1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===// 7 // 8 // This file implements semantic analysis for C++ templates. 9 //===----------------------------------------------------------------------===// 10 11 #include "TreeTransform.h" 12 #include "clang/AST/ASTConsumer.h" 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/Decl.h" 15 #include "clang/AST/DeclFriend.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/RecursiveASTVisitor.h" 20 #include "clang/AST/TemplateName.h" 21 #include "clang/AST/TypeVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/DiagnosticSema.h" 24 #include "clang/Basic/LangOptions.h" 25 #include "clang/Basic/PartialDiagnostic.h" 26 #include "clang/Basic/Stack.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Sema/DeclSpec.h" 29 #include "clang/Sema/Initialization.h" 30 #include "clang/Sema/Lookup.h" 31 #include "clang/Sema/Overload.h" 32 #include "clang/Sema/ParsedTemplate.h" 33 #include "clang/Sema/Scope.h" 34 #include "clang/Sema/SemaInternal.h" 35 #include "clang/Sema/Template.h" 36 #include "clang/Sema/TemplateDeduction.h" 37 #include "llvm/ADT/SmallBitVector.h" 38 #include "llvm/ADT/SmallString.h" 39 #include "llvm/ADT/StringExtras.h" 40 41 #include <iterator> 42 #include <optional> 43 using namespace clang; 44 using namespace sema; 45 46 // Exported for use by Parser. 47 SourceRange 48 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 49 unsigned N) { 50 if (!N) return SourceRange(); 51 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 52 } 53 54 unsigned Sema::getTemplateDepth(Scope *S) const { 55 unsigned Depth = 0; 56 57 // Each template parameter scope represents one level of template parameter 58 // depth. 59 for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope; 60 TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) { 61 ++Depth; 62 } 63 64 // Note that there are template parameters with the given depth. 65 auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); }; 66 67 // Look for parameters of an enclosing generic lambda. We don't create a 68 // template parameter scope for these. 69 for (FunctionScopeInfo *FSI : getFunctionScopes()) { 70 if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) { 71 if (!LSI->TemplateParams.empty()) { 72 ParamsAtDepth(LSI->AutoTemplateParameterDepth); 73 break; 74 } 75 if (LSI->GLTemplateParameterList) { 76 ParamsAtDepth(LSI->GLTemplateParameterList->getDepth()); 77 break; 78 } 79 } 80 } 81 82 // Look for parameters of an enclosing terse function template. We don't 83 // create a template parameter scope for these either. 84 for (const InventedTemplateParameterInfo &Info : 85 getInventedParameterInfos()) { 86 if (!Info.TemplateParams.empty()) { 87 ParamsAtDepth(Info.AutoTemplateParameterDepth); 88 break; 89 } 90 } 91 92 return Depth; 93 } 94 95 /// \brief Determine whether the declaration found is acceptable as the name 96 /// of a template and, if so, return that template declaration. Otherwise, 97 /// returns null. 98 /// 99 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent 100 /// is true. In all other cases it will return a TemplateDecl (or null). 101 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D, 102 bool AllowFunctionTemplates, 103 bool AllowDependent) { 104 D = D->getUnderlyingDecl(); 105 106 if (isa<TemplateDecl>(D)) { 107 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 108 return nullptr; 109 110 return D; 111 } 112 113 if (const auto *Record = dyn_cast<CXXRecordDecl>(D)) { 114 // C++ [temp.local]p1: 115 // Like normal (non-template) classes, class templates have an 116 // injected-class-name (Clause 9). The injected-class-name 117 // can be used with or without a template-argument-list. When 118 // it is used without a template-argument-list, it is 119 // equivalent to the injected-class-name followed by the 120 // template-parameters of the class template enclosed in 121 // <>. When it is used with a template-argument-list, it 122 // refers to the specified class template specialization, 123 // which could be the current specialization or another 124 // specialization. 125 if (Record->isInjectedClassName()) { 126 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 127 if (Record->getDescribedClassTemplate()) 128 return Record->getDescribedClassTemplate(); 129 130 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 131 return Spec->getSpecializedTemplate(); 132 } 133 134 return nullptr; 135 } 136 137 // 'using Dependent::foo;' can resolve to a template name. 138 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an 139 // injected-class-name). 140 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D)) 141 return D; 142 143 return nullptr; 144 } 145 146 void Sema::FilterAcceptableTemplateNames(LookupResult &R, 147 bool AllowFunctionTemplates, 148 bool AllowDependent) { 149 LookupResult::Filter filter = R.makeFilter(); 150 while (filter.hasNext()) { 151 NamedDecl *Orig = filter.next(); 152 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent)) 153 filter.erase(); 154 } 155 filter.done(); 156 } 157 158 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 159 bool AllowFunctionTemplates, 160 bool AllowDependent, 161 bool AllowNonTemplateFunctions) { 162 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 163 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent)) 164 return true; 165 if (AllowNonTemplateFunctions && 166 isa<FunctionDecl>((*I)->getUnderlyingDecl())) 167 return true; 168 } 169 170 return false; 171 } 172 173 TemplateNameKind Sema::isTemplateName(Scope *S, 174 CXXScopeSpec &SS, 175 bool hasTemplateKeyword, 176 const UnqualifiedId &Name, 177 ParsedType ObjectTypePtr, 178 bool EnteringContext, 179 TemplateTy &TemplateResult, 180 bool &MemberOfUnknownSpecialization, 181 bool Disambiguation) { 182 assert(getLangOpts().CPlusPlus && "No template names in C!"); 183 184 DeclarationName TName; 185 MemberOfUnknownSpecialization = false; 186 187 switch (Name.getKind()) { 188 case UnqualifiedIdKind::IK_Identifier: 189 TName = DeclarationName(Name.Identifier); 190 break; 191 192 case UnqualifiedIdKind::IK_OperatorFunctionId: 193 TName = Context.DeclarationNames.getCXXOperatorName( 194 Name.OperatorFunctionId.Operator); 195 break; 196 197 case UnqualifiedIdKind::IK_LiteralOperatorId: 198 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 199 break; 200 201 default: 202 return TNK_Non_template; 203 } 204 205 QualType ObjectType = ObjectTypePtr.get(); 206 207 AssumedTemplateKind AssumedTemplate; 208 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName); 209 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 210 MemberOfUnknownSpecialization, SourceLocation(), 211 &AssumedTemplate, 212 /*AllowTypoCorrection=*/!Disambiguation)) 213 return TNK_Non_template; 214 215 if (AssumedTemplate != AssumedTemplateKind::None) { 216 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName)); 217 // Let the parser know whether we found nothing or found functions; if we 218 // found nothing, we want to more carefully check whether this is actually 219 // a function template name versus some other kind of undeclared identifier. 220 return AssumedTemplate == AssumedTemplateKind::FoundNothing 221 ? TNK_Undeclared_template 222 : TNK_Function_template; 223 } 224 225 if (R.empty()) 226 return TNK_Non_template; 227 228 NamedDecl *D = nullptr; 229 UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(*R.begin()); 230 if (R.isAmbiguous()) { 231 // If we got an ambiguity involving a non-function template, treat this 232 // as a template name, and pick an arbitrary template for error recovery. 233 bool AnyFunctionTemplates = false; 234 for (NamedDecl *FoundD : R) { 235 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) { 236 if (isa<FunctionTemplateDecl>(FoundTemplate)) 237 AnyFunctionTemplates = true; 238 else { 239 D = FoundTemplate; 240 FoundUsingShadow = dyn_cast<UsingShadowDecl>(FoundD); 241 break; 242 } 243 } 244 } 245 246 // If we didn't find any templates at all, this isn't a template name. 247 // Leave the ambiguity for a later lookup to diagnose. 248 if (!D && !AnyFunctionTemplates) { 249 R.suppressDiagnostics(); 250 return TNK_Non_template; 251 } 252 253 // If the only templates were function templates, filter out the rest. 254 // We'll diagnose the ambiguity later. 255 if (!D) 256 FilterAcceptableTemplateNames(R); 257 } 258 259 // At this point, we have either picked a single template name declaration D 260 // or we have a non-empty set of results R containing either one template name 261 // declaration or a set of function templates. 262 263 TemplateName Template; 264 TemplateNameKind TemplateKind; 265 266 unsigned ResultCount = R.end() - R.begin(); 267 if (!D && ResultCount > 1) { 268 // We assume that we'll preserve the qualifier from a function 269 // template name in other ways. 270 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 271 TemplateKind = TNK_Function_template; 272 273 // We'll do this lookup again later. 274 R.suppressDiagnostics(); 275 } else { 276 if (!D) { 277 D = getAsTemplateNameDecl(*R.begin()); 278 assert(D && "unambiguous result is not a template name"); 279 } 280 281 if (isa<UnresolvedUsingValueDecl>(D)) { 282 // We don't yet know whether this is a template-name or not. 283 MemberOfUnknownSpecialization = true; 284 return TNK_Non_template; 285 } 286 287 TemplateDecl *TD = cast<TemplateDecl>(D); 288 Template = 289 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); 290 assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD); 291 if (SS.isSet() && !SS.isInvalid()) { 292 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 293 Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword, 294 Template); 295 } 296 297 if (isa<FunctionTemplateDecl>(TD)) { 298 TemplateKind = TNK_Function_template; 299 300 // We'll do this lookup again later. 301 R.suppressDiagnostics(); 302 } else { 303 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 304 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || 305 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)); 306 TemplateKind = 307 isa<VarTemplateDecl>(TD) ? TNK_Var_template : 308 isa<ConceptDecl>(TD) ? TNK_Concept_template : 309 TNK_Type_template; 310 } 311 } 312 313 TemplateResult = TemplateTy::make(Template); 314 return TemplateKind; 315 } 316 317 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, 318 SourceLocation NameLoc, 319 ParsedTemplateTy *Template) { 320 CXXScopeSpec SS; 321 bool MemberOfUnknownSpecialization = false; 322 323 // We could use redeclaration lookup here, but we don't need to: the 324 // syntactic form of a deduction guide is enough to identify it even 325 // if we can't look up the template name at all. 326 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); 327 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), 328 /*EnteringContext*/ false, 329 MemberOfUnknownSpecialization)) 330 return false; 331 332 if (R.empty()) return false; 333 if (R.isAmbiguous()) { 334 // FIXME: Diagnose an ambiguity if we find at least one template. 335 R.suppressDiagnostics(); 336 return false; 337 } 338 339 // We only treat template-names that name type templates as valid deduction 340 // guide names. 341 TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); 342 if (!TD || !getAsTypeTemplateDecl(TD)) 343 return false; 344 345 if (Template) 346 *Template = TemplateTy::make(TemplateName(TD)); 347 return true; 348 } 349 350 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 351 SourceLocation IILoc, 352 Scope *S, 353 const CXXScopeSpec *SS, 354 TemplateTy &SuggestedTemplate, 355 TemplateNameKind &SuggestedKind) { 356 // We can't recover unless there's a dependent scope specifier preceding the 357 // template name. 358 // FIXME: Typo correction? 359 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 360 computeDeclContext(*SS)) 361 return false; 362 363 // The code is missing a 'template' keyword prior to the dependent template 364 // name. 365 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 366 Diag(IILoc, diag::err_template_kw_missing) 367 << Qualifier << II.getName() 368 << FixItHint::CreateInsertion(IILoc, "template "); 369 SuggestedTemplate 370 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 371 SuggestedKind = TNK_Dependent_template_name; 372 return true; 373 } 374 375 bool Sema::LookupTemplateName(LookupResult &Found, 376 Scope *S, CXXScopeSpec &SS, 377 QualType ObjectType, 378 bool EnteringContext, 379 bool &MemberOfUnknownSpecialization, 380 RequiredTemplateKind RequiredTemplate, 381 AssumedTemplateKind *ATK, 382 bool AllowTypoCorrection) { 383 if (ATK) 384 *ATK = AssumedTemplateKind::None; 385 386 if (SS.isInvalid()) 387 return true; 388 389 Found.setTemplateNameLookup(true); 390 391 // Determine where to perform name lookup 392 MemberOfUnknownSpecialization = false; 393 DeclContext *LookupCtx = nullptr; 394 bool IsDependent = false; 395 if (!ObjectType.isNull()) { 396 // This nested-name-specifier occurs in a member access expression, e.g., 397 // x->B::f, and we are looking into the type of the object. 398 assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist"); 399 LookupCtx = computeDeclContext(ObjectType); 400 IsDependent = !LookupCtx && ObjectType->isDependentType(); 401 assert((IsDependent || !ObjectType->isIncompleteType() || 402 !ObjectType->getAs<TagType>() || 403 ObjectType->castAs<TagType>()->isBeingDefined()) && 404 "Caller should have completed object type"); 405 406 // Template names cannot appear inside an Objective-C class or object type 407 // or a vector type. 408 // 409 // FIXME: This is wrong. For example: 410 // 411 // template<typename T> using Vec = T __attribute__((ext_vector_type(4))); 412 // Vec<int> vi; 413 // vi.Vec<int>::~Vec<int>(); 414 // 415 // ... should be accepted but we will not treat 'Vec' as a template name 416 // here. The right thing to do would be to check if the name is a valid 417 // vector component name, and look up a template name if not. And similarly 418 // for lookups into Objective-C class and object types, where the same 419 // problem can arise. 420 if (ObjectType->isObjCObjectOrInterfaceType() || 421 ObjectType->isVectorType()) { 422 Found.clear(); 423 return false; 424 } 425 } else if (SS.isNotEmpty()) { 426 // This nested-name-specifier occurs after another nested-name-specifier, 427 // so long into the context associated with the prior nested-name-specifier. 428 LookupCtx = computeDeclContext(SS, EnteringContext); 429 IsDependent = !LookupCtx && isDependentScopeSpecifier(SS); 430 431 // The declaration context must be complete. 432 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 433 return true; 434 } 435 436 bool ObjectTypeSearchedInScope = false; 437 bool AllowFunctionTemplatesInLookup = true; 438 if (LookupCtx) { 439 // Perform "qualified" name lookup into the declaration context we 440 // computed, which is either the type of the base of a member access 441 // expression or the declaration context associated with a prior 442 // nested-name-specifier. 443 LookupQualifiedName(Found, LookupCtx); 444 445 // FIXME: The C++ standard does not clearly specify what happens in the 446 // case where the object type is dependent, and implementations vary. In 447 // Clang, we treat a name after a . or -> as a template-name if lookup 448 // finds a non-dependent member or member of the current instantiation that 449 // is a type template, or finds no such members and lookup in the context 450 // of the postfix-expression finds a type template. In the latter case, the 451 // name is nonetheless dependent, and we may resolve it to a member of an 452 // unknown specialization when we come to instantiate the template. 453 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 454 } 455 456 if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) { 457 // C++ [basic.lookup.classref]p1: 458 // In a class member access expression (5.2.5), if the . or -> token is 459 // immediately followed by an identifier followed by a <, the 460 // identifier must be looked up to determine whether the < is the 461 // beginning of a template argument list (14.2) or a less-than operator. 462 // The identifier is first looked up in the class of the object 463 // expression. If the identifier is not found, it is then looked up in 464 // the context of the entire postfix-expression and shall name a class 465 // template. 466 if (S) 467 LookupName(Found, S); 468 469 if (!ObjectType.isNull()) { 470 // FIXME: We should filter out all non-type templates here, particularly 471 // variable templates and concepts. But the exclusion of alias templates 472 // and template template parameters is a wording defect. 473 AllowFunctionTemplatesInLookup = false; 474 ObjectTypeSearchedInScope = true; 475 } 476 477 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 478 } 479 480 if (Found.isAmbiguous()) 481 return false; 482 483 if (ATK && SS.isEmpty() && ObjectType.isNull() && 484 !RequiredTemplate.hasTemplateKeyword()) { 485 // C++2a [temp.names]p2: 486 // A name is also considered to refer to a template if it is an 487 // unqualified-id followed by a < and name lookup finds either one or more 488 // functions or finds nothing. 489 // 490 // To keep our behavior consistent, we apply the "finds nothing" part in 491 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we 492 // successfully form a call to an undeclared template-id. 493 bool AllFunctions = 494 getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) { 495 return isa<FunctionDecl>(ND->getUnderlyingDecl()); 496 }); 497 if (AllFunctions || (Found.empty() && !IsDependent)) { 498 // If lookup found any functions, or if this is a name that can only be 499 // used for a function, then strongly assume this is a function 500 // template-id. 501 *ATK = (Found.empty() && Found.getLookupName().isIdentifier()) 502 ? AssumedTemplateKind::FoundNothing 503 : AssumedTemplateKind::FoundFunctions; 504 Found.clear(); 505 return false; 506 } 507 } 508 509 if (Found.empty() && !IsDependent && AllowTypoCorrection) { 510 // If we did not find any names, and this is not a disambiguation, attempt 511 // to correct any typos. 512 DeclarationName Name = Found.getLookupName(); 513 Found.clear(); 514 // Simple filter callback that, for keywords, only accepts the C++ *_cast 515 DefaultFilterCCC FilterCCC{}; 516 FilterCCC.WantTypeSpecifiers = false; 517 FilterCCC.WantExpressionKeywords = false; 518 FilterCCC.WantRemainingKeywords = false; 519 FilterCCC.WantCXXNamedCasts = true; 520 if (TypoCorrection Corrected = 521 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S, 522 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) { 523 if (auto *ND = Corrected.getFoundDecl()) 524 Found.addDecl(ND); 525 FilterAcceptableTemplateNames(Found); 526 if (Found.isAmbiguous()) { 527 Found.clear(); 528 } else if (!Found.empty()) { 529 Found.setLookupName(Corrected.getCorrection()); 530 if (LookupCtx) { 531 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 532 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 533 Name.getAsString() == CorrectedStr; 534 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) 535 << Name << LookupCtx << DroppedSpecifier 536 << SS.getRange()); 537 } else { 538 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); 539 } 540 } 541 } 542 } 543 544 NamedDecl *ExampleLookupResult = 545 Found.empty() ? nullptr : Found.getRepresentativeDecl(); 546 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 547 if (Found.empty()) { 548 if (IsDependent) { 549 MemberOfUnknownSpecialization = true; 550 return false; 551 } 552 553 // If a 'template' keyword was used, a lookup that finds only non-template 554 // names is an error. 555 if (ExampleLookupResult && RequiredTemplate) { 556 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) 557 << Found.getLookupName() << SS.getRange() 558 << RequiredTemplate.hasTemplateKeyword() 559 << RequiredTemplate.getTemplateKeywordLoc(); 560 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), 561 diag::note_template_kw_refers_to_non_template) 562 << Found.getLookupName(); 563 return true; 564 } 565 566 return false; 567 } 568 569 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 570 !getLangOpts().CPlusPlus11) { 571 // C++03 [basic.lookup.classref]p1: 572 // [...] If the lookup in the class of the object expression finds a 573 // template, the name is also looked up in the context of the entire 574 // postfix-expression and [...] 575 // 576 // Note: C++11 does not perform this second lookup. 577 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 578 LookupOrdinaryName); 579 FoundOuter.setTemplateNameLookup(true); 580 LookupName(FoundOuter, S); 581 // FIXME: We silently accept an ambiguous lookup here, in violation of 582 // [basic.lookup]/1. 583 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 584 585 NamedDecl *OuterTemplate; 586 if (FoundOuter.empty()) { 587 // - if the name is not found, the name found in the class of the 588 // object expression is used, otherwise 589 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() || 590 !(OuterTemplate = 591 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) { 592 // - if the name is found in the context of the entire 593 // postfix-expression and does not name a class template, the name 594 // found in the class of the object expression is used, otherwise 595 FoundOuter.clear(); 596 } else if (!Found.isSuppressingDiagnostics()) { 597 // - if the name found is a class template, it must refer to the same 598 // entity as the one found in the class of the object expression, 599 // otherwise the program is ill-formed. 600 if (!Found.isSingleResult() || 601 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() != 602 OuterTemplate->getCanonicalDecl()) { 603 Diag(Found.getNameLoc(), 604 diag::ext_nested_name_member_ref_lookup_ambiguous) 605 << Found.getLookupName() 606 << ObjectType; 607 Diag(Found.getRepresentativeDecl()->getLocation(), 608 diag::note_ambig_member_ref_object_type) 609 << ObjectType; 610 Diag(FoundOuter.getFoundDecl()->getLocation(), 611 diag::note_ambig_member_ref_scope); 612 613 // Recover by taking the template that we found in the object 614 // expression's type. 615 } 616 } 617 } 618 619 return false; 620 } 621 622 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, 623 SourceLocation Less, 624 SourceLocation Greater) { 625 if (TemplateName.isInvalid()) 626 return; 627 628 DeclarationNameInfo NameInfo; 629 CXXScopeSpec SS; 630 LookupNameKind LookupKind; 631 632 DeclContext *LookupCtx = nullptr; 633 NamedDecl *Found = nullptr; 634 bool MissingTemplateKeyword = false; 635 636 // Figure out what name we looked up. 637 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) { 638 NameInfo = DRE->getNameInfo(); 639 SS.Adopt(DRE->getQualifierLoc()); 640 LookupKind = LookupOrdinaryName; 641 Found = DRE->getFoundDecl(); 642 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) { 643 NameInfo = ME->getMemberNameInfo(); 644 SS.Adopt(ME->getQualifierLoc()); 645 LookupKind = LookupMemberName; 646 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); 647 Found = ME->getMemberDecl(); 648 } else if (auto *DSDRE = 649 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) { 650 NameInfo = DSDRE->getNameInfo(); 651 SS.Adopt(DSDRE->getQualifierLoc()); 652 MissingTemplateKeyword = true; 653 } else if (auto *DSME = 654 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) { 655 NameInfo = DSME->getMemberNameInfo(); 656 SS.Adopt(DSME->getQualifierLoc()); 657 MissingTemplateKeyword = true; 658 } else { 659 llvm_unreachable("unexpected kind of potential template name"); 660 } 661 662 // If this is a dependent-scope lookup, diagnose that the 'template' keyword 663 // was missing. 664 if (MissingTemplateKeyword) { 665 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing) 666 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater); 667 return; 668 } 669 670 // Try to correct the name by looking for templates and C++ named casts. 