1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===// 7 // 8 // This file implements semantic analysis for C++ templates. 9 //===----------------------------------------------------------------------===// 10 11 #include "TreeTransform.h" 12 #include "clang/AST/ASTConsumer.h" 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclFriend.h" 15 #include "clang/AST/DeclTemplate.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/RecursiveASTVisitor.h" 19 #include "clang/AST/TypeVisitor.h" 20 #include "clang/Basic/Builtins.h" 21 #include "clang/Basic/LangOptions.h" 22 #include "clang/Basic/PartialDiagnostic.h" 23 #include "clang/Basic/Stack.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Sema/DeclSpec.h" 26 #include "clang/Sema/Initialization.h" 27 #include "clang/Sema/Lookup.h" 28 #include "clang/Sema/Overload.h" 29 #include "clang/Sema/ParsedTemplate.h" 30 #include "clang/Sema/Scope.h" 31 #include "clang/Sema/SemaInternal.h" 32 #include "clang/Sema/Template.h" 33 #include "clang/Sema/TemplateDeduction.h" 34 #include "llvm/ADT/SmallBitVector.h" 35 #include "llvm/ADT/SmallString.h" 36 #include "llvm/ADT/StringExtras.h" 37 38 #include <iterator> 39 using namespace clang; 40 using namespace sema; 41 42 // Exported for use by Parser. 43 SourceRange 44 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 45 unsigned N) { 46 if (!N) return SourceRange(); 47 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 48 } 49 50 unsigned Sema::getTemplateDepth(Scope *S) const { 51 unsigned Depth = 0; 52 53 // Each template parameter scope represents one level of template parameter 54 // depth. 55 for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope; 56 TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) { 57 ++Depth; 58 } 59 60 // Note that there are template parameters with the given depth. 61 auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); }; 62 63 // Look for parameters of an enclosing generic lambda. We don't create a 64 // template parameter scope for these. 65 for (FunctionScopeInfo *FSI : getFunctionScopes()) { 66 if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) { 67 if (!LSI->TemplateParams.empty()) { 68 ParamsAtDepth(LSI->AutoTemplateParameterDepth); 69 break; 70 } 71 if (LSI->GLTemplateParameterList) { 72 ParamsAtDepth(LSI->GLTemplateParameterList->getDepth()); 73 break; 74 } 75 } 76 } 77 78 // Look for parameters of an enclosing terse function template. We don't 79 // create a template parameter scope for these either. 80 for (const InventedTemplateParameterInfo &Info : 81 getInventedParameterInfos()) { 82 if (!Info.TemplateParams.empty()) { 83 ParamsAtDepth(Info.AutoTemplateParameterDepth); 84 break; 85 } 86 } 87 88 return Depth; 89 } 90 91 /// \brief Determine whether the declaration found is acceptable as the name 92 /// of a template and, if so, return that template declaration. Otherwise, 93 /// returns null. 94 /// 95 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent 96 /// is true. In all other cases it will return a TemplateDecl (or null). 97 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D, 98 bool AllowFunctionTemplates, 99 bool AllowDependent) { 100 D = D->getUnderlyingDecl(); 101 102 if (isa<TemplateDecl>(D)) { 103 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 104 return nullptr; 105 106 return D; 107 } 108 109 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 110 // C++ [temp.local]p1: 111 // Like normal (non-template) classes, class templates have an 112 // injected-class-name (Clause 9). The injected-class-name 113 // can be used with or without a template-argument-list. When 114 // it is used without a template-argument-list, it is 115 // equivalent to the injected-class-name followed by the 116 // template-parameters of the class template enclosed in 117 // <>. When it is used with a template-argument-list, it 118 // refers to the specified class template specialization, 119 // which could be the current specialization or another 120 // specialization. 121 if (Record->isInjectedClassName()) { 122 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 123 if (Record->getDescribedClassTemplate()) 124 return Record->getDescribedClassTemplate(); 125 126 if (ClassTemplateSpecializationDecl *Spec 127 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 128 return Spec->getSpecializedTemplate(); 129 } 130 131 return nullptr; 132 } 133 134 // 'using Dependent::foo;' can resolve to a template name. 135 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an 136 // injected-class-name). 137 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D)) 138 return D; 139 140 return nullptr; 141 } 142 143 void Sema::FilterAcceptableTemplateNames(LookupResult &R, 144 bool AllowFunctionTemplates, 145 bool AllowDependent) { 146 LookupResult::Filter filter = R.makeFilter(); 147 while (filter.hasNext()) { 148 NamedDecl *Orig = filter.next(); 149 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent)) 150 filter.erase(); 151 } 152 filter.done(); 153 } 154 155 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 156 bool AllowFunctionTemplates, 157 bool AllowDependent, 158 bool AllowNonTemplateFunctions) { 159 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 160 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent)) 161 return true; 162 if (AllowNonTemplateFunctions && 163 isa<FunctionDecl>((*I)->getUnderlyingDecl())) 164 return true; 165 } 166 167 return false; 168 } 169 170 TemplateNameKind Sema::isTemplateName(Scope *S, 171 CXXScopeSpec &SS, 172 bool hasTemplateKeyword, 173 const UnqualifiedId &Name, 174 ParsedType ObjectTypePtr, 175 bool EnteringContext, 176 TemplateTy &TemplateResult, 177 bool &MemberOfUnknownSpecialization, 178 bool Disambiguation) { 179 assert(getLangOpts().CPlusPlus && "No template names in C!"); 180 181 DeclarationName TName; 182 MemberOfUnknownSpecialization = false; 183 184 switch (Name.getKind()) { 185 case UnqualifiedIdKind::IK_Identifier: 186 TName = DeclarationName(Name.Identifier); 187 break; 188 189 case UnqualifiedIdKind::IK_OperatorFunctionId: 190 TName = Context.DeclarationNames.getCXXOperatorName( 191 Name.OperatorFunctionId.Operator); 192 break; 193 194 case UnqualifiedIdKind::IK_LiteralOperatorId: 195 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 196 break; 197 198 default: 199 return TNK_Non_template; 200 } 201 202 QualType ObjectType = ObjectTypePtr.get(); 203 204 AssumedTemplateKind AssumedTemplate; 205 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName); 206 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 207 MemberOfUnknownSpecialization, SourceLocation(), 208 &AssumedTemplate, 209 /*AllowTypoCorrection=*/!Disambiguation)) 210 return TNK_Non_template; 211 212 if (AssumedTemplate != AssumedTemplateKind::None) { 213 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName)); 214 // Let the parser know whether we found nothing or found functions; if we 215 // found nothing, we want to more carefully check whether this is actually 216 // a function template name versus some other kind of undeclared identifier. 217 return AssumedTemplate == AssumedTemplateKind::FoundNothing 218 ? TNK_Undeclared_template 219 : TNK_Function_template; 220 } 221 222 if (R.empty()) 223 return TNK_Non_template; 224 225 NamedDecl *D = nullptr; 226 if (R.isAmbiguous()) { 227 // If we got an ambiguity involving a non-function template, treat this 228 // as a template name, and pick an arbitrary template for error recovery. 229 bool AnyFunctionTemplates = false; 230 for (NamedDecl *FoundD : R) { 231 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) { 232 if (isa<FunctionTemplateDecl>(FoundTemplate)) 233 AnyFunctionTemplates = true; 234 else { 235 D = FoundTemplate; 236 break; 237 } 238 } 239 } 240 241 // If we didn't find any templates at all, this isn't a template name. 242 // Leave the ambiguity for a later lookup to diagnose. 243 if (!D && !AnyFunctionTemplates) { 244 R.suppressDiagnostics(); 245 return TNK_Non_template; 246 } 247 248 // If the only templates were function templates, filter out the rest. 249 // We'll diagnose the ambiguity later. 250 if (!D) 251 FilterAcceptableTemplateNames(R); 252 } 253 254 // At this point, we have either picked a single template name declaration D 255 // or we have a non-empty set of results R containing either one template name 256 // declaration or a set of function templates. 257 258 TemplateName Template; 259 TemplateNameKind TemplateKind; 260 261 unsigned ResultCount = R.end() - R.begin(); 262 if (!D && ResultCount > 1) { 263 // We assume that we'll preserve the qualifier from a function 264 // template name in other ways. 265 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 266 TemplateKind = TNK_Function_template; 267 268 // We'll do this lookup again later. 269 R.suppressDiagnostics(); 270 } else { 271 if (!D) { 272 D = getAsTemplateNameDecl(*R.begin()); 273 assert(D && "unambiguous result is not a template name"); 274 } 275 276 if (isa<UnresolvedUsingValueDecl>(D)) { 277 // We don't yet know whether this is a template-name or not. 278 MemberOfUnknownSpecialization = true; 279 return TNK_Non_template; 280 } 281 282 TemplateDecl *TD = cast<TemplateDecl>(D); 283 284 if (SS.isSet() && !SS.isInvalid()) { 285 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 286 Template = Context.getQualifiedTemplateName(Qualifier, 287 hasTemplateKeyword, TD); 288 } else { 289 Template = TemplateName(TD); 290 } 291 292 if (isa<FunctionTemplateDecl>(TD)) { 293 TemplateKind = TNK_Function_template; 294 295 // We'll do this lookup again later. 296 R.suppressDiagnostics(); 297 } else { 298 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 299 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || 300 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)); 301 TemplateKind = 302 isa<VarTemplateDecl>(TD) ? TNK_Var_template : 303 isa<ConceptDecl>(TD) ? TNK_Concept_template : 304 TNK_Type_template; 305 } 306 } 307 308 TemplateResult = TemplateTy::make(Template); 309 return TemplateKind; 310 } 311 312 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, 313 SourceLocation NameLoc, 314 ParsedTemplateTy *Template) { 315 CXXScopeSpec SS; 316 bool MemberOfUnknownSpecialization = false; 317 318 // We could use redeclaration lookup here, but we don't need to: the 319 // syntactic form of a deduction guide is enough to identify it even 320 // if we can't look up the template name at all. 321 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); 322 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), 323 /*EnteringContext*/ false, 324 MemberOfUnknownSpecialization)) 325 return false; 326 327 if (R.empty()) return false; 328 if (R.isAmbiguous()) { 329 // FIXME: Diagnose an ambiguity if we find at least one template. 330 R.suppressDiagnostics(); 331 return false; 332 } 333 334 // We only treat template-names that name type templates as valid deduction 335 // guide names. 336 TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); 337 if (!TD || !getAsTypeTemplateDecl(TD)) 338 return false; 339 340 if (Template) 341 *Template = TemplateTy::make(TemplateName(TD)); 342 return true; 343 } 344 345 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 346 SourceLocation IILoc, 347 Scope *S, 348 const CXXScopeSpec *SS, 349 TemplateTy &SuggestedTemplate, 350 TemplateNameKind &SuggestedKind) { 351 // We can't recover unless there's a dependent scope specifier preceding the 352 // template name. 353 // FIXME: Typo correction? 354 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 355 computeDeclContext(*SS)) 356 return false; 357 358 // The code is missing a 'template' keyword prior to the dependent template 359 // name. 360 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 361 Diag(IILoc, diag::err_template_kw_missing) 362 << Qualifier << II.getName() 363 << FixItHint::CreateInsertion(IILoc, "template "); 364 SuggestedTemplate 365 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 366 SuggestedKind = TNK_Dependent_template_name; 367 return true; 368 } 369 370 bool Sema::LookupTemplateName(LookupResult &Found, 371 Scope *S, CXXScopeSpec &SS, 372 QualType ObjectType, 373 bool EnteringContext, 374 bool &MemberOfUnknownSpecialization, 375 RequiredTemplateKind RequiredTemplate, 376 AssumedTemplateKind *ATK, 377 bool AllowTypoCorrection) { 378 if (ATK) 379 *ATK = AssumedTemplateKind::None; 380 381 if (SS.isInvalid()) 382 return true; 383 384 Found.setTemplateNameLookup(true); 385 386 // Determine where to perform name lookup 387 MemberOfUnknownSpecialization = false; 388 DeclContext *LookupCtx = nullptr; 389 bool IsDependent = false; 390 if (!ObjectType.isNull()) { 391 // This nested-name-specifier occurs in a member access expression, e.g., 392 // x->B::f, and we are looking into the type of the object. 393 assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist"); 394 LookupCtx = computeDeclContext(ObjectType); 395 IsDependent = !LookupCtx && ObjectType->isDependentType(); 396 assert((IsDependent || !ObjectType->isIncompleteType() || 397 ObjectType->castAs<TagType>()->isBeingDefined()) && 398 "Caller should have completed object type"); 399 400 // Template names cannot appear inside an Objective-C class or object type 401 // or a vector type. 402 // 403 // FIXME: This is wrong. For example: 404 // 405 // template<typename T> using Vec = T __attribute__((ext_vector_type(4))); 406 // Vec<int> vi; 407 // vi.Vec<int>::~Vec<int>(); 408 // 409 // ... should be accepted but we will not treat 'Vec' as a template name 410 // here. The right thing to do would be to check if the name is a valid 411 // vector component name, and look up a template name if not. And similarly 412 // for lookups into Objective-C class and object types, where the same 413 // problem can arise. 414 if (ObjectType->isObjCObjectOrInterfaceType() || 415 ObjectType->isVectorType()) { 416 Found.clear(); 417 return false; 418 } 419 } else if (SS.isNotEmpty()) { 420 // This nested-name-specifier occurs after another nested-name-specifier, 421 // so long into the context associated with the prior nested-name-specifier. 422 LookupCtx = computeDeclContext(SS, EnteringContext); 423 IsDependent = !LookupCtx && isDependentScopeSpecifier(SS); 424 425 // The declaration context must be complete. 426 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 427 return true; 428 } 429 430 bool ObjectTypeSearchedInScope = false; 431 bool AllowFunctionTemplatesInLookup = true; 432 if (LookupCtx) { 433 // Perform "qualified" name lookup into the declaration context we 434 // computed, which is either the type of the base of a member access 435 // expression or the declaration context associated with a prior 436 // nested-name-specifier. 437 LookupQualifiedName(Found, LookupCtx); 438 439 // FIXME: The C++ standard does not clearly specify what happens in the 440 // case where the object type is dependent, and implementations vary. In 441 // Clang, we treat a name after a . or -> as a template-name if lookup 442 // finds a non-dependent member or member of the current instantiation that 443 // is a type template, or finds no such members and lookup in the context 444 // of the postfix-expression finds a type template. In the latter case, the 445 // name is nonetheless dependent, and we may resolve it to a member of an 446 // unknown specialization when we come to instantiate the template. 447 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 448 } 449 450 if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) { 451 // C++ [basic.lookup.classref]p1: 452 // In a class member access expression (5.2.5), if the . or -> token is 453 // immediately followed by an identifier followed by a <, the 454 // identifier must be looked up to determine whether the < is the 455 // beginning of a template argument list (14.2) or a less-than operator. 456 // The identifier is first looked up in the class of the object 457 // expression. If the identifier is not found, it is then looked up in 458 // the context of the entire postfix-expression and shall name a class 459 // template. 460 if (S) 461 LookupName(Found, S); 462 463 if (!ObjectType.isNull()) { 464 // FIXME: We should filter out all non-type templates here, particularly 465 // variable templates and concepts. But the exclusion of alias templates 466 // and template template parameters is a wording defect. 467 AllowFunctionTemplatesInLookup = false; 468 ObjectTypeSearchedInScope = true; 469 } 470 471 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 472 } 473 474 if (Found.isAmbiguous()) 475 return false; 476 477 if (ATK && SS.isEmpty() && ObjectType.isNull() && 478 !RequiredTemplate.hasTemplateKeyword()) { 479 // C++2a [temp.names]p2: 480 // A name is also considered to refer to a template if it is an 481 // unqualified-id followed by a < and name lookup finds either one or more 482 // functions or finds nothing. 483 // 484 // To keep our behavior consistent, we apply the "finds nothing" part in 485 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we 486 // successfully form a call to an undeclared template-id. 487 bool AllFunctions = 488 getLangOpts().CPlusPlus20 && 489 std::all_of(Found.begin(), Found.end(), [](NamedDecl *ND) { 490 return isa<FunctionDecl>(ND->getUnderlyingDecl()); 491 }); 492 if (AllFunctions || (Found.empty() && !IsDependent)) { 493 // If lookup found any functions, or if this is a name that can only be 494 // used for a function, then strongly assume this is a function 495 // template-id. 496 *ATK = (Found.empty() && Found.getLookupName().isIdentifier()) 497 ? AssumedTemplateKind::FoundNothing 498 : AssumedTemplateKind::FoundFunctions; 499 Found.clear(); 500 return false; 501 } 502 } 503 504 if (Found.empty() && !IsDependent && AllowTypoCorrection) { 505 // If we did not find any names, and this is not a disambiguation, attempt 506 // to correct any typos. 507 DeclarationName Name = Found.getLookupName(); 508 Found.clear(); 509 // Simple filter callback that, for keywords, only accepts the C++ *_cast 510 DefaultFilterCCC FilterCCC{}; 511 FilterCCC.WantTypeSpecifiers = false; 512 FilterCCC.WantExpressionKeywords = false; 513 FilterCCC.WantRemainingKeywords = false; 514 FilterCCC.WantCXXNamedCasts = true; 515 if (TypoCorrection Corrected = 516 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S, 517 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) { 518 if (auto *ND = Corrected.getFoundDecl()) 519 Found.addDecl(ND); 520 FilterAcceptableTemplateNames(Found); 521 if (Found.isAmbiguous()) { 522 Found.clear(); 523 } else if (!Found.empty()) { 524 Found.setLookupName(Corrected.getCorrection()); 525 if (LookupCtx) { 526 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 527 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 528 Name.getAsString() == CorrectedStr; 529 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) 530 << Name << LookupCtx << DroppedSpecifier 531 << SS.getRange()); 532 } else { 533 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); 534 } 535 } 536 } 537 } 538 539 NamedDecl *ExampleLookupResult = 540 Found.empty() ? nullptr : Found.getRepresentativeDecl(); 541 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 542 if (Found.empty()) { 543 if (IsDependent) { 544 MemberOfUnknownSpecialization = true; 545 return false; 546 } 547 548 // If a 'template' keyword was used, a lookup that finds only non-template 549 // names is an error. 550 if (ExampleLookupResult && RequiredTemplate) { 551 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) 552 << Found.getLookupName() << SS.getRange() 553 << RequiredTemplate.hasTemplateKeyword() 554 << RequiredTemplate.getTemplateKeywordLoc(); 555 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), 556 diag::note_template_kw_refers_to_non_template) 557 << Found.getLookupName(); 558 return true; 559 } 560 561 return false; 562 } 563 564 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 565 !getLangOpts().CPlusPlus11) { 566 // C++03 [basic.lookup.classref]p1: 567 // [...] If the lookup in the class of the object expression finds a 568 // template, the name is also looked up in the context of the entire 569 // postfix-expression and [...] 570 // 571 // Note: C++11 does not perform this second lookup. 572 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 573 LookupOrdinaryName); 574 FoundOuter.setTemplateNameLookup(true); 575 LookupName(FoundOuter, S); 576 // FIXME: We silently accept an ambiguous lookup here, in violation of 577 // [basic.lookup]/1. 578 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 579 580 NamedDecl *OuterTemplate; 581 if (FoundOuter.empty()) { 582 // - if the name is not found, the name found in the class of the 583 // object expression is used, otherwise 584 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() || 585 !(OuterTemplate = 586 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) { 587 // - if the name is found in the context of the entire 588 // postfix-expression and does not name a class template, the name 589 // found in the class of the object expression is used, otherwise 590 FoundOuter.clear(); 591 } else if (!Found.isSuppressingDiagnostics()) { 592 // - if the name found is a class template, it must refer to the same 593 // entity as the one found in the class of the object expression, 594 // otherwise the program is ill-formed. 595 if (!Found.isSingleResult() || 596 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() != 597 OuterTemplate->getCanonicalDecl()) { 598 Diag(Found.getNameLoc(), 599 diag::ext_nested_name_member_ref_lookup_ambiguous) 600 << Found.getLookupName() 601 << ObjectType; 602 Diag(Found.getRepresentativeDecl()->getLocation(), 603 diag::note_ambig_member_ref_object_type) 604 << ObjectType; 605 Diag(FoundOuter.getFoundDecl()->getLocation(), 606 diag::note_ambig_member_ref_scope); 607 608 // Recover by taking the template that we found in the object 609 // expression's type. 610 } 611 } 612 } 613 614 return false; 615 } 616 617 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, 618 SourceLocation Less, 619 SourceLocation Greater) { 620 if (TemplateName.isInvalid()) 621 return; 622 623 DeclarationNameInfo NameInfo; 624 CXXScopeSpec SS; 625 LookupNameKind LookupKind; 626 627 DeclContext *LookupCtx = nullptr; 628 NamedDecl *Found = nullptr; 629 bool MissingTemplateKeyword = false; 630 631 // Figure out what name we looked up. 632 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) { 633 NameInfo = DRE->getNameInfo(); 634 SS.Adopt(DRE->getQualifierLoc()); 635 LookupKind = LookupOrdinaryName; 636 Found = DRE->getFoundDecl(); 637 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) { 638 NameInfo = ME->getMemberNameInfo(); 639 SS.Adopt(ME->getQualifierLoc()); 640 LookupKind = LookupMemberName; 641 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); 642 Found = ME->getMemberDecl(); 643 } else if (auto *DSDRE = 644 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) { 645 NameInfo = DSDRE->getNameInfo(); 646 SS.Adopt(DSDRE->getQualifierLoc()); 647 MissingTemplateKeyword = true; 648 } else if (auto *DSME = 649 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) { 650 NameInfo = DSME->getMemberNameInfo(); 651 SS.Adopt(DSME->getQualifierLoc()); 652 MissingTemplateKeyword = true; 653 } else { 654 llvm_unreachable("unexpected kind of potential template name"); 655 } 656 657 // If this is a dependent-scope lookup, diagnose that the 'template' keyword 658 // was missing. 659 if (MissingTemplateKeyword) { 660 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing) 661 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater); 662 return; 663 } 664 665 // Try to correct the name by looking for templates and C++ named casts. 666 struct TemplateCandidateFilter : CorrectionCandidateCallback { 667 Sema &S; 668 TemplateCandidateFilter(Sema &S) : S(S) { 669 WantTypeSpecifiers = false; 670 WantExpressionKeywords = false; 671 WantRemainingKeywords = false; 672 WantCXXNamedCasts = true; 673 }; 674 bool ValidateCandidate(const TypoCorrection &Candidate) override { 675 if (auto *ND = Candidate.getCorrectionDecl()) 676 return S.getAsTemplateNameDecl(ND); 677 return Candidate.isKeyword(); 678 } 679 680 std::unique_ptr<CorrectionCandidateCallback> clone() override { 681 return std::make_unique<TemplateCandidateFilter>(*this); 682 } 683 }; 684 685 DeclarationName Name = NameInfo.getName(); 686 TemplateCandidateFilter CCC(*this); 687 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC, 688 CTK_ErrorRecovery, LookupCtx)) { 689 auto *ND = Corrected.getFoundDecl(); 690 if (ND) 691 ND = getAsTemplateNameDecl(ND); 692 if (ND || Corrected.isKeyword()) { 693 if (LookupCtx) { 694 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 695 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 696 Name.getAsString() == CorrectedStr; 697 diagnoseTypo(Corrected, 698 PDiag(diag::err_non_template_in_member_template_id_suggest) 699 << Name << LookupCtx << DroppedSpecifier 700 << SS.getRange(), false); 701 } else { 702 diagnoseTypo(Corrected, 703 PDiag(diag::err_non_template_in_template_id_suggest) 704 << Name, false); 705 } 706 if (Found) 707 Diag(Found->getLocation(), 708 diag::note_non_template_in_template_id_found); 709 return; 710 } 711 } 712 713 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) 714 << Name << SourceRange(Less, Greater); 715 if (Found) 716 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); 717 } 718 719 /// ActOnDependentIdExpression - Handle a dependent id-expression that 720 /// was just parsed. This is only possible with an explicit scope 721 /// specifier naming a dependent type. 722 ExprResult 723 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 724 SourceLocation TemplateKWLoc, 725 const DeclarationNameInfo &NameInfo, 726 bool isAddressOfOperand, 727 const TemplateArgumentListInfo *TemplateArgs) { 728 DeclContext *DC = getFunctionLevelDeclContext(); 729 730 // C++11 [expr.prim.general]p12: 731 // An id-expression that denotes a non-static data member or non-static 732 // member function of a class can only be used: 733 // (...) 734 // - if that id-expression denotes a non-static data member and it 735 // appears in an unevaluated operand. 736 // 737 // If this might be the case, form a DependentScopeDeclRefExpr instead of a 738 // CXXDependentScopeMemberExpr. The former can instantiate to either 739 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is 740 // always a MemberExpr. 741 bool MightBeCxx11UnevalField = 742 getLangOpts().CPlusPlus11 && isUnevaluatedContext(); 743 744 // Check if the nested name specifier is an enum type. 745 bool IsEnum = false; 746 if (NestedNameSpecifier *NNS = SS.getScopeRep()) 747 IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType()); 748 749 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum && 750 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) { 751 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(); 752 753 // Since the 'this' expression is synthesized, we don't need to 754 // perform the double-lookup check. 755 NamedDecl *FirstQualifierInScope = nullptr; 756 757 return CXXDependentScopeMemberExpr::Create( 758 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true, 759 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc, 760 FirstQualifierInScope, NameInfo, TemplateArgs); 761 } 762 763 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 764 } 765 766 ExprResult 767 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 768 SourceLocation TemplateKWLoc, 769 const DeclarationNameInfo &NameInfo, 770 const TemplateArgumentListInfo *TemplateArgs) { 771 // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc 772 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 773 if (!QualifierLoc) 774 return ExprError(); 775 776 return DependentScopeDeclRefExpr::Create( 777 Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs); 778 } 779 780 781 /// Determine whether we would be unable to instantiate this template (because 782 /// it either has no definition, or is in the process of being instantiated). 783 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, 784 NamedDecl *Instantiation, 785 bool InstantiatedFromMember, 786 const NamedDecl *Pattern, 787 const NamedDecl *PatternDef, 788 TemplateSpecializationKind TSK, 789 bool Complain /*= true*/) { 790 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || 791 isa<VarDecl>(Instantiation)); 792 793 bool IsEntityBeingDefined = false; 794 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef)) 795 IsEntityBeingDefined = TD->isBeingDefined(); 796 797 if (PatternDef && !IsEntityBeingDefined) { 798 NamedDecl *SuggestedDef = nullptr; 799 if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef, 800 /*OnlyNeedComplete*/false)) { 801 // If we're allowed to diagnose this and recover, do so. 802 bool Recover = Complain && !isSFINAEContext(); 803 if (Complain) 804 diagnoseMissingImport(PointOfInstantiation, SuggestedDef, 805 Sema::MissingImportKind::Definition, Recover); 806 return !Recover; 807 } 808 return false; 809 } 810 811 if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) 812 return true; 813 814 llvm::Optional<unsigned> Note; 815 QualType InstantiationTy; 816 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation)) 817 InstantiationTy = Context.getTypeDeclType(TD); 818 if (PatternDef) { 819 Diag(PointOfInstantiation, 820 diag::err_template_instantiate_within_definition) 821 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) 822 << InstantiationTy; 823 // Not much point in noting the template declaration here, since 824 // we're lexically inside it. 825 Instantiation->setInvalidDecl(); 826 } else if (InstantiatedFromMember) { 827 if (isa<FunctionDecl>(Instantiation)) { 828 Diag(PointOfInstantiation, 829 diag::err_explicit_instantiation_undefined_member) 830 << /*member function*/ 1 << Instantiation->getDeclName() 831 << Instantiation->getDeclContext(); 832 Note = diag::note_explicit_instantiation_here; 833 } else { 834 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!"); 835 Diag(PointOfInstantiation, 836 diag::err_implicit_instantiate_member_undefined) 837 << InstantiationTy; 838 Note = diag::note_member_declared_at; 839 } 840 } else { 841 if (isa<FunctionDecl>(Instantiation)) { 842 Diag(PointOfInstantiation, 843 diag::err_explicit_instantiation_undefined_func_template) 844 << Pattern; 845 Note = diag::note_explicit_instantiation_here; 846 } else if (isa<TagDecl>(Instantiation)) { 847 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) 848 << (TSK != TSK_ImplicitInstantiation) 849 << InstantiationTy; 850 Note = diag::note_template_decl_here; 851 } else { 852 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!"); 853 if (isa<VarTemplateSpecializationDecl>(Instantiation)) { 854 Diag(PointOfInstantiation, 855 diag::err_explicit_instantiation_undefined_var_template) 856 << Instantiation; 857 Instantiation->setInvalidDecl(); 858 } else 859 Diag(PointOfInstantiation, 860 diag::err_explicit_instantiation_undefined_member) 861 << /*static data member*/ 2 << Instantiation->getDeclName() 862 << Instantiation->getDeclContext(); 863 Note = diag::note_explicit_instantiation_here; 864 } 865 } 866 if (Note) // Diagnostics were emitted. 867 Diag(Pattern->getLocation(), Note.getValue()); 868 869 // In general, Instantiation isn't marked invalid to get more than one 870 // error for multiple undefined instantiations. But the code that does 871 // explicit declaration -> explicit definition conversion can't handle 872 // invalid declarations, so mark as invalid in that case. 873 if (TSK == TSK_ExplicitInstantiationDeclaration) 874 Instantiation->setInvalidDecl(); 875 return true; 876 } 877 878 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 879 /// that the template parameter 'PrevDecl' is being shadowed by a new 880 /// declaration at location Loc. Returns true to indicate that this is 881 /// an error, and false otherwise. 882 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 883 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 884 885 // C++ [temp.local]p4: 886 // A template-parameter shall not be redeclared within its 887 // scope (including nested scopes). 888 // 889 // Make this a warning when MSVC compatibility is requested. 890 unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow 891 : diag::err_template_param_shadow; 892 Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName(); 893 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 894 } 895 896 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 897 /// the parameter D to reference the templated declaration and return a pointer 898 /// to the template declaration. Otherwise, do nothing to D and return null. 899 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 900 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 901 D = Temp->getTemplatedDecl(); 902 return Temp; 903 } 904 return nullptr; 905 } 906 907 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 908 SourceLocation EllipsisLoc) const { 909 assert(Kind == Template && 910 "Only template template arguments can be pack expansions here"); 911 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 912 "Template template argument pack expansion without packs"); 913 ParsedTemplateArgument Result(*this); 914 Result.EllipsisLoc = EllipsisLoc; 915 return Result; 916 } 917 918 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 919 const ParsedTemplateArgument &Arg) { 920 921 switch (Arg.getKind()) { 922 case ParsedTemplateArgument::Type: { 923 TypeSourceInfo *DI; 924 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 925 if (!DI) 926 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 927 return TemplateArgumentLoc(TemplateArgument(T), DI); 928 } 929 930 case ParsedTemplateArgument::NonType: { 931 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 932 return TemplateArgumentLoc(TemplateArgument(E), E); 933 } 934 935 case ParsedTemplateArgument::Template: { 936 TemplateName Template = Arg.getAsTemplate().get(); 937 TemplateArgument TArg; 938 if (Arg.getEllipsisLoc().isValid()) 939 TArg = TemplateArgument(Template, Optional<unsigned int>()); 940 else 941 TArg = Template; 942 return TemplateArgumentLoc( 943 SemaRef.Context, TArg, 944 Arg.getScopeSpec().getWithLocInContext(SemaRef.Context), 945 Arg.getLocation(), Arg.getEllipsisLoc()); 946 } 947 } 948 949 llvm_unreachable("Unhandled parsed template argument"); 950 } 951 952 /// Translates template arguments as provided by the parser 953 /// into template arguments used by semantic analysis. 954 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 955 TemplateArgumentListInfo &TemplateArgs) { 956 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 957 TemplateArgs.addArgument(translateTemplateArgument(*this, 958 TemplateArgsIn[I])); 959 } 960 961 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, 962 SourceLocation Loc, 963 IdentifierInfo *Name) { 964 NamedDecl *PrevDecl = SemaRef.LookupSingleName( 965 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 966 if (PrevDecl && PrevDecl->isTemplateParameter()) 967 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); 968 } 969 970 /// Convert a parsed type into a parsed template argument. This is mostly 971 /// trivial, except that we may have parsed a C++17 deduced class template 972 /// specialization type, in which case we should form a template template 973 /// argument instead of a type template argument. 974 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { 975 TypeSourceInfo *TInfo; 976 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo); 977 if (T.isNull()) 978 return ParsedTemplateArgument(); 979 assert(TInfo && "template argument with no location"); 980 981 // If we might have formed a deduced template specialization type, convert 982 // it to a template template argument. 983 if (getLangOpts().CPlusPlus17) { 984 TypeLoc TL = TInfo->getTypeLoc(); 985 SourceLocation EllipsisLoc; 986 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { 987 EllipsisLoc = PET.getEllipsisLoc(); 988 TL = PET.getPatternLoc(); 989 } 990 991 CXXScopeSpec SS; 992 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { 993 SS.Adopt(ET.getQualifierLoc()); 994 TL = ET.getNamedTypeLoc(); 995 } 996 997 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { 998 TemplateName Name = DTST.getTypePtr()->getTemplateName(); 999 if (SS.isSet()) 1000 Name = Context.getQualifiedTemplateName(SS.getScopeRep(), 1001 /*HasTemplateKeyword*/ false, 1002 Name.getAsTemplateDecl()); 1003 ParsedTemplateArgument Result(SS, TemplateTy::make(Name), 1004 DTST.getTemplateNameLoc()); 1005 if (EllipsisLoc.isValid()) 1006 Result = Result.getTemplatePackExpansion(EllipsisLoc); 1007 return Result; 1008 } 1009 } 1010 1011 // This is a normal type template argument. Note, if the type template 1012 // argument is an injected-class-name for a template, it has a dual nature 1013 // and can be used as either a type or a template. We handle that in 1014 // convertTypeTemplateArgumentToTemplate. 1015 return ParsedTemplateArgument(ParsedTemplateArgument::Type, 1016 ParsedType.get().getAsOpaquePtr(), 1017 TInfo->getTypeLoc().getBeginLoc()); 1018 } 1019 1020 /// ActOnTypeParameter - Called when a C++ template type parameter 1021 /// (e.g., "typename T") has been parsed. Typename specifies whether 1022 /// the keyword "typename" was used to declare the type parameter 1023 /// (otherwise, "class" was used), and KeyLoc is the location of the 1024 /// "class" or "typename" keyword. ParamName is the name of the 1025 /// parameter (NULL indicates an unnamed template parameter) and 1026 /// ParamNameLoc is the location of the parameter name (if any). 1027 /// If the type parameter has a default argument, it will be added 1028 /// later via ActOnTypeParameterDefault. 1029 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, 1030 SourceLocation EllipsisLoc, 1031 SourceLocation KeyLoc, 1032 IdentifierInfo *ParamName, 1033 SourceLocation ParamNameLoc, 1034 unsigned Depth, unsigned Position, 1035 SourceLocation EqualLoc, 1036 ParsedType DefaultArg, 1037 bool HasTypeConstraint) { 1038 assert(S->isTemplateParamScope() && 1039 "Template type parameter not in template parameter scope!"); 1040 1041 bool IsParameterPack = EllipsisLoc.isValid(); 1042 TemplateTypeParmDecl *Param 1043 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1044 KeyLoc, ParamNameLoc, Depth, Position, 1045 ParamName, Typename, IsParameterPack, 1046 HasTypeConstraint); 1047 Param->setAccess(AS_public); 1048 1049 if (Param->isParameterPack()) 1050 if (auto *LSI = getEnclosingLambda()) 1051 LSI->LocalPacks.push_back(Param); 1052 1053 if (ParamName) { 1054 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); 1055 1056 // Add the template parameter into the current scope. 1057 S->AddDecl(Param); 1058 IdResolver.AddDecl(Param); 1059 } 1060 1061 // C++0x [temp.param]p9: 1062 // A default template-argument may be specified for any kind of 1063 // template-parameter that is not a template parameter pack. 1064 if (DefaultArg && IsParameterPack) { 1065 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1066 DefaultArg = nullptr; 1067 } 1068 1069 // Handle the default argument, if provided. 1070 if (DefaultArg) { 1071 TypeSourceInfo *DefaultTInfo; 1072 GetTypeFromParser(DefaultArg, &DefaultTInfo); 1073 1074 assert(DefaultTInfo && "expected source information for type"); 1075 1076 // Check for unexpanded parameter packs. 1077 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo, 1078 UPPC_DefaultArgument)) 1079 return Param; 1080 1081 // Check the template argument itself. 1082 if (CheckTemplateArgument(DefaultTInfo)) { 1083 Param->setInvalidDecl(); 1084 return Param; 1085 } 1086 1087 Param->setDefaultArgument(DefaultTInfo); 1088 } 1089 1090 return Param; 1091 } 1092 1093 /// Convert the parser's template argument list representation into our form. 1094 static TemplateArgumentListInfo 1095 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { 1096 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, 1097 TemplateId.RAngleLoc); 1098 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), 1099 TemplateId.NumArgs); 1100 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 1101 return TemplateArgs; 1102 } 1103 1104 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS, 1105 TemplateIdAnnotation *TypeConstr, 1106 TemplateTypeParmDecl *ConstrainedParameter, 1107 SourceLocation EllipsisLoc) { 1108 return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc, 1109 false); 1110 } 1111 1112 bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS, 1113 TemplateIdAnnotation *TypeConstr, 1114 TemplateTypeParmDecl *ConstrainedParameter, 1115 SourceLocation EllipsisLoc, 1116 bool AllowUnexpandedPack) { 1117 TemplateName TN = TypeConstr->Template.get(); 1118 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl()); 1119 1120 // C++2a [temp.param]p4: 1121 // [...] The concept designated by a type-constraint shall be a type 1122 // concept ([temp.concept]). 1123 if (!CD->isTypeConcept()) { 1124 Diag(TypeConstr->TemplateNameLoc, 1125 diag::err_type_constraint_non_type_concept); 1126 return true; 1127 } 1128 1129 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid(); 1130 1131 if (!WereArgsSpecified && 1132 CD->getTemplateParameters()->getMinRequiredArguments() > 1) { 1133 Diag(TypeConstr->TemplateNameLoc, 1134 diag::err_type_constraint_missing_arguments) << CD; 1135 return true; 1136 } 1137 1138 DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name), 1139 TypeConstr->TemplateNameLoc); 1140 1141 TemplateArgumentListInfo TemplateArgs; 1142 if (TypeConstr->LAngleLoc.isValid()) { 1143 TemplateArgs = 1144 makeTemplateArgumentListInfo(*this, *TypeConstr); 1145 1146 if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) { 1147 for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) { 1148 if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint)) 1149 return true; 1150 } 1151 } 1152 } 1153 return AttachTypeConstraint( 1154 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(), 1155 ConceptName, CD, 1156 TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr, 1157 ConstrainedParameter, EllipsisLoc); 1158 } 1159 1160 template<typename ArgumentLocAppender> 1161 static ExprResult formImmediatelyDeclaredConstraint( 1162 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, 1163 ConceptDecl *NamedConcept, SourceLocation LAngleLoc, 1164 SourceLocation RAngleLoc, QualType ConstrainedType, 1165 SourceLocation ParamNameLoc, ArgumentLocAppender Appender, 1166 SourceLocation EllipsisLoc) { 1167 1168 TemplateArgumentListInfo ConstraintArgs; 1169 ConstraintArgs.addArgument( 1170 S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType), 1171 /*NTTPType=*/QualType(), ParamNameLoc)); 1172 1173 ConstraintArgs.setRAngleLoc(RAngleLoc); 1174 ConstraintArgs.setLAngleLoc(LAngleLoc); 1175 Appender(ConstraintArgs); 1176 1177 // C++2a [temp.param]p4: 1178 // [...] This constraint-expression E is called the immediately-declared 1179 // constraint of T. [...] 1180 CXXScopeSpec SS; 1181 SS.Adopt(NS); 1182 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId( 1183 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo, 1184 /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs); 1185 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid()) 1186 return ImmediatelyDeclaredConstraint; 1187 1188 // C++2a [temp.param]p4: 1189 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). 1190 // 1191 // We have the following case: 1192 // 1193 // template<typename T> concept C1 = true; 1194 // template<C1... T> struct s1; 1195 // 1196 // The constraint: (C1<T> && ...) 1197 // 1198 // Note that the type of C1<T> is known to be 'bool', so we don't need to do 1199 // any unqualified lookups for 'operator&&' here. 1200 return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr, 1201 /*LParenLoc=*/SourceLocation(), 1202 ImmediatelyDeclaredConstraint.get(), BO_LAnd, 1203 EllipsisLoc, /*RHS=*/nullptr, 1204 /*RParenLoc=*/SourceLocation(), 1205 /*NumExpansions=*/None); 1206 } 1207 1208 /// Attach a type-constraint to a template parameter. 1209 /// \returns true if an error occured. This can happen if the 1210 /// immediately-declared constraint could not be formed (e.g. incorrect number 1211 /// of arguments for the named concept). 1212 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS, 1213 DeclarationNameInfo NameInfo, 1214 ConceptDecl *NamedConcept, 1215 const TemplateArgumentListInfo *TemplateArgs, 1216 TemplateTypeParmDecl *ConstrainedParameter, 1217 SourceLocation EllipsisLoc) { 1218 // C++2a [temp.param]p4: 1219 // [...] If Q is of the form C<A1, ..., An>, then let E' be 1220 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...] 1221 const ASTTemplateArgumentListInfo *ArgsAsWritten = 1222 TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context, 1223 *TemplateArgs) : nullptr; 1224 1225 QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0); 1226 1227 ExprResult ImmediatelyDeclaredConstraint = 1228 formImmediatelyDeclaredConstraint( 1229 *this, NS, NameInfo, NamedConcept, 1230 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(), 1231 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(), 1232 ParamAsArgument, ConstrainedParameter->getLocation(), 1233 [&] (TemplateArgumentListInfo &ConstraintArgs) { 1234 if (TemplateArgs) 1235 for (const auto &ArgLoc : TemplateArgs->arguments()) 1236 ConstraintArgs.addArgument(ArgLoc); 1237 }, EllipsisLoc); 1238 if (ImmediatelyDeclaredConstraint.isInvalid()) 1239 return true; 1240 1241 ConstrainedParameter->setTypeConstraint(NS, NameInfo, 1242 /*FoundDecl=*/NamedConcept, 1243 NamedConcept, ArgsAsWritten, 1244 ImmediatelyDeclaredConstraint.get()); 1245 return false; 1246 } 1247 1248 bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP, 1249 SourceLocation EllipsisLoc) { 1250 if (NTTP->getType() != TL.getType() || 1251 TL.getAutoKeyword() != AutoTypeKeyword::Auto) { 1252 Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1253 diag::err_unsupported_placeholder_constraint) 1254 << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange(); 1255 return true; 1256 } 1257 // FIXME: Concepts: This should be the type of the placeholder, but this is 1258 // unclear in the wording right now. 1259 DeclRefExpr *Ref = 1260 BuildDeclRefExpr(NTTP, NTTP->getType(), VK_PRValue, NTTP->getLocation()); 1261 if (!Ref) 1262 return true; 1263 ExprResult ImmediatelyDeclaredConstraint = 1264 formImmediatelyDeclaredConstraint( 1265 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(), 1266 TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(), 1267 BuildDecltypeType(Ref, NTTP->getLocation()), NTTP->getLocation(), 1268 [&] (TemplateArgumentListInfo &ConstraintArgs) { 1269 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I) 1270 ConstraintArgs.addArgument(TL.getArgLoc(I)); 1271 }, EllipsisLoc); 1272 if (ImmediatelyDeclaredConstraint.isInvalid() || 1273 !ImmediatelyDeclaredConstraint.isUsable()) 1274 return true; 1275 1276 NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get()); 1277 return false; 1278 } 1279 1280 /// Check that the type of a non-type template parameter is 1281 /// well-formed. 1282 /// 1283 /// \returns the (possibly-promoted) parameter type if valid; 1284 /// otherwise, produces a diagnostic and returns a NULL type. 1285 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, 1286 SourceLocation Loc) { 1287 if (TSI->getType()->isUndeducedType()) { 1288 // C++17 [temp.dep.expr]p3: 1289 // An id-expression is type-dependent if it contains 1290 // - an identifier associated by name lookup with a non-type 1291 // template-parameter declared with a type that contains a 1292 // placeholder type (7.1.7.4), 1293 TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy); 1294 } 1295 1296 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc); 1297 } 1298 1299 /// Require the given type to be a structural type, and diagnose if it is not. 1300 /// 1301 /// \return \c true if an error was produced. 1302 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) { 1303 if (T->isDependentType()) 1304 return false; 1305 1306 if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete)) 1307 return true; 1308 1309 if (T->isStructuralType()) 1310 return false; 1311 1312 // Structural types are required to be object types or lvalue references. 1313 if (T->isRValueReferenceType()) { 1314 Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T; 1315 return true; 1316 } 1317 1318 // Don't mention structural types in our diagnostic prior to C++20. Also, 1319 // there's not much more we can say about non-scalar non-class types -- 1320 // because we can't see functions or arrays here, those can only be language 1321 // extensions. 1322 if (!getLangOpts().CPlusPlus20 || 1323 (!T->isScalarType() && !T->isRecordType())) { 1324 Diag(Loc, diag::err_template_nontype_parm_bad_type) << T; 1325 return true; 1326 } 1327 1328 // Structural types are required to be literal types. 1329 if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal)) 1330 return true; 1331 1332 Diag(Loc, diag::err_template_nontype_parm_not_structural) << T; 1333 1334 // Drill down into the reason why the class is non-structural. 1335 while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 1336 // All members are required to be public and non-mutable, and can't be of 1337 // rvalue reference type. Check these conditions first to prefer a "local" 1338 // reason over a more distant one. 1339 for (const FieldDecl *FD : RD->fields()) { 1340 if (FD->getAccess() != AS_public) { 1341 Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0; 1342 return true; 1343 } 1344 if (FD->isMutable()) { 1345 Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T; 1346 return true; 1347 } 1348 if (FD->getType()->isRValueReferenceType()) { 1349 Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field) 1350 << T; 1351 return true; 1352 } 1353 } 1354 1355 // All bases are required to be public. 1356 for (const auto &BaseSpec : RD->bases()) { 1357 if (BaseSpec.getAccessSpecifier() != AS_public) { 1358 Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public) 1359 << T << 1; 1360 return true; 1361 } 1362 } 1363 1364 // All subobjects are required to be of structural types. 1365 SourceLocation SubLoc; 1366 QualType SubType; 1367 int Kind = -1; 1368 1369 for (const FieldDecl *FD : RD->fields()) { 1370 QualType T = Context.getBaseElementType(FD->getType()); 1371 if (!T->isStructuralType()) { 1372 SubLoc = FD->getLocation(); 1373 SubType = T; 1374 Kind = 0; 1375 break; 1376 } 1377 } 1378 1379 if (Kind == -1) { 1380 for (const auto &BaseSpec : RD->bases()) { 1381 QualType T = BaseSpec.getType(); 1382 if (!T->isStructuralType()) { 1383 SubLoc = BaseSpec.getBaseTypeLoc(); 1384 SubType = T; 1385 Kind = 1; 1386 break; 1387 } 1388 } 1389 } 1390 1391 assert(Kind != -1 && "couldn't find reason why type is not structural"); 1392 Diag(SubLoc, diag::note_not_structural_subobject) 1393 << T << Kind << SubType; 1394 T = SubType; 1395 RD = T->getAsCXXRecordDecl(); 1396 } 1397 1398 return true; 1399 } 1400 1401 QualType Sema::CheckNonTypeTemplateParameterType(QualType T, 1402 SourceLocation Loc) { 1403 // We don't allow variably-modified types as the type of non-type template 1404 // parameters. 1405 if (T->isVariablyModifiedType()) { 1406 Diag(Loc, diag::err_variably_modified_nontype_template_param) 1407 << T; 1408 return QualType(); 1409 } 1410 1411 // C++ [temp.param]p4: 1412 // 1413 // A non-type template-parameter shall have one of the following 1414 // (optionally cv-qualified) types: 1415 // 1416 // -- integral or enumeration type, 1417 if (T->isIntegralOrEnumerationType() || 1418 // -- pointer to object or pointer to function, 1419 T->isPointerType() || 1420 // -- lvalue reference to object or lvalue reference to function, 1421 T->isLValueReferenceType() || 1422 // -- pointer to member, 1423 T->isMemberPointerType() || 1424 // -- std::nullptr_t, or 1425 T->isNullPtrType() || 1426 // -- a type that contains a placeholder type. 1427 T->isUndeducedType()) { 1428 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 1429 // are ignored when determining its type. 1430 return T.getUnqualifiedType(); 1431 } 1432 1433 // C++ [temp.param]p8: 1434 // 1435 // A non-type template-parameter of type "array of T" or 1436 // "function returning T" is adjusted to be of type "pointer to 1437 // T" or "pointer to function returning T", respectively. 1438 if (T->isArrayType() || T->isFunctionType()) 1439 return Context.getDecayedType(T); 1440 1441 // If T is a dependent type, we can't do the check now, so we 1442 // assume that it is well-formed. Note that stripping off the 1443 // qualifiers here is not really correct if T turns out to be 1444 // an array type, but we'll recompute the type everywhere it's 1445 // used during instantiation, so that should be OK. (Using the 1446 // qualified type is equally wrong.) 1447 if (T->isDependentType()) 1448 return T.getUnqualifiedType(); 1449 1450 // C++20 [temp.param]p6: 1451 // -- a structural type 1452 if (RequireStructuralType(T, Loc)) 1453 return QualType(); 1454 1455 if (!getLangOpts().CPlusPlus20) { 1456 // FIXME: Consider allowing structural types as an extension in C++17. (In 1457 // earlier language modes, the template argument evaluation rules are too 1458 // inflexible.) 