? Other compilers reject.
9909   if (Member->getFriendObjectKind() != Decl::FOK_None) {
9910     // Preserve instantiation information.
9911     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
9912       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
9913                                       cast<CXXMethodDecl>(InstantiatedFrom),
9914         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
9915     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
9916       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
9917                                       cast<CXXRecordDecl>(InstantiatedFrom),
9918         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
9919     }
9920 
9921     Previous.clear();
9922     Previous.addDecl(FoundInstantiation);
9923     return false;
9924   }
9925 
9926   // Make sure that this is a specialization of a member.
9927   if (!InstantiatedFrom) {
9928     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
9929       << Member;
9930     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
9931     return true;
9932   }
9933 
9934   // C++ [temp.expl.spec]p6:
9935   //   If a template, a member template or the member of a class template is
9936   //   explicitly specialized then that specialization shall be declared
9937   //   before the first use of that specialization that would cause an implicit
9938   //   instantiation to take place, in every translation unit in which such a
9939   //   use occurs; no diagnostic is required.
9940   assert(MSInfo && "Member specialization info missing?");
9941 
9942   bool HasNoEffect = false;
9943   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
9944                                              TSK_ExplicitSpecialization,
9945                                              Instantiation,
9946                                      MSInfo->getTemplateSpecializationKind(),
9947                                            MSInfo->getPointOfInstantiation(),
9948                                              HasNoEffect))
9949     return true;
9950 
9951   // Check the scope of this explicit specialization.
9952   if (CheckTemplateSpecializationScope(*this,
9953                                        InstantiatedFrom,
9954                                        Instantiation, Member->getLocation(),
9955                                        false))
9956     return true;
9957 
9958   // Note that this member specialization is an "instantiation of" the
9959   // corresponding member of the original template.
9960   if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
9961     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
9962     if (InstantiationFunction->getTemplateSpecializationKind() ==
9963           TSK_ImplicitInstantiation) {
9964       // Explicit specializations of member functions of class templates do not
9965       // inherit '=delete' from the member function they are specializing.
9966       if (InstantiationFunction->isDeleted()) {
9967         // FIXME: This assert will not hold in the presence of modules.
9968         assert(InstantiationFunction->getCanonicalDecl() ==
9969                InstantiationFunction);
9970         // FIXME: We need an update record for this AST mutation.
9971         InstantiationFunction->setDeletedAsWritten(false);
9972       }
9973     }
9974 
9975     MemberFunction->setInstantiationOfMemberFunction(
9976         cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9977   } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
9978     MemberVar->setInstantiationOfStaticDataMember(
9979         cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9980   } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
9981     MemberClass->setInstantiationOfMemberClass(
9982         cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9983   } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
9984     MemberEnum->setInstantiationOfMemberEnum(
9985         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9986   } else {
9987     llvm_unreachable("unknown member specialization kind");
9988   }
9989 
9990   // Save the caller the trouble of having to figure out which declaration
9991   // this specialization matches.
9992   Previous.clear();
9993   Previous.addDecl(FoundInstantiation);
9994   return false;
9995 }
9996 
9997 /// Complete the explicit specialization of a member of a class template by
9998 /// updating the instantiated member to be marked as an explicit specialization.
9999 ///
10000 /// \param OrigD The member declaration instantiated from the template.
10001 /// \param Loc The location of the explicit specialization of the member.
10002 template<typename DeclT>
10003 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
10004                                              SourceLocation Loc) {
10005   if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
10006     return;
10007 
10008   // FIXME: Inform AST mutation listeners of this AST mutation.
10009   // FIXME: If there are multiple in-class declarations of the member (from
10010   // multiple modules, or a declaration and later definition of a member type),
10011   // should we update all of them?
10012   OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
10013   OrigD->setLocation(Loc);
10014 }
10015 
10016 void Sema::CompleteMemberSpecialization(NamedDecl *Member,
10017                                         LookupResult &Previous) {
10018   NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
10019   if (Instantiation == Member)
10020     return;
10021 
10022   if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
10023     completeMemberSpecializationImpl(*this, Function, Member->getLocation());
10024   else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
10025     completeMemberSpecializationImpl(*this, Var, Member->getLocation());
10026   else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
10027     completeMemberSpecializationImpl(*this, Record, Member->getLocation());
10028   else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
10029     completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
10030   else
10031     llvm_unreachable("unknown member specialization kind");
10032 }
10033 
10034 /// Check the scope of an explicit instantiation.
10035 ///
10036 /// \returns true if a serious error occurs, false otherwise.
10037 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
10038                                             SourceLocation InstLoc,
10039                                             bool WasQualifiedName) {
10040   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
10041   DeclContext *CurContext = S.CurContext->getRedeclContext();
10042 
10043   if (CurContext->isRecord()) {
10044     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
10045       << D;
10046     return true;
10047   }
10048 
10049   // C++11 [temp.explicit]p3:
10050   //   An explicit instantiation shall appear in an enclosing namespace of its
10051   //   template. If the name declared in the explicit instantiation is an
10052   //   unqualified name, the explicit instantiation shall appear in the
10053   //   namespace where its template is declared or, if that namespace is inline
10054   //   (7.3.1), any namespace from its enclosing namespace set.
10055   //
10056   // This is DR275, which we do not retroactively apply to C++98/03.
10057   if (WasQualifiedName) {
10058     if (CurContext->Encloses(OrigContext))
10059       return false;
10060   } else {
10061     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
10062       return false;
10063   }
10064 
10065   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
10066     if (WasQualifiedName)
10067       S.Diag(InstLoc,
10068              S.getLangOpts().CPlusPlus11?
10069                diag::err_explicit_instantiation_out_of_scope :
10070                diag::warn_explicit_instantiation_out_of_scope_0x)
10071         << D << NS;
10072     else
10073       S.Diag(InstLoc,
10074              S.getLangOpts().CPlusPlus11?
10075                diag::err_explicit_instantiation_unqualified_wrong_namespace :
10076                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
10077         << D << NS;
10078   } else
10079     S.Diag(InstLoc,
10080            S.getLangOpts().CPlusPlus11?
10081              diag::err_explicit_instantiation_must_be_global :
10082              diag::warn_explicit_instantiation_must_be_global_0x)
10083       << D;
10084   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
10085   return false;
10086 }
10087 
10088 /// Common checks for whether an explicit instantiation of \p D is valid.
10089 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
10090                                        SourceLocation InstLoc,
10091                                        bool WasQualifiedName,
10092                                        TemplateSpecializationKind TSK) {
10093   // C++ [temp.explicit]p13:
10094   //   An explicit instantiation declaration shall not name a specialization of
10095   //   a template with internal linkage.
10096   if (TSK == TSK_ExplicitInstantiationDeclaration &&
10097       D->getFormalLinkage() == Linkage::Internal) {
10098     S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
10099     return true;
10100   }
10101 
10102   // C++11 [temp.explicit]p3: [DR 275]
10103   //   An explicit instantiation shall appear in an enclosing namespace of its
10104   //   template.
10105   if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
10106     return true;
10107 
10108   return false;
10109 }
10110 
10111 /// Determine whether the given scope specifier has a template-id in it.
10112 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
10113   if (!SS.isSet())
10114     return false;
10115 
10116   // C++11 [temp.explicit]p3:
10117   //   If the explicit instantiation is for a member function, a member class
10118   //   or a static data member of a class template specialization, the name of
10119   //   the class template specialization in the qualified-id for the member
10120   //   name shall be a simple-template-id.
10121   //
10122   // C++98 has the same restriction, just worded differently.
10123   for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
10124        NNS = NNS->getPrefix())
10125     if (const Type *T = NNS->getAsType())
10126       if (isa<TemplateSpecializationType>(T))
10127         return true;
10128 
10129   return false;
10130 }
10131 
10132 /// Make a dllexport or dllimport attr on a class template specialization take
10133 /// effect.
10134 static void dllExportImportClassTemplateSpecialization(
10135     Sema &S, ClassTemplateSpecializationDecl *Def) {
10136   auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
10137   assert(A && "dllExportImportClassTemplateSpecialization called "
10138               "on Def without dllexport or dllimport");
10139 
10140   // We reject explicit instantiations in class scope, so there should
10141   // never be any delayed exported classes to worry about.
10142   assert(S.DelayedDllExportClasses.empty() &&
10143          "delayed exports present at explicit instantiation");
10144   S.checkClassLevelDLLAttribute(Def);
10145 
10146   // Propagate attribute to base class templates.