671 struct TemplateCandidateFilter : CorrectionCandidateCallback { 672 Sema &S; 673 TemplateCandidateFilter(Sema &S) : S(S) { 674 WantTypeSpecifiers = false; 675 WantExpressionKeywords = false; 676 WantRemainingKeywords = false; 677 WantCXXNamedCasts = true; 678 }; 679 bool ValidateCandidate(const TypoCorrection &Candidate) override { 680 if (auto *ND = Candidate.getCorrectionDecl()) 681 return S.getAsTemplateNameDecl(ND); 682 return Candidate.isKeyword(); 683 } 684 685 std::unique_ptr<CorrectionCandidateCallback> clone() override { 686 return std::make_unique<TemplateCandidateFilter>(*this); 687 } 688 }; 689 690 DeclarationName Name = NameInfo.getName(); 691 TemplateCandidateFilter CCC(*this); 692 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC, 693 CTK_ErrorRecovery, LookupCtx)) { 694 auto *ND = Corrected.getFoundDecl(); 695 if (ND) 696 ND = getAsTemplateNameDecl(ND); 697 if (ND || Corrected.isKeyword()) { 698 if (LookupCtx) { 699 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 700 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 701 Name.getAsString() == CorrectedStr; 702 diagnoseTypo(Corrected, 703 PDiag(diag::err_non_template_in_member_template_id_suggest) 704 << Name << LookupCtx << DroppedSpecifier 705 << SS.getRange(), false); 706 } else { 707 diagnoseTypo(Corrected, 708 PDiag(diag::err_non_template_in_template_id_suggest) 709 << Name, false); 710 } 711 if (Found) 712 Diag(Found->getLocation(), 713 diag::note_non_template_in_template_id_found); 714 return; 715 } 716 } 717 718 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) 719 << Name << SourceRange(Less, Greater); 720 if (Found) 721 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); 722 } 723 724 /// ActOnDependentIdExpression - Handle a dependent id-expression that 725 /// was just parsed. This is only possible with an explicit scope 726 /// specifier naming a dependent type. 727 ExprResult 728 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 729 SourceLocation TemplateKWLoc, 730 const DeclarationNameInfo &NameInfo, 731 bool isAddressOfOperand, 732 const TemplateArgumentListInfo *TemplateArgs) { 733 DeclContext *DC = getFunctionLevelDeclContext(); 734 735 // C++11 [expr.prim.general]p12: 736 // An id-expression that denotes a non-static data member or non-static 737 // member function of a class can only be used: 738 // (...) 739 // - if that id-expression denotes a non-static data member and it 740 // appears in an unevaluated operand. 741 // 742 // If this might be the case, form a DependentScopeDeclRefExpr instead of a 743 // CXXDependentScopeMemberExpr. The former can instantiate to either 744 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is 745 // always a MemberExpr. 746 bool MightBeCxx11UnevalField = 747 getLangOpts().CPlusPlus11 && isUnevaluatedContext(); 748 749 // Check if the nested name specifier is an enum type. 750 bool IsEnum = false; 751 if (NestedNameSpecifier *NNS = SS.getScopeRep()) 752 IsEnum = isa_and_nonnull<EnumType>(NNS->getAsType()); 753 754 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum && 755 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) { 756 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(); 757 758 // Since the 'this' expression is synthesized, we don't need to 759 // perform the double-lookup check. 760 NamedDecl *FirstQualifierInScope = nullptr; 761 762 return CXXDependentScopeMemberExpr::Create( 763 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true, 764 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc, 765 FirstQualifierInScope, NameInfo, TemplateArgs); 766 } 767 768 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 769 } 770 771 ExprResult 772 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 773 SourceLocation TemplateKWLoc, 774 const DeclarationNameInfo &NameInfo, 775 const TemplateArgumentListInfo *TemplateArgs) { 776 // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc 777 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 778 if (!QualifierLoc) 779 return ExprError(); 780 781 return DependentScopeDeclRefExpr::Create( 782 Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs); 783 } 784 785 786 /// Determine whether we would be unable to instantiate this template (because 787 /// it either has no definition, or is in the process of being instantiated). 788 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, 789 NamedDecl *Instantiation, 790 bool InstantiatedFromMember, 791 const NamedDecl *Pattern, 792 const NamedDecl *PatternDef, 793 TemplateSpecializationKind TSK, 794 bool Complain /*= true*/) { 795 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || 796 isa<VarDecl>(Instantiation)); 797 798 bool IsEntityBeingDefined = false; 799 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef)) 800 IsEntityBeingDefined = TD->isBeingDefined(); 801 802 if (PatternDef && !IsEntityBeingDefined) { 803 NamedDecl *SuggestedDef = nullptr; 804 if (!hasReachableDefinition(const_cast<NamedDecl *>(PatternDef), 805 &SuggestedDef, 806 /*OnlyNeedComplete*/ false)) { 807 // If we're allowed to diagnose this and recover, do so. 808 bool Recover = Complain && !isSFINAEContext(); 809 if (Complain) 810 diagnoseMissingImport(PointOfInstantiation, SuggestedDef, 811 Sema::MissingImportKind::Definition, Recover); 812 return !Recover; 813 } 814 return false; 815 } 816 817 if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) 818 return true; 819 820 std::optional<unsigned> Note; 821 QualType InstantiationTy; 822 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation)) 823 InstantiationTy = Context.getTypeDeclType(TD); 824 if (PatternDef) { 825 Diag(PointOfInstantiation, 826 diag::err_template_instantiate_within_definition) 827 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) 828 << InstantiationTy; 829 // Not much point in noting the template declaration here, since 830 // we're lexically inside it. 831 Instantiation->setInvalidDecl(); 832 } else if (InstantiatedFromMember) { 833 if (isa<FunctionDecl>(Instantiation)) { 834 Diag(PointOfInstantiation, 835 diag::err_explicit_instantiation_undefined_member) 836 << /*member function*/ 1 << Instantiation->getDeclName() 837 << Instantiation->getDeclContext(); 838 Note = diag::note_explicit_instantiation_here; 839 } else { 840 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!"); 841 Diag(PointOfInstantiation, 842 diag::err_implicit_instantiate_member_undefined) 843 << InstantiationTy; 844 Note = diag::note_member_declared_at; 845 } 846 } else { 847 if (isa<FunctionDecl>(Instantiation)) { 848 Diag(PointOfInstantiation, 849 diag::err_explicit_instantiation_undefined_func_template) 850 << Pattern; 851 Note = diag::note_explicit_instantiation_here; 852 } else if (isa<TagDecl>(Instantiation)) { 853 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) 854 << (TSK != TSK_ImplicitInstantiation) 855 << InstantiationTy; 856 Note = diag::note_template_decl_here; 857 } else { 858 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!"); 859 if (isa<VarTemplateSpecializationDecl>(Instantiation)) { 860 Diag(PointOfInstantiation, 861 diag::err_explicit_instantiation_undefined_var_template) 862 << Instantiation; 863 Instantiation->setInvalidDecl(); 864 } else 865 Diag(PointOfInstantiation, 866 diag::err_explicit_instantiation_undefined_member) 867 << /*static data member*/ 2 << Instantiation->getDeclName() 868 << Instantiation->getDeclContext(); 869 Note = diag::note_explicit_instantiation_here; 870 } 871 } 872 if (Note) // Diagnostics were emitted. 873 Diag(Pattern->getLocation(), *Note); 874 875 // In general, Instantiation isn't marked invalid to get more than one 876 // error for multiple undefined instantiations. But the code that does 877 // explicit declaration -> explicit definition conversion can't handle 878 // invalid declarations, so mark as invalid in that case. 879 if (TSK == TSK_ExplicitInstantiationDeclaration) 880 Instantiation->setInvalidDecl(); 881 return true; 882 } 883 884 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 885 /// that the template parameter 'PrevDecl' is being shadowed by a new 886 /// declaration at location Loc. Returns true to indicate that this is 887 /// an error, and false otherwise. 888 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 889 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 890 891 // C++ [temp.local]p4: 892 // A template-parameter shall not be redeclared within its 893 // scope (including nested scopes). 894 // 895 // Make this a warning when MSVC compatibility is requested. 896 unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow 897 : diag::err_template_param_shadow; 898 Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName(); 899 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 900 } 901 902 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 903 /// the parameter D to reference the templated declaration and return a pointer 904 /// to the template declaration. Otherwise, do nothing to D and return null. 905 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 906 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 907 D = Temp->getTemplatedDecl(); 908 return Temp; 909 } 910 return nullptr; 911 } 912 913 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 914 SourceLocation EllipsisLoc) const { 915 assert(Kind == Template && 916 "Only template template arguments can be pack expansions here"); 917 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 918 "Template template argument pack expansion without packs"); 919 ParsedTemplateArgument Result(*this); 920 Result.EllipsisLoc = EllipsisLoc; 921 return Result; 922 } 923 924 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 925 const ParsedTemplateArgument &Arg) { 926 927 switch (Arg.getKind()) { 928 case ParsedTemplateArgument::Type: { 929 TypeSourceInfo *DI; 930 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 931 if (!DI) 932 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 933 return TemplateArgumentLoc(TemplateArgument(T), DI); 934 } 935 936 case ParsedTemplateArgument::NonType: { 937 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 938 return TemplateArgumentLoc(TemplateArgument(E), E); 939 } 940 941 case ParsedTemplateArgument::Template: { 942 TemplateName Template = Arg.getAsTemplate().get(); 943 TemplateArgument TArg; 944 if (Arg.getEllipsisLoc().isValid()) 945 TArg = TemplateArgument(Template, std::optional<unsigned int>()); 946 else 947 TArg = Template; 948 return TemplateArgumentLoc( 949 SemaRef.Context, TArg, 950 Arg.getScopeSpec().getWithLocInContext(SemaRef.Context), 951 Arg.getLocation(), Arg.getEllipsisLoc()); 952 } 953 } 954 955 llvm_unreachable("Unhandled parsed template argument"); 956 } 957 958 /// Translates template arguments as provided by the parser 959 /// into template arguments used by semantic analysis. 960 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 961 TemplateArgumentListInfo &TemplateArgs) { 962 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 963 TemplateArgs.addArgument(translateTemplateArgument(*this, 964 TemplateArgsIn[I])); 965 } 966 967 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, 968 SourceLocation Loc, 969 IdentifierInfo *Name) { 970 NamedDecl *PrevDecl = SemaRef.LookupSingleName( 971 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 972 if (PrevDecl && PrevDecl->isTemplateParameter()) 973 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); 974 } 975 976 /// Convert a parsed type into a parsed template argument. This is mostly 977 /// trivial, except that we may have parsed a C++17 deduced class template 978 /// specialization type, in which case we should form a template template 979 /// argument instead of a type template argument. 980 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { 981 TypeSourceInfo *TInfo; 982 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo); 983 if (T.isNull()) 984 return ParsedTemplateArgument(); 985 assert(TInfo && "template argument with no location"); 986 987 // If we might have formed a deduced template specialization type, convert 988 // it to a template template argument. 989 if (getLangOpts().CPlusPlus17) { 990 TypeLoc TL = TInfo->getTypeLoc(); 991 SourceLocation EllipsisLoc; 992 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { 993 EllipsisLoc = PET.getEllipsisLoc(); 994 TL = PET.getPatternLoc(); 995 } 996 997 CXXScopeSpec SS; 998 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { 999 SS.Adopt(ET.getQualifierLoc()); 1000 TL = ET.getNamedTypeLoc(); 1001 } 1002 1003 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { 1004 TemplateName Name = DTST.getTypePtr()->getTemplateName(); 1005 if (SS.isSet()) 1006 Name = Context.getQualifiedTemplateName(SS.getScopeRep(), 1007 /*HasTemplateKeyword=*/false, 1008 Name); 1009 ParsedTemplateArgument Result(SS, TemplateTy::make(Name), 1010 DTST.getTemplateNameLoc()); 1011 if (EllipsisLoc.isValid()) 1012 Result = Result.getTemplatePackExpansion(EllipsisLoc); 1013 return Result; 1014 } 1015 } 1016 1017 // This is a normal type template argument. Note, if the type template 1018 // argument is an injected-class-name for a template, it has a dual nature 1019 // and can be used as either a type or a template. We handle that in 1020 // convertTypeTemplateArgumentToTemplate. 1021 return ParsedTemplateArgument(ParsedTemplateArgument::Type, 1022 ParsedType.get().getAsOpaquePtr(), 1023 TInfo->getTypeLoc().getBeginLoc()); 1024 } 1025 1026 /// ActOnTypeParameter - Called when a C++ template type parameter 1027 /// (e.g., "typename T") has been parsed. Typename specifies whether 1028 /// the keyword "typename" was used to declare the type parameter 1029 /// (otherwise, "class" was used), and KeyLoc is the location of the 1030 /// "class" or "typename" keyword. ParamName is the name of the 1031 /// parameter (NULL indicates an unnamed template parameter) and 1032 /// ParamNameLoc is the location of the parameter name (if any). 1033 /// If the type parameter has a default argument, it will be added 1034 /// later via ActOnTypeParameterDefault. 1035 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, 1036 SourceLocation EllipsisLoc, 1037 SourceLocation KeyLoc, 1038 IdentifierInfo *ParamName, 1039 SourceLocation ParamNameLoc, 1040 unsigned Depth, unsigned Position, 1041 SourceLocation EqualLoc, 1042 ParsedType DefaultArg, 1043 bool HasTypeConstraint) { 1044 assert(S->isTemplateParamScope() && 1045 "Template type parameter not in template parameter scope!"); 1046 1047 bool IsParameterPack = EllipsisLoc.isValid(); 1048 TemplateTypeParmDecl *Param 1049 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1050 KeyLoc, ParamNameLoc, Depth, Position, 1051 ParamName, Typename, IsParameterPack, 1052 HasTypeConstraint); 1053 Param->setAccess(AS_public); 1054 1055 if (Param->isParameterPack()) 1056 if (auto *LSI = getEnclosingLambda()) 1057 LSI->LocalPacks.push_back(Param); 1058 1059 if (ParamName) { 1060 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); 1061 1062 // Add the template parameter into the current scope. 1063 S->AddDecl(Param); 1064 IdResolver.AddDecl(Param); 1065 } 1066 1067 // C++0x [temp.param]p9: 1068 // A default template-argument may be specified for any kind of 1069 // template-parameter that is not a template parameter pack. 1070 if (DefaultArg && IsParameterPack) { 1071 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1072 DefaultArg = nullptr; 1073 } 1074 1075 // Handle the default argument, if provided. 1076 if (DefaultArg) { 1077 TypeSourceInfo *DefaultTInfo; 1078 GetTypeFromParser(DefaultArg, &DefaultTInfo); 1079 1080 assert(DefaultTInfo && "expected source information for type"); 1081 1082 // Check for unexpanded parameter packs. 1083 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo, 1084 UPPC_DefaultArgument)) 1085 return Param; 1086 1087 // Check the template argument itself. 1088 if (CheckTemplateArgument(DefaultTInfo)) { 1089 Param->setInvalidDecl(); 1090 return Param; 1091 } 1092 1093 Param->setDefaultArgument(DefaultTInfo); 1094 } 1095 1096 return Param; 1097 } 1098 1099 /// Convert the parser's template argument list representation into our form. 1100 static TemplateArgumentListInfo 1101 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { 1102 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, 1103 TemplateId.RAngleLoc); 1104 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), 1105 TemplateId.NumArgs); 1106 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 1107 return TemplateArgs; 1108 } 1109 1110 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS, 1111 TemplateIdAnnotation *TypeConstr, 1112 TemplateTypeParmDecl *ConstrainedParameter, 1113 SourceLocation EllipsisLoc) { 1114 return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc, 1115 false); 1116 } 1117 1118 bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS, 1119 TemplateIdAnnotation *TypeConstr, 1120 TemplateTypeParmDecl *ConstrainedParameter, 1121 SourceLocation EllipsisLoc, 1122 bool AllowUnexpandedPack) { 1123 TemplateName TN = TypeConstr->Template.get(); 1124 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl()); 1125 1126 // C++2a [temp.param]p4: 1127 // [...] The concept designated by a type-constraint shall be a type 1128 // concept ([temp.concept]). 1129 if (!CD->isTypeConcept()) { 1130 Diag(TypeConstr->TemplateNameLoc, 1131 diag::err_type_constraint_non_type_concept); 1132 return true; 1133 } 1134 1135 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid(); 1136 1137 if (!WereArgsSpecified && 1138 CD->getTemplateParameters()->getMinRequiredArguments() > 1) { 1139 Diag(TypeConstr->TemplateNameLoc, 1140 diag::err_type_constraint_missing_arguments) << CD; 1141 return true; 1142 } 1143 1144 DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name), 1145 TypeConstr->TemplateNameLoc); 1146 1147 TemplateArgumentListInfo TemplateArgs; 1148 if (TypeConstr->LAngleLoc.isValid()) { 1149 TemplateArgs = 1150 makeTemplateArgumentListInfo(*this, *TypeConstr); 1151 1152 if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) { 1153 for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) { 1154 if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint)) 1155 return true; 1156 } 1157 } 1158 } 1159 return AttachTypeConstraint( 1160 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(), 1161 ConceptName, CD, 1162 TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr, 1163 ConstrainedParameter, EllipsisLoc); 1164 } 1165 1166 template<typename ArgumentLocAppender> 1167 static ExprResult formImmediatelyDeclaredConstraint( 1168 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, 1169 ConceptDecl *NamedConcept, SourceLocation LAngleLoc, 1170 SourceLocation RAngleLoc, QualType ConstrainedType, 1171 SourceLocation ParamNameLoc, ArgumentLocAppender Appender, 1172 SourceLocation EllipsisLoc) { 1173 1174 TemplateArgumentListInfo ConstraintArgs; 1175 ConstraintArgs.addArgument( 1176 S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType), 1177 /*NTTPType=*/QualType(), ParamNameLoc)); 1178 1179 ConstraintArgs.setRAngleLoc(RAngleLoc); 1180 ConstraintArgs.setLAngleLoc(LAngleLoc); 1181 Appender(ConstraintArgs); 1182 1183 // C++2a [temp.param]p4: 1184 // [...] This constraint-expression E is called the immediately-declared 1185 // constraint of T. [...] 1186 CXXScopeSpec SS; 1187 SS.Adopt(NS); 1188 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId( 1189 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo, 1190 /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs); 1191 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid()) 1192 return ImmediatelyDeclaredConstraint; 1193 1194 // C++2a [temp.param]p4: 1195 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). 1196 // 1197 // We have the following case: 1198 // 1199 // template<typename T> concept C1 = true; 1200 // template<C1... T> struct s1; 1201 // 1202 // The constraint: (C1<T> && ...) 1203 // 1204 // Note that the type of C1<T> is known to be 'bool', so we don't need to do 1205 // any unqualified lookups for 'operator&&' here. 1206 return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr, 1207 /*LParenLoc=*/SourceLocation(), 1208 ImmediatelyDeclaredConstraint.get(), BO_LAnd, 1209 EllipsisLoc, /*RHS=*/nullptr, 1210 /*RParenLoc=*/SourceLocation(), 1211 /*NumExpansions=*/std::nullopt); 1212 } 1213 1214 /// Attach a type-constraint to a template parameter. 1215 /// \returns true if an error occurred. This can happen if the 1216 /// immediately-declared constraint could not be formed (e.g. incorrect number 1217 /// of arguments for the named concept). 1218 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS, 1219 DeclarationNameInfo NameInfo, 1220 ConceptDecl *NamedConcept, 1221 const TemplateArgumentListInfo *TemplateArgs, 1222 TemplateTypeParmDecl *ConstrainedParameter, 1223 SourceLocation EllipsisLoc) { 1224 // C++2a [temp.param]p4: 1225 // [...] If Q is of the form C<A1, ..., An>, then let E' be 1226 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...] 1227 const ASTTemplateArgumentListInfo *ArgsAsWritten = 1228 TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context, 1229 *TemplateArgs) : nullptr; 1230 1231 QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0); 1232 1233 ExprResult ImmediatelyDeclaredConstraint = 1234 formImmediatelyDeclaredConstraint( 1235 *this, NS, NameInfo, NamedConcept, 1236 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(), 1237 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(), 1238 ParamAsArgument, ConstrainedParameter->getLocation(), 1239 [&] (TemplateArgumentListInfo &ConstraintArgs) { 1240 if (TemplateArgs) 1241 for (const auto &ArgLoc : TemplateArgs->arguments()) 1242 ConstraintArgs.addArgument(ArgLoc); 1243 }, EllipsisLoc); 1244 if (ImmediatelyDeclaredConstraint.isInvalid()) 1245 return true; 1246 1247 ConstrainedParameter->setTypeConstraint(NS, NameInfo, 1248 /*FoundDecl=*/NamedConcept, 1249 NamedConcept, ArgsAsWritten, 1250 ImmediatelyDeclaredConstraint.get()); 1251 return false; 1252 } 1253 1254 bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP, 1255 SourceLocation EllipsisLoc) { 1256 if (NTTP->getType() != TL.getType() || 1257 TL.getAutoKeyword() != AutoTypeKeyword::Auto) { 1258 Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1259 diag::err_unsupported_placeholder_constraint) 1260 << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange(); 1261 return true; 1262 } 1263 // FIXME: Concepts: This should be the type of the placeholder, but this is 1264 // unclear in the wording right now. 1265 DeclRefExpr *Ref = 1266 BuildDeclRefExpr(NTTP, NTTP->getType(), VK_PRValue, NTTP->getLocation()); 1267 if (!Ref) 1268 return true; 1269 ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( 1270 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(), 1271 TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(), 1272 BuildDecltypeType(Ref), NTTP->getLocation(), 1273 [&](TemplateArgumentListInfo &ConstraintArgs) { 1274 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I) 1275 ConstraintArgs.addArgument(TL.getArgLoc(I)); 1276 }, 1277 EllipsisLoc); 1278 if (ImmediatelyDeclaredConstraint.isInvalid() || 1279 !ImmediatelyDeclaredConstraint.isUsable()) 1280 return true; 1281 1282 NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get()); 1283 return false; 1284 } 1285 1286 /// Check that the type of a non-type template parameter is 1287 /// well-formed. 1288 /// 1289 /// \returns the (possibly-promoted) parameter type if valid; 1290 /// otherwise, produces a diagnostic and returns a NULL type. 1291 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, 1292 SourceLocation Loc) { 1293 if (TSI->getType()->isUndeducedType()) { 1294 // C++17 [temp.dep.expr]p3: 1295 // An id-expression is type-dependent if it contains 1296 // - an identifier associated by name lookup with a non-type 1297 // template-parameter declared with a type that contains a 1298 // placeholder type (7.1.7.4), 1299 TSI = SubstAutoTypeSourceInfoDependent(TSI); 1300 } 1301 1302 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc); 1303 } 1304 1305 /// Require the given type to be a structural type, and diagnose if it is not. 1306 /// 1307 /// \return \c true if an error was produced. 