1459 Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T; 1460 return QualType(); 1461 } 1462 1463 Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T; 1464 return T.getUnqualifiedType(); 1465 } 1466 1467 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 1468 unsigned Depth, 1469 unsigned Position, 1470 SourceLocation EqualLoc, 1471 Expr *Default) { 1472 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 1473 1474 // Check that we have valid decl-specifiers specified. 1475 auto CheckValidDeclSpecifiers = [this, &D] { 1476 // C++ [temp.param] 1477 // p1 1478 // template-parameter: 1479 // ... 1480 // parameter-declaration 1481 // p2 1482 // ... A storage class shall not be specified in a template-parameter 1483 // declaration. 1484 // [dcl.typedef]p1: 1485 // The typedef specifier [...] shall not be used in the decl-specifier-seq 1486 // of a parameter-declaration 1487 const DeclSpec &DS = D.getDeclSpec(); 1488 auto EmitDiag = [this](SourceLocation Loc) { 1489 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) 1490 << FixItHint::CreateRemoval(Loc); 1491 }; 1492 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) 1493 EmitDiag(DS.getStorageClassSpecLoc()); 1494 1495 if (DS.getThreadStorageClassSpec() != TSCS_unspecified) 1496 EmitDiag(DS.getThreadStorageClassSpecLoc()); 1497 1498 // [dcl.inline]p1: 1499 // The inline specifier can be applied only to the declaration or 1500 // definition of a variable or function. 1501 1502 if (DS.isInlineSpecified()) 1503 EmitDiag(DS.getInlineSpecLoc()); 1504 1505 // [dcl.constexpr]p1: 1506 // The constexpr specifier shall be applied only to the definition of a 1507 // variable or variable template or the declaration of a function or 1508 // function template. 1509 1510 if (DS.hasConstexprSpecifier()) 1511 EmitDiag(DS.getConstexprSpecLoc()); 1512 1513 // [dcl.fct.spec]p1: 1514 // Function-specifiers can be used only in function declarations. 1515 1516 if (DS.isVirtualSpecified()) 1517 EmitDiag(DS.getVirtualSpecLoc()); 1518 1519 if (DS.hasExplicitSpecifier()) 1520 EmitDiag(DS.getExplicitSpecLoc()); 1521 1522 if (DS.isNoreturnSpecified()) 1523 EmitDiag(DS.getNoreturnSpecLoc()); 1524 }; 1525 1526 CheckValidDeclSpecifiers(); 1527 1528 if (TInfo->getType()->isUndeducedType()) { 1529 Diag(D.getIdentifierLoc(), 1530 diag::warn_cxx14_compat_template_nontype_parm_auto_type) 1531 << QualType(TInfo->getType()->getContainedAutoType(), 0); 1532 } 1533 1534 assert(S->isTemplateParamScope() && 1535 "Non-type template parameter not in template parameter scope!"); 1536 bool Invalid = false; 1537 1538 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc()); 1539 if (T.isNull()) { 1540 T = Context.IntTy; // Recover with an 'int' type. 1541 Invalid = true; 1542 } 1543 1544 CheckFunctionOrTemplateParamDeclarator(S, D); 1545 1546 IdentifierInfo *ParamName = D.getIdentifier(); 1547 bool IsParameterPack = D.hasEllipsis(); 1548 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create( 1549 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(), 1550 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack, 1551 TInfo); 1552 Param->setAccess(AS_public); 1553 1554 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) 1555 if (TL.isConstrained()) 1556 if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc())) 1557 Invalid = true; 1558 1559 if (Invalid) 1560 Param->setInvalidDecl(); 1561 1562 if (Param->isParameterPack()) 1563 if (auto *LSI = getEnclosingLambda()) 1564 LSI->LocalPacks.push_back(Param); 1565 1566 if (ParamName) { 1567 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), 1568 ParamName); 1569 1570 // Add the template parameter into the current scope. 1571 S->AddDecl(Param); 1572 IdResolver.AddDecl(Param); 1573 } 1574 1575 // C++0x [temp.param]p9: 1576 // A default template-argument may be specified for any kind of 1577 // template-parameter that is not a template parameter pack. 1578 if (Default && IsParameterPack) { 1579 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1580 Default = nullptr; 1581 } 1582 1583 // Check the well-formedness of the default template argument, if provided. 1584 if (Default) { 1585 // Check for unexpanded parameter packs. 1586 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 1587 return Param; 1588 1589 TemplateArgument Converted; 1590 ExprResult DefaultRes = 1591 CheckTemplateArgument(Param, Param->getType(), Default, Converted); 1592 if (DefaultRes.isInvalid()) { 1593 Param->setInvalidDecl(); 1594 return Param; 1595 } 1596 Default = DefaultRes.get(); 1597 1598 Param->setDefaultArgument(Default); 1599 } 1600 1601 return Param; 1602 } 1603 1604 /// ActOnTemplateTemplateParameter - Called when a C++ template template 1605 /// parameter (e.g. T in template <template \<typename> class T> class array) 1606 /// has been parsed. S is the current scope. 1607 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S, 1608 SourceLocation TmpLoc, 1609 TemplateParameterList *Params, 1610 SourceLocation EllipsisLoc, 1611 IdentifierInfo *Name, 1612 SourceLocation NameLoc, 1613 unsigned Depth, 1614 unsigned Position, 1615 SourceLocation EqualLoc, 1616 ParsedTemplateArgument Default) { 1617 assert(S->isTemplateParamScope() && 1618 "Template template parameter not in template parameter scope!"); 1619 1620 // Construct the parameter object. 1621 bool IsParameterPack = EllipsisLoc.isValid(); 1622 TemplateTemplateParmDecl *Param = 1623 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1624 NameLoc.isInvalid()? TmpLoc : NameLoc, 1625 Depth, Position, IsParameterPack, 1626 Name, Params); 1627 Param->setAccess(AS_public); 1628 1629 if (Param->isParameterPack()) 1630 if (auto *LSI = getEnclosingLambda()) 1631 LSI->LocalPacks.push_back(Param); 1632 1633 // If the template template parameter has a name, then link the identifier 1634 // into the scope and lookup mechanisms. 1635 if (Name) { 1636 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); 1637 1638 S->AddDecl(Param); 1639 IdResolver.AddDecl(Param); 1640 } 1641 1642 if (Params->size() == 0) { 1643 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 1644 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 1645 Param->setInvalidDecl(); 1646 } 1647 1648 // C++0x [temp.param]p9: 1649 // A default template-argument may be specified for any kind of 1650 // template-parameter that is not a template parameter pack. 1651 if (IsParameterPack && !Default.isInvalid()) { 1652 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1653 Default = ParsedTemplateArgument(); 1654 } 1655 1656 if (!Default.isInvalid()) { 1657 // Check only that we have a template template argument. We don't want to 1658 // try to check well-formedness now, because our template template parameter 1659 // might have dependent types in its template parameters, which we wouldn't 1660 // be able to match now. 1661 // 1662 // If none of the template template parameter's template arguments mention 1663 // other template parameters, we could actually perform more checking here. 1664 // However, it isn't worth doing. 1665 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 1666 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 1667 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template) 1668 << DefaultArg.getSourceRange(); 1669 return Param; 1670 } 1671 1672 // Check for unexpanded parameter packs. 1673 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 1674 DefaultArg.getArgument().getAsTemplate(), 1675 UPPC_DefaultArgument)) 1676 return Param; 1677 1678 Param->setDefaultArgument(Context, DefaultArg); 1679 } 1680 1681 return Param; 1682 } 1683 1684 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally 1685 /// constrained by RequiresClause, that contains the template parameters in 1686 /// Params. 1687 TemplateParameterList * 1688 Sema::ActOnTemplateParameterList(unsigned Depth, 1689 SourceLocation ExportLoc, 1690 SourceLocation TemplateLoc, 1691 SourceLocation LAngleLoc, 1692 ArrayRef<NamedDecl *> Params, 1693 SourceLocation RAngleLoc, 1694 Expr *RequiresClause) { 1695 if (ExportLoc.isValid()) 1696 Diag(ExportLoc, diag::warn_template_export_unsupported); 1697 1698 for (NamedDecl *P : Params) 1699 warnOnReservedIdentifier(P); 1700 1701 return TemplateParameterList::Create( 1702 Context, TemplateLoc, LAngleLoc, 1703 llvm::makeArrayRef(Params.data(), Params.size()), 1704 RAngleLoc, RequiresClause); 1705 } 1706 1707 static void SetNestedNameSpecifier(Sema &S, TagDecl *T, 1708 const CXXScopeSpec &SS) { 1709 if (SS.isSet()) 1710 T->setQualifierInfo(SS.getWithLocInContext(S.Context)); 1711 } 1712 1713 DeclResult Sema::CheckClassTemplate( 1714 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 1715 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, 1716 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, 1717 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 1718 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, 1719 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { 1720 assert(TemplateParams && TemplateParams->size() > 0 && 1721 "No template parameters"); 1722 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 1723 bool Invalid = false; 1724 1725 // Check that we can declare a template here. 1726 if (CheckTemplateDeclScope(S, TemplateParams)) 1727 return true; 1728 1729 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1730 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 1731 1732 // There is no such thing as an unnamed class template. 1733 if (!Name) { 1734 Diag(KWLoc, diag::err_template_unnamed_class); 1735 return true; 1736 } 1737 1738 // Find any previous declaration with this name. For a friend with no 1739 // scope explicitly specified, we only look for tag declarations (per 1740 // C++11 [basic.lookup.elab]p2). 1741 DeclContext *SemanticContext; 1742 LookupResult Previous(*this, Name, NameLoc, 1743 (SS.isEmpty() && TUK == TUK_Friend) 1744 ? LookupTagName : LookupOrdinaryName, 1745 forRedeclarationInCurContext()); 1746 if (SS.isNotEmpty() && !SS.isInvalid()) { 1747 SemanticContext = computeDeclContext(SS, true); 1748 if (!SemanticContext) { 1749 // FIXME: Horrible, horrible hack! We can't currently represent this 1750 // in the AST, and historically we have just ignored such friend 1751 // class templates, so don't complain here. 1752 Diag(NameLoc, TUK == TUK_Friend 1753 ? diag::warn_template_qualified_friend_ignored 1754 : diag::err_template_qualified_declarator_no_match) 1755 << SS.getScopeRep() << SS.getRange(); 1756 return TUK != TUK_Friend; 1757 } 1758 1759 if (RequireCompleteDeclContext(SS, SemanticContext)) 1760 return true; 1761 1762 // If we're adding a template to a dependent context, we may need to 1763 // rebuilding some of the types used within the template parameter list, 1764 // now that we know what the current instantiation is. 1765 if (SemanticContext->isDependentContext()) { 1766 ContextRAII SavedContext(*this, SemanticContext); 1767 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 1768 Invalid = true; 1769 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 1770 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false); 1771 1772 LookupQualifiedName(Previous, SemanticContext); 1773 } else { 1774 SemanticContext = CurContext; 1775 1776 // C++14 [class.mem]p14: 1777 // If T is the name of a class, then each of the following shall have a 1778 // name different from T: 1779 // -- every member template of class T 1780 if (TUK != TUK_Friend && 1781 DiagnoseClassNameShadow(SemanticContext, 1782 DeclarationNameInfo(Name, NameLoc))) 1783 return true; 1784 1785 LookupName(Previous, S); 1786 } 1787 1788 if (Previous.isAmbiguous()) 1789 return true; 1790 1791 NamedDecl *PrevDecl = nullptr; 1792 if (Previous.begin() != Previous.end()) 1793 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1794 1795 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1796 // Maybe we will complain about the shadowed template parameter. 1797 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1798 // Just pretend that we didn't see the previous declaration. 1799 PrevDecl = nullptr; 1800 } 1801 1802 // If there is a previous declaration with the same name, check 1803 // whether this is a valid redeclaration. 1804 ClassTemplateDecl *PrevClassTemplate = 1805 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 1806 1807 // We may have found the injected-class-name of a class template, 1808 // class template partial specialization, or class template specialization. 1809 // In these cases, grab the template that is being defined or specialized. 1810 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 1811 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 1812 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 1813 PrevClassTemplate 1814 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 1815 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 1816 PrevClassTemplate 1817 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 1818 ->getSpecializedTemplate(); 1819 } 1820 } 1821 1822 if (TUK == TUK_Friend) { 1823 // C++ [namespace.memdef]p3: 1824 // [...] When looking for a prior declaration of a class or a function 1825 // declared as a friend, and when the name of the friend class or 1826 // function is neither a qualified name nor a template-id, scopes outside 1827 // the innermost enclosing namespace scope are not considered. 1828 if (!SS.isSet()) { 1829 DeclContext *OutermostContext = CurContext; 1830 while (!OutermostContext->isFileContext()) 1831 OutermostContext = OutermostContext->getLookupParent(); 1832 1833 if (PrevDecl && 1834 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 1835 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 1836 SemanticContext = PrevDecl->getDeclContext(); 1837 } else { 1838 // Declarations in outer scopes don't matter. However, the outermost 1839 // context we computed is the semantic context for our new 1840 // declaration. 1841 PrevDecl = PrevClassTemplate = nullptr; 1842 SemanticContext = OutermostContext; 1843 1844 // Check that the chosen semantic context doesn't already contain a 1845 // declaration of this name as a non-tag type. 1846 Previous.clear(LookupOrdinaryName); 1847 DeclContext *LookupContext = SemanticContext; 1848 while (LookupContext->isTransparentContext()) 1849 LookupContext = LookupContext->getLookupParent(); 1850 LookupQualifiedName(Previous, LookupContext); 1851 1852 if (Previous.isAmbiguous()) 1853 return true; 1854 1855 if (Previous.begin() != Previous.end()) 1856 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1857 } 1858 } 1859 } else if (PrevDecl && 1860 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext, 1861 S, SS.isValid())) 1862 PrevDecl = PrevClassTemplate = nullptr; 1863 1864 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( 1865 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { 1866 if (SS.isEmpty() && 1867 !(PrevClassTemplate && 1868 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( 1869 SemanticContext->getRedeclContext()))) { 1870 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 1871 Diag(Shadow->getTargetDecl()->getLocation(), 1872 diag::note_using_decl_target); 1873 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0; 1874 // Recover by ignoring the old declaration. 1875 PrevDecl = PrevClassTemplate = nullptr; 1876 } 1877 } 1878 1879 if (PrevClassTemplate) { 1880 // Ensure that the template parameter lists are compatible. Skip this check 1881 // for a friend in a dependent context: the template parameter list itself 1882 // could be dependent. 1883 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1884 !TemplateParameterListsAreEqual(TemplateParams, 1885 PrevClassTemplate->getTemplateParameters(), 1886 /*Complain=*/true, 1887 TPL_TemplateMatch)) 1888 return true; 1889 1890 // C++ [temp.class]p4: 1891 // In a redeclaration, partial specialization, explicit 1892 // specialization or explicit instantiation of a class template, 1893 // the class-key shall agree in kind with the original class 1894 // template declaration (7.1.5.3). 1895 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 1896 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 1897 TUK == TUK_Definition, KWLoc, Name)) { 1898 Diag(KWLoc, diag::err_use_with_wrong_tag) 1899 << Name 1900 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 1901 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 1902 Kind = PrevRecordDecl->getTagKind(); 1903 } 1904 1905 // Check for redefinition of this class template. 1906 if (TUK == TUK_Definition) { 1907 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 1908 // If we have a prior definition that is not visible, treat this as 1909 // simply making that previous definition visible. 1910 NamedDecl *Hidden = nullptr; 1911 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 1912 SkipBody->ShouldSkip = true; 1913 SkipBody->Previous = Def; 1914 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate(); 1915 assert(Tmpl && "original definition of a class template is not a " 1916 "class template?"); 1917 makeMergedDefinitionVisible(Hidden); 1918 makeMergedDefinitionVisible(Tmpl); 1919 } else { 1920 Diag(NameLoc, diag::err_redefinition) << Name; 1921 Diag(Def->getLocation(), diag::note_previous_definition); 1922 // FIXME: Would it make sense to try to "forget" the previous 1923 // definition, as part of error recovery? 1924 return true; 1925 } 1926 } 1927 } 1928 } else if (PrevDecl) { 1929 // C++ [temp]p5: 1930 // A class template shall not have the same name as any other 1931 // template, class, function, object, enumeration, enumerator, 1932 // namespace, or type in the same scope (3.3), except as specified 1933 // in (14.5.4). 1934 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1935 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1936 return true; 1937 } 1938 1939 // Check the template parameter list of this declaration, possibly 1940 // merging in the template parameter list from the previous class 1941 // template declaration. Skip this check for a friend in a dependent 1942 // context, because the template parameter list might be dependent. 1943 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1944 CheckTemplateParameterList( 1945 TemplateParams, 1946 PrevClassTemplate 1947 ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters() 1948 : nullptr, 1949 (SS.isSet() && SemanticContext && SemanticContext->isRecord() && 1950 SemanticContext->isDependentContext()) 1951 ? TPC_ClassTemplateMember 1952 : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate, 1953 SkipBody)) 1954 Invalid = true; 1955 1956 if (SS.isSet()) { 1957 // If the name of the template was qualified, we must be defining the 1958 // template out-of-line. 1959 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 1960 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 1961 : diag::err_member_decl_does_not_match) 1962 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange(); 1963 Invalid = true; 1964 } 1965 } 1966 1967 // If this is a templated friend in a dependent context we should not put it 1968 // on the redecl chain. In some cases, the templated friend can be the most 1969 // recent declaration tricking the template instantiator to make substitutions 1970 // there. 1971 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious 1972 bool ShouldAddRedecl 1973 = !(TUK == TUK_Friend && CurContext->isDependentContext()); 1974 1975 CXXRecordDecl *NewClass = 1976 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1977 PrevClassTemplate && ShouldAddRedecl ? 1978 PrevClassTemplate->getTemplatedDecl() : nullptr, 1979 /*DelayTypeCreation=*/true); 1980 SetNestedNameSpecifier(*this, NewClass, SS); 1981 if (NumOuterTemplateParamLists > 0) 1982 NewClass->setTemplateParameterListsInfo( 1983 Context, llvm::makeArrayRef(OuterTemplateParamLists, 1984 NumOuterTemplateParamLists)); 1985 1986 // Add alignment attributes if necessary; these attributes are checked when 1987 // the ASTContext lays out the structure. 1988 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 1989 AddAlignmentAttributesForRecord(NewClass); 1990 AddMsStructLayoutForRecord(NewClass); 1991 } 1992 1993 ClassTemplateDecl *NewTemplate 1994 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1995 DeclarationName(Name), TemplateParams, 1996 NewClass); 1997 1998 if (ShouldAddRedecl) 1999 NewTemplate->setPreviousDecl(PrevClassTemplate); 2000 2001 NewClass->setDescribedClassTemplate(NewTemplate); 2002 2003 if (ModulePrivateLoc.isValid()) 2004 NewTemplate->setModulePrivate(); 2005 2006 // Build the type for the class template declaration now. 2007 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 2008 T = Context.getInjectedClassNameType(NewClass, T); 2009 assert(T->isDependentType() && "Class template type is not dependent?"); 2010 (void)T; 2011 2012 // If we are providing an explicit specialization of a member that is a 2013 // class template, make a note of that. 2014 if (PrevClassTemplate && 2015 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 2016 PrevClassTemplate->setMemberSpecialization(); 2017 2018 // Set the access specifier. 2019 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 2020 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 2021 2022 // Set the lexical context of these templates 2023 NewClass->setLexicalDeclContext(CurContext); 2024 NewTemplate->setLexicalDeclContext(CurContext); 2025 2026 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 2027 NewClass->startDefinition(); 2028 2029 ProcessDeclAttributeList(S, NewClass, Attr); 2030 2031 if (PrevClassTemplate) 2032 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 2033 2034 AddPushedVisibilityAttribute(NewClass); 2035 inferGslOwnerPointerAttribute(NewClass); 2036 2037 if (TUK != TUK_Friend) { 2038 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. 2039 Scope *Outer = S; 2040 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) 2041 Outer = Outer->getParent(); 2042 PushOnScopeChains(NewTemplate, Outer); 2043 } else { 2044 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 2045 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 2046 NewClass->setAccess(PrevClassTemplate->getAccess()); 2047 } 2048 2049 NewTemplate->setObjectOfFriendDecl(); 2050 2051 // Friend templates are visible in fairly strange ways. 2052 if (!CurContext->isDependentContext()) { 2053 DeclContext *DC = SemanticContext->getRedeclContext(); 2054 DC->makeDeclVisibleInContext(NewTemplate); 2055 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 2056 PushOnScopeChains(NewTemplate, EnclosingScope, 2057 /* AddToContext = */ false); 2058 } 2059 2060 FriendDecl *Friend = FriendDecl::Create( 2061 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc); 2062 Friend->setAccess(AS_public); 2063 CurContext->addDecl(Friend); 2064 } 2065 2066 if (PrevClassTemplate) 2067 CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate); 2068 2069 if (Invalid) { 2070 NewTemplate->setInvalidDecl(); 2071 NewClass->setInvalidDecl(); 2072 } 2073 2074 ActOnDocumentableDecl(NewTemplate); 2075 2076 if (SkipBody && SkipBody->ShouldSkip) 2077 return SkipBody->Previous; 2078 2079 return NewTemplate; 2080 } 2081 2082 namespace { 2083 /// Tree transform to "extract" a transformed type from a class template's 2084 /// constructor to a deduction guide. 2085 class ExtractTypeForDeductionGuide 2086 : public TreeTransform<ExtractTypeForDeductionGuide> { 2087 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs; 2088 2089 public: 2090 typedef TreeTransform<ExtractTypeForDeductionGuide> Base; 2091 ExtractTypeForDeductionGuide( 2092 Sema &SemaRef, 2093 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) 2094 : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {} 2095 2096 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); } 2097 2098 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) { 2099 ASTContext &Context = SemaRef.getASTContext(); 2100 TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl(); 2101 TypedefNameDecl *Decl = OrigDecl; 2102 // Transform the underlying type of the typedef and clone the Decl only if 2103 // the typedef has a dependent context. 2104 if (OrigDecl->getDeclContext()->isDependentContext()) { 2105 TypeLocBuilder InnerTLB; 2106 QualType Transformed = 2107 TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc()); 2108 TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed); 2109 if (isa<TypeAliasDecl>(OrigDecl)) 2110 Decl = TypeAliasDecl::Create( 2111 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(), 2112 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI); 2113 else { 2114 assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef"); 2115 Decl = TypedefDecl::Create( 2116 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(), 2117 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI); 2118 } 2119 MaterializedTypedefs.push_back(Decl); 2120 } 2121 2122 QualType TDTy = Context.getTypedefType(Decl); 2123 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy); 2124 TypedefTL.setNameLoc(TL.getNameLoc()); 2125 2126 return TDTy; 2127 } 2128 }; 2129 2130 /// Transform to convert portions of a constructor declaration into the 2131 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1. 2132 struct ConvertConstructorToDeductionGuideTransform { 2133 ConvertConstructorToDeductionGuideTransform(Sema &S, 2134 ClassTemplateDecl *Template) 2135 : SemaRef(S), Template(Template) {} 2136 2137 Sema &SemaRef; 2138 ClassTemplateDecl *Template; 2139 2140 DeclContext *DC = Template->getDeclContext(); 2141 CXXRecordDecl *Primary = Template->getTemplatedDecl(); 2142 DeclarationName DeductionGuideName = 2143 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template); 2144 2145 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary); 2146 2147 // Index adjustment to apply to convert depth-1 template parameters into 2148 // depth-0 template parameters. 2149 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size(); 2150 2151 /// Transform a constructor declaration into a deduction guide. 2152 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD, 2153 CXXConstructorDecl *CD) { 2154 SmallVector<TemplateArgument, 16> SubstArgs; 2155 2156 LocalInstantiationScope Scope(SemaRef); 2157 2158 // C++ [over.match.class.deduct]p1: 2159 // -- For each constructor of the class template designated by the 2160 // template-name, a function template with the following properties: 2161 2162 // -- The template parameters are the template parameters of the class 2163 // template followed by the template parameters (including default 2164 // template arguments) of the constructor, if any. 2165 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2166 if (FTD) { 2167 TemplateParameterList *InnerParams = FTD->getTemplateParameters(); 2168 SmallVector<NamedDecl *, 16> AllParams; 2169 AllParams.reserve(TemplateParams->size() + InnerParams->size()); 2170 AllParams.insert(AllParams.begin(), 2171 TemplateParams->begin(), TemplateParams->end()); 2172 SubstArgs.reserve(InnerParams->size()); 2173 2174 // Later template parameters could refer to earlier ones, so build up 2175 // a list of substituted template arguments as we go. 2176 for (NamedDecl *Param : *InnerParams) { 2177 MultiLevelTemplateArgumentList Args; 2178 Args.setKind(TemplateSubstitutionKind::Rewrite); 2179 Args.addOuterTemplateArguments(SubstArgs); 2180 Args.addOuterRetainedLevel(); 2181 NamedDecl *NewParam = transformTemplateParameter(Param, Args); 2182 if (!NewParam) 2183 return nullptr; 2184 AllParams.push_back(NewParam); 2185 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument( 2186 SemaRef.Context.getInjectedTemplateArg(NewParam))); 2187 } 2188 TemplateParams = TemplateParameterList::Create( 2189 SemaRef.Context, InnerParams->getTemplateLoc(), 2190 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(), 2191 /*FIXME: RequiresClause*/ nullptr); 2192 } 2193 2194 // If we built a new template-parameter-list, track that we need to 2195 // substitute references to the old parameters into references to the 2196 // new ones. 2197 MultiLevelTemplateArgumentList Args; 2198 Args.setKind(TemplateSubstitutionKind::Rewrite); 2199 if (FTD) { 2200 Args.addOuterTemplateArguments(SubstArgs); 2201 Args.addOuterRetainedLevel(); 2202 } 2203 2204 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc() 2205 .getAsAdjusted<FunctionProtoTypeLoc>(); 2206 assert(FPTL && "no prototype for constructor declaration"); 2207 2208 // Transform the type of the function, adjusting the return type and 2209 // replacing references to the old parameters with references to the 2210 // new ones. 2211 TypeLocBuilder TLB; 2212 SmallVector<ParmVarDecl*, 8> Params; 2213 SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs; 2214 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args, 2215 MaterializedTypedefs); 2216 if (NewType.isNull()) 2217 return nullptr; 2218 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType); 2219 2220 return buildDeductionGuide(TemplateParams, CD, CD->getExplicitSpecifier(), 2221 NewTInfo, CD->getBeginLoc(), CD->getLocation(), 2222 CD->getEndLoc(), MaterializedTypedefs); 2223 } 2224 2225 /// Build a deduction guide with the specified parameter types. 2226 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) { 2227 SourceLocation Loc = Template->getLocation(); 2228 2229 // Build the requested type. 2230 FunctionProtoType::ExtProtoInfo EPI; 2231 EPI.HasTrailingReturn = true; 2232 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc, 2233 DeductionGuideName, EPI); 2234 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc); 2235 2236 FunctionProtoTypeLoc FPTL = 2237 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>(); 2238 2239 // Build the parameters, needed during deduction / substitution. 2240 SmallVector<ParmVarDecl*, 4> Params; 2241 for (auto T : ParamTypes) { 2242 ParmVarDecl *NewParam = ParmVarDecl::Create( 2243 SemaRef.Context, DC, Loc, Loc, nullptr, T, 2244 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr); 2245 NewParam->setScopeInfo(0, Params.size()); 2246 FPTL.setParam(Params.size(), NewParam); 2247 Params.push_back(NewParam); 2248 } 2249 2250 return buildDeductionGuide(Template->getTemplateParameters(), nullptr, 2251 ExplicitSpecifier(), TSI, Loc, Loc, Loc); 2252 } 2253 2254 private: 2255 /// Transform a constructor template parameter into a deduction guide template 2256 /// parameter, rebuilding any internal references to earlier parameters and 2257 /// renumbering as we go. 2258 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam, 2259 MultiLevelTemplateArgumentList &Args) { 2260 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) { 2261 // TemplateTypeParmDecl's index cannot be changed after creation, so 2262 // substitute it directly. 2263 auto *NewTTP = TemplateTypeParmDecl::Create( 2264 SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(), 2265 /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(), 2266 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(), 2267 TTP->isParameterPack(), TTP->hasTypeConstraint(), 2268 TTP->isExpandedParameterPack() ? 2269 llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None); 2270 if (const auto *TC = TTP->getTypeConstraint()) { 2271 TemplateArgumentListInfo TransformedArgs; 2272 const auto *ArgsAsWritten = TC->getTemplateArgsAsWritten(); 2273 if (!ArgsAsWritten || 2274 SemaRef.Subst(ArgsAsWritten->getTemplateArgs(), 2275 ArgsAsWritten->NumTemplateArgs, TransformedArgs, 2276 Args)) 2277 SemaRef.AttachTypeConstraint( 2278 TC->getNestedNameSpecifierLoc(), TC->getConceptNameInfo(), 2279 TC->getNamedConcept(), ArgsAsWritten ? &TransformedArgs : nullptr, 2280 NewTTP, 2281 NewTTP->isParameterPack() 2282 ? cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint()) 2283 ->getEllipsisLoc() 2284 : SourceLocation()); 2285 } 2286 if (TTP->hasDefaultArgument()) { 2287 TypeSourceInfo *InstantiatedDefaultArg = 2288 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args, 2289 TTP->getDefaultArgumentLoc(), TTP->getDeclName()); 2290 if (InstantiatedDefaultArg) 2291 NewTTP->setDefaultArgument(InstantiatedDefaultArg); 2292 } 2293 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam, 2294 NewTTP); 2295 return NewTTP; 2296 } 2297 2298 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam)) 2299 return transformTemplateParameterImpl(TTP, Args); 2300 2301 return transformTemplateParameterImpl( 2302 cast<NonTypeTemplateParmDecl>(TemplateParam), Args); 2303 } 2304 template<typename TemplateParmDecl> 2305 TemplateParmDecl * 2306 transformTemplateParameterImpl(TemplateParmDecl *OldParam, 2307 MultiLevelTemplateArgumentList &Args) { 2308 // Ask the template instantiator to do the heavy lifting for us, then adjust 2309 // the index of the parameter once it's done. 2310 auto *NewParam = 2311 cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args)); 2312 assert(NewParam->getDepth() == 0 && "unexpected template param depth"); 2313 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment); 2314 return NewParam; 2315 } 2316 2317 QualType transformFunctionProtoType( 2318 TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, 2319 SmallVectorImpl<ParmVarDecl *> &Params, 2320 MultiLevelTemplateArgumentList &Args, 2321 SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { 2322 SmallVector<QualType, 4> ParamTypes; 2323 const FunctionProtoType *T = TL.getTypePtr(); 2324 2325 // -- The types of the function parameters are those of the constructor. 2326 for (auto *OldParam : TL.getParams()) { 2327 ParmVarDecl *NewParam = 2328 transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs); 2329 if (!NewParam) 2330 return QualType(); 2331 ParamTypes.push_back(NewParam->getType()); 2332 Params.push_back(NewParam); 2333 } 2334 2335 // -- The return type is the class template specialization designated by 2336 // the template-name and template arguments corresponding to the 2337 // template parameters obtained from the class template. 2338 // 2339 // We use the injected-class-name type of the primary template instead. 2340 // This has the convenient property that it is different from any type that 2341 // the user can write in a deduction-guide (because they cannot enter the 2342 // context of the template), so implicit deduction guides can never collide 2343 // with explicit ones. 2344 QualType ReturnType = DeducedType; 2345 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation()); 2346 2347 // Resolving a wording defect, we also inherit the variadicness of the 2348 // constructor. 2349 FunctionProtoType::ExtProtoInfo EPI; 2350 EPI.Variadic = T->isVariadic(); 2351 EPI.HasTrailingReturn = true; 2352 2353 QualType Result = SemaRef.BuildFunctionType( 2354 ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI); 2355 if (Result.isNull()) 2356 return QualType(); 2357 2358 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result); 2359 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); 2360 NewTL.setLParenLoc(TL.getLParenLoc()); 2361 NewTL.setRParenLoc(TL.getRParenLoc()); 2362 NewTL.setExceptionSpecRange(SourceRange()); 2363 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); 2364 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I) 2365 NewTL.setParam(I, Params[I]); 2366 2367 return Result; 2368 } 2369 2370 ParmVarDecl *transformFunctionTypeParam( 2371 ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args, 2372 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { 2373 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo(); 2374 TypeSourceInfo *NewDI; 2375 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) { 2376 // Expand out the one and only element in each inner pack. 2377 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0); 2378 NewDI = 2379 SemaRef.SubstType(PackTL.getPatternLoc(), Args, 2380 OldParam->getLocation(), OldParam->getDeclName()); 2381 if (!NewDI) return nullptr; 2382 NewDI = 2383 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(), 2384 PackTL.getTypePtr()->getNumExpansions()); 2385 } else 2386 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(), 2387 OldParam->getDeclName()); 2388 if (!NewDI) 2389 return nullptr; 2390 2391 // Extract the type. This (for instance) replaces references to typedef 2392 // members of the current instantiations with the definitions of those 2393 // typedefs, avoiding triggering instantiation of the deduced type during 2394 // deduction. 2395 NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs) 2396 .transform(NewDI); 2397 2398 // Resolving a wording defect, we also inherit default arguments from the 2399 // constructor. 2400 ExprResult NewDefArg; 2401 if (OldParam->hasDefaultArg()) { 2402 // We don't care what the value is (we won't use it); just create a 2403 // placeholder to indicate there is a default argument. 2404 QualType ParamTy = NewDI->getType(); 2405 NewDefArg = new (SemaRef.Context) 2406 OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(), 2407 ParamTy.getNonLValueExprType(SemaRef.Context), 2408 ParamTy->isLValueReferenceType() ? VK_LValue 2409 : ParamTy->isRValueReferenceType() ? VK_XValue 2410 : VK_PRValue); 2411 } 2412 2413 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC, 2414 OldParam->getInnerLocStart(), 2415 OldParam->getLocation(), 2416 OldParam->getIdentifier(), 2417 NewDI->getType(), 2418 NewDI, 2419 OldParam->getStorageClass(), 2420 NewDefArg.get()); 2421 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(), 2422 OldParam->getFunctionScopeIndex()); 2423 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam); 2424 return NewParam; 2425 } 2426 2427 FunctionTemplateDecl *buildDeductionGuide( 2428 TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor, 2429 ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart, 2430 SourceLocation Loc, SourceLocation LocEnd, 2431 llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) { 2432 DeclarationNameInfo Name(DeductionGuideName, Loc); 2433 ArrayRef<ParmVarDecl *> Params = 2434 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(); 2435 2436 // Build the implicit deduction guide template. 2437 auto *Guide = 2438 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name, 2439 TInfo->getType(), TInfo, LocEnd, Ctor); 2440 Guide->setImplicit(); 2441 Guide->setParams(Params); 2442 2443 for (auto *Param : Params) 2444 Param->setDeclContext(Guide); 2445 for (auto *TD : MaterializedTypedefs) 2446 TD->setDeclContext(Guide); 2447 2448 auto *GuideTemplate = FunctionTemplateDecl::Create( 2449 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide); 2450 GuideTemplate->setImplicit(); 2451 Guide->setDescribedFunctionTemplate(GuideTemplate); 2452 2453 if (isa<CXXRecordDecl>(DC)) { 2454 Guide->setAccess(AS_public); 2455 GuideTemplate->setAccess(AS_public); 2456 } 2457 2458 DC->addDecl(GuideTemplate); 2459 return GuideTemplate; 2460 } 2461 }; 2462 } 2463 2464 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template, 2465 SourceLocation Loc) { 2466 if (CXXRecordDecl *DefRecord = 2467 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) { 2468 TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate(); 2469 Template = DescribedTemplate ? DescribedTemplate : Template; 2470 } 2471 2472 DeclContext *DC = Template->getDeclContext(); 2473 if (DC->isDependentContext()) 2474 return; 2475 2476 ConvertConstructorToDeductionGuideTransform Transform( 2477 *this, cast<ClassTemplateDecl>(Template)); 2478 if (!isCompleteType(Loc, Transform.DeducedType)) 2479 return; 2480 2481 // Check whether we've already declared deduction guides for this template. 2482 // FIXME: Consider storing a flag on the template to indicate this. 2483 auto Existing = DC->lookup(Transform.DeductionGuideName); 2484 for (auto *D : Existing) 2485 if (D->isImplicit()) 2486 return; 2487 2488 // In case we were expanding a pack when we attempted to declare deduction 2489 // guides, turn off pack expansion for everything we're about to do. 2490 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1); 2491 // Create a template instantiation record to track the "instantiation" of 2492 // constructors into deduction guides. 2493 // FIXME: Add a kind for this to give more meaningful diagnostics. But can 2494 // this substitution process actually fail? 2495 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template); 2496 if (BuildingDeductionGuides.isInvalid()) 2497 return; 2498 2499 // Convert declared constructors into deduction guide templates. 2500 // FIXME: Skip constructors for which deduction must necessarily fail (those 2501 // for which some class template parameter without a default argument never 2502 // appears in a deduced context). 2503 bool AddedAny = false; 2504 for (NamedDecl *D : LookupConstructors(Transform.Primary)) { 2505 D = D->getUnderlyingDecl(); 2506 if (D->isInvalidDecl() || D->isImplicit()) 2507 continue; 2508 D = cast<NamedDecl>(D->getCanonicalDecl()); 2509 2510 auto *FTD = dyn_cast<FunctionTemplateDecl>(D); 2511 auto *CD = 2512 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D); 2513 // Class-scope explicit specializations (MS extension) do not result in 2514 // deduction guides. 2515 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization())) 2516 continue; 2517 2518 // Cannot make a deduction guide when unparsed arguments are present. 2519 if (std::any_of(CD->param_begin(), CD->param_end(), [](ParmVarDecl *P) { 2520 return !P || P->hasUnparsedDefaultArg(); 2521 })) 2522 continue; 2523 2524 Transform.transformConstructor(FTD, CD); 2525 AddedAny = true; 2526 } 2527 2528 // C++17 [over.match.class.deduct] 2529 // -- If C is not defined or does not declare any constructors, an 2530 // additional function template derived as above from a hypothetical 2531 // constructor C(). 2532 if (!AddedAny) 2533 Transform.buildSimpleDeductionGuide(None); 2534 2535 // -- An additional function template derived as above from a hypothetical 2536 // constructor C(C), called the copy deduction candidate. 2537 cast<CXXDeductionGuideDecl>( 2538 cast<FunctionTemplateDecl>( 2539 Transform.buildSimpleDeductionGuide(Transform.DeducedType)) 2540 ->getTemplatedDecl()) 2541 ->setIsCopyDeductionCandidate(); 2542 } 2543 2544 /// Diagnose the presence of a default template argument on a 2545 /// template parameter, which is ill-formed in certain contexts. 2546 /// 2547 /// \returns true if the default template argument should be dropped. 2548 static bool DiagnoseDefaultTemplateArgument(Sema &S, 2549 Sema::TemplateParamListContext TPC, 2550 SourceLocation ParamLoc, 2551 SourceRange DefArgRange) { 2552 switch (TPC) { 2553 case Sema::TPC_ClassTemplate: 2554 case Sema::TPC_VarTemplate: 2555 case Sema::TPC_TypeAliasTemplate: 2556 return false; 2557 2558 case Sema::TPC_FunctionTemplate: 2559 case Sema::TPC_FriendFunctionTemplateDefinition: 2560 // C++ [temp.param]p9: 2561 // A default template-argument shall not be specified in a 2562 // function template declaration or a function template 2563 // definition [...] 2564 // If a friend function template declaration specifies a default 2565 // template-argument, that declaration shall be a definition and shall be 2566 // the only declaration of the function template in the translation unit. 2567 // (C++98/03 doesn't have this wording; see DR226). 2568 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 2569 diag::warn_cxx98_compat_template_parameter_default_in_function_template 2570 : diag::ext_template_parameter_default_in_function_template) 2571 << DefArgRange; 2572 return false; 2573 2574 case Sema::TPC_ClassTemplateMember: 2575 // C++0x [temp.param]p9: 2576 // A default template-argument shall not be specified in the 2577 // template-parameter-lists of the definition of a member of a 2578 // class template that appears outside of the member's class. 2579 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 2580 << DefArgRange; 2581 return true; 2582 2583 case Sema::TPC_FriendClassTemplate: 2584 case Sema::TPC_FriendFunctionTemplate: 2585 // C++ [temp.param]p9: 2586 // A default template-argument shall not be specified in a 2587 // friend template declaration. 2588 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 2589 << DefArgRange; 2590 return true; 2591 2592 // FIXME: C++0x [temp.param]p9 allows default template-arguments 2593 // for friend function templates if there is only a single 2594 // declaration (and it is a definition). Strange! 2595 } 2596 2597 llvm_unreachable("Invalid TemplateParamListContext!"); 2598 } 2599 2600 /// Check for unexpanded parameter packs within the template parameters 2601 /// of a template template parameter, recursively. 2602 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 2603 TemplateTemplateParmDecl *TTP) { 2604 // A template template parameter which is a parameter pack is also a pack 2605 // expansion. 2606 if (TTP->isParameterPack()) 2607 return false; 2608 2609 TemplateParameterList *Params = TTP->getTemplateParameters(); 2610 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 2611 NamedDecl *P = Params->getParam(I); 2612 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) { 2613 if (!TTP->isParameterPack()) 2614 if (const TypeConstraint *TC = TTP->getTypeConstraint()) 2615 if (TC->hasExplicitTemplateArgs()) 2616 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) 2617 if (S.DiagnoseUnexpandedParameterPack(ArgLoc, 2618 Sema::UPPC_TypeConstraint)) 2619 return true; 2620 continue; 2621 } 2622 2623 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 2624 if (!NTTP->isParameterPack() && 2625 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 2626 NTTP->getTypeSourceInfo(), 2627 Sema::UPPC_NonTypeTemplateParameterType)) 2628 return true; 2629 2630 continue; 2631 } 2632 2633 if (TemplateTemplateParmDecl *InnerTTP 2634 = dyn_cast<TemplateTemplateParmDecl>(P)) 2635 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 2636 return true; 2637 } 2638 2639 return false; 2640 } 2641 2642 /// Checks the validity of a template parameter list, possibly 2643 /// considering the template parameter list from a previous 2644 /// declaration. 2645 /// 2646 /// If an "old" template parameter list is provided, it must be 2647 /// equivalent (per TemplateParameterListsAreEqual) to the "new" 2648 /// template parameter list. 2649 /// 2650 /// \param NewParams Template parameter list for a new template 2651 /// declaration. This template parameter list will be updated with any 2652 /// default arguments that are carried through from the previous 2653 /// template parameter list. 2654 /// 2655 /// \param OldParams If provided, template parameter list from a 2656 /// previous declaration of the same template. Default template 2657 /// arguments will be merged from the old template parameter list to 2658 /// the new template parameter list. 2659 /// 2660 /// \param TPC Describes the context in which we are checking the given 2661 /// template parameter list. 2662 /// 2663 /// \param SkipBody If we might have already made a prior merged definition 2664 /// of this template visible, the corresponding body-skipping information. 2665 /// Default argument redefinition is not an error when skipping such a body, 2666 /// because (under the ODR) we can assume the default arguments are the same 2667 /// as the prior merged definition. 2668 /// 2669 /// \returns true if an error occurred, false otherwise. 2670 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 2671 TemplateParameterList *OldParams, 2672 TemplateParamListContext TPC, 2673 SkipBodyInfo *SkipBody) { 2674 bool Invalid = false; 2675 2676 // C++ [temp.param]p10: 2677 // The set of default template-arguments available for use with a 2678 // template declaration or definition is obtained by merging the 2679 // default arguments from the definition (if in scope) and all 2680 // declarations in scope in the same way default function 2681 // arguments are (8.3.6). 2682 bool SawDefaultArgument = false; 2683 SourceLocation PreviousDefaultArgLoc; 2684 2685 // Dummy initialization to avoid warnings. 2686 TemplateParameterList::iterator OldParam = NewParams->end(); 2687 if (OldParams) 2688 OldParam = OldParams->begin(); 2689 2690 bool RemoveDefaultArguments = false; 2691 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2692 NewParamEnd = NewParams->end(); 2693 NewParam != NewParamEnd; ++NewParam) { 2694 // Variables used to diagnose redundant default arguments 2695 bool RedundantDefaultArg = false; 2696 SourceLocation OldDefaultLoc; 2697 SourceLocation NewDefaultLoc; 2698 2699 // Variable used to diagnose missing default arguments 2700 bool MissingDefaultArg = false; 2701 2702 // Variable used to diagnose non-final parameter packs 2703 bool SawParameterPack = false; 2704 2705 if (TemplateTypeParmDecl *NewTypeParm 2706 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 2707 // Check the presence of a default argument here. 2708 if (NewTypeParm->hasDefaultArgument() && 2709 DiagnoseDefaultTemplateArgument(*this, TPC, 2710 NewTypeParm->getLocation(), 2711 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 2712 .getSourceRange())) 2713 NewTypeParm->removeDefaultArgument(); 2714 2715 // Merge default arguments for template type parameters. 2716 TemplateTypeParmDecl *OldTypeParm 2717 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr; 2718 if (NewTypeParm->isParameterPack()) { 2719 assert(!NewTypeParm->hasDefaultArgument() && 2720 "Parameter packs can't have a default argument!"); 2721 SawParameterPack = true; 2722 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && 2723 NewTypeParm->hasDefaultArgument() && 2724 (!SkipBody || !SkipBody->ShouldSkip)) { 2725 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 2726 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 2727 SawDefaultArgument = true; 2728 RedundantDefaultArg = true; 2729 PreviousDefaultArgLoc = NewDefaultLoc; 2730 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 2731 // Merge the default argument from the old declaration to the 2732 // new declaration. 2733 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm); 2734 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 2735 } else if (NewTypeParm->hasDefaultArgument()) { 2736 SawDefaultArgument = true; 2737 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 2738 } else if (SawDefaultArgument) 2739 MissingDefaultArg = true; 2740 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 2741 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 2742 // Check for unexpanded parameter packs. 2743 if (!NewNonTypeParm->isParameterPack() && 2744 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 2745 NewNonTypeParm->getTypeSourceInfo(), 2746 UPPC_NonTypeTemplateParameterType)) { 2747 Invalid = true; 2748 continue; 2749 } 2750 2751 // Check the presence of a default argument here. 2752 if (NewNonTypeParm->hasDefaultArgument() && 2753 DiagnoseDefaultTemplateArgument(*this, TPC, 2754 NewNonTypeParm->getLocation(), 2755 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 2756 NewNonTypeParm->removeDefaultArgument(); 2757 } 2758 2759 // Merge default arguments for non-type template parameters 2760 NonTypeTemplateParmDecl *OldNonTypeParm 2761 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr; 2762 if (NewNonTypeParm->isParameterPack()) { 2763 assert(!NewNonTypeParm->hasDefaultArgument() && 2764 "Parameter packs can't have a default argument!"); 2765 if (!NewNonTypeParm->isPackExpansion()) 2766 SawParameterPack = true; 2767 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && 2768 NewNonTypeParm->hasDefaultArgument() && 2769 (!SkipBody || !SkipBody->ShouldSkip)) { 2770 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2771 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2772 SawDefaultArgument = true; 2773 RedundantDefaultArg = true; 2774 PreviousDefaultArgLoc = NewDefaultLoc; 2775 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 2776 // Merge the default argument from the old declaration to the 2777 // new declaration. 2778 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm); 2779 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2780 } else if (NewNonTypeParm->hasDefaultArgument()) { 2781 SawDefaultArgument = true; 2782 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2783 } else if (SawDefaultArgument) 2784 MissingDefaultArg = true; 2785 } else { 2786 TemplateTemplateParmDecl *NewTemplateParm 2787 = cast<TemplateTemplateParmDecl>(*NewParam); 2788 2789 // Check for unexpanded parameter packs, recursively. 