10147   for (auto &B : Def->bases()) {
10148     if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
10149             B.getType()->getAsCXXRecordDecl()))
10150       S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
10151   }
10152 
10153   S.referenceDLLExportedClassMethods();
10154 }
10155 
10156 // Explicit instantiation of a class template specialization
10157 DeclResult Sema::ActOnExplicitInstantiation(
10158     Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
10159     unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
10160     TemplateTy TemplateD, SourceLocation TemplateNameLoc,
10161     SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
10162     SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
10163   // Find the class template we're specializing
10164   TemplateName Name = TemplateD.get();
10165   TemplateDecl *TD = Name.getAsTemplateDecl();
10166   // Check that the specialization uses the same tag kind as the
10167   // original template.
10168   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10169   assert(Kind != TagTypeKind::Enum &&
10170          "Invalid enum tag in class template explicit instantiation!");
10171 
10172   ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
10173 
10174   if (!ClassTemplate) {
10175     NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
10176     Diag(TemplateNameLoc, diag::err_tag_reference_non_tag)
10177         << TD << NTK << llvm::to_underlying(Kind);
10178     Diag(TD->getLocation(), diag::note_previous_use);
10179     return true;
10180   }
10181 
10182   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
10183                                     Kind, /*isDefinition*/false, KWLoc,
10184                                     ClassTemplate->getIdentifier())) {
10185     Diag(KWLoc, diag::err_use_with_wrong_tag)
10186       << ClassTemplate
10187       << FixItHint::CreateReplacement(KWLoc,
10188                             ClassTemplate->getTemplatedDecl()->getKindName());
10189     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
10190          diag::note_previous_use);
10191     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
10192   }
10193 
10194   // C++0x [temp.explicit]p2:
10195   //   There are two forms of explicit instantiation: an explicit instantiation
10196   //   definition and an explicit instantiation declaration. An explicit
10197   //   instantiation declaration begins with the extern keyword. [...]
10198   TemplateSpecializationKind TSK = ExternLoc.isInvalid()
10199                                        ? TSK_ExplicitInstantiationDefinition
10200                                        : TSK_ExplicitInstantiationDeclaration;
10201 
10202   if (TSK == TSK_ExplicitInstantiationDeclaration &&
10203       !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
10204     // Check for dllexport class template instantiation declarations,
10205     // except for MinGW mode.
10206     for (const ParsedAttr &AL : Attr) {
10207       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
10208         Diag(ExternLoc,
10209              diag::warn_attribute_dllexport_explicit_instantiation_decl);
10210         Diag(AL.getLoc(), diag::note_attribute);
10211         break;
10212       }
10213     }
10214 
10215     if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
10216       Diag(ExternLoc,
10217            diag::warn_attribute_dllexport_explicit_instantiation_decl);
10218       Diag(A->getLocation(), diag::note_attribute);
10219     }
10220   }
10221 
10222   // In MSVC mode, dllimported explicit instantiation definitions are treated as
10223   // instantiation declarations for most purposes.
10224   bool DLLImportExplicitInstantiationDef = false;
10225   if (TSK == TSK_ExplicitInstantiationDefinition &&
10226       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
10227     // Check for dllimport class template instantiation definitions.
10228     bool DLLImport =
10229         ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
10230     for (const ParsedAttr &AL : Attr) {
10231       if (AL.getKind() == ParsedAttr::AT_DLLImport)
10232         DLLImport = true;
10233       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
10234         // dllexport trumps dllimport here.
10235         DLLImport = false;
10236         break;
10237       }
10238     }
10239     if (DLLImport) {
10240       TSK = TSK_ExplicitInstantiationDeclaration;
10241       DLLImportExplicitInstantiationDef = true;
10242     }
10243   }
10244 
10245   // Translate the parser's template argument list in our AST format.
10246   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
10247   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
10248 
10249   // Check that the template argument list is well-formed for this
10250   // template.
10251   SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
10252   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
10253                                 false, SugaredConverted, CanonicalConverted,
10254                                 /*UpdateArgsWithConversions=*/true))
10255     return true;
10256 
10257   // Find the class template specialization declaration that
10258   // corresponds to these arguments.
10259   void *InsertPos = nullptr;
10260   ClassTemplateSpecializationDecl *PrevDecl =
10261       ClassTemplate->findSpecialization(CanonicalConverted, InsertPos);
10262 
10263   TemplateSpecializationKind PrevDecl_TSK
10264     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
10265 
10266   if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
10267       Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
10268     // Check for dllexport class template instantiation definitions in MinGW
10269     // mode, if a previous declaration of the instantiation was seen.
10270     for (const ParsedAttr &AL : Attr) {
10271       if (AL.getKind() == ParsedAttr::AT_DLLExport) {
10272         Diag(AL.getLoc(),
10273              diag::warn_attribute_dllexport_explicit_instantiation_def);
10274         break;
10275       }
10276     }
10277   }
10278 
10279   if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
10280                                  SS.isSet(), TSK))
10281     return true;
10282 
10283   ClassTemplateSpecializationDecl *Specialization = nullptr;
10284 
10285   bool HasNoEffect = false;
10286   if (PrevDecl) {
10287     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
10288                                                PrevDecl, PrevDecl_TSK,
10289                                             PrevDecl->getPointOfInstantiation(),
10290                                                HasNoEffect))
10291       return PrevDecl;
10292 
10293     // Even though HasNoEffect == true means that this explicit instantiation
10294     // has no effect on semantics, we go on to put its syntax in the AST.
10295 
10296     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
10297         PrevDecl_TSK == TSK_Undeclared) {
10298       // Since the only prior class template specialization with these
10299       // arguments was referenced but not declared, reuse that
10300       // declaration node as our own, updating the source location
10301       // for the template name to reflect our new declaration.
10302       // (Other source locations will be updated later.)
10303       Specialization = PrevDecl;
10304       Specialization->setLocation(TemplateNameLoc);
10305       PrevDecl = nullptr;
10306     }
10307 
10308     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
10309         DLLImportExplicitInstantiationDef) {
10310       // The new specialization might add a dllimport attribute.
10311       HasNoEffect = false;
10312     }
10313   }
10314 
10315   if (!Specialization) {
10316     // Create a new class template specialization declaration node for
10317     // this explicit specialization.
10318     Specialization = ClassTemplateSpecializationDecl::Create(
10319         Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc,
10320         ClassTemplate, CanonicalConverted, PrevDecl);
10321     SetNestedNameSpecifier(*this, Specialization, SS);
10322 
10323     // A MSInheritanceAttr attached to the previous declaration must be
10324     // propagated to the new node prior to instantiation.
10325     if (PrevDecl) {
10326       if (const auto *A = PrevDecl->getAttr<MSInheritanceAttr>()) {
10327         auto *Clone = A->clone(getASTContext());
10328         Clone->setInherited(true);
10329         Specialization->addAttr(Clone);
10330         Consumer.AssignInheritanceModel(Specialization);
10331       }
10332     }
10333 
10334     if (!HasNoEffect && !PrevDecl) {
10335       // Insert the new specialization.
10336       ClassTemplate->AddSpecialization(Specialization, InsertPos);
10337     }
10338   }
10339 
10340   // Build the fully-sugared type for this explicit instantiation as
10341   // the user wrote in the explicit instantiation itself. This means
10342   // that we'll pretty-print the type retrieved from the
10343   // specialization's declaration the way that the user actually wrote
10344   // the explicit instantiation, rather than formatting the name based
10345   // on the "canonical" representation used to store the template
10346   // arguments in the specialization.
10347   TypeSourceInfo *WrittenTy
10348     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
10349                                                 TemplateArgs,
10350                                   Context.getTypeDeclType(Specialization));
10351   Specialization->setTypeAsWritten(WrittenTy);
10352 
10353   // Set source locations for keywords.
10354   Specialization->setExternLoc(ExternLoc);
10355   Specialization->setTemplateKeywordLoc(TemplateLoc);
10356   Specialization->setBraceRange(SourceRange());
10357 
10358   bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
10359   ProcessDeclAttributeList(S, Specialization, Attr);
10360 
10361   // Add the explicit instantiation into its lexical context. However,
10362   // since explicit instantiations are never found by name lookup, we
10363   // just put it into the declaration context directly.
10364   Specialization->setLexicalDeclContext(CurContext);
10365   CurContext->addDecl(Specialization);
10366 
10367   // Syntax is now OK, so return if it has no other effect on semantics.
10368   if (HasNoEffect) {
10369     // Set the template specialization kind.
10370     Specialization->setTemplateSpecializationKind(TSK);
10371     return Specialization;
10372   }
10373 
10374   // C++ [temp.explicit]p3:
10375   //   A definition of a class template or class member template
10376   //   shall be in scope at the point of the explicit instantiation of
10377   //   the class template or class member template.
10378   //
10379   // This check comes when we actually try to perform the
10380   // instantiation.