1308 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) { 1309 if (T->isDependentType()) 1310 return false; 1311 1312 if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete)) 1313 return true; 1314 1315 if (T->isStructuralType()) 1316 return false; 1317 1318 // Structural types are required to be object types or lvalue references. 1319 if (T->isRValueReferenceType()) { 1320 Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T; 1321 return true; 1322 } 1323 1324 // Don't mention structural types in our diagnostic prior to C++20. Also, 1325 // there's not much more we can say about non-scalar non-class types -- 1326 // because we can't see functions or arrays here, those can only be language 1327 // extensions. 1328 if (!getLangOpts().CPlusPlus20 || 1329 (!T->isScalarType() && !T->isRecordType())) { 1330 Diag(Loc, diag::err_template_nontype_parm_bad_type) << T; 1331 return true; 1332 } 1333 1334 // Structural types are required to be literal types. 1335 if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal)) 1336 return true; 1337 1338 Diag(Loc, diag::err_template_nontype_parm_not_structural) << T; 1339 1340 // Drill down into the reason why the class is non-structural. 1341 while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 1342 // All members are required to be public and non-mutable, and can't be of 1343 // rvalue reference type. Check these conditions first to prefer a "local" 1344 // reason over a more distant one. 1345 for (const FieldDecl *FD : RD->fields()) { 1346 if (FD->getAccess() != AS_public) { 1347 Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0; 1348 return true; 1349 } 1350 if (FD->isMutable()) { 1351 Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T; 1352 return true; 1353 } 1354 if (FD->getType()->isRValueReferenceType()) { 1355 Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field) 1356 << T; 1357 return true; 1358 } 1359 } 1360 1361 // All bases are required to be public. 1362 for (const auto &BaseSpec : RD->bases()) { 1363 if (BaseSpec.getAccessSpecifier() != AS_public) { 1364 Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public) 1365 << T << 1; 1366 return true; 1367 } 1368 } 1369 1370 // All subobjects are required to be of structural types. 1371 SourceLocation SubLoc; 1372 QualType SubType; 1373 int Kind = -1; 1374 1375 for (const FieldDecl *FD : RD->fields()) { 1376 QualType T = Context.getBaseElementType(FD->getType()); 1377 if (!T->isStructuralType()) { 1378 SubLoc = FD->getLocation(); 1379 SubType = T; 1380 Kind = 0; 1381 break; 1382 } 1383 } 1384 1385 if (Kind == -1) { 1386 for (const auto &BaseSpec : RD->bases()) { 1387 QualType T = BaseSpec.getType(); 1388 if (!T->isStructuralType()) { 1389 SubLoc = BaseSpec.getBaseTypeLoc(); 1390 SubType = T; 1391 Kind = 1; 1392 break; 1393 } 1394 } 1395 } 1396 1397 assert(Kind != -1 && "couldn't find reason why type is not structural"); 1398 Diag(SubLoc, diag::note_not_structural_subobject) 1399 << T << Kind << SubType; 1400 T = SubType; 1401 RD = T->getAsCXXRecordDecl(); 1402 } 1403 1404 return true; 1405 } 1406 1407 QualType Sema::CheckNonTypeTemplateParameterType(QualType T, 1408 SourceLocation Loc) { 1409 // We don't allow variably-modified types as the type of non-type template 1410 // parameters. 1411 if (T->isVariablyModifiedType()) { 1412 Diag(Loc, diag::err_variably_modified_nontype_template_param) 1413 << T; 1414 return QualType(); 1415 } 1416 1417 // C++ [temp.param]p4: 1418 // 1419 // A non-type template-parameter shall have one of the following 1420 // (optionally cv-qualified) types: 1421 // 1422 // -- integral or enumeration type, 1423 if (T->isIntegralOrEnumerationType() || 1424 // -- pointer to object or pointer to function, 1425 T->isPointerType() || 1426 // -- lvalue reference to object or lvalue reference to function, 1427 T->isLValueReferenceType() || 1428 // -- pointer to member, 1429 T->isMemberPointerType() || 1430 // -- std::nullptr_t, or 1431 T->isNullPtrType() || 1432 // -- a type that contains a placeholder type. 1433 T->isUndeducedType()) { 1434 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 1435 // are ignored when determining its type. 1436 return T.getUnqualifiedType(); 1437 } 1438 1439 // C++ [temp.param]p8: 1440 // 1441 // A non-type template-parameter of type "array of T" or 1442 // "function returning T" is adjusted to be of type "pointer to 1443 // T" or "pointer to function returning T", respectively. 1444 if (T->isArrayType() || T->isFunctionType()) 1445 return Context.getDecayedType(T); 1446 1447 // If T is a dependent type, we can't do the check now, so we 1448 // assume that it is well-formed. Note that stripping off the 1449 // qualifiers here is not really correct if T turns out to be 1450 // an array type, but we'll recompute the type everywhere it's 1451 // used during instantiation, so that should be OK. (Using the 1452 // qualified type is equally wrong.) 1453 if (T->isDependentType()) 1454 return T.getUnqualifiedType(); 1455 1456 // C++20 [temp.param]p6: 1457 // -- a structural type 1458 if (RequireStructuralType(T, Loc)) 1459 return QualType(); 1460 1461 if (!getLangOpts().CPlusPlus20) { 1462 // FIXME: Consider allowing structural types as an extension in C++17. (In 1463 // earlier language modes, the template argument evaluation rules are too 1464 // inflexible.) 1465 Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T; 1466 return QualType(); 1467 } 1468 1469 Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T; 1470 return T.getUnqualifiedType(); 1471 } 1472 1473 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 1474 unsigned Depth, 1475 unsigned Position, 1476 SourceLocation EqualLoc, 1477 Expr *Default) { 1478 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 1479 1480 // Check that we have valid decl-specifiers specified. 1481 auto CheckValidDeclSpecifiers = [this, &D] { 1482 // C++ [temp.param] 1483 // p1 1484 // template-parameter: 1485 // ... 1486 // parameter-declaration 1487 // p2 1488 // ... A storage class shall not be specified in a template-parameter 1489 // declaration. 1490 // [dcl.typedef]p1: 1491 // The typedef specifier [...] shall not be used in the decl-specifier-seq 1492 // of a parameter-declaration 1493 const DeclSpec &DS = D.getDeclSpec(); 1494 auto EmitDiag = [this](SourceLocation Loc) { 1495 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) 1496 << FixItHint::CreateRemoval(Loc); 1497 }; 1498 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) 1499 EmitDiag(DS.getStorageClassSpecLoc()); 1500 1501 if (DS.getThreadStorageClassSpec() != TSCS_unspecified) 1502 EmitDiag(DS.getThreadStorageClassSpecLoc()); 1503 1504 // [dcl.inline]p1: 1505 // The inline specifier can be applied only to the declaration or 1506 // definition of a variable or function. 1507 1508 if (DS.isInlineSpecified()) 1509 EmitDiag(DS.getInlineSpecLoc()); 1510 1511 // [dcl.constexpr]p1: 1512 // The constexpr specifier shall be applied only to the definition of a 1513 // variable or variable template or the declaration of a function or 1514 // function template. 1515 1516 if (DS.hasConstexprSpecifier()) 1517 EmitDiag(DS.getConstexprSpecLoc()); 1518 1519 // [dcl.fct.spec]p1: 1520 // Function-specifiers can be used only in function declarations. 1521 1522 if (DS.isVirtualSpecified()) 1523 EmitDiag(DS.getVirtualSpecLoc()); 1524 1525 if (DS.hasExplicitSpecifier()) 1526 EmitDiag(DS.getExplicitSpecLoc()); 1527 1528 if (DS.isNoreturnSpecified()) 1529 EmitDiag(DS.getNoreturnSpecLoc()); 1530 }; 1531 1532 CheckValidDeclSpecifiers(); 1533 1534 if (const auto *T = TInfo->getType()->getContainedDeducedType()) 1535 if (isa<AutoType>(T)) 1536 Diag(D.getIdentifierLoc(), 1537 diag::warn_cxx14_compat_template_nontype_parm_auto_type) 1538 << QualType(TInfo->getType()->getContainedAutoType(), 0); 1539 1540 assert(S->isTemplateParamScope() && 1541 "Non-type template parameter not in template parameter scope!"); 1542 bool Invalid = false; 1543 1544 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc()); 1545 if (T.isNull()) { 1546 T = Context.IntTy; // Recover with an 'int' type. 1547 Invalid = true; 1548 } 1549 1550 CheckFunctionOrTemplateParamDeclarator(S, D); 1551 1552 IdentifierInfo *ParamName = D.getIdentifier(); 1553 bool IsParameterPack = D.hasEllipsis(); 1554 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create( 1555 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(), 1556 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack, 1557 TInfo); 1558 Param->setAccess(AS_public); 1559 1560 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) 1561 if (TL.isConstrained()) 1562 if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc())) 1563 Invalid = true; 1564 1565 if (Invalid) 1566 Param->setInvalidDecl(); 1567 1568 if (Param->isParameterPack()) 1569 if (auto *LSI = getEnclosingLambda()) 1570 LSI->LocalPacks.push_back(Param); 1571 1572 if (ParamName) { 1573 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), 1574 ParamName); 1575 1576 // Add the template parameter into the current scope. 1577 S->AddDecl(Param); 1578 IdResolver.AddDecl(Param); 1579 } 1580 1581 // C++0x [temp.param]p9: 1582 // A default template-argument may be specified for any kind of 1583 // template-parameter that is not a template parameter pack. 1584 if (Default && IsParameterPack) { 1585 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1586 Default = nullptr; 1587 } 1588 1589 // Check the well-formedness of the default template argument, if provided. 1590 if (Default) { 1591 // Check for unexpanded parameter packs. 1592 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 1593 return Param; 1594 1595 TemplateArgument SugaredConverted, CanonicalConverted; 1596 ExprResult DefaultRes = CheckTemplateArgument( 1597 Param, Param->getType(), Default, SugaredConverted, CanonicalConverted, 1598 CTAK_Specified); 1599 if (DefaultRes.isInvalid()) { 1600 Param->setInvalidDecl(); 1601 return Param; 1602 } 1603 Default = DefaultRes.get(); 1604 1605 Param->setDefaultArgument(Default); 1606 } 1607 1608 return Param; 1609 } 1610 1611 /// ActOnTemplateTemplateParameter - Called when a C++ template template 1612 /// parameter (e.g. T in template <template \<typename> class T> class array) 1613 /// has been parsed. S is the current scope. 1614 NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S, 1615 SourceLocation TmpLoc, 1616 TemplateParameterList *Params, 1617 SourceLocation EllipsisLoc, 1618 IdentifierInfo *Name, 1619 SourceLocation NameLoc, 1620 unsigned Depth, 1621 unsigned Position, 1622 SourceLocation EqualLoc, 1623 ParsedTemplateArgument Default) { 1624 assert(S->isTemplateParamScope() && 1625 "Template template parameter not in template parameter scope!"); 1626 1627 // Construct the parameter object. 1628 bool IsParameterPack = EllipsisLoc.isValid(); 1629 TemplateTemplateParmDecl *Param = 1630 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1631 NameLoc.isInvalid()? TmpLoc : NameLoc, 1632 Depth, Position, IsParameterPack, 1633 Name, Params); 1634 Param->setAccess(AS_public); 1635 1636 if (Param->isParameterPack()) 1637 if (auto *LSI = getEnclosingLambda()) 1638 LSI->LocalPacks.push_back(Param); 1639 1640 // If the template template parameter has a name, then link the identifier 1641 // into the scope and lookup mechanisms. 1642 if (Name) { 1643 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); 1644 1645 S->AddDecl(Param); 1646 IdResolver.AddDecl(Param); 1647 } 1648 1649 if (Params->size() == 0) { 1650 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 1651 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 1652 Param->setInvalidDecl(); 1653 } 1654 1655 // C++0x [temp.param]p9: 1656 // A default template-argument may be specified for any kind of 1657 // template-parameter that is not a template parameter pack. 1658 if (IsParameterPack && !Default.isInvalid()) { 1659 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1660 Default = ParsedTemplateArgument(); 1661 } 1662 1663 if (!Default.isInvalid()) { 1664 // Check only that we have a template template argument. We don't want to 1665 // try to check well-formedness now, because our template template parameter 1666 // might have dependent types in its template parameters, which we wouldn't 1667 // be able to match now. 1668 // 1669 // If none of the template template parameter's template arguments mention 1670 // other template parameters, we could actually perform more checking here. 1671 // However, it isn't worth doing. 1672 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 1673 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 1674 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template) 1675 << DefaultArg.getSourceRange(); 1676 return Param; 1677 } 1678 1679 // Check for unexpanded parameter packs. 1680 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 1681 DefaultArg.getArgument().getAsTemplate(), 1682 UPPC_DefaultArgument)) 1683 return Param; 1684 1685 Param->setDefaultArgument(Context, DefaultArg); 1686 } 1687 1688 return Param; 1689 } 1690 1691 namespace { 1692 class ConstraintRefersToContainingTemplateChecker 1693 : public TreeTransform<ConstraintRefersToContainingTemplateChecker> { 1694 bool Result = false; 1695 const FunctionDecl *Friend = nullptr; 1696 unsigned TemplateDepth = 0; 1697 1698 // Check a record-decl that we've seen to see if it is a lexical parent of the 1699 // Friend, likely because it was referred to without its template arguments. 1700 void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) { 1701 CheckingRD = CheckingRD->getMostRecentDecl(); 1702 1703 for (const DeclContext *DC = Friend->getLexicalDeclContext(); 1704 DC && !DC->isFileContext(); DC = DC->getParent()) 1705 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC)) 1706 if (CheckingRD == RD->getMostRecentDecl()) 1707 Result = true; 1708 } 1709 1710 void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) { 1711 assert(D->getDepth() <= TemplateDepth && 1712 "Nothing should reference a value below the actual template depth, " 1713 "depth is likely wrong"); 1714 if (D->getDepth() != TemplateDepth) 1715 Result = true; 1716 1717 // Necessary because the type of the NTTP might be what refers to the parent 1718 // constriant. 1719 TransformType(D->getType()); 1720 } 1721 1722 public: 1723 using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>; 1724 1725 ConstraintRefersToContainingTemplateChecker(Sema &SemaRef, 1726 const FunctionDecl *Friend, 1727 unsigned TemplateDepth) 1728 : inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {} 1729 bool getResult() const { return Result; } 1730 1731 // This should be the only template parm type that we have to deal with. 1732 // SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and 1733 // FunctionParmPackExpr are all partially substituted, which cannot happen 1734 // with concepts at this point in translation. 1735 using inherited::TransformTemplateTypeParmType; 1736 QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB, 1737 TemplateTypeParmTypeLoc TL, bool) { 1738 assert(TL.getDecl()->getDepth() <= TemplateDepth && 1739 "Nothing should reference a value below the actual template depth, " 1740 "depth is likely wrong"); 1741 if (TL.getDecl()->getDepth() != TemplateDepth) 1742 Result = true; 1743 return inherited::TransformTemplateTypeParmType( 1744 TLB, TL, 1745 /*SuppressObjCLifetime=*/false); 1746 } 1747 1748 Decl *TransformDecl(SourceLocation Loc, Decl *D) { 1749 if (!D) 1750 return D; 1751 // FIXME : This is possibly an incomplete list, but it is unclear what other 1752 // Decl kinds could be used to refer to the template parameters. This is a 1753 // best guess so far based on examples currently available, but the 1754 // unreachable should catch future instances/cases. 1755 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) 1756 TransformType(TD->getUnderlyingType()); 1757 else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(D)) 1758 CheckNonTypeTemplateParmDecl(NTTPD); 1759 else if (auto *VD = dyn_cast<ValueDecl>(D)) 1760 TransformType(VD->getType()); 1761 else if (auto *TD = dyn_cast<TemplateDecl>(D)) 1762 TransformTemplateParameterList(TD->getTemplateParameters()); 1763 else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 1764 CheckIfContainingRecord(RD); 1765 else if (isa<NamedDecl>(D)) { 1766 // No direct types to visit here I believe. 1767 } else 1768 llvm_unreachable("Don't know how to handle this declaration type yet"); 1769 return D; 1770 } 1771 }; 1772 } // namespace 1773 1774 bool Sema::ConstraintExpressionDependsOnEnclosingTemplate( 1775 const FunctionDecl *Friend, unsigned TemplateDepth, 1776 const Expr *Constraint) { 1777 assert(Friend->getFriendObjectKind() && "Only works on a friend"); 1778 ConstraintRefersToContainingTemplateChecker Checker(*this, Friend, 1779 TemplateDepth); 1780 Checker.TransformExpr(const_cast<Expr *>(Constraint)); 1781 return Checker.getResult(); 1782 } 1783 1784 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally 1785 /// constrained by RequiresClause, that contains the template parameters in 1786 /// Params. 1787 TemplateParameterList * 1788 Sema::ActOnTemplateParameterList(unsigned Depth, 1789 SourceLocation ExportLoc, 1790 SourceLocation TemplateLoc, 1791 SourceLocation LAngleLoc, 1792 ArrayRef<NamedDecl *> Params, 1793 SourceLocation RAngleLoc, 1794 Expr *RequiresClause) { 1795 if (ExportLoc.isValid()) 1796 Diag(ExportLoc, diag::warn_template_export_unsupported); 1797 1798 for (NamedDecl *P : Params) 1799 warnOnReservedIdentifier(P); 1800 1801 return TemplateParameterList::Create( 1802 Context, TemplateLoc, LAngleLoc, 1803 llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause); 1804 } 1805 1806 static void SetNestedNameSpecifier(Sema &S, TagDecl *T, 1807 const CXXScopeSpec &SS) { 1808 if (SS.isSet()) 1809 T->setQualifierInfo(SS.getWithLocInContext(S.Context)); 1810 } 1811 1812 DeclResult Sema::CheckClassTemplate( 1813 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 1814 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, 1815 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, 1816 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 1817 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, 1818 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { 1819 assert(TemplateParams && TemplateParams->size() > 0 && 1820 "No template parameters"); 1821 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 1822 bool Invalid = false; 1823 1824 // Check that we can declare a template here. 1825 if (CheckTemplateDeclScope(S, TemplateParams)) 1826 return true; 1827 1828 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1829 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 1830 1831 // There is no such thing as an unnamed class template. 1832 if (!Name) { 1833 Diag(KWLoc, diag::err_template_unnamed_class); 1834 return true; 1835 } 1836 1837 // Find any previous declaration with this name. For a friend with no 1838 // scope explicitly specified, we only look for tag declarations (per 1839 // C++11 [basic.lookup.elab]p2). 1840 DeclContext *SemanticContext; 1841 LookupResult Previous(*this, Name, NameLoc, 1842 (SS.isEmpty() && TUK == TUK_Friend) 1843 ? LookupTagName : LookupOrdinaryName, 1844 forRedeclarationInCurContext()); 1845 if (SS.isNotEmpty() && !SS.isInvalid()) { 1846 SemanticContext = computeDeclContext(SS, true); 1847 if (!SemanticContext) { 1848 // FIXME: Horrible, horrible hack! We can't currently represent this 1849 // in the AST, and historically we have just ignored such friend 1850 // class templates, so don't complain here. 1851 Diag(NameLoc, TUK == TUK_Friend 1852 ? diag::warn_template_qualified_friend_ignored 1853 : diag::err_template_qualified_declarator_no_match) 1854 << SS.getScopeRep() << SS.getRange(); 1855 return TUK != TUK_Friend; 1856 } 1857 1858 if (RequireCompleteDeclContext(SS, SemanticContext)) 1859 return true; 1860 1861 // If we're adding a template to a dependent context, we may need to 1862 // rebuilding some of the types used within the template parameter list, 1863 // now that we know what the current instantiation is. 1864 if (SemanticContext->isDependentContext()) { 1865 ContextRAII SavedContext(*this, SemanticContext); 1866 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 1867 Invalid = true; 1868 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 1869 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false); 1870 1871 LookupQualifiedName(Previous, SemanticContext); 1872 } else { 1873 SemanticContext = CurContext; 1874 1875 // C++14 [class.mem]p14: 1876 // If T is the name of a class, then each of the following shall have a 1877 // name different from T: 1878 // -- every member template of class T 1879 if (TUK != TUK_Friend && 1880 DiagnoseClassNameShadow(SemanticContext, 1881 DeclarationNameInfo(Name, NameLoc))) 1882 return true; 1883 1884 LookupName(Previous, S); 1885 } 1886 1887 if (Previous.isAmbiguous()) 1888 return true; 1889 1890 NamedDecl *PrevDecl = nullptr; 1891 if (Previous.begin() != Previous.end()) 1892 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1893 1894 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1895 // Maybe we will complain about the shadowed template parameter. 1896 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1897 // Just pretend that we didn't see the previous declaration. 1898 PrevDecl = nullptr; 1899 } 1900 1901 // If there is a previous declaration with the same name, check 1902 // whether this is a valid redeclaration. 1903 ClassTemplateDecl *PrevClassTemplate = 1904 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 1905 1906 // We may have found the injected-class-name of a class template, 1907 // class template partial specialization, or class template specialization. 1908 // In these cases, grab the template that is being defined or specialized. 1909 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 1910 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 1911 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 1912 PrevClassTemplate 1913 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 1914 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 1915 PrevClassTemplate 1916 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 1917 ->getSpecializedTemplate(); 1918 } 1919 } 1920 1921 if (TUK == TUK_Friend) { 1922 // C++ [namespace.memdef]p3: 1923 // [...] When looking for a prior declaration of a class or a function 1924 // declared as a friend, and when the name of the friend class or 1925 // function is neither a qualified name nor a template-id, scopes outside 1926 // the innermost enclosing namespace scope are not considered. 1927 if (!SS.isSet()) { 1928 DeclContext *OutermostContext = CurContext; 1929 while (!OutermostContext->isFileContext()) 1930 OutermostContext = OutermostContext->getLookupParent(); 1931 1932 if (PrevDecl && 1933 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 1934 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 1935 SemanticContext = PrevDecl->getDeclContext(); 1936 } else { 1937 // Declarations in outer scopes don't matter. However, the outermost 1938 // context we computed is the semantic context for our new 1939 // declaration. 1940 PrevDecl = PrevClassTemplate = nullptr; 1941 SemanticContext = OutermostContext; 1942 1943 // Check that the chosen semantic context doesn't already contain a 1944 // declaration of this name as a non-tag type. 1945 Previous.clear(LookupOrdinaryName); 1946 DeclContext *LookupContext = SemanticContext; 1947 while (LookupContext->isTransparentContext()) 1948 LookupContext = LookupContext->getLookupParent(); 1949 LookupQualifiedName(Previous, LookupContext); 1950 1951 if (Previous.isAmbiguous()) 1952 return true; 1953 1954 if (Previous.begin() != Previous.end()) 1955 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1956 } 1957 } 1958 } else if (PrevDecl && 1959 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext, 1960 S, SS.isValid())) 1961 PrevDecl = PrevClassTemplate = nullptr; 1962 1963 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( 1964 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { 1965 if (SS.isEmpty() && 1966 !