2790 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 2791 Invalid = true; 2792 continue; 2793 } 2794 2795 // Check the presence of a default argument here. 2796 if (NewTemplateParm->hasDefaultArgument() && 2797 DiagnoseDefaultTemplateArgument(*this, TPC, 2798 NewTemplateParm->getLocation(), 2799 NewTemplateParm->getDefaultArgument().getSourceRange())) 2800 NewTemplateParm->removeDefaultArgument(); 2801 2802 // Merge default arguments for template template parameters 2803 TemplateTemplateParmDecl *OldTemplateParm 2804 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr; 2805 if (NewTemplateParm->isParameterPack()) { 2806 assert(!NewTemplateParm->hasDefaultArgument() && 2807 "Parameter packs can't have a default argument!"); 2808 if (!NewTemplateParm->isPackExpansion()) 2809 SawParameterPack = true; 2810 } else if (OldTemplateParm && 2811 hasVisibleDefaultArgument(OldTemplateParm) && 2812 NewTemplateParm->hasDefaultArgument() && 2813 (!SkipBody || !SkipBody->ShouldSkip)) { 2814 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 2815 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 2816 SawDefaultArgument = true; 2817 RedundantDefaultArg = true; 2818 PreviousDefaultArgLoc = NewDefaultLoc; 2819 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 2820 // Merge the default argument from the old declaration to the 2821 // new declaration. 2822 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm); 2823 PreviousDefaultArgLoc 2824 = OldTemplateParm->getDefaultArgument().getLocation(); 2825 } else if (NewTemplateParm->hasDefaultArgument()) { 2826 SawDefaultArgument = true; 2827 PreviousDefaultArgLoc 2828 = NewTemplateParm->getDefaultArgument().getLocation(); 2829 } else if (SawDefaultArgument) 2830 MissingDefaultArg = true; 2831 } 2832 2833 // C++11 [temp.param]p11: 2834 // If a template parameter of a primary class template or alias template 2835 // is a template parameter pack, it shall be the last template parameter. 2836 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 2837 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || 2838 TPC == TPC_TypeAliasTemplate)) { 2839 Diag((*NewParam)->getLocation(), 2840 diag::err_template_param_pack_must_be_last_template_parameter); 2841 Invalid = true; 2842 } 2843 2844 if (RedundantDefaultArg) { 2845 // C++ [temp.param]p12: 2846 // A template-parameter shall not be given default arguments 2847 // by two different declarations in the same scope. 2848 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 2849 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 2850 Invalid = true; 2851 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 2852 // C++ [temp.param]p11: 2853 // If a template-parameter of a class template has a default 2854 // template-argument, each subsequent template-parameter shall either 2855 // have a default template-argument supplied or be a template parameter 2856 // pack. 2857 Diag((*NewParam)->getLocation(), 2858 diag::err_template_param_default_arg_missing); 2859 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 2860 Invalid = true; 2861 RemoveDefaultArguments = true; 2862 } 2863 2864 // If we have an old template parameter list that we're merging 2865 // in, move on to the next parameter. 2866 if (OldParams) 2867 ++OldParam; 2868 } 2869 2870 // We were missing some default arguments at the end of the list, so remove 2871 // all of the default arguments. 2872 if (RemoveDefaultArguments) { 2873 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2874 NewParamEnd = NewParams->end(); 2875 NewParam != NewParamEnd; ++NewParam) { 2876 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 2877 TTP->removeDefaultArgument(); 2878 else if (NonTypeTemplateParmDecl *NTTP 2879 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 2880 NTTP->removeDefaultArgument(); 2881 else 2882 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 2883 } 2884 } 2885 2886 return Invalid; 2887 } 2888 2889 namespace { 2890 2891 /// A class which looks for a use of a certain level of template 2892 /// parameter. 2893 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 2894 typedef RecursiveASTVisitor<DependencyChecker> super; 2895 2896 unsigned Depth; 2897 2898 // Whether we're looking for a use of a template parameter that makes the 2899 // overall construct type-dependent / a dependent type. This is strictly 2900 // best-effort for now; we may fail to match at all for a dependent type 2901 // in some cases if this is set. 2902 bool IgnoreNonTypeDependent; 2903 2904 bool Match; 2905 SourceLocation MatchLoc; 2906 2907 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) 2908 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), 2909 Match(false) {} 2910 2911 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) 2912 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { 2913 NamedDecl *ND = Params->getParam(0); 2914 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 2915 Depth = PD->getDepth(); 2916 } else if (NonTypeTemplateParmDecl *PD = 2917 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 2918 Depth = PD->getDepth(); 2919 } else { 2920 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 2921 } 2922 } 2923 2924 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { 2925 if (ParmDepth >= Depth) { 2926 Match = true; 2927 MatchLoc = Loc; 2928 return true; 2929 } 2930 return false; 2931 } 2932 2933 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) { 2934 // Prune out non-type-dependent expressions if requested. This can 2935 // sometimes result in us failing to find a template parameter reference 2936 // (if a value-dependent expression creates a dependent type), but this 2937 // mode is best-effort only. 2938 if (auto *E = dyn_cast_or_null<Expr>(S)) 2939 if (IgnoreNonTypeDependent && !E->isTypeDependent()) 2940 return true; 2941 return super::TraverseStmt(S, Q); 2942 } 2943 2944 bool TraverseTypeLoc(TypeLoc TL) { 2945 if (IgnoreNonTypeDependent && !TL.isNull() && 2946 !TL.getType()->isDependentType()) 2947 return true; 2948 return super::TraverseTypeLoc(TL); 2949 } 2950 2951 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { 2952 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc()); 2953 } 2954 2955 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 2956 // For a best-effort search, keep looking until we find a location. 2957 return IgnoreNonTypeDependent || !Matches(T->getDepth()); 2958 } 2959 2960 bool TraverseTemplateName(TemplateName N) { 2961 if (TemplateTemplateParmDecl *PD = 2962 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 2963 if (Matches(PD->getDepth())) 2964 return false; 2965 return super::TraverseTemplateName(N); 2966 } 2967 2968 bool VisitDeclRefExpr(DeclRefExpr *E) { 2969 if (NonTypeTemplateParmDecl *PD = 2970 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 2971 if (Matches(PD->getDepth(), E->getExprLoc())) 2972 return false; 2973 return super::VisitDeclRefExpr(E); 2974 } 2975 2976 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { 2977 return TraverseType(T->getReplacementType()); 2978 } 2979 2980 bool 2981 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { 2982 return TraverseTemplateArgument(T->getArgumentPack()); 2983 } 2984 2985 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 2986 return TraverseType(T->getInjectedSpecializationType()); 2987 } 2988 }; 2989 } // end anonymous namespace 2990 2991 /// Determines whether a given type depends on the given parameter 2992 /// list. 2993 static bool 2994 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 2995 if (!Params->size()) 2996 return false; 2997 2998 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); 2999 Checker.TraverseType(T); 3000 return Checker.Match; 3001 } 3002 3003 // Find the source range corresponding to the named type in the given 3004 // nested-name-specifier, if any. 3005 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 3006 QualType T, 3007 const CXXScopeSpec &SS) { 3008 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 3009 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 3010 if (const Type *CurType = NNS->getAsType()) { 3011 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 3012 return NNSLoc.getTypeLoc().getSourceRange(); 3013 } else 3014 break; 3015 3016 NNSLoc = NNSLoc.getPrefix(); 3017 } 3018 3019 return SourceRange(); 3020 } 3021 3022 /// Match the given template parameter lists to the given scope 3023 /// specifier, returning the template parameter list that applies to the 3024 /// name. 3025 /// 3026 /// \param DeclStartLoc the start of the declaration that has a scope 3027 /// specifier or a template parameter list. 3028 /// 3029 /// \param DeclLoc The location of the declaration itself. 3030 /// 3031 /// \param SS the scope specifier that will be matched to the given template 3032 /// parameter lists. This scope specifier precedes a qualified name that is 3033 /// being declared. 3034 /// 3035 /// \param TemplateId The template-id following the scope specifier, if there 3036 /// is one. Used to check for a missing 'template<>'. 3037 /// 3038 /// \param ParamLists the template parameter lists, from the outermost to the 3039 /// innermost template parameter lists. 3040 /// 3041 /// \param IsFriend Whether to apply the slightly different rules for 3042 /// matching template parameters to scope specifiers in friend 3043 /// declarations. 3044 /// 3045 /// \param IsMemberSpecialization will be set true if the scope specifier 3046 /// denotes a fully-specialized type, and therefore this is a declaration of 3047 /// a member specialization. 3048 /// 3049 /// \returns the template parameter list, if any, that corresponds to the 3050 /// name that is preceded by the scope specifier @p SS. This template 3051 /// parameter list may have template parameters (if we're declaring a 3052 /// template) or may have no template parameters (if we're declaring a 3053 /// template specialization), or may be NULL (if what we're declaring isn't 3054 /// itself a template). 3055 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( 3056 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, 3057 TemplateIdAnnotation *TemplateId, 3058 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, 3059 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) { 3060 IsMemberSpecialization = false; 3061 Invalid = false; 3062 3063 // The sequence of nested types to which we will match up the template 3064 // parameter lists. We first build this list by starting with the type named 3065 // by the nested-name-specifier and walking out until we run out of types. 3066 SmallVector<QualType, 4> NestedTypes; 3067 QualType T; 3068 if (SS.getScopeRep()) { 3069 if (CXXRecordDecl *Record 3070 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 3071 T = Context.getTypeDeclType(Record); 3072 else 3073 T = QualType(SS.getScopeRep()->getAsType(), 0); 3074 } 3075 3076 // If we found an explicit specialization that prevents us from needing 3077 // 'template<>' headers, this will be set to the location of that 3078 // explicit specialization. 3079 SourceLocation ExplicitSpecLoc; 3080 3081 while (!T.isNull()) { 3082 NestedTypes.push_back(T); 3083 3084 // Retrieve the parent of a record type. 3085 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 3086 // If this type is an explicit specialization, we're done. 3087 if (ClassTemplateSpecializationDecl *Spec 3088 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 3089 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 3090 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 3091 ExplicitSpecLoc = Spec->getLocation(); 3092 break; 3093 } 3094 } else if (Record->getTemplateSpecializationKind() 3095 == TSK_ExplicitSpecialization) { 3096 ExplicitSpecLoc = Record->getLocation(); 3097 break; 3098 } 3099 3100 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 3101 T = Context.getTypeDeclType(Parent); 3102 else 3103 T = QualType(); 3104 continue; 3105 } 3106 3107 if (const TemplateSpecializationType *TST 3108 = T->getAs<TemplateSpecializationType>()) { 3109 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 3110 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 3111 T = Context.getTypeDeclType(Parent); 3112 else 3113 T = QualType(); 3114 continue; 3115 } 3116 } 3117 3118 // Look one step prior in a dependent template specialization type. 3119 if (const DependentTemplateSpecializationType *DependentTST 3120 = T->getAs<DependentTemplateSpecializationType>()) { 3121 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 3122 T = QualType(NNS->getAsType(), 0); 3123 else 3124 T = QualType(); 3125 continue; 3126 } 3127 3128 // Look one step prior in a dependent name type. 3129 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 3130 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 3131 T = QualType(NNS->getAsType(), 0); 3132 else 3133 T = QualType(); 3134 continue; 3135 } 3136 3137 // Retrieve the parent of an enumeration type. 3138 if (const EnumType *EnumT = T->getAs<EnumType>()) { 3139 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 3140 // check here. 3141 EnumDecl *Enum = EnumT->getDecl(); 3142 3143 // Get to the parent type. 3144 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 3145 T = Context.getTypeDeclType(Parent); 3146 else 3147 T = QualType(); 3148 continue; 3149 } 3150 3151 T = QualType(); 3152 } 3153 // Reverse the nested types list, since we want to traverse from the outermost 3154 // to the innermost while checking template-parameter-lists. 3155 std::reverse(NestedTypes.begin(), NestedTypes.end()); 3156 3157 // C++0x [temp.expl.spec]p17: 3158 // A member or a member template may be nested within many 3159 // enclosing class templates. In an explicit specialization for 3160 // such a member, the member declaration shall be preceded by a 3161 // template<> for each enclosing class template that is 3162 // explicitly specialized. 3163 bool SawNonEmptyTemplateParameterList = false; 3164 3165 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { 3166 if (SawNonEmptyTemplateParameterList) { 3167 if (!SuppressDiagnostic) 3168 Diag(DeclLoc, diag::err_specialize_member_of_template) 3169 << !Recovery << Range; 3170 Invalid = true; 3171 IsMemberSpecialization = false; 3172 return true; 3173 } 3174 3175 return false; 3176 }; 3177 3178 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { 3179 // Check that we can have an explicit specialization here. 3180 if (CheckExplicitSpecialization(Range, true)) 3181 return true; 3182 3183 // We don't have a template header, but we should. 3184 SourceLocation ExpectedTemplateLoc; 3185 if (!ParamLists.empty()) 3186 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 3187 else 3188 ExpectedTemplateLoc = DeclStartLoc; 3189 3190 if (!SuppressDiagnostic) 3191 Diag(DeclLoc, diag::err_template_spec_needs_header) 3192 << Range 3193 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 3194 return false; 3195 }; 3196 3197 unsigned ParamIdx = 0; 3198 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 3199 ++TypeIdx) { 3200 T = NestedTypes[TypeIdx]; 3201 3202 // Whether we expect a 'template<>' header. 3203 bool NeedEmptyTemplateHeader = false; 3204 3205 // Whether we expect a template header with parameters. 3206 bool NeedNonemptyTemplateHeader = false; 3207 3208 // For a dependent type, the set of template parameters that we 3209 // expect to see. 3210 TemplateParameterList *ExpectedTemplateParams = nullptr; 3211 3212 // C++0x [temp.expl.spec]p15: 3213 // A member or a member template may be nested within many enclosing 3214 // class templates. In an explicit specialization for such a member, the 3215 // member declaration shall be preceded by a template<> for each 3216 // enclosing class template that is explicitly specialized. 3217 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 3218 if (ClassTemplatePartialSpecializationDecl *Partial 3219 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 3220 ExpectedTemplateParams = Partial->getTemplateParameters(); 3221 NeedNonemptyTemplateHeader = true; 3222 } else if (Record->isDependentType()) { 3223 if (Record->getDescribedClassTemplate()) { 3224 ExpectedTemplateParams = Record->getDescribedClassTemplate() 3225 ->getTemplateParameters(); 3226 NeedNonemptyTemplateHeader = true; 3227 } 3228 } else if (ClassTemplateSpecializationDecl *Spec 3229 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 3230 // C++0x [temp.expl.spec]p4: 3231 // Members of an explicitly specialized class template are defined 3232 // in the same manner as members of normal classes, and not using 3233 // the template<> syntax. 3234 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 3235 NeedEmptyTemplateHeader = true; 3236 else 3237 continue; 3238 } else if (Record->getTemplateSpecializationKind()) { 3239 if (Record->getTemplateSpecializationKind() 3240 != TSK_ExplicitSpecialization && 3241 TypeIdx == NumTypes - 1) 3242 IsMemberSpecialization = true; 3243 3244 continue; 3245 } 3246 } else if (const TemplateSpecializationType *TST 3247 = T->getAs<TemplateSpecializationType>()) { 3248 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 3249 ExpectedTemplateParams = Template->getTemplateParameters(); 3250 NeedNonemptyTemplateHeader = true; 3251 } 3252 } else if (T->getAs<DependentTemplateSpecializationType>()) { 3253 // FIXME: We actually could/should check the template arguments here 3254 // against the corresponding template parameter list. 3255 NeedNonemptyTemplateHeader = false; 3256 } 3257 3258 // C++ [temp.expl.spec]p16: 3259 // In an explicit specialization declaration for a member of a class 3260 // template or a member template that ap- pears in namespace scope, the 3261 // member template and some of its enclosing class templates may remain 3262 // unspecialized, except that the declaration shall not explicitly 3263 // specialize a class member template if its en- closing class templates 3264 // are not explicitly specialized as well. 3265 if (ParamIdx < ParamLists.size()) { 3266 if (ParamLists[ParamIdx]->size() == 0) { 3267 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3268 false)) 3269 return nullptr; 3270 } else 3271 SawNonEmptyTemplateParameterList = true; 3272 } 3273 3274 if (NeedEmptyTemplateHeader) { 3275 // If we're on the last of the types, and we need a 'template<>' header 3276 // here, then it's a member specialization. 3277 if (TypeIdx == NumTypes - 1) 3278 IsMemberSpecialization = true; 3279 3280 if (ParamIdx < ParamLists.size()) { 3281 if (ParamLists[ParamIdx]->size() > 0) { 3282 // The header has template parameters when it shouldn't. Complain. 3283 if (!SuppressDiagnostic) 3284 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3285 diag::err_template_param_list_matches_nontemplate) 3286 << T 3287 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 3288 ParamLists[ParamIdx]->getRAngleLoc()) 3289 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 3290 Invalid = true; 3291 return nullptr; 3292 } 3293 3294 // Consume this template header. 3295 ++ParamIdx; 3296 continue; 3297 } 3298 3299 if (!IsFriend) 3300 if (DiagnoseMissingExplicitSpecialization( 3301 getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) 3302 return nullptr; 3303 3304 continue; 3305 } 3306 3307 if (NeedNonemptyTemplateHeader) { 3308 // In friend declarations we can have template-ids which don't 3309 // depend on the corresponding template parameter lists. But 3310 // assume that empty parameter lists are supposed to match this 3311 // template-id. 3312 if (IsFriend && T->isDependentType()) { 3313 if (ParamIdx < ParamLists.size() && 3314 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 3315 ExpectedTemplateParams = nullptr; 3316 else 3317 continue; 3318 } 3319 3320 if (ParamIdx < ParamLists.size()) { 3321 // Check the template parameter list, if we can. 3322 if (ExpectedTemplateParams && 3323 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 3324 ExpectedTemplateParams, 3325 !SuppressDiagnostic, TPL_TemplateMatch)) 3326 Invalid = true; 3327 3328 if (!Invalid && 3329 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr, 3330 TPC_ClassTemplateMember)) 3331 Invalid = true; 3332 3333 ++ParamIdx; 3334 continue; 3335 } 3336 3337 if (!SuppressDiagnostic) 3338 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 3339 << T 3340 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 3341 Invalid = true; 3342 continue; 3343 } 3344 } 3345 3346 // If there were at least as many template-ids as there were template 3347 // parameter lists, then there are no template parameter lists remaining for 3348 // the declaration itself. 3349 if (ParamIdx >= ParamLists.size()) { 3350 if (TemplateId && !IsFriend) { 3351 // We don't have a template header for the declaration itself, but we 3352 // should. 3353 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, 3354 TemplateId->RAngleLoc)); 3355 3356 // Fabricate an empty template parameter list for the invented header. 3357 return TemplateParameterList::Create(Context, SourceLocation(), 3358 SourceLocation(), None, 3359 SourceLocation(), nullptr); 3360 } 3361 3362 return nullptr; 3363 } 3364 3365 // If there were too many template parameter lists, complain about that now. 3366 if (ParamIdx < ParamLists.size() - 1) { 3367 bool HasAnyExplicitSpecHeader = false; 3368 bool AllExplicitSpecHeaders = true; 3369 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { 3370 if (ParamLists[I]->size() == 0) 3371 HasAnyExplicitSpecHeader = true; 3372 else 3373 AllExplicitSpecHeaders = false; 3374 } 3375 3376 if (!SuppressDiagnostic) 3377 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3378 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers 3379 : diag::err_template_spec_extra_headers) 3380 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 3381 ParamLists[ParamLists.size() - 2]->getRAngleLoc()); 3382 3383 // If there was a specialization somewhere, such that 'template<>' is 3384 // not required, and there were any 'template<>' headers, note where the 3385 // specialization occurred. 3386 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader && 3387 !SuppressDiagnostic) 3388 Diag(ExplicitSpecLoc, 3389 diag::note_explicit_template_spec_does_not_need_header) 3390 << NestedTypes.back(); 3391 3392 // We have a template parameter list with no corresponding scope, which 3393 // means that the resulting template declaration can't be instantiated 3394 // properly (we'll end up with dependent nodes when we shouldn't). 3395 if (!AllExplicitSpecHeaders) 3396 Invalid = true; 3397 } 3398 3399 // C++ [temp.expl.spec]p16: 3400 // In an explicit specialization declaration for a member of a class 3401 // template or a member template that ap- pears in namespace scope, the 3402 // member template and some of its enclosing class templates may remain 3403 // unspecialized, except that the declaration shall not explicitly 3404 // specialize a class member template if its en- closing class templates 3405 // are not explicitly specialized as well. 3406 if (ParamLists.back()->size() == 0 && 3407 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3408 false)) 3409 return nullptr; 3410 3411 // Return the last template parameter list, which corresponds to the 3412 // entity being declared. 3413 return ParamLists.back(); 3414 } 3415 3416 void Sema::NoteAllFoundTemplates(TemplateName Name) { 3417 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 3418 Diag(Template->getLocation(), diag::note_template_declared_here) 3419 << (isa<FunctionTemplateDecl>(Template) 3420 ? 0 3421 : isa<ClassTemplateDecl>(Template) 3422 ? 1 3423 : isa<VarTemplateDecl>(Template) 3424 ? 2 3425 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) 3426 << Template->getDeclName(); 3427 return; 3428 } 3429 3430 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 3431 for (OverloadedTemplateStorage::iterator I = OST->begin(), 3432 IEnd = OST->end(); 3433 I != IEnd; ++I) 3434 Diag((*I)->getLocation(), diag::note_template_declared_here) 3435 << 0 << (*I)->getDeclName(); 3436 3437 return; 3438 } 3439 } 3440 3441 static QualType 3442 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, 3443 const SmallVectorImpl<TemplateArgument> &Converted, 3444 SourceLocation TemplateLoc, 3445 TemplateArgumentListInfo &TemplateArgs) { 3446 ASTContext &Context = SemaRef.getASTContext(); 3447 switch (BTD->getBuiltinTemplateKind()) { 3448 case BTK__make_integer_seq: { 3449 // Specializations of __make_integer_seq<S, T, N> are treated like 3450 // S<T, 0, ..., N-1>. 3451 3452 // C++14 [inteseq.intseq]p1: 3453 // T shall be an integer type. 3454 if (!Converted[1].getAsType()->isIntegralType(Context)) { 3455 SemaRef.Diag(TemplateArgs[1].getLocation(), 3456 diag::err_integer_sequence_integral_element_type); 3457 return QualType(); 3458 } 3459 3460 // C++14 [inteseq.make]p1: 3461 // If N is negative the program is ill-formed. 3462 TemplateArgument NumArgsArg = Converted[2]; 3463 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); 3464 if (NumArgs < 0) { 3465 SemaRef.Diag(TemplateArgs[2].getLocation(), 3466 diag::err_integer_sequence_negative_length); 3467 return QualType(); 3468 } 3469 3470 QualType ArgTy = NumArgsArg.getIntegralType(); 3471 TemplateArgumentListInfo SyntheticTemplateArgs; 3472 // The type argument gets reused as the first template argument in the 3473 // synthetic template argument list. 3474 SyntheticTemplateArgs.addArgument(TemplateArgs[1]); 3475 // Expand N into 0 ... N-1. 3476 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); 3477 I < NumArgs; ++I) { 3478 TemplateArgument TA(Context, I, ArgTy); 3479 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc( 3480 TA, ArgTy, TemplateArgs[2].getLocation())); 3481 } 3482 // The first template argument will be reused as the template decl that 3483 // our synthetic template arguments will be applied to. 3484 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(), 3485 TemplateLoc, SyntheticTemplateArgs); 3486 } 3487 3488 case BTK__type_pack_element: 3489 // Specializations of 3490 // __type_pack_element<Index, T_1, ..., T_N> 3491 // are treated like T_Index. 3492 assert(Converted.size() == 2 && 3493 "__type_pack_element should be given an index and a parameter pack"); 3494 3495 // If the Index is out of bounds, the program is ill-formed. 3496 TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; 3497 llvm::APSInt Index = IndexArg.getAsIntegral(); 3498 assert(Index >= 0 && "the index used with __type_pack_element should be of " 3499 "type std::size_t, and hence be non-negative"); 3500 if (Index >= Ts.pack_size()) { 3501 SemaRef.Diag(TemplateArgs[0].getLocation(), 3502 diag::err_type_pack_element_out_of_bounds); 3503 return QualType(); 3504 } 3505 3506 // We simply return the type at index `Index`. 3507 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue()); 3508 return Nth->getAsType(); 3509 } 3510 llvm_unreachable("unexpected BuiltinTemplateDecl!"); 3511 } 3512 3513 /// Determine whether this alias template is "enable_if_t". 3514 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { 3515 return AliasTemplate->getName().equals("enable_if_t"); 3516 } 3517 3518 /// Collect all of the separable terms in the given condition, which 3519 /// might be a conjunction. 3520 /// 3521 /// FIXME: The right answer is to convert the logical expression into 3522 /// disjunctive normal form, so we can find the first failed term 3523 /// within each possible clause. 3524 static void collectConjunctionTerms(Expr *Clause, 3525 SmallVectorImpl<Expr *> &Terms) { 3526 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) { 3527 if (BinOp->getOpcode() == BO_LAnd) { 3528 collectConjunctionTerms(BinOp->getLHS(), Terms); 3529 collectConjunctionTerms(BinOp->getRHS(), Terms); 3530 } 3531 3532 return; 3533 } 3534 3535 Terms.push_back(Clause); 3536 } 3537 3538 // The ranges-v3 library uses an odd pattern of a top-level "||" with 3539 // a left-hand side that is value-dependent but never true. Identify 3540 // the idiom and ignore that term. 3541 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { 3542 // Top-level '||'. 3543 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts()); 3544 if (!BinOp) return Cond; 3545 3546 if (BinOp->getOpcode() != BO_LOr) return Cond; 3547 3548 // With an inner '==' that has a literal on the right-hand side. 3549 Expr *LHS = BinOp->getLHS(); 3550 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts()); 3551 if (!InnerBinOp) return Cond; 3552 3553 if (InnerBinOp->getOpcode() != BO_EQ || 3554 !isa<IntegerLiteral>(InnerBinOp->getRHS())) 3555 return Cond; 3556 3557 // If the inner binary operation came from a macro expansion named 3558 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side 3559 // of the '||', which is the real, user-provided condition. 3560 SourceLocation Loc = InnerBinOp->getExprLoc(); 3561 if (!Loc.isMacroID()) return Cond; 3562 3563 StringRef MacroName = PP.getImmediateMacroName(Loc); 3564 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_") 3565 return BinOp->getRHS(); 3566 3567 return Cond; 3568 } 3569 3570 namespace { 3571 3572 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions 3573 // within failing boolean expression, such as substituting template parameters 3574 // for actual types. 3575 class FailedBooleanConditionPrinterHelper : public PrinterHelper { 3576 public: 3577 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P) 3578 : Policy(P) {} 3579 3580 bool handledStmt(Stmt *E, raw_ostream &OS) override { 3581 const auto *DR = dyn_cast<DeclRefExpr>(E); 3582 if (DR && DR->getQualifier()) { 3583 // If this is a qualified name, expand the template arguments in nested 3584 // qualifiers. 3585 DR->getQualifier()->print(OS, Policy, true); 3586 // Then print the decl itself. 3587 const ValueDecl *VD = DR->getDecl(); 3588 OS << VD->getName(); 3589 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 3590 // This is a template variable, print the expanded template arguments. 3591 printTemplateArgumentList( 3592 OS, IV->getTemplateArgs().asArray(), Policy, 3593 IV->getSpecializedTemplate()->getTemplateParameters()); 3594 } 3595 return true; 3596 } 3597 return false; 3598 } 3599 3600 private: 3601 const PrintingPolicy Policy; 3602 }; 3603 3604 } // end anonymous namespace 3605 3606 std::pair<Expr *, std::string> 3607 Sema::findFailedBooleanCondition(Expr *Cond) { 3608 Cond = lookThroughRangesV3Condition(PP, Cond); 3609 3610 // Separate out all of the terms in a conjunction. 3611 SmallVector<Expr *, 4> Terms; 3612 collectConjunctionTerms(Cond, Terms); 3613 3614 // Determine which term failed. 3615 Expr *FailedCond = nullptr; 3616 for (Expr *Term : Terms) { 3617 Expr *TermAsWritten = Term->IgnoreParenImpCasts(); 3618 3619 // Literals are uninteresting. 3620 if (isa<CXXBoolLiteralExpr>(TermAsWritten) || 3621 isa<IntegerLiteral>(TermAsWritten)) 3622 continue; 3623 3624 // The initialization of the parameter from the argument is 3625 // a constant-evaluated context. 3626 EnterExpressionEvaluationContext ConstantEvaluated( 3627 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 3628 3629 bool Succeeded; 3630 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) && 3631 !Succeeded) { 3632 FailedCond = TermAsWritten; 3633 break; 3634 } 3635 } 3636 if (!FailedCond) 3637 FailedCond = Cond->IgnoreParenImpCasts(); 3638 3639 std::string Description; 3640 { 3641 llvm::raw_string_ostream Out(Description); 3642 PrintingPolicy Policy = getPrintingPolicy(); 3643 Policy.PrintCanonicalTypes = true; 3644 FailedBooleanConditionPrinterHelper Helper(Policy); 3645 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr); 3646 } 3647 return { FailedCond, Description }; 3648 } 3649 3650 QualType Sema::CheckTemplateIdType(TemplateName Name, 3651 SourceLocation TemplateLoc, 3652 TemplateArgumentListInfo &TemplateArgs) { 3653 DependentTemplateName *DTN 3654 = Name.getUnderlying().getAsDependentTemplateName(); 3655 if (DTN && DTN->isIdentifier()) 3656 // When building a template-id where the template-name is dependent, 3657 // assume the template is a type template. Either our assumption is 3658 // correct, or the code is ill-formed and will be diagnosed when the 3659 // dependent name is substituted. 3660 return Context.getDependentTemplateSpecializationType(ETK_None, 3661 DTN->getQualifier(), 3662 DTN->getIdentifier(), 3663 TemplateArgs); 3664 3665 if (Name.getAsAssumedTemplateName() && 3666 resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc)) 3667 return QualType(); 3668 3669 TemplateDecl *Template = Name.getAsTemplateDecl(); 3670 if (!Template || isa<FunctionTemplateDecl>(Template) || 3671 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) { 3672 // We might have a substituted template template parameter pack. If so, 3673 // build a template specialization type for it. 3674 if (Name.getAsSubstTemplateTemplateParmPack()) 3675 return Context.getTemplateSpecializationType(Name, TemplateArgs); 3676 3677 Diag(TemplateLoc, diag::err_template_id_not_a_type) 3678 << Name; 3679 NoteAllFoundTemplates(Name); 3680 return QualType(); 3681 } 3682 3683 // Check that the template argument list is well-formed for this 3684 // template. 3685 SmallVector<TemplateArgument, 4> Converted; 3686 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 3687 false, Converted, 3688 /*UpdateArgsWithConversion=*/true)) 3689 return QualType(); 3690 3691 QualType CanonType; 3692 3693 if (TypeAliasTemplateDecl *AliasTemplate = 3694 dyn_cast<TypeAliasTemplateDecl>(Template)) { 3695 3696 // Find the canonical type for this type alias template specialization. 3697 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 3698 if (Pattern->isInvalidDecl()) 3699 return QualType(); 3700 3701 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack, 3702 Converted); 3703 3704 // Only substitute for the innermost template argument list. 3705 MultiLevelTemplateArgumentList TemplateArgLists; 3706 TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs); 3707 TemplateArgLists.addOuterRetainedLevels( 3708 AliasTemplate->getTemplateParameters()->getDepth()); 3709 3710 LocalInstantiationScope Scope(*this); 3711 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 3712 if (Inst.isInvalid()) 3713 return QualType(); 3714 3715 CanonType = SubstType(Pattern->getUnderlyingType(), 3716 TemplateArgLists, AliasTemplate->getLocation(), 3717 AliasTemplate->getDeclName()); 3718 if (CanonType.isNull()) { 3719 // If this was enable_if and we failed to find the nested type 3720 // within enable_if in a SFINAE context, dig out the specific 3721 // enable_if condition that failed and present that instead. 3722 if (isEnableIfAliasTemplate(AliasTemplate)) { 3723 if (auto DeductionInfo = isSFINAEContext()) { 3724 if (*DeductionInfo && 3725 (*DeductionInfo)->hasSFINAEDiagnostic() && 3726 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == 3727 diag::err_typename_nested_not_found_enable_if && 3728 TemplateArgs[0].getArgument().getKind() 3729 == TemplateArgument::Expression) { 3730 Expr *FailedCond; 3731 std::string FailedDescription; 3732 std::tie(FailedCond, FailedDescription) = 3733 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression()); 3734 3735 // Remove the old SFINAE diagnostic. 3736 PartialDiagnosticAt OldDiag = 3737 {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; 3738 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag); 3739 3740 // Add a new SFINAE diagnostic specifying which condition 3741 // failed. 3742 (*DeductionInfo)->addSFINAEDiagnostic( 3743 OldDiag.first, 3744 PDiag(diag::err_typename_nested_not_found_requirement) 3745 << FailedDescription 3746 << FailedCond->getSourceRange()); 3747 } 3748 } 3749 } 3750 3751 return QualType(); 3752 } 3753 } else if (Name.isDependent() || 3754 TemplateSpecializationType::anyDependentTemplateArguments( 3755 TemplateArgs, Converted)) { 3756 // This class template specialization is a dependent 3757 // type. Therefore, its canonical type is another class template 3758 // specialization type that contains all of the converted 3759 // arguments in canonical form. This ensures that, e.g., A<T> and 3760 // A<T, T> have identical types when A is declared as: 3761 // 3762 // template<typename T, typename U = T> struct A; 3763 CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted); 3764 3765 // This might work out to be a current instantiation, in which 3766 // case the canonical type needs to be the InjectedClassNameType. 3767 // 3768 // TODO: in theory this could be a simple hashtable lookup; most 3769 // changes to CurContext don't change the set of current 3770 // instantiations. 3771 if (isa<ClassTemplateDecl>(Template)) { 3772 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 3773 // If we get out to a namespace, we're done. 3774 if (Ctx->isFileContext()) break; 3775 3776 // If this isn't a record, keep looking. 3777 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 3778 if (!Record) continue; 3779 3780 // Look for one of the two cases with InjectedClassNameTypes 3781 // and check whether it's the same template. 3782 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 3783 !Record->getDescribedClassTemplate()) 3784 continue; 3785 3786 // Fetch the injected class name type and check whether its 3787 // injected type is equal to the type we just built. 3788 QualType ICNT = Context.getTypeDeclType(Record); 3789 QualType Injected = cast<InjectedClassNameType>(ICNT) 3790 ->getInjectedSpecializationType(); 3791 3792 if (CanonType != Injected->getCanonicalTypeInternal()) 3793 continue; 3794 3795 // If so, the canonical type of this TST is the injected 3796 // class name type of the record we just found. 3797 assert(ICNT.isCanonical()); 3798 CanonType = ICNT; 3799 break; 3800 } 3801 } 3802 } else if (ClassTemplateDecl *ClassTemplate 3803 = dyn_cast<ClassTemplateDecl>(Template)) { 3804 // Find the class template specialization declaration that 3805 // corresponds to these arguments. 3806 void *InsertPos = nullptr; 3807 ClassTemplateSpecializationDecl *Decl 3808 = ClassTemplate->findSpecialization(Converted, InsertPos); 3809 if (!Decl) { 3810 // This is the first time we have referenced this class template 3811 // specialization. Create the canonical declaration and add it to 3812 // the set of specializations. 3813 Decl = ClassTemplateSpecializationDecl::Create( 3814 Context, ClassTemplate->getTemplatedDecl()->getTagKind(), 3815 ClassTemplate->getDeclContext(), 3816 ClassTemplate->getTemplatedDecl()->getBeginLoc(), 3817 ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr); 3818 ClassTemplate->AddSpecialization(Decl, InsertPos); 3819 if (ClassTemplate->isOutOfLine()) 3820 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 3821 } 3822 3823 if (Decl->getSpecializationKind() == TSK_Undeclared && 3824 ClassTemplate->getTemplatedDecl()->hasAttrs()) { 3825 InstantiatingTemplate Inst(*this, TemplateLoc, Decl); 3826 if (!Inst.isInvalid()) { 3827 MultiLevelTemplateArgumentList TemplateArgLists; 3828 TemplateArgLists.addOuterTemplateArguments(Converted); 3829 InstantiateAttrsForDecl(TemplateArgLists, 3830 ClassTemplate->getTemplatedDecl(), Decl); 3831 } 3832 } 3833 3834 // Diagnose uses of this specialization. 3835 (void)DiagnoseUseOfDecl(Decl, TemplateLoc); 3836 3837 CanonType = Context.getTypeDeclType(Decl); 3838 assert(isa<RecordType>(CanonType) && 3839 "type of non-dependent specialization is not a RecordType"); 3840 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) { 3841 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc, 3842 TemplateArgs); 3843 } 3844 3845 // Build the fully-sugared type for this class template 3846 // specialization, which refers back to the class template 3847 // specialization we created or found. 3848 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 3849 } 3850 3851 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName, 3852 TemplateNameKind &TNK, 3853 SourceLocation NameLoc, 3854 IdentifierInfo *&II) { 3855 assert(TNK == TNK_Undeclared_template && "not an undeclared template name"); 3856 3857 TemplateName Name = ParsedName.get(); 3858 auto *ATN = Name.getAsAssumedTemplateName(); 3859 assert(ATN && "not an assumed template name"); 3860 II = ATN->getDeclName().getAsIdentifierInfo(); 3861 3862 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) { 3863 // Resolved to a type template name. 3864 ParsedName = TemplateTy::make(Name); 3865 TNK = TNK_Type_template; 3866 } 3867 } 3868 3869 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, 3870 SourceLocation NameLoc, 3871 bool Diagnose) { 3872 // We assumed this undeclared identifier to be an (ADL-only) function 3873 // template name, but it was used in a context where a type was required. 3874 // Try to typo-correct it now. 3875 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName(); 3876 assert(ATN && "not an assumed template name"); 3877 3878 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName); 3879 struct CandidateCallback : CorrectionCandidateCallback { 3880 bool ValidateCandidate(const TypoCorrection &TC) override { 3881 return TC.getCorrectionDecl() && 3882 getAsTypeTemplateDecl(TC.getCorrectionDecl()); 3883 } 3884 std::unique_ptr<CorrectionCandidateCallback> clone() override { 3885 return std::make_unique<CandidateCallback>(*this); 3886 } 3887 } FilterCCC; 3888 3889 TypoCorrection Corrected = 3890 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr, 3891 FilterCCC, CTK_ErrorRecovery); 3892 if (Corrected && Corrected.getFoundDecl()) { 3893 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) 3894 << ATN->getDeclName()); 3895 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>()); 3896 return false; 3897 } 3898 3899 if (Diagnose) 3900 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName(); 3901 return true; 3902 } 3903 3904 TypeResult Sema::ActOnTemplateIdType( 3905 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 3906 TemplateTy TemplateD, IdentifierInfo *TemplateII, 3907 SourceLocation TemplateIILoc, SourceLocation LAngleLoc, 3908 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc, 3909 bool IsCtorOrDtorName, bool IsClassName) { 3910 if (SS.isInvalid()) 3911 return true; 3912 3913 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { 3914 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); 3915 3916 // C++ [temp.res]p3: 3917 // A qualified-id that refers to a type and in which the 3918 // nested-name-specifier depends on a template-parameter (14.6.2) 3919 // shall be prefixed by the keyword typename to indicate that the 3920 // qualified-id denotes a type, forming an 3921 // elaborated-type-specifier (7.1.5.3). 3922 if (!LookupCtx && isDependentScopeSpecifier(SS)) { 3923 Diag(SS.getBeginLoc(), diag::err_typename_missing_template) 3924 << SS.getScopeRep() << TemplateII->getName(); 3925 // Recover as if 'typename' were specified. 3926 // FIXME: This is not quite correct recovery as we don't transform SS 3927 // into the corresponding dependent form (and we don't diagnose missing 3928 // 'template' keywords within SS as a result). 3929 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc, 3930 TemplateD, TemplateII, TemplateIILoc, LAngleLoc, 3931 TemplateArgsIn, RAngleLoc); 3932 } 3933 3934 // Per C++ [class.qual]p2, if the template-id was an injected-class-name, 3935 // it's not actually allowed to be used as a type in most cases. Because 3936 // we annotate it before we know whether it's valid, we have to check for 3937 // this case here. 3938 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 3939 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 3940 Diag(TemplateIILoc, 3941 TemplateKWLoc.isInvalid() 3942 ? diag::err_out_of_line_qualified_id_type_names_constructor 3943 : diag::ext_out_of_line_qualified_id_type_names_constructor) 3944 << TemplateII << 0 /*injected-class-name used as template name*/ 3945 << 1 /*if any keyword was present, it was 'template'*/; 3946 } 3947 } 3948 3949 TemplateName Template = TemplateD.get(); 3950 if (Template.getAsAssumedTemplateName() && 3951 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc)) 3952 return true; 3953 3954 // Translate the parser's template argument list in our AST format. 3955 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 3956 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3957 3958 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 3959 QualType T 3960 = Context.getDependentTemplateSpecializationType(ETK_None, 3961 DTN->getQualifier(), 3962 DTN->getIdentifier(), 3963 TemplateArgs); 3964 // Build type-source information. 3965 TypeLocBuilder TLB; 3966 DependentTemplateSpecializationTypeLoc SpecTL 3967 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 3968 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 3969 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3970 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3971 SpecTL.setTemplateNameLoc(TemplateIILoc); 3972 SpecTL.setLAngleLoc(LAngleLoc); 3973 SpecTL.setRAngleLoc(RAngleLoc); 3974 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 3975 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 3976 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 3977 } 3978 3979 QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 3980 if (Result.isNull()) 3981 return true; 3982 3983 // Build type-source information. 3984 TypeLocBuilder TLB; 3985 TemplateSpecializationTypeLoc SpecTL 3986 = TLB.push<TemplateSpecializationTypeLoc>(Result); 3987 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3988 SpecTL.setTemplateNameLoc(TemplateIILoc); 3989 SpecTL.setLAngleLoc(LAngleLoc); 3990 SpecTL.setRAngleLoc(RAngleLoc); 3991 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 3992 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 3993 3994 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 3995 // constructor or destructor name (in such a case, the scope specifier 3996 // will be attached to the enclosing Decl or Expr node). 3997 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 3998 // Create an elaborated-type-specifier containing the nested-name-specifier. 3999 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 4000 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 4001 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 4002 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4003 } 4004 4005 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 4006 } 4007 4008 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 4009 TypeSpecifierType TagSpec, 4010 SourceLocation TagLoc, 4011 CXXScopeSpec &SS, 4012 SourceLocation TemplateKWLoc, 4013 TemplateTy TemplateD, 4014 SourceLocation TemplateLoc, 4015 SourceLocation LAngleLoc, 4016 ASTTemplateArgsPtr TemplateArgsIn, 4017 SourceLocation RAngleLoc) { 4018 if (SS.isInvalid()) 4019 return TypeResult(true); 4020 4021 TemplateName Template = TemplateD.get(); 4022 4023 // Translate the parser's template argument list in our AST format. 4024 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4025 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4026 4027 // Determine the tag kind 4028 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4029 ElaboratedTypeKeyword Keyword 4030 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 4031 4032 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 4033 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 4034 DTN->getQualifier(), 4035 DTN->getIdentifier(), 4036 TemplateArgs); 4037 4038 // Build type-source information. 4039 TypeLocBuilder TLB; 4040 DependentTemplateSpecializationTypeLoc SpecTL 4041 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 4042 SpecTL.setElaboratedKeywordLoc(TagLoc); 4043 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4044 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 4045 SpecTL.setTemplateNameLoc(TemplateLoc); 4046 SpecTL.setLAngleLoc(LAngleLoc); 4047 SpecTL.setRAngleLoc(RAngleLoc); 4048 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 4049 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 4050 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 4051 } 4052 4053 if (TypeAliasTemplateDecl *TAT = 4054 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 4055 // C++0x [dcl.type.elab]p2: 4056 // If the identifier resolves to a typedef-name or the simple-template-id 4057 // resolves to an alias template specialization, the 4058 // elaborated-type-specifier is ill-formed. 4059 Diag(TemplateLoc, diag::err_tag_reference_non_tag) 4060 << TAT << NTK_TypeAliasTemplate << TagKind; 4061 Diag(TAT->getLocation(), diag::note_declared_at); 4062 } 4063 4064 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 4065 if (Result.isNull()) 4066 return TypeResult(true); 4067 4068 // Check the tag kind 4069 if (const RecordType *RT = Result->getAs<RecordType>()) { 4070 RecordDecl *D = RT->getDecl(); 4071 4072 IdentifierInfo *Id = D->getIdentifier(); 4073 assert(Id && "templated class must have an identifier"); 4074 4075 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 4076 TagLoc, Id)) { 4077 Diag(TagLoc, diag::err_use_with_wrong_tag) 4078 << Result 4079 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 4080 Diag(D->getLocation(), diag::note_previous_use); 4081 } 4082 } 4083 4084 // Provide source-location information for the template specialization. 4085 TypeLocBuilder TLB; 4086 TemplateSpecializationTypeLoc SpecTL 4087 = TLB.push<TemplateSpecializationTypeLoc>(Result); 4088 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 4089 SpecTL.setTemplateNameLoc(TemplateLoc); 4090 SpecTL.setLAngleLoc(LAngleLoc); 4091 SpecTL.setRAngleLoc(RAngleLoc); 4092 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 4093 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 4094 4095 // Construct an elaborated type containing the nested-name-specifier (if any) 4096 // and tag keyword. 4097 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 4098 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 4099 ElabTL.setElaboratedKeywordLoc(TagLoc); 4100 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4101 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 4102 } 4103 4104 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, 4105 NamedDecl *PrevDecl, 4106 SourceLocation Loc, 4107 bool IsPartialSpecialization); 4108 4109 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); 4110 4111 static bool isTemplateArgumentTemplateParameter( 4112 const TemplateArgument &Arg, unsigned Depth, unsigned Index) { 4113 switch (Arg.getKind()) { 4114 case TemplateArgument::Null: 4115 case TemplateArgument::NullPtr: 4116 case TemplateArgument::Integral: 4117 case TemplateArgument::Declaration: 4118 case TemplateArgument::Pack: 4119 case TemplateArgument::TemplateExpansion: 4120 return false; 4121 4122 case TemplateArgument::Type: { 4123 QualType Type = Arg.getAsType(); 4124 const TemplateTypeParmType *TPT = 4125 Arg.getAsType()->getAs<TemplateTypeParmType>(); 4126 return TPT && !Type.hasQualifiers() && 4127 TPT->getDepth() == Depth && TPT->getIndex() == Index; 4128 } 4129 4130 case TemplateArgument::Expression: { 4131 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr()); 4132 if (!DRE || !DRE->getDecl()) 4133 return false; 4134 const NonTypeTemplateParmDecl *NTTP = 4135 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 4136 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; 4137 } 4138 4139 case TemplateArgument::Template: 4140 const TemplateTemplateParmDecl *TTP = 4141 dyn_cast_or_null<TemplateTemplateParmDecl>( 4142 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); 4143 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; 4144 } 4145 llvm_unreachable("unexpected kind of template argument"); 4146 } 4147 4148 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, 4149 ArrayRef<TemplateArgument> Args) { 4150 if (Params->size() != Args.size()) 4151 return false; 4152 4153 unsigned Depth = Params->getDepth(); 4154 4155 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 4156 TemplateArgument Arg = Args[I]; 4157 4158 // If the parameter is a pack expansion, the argument must be a pack 4159 // whose only element is a pack expansion. 4160 if (Params->getParam(I)->isParameterPack()) { 4161 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || 4162 !Arg.pack_begin()->isPackExpansion()) 4163 return false; 4164 Arg = Arg.pack_begin()->getPackExpansionPattern(); 4165 } 4166 4167 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I)) 4168 return false; 4169 } 4170 4171 return true; 4172 } 4173 4174 template<typename PartialSpecDecl> 4175 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { 4176 if (Partial->getDeclContext()->isDependentContext()) 4177 return; 4178 4179 // FIXME: Get the TDK from deduction in order to provide better diagnostics 4180 // for non-substitution-failure issues? 4181 TemplateDeductionInfo Info(Partial->getLocation()); 4182 if (S.isMoreSpecializedThanPrimary(Partial, Info)) 4183 return; 4184 4185 auto *Template = Partial->getSpecializedTemplate(); 4186 S.Diag(Partial->getLocation(), 4187 diag::ext_partial_spec_not_more_specialized_than_primary) 4188 << isa<VarTemplateDecl>(Template); 4189 4190 if (Info.hasSFINAEDiagnostic()) { 4191 PartialDiagnosticAt Diag = {SourceLocation(), 4192 PartialDiagnostic::NullDiagnostic()}; 4193 Info.takeSFINAEDiagnostic(Diag); 4194 SmallString<128> SFINAEArgString; 4195 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString); 4196 S.Diag(Diag.first, 4197 diag::note_partial_spec_not_more_specialized_than_primary) 4198 << SFINAEArgString; 4199 } 4200 4201 S.Diag(Template->getLocation(), diag::note_template_decl_here); 4202 SmallVector<const Expr *, 3> PartialAC, TemplateAC; 4203 Template->getAssociatedConstraints(TemplateAC); 4204 Partial->getAssociatedConstraints(PartialAC); 4205 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template, 4206 TemplateAC); 4207 } 4208 4209 static void 4210 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, 4211 const llvm::SmallBitVector &DeducibleParams) { 4212 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4213 if (!DeducibleParams[I]) { 4214 NamedDecl *Param = TemplateParams->getParam(I); 4215 if (Param->getDeclName()) 4216 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4217 << Param->getDeclName(); 4218 else 4219 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4220 << "(anonymous)"; 4221 } 4222 } 4223 } 4224 4225 4226 template<typename PartialSpecDecl> 4227 static void checkTemplatePartialSpecialization(Sema &S, 4228 PartialSpecDecl *Partial) { 4229 // C++1z [temp.class.spec]p8: (DR1495) 4230 // - The specialization shall be more specialized than the primary 4231 // template (14.5.5.2). 