10381   ClassTemplateSpecializationDecl *Def
10382     = cast_or_null<ClassTemplateSpecializationDecl>(
10383                                               Specialization->getDefinition());
10384   if (!Def)
10385     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
10386   else if (TSK == TSK_ExplicitInstantiationDefinition) {
10387     MarkVTableUsed(TemplateNameLoc, Specialization, true);
10388     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
10389   }
10390 
10391   // Instantiate the members of this class template specialization.
10392   Def = cast_or_null<ClassTemplateSpecializationDecl>(
10393                                        Specialization->getDefinition());
10394   if (Def) {
10395     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
10396     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
10397     // TSK_ExplicitInstantiationDefinition
10398     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
10399         (TSK == TSK_ExplicitInstantiationDefinition ||
10400          DLLImportExplicitInstantiationDef)) {
10401       // FIXME: Need to notify the ASTMutationListener that we did this.
10402       Def->setTemplateSpecializationKind(TSK);
10403 
10404       if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
10405           (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
10406            !Context.getTargetInfo().getTriple().isPS())) {
10407         // An explicit instantiation definition can add a dll attribute to a
10408         // template with a previous instantiation declaration. MinGW doesn't
10409         // allow this.
10410         auto *A = cast<InheritableAttr>(
10411             getDLLAttr(Specialization)->clone(getASTContext()));
10412         A->setInherited(true);
10413         Def->addAttr(A);
10414         dllExportImportClassTemplateSpecialization(*this, Def);
10415       }
10416     }
10417 
10418     // Fix a TSK_ImplicitInstantiation followed by a
10419     // TSK_ExplicitInstantiationDefinition
10420     bool NewlyDLLExported =
10421         !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
10422     if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
10423         (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
10424          !Context.getTargetInfo().getTriple().isPS())) {
10425       // An explicit instantiation definition can add a dll attribute to a
10426       // template with a previous implicit instantiation. MinGW doesn't allow
10427       // this. We limit clang to only adding dllexport, to avoid potentially
10428       // strange codegen behavior. For example, if we extend this conditional
10429       // to dllimport, and we have a source file calling a method on an
10430       // implicitly instantiated template class instance and then declaring a
10431       // dllimport explicit instantiation definition for the same template
10432       // class, the codegen for the method call will not respect the dllimport,
10433       // while it will with cl. The Def will already have the DLL attribute,
10434       // since the Def and Specialization will be the same in the case of
10435       // Old_TSK == TSK_ImplicitInstantiation, and we already added the
10436       // attribute to the Specialization; we just need to make it take effect.
10437       assert(Def == Specialization &&
10438              "Def and Specialization should match for implicit instantiation");
10439       dllExportImportClassTemplateSpecialization(*this, Def);
10440     }
10441 
10442     // In MinGW mode, export the template instantiation if the declaration
10443     // was marked dllexport.
10444     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
10445         Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
10446         PrevDecl->hasAttr<DLLExportAttr>()) {
10447       dllExportImportClassTemplateSpecialization(*this, Def);
10448     }
10449 
10450     // Set the template specialization kind. Make sure it is set before
10451     // instantiating the members which will trigger ASTConsumer callbacks.
10452     Specialization->setTemplateSpecializationKind(TSK);
10453     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
10454   } else {
10455 
10456     // Set the template specialization kind.
10457     Specialization->setTemplateSpecializationKind(TSK);
10458   }
10459 
10460   return Specialization;
10461 }
10462 
10463 // Explicit instantiation of a member class of a class template.
10464 DeclResult
10465 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
10466                                  SourceLocation TemplateLoc, unsigned TagSpec,
10467                                  SourceLocation KWLoc, CXXScopeSpec &SS,
10468                                  IdentifierInfo *Name, SourceLocation NameLoc,
10469                                  const ParsedAttributesView &Attr) {
10470 
10471   bool Owned = false;
10472   bool IsDependent = false;
10473   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, KWLoc, SS, Name,
10474                NameLoc, Attr, AS_none, /*ModulePrivateLoc=*/SourceLocation(),
10475                MultiTemplateParamsArg(), Owned, IsDependent, SourceLocation(),
10476                false, TypeResult(), /*IsTypeSpecifier*/ false,
10477                /*IsTemplateParamOrArg*/ false, /*OOK=*/OOK_Outside).get();
10478   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
10479 
10480   if (!TagD)
10481     return true;
10482 
10483   TagDecl *Tag = cast<TagDecl>(TagD);
10484   assert(!Tag->isEnum() && "shouldn't see enumerations here");
10485 
10486   if (Tag->isInvalidDecl())
10487     return true;
10488 
10489   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
10490   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
10491   if (!Pattern) {
10492     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
10493       << Context.getTypeDeclType(Record);
10494     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
10495     return true;
10496   }
10497 
10498   // C++0x [temp.explicit]p2:
10499   //   If the explicit instantiation is for a class or member class, the
10500   //   elaborated-type-specifier in the declaration shall include a
10501   //   simple-template-id.
10502   //
10503   // C++98 has the same restriction, just worded differently.
10504   if (!ScopeSpecifierHasTemplateId(SS))
10505     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
10506       << Record << SS.getRange();
10507 
10508   // C++0x [temp.explicit]p2:
10509   //   There are two forms of explicit instantiation: an explicit instantiation
10510   //   definition and an explicit instantiation declaration. An explicit
10511   //   instantiation declaration begins with the extern keyword. [...]
10512   TemplateSpecializationKind TSK
10513     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10514                            : TSK_ExplicitInstantiationDeclaration;
10515 
10516   CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
10517 
10518   // Verify that it is okay to explicitly instantiate here.
10519   CXXRecordDecl *PrevDecl
10520     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
10521   if (!PrevDecl && Record->getDefinition())
10522     PrevDecl = Record;
10523   if (PrevDecl) {
10524     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
10525     bool HasNoEffect = false;
10526     assert(MSInfo && "No member specialization information?");
10527     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
10528                                                PrevDecl,
10529                                         MSInfo->getTemplateSpecializationKind(),
10530                                              MSInfo->getPointOfInstantiation(),
10531                                                HasNoEffect))
10532       return true;
10533     if (HasNoEffect)
10534       return TagD;
10535   }
10536 
10537   CXXRecordDecl *RecordDef
10538     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
10539   if (!RecordDef) {
10540     // C++ [temp.explicit]p3:
10541     //   A definition of a member class of a class template shall be in scope
10542     //   at the point of an explicit instantiation of the member class.
10543     CXXRecordDecl *Def
10544       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
10545     if (!Def) {
10546       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
10547         << 0 << Record->getDeclName() << Record->getDeclContext();
10548       Diag(Pattern->getLocation(), diag::note_forward_declaration)
10549         << Pattern;
10550       return true;
10551     } else {
10552       if (InstantiateClass(NameLoc, Record, Def,
10553                            getTemplateInstantiationArgs(Record),
10554                            TSK))
10555         return true;
10556 
10557       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
10558       if (!RecordDef)
10559         return true;
10560     }
10561   }
10562 
10563   // Instantiate all of the members of the class.
10564   InstantiateClassMembers(NameLoc, RecordDef,
10565                           getTemplateInstantiationArgs(Record), TSK);
10566 
10567   if (TSK == TSK_ExplicitInstantiationDefinition)
10568     MarkVTableUsed(NameLoc, RecordDef, true);
10569 
10570   // FIXME: We don't have any representation for explicit instantiations of
10571   // member classes. Such a representation is not needed for compilation, but it
10572   // should be available for clients that want to see all of the declarations in
10573   // the source code.
10574   return TagD;
10575 }
10576 
10577 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
10578                                             SourceLocation ExternLoc,
10579                                             SourceLocation TemplateLoc,
10580                                             Declarator &D) {
10581   // Explicit instantiations always require a name.
10582   // TODO: check if/when DNInfo should replace Name.
10583   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10584   DeclarationName Name = NameInfo.getName();
10585   if (!Name) {
10586     if (!D.isInvalidType())
10587       Diag(D.getDeclSpec().getBeginLoc(),
10588            diag::err_explicit_instantiation_requires_name)
10589           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
10590 
10591     return true;
10592   }
10593 
10594   // The scope passed in may not be a decl scope.  Zip up the scope tree until
10595   // we find one that is.
10596   while ((S->getFlags() & Scope::DeclScope) == 0 ||
10597          (S->getFlags() & Scope::TemplateParamScope) != 0)
10598     S = S->getParent();
10599 
10600   // Determine the type of the declaration.
10601   TypeSourceInfo *T = GetTypeForDeclarator(D);
10602   QualType R = T->getType();
10603   if (R.isNull())
10604     return true;
10605 
10606   // C++ [dcl.stc]p1:
10607   //   A storage-class-specifier shall not be specified in [...] an explicit
10608   //   instantiation (14.7.2) directive.