(PrevClassTemplate && 1967 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( 1968 SemanticContext->getRedeclContext()))) { 1969 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 1970 Diag(Shadow->getTargetDecl()->getLocation(), 1971 diag::note_using_decl_target); 1972 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0; 1973 // Recover by ignoring the old declaration. 1974 PrevDecl = PrevClassTemplate = nullptr; 1975 } 1976 } 1977 1978 if (PrevClassTemplate) { 1979 // Ensure that the template parameter lists are compatible. Skip this check 1980 // for a friend in a dependent context: the template parameter list itself 1981 // could be dependent. 1982 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1983 !TemplateParameterListsAreEqual(TemplateParams, 1984 PrevClassTemplate->getTemplateParameters(), 1985 /*Complain=*/true, 1986 TPL_TemplateMatch)) 1987 return true; 1988 1989 // C++ [temp.class]p4: 1990 // In a redeclaration, partial specialization, explicit 1991 // specialization or explicit instantiation of a class template, 1992 // the class-key shall agree in kind with the original class 1993 // template declaration (7.1.5.3). 1994 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 1995 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 1996 TUK == TUK_Definition, KWLoc, Name)) { 1997 Diag(KWLoc, diag::err_use_with_wrong_tag) 1998 << Name 1999 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 2000 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 2001 Kind = PrevRecordDecl->getTagKind(); 2002 } 2003 2004 // Check for redefinition of this class template. 2005 if (TUK == TUK_Definition) { 2006 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 2007 // If we have a prior definition that is not visible, treat this as 2008 // simply making that previous definition visible. 2009 NamedDecl *Hidden = nullptr; 2010 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 2011 SkipBody->ShouldSkip = true; 2012 SkipBody->Previous = Def; 2013 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate(); 2014 assert(Tmpl && "original definition of a class template is not a " 2015 "class template?"); 2016 makeMergedDefinitionVisible(Hidden); 2017 makeMergedDefinitionVisible(Tmpl); 2018 } else { 2019 Diag(NameLoc, diag::err_redefinition) << Name; 2020 Diag(Def->getLocation(), diag::note_previous_definition); 2021 // FIXME: Would it make sense to try to "forget" the previous 2022 // definition, as part of error recovery? 2023 return true; 2024 } 2025 } 2026 } 2027 } else if (PrevDecl) { 2028 // C++ [temp]p5: 2029 // A class template shall not have the same name as any other 2030 // template, class, function, object, enumeration, enumerator, 2031 // namespace, or type in the same scope (3.3), except as specified 2032 // in (14.5.4). 2033 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 2034 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 2035 return true; 2036 } 2037 2038 // Check the template parameter list of this declaration, possibly 2039 // merging in the template parameter list from the previous class 2040 // template declaration. Skip this check for a friend in a dependent 2041 // context, because the template parameter list might be dependent. 2042 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 2043 CheckTemplateParameterList( 2044 TemplateParams, 2045 PrevClassTemplate 2046 ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters() 2047 : nullptr, 2048 (SS.isSet() && SemanticContext && SemanticContext->isRecord() && 2049 SemanticContext->isDependentContext()) 2050 ? TPC_ClassTemplateMember 2051 : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate, 2052 SkipBody)) 2053 Invalid = true; 2054 2055 if (SS.isSet()) { 2056 // If the name of the template was qualified, we must be defining the 2057 // template out-of-line. 2058 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 2059 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 2060 : diag::err_member_decl_does_not_match) 2061 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange(); 2062 Invalid = true; 2063 } 2064 } 2065 2066 // If this is a templated friend in a dependent context we should not put it 2067 // on the redecl chain. In some cases, the templated friend can be the most 2068 // recent declaration tricking the template instantiator to make substitutions 2069 // there. 2070 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious 2071 bool ShouldAddRedecl 2072 = !(TUK == TUK_Friend && CurContext->isDependentContext()); 2073 2074 CXXRecordDecl *NewClass = 2075 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 2076 PrevClassTemplate && ShouldAddRedecl ? 2077 PrevClassTemplate->getTemplatedDecl() : nullptr, 2078 /*DelayTypeCreation=*/true); 2079 SetNestedNameSpecifier(*this, NewClass, SS); 2080 if (NumOuterTemplateParamLists > 0) 2081 NewClass->setTemplateParameterListsInfo( 2082 Context, 2083 llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists)); 2084 2085 // Add alignment attributes if necessary; these attributes are checked when 2086 // the ASTContext lays out the structure. 2087 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 2088 AddAlignmentAttributesForRecord(NewClass); 2089 AddMsStructLayoutForRecord(NewClass); 2090 } 2091 2092 ClassTemplateDecl *NewTemplate 2093 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 2094 DeclarationName(Name), TemplateParams, 2095 NewClass); 2096 2097 if (ShouldAddRedecl) 2098 NewTemplate->setPreviousDecl(PrevClassTemplate); 2099 2100 NewClass->setDescribedClassTemplate(NewTemplate); 2101 2102 if (ModulePrivateLoc.isValid()) 2103 NewTemplate->setModulePrivate(); 2104 2105 // Build the type for the class template declaration now. 2106 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 2107 T = Context.getInjectedClassNameType(NewClass, T); 2108 assert(T->isDependentType() && "Class template type is not dependent?"); 2109 (void)T; 2110 2111 // If we are providing an explicit specialization of a member that is a 2112 // class template, make a note of that. 2113 if (PrevClassTemplate && 2114 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 2115 PrevClassTemplate->setMemberSpecialization(); 2116 2117 // Set the access specifier. 2118 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 2119 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 2120 2121 // Set the lexical context of these templates 2122 NewClass->setLexicalDeclContext(CurContext); 2123 NewTemplate->setLexicalDeclContext(CurContext); 2124 2125 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 2126 NewClass->startDefinition(); 2127 2128 ProcessDeclAttributeList(S, NewClass, Attr); 2129 2130 if (PrevClassTemplate) 2131 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 2132 2133 AddPushedVisibilityAttribute(NewClass); 2134 inferGslOwnerPointerAttribute(NewClass); 2135 2136 if (TUK != TUK_Friend) { 2137 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. 2138 Scope *Outer = S; 2139 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) 2140 Outer = Outer->getParent(); 2141 PushOnScopeChains(NewTemplate, Outer); 2142 } else { 2143 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 2144 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 2145 NewClass->setAccess(PrevClassTemplate->getAccess()); 2146 } 2147 2148 NewTemplate->setObjectOfFriendDecl(); 2149 2150 // Friend templates are visible in fairly strange ways. 2151 if (!CurContext->isDependentContext()) { 2152 DeclContext *DC = SemanticContext->getRedeclContext(); 2153 DC->makeDeclVisibleInContext(NewTemplate); 2154 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 2155 PushOnScopeChains(NewTemplate, EnclosingScope, 2156 /* AddToContext = */ false); 2157 } 2158 2159 FriendDecl *Friend = FriendDecl::Create( 2160 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc); 2161 Friend->setAccess(AS_public); 2162 CurContext->addDecl(Friend); 2163 } 2164 2165 if (PrevClassTemplate) 2166 CheckRedeclarationInModule(NewTemplate, PrevClassTemplate); 2167 2168 if (Invalid) { 2169 NewTemplate->setInvalidDecl(); 2170 NewClass->setInvalidDecl(); 2171 } 2172 2173 ActOnDocumentableDecl(NewTemplate); 2174 2175 if (SkipBody && SkipBody->ShouldSkip) 2176 return SkipBody->Previous; 2177 2178 return NewTemplate; 2179 } 2180 2181 namespace { 2182 /// Tree transform to "extract" a transformed type from a class template's 2183 /// constructor to a deduction guide. 2184 class ExtractTypeForDeductionGuide 2185 : public TreeTransform<ExtractTypeForDeductionGuide> { 2186 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs; 2187 2188 public: 2189 typedef TreeTransform<ExtractTypeForDeductionGuide> Base; 2190 ExtractTypeForDeductionGuide( 2191 Sema &SemaRef, 2192 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) 2193 : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {} 2194 2195 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); } 2196 2197 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) { 2198 ASTContext &Context = SemaRef.getASTContext(); 2199 TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl(); 2200 TypedefNameDecl *Decl = OrigDecl; 2201 // Transform the underlying type of the typedef and clone the Decl only if 2202 // the typedef has a dependent context. 2203 if (OrigDecl->getDeclContext()->isDependentContext()) { 2204 TypeLocBuilder InnerTLB; 2205 QualType Transformed = 2206 TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc()); 2207 TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed); 2208 if (isa<TypeAliasDecl>(OrigDecl)) 2209 Decl = TypeAliasDecl::Create( 2210 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(), 2211 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI); 2212 else { 2213 assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef"); 2214 Decl = TypedefDecl::Create( 2215 Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(), 2216 OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI); 2217 } 2218 MaterializedTypedefs.push_back(Decl); 2219 } 2220 2221 QualType TDTy = Context.getTypedefType(Decl); 2222 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy); 2223 TypedefTL.setNameLoc(TL.getNameLoc()); 2224 2225 return TDTy; 2226 } 2227 }; 2228 2229 /// Transform to convert portions of a constructor declaration into the 2230 /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1. 2231 struct ConvertConstructorToDeductionGuideTransform { 2232 ConvertConstructorToDeductionGuideTransform(Sema &S, 2233 ClassTemplateDecl *Template) 2234 : SemaRef(S), Template(Template) {} 2235 2236 Sema &SemaRef; 2237 ClassTemplateDecl *Template; 2238 2239 DeclContext *DC = Template->getDeclContext(); 2240 CXXRecordDecl *Primary = Template->getTemplatedDecl(); 2241 DeclarationName DeductionGuideName = 2242 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template); 2243 2244 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary); 2245 2246 // Index adjustment to apply to convert depth-1 template parameters into 2247 // depth-0 template parameters. 2248 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size(); 2249 2250 /// Transform a constructor declaration into a deduction guide. 2251 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD, 2252 CXXConstructorDecl *CD) { 2253 SmallVector<TemplateArgument, 16> SubstArgs; 2254 2255 LocalInstantiationScope Scope(SemaRef); 2256 2257 // C++ [over.match.class.deduct]p1: 2258 // -- For each constructor of the class template designated by the 2259 // template-name, a function template with the following properties: 2260 2261 // -- The template parameters are the template parameters of the class 2262 // template followed by the template parameters (including default 2263 // template arguments) of the constructor, if any. 2264 TemplateParameterList *TemplateParams = Template->getTemplateParameters(); 2265 if (FTD) { 2266 TemplateParameterList *InnerParams = FTD->getTemplateParameters(); 2267 SmallVector<NamedDecl *, 16> AllParams; 2268 AllParams.reserve(TemplateParams->size() + InnerParams->size()); 2269 AllParams.insert(AllParams.begin(), 2270 TemplateParams->begin(), TemplateParams->end()); 2271 SubstArgs.reserve(InnerParams->size()); 2272 2273 // Later template parameters could refer to earlier ones, so build up 2274 // a list of substituted template arguments as we go. 2275 for (NamedDecl *Param : *InnerParams) { 2276 MultiLevelTemplateArgumentList Args; 2277 Args.setKind(TemplateSubstitutionKind::Rewrite); 2278 Args.addOuterTemplateArguments(SubstArgs); 2279 Args.addOuterRetainedLevel(); 2280 NamedDecl *NewParam = transformTemplateParameter(Param, Args); 2281 if (!NewParam) 2282 return nullptr; 2283 AllParams.push_back(NewParam); 2284 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument( 2285 SemaRef.Context.getInjectedTemplateArg(NewParam))); 2286 } 2287 2288 // Substitute new template parameters into requires-clause if present. 2289 Expr *RequiresClause = nullptr; 2290 if (Expr *InnerRC = InnerParams->getRequiresClause()) { 2291 MultiLevelTemplateArgumentList Args; 2292 Args.setKind(TemplateSubstitutionKind::Rewrite); 2293 Args.addOuterTemplateArguments(SubstArgs); 2294 Args.addOuterRetainedLevel(); 2295 ExprResult E = SemaRef.SubstExpr(InnerRC, Args); 2296 if (E.isInvalid()) 2297 return nullptr; 2298 RequiresClause = E.getAs<Expr>(); 2299 } 2300 2301 TemplateParams = TemplateParameterList::Create( 2302 SemaRef.Context, InnerParams->getTemplateLoc(), 2303 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(), 2304 RequiresClause); 2305 } 2306 2307 // If we built a new template-parameter-list, track that we need to 2308 // substitute references to the old parameters into references to the 2309 // new ones. 2310 MultiLevelTemplateArgumentList Args; 2311 Args.setKind(TemplateSubstitutionKind::Rewrite); 2312 if (FTD) { 2313 Args.addOuterTemplateArguments(SubstArgs); 2314 Args.addOuterRetainedLevel(); 2315 } 2316 2317 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc() 2318 .getAsAdjusted<FunctionProtoTypeLoc>(); 2319 assert(FPTL && "no prototype for constructor declaration"); 2320 2321 // Transform the type of the function, adjusting the return type and 2322 // replacing references to the old parameters with references to the 2323 // new ones. 2324 TypeLocBuilder TLB; 2325 SmallVector<ParmVarDecl*, 8> Params; 2326 SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs; 2327 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args, 2328 MaterializedTypedefs); 2329 if (NewType.isNull()) 2330 return nullptr; 2331 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType); 2332 2333 return buildDeductionGuide(TemplateParams, CD, CD->getExplicitSpecifier(), 2334 NewTInfo, CD->getBeginLoc(), CD->getLocation(), 2335 CD->getEndLoc(), MaterializedTypedefs); 2336 } 2337 2338 /// Build a deduction guide with the specified parameter types. 2339 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) { 2340 SourceLocation Loc = Template->getLocation(); 2341 2342 // Build the requested type. 2343 FunctionProtoType::ExtProtoInfo EPI; 2344 EPI.HasTrailingReturn = true; 2345 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc, 2346 DeductionGuideName, EPI); 2347 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc); 2348 2349 FunctionProtoTypeLoc FPTL = 2350 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>(); 2351 2352 // Build the parameters, needed during deduction / substitution. 2353 SmallVector<ParmVarDecl*, 4> Params; 2354 for (auto T : ParamTypes) { 2355 ParmVarDecl *NewParam = ParmVarDecl::Create( 2356 SemaRef.Context, DC, Loc, Loc, nullptr, T, 2357 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr); 2358 NewParam->setScopeInfo(0, Params.size()); 2359 FPTL.setParam(Params.size(), NewParam); 2360 Params.push_back(NewParam); 2361 } 2362 2363 return buildDeductionGuide(Template->getTemplateParameters(), nullptr, 2364 ExplicitSpecifier(), TSI, Loc, Loc, Loc); 2365 } 2366 2367 private: 2368 /// Transform a constructor template parameter into a deduction guide template 2369 /// parameter, rebuilding any internal references to earlier parameters and 2370 /// renumbering as we go. 2371 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam, 2372 MultiLevelTemplateArgumentList &Args) { 2373 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) { 2374 // TemplateTypeParmDecl's index cannot be changed after creation, so 2375 // substitute it directly. 2376 auto *NewTTP = TemplateTypeParmDecl::Create( 2377 SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(), 2378 /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(), 2379 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(), 2380 TTP->isParameterPack(), TTP->hasTypeConstraint(), 2381 TTP->isExpandedParameterPack() 2382 ? std::optional<unsigned>(TTP->getNumExpansionParameters()) 2383 : std::nullopt); 2384 if (const auto *TC = TTP->getTypeConstraint()) 2385 SemaRef.SubstTypeConstraint(NewTTP, TC, Args, 2386 /*EvaluateConstraint*/ true); 2387 if (TTP->hasDefaultArgument()) { 2388 TypeSourceInfo *InstantiatedDefaultArg = 2389 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args, 2390 TTP->getDefaultArgumentLoc(), TTP->getDeclName()); 2391 if (InstantiatedDefaultArg) 2392 NewTTP->setDefaultArgument(InstantiatedDefaultArg); 2393 } 2394 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam, 2395 NewTTP); 2396 return NewTTP; 2397 } 2398 2399 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam)) 2400 return transformTemplateParameterImpl(TTP, Args); 2401 2402 return transformTemplateParameterImpl( 2403 cast<NonTypeTemplateParmDecl>(TemplateParam), Args); 2404 } 2405 template<typename TemplateParmDecl> 2406 TemplateParmDecl * 2407 transformTemplateParameterImpl(TemplateParmDecl *OldParam, 2408 MultiLevelTemplateArgumentList &Args) { 2409 // Ask the template instantiator to do the heavy lifting for us, then adjust 2410 // the index of the parameter once it's done. 2411 auto *NewParam = 2412 cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args)); 2413 assert(NewParam->getDepth() == 0 && "unexpected template param depth"); 2414 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment); 2415 return NewParam; 2416 } 2417 2418 QualType transformFunctionProtoType( 2419 TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, 2420 SmallVectorImpl<ParmVarDecl *> &Params, 2421 MultiLevelTemplateArgumentList &Args, 2422 SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { 2423 SmallVector<QualType, 4> ParamTypes; 2424 const FunctionProtoType *T = TL.getTypePtr(); 2425 2426 // -- The types of the function parameters are those of the constructor. 2427 for (auto *OldParam : TL.getParams()) { 2428 ParmVarDecl *NewParam = 2429 transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs); 2430 if (!NewParam) 2431 return QualType(); 2432 ParamTypes.push_back(NewParam->getType()); 2433 Params.push_back(NewParam); 2434 } 2435 2436 // -- The return type is the class template specialization designated by 2437 // the template-name and template arguments corresponding to the 2438 // template parameters obtained from the class template. 2439 // 2440 // We use the injected-class-name type of the primary template instead. 2441 // This has the convenient property that it is different from any type that 2442 // the user can write in a deduction-guide (because they cannot enter the 2443 // context of the template), so implicit deduction guides can never collide 2444 // with explicit ones. 2445 QualType ReturnType = DeducedType; 2446 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation()); 2447 2448 // Resolving a wording defect, we also inherit the variadicness of the 2449 // constructor. 2450 FunctionProtoType::ExtProtoInfo EPI; 2451 EPI.Variadic = T->isVariadic(); 2452 EPI.HasTrailingReturn = true; 2453 2454 QualType Result = SemaRef.BuildFunctionType( 2455 ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI); 2456 if (Result.isNull()) 2457 return QualType(); 2458 2459 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result); 2460 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); 2461 NewTL.setLParenLoc(TL.getLParenLoc()); 2462 NewTL.setRParenLoc(TL.getRParenLoc()); 2463 NewTL.setExceptionSpecRange(SourceRange()); 2464 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); 2465 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I) 2466 NewTL.setParam(I, Params[I]); 2467 2468 return Result; 2469 } 2470 2471 ParmVarDecl *transformFunctionTypeParam( 2472 ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args, 2473 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { 2474 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo(); 2475 TypeSourceInfo *NewDI; 2476 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) { 2477 // Expand out the one and only element in each inner pack. 2478 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0); 2479 NewDI = 2480 SemaRef.SubstType(PackTL.getPatternLoc(), Args, 2481 OldParam->getLocation(), OldParam->getDeclName()); 2482 if (!NewDI) return nullptr; 2483 NewDI = 2484 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(), 2485 PackTL.getTypePtr()->getNumExpansions()); 2486 } else 2487 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(), 2488 OldParam->getDeclName()); 2489 if (!NewDI) 2490 return nullptr; 2491 2492 // Extract the type. This (for instance) replaces references to typedef 2493 // members of the current instantiations with the definitions of those 2494 // typedefs, avoiding triggering instantiation of the deduced type during 2495 // deduction. 2496 NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs) 2497 .transform(NewDI); 2498 2499 // Resolving a wording defect, we also inherit default arguments from the 2500 // constructor. 2501 ExprResult NewDefArg; 2502 if (OldParam->hasDefaultArg()) { 2503 // We don't care what the value is (we won't use it); just create a 2504 // placeholder to indicate there is a default argument. 2505 QualType ParamTy = NewDI->getType(); 2506 NewDefArg = new (SemaRef.Context) 2507 OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(), 2508 ParamTy.getNonLValueExprType(SemaRef.Context), 2509 ParamTy->isLValueReferenceType() ? VK_LValue 2510 : ParamTy->isRValueReferenceType() ? VK_XValue 2511 : VK_PRValue); 2512 } 2513 2514 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC, 2515 OldParam->getInnerLocStart(), 2516 OldParam->getLocation(), 2517 OldParam->getIdentifier(), 2518 NewDI->getType(), 2519 NewDI, 2520 OldParam->getStorageClass(), 2521 NewDefArg.get()); 2522 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(), 2523 OldParam->getFunctionScopeIndex()); 2524 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam); 2525 return NewParam; 2526 } 2527 2528 FunctionTemplateDecl *buildDeductionGuide( 2529 TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor, 2530 ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart, 2531 SourceLocation Loc, SourceLocation LocEnd, 2532 llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) { 2533 DeclarationNameInfo Name(DeductionGuideName, Loc); 2534 ArrayRef<ParmVarDecl *> Params = 2535 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(); 2536 2537 // Build the implicit deduction guide template. 2538 auto *Guide = 2539 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name, 2540 TInfo->getType(), TInfo, LocEnd, Ctor); 2541 Guide->setImplicit(); 2542 Guide->setParams(Params); 2543 2544 for (auto *Param : Params) 2545 Param->setDeclContext(Guide); 2546 for (auto *TD : MaterializedTypedefs) 2547 TD->setDeclContext(Guide); 2548 2549 auto *GuideTemplate = FunctionTemplateDecl::Create( 2550 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide); 2551 GuideTemplate->setImplicit(); 2552 Guide->setDescribedFunctionTemplate(GuideTemplate); 2553 2554 if (isa<CXXRecordDecl>(DC)) { 2555 Guide->setAccess(AS_public); 2556 GuideTemplate->setAccess(AS_public); 2557 } 2558 2559 DC->addDecl(GuideTemplate); 2560 return GuideTemplate; 2561 } 2562 }; 2563 } 2564 2565 void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template, 2566 SourceLocation Loc) { 2567 if (CXXRecordDecl *DefRecord = 2568 cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) { 2569 TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate(); 2570 Template = DescribedTemplate ? DescribedTemplate : Template; 2571 } 2572 2573 DeclContext *DC = Template->getDeclContext(); 2574 if (DC->isDependentContext()) 2575 return; 2576 2577 ConvertConstructorToDeductionGuideTransform Transform( 2578 *this, cast<ClassTemplateDecl>(Template)); 2579 if (!isCompleteType(Loc, Transform.DeducedType)) 2580 return; 2581 2582 // Check whether we've already declared deduction guides for this template. 