4232 checkMoreSpecializedThanPrimary(S, Partial); 4233 4234 // C++ [temp.class.spec]p8: (DR1315) 4235 // - Each template-parameter shall appear at least once in the 4236 // template-id outside a non-deduced context. 4237 // C++1z [temp.class.spec.match]p3 (P0127R2) 4238 // If the template arguments of a partial specialization cannot be 4239 // deduced because of the structure of its template-parameter-list 4240 // and the template-id, the program is ill-formed. 4241 auto *TemplateParams = Partial->getTemplateParameters(); 4242 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4243 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4244 TemplateParams->getDepth(), DeducibleParams); 4245 4246 if (!DeducibleParams.all()) { 4247 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4248 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) 4249 << isa<VarTemplatePartialSpecializationDecl>(Partial) 4250 << (NumNonDeducible > 1) 4251 << SourceRange(Partial->getLocation(), 4252 Partial->getTemplateArgsAsWritten()->RAngleLoc); 4253 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); 4254 } 4255 } 4256 4257 void Sema::CheckTemplatePartialSpecialization( 4258 ClassTemplatePartialSpecializationDecl *Partial) { 4259 checkTemplatePartialSpecialization(*this, Partial); 4260 } 4261 4262 void Sema::CheckTemplatePartialSpecialization( 4263 VarTemplatePartialSpecializationDecl *Partial) { 4264 checkTemplatePartialSpecialization(*this, Partial); 4265 } 4266 4267 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { 4268 // C++1z [temp.param]p11: 4269 // A template parameter of a deduction guide template that does not have a 4270 // default-argument shall be deducible from the parameter-type-list of the 4271 // deduction guide template. 4272 auto *TemplateParams = TD->getTemplateParameters(); 4273 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4274 MarkDeducedTemplateParameters(TD, DeducibleParams); 4275 for (unsigned I = 0; I != TemplateParams->size(); ++I) { 4276 // A parameter pack is deducible (to an empty pack). 4277 auto *Param = TemplateParams->getParam(I); 4278 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param)) 4279 DeducibleParams[I] = true; 4280 } 4281 4282 if (!DeducibleParams.all()) { 4283 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4284 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible) 4285 << (NumNonDeducible > 1); 4286 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams); 4287 } 4288 } 4289 4290 DeclResult Sema::ActOnVarTemplateSpecialization( 4291 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, 4292 TemplateParameterList *TemplateParams, StorageClass SC, 4293 bool IsPartialSpecialization) { 4294 // D must be variable template id. 4295 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && 4296 "Variable template specialization is declared with a template it."); 4297 4298 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4299 TemplateArgumentListInfo TemplateArgs = 4300 makeTemplateArgumentListInfo(*this, *TemplateId); 4301 SourceLocation TemplateNameLoc = D.getIdentifierLoc(); 4302 SourceLocation LAngleLoc = TemplateId->LAngleLoc; 4303 SourceLocation RAngleLoc = TemplateId->RAngleLoc; 4304 4305 TemplateName Name = TemplateId->Template.get(); 4306 4307 // The template-id must name a variable template. 4308 VarTemplateDecl *VarTemplate = 4309 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl()); 4310 if (!VarTemplate) { 4311 NamedDecl *FnTemplate; 4312 if (auto *OTS = Name.getAsOverloadedTemplate()) 4313 FnTemplate = *OTS->begin(); 4314 else 4315 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); 4316 if (FnTemplate) 4317 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) 4318 << FnTemplate->getDeclName(); 4319 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) 4320 << IsPartialSpecialization; 4321 } 4322 4323 // Check for unexpanded parameter packs in any of the template arguments. 4324 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4325 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4326 UPPC_PartialSpecialization)) 4327 return true; 4328 4329 // Check that the template argument list is well-formed for this 4330 // template. 4331 SmallVector<TemplateArgument, 4> Converted; 4332 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, 4333 false, Converted, 4334 /*UpdateArgsWithConversion=*/true)) 4335 return true; 4336 4337 // Find the variable template (partial) specialization declaration that 4338 // corresponds to these arguments. 4339 if (IsPartialSpecialization) { 4340 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate, 4341 TemplateArgs.size(), Converted)) 4342 return true; 4343 4344 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we 4345 // also do them during instantiation. 4346 if (!Name.isDependent() && 4347 !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs, 4348 Converted)) { 4349 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4350 << VarTemplate->getDeclName(); 4351 IsPartialSpecialization = false; 4352 } 4353 4354 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), 4355 Converted) && 4356 (!Context.getLangOpts().CPlusPlus20 || 4357 !TemplateParams->hasAssociatedConstraints())) { 4358 // C++ [temp.class.spec]p9b3: 4359 // 4360 // -- The argument list of the specialization shall not be identical 4361 // to the implicit argument list of the primary template. 4362 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4363 << /*variable template*/ 1 4364 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) 4365 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4366 // FIXME: Recover from this by treating the declaration as a redeclaration 4367 // of the primary template. 4368 return true; 4369 } 4370 } 4371 4372 void *InsertPos = nullptr; 4373 VarTemplateSpecializationDecl *PrevDecl = nullptr; 4374 4375 if (IsPartialSpecialization) 4376 PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams, 4377 InsertPos); 4378 else 4379 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos); 4380 4381 VarTemplateSpecializationDecl *Specialization = nullptr; 4382 4383 // Check whether we can declare a variable template specialization in 4384 // the current scope. 4385 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, 4386 TemplateNameLoc, 4387 IsPartialSpecialization)) 4388 return true; 4389 4390 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4391 // Since the only prior variable template specialization with these 4392 // arguments was referenced but not declared, reuse that 4393 // declaration node as our own, updating its source location and 4394 // the list of outer template parameters to reflect our new declaration. 4395 Specialization = PrevDecl; 4396 Specialization->setLocation(TemplateNameLoc); 4397 PrevDecl = nullptr; 4398 } else if (IsPartialSpecialization) { 4399 // Create a new class template partial specialization declaration node. 4400 VarTemplatePartialSpecializationDecl *PrevPartial = 4401 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); 4402 VarTemplatePartialSpecializationDecl *Partial = 4403 VarTemplatePartialSpecializationDecl::Create( 4404 Context, VarTemplate->getDeclContext(), TemplateKWLoc, 4405 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, 4406 Converted, TemplateArgs); 4407 4408 if (!PrevPartial) 4409 VarTemplate->AddPartialSpecialization(Partial, InsertPos); 4410 Specialization = Partial; 4411 4412 // If we are providing an explicit specialization of a member variable 4413 // template specialization, make a note of that. 4414 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4415 PrevPartial->setMemberSpecialization(); 4416 4417 CheckTemplatePartialSpecialization(Partial); 4418 } else { 4419 // Create a new class template specialization declaration node for 4420 // this explicit specialization or friend declaration. 4421 Specialization = VarTemplateSpecializationDecl::Create( 4422 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, 4423 VarTemplate, DI->getType(), DI, SC, Converted); 4424 Specialization->setTemplateArgsInfo(TemplateArgs); 4425 4426 if (!PrevDecl) 4427 VarTemplate->AddSpecialization(Specialization, InsertPos); 4428 } 4429 4430 // C++ [temp.expl.spec]p6: 4431 // If a template, a member template or the member of a class template is 4432 // explicitly specialized then that specialization shall be declared 4433 // before the first use of that specialization that would cause an implicit 4434 // instantiation to take place, in every translation unit in which such a 4435 // use occurs; no diagnostic is required. 4436 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4437 bool Okay = false; 4438 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 4439 // Is there any previous explicit specialization declaration? 4440 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4441 Okay = true; 4442 break; 4443 } 4444 } 4445 4446 if (!Okay) { 4447 SourceRange Range(TemplateNameLoc, RAngleLoc); 4448 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4449 << Name << Range; 4450 4451 Diag(PrevDecl->getPointOfInstantiation(), 4452 diag::note_instantiation_required_here) 4453 << (PrevDecl->getTemplateSpecializationKind() != 4454 TSK_ImplicitInstantiation); 4455 return true; 4456 } 4457 } 4458 4459 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 4460 Specialization->setLexicalDeclContext(CurContext); 4461 4462 // Add the specialization into its lexical context, so that it can 4463 // be seen when iterating through the list of declarations in that 4464 // context. However, specializations are not found by name lookup. 4465 CurContext->addDecl(Specialization); 4466 4467 // Note that this is an explicit specialization. 4468 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4469 4470 if (PrevDecl) { 4471 // Check that this isn't a redefinition of this specialization, 4472 // merging with previous declarations. 4473 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName, 4474 forRedeclarationInCurContext()); 4475 PrevSpec.addDecl(PrevDecl); 4476 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec)); 4477 } else if (Specialization->isStaticDataMember() && 4478 Specialization->isOutOfLine()) { 4479 Specialization->setAccess(VarTemplate->getAccess()); 4480 } 4481 4482 return Specialization; 4483 } 4484 4485 namespace { 4486 /// A partial specialization whose template arguments have matched 4487 /// a given template-id. 4488 struct PartialSpecMatchResult { 4489 VarTemplatePartialSpecializationDecl *Partial; 4490 TemplateArgumentList *Args; 4491 }; 4492 } // end anonymous namespace 4493 4494 DeclResult 4495 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, 4496 SourceLocation TemplateNameLoc, 4497 const TemplateArgumentListInfo &TemplateArgs) { 4498 assert(Template && "A variable template id without template?"); 4499 4500 // Check that the template argument list is well-formed for this template. 4501 SmallVector<TemplateArgument, 4> Converted; 4502 if (CheckTemplateArgumentList( 4503 Template, TemplateNameLoc, 4504 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, 4505 Converted, /*UpdateArgsWithConversion=*/true)) 4506 return true; 4507 4508 // Produce a placeholder value if the specialization is dependent. 4509 if (Template->getDeclContext()->isDependentContext() || 4510 TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs, 4511 Converted)) 4512 return DeclResult(); 4513 4514 // Find the variable template specialization declaration that 4515 // corresponds to these arguments. 4516 void *InsertPos = nullptr; 4517 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization( 4518 Converted, InsertPos)) { 4519 checkSpecializationVisibility(TemplateNameLoc, Spec); 4520 // If we already have a variable template specialization, return it. 4521 return Spec; 4522 } 4523 4524 // This is the first time we have referenced this variable template 4525 // specialization. Create the canonical declaration and add it to 4526 // the set of specializations, based on the closest partial specialization 4527 // that it represents. That is, 4528 VarDecl *InstantiationPattern = Template->getTemplatedDecl(); 4529 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, 4530 Converted); 4531 TemplateArgumentList *InstantiationArgs = &TemplateArgList; 4532 bool AmbiguousPartialSpec = false; 4533 typedef PartialSpecMatchResult MatchResult; 4534 SmallVector<MatchResult, 4> Matched; 4535 SourceLocation PointOfInstantiation = TemplateNameLoc; 4536 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, 4537 /*ForTakingAddress=*/false); 4538 4539 // 1. Attempt to find the closest partial specialization that this 4540 // specializes, if any. 4541 // TODO: Unify with InstantiateClassTemplateSpecialization()? 4542 // Perhaps better after unification of DeduceTemplateArguments() and 4543 // getMoreSpecializedPartialSpecialization(). 4544 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 4545 Template->getPartialSpecializations(PartialSpecs); 4546 4547 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { 4548 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; 4549 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 4550 4551 if (TemplateDeductionResult Result = 4552 DeduceTemplateArguments(Partial, TemplateArgList, Info)) { 4553 // Store the failed-deduction information for use in diagnostics, later. 4554 // TODO: Actually use the failed-deduction info? 4555 FailedCandidates.addCandidate().set( 4556 DeclAccessPair::make(Template, AS_public), Partial, 4557 MakeDeductionFailureInfo(Context, Result, Info)); 4558 (void)Result; 4559 } else { 4560 Matched.push_back(PartialSpecMatchResult()); 4561 Matched.back().Partial = Partial; 4562 Matched.back().Args = Info.take(); 4563 } 4564 } 4565 4566 if (Matched.size() >= 1) { 4567 SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); 4568 if (Matched.size() == 1) { 4569 // -- If exactly one matching specialization is found, the 4570 // instantiation is generated from that specialization. 4571 // We don't need to do anything for this. 4572 } else { 4573 // -- If more than one matching specialization is found, the 4574 // partial order rules (14.5.4.2) are used to determine 4575 // whether one of the specializations is more specialized 4576 // than the others. If none of the specializations is more 4577 // specialized than all of the other matching 4578 // specializations, then the use of the variable template is 4579 // ambiguous and the program is ill-formed. 4580 for (SmallVector<MatchResult, 4>::iterator P = Best + 1, 4581 PEnd = Matched.end(); 4582 P != PEnd; ++P) { 4583 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, 4584 PointOfInstantiation) == 4585 P->Partial) 4586 Best = P; 4587 } 4588 4589 // Determine if the best partial specialization is more specialized than 4590 // the others. 4591 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 4592 PEnd = Matched.end(); 4593 P != PEnd; ++P) { 4594 if (P != Best && getMoreSpecializedPartialSpecialization( 4595 P->Partial, Best->Partial, 4596 PointOfInstantiation) != Best->Partial) { 4597 AmbiguousPartialSpec = true; 4598 break; 4599 } 4600 } 4601 } 4602 4603 // Instantiate using the best variable template partial specialization. 4604 InstantiationPattern = Best->Partial; 4605 InstantiationArgs = Best->Args; 4606 } else { 4607 // -- If no match is found, the instantiation is generated 4608 // from the primary template. 4609 // InstantiationPattern = Template->getTemplatedDecl(); 4610 } 4611 4612 // 2. Create the canonical declaration. 4613 // Note that we do not instantiate a definition until we see an odr-use 4614 // in DoMarkVarDeclReferenced(). 4615 // FIXME: LateAttrs et al.? 4616 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( 4617 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs, 4618 Converted, TemplateNameLoc /*, LateAttrs, StartingScope*/); 4619 if (!Decl) 4620 return true; 4621 4622 if (AmbiguousPartialSpec) { 4623 // Partial ordering did not produce a clear winner. Complain. 4624 Decl->setInvalidDecl(); 4625 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) 4626 << Decl; 4627 4628 // Print the matching partial specializations. 4629 for (MatchResult P : Matched) 4630 Diag(P.Partial->getLocation(), diag::note_partial_spec_match) 4631 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(), 4632 *P.Args); 4633 return true; 4634 } 4635 4636 if (VarTemplatePartialSpecializationDecl *D = 4637 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) 4638 Decl->setInstantiationOf(D, InstantiationArgs); 4639 4640 checkSpecializationVisibility(TemplateNameLoc, Decl); 4641 4642 assert(Decl && "No variable template specialization?"); 4643 return Decl; 4644 } 4645 4646 ExprResult 4647 Sema::CheckVarTemplateId(const CXXScopeSpec &SS, 4648 const DeclarationNameInfo &NameInfo, 4649 VarTemplateDecl *Template, SourceLocation TemplateLoc, 4650 const TemplateArgumentListInfo *TemplateArgs) { 4651 4652 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), 4653 *TemplateArgs); 4654 if (Decl.isInvalid()) 4655 return ExprError(); 4656 4657 if (!Decl.get()) 4658 return ExprResult(); 4659 4660 VarDecl *Var = cast<VarDecl>(Decl.get()); 4661 if (!Var->getTemplateSpecializationKind()) 4662 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, 4663 NameInfo.getLoc()); 4664 4665 // Build an ordinary singleton decl ref. 4666 return BuildDeclarationNameExpr(SS, NameInfo, Var, 4667 /*FoundD=*/nullptr, TemplateArgs); 4668 } 4669 4670 void Sema::diagnoseMissingTemplateArguments(TemplateName Name, 4671 SourceLocation Loc) { 4672 Diag(Loc, diag::err_template_missing_args) 4673 << (int)getTemplateNameKindForDiagnostics(Name) << Name; 4674 if (TemplateDecl *TD = Name.getAsTemplateDecl()) { 4675 Diag(TD->getLocation(), diag::note_template_decl_here) 4676 << TD->getTemplateParameters()->getSourceRange(); 4677 } 4678 } 4679 4680 ExprResult 4681 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS, 4682 SourceLocation TemplateKWLoc, 4683 const DeclarationNameInfo &ConceptNameInfo, 4684 NamedDecl *FoundDecl, 4685 ConceptDecl *NamedConcept, 4686 const TemplateArgumentListInfo *TemplateArgs) { 4687 assert(NamedConcept && "A concept template id without a template?"); 4688 4689 llvm::SmallVector<TemplateArgument, 4> Converted; 4690 if (CheckTemplateArgumentList(NamedConcept, ConceptNameInfo.getLoc(), 4691 const_cast<TemplateArgumentListInfo&>(*TemplateArgs), 4692 /*PartialTemplateArgs=*/false, Converted, 4693 /*UpdateArgsWithConversion=*/false)) 4694 return ExprError(); 4695 4696 ConstraintSatisfaction Satisfaction; 4697 bool AreArgsDependent = 4698 TemplateSpecializationType::anyDependentTemplateArguments(*TemplateArgs, 4699 Converted); 4700 if (!AreArgsDependent && 4701 CheckConstraintSatisfaction( 4702 NamedConcept, {NamedConcept->getConstraintExpr()}, Converted, 4703 SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(), 4704 TemplateArgs->getRAngleLoc()), 4705 Satisfaction)) 4706 return ExprError(); 4707 4708 return ConceptSpecializationExpr::Create(Context, 4709 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{}, 4710 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept, 4711 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted, 4712 AreArgsDependent ? nullptr : &Satisfaction); 4713 } 4714 4715 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 4716 SourceLocation TemplateKWLoc, 4717 LookupResult &R, 4718 bool RequiresADL, 4719 const TemplateArgumentListInfo *TemplateArgs) { 4720 // FIXME: Can we do any checking at this point? I guess we could check the 4721 // template arguments that we have against the template name, if the template 4722 // name refers to a single template. That's not a terribly common case, 4723 // though. 4724 // foo<int> could identify a single function unambiguously 4725 // This approach does NOT work, since f<int>(1); 4726 // gets resolved prior to resorting to overload resolution 4727 // i.e., template<class T> void f(double); 4728 // vs template<class T, class U> void f(U); 4729 4730 // These should be filtered out by our callers. 4731 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 4732 4733 // Non-function templates require a template argument list. 4734 if (auto *TD = R.getAsSingle<TemplateDecl>()) { 4735 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) { 4736 diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc()); 4737 return ExprError(); 4738 } 4739 } 4740 4741 // In C++1y, check variable template ids. 4742 if (R.getAsSingle<VarTemplateDecl>()) { 4743 ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(), 4744 R.getAsSingle<VarTemplateDecl>(), 4745 TemplateKWLoc, TemplateArgs); 4746 if (Res.isInvalid() || Res.isUsable()) 4747 return Res; 4748 // Result is dependent. Carry on to build an UnresolvedLookupEpxr. 4749 } 4750 4751 if (R.getAsSingle<ConceptDecl>()) { 4752 return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(), 4753 R.getFoundDecl(), 4754 R.getAsSingle<ConceptDecl>(), TemplateArgs); 4755 } 4756 4757 // We don't want lookup warnings at this point. 4758 R.suppressDiagnostics(); 4759 4760 UnresolvedLookupExpr *ULE 4761 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 4762 SS.getWithLocInContext(Context), 4763 TemplateKWLoc, 4764 R.getLookupNameInfo(), 4765 RequiresADL, TemplateArgs, 4766 R.begin(), R.end()); 4767 4768 return ULE; 4769 } 4770 4771 // We actually only call this from template instantiation. 4772 ExprResult 4773 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 4774 SourceLocation TemplateKWLoc, 4775 const DeclarationNameInfo &NameInfo, 4776 const TemplateArgumentListInfo *TemplateArgs) { 4777 4778 assert(TemplateArgs || TemplateKWLoc.isValid()); 4779 DeclContext *DC; 4780 if (!(DC = computeDeclContext(SS, false)) || 4781 DC->isDependentContext() || 4782 RequireCompleteDeclContext(SS, DC)) 4783 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 4784 4785 bool MemberOfUnknownSpecialization; 4786 LookupResult R(*this, NameInfo, LookupOrdinaryName); 4787 if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(), 4788 /*Entering*/false, MemberOfUnknownSpecialization, 4789 TemplateKWLoc)) 4790 return ExprError(); 4791 4792 if (R.isAmbiguous()) 4793 return ExprError(); 4794 4795 if (R.empty()) { 4796 Diag(NameInfo.getLoc(), diag::err_no_member) 4797 << NameInfo.getName() << DC << SS.getRange(); 4798 return ExprError(); 4799 } 4800 4801 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 4802 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 4803 << SS.getScopeRep() 4804 << NameInfo.getName().getAsString() << SS.getRange(); 4805 Diag(Temp->getLocation(), diag::note_referenced_class_template); 4806 return ExprError(); 4807 } 4808 4809 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 4810 } 4811 4812 /// Form a template name from a name that is syntactically required to name a 4813 /// template, either due to use of the 'template' keyword or because a name in 4814 /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4). 4815 /// 4816 /// This action forms a template name given the name of the template and its 4817 /// optional scope specifier. This is used when the 'template' keyword is used 4818 /// or when the parsing context unambiguously treats a following '<' as 4819 /// introducing a template argument list. Note that this may produce a 4820 /// non-dependent template name if we can perform the lookup now and identify 4821 /// the named template. 4822 /// 4823 /// For example, given "x.MetaFun::template apply", the scope specifier 4824 /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location 4825 /// of the "template" keyword, and "apply" is the \p Name. 4826 TemplateNameKind Sema::ActOnTemplateName(Scope *S, 4827 CXXScopeSpec &SS, 4828 SourceLocation TemplateKWLoc, 4829 const UnqualifiedId &Name, 4830 ParsedType ObjectType, 4831 bool EnteringContext, 4832 TemplateTy &Result, 4833 bool AllowInjectedClassName) { 4834 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 4835 Diag(TemplateKWLoc, 4836 getLangOpts().CPlusPlus11 ? 4837 diag::warn_cxx98_compat_template_outside_of_template : 4838 diag::ext_template_outside_of_template) 4839 << FixItHint::CreateRemoval(TemplateKWLoc); 4840 4841 if (SS.isInvalid()) 4842 return TNK_Non_template; 4843 4844 // Figure out where isTemplateName is going to look. 4845 DeclContext *LookupCtx = nullptr; 4846 if (SS.isNotEmpty()) 4847 LookupCtx = computeDeclContext(SS, EnteringContext); 4848 else if (ObjectType) 4849 LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType)); 4850 4851 // C++0x [temp.names]p5: 4852 // If a name prefixed by the keyword template is not the name of 4853 // a template, the program is ill-formed. [Note: the keyword 4854 // template may not be applied to non-template members of class 4855 // templates. -end note ] [ Note: as is the case with the 4856 // typename prefix, the template prefix is allowed in cases 4857 // where it is not strictly necessary; i.e., when the 4858 // nested-name-specifier or the expression on the left of the -> 4859 // or . is not dependent on a template-parameter, or the use 4860 // does not appear in the scope of a template. -end note] 4861 // 4862 // Note: C++03 was more strict here, because it banned the use of 4863 // the "template" keyword prior to a template-name that was not a 4864 // dependent name. C++ DR468 relaxed this requirement (the 4865 // "template" keyword is now permitted). We follow the C++0x 4866 // rules, even in C++03 mode with a warning, retroactively applying the DR. 4867 bool MemberOfUnknownSpecialization; 4868 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 4869 ObjectType, EnteringContext, Result, 4870 MemberOfUnknownSpecialization); 4871 if (TNK != TNK_Non_template) { 4872 // We resolved this to a (non-dependent) template name. Return it. 4873 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 4874 if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD && 4875 Name.getKind() == UnqualifiedIdKind::IK_Identifier && 4876 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { 4877 // C++14 [class.qual]p2: 4878 // In a lookup in which function names are not ignored and the 4879 // nested-name-specifier nominates a class C, if the name specified 4880 // [...] is the injected-class-name of C, [...] the name is instead 4881 // considered to name the constructor 4882 // 4883 // We don't get here if naming the constructor would be valid, so we 4884 // just reject immediately and recover by treating the 4885 // injected-class-name as naming the template. 4886 Diag(Name.getBeginLoc(), 4887 diag::ext_out_of_line_qualified_id_type_names_constructor) 4888 << Name.Identifier 4889 << 0 /*injected-class-name used as template name*/ 4890 << TemplateKWLoc.isValid(); 4891 } 4892 return TNK; 4893 } 4894 4895 if (!MemberOfUnknownSpecialization) { 4896 // Didn't find a template name, and the lookup wasn't dependent. 4897 // Do the lookup again to determine if this is a "nothing found" case or 4898 // a "not a template" case. FIXME: Refactor isTemplateName so we don't 4899 // need to do this. 4900 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); 4901 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(), 4902 LookupOrdinaryName); 4903 bool MOUS; 4904 // Tell LookupTemplateName that we require a template so that it diagnoses 4905 // cases where it finds a non-template. 4906 RequiredTemplateKind RTK = TemplateKWLoc.isValid() 4907 ? RequiredTemplateKind(TemplateKWLoc) 4908 : TemplateNameIsRequired; 4909 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS, 4910 RTK, nullptr, /*AllowTypoCorrection=*/false) && 4911 !R.isAmbiguous()) { 4912 if (LookupCtx) 4913 Diag(Name.getBeginLoc(), diag::err_no_member) 4914 << DNI.getName() << LookupCtx << SS.getRange(); 4915 else 4916 Diag(Name.getBeginLoc(), diag::err_undeclared_use) 4917 << DNI.getName() << SS.getRange(); 4918 } 4919 return TNK_Non_template; 4920 } 4921 4922 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 4923 4924 switch (Name.getKind()) { 4925 case UnqualifiedIdKind::IK_Identifier: 4926 Result = TemplateTy::make( 4927 Context.getDependentTemplateName(Qualifier, Name.Identifier)); 4928 return TNK_Dependent_template_name; 4929 4930 case UnqualifiedIdKind::IK_OperatorFunctionId: 4931 Result = TemplateTy::make(Context.getDependentTemplateName( 4932 Qualifier, Name.OperatorFunctionId.Operator)); 4933 return TNK_Function_template; 4934 4935 case UnqualifiedIdKind::IK_LiteralOperatorId: 4936 // This is a kind of template name, but can never occur in a dependent 4937 // scope (literal operators can only be declared at namespace scope). 4938 break; 4939 4940 default: 4941 break; 4942 } 4943 4944 // This name cannot possibly name a dependent template. Diagnose this now 4945 // rather than building a dependent template name that can never be valid. 4946 Diag(Name.getBeginLoc(), 4947 diag::err_template_kw_refers_to_dependent_non_template) 4948 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange() 4949 << TemplateKWLoc.isValid() << TemplateKWLoc; 4950 return TNK_Non_template; 4951 } 4952 4953 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 4954 TemplateArgumentLoc &AL, 4955 SmallVectorImpl<TemplateArgument> &Converted) { 4956 const TemplateArgument &Arg = AL.getArgument(); 4957 QualType ArgType; 4958 TypeSourceInfo *TSI = nullptr; 4959 4960 // Check template type parameter. 4961 switch(Arg.getKind()) { 4962 case TemplateArgument::Type: 4963 // C++ [temp.arg.type]p1: 4964 // A template-argument for a template-parameter which is a 4965 // type shall be a type-id. 4966 ArgType = Arg.getAsType(); 4967 TSI = AL.getTypeSourceInfo(); 4968 break; 4969 case TemplateArgument::Template: 4970 case TemplateArgument::TemplateExpansion: { 4971 // We have a template type parameter but the template argument 4972 // is a template without any arguments. 4973 SourceRange SR = AL.getSourceRange(); 4974 TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); 4975 diagnoseMissingTemplateArguments(Name, SR.getEnd()); 4976 return true; 4977 } 4978 case TemplateArgument::Expression: { 4979 // We have a template type parameter but the template argument is an 4980 // expression; see if maybe it is missing the "typename" keyword. 4981 CXXScopeSpec SS; 4982 DeclarationNameInfo NameInfo; 4983 4984 if (DependentScopeDeclRefExpr *ArgExpr = 4985 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 4986 SS.Adopt(ArgExpr->getQualifierLoc()); 4987 NameInfo = ArgExpr->getNameInfo(); 4988 } else if (CXXDependentScopeMemberExpr *ArgExpr = 4989 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 4990 if (ArgExpr->isImplicitAccess()) { 4991 SS.Adopt(ArgExpr->getQualifierLoc()); 4992 NameInfo = ArgExpr->getMemberNameInfo(); 4993 } 4994 } 4995 4996 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { 4997 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 4998 LookupParsedName(Result, CurScope, &SS); 4999 5000 if (Result.getAsSingle<TypeDecl>() || 5001 Result.getResultKind() == 5002 LookupResult::NotFoundInCurrentInstantiation) { 5003 assert(SS.getScopeRep() && "dependent scope expr must has a scope!"); 5004 // Suggest that the user add 'typename' before the NNS. 5005 SourceLocation Loc = AL.getSourceRange().getBegin(); 5006 Diag(Loc, getLangOpts().MSVCCompat 5007 ? diag::ext_ms_template_type_arg_missing_typename 5008 : diag::err_template_arg_must_be_type_suggest) 5009 << FixItHint::CreateInsertion(Loc, "typename "); 5010 Diag(Param->getLocation(), diag::note_template_param_here); 5011 5012 // Recover by synthesizing a type using the location information that we 5013 // already have. 5014 ArgType = 5015 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II); 5016 TypeLocBuilder TLB; 5017 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType); 5018 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); 5019 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 5020 TL.setNameLoc(NameInfo.getLoc()); 5021 TSI = TLB.getTypeSourceInfo(Context, ArgType); 5022 5023 // Overwrite our input TemplateArgumentLoc so that we can recover 5024 // properly. 5025 AL = TemplateArgumentLoc(TemplateArgument(ArgType), 5026 TemplateArgumentLocInfo(TSI)); 5027 5028 break; 5029 } 5030 } 5031 // fallthrough 5032 LLVM_FALLTHROUGH; 5033 } 5034 default: { 5035 // We have a template type parameter but the template argument 5036 // is not a type. 5037 SourceRange SR = AL.getSourceRange(); 5038 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 5039 Diag(Param->getLocation(), diag::note_template_param_here); 5040 5041 return true; 5042 } 5043 } 5044 5045 if (CheckTemplateArgument(TSI)) 5046 return true; 5047 5048 // Add the converted template type argument. 5049 ArgType = Context.getCanonicalType(ArgType); 5050 5051 // Objective-C ARC: 5052 // If an explicitly-specified template argument type is a lifetime type 5053 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 5054 if (getLangOpts().ObjCAutoRefCount && 5055 ArgType->isObjCLifetimeType() && 5056 !ArgType.getObjCLifetime()) { 5057 Qualifiers Qs; 5058 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 5059 ArgType = Context.getQualifiedType(ArgType, Qs); 5060 } 5061 5062 Converted.push_back(TemplateArgument(ArgType)); 5063 return false; 5064 } 5065 5066 /// Substitute template arguments into the default template argument for 5067 /// the given template type parameter. 5068 /// 5069 /// \param SemaRef the semantic analysis object for which we are performing 5070 /// the substitution. 5071 /// 5072 /// \param Template the template that we are synthesizing template arguments 5073 /// for. 5074 /// 5075 /// \param TemplateLoc the location of the template name that started the 5076 /// template-id we are checking. 5077 /// 5078 /// \param RAngleLoc the location of the right angle bracket ('>') that 5079 /// terminates the template-id. 5080 /// 5081 /// \param Param the template template parameter whose default we are 5082 /// substituting into. 5083 /// 5084 /// \param Converted the list of template arguments provided for template 5085 /// parameters that precede \p Param in the template parameter list. 5086 /// \returns the substituted template argument, or NULL if an error occurred. 5087 static TypeSourceInfo * 5088 SubstDefaultTemplateArgument(Sema &SemaRef, 5089 TemplateDecl *Template, 5090 SourceLocation TemplateLoc, 5091 SourceLocation RAngleLoc, 5092 TemplateTypeParmDecl *Param, 5093 SmallVectorImpl<TemplateArgument> &Converted) { 5094 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 5095 5096 // If the argument type is dependent, instantiate it now based 5097 // on the previously-computed template arguments. 5098 if (ArgType->getType()->isInstantiationDependentType()) { 5099 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 5100 Param, Template, Converted, 5101 SourceRange(TemplateLoc, RAngleLoc)); 5102 if (Inst.isInvalid()) 5103 return nullptr; 5104 5105 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5106 5107 // Only substitute for the innermost template argument list. 5108 MultiLevelTemplateArgumentList TemplateArgLists; 5109 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 5110 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5111 TemplateArgLists.addOuterTemplateArguments(None); 5112 5113 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5114 ArgType = 5115 SemaRef.SubstType(ArgType, TemplateArgLists, 5116 Param->getDefaultArgumentLoc(), Param->getDeclName()); 5117 } 5118 5119 return ArgType; 5120 } 5121 5122 /// Substitute template arguments into the default template argument for 5123 /// the given non-type template parameter. 5124 /// 5125 /// \param SemaRef the semantic analysis object for which we are performing 5126 /// the substitution. 5127 /// 5128 /// \param Template the template that we are synthesizing template arguments 5129 /// for. 5130 /// 5131 /// \param TemplateLoc the location of the template name that started the 5132 /// template-id we are checking. 5133 /// 5134 /// \param RAngleLoc the location of the right angle bracket ('>') that 5135 /// terminates the template-id. 5136 /// 5137 /// \param Param the non-type template parameter whose default we are 5138 /// substituting into. 5139 /// 5140 /// \param Converted the list of template arguments provided for template 5141 /// parameters that precede \p Param in the template parameter list. 5142 /// 5143 /// \returns the substituted template argument, or NULL if an error occurred. 5144 static ExprResult 5145 SubstDefaultTemplateArgument(Sema &SemaRef, 5146 TemplateDecl *Template, 5147 SourceLocation TemplateLoc, 5148 SourceLocation RAngleLoc, 5149 NonTypeTemplateParmDecl *Param, 5150 SmallVectorImpl<TemplateArgument> &Converted) { 5151 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 5152 Param, Template, Converted, 5153 SourceRange(TemplateLoc, RAngleLoc)); 5154 if (Inst.isInvalid()) 5155 return ExprError(); 5156 5157 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5158 5159 // Only substitute for the innermost template argument list. 5160 MultiLevelTemplateArgumentList TemplateArgLists; 5161 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 5162 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5163 TemplateArgLists.addOuterTemplateArguments(None); 5164 5165 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5166 EnterExpressionEvaluationContext ConstantEvaluated( 5167 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 5168 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists); 5169 } 5170 5171 /// Substitute template arguments into the default template argument for 5172 /// the given template template parameter. 5173 /// 5174 /// \param SemaRef the semantic analysis object for which we are performing 5175 /// the substitution. 5176 /// 5177 /// \param Template the template that we are synthesizing template arguments 5178 /// for. 5179 /// 5180 /// \param TemplateLoc the location of the template name that started the 5181 /// template-id we are checking. 5182 /// 5183 /// \param RAngleLoc the location of the right angle bracket ('>') that 5184 /// terminates the template-id. 5185 /// 5186 /// \param Param the template template parameter whose default we are 5187 /// substituting into. 5188 /// 5189 /// \param Converted the list of template arguments provided for template 5190 /// parameters that precede \p Param in the template parameter list. 5191 /// 5192 /// \param QualifierLoc Will be set to the nested-name-specifier (with 5193 /// source-location information) that precedes the template name. 5194 /// 5195 /// \returns the substituted template argument, or NULL if an error occurred. 5196 static TemplateName 5197 SubstDefaultTemplateArgument(Sema &SemaRef, 5198 TemplateDecl *Template, 5199 SourceLocation TemplateLoc, 5200 SourceLocation RAngleLoc, 5201 TemplateTemplateParmDecl *Param, 5202 SmallVectorImpl<TemplateArgument> &Converted, 5203 NestedNameSpecifierLoc &QualifierLoc) { 5204 Sema::InstantiatingTemplate Inst( 5205 SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted, 5206 SourceRange(TemplateLoc, RAngleLoc)); 5207 if (Inst.isInvalid()) 5208 return TemplateName(); 5209 5210 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5211 5212 // Only substitute for the innermost template argument list. 5213 MultiLevelTemplateArgumentList TemplateArgLists; 5214 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 5215 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5216 TemplateArgLists.addOuterTemplateArguments(None); 5217 5218 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5219 // Substitute into the nested-name-specifier first, 5220 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 5221 if (QualifierLoc) { 5222 QualifierLoc = 5223 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); 5224 if (!QualifierLoc) 5225 return TemplateName(); 5226 } 5227 5228 return SemaRef.SubstTemplateName( 5229 QualifierLoc, 5230 Param->getDefaultArgument().getArgument().getAsTemplate(), 5231 Param->getDefaultArgument().getTemplateNameLoc(), 5232 TemplateArgLists); 5233 } 5234 5235 /// If the given template parameter has a default template 5236 /// argument, substitute into that default template argument and 5237 /// return the corresponding template argument. 5238 TemplateArgumentLoc 5239 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 5240 SourceLocation TemplateLoc, 5241 SourceLocation RAngleLoc, 5242 Decl *Param, 5243 SmallVectorImpl<TemplateArgument> 5244 &Converted, 5245 bool &HasDefaultArg) { 5246 HasDefaultArg = false; 5247 5248 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 5249 if (!hasVisibleDefaultArgument(TypeParm)) 5250 return TemplateArgumentLoc(); 5251 5252 HasDefaultArg = true; 5253 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 5254 TemplateLoc, 5255 RAngleLoc, 5256 TypeParm, 5257 Converted); 5258 if (DI) 5259 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 5260 5261 return TemplateArgumentLoc(); 5262 } 5263 5264 if (NonTypeTemplateParmDecl *NonTypeParm 5265 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5266 if (!hasVisibleDefaultArgument(NonTypeParm)) 5267 return TemplateArgumentLoc(); 5268 5269 HasDefaultArg = true; 5270 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 5271 TemplateLoc, 5272 RAngleLoc, 5273 NonTypeParm, 5274 Converted); 5275 if (Arg.isInvalid()) 5276 return TemplateArgumentLoc(); 5277 5278 Expr *ArgE = Arg.getAs<Expr>(); 5279 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 5280 } 5281 5282 TemplateTemplateParmDecl *TempTempParm 5283 = cast<TemplateTemplateParmDecl>(Param); 5284 if (!hasVisibleDefaultArgument(TempTempParm)) 5285 return TemplateArgumentLoc(); 5286 5287 HasDefaultArg = true; 5288 NestedNameSpecifierLoc QualifierLoc; 5289 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 5290 TemplateLoc, 5291 RAngleLoc, 5292 TempTempParm, 5293 Converted, 5294 QualifierLoc); 5295 if (TName.isNull()) 5296 return TemplateArgumentLoc(); 5297 5298 return TemplateArgumentLoc( 5299 Context, TemplateArgument(TName), 5300 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 5301 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 5302 } 5303 5304 /// Convert a template-argument that we parsed as a type into a template, if 5305 /// possible. C++ permits injected-class-names to perform dual service as 5306 /// template template arguments and as template type arguments. 5307 static TemplateArgumentLoc 5308 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) { 5309 // Extract and step over any surrounding nested-name-specifier. 5310 NestedNameSpecifierLoc QualLoc; 5311 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { 5312 if (ETLoc.getTypePtr()->getKeyword() != ETK_None) 5313 return TemplateArgumentLoc(); 5314 5315 QualLoc = ETLoc.getQualifierLoc(); 5316 TLoc = ETLoc.getNamedTypeLoc(); 5317 } 5318 // If this type was written as an injected-class-name, it can be used as a 5319 // template template argument. 5320 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) 5321 return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(), 5322 QualLoc, InjLoc.getNameLoc()); 5323 5324 // If this type was written as an injected-class-name, it may have been 5325 // converted to a RecordType during instantiation. If the RecordType is 5326 // *not* wrapped in a TemplateSpecializationType and denotes a class 5327 // template specialization, it must have come from an injected-class-name. 5328 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) 5329 if (auto *CTSD = 5330 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl())) 5331 return TemplateArgumentLoc(Context, 5332 TemplateName(CTSD->getSpecializedTemplate()), 5333 QualLoc, RecLoc.getNameLoc()); 5334 5335 return TemplateArgumentLoc(); 5336 } 5337 5338 /// Check that the given template argument corresponds to the given 5339 /// template parameter. 5340 /// 5341 /// \param Param The template parameter against which the argument will be 5342 /// checked. 5343 /// 5344 /// \param Arg The template argument, which may be updated due to conversions. 5345 /// 5346 /// \param Template The template in which the template argument resides. 5347 /// 5348 /// \param TemplateLoc The location of the template name for the template 5349 /// whose argument list we're matching. 5350 /// 5351 /// \param RAngleLoc The location of the right angle bracket ('>') that closes 5352 /// the template argument list. 5353 /// 5354 /// \param ArgumentPackIndex The index into the argument pack where this 5355 /// argument will be placed. Only valid if the parameter is a parameter pack. 5356 /// 5357 /// \param Converted The checked, converted argument will be added to the 5358 /// end of this small vector. 5359 /// 5360 /// \param CTAK Describes how we arrived at this particular template argument: 5361 /// explicitly written, deduced, etc. 5362 /// 5363 /// \returns true on error, false otherwise. 5364 bool Sema::CheckTemplateArgument(NamedDecl *Param, 5365 TemplateArgumentLoc &Arg, 5366 NamedDecl *Template, 5367 SourceLocation TemplateLoc, 5368 SourceLocation RAngleLoc, 5369 unsigned ArgumentPackIndex, 5370 SmallVectorImpl<TemplateArgument> &Converted, 5371 CheckTemplateArgumentKind CTAK) { 5372 // Check template type parameters. 5373 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 5374 return CheckTemplateTypeArgument(TTP, Arg, Converted); 5375 5376 // Check non-type template parameters. 5377 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5378 // Do substitution on the type of the non-type template parameter 5379 // with the template arguments we've seen thus far. But if the 5380 // template has a dependent context then we cannot substitute yet. 5381 QualType NTTPType = NTTP->getType(); 5382 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 5383 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 5384 5385 if (NTTPType->isInstantiationDependentType() && 5386 !isa<TemplateTemplateParmDecl>(Template) && 5387 !Template->getDeclContext()->isDependentContext()) { 5388 // Do substitution on the type of the non-type template parameter. 5389 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 5390 NTTP, Converted, 5391 SourceRange(TemplateLoc, RAngleLoc)); 5392 if (Inst.isInvalid()) 5393 return true; 5394 5395 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 5396 Converted); 5397 5398 // If the parameter is a pack expansion, expand this slice of the pack. 5399 if (auto *PET = NTTPType->getAs<PackExpansionType>()) { 5400 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, 5401 ArgumentPackIndex); 5402 NTTPType = SubstType(PET->getPattern(), 5403 MultiLevelTemplateArgumentList(TemplateArgs), 5404 NTTP->getLocation(), 5405 NTTP->getDeclName()); 5406 } else { 5407 NTTPType = SubstType(NTTPType, 5408 MultiLevelTemplateArgumentList(TemplateArgs), 5409 NTTP->getLocation(), 5410 NTTP->getDeclName()); 5411 } 5412 5413 // If that worked, check the non-type template parameter type 5414 // for validity. 5415 if (!NTTPType.isNull()) 5416 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 5417 NTTP->getLocation()); 5418 if (NTTPType.isNull()) 5419 return true; 5420 } 5421 5422 switch (Arg.getArgument().getKind()) { 5423 case TemplateArgument::Null: 5424 llvm_unreachable("Should never see a NULL template argument here"); 5425 5426 case TemplateArgument::Expression: { 5427 TemplateArgument Result; 5428 unsigned CurSFINAEErrors = NumSFINAEErrors; 5429 ExprResult Res = 5430 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 5431 Result, CTAK); 5432 if (Res.isInvalid()) 5433 return true; 5434 // If the current template argument causes an error, give up now. 5435 if (CurSFINAEErrors < NumSFINAEErrors) 5436 return true; 5437 5438 // If the resulting expression is new, then use it in place of the 5439 // old expression in the template argument. 5440 if (Res.get() != Arg.getArgument().getAsExpr()) { 5441 TemplateArgument TA(Res.get()); 5442 Arg = TemplateArgumentLoc(TA, Res.get()); 5443 } 5444 5445 Converted.push_back(Result); 5446 break; 5447 } 5448 5449 case TemplateArgument::Declaration: 5450 case TemplateArgument::Integral: 5451 case TemplateArgument::NullPtr: 5452 // We've already checked this template argument, so just copy 5453 // it to the list of converted arguments. 5454 Converted.push_back(Arg.getArgument()); 5455 break; 5456 5457 case TemplateArgument::Template: 5458 case TemplateArgument::TemplateExpansion: 5459 // We were given a template template argument. It may not be ill-formed; 5460 // see below. 5461 if (DependentTemplateName *DTN 5462 = Arg.getArgument().getAsTemplateOrTemplatePattern() 5463 .getAsDependentTemplateName()) { 5464 // We have a template argument such as \c T::template X, which we 5465 // parsed as a template template argument. However, since we now 5466 // know that we need a non-type template argument, convert this 5467 // template name into an expression. 5468 5469 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 5470 Arg.getTemplateNameLoc()); 5471 5472 CXXScopeSpec SS; 5473 SS.Adopt(Arg.getTemplateQualifierLoc()); 5474 // FIXME: the template-template arg was a DependentTemplateName, 5475 // so it was provided with a template keyword. However, its source 5476 // location is not stored in the template argument structure. 5477 SourceLocation TemplateKWLoc; 5478 ExprResult E = DependentScopeDeclRefExpr::Create( 5479 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 5480 nullptr); 5481 5482 // If we parsed the template argument as a pack expansion, create a 5483 // pack expansion expression. 5484 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 5485 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc()); 5486 if (E.isInvalid()) 5487 return true; 5488 } 5489 5490 TemplateArgument Result; 5491 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result); 5492 if (E.isInvalid()) 5493 return true; 5494 5495 Converted.push_back(Result); 5496 break; 5497 } 5498 5499 // We have a template argument that actually does refer to a class 5500 // template, alias template, or template template parameter, and 5501 // therefore cannot be a non-type template argument. 5502 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 5503 << Arg.getSourceRange(); 5504 5505 Diag(Param->getLocation(), diag::note_template_param_here); 5506 return true; 5507 5508 case TemplateArgument::Type: { 5509 // We have a non-type template parameter but the template 5510 // argument is a type. 5511 5512 // C++ [temp.arg]p2: 5513 // In a template-argument, an ambiguity between a type-id and 5514 // an expression is resolved to a type-id, regardless of the 5515 // form of the corresponding template-parameter. 5516 // 5517 // We warn specifically about this case, since it can be rather 5518 // confusing for users. 5519 QualType T = Arg.getArgument().getAsType(); 5520 SourceRange SR = Arg.getSourceRange(); 5521 if (T->isFunctionType()) 5522 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 5523 else 5524 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 5525 Diag(Param->getLocation(), diag::note_template_param_here); 5526 return true; 5527 } 5528 5529 case TemplateArgument::Pack: 5530 llvm_unreachable("Caller must expand template argument packs"); 5531 } 5532 5533 return false; 5534 } 5535 5536 5537 // Check template template parameters. 5538 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 5539 5540 TemplateParameterList *Params = TempParm->getTemplateParameters(); 5541 if (TempParm->isExpandedParameterPack()) 5542 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex); 5543 5544 // Substitute into the template parameter list of the template 5545 // template parameter, since previously-supplied template arguments 5546 // may appear within the template template parameter. 5547 // 5548 // FIXME: Skip this if the parameters aren't instantiation-dependent. 5549 { 5550 // Set up a template instantiation context. 5551 LocalInstantiationScope Scope(*this); 5552 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 5553 TempParm, Converted, 5554 SourceRange(TemplateLoc, RAngleLoc)); 5555 if (Inst.isInvalid()) 5556 return true; 5557 5558 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); 5559 Params = SubstTemplateParams(Params, CurContext, 5560 MultiLevelTemplateArgumentList(TemplateArgs)); 5561 if (!Params) 5562 return true; 5563 } 5564 5565 // C++1z [temp.local]p1: (DR1004) 5566 // When [the injected-class-name] is used [...] as a template-argument for 5567 // a template template-parameter [...] it refers to the class template 5568 // itself. 