10609   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
10610     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
10611       << Name;
10612     return true;
10613   } else if (D.getDeclSpec().getStorageClassSpec()
10614                                                 != DeclSpec::SCS_unspecified) {
10615     // Complain about then remove the storage class specifier.
10616     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
10617       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10618 
10619     D.getMutableDeclSpec().ClearStorageClassSpecs();
10620   }
10621 
10622   // C++0x [temp.explicit]p1:
10623   //   [...] An explicit instantiation of a function template shall not use the
10624   //   inline or constexpr specifiers.
10625   // Presumably, this also applies to member functions of class templates as
10626   // well.
10627   if (D.getDeclSpec().isInlineSpecified())
10628     Diag(D.getDeclSpec().getInlineSpecLoc(),
10629          getLangOpts().CPlusPlus11 ?
10630            diag::err_explicit_instantiation_inline :
10631            diag::warn_explicit_instantiation_inline_0x)
10632       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
10633   if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
10634     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
10635     // not already specified.
10636     Diag(D.getDeclSpec().getConstexprSpecLoc(),
10637          diag::err_explicit_instantiation_constexpr);
10638 
10639   // A deduction guide is not on the list of entities that can be explicitly
10640   // instantiated.
10641   if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
10642     Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
10643         << /*explicit instantiation*/ 0;
10644     return true;
10645   }
10646 
10647   // C++0x [temp.explicit]p2:
10648   //   There are two forms of explicit instantiation: an explicit instantiation
10649   //   definition and an explicit instantiation declaration. An explicit
10650   //   instantiation declaration begins with the extern keyword. [...]
10651   TemplateSpecializationKind TSK
10652     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10653                            : TSK_ExplicitInstantiationDeclaration;
10654 
10655   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
10656   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
10657 
10658   if (!R->isFunctionType()) {
10659     // C++ [temp.explicit]p1:
10660     //   A [...] static data member of a class template can be explicitly
10661     //   instantiated from the member definition associated with its class
10662     //   template.
10663     // C++1y [temp.explicit]p1:
10664     //   A [...] variable [...] template specialization can be explicitly
10665     //   instantiated from its template.
10666     if (Previous.isAmbiguous())
10667       return true;
10668 
10669     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
10670     VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
10671 
10672     if (!PrevTemplate) {
10673       if (!Prev || !Prev->isStaticDataMember()) {
10674         // We expect to see a static data member here.
10675         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
10676             << Name;
10677         for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10678              P != PEnd; ++P)
10679           Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
10680         return true;
10681       }
10682 
10683       if (!Prev->getInstantiatedFromStaticDataMember()) {
10684         // FIXME: Check for explicit specialization?
10685         Diag(D.getIdentifierLoc(),
10686              diag::err_explicit_instantiation_data_member_not_instantiated)
10687             << Prev;
10688         Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
10689         // FIXME: Can we provide a note showing where this was declared?
10690         return true;
10691       }
10692     } else {
10693       // Explicitly instantiate a variable template.
10694 
10695       // C++1y [dcl.spec.auto]p6:
10696       //   ... A program that uses auto or decltype(auto) in a context not
10697       //   explicitly allowed in this section is ill-formed.
10698       //
10699       // This includes auto-typed variable template instantiations.
10700       if (R->isUndeducedType()) {
10701         Diag(T->getTypeLoc().getBeginLoc(),
10702              diag::err_auto_not_allowed_var_inst);
10703         return true;
10704       }
10705 
10706       if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
10707         // C++1y [temp.explicit]p3:
10708         //   If the explicit instantiation is for a variable, the unqualified-id
10709         //   in the declaration shall be a template-id.
10710         Diag(D.getIdentifierLoc(),
10711              diag::err_explicit_instantiation_without_template_id)
10712           << PrevTemplate;
10713         Diag(PrevTemplate->getLocation(),
10714              diag::note_explicit_instantiation_here);
10715         return true;
10716       }
10717 
10718       // Translate the parser's template argument list into our AST format.
10719       TemplateArgumentListInfo TemplateArgs =
10720           makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10721 
10722       DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
10723                                           D.getIdentifierLoc(), TemplateArgs);
10724       if (Res.isInvalid())
10725         return true;
10726 
10727       if (!Res.isUsable()) {
10728         // We somehow specified dependent template arguments in an explicit
10729         // instantiation. This should probably only happen during error
10730         // recovery.
10731         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent);
10732         return true;
10733       }
10734 
10735       // Ignore access control bits, we don't need them for redeclaration
10736       // checking.
10737       Prev = cast<VarDecl>(Res.get());
10738     }
10739 
10740     // C++0x [temp.explicit]p2:
10741     //   If the explicit instantiation is for a member function, a member class
10742     //   or a static data member of a class template specialization, the name of
10743     //   the class template specialization in the qualified-id for the member
10744     //   name shall be a simple-template-id.
10745     //
10746     // C++98 has the same restriction, just worded differently.
10747     //
10748     // This does not apply to variable template specializations, where the
10749     // template-id is in the unqualified-id instead.
10750     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
10751       Diag(D.getIdentifierLoc(),
10752            diag::ext_explicit_instantiation_without_qualified_id)
10753         << Prev << D.getCXXScopeSpec().getRange();
10754 
10755     CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
10756 
10757     // Verify that it is okay to explicitly instantiate here.
10758     TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
10759     SourceLocation POI = Prev->getPointOfInstantiation();
10760     bool HasNoEffect = false;
10761     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
10762                                                PrevTSK, POI, HasNoEffect))
10763       return true;
10764 
10765     if (!HasNoEffect) {
10766       // Instantiate static data member or variable template.
10767       Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10768       // Merge attributes.
10769       ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
10770       if (TSK == TSK_ExplicitInstantiationDefinition)
10771         InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
10772     }
10773 
10774     // Check the new variable specialization against the parsed input.
10775     if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) {
10776       Diag(T->getTypeLoc().getBeginLoc(),
10777            diag::err_invalid_var_template_spec_type)
10778           << 0 << PrevTemplate << R << Prev->getType();
10779       Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
10780           << 2 << PrevTemplate->getDeclName();
10781       return true;
10782     }
10783 
10784     // FIXME: Create an ExplicitInstantiation node?
10785     return (Decl*) nullptr;
10786   }
10787 
10788   // If the declarator is a template-id, translate the parser's template
10789   // argument list into our AST format.
10790   bool HasExplicitTemplateArgs = false;
10791   TemplateArgumentListInfo TemplateArgs;
10792   if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
10793     TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
10794     HasExplicitTemplateArgs = true;
10795   }
10796 
10797   // C++ [temp.explicit]p1:
10798   //   A [...] function [...] can be explicitly instantiated from its template.
10799   //   A member function [...] of a class template can be explicitly
10800   //  instantiated from the member definition associated with its class
10801   //  template.
10802   UnresolvedSet<8> TemplateMatches;
10803   FunctionDecl *NonTemplateMatch = nullptr;
10804   TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
10805   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10806        P != PEnd; ++P) {
10807     NamedDecl *Prev = *P;
10808     if (!HasExplicitTemplateArgs) {
10809       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
10810         QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
10811                                                 /*AdjustExceptionSpec*/true);
10812         if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
10813           if (Method->getPrimaryTemplate()) {
10814             TemplateMatches.addDecl(Method, P.getAccess());
10815           } else {
10816             // FIXME: Can this assert ever happen?  Needs a test.
10817             assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
10818             NonTemplateMatch = Method;
10819           }
10820         }
10821       }
10822     }
10823 
10824     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
10825     if (!FunTmpl)
10826       continue;
10827 
10828     TemplateDeductionInfo Info(FailedCandidates.getLocation());
10829     FunctionDecl *Specialization = nullptr;
10830     if (TemplateDeductionResult TDK
10831           = DeduceTemplateArguments(FunTmpl,
10832                                (HasExplicitTemplateArgs ? &TemplateArgs
10833                                                         : nullptr),
10834                                     R, Specialization, Info)) {
10835       // Keep track of almost-matches.
10836       FailedCandidates.addCandidate()
10837           .set(P.getPair(), FunTmpl->getTemplatedDecl(),
10838                MakeDeductionFailureInfo(Context, TDK, Info));
10839       (void)TDK;
10840       continue;
10841     }
10842 
10843     // Target attributes are part of the cuda function signature, so
10844     // the cuda target of the instantiated function must match that of its
10845     // template.  Given that C++ template deduction does not take
10846     // target attributes into account, we reject candidates here that
10847     // have a different target.