2583 // FIXME: Consider storing a flag on the template to indicate this. 2584 auto Existing = DC->lookup(Transform.DeductionGuideName); 2585 for (auto *D : Existing) 2586 if (D->isImplicit()) 2587 return; 2588 2589 // In case we were expanding a pack when we attempted to declare deduction 2590 // guides, turn off pack expansion for everything we're about to do. 2591 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1); 2592 // Create a template instantiation record to track the "instantiation" of 2593 // constructors into deduction guides. 2594 // FIXME: Add a kind for this to give more meaningful diagnostics. But can 2595 // this substitution process actually fail? 2596 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template); 2597 if (BuildingDeductionGuides.isInvalid()) 2598 return; 2599 2600 // Convert declared constructors into deduction guide templates. 2601 // FIXME: Skip constructors for which deduction must necessarily fail (those 2602 // for which some class template parameter without a default argument never 2603 // appears in a deduced context). 2604 bool AddedAny = false; 2605 for (NamedDecl *D : LookupConstructors(Transform.Primary)) { 2606 D = D->getUnderlyingDecl(); 2607 if (D->isInvalidDecl() || D->isImplicit()) 2608 continue; 2609 D = cast<NamedDecl>(D->getCanonicalDecl()); 2610 2611 auto *FTD = dyn_cast<FunctionTemplateDecl>(D); 2612 auto *CD = 2613 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D); 2614 // Class-scope explicit specializations (MS extension) do not result in 2615 // deduction guides. 2616 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization())) 2617 continue; 2618 2619 // Cannot make a deduction guide when unparsed arguments are present. 2620 if (llvm::any_of(CD->parameters(), [](ParmVarDecl *P) { 2621 return !P || P->hasUnparsedDefaultArg(); 2622 })) 2623 continue; 2624 2625 Transform.transformConstructor(FTD, CD); 2626 AddedAny = true; 2627 } 2628 2629 // C++17 [over.match.class.deduct] 2630 // -- If C is not defined or does not declare any constructors, an 2631 // additional function template derived as above from a hypothetical 2632 // constructor C(). 2633 if (!AddedAny) 2634 Transform.buildSimpleDeductionGuide(std::nullopt); 2635 2636 // -- An additional function template derived as above from a hypothetical 2637 // constructor C(C), called the copy deduction candidate. 2638 cast<CXXDeductionGuideDecl>( 2639 cast<FunctionTemplateDecl>( 2640 Transform.buildSimpleDeductionGuide(Transform.DeducedType)) 2641 ->getTemplatedDecl()) 2642 ->setIsCopyDeductionCandidate(); 2643 } 2644 2645 /// Diagnose the presence of a default template argument on a 2646 /// template parameter, which is ill-formed in certain contexts. 2647 /// 2648 /// \returns true if the default template argument should be dropped. 2649 static bool DiagnoseDefaultTemplateArgument(Sema &S, 2650 Sema::TemplateParamListContext TPC, 2651 SourceLocation ParamLoc, 2652 SourceRange DefArgRange) { 2653 switch (TPC) { 2654 case Sema::TPC_ClassTemplate: 2655 case Sema::TPC_VarTemplate: 2656 case Sema::TPC_TypeAliasTemplate: 2657 return false; 2658 2659 case Sema::TPC_FunctionTemplate: 2660 case Sema::TPC_FriendFunctionTemplateDefinition: 2661 // C++ [temp.param]p9: 2662 // A default template-argument shall not be specified in a 2663 // function template declaration or a function template 2664 // definition [...] 2665 // If a friend function template declaration specifies a default 2666 // template-argument, that declaration shall be a definition and shall be 2667 // the only declaration of the function template in the translation unit. 2668 // (C++98/03 doesn't have this wording; see DR226). 2669 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 2670 diag::warn_cxx98_compat_template_parameter_default_in_function_template 2671 : diag::ext_template_parameter_default_in_function_template) 2672 << DefArgRange; 2673 return false; 2674 2675 case Sema::TPC_ClassTemplateMember: 2676 // C++0x [temp.param]p9: 2677 // A default template-argument shall not be specified in the 2678 // template-parameter-lists of the definition of a member of a 2679 // class template that appears outside of the member's class. 2680 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 2681 << DefArgRange; 2682 return true; 2683 2684 case Sema::TPC_FriendClassTemplate: 2685 case Sema::TPC_FriendFunctionTemplate: 2686 // C++ [temp.param]p9: 2687 // A default template-argument shall not be specified in a 2688 // friend template declaration. 2689 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 2690 << DefArgRange; 2691 return true; 2692 2693 // FIXME: C++0x [temp.param]p9 allows default template-arguments 2694 // for friend function templates if there is only a single 2695 // declaration (and it is a definition). Strange! 2696 } 2697 2698 llvm_unreachable("Invalid TemplateParamListContext!"); 2699 } 2700 2701 /// Check for unexpanded parameter packs within the template parameters 2702 /// of a template template parameter, recursively. 2703 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 2704 TemplateTemplateParmDecl *TTP) { 2705 // A template template parameter which is a parameter pack is also a pack 2706 // expansion. 2707 if (TTP->isParameterPack()) 2708 return false; 2709 2710 TemplateParameterList *Params = TTP->getTemplateParameters(); 2711 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 2712 NamedDecl *P = Params->getParam(I); 2713 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) { 2714 if (!TTP->isParameterPack()) 2715 if (const TypeConstraint *TC = TTP->getTypeConstraint()) 2716 if (TC->hasExplicitTemplateArgs()) 2717 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) 2718 if (S.DiagnoseUnexpandedParameterPack(ArgLoc, 2719 Sema::UPPC_TypeConstraint)) 2720 return true; 2721 continue; 2722 } 2723 2724 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 2725 if (!NTTP->isParameterPack() && 2726 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 2727 NTTP->getTypeSourceInfo(), 2728 Sema::UPPC_NonTypeTemplateParameterType)) 2729 return true; 2730 2731 continue; 2732 } 2733 2734 if (TemplateTemplateParmDecl *InnerTTP 2735 = dyn_cast<TemplateTemplateParmDecl>(P)) 2736 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 2737 return true; 2738 } 2739 2740 return false; 2741 } 2742 2743 /// Checks the validity of a template parameter list, possibly 2744 /// considering the template parameter list from a previous 2745 /// declaration. 2746 /// 2747 /// If an "old" template parameter list is provided, it must be 2748 /// equivalent (per TemplateParameterListsAreEqual) to the "new" 2749 /// template parameter list. 2750 /// 2751 /// \param NewParams Template parameter list for a new template 2752 /// declaration. This template parameter list will be updated with any 2753 /// default arguments that are carried through from the previous 2754 /// template parameter list. 2755 /// 2756 /// \param OldParams If provided, template parameter list from a 2757 /// previous declaration of the same template. Default template 2758 /// arguments will be merged from the old template parameter list to 2759 /// the new template parameter list. 2760 /// 2761 /// \param TPC Describes the context in which we are checking the given 2762 /// template parameter list. 2763 /// 2764 /// \param SkipBody If we might have already made a prior merged definition 2765 /// of this template visible, the corresponding body-skipping information. 2766 /// Default argument redefinition is not an error when skipping such a body, 2767 /// because (under the ODR) we can assume the default arguments are the same 2768 /// as the prior merged definition. 2769 /// 2770 /// \returns true if an error occurred, false otherwise. 2771 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 2772 TemplateParameterList *OldParams, 2773 TemplateParamListContext TPC, 2774 SkipBodyInfo *SkipBody) { 2775 bool Invalid = false; 2776 2777 // C++ [temp.param]p10: 2778 // The set of default template-arguments available for use with a 2779 // template declaration or definition is obtained by merging the 2780 // default arguments from the definition (if in scope) and all 2781 // declarations in scope in the same way default function 2782 // arguments are (8.3.6). 2783 bool SawDefaultArgument = false; 2784 SourceLocation PreviousDefaultArgLoc; 2785 2786 // Dummy initialization to avoid warnings. 2787 TemplateParameterList::iterator OldParam = NewParams->end(); 2788 if (OldParams) 2789 OldParam = OldParams->begin(); 2790 2791 bool RemoveDefaultArguments = false; 2792 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2793 NewParamEnd = NewParams->end(); 2794 NewParam != NewParamEnd; ++NewParam) { 2795 // Whether we've seen a duplicate default argument in the same translation 2796 // unit. 2797 bool RedundantDefaultArg = false; 2798 // Whether we've found inconsis inconsitent default arguments in different 2799 // translation unit. 2800 bool InconsistentDefaultArg = false; 2801 // The name of the module which contains the inconsistent default argument. 2802 std::string PrevModuleName; 2803 2804 SourceLocation OldDefaultLoc; 2805 SourceLocation NewDefaultLoc; 2806 2807 // Variable used to diagnose missing default arguments 2808 bool MissingDefaultArg = false; 2809 2810 // Variable used to diagnose non-final parameter packs 2811 bool SawParameterPack = false; 2812 2813 if (TemplateTypeParmDecl *NewTypeParm 2814 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 2815 // Check the presence of a default argument here. 2816 if (NewTypeParm->hasDefaultArgument() && 2817 DiagnoseDefaultTemplateArgument(*this, TPC, 2818 NewTypeParm->getLocation(), 2819 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 2820 .getSourceRange())) 2821 NewTypeParm->removeDefaultArgument(); 2822 2823 // Merge default arguments for template type parameters. 2824 TemplateTypeParmDecl *OldTypeParm 2825 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr; 2826 if (NewTypeParm->isParameterPack()) { 2827 assert(!NewTypeParm->hasDefaultArgument() && 2828 "Parameter packs can't have a default argument!"); 2829 SawParameterPack = true; 2830 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && 2831 NewTypeParm->hasDefaultArgument() && 2832 (!SkipBody || !SkipBody->ShouldSkip)) { 2833 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 2834 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 2835 SawDefaultArgument = true; 2836 2837 if (!OldTypeParm->getOwningModule() || 2838 isModuleUnitOfCurrentTU(OldTypeParm->getOwningModule())) 2839 RedundantDefaultArg = true; 2840 else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm, 2841 NewTypeParm)) { 2842 InconsistentDefaultArg = true; 2843 PrevModuleName = 2844 OldTypeParm->getImportedOwningModule()->getFullModuleName(); 2845 } 2846 PreviousDefaultArgLoc = NewDefaultLoc; 2847 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 2848 // Merge the default argument from the old declaration to the 2849 // new declaration. 2850 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm); 2851 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 2852 } else if (NewTypeParm->hasDefaultArgument()) { 2853 SawDefaultArgument = true; 2854 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 2855 } else if (SawDefaultArgument) 2856 MissingDefaultArg = true; 2857 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 2858 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 2859 // Check for unexpanded parameter packs. 2860 if (!NewNonTypeParm->isParameterPack() && 2861 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 2862 NewNonTypeParm->getTypeSourceInfo(), 2863 UPPC_NonTypeTemplateParameterType)) { 2864 Invalid = true; 2865 continue; 2866 } 2867 2868 // Check the presence of a default argument here. 2869 if (NewNonTypeParm->hasDefaultArgument() && 2870 DiagnoseDefaultTemplateArgument(*this, TPC, 2871 NewNonTypeParm->getLocation(), 2872 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 2873 NewNonTypeParm->removeDefaultArgument(); 2874 } 2875 2876 // Merge default arguments for non-type template parameters 2877 NonTypeTemplateParmDecl *OldNonTypeParm 2878 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr; 2879 if (NewNonTypeParm->isParameterPack()) { 2880 assert(!NewNonTypeParm->hasDefaultArgument() && 2881 "Parameter packs can't have a default argument!"); 2882 if (!NewNonTypeParm->isPackExpansion()) 2883 SawParameterPack = true; 2884 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && 2885 NewNonTypeParm->hasDefaultArgument() && 2886 (!SkipBody || !SkipBody->ShouldSkip)) { 2887 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2888 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2889 SawDefaultArgument = true; 2890 if (!OldNonTypeParm->getOwningModule() || 2891 isModuleUnitOfCurrentTU(OldNonTypeParm->getOwningModule())) 2892 RedundantDefaultArg = true; 2893 else if (!getASTContext().isSameDefaultTemplateArgument( 2894 OldNonTypeParm, NewNonTypeParm)) { 2895 InconsistentDefaultArg = true; 2896 PrevModuleName = 2897 OldNonTypeParm->getImportedOwningModule()->getFullModuleName(); 2898 } 2899 PreviousDefaultArgLoc = NewDefaultLoc; 2900 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 2901 // Merge the default argument from the old declaration to the 2902 // new declaration. 2903 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm); 2904 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2905 } else if (NewNonTypeParm->hasDefaultArgument()) { 2906 SawDefaultArgument = true; 2907 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2908 } else if (SawDefaultArgument) 2909 MissingDefaultArg = true; 2910 } else { 2911 TemplateTemplateParmDecl *NewTemplateParm 2912 = cast<TemplateTemplateParmDecl>(*NewParam); 2913 2914 // Check for unexpanded parameter packs, recursively. 2915 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 2916 Invalid = true; 2917 continue; 2918 } 2919 2920 // Check the presence of a default argument here. 2921 if (NewTemplateParm->hasDefaultArgument() && 2922 DiagnoseDefaultTemplateArgument(*this, TPC, 2923 NewTemplateParm->getLocation(), 2924 NewTemplateParm->getDefaultArgument().getSourceRange())) 2925 NewTemplateParm->removeDefaultArgument(); 2926 2927 // Merge default arguments for template template parameters 2928 TemplateTemplateParmDecl *OldTemplateParm 2929 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr; 2930 if (NewTemplateParm->isParameterPack()) { 2931 assert(!NewTemplateParm->hasDefaultArgument() && 2932 "Parameter packs can't have a default argument!"); 2933 if (!NewTemplateParm->isPackExpansion()) 2934 SawParameterPack = true; 2935 } else if (OldTemplateParm && 2936 hasVisibleDefaultArgument(OldTemplateParm) && 2937 NewTemplateParm->hasDefaultArgument() && 2938 (!SkipBody || !SkipBody->ShouldSkip)) { 2939 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 2940 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 2941 SawDefaultArgument = true; 2942 if (!OldTemplateParm->getOwningModule() || 2943 isModuleUnitOfCurrentTU(OldTemplateParm->getOwningModule())) 2944 RedundantDefaultArg = true; 2945 else if (!getASTContext().isSameDefaultTemplateArgument( 2946 OldTemplateParm, NewTemplateParm)) { 2947 InconsistentDefaultArg = true; 2948 PrevModuleName = 2949 OldTemplateParm->getImportedOwningModule()->getFullModuleName(); 2950 } 2951 PreviousDefaultArgLoc = NewDefaultLoc; 2952 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 2953 // Merge the default argument from the old declaration to the 2954 // new declaration. 2955 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm); 2956 PreviousDefaultArgLoc 2957 = OldTemplateParm->getDefaultArgument().getLocation(); 2958 } else if (NewTemplateParm->hasDefaultArgument()) { 2959 SawDefaultArgument = true; 2960 PreviousDefaultArgLoc 2961 = NewTemplateParm->getDefaultArgument().getLocation(); 2962 } else if (SawDefaultArgument) 2963 MissingDefaultArg = true; 2964 } 2965 2966 // C++11 [temp.param]p11: 2967 // If a template parameter of a primary class template or alias template 2968 // is a template parameter pack, it shall be the last template parameter. 2969 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 2970 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || 2971 TPC == TPC_TypeAliasTemplate)) { 2972 Diag((*NewParam)->getLocation(), 2973 diag::err_template_param_pack_must_be_last_template_parameter); 2974 Invalid = true; 2975 } 2976 2977 // [basic.def.odr]/13: 2978 // There can be more than one definition of a 2979 // ... 2980 // default template argument 2981 // ... 2982 // in a program provided that each definition appears in a different 2983 // translation unit and the definitions satisfy the [same-meaning 2984 // criteria of the ODR]. 2985 // 2986 // Simply, the design of modules allows the definition of template default 2987 // argument to be repeated across translation unit. Note that the ODR is 2988 // checked elsewhere. But it is still not allowed to repeat template default 2989 // argument in the same translation unit. 2990 if (RedundantDefaultArg) { 2991 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 2992 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 2993 Invalid = true; 2994 } else if (InconsistentDefaultArg) { 2995 // We could only diagnose about the case that the OldParam is imported. 2996 // The case NewParam is imported should be handled in ASTReader. 2997 Diag(NewDefaultLoc, 2998 diag::err_template_param_default_arg_inconsistent_redefinition); 2999 Diag(OldDefaultLoc, 3000 diag::note_template_param_prev_default_arg_in_other_module) 3001 << PrevModuleName; 3002 Invalid = true; 3003 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 3004 // C++ [temp.param]p11: 3005 // If a template-parameter of a class template has a default 3006 // template-argument, each subsequent template-parameter shall either 3007 // have a default template-argument supplied or be a template parameter 3008 // pack. 3009 Diag((*NewParam)->getLocation(), 3010 diag::err_template_param_default_arg_missing); 3011 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 3012 Invalid = true; 3013 RemoveDefaultArguments = true; 3014 } 3015 3016 // If we have an old template parameter list that we're merging 3017 // in, move on to the next parameter. 3018 if (OldParams) 3019 ++OldParam; 3020 } 3021 3022 // We were missing some default arguments at the end of the list, so remove 3023 // all of the default arguments. 3024 if (RemoveDefaultArguments) { 3025 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 3026 NewParamEnd = NewParams->end(); 3027 NewParam != NewParamEnd; ++NewParam) { 3028 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 3029 TTP->removeDefaultArgument(); 3030 else if (NonTypeTemplateParmDecl *NTTP 3031 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 3032 NTTP->removeDefaultArgument(); 3033 else 3034 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 3035 } 3036 } 3037 3038 return Invalid; 3039 } 3040 3041 namespace { 3042 3043 /// A class which looks for a use of a certain level of template 3044 /// parameter. 3045 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 3046 typedef RecursiveASTVisitor<DependencyChecker> super; 3047 3048 unsigned Depth; 3049 3050 // Whether we're looking for a use of a template parameter that makes the 3051 // overall construct type-dependent / a dependent type. This is strictly 3052 // best-effort for now; we may fail to match at all for a dependent type 3053 // in some cases if this is set. 3054 bool IgnoreNonTypeDependent; 3055 3056 bool Match; 3057 SourceLocation MatchLoc; 3058 3059 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) 3060 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), 3061 Match(false) {} 3062 3063 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) 3064 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { 3065 NamedDecl *ND = Params->getParam(0); 3066 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 3067 Depth = PD->getDepth(); 3068 } else if (NonTypeTemplateParmDecl *PD = 3069 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 3070 Depth = PD->getDepth(); 3071 } else { 3072 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 3073 } 3074 } 3075 3076 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { 3077 if (ParmDepth >= Depth) { 3078 Match = true; 3079 MatchLoc = Loc; 3080 return true; 3081 } 3082 return false; 3083 } 3084 3085 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) { 3086 // Prune out non-type-dependent expressions if requested. This can 3087 // sometimes result in us failing to find a template parameter reference 3088 // (if a value-dependent expression creates a dependent type), but this 3089 // mode is best-effort only. 3090 if (auto *E = dyn_cast_or_null<Expr>(S)) 3091 if (IgnoreNonTypeDependent && !E->isTypeDependent()) 3092 return true; 3093 return super::TraverseStmt(S, Q); 3094 } 3095 3096 bool TraverseTypeLoc(TypeLoc TL) { 3097 if (IgnoreNonTypeDependent && !TL.isNull() && 3098 !TL.getType()->isDependentType()) 3099 return true; 3100 return super::TraverseTypeLoc(TL); 3101 } 3102 3103 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { 3104 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc()); 3105 } 3106 3107 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 3108 // For a best-effort search, keep looking until we find a location. 3109 return IgnoreNonTypeDependent || !Matches(T->getDepth()); 3110 } 3111 3112 bool TraverseTemplateName(TemplateName N) { 3113 if (TemplateTemplateParmDecl *PD = 3114 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 3115 if (Matches(PD->getDepth())) 3116 return false; 3117 return super::TraverseTemplateName(N); 3118 } 3119 3120 bool VisitDeclRefExpr(DeclRefExpr *E) { 3121 if (NonTypeTemplateParmDecl *PD = 3122 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 3123 if (Matches(PD->getDepth(), E->getExprLoc())) 3124 return false; 3125 return super::VisitDeclRefExpr(E); 3126 } 3127 3128 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { 3129 return TraverseType(T->getReplacementType()); 3130 } 3131 3132 bool 3133 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { 3134 return TraverseTemplateArgument(T->getArgumentPack()); 3135 } 3136 3137 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 3138 return TraverseType(T->getInjectedSpecializationType()); 3139 } 3140 }; 3141 } // end anonymous namespace 3142 3143 /// Determines whether a given type depends on the given parameter 3144 /// list. 3145 static bool 3146 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 3147 if (!Params->size()) 3148 return false; 3149 3150 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); 3151 Checker.TraverseType(T); 3152 return Checker.Match; 3153 } 3154 3155 // Find the source range corresponding to the named type in the given 3156 // nested-name-specifier, if any. 3157 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 3158 QualType T, 3159 const CXXScopeSpec &SS) { 3160 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 3161 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 3162 if (const Type *CurType = NNS->getAsType()) { 3163 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 3164 return NNSLoc.getTypeLoc().getSourceRange(); 3165 } else 3166 break; 3167 3168 NNSLoc = NNSLoc.getPrefix(); 3169 } 3170 3171 return SourceRange(); 3172 } 3173 3174 /// Match the given template parameter lists to the given scope 3175 /// specifier, returning the template parameter list that applies to the 3176 /// name. 3177 /// 3178 /// \param DeclStartLoc the start of the declaration that has a scope 3179 /// specifier or a template parameter list. 3180 /// 3181 /// \param DeclLoc The location of the declaration itself. 3182 /// 3183 /// \param SS the scope specifier that will be matched to the given template 3184 /// parameter lists. This scope specifier precedes a qualified name that is 3185 /// being declared. 