5569 if (Arg.getArgument().getKind() == TemplateArgument::Type) { 5570 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( 5571 Context, Arg.getTypeSourceInfo()->getTypeLoc()); 5572 if (!ConvertedArg.getArgument().isNull()) 5573 Arg = ConvertedArg; 5574 } 5575 5576 switch (Arg.getArgument().getKind()) { 5577 case TemplateArgument::Null: 5578 llvm_unreachable("Should never see a NULL template argument here"); 5579 5580 case TemplateArgument::Template: 5581 case TemplateArgument::TemplateExpansion: 5582 if (CheckTemplateTemplateArgument(TempParm, Params, Arg)) 5583 return true; 5584 5585 Converted.push_back(Arg.getArgument()); 5586 break; 5587 5588 case TemplateArgument::Expression: 5589 case TemplateArgument::Type: 5590 // We have a template template parameter but the template 5591 // argument does not refer to a template. 5592 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 5593 << getLangOpts().CPlusPlus11; 5594 return true; 5595 5596 case TemplateArgument::Declaration: 5597 llvm_unreachable("Declaration argument with template template parameter"); 5598 case TemplateArgument::Integral: 5599 llvm_unreachable("Integral argument with template template parameter"); 5600 case TemplateArgument::NullPtr: 5601 llvm_unreachable("Null pointer argument with template template parameter"); 5602 5603 case TemplateArgument::Pack: 5604 llvm_unreachable("Caller must expand template argument packs"); 5605 } 5606 5607 return false; 5608 } 5609 5610 /// Diagnose a missing template argument. 5611 template<typename TemplateParmDecl> 5612 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, 5613 TemplateDecl *TD, 5614 const TemplateParmDecl *D, 5615 TemplateArgumentListInfo &Args) { 5616 // Dig out the most recent declaration of the template parameter; there may be 5617 // declarations of the template that are more recent than TD. 5618 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) 5619 ->getTemplateParameters() 5620 ->getParam(D->getIndex())); 5621 5622 // If there's a default argument that's not visible, diagnose that we're 5623 // missing a module import. 5624 llvm::SmallVector<Module*, 8> Modules; 5625 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) { 5626 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD), 5627 D->getDefaultArgumentLoc(), Modules, 5628 Sema::MissingImportKind::DefaultArgument, 5629 /*Recover*/true); 5630 return true; 5631 } 5632 5633 // FIXME: If there's a more recent default argument that *is* visible, 5634 // diagnose that it was declared too late. 5635 5636 TemplateParameterList *Params = TD->getTemplateParameters(); 5637 5638 S.Diag(Loc, diag::err_template_arg_list_different_arity) 5639 << /*not enough args*/0 5640 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD)) 5641 << TD; 5642 S.Diag(TD->getLocation(), diag::note_template_decl_here) 5643 << Params->getSourceRange(); 5644 return true; 5645 } 5646 5647 /// Check that the given template argument list is well-formed 5648 /// for specializing the given template. 5649 bool Sema::CheckTemplateArgumentList( 5650 TemplateDecl *Template, SourceLocation TemplateLoc, 5651 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, 5652 SmallVectorImpl<TemplateArgument> &Converted, 5653 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) { 5654 5655 if (ConstraintsNotSatisfied) 5656 *ConstraintsNotSatisfied = false; 5657 5658 // Make a copy of the template arguments for processing. Only make the 5659 // changes at the end when successful in matching the arguments to the 5660 // template. 5661 TemplateArgumentListInfo NewArgs = TemplateArgs; 5662 5663 // Make sure we get the template parameter list from the most 5664 // recent declaration, since that is the only one that is guaranteed to 5665 // have all the default template argument information. 5666 TemplateParameterList *Params = 5667 cast<TemplateDecl>(Template->getMostRecentDecl()) 5668 ->getTemplateParameters(); 5669 5670 SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); 5671 5672 // C++ [temp.arg]p1: 5673 // [...] The type and form of each template-argument specified in 5674 // a template-id shall match the type and form specified for the 5675 // corresponding parameter declared by the template in its 5676 // template-parameter-list. 5677 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 5678 SmallVector<TemplateArgument, 2> ArgumentPack; 5679 unsigned ArgIdx = 0, NumArgs = NewArgs.size(); 5680 LocalInstantiationScope InstScope(*this, true); 5681 for (TemplateParameterList::iterator Param = Params->begin(), 5682 ParamEnd = Params->end(); 5683 Param != ParamEnd; /* increment in loop */) { 5684 // If we have an expanded parameter pack, make sure we don't have too 5685 // many arguments. 5686 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 5687 if (*Expansions == ArgumentPack.size()) { 5688 // We're done with this parameter pack. Pack up its arguments and add 5689 // them to the list. 5690 Converted.push_back( 5691 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5692 ArgumentPack.clear(); 5693 5694 // This argument is assigned to the next parameter. 5695 ++Param; 5696 continue; 5697 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 5698 // Not enough arguments for this parameter pack. 5699 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5700 << /*not enough args*/0 5701 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5702 << Template; 5703 Diag(Template->getLocation(), diag::note_template_decl_here) 5704 << Params->getSourceRange(); 5705 return true; 5706 } 5707 } 5708 5709 if (ArgIdx < NumArgs) { 5710 // Check the template argument we were given. 5711 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, 5712 TemplateLoc, RAngleLoc, 5713 ArgumentPack.size(), Converted)) 5714 return true; 5715 5716 bool PackExpansionIntoNonPack = 5717 NewArgs[ArgIdx].getArgument().isPackExpansion() && 5718 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param)); 5719 if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) || 5720 isa<ConceptDecl>(Template))) { 5721 // Core issue 1430: we have a pack expansion as an argument to an 5722 // alias template, and it's not part of a parameter pack. This 5723 // can't be canonicalized, so reject it now. 5724 // As for concepts - we cannot normalize constraints where this 5725 // situation exists. 5726 Diag(NewArgs[ArgIdx].getLocation(), 5727 diag::err_template_expansion_into_fixed_list) 5728 << (isa<ConceptDecl>(Template) ? 1 : 0) 5729 << NewArgs[ArgIdx].getSourceRange(); 5730 Diag((*Param)->getLocation(), diag::note_template_param_here); 5731 return true; 5732 } 5733 5734 // We're now done with this argument. 5735 ++ArgIdx; 5736 5737 if ((*Param)->isTemplateParameterPack()) { 5738 // The template parameter was a template parameter pack, so take the 5739 // deduced argument and place it on the argument pack. Note that we 5740 // stay on the same template parameter so that we can deduce more 5741 // arguments. 5742 ArgumentPack.push_back(Converted.pop_back_val()); 5743 } else { 5744 // Move to the next template parameter. 5745 ++Param; 5746 } 5747 5748 // If we just saw a pack expansion into a non-pack, then directly convert 5749 // the remaining arguments, because we don't know what parameters they'll 5750 // match up with. 5751 if (PackExpansionIntoNonPack) { 5752 if (!ArgumentPack.empty()) { 5753 // If we were part way through filling in an expanded parameter pack, 5754 // fall back to just producing individual arguments. 5755 Converted.insert(Converted.end(), 5756 ArgumentPack.begin(), ArgumentPack.end()); 5757 ArgumentPack.clear(); 5758 } 5759 5760 while (ArgIdx < NumArgs) { 5761 Converted.push_back(NewArgs[ArgIdx].getArgument()); 5762 ++ArgIdx; 5763 } 5764 5765 return false; 5766 } 5767 5768 continue; 5769 } 5770 5771 // If we're checking a partial template argument list, we're done. 5772 if (PartialTemplateArgs) { 5773 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 5774 Converted.push_back( 5775 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5776 return false; 5777 } 5778 5779 // If we have a template parameter pack with no more corresponding 5780 // arguments, just break out now and we'll fill in the argument pack below. 5781 if ((*Param)->isTemplateParameterPack()) { 5782 assert(!getExpandedPackSize(*Param) && 5783 "Should have dealt with this already"); 5784 5785 // A non-expanded parameter pack before the end of the parameter list 5786 // only occurs for an ill-formed template parameter list, unless we've 5787 // got a partial argument list for a function template, so just bail out. 5788 if (Param + 1 != ParamEnd) 5789 return true; 5790 5791 Converted.push_back( 5792 TemplateArgument::CreatePackCopy(Context, ArgumentPack)); 5793 ArgumentPack.clear(); 5794 5795 ++Param; 5796 continue; 5797 } 5798 5799 // Check whether we have a default argument. 5800 TemplateArgumentLoc Arg; 5801 5802 // Retrieve the default template argument from the template 5803 // parameter. For each kind of template parameter, we substitute the 5804 // template arguments provided thus far and any "outer" template arguments 5805 // (when the template parameter was part of a nested template) into 5806 // the default argument. 5807 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 5808 if (!hasVisibleDefaultArgument(TTP)) 5809 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP, 5810 NewArgs); 5811 5812 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 5813 Template, 5814 TemplateLoc, 5815 RAngleLoc, 5816 TTP, 5817 Converted); 5818 if (!ArgType) 5819 return true; 5820 5821 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 5822 ArgType); 5823 } else if (NonTypeTemplateParmDecl *NTTP 5824 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 5825 if (!hasVisibleDefaultArgument(NTTP)) 5826 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP, 5827 NewArgs); 5828 5829 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 5830 TemplateLoc, 5831 RAngleLoc, 5832 NTTP, 5833 Converted); 5834 if (E.isInvalid()) 5835 return true; 5836 5837 Expr *Ex = E.getAs<Expr>(); 5838 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 5839 } else { 5840 TemplateTemplateParmDecl *TempParm 5841 = cast<TemplateTemplateParmDecl>(*Param); 5842 5843 if (!hasVisibleDefaultArgument(TempParm)) 5844 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm, 5845 NewArgs); 5846 5847 NestedNameSpecifierLoc QualifierLoc; 5848 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 5849 TemplateLoc, 5850 RAngleLoc, 5851 TempParm, 5852 Converted, 5853 QualifierLoc); 5854 if (Name.isNull()) 5855 return true; 5856 5857 Arg = TemplateArgumentLoc( 5858 Context, TemplateArgument(Name), QualifierLoc, 5859 TempParm->getDefaultArgument().getTemplateNameLoc()); 5860 } 5861 5862 // Introduce an instantiation record that describes where we are using 5863 // the default template argument. We're not actually instantiating a 5864 // template here, we just create this object to put a note into the 5865 // context stack. 5866 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted, 5867 SourceRange(TemplateLoc, RAngleLoc)); 5868 if (Inst.isInvalid()) 5869 return true; 5870 5871 // Check the default template argument. 5872 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 5873 RAngleLoc, 0, Converted)) 5874 return true; 5875 5876 // Core issue 150 (assumed resolution): if this is a template template 5877 // parameter, keep track of the default template arguments from the 5878 // template definition. 5879 if (isTemplateTemplateParameter) 5880 NewArgs.addArgument(Arg); 5881 5882 // Move to the next template parameter and argument. 5883 ++Param; 5884 ++ArgIdx; 5885 } 5886 5887 // If we're performing a partial argument substitution, allow any trailing 5888 // pack expansions; they might be empty. This can happen even if 5889 // PartialTemplateArgs is false (the list of arguments is complete but 5890 // still dependent). 5891 if (ArgIdx < NumArgs && CurrentInstantiationScope && 5892 CurrentInstantiationScope->getPartiallySubstitutedPack()) { 5893 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion()) 5894 Converted.push_back(NewArgs[ArgIdx++].getArgument()); 5895 } 5896 5897 // If we have any leftover arguments, then there were too many arguments. 5898 // Complain and fail. 5899 if (ArgIdx < NumArgs) { 5900 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5901 << /*too many args*/1 5902 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5903 << Template 5904 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); 5905 Diag(Template->getLocation(), diag::note_template_decl_here) 5906 << Params->getSourceRange(); 5907 return true; 5908 } 5909 5910 // No problems found with the new argument list, propagate changes back 5911 // to caller. 5912 if (UpdateArgsWithConversions) 5913 TemplateArgs = std::move(NewArgs); 5914 5915 if (!PartialTemplateArgs && 5916 EnsureTemplateArgumentListConstraints( 5917 Template, Converted, SourceRange(TemplateLoc, 5918 TemplateArgs.getRAngleLoc()))) { 5919 if (ConstraintsNotSatisfied) 5920 *ConstraintsNotSatisfied = true; 5921 return true; 5922 } 5923 5924 return false; 5925 } 5926 5927 namespace { 5928 class UnnamedLocalNoLinkageFinder 5929 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 5930 { 5931 Sema &S; 5932 SourceRange SR; 5933 5934 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 5935 5936 public: 5937 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 5938 5939 bool Visit(QualType T) { 5940 return T.isNull() ? false : inherited::Visit(T.getTypePtr()); 5941 } 5942 5943 #define TYPE(Class, Parent) \ 5944 bool Visit##Class##Type(const Class##Type *); 5945 #define ABSTRACT_TYPE(Class, Parent) \ 5946 bool Visit##Class##Type(const Class##Type *) { return false; } 5947 #define NON_CANONICAL_TYPE(Class, Parent) \ 5948 bool Visit##Class##Type(const Class##Type *) { return false; } 5949 #include "clang/AST/TypeNodes.inc" 5950 5951 bool VisitTagDecl(const TagDecl *Tag); 5952 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 5953 }; 5954 } // end anonymous namespace 5955 5956 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 5957 return false; 5958 } 5959 5960 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 5961 return Visit(T->getElementType()); 5962 } 5963 5964 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 5965 return Visit(T->getPointeeType()); 5966 } 5967 5968 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 5969 const BlockPointerType* T) { 5970 return Visit(T->getPointeeType()); 5971 } 5972 5973 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 5974 const LValueReferenceType* T) { 5975 return Visit(T->getPointeeType()); 5976 } 5977 5978 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 5979 const RValueReferenceType* T) { 5980 return Visit(T->getPointeeType()); 5981 } 5982 5983 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 5984 const MemberPointerType* T) { 5985 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 5986 } 5987 5988 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 5989 const ConstantArrayType* T) { 5990 return Visit(T->getElementType()); 5991 } 5992 5993 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 5994 const IncompleteArrayType* T) { 5995 return Visit(T->getElementType()); 5996 } 5997 5998 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 5999 const VariableArrayType* T) { 6000 return Visit(T->getElementType()); 6001 } 6002 6003 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 6004 const DependentSizedArrayType* T) { 6005 return Visit(T->getElementType()); 6006 } 6007 6008 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 6009 const DependentSizedExtVectorType* T) { 6010 return Visit(T->getElementType()); 6011 } 6012 6013 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType( 6014 const DependentSizedMatrixType *T) { 6015 return Visit(T->getElementType()); 6016 } 6017 6018 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( 6019 const DependentAddressSpaceType *T) { 6020 return Visit(T->getPointeeType()); 6021 } 6022 6023 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 6024 return Visit(T->getElementType()); 6025 } 6026 6027 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( 6028 const DependentVectorType *T) { 6029 return Visit(T->getElementType()); 6030 } 6031 6032 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 6033 return Visit(T->getElementType()); 6034 } 6035 6036 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType( 6037 const ConstantMatrixType *T) { 6038 return Visit(T->getElementType()); 6039 } 6040 6041 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 6042 const FunctionProtoType* T) { 6043 for (const auto &A : T->param_types()) { 6044 if (Visit(A)) 6045 return true; 6046 } 6047 6048 return Visit(T->getReturnType()); 6049 } 6050 6051 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 6052 const FunctionNoProtoType* T) { 6053 return Visit(T->getReturnType()); 6054 } 6055 6056 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 6057 const UnresolvedUsingType*) { 6058 return false; 6059 } 6060 6061 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 6062 return false; 6063 } 6064 6065 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 6066 return Visit(T->getUnderlyingType()); 6067 } 6068 6069 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 6070 return false; 6071 } 6072 6073 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 6074 const UnaryTransformType*) { 6075 return false; 6076 } 6077 6078 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 6079 return Visit(T->getDeducedType()); 6080 } 6081 6082 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( 6083 const DeducedTemplateSpecializationType *T) { 6084 return Visit(T->getDeducedType()); 6085 } 6086 6087 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 6088 return VisitTagDecl(T->getDecl()); 6089 } 6090 6091 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 6092 return VisitTagDecl(T->getDecl()); 6093 } 6094 6095 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 6096 const TemplateTypeParmType*) { 6097 return false; 6098 } 6099 6100 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 6101 const SubstTemplateTypeParmPackType *) { 6102 return false; 6103 } 6104 6105 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 6106 const TemplateSpecializationType*) { 6107 return false; 6108 } 6109 6110 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 6111 const InjectedClassNameType* T) { 6112 return VisitTagDecl(T->getDecl()); 6113 } 6114 6115 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 6116 const DependentNameType* T) { 6117 return VisitNestedNameSpecifier(T->getQualifier()); 6118 } 6119 6120 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 6121 const DependentTemplateSpecializationType* T) { 6122 if (auto *Q = T->getQualifier()) 6123 return VisitNestedNameSpecifier(Q); 6124 return false; 6125 } 6126 6127 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 6128 const PackExpansionType* T) { 6129 return Visit(T->getPattern()); 6130 } 6131 6132 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 6133 return false; 6134 } 6135 6136 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 6137 const ObjCInterfaceType *) { 6138 return false; 6139 } 6140 6141 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 6142 const ObjCObjectPointerType *) { 6143 return false; 6144 } 6145 6146 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 6147 return Visit(T->getValueType()); 6148 } 6149 6150 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { 6151 return false; 6152 } 6153 6154 bool UnnamedLocalNoLinkageFinder::VisitExtIntType(const ExtIntType *T) { 6155 return false; 6156 } 6157 6158 bool UnnamedLocalNoLinkageFinder::VisitDependentExtIntType( 6159 const DependentExtIntType *T) { 6160 return false; 6161 } 6162 6163 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 6164 if (Tag->getDeclContext()->isFunctionOrMethod()) { 6165 S.Diag(SR.getBegin(), 6166 S.getLangOpts().CPlusPlus11 ? 6167 diag::warn_cxx98_compat_template_arg_local_type : 6168 diag::ext_template_arg_local_type) 6169 << S.Context.getTypeDeclType(Tag) << SR; 6170 return true; 6171 } 6172 6173 if (!Tag->hasNameForLinkage()) { 6174 S.Diag(SR.getBegin(), 6175 S.getLangOpts().CPlusPlus11 ? 6176 diag::warn_cxx98_compat_template_arg_unnamed_type : 6177 diag::ext_template_arg_unnamed_type) << SR; 6178 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 6179 return true; 6180 } 6181 6182 return false; 6183 } 6184 6185 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 6186 NestedNameSpecifier *NNS) { 6187 assert(NNS); 6188 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 6189 return true; 6190 6191 switch (NNS->getKind()) { 6192 case NestedNameSpecifier::Identifier: 6193 case NestedNameSpecifier::Namespace: 6194 case NestedNameSpecifier::NamespaceAlias: 6195 case NestedNameSpecifier::Global: 6196 case NestedNameSpecifier::Super: 6197 return false; 6198 6199 case NestedNameSpecifier::TypeSpec: 6200 case NestedNameSpecifier::TypeSpecWithTemplate: 6201 return Visit(QualType(NNS->getAsType(), 0)); 6202 } 6203 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 6204 } 6205 6206 /// Check a template argument against its corresponding 6207 /// template type parameter. 6208 /// 6209 /// This routine implements the semantics of C++ [temp.arg.type]. It 6210 /// returns true if an error occurred, and false otherwise. 6211 bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) { 6212 assert(ArgInfo && "invalid TypeSourceInfo"); 6213 QualType Arg = ArgInfo->getType(); 6214 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 6215 6216 if (Arg->isVariablyModifiedType()) { 6217 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 6218 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 6219 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 6220 } 6221 6222 // C++03 [temp.arg.type]p2: 6223 // A local type, a type with no linkage, an unnamed type or a type 6224 // compounded from any of these types shall not be used as a 6225 // template-argument for a template type-parameter. 6226 // 6227 // C++11 allows these, and even in C++03 we allow them as an extension with 6228 // a warning. 6229 if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) { 6230 UnnamedLocalNoLinkageFinder Finder(*this, SR); 6231 (void)Finder.Visit(Context.getCanonicalType(Arg)); 6232 } 6233 6234 return false; 6235 } 6236 6237 enum NullPointerValueKind { 6238 NPV_NotNullPointer, 6239 NPV_NullPointer, 6240 NPV_Error 6241 }; 6242 6243 /// Determine whether the given template argument is a null pointer 6244 /// value of the appropriate type. 6245 static NullPointerValueKind 6246 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 6247 QualType ParamType, Expr *Arg, 6248 Decl *Entity = nullptr) { 6249 if (Arg->isValueDependent() || Arg->isTypeDependent()) 6250 return NPV_NotNullPointer; 6251 6252 // dllimport'd entities aren't constant but are available inside of template 6253 // arguments. 6254 if (Entity && Entity->hasAttr<DLLImportAttr>()) 6255 return NPV_NotNullPointer; 6256 6257 if (!S.isCompleteType(Arg->getExprLoc(), ParamType)) 6258 llvm_unreachable( 6259 "Incomplete parameter type in isNullPointerValueTemplateArgument!"); 6260 6261 if (!S.getLangOpts().CPlusPlus11) 6262 return NPV_NotNullPointer; 6263 6264 // Determine whether we have a constant expression. 6265 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 6266 if (ArgRV.isInvalid()) 6267 return NPV_Error; 6268 Arg = ArgRV.get(); 6269 6270 Expr::EvalResult EvalResult; 6271 SmallVector<PartialDiagnosticAt, 8> Notes; 6272 EvalResult.Diag = &Notes; 6273 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 6274 EvalResult.HasSideEffects) { 6275 SourceLocation DiagLoc = Arg->getExprLoc(); 6276 6277 // If our only note is the usual "invalid subexpression" note, just point 6278 // the caret at its location rather than producing an essentially 6279 // redundant note. 6280 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 6281 diag::note_invalid_subexpr_in_const_expr) { 6282 DiagLoc = Notes[0].first; 6283 Notes.clear(); 6284 } 6285 6286 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 6287 << Arg->getType() << Arg->getSourceRange(); 6288 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 6289 S.Diag(Notes[I].first, Notes[I].second); 6290 6291 S.Diag(Param->getLocation(), diag::note_template_param_here); 6292 return NPV_Error; 6293 } 6294 6295 // C++11 [temp.arg.nontype]p1: 6296 // - an address constant expression of type std::nullptr_t 6297 if (Arg->getType()->isNullPtrType()) 6298 return NPV_NullPointer; 6299 6300 // - a constant expression that evaluates to a null pointer value (4.10); or 6301 // - a constant expression that evaluates to a null member pointer value 6302 // (4.11); or 6303 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 6304 (EvalResult.Val.isMemberPointer() && 6305 !EvalResult.Val.getMemberPointerDecl())) { 6306 // If our expression has an appropriate type, we've succeeded. 6307 bool ObjCLifetimeConversion; 6308 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 6309 S.IsQualificationConversion(Arg->getType(), ParamType, false, 6310 ObjCLifetimeConversion)) 6311 return NPV_NullPointer; 6312 6313 // The types didn't match, but we know we got a null pointer; complain, 6314 // then recover as if the types were correct. 6315 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 6316 << Arg->getType() << ParamType << Arg->getSourceRange(); 6317 S.Diag(Param->getLocation(), diag::note_template_param_here); 6318 return NPV_NullPointer; 6319 } 6320 6321 // If we don't have a null pointer value, but we do have a NULL pointer 6322 // constant, suggest a cast to the appropriate type. 6323 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 6324 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 6325 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 6326 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code) 6327 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()), 6328 ")"); 6329 S.Diag(Param->getLocation(), diag::note_template_param_here); 6330 return NPV_NullPointer; 6331 } 6332 6333 // FIXME: If we ever want to support general, address-constant expressions 6334 // as non-type template arguments, we should return the ExprResult here to 6335 // be interpreted by the caller. 6336 return NPV_NotNullPointer; 6337 } 6338 6339 /// Checks whether the given template argument is compatible with its 6340 /// template parameter. 6341 static bool CheckTemplateArgumentIsCompatibleWithParameter( 6342 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 6343 Expr *Arg, QualType ArgType) { 6344 bool ObjCLifetimeConversion; 6345 if (ParamType->isPointerType() && 6346 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() && 6347 S.IsQualificationConversion(ArgType, ParamType, false, 6348 ObjCLifetimeConversion)) { 6349 // For pointer-to-object types, qualification conversions are 6350 // permitted. 6351 } else { 6352 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 6353 if (!ParamRef->getPointeeType()->isFunctionType()) { 6354 // C++ [temp.arg.nontype]p5b3: 6355 // For a non-type template-parameter of type reference to 6356 // object, no conversions apply. The type referred to by the 6357 // reference may be more cv-qualified than the (otherwise 6358 // identical) type of the template- argument. The 6359 // template-parameter is bound directly to the 6360 // template-argument, which shall be an lvalue. 6361 6362 // FIXME: Other qualifiers? 6363 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 6364 unsigned ArgQuals = ArgType.getCVRQualifiers(); 6365 6366 if ((ParamQuals | ArgQuals) != ParamQuals) { 6367 S.Diag(Arg->getBeginLoc(), 6368 diag::err_template_arg_ref_bind_ignores_quals) 6369 << ParamType << Arg->getType() << Arg->getSourceRange(); 6370 S.Diag(Param->getLocation(), diag::note_template_param_here); 6371 return true; 6372 } 6373 } 6374 } 6375 6376 // At this point, the template argument refers to an object or 6377 // function with external linkage. We now need to check whether the 6378 // argument and parameter types are compatible. 6379 if (!S.Context.hasSameUnqualifiedType(ArgType, 6380 ParamType.getNonReferenceType())) { 6381 // We can't perform this conversion or binding. 6382 if (ParamType->isReferenceType()) 6383 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind) 6384 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 6385 else 6386 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 6387 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 6388 S.Diag(Param->getLocation(), diag::note_template_param_here); 6389 return true; 6390 } 6391 } 6392 6393 return false; 6394 } 6395 6396 /// Checks whether the given template argument is the address 6397 /// of an object or function according to C++ [temp.arg.nontype]p1. 6398 static bool 6399 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 6400 NonTypeTemplateParmDecl *Param, 6401 QualType ParamType, 6402 Expr *ArgIn, 6403 TemplateArgument &Converted) { 6404 bool Invalid = false; 6405 Expr *Arg = ArgIn; 6406 QualType ArgType = Arg->getType(); 6407 6408 bool AddressTaken = false; 6409 SourceLocation AddrOpLoc; 6410 if (S.getLangOpts().MicrosoftExt) { 6411 // Microsoft Visual C++ strips all casts, allows an arbitrary number of 6412 // dereference and address-of operators. 6413 Arg = Arg->IgnoreParenCasts(); 6414 6415 bool ExtWarnMSTemplateArg = false; 6416 UnaryOperatorKind FirstOpKind; 6417 SourceLocation FirstOpLoc; 6418 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6419 UnaryOperatorKind UnOpKind = UnOp->getOpcode(); 6420 if (UnOpKind == UO_Deref) 6421 ExtWarnMSTemplateArg = true; 6422 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { 6423 Arg = UnOp->getSubExpr()->IgnoreParenCasts(); 6424 if (!AddrOpLoc.isValid()) { 6425 FirstOpKind = UnOpKind; 6426 FirstOpLoc = UnOp->getOperatorLoc(); 6427 } 6428 } else 6429 break; 6430 } 6431 if (FirstOpLoc.isValid()) { 6432 if (ExtWarnMSTemplateArg) 6433 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument) 6434 << ArgIn->getSourceRange(); 6435 6436 if (FirstOpKind == UO_AddrOf) 6437 AddressTaken = true; 6438 else if (Arg->getType()->isPointerType()) { 6439 // We cannot let pointers get dereferenced here, that is obviously not a 6440 // constant expression. 6441 assert(FirstOpKind == UO_Deref); 6442 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6443 << Arg->getSourceRange(); 6444 } 6445 } 6446 } else { 6447 // See through any implicit casts we added to fix the type. 6448 Arg = Arg->IgnoreImpCasts(); 6449 6450 // C++ [temp.arg.nontype]p1: 6451 // 6452 // A template-argument for a non-type, non-template 6453 // template-parameter shall be one of: [...] 6454 // 6455 // -- the address of an object or function with external 6456 // linkage, including function templates and function 6457 // template-ids but excluding non-static class members, 6458 // expressed as & id-expression where the & is optional if 6459 // the name refers to a function or array, or if the 6460 // corresponding template-parameter is a reference; or 6461 6462 // In C++98/03 mode, give an extension warning on any extra parentheses. 6463 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6464 bool ExtraParens = false; 6465 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6466 if (!Invalid && !ExtraParens) { 6467 S.Diag(Arg->getBeginLoc(), 6468 S.getLangOpts().CPlusPlus11 6469 ? diag::warn_cxx98_compat_template_arg_extra_parens 6470 : diag::ext_template_arg_extra_parens) 6471 << Arg->getSourceRange(); 6472 ExtraParens = true; 6473 } 6474 6475 Arg = Parens->getSubExpr(); 6476 } 6477 6478 while (SubstNonTypeTemplateParmExpr *subst = 6479 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6480 Arg = subst->getReplacement()->IgnoreImpCasts(); 6481 6482 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6483 if (UnOp->getOpcode() == UO_AddrOf) { 6484 Arg = UnOp->getSubExpr(); 6485 AddressTaken = true; 6486 AddrOpLoc = UnOp->getOperatorLoc(); 6487 } 6488 } 6489 6490 while (SubstNonTypeTemplateParmExpr *subst = 6491 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6492 Arg = subst->getReplacement()->IgnoreImpCasts(); 6493 } 6494 6495 ValueDecl *Entity = nullptr; 6496 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg)) 6497 Entity = DRE->getDecl(); 6498 else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg)) 6499 Entity = CUE->getGuidDecl(); 6500 6501 // If our parameter has pointer type, check for a null template value. 6502 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 6503 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn, 6504 Entity)) { 6505 case NPV_NullPointer: 6506 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6507 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 6508 /*isNullPtr=*/true); 6509 return false; 6510 6511 case NPV_Error: 6512 return true; 6513 6514 case NPV_NotNullPointer: 6515 break; 6516 } 6517 } 6518 6519 // Stop checking the precise nature of the argument if it is value dependent, 6520 // it should be checked when instantiated. 6521 if (Arg->isValueDependent()) { 6522 Converted = TemplateArgument(ArgIn); 6523 return false; 6524 } 6525 6526 if (!Entity) { 6527 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6528 << Arg->getSourceRange(); 6529 S.Diag(Param->getLocation(), diag::note_template_param_here); 6530 return true; 6531 } 6532 6533 // Cannot refer to non-static data members 6534 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) { 6535 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field) 6536 << Entity << Arg->getSourceRange(); 6537 S.Diag(Param->getLocation(), diag::note_template_param_here); 6538 return true; 6539 } 6540 6541 // Cannot refer to non-static member functions 6542 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 6543 if (!Method->isStatic()) { 6544 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method) 6545 << Method << Arg->getSourceRange(); 6546 S.Diag(Param->getLocation(), diag::note_template_param_here); 6547 return true; 6548 } 6549 } 6550 6551 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 6552 VarDecl *Var = dyn_cast<VarDecl>(Entity); 6553 MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity); 6554 6555 // A non-type template argument must refer to an object or function. 6556 if (!Func && !Var && !Guid) { 6557 // We found something, but we don't know specifically what it is. 6558 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func) 6559 << Arg->getSourceRange(); 6560 S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here); 6561 return true; 6562 } 6563 6564 // Address / reference template args must have external linkage in C++98. 6565 if (Entity->getFormalLinkage() == InternalLinkage) { 6566 S.Diag(Arg->getBeginLoc(), 6567 S.getLangOpts().CPlusPlus11 6568 ? diag::warn_cxx98_compat_template_arg_object_internal 6569 : diag::ext_template_arg_object_internal) 6570 << !Func << Entity << Arg->getSourceRange(); 6571 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6572 << !Func; 6573 } else if (!Entity->hasLinkage()) { 6574 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage) 6575 << !Func << Entity << Arg->getSourceRange(); 6576 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6577 << !Func; 6578 return true; 6579 } 6580 6581 if (Var) { 6582 // A value of reference type is not an object. 6583 if (Var->getType()->isReferenceType()) { 6584 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var) 6585 << Var->getType() << Arg->getSourceRange(); 6586 S.Diag(Param->getLocation(), diag::note_template_param_here); 6587 return true; 6588 } 6589 6590 // A template argument must have static storage duration. 6591 if (Var->getTLSKind()) { 6592 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local) 6593 << Arg->getSourceRange(); 6594 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 6595 return true; 6596 } 6597 } 6598 6599 if (AddressTaken && ParamType->isReferenceType()) { 6600 // If we originally had an address-of operator, but the 6601 // parameter has reference type, complain and (if things look 6602 // like they will work) drop the address-of operator. 6603 if (!S.Context.hasSameUnqualifiedType(Entity->getType(), 6604 ParamType.getNonReferenceType())) { 6605 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6606 << ParamType; 6607 S.Diag(Param->getLocation(), diag::note_template_param_here); 6608 return true; 6609 } 6610 6611 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6612 << ParamType 6613 << FixItHint::CreateRemoval(AddrOpLoc); 6614 S.Diag(Param->getLocation(), diag::note_template_param_here); 6615 6616 ArgType = Entity->getType(); 6617 } 6618 6619 // If the template parameter has pointer type, either we must have taken the 6620 // address or the argument must decay to a pointer. 6621 if (!AddressTaken && ParamType->isPointerType()) { 6622 if (Func) { 6623 // Function-to-pointer decay. 6624 ArgType = S.Context.getPointerType(Func->getType()); 6625 } else if (Entity->getType()->isArrayType()) { 6626 // Array-to-pointer decay. 6627 ArgType = S.Context.getArrayDecayedType(Entity->getType()); 6628 } else { 6629 // If the template parameter has pointer type but the address of 6630 // this object was not taken, complain and (possibly) recover by 6631 // taking the address of the entity. 6632 ArgType = S.Context.getPointerType(Entity->getType()); 6633 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 6634 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6635 << ParamType; 6636 S.Diag(Param->getLocation(), diag::note_template_param_here); 6637 return true; 6638 } 6639 6640 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6641 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&"); 6642 6643 S.Diag(Param->getLocation(), diag::note_template_param_here); 6644 } 6645 } 6646 6647 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, 6648 Arg, ArgType)) 6649 return true; 6650 6651 // Create the template argument. 6652 Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), 6653 S.Context.getCanonicalType(ParamType)); 6654 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false); 6655 return false; 6656 } 6657 6658 /// Checks whether the given template argument is a pointer to 6659 /// member constant according to C++ [temp.arg.nontype]p1. 6660 static bool CheckTemplateArgumentPointerToMember(Sema &S, 6661 NonTypeTemplateParmDecl *Param, 6662 QualType ParamType, 6663 Expr *&ResultArg, 6664 TemplateArgument &Converted) { 6665 bool Invalid = false; 6666 6667 Expr *Arg = ResultArg; 6668 bool ObjCLifetimeConversion; 6669 6670 // C++ [temp.arg.nontype]p1: 6671 // 6672 // A template-argument for a non-type, non-template 6673 // template-parameter shall be one of: [...] 6674 // 6675 // -- a pointer to member expressed as described in 5.3.1. 6676 DeclRefExpr *DRE = nullptr; 6677 6678 // In C++98/03 mode, give an extension warning on any extra parentheses. 6679 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6680 bool ExtraParens = false; 6681 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6682 if (!Invalid && !ExtraParens) { 6683 S.Diag(Arg->getBeginLoc(), 6684 S.getLangOpts().CPlusPlus11 6685 ? diag::warn_cxx98_compat_template_arg_extra_parens 6686 : diag::ext_template_arg_extra_parens) 6687 << Arg->getSourceRange(); 6688 ExtraParens = true; 6689 } 6690 6691 Arg = Parens->getSubExpr(); 6692 } 6693 6694 while (SubstNonTypeTemplateParmExpr *subst = 6695 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6696 Arg = subst->getReplacement()->IgnoreImpCasts(); 6697 6698 // A pointer-to-member constant written &Class::member. 6699 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6700 if (UnOp->getOpcode() == UO_AddrOf) { 6701 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 6702 if (DRE && !DRE->getQualifier()) 6703 DRE = nullptr; 6704 } 6705 } 6706 // A constant of pointer-to-member type. 6707 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 6708 ValueDecl *VD = DRE->getDecl(); 6709 if (VD->getType()->isMemberPointerType()) { 6710 if (isa<NonTypeTemplateParmDecl>(VD)) { 6711 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6712 Converted = TemplateArgument(Arg); 6713 } else { 6714 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 6715 Converted = TemplateArgument(VD, ParamType); 6716 } 6717 return Invalid; 6718 } 6719 } 6720 6721 DRE = nullptr; 6722 } 6723 6724 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; 6725 6726 // Check for a null pointer value. 6727 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg, 6728 Entity)) { 6729 case NPV_Error: 6730 return true; 6731 case NPV_NullPointer: 6732 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6733 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), 6734 /*isNullPtr*/true); 6735 return false; 6736 case NPV_NotNullPointer: 6737 break; 6738 } 6739 6740 if (S.IsQualificationConversion(ResultArg->getType(), 6741 ParamType.getNonReferenceType(), false, 6742 ObjCLifetimeConversion)) { 6743 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp, 6744 ResultArg->getValueKind()) 6745 .get(); 6746 } else if (!S.Context.hasSameUnqualifiedType( 6747 ResultArg->getType(), ParamType.getNonReferenceType())) { 6748 // We can't perform this conversion. 6749 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible) 6750 << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); 6751 S.Diag(Param->getLocation(), diag::note_template_param_here); 6752 return true; 6753 } 6754 6755 if (!DRE) 6756 return S.Diag(Arg->getBeginLoc(), 6757 diag::err_template_arg_not_pointer_to_member_form) 6758 << Arg->getSourceRange(); 6759 6760 if (isa<FieldDecl>(DRE->getDecl()) || 6761 isa<IndirectFieldDecl>(DRE->getDecl()) || 6762 isa<CXXMethodDecl>(DRE->getDecl())) { 6763 assert((isa<FieldDecl>(DRE->getDecl()) || 6764 isa<IndirectFieldDecl>(DRE->getDecl()) || 6765 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 6766 "Only non-static member pointers can make it here"); 6767 6768 // Okay: this is the address of a non-static member, and therefore 6769 // a member pointer constant. 6770 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6771 Converted = TemplateArgument(Arg); 6772 } else { 6773 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 6774 Converted = TemplateArgument(D, S.Context.getCanonicalType(ParamType)); 6775 } 6776 return Invalid; 6777 } 6778 6779 // We found something else, but we don't know specifically what it is. 6780 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form) 6781 << Arg->getSourceRange(); 6782 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 6783 return true; 6784 } 6785 6786 /// Check a template argument against its corresponding 6787 /// non-type template parameter. 6788 /// 6789 /// This routine implements the semantics of C++ [temp.arg.nontype]. 6790 /// If an error occurred, it returns ExprError(); otherwise, it 6791 /// returns the converted template argument. \p ParamType is the 6792 /// type of the non-type template parameter after it has been instantiated. 6793 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 6794 QualType ParamType, Expr *Arg, 6795 TemplateArgument &Converted, 6796 CheckTemplateArgumentKind CTAK) { 6797 SourceLocation StartLoc = Arg->getBeginLoc(); 6798 6799 // If the parameter type somehow involves auto, deduce the type now. 6800 DeducedType *DeducedT = ParamType->getContainedDeducedType(); 6801 if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) { 6802 // During template argument deduction, we allow 'decltype(auto)' to 6803 // match an arbitrary dependent argument. 6804 // FIXME: The language rules don't say what happens in this case. 6805 // FIXME: We get an opaque dependent type out of decltype(auto) if the 6806 // expression is merely instantiation-dependent; is this enough? 6807 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) { 6808 auto *AT = dyn_cast<AutoType>(DeducedT); 6809 if (AT && AT->isDecltypeAuto()) { 6810 Converted = TemplateArgument(Arg); 6811 return Arg; 6812 } 6813 } 6814 6815 // When checking a deduced template argument, deduce from its type even if 6816 // the type is dependent, in order to check the types of non-type template 6817 // arguments line up properly in partial ordering. 6818 Optional<unsigned> Depth = Param->getDepth() + 1; 6819 Expr *DeductionArg = Arg; 6820 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg)) 6821 DeductionArg = PE->getPattern(); 6822 TypeSourceInfo *TSI = 6823 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()); 6824 if (isa<DeducedTemplateSpecializationType>(DeducedT)) { 6825 InitializedEntity Entity = 6826 InitializedEntity::InitializeTemplateParameter(ParamType, Param); 6827 InitializationKind Kind = InitializationKind::CreateForInit( 6828 DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg); 6829 Expr *Inits[1] = {DeductionArg}; 6830 ParamType = 6831 DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits); 6832 if (ParamType.isNull()) 6833 return ExprError(); 6834 } else if (DeduceAutoType( 6835 TSI, DeductionArg, ParamType, Depth, 6836 // We do not check constraints right now because the 6837 // immediately-declared constraint of the auto type is also 6838 // an associated constraint, and will be checked along with 6839 // the other associated constraints after checking the 6840 // template argument list. 6841 /*IgnoreConstraints=*/true) == DAR_Failed) { 6842 Diag(Arg->getExprLoc(), 6843 diag::err_non_type_template_parm_type_deduction_failure) 6844 << Param->getDeclName() << Param->getType() << Arg->getType() 6845 << Arg->getSourceRange(); 6846 Diag(Param->getLocation(), diag::note_template_param_here); 6847 return ExprError(); 6848 } 6849 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's 6850 // an error. The error message normally references the parameter 6851 // declaration, but here we'll pass the argument location because that's 6852 // where the parameter type is deduced. 6853 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc()); 6854 if (ParamType.isNull()) { 6855 Diag(Param->getLocation(), diag::note_template_param_here); 6856 return ExprError(); 6857 } 6858 } 6859 6860 // We should have already dropped all cv-qualifiers by now. 6861 assert(!ParamType.hasQualifiers() && 6862 "non-type template parameter type cannot be qualified"); 6863 6864 // FIXME: When Param is a reference, should we check that Arg is an lvalue? 6865 if (CTAK == CTAK_Deduced && 6866 (ParamType->isReferenceType() 6867 ? !Context.hasSameType(ParamType.getNonReferenceType(), 6868 Arg->getType()) 6869 : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) { 6870 // FIXME: If either type is dependent, we skip the check. This isn't 6871 // correct, since during deduction we're supposed to have replaced each 6872 // template parameter with some unique (non-dependent) placeholder. 6873 // FIXME: If the argument type contains 'auto', we carry on and fail the 6874 // type check in order to force specific types to be more specialized than 6875 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to 6876 // work. Similarly for CTAD, when comparing 'A<x>' against 'A'. 6877 if ((ParamType->isDependentType() || Arg->isTypeDependent()) && 6878 !Arg->getType()->getContainedDeducedType()) { 6879 Converted = TemplateArgument(Arg); 6880 return Arg; 6881 } 6882 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, 6883 // we should actually be checking the type of the template argument in P, 6884 // not the type of the template argument deduced from A, against the 6885 // template parameter type. 6886 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 6887 << Arg->getType() 6888 << ParamType.getUnqualifiedType(); 6889 Diag(Param->getLocation(), diag::note_template_param_here); 6890 return ExprError(); 6891 } 6892 6893 // If either the parameter has a dependent type or the argument is 6894 // type-dependent, there's nothing we can check now. The argument only 6895 // contains an unexpanded pack during partial ordering, and there's 6896 // nothing more we can check in that case. 6897 if (ParamType->isDependentType() || Arg->isTypeDependent() || 6898 Arg->containsUnexpandedParameterPack()) { 6899 // Force the argument to the type of the parameter to maintain invariants. 6900 auto *PE = dyn_cast<PackExpansionExpr>(Arg); 6901 if (PE) 6902 Arg = PE->getPattern(); 6903 ExprResult E = ImpCastExprToType( 6904 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent, 6905 ParamType->isLValueReferenceType() ? VK_LValue 6906 : ParamType->isRValueReferenceType() ? VK_XValue 6907 : VK_PRValue); 6908 if (E.isInvalid()) 6909 return ExprError(); 6910 if (PE) { 6911 // Recreate a pack expansion if we unwrapped one. 6912 E = new (Context) 6913 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(), 6914 PE->getNumExpansions()); 6915 } 6916 Converted = TemplateArgument(E.get()); 6917 return E; 6918 } 6919 6920 // The initialization of the parameter from the argument is 6921 // a constant-evaluated context. 6922 EnterExpressionEvaluationContext ConstantEvaluated( 6923 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 6924 6925 if (getLangOpts().CPlusPlus17) { 6926 QualType CanonParamType = Context.getCanonicalType(ParamType); 6927 6928 // Avoid making a copy when initializing a template parameter of class type 6929 // from a template parameter object of the same type. This is going beyond 6930 // the standard, but is required for soundness: in 6931 // template<A a> struct X { X *p; X<a> *q; }; 6932 // ... we need p and q to have the same type. 6933 // 6934 // Similarly, don't inject a call to a copy constructor when initializing 6935 // from a template parameter of the same type. 6936 Expr *InnerArg = Arg->IgnoreParenImpCasts(); 6937 if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) && 6938 Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) { 6939 NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl(); 6940 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 6941 Converted = TemplateArgument(TPO, CanonParamType); 6942 return Arg; 6943 } 6944 if (isa<NonTypeTemplateParmDecl>(ND)) { 6945 Converted = TemplateArgument(Arg); 6946 return Arg; 6947 } 6948 } 6949 6950 // C++17 [temp.arg.nontype]p1: 6951 // A template-argument for a non-type template parameter shall be 6952 // a converted constant expression of the type of the template-parameter. 6953 APValue Value; 6954 ExprResult ArgResult = CheckConvertedConstantExpression( 6955 Arg, ParamType, Value, CCEK_TemplateArg, Param); 6956 if (ArgResult.isInvalid()) 6957 return ExprError(); 6958 6959 // For a value-dependent argument, CheckConvertedConstantExpression is 6960 // permitted (and expected) to be unable to determine a value. 6961 if (ArgResult.get()->isValueDependent()) { 6962 Converted = TemplateArgument(ArgResult.get()); 6963 return ArgResult; 6964 } 6965 6966 // Convert the APValue to a TemplateArgument. 6967 switch (Value.getKind()) { 6968 case APValue::None: 6969 assert(ParamType->isNullPtrType()); 6970 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true); 6971 break; 6972 case APValue::Indeterminate: 6973 llvm_unreachable("result of constant evaluation should be initialized"); 6974 break; 6975 case APValue::Int: 6976 assert(ParamType->isIntegralOrEnumerationType()); 6977 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType); 6978 break; 6979 case APValue::MemberPointer: { 6980 assert(ParamType->isMemberPointerType()); 6981 6982 // FIXME: We need TemplateArgument representation and mangling for these. 6983 if (!Value.getMemberPointerPath().empty()) { 6984 Diag(Arg->getBeginLoc(), 6985 diag::err_template_arg_member_ptr_base_derived_not_supported) 6986 << Value.getMemberPointerDecl() << ParamType 6987 << Arg->getSourceRange(); 6988 return ExprError(); 6989 } 6990 6991 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl()); 6992 Converted = VD ? TemplateArgument(VD, CanonParamType) 6993 : TemplateArgument(CanonParamType, /*isNullPtr*/true); 6994 break; 6995 } 6996 case APValue::LValue: { 6997 // For a non-type template-parameter of pointer or reference type, 6998 // the value of the constant expression shall not refer to 6999 assert(ParamType->isPointerType() || ParamType->isReferenceType() || 7000 ParamType->isNullPtrType()); 7001 // -- a temporary object 7002 // -- a string literal 7003 // -- the result of a typeid expression, or 7004 // -- a predefined __func__ variable 7005 APValue::LValueBase Base = Value.getLValueBase(); 7006 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>()); 7007 if (Base && (!VD || isa<LifetimeExtendedTemporaryDecl>(VD))) { 7008 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 7009 << Arg->getSourceRange(); 7010 return ExprError(); 7011 } 7012 // -- a subobject 7013 // FIXME: Until C++20 7014 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && 7015 VD && VD->getType()->isArrayType() && 7016 Value.getLValuePath()[0].getAsArrayIndex() == 0 && 7017 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { 7018 // Per defect report (no number yet): 7019 // ... other than a pointer to the first element of a complete array 7020 // object. 