10848     if (LangOpts.CUDA &&
10849         IdentifyCUDATarget(Specialization,
10850                            /* IgnoreImplicitHDAttr = */ true) !=
10851             IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
10852       FailedCandidates.addCandidate().set(
10853           P.getPair(), FunTmpl->getTemplatedDecl(),
10854           MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
10855       continue;
10856     }
10857 
10858     TemplateMatches.addDecl(Specialization, P.getAccess());
10859   }
10860 
10861   FunctionDecl *Specialization = NonTemplateMatch;
10862   if (!Specialization) {
10863     // Find the most specialized function template specialization.
10864     UnresolvedSetIterator Result = getMostSpecialized(
10865         TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
10866         D.getIdentifierLoc(),
10867         PDiag(diag::err_explicit_instantiation_not_known) << Name,
10868         PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
10869         PDiag(diag::note_explicit_instantiation_candidate));
10870 
10871     if (Result == TemplateMatches.end())
10872       return true;
10873 
10874     // Ignore access control bits, we don't need them for redeclaration checking.
10875     Specialization = cast<FunctionDecl>(*Result);
10876   }
10877 
10878   // C++11 [except.spec]p4
10879   // In an explicit instantiation an exception-specification may be specified,
10880   // but is not required.
10881   // If an exception-specification is specified in an explicit instantiation
10882   // directive, it shall be compatible with the exception-specifications of
10883   // other declarations of that function.
10884   if (auto *FPT = R->getAs<FunctionProtoType>())
10885     if (FPT->hasExceptionSpec()) {
10886       unsigned DiagID =
10887           diag::err_mismatched_exception_spec_explicit_instantiation;
10888       if (getLangOpts().MicrosoftExt)
10889         DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
10890       bool Result = CheckEquivalentExceptionSpec(
10891           PDiag(DiagID) << Specialization->getType(),
10892           PDiag(diag::note_explicit_instantiation_here),
10893           Specialization->getType()->getAs<FunctionProtoType>(),
10894           Specialization->getLocation(), FPT, D.getBeginLoc());
10895       // In Microsoft mode, mismatching exception specifications just cause a
10896       // warning.
10897       if (!getLangOpts().MicrosoftExt && Result)
10898         return true;
10899     }
10900 
10901   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
10902     Diag(D.getIdentifierLoc(),
10903          diag::err_explicit_instantiation_member_function_not_instantiated)
10904       << Specialization
10905       << (Specialization->getTemplateSpecializationKind() ==
10906           TSK_ExplicitSpecialization);
10907     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
10908     return true;
10909   }
10910 
10911   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
10912   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
10913     PrevDecl = Specialization;
10914 
10915   if (PrevDecl) {
10916     bool HasNoEffect = false;
10917     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
10918                                                PrevDecl,
10919                                      PrevDecl->getTemplateSpecializationKind(),
10920                                           PrevDecl->getPointOfInstantiation(),
10921                                                HasNoEffect))
10922       return true;
10923 
10924     // FIXME: We may still want to build some representation of this
10925     // explicit specialization.
10926     if (HasNoEffect)
10927       return (Decl*) nullptr;
10928   }
10929 
10930   // HACK: libc++ has a bug where it attempts to explicitly instantiate the
10931   // functions
10932   //     valarray<size_t>::valarray(size_t) and
10933   //     valarray<size_t>::~valarray()
10934   // that it declared to have internal linkage with the internal_linkage
10935   // attribute. Ignore the explicit instantiation declaration in this case.
10936   if (Specialization->hasAttr<InternalLinkageAttr>() &&
10937       TSK == TSK_ExplicitInstantiationDeclaration) {
10938     if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
10939       if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
10940           RD->isInStdNamespace())
10941         return (Decl*) nullptr;
10942   }
10943 
10944   ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
10945 
10946   // In MSVC mode, dllimported explicit instantiation definitions are treated as
10947   // instantiation declarations.
10948   if (TSK == TSK_ExplicitInstantiationDefinition &&
10949       Specialization->hasAttr<DLLImportAttr>() &&
10950       Context.getTargetInfo().getCXXABI().isMicrosoft())
10951     TSK = TSK_ExplicitInstantiationDeclaration;
10952 
10953   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10954 
10955   if (Specialization->isDefined()) {
10956     // Let the ASTConsumer know that this function has been explicitly
10957     // instantiated now, and its linkage might have changed.
10958     Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
10959   } else if (TSK == TSK_ExplicitInstantiationDefinition)
10960     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
10961 
10962   // C++0x [temp.explicit]p2:
10963   //   If the explicit instantiation is for a member function, a member class
10964   //   or a static data member of a class template specialization, the name of
10965   //   the class template specialization in the qualified-id for the member
10966   //   name shall be a simple-template-id.
10967   //
10968   // C++98 has the same restriction, just worded differently.
10969   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
10970   if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
10971       D.getCXXScopeSpec().isSet() &&
10972       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
10973     Diag(D.getIdentifierLoc(),
10974          diag::ext_explicit_instantiation_without_qualified_id)
10975     << Specialization << D.getCXXScopeSpec().getRange();
10976 
10977   CheckExplicitInstantiation(
10978       *this,
10979       FunTmpl ? (NamedDecl *)FunTmpl
10980               : Specialization->getInstantiatedFromMemberFunction(),
10981       D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
10982 
10983   // FIXME: Create some kind of ExplicitInstantiationDecl here.
10984   return (Decl*) nullptr;
10985 }
10986 
10987 TypeResult
10988 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10989                         const CXXScopeSpec &SS, IdentifierInfo *Name,
10990                         SourceLocation TagLoc, SourceLocation NameLoc) {
10991   // This has to hold, because SS is expected to be defined.
10992   assert(Name && "Expected a name in a dependent tag");
10993 
10994   NestedNameSpecifier *NNS = SS.getScopeRep();
10995   if (!NNS)
10996     return true;
10997 
10998   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10999 
11000   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
11001     Diag(NameLoc, diag::err_dependent_tag_decl)
11002         << (TUK == TUK_Definition) << llvm::to_underlying(Kind)
11003         << SS.getRange();
11004     return true;
11005   }
11006 
11007   // Create the resulting type.
11008   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11009   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
11010 
11011   // Create type-source location information for this type.
11012   TypeLocBuilder TLB;
11013   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
11014   TL.setElaboratedKeywordLoc(TagLoc);
11015   TL.setQualifierLoc(SS.getWithLocInContext(Context));
11016   TL.setNameLoc(NameLoc);
11017   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
11018 }
11019 
11020 TypeResult Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
11021                                    const CXXScopeSpec &SS,
11022                                    const IdentifierInfo &II,
11023                                    SourceLocation IdLoc,
11024                                    ImplicitTypenameContext IsImplicitTypename) {
11025   if (SS.isInvalid())
11026     return true;
11027 
11028   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
11029     Diag(TypenameLoc,
11030          getLangOpts().CPlusPlus11 ?
11031            diag::warn_cxx98_compat_typename_outside_of_template :
11032            diag::ext_typename_outside_of_template)
11033       << FixItHint::CreateRemoval(TypenameLoc);
11034 
11035   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11036   TypeSourceInfo *TSI = nullptr;
11037   QualType T =
11038       CheckTypenameType((TypenameLoc.isValid() ||
11039                          IsImplicitTypename == ImplicitTypenameContext::Yes)
11040                             ? ElaboratedTypeKeyword::Typename
11041                             : ElaboratedTypeKeyword::None,
11042                         TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
11043                         /*DeducedTSTContext=*/true);
11044   if (T.isNull())
11045     return true;
11046   return CreateParsedType(T, TSI);
11047 }
11048 
11049 TypeResult
11050 Sema::ActOnTypenameType(Scope *S,
11051                         SourceLocation TypenameLoc,
11052                         const CXXScopeSpec &SS,
11053                         SourceLocation TemplateKWLoc,
11054                         TemplateTy TemplateIn,
11055                         IdentifierInfo *TemplateII,
11056                         SourceLocation TemplateIILoc,
11057                         SourceLocation LAngleLoc,
11058                         ASTTemplateArgsPtr TemplateArgsIn,
11059                         SourceLocation RAngleLoc) {
11060   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
11061     Diag(TypenameLoc,
11062          getLangOpts().CPlusPlus11 ?
11063            diag::warn_cxx98_compat_typename_outside_of_template :
11064            diag::ext_typename_outside_of_template)
11065       << FixItHint::CreateRemoval(TypenameLoc);
11066 
11067   // Strangely, non-type results are not ignored by this lookup, so the
11068   // program is ill-formed if it finds an injected-class-name.
11069   if (TypenameLoc.isValid()) {
11070     auto *LookupRD =
11071         dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
11072     if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
11073       Diag(TemplateIILoc,
11074            diag::ext_out_of_line_qualified_id_type_names_constructor)
11075         << TemplateII << 0 /*injected-class-name used as template name*/
11076         << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
11077     }
11078   }
11079 
11080   // Translate the parser's template argument list in our AST format.