3186 /// 3187 /// \param TemplateId The template-id following the scope specifier, if there 3188 /// is one. Used to check for a missing 'template<>'. 3189 /// 3190 /// \param ParamLists the template parameter lists, from the outermost to the 3191 /// innermost template parameter lists. 3192 /// 3193 /// \param IsFriend Whether to apply the slightly different rules for 3194 /// matching template parameters to scope specifiers in friend 3195 /// declarations. 3196 /// 3197 /// \param IsMemberSpecialization will be set true if the scope specifier 3198 /// denotes a fully-specialized type, and therefore this is a declaration of 3199 /// a member specialization. 3200 /// 3201 /// \returns the template parameter list, if any, that corresponds to the 3202 /// name that is preceded by the scope specifier @p SS. This template 3203 /// parameter list may have template parameters (if we're declaring a 3204 /// template) or may have no template parameters (if we're declaring a 3205 /// template specialization), or may be NULL (if what we're declaring isn't 3206 /// itself a template). 3207 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( 3208 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, 3209 TemplateIdAnnotation *TemplateId, 3210 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, 3211 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) { 3212 IsMemberSpecialization = false; 3213 Invalid = false; 3214 3215 // The sequence of nested types to which we will match up the template 3216 // parameter lists. We first build this list by starting with the type named 3217 // by the nested-name-specifier and walking out until we run out of types. 3218 SmallVector<QualType, 4> NestedTypes; 3219 QualType T; 3220 if (SS.getScopeRep()) { 3221 if (CXXRecordDecl *Record 3222 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 3223 T = Context.getTypeDeclType(Record); 3224 else 3225 T = QualType(SS.getScopeRep()->getAsType(), 0); 3226 } 3227 3228 // If we found an explicit specialization that prevents us from needing 3229 // 'template<>' headers, this will be set to the location of that 3230 // explicit specialization. 3231 SourceLocation ExplicitSpecLoc; 3232 3233 while (!T.isNull()) { 3234 NestedTypes.push_back(T); 3235 3236 // Retrieve the parent of a record type. 3237 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 3238 // If this type is an explicit specialization, we're done. 3239 if (ClassTemplateSpecializationDecl *Spec 3240 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 3241 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 3242 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 3243 ExplicitSpecLoc = Spec->getLocation(); 3244 break; 3245 } 3246 } else if (Record->getTemplateSpecializationKind() 3247 == TSK_ExplicitSpecialization) { 3248 ExplicitSpecLoc = Record->getLocation(); 3249 break; 3250 } 3251 3252 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 3253 T = Context.getTypeDeclType(Parent); 3254 else 3255 T = QualType(); 3256 continue; 3257 } 3258 3259 if (const TemplateSpecializationType *TST 3260 = T->getAs<TemplateSpecializationType>()) { 3261 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 3262 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 3263 T = Context.getTypeDeclType(Parent); 3264 else 3265 T = QualType(); 3266 continue; 3267 } 3268 } 3269 3270 // Look one step prior in a dependent template specialization type. 3271 if (const DependentTemplateSpecializationType *DependentTST 3272 = T->getAs<DependentTemplateSpecializationType>()) { 3273 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 3274 T = QualType(NNS->getAsType(), 0); 3275 else 3276 T = QualType(); 3277 continue; 3278 } 3279 3280 // Look one step prior in a dependent name type. 3281 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 3282 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 3283 T = QualType(NNS->getAsType(), 0); 3284 else 3285 T = QualType(); 3286 continue; 3287 } 3288 3289 // Retrieve the parent of an enumeration type. 3290 if (const EnumType *EnumT = T->getAs<EnumType>()) { 3291 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 3292 // check here. 3293 EnumDecl *Enum = EnumT->getDecl(); 3294 3295 // Get to the parent type. 3296 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 3297 T = Context.getTypeDeclType(Parent); 3298 else 3299 T = QualType(); 3300 continue; 3301 } 3302 3303 T = QualType(); 3304 } 3305 // Reverse the nested types list, since we want to traverse from the outermost 3306 // to the innermost while checking template-parameter-lists. 3307 std::reverse(NestedTypes.begin(), NestedTypes.end()); 3308 3309 // C++0x [temp.expl.spec]p17: 3310 // A member or a member template may be nested within many 3311 // enclosing class templates. In an explicit specialization for 3312 // such a member, the member declaration shall be preceded by a 3313 // template<> for each enclosing class template that is 3314 // explicitly specialized. 3315 bool SawNonEmptyTemplateParameterList = false; 3316 3317 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { 3318 if (SawNonEmptyTemplateParameterList) { 3319 if (!SuppressDiagnostic) 3320 Diag(DeclLoc, diag::err_specialize_member_of_template) 3321 << !Recovery << Range; 3322 Invalid = true; 3323 IsMemberSpecialization = false; 3324 return true; 3325 } 3326 3327 return false; 3328 }; 3329 3330 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { 3331 // Check that we can have an explicit specialization here. 3332 if (CheckExplicitSpecialization(Range, true)) 3333 return true; 3334 3335 // We don't have a template header, but we should. 3336 SourceLocation ExpectedTemplateLoc; 3337 if (!ParamLists.empty()) 3338 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 3339 else 3340 ExpectedTemplateLoc = DeclStartLoc; 3341 3342 if (!SuppressDiagnostic) 3343 Diag(DeclLoc, diag::err_template_spec_needs_header) 3344 << Range 3345 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 3346 return false; 3347 }; 3348 3349 unsigned ParamIdx = 0; 3350 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 3351 ++TypeIdx) { 3352 T = NestedTypes[TypeIdx]; 3353 3354 // Whether we expect a 'template<>' header. 3355 bool NeedEmptyTemplateHeader = false; 3356 3357 // Whether we expect a template header with parameters. 3358 bool NeedNonemptyTemplateHeader = false; 3359 3360 // For a dependent type, the set of template parameters that we 3361 // expect to see. 3362 TemplateParameterList *ExpectedTemplateParams = nullptr; 3363 3364 // C++0x [temp.expl.spec]p15: 3365 // A member or a member template may be nested within many enclosing 3366 // class templates. In an explicit specialization for such a member, the 3367 // member declaration shall be preceded by a template<> for each 3368 // enclosing class template that is explicitly specialized. 3369 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 3370 if (ClassTemplatePartialSpecializationDecl *Partial 3371 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 3372 ExpectedTemplateParams = Partial->getTemplateParameters(); 3373 NeedNonemptyTemplateHeader = true; 3374 } else if (Record->isDependentType()) { 3375 if (Record->getDescribedClassTemplate()) { 3376 ExpectedTemplateParams = Record->getDescribedClassTemplate() 3377 ->getTemplateParameters(); 3378 NeedNonemptyTemplateHeader = true; 3379 } 3380 } else if (ClassTemplateSpecializationDecl *Spec 3381 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 3382 // C++0x [temp.expl.spec]p4: 3383 // Members of an explicitly specialized class template are defined 3384 // in the same manner as members of normal classes, and not using 3385 // the template<> syntax. 3386 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 3387 NeedEmptyTemplateHeader = true; 3388 else 3389 continue; 3390 } else if (Record->getTemplateSpecializationKind()) { 3391 if (Record->getTemplateSpecializationKind() 3392 != TSK_ExplicitSpecialization && 3393 TypeIdx == NumTypes - 1) 3394 IsMemberSpecialization = true; 3395 3396 continue; 3397 } 3398 } else if (const TemplateSpecializationType *TST 3399 = T->getAs<TemplateSpecializationType>()) { 3400 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 3401 ExpectedTemplateParams = Template->getTemplateParameters(); 3402 NeedNonemptyTemplateHeader = true; 3403 } 3404 } else if (T->getAs<DependentTemplateSpecializationType>()) { 3405 // FIXME: We actually could/should check the template arguments here 3406 // against the corresponding template parameter list. 3407 NeedNonemptyTemplateHeader = false; 3408 } 3409 3410 // C++ [temp.expl.spec]p16: 3411 // In an explicit specialization declaration for a member of a class 3412 // template or a member template that ap- pears in namespace scope, the 3413 // member template and some of its enclosing class templates may remain 3414 // unspecialized, except that the declaration shall not explicitly 3415 // specialize a class member template if its en- closing class templates 3416 // are not explicitly specialized as well. 3417 if (ParamIdx < ParamLists.size()) { 3418 if (ParamLists[ParamIdx]->size() == 0) { 3419 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3420 false)) 3421 return nullptr; 3422 } else 3423 SawNonEmptyTemplateParameterList = true; 3424 } 3425 3426 if (NeedEmptyTemplateHeader) { 3427 // If we're on the last of the types, and we need a 'template<>' header 3428 // here, then it's a member specialization. 3429 if (TypeIdx == NumTypes - 1) 3430 IsMemberSpecialization = true; 3431 3432 if (ParamIdx < ParamLists.size()) { 3433 if (ParamLists[ParamIdx]->size() > 0) { 3434 // The header has template parameters when it shouldn't. Complain. 3435 if (!SuppressDiagnostic) 3436 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3437 diag::err_template_param_list_matches_nontemplate) 3438 << T 3439 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 3440 ParamLists[ParamIdx]->getRAngleLoc()) 3441 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 3442 Invalid = true; 3443 return nullptr; 3444 } 3445 3446 // Consume this template header. 3447 ++ParamIdx; 3448 continue; 3449 } 3450 3451 if (!IsFriend) 3452 if (DiagnoseMissingExplicitSpecialization( 3453 getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) 3454 return nullptr; 3455 3456 continue; 3457 } 3458 3459 if (NeedNonemptyTemplateHeader) { 3460 // In friend declarations we can have template-ids which don't 3461 // depend on the corresponding template parameter lists. But 3462 // assume that empty parameter lists are supposed to match this 3463 // template-id. 3464 if (IsFriend && T->isDependentType()) { 3465 if (ParamIdx < ParamLists.size() && 3466 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 3467 ExpectedTemplateParams = nullptr; 3468 else 3469 continue; 3470 } 3471 3472 if (ParamIdx < ParamLists.size()) { 3473 // Check the template parameter list, if we can. 3474 if (ExpectedTemplateParams && 3475 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 3476 ExpectedTemplateParams, 3477 !SuppressDiagnostic, TPL_TemplateMatch)) 3478 Invalid = true; 3479 3480 if (!Invalid && 3481 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr, 3482 TPC_ClassTemplateMember)) 3483 Invalid = true; 3484 3485 ++ParamIdx; 3486 continue; 3487 } 3488 3489 if (!SuppressDiagnostic) 3490 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 3491 << T 3492 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 3493 Invalid = true; 3494 continue; 3495 } 3496 } 3497 3498 // If there were at least as many template-ids as there were template 3499 // parameter lists, then there are no template parameter lists remaining for 3500 // the declaration itself. 3501 if (ParamIdx >= ParamLists.size()) { 3502 if (TemplateId && !IsFriend) { 3503 // We don't have a template header for the declaration itself, but we 3504 // should. 3505 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, 3506 TemplateId->RAngleLoc)); 3507 3508 // Fabricate an empty template parameter list for the invented header. 3509 return TemplateParameterList::Create(Context, SourceLocation(), 3510 SourceLocation(), std::nullopt, 3511 SourceLocation(), nullptr); 3512 } 3513 3514 return nullptr; 3515 } 3516 3517 // If there were too many template parameter lists, complain about that now. 3518 if (ParamIdx < ParamLists.size() - 1) { 3519 bool HasAnyExplicitSpecHeader = false; 3520 bool AllExplicitSpecHeaders = true; 3521 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { 3522 if (ParamLists[I]->size() == 0) 3523 HasAnyExplicitSpecHeader = true; 3524 else 3525 AllExplicitSpecHeaders = false; 3526 } 3527 3528 if (!SuppressDiagnostic) 3529 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3530 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers 3531 : diag::err_template_spec_extra_headers) 3532 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 3533 ParamLists[ParamLists.size() - 2]->getRAngleLoc()); 3534 3535 // If there was a specialization somewhere, such that 'template<>' is 3536 // not required, and there were any 'template<>' headers, note where the 3537 // specialization occurred. 3538 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader && 3539 !SuppressDiagnostic) 3540 Diag(ExplicitSpecLoc, 3541 diag::note_explicit_template_spec_does_not_need_header) 3542 << NestedTypes.back(); 3543 3544 // We have a template parameter list with no corresponding scope, which 3545 // means that the resulting template declaration can't be instantiated 3546 // properly (we'll end up with dependent nodes when we shouldn't). 3547 if (!AllExplicitSpecHeaders) 3548 Invalid = true; 3549 } 3550 3551 // C++ [temp.expl.spec]p16: 3552 // In an explicit specialization declaration for a member of a class 3553 // template or a member template that ap- pears in namespace scope, the 3554 // member template and some of its enclosing class templates may remain 3555 // unspecialized, except that the declaration shall not explicitly 3556 // specialize a class member template if its en- closing class templates 3557 // are not explicitly specialized as well. 3558 if (ParamLists.back()->size() == 0 && 3559 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3560 false)) 3561 return nullptr; 3562 3563 // Return the last template parameter list, which corresponds to the 3564 // entity being declared. 3565 return ParamLists.back(); 3566 } 3567 3568 void Sema::NoteAllFoundTemplates(TemplateName Name) { 3569 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 3570 Diag(Template->getLocation(), diag::note_template_declared_here) 3571 << (isa<FunctionTemplateDecl>(Template) 3572 ? 0 3573 : isa<ClassTemplateDecl>(Template) 3574 ? 1 3575 : isa<VarTemplateDecl>(Template) 3576 ? 2 3577 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) 3578 << Template->getDeclName(); 3579 return; 3580 } 3581 3582 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 3583 for (OverloadedTemplateStorage::iterator I = OST->begin(), 3584 IEnd = OST->end(); 3585 I != IEnd; ++I) 3586 Diag((*I)->getLocation(), diag::note_template_declared_here) 3587 << 0 << (*I)->getDeclName(); 3588 3589 return; 3590 } 3591 } 3592 3593 static QualType 3594 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, 3595 ArrayRef<TemplateArgument> Converted, 3596 SourceLocation TemplateLoc, 3597 TemplateArgumentListInfo &TemplateArgs) { 3598 ASTContext &Context = SemaRef.getASTContext(); 3599 3600 switch (BTD->getBuiltinTemplateKind()) { 3601 case BTK__make_integer_seq: { 3602 // Specializations of __make_integer_seq<S, T, N> are treated like 3603 // S<T, 0, ..., N-1>. 3604 3605 QualType OrigType = Converted[1].getAsType(); 3606 // C++14 [inteseq.intseq]p1: 3607 // T shall be an integer type. 3608 if (!OrigType->isDependentType() && !OrigType->isIntegralType(Context)) { 3609 SemaRef.Diag(TemplateArgs[1].getLocation(), 3610 diag::err_integer_sequence_integral_element_type); 3611 return QualType(); 3612 } 3613 3614 TemplateArgument NumArgsArg = Converted[2]; 3615 if (NumArgsArg.isDependent()) 3616 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD), 3617 Converted); 3618 3619 TemplateArgumentListInfo SyntheticTemplateArgs; 3620 // The type argument, wrapped in substitution sugar, gets reused as the 3621 // first template argument in the synthetic template argument list. 3622 SyntheticTemplateArgs.addArgument( 3623 TemplateArgumentLoc(TemplateArgument(OrigType), 3624 SemaRef.Context.getTrivialTypeSourceInfo( 3625 OrigType, TemplateArgs[1].getLocation()))); 3626 3627 if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) { 3628 // Expand N into 0 ... N-1. 3629 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); 3630 I < NumArgs; ++I) { 3631 TemplateArgument TA(Context, I, OrigType); 3632 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc( 3633 TA, OrigType, TemplateArgs[2].getLocation())); 3634 } 3635 } else { 3636 // C++14 [inteseq.make]p1: 3637 // If N is negative the program is ill-formed. 3638 SemaRef.Diag(TemplateArgs[2].getLocation(), 3639 diag::err_integer_sequence_negative_length); 3640 return QualType(); 3641 } 3642 3643 // The first template argument will be reused as the template decl that 3644 // our synthetic template arguments will be applied to. 3645 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(), 3646 TemplateLoc, SyntheticTemplateArgs); 3647 } 3648 3649 case BTK__type_pack_element: 3650 // Specializations of 3651 // __type_pack_element<Index, T_1, ..., T_N> 3652 // are treated like T_Index. 3653 assert(Converted.size() == 2 && 3654 "__type_pack_element should be given an index and a parameter pack"); 3655 3656 TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; 3657 if (IndexArg.isDependent() || Ts.isDependent()) 3658 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD), 3659 Converted); 3660 3661 llvm::APSInt Index = IndexArg.getAsIntegral(); 3662 assert(Index >= 0 && "the index used with __type_pack_element should be of " 3663 "type std::size_t, and hence be non-negative"); 3664 // If the Index is out of bounds, the program is ill-formed. 3665 if (Index >= Ts.pack_size()) { 3666 SemaRef.Diag(TemplateArgs[0].getLocation(), 3667 diag::err_type_pack_element_out_of_bounds); 3668 return QualType(); 3669 } 3670 3671 // We simply return the type at index `Index`. 3672 int64_t N = Index.getExtValue(); 3673 return Ts.getPackAsArray()[N].getAsType(); 3674 } 3675 llvm_unreachable("unexpected BuiltinTemplateDecl!"); 3676 } 3677 3678 /// Determine whether this alias template is "enable_if_t". 3679 /// libc++ >=14 uses "__enable_if_t" in C++11 mode. 3680 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { 3681 return AliasTemplate->getName().equals("enable_if_t") || 3682 AliasTemplate->getName().equals("__enable_if_t"); 3683 } 3684 3685 /// Collect all of the separable terms in the given condition, which 3686 /// might be a conjunction. 3687 /// 3688 /// FIXME: The right answer is to convert the logical expression into 3689 /// disjunctive normal form, so we can find the first failed term 3690 /// within each possible clause. 3691 static void collectConjunctionTerms(Expr *Clause, 3692 SmallVectorImpl<Expr *> &Terms) { 3693 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) { 3694 if (BinOp->getOpcode() == BO_LAnd) { 3695 collectConjunctionTerms(BinOp->getLHS(), Terms); 3696 collectConjunctionTerms(BinOp->getRHS(), Terms); 3697 return; 3698 } 3699 } 3700 3701 Terms.push_back(Clause); 3702 } 3703 3704 // The ranges-v3 library uses an odd pattern of a top-level "||" with 3705 // a left-hand side that is value-dependent but never true. Identify 3706 // the idiom and ignore that term. 3707 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { 3708 // Top-level '||'. 3709 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts()); 3710 if (!BinOp) return Cond; 3711 3712 if (BinOp->getOpcode() != BO_LOr) return Cond; 3713 3714 // With an inner '==' that has a literal on the right-hand side. 3715 Expr *LHS = BinOp->getLHS(); 3716 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts()); 3717 if (!InnerBinOp) return Cond; 3718 3719 if (InnerBinOp->getOpcode() != BO_EQ || 3720 !isa<IntegerLiteral>(InnerBinOp->getRHS())) 3721 return Cond; 3722 3723 // If the inner binary operation came from a macro expansion named 3724 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side 3725 // of the '||', which is the real, user-provided condition. 3726 SourceLocation Loc = InnerBinOp->getExprLoc(); 3727 if (!Loc.isMacroID()) return Cond; 3728 3729 StringRef MacroName = PP.getImmediateMacroName(Loc); 3730 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_") 3731 return BinOp->getRHS(); 3732 3733 return Cond; 3734 } 3735 3736 namespace { 3737 3738 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions 3739 // within failing boolean expression, such as substituting template parameters 3740 // for actual types. 3741 class FailedBooleanConditionPrinterHelper : public PrinterHelper { 3742 public: 3743 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P) 3744 : Policy(P) {} 3745 3746 bool handledStmt(Stmt *E, raw_ostream &OS) override { 3747 const auto *DR = dyn_cast<DeclRefExpr>(E); 3748 if (DR && DR->getQualifier()) { 3749 // If this is a qualified name, expand the template arguments in nested 3750 // qualifiers. 3751 DR->getQualifier()->print(OS, Policy, true); 3752 // Then print the decl itself. 3753 const ValueDecl *VD = DR->getDecl(); 3754 OS << VD->getName(); 3755 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 3756 // This is a template variable, print the expanded template arguments. 3757 printTemplateArgumentList( 3758 OS, IV->getTemplateArgs().asArray(), Policy, 3759 IV->getSpecializedTemplate()->getTemplateParameters()); 3760 } 3761 return true; 3762 } 3763 return false; 3764 } 3765 3766 private: 3767 const PrintingPolicy Policy; 3768 }; 3769 3770 } // end anonymous namespace 3771 3772 std::pair<Expr *, std::string> 3773 Sema::findFailedBooleanCondition(Expr *Cond) { 3774 Cond = lookThroughRangesV3Condition(PP, Cond); 3775 3776 // Separate out all of the terms in a conjunction. 3777 SmallVector<Expr *, 4> Terms; 3778 collectConjunctionTerms(Cond, Terms); 3779 3780 // Determine which term failed. 3781 Expr *FailedCond = nullptr; 3782 for (Expr *Term : Terms) { 3783 Expr *TermAsWritten = Term->IgnoreParenImpCasts(); 3784 3785 // Literals are uninteresting. 3786 if (isa<CXXBoolLiteralExpr>(TermAsWritten) || 3787 isa<IntegerLiteral>(TermAsWritten)) 3788 continue; 3789 3790 // The initialization of the parameter from the argument is 3791 // a constant-evaluated context. 3792 EnterExpressionEvaluationContext ConstantEvaluated( 3793 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 3794 3795 bool Succeeded; 3796 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) && 3797 !Succeeded) { 3798 FailedCond = TermAsWritten; 3799 break; 3800 } 3801 } 3802 if (!FailedCond) 3803 FailedCond = Cond->IgnoreParenImpCasts(); 3804 3805 std::string Description; 3806 { 3807 llvm::raw_string_ostream Out(Description); 3808 PrintingPolicy Policy = getPrintingPolicy(); 3809 Policy.PrintCanonicalTypes = true; 3810 FailedBooleanConditionPrinterHelper Helper(Policy); 3811 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr); 3812 } 3813 return { FailedCond, Description }; 3814 } 3815 3816 QualType Sema::CheckTemplateIdType(TemplateName Name, 3817 SourceLocation TemplateLoc, 3818 TemplateArgumentListInfo &TemplateArgs) { 3819 DependentTemplateName *DTN 3820 = Name.getUnderlying().getAsDependentTemplateName(); 3821 if (DTN && DTN->isIdentifier()) 3822 // When building a template-id where the template-name is dependent, 3823 // assume the template is a type template. Either our assumption is 3824 // correct, or the code is ill-formed and will be diagnosed when the 3825 // dependent name is substituted. 