7021 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() || 7022 Value.isLValueOnePastTheEnd()) { 7023 Diag(StartLoc, diag::err_non_type_template_arg_subobject) 7024 << Value.getAsString(Context, ParamType); 7025 return ExprError(); 7026 } 7027 assert((VD || !ParamType->isReferenceType()) && 7028 "null reference should not be a constant expression"); 7029 assert((!VD || !ParamType->isNullPtrType()) && 7030 "non-null value of type nullptr_t?"); 7031 Converted = VD ? TemplateArgument(VD, CanonParamType) 7032 : TemplateArgument(CanonParamType, /*isNullPtr*/true); 7033 break; 7034 } 7035 case APValue::Struct: 7036 case APValue::Union: 7037 // Get or create the corresponding template parameter object. 7038 Converted = TemplateArgument( 7039 Context.getTemplateParamObjectDecl(CanonParamType, Value), 7040 CanonParamType); 7041 break; 7042 case APValue::AddrLabelDiff: 7043 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); 7044 case APValue::FixedPoint: 7045 case APValue::Float: 7046 case APValue::ComplexInt: 7047 case APValue::ComplexFloat: 7048 case APValue::Vector: 7049 case APValue::Array: 7050 return Diag(StartLoc, diag::err_non_type_template_arg_unsupported) 7051 << ParamType; 7052 } 7053 7054 return ArgResult.get(); 7055 } 7056 7057 // C++ [temp.arg.nontype]p5: 7058 // The following conversions are performed on each expression used 7059 // as a non-type template-argument. If a non-type 7060 // template-argument cannot be converted to the type of the 7061 // corresponding template-parameter then the program is 7062 // ill-formed. 7063 if (ParamType->isIntegralOrEnumerationType()) { 7064 // C++11: 7065 // -- for a non-type template-parameter of integral or 7066 // enumeration type, conversions permitted in a converted 7067 // constant expression are applied. 7068 // 7069 // C++98: 7070 // -- for a non-type template-parameter of integral or 7071 // enumeration type, integral promotions (4.5) and integral 7072 // conversions (4.7) are applied. 7073 7074 if (getLangOpts().CPlusPlus11) { 7075 // C++ [temp.arg.nontype]p1: 7076 // A template-argument for a non-type, non-template template-parameter 7077 // shall be one of: 7078 // 7079 // -- for a non-type template-parameter of integral or enumeration 7080 // type, a converted constant expression of the type of the 7081 // template-parameter; or 7082 llvm::APSInt Value; 7083 ExprResult ArgResult = 7084 CheckConvertedConstantExpression(Arg, ParamType, Value, 7085 CCEK_TemplateArg); 7086 if (ArgResult.isInvalid()) 7087 return ExprError(); 7088 7089 // We can't check arbitrary value-dependent arguments. 7090 if (ArgResult.get()->isValueDependent()) { 7091 Converted = TemplateArgument(ArgResult.get()); 7092 return ArgResult; 7093 } 7094 7095 // Widen the argument value to sizeof(parameter type). This is almost 7096 // always a no-op, except when the parameter type is bool. In 7097 // that case, this may extend the argument from 1 bit to 8 bits. 7098 QualType IntegerType = ParamType; 7099 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 7100 IntegerType = Enum->getDecl()->getIntegerType(); 7101 Value = Value.extOrTrunc(IntegerType->isExtIntType() 7102 ? Context.getIntWidth(IntegerType) 7103 : Context.getTypeSize(IntegerType)); 7104 7105 Converted = TemplateArgument(Context, Value, 7106 Context.getCanonicalType(ParamType)); 7107 return ArgResult; 7108 } 7109 7110 ExprResult ArgResult = DefaultLvalueConversion(Arg); 7111 if (ArgResult.isInvalid()) 7112 return ExprError(); 7113 Arg = ArgResult.get(); 7114 7115 QualType ArgType = Arg->getType(); 7116 7117 // C++ [temp.arg.nontype]p1: 7118 // A template-argument for a non-type, non-template 7119 // template-parameter shall be one of: 7120 // 7121 // -- an integral constant-expression of integral or enumeration 7122 // type; or 7123 // -- the name of a non-type template-parameter; or 7124 llvm::APSInt Value; 7125 if (!ArgType->isIntegralOrEnumerationType()) { 7126 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral) 7127 << ArgType << Arg->getSourceRange(); 7128 Diag(Param->getLocation(), diag::note_template_param_here); 7129 return ExprError(); 7130 } else if (!Arg->isValueDependent()) { 7131 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 7132 QualType T; 7133 7134 public: 7135 TmplArgICEDiagnoser(QualType T) : T(T) { } 7136 7137 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, 7138 SourceLocation Loc) override { 7139 return S.Diag(Loc, diag::err_template_arg_not_ice) << T; 7140 } 7141 } Diagnoser(ArgType); 7142 7143 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get(); 7144 if (!Arg) 7145 return ExprError(); 7146 } 7147 7148 // From here on out, all we care about is the unqualified form 7149 // of the argument type. 7150 ArgType = ArgType.getUnqualifiedType(); 7151 7152 // Try to convert the argument to the parameter's type. 7153 if (Context.hasSameType(ParamType, ArgType)) { 7154 // Okay: no conversion necessary 7155 } else if (ParamType->isBooleanType()) { 7156 // This is an integral-to-boolean conversion. 7157 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get(); 7158 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 7159 !ParamType->isEnumeralType()) { 7160 // This is an integral promotion or conversion. 7161 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get(); 7162 } else { 7163 // We can't perform this conversion. 7164 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 7165 << Arg->getType() << ParamType << Arg->getSourceRange(); 7166 Diag(Param->getLocation(), diag::note_template_param_here); 7167 return ExprError(); 7168 } 7169 7170 // Add the value of this argument to the list of converted 7171 // arguments. We use the bitwidth and signedness of the template 7172 // parameter. 7173 if (Arg->isValueDependent()) { 7174 // The argument is value-dependent. Create a new 7175 // TemplateArgument with the converted expression. 7176 Converted = TemplateArgument(Arg); 7177 return Arg; 7178 } 7179 7180 QualType IntegerType = Context.getCanonicalType(ParamType); 7181 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 7182 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 7183 7184 if (ParamType->isBooleanType()) { 7185 // Value must be zero or one. 7186 Value = Value != 0; 7187 unsigned AllowedBits = Context.getTypeSize(IntegerType); 7188 if (Value.getBitWidth() != AllowedBits) 7189 Value = Value.extOrTrunc(AllowedBits); 7190 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7191 } else { 7192 llvm::APSInt OldValue = Value; 7193 7194 // Coerce the template argument's value to the value it will have 7195 // based on the template parameter's type. 7196 unsigned AllowedBits = IntegerType->isExtIntType() 7197 ? Context.getIntWidth(IntegerType) 7198 : Context.getTypeSize(IntegerType); 7199 if (Value.getBitWidth() != AllowedBits) 7200 Value = Value.extOrTrunc(AllowedBits); 7201 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7202 7203 // Complain if an unsigned parameter received a negative value. 7204 if (IntegerType->isUnsignedIntegerOrEnumerationType() && 7205 (OldValue.isSigned() && OldValue.isNegative())) { 7206 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative) 7207 << toString(OldValue, 10) << toString(Value, 10) << Param->getType() 7208 << Arg->getSourceRange(); 7209 Diag(Param->getLocation(), diag::note_template_param_here); 7210 } 7211 7212 // Complain if we overflowed the template parameter's type. 7213 unsigned RequiredBits; 7214 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 7215 RequiredBits = OldValue.getActiveBits(); 7216 else if (OldValue.isUnsigned()) 7217 RequiredBits = OldValue.getActiveBits() + 1; 7218 else 7219 RequiredBits = OldValue.getMinSignedBits(); 7220 if (RequiredBits > AllowedBits) { 7221 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large) 7222 << toString(OldValue, 10) << toString(Value, 10) << Param->getType() 7223 << Arg->getSourceRange(); 7224 Diag(Param->getLocation(), diag::note_template_param_here); 7225 } 7226 } 7227 7228 Converted = TemplateArgument(Context, Value, 7229 ParamType->isEnumeralType() 7230 ? Context.getCanonicalType(ParamType) 7231 : IntegerType); 7232 return Arg; 7233 } 7234 7235 QualType ArgType = Arg->getType(); 7236 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 7237 7238 // Handle pointer-to-function, reference-to-function, and 7239 // pointer-to-member-function all in (roughly) the same way. 7240 if (// -- For a non-type template-parameter of type pointer to 7241 // function, only the function-to-pointer conversion (4.3) is 7242 // applied. If the template-argument represents a set of 7243 // overloaded functions (or a pointer to such), the matching 7244 // function is selected from the set (13.4). 7245 (ParamType->isPointerType() && 7246 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) || 7247 // -- For a non-type template-parameter of type reference to 7248 // function, no conversions apply. If the template-argument 7249 // represents a set of overloaded functions, the matching 7250 // function is selected from the set (13.4). 7251 (ParamType->isReferenceType() && 7252 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 7253 // -- For a non-type template-parameter of type pointer to 7254 // member function, no conversions apply. If the 7255 // template-argument represents a set of overloaded member 7256 // functions, the matching member function is selected from 7257 // the set (13.4). 7258 (ParamType->isMemberPointerType() && 7259 ParamType->castAs<MemberPointerType>()->getPointeeType() 7260 ->isFunctionType())) { 7261 7262 if (Arg->getType() == Context.OverloadTy) { 7263 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 7264 true, 7265 FoundResult)) { 7266 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7267 return ExprError(); 7268 7269 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7270 ArgType = Arg->getType(); 7271 } else 7272 return ExprError(); 7273 } 7274 7275 if (!ParamType->isMemberPointerType()) { 7276 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 7277 ParamType, 7278 Arg, Converted)) 7279 return ExprError(); 7280 return Arg; 7281 } 7282 7283 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 7284 Converted)) 7285 return ExprError(); 7286 return Arg; 7287 } 7288 7289 if (ParamType->isPointerType()) { 7290 // -- for a non-type template-parameter of type pointer to 7291 // object, qualification conversions (4.4) and the 7292 // array-to-pointer conversion (4.2) are applied. 7293 // C++0x also allows a value of std::nullptr_t. 7294 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 7295 "Only object pointers allowed here"); 7296 7297 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 7298 ParamType, 7299 Arg, Converted)) 7300 return ExprError(); 7301 return Arg; 7302 } 7303 7304 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 7305 // -- For a non-type template-parameter of type reference to 7306 // object, no conversions apply. The type referred to by the 7307 // reference may be more cv-qualified than the (otherwise 7308 // identical) type of the template-argument. The 7309 // template-parameter is bound directly to the 7310 // template-argument, which must be an lvalue. 7311 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 7312 "Only object references allowed here"); 7313 7314 if (Arg->getType() == Context.OverloadTy) { 7315 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 7316 ParamRefType->getPointeeType(), 7317 true, 7318 FoundResult)) { 7319 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7320 return ExprError(); 7321 7322 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7323 ArgType = Arg->getType(); 7324 } else 7325 return ExprError(); 7326 } 7327 7328 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 7329 ParamType, 7330 Arg, Converted)) 7331 return ExprError(); 7332 return Arg; 7333 } 7334 7335 // Deal with parameters of type std::nullptr_t. 7336 if (ParamType->isNullPtrType()) { 7337 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 7338 Converted = TemplateArgument(Arg); 7339 return Arg; 7340 } 7341 7342 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 7343 case NPV_NotNullPointer: 7344 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 7345 << Arg->getType() << ParamType; 7346 Diag(Param->getLocation(), diag::note_template_param_here); 7347 return ExprError(); 7348 7349 case NPV_Error: 7350 return ExprError(); 7351 7352 case NPV_NullPointer: 7353 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 7354 Converted = TemplateArgument(Context.getCanonicalType(ParamType), 7355 /*isNullPtr*/true); 7356 return Arg; 7357 } 7358 } 7359 7360 // -- For a non-type template-parameter of type pointer to data 7361 // member, qualification conversions (4.4) are applied. 7362 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 7363 7364 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 7365 Converted)) 7366 return ExprError(); 7367 return Arg; 7368 } 7369 7370 static void DiagnoseTemplateParameterListArityMismatch( 7371 Sema &S, TemplateParameterList *New, TemplateParameterList *Old, 7372 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); 7373 7374 /// Check a template argument against its corresponding 7375 /// template template parameter. 7376 /// 7377 /// This routine implements the semantics of C++ [temp.arg.template]. 7378 /// It returns true if an error occurred, and false otherwise. 7379 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param, 7380 TemplateParameterList *Params, 7381 TemplateArgumentLoc &Arg) { 7382 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 7383 TemplateDecl *Template = Name.getAsTemplateDecl(); 7384 if (!Template) { 7385 // Any dependent template name is fine. 7386 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 7387 return false; 7388 } 7389 7390 if (Template->isInvalidDecl()) 7391 return true; 7392 7393 // C++0x [temp.arg.template]p1: 7394 // A template-argument for a template template-parameter shall be 7395 // the name of a class template or an alias template, expressed as an 7396 // id-expression. When the template-argument names a class template, only 7397 // primary class templates are considered when matching the 7398 // template template argument with the corresponding parameter; 7399 // partial specializations are not considered even if their 7400 // parameter lists match that of the template template parameter. 7401 // 7402 // Note that we also allow template template parameters here, which 7403 // will happen when we are dealing with, e.g., class template 7404 // partial specializations. 7405 if (!isa<ClassTemplateDecl>(Template) && 7406 !isa<TemplateTemplateParmDecl>(Template) && 7407 !isa<TypeAliasTemplateDecl>(Template) && 7408 !isa<BuiltinTemplateDecl>(Template)) { 7409 assert(isa<FunctionTemplateDecl>(Template) && 7410 "Only function templates are possible here"); 7411 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template); 7412 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 7413 << Template; 7414 } 7415 7416 // C++1z [temp.arg.template]p3: (DR 150) 7417 // A template-argument matches a template template-parameter P when P 7418 // is at least as specialized as the template-argument A. 7419 // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a 7420 // defect report resolution from C++17 and shouldn't be introduced by 7421 // concepts. 7422 if (getLangOpts().RelaxedTemplateTemplateArgs) { 7423 // Quick check for the common case: 7424 // If P contains a parameter pack, then A [...] matches P if each of A's 7425 // template parameters matches the corresponding template parameter in 7426 // the template-parameter-list of P. 7427 if (TemplateParameterListsAreEqual( 7428 Template->getTemplateParameters(), Params, false, 7429 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) && 7430 // If the argument has no associated constraints, then the parameter is 7431 // definitely at least as specialized as the argument. 7432 // Otherwise - we need a more thorough check. 7433 !Template->hasAssociatedConstraints()) 7434 return false; 7435 7436 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template, 7437 Arg.getLocation())) { 7438 // C++2a[temp.func.order]p2 7439 // [...] If both deductions succeed, the partial ordering selects the 7440 // more constrained template as described by the rules in 7441 // [temp.constr.order]. 7442 SmallVector<const Expr *, 3> ParamsAC, TemplateAC; 7443 Params->getAssociatedConstraints(ParamsAC); 7444 // C++2a[temp.arg.template]p3 7445 // [...] In this comparison, if P is unconstrained, the constraints on A 7446 // are not considered. 7447 if (ParamsAC.empty()) 7448 return false; 7449 Template->getAssociatedConstraints(TemplateAC); 7450 bool IsParamAtLeastAsConstrained; 7451 if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC, 7452 IsParamAtLeastAsConstrained)) 7453 return true; 7454 if (!IsParamAtLeastAsConstrained) { 7455 Diag(Arg.getLocation(), 7456 diag::err_template_template_parameter_not_at_least_as_constrained) 7457 << Template << Param << Arg.getSourceRange(); 7458 Diag(Param->getLocation(), diag::note_entity_declared_at) << Param; 7459 Diag(Template->getLocation(), diag::note_entity_declared_at) 7460 << Template; 7461 MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template, 7462 TemplateAC); 7463 return true; 7464 } 7465 return false; 7466 } 7467 // FIXME: Produce better diagnostics for deduction failures. 7468 } 7469 7470 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 7471 Params, 7472 true, 7473 TPL_TemplateTemplateArgumentMatch, 7474 Arg.getLocation()); 7475 } 7476 7477 /// Given a non-type template argument that refers to a 7478 /// declaration and the type of its corresponding non-type template 7479 /// parameter, produce an expression that properly refers to that 7480 /// declaration. 7481 ExprResult 7482 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 7483 QualType ParamType, 7484 SourceLocation Loc) { 7485 // C++ [temp.param]p8: 7486 // 7487 // A non-type template-parameter of type "array of T" or 7488 // "function returning T" is adjusted to be of type "pointer to 7489 // T" or "pointer to function returning T", respectively. 7490 if (ParamType->isArrayType()) 7491 ParamType = Context.getArrayDecayedType(ParamType); 7492 else if (ParamType->isFunctionType()) 7493 ParamType = Context.getPointerType(ParamType); 7494 7495 // For a NULL non-type template argument, return nullptr casted to the 7496 // parameter's type. 7497 if (Arg.getKind() == TemplateArgument::NullPtr) { 7498 return ImpCastExprToType( 7499 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 7500 ParamType, 7501 ParamType->getAs<MemberPointerType>() 7502 ? CK_NullToMemberPointer 7503 : CK_NullToPointer); 7504 } 7505 assert(Arg.getKind() == TemplateArgument::Declaration && 7506 "Only declaration template arguments permitted here"); 7507 7508 ValueDecl *VD = Arg.getAsDecl(); 7509 7510 CXXScopeSpec SS; 7511 if (ParamType->isMemberPointerType()) { 7512 // If this is a pointer to member, we need to use a qualified name to 7513 // form a suitable pointer-to-member constant. 7514 assert(VD->getDeclContext()->isRecord() && 7515 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || 7516 isa<IndirectFieldDecl>(VD))); 7517 QualType ClassType 7518 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 7519 NestedNameSpecifier *Qualifier 7520 = NestedNameSpecifier::Create(Context, nullptr, false, 7521 ClassType.getTypePtr()); 7522 SS.MakeTrivial(Context, Qualifier, Loc); 7523 } 7524 7525 ExprResult RefExpr = BuildDeclarationNameExpr( 7526 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD); 7527 if (RefExpr.isInvalid()) 7528 return ExprError(); 7529 7530 // For a pointer, the argument declaration is the pointee. Take its address. 7531 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0); 7532 if (ParamType->isPointerType() && !ElemT.isNull() && 7533 Context.hasSimilarType(ElemT, ParamType->getPointeeType())) { 7534 // Decay an array argument if we want a pointer to its first element. 7535 RefExpr = DefaultFunctionArrayConversion(RefExpr.get()); 7536 if (RefExpr.isInvalid()) 7537 return ExprError(); 7538 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 7539 // For any other pointer, take the address (or form a pointer-to-member). 7540 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 7541 if (RefExpr.isInvalid()) 7542 return ExprError(); 7543 } else if (ParamType->isRecordType()) { 7544 assert(isa<TemplateParamObjectDecl>(VD) && 7545 "arg for class template param not a template parameter object"); 7546 // No conversions apply in this case. 7547 return RefExpr; 7548 } else { 7549 assert(ParamType->isReferenceType() && 7550 "unexpected type for decl template argument"); 7551 } 7552 7553 // At this point we should have the right value category. 7554 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() && 7555 "value kind mismatch for non-type template argument"); 7556 7557 // The type of the template parameter can differ from the type of the 7558 // argument in various ways; convert it now if necessary. 7559 QualType DestExprType = ParamType.getNonLValueExprType(Context); 7560 if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) { 7561 CastKind CK; 7562 QualType Ignored; 7563 if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) || 7564 IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) { 7565 CK = CK_NoOp; 7566 } else if (ParamType->isVoidPointerType() && 7567 RefExpr.get()->getType()->isPointerType()) { 7568 CK = CK_BitCast; 7569 } else { 7570 // FIXME: Pointers to members can need conversion derived-to-base or 7571 // base-to-derived conversions. We currently don't retain enough 7572 // information to convert properly (we need to track a cast path or 7573 // subobject number in the template argument). 7574 llvm_unreachable( 7575 "unexpected conversion required for non-type template argument"); 7576 } 7577 RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK, 7578 RefExpr.get()->getValueKind()); 7579 } 7580 7581 return RefExpr; 7582 } 7583 7584 /// Construct a new expression that refers to the given 7585 /// integral template argument with the given source-location 7586 /// information. 7587 /// 7588 /// This routine takes care of the mapping from an integral template 7589 /// argument (which may have any integral type) to the appropriate 7590 /// literal value. 7591 ExprResult 7592 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 7593 SourceLocation Loc) { 7594 assert(Arg.getKind() == TemplateArgument::Integral && 7595 "Operation is only valid for integral template arguments"); 7596 QualType OrigT = Arg.getIntegralType(); 7597 7598 // If this is an enum type that we're instantiating, we need to use an integer 7599 // type the same size as the enumerator. We don't want to build an 7600 // IntegerLiteral with enum type. The integer type of an enum type can be of 7601 // any integral type with C++11 enum classes, make sure we create the right 7602 // type of literal for it. 7603 QualType T = OrigT; 7604 if (const EnumType *ET = OrigT->getAs<EnumType>()) 7605 T = ET->getDecl()->getIntegerType(); 7606 7607 Expr *E; 7608 if (T->isAnyCharacterType()) { 7609 CharacterLiteral::CharacterKind Kind; 7610 if (T->isWideCharType()) 7611 Kind = CharacterLiteral::Wide; 7612 else if (T->isChar8Type() && getLangOpts().Char8) 7613 Kind = CharacterLiteral::UTF8; 7614 else if (T->isChar16Type()) 7615 Kind = CharacterLiteral::UTF16; 7616 else if (T->isChar32Type()) 7617 Kind = CharacterLiteral::UTF32; 7618 else 7619 Kind = CharacterLiteral::Ascii; 7620 7621 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), 7622 Kind, T, Loc); 7623 } else if (T->isBooleanType()) { 7624 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), 7625 T, Loc); 7626 } else if (T->isNullPtrType()) { 7627 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 7628 } else { 7629 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); 7630 } 7631 7632 if (OrigT->isEnumeralType()) { 7633 // FIXME: This is a hack. We need a better way to handle substituted 7634 // non-type template parameters. 7635 E = CStyleCastExpr::Create(Context, OrigT, VK_PRValue, CK_IntegralCast, E, 7636 nullptr, CurFPFeatureOverrides(), 7637 Context.getTrivialTypeSourceInfo(OrigT, Loc), 7638 Loc, Loc); 7639 } 7640 7641 return E; 7642 } 7643 7644 /// Match two template parameters within template parameter lists. 7645 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 7646 bool Complain, 7647 Sema::TemplateParameterListEqualKind Kind, 7648 SourceLocation TemplateArgLoc) { 7649 // Check the actual kind (type, non-type, template). 7650 if (Old->getKind() != New->getKind()) { 7651 if (Complain) { 7652 unsigned NextDiag = diag::err_template_param_different_kind; 7653 if (TemplateArgLoc.isValid()) { 7654 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7655 NextDiag = diag::note_template_param_different_kind; 7656 } 7657 S.Diag(New->getLocation(), NextDiag) 7658 << (Kind != Sema::TPL_TemplateMatch); 7659 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 7660 << (Kind != Sema::TPL_TemplateMatch); 7661 } 7662 7663 return false; 7664 } 7665 7666 // Check that both are parameter packs or neither are parameter packs. 7667 // However, if we are matching a template template argument to a 7668 // template template parameter, the template template parameter can have 7669 // a parameter pack where the template template argument does not. 7670 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 7671 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 7672 Old->isTemplateParameterPack())) { 7673 if (Complain) { 7674 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 7675 if (TemplateArgLoc.isValid()) { 7676 S.Diag(TemplateArgLoc, 7677 diag::err_template_arg_template_params_mismatch); 7678 NextDiag = diag::note_template_parameter_pack_non_pack; 7679 } 7680 7681 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 7682 : isa<NonTypeTemplateParmDecl>(New)? 1 7683 : 2; 7684 S.Diag(New->getLocation(), NextDiag) 7685 << ParamKind << New->isParameterPack(); 7686 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 7687 << ParamKind << Old->isParameterPack(); 7688 } 7689 7690 return false; 7691 } 7692 7693 // For non-type template parameters, check the type of the parameter. 7694 if (NonTypeTemplateParmDecl *OldNTTP 7695 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 7696 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 7697 7698 // If we are matching a template template argument to a template 7699 // template parameter and one of the non-type template parameter types 7700 // is dependent, then we must wait until template instantiation time 7701 // to actually compare the arguments. 7702 if (Kind != Sema::TPL_TemplateTemplateArgumentMatch || 7703 (!OldNTTP->getType()->isDependentType() && 7704 !NewNTTP->getType()->isDependentType())) 7705 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 7706 if (Complain) { 7707 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 7708 if (TemplateArgLoc.isValid()) { 7709 S.Diag(TemplateArgLoc, 7710 diag::err_template_arg_template_params_mismatch); 7711 NextDiag = diag::note_template_nontype_parm_different_type; 7712 } 7713 S.Diag(NewNTTP->getLocation(), NextDiag) 7714 << NewNTTP->getType() 7715 << (Kind != Sema::TPL_TemplateMatch); 7716 S.Diag(OldNTTP->getLocation(), 7717 diag::note_template_nontype_parm_prev_declaration) 7718 << OldNTTP->getType(); 7719 } 7720 7721 return false; 7722 } 7723 } 7724 // For template template parameters, check the template parameter types. 7725 // The template parameter lists of template template 7726 // parameters must agree. 7727 else if (TemplateTemplateParmDecl *OldTTP 7728 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 7729 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 7730 if (!S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 7731 OldTTP->getTemplateParameters(), 7732 Complain, 7733 (Kind == Sema::TPL_TemplateMatch 7734 ? Sema::TPL_TemplateTemplateParmMatch 7735 : Kind), 7736 TemplateArgLoc)) 7737 return false; 7738 } else if (Kind != Sema::TPL_TemplateTemplateArgumentMatch) { 7739 const Expr *NewC = nullptr, *OldC = nullptr; 7740 if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint()) 7741 NewC = TC->getImmediatelyDeclaredConstraint(); 7742 if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint()) 7743 OldC = TC->getImmediatelyDeclaredConstraint(); 7744 7745 auto Diagnose = [&] { 7746 S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(), 7747 diag::err_template_different_type_constraint); 7748 S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(), 7749 diag::note_template_prev_declaration) << /*declaration*/0; 7750 }; 7751 7752 if (!NewC != !OldC) { 7753 if (Complain) 7754 Diagnose(); 7755 return false; 7756 } 7757 7758 if (NewC) { 7759 llvm::FoldingSetNodeID OldCID, NewCID; 7760 OldC->Profile(OldCID, S.Context, /*Canonical=*/true); 7761 NewC->Profile(NewCID, S.Context, /*Canonical=*/true); 7762 if (OldCID != NewCID) { 7763 if (Complain) 7764 Diagnose(); 7765 return false; 7766 } 7767 } 7768 } 7769 7770 return true; 7771 } 7772 7773 /// Diagnose a known arity mismatch when comparing template argument 7774 /// lists. 7775 static 7776 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 7777 TemplateParameterList *New, 7778 TemplateParameterList *Old, 7779 Sema::TemplateParameterListEqualKind Kind, 7780 SourceLocation TemplateArgLoc) { 7781 unsigned NextDiag = diag::err_template_param_list_different_arity; 7782 if (TemplateArgLoc.isValid()) { 7783 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7784 NextDiag = diag::note_template_param_list_different_arity; 7785 } 7786 S.Diag(New->getTemplateLoc(), NextDiag) 7787 << (New->size() > Old->size()) 7788 << (Kind != Sema::TPL_TemplateMatch) 7789 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 7790 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 7791 << (Kind != Sema::TPL_TemplateMatch) 7792 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 7793 } 7794 7795 /// Determine whether the given template parameter lists are 7796 /// equivalent. 7797 /// 7798 /// \param New The new template parameter list, typically written in the 7799 /// source code as part of a new template declaration. 7800 /// 7801 /// \param Old The old template parameter list, typically found via 7802 /// name lookup of the template declared with this template parameter 7803 /// list. 7804 /// 7805 /// \param Complain If true, this routine will produce a diagnostic if 7806 /// the template parameter lists are not equivalent. 7807 /// 7808 /// \param Kind describes how we are to match the template parameter lists. 7809 /// 7810 /// \param TemplateArgLoc If this source location is valid, then we 7811 /// are actually checking the template parameter list of a template 7812 /// argument (New) against the template parameter list of its 7813 /// corresponding template template parameter (Old). We produce 7814 /// slightly different diagnostics in this scenario. 7815 /// 7816 /// \returns True if the template parameter lists are equal, false 7817 /// otherwise. 7818 bool 7819 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 7820 TemplateParameterList *Old, 7821 bool Complain, 7822 TemplateParameterListEqualKind Kind, 7823 SourceLocation TemplateArgLoc) { 7824 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 7825 if (Complain) 7826 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7827 TemplateArgLoc); 7828 7829 return false; 7830 } 7831 7832 // C++0x [temp.arg.template]p3: 7833 // A template-argument matches a template template-parameter (call it P) 7834 // when each of the template parameters in the template-parameter-list of 7835 // the template-argument's corresponding class template or alias template 7836 // (call it A) matches the corresponding template parameter in the 7837 // template-parameter-list of P. [...] 7838 TemplateParameterList::iterator NewParm = New->begin(); 7839 TemplateParameterList::iterator NewParmEnd = New->end(); 7840 for (TemplateParameterList::iterator OldParm = Old->begin(), 7841 OldParmEnd = Old->end(); 7842 OldParm != OldParmEnd; ++OldParm) { 7843 if (Kind != TPL_TemplateTemplateArgumentMatch || 7844 !(*OldParm)->isTemplateParameterPack()) { 7845 if (NewParm == NewParmEnd) { 7846 if (Complain) 7847 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7848 TemplateArgLoc); 7849 7850 return false; 7851 } 7852 7853 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 7854 Kind, TemplateArgLoc)) 7855 return false; 7856 7857 ++NewParm; 7858 continue; 7859 } 7860 7861 // C++0x [temp.arg.template]p3: 7862 // [...] When P's template- parameter-list contains a template parameter 7863 // pack (14.5.3), the template parameter pack will match zero or more 7864 // template parameters or template parameter packs in the 7865 // template-parameter-list of A with the same type and form as the 7866 // template parameter pack in P (ignoring whether those template 7867 // parameters are template parameter packs). 7868 for (; NewParm != NewParmEnd; ++NewParm) { 7869 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 7870 Kind, TemplateArgLoc)) 7871 return false; 7872 } 7873 } 7874 7875 // Make sure we exhausted all of the arguments. 7876 if (NewParm != NewParmEnd) { 7877 if (Complain) 7878 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7879 TemplateArgLoc); 7880 7881 return false; 7882 } 7883 7884 if (Kind != TPL_TemplateTemplateArgumentMatch) { 7885 const Expr *NewRC = New->getRequiresClause(); 7886 const Expr *OldRC = Old->getRequiresClause(); 7887 7888 auto Diagnose = [&] { 7889 Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(), 7890 diag::err_template_different_requires_clause); 7891 Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(), 7892 diag::note_template_prev_declaration) << /*declaration*/0; 7893 }; 7894 7895 if (!NewRC != !OldRC) { 7896 if (Complain) 7897 Diagnose(); 7898 return false; 7899 } 7900 7901 if (NewRC) { 7902 llvm::FoldingSetNodeID OldRCID, NewRCID; 7903 OldRC->Profile(OldRCID, Context, /*Canonical=*/true); 7904 NewRC->Profile(NewRCID, Context, /*Canonical=*/true); 7905 if (OldRCID != NewRCID) { 7906 if (Complain) 7907 Diagnose(); 7908 return false; 7909 } 7910 } 7911 } 7912 7913 return true; 7914 } 7915 7916 /// Check whether a template can be declared within this scope. 7917 /// 7918 /// If the template declaration is valid in this scope, returns 7919 /// false. Otherwise, issues a diagnostic and returns true. 7920 bool 7921 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 7922 if (!S) 7923 return false; 7924 7925 // Find the nearest enclosing declaration scope. 7926 while ((S->getFlags() & Scope::DeclScope) == 0 || 7927 (S->getFlags() & Scope::TemplateParamScope) != 0) 7928 S = S->getParent(); 7929 7930 // C++ [temp.pre]p6: [P2096] 7931 // A template, explicit specialization, or partial specialization shall not 7932 // have C linkage. 7933 DeclContext *Ctx = S->getEntity(); 7934 if (Ctx && Ctx->isExternCContext()) { 7935 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 7936 << TemplateParams->getSourceRange(); 7937 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) 7938 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 7939 return true; 7940 } 7941 Ctx = Ctx ? Ctx->getRedeclContext() : nullptr; 7942 7943 // C++ [temp]p2: 7944 // A template-declaration can appear only as a namespace scope or 7945 // class scope declaration. 7946 // C++ [temp.expl.spec]p3: 7947 // An explicit specialization may be declared in any scope in which the 7948 // corresponding primary template may be defined. 7949 // C++ [temp.class.spec]p6: [P2096] 7950 // A partial specialization may be declared in any scope in which the 7951 // corresponding primary template may be defined. 7952 if (Ctx) { 7953 if (Ctx->isFileContext()) 7954 return false; 7955 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) { 7956 // C++ [temp.mem]p2: 7957 // A local class shall not have member templates. 7958 if (RD->isLocalClass()) 7959 return Diag(TemplateParams->getTemplateLoc(), 7960 diag::err_template_inside_local_class) 7961 << TemplateParams->getSourceRange(); 7962 else 7963 return false; 7964 } 7965 } 7966 7967 return Diag(TemplateParams->getTemplateLoc(), 7968 diag::err_template_outside_namespace_or_class_scope) 7969 << TemplateParams->getSourceRange(); 7970 } 7971 7972 /// Determine what kind of template specialization the given declaration 7973 /// is. 7974 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 7975 if (!D) 7976 return TSK_Undeclared; 7977 7978 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 7979 return Record->getTemplateSpecializationKind(); 7980 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 7981 return Function->getTemplateSpecializationKind(); 7982 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 7983 return Var->getTemplateSpecializationKind(); 7984 7985 return TSK_Undeclared; 7986 } 7987 7988 /// Check whether a specialization is well-formed in the current 7989 /// context. 7990 /// 7991 /// This routine determines whether a template specialization can be declared 7992 /// in the current context (C++ [temp.expl.spec]p2). 7993 /// 7994 /// \param S the semantic analysis object for which this check is being 7995 /// performed. 7996 /// 7997 /// \param Specialized the entity being specialized or instantiated, which 7998 /// may be a kind of template (class template, function template, etc.) or 7999 /// a member of a class template (member function, static data member, 8000 /// member class). 8001 /// 8002 /// \param PrevDecl the previous declaration of this entity, if any. 8003 /// 8004 /// \param Loc the location of the explicit specialization or instantiation of 8005 /// this entity. 8006 /// 8007 /// \param IsPartialSpecialization whether this is a partial specialization of 8008 /// a class template. 8009 /// 8010 /// \returns true if there was an error that we cannot recover from, false 8011 /// otherwise. 8012 static bool CheckTemplateSpecializationScope(Sema &S, 8013 NamedDecl *Specialized, 8014 NamedDecl *PrevDecl, 8015 SourceLocation Loc, 8016 bool IsPartialSpecialization) { 8017 // Keep these "kind" numbers in sync with the %select statements in the 8018 // various diagnostics emitted by this routine. 8019 int EntityKind = 0; 8020 if (isa<ClassTemplateDecl>(Specialized)) 8021 EntityKind = IsPartialSpecialization? 1 : 0; 8022 else if (isa<VarTemplateDecl>(Specialized)) 8023 EntityKind = IsPartialSpecialization ? 3 : 2; 8024 else if (isa<FunctionTemplateDecl>(Specialized)) 8025 EntityKind = 4; 8026 else if (isa<CXXMethodDecl>(Specialized)) 8027 EntityKind = 5; 8028 else if (isa<VarDecl>(Specialized)) 8029 EntityKind = 6; 8030 else if (isa<RecordDecl>(Specialized)) 8031 EntityKind = 7; 8032 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 8033 EntityKind = 8; 8034 else { 8035 S.Diag(Loc, diag::err_template_spec_unknown_kind) 8036 << S.getLangOpts().CPlusPlus11; 8037 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 8038 return true; 8039 } 8040 8041 // C++ [temp.expl.spec]p2: 8042 // An explicit specialization may be declared in any scope in which 8043 // the corresponding primary template may be defined. 8044 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 8045 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 8046 << Specialized; 8047 return true; 8048 } 8049 8050 // C++ [temp.class.spec]p6: 8051 // A class template partial specialization may be declared in any 8052 // scope in which the primary template may be defined. 8053 DeclContext *SpecializedContext = 8054 Specialized->getDeclContext()->getRedeclContext(); 8055 DeclContext *DC = S.CurContext->getRedeclContext(); 8056 8057 // Make sure that this redeclaration (or definition) occurs in the same 8058 // scope or an enclosing namespace. 8059 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext) 8060 : DC->Equals(SpecializedContext))) { 8061 if (isa<TranslationUnitDecl>(SpecializedContext)) 8062 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 8063 << EntityKind << Specialized; 8064 else { 8065 auto *ND = cast<NamedDecl>(SpecializedContext); 8066 int Diag = diag::err_template_spec_redecl_out_of_scope; 8067 if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) 8068 Diag = diag::ext_ms_template_spec_redecl_out_of_scope; 8069 S.Diag(Loc, Diag) << EntityKind << Specialized 8070 << ND << isa<CXXRecordDecl>(ND); 8071 } 8072 8073 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 8074 8075 // Don't allow specializing in the wrong class during error recovery. 8076 // Otherwise, things can go horribly wrong. 8077 if (DC->isRecord()) 8078 return true; 8079 } 8080 8081 return false; 8082 } 8083 8084 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { 8085 if (!E->isTypeDependent()) 8086 return SourceLocation(); 8087 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 8088 Checker.TraverseStmt(E); 8089 if (Checker.MatchLoc.isInvalid()) 8090 return E->getSourceRange(); 8091 return Checker.MatchLoc; 8092 } 8093 8094 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { 8095 if (!TL.getType()->isDependentType()) 8096 return SourceLocation(); 8097 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 8098 Checker.TraverseTypeLoc(TL); 8099 if (Checker.MatchLoc.isInvalid()) 8100 return TL.getSourceRange(); 8101 return Checker.MatchLoc; 8102 } 8103 8104 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs 8105 /// that checks non-type template partial specialization arguments. 8106 static bool CheckNonTypeTemplatePartialSpecializationArgs( 8107 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, 8108 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { 8109 for (unsigned I = 0; I != NumArgs; ++I) { 8110 if (Args[I].getKind() == TemplateArgument::Pack) { 8111 if (CheckNonTypeTemplatePartialSpecializationArgs( 8112 S, TemplateNameLoc, Param, Args[I].pack_begin(), 8113 Args[I].pack_size(), IsDefaultArgument)) 8114 return true; 8115 8116 continue; 8117 } 8118 8119 if (Args[I].getKind() != TemplateArgument::Expression) 8120 continue; 8121 8122 Expr *ArgExpr = Args[I].getAsExpr(); 8123 8124 // We can have a pack expansion of any of the bullets below. 8125 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 8126 ArgExpr = Expansion->getPattern(); 8127 8128 // Strip off any implicit casts we added as part of type checking. 8129 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 8130 ArgExpr = ICE->getSubExpr(); 8131 8132 // C++ [temp.class.spec]p8: 8133 // A non-type argument is non-specialized if it is the name of a 8134 // non-type parameter. All other non-type arguments are 8135 // specialized. 8136 // 8137 // Below, we check the two conditions that only apply to 8138 // specialized non-type arguments, so skip any non-specialized 8139 // arguments. 8140 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 8141 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 8142 continue; 8143 8144 // C++ [temp.class.spec]p9: 8145 // Within the argument list of a class template partial 8146 // specialization, the following restrictions apply: 8147 // -- A partially specialized non-type argument expression 8148 // shall not involve a template parameter of the partial 8149 // specialization except when the argument expression is a 8150 // simple identifier. 8151 // -- The type of a template parameter corresponding to a 8152 // specialized non-type argument shall not be dependent on a 8153 // parameter of the specialization. 8154 // DR1315 removes the first bullet, leaving an incoherent set of rules. 8155 // We implement a compromise between the original rules and DR1315: 8156 // -- A specialized non-type template argument shall not be 8157 // type-dependent and the corresponding template parameter 8158 // shall have a non-dependent type. 8159 SourceRange ParamUseRange = 8160 findTemplateParameterInType(Param->getDepth(), ArgExpr); 8161 if (ParamUseRange.isValid()) { 8162 if (IsDefaultArgument) { 8163 S.Diag(TemplateNameLoc, 8164 diag::err_dependent_non_type_arg_in_partial_spec); 8165 S.Diag(ParamUseRange.getBegin(), 8166 diag::note_dependent_non_type_default_arg_in_partial_spec) 8167 << ParamUseRange; 8168 } else { 8169 S.Diag(ParamUseRange.getBegin(), 8170 diag::err_dependent_non_type_arg_in_partial_spec) 8171 << ParamUseRange; 8172 } 8173 return true; 8174 } 8175 8176 ParamUseRange = findTemplateParameter( 8177 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); 8178 if (ParamUseRange.isValid()) { 8179 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(), 8180 diag::err_dependent_typed_non_type_arg_in_partial_spec) 8181 << Param->getType(); 8182 S.Diag(Param->getLocation(), diag::note_template_param_here) 8183 << (IsDefaultArgument ? ParamUseRange : SourceRange()) 8184 << ParamUseRange; 8185 return true; 8186 } 8187 } 8188 8189 return false; 8190 } 8191 8192 /// Check the non-type template arguments of a class template 8193 /// partial specialization according to C++ [temp.class.spec]p9. 8194 /// 8195 /// \param TemplateNameLoc the location of the template name. 8196 /// \param PrimaryTemplate the template parameters of the primary class 8197 /// template. 8198 /// \param NumExplicit the number of explicitly-specified template arguments. 8199 /// \param TemplateArgs the template arguments of the class template 8200 /// partial specialization. 8201 /// 8202 /// \returns \c true if there was an error, \c false otherwise. 8203 bool Sema::CheckTemplatePartialSpecializationArgs( 8204 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, 8205 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { 8206 // We have to be conservative when checking a template in a dependent 8207 // context. 8208 if (PrimaryTemplate->getDeclContext()->isDependentContext()) 8209 return false; 8210 8211 TemplateParameterList *TemplateParams = 8212 PrimaryTemplate->getTemplateParameters(); 8213 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8214 NonTypeTemplateParmDecl *Param 8215 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 8216 if (!Param) 8217 continue; 8218 8219 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc, 8220 Param, &TemplateArgs[I], 8221 1, I >= NumExplicit)) 8222 return true; 8223 } 8224 8225 return false; 8226 } 8227 8228 DeclResult Sema::ActOnClassTemplateSpecialization( 8229 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 8230 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, 8231 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, 8232 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { 8233 assert(TUK != TUK_Reference && "References are not specializations"); 8234 8235 // NOTE: KWLoc is the location of the tag keyword. This will instead 8236 // store the location of the outermost template keyword in the declaration. 8237 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 8238 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc; 8239 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; 8240 SourceLocation LAngleLoc = TemplateId.LAngleLoc; 8241 SourceLocation RAngleLoc = TemplateId.RAngleLoc; 8242 8243 // Find the class template we're specializing 8244 TemplateName Name = TemplateId.Template.get(); 8245 ClassTemplateDecl *ClassTemplate 8246 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 8247 8248 if (!ClassTemplate) { 8249 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 8250 << (Name.getAsTemplateDecl() && 8251 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 8252 return true; 8253 } 8254 8255 bool isMemberSpecialization = false; 8256 bool isPartialSpecialization = false; 8257 8258 // Check the validity of the template headers that introduce this 8259 // template. 8260 // FIXME: We probably shouldn't complain about these headers for 8261 // friend declarations. 8262 bool Invalid = false; 8263 TemplateParameterList *TemplateParams = 8264 MatchTemplateParametersToScopeSpecifier( 8265 KWLoc, TemplateNameLoc, SS, &TemplateId, 8266 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization, 8267 Invalid); 8268 if (Invalid) 8269 return true; 8270 8271 // Check that we can declare a template specialization here. 8272 if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams)) 8273 return true; 8274 8275 if (TemplateParams && TemplateParams->size() > 0) { 8276 isPartialSpecialization = true; 8277 8278 if (TUK == TUK_Friend) { 8279 Diag(KWLoc, diag::err_partial_specialization_friend) 8280 << SourceRange(LAngleLoc, RAngleLoc); 8281 return true; 8282 } 8283 8284 // C++ [temp.class.spec]p10: 8285 // The template parameter list of a specialization shall not 8286 // contain default template argument values. 8287 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8288 Decl *Param = TemplateParams->getParam(I); 8289 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 8290 if (TTP->hasDefaultArgument()) { 8291 Diag(TTP->getDefaultArgumentLoc(), 8292 diag::err_default_arg_in_partial_spec); 8293 TTP->removeDefaultArgument(); 8294 } 8295 } else if (NonTypeTemplateParmDecl *NTTP 8296 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 8297 if (Expr *DefArg = NTTP->getDefaultArgument()) { 8298 Diag(NTTP->getDefaultArgumentLoc(), 8299 diag::err_default_arg_in_partial_spec) 8300 << DefArg->getSourceRange(); 8301 NTTP->removeDefaultArgument(); 8302 } 8303 } else { 8304 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 8305 if (TTP->hasDefaultArgument()) { 8306 Diag(TTP->getDefaultArgument().getLocation(), 8307 diag::err_default_arg_in_partial_spec) 8308 << TTP->getDefaultArgument().getSourceRange(); 8309 TTP->removeDefaultArgument(); 8310 } 8311 } 8312 } 8313 } else if (TemplateParams) { 8314 if (TUK == TUK_Friend) 8315 Diag(KWLoc, diag::err_template_spec_friend) 8316 << FixItHint::CreateRemoval( 8317 SourceRange(TemplateParams->getTemplateLoc(), 8318 TemplateParams->getRAngleLoc())) 8319 << SourceRange(LAngleLoc, RAngleLoc); 8320 } else { 8321 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl"); 8322 } 8323 8324 // Check that the specialization uses the same tag kind as the 8325 // original template. 8326 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 8327 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 8328 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 8329 Kind, TUK == TUK_Definition, KWLoc, 8330 ClassTemplate->getIdentifier())) { 8331 Diag(KWLoc, diag::err_use_with_wrong_tag) 8332 << ClassTemplate 8333 << FixItHint::CreateReplacement(KWLoc, 8334 ClassTemplate->getTemplatedDecl()->getKindName()); 8335 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 8336 diag::note_previous_use); 8337 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 8338 } 8339 8340 // Translate the parser's template argument list in our AST format. 8341 TemplateArgumentListInfo TemplateArgs = 8342 makeTemplateArgumentListInfo(*this, TemplateId); 8343 8344 // Check for unexpanded parameter packs in any of the template arguments. 8345 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 8346 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 8347 UPPC_PartialSpecialization)) 8348 return true; 8349 8350 // Check that the template argument list is well-formed for this 8351 // template. 8352 SmallVector<TemplateArgument, 4> Converted; 8353 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 8354 TemplateArgs, false, Converted, 8355 /*UpdateArgsWithConversion=*/true)) 8356 return true; 8357 8358 // Find the class template (partial) specialization declaration that 8359 // corresponds to these arguments. 8360 if (isPartialSpecialization) { 8361 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate, 8362 TemplateArgs.size(), Converted)) 8363 return true; 8364 8365 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we 8366 // also do it during instantiation. 8367 if (!Name.isDependent() && 8368 !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs, 8369 Converted)) { 8370 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 8371 << ClassTemplate->getDeclName(); 8372 isPartialSpecialization = false; 8373 } 8374 } 8375 8376 void *InsertPos = nullptr; 8377 ClassTemplateSpecializationDecl *PrevDecl = nullptr; 8378 8379 if (isPartialSpecialization) 8380 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, 8381 TemplateParams, 8382 InsertPos); 8383 else 8384 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos); 8385 8386 ClassTemplateSpecializationDecl *Specialization = nullptr; 8387 8388 // Check whether we can declare a class template specialization in 8389 // the current scope. 8390 if (TUK != TUK_Friend && 8391 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 8392 TemplateNameLoc, 8393 isPartialSpecialization)) 8394 return true; 8395 8396 // The canonical type 8397 QualType CanonType; 8398 if (isPartialSpecialization) { 8399 // Build the canonical type that describes the converted template 8400 // arguments of the class template partial specialization. 8401 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8402 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 8403 Converted); 8404 8405 if (Context.hasSameType(CanonType, 8406 ClassTemplate->getInjectedClassNameSpecialization()) && 8407 (!Context.getLangOpts().CPlusPlus20 || 8408 !TemplateParams->hasAssociatedConstraints())) { 8409 // C++ [temp.class.spec]p9b3: 8410 // 8411 // -- The argument list of the specialization shall not be identical 8412 // to the implicit argument list of the primary template. 