11081   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
11082   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
11083 
11084   TemplateName Template = TemplateIn.get();
11085   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
11086     // Construct a dependent template specialization type.
11087     assert(DTN && "dependent template has non-dependent name?");
11088     assert(DTN->getQualifier() == SS.getScopeRep());
11089     QualType T = Context.getDependentTemplateSpecializationType(
11090         ElaboratedTypeKeyword::Typename, DTN->getQualifier(),
11091         DTN->getIdentifier(), TemplateArgs.arguments());
11092 
11093     // Create source-location information for this type.
11094     TypeLocBuilder Builder;
11095     DependentTemplateSpecializationTypeLoc SpecTL
11096     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
11097     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
11098     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
11099     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
11100     SpecTL.setTemplateNameLoc(TemplateIILoc);
11101     SpecTL.setLAngleLoc(LAngleLoc);
11102     SpecTL.setRAngleLoc(RAngleLoc);
11103     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
11104       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
11105     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
11106   }
11107 
11108   QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
11109   if (T.isNull())
11110     return true;
11111 
11112   // Provide source-location information for the template specialization type.
11113   TypeLocBuilder Builder;
11114   TemplateSpecializationTypeLoc SpecTL
11115     = Builder.push<TemplateSpecializationTypeLoc>(T);
11116   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
11117   SpecTL.setTemplateNameLoc(TemplateIILoc);
11118   SpecTL.setLAngleLoc(LAngleLoc);
11119   SpecTL.setRAngleLoc(RAngleLoc);
11120   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
11121     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
11122 
11123   T = Context.getElaboratedType(ElaboratedTypeKeyword::Typename,
11124                                 SS.getScopeRep(), T);
11125   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
11126   TL.setElaboratedKeywordLoc(TypenameLoc);
11127   TL.setQualifierLoc(SS.getWithLocInContext(Context));
11128 
11129   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
11130   return CreateParsedType(T, TSI);
11131 }
11132 
11133 
11134 /// Determine whether this failed name lookup should be treated as being
11135 /// disabled by a usage of std::enable_if.
11136 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
11137                        SourceRange &CondRange, Expr *&Cond) {
11138   // We must be looking for a ::type...
11139   if (!II.isStr("type"))
11140     return false;
11141 
11142   // ... within an explicitly-written template specialization...
11143   if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
11144     return false;
11145   TypeLoc EnableIfTy = NNS.getTypeLoc();
11146   TemplateSpecializationTypeLoc EnableIfTSTLoc =
11147       EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
11148   if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
11149     return false;
11150   const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
11151 
11152   // ... which names a complete class template declaration...
11153   const TemplateDecl *EnableIfDecl =
11154     EnableIfTST->getTemplateName().getAsTemplateDecl();
11155   if (!EnableIfDecl || EnableIfTST->isIncompleteType())
11156     return false;
11157 
11158   // ... called "enable_if".
11159   const IdentifierInfo *EnableIfII =
11160     EnableIfDecl->getDeclName().getAsIdentifierInfo();
11161   if (!EnableIfII || !EnableIfII->isStr("enable_if"))
11162     return false;
11163 
11164   // Assume the first template argument is the condition.
11165   CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
11166 
11167   // Dig out the condition.
11168   Cond = nullptr;
11169   if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
11170         != TemplateArgument::Expression)
11171     return true;
11172 
11173   Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
11174 
11175   // Ignore Boolean literals; they add no value.
11176   if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
11177     Cond = nullptr;
11178 
11179   return true;
11180 }
11181 
11182 QualType
11183 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
11184                         SourceLocation KeywordLoc,
11185                         NestedNameSpecifierLoc QualifierLoc,
11186                         const IdentifierInfo &II,
11187                         SourceLocation IILoc,
11188                         TypeSourceInfo **TSI,
11189                         bool DeducedTSTContext) {
11190   QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
11191                                  DeducedTSTContext);
11192   if (T.isNull())
11193     return QualType();
11194 
11195   *TSI = Context.CreateTypeSourceInfo(T);
11196   if (isa<DependentNameType>(T)) {
11197     DependentNameTypeLoc TL =
11198         (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
11199     TL.setElaboratedKeywordLoc(KeywordLoc);
11200     TL.setQualifierLoc(QualifierLoc);
11201     TL.setNameLoc(IILoc);
11202   } else {
11203     ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
11204     TL.setElaboratedKeywordLoc(KeywordLoc);
11205     TL.setQualifierLoc(QualifierLoc);
11206     TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
11207   }
11208   return T;
11209 }
11210 
11211 /// Build the type that describes a C++ typename specifier,
11212 /// e.g., "typename T::type".
11213 QualType
11214 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
11215                         SourceLocation KeywordLoc,
11216                         NestedNameSpecifierLoc QualifierLoc,
11217                         const IdentifierInfo &II,
11218                         SourceLocation IILoc, bool DeducedTSTContext) {
11219   CXXScopeSpec SS;
11220   SS.Adopt(QualifierLoc);
11221 
11222   DeclContext *Ctx = nullptr;
11223   if (QualifierLoc) {
11224     Ctx = computeDeclContext(SS);
11225     if (!Ctx) {
11226       // If the nested-name-specifier is dependent and couldn't be
11227       // resolved to a type, build a typename type.
11228       assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
11229       return Context.getDependentNameType(Keyword,
11230                                           QualifierLoc.getNestedNameSpecifier(),
11231                                           &II);
11232     }
11233 
11234     // If the nested-name-specifier refers to the current instantiation,
11235     // the "typename" keyword itself is superfluous. In C++03, the
11236     // program is actually ill-formed. However, DR 382 (in C++0x CD1)
11237     // allows such extraneous "typename" keywords, and we retroactively
11238     // apply this DR to C++03 code with only a warning. In any case we continue.
11239 
11240     if (RequireCompleteDeclContext(SS, Ctx))
11241       return QualType();
11242   }
11243 
11244   DeclarationName Name(&II);
11245   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
11246   if (Ctx)
11247     LookupQualifiedName(Result, Ctx, SS);
11248   else
11249     LookupName(Result, CurScope);
11250   unsigned DiagID = 0;
11251   Decl *Referenced = nullptr;
11252   switch (Result.getResultKind()) {
11253   case LookupResult::NotFound: {
11254     // If we're looking up 'type' within a template named 'enable_if', produce
11255     // a more specific diagnostic.
11256     SourceRange CondRange;
11257     Expr *Cond = nullptr;
11258     if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
11259       // If we have a condition, narrow it down to the specific failed
11260       // condition.
11261       if (Cond) {
11262         Expr *FailedCond;
11263         std::string FailedDescription;
11264         std::tie(FailedCond, FailedDescription) =
11265           findFailedBooleanCondition(Cond);
11266 
11267         Diag(FailedCond->getExprLoc(),
11268              diag::err_typename_nested_not_found_requirement)
11269           << FailedDescription
11270           << FailedCond->getSourceRange();
11271         return QualType();
11272       }
11273 
11274       Diag(CondRange.getBegin(),
11275            diag::err_typename_nested_not_found_enable_if)
11276           << Ctx << CondRange;
11277       return QualType();
11278     }
11279 
11280     DiagID = Ctx ? diag::err_typename_nested_not_found
11281                  : diag::err_unknown_typename;
11282     break;
11283   }
11284 
11285   case LookupResult::FoundUnresolvedValue: {
11286     // We found a using declaration that is a value. Most likely, the using
11287     // declaration itself is meant to have the 'typename' keyword.
11288     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
11289                           IILoc);
11290     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
11291       << Name << Ctx << FullRange;
11292     if (UnresolvedUsingValueDecl *Using
11293           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
11294       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
11295       Diag(Loc, diag::note_using_value_decl_missing_typename)
11296         << FixItHint::CreateInsertion(Loc, "typename ");
11297     }
11298   }
11299   // Fall through to create a dependent typename type, from which we can recover
11300   // better.
11301   [[fallthrough]];
11302 
11303   case LookupResult::NotFoundInCurrentInstantiation:
11304     // Okay, it's a member of an unknown instantiation.
11305     return Context.getDependentNameType(Keyword,
11306                                         QualifierLoc.getNestedNameSpecifier(),
11307                                         &II);
11308 
11309   case LookupResult::Found:
11310     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
11311       // C++ [class.qual]p2:
11312       //   In a lookup in which function names are not ignored and the
11313       //   nested-name-specifier nominates a class C, if the name specified
11314       //   after the nested-name-specifier, when looked up in C, is the
11315       //   injected-class-name of C [...] then the name is instead considered
11316       //   to name the constructor of class C.