3826 return Context.getDependentTemplateSpecializationType( 3827 ETK_None, DTN->getQualifier(), DTN->getIdentifier(), 3828 TemplateArgs.arguments()); 3829 3830 if (Name.getAsAssumedTemplateName() && 3831 resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc)) 3832 return QualType(); 3833 3834 TemplateDecl *Template = Name.getAsTemplateDecl(); 3835 if (!Template || isa<FunctionTemplateDecl>(Template) || 3836 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) { 3837 // We might have a substituted template template parameter pack. If so, 3838 // build a template specialization type for it. 3839 if (Name.getAsSubstTemplateTemplateParmPack()) 3840 return Context.getTemplateSpecializationType(Name, 3841 TemplateArgs.arguments()); 3842 3843 Diag(TemplateLoc, diag::err_template_id_not_a_type) 3844 << Name; 3845 NoteAllFoundTemplates(Name); 3846 return QualType(); 3847 } 3848 3849 // Check that the template argument list is well-formed for this 3850 // template. 3851 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 3852 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, false, 3853 SugaredConverted, CanonicalConverted, 3854 /*UpdateArgsWithConversions=*/true)) 3855 return QualType(); 3856 3857 QualType CanonType; 3858 3859 if (TypeAliasTemplateDecl *AliasTemplate = 3860 dyn_cast<TypeAliasTemplateDecl>(Template)) { 3861 3862 // Find the canonical type for this type alias template specialization. 3863 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 3864 if (Pattern->isInvalidDecl()) 3865 return QualType(); 3866 3867 // Only substitute for the innermost template argument list. 3868 MultiLevelTemplateArgumentList TemplateArgLists; 3869 TemplateArgLists.addOuterTemplateArguments(Template, CanonicalConverted, 3870 /*Final=*/false); 3871 TemplateArgLists.addOuterRetainedLevels( 3872 AliasTemplate->getTemplateParameters()->getDepth()); 3873 3874 LocalInstantiationScope Scope(*this); 3875 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 3876 if (Inst.isInvalid()) 3877 return QualType(); 3878 3879 CanonType = SubstType(Pattern->getUnderlyingType(), 3880 TemplateArgLists, AliasTemplate->getLocation(), 3881 AliasTemplate->getDeclName()); 3882 if (CanonType.isNull()) { 3883 // If this was enable_if and we failed to find the nested type 3884 // within enable_if in a SFINAE context, dig out the specific 3885 // enable_if condition that failed and present that instead. 3886 if (isEnableIfAliasTemplate(AliasTemplate)) { 3887 if (auto DeductionInfo = isSFINAEContext()) { 3888 if (*DeductionInfo && 3889 (*DeductionInfo)->hasSFINAEDiagnostic() && 3890 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == 3891 diag::err_typename_nested_not_found_enable_if && 3892 TemplateArgs[0].getArgument().getKind() 3893 == TemplateArgument::Expression) { 3894 Expr *FailedCond; 3895 std::string FailedDescription; 3896 std::tie(FailedCond, FailedDescription) = 3897 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression()); 3898 3899 // Remove the old SFINAE diagnostic. 3900 PartialDiagnosticAt OldDiag = 3901 {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; 3902 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag); 3903 3904 // Add a new SFINAE diagnostic specifying which condition 3905 // failed. 3906 (*DeductionInfo)->addSFINAEDiagnostic( 3907 OldDiag.first, 3908 PDiag(diag::err_typename_nested_not_found_requirement) 3909 << FailedDescription 3910 << FailedCond->getSourceRange()); 3911 } 3912 } 3913 } 3914 3915 return QualType(); 3916 } 3917 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) { 3918 CanonType = checkBuiltinTemplateIdType(*this, BTD, SugaredConverted, 3919 TemplateLoc, TemplateArgs); 3920 } else if (Name.isDependent() || 3921 TemplateSpecializationType::anyDependentTemplateArguments( 3922 TemplateArgs, CanonicalConverted)) { 3923 // This class template specialization is a dependent 3924 // type. Therefore, its canonical type is another class template 3925 // specialization type that contains all of the converted 3926 // arguments in canonical form. This ensures that, e.g., A<T> and 3927 // A<T, T> have identical types when A is declared as: 3928 // 3929 // template<typename T, typename U = T> struct A; 3930 CanonType = Context.getCanonicalTemplateSpecializationType( 3931 Name, CanonicalConverted); 3932 3933 // This might work out to be a current instantiation, in which 3934 // case the canonical type needs to be the InjectedClassNameType. 3935 // 3936 // TODO: in theory this could be a simple hashtable lookup; most 3937 // changes to CurContext don't change the set of current 3938 // instantiations. 3939 if (isa<ClassTemplateDecl>(Template)) { 3940 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 3941 // If we get out to a namespace, we're done. 3942 if (Ctx->isFileContext()) break; 3943 3944 // If this isn't a record, keep looking. 3945 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 3946 if (!Record) continue; 3947 3948 // Look for one of the two cases with InjectedClassNameTypes 3949 // and check whether it's the same template. 3950 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 3951 !Record->getDescribedClassTemplate()) 3952 continue; 3953 3954 // Fetch the injected class name type and check whether its 3955 // injected type is equal to the type we just built. 3956 QualType ICNT = Context.getTypeDeclType(Record); 3957 QualType Injected = cast<InjectedClassNameType>(ICNT) 3958 ->getInjectedSpecializationType(); 3959 3960 if (CanonType != Injected->getCanonicalTypeInternal()) 3961 continue; 3962 3963 // If so, the canonical type of this TST is the injected 3964 // class name type of the record we just found. 3965 assert(ICNT.isCanonical()); 3966 CanonType = ICNT; 3967 break; 3968 } 3969 } 3970 } else if (ClassTemplateDecl *ClassTemplate = 3971 dyn_cast<ClassTemplateDecl>(Template)) { 3972 // Find the class template specialization declaration that 3973 // corresponds to these arguments. 3974 void *InsertPos = nullptr; 3975 ClassTemplateSpecializationDecl *Decl = 3976 ClassTemplate->findSpecialization(CanonicalConverted, InsertPos); 3977 if (!Decl) { 3978 // This is the first time we have referenced this class template 3979 // specialization. Create the canonical declaration and add it to 3980 // the set of specializations. 3981 Decl = ClassTemplateSpecializationDecl::Create( 3982 Context, ClassTemplate->getTemplatedDecl()->getTagKind(), 3983 ClassTemplate->getDeclContext(), 3984 ClassTemplate->getTemplatedDecl()->getBeginLoc(), 3985 ClassTemplate->getLocation(), ClassTemplate, CanonicalConverted, 3986 nullptr); 3987 ClassTemplate->AddSpecialization(Decl, InsertPos); 3988 if (ClassTemplate->isOutOfLine()) 3989 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 3990 } 3991 3992 if (Decl->getSpecializationKind() == TSK_Undeclared && 3993 ClassTemplate->getTemplatedDecl()->hasAttrs()) { 3994 InstantiatingTemplate Inst(*this, TemplateLoc, Decl); 3995 if (!Inst.isInvalid()) { 3996 MultiLevelTemplateArgumentList TemplateArgLists(Template, 3997 CanonicalConverted, 3998 /*Final=*/false); 3999 InstantiateAttrsForDecl(TemplateArgLists, 4000 ClassTemplate->getTemplatedDecl(), Decl); 4001 } 4002 } 4003 4004 // Diagnose uses of this specialization. 4005 (void)DiagnoseUseOfDecl(Decl, TemplateLoc); 4006 4007 CanonType = Context.getTypeDeclType(Decl); 4008 assert(isa<RecordType>(CanonType) && 4009 "type of non-dependent specialization is not a RecordType"); 4010 } else { 4011 llvm_unreachable("Unhandled template kind"); 4012 } 4013 4014 // Build the fully-sugared type for this class template 4015 // specialization, which refers back to the class template 4016 // specialization we created or found. 4017 return Context.getTemplateSpecializationType(Name, TemplateArgs.arguments(), 4018 CanonType); 4019 } 4020 4021 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName, 4022 TemplateNameKind &TNK, 4023 SourceLocation NameLoc, 4024 IdentifierInfo *&II) { 4025 assert(TNK == TNK_Undeclared_template && "not an undeclared template name"); 4026 4027 TemplateName Name = ParsedName.get(); 4028 auto *ATN = Name.getAsAssumedTemplateName(); 4029 assert(ATN && "not an assumed template name"); 4030 II = ATN->getDeclName().getAsIdentifierInfo(); 4031 4032 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) { 4033 // Resolved to a type template name. 4034 ParsedName = TemplateTy::make(Name); 4035 TNK = TNK_Type_template; 4036 } 4037 } 4038 4039 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, 4040 SourceLocation NameLoc, 4041 bool Diagnose) { 4042 // We assumed this undeclared identifier to be an (ADL-only) function 4043 // template name, but it was used in a context where a type was required. 4044 // Try to typo-correct it now. 4045 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName(); 4046 assert(ATN && "not an assumed template name"); 4047 4048 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName); 4049 struct CandidateCallback : CorrectionCandidateCallback { 4050 bool ValidateCandidate(const TypoCorrection &TC) override { 4051 return TC.getCorrectionDecl() && 4052 getAsTypeTemplateDecl(TC.getCorrectionDecl()); 4053 } 4054 std::unique_ptr<CorrectionCandidateCallback> clone() override { 4055 return std::make_unique<CandidateCallback>(*this); 4056 } 4057 } FilterCCC; 4058 4059 TypoCorrection Corrected = 4060 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr, 4061 FilterCCC, CTK_ErrorRecovery); 4062 if (Corrected && Corrected.getFoundDecl()) { 4063 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) 4064 << ATN->getDeclName()); 4065 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>()); 4066 return false; 4067 } 4068 4069 if (Diagnose) 4070 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName(); 4071 return true; 4072 } 4073 4074 TypeResult Sema::ActOnTemplateIdType( 4075 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 4076 TemplateTy TemplateD, IdentifierInfo *TemplateII, 4077 SourceLocation TemplateIILoc, SourceLocation LAngleLoc, 4078 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc, 4079 bool IsCtorOrDtorName, bool IsClassName, 4080 ImplicitTypenameContext AllowImplicitTypename) { 4081 if (SS.isInvalid()) 4082 return true; 4083 4084 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { 4085 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); 4086 4087 // C++ [temp.res]p3: 4088 // A qualified-id that refers to a type and in which the 4089 // nested-name-specifier depends on a template-parameter (14.6.2) 4090 // shall be prefixed by the keyword typename to indicate that the 4091 // qualified-id denotes a type, forming an 4092 // elaborated-type-specifier (7.1.5.3). 4093 if (!LookupCtx && isDependentScopeSpecifier(SS)) { 4094 // C++2a relaxes some of those restrictions in [temp.res]p5. 4095 if (AllowImplicitTypename == ImplicitTypenameContext::Yes) { 4096 if (getLangOpts().CPlusPlus20) 4097 Diag(SS.getBeginLoc(), diag::warn_cxx17_compat_implicit_typename); 4098 else 4099 Diag(SS.getBeginLoc(), diag::ext_implicit_typename) 4100 << SS.getScopeRep() << TemplateII->getName() 4101 << FixItHint::CreateInsertion(SS.getBeginLoc(), "typename "); 4102 } else 4103 Diag(SS.getBeginLoc(), diag::err_typename_missing_template) 4104 << SS.getScopeRep() << TemplateII->getName(); 4105 4106 // FIXME: This is not quite correct recovery as we don't transform SS 4107 // into the corresponding dependent form (and we don't diagnose missing 4108 // 'template' keywords within SS as a result). 4109 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc, 4110 TemplateD, TemplateII, TemplateIILoc, LAngleLoc, 4111 TemplateArgsIn, RAngleLoc); 4112 } 4113 4114 // Per C++ [class.qual]p2, if the template-id was an injected-class-name, 4115 // it's not actually allowed to be used as a type in most cases. Because 4116 // we annotate it before we know whether it's valid, we have to check for 4117 // this case here. 4118 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 4119 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 4120 Diag(TemplateIILoc, 4121 TemplateKWLoc.isInvalid() 4122 ? diag::err_out_of_line_qualified_id_type_names_constructor 4123 : diag::ext_out_of_line_qualified_id_type_names_constructor) 4124 << TemplateII << 0 /*injected-class-name used as template name*/ 4125 << 1 /*if any keyword was present, it was 'template'*/; 4126 } 4127 } 4128 4129 TemplateName Template = TemplateD.get(); 4130 if (Template.getAsAssumedTemplateName() && 4131 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc)) 4132 return true; 4133 4134 // Translate the parser's template argument list in our AST format. 4135 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4136 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4137 4138 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 4139 assert(SS.getScopeRep() == DTN->getQualifier()); 4140 QualType T = Context.getDependentTemplateSpecializationType( 4141 ETK_None, DTN->getQualifier(), DTN->getIdentifier(), 4142 TemplateArgs.arguments()); 4143 // Build type-source information. 4144 TypeLocBuilder TLB; 4145 DependentTemplateSpecializationTypeLoc SpecTL 4146 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 4147 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 4148 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4149 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 4150 SpecTL.setTemplateNameLoc(TemplateIILoc); 4151 SpecTL.setLAngleLoc(LAngleLoc); 4152 SpecTL.setRAngleLoc(RAngleLoc); 4153 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 4154 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 4155 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 4156 } 4157 4158 QualType SpecTy = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 4159 if (SpecTy.isNull()) 4160 return true; 4161 4162 // Build type-source information. 4163 TypeLocBuilder TLB; 4164 TemplateSpecializationTypeLoc SpecTL = 4165 TLB.push<TemplateSpecializationTypeLoc>(SpecTy); 4166 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 4167 SpecTL.setTemplateNameLoc(TemplateIILoc); 4168 SpecTL.setLAngleLoc(LAngleLoc); 4169 SpecTL.setRAngleLoc(RAngleLoc); 4170 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 4171 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 4172 4173 // Create an elaborated-type-specifier containing the nested-name-specifier. 4174 QualType ElTy = getElaboratedType( 4175 ETK_None, !IsCtorOrDtorName ? SS : CXXScopeSpec(), SpecTy); 4176 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(ElTy); 4177 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 4178 if (!ElabTL.isEmpty()) 4179 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4180 return CreateParsedType(ElTy, TLB.getTypeSourceInfo(Context, ElTy)); 4181 } 4182 4183 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 4184 TypeSpecifierType TagSpec, 4185 SourceLocation TagLoc, 4186 CXXScopeSpec &SS, 4187 SourceLocation TemplateKWLoc, 4188 TemplateTy TemplateD, 4189 SourceLocation TemplateLoc, 4190 SourceLocation LAngleLoc, 4191 ASTTemplateArgsPtr TemplateArgsIn, 4192 SourceLocation RAngleLoc) { 4193 if (SS.isInvalid()) 4194 return TypeResult(true); 4195 4196 TemplateName Template = TemplateD.get(); 4197 4198 // Translate the parser's template argument list in our AST format. 4199 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4200 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4201 4202 // Determine the tag kind 4203 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4204 ElaboratedTypeKeyword Keyword 4205 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 4206 4207 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 4208 assert(SS.getScopeRep() == DTN->getQualifier()); 4209 QualType T = Context.getDependentTemplateSpecializationType( 4210 Keyword, DTN->getQualifier(), DTN->getIdentifier(), 4211 TemplateArgs.arguments()); 4212 4213 // Build type-source information. 4214 TypeLocBuilder TLB; 4215 DependentTemplateSpecializationTypeLoc SpecTL 4216 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 4217 SpecTL.setElaboratedKeywordLoc(TagLoc); 4218 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4219 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 4220 SpecTL.setTemplateNameLoc(TemplateLoc); 4221 SpecTL.setLAngleLoc(LAngleLoc); 4222 SpecTL.setRAngleLoc(RAngleLoc); 4223 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 4224 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 4225 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 4226 } 4227 4228 if (TypeAliasTemplateDecl *TAT = 4229 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 4230 // C++0x [dcl.type.elab]p2: 4231 // If the identifier resolves to a typedef-name or the simple-template-id 4232 // resolves to an alias template specialization, the 4233 // elaborated-type-specifier is ill-formed. 4234 Diag(TemplateLoc, diag::err_tag_reference_non_tag) 4235 << TAT << NTK_TypeAliasTemplate << TagKind; 4236 Diag(TAT->getLocation(), diag::note_declared_at); 4237 } 4238 4239 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 4240 if (Result.isNull()) 4241 return TypeResult(true); 4242 4243 // Check the tag kind 4244 if (const RecordType *RT = Result->getAs<RecordType>()) { 4245 RecordDecl *D = RT->getDecl(); 4246 4247 IdentifierInfo *Id = D->getIdentifier(); 4248 assert(Id && "templated class must have an identifier"); 4249 4250 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 4251 TagLoc, Id)) { 4252 Diag(TagLoc, diag::err_use_with_wrong_tag) 4253 << Result 4254 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 4255 Diag(D->getLocation(), diag::note_previous_use); 4256 } 4257 } 4258 4259 // Provide source-location information for the template specialization. 4260 TypeLocBuilder TLB; 4261 TemplateSpecializationTypeLoc SpecTL 4262 = TLB.push<TemplateSpecializationTypeLoc>(Result); 4263 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 4264 SpecTL.setTemplateNameLoc(TemplateLoc); 4265 SpecTL.setLAngleLoc(LAngleLoc); 4266 SpecTL.setRAngleLoc(RAngleLoc); 4267 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 4268 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 4269 4270 // Construct an elaborated type containing the nested-name-specifier (if any) 4271 // and tag keyword. 4272 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 4273 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 4274 ElabTL.setElaboratedKeywordLoc(TagLoc); 4275 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 4276 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 4277 } 4278 4279 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, 4280 NamedDecl *PrevDecl, 4281 SourceLocation Loc, 4282 bool IsPartialSpecialization); 4283 4284 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); 4285 4286 static bool isTemplateArgumentTemplateParameter( 4287 const TemplateArgument &Arg, unsigned Depth, unsigned Index) { 4288 switch (Arg.getKind()) { 4289 case TemplateArgument::Null: 4290 case TemplateArgument::NullPtr: 4291 case TemplateArgument::Integral: 4292 case TemplateArgument::Declaration: 4293 case TemplateArgument::Pack: 4294 case TemplateArgument::TemplateExpansion: 4295 return false; 4296 4297 case TemplateArgument::Type: { 4298 QualType Type = Arg.getAsType(); 4299 const TemplateTypeParmType *TPT = 4300 Arg.getAsType()->getAs<TemplateTypeParmType>(); 4301 return TPT && !Type.hasQualifiers() && 4302 TPT->getDepth() == Depth && TPT->getIndex() == Index; 4303 } 4304 4305 case TemplateArgument::Expression: { 4306 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr()); 4307 if (!DRE || !DRE->getDecl()) 4308 return false; 4309 const NonTypeTemplateParmDecl *NTTP = 4310 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 4311 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; 4312 } 4313 4314 case TemplateArgument::Template: 4315 const TemplateTemplateParmDecl *TTP = 4316 dyn_cast_or_null<TemplateTemplateParmDecl>( 4317 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); 4318 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; 4319 } 4320 llvm_unreachable("unexpected kind of template argument"); 4321 } 4322 4323 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, 4324 ArrayRef<TemplateArgument> Args) { 4325 if (Params->size() != Args.size()) 4326 return false; 4327 4328 unsigned Depth = Params->getDepth(); 4329 4330 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 4331 TemplateArgument Arg = Args[I]; 4332 4333 // If the parameter is a pack expansion, the argument must be a pack 4334 // whose only element is a pack expansion. 4335 if (Params->getParam(I)->isParameterPack()) { 4336 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || 4337 !Arg.pack_begin()->isPackExpansion()) 4338 return false; 4339 Arg = Arg.pack_begin()->getPackExpansionPattern(); 4340 } 4341 4342 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I)) 4343 return false; 4344 } 4345 4346 return true; 4347 } 4348 4349 template<typename PartialSpecDecl> 4350 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { 4351 if (Partial->getDeclContext()->isDependentContext()) 4352 return; 4353 4354 // FIXME: Get the TDK from deduction in order to provide better diagnostics 4355 // for non-substitution-failure issues? 4356 TemplateDeductionInfo Info(Partial->getLocation()); 4357 if (S.isMoreSpecializedThanPrimary(Partial, Info)) 4358 return; 4359 4360 auto *Template = Partial->getSpecializedTemplate(); 4361 S.Diag(Partial->getLocation(), 4362 diag::ext_partial_spec_not_more_specialized_than_primary) 4363 << isa<VarTemplateDecl>(Template); 4364 4365 if (Info.hasSFINAEDiagnostic()) { 4366 PartialDiagnosticAt Diag = {SourceLocation(), 4367 PartialDiagnostic::NullDiagnostic()}; 4368 Info.takeSFINAEDiagnostic(Diag); 4369 SmallString<128> SFINAEArgString; 4370 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString); 4371 S.Diag(Diag.first, 4372 diag::note_partial_spec_not_more_specialized_than_primary) 4373 << SFINAEArgString; 4374 } 4375 4376 S.Diag(Template->getLocation(), diag::note_template_decl_here); 4377 SmallVector<const Expr *, 3> PartialAC, TemplateAC; 4378 Template->getAssociatedConstraints(TemplateAC); 4379 Partial->getAssociatedConstraints(PartialAC); 4380 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template, 4381 TemplateAC); 4382 } 4383 4384 static void 4385 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, 4386 const llvm::SmallBitVector &DeducibleParams) { 4387 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4388 if (!DeducibleParams[I]) { 4389 NamedDecl *Param = TemplateParams->getParam(I); 4390 if (Param->getDeclName()) 4391 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4392 << Param->getDeclName(); 4393 else 4394 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4395 << "(anonymous)"; 4396 } 4397 } 4398 } 4399 4400 4401 template<typename PartialSpecDecl> 4402 static void checkTemplatePartialSpecialization(Sema &S, 4403 PartialSpecDecl *Partial) { 4404 // C++1z [temp.class.spec]p8: (DR1495) 4405 // - The specialization shall be more specialized than the primary 4406 // template (14.5.5.2). 4407 checkMoreSpecializedThanPrimary(S, Partial); 4408 4409 // C++ [temp.class.spec]p8: (DR1315) 4410 // - Each template-parameter shall appear at least once in the 4411 // template-id outside a non-deduced context. 4412 // C++1z [temp.class.spec.match]p3 (P0127R2) 4413 // If the template arguments of a partial specialization cannot be 4414 // deduced because of the structure of its template-parameter-list 4415 // and the template-id, the program is ill-formed. 4416 auto *TemplateParams = Partial->getTemplateParameters(); 4417 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4418 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4419 TemplateParams->getDepth(), DeducibleParams); 4420 4421 if (!DeducibleParams.all()) { 4422 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4423 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) 4424 << isa<VarTemplatePartialSpecializationDecl>(Partial) 4425 << (NumNonDeducible > 1) 4426 << SourceRange(Partial->getLocation(), 4427 Partial->getTemplateArgsAsWritten()->RAngleLoc); 4428 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); 4429 } 4430 } 4431 4432 void Sema::CheckTemplatePartialSpecialization( 4433 ClassTemplatePartialSpecializationDecl *Partial) { 4434 checkTemplatePartialSpecialization(*this, Partial); 4435 } 4436 4437 void Sema::CheckTemplatePartialSpecialization( 4438 VarTemplatePartialSpecializationDecl *Partial) { 4439 checkTemplatePartialSpecialization(*this, Partial); 4440 } 4441 4442 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { 4443 // C++1z [temp.param]p11: 4444 // A template parameter of a deduction guide template that does not have a 4445 // default-argument shall be deducible from the parameter-type-list of the 4446 // deduction guide template. 