8413 // 8414 // This rule has since been removed, because it's redundant given DR1495, 8415 // but we keep it because it produces better diagnostics and recovery. 8416 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 8417 << /*class template*/0 << (TUK == TUK_Definition) 8418 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 8419 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 8420 ClassTemplate->getIdentifier(), 8421 TemplateNameLoc, 8422 Attr, 8423 TemplateParams, 8424 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 8425 /*FriendLoc*/SourceLocation(), 8426 TemplateParameterLists.size() - 1, 8427 TemplateParameterLists.data()); 8428 } 8429 8430 // Create a new class template partial specialization declaration node. 8431 ClassTemplatePartialSpecializationDecl *PrevPartial 8432 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 8433 ClassTemplatePartialSpecializationDecl *Partial 8434 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 8435 ClassTemplate->getDeclContext(), 8436 KWLoc, TemplateNameLoc, 8437 TemplateParams, 8438 ClassTemplate, 8439 Converted, 8440 TemplateArgs, 8441 CanonType, 8442 PrevPartial); 8443 SetNestedNameSpecifier(*this, Partial, SS); 8444 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 8445 Partial->setTemplateParameterListsInfo( 8446 Context, TemplateParameterLists.drop_back(1)); 8447 } 8448 8449 if (!PrevPartial) 8450 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 8451 Specialization = Partial; 8452 8453 // If we are providing an explicit specialization of a member class 8454 // template specialization, make a note of that. 8455 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 8456 PrevPartial->setMemberSpecialization(); 8457 8458 CheckTemplatePartialSpecialization(Partial); 8459 } else { 8460 // Create a new class template specialization declaration node for 8461 // this explicit specialization or friend declaration. 8462 Specialization 8463 = ClassTemplateSpecializationDecl::Create(Context, Kind, 8464 ClassTemplate->getDeclContext(), 8465 KWLoc, TemplateNameLoc, 8466 ClassTemplate, 8467 Converted, 8468 PrevDecl); 8469 SetNestedNameSpecifier(*this, Specialization, SS); 8470 if (TemplateParameterLists.size() > 0) { 8471 Specialization->setTemplateParameterListsInfo(Context, 8472 TemplateParameterLists); 8473 } 8474 8475 if (!PrevDecl) 8476 ClassTemplate->AddSpecialization(Specialization, InsertPos); 8477 8478 if (CurContext->isDependentContext()) { 8479 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8480 CanonType = Context.getTemplateSpecializationType( 8481 CanonTemplate, Converted); 8482 } else { 8483 CanonType = Context.getTypeDeclType(Specialization); 8484 } 8485 } 8486 8487 // C++ [temp.expl.spec]p6: 8488 // If a template, a member template or the member of a class template is 8489 // explicitly specialized then that specialization shall be declared 8490 // before the first use of that specialization that would cause an implicit 8491 // instantiation to take place, in every translation unit in which such a 8492 // use occurs; no diagnostic is required. 8493 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 8494 bool Okay = false; 8495 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8496 // Is there any previous explicit specialization declaration? 8497 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8498 Okay = true; 8499 break; 8500 } 8501 } 8502 8503 if (!Okay) { 8504 SourceRange Range(TemplateNameLoc, RAngleLoc); 8505 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 8506 << Context.getTypeDeclType(Specialization) << Range; 8507 8508 Diag(PrevDecl->getPointOfInstantiation(), 8509 diag::note_instantiation_required_here) 8510 << (PrevDecl->getTemplateSpecializationKind() 8511 != TSK_ImplicitInstantiation); 8512 return true; 8513 } 8514 } 8515 8516 // If this is not a friend, note that this is an explicit specialization. 8517 if (TUK != TUK_Friend) 8518 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 8519 8520 // Check that this isn't a redefinition of this specialization. 8521 if (TUK == TUK_Definition) { 8522 RecordDecl *Def = Specialization->getDefinition(); 8523 NamedDecl *Hidden = nullptr; 8524 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 8525 SkipBody->ShouldSkip = true; 8526 SkipBody->Previous = Def; 8527 makeMergedDefinitionVisible(Hidden); 8528 } else if (Def) { 8529 SourceRange Range(TemplateNameLoc, RAngleLoc); 8530 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range; 8531 Diag(Def->getLocation(), diag::note_previous_definition); 8532 Specialization->setInvalidDecl(); 8533 return true; 8534 } 8535 } 8536 8537 ProcessDeclAttributeList(S, Specialization, Attr); 8538 8539 // Add alignment attributes if necessary; these attributes are checked when 8540 // the ASTContext lays out the structure. 8541 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 8542 AddAlignmentAttributesForRecord(Specialization); 8543 AddMsStructLayoutForRecord(Specialization); 8544 } 8545 8546 if (ModulePrivateLoc.isValid()) 8547 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 8548 << (isPartialSpecialization? 1 : 0) 8549 << FixItHint::CreateRemoval(ModulePrivateLoc); 8550 8551 // Build the fully-sugared type for this class template 8552 // specialization as the user wrote in the specialization 8553 // itself. This means that we'll pretty-print the type retrieved 8554 // from the specialization's declaration the way that the user 8555 // actually wrote the specialization, rather than formatting the 8556 // name based on the "canonical" representation used to store the 8557 // template arguments in the specialization. 8558 TypeSourceInfo *WrittenTy 8559 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 8560 TemplateArgs, CanonType); 8561 if (TUK != TUK_Friend) { 8562 Specialization->setTypeAsWritten(WrittenTy); 8563 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 8564 } 8565 8566 // C++ [temp.expl.spec]p9: 8567 // A template explicit specialization is in the scope of the 8568 // namespace in which the template was defined. 8569 // 8570 // We actually implement this paragraph where we set the semantic 8571 // context (in the creation of the ClassTemplateSpecializationDecl), 8572 // but we also maintain the lexical context where the actual 8573 // definition occurs. 8574 Specialization->setLexicalDeclContext(CurContext); 8575 8576 // We may be starting the definition of this specialization. 8577 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 8578 Specialization->startDefinition(); 8579 8580 if (TUK == TUK_Friend) { 8581 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 8582 TemplateNameLoc, 8583 WrittenTy, 8584 /*FIXME:*/KWLoc); 8585 Friend->setAccess(AS_public); 8586 CurContext->addDecl(Friend); 8587 } else { 8588 // Add the specialization into its lexical context, so that it can 8589 // be seen when iterating through the list of declarations in that 8590 // context. However, specializations are not found by name lookup. 8591 CurContext->addDecl(Specialization); 8592 } 8593 8594 if (SkipBody && SkipBody->ShouldSkip) 8595 return SkipBody->Previous; 8596 8597 return Specialization; 8598 } 8599 8600 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 8601 MultiTemplateParamsArg TemplateParameterLists, 8602 Declarator &D) { 8603 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 8604 ActOnDocumentableDecl(NewDecl); 8605 return NewDecl; 8606 } 8607 8608 Decl *Sema::ActOnConceptDefinition(Scope *S, 8609 MultiTemplateParamsArg TemplateParameterLists, 8610 IdentifierInfo *Name, SourceLocation NameLoc, 8611 Expr *ConstraintExpr) { 8612 DeclContext *DC = CurContext; 8613 8614 if (!DC->getRedeclContext()->isFileContext()) { 8615 Diag(NameLoc, 8616 diag::err_concept_decls_may_only_appear_in_global_namespace_scope); 8617 return nullptr; 8618 } 8619 8620 if (TemplateParameterLists.size() > 1) { 8621 Diag(NameLoc, diag::err_concept_extra_headers); 8622 return nullptr; 8623 } 8624 8625 if (TemplateParameterLists.front()->size() == 0) { 8626 Diag(NameLoc, diag::err_concept_no_parameters); 8627 return nullptr; 8628 } 8629 8630 if (DiagnoseUnexpandedParameterPack(ConstraintExpr)) 8631 return nullptr; 8632 8633 ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name, 8634 TemplateParameterLists.front(), 8635 ConstraintExpr); 8636 8637 if (NewDecl->hasAssociatedConstraints()) { 8638 // C++2a [temp.concept]p4: 8639 // A concept shall not have associated constraints. 8640 Diag(NameLoc, diag::err_concept_no_associated_constraints); 8641 NewDecl->setInvalidDecl(); 8642 } 8643 8644 // Check for conflicting previous declaration. 8645 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc); 8646 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 8647 ForVisibleRedeclaration); 8648 LookupName(Previous, S); 8649 8650 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false, 8651 /*AllowInlineNamespace*/false); 8652 if (!Previous.empty()) { 8653 auto *Old = Previous.getRepresentativeDecl(); 8654 Diag(NameLoc, isa<ConceptDecl>(Old) ? diag::err_redefinition : 8655 diag::err_redefinition_different_kind) << NewDecl->getDeclName(); 8656 Diag(Old->getLocation(), diag::note_previous_definition); 8657 } 8658 8659 ActOnDocumentableDecl(NewDecl); 8660 PushOnScopeChains(NewDecl, S); 8661 return NewDecl; 8662 } 8663 8664 /// \brief Strips various properties off an implicit instantiation 8665 /// that has just been explicitly specialized. 8666 static void StripImplicitInstantiation(NamedDecl *D) { 8667 D->dropAttr<DLLImportAttr>(); 8668 D->dropAttr<DLLExportAttr>(); 8669 8670 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 8671 FD->setInlineSpecified(false); 8672 } 8673 8674 /// Compute the diagnostic location for an explicit instantiation 8675 // declaration or definition. 8676 static SourceLocation DiagLocForExplicitInstantiation( 8677 NamedDecl* D, SourceLocation PointOfInstantiation) { 8678 // Explicit instantiations following a specialization have no effect and 8679 // hence no PointOfInstantiation. In that case, walk decl backwards 8680 // until a valid name loc is found. 8681 SourceLocation PrevDiagLoc = PointOfInstantiation; 8682 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 8683 Prev = Prev->getPreviousDecl()) { 8684 PrevDiagLoc = Prev->getLocation(); 8685 } 8686 assert(PrevDiagLoc.isValid() && 8687 "Explicit instantiation without point of instantiation?"); 8688 return PrevDiagLoc; 8689 } 8690 8691 /// Diagnose cases where we have an explicit template specialization 8692 /// before/after an explicit template instantiation, producing diagnostics 8693 /// for those cases where they are required and determining whether the 8694 /// new specialization/instantiation will have any effect. 8695 /// 8696 /// \param NewLoc the location of the new explicit specialization or 8697 /// instantiation. 8698 /// 8699 /// \param NewTSK the kind of the new explicit specialization or instantiation. 8700 /// 8701 /// \param PrevDecl the previous declaration of the entity. 8702 /// 8703 /// \param PrevTSK the kind of the old explicit specialization or instantiatin. 8704 /// 8705 /// \param PrevPointOfInstantiation if valid, indicates where the previus 8706 /// declaration was instantiated (either implicitly or explicitly). 8707 /// 8708 /// \param HasNoEffect will be set to true to indicate that the new 8709 /// specialization or instantiation has no effect and should be ignored. 8710 /// 8711 /// \returns true if there was an error that should prevent the introduction of 8712 /// the new declaration into the AST, false otherwise. 8713 bool 8714 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 8715 TemplateSpecializationKind NewTSK, 8716 NamedDecl *PrevDecl, 8717 TemplateSpecializationKind PrevTSK, 8718 SourceLocation PrevPointOfInstantiation, 8719 bool &HasNoEffect) { 8720 HasNoEffect = false; 8721 8722 switch (NewTSK) { 8723 case TSK_Undeclared: 8724 case TSK_ImplicitInstantiation: 8725 assert( 8726 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && 8727 "previous declaration must be implicit!"); 8728 return false; 8729 8730 case TSK_ExplicitSpecialization: 8731 switch (PrevTSK) { 8732 case TSK_Undeclared: 8733 case TSK_ExplicitSpecialization: 8734 // Okay, we're just specializing something that is either already 8735 // explicitly specialized or has merely been mentioned without any 8736 // instantiation. 8737 return false; 8738 8739 case TSK_ImplicitInstantiation: 8740 if (PrevPointOfInstantiation.isInvalid()) { 8741 // The declaration itself has not actually been instantiated, so it is 8742 // still okay to specialize it. 8743 StripImplicitInstantiation(PrevDecl); 8744 return false; 8745 } 8746 // Fall through 8747 LLVM_FALLTHROUGH; 8748 8749 case TSK_ExplicitInstantiationDeclaration: 8750 case TSK_ExplicitInstantiationDefinition: 8751 assert((PrevTSK == TSK_ImplicitInstantiation || 8752 PrevPointOfInstantiation.isValid()) && 8753 "Explicit instantiation without point of instantiation?"); 8754 8755 // C++ [temp.expl.spec]p6: 8756 // If a template, a member template or the member of a class template 8757 // is explicitly specialized then that specialization shall be declared 8758 // before the first use of that specialization that would cause an 8759 // implicit instantiation to take place, in every translation unit in 8760 // which such a use occurs; no diagnostic is required. 8761 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8762 // Is there any previous explicit specialization declaration? 8763 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 8764 return false; 8765 } 8766 8767 Diag(NewLoc, diag::err_specialization_after_instantiation) 8768 << PrevDecl; 8769 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 8770 << (PrevTSK != TSK_ImplicitInstantiation); 8771 8772 return true; 8773 } 8774 llvm_unreachable("The switch over PrevTSK must be exhaustive."); 8775 8776 case TSK_ExplicitInstantiationDeclaration: 8777 switch (PrevTSK) { 8778 case TSK_ExplicitInstantiationDeclaration: 8779 // This explicit instantiation declaration is redundant (that's okay). 8780 HasNoEffect = true; 8781 return false; 8782 8783 case TSK_Undeclared: 8784 case TSK_ImplicitInstantiation: 8785 // We're explicitly instantiating something that may have already been 8786 // implicitly instantiated; that's fine. 8787 return false; 8788 8789 case TSK_ExplicitSpecialization: 8790 // C++0x [temp.explicit]p4: 8791 // For a given set of template parameters, if an explicit instantiation 8792 // of a template appears after a declaration of an explicit 8793 // specialization for that template, the explicit instantiation has no 8794 // effect. 8795 HasNoEffect = true; 8796 return false; 8797 8798 case TSK_ExplicitInstantiationDefinition: 8799 // C++0x [temp.explicit]p10: 8800 // If an entity is the subject of both an explicit instantiation 8801 // declaration and an explicit instantiation definition in the same 8802 // translation unit, the definition shall follow the declaration. 8803 Diag(NewLoc, 8804 diag::err_explicit_instantiation_declaration_after_definition); 8805 8806 // Explicit instantiations following a specialization have no effect and 8807 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 8808 // until a valid name loc is found. 8809 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 8810 diag::note_explicit_instantiation_definition_here); 8811 HasNoEffect = true; 8812 return false; 8813 } 8814 llvm_unreachable("Unexpected TemplateSpecializationKind!"); 8815 8816 case TSK_ExplicitInstantiationDefinition: 8817 switch (PrevTSK) { 8818 case TSK_Undeclared: 8819 case TSK_ImplicitInstantiation: 8820 // We're explicitly instantiating something that may have already been 8821 // implicitly instantiated; that's fine. 8822 return false; 8823 8824 case TSK_ExplicitSpecialization: 8825 // C++ DR 259, C++0x [temp.explicit]p4: 8826 // For a given set of template parameters, if an explicit 8827 // instantiation of a template appears after a declaration of 8828 // an explicit specialization for that template, the explicit 8829 // instantiation has no effect. 8830 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization) 8831 << PrevDecl; 8832 Diag(PrevDecl->getLocation(), 8833 diag::note_previous_template_specialization); 8834 HasNoEffect = true; 8835 return false; 8836 8837 case TSK_ExplicitInstantiationDeclaration: 8838 // We're explicitly instantiating a definition for something for which we 8839 // were previously asked to suppress instantiations. That's fine. 8840 8841 // C++0x [temp.explicit]p4: 8842 // For a given set of template parameters, if an explicit instantiation 8843 // of a template appears after a declaration of an explicit 8844 // specialization for that template, the explicit instantiation has no 8845 // effect. 8846 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8847 // Is there any previous explicit specialization declaration? 8848 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8849 HasNoEffect = true; 8850 break; 8851 } 8852 } 8853 8854 return false; 8855 8856 case TSK_ExplicitInstantiationDefinition: 8857 // C++0x [temp.spec]p5: 8858 // For a given template and a given set of template-arguments, 8859 // - an explicit instantiation definition shall appear at most once 8860 // in a program, 8861 8862 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. 8863 Diag(NewLoc, (getLangOpts().MSVCCompat) 8864 ? diag::ext_explicit_instantiation_duplicate 8865 : diag::err_explicit_instantiation_duplicate) 8866 << PrevDecl; 8867 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 8868 diag::note_previous_explicit_instantiation); 8869 HasNoEffect = true; 8870 return false; 8871 } 8872 } 8873 8874 llvm_unreachable("Missing specialization/instantiation case?"); 8875 } 8876 8877 /// Perform semantic analysis for the given dependent function 8878 /// template specialization. 8879 /// 8880 /// The only possible way to get a dependent function template specialization 8881 /// is with a friend declaration, like so: 8882 /// 8883 /// \code 8884 /// template \<class T> void foo(T); 8885 /// template \<class T> class A { 8886 /// friend void foo<>(T); 8887 /// }; 8888 /// \endcode 8889 /// 8890 /// There really isn't any useful analysis we can do here, so we 8891 /// just store the information. 8892 bool 8893 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 8894 const TemplateArgumentListInfo &ExplicitTemplateArgs, 8895 LookupResult &Previous) { 8896 // Remove anything from Previous that isn't a function template in 8897 // the correct context. 8898 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 8899 LookupResult::Filter F = Previous.makeFilter(); 8900 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; 8901 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; 8902 while (F.hasNext()) { 8903 NamedDecl *D = F.next()->getUnderlyingDecl(); 8904 if (!isa<FunctionTemplateDecl>(D)) { 8905 F.erase(); 8906 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D)); 8907 continue; 8908 } 8909 8910 if (!FDLookupContext->InEnclosingNamespaceSetOf( 8911 D->getDeclContext()->getRedeclContext())) { 8912 F.erase(); 8913 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D)); 8914 continue; 8915 } 8916 } 8917 F.done(); 8918 8919 if (Previous.empty()) { 8920 Diag(FD->getLocation(), 8921 diag::err_dependent_function_template_spec_no_match); 8922 for (auto &P : DiscardedCandidates) 8923 Diag(P.second->getLocation(), 8924 diag::note_dependent_function_template_spec_discard_reason) 8925 << P.first; 8926 return true; 8927 } 8928 8929 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 8930 ExplicitTemplateArgs); 8931 return false; 8932 } 8933 8934 /// Perform semantic analysis for the given function template 8935 /// specialization. 8936 /// 8937 /// This routine performs all of the semantic analysis required for an 8938 /// explicit function template specialization. On successful completion, 8939 /// the function declaration \p FD will become a function template 8940 /// specialization. 8941 /// 8942 /// \param FD the function declaration, which will be updated to become a 8943 /// function template specialization. 8944 /// 8945 /// \param ExplicitTemplateArgs the explicitly-provided template arguments, 8946 /// if any. Note that this may be valid info even when 0 arguments are 8947 /// explicitly provided as in, e.g., \c void sort<>(char*, char*); 8948 /// as it anyway contains info on the angle brackets locations. 8949 /// 8950 /// \param Previous the set of declarations that may be specialized by 8951 /// this function specialization. 8952 /// 8953 /// \param QualifiedFriend whether this is a lookup for a qualified friend 8954 /// declaration with no explicit template argument list that might be 8955 /// befriending a function template specialization. 8956 bool Sema::CheckFunctionTemplateSpecialization( 8957 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, 8958 LookupResult &Previous, bool QualifiedFriend) { 8959 // The set of function template specializations that could match this 8960 // explicit function template specialization. 8961 UnresolvedSet<8> Candidates; 8962 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), 8963 /*ForTakingAddress=*/false); 8964 8965 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> 8966 ConvertedTemplateArgs; 8967 8968 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 8969 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 8970 I != E; ++I) { 8971 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 8972 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 8973 // Only consider templates found within the same semantic lookup scope as 8974 // FD. 8975 if (!FDLookupContext->InEnclosingNamespaceSetOf( 8976 Ovl->getDeclContext()->getRedeclContext())) 8977 continue; 8978 8979 // When matching a constexpr member function template specialization 8980 // against the primary template, we don't yet know whether the 8981 // specialization has an implicit 'const' (because we don't know whether 8982 // it will be a static member function until we know which template it 8983 // specializes), so adjust it now assuming it specializes this template. 8984 QualType FT = FD->getType(); 8985 if (FD->isConstexpr()) { 8986 CXXMethodDecl *OldMD = 8987 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 8988 if (OldMD && OldMD->isConst()) { 8989 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 8990 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8991 EPI.TypeQuals.addConst(); 8992 FT = Context.getFunctionType(FPT->getReturnType(), 8993 FPT->getParamTypes(), EPI); 8994 } 8995 } 8996 8997 TemplateArgumentListInfo Args; 8998 if (ExplicitTemplateArgs) 8999 Args = *ExplicitTemplateArgs; 9000 9001 // C++ [temp.expl.spec]p11: 9002 // A trailing template-argument can be left unspecified in the 9003 // template-id naming an explicit function template specialization 9004 // provided it can be deduced from the function argument type. 9005 // Perform template argument deduction to determine whether we may be 9006 // specializing this template. 9007 // FIXME: It is somewhat wasteful to build 9008 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 9009 FunctionDecl *Specialization = nullptr; 9010 if (TemplateDeductionResult TDK = DeduceTemplateArguments( 9011 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), 9012 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, 9013 Info)) { 9014 // Template argument deduction failed; record why it failed, so 9015 // that we can provide nifty diagnostics. 9016 FailedCandidates.addCandidate().set( 9017 I.getPair(), FunTmpl->getTemplatedDecl(), 9018 MakeDeductionFailureInfo(Context, TDK, Info)); 9019 (void)TDK; 9020 continue; 9021 } 9022 9023 // Target attributes are part of the cuda function signature, so 9024 // the deduced template's cuda target must match that of the 9025 // specialization. Given that C++ template deduction does not 9026 // take target attributes into account, we reject candidates 9027 // here that have a different target. 9028 if (LangOpts.CUDA && 9029 IdentifyCUDATarget(Specialization, 9030 /* IgnoreImplicitHDAttr = */ true) != 9031 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) { 9032 FailedCandidates.addCandidate().set( 9033 I.getPair(), FunTmpl->getTemplatedDecl(), 9034 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 9035 continue; 9036 } 9037 9038 // Record this candidate. 9039 if (ExplicitTemplateArgs) 9040 ConvertedTemplateArgs[Specialization] = std::move(Args); 9041 Candidates.addDecl(Specialization, I.getAccess()); 9042 } 9043 } 9044 9045 // For a qualified friend declaration (with no explicit marker to indicate 9046 // that a template specialization was intended), note all (template and 9047 // non-template) candidates. 9048 if (QualifiedFriend && Candidates.empty()) { 9049 Diag(FD->getLocation(), diag::err_qualified_friend_no_match) 9050 << FD->getDeclName() << FDLookupContext; 9051 // FIXME: We should form a single candidate list and diagnose all 9052 // candidates at once, to get proper sorting and limiting. 9053 for (auto *OldND : Previous) { 9054 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl())) 9055 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false); 9056 } 9057 FailedCandidates.NoteCandidates(*this, FD->getLocation()); 9058 return true; 9059 } 9060 9061 // Find the most specialized function template. 9062 UnresolvedSetIterator Result = getMostSpecialized( 9063 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(), 9064 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), 9065 PDiag(diag::err_function_template_spec_ambiguous) 9066 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), 9067 PDiag(diag::note_function_template_spec_matched)); 9068 9069 if (Result == Candidates.end()) 9070 return true; 9071 9072 // Ignore access information; it doesn't figure into redeclaration checking. 9073 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 9074 9075 FunctionTemplateSpecializationInfo *SpecInfo 9076 = Specialization->getTemplateSpecializationInfo(); 9077 assert(SpecInfo && "Function template specialization info missing?"); 9078 9079 // Note: do not overwrite location info if previous template 9080 // specialization kind was explicit. 9081 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 9082 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 9083 Specialization->setLocation(FD->getLocation()); 9084 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); 9085 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 9086 // function can differ from the template declaration with respect to 9087 // the constexpr specifier. 9088 // FIXME: We need an update record for this AST mutation. 9089 // FIXME: What if there are multiple such prior declarations (for instance, 9090 // from different modules)? 9091 Specialization->setConstexprKind(FD->getConstexprKind()); 9092 } 9093 9094 // FIXME: Check if the prior specialization has a point of instantiation. 9095 // If so, we have run afoul of . 9096 9097 // If this is a friend declaration, then we're not really declaring 9098 // an explicit specialization. 9099 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 9100 9101 // Check the scope of this explicit specialization. 9102 if (!isFriend && 9103 CheckTemplateSpecializationScope(*this, 9104 Specialization->getPrimaryTemplate(), 9105 Specialization, FD->getLocation(), 9106 false)) 9107 return true; 9108 9109 // C++ [temp.expl.spec]p6: 9110 // If a template, a member template or the member of a class template is 9111 // explicitly specialized then that specialization shall be declared 9112 // before the first use of that specialization that would cause an implicit 9113 // instantiation to take place, in every translation unit in which such a 9114 // use occurs; no diagnostic is required. 9115 bool HasNoEffect = false; 9116 if (!isFriend && 9117 CheckSpecializationInstantiationRedecl(FD->getLocation(), 9118 TSK_ExplicitSpecialization, 9119 Specialization, 9120 SpecInfo->getTemplateSpecializationKind(), 9121 SpecInfo->getPointOfInstantiation(), 9122 HasNoEffect)) 9123 return true; 9124 9125 // Mark the prior declaration as an explicit specialization, so that later 9126 // clients know that this is an explicit specialization. 9127 if (!isFriend) { 9128 // Since explicit specializations do not inherit '=delete' from their 9129 // primary function template - check if the 'specialization' that was 9130 // implicitly generated (during template argument deduction for partial 9131 // ordering) from the most specialized of all the function templates that 9132 // 'FD' could have been specializing, has a 'deleted' definition. If so, 9133 // first check that it was implicitly generated during template argument 9134 // deduction by making sure it wasn't referenced, and then reset the deleted 9135 // flag to not-deleted, so that we can inherit that information from 'FD'. 9136 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && 9137 !Specialization->getCanonicalDecl()->isReferenced()) { 9138 // FIXME: This assert will not hold in the presence of modules. 9139 assert( 9140 Specialization->getCanonicalDecl() == Specialization && 9141 "This must be the only existing declaration of this specialization"); 9142 // FIXME: We need an update record for this AST mutation. 9143 Specialization->setDeletedAsWritten(false); 9144 } 9145 // FIXME: We need an update record for this AST mutation. 9146 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 9147 MarkUnusedFileScopedDecl(Specialization); 9148 } 9149 9150 // Turn the given function declaration into a function template 9151 // specialization, with the template arguments from the previous 9152 // specialization. 9153 // Take copies of (semantic and syntactic) template argument lists. 9154 const TemplateArgumentList* TemplArgs = new (Context) 9155 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 9156 FD->setFunctionTemplateSpecialization( 9157 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr, 9158 SpecInfo->getTemplateSpecializationKind(), 9159 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); 9160 9161 // A function template specialization inherits the target attributes 9162 // of its template. (We require the attributes explicitly in the 9163 // code to match, but a template may have implicit attributes by 9164 // virtue e.g. of being constexpr, and it passes these implicit 9165 // attributes on to its specializations.) 9166 if (LangOpts.CUDA) 9167 inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate()); 9168 9169 // The "previous declaration" for this function template specialization is 9170 // the prior function template specialization. 9171 Previous.clear(); 9172 Previous.addDecl(Specialization); 9173 return false; 9174 } 9175 9176 /// Perform semantic analysis for the given non-template member 9177 /// specialization. 9178 /// 9179 /// This routine performs all of the semantic analysis required for an 9180 /// explicit member function specialization. On successful completion, 9181 /// the function declaration \p FD will become a member function 9182 /// specialization. 9183 /// 9184 /// \param Member the member declaration, which will be updated to become a 9185 /// specialization. 9186 /// 9187 /// \param Previous the set of declarations, one of which may be specialized 9188 /// by this function specialization; the set will be modified to contain the 9189 /// redeclared member. 9190 bool 9191 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 9192 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 9193 9194 // Try to find the member we are instantiating. 9195 NamedDecl *FoundInstantiation = nullptr; 9196 NamedDecl *Instantiation = nullptr; 9197 NamedDecl *InstantiatedFrom = nullptr; 9198 MemberSpecializationInfo *MSInfo = nullptr; 9199 9200 if (Previous.empty()) { 9201 // Nowhere to look anyway. 9202 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 9203 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 9204 I != E; ++I) { 9205 NamedDecl *D = (*I)->getUnderlyingDecl(); 9206 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 9207 QualType Adjusted = Function->getType(); 9208 if (!hasExplicitCallingConv(Adjusted)) 9209 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType()); 9210 // This doesn't handle deduced return types, but both function 9211 // declarations should be undeduced at this point. 9212 if (Context.hasSameType(Adjusted, Method->getType())) { 9213 FoundInstantiation = *I; 9214 Instantiation = Method; 9215 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 9216 MSInfo = Method->getMemberSpecializationInfo(); 9217 break; 9218 } 9219 } 9220 } 9221 } else if (isa<VarDecl>(Member)) { 9222 VarDecl *PrevVar; 9223 if (Previous.isSingleResult() && 9224 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 9225 if (PrevVar->isStaticDataMember()) { 9226 FoundInstantiation = Previous.getRepresentativeDecl(); 9227 Instantiation = PrevVar; 9228 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 9229 MSInfo = PrevVar->getMemberSpecializationInfo(); 9230 } 9231 } else if (isa<RecordDecl>(Member)) { 9232 CXXRecordDecl *PrevRecord; 9233 if (Previous.isSingleResult() && 9234 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 9235 FoundInstantiation = Previous.getRepresentativeDecl(); 9236 Instantiation = PrevRecord; 9237 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 9238 MSInfo = PrevRecord->getMemberSpecializationInfo(); 9239 } 9240 } else if (isa<EnumDecl>(Member)) { 9241 EnumDecl *PrevEnum; 9242 if (Previous.isSingleResult() && 9243 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 9244 FoundInstantiation = Previous.getRepresentativeDecl(); 9245 Instantiation = PrevEnum; 9246 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 9247 MSInfo = PrevEnum->getMemberSpecializationInfo(); 9248 } 9249 } 9250 9251 if (!Instantiation) { 9252 // There is no previous declaration that matches. Since member 9253 // specializations are always out-of-line, the caller will complain about 9254 // this mismatch later. 9255 return false; 9256 } 9257 9258 // A member specialization in a friend declaration isn't really declaring 9259 // an explicit specialization, just identifying a specific (possibly implicit) 9260 // specialization. Don't change the template specialization kind. 9261 // 9262 // FIXME: Is this really valid? Other compilers reject. 9263 if (Member->getFriendObjectKind() != Decl::FOK_None) { 9264 // Preserve instantiation information. 9265 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 9266 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 9267 cast<CXXMethodDecl>(InstantiatedFrom), 9268 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 9269 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 9270 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 9271 cast<CXXRecordDecl>(InstantiatedFrom), 9272 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 9273 } 9274 9275 Previous.clear(); 9276 Previous.addDecl(FoundInstantiation); 9277 return false; 9278 } 9279 9280 // Make sure that this is a specialization of a member. 9281 if (!InstantiatedFrom) { 9282 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 9283 << Member; 9284 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 9285 return true; 9286 } 9287 9288 // C++ [temp.expl.spec]p6: 9289 // If a template, a member template or the member of a class template is 9290 // explicitly specialized then that specialization shall be declared 9291 // before the first use of that specialization that would cause an implicit 9292 // instantiation to take place, in every translation unit in which such a 9293 // use occurs; no diagnostic is required. 9294 assert(MSInfo && "Member specialization info missing?"); 9295 9296 bool HasNoEffect = false; 9297 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 9298 TSK_ExplicitSpecialization, 9299 Instantiation, 9300 MSInfo->getTemplateSpecializationKind(), 9301 MSInfo->getPointOfInstantiation(), 9302 HasNoEffect)) 9303 return true; 9304 9305 // Check the scope of this explicit specialization. 9306 if (CheckTemplateSpecializationScope(*this, 9307 InstantiatedFrom, 9308 Instantiation, Member->getLocation(), 9309 false)) 9310 return true; 9311 9312 // Note that this member specialization is an "instantiation of" the 9313 // corresponding member of the original template. 9314 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) { 9315 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 9316 if (InstantiationFunction->getTemplateSpecializationKind() == 9317 TSK_ImplicitInstantiation) { 9318 // Explicit specializations of member functions of class templates do not 9319 // inherit '=delete' from the member function they are specializing. 9320 if (InstantiationFunction->isDeleted()) { 9321 // FIXME: This assert will not hold in the presence of modules. 9322 assert(InstantiationFunction->getCanonicalDecl() == 9323 InstantiationFunction); 9324 // FIXME: We need an update record for this AST mutation. 9325 InstantiationFunction->setDeletedAsWritten(false); 9326 } 9327 } 9328 9329 MemberFunction->setInstantiationOfMemberFunction( 9330 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9331 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) { 9332 MemberVar->setInstantiationOfStaticDataMember( 9333 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9334 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) { 9335 MemberClass->setInstantiationOfMemberClass( 9336 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9337 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) { 9338 MemberEnum->setInstantiationOfMemberEnum( 9339 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9340 } else { 9341 llvm_unreachable("unknown member specialization kind"); 9342 } 9343 9344 // Save the caller the trouble of having to figure out which declaration 9345 // this specialization matches. 9346 Previous.clear(); 9347 Previous.addDecl(FoundInstantiation); 9348 return false; 9349 } 9350 9351 /// Complete the explicit specialization of a member of a class template by 9352 /// updating the instantiated member to be marked as an explicit specialization. 9353 /// 9354 /// \param OrigD The member declaration instantiated from the template. 9355 /// \param Loc The location of the explicit specialization of the member. 9356 template<typename DeclT> 9357 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, 9358 SourceLocation Loc) { 9359 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 9360 return; 9361 9362 // FIXME: Inform AST mutation listeners of this AST mutation. 9363 // FIXME: If there are multiple in-class declarations of the member (from 9364 // multiple modules, or a declaration and later definition of a member type), 9365 // should we update all of them? 9366 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 9367 OrigD->setLocation(Loc); 9368 } 9369 9370 void Sema::CompleteMemberSpecialization(NamedDecl *Member, 9371 LookupResult &Previous) { 9372 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl()); 9373 if (Instantiation == Member) 9374 return; 9375 9376 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation)) 9377 completeMemberSpecializationImpl(*this, Function, Member->getLocation()); 9378 else if (auto *Var = dyn_cast<VarDecl>(Instantiation)) 9379 completeMemberSpecializationImpl(*this, Var, Member->getLocation()); 9380 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation)) 9381 completeMemberSpecializationImpl(*this, Record, Member->getLocation()); 9382 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation)) 9383 completeMemberSpecializationImpl(*this, Enum, Member->getLocation()); 9384 else 9385 llvm_unreachable("unknown member specialization kind"); 9386 } 9387 9388 /// Check the scope of an explicit instantiation. 9389 /// 9390 /// \returns true if a serious error occurs, false otherwise. 9391 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 9392 SourceLocation InstLoc, 9393 bool WasQualifiedName) { 9394 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 9395 DeclContext *CurContext = S.CurContext->getRedeclContext(); 9396 9397 if (CurContext->isRecord()) { 9398 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 9399 << D; 9400 return true; 9401 } 9402 9403 // C++11 [temp.explicit]p3: 9404 // An explicit instantiation shall appear in an enclosing namespace of its 9405 // template. If the name declared in the explicit instantiation is an 9406 // unqualified name, the explicit instantiation shall appear in the 9407 // namespace where its template is declared or, if that namespace is inline 9408 // (7.3.1), any namespace from its enclosing namespace set. 9409 // 9410 // This is DR275, which we do not retroactively apply to C++98/03. 9411 if (WasQualifiedName) { 9412 if (CurContext->Encloses(OrigContext)) 9413 return false; 9414 } else { 9415 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 9416 return false; 9417 } 9418 9419 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 9420 if (WasQualifiedName) 9421 S.Diag(InstLoc, 9422 S.getLangOpts().CPlusPlus11? 9423 diag::err_explicit_instantiation_out_of_scope : 9424 diag::warn_explicit_instantiation_out_of_scope_0x) 9425 << D << NS; 9426 else 9427 S.Diag(InstLoc, 9428 S.getLangOpts().CPlusPlus11? 9429 diag::err_explicit_instantiation_unqualified_wrong_namespace : 9430 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 9431 << D << NS; 9432 } else 9433 S.Diag(InstLoc, 9434 S.getLangOpts().CPlusPlus11? 9435 diag::err_explicit_instantiation_must_be_global : 9436 diag::warn_explicit_instantiation_must_be_global_0x) 9437 << D; 9438 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 9439 return false; 9440 } 9441 9442 /// Common checks for whether an explicit instantiation of \p D is valid. 9443 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D, 9444 SourceLocation InstLoc, 9445 bool WasQualifiedName, 9446 TemplateSpecializationKind TSK) { 9447 // C++ [temp.explicit]p13: 9448 // An explicit instantiation declaration shall not name a specialization of 9449 // a template with internal linkage. 9450 if (TSK == TSK_ExplicitInstantiationDeclaration && 9451 D->getFormalLinkage() == InternalLinkage) { 9452 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D; 9453 return true; 9454 } 9455 9456 // C++11 [temp.explicit]p3: [DR 275] 9457 // An explicit instantiation shall appear in an enclosing namespace of its 9458 // template. 9459 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName)) 9460 return true; 9461 9462 return false; 9463 } 9464 9465 /// Determine whether the given scope specifier has a template-id in it. 9466 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 9467 if (!SS.isSet()) 9468 return false; 9469 9470 // C++11 [temp.explicit]p3: 9471 // If the explicit instantiation is for a member function, a member class 9472 // or a static data member of a class template specialization, the name of 9473 // the class template specialization in the qualified-id for the member 9474 // name shall be a simple-template-id. 9475 // 9476 // C++98 has the same restriction, just worded differently. 9477 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; 9478 NNS = NNS->getPrefix()) 9479 if (const Type *T = NNS->getAsType()) 9480 if (isa<TemplateSpecializationType>(T)) 9481 return true; 9482 9483 return false; 9484 } 9485 9486 /// Make a dllexport or dllimport attr on a class template specialization take 9487 /// effect. 9488 static void dllExportImportClassTemplateSpecialization( 9489 Sema &S, ClassTemplateSpecializationDecl *Def) { 9490 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def)); 9491 assert(A && "dllExportImportClassTemplateSpecialization called " 9492 "on Def without dllexport or dllimport"); 9493 9494 // We reject explicit instantiations in class scope, so there should 9495 // never be any delayed exported classes to worry about. 9496 assert(S.DelayedDllExportClasses.empty() && 9497 "delayed exports present at explicit instantiation"); 9498 S.checkClassLevelDLLAttribute(Def); 9499 9500 // Propagate attribute to base class templates. 9501 for (auto &B : Def->bases()) { 9502 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 9503 B.getType()->getAsCXXRecordDecl())) 9504 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc()); 9505 } 9506 9507 S.referenceDLLExportedClassMethods(); 9508 } 9509 9510 // Explicit instantiation of a class template specialization 9511 DeclResult Sema::ActOnExplicitInstantiation( 9512 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, 9513 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, 9514 TemplateTy TemplateD, SourceLocation TemplateNameLoc, 9515 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, 9516 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { 9517 // Find the class template we're specializing 9518 TemplateName Name = TemplateD.get(); 9519 TemplateDecl *TD = Name.getAsTemplateDecl(); 9520 // Check that the specialization uses the same tag kind as the 9521 // original template. 9522 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 9523 assert(Kind != TTK_Enum && 9524 "Invalid enum tag in class template explicit instantiation!"); 9525 9526 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD); 9527 9528 if (!ClassTemplate) { 9529 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind); 9530 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind; 9531 Diag(TD->getLocation(), diag::note_previous_use); 9532 return true; 9533 } 9534 9535 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 9536 Kind, /*isDefinition*/false, KWLoc, 9537 ClassTemplate->getIdentifier())) { 9538 Diag(KWLoc, diag::err_use_with_wrong_tag) 9539 << ClassTemplate 9540 << FixItHint::CreateReplacement(KWLoc, 9541 ClassTemplate->getTemplatedDecl()->getKindName()); 9542 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 9543 diag::note_previous_use); 9544 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 9545 } 9546 9547 // C++0x [temp.explicit]p2: 9548 // There are two forms of explicit instantiation: an explicit instantiation 9549 // definition and an explicit instantiation declaration. An explicit 9550 // instantiation declaration begins with the extern keyword. [...] 9551 TemplateSpecializationKind TSK = ExternLoc.isInvalid() 9552 ? TSK_ExplicitInstantiationDefinition 9553 : TSK_ExplicitInstantiationDeclaration; 9554 9555 if (TSK == TSK_ExplicitInstantiationDeclaration && 9556 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9557 // Check for dllexport class template instantiation declarations, 9558 // except for MinGW mode. 9559 for (const ParsedAttr &AL : Attr) { 9560 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9561 Diag(ExternLoc, 9562 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9563 Diag(AL.getLoc(), diag::note_attribute); 9564 break; 9565 } 9566 } 9567 9568 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { 9569 Diag(ExternLoc, 9570 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9571 Diag(A->getLocation(), diag::note_attribute); 9572 } 9573 } 9574 9575 // In MSVC mode, dllimported explicit instantiation definitions are treated as 9576 // instantiation declarations for most purposes. 9577 bool DLLImportExplicitInstantiationDef = false; 9578 if (TSK == TSK_ExplicitInstantiationDefinition && 9579 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 9580 // Check for dllimport class template instantiation definitions. 9581 bool DLLImport = 9582 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); 9583 for (const ParsedAttr &AL : Attr) { 9584 if (AL.getKind() == ParsedAttr::AT_DLLImport) 9585 DLLImport = true; 9586 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9587 // dllexport trumps dllimport here. 9588 DLLImport = false; 9589 break; 9590 } 9591 } 9592 if (DLLImport) { 9593 TSK = TSK_ExplicitInstantiationDeclaration; 9594 DLLImportExplicitInstantiationDef = true; 9595 } 9596 } 9597 9598 // Translate the parser's template argument list in our AST format. 9599 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 9600 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 9601 9602 // Check that the template argument list is well-formed for this 9603 // template. 9604 SmallVector<TemplateArgument, 4> Converted; 9605 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 9606 TemplateArgs, false, Converted, 9607 /*UpdateArgsWithConversion=*/true)) 9608 return true; 9609 9610 // Find the class template specialization declaration that 9611 // corresponds to these arguments. 9612 void *InsertPos = nullptr; 9613 ClassTemplateSpecializationDecl *PrevDecl 9614 = ClassTemplate->findSpecialization(Converted, InsertPos); 9615 9616 TemplateSpecializationKind PrevDecl_TSK 9617 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 9618 9619 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr && 9620 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9621 // Check for dllexport class template instantiation definitions in MinGW 9622 // mode, if a previous declaration of the instantiation was seen. 9623 for (const ParsedAttr &AL : Attr) { 9624 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9625 Diag(AL.getLoc(), 9626 diag::warn_attribute_dllexport_explicit_instantiation_def); 9627 break; 9628 } 9629 } 9630 } 9631 9632 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc, 9633 SS.isSet(), TSK)) 9634 return true; 9635 9636 ClassTemplateSpecializationDecl *Specialization = nullptr; 9637 9638 bool HasNoEffect = false; 9639 if (PrevDecl) { 9640 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 9641 PrevDecl, PrevDecl_TSK, 9642 PrevDecl->getPointOfInstantiation(), 9643 HasNoEffect)) 9644 return PrevDecl; 9645 9646 // Even though HasNoEffect == true means that this explicit instantiation 9647 // has no effect on semantics, we go on to put its syntax in the AST. 9648 9649 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 9650 PrevDecl_TSK == TSK_Undeclared) { 9651 // Since the only prior class template specialization with these 9652 // arguments was referenced but not declared, reuse that 9653 // declaration node as our own, updating the source location 9654 // for the template name to reflect our new declaration. 9655 // (Other source locations will be updated later.) 9656 Specialization = PrevDecl; 9657 Specialization->setLocation(TemplateNameLoc); 9658 PrevDecl = nullptr; 9659 } 9660 9661 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9662 DLLImportExplicitInstantiationDef) { 9663 // The new specialization might add a dllimport attribute. 9664 HasNoEffect = false; 9665 } 9666 } 9667 9668 if (!Specialization) { 9669 // Create a new class template specialization declaration node for 9670 // this explicit specialization. 9671 Specialization 9672 = ClassTemplateSpecializationDecl::Create(Context, Kind, 9673 ClassTemplate->getDeclContext(), 9674 KWLoc, TemplateNameLoc, 9675 ClassTemplate, 9676 Converted, 9677 PrevDecl); 9678 SetNestedNameSpecifier(*this, Specialization, SS); 9679 9680 if (!HasNoEffect && !PrevDecl) { 9681 // Insert the new specialization. 9682 ClassTemplate->AddSpecialization(Specialization, InsertPos); 9683 } 9684 } 9685 9686 // Build the fully-sugared type for this explicit instantiation as 9687 // the user wrote in the explicit instantiation itself. This means 9688 // that we'll pretty-print the type retrieved from the 9689 // specialization's declaration the way that the user actually wrote 9690 // the explicit instantiation, rather than formatting the name based 9691 // on the "canonical" representation used to store the template 9692 // arguments in the specialization. 9693 TypeSourceInfo *WrittenTy 9694 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 9695 TemplateArgs, 9696 Context.getTypeDeclType(Specialization)); 9697 Specialization->setTypeAsWritten(WrittenTy); 9698 9699 // Set source locations for keywords. 9700 Specialization->setExternLoc(ExternLoc); 9701 Specialization->setTemplateKeywordLoc(TemplateLoc); 9702 Specialization->setBraceRange(SourceRange()); 9703 9704 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); 9705 ProcessDeclAttributeList(S, Specialization, Attr); 9706 9707 // Add the explicit instantiation into its lexical context. However, 9708 // since explicit instantiations are never found by name lookup, we 9709 // just put it into the declaration context directly. 9710 Specialization->setLexicalDeclContext(CurContext); 9711 CurContext->addDecl(Specialization); 9712 9713 // Syntax is now OK, so return if it has no other effect on semantics. 9714 if (HasNoEffect) { 9715 // Set the template specialization kind. 9716 Specialization->setTemplateSpecializationKind(TSK); 9717 return Specialization; 9718 } 9719 9720 // C++ [temp.explicit]p3: 9721 // A definition of a class template or class member template 9722 // shall be in scope at the point of the explicit instantiation of 9723 // the class template or class member template. 9724 // 9725 // This check comes when we actually try to perform the 9726 // instantiation. 