11317       //
11318       // Unlike in an elaborated-type-specifier, function names are not ignored
11319       // in typename-specifier lookup. However, they are ignored in all the
11320       // contexts where we form a typename type with no keyword (that is, in
11321       // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
11322       //
11323       // FIXME: That's not strictly true: mem-initializer-id lookup does not
11324       // ignore functions, but that appears to be an oversight.
11325       auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
11326       auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
11327       if (Keyword == ElaboratedTypeKeyword::Typename && LookupRD && FoundRD &&
11328           FoundRD->isInjectedClassName() &&
11329           declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
11330         Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
11331             << &II << 1 << 0 /*'typename' keyword used*/;
11332 
11333       // We found a type. Build an ElaboratedType, since the
11334       // typename-specifier was just sugar.
11335       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
11336       return Context.getElaboratedType(Keyword,
11337                                        QualifierLoc.getNestedNameSpecifier(),
11338                                        Context.getTypeDeclType(Type));
11339     }
11340 
11341     // C++ [dcl.type.simple]p2:
11342     //   A type-specifier of the form
11343     //     typename[opt] nested-name-specifier[opt] template-name
11344     //   is a placeholder for a deduced class type [...].
11345     if (getLangOpts().CPlusPlus17) {
11346       if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
11347         if (!DeducedTSTContext) {
11348           QualType T(QualifierLoc
11349                          ? QualifierLoc.getNestedNameSpecifier()->getAsType()
11350                          : nullptr, 0);
11351           if (!T.isNull())
11352             Diag(IILoc, diag::err_dependent_deduced_tst)
11353               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
11354           else
11355             Diag(IILoc, diag::err_deduced_tst)
11356               << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
11357           NoteTemplateLocation(*TD);
11358           return QualType();
11359         }
11360         return Context.getElaboratedType(
11361             Keyword, QualifierLoc.getNestedNameSpecifier(),
11362             Context.getDeducedTemplateSpecializationType(TemplateName(TD),
11363                                                          QualType(), false));
11364       }
11365     }
11366 
11367     DiagID = Ctx ? diag::err_typename_nested_not_type
11368                  : diag::err_typename_not_type;
11369     Referenced = Result.getFoundDecl();
11370     break;
11371 
11372   case LookupResult::FoundOverloaded:
11373     DiagID = Ctx ? diag::err_typename_nested_not_type
11374                  : diag::err_typename_not_type;
11375     Referenced = *Result.begin();
11376     break;
11377 
11378   case LookupResult::Ambiguous:
11379     return QualType();
11380   }
11381 
11382   // If we get here, it's because name lookup did not find a
11383   // type. Emit an appropriate diagnostic and return an error.
11384   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
11385                         IILoc);
11386   if (Ctx)
11387     Diag(IILoc, DiagID) << FullRange << Name << Ctx;
11388   else
11389     Diag(IILoc, DiagID) << FullRange << Name;
11390   if (Referenced)
11391     Diag(Referenced->getLocation(),
11392          Ctx ? diag::note_typename_member_refers_here
11393              : diag::note_typename_refers_here)
11394       << Name;
11395   return QualType();
11396 }
11397 
11398 namespace {
11399   // See Sema::RebuildTypeInCurrentInstantiation
11400   class CurrentInstantiationRebuilder
11401     : public TreeTransform<CurrentInstantiationRebuilder> {
11402     SourceLocation Loc;
11403     DeclarationName Entity;
11404 
11405   public:
11406     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
11407 
11408     CurrentInstantiationRebuilder(Sema &SemaRef,
11409                                   SourceLocation Loc,
11410                                   DeclarationName Entity)
11411     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
11412       Loc(Loc), Entity(Entity) { }
11413 
11414     /// Determine whether the given type \p T has already been
11415     /// transformed.
11416     ///
11417     /// For the purposes of type reconstruction, a type has already been
11418     /// transformed if it is NULL or if it is not dependent.
11419     bool AlreadyTransformed(QualType T) {
11420       return T.isNull() || !T->isInstantiationDependentType();
11421     }
11422 
11423     /// Returns the location of the entity whose type is being
11424     /// rebuilt.
11425     SourceLocation getBaseLocation() { return Loc; }
11426 
11427     /// Returns the name of the entity whose type is being rebuilt.
11428     DeclarationName getBaseEntity() { return Entity; }
11429 
11430     /// Sets the "base" location and entity when that
11431     /// information is known based on another transformation.
11432     void setBase(SourceLocation Loc, DeclarationName Entity) {
11433       this->Loc = Loc;
11434       this->Entity = Entity;
11435     }
11436 
11437     ExprResult TransformLambdaExpr(LambdaExpr *E) {
11438       // Lambdas never need to be transformed.
11439       return E;
11440     }
11441   };
11442 } // end anonymous namespace
11443 
11444 /// Rebuilds a type within the context of the current instantiation.
11445 ///
11446 /// The type \p T is part of the type of an out-of-line member definition of
11447 /// a class template (or class template partial specialization) that was parsed
11448 /// and constructed before we entered the scope of the class template (or
11449 /// partial specialization thereof). This routine will rebuild that type now
11450 /// that we have entered the declarator's scope, which may produce different
11451 /// canonical types, e.g.,
11452 ///
11453 /// \code
11454 /// template<typename T>
11455 /// struct X {
11456 ///   typedef T* pointer;
11457 ///   pointer data();
11458 /// };
11459 ///
11460 /// template<typename T>
11461 /// typename X<T>::pointer X<T>::data() { ... }
11462 /// \endcode
11463 ///
11464 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
11465 /// since we do not know that we can look into X<T> when we parsed the type.
11466 /// This function will rebuild the type, performing the lookup of "pointer"
11467 /// in X<T> and returning an ElaboratedType whose canonical type is the same
11468 /// as the canonical type of T*, allowing the return types of the out-of-line
11469 /// definition and the declaration to match.
11470 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
11471                                                         SourceLocation Loc,
11472                                                         DeclarationName Name) {
11473   if (!T || !T->getType()->isInstantiationDependentType())
11474     return T;
11475 
11476   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
11477   return Rebuilder.TransformType(T);
11478 }
11479 
11480 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
11481   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
11482                                           DeclarationName());
11483   return Rebuilder.TransformExpr(E);
11484 }
11485 
11486 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
11487   if (SS.isInvalid())
11488     return true;
11489 
11490   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11491   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
11492                                           DeclarationName());
11493   NestedNameSpecifierLoc Rebuilt
11494     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
11495   if (!Rebuilt)
11496     return true;
11497 
11498   SS.Adopt(Rebuilt);
11499   return false;
11500 }
11501 
11502 /// Rebuild the template parameters now that we know we're in a current
11503 /// instantiation.
11504 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
11505                                                TemplateParameterList *Params) {
11506   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
11507     Decl *Param = Params->getParam(I);
11508 
11509     // There is nothing to rebuild in a type parameter.
11510     if (isa<TemplateTypeParmDecl>(Param))
11511       continue;
11512 
11513     // Rebuild the template parameter list of a template template parameter.
11514     if (TemplateTemplateParmDecl *TTP
11515         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
11516       if (RebuildTemplateParamsInCurrentInstantiation(
11517             TTP->getTemplateParameters()))
11518         return true;
11519 
11520       continue;
11521     }
11522 
11523     // Rebuild the type of a non-type template parameter.
11524     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
11525     TypeSourceInfo *NewTSI
11526       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
11527                                           NTTP->getLocation(),
11528                                           NTTP->getDeclName());
11529     if (!NewTSI)
11530       return true;
11531 
11532     if (NewTSI->getType()->isUndeducedType()) {
11533       // C++17 [temp.dep.expr]p3:
11534       //   An id-expression is type-dependent if it contains
11535       //    - an identifier associated by name lookup with a non-type
11536       //      template-parameter declared with a type that contains a
11537       //      placeholder type (7.1.7.4),
11538       NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI);
11539     }
11540 
11541     if (NewTSI != NTTP->getTypeSourceInfo()) {
11542       NTTP->setTypeSourceInfo(NewTSI);
11543       NTTP->setType(NewTSI->getType());
11544     }
11545   }
11546 
11547   return false;
11548 }
11549 
11550 /// Produces a formatted string that describes the binding of
11551 /// template parameters to template arguments.
11552 std::string
11553 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11554                                       const TemplateArgumentList &Args) {
11555   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
11556 }
11557 
11558 std::string
11559 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11560                                       const TemplateArgument *Args,
11561                                       unsigned NumArgs) {
11562   SmallString<128> Str;
11563   llvm::raw_svector_ostream Out(Str);
11564 
11565   if (!Params || Params->size() == 0 || NumArgs == 0)
11566     return std::string();
11567 
11568   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
11569     if (I >= NumArgs)
11570       break;
11571 
11572     if (I == 0)
11573       Out << "[with ";
11574     else
11575       Out << ", ";
11576 
11577     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
11578       Out << Id->getName();
11579     } else {
11580       Out << '$' << I;
11581     }
11582 
11583     Out << " = ";
11584     Args[I].print(getPrintingPolicy(), Out,
11585                   TemplateParameterList::shouldIncludeTypeForArgument(
11586                       getPrintingPolicy(), Params, I));
11587   }
11588 
11589   Out << ']';
11590   return std::string(Out.str());
11591 }
11592 
11593 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
11594                                     CachedTokens &Toks) {
11595   if (!FD)
11596     return;
11597 
11598   auto LPT = std::make_unique<LateParsedTemplate>();
11599 
11600   // Take tokens to avoid allocations
11601   LPT->Toks.swap(Toks);
11602   LPT->D = FnD;
11603   LPT->FPO = getCurFPFeatures();
11604   LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
11605 
11606   FD->setLateTemplateParsed(true);
11607 }
11608 
11609 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
11610   if (!FD)
11611     return;
11612   FD->setLateTemplateParsed(false);
11613 }
11614 
11615 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
11616   DeclContext *DC = CurContext;
11617 
11618   while (DC) {
11619     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
11620       const FunctionDecl *FD = RD->isLocalClass();
11621       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
11622     } else if (DC->isTranslationUnit() || DC->isNamespace())
11623       return false;
11624 
11625     DC = DC->getParent();
11626   }
11627   return false;
11628 }
11629 
11630 namespace {
11631 /// Walk the path from which a declaration was instantiated, and check
11632 /// that every explicit specialization along that path is visible. This enforces
11633 /// C++ [temp.expl.spec]/6:
11634 ///
11635 ///   If a template, a member template or a member of a class template is
11636 ///   explicitly specialized then that specialization shall be declared before
11637 ///   the first use of that specialization that would cause an implicit
11638 ///   instantiation to take place, in every translation unit in which such a
11639 ///   use occurs; no diagnostic is required.
11640 ///
11641 /// and also C++ [temp.class.spec]/1:
11642 ///
11643 ///   A partial specialization shall be declared before the first use of a
11644 ///   class template specialization that would make use of the partial
11645 ///   specialization as the result of an implicit or explicit instantiation
11646 ///   in every translation unit in which such a use occurs; no diagnostic is
11647 ///   required.
11648 class ExplicitSpecializationVisibilityChecker {
11649   Sema &S;
11650   SourceLocation Loc;
11651   llvm::SmallVector<Module *, 8> Modules;
11652   Sema::AcceptableKind Kind;
11653 
11654 public:
11655   ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc,
11656                                           Sema::AcceptableKind Kind)
11657       : S(S), Loc(Loc), Kind(Kind) {}
11658 
11659   void check(NamedDecl *ND) {
11660     if (auto *FD = dyn_cast<FunctionDecl>(ND))
11661       return checkImpl(FD);
11662     if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
11663       return checkImpl(RD);
11664     if (auto *VD = dyn_cast<VarDecl>(ND))
11665       return checkImpl(VD);
11666     if (auto *ED = dyn_cast<EnumDecl>(ND))
11667       return checkImpl(ED);
11668   }
11669 
11670 private:
11671   void diagnose(NamedDecl *D, bool IsPartialSpec) {
11672     auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
11673                               : Sema::MissingImportKind::ExplicitSpecialization;
11674     const bool Recover = true;
11675 
11676     // If we got a custom set of modules (because only a subset of the
11677     // declarations are interesting), use them, otherwise let
11678     // diagnoseMissingImport intelligently pick some.
11679     if (Modules.empty())
11680       S.diagnoseMissingImport(Loc, D, Kind, Recover);
11681     else
11682       S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
11683   }
11684 
11685   bool CheckMemberSpecialization(const NamedDecl *D) {
11686     return Kind == Sema::AcceptableKind::Visible
11687                ? S.hasVisibleMemberSpecialization(D)
11688                : S.hasReachableMemberSpecialization(D);
11689   }
11690 
11691   bool CheckExplicitSpecialization(const NamedDecl *D) {
11692     return Kind == Sema::AcceptableKind::Visible
11693                ? S.hasVisibleExplicitSpecialization(D)
11694                : S.hasReachableExplicitSpecialization(D);
11695   }
11696 
11697   bool CheckDeclaration(const NamedDecl *D) {
11698     return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D)
11699                                                  : S.hasReachableDeclaration(D);
11700   }
11701 
11702   // Check a specific declaration. There are three problematic cases:
11703   //
11704   //  1) The declaration is an explicit specialization of a template
11705   //     specialization.
11706   //  2) The declaration is an explicit specialization of a member of an
11707   //     templated class.
11708   //  3) The declaration is an instantiation of a template, and that template
11709   //     is an explicit specialization of a member of a templated class.
11710   //
11711   // We don't need to go any deeper than that, as the instantiation of the
11712   // surrounding class / etc is not triggered by whatever triggered this
11713   // instantiation, and thus should be checked elsewhere.
11714   template<typename SpecDecl>
11715   void checkImpl(SpecDecl *Spec) {
11716     bool IsHiddenExplicitSpecialization = false;
11717     if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
11718       IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo()
11719                                            ? !CheckMemberSpecialization(Spec)
11720                                            : !CheckExplicitSpecialization(Spec);
11721     } else {
11722       checkInstantiated(Spec);
11723     }
11724 
11725     if (IsHiddenExplicitSpecialization)
11726       diagnose(Spec->getMostRecentDecl(), false);
11727   }
11728 
11729   void checkInstantiated(FunctionDecl *FD) {
11730     if (auto *TD = FD->getPrimaryTemplate())
11731       checkTemplate(TD);
11732   }
11733 
11734   void checkInstantiated(CXXRecordDecl *RD) {
11735     auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
11736     if (!SD)
11737       return;
11738 
11739     auto From = SD->getSpecializedTemplateOrPartial();
11740     if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
11741       checkTemplate(TD);
11742     else if (auto *TD =
11743                  From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
11744       if (!CheckDeclaration(TD))
11745         diagnose(TD, true);
11746       checkTemplate(TD);
11747     }
11748   }
11749 
11750   void checkInstantiated(VarDecl *RD) {
11751     auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
11752     if (!SD)
11753       return;
11754 
11755     auto From = SD->getSpecializedTemplateOrPartial();
11756     if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
11757       checkTemplate(TD);
11758     else if (auto *TD =
11759                  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
11760       if (!CheckDeclaration(TD))
11761         diagnose(TD, true);
11762       checkTemplate(TD);
11763     }
11764   }
11765 
11766   void checkInstantiated(EnumDecl *FD) {}
11767 
11768   template<typename TemplDecl>
11769   void checkTemplate(TemplDecl *TD) {
11770     if (TD->isMemberSpecialization()) {
11771       if (!CheckMemberSpecialization(TD))
11772         diagnose(TD->getMostRecentDecl(), false);
11773     }
11774   }
11775 };
11776 } // end anonymous namespace
11777 
11778 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
11779   if (!getLangOpts().Modules)
11780     return;
11781 
11782   ExplicitSpecializationVisibilityChecker(*this, Loc,
11783                                           Sema::AcceptableKind::Visible)
11784       .check(Spec);
11785 }
11786 
11787 void Sema::checkSpecializationReachability(SourceLocation Loc,
11788                                            NamedDecl *Spec) {
11789   if (!getLangOpts().CPlusPlusModules)
11790     return checkSpecializationVisibility(Loc, Spec);
11791 
11792   ExplicitSpecializationVisibilityChecker(*this, Loc,
11793                                           Sema::AcceptableKind::Reachable)
11794       .check(Spec);
11795 }
11796 
11797 /// Returns the top most location responsible for the definition of \p N.
11798 /// If \p N is a a template specialization, this is the location
11799 /// of the top of the instantiation stack.
11800 /// Otherwise, the location of \p N is returned.
11801 SourceLocation Sema::getTopMostPointOfInstantiation(const NamedDecl *N) const {
11802   if (!getLangOpts().CPlusPlus || CodeSynthesisContexts.empty())
11803     return N->getLocation();
11804   if (const auto *FD = dyn_cast<FunctionDecl>(N)) {
11805     if (!FD->isFunctionTemplateSpecialization())
11806       return FD->getLocation();
11807   } else if (!isa<ClassTemplateSpecializationDecl,
11808                   VarTemplateSpecializationDecl>(N)) {
11809     return N->getLocation();
11810   }
11811   for (const CodeSynthesisContext &CSC : CodeSynthesisContexts) {
11812     if (!CSC.isInstantiationRecord() || CSC.PointOfInstantiation.isInvalid())
11813       continue;
11814     return CSC.PointOfInstantiation;
11815   }
11816   return N->getLocation();
11817 }
11818