9727 ClassTemplateSpecializationDecl *Def 9728 = cast_or_null<ClassTemplateSpecializationDecl>( 9729 Specialization->getDefinition()); 9730 if (!Def) 9731 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 9732 else if (TSK == TSK_ExplicitInstantiationDefinition) { 9733 MarkVTableUsed(TemplateNameLoc, Specialization, true); 9734 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 9735 } 9736 9737 // Instantiate the members of this class template specialization. 9738 Def = cast_or_null<ClassTemplateSpecializationDecl>( 9739 Specialization->getDefinition()); 9740 if (Def) { 9741 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 9742 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 9743 // TSK_ExplicitInstantiationDefinition 9744 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 9745 (TSK == TSK_ExplicitInstantiationDefinition || 9746 DLLImportExplicitInstantiationDef)) { 9747 // FIXME: Need to notify the ASTMutationListener that we did this. 9748 Def->setTemplateSpecializationKind(TSK); 9749 9750 if (!getDLLAttr(Def) && getDLLAttr(Specialization) && 9751 (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 9752 !Context.getTargetInfo().getTriple().isPS4CPU())) { 9753 // An explicit instantiation definition can add a dll attribute to a 9754 // template with a previous instantiation declaration. MinGW doesn't 9755 // allow this. 9756 auto *A = cast<InheritableAttr>( 9757 getDLLAttr(Specialization)->clone(getASTContext())); 9758 A->setInherited(true); 9759 Def->addAttr(A); 9760 dllExportImportClassTemplateSpecialization(*this, Def); 9761 } 9762 } 9763 9764 // Fix a TSK_ImplicitInstantiation followed by a 9765 // TSK_ExplicitInstantiationDefinition 9766 bool NewlyDLLExported = 9767 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); 9768 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && 9769 (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 9770 !Context.getTargetInfo().getTriple().isPS4CPU())) { 9771 // An explicit instantiation definition can add a dll attribute to a 9772 // template with a previous implicit instantiation. MinGW doesn't allow 9773 // this. We limit clang to only adding dllexport, to avoid potentially 9774 // strange codegen behavior. For example, if we extend this conditional 9775 // to dllimport, and we have a source file calling a method on an 9776 // implicitly instantiated template class instance and then declaring a 9777 // dllimport explicit instantiation definition for the same template 9778 // class, the codegen for the method call will not respect the dllimport, 9779 // while it will with cl. The Def will already have the DLL attribute, 9780 // since the Def and Specialization will be the same in the case of 9781 // Old_TSK == TSK_ImplicitInstantiation, and we already added the 9782 // attribute to the Specialization; we just need to make it take effect. 9783 assert(Def == Specialization && 9784 "Def and Specialization should match for implicit instantiation"); 9785 dllExportImportClassTemplateSpecialization(*this, Def); 9786 } 9787 9788 // In MinGW mode, export the template instantiation if the declaration 9789 // was marked dllexport. 9790 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9791 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() && 9792 PrevDecl->hasAttr<DLLExportAttr>()) { 9793 dllExportImportClassTemplateSpecialization(*this, Def); 9794 } 9795 9796 if (Def->hasAttr<MSInheritanceAttr>()) { 9797 Specialization->addAttr(Def->getAttr<MSInheritanceAttr>()); 9798 Consumer.AssignInheritanceModel(Specialization); 9799 } 9800 9801 // Set the template specialization kind. Make sure it is set before 9802 // instantiating the members which will trigger ASTConsumer callbacks. 9803 Specialization->setTemplateSpecializationKind(TSK); 9804 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 9805 } else { 9806 9807 // Set the template specialization kind. 9808 Specialization->setTemplateSpecializationKind(TSK); 9809 } 9810 9811 return Specialization; 9812 } 9813 9814 // Explicit instantiation of a member class of a class template. 9815 DeclResult 9816 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, 9817 SourceLocation TemplateLoc, unsigned TagSpec, 9818 SourceLocation KWLoc, CXXScopeSpec &SS, 9819 IdentifierInfo *Name, SourceLocation NameLoc, 9820 const ParsedAttributesView &Attr) { 9821 9822 bool Owned = false; 9823 bool IsDependent = false; 9824 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 9825 KWLoc, SS, Name, NameLoc, Attr, AS_none, 9826 /*ModulePrivateLoc=*/SourceLocation(), 9827 MultiTemplateParamsArg(), Owned, IsDependent, 9828 SourceLocation(), false, TypeResult(), 9829 /*IsTypeSpecifier*/false, 9830 /*IsTemplateParamOrArg*/false); 9831 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 9832 9833 if (!TagD) 9834 return true; 9835 9836 TagDecl *Tag = cast<TagDecl>(TagD); 9837 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 9838 9839 if (Tag->isInvalidDecl()) 9840 return true; 9841 9842 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 9843 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 9844 if (!Pattern) { 9845 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 9846 << Context.getTypeDeclType(Record); 9847 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 9848 return true; 9849 } 9850 9851 // C++0x [temp.explicit]p2: 9852 // If the explicit instantiation is for a class or member class, the 9853 // elaborated-type-specifier in the declaration shall include a 9854 // simple-template-id. 9855 // 9856 // C++98 has the same restriction, just worded differently. 9857 if (!ScopeSpecifierHasTemplateId(SS)) 9858 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 9859 << Record << SS.getRange(); 9860 9861 // C++0x [temp.explicit]p2: 9862 // There are two forms of explicit instantiation: an explicit instantiation 9863 // definition and an explicit instantiation declaration. An explicit 9864 // instantiation declaration begins with the extern keyword. [...] 9865 TemplateSpecializationKind TSK 9866 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 9867 : TSK_ExplicitInstantiationDeclaration; 9868 9869 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK); 9870 9871 // Verify that it is okay to explicitly instantiate here. 9872 CXXRecordDecl *PrevDecl 9873 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 9874 if (!PrevDecl && Record->getDefinition()) 9875 PrevDecl = Record; 9876 if (PrevDecl) { 9877 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 9878 bool HasNoEffect = false; 9879 assert(MSInfo && "No member specialization information?"); 9880 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 9881 PrevDecl, 9882 MSInfo->getTemplateSpecializationKind(), 9883 MSInfo->getPointOfInstantiation(), 9884 HasNoEffect)) 9885 return true; 9886 if (HasNoEffect) 9887 return TagD; 9888 } 9889 9890 CXXRecordDecl *RecordDef 9891 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 9892 if (!RecordDef) { 9893 // C++ [temp.explicit]p3: 9894 // A definition of a member class of a class template shall be in scope 9895 // at the point of an explicit instantiation of the member class. 9896 CXXRecordDecl *Def 9897 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 9898 if (!Def) { 9899 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 9900 << 0 << Record->getDeclName() << Record->getDeclContext(); 9901 Diag(Pattern->getLocation(), diag::note_forward_declaration) 9902 << Pattern; 9903 return true; 9904 } else { 9905 if (InstantiateClass(NameLoc, Record, Def, 9906 getTemplateInstantiationArgs(Record), 9907 TSK)) 9908 return true; 9909 9910 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 9911 if (!RecordDef) 9912 return true; 9913 } 9914 } 9915 9916 // Instantiate all of the members of the class. 9917 InstantiateClassMembers(NameLoc, RecordDef, 9918 getTemplateInstantiationArgs(Record), TSK); 9919 9920 if (TSK == TSK_ExplicitInstantiationDefinition) 9921 MarkVTableUsed(NameLoc, RecordDef, true); 9922 9923 // FIXME: We don't have any representation for explicit instantiations of 9924 // member classes. Such a representation is not needed for compilation, but it 9925 // should be available for clients that want to see all of the declarations in 9926 // the source code. 9927 return TagD; 9928 } 9929 9930 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 9931 SourceLocation ExternLoc, 9932 SourceLocation TemplateLoc, 9933 Declarator &D) { 9934 // Explicit instantiations always require a name. 9935 // TODO: check if/when DNInfo should replace Name. 9936 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 9937 DeclarationName Name = NameInfo.getName(); 9938 if (!Name) { 9939 if (!D.isInvalidType()) 9940 Diag(D.getDeclSpec().getBeginLoc(), 9941 diag::err_explicit_instantiation_requires_name) 9942 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 9943 9944 return true; 9945 } 9946 9947 // The scope passed in may not be a decl scope. Zip up the scope tree until 9948 // we find one that is. 9949 while ((S->getFlags() & Scope::DeclScope) == 0 || 9950 (S->getFlags() & Scope::TemplateParamScope) != 0) 9951 S = S->getParent(); 9952 9953 // Determine the type of the declaration. 9954 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 9955 QualType R = T->getType(); 9956 if (R.isNull()) 9957 return true; 9958 9959 // C++ [dcl.stc]p1: 9960 // A storage-class-specifier shall not be specified in [...] an explicit 9961 // instantiation (14.7.2) directive. 9962 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 9963 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 9964 << Name; 9965 return true; 9966 } else if (D.getDeclSpec().getStorageClassSpec() 9967 != DeclSpec::SCS_unspecified) { 9968 // Complain about then remove the storage class specifier. 9969 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 9970 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 9971 9972 D.getMutableDeclSpec().ClearStorageClassSpecs(); 9973 } 9974 9975 // C++0x [temp.explicit]p1: 9976 // [...] An explicit instantiation of a function template shall not use the 9977 // inline or constexpr specifiers. 9978 // Presumably, this also applies to member functions of class templates as 9979 // well. 9980 if (D.getDeclSpec().isInlineSpecified()) 9981 Diag(D.getDeclSpec().getInlineSpecLoc(), 9982 getLangOpts().CPlusPlus11 ? 9983 diag::err_explicit_instantiation_inline : 9984 diag::warn_explicit_instantiation_inline_0x) 9985 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 9986 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType()) 9987 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 9988 // not already specified. 9989 Diag(D.getDeclSpec().getConstexprSpecLoc(), 9990 diag::err_explicit_instantiation_constexpr); 9991 9992 // A deduction guide is not on the list of entities that can be explicitly 9993 // instantiated. 9994 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { 9995 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized) 9996 << /*explicit instantiation*/ 0; 9997 return true; 9998 } 9999 10000 // C++0x [temp.explicit]p2: 10001 // There are two forms of explicit instantiation: an explicit instantiation 10002 // definition and an explicit instantiation declaration. An explicit 10003 // instantiation declaration begins with the extern keyword. [...] 10004 TemplateSpecializationKind TSK 10005 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 10006 : TSK_ExplicitInstantiationDeclaration; 10007 10008 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 10009 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 10010 10011 if (!R->isFunctionType()) { 10012 // C++ [temp.explicit]p1: 10013 // A [...] static data member of a class template can be explicitly 10014 // instantiated from the member definition associated with its class 10015 // template. 10016 // C++1y [temp.explicit]p1: 10017 // A [...] variable [...] template specialization can be explicitly 10018 // instantiated from its template. 10019 if (Previous.isAmbiguous()) 10020 return true; 10021 10022 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 10023 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); 10024 10025 if (!PrevTemplate) { 10026 if (!Prev || !Prev->isStaticDataMember()) { 10027 // We expect to see a static data member here. 10028 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 10029 << Name; 10030 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 10031 P != PEnd; ++P) 10032 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 10033 return true; 10034 } 10035 10036 if (!Prev->getInstantiatedFromStaticDataMember()) { 10037 // FIXME: Check for explicit specialization? 10038 Diag(D.getIdentifierLoc(), 10039 diag::err_explicit_instantiation_data_member_not_instantiated) 10040 << Prev; 10041 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 10042 // FIXME: Can we provide a note showing where this was declared? 10043 return true; 10044 } 10045 } else { 10046 // Explicitly instantiate a variable template. 10047 10048 // C++1y [dcl.spec.auto]p6: 10049 // ... A program that uses auto or decltype(auto) in a context not 10050 // explicitly allowed in this section is ill-formed. 10051 // 10052 // This includes auto-typed variable template instantiations. 10053 if (R->isUndeducedType()) { 10054 Diag(T->getTypeLoc().getBeginLoc(), 10055 diag::err_auto_not_allowed_var_inst); 10056 return true; 10057 } 10058 10059 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 10060 // C++1y [temp.explicit]p3: 10061 // If the explicit instantiation is for a variable, the unqualified-id 10062 // in the declaration shall be a template-id. 10063 Diag(D.getIdentifierLoc(), 10064 diag::err_explicit_instantiation_without_template_id) 10065 << PrevTemplate; 10066 Diag(PrevTemplate->getLocation(), 10067 diag::note_explicit_instantiation_here); 10068 return true; 10069 } 10070 10071 // Translate the parser's template argument list into our AST format. 10072 TemplateArgumentListInfo TemplateArgs = 10073 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 10074 10075 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, 10076 D.getIdentifierLoc(), TemplateArgs); 10077 if (Res.isInvalid()) 10078 return true; 10079 10080 if (!Res.isUsable()) { 10081 // We somehow specified dependent template arguments in an explicit 10082 // instantiation. This should probably only happen during error 10083 // recovery. 10084 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent); 10085 return true; 10086 } 10087 10088 // Ignore access control bits, we don't need them for redeclaration 10089 // checking. 10090 Prev = cast<VarDecl>(Res.get()); 10091 } 10092 10093 // C++0x [temp.explicit]p2: 10094 // If the explicit instantiation is for a member function, a member class 10095 // or a static data member of a class template specialization, the name of 10096 // the class template specialization in the qualified-id for the member 10097 // name shall be a simple-template-id. 10098 // 10099 // C++98 has the same restriction, just worded differently. 10100 // 10101 // This does not apply to variable template specializations, where the 10102 // template-id is in the unqualified-id instead. 10103 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) 10104 Diag(D.getIdentifierLoc(), 10105 diag::ext_explicit_instantiation_without_qualified_id) 10106 << Prev << D.getCXXScopeSpec().getRange(); 10107 10108 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK); 10109 10110 // Verify that it is okay to explicitly instantiate here. 10111 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); 10112 SourceLocation POI = Prev->getPointOfInstantiation(); 10113 bool HasNoEffect = false; 10114 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 10115 PrevTSK, POI, HasNoEffect)) 10116 return true; 10117 10118 if (!HasNoEffect) { 10119 // Instantiate static data member or variable template. 10120 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10121 // Merge attributes. 10122 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes()); 10123 if (TSK == TSK_ExplicitInstantiationDefinition) 10124 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); 10125 } 10126 10127 // Check the new variable specialization against the parsed input. 10128 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) { 10129 Diag(T->getTypeLoc().getBeginLoc(), 10130 diag::err_invalid_var_template_spec_type) 10131 << 0 << PrevTemplate << R << Prev->getType(); 10132 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) 10133 << 2 << PrevTemplate->getDeclName(); 10134 return true; 10135 } 10136 10137 // FIXME: Create an ExplicitInstantiation node? 10138 return (Decl*) nullptr; 10139 } 10140 10141 // If the declarator is a template-id, translate the parser's template 10142 // argument list into our AST format. 10143 bool HasExplicitTemplateArgs = false; 10144 TemplateArgumentListInfo TemplateArgs; 10145 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 10146 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 10147 HasExplicitTemplateArgs = true; 10148 } 10149 10150 // C++ [temp.explicit]p1: 10151 // A [...] function [...] can be explicitly instantiated from its template. 10152 // A member function [...] of a class template can be explicitly 10153 // instantiated from the member definition associated with its class 10154 // template. 10155 UnresolvedSet<8> TemplateMatches; 10156 FunctionDecl *NonTemplateMatch = nullptr; 10157 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); 10158 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 10159 P != PEnd; ++P) { 10160 NamedDecl *Prev = *P; 10161 if (!HasExplicitTemplateArgs) { 10162 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 10163 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(), 10164 /*AdjustExceptionSpec*/true); 10165 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) { 10166 if (Method->getPrimaryTemplate()) { 10167 TemplateMatches.addDecl(Method, P.getAccess()); 10168 } else { 10169 // FIXME: Can this assert ever happen? Needs a test. 10170 assert(!NonTemplateMatch && "Multiple NonTemplateMatches"); 10171 NonTemplateMatch = Method; 10172 } 10173 } 10174 } 10175 } 10176 10177 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 10178 if (!FunTmpl) 10179 continue; 10180 10181 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 10182 FunctionDecl *Specialization = nullptr; 10183 if (TemplateDeductionResult TDK 10184 = DeduceTemplateArguments(FunTmpl, 10185 (HasExplicitTemplateArgs ? &TemplateArgs 10186 : nullptr), 10187 R, Specialization, Info)) { 10188 // Keep track of almost-matches. 10189 FailedCandidates.addCandidate() 10190 .set(P.getPair(), FunTmpl->getTemplatedDecl(), 10191 MakeDeductionFailureInfo(Context, TDK, Info)); 10192 (void)TDK; 10193 continue; 10194 } 10195 10196 // Target attributes are part of the cuda function signature, so 10197 // the cuda target of the instantiated function must match that of its 10198 // template. Given that C++ template deduction does not take 10199 // target attributes into account, we reject candidates here that 10200 // have a different target. 10201 if (LangOpts.CUDA && 10202 IdentifyCUDATarget(Specialization, 10203 /* IgnoreImplicitHDAttr = */ true) != 10204 IdentifyCUDATarget(D.getDeclSpec().getAttributes())) { 10205 FailedCandidates.addCandidate().set( 10206 P.getPair(), FunTmpl->getTemplatedDecl(), 10207 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 10208 continue; 10209 } 10210 10211 TemplateMatches.addDecl(Specialization, P.getAccess()); 10212 } 10213 10214 FunctionDecl *Specialization = NonTemplateMatch; 10215 if (!Specialization) { 10216 // Find the most specialized function template specialization. 10217 UnresolvedSetIterator Result = getMostSpecialized( 10218 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates, 10219 D.getIdentifierLoc(), 10220 PDiag(diag::err_explicit_instantiation_not_known) << Name, 10221 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 10222 PDiag(diag::note_explicit_instantiation_candidate)); 10223 10224 if (Result == TemplateMatches.end()) 10225 return true; 10226 10227 // Ignore access control bits, we don't need them for redeclaration checking. 10228 Specialization = cast<FunctionDecl>(*Result); 10229 } 10230 10231 // C++11 [except.spec]p4 10232 // In an explicit instantiation an exception-specification may be specified, 10233 // but is not required. 10234 // If an exception-specification is specified in an explicit instantiation 10235 // directive, it shall be compatible with the exception-specifications of 10236 // other declarations of that function. 10237 if (auto *FPT = R->getAs<FunctionProtoType>()) 10238 if (FPT->hasExceptionSpec()) { 10239 unsigned DiagID = 10240 diag::err_mismatched_exception_spec_explicit_instantiation; 10241 if (getLangOpts().MicrosoftExt) 10242 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; 10243 bool Result = CheckEquivalentExceptionSpec( 10244 PDiag(DiagID) << Specialization->getType(), 10245 PDiag(diag::note_explicit_instantiation_here), 10246 Specialization->getType()->getAs<FunctionProtoType>(), 10247 Specialization->getLocation(), FPT, D.getBeginLoc()); 10248 // In Microsoft mode, mismatching exception specifications just cause a 10249 // warning. 10250 if (!getLangOpts().MicrosoftExt && Result) 10251 return true; 10252 } 10253 10254 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 10255 Diag(D.getIdentifierLoc(), 10256 diag::err_explicit_instantiation_member_function_not_instantiated) 10257 << Specialization 10258 << (Specialization->getTemplateSpecializationKind() == 10259 TSK_ExplicitSpecialization); 10260 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 10261 return true; 10262 } 10263 10264 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 10265 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 10266 PrevDecl = Specialization; 10267 10268 if (PrevDecl) { 10269 bool HasNoEffect = false; 10270 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 10271 PrevDecl, 10272 PrevDecl->getTemplateSpecializationKind(), 10273 PrevDecl->getPointOfInstantiation(), 10274 HasNoEffect)) 10275 return true; 10276 10277 // FIXME: We may still want to build some representation of this 10278 // explicit specialization. 10279 if (HasNoEffect) 10280 return (Decl*) nullptr; 10281 } 10282 10283 // HACK: libc++ has a bug where it attempts to explicitly instantiate the 10284 // functions 10285 // valarray<size_t>::valarray(size_t) and 10286 // valarray<size_t>::~valarray() 10287 // that it declared to have internal linkage with the internal_linkage 10288 // attribute. Ignore the explicit instantiation declaration in this case. 10289 if (Specialization->hasAttr<InternalLinkageAttr>() && 10290 TSK == TSK_ExplicitInstantiationDeclaration) { 10291 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext())) 10292 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") && 10293 RD->isInStdNamespace()) 10294 return (Decl*) nullptr; 10295 } 10296 10297 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes()); 10298 10299 // In MSVC mode, dllimported explicit instantiation definitions are treated as 10300 // instantiation declarations. 10301 if (TSK == TSK_ExplicitInstantiationDefinition && 10302 Specialization->hasAttr<DLLImportAttr>() && 10303 Context.getTargetInfo().getCXXABI().isMicrosoft()) 10304 TSK = TSK_ExplicitInstantiationDeclaration; 10305 10306 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10307 10308 if (Specialization->isDefined()) { 10309 // Let the ASTConsumer know that this function has been explicitly 10310 // instantiated now, and its linkage might have changed. 10311 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization)); 10312 } else if (TSK == TSK_ExplicitInstantiationDefinition) 10313 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 10314 10315 // C++0x [temp.explicit]p2: 10316 // If the explicit instantiation is for a member function, a member class 10317 // or a static data member of a class template specialization, the name of 10318 // the class template specialization in the qualified-id for the member 10319 // name shall be a simple-template-id. 10320 // 10321 // C++98 has the same restriction, just worded differently. 10322 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 10323 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && 10324 D.getCXXScopeSpec().isSet() && 10325 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 10326 Diag(D.getIdentifierLoc(), 10327 diag::ext_explicit_instantiation_without_qualified_id) 10328 << Specialization << D.getCXXScopeSpec().getRange(); 10329 10330 CheckExplicitInstantiation( 10331 *this, 10332 FunTmpl ? (NamedDecl *)FunTmpl 10333 : Specialization->getInstantiatedFromMemberFunction(), 10334 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK); 10335 10336 // FIXME: Create some kind of ExplicitInstantiationDecl here. 10337 return (Decl*) nullptr; 10338 } 10339 10340 TypeResult 10341 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 10342 const CXXScopeSpec &SS, IdentifierInfo *Name, 10343 SourceLocation TagLoc, SourceLocation NameLoc) { 10344 // This has to hold, because SS is expected to be defined. 10345 assert(Name && "Expected a name in a dependent tag"); 10346 10347 NestedNameSpecifier *NNS = SS.getScopeRep(); 10348 if (!NNS) 10349 return true; 10350 10351 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 10352 10353 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 10354 Diag(NameLoc, diag::err_dependent_tag_decl) 10355 << (TUK == TUK_Definition) << Kind << SS.getRange(); 10356 return true; 10357 } 10358 10359 // Create the resulting type. 10360 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 10361 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 10362 10363 // Create type-source location information for this type. 10364 TypeLocBuilder TLB; 10365 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 10366 TL.setElaboratedKeywordLoc(TagLoc); 10367 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10368 TL.setNameLoc(NameLoc); 10369 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 10370 } 10371 10372 TypeResult 10373 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 10374 const CXXScopeSpec &SS, const IdentifierInfo &II, 10375 SourceLocation IdLoc) { 10376 if (SS.isInvalid()) 10377 return true; 10378 10379 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10380 Diag(TypenameLoc, 10381 getLangOpts().CPlusPlus11 ? 10382 diag::warn_cxx98_compat_typename_outside_of_template : 10383 diag::ext_typename_outside_of_template) 10384 << FixItHint::CreateRemoval(TypenameLoc); 10385 10386 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 10387 TypeSourceInfo *TSI = nullptr; 10388 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 10389 TypenameLoc, QualifierLoc, II, IdLoc, &TSI, 10390 /*DeducedTSTContext=*/true); 10391 if (T.isNull()) 10392 return true; 10393 return CreateParsedType(T, TSI); 10394 } 10395 10396 TypeResult 10397 Sema::ActOnTypenameType(Scope *S, 10398 SourceLocation TypenameLoc, 10399 const CXXScopeSpec &SS, 10400 SourceLocation TemplateKWLoc, 10401 TemplateTy TemplateIn, 10402 IdentifierInfo *TemplateII, 10403 SourceLocation TemplateIILoc, 10404 SourceLocation LAngleLoc, 10405 ASTTemplateArgsPtr TemplateArgsIn, 10406 SourceLocation RAngleLoc) { 10407 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10408 Diag(TypenameLoc, 10409 getLangOpts().CPlusPlus11 ? 10410 diag::warn_cxx98_compat_typename_outside_of_template : 10411 diag::ext_typename_outside_of_template) 10412 << FixItHint::CreateRemoval(TypenameLoc); 10413 10414 // Strangely, non-type results are not ignored by this lookup, so the 10415 // program is ill-formed if it finds an injected-class-name. 10416 if (TypenameLoc.isValid()) { 10417 auto *LookupRD = 10418 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false)); 10419 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 10420 Diag(TemplateIILoc, 10421 diag::ext_out_of_line_qualified_id_type_names_constructor) 10422 << TemplateII << 0 /*injected-class-name used as template name*/ 10423 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); 10424 } 10425 } 10426 10427 // Translate the parser's template argument list in our AST format. 10428 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 10429 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 10430 10431 TemplateName Template = TemplateIn.get(); 10432 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 10433 // Construct a dependent template specialization type. 10434 assert(DTN && "dependent template has non-dependent name?"); 10435 assert(DTN->getQualifier() == SS.getScopeRep()); 10436 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 10437 DTN->getQualifier(), 10438 DTN->getIdentifier(), 10439 TemplateArgs); 10440 10441 // Create source-location information for this type. 10442 TypeLocBuilder Builder; 10443 DependentTemplateSpecializationTypeLoc SpecTL 10444 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 10445 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 10446 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 10447 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10448 SpecTL.setTemplateNameLoc(TemplateIILoc); 10449 SpecTL.setLAngleLoc(LAngleLoc); 10450 SpecTL.setRAngleLoc(RAngleLoc); 10451 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10452 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10453 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 10454 } 10455 10456 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 10457 if (T.isNull()) 10458 return true; 10459 10460 // Provide source-location information for the template specialization type. 10461 TypeLocBuilder Builder; 10462 TemplateSpecializationTypeLoc SpecTL 10463 = Builder.push<TemplateSpecializationTypeLoc>(T); 10464 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10465 SpecTL.setTemplateNameLoc(TemplateIILoc); 10466 SpecTL.setLAngleLoc(LAngleLoc); 10467 SpecTL.setRAngleLoc(RAngleLoc); 10468 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10469 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10470 10471 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 10472 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 10473 TL.setElaboratedKeywordLoc(TypenameLoc); 10474 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10475 10476 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 10477 return CreateParsedType(T, TSI); 10478 } 10479 10480 10481 /// Determine whether this failed name lookup should be treated as being 10482 /// disabled by a usage of std::enable_if. 10483 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 10484 SourceRange &CondRange, Expr *&Cond) { 10485 // We must be looking for a ::type... 10486 if (!II.isStr("type")) 10487 return false; 10488 10489 // ... within an explicitly-written template specialization... 10490 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 10491 return false; 10492 TypeLoc EnableIfTy = NNS.getTypeLoc(); 10493 TemplateSpecializationTypeLoc EnableIfTSTLoc = 10494 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 10495 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 10496 return false; 10497 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); 10498 10499 // ... which names a complete class template declaration... 10500 const TemplateDecl *EnableIfDecl = 10501 EnableIfTST->getTemplateName().getAsTemplateDecl(); 10502 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 10503 return false; 10504 10505 // ... called "enable_if". 10506 const IdentifierInfo *EnableIfII = 10507 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 10508 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 10509 return false; 10510 10511 // Assume the first template argument is the condition. 10512 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 10513 10514 // Dig out the condition. 10515 Cond = nullptr; 10516 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind() 10517 != TemplateArgument::Expression) 10518 return true; 10519 10520 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression(); 10521 10522 // Ignore Boolean literals; they add no value. 10523 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts())) 10524 Cond = nullptr; 10525 10526 return true; 10527 } 10528 10529 QualType 10530 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10531 SourceLocation KeywordLoc, 10532 NestedNameSpecifierLoc QualifierLoc, 10533 const IdentifierInfo &II, 10534 SourceLocation IILoc, 10535 TypeSourceInfo **TSI, 10536 bool DeducedTSTContext) { 10537 QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc, 10538 DeducedTSTContext); 10539 if (T.isNull()) 10540 return QualType(); 10541 10542 *TSI = Context.CreateTypeSourceInfo(T); 10543 if (isa<DependentNameType>(T)) { 10544 DependentNameTypeLoc TL = 10545 (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>(); 10546 TL.setElaboratedKeywordLoc(KeywordLoc); 10547 TL.setQualifierLoc(QualifierLoc); 10548 TL.setNameLoc(IILoc); 10549 } else { 10550 ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>(); 10551 TL.setElaboratedKeywordLoc(KeywordLoc); 10552 TL.setQualifierLoc(QualifierLoc); 10553 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc); 10554 } 10555 return T; 10556 } 10557 10558 /// Build the type that describes a C++ typename specifier, 10559 /// e.g., "typename T::type". 10560 QualType 10561 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10562 SourceLocation KeywordLoc, 10563 NestedNameSpecifierLoc QualifierLoc, 10564 const IdentifierInfo &II, 10565 SourceLocation IILoc, bool DeducedTSTContext) { 10566 CXXScopeSpec SS; 10567 SS.Adopt(QualifierLoc); 10568 10569 DeclContext *Ctx = nullptr; 10570 if (QualifierLoc) { 10571 Ctx = computeDeclContext(SS); 10572 if (!Ctx) { 10573 // If the nested-name-specifier is dependent and couldn't be 10574 // resolved to a type, build a typename type. 10575 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 10576 return Context.getDependentNameType(Keyword, 10577 QualifierLoc.getNestedNameSpecifier(), 10578 &II); 10579 } 10580 10581 // If the nested-name-specifier refers to the current instantiation, 10582 // the "typename" keyword itself is superfluous. In C++03, the 10583 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 10584 // allows such extraneous "typename" keywords, and we retroactively 10585 // apply this DR to C++03 code with only a warning. In any case we continue. 10586 10587 if (RequireCompleteDeclContext(SS, Ctx)) 10588 return QualType(); 10589 } 10590 10591 DeclarationName Name(&II); 10592 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 10593 if (Ctx) 10594 LookupQualifiedName(Result, Ctx, SS); 10595 else 10596 LookupName(Result, CurScope); 10597 unsigned DiagID = 0; 10598 Decl *Referenced = nullptr; 10599 switch (Result.getResultKind()) { 10600 case LookupResult::NotFound: { 10601 // If we're looking up 'type' within a template named 'enable_if', produce 10602 // a more specific diagnostic. 10603 SourceRange CondRange; 10604 Expr *Cond = nullptr; 10605 if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) { 10606 // If we have a condition, narrow it down to the specific failed 10607 // condition. 10608 if (Cond) { 10609 Expr *FailedCond; 10610 std::string FailedDescription; 10611 std::tie(FailedCond, FailedDescription) = 10612 findFailedBooleanCondition(Cond); 10613 10614 Diag(FailedCond->getExprLoc(), 10615 diag::err_typename_nested_not_found_requirement) 10616 << FailedDescription 10617 << FailedCond->getSourceRange(); 10618 return QualType(); 10619 } 10620 10621 Diag(CondRange.getBegin(), 10622 diag::err_typename_nested_not_found_enable_if) 10623 << Ctx << CondRange; 10624 return QualType(); 10625 } 10626 10627 DiagID = Ctx ? diag::err_typename_nested_not_found 10628 : diag::err_unknown_typename; 10629 break; 10630 } 10631 10632 case LookupResult::FoundUnresolvedValue: { 10633 // We found a using declaration that is a value. Most likely, the using 10634 // declaration itself is meant to have the 'typename' keyword. 10635 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10636 IILoc); 10637 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 10638 << Name << Ctx << FullRange; 10639 if (UnresolvedUsingValueDecl *Using 10640 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 10641 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 10642 Diag(Loc, diag::note_using_value_decl_missing_typename) 10643 << FixItHint::CreateInsertion(Loc, "typename "); 10644 } 10645 } 10646 // Fall through to create a dependent typename type, from which we can recover 10647 // better. 10648 LLVM_FALLTHROUGH; 10649 10650 case LookupResult::NotFoundInCurrentInstantiation: 10651 // Okay, it's a member of an unknown instantiation. 10652 return Context.getDependentNameType(Keyword, 10653 QualifierLoc.getNestedNameSpecifier(), 10654 &II); 10655 10656 case LookupResult::Found: 10657 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 10658 // C++ [class.qual]p2: 10659 // In a lookup in which function names are not ignored and the 10660 // nested-name-specifier nominates a class C, if the name specified 10661 // after the nested-name-specifier, when looked up in C, is the 10662 // injected-class-name of C [...] then the name is instead considered 10663 // to name the constructor of class C. 10664 // 10665 // Unlike in an elaborated-type-specifier, function names are not ignored 10666 // in typename-specifier lookup. However, they are ignored in all the 10667 // contexts where we form a typename type with no keyword (that is, in 10668 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). 10669 // 10670 // FIXME: That's not strictly true: mem-initializer-id lookup does not 10671 // ignore functions, but that appears to be an oversight. 10672 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx); 10673 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type); 10674 if (Keyword == ETK_Typename && LookupRD && FoundRD && 10675 FoundRD->isInjectedClassName() && 10676 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) 10677 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor) 10678 << &II << 1 << 0 /*'typename' keyword used*/; 10679 10680 // We found a type. Build an ElaboratedType, since the 10681 // typename-specifier was just sugar. 10682 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 10683 return Context.getElaboratedType(Keyword, 10684 QualifierLoc.getNestedNameSpecifier(), 10685 Context.getTypeDeclType(Type)); 10686 } 10687 10688 // C++ [dcl.type.simple]p2: 10689 // A type-specifier of the form 10690 // typename[opt] nested-name-specifier[opt] template-name 10691 // is a placeholder for a deduced class type [...]. 10692 if (getLangOpts().CPlusPlus17) { 10693 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) { 10694 if (!DeducedTSTContext) { 10695 QualType T(QualifierLoc 10696 ? QualifierLoc.getNestedNameSpecifier()->getAsType() 10697 : nullptr, 0); 10698 if (!T.isNull()) 10699 Diag(IILoc, diag::err_dependent_deduced_tst) 10700 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T; 10701 else 10702 Diag(IILoc, diag::err_deduced_tst) 10703 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)); 10704 Diag(TD->getLocation(), diag::note_template_decl_here); 10705 return QualType(); 10706 } 10707 return Context.getElaboratedType( 10708 Keyword, QualifierLoc.getNestedNameSpecifier(), 10709 Context.getDeducedTemplateSpecializationType(TemplateName(TD), 10710 QualType(), false)); 10711 } 10712 } 10713 10714 DiagID = Ctx ? diag::err_typename_nested_not_type 10715 : diag::err_typename_not_type; 10716 Referenced = Result.getFoundDecl(); 10717 break; 10718 10719 case LookupResult::FoundOverloaded: 10720 DiagID = Ctx ? diag::err_typename_nested_not_type 10721 : diag::err_typename_not_type; 10722 Referenced = *Result.begin(); 10723 break; 10724 10725 case LookupResult::Ambiguous: 10726 return QualType(); 10727 } 10728 10729 // If we get here, it's because name lookup did not find a 10730 // type. Emit an appropriate diagnostic and return an error. 10731 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10732 IILoc); 10733 if (Ctx) 10734 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 10735 else 10736 Diag(IILoc, DiagID) << FullRange << Name; 10737 if (Referenced) 10738 Diag(Referenced->getLocation(), 10739 Ctx ? diag::note_typename_member_refers_here 10740 : diag::note_typename_refers_here) 10741 << Name; 10742 return QualType(); 10743 } 10744 10745 namespace { 10746 // See Sema::RebuildTypeInCurrentInstantiation 10747 class CurrentInstantiationRebuilder 10748 : public TreeTransform<CurrentInstantiationRebuilder> { 10749 SourceLocation Loc; 10750 DeclarationName Entity; 10751 10752 public: 10753 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 10754 10755 CurrentInstantiationRebuilder(Sema &SemaRef, 10756 SourceLocation Loc, 10757 DeclarationName Entity) 10758 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 10759 Loc(Loc), Entity(Entity) { } 10760 10761 /// Determine whether the given type \p T has already been 10762 /// transformed. 10763 /// 10764 /// For the purposes of type reconstruction, a type has already been 10765 /// transformed if it is NULL or if it is not dependent. 10766 bool AlreadyTransformed(QualType T) { 10767 return T.isNull() || !T->isInstantiationDependentType(); 10768 } 10769 10770 /// Returns the location of the entity whose type is being 10771 /// rebuilt. 10772 SourceLocation getBaseLocation() { return Loc; } 10773 10774 /// Returns the name of the entity whose type is being rebuilt. 10775 DeclarationName getBaseEntity() { return Entity; } 10776 10777 /// Sets the "base" location and entity when that 10778 /// information is known based on another transformation. 10779 void setBase(SourceLocation Loc, DeclarationName Entity) { 10780 this->Loc = Loc; 10781 this->Entity = Entity; 10782 } 10783 10784 ExprResult TransformLambdaExpr(LambdaExpr *E) { 10785 // Lambdas never need to be transformed. 10786 return E; 10787 } 10788 }; 10789 } // end anonymous namespace 10790 10791 /// Rebuilds a type within the context of the current instantiation. 10792 /// 10793 /// The type \p T is part of the type of an out-of-line member definition of 10794 /// a class template (or class template partial specialization) that was parsed 10795 /// and constructed before we entered the scope of the class template (or 10796 /// partial specialization thereof). This routine will rebuild that type now 10797 /// that we have entered the declarator's scope, which may produce different 10798 /// canonical types, e.g., 10799 /// 10800 /// \code 10801 /// template<typename T> 10802 /// struct X { 10803 /// typedef T* pointer; 10804 /// pointer data(); 10805 /// }; 10806 /// 10807 /// template<typename T> 10808 /// typename X<T>::pointer X<T>::data() { ... } 10809 /// \endcode 10810 /// 10811 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 10812 /// since we do not know that we can look into X<T> when we parsed the type. 10813 /// This function will rebuild the type, performing the lookup of "pointer" 10814 /// in X<T> and returning an ElaboratedType whose canonical type is the same 10815 /// as the canonical type of T*, allowing the return types of the out-of-line 10816 /// definition and the declaration to match. 10817 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 10818 SourceLocation Loc, 10819 DeclarationName Name) { 10820 if (!T || !T->getType()->isInstantiationDependentType()) 10821 return T; 10822 10823 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 10824 return Rebuilder.TransformType(T); 10825 } 10826 10827 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 10828 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 10829 DeclarationName()); 10830 return Rebuilder.TransformExpr(E); 10831 } 10832 10833 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 10834 if (SS.isInvalid()) 10835 return true; 10836 10837 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 10838 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 10839 DeclarationName()); 10840 NestedNameSpecifierLoc Rebuilt 10841 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 10842 if (!Rebuilt) 10843 return true; 10844 10845 SS.Adopt(Rebuilt); 10846 return false; 10847 } 10848 10849 /// Rebuild the template parameters now that we know we're in a current 10850 /// instantiation. 10851 bool Sema::RebuildTemplateParamsInCurrentInstantiation( 10852 TemplateParameterList *Params) { 10853 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 10854 Decl *Param = Params->getParam(I); 10855 10856 // There is nothing to rebuild in a type parameter. 10857 if (isa<TemplateTypeParmDecl>(Param)) 10858 continue; 10859 10860 // Rebuild the template parameter list of a template template parameter. 10861 if (TemplateTemplateParmDecl *TTP 10862 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 10863 if (RebuildTemplateParamsInCurrentInstantiation( 10864 TTP->getTemplateParameters())) 10865 return true; 10866 10867 continue; 10868 } 10869 10870 // Rebuild the type of a non-type template parameter. 10871 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 10872 TypeSourceInfo *NewTSI 10873 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 10874 NTTP->getLocation(), 10875 NTTP->getDeclName()); 10876 if (!NewTSI) 10877 return true; 10878 10879 if (NewTSI->getType()->isUndeducedType()) { 10880 // C++17 [temp.dep.expr]p3: 10881 // An id-expression is type-dependent if it contains 10882 // - an identifier associated by name lookup with a non-type 10883 // template-parameter declared with a type that contains a 10884 // placeholder type (7.1.7.4), 10885 NewTSI = SubstAutoTypeSourceInfo(NewTSI, Context.DependentTy); 10886 } 10887 10888 if (NewTSI != NTTP->getTypeSourceInfo()) { 10889 NTTP->setTypeSourceInfo(NewTSI); 10890 NTTP->setType(NewTSI->getType()); 10891 } 10892 } 10893 10894 return false; 10895 } 10896 10897 /// Produces a formatted string that describes the binding of 10898 /// template parameters to template arguments. 10899 std::string 10900 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 10901 const TemplateArgumentList &Args) { 10902 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 10903 } 10904 10905 std::string 10906 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 10907 const TemplateArgument *Args, 10908 unsigned NumArgs) { 10909 SmallString<128> Str; 10910 llvm::raw_svector_ostream Out(Str); 10911 10912 if (!Params || Params->size() == 0 || NumArgs == 0) 10913 return std::string(); 10914 10915 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 10916 if (I >= NumArgs) 10917 break; 10918 10919 if (I == 0) 10920 Out << "[with "; 10921 else 10922 Out << ", "; 10923 10924 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 10925 Out << Id->getName(); 10926 } else { 10927 Out << '$' << I; 10928 } 10929 10930 Out << " = "; 10931 Args[I].print( 10932 getPrintingPolicy(), Out, 10933 TemplateParameterList::shouldIncludeTypeForArgument(Params, I)); 10934 } 10935 10936 Out << ']'; 10937 return std::string(Out.str()); 10938 } 10939 10940 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, 10941 CachedTokens &Toks) { 10942 if (!FD) 10943 return; 10944 10945 auto LPT = std::make_unique<LateParsedTemplate>(); 10946 10947 // Take tokens to avoid allocations 10948 LPT->Toks.swap(Toks); 10949 LPT->D = FnD; 10950 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT))); 10951 10952 FD->setLateTemplateParsed(true); 10953 } 10954 10955 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { 10956 if (!FD) 10957 return; 10958 FD->setLateTemplateParsed(false); 10959 } 10960 10961 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 10962 DeclContext *DC = CurContext; 10963 10964 while (DC) { 10965 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 10966 const FunctionDecl *FD = RD->isLocalClass(); 10967 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 10968 } else if (DC->isTranslationUnit() || DC->isNamespace()) 10969 return false; 10970 10971 DC = DC->getParent(); 10972 } 10973 return false; 10974 } 10975 10976 namespace { 10977 /// Walk the path from which a declaration was instantiated, and check 10978 /// that every explicit specialization along that path is visible. This enforces 10979 /// C++ [temp.expl.spec]/6: 10980 /// 10981 /// If a template, a member template or a member of a class template is 10982 /// explicitly specialized then that specialization shall be declared before 10983 /// the first use of that specialization that would cause an implicit 10984 /// instantiation to take place, in every translation unit in which such a 10985 /// use occurs; no diagnostic is required. 10986 /// 10987 /// and also C++ [temp.class.spec]/1: 10988 /// 10989 /// A partial specialization shall be declared before the first use of a 10990 /// class template specialization that would make use of the partial 10991 /// specialization as the result of an implicit or explicit instantiation 10992 /// in every translation unit in which such a use occurs; no diagnostic is 10993 /// required. 10994 class ExplicitSpecializationVisibilityChecker { 10995 Sema &S; 10996 SourceLocation Loc; 10997 llvm::SmallVector<Module *, 8> Modules; 10998 10999 public: 11000 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc) 11001 : S(S), Loc(Loc) {} 11002 11003 void check(NamedDecl *ND) { 11004 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 11005 return checkImpl(FD); 11006 if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) 11007 return checkImpl(RD); 11008 if (auto *VD = dyn_cast<VarDecl>(ND)) 11009 return checkImpl(VD); 11010 if (auto *ED = dyn_cast<EnumDecl>(ND)) 11011 return checkImpl(ED); 11012 } 11013 11014 private: 11015 void diagnose(NamedDecl *D, bool IsPartialSpec) { 11016 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization 11017 : Sema::MissingImportKind::ExplicitSpecialization; 11018 const bool Recover = true; 11019 11020 // If we got a custom set of modules (because only a subset of the 11021 // declarations are interesting), use them, otherwise let 11022 // diagnoseMissingImport intelligently pick some. 11023 if (Modules.empty()) 11024 S.diagnoseMissingImport(Loc, D, Kind, Recover); 11025 else 11026 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover); 11027 } 11028 11029 // Check a specific declaration. There are three problematic cases: 11030 // 11031 // 1) The declaration is an explicit specialization of a template 11032 // specialization. 11033 // 2) The declaration is an explicit specialization of a member of an 11034 // templated class. 11035 // 3) The declaration is an instantiation of a template, and that template 11036 // is an explicit specialization of a member of a templated class. 11037 // 11038 // We don't need to go any deeper than that, as the instantiation of the 11039 // surrounding class / etc is not triggered by whatever triggered this 11040 // instantiation, and thus should be checked elsewhere. 11041 template<typename SpecDecl> 11042 void checkImpl(SpecDecl *Spec) { 11043 bool IsHiddenExplicitSpecialization = false; 11044 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { 11045 IsHiddenExplicitSpecialization = 11046 Spec->getMemberSpecializationInfo() 11047 ? !S.hasVisibleMemberSpecialization(Spec, &Modules) 11048 : !S.hasVisibleExplicitSpecialization(Spec, &Modules); 11049 } else { 11050 checkInstantiated(Spec); 11051 } 11052 11053 if (IsHiddenExplicitSpecialization) 11054 diagnose(Spec->getMostRecentDecl(), false); 11055 } 11056 11057 void checkInstantiated(FunctionDecl *FD) { 11058 if (auto *TD = FD->getPrimaryTemplate()) 11059 checkTemplate(TD); 11060 } 11061 11062 void checkInstantiated(CXXRecordDecl *RD) { 11063 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD); 11064 if (!SD) 11065 return; 11066 11067 auto From = SD->getSpecializedTemplateOrPartial(); 11068 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) 11069 checkTemplate(TD); 11070 else if (auto *TD = 11071 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 11072 if (!S.hasVisibleDeclaration(TD)) 11073 diagnose(TD, true); 11074 checkTemplate(TD); 11075 } 11076 } 11077 11078 void checkInstantiated(VarDecl *RD) { 11079 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD); 11080 if (!SD) 11081 return; 11082 11083 auto From = SD->getSpecializedTemplateOrPartial(); 11084 if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) 11085 checkTemplate(TD); 11086 else if (auto *TD = 11087 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 11088 if (!S.hasVisibleDeclaration(TD)) 11089 diagnose(TD, true); 11090 checkTemplate(TD); 11091 } 11092 } 11093 11094 void checkInstantiated(EnumDecl *FD) {} 11095 11096 template<typename TemplDecl> 11097 void checkTemplate(TemplDecl *TD) { 11098 if (TD->isMemberSpecialization()) { 11099 if (!S.hasVisibleMemberSpecialization(TD, &Modules)) 11100 diagnose(TD->getMostRecentDecl(), false); 11101 } 11102 } 11103 }; 11104 } // end anonymous namespace 11105 11106 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { 11107 if (!getLangOpts().Modules) 11108 return; 11109 11110 ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec); 11111 } 11112