4447 auto *TemplateParams = TD->getTemplateParameters(); 4448 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4449 MarkDeducedTemplateParameters(TD, DeducibleParams); 4450 for (unsigned I = 0; I != TemplateParams->size(); ++I) { 4451 // A parameter pack is deducible (to an empty pack). 4452 auto *Param = TemplateParams->getParam(I); 4453 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param)) 4454 DeducibleParams[I] = true; 4455 } 4456 4457 if (!DeducibleParams.all()) { 4458 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4459 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible) 4460 << (NumNonDeducible > 1); 4461 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams); 4462 } 4463 } 4464 4465 DeclResult Sema::ActOnVarTemplateSpecialization( 4466 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, 4467 TemplateParameterList *TemplateParams, StorageClass SC, 4468 bool IsPartialSpecialization) { 4469 // D must be variable template id. 4470 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && 4471 "Variable template specialization is declared with a template id."); 4472 4473 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4474 TemplateArgumentListInfo TemplateArgs = 4475 makeTemplateArgumentListInfo(*this, *TemplateId); 4476 SourceLocation TemplateNameLoc = D.getIdentifierLoc(); 4477 SourceLocation LAngleLoc = TemplateId->LAngleLoc; 4478 SourceLocation RAngleLoc = TemplateId->RAngleLoc; 4479 4480 TemplateName Name = TemplateId->Template.get(); 4481 4482 // The template-id must name a variable template. 4483 VarTemplateDecl *VarTemplate = 4484 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl()); 4485 if (!VarTemplate) { 4486 NamedDecl *FnTemplate; 4487 if (auto *OTS = Name.getAsOverloadedTemplate()) 4488 FnTemplate = *OTS->begin(); 4489 else 4490 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); 4491 if (FnTemplate) 4492 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) 4493 << FnTemplate->getDeclName(); 4494 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) 4495 << IsPartialSpecialization; 4496 } 4497 4498 // Check for unexpanded parameter packs in any of the template arguments. 4499 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4500 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4501 UPPC_PartialSpecialization)) 4502 return true; 4503 4504 // Check that the template argument list is well-formed for this 4505 // template. 4506 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4507 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, 4508 false, SugaredConverted, CanonicalConverted, 4509 /*UpdateArgsWithConversions=*/true)) 4510 return true; 4511 4512 // Find the variable template (partial) specialization declaration that 4513 // corresponds to these arguments. 4514 if (IsPartialSpecialization) { 4515 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate, 4516 TemplateArgs.size(), 4517 CanonicalConverted)) 4518 return true; 4519 4520 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we 4521 // also do them during instantiation. 4522 if (!Name.isDependent() && 4523 !TemplateSpecializationType::anyDependentTemplateArguments( 4524 TemplateArgs, CanonicalConverted)) { 4525 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4526 << VarTemplate->getDeclName(); 4527 IsPartialSpecialization = false; 4528 } 4529 4530 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), 4531 CanonicalConverted) && 4532 (!Context.getLangOpts().CPlusPlus20 || 4533 !TemplateParams->hasAssociatedConstraints())) { 4534 // C++ [temp.class.spec]p9b3: 4535 // 4536 // -- The argument list of the specialization shall not be identical 4537 // to the implicit argument list of the primary template. 4538 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4539 << /*variable template*/ 1 4540 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) 4541 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4542 // FIXME: Recover from this by treating the declaration as a redeclaration 4543 // of the primary template. 4544 return true; 4545 } 4546 } 4547 4548 void *InsertPos = nullptr; 4549 VarTemplateSpecializationDecl *PrevDecl = nullptr; 4550 4551 if (IsPartialSpecialization) 4552 PrevDecl = VarTemplate->findPartialSpecialization( 4553 CanonicalConverted, TemplateParams, InsertPos); 4554 else 4555 PrevDecl = VarTemplate->findSpecialization(CanonicalConverted, InsertPos); 4556 4557 VarTemplateSpecializationDecl *Specialization = nullptr; 4558 4559 // Check whether we can declare a variable template specialization in 4560 // the current scope. 4561 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, 4562 TemplateNameLoc, 4563 IsPartialSpecialization)) 4564 return true; 4565 4566 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4567 // Since the only prior variable template specialization with these 4568 // arguments was referenced but not declared, reuse that 4569 // declaration node as our own, updating its source location and 4570 // the list of outer template parameters to reflect our new declaration. 4571 Specialization = PrevDecl; 4572 Specialization->setLocation(TemplateNameLoc); 4573 PrevDecl = nullptr; 4574 } else if (IsPartialSpecialization) { 4575 // Create a new class template partial specialization declaration node. 4576 VarTemplatePartialSpecializationDecl *PrevPartial = 4577 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); 4578 VarTemplatePartialSpecializationDecl *Partial = 4579 VarTemplatePartialSpecializationDecl::Create( 4580 Context, VarTemplate->getDeclContext(), TemplateKWLoc, 4581 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, 4582 CanonicalConverted, TemplateArgs); 4583 4584 if (!PrevPartial) 4585 VarTemplate->AddPartialSpecialization(Partial, InsertPos); 4586 Specialization = Partial; 4587 4588 // If we are providing an explicit specialization of a member variable 4589 // template specialization, make a note of that. 4590 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4591 PrevPartial->setMemberSpecialization(); 4592 4593 CheckTemplatePartialSpecialization(Partial); 4594 } else { 4595 // Create a new class template specialization declaration node for 4596 // this explicit specialization or friend declaration. 4597 Specialization = VarTemplateSpecializationDecl::Create( 4598 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, 4599 VarTemplate, DI->getType(), DI, SC, CanonicalConverted); 4600 Specialization->setTemplateArgsInfo(TemplateArgs); 4601 4602 if (!PrevDecl) 4603 VarTemplate->AddSpecialization(Specialization, InsertPos); 4604 } 4605 4606 // C++ [temp.expl.spec]p6: 4607 // If a template, a member template or the member of a class template is 4608 // explicitly specialized then that specialization shall be declared 4609 // before the first use of that specialization that would cause an implicit 4610 // instantiation to take place, in every translation unit in which such a 4611 // use occurs; no diagnostic is required. 4612 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4613 bool Okay = false; 4614 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 4615 // Is there any previous explicit specialization declaration? 4616 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4617 Okay = true; 4618 break; 4619 } 4620 } 4621 4622 if (!Okay) { 4623 SourceRange Range(TemplateNameLoc, RAngleLoc); 4624 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4625 << Name << Range; 4626 4627 Diag(PrevDecl->getPointOfInstantiation(), 4628 diag::note_instantiation_required_here) 4629 << (PrevDecl->getTemplateSpecializationKind() != 4630 TSK_ImplicitInstantiation); 4631 return true; 4632 } 4633 } 4634 4635 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 4636 Specialization->setLexicalDeclContext(CurContext); 4637 4638 // Add the specialization into its lexical context, so that it can 4639 // be seen when iterating through the list of declarations in that 4640 // context. However, specializations are not found by name lookup. 4641 CurContext->addDecl(Specialization); 4642 4643 // Note that this is an explicit specialization. 4644 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4645 4646 if (PrevDecl) { 4647 // Check that this isn't a redefinition of this specialization, 4648 // merging with previous declarations. 4649 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName, 4650 forRedeclarationInCurContext()); 4651 PrevSpec.addDecl(PrevDecl); 4652 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec)); 4653 } else if (Specialization->isStaticDataMember() && 4654 Specialization->isOutOfLine()) { 4655 Specialization->setAccess(VarTemplate->getAccess()); 4656 } 4657 4658 return Specialization; 4659 } 4660 4661 namespace { 4662 /// A partial specialization whose template arguments have matched 4663 /// a given template-id. 4664 struct PartialSpecMatchResult { 4665 VarTemplatePartialSpecializationDecl *Partial; 4666 TemplateArgumentList *Args; 4667 }; 4668 } // end anonymous namespace 4669 4670 DeclResult 4671 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, 4672 SourceLocation TemplateNameLoc, 4673 const TemplateArgumentListInfo &TemplateArgs) { 4674 assert(Template && "A variable template id without template?"); 4675 4676 // Check that the template argument list is well-formed for this template. 4677 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4678 if (CheckTemplateArgumentList( 4679 Template, TemplateNameLoc, 4680 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, 4681 SugaredConverted, CanonicalConverted, 4682 /*UpdateArgsWithConversions=*/true)) 4683 return true; 4684 4685 // Produce a placeholder value if the specialization is dependent. 4686 if (Template->getDeclContext()->isDependentContext() || 4687 TemplateSpecializationType::anyDependentTemplateArguments( 4688 TemplateArgs, CanonicalConverted)) 4689 return DeclResult(); 4690 4691 // Find the variable template specialization declaration that 4692 // corresponds to these arguments. 4693 void *InsertPos = nullptr; 4694 if (VarTemplateSpecializationDecl *Spec = 4695 Template->findSpecialization(CanonicalConverted, InsertPos)) { 4696 checkSpecializationReachability(TemplateNameLoc, Spec); 4697 // If we already have a variable template specialization, return it. 4698 return Spec; 4699 } 4700 4701 // This is the first time we have referenced this variable template 4702 // specialization. Create the canonical declaration and add it to 4703 // the set of specializations, based on the closest partial specialization 4704 // that it represents. That is, 4705 VarDecl *InstantiationPattern = Template->getTemplatedDecl(); 4706 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, 4707 CanonicalConverted); 4708 TemplateArgumentList *InstantiationArgs = &TemplateArgList; 4709 bool AmbiguousPartialSpec = false; 4710 typedef PartialSpecMatchResult MatchResult; 4711 SmallVector<MatchResult, 4> Matched; 4712 SourceLocation PointOfInstantiation = TemplateNameLoc; 4713 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, 4714 /*ForTakingAddress=*/false); 4715 4716 // 1. Attempt to find the closest partial specialization that this 4717 // specializes, if any. 4718 // TODO: Unify with InstantiateClassTemplateSpecialization()? 4719 // Perhaps better after unification of DeduceTemplateArguments() and 4720 // getMoreSpecializedPartialSpecialization(). 4721 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 4722 Template->getPartialSpecializations(PartialSpecs); 4723 4724 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { 4725 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; 4726 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 4727 4728 if (TemplateDeductionResult Result = 4729 DeduceTemplateArguments(Partial, TemplateArgList, Info)) { 4730 // Store the failed-deduction information for use in diagnostics, later. 4731 // TODO: Actually use the failed-deduction info? 4732 FailedCandidates.addCandidate().set( 4733 DeclAccessPair::make(Template, AS_public), Partial, 4734 MakeDeductionFailureInfo(Context, Result, Info)); 4735 (void)Result; 4736 } else { 4737 Matched.push_back(PartialSpecMatchResult()); 4738 Matched.back().Partial = Partial; 4739 Matched.back().Args = Info.takeCanonical(); 4740 } 4741 } 4742 4743 if (Matched.size() >= 1) { 4744 SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); 4745 if (Matched.size() == 1) { 4746 // -- If exactly one matching specialization is found, the 4747 // instantiation is generated from that specialization. 4748 // We don't need to do anything for this. 4749 } else { 4750 // -- If more than one matching specialization is found, the 4751 // partial order rules (14.5.4.2) are used to determine 4752 // whether one of the specializations is more specialized 4753 // than the others. If none of the specializations is more 4754 // specialized than all of the other matching 4755 // specializations, then the use of the variable template is 4756 // ambiguous and the program is ill-formed. 4757 for (SmallVector<MatchResult, 4>::iterator P = Best + 1, 4758 PEnd = Matched.end(); 4759 P != PEnd; ++P) { 4760 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, 4761 PointOfInstantiation) == 4762 P->Partial) 4763 Best = P; 4764 } 4765 4766 // Determine if the best partial specialization is more specialized than 4767 // the others. 4768 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 4769 PEnd = Matched.end(); 4770 P != PEnd; ++P) { 4771 if (P != Best && getMoreSpecializedPartialSpecialization( 4772 P->Partial, Best->Partial, 4773 PointOfInstantiation) != Best->Partial) { 4774 AmbiguousPartialSpec = true; 4775 break; 4776 } 4777 } 4778 } 4779 4780 // Instantiate using the best variable template partial specialization. 4781 InstantiationPattern = Best->Partial; 4782 InstantiationArgs = Best->Args; 4783 } else { 4784 // -- If no match is found, the instantiation is generated 4785 // from the primary template. 4786 // InstantiationPattern = Template->getTemplatedDecl(); 4787 } 4788 4789 // 2. Create the canonical declaration. 4790 // Note that we do not instantiate a definition until we see an odr-use 4791 // in DoMarkVarDeclReferenced(). 4792 // FIXME: LateAttrs et al.? 4793 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( 4794 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs, 4795 CanonicalConverted, TemplateNameLoc /*, LateAttrs, StartingScope*/); 4796 if (!Decl) 4797 return true; 4798 4799 if (AmbiguousPartialSpec) { 4800 // Partial ordering did not produce a clear winner. Complain. 4801 Decl->setInvalidDecl(); 4802 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) 4803 << Decl; 4804 4805 // Print the matching partial specializations. 4806 for (MatchResult P : Matched) 4807 Diag(P.Partial->getLocation(), diag::note_partial_spec_match) 4808 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(), 4809 *P.Args); 4810 return true; 4811 } 4812 4813 if (VarTemplatePartialSpecializationDecl *D = 4814 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) 4815 Decl->setInstantiationOf(D, InstantiationArgs); 4816 4817 checkSpecializationReachability(TemplateNameLoc, Decl); 4818 4819 assert(Decl && "No variable template specialization?"); 4820 return Decl; 4821 } 4822 4823 ExprResult 4824 Sema::CheckVarTemplateId(const CXXScopeSpec &SS, 4825 const DeclarationNameInfo &NameInfo, 4826 VarTemplateDecl *Template, SourceLocation TemplateLoc, 4827 const TemplateArgumentListInfo *TemplateArgs) { 4828 4829 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), 4830 *TemplateArgs); 4831 if (Decl.isInvalid()) 4832 return ExprError(); 4833 4834 if (!Decl.get()) 4835 return ExprResult(); 4836 4837 VarDecl *Var = cast<VarDecl>(Decl.get()); 4838 if (!Var->getTemplateSpecializationKind()) 4839 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, 4840 NameInfo.getLoc()); 4841 4842 // Build an ordinary singleton decl ref. 4843 return BuildDeclarationNameExpr(SS, NameInfo, Var, 4844 /*FoundD=*/nullptr, TemplateArgs); 4845 } 4846 4847 void Sema::diagnoseMissingTemplateArguments(TemplateName Name, 4848 SourceLocation Loc) { 4849 Diag(Loc, diag::err_template_missing_args) 4850 << (int)getTemplateNameKindForDiagnostics(Name) << Name; 4851 if (TemplateDecl *TD = Name.getAsTemplateDecl()) { 4852 Diag(TD->getLocation(), diag::note_template_decl_here) 4853 << TD->getTemplateParameters()->getSourceRange(); 4854 } 4855 } 4856 4857 ExprResult 4858 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS, 4859 SourceLocation TemplateKWLoc, 4860 const DeclarationNameInfo &ConceptNameInfo, 4861 NamedDecl *FoundDecl, 4862 ConceptDecl *NamedConcept, 4863 const TemplateArgumentListInfo *TemplateArgs) { 4864 assert(NamedConcept && "A concept template id without a template?"); 4865 4866 llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4867 if (CheckTemplateArgumentList( 4868 NamedConcept, ConceptNameInfo.getLoc(), 4869 const_cast<TemplateArgumentListInfo &>(*TemplateArgs), 4870 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted, 4871 /*UpdateArgsWithConversions=*/false)) 4872 return ExprError(); 4873 4874 auto *CSD = ImplicitConceptSpecializationDecl::Create( 4875 Context, NamedConcept->getDeclContext(), NamedConcept->getLocation(), 4876 CanonicalConverted); 4877 ConstraintSatisfaction Satisfaction; 4878 bool AreArgsDependent = 4879 TemplateSpecializationType::anyDependentTemplateArguments( 4880 *TemplateArgs, CanonicalConverted); 4881 MultiLevelTemplateArgumentList MLTAL(NamedConcept, CanonicalConverted, 4882 /*Final=*/false); 4883 LocalInstantiationScope Scope(*this); 4884 4885 EnterExpressionEvaluationContext EECtx{ 4886 *this, ExpressionEvaluationContext::ConstantEvaluated, CSD}; 4887 4888 if (!AreArgsDependent && 4889 CheckConstraintSatisfaction( 4890 NamedConcept, {NamedConcept->getConstraintExpr()}, MLTAL, 4891 SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(), 4892 TemplateArgs->getRAngleLoc()), 4893 Satisfaction)) 4894 return ExprError(); 4895 4896 return ConceptSpecializationExpr::Create( 4897 Context, 4898 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{}, 4899 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept, 4900 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), CSD, 4901 AreArgsDependent ? nullptr : &Satisfaction); 4902 } 4903 4904 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 4905 SourceLocation TemplateKWLoc, 4906 LookupResult &R, 4907 bool RequiresADL, 4908 const TemplateArgumentListInfo *TemplateArgs) { 4909 // FIXME: Can we do any checking at this point? I guess we could check the 4910 // template arguments that we have against the template name, if the template 4911 // name refers to a single template. That's not a terribly common case, 4912 // though. 4913 // foo<int> could identify a single function unambiguously 4914 // This approach does NOT work, since f<int>(1); 4915 // gets resolved prior to resorting to overload resolution 4916 // i.e., template<class T> void f(double); 4917 // vs template<class T, class U> void f(U); 4918 4919 // These should be filtered out by our callers. 4920 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 4921 4922 // Non-function templates require a template argument list. 4923 if (auto *TD = R.getAsSingle<TemplateDecl>()) { 4924 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) { 4925 diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc()); 4926 return ExprError(); 4927 } 4928 } 4929 4930 // In C++1y, check variable template ids. 4931 if (R.getAsSingle<VarTemplateDecl>()) { 4932 ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(), 4933 R.getAsSingle<VarTemplateDecl>(), 4934 TemplateKWLoc, TemplateArgs); 4935 if (Res.isInvalid() || Res.isUsable()) 4936 return Res; 4937 // Result is dependent. Carry on to build an UnresolvedLookupEpxr. 4938 } 4939 4940 if (R.getAsSingle<ConceptDecl>()) { 4941 return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(), 4942 R.getFoundDecl(), 4943 R.getAsSingle<ConceptDecl>(), TemplateArgs); 4944 } 4945 4946 // We don't want lookup warnings at this point. 4947 R.suppressDiagnostics(); 4948 4949 UnresolvedLookupExpr *ULE 4950 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 4951 SS.getWithLocInContext(Context), 4952 TemplateKWLoc, 4953 R.getLookupNameInfo(), 4954 RequiresADL, TemplateArgs, 4955 R.begin(), R.end()); 4956 4957 return ULE; 4958 } 4959 4960 // We actually only call this from template instantiation. 4961 ExprResult 4962 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 4963 SourceLocation TemplateKWLoc, 4964 const DeclarationNameInfo &NameInfo, 4965 const TemplateArgumentListInfo *TemplateArgs) { 4966 4967 assert(TemplateArgs || TemplateKWLoc.isValid()); 4968 DeclContext *DC; 4969 if (!(DC = computeDeclContext(SS, false)) || 4970 DC->isDependentContext() || 4971 RequireCompleteDeclContext(SS, DC)) 4972 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 4973 4974 bool MemberOfUnknownSpecialization; 4975 LookupResult R(*this, NameInfo, LookupOrdinaryName); 4976 if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(), 4977 /*Entering*/false, MemberOfUnknownSpecialization, 4978 TemplateKWLoc)) 4979 return ExprError(); 4980 4981 if (R.isAmbiguous()) 4982 return ExprError(); 4983 4984 if (R.empty()) { 4985 Diag(NameInfo.getLoc(), diag::err_no_member) 4986 << NameInfo.getName() << DC << SS.getRange(); 4987 return ExprError(); 4988 } 4989 4990 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 4991 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 4992 << SS.getScopeRep() 4993 << NameInfo.getName().getAsString() << SS.getRange(); 4994 Diag(Temp->getLocation(), diag::note_referenced_class_template); 4995 return ExprError(); 4996 } 4997 4998 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 4999 } 5000 5001 /// Form a template name from a name that is syntactically required to name a 5002 /// template, either due to use of the 'template' keyword or because a name in 5003 /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4). 5004 /// 5005 /// This action forms a template name given the name of the template and its 5006 /// optional scope specifier. This is used when the 'template' keyword is used 5007 /// or when the parsing context unambiguously treats a following '<' as 5008 /// introducing a template argument list. Note that this may produce a 5009 /// non-dependent template name if we can perform the lookup now and identify 5010 /// the named template. 5011 /// 5012 /// For example, given "x.MetaFun::template apply", the scope specifier 5013 /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location 5014 /// of the "template" keyword, and "apply" is the \p Name. 5015 TemplateNameKind Sema::ActOnTemplateName(Scope *S, 5016 CXXScopeSpec &SS, 5017 SourceLocation TemplateKWLoc, 5018 const UnqualifiedId &Name, 5019 ParsedType ObjectType, 5020 bool EnteringContext, 5021 TemplateTy &Result, 5022 bool AllowInjectedClassName) { 5023 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 5024 Diag(TemplateKWLoc, 5025 getLangOpts().CPlusPlus11 ? 5026 diag::warn_cxx98_compat_template_outside_of_template : 5027 diag::ext_template_outside_of_template) 5028 << FixItHint::CreateRemoval(TemplateKWLoc); 5029 5030 if (SS.isInvalid()) 5031 return TNK_Non_template; 5032 5033 // Figure out where isTemplateName is going to look. 5034 DeclContext *LookupCtx = nullptr; 5035 if (SS.isNotEmpty()) 5036 LookupCtx = computeDeclContext(SS, EnteringContext); 5037 else if (ObjectType) 5038 LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType)); 5039 5040 // C++0x [temp.names]p5: 5041 // If a name prefixed by the keyword template is not the name of 5042 // a template, the program is ill-formed. [Note: the keyword 5043 // template may not be applied to non-template members of class 5044 // templates. -end note ] [ Note: as is the case with the 5045 // typename prefix, the template prefix is allowed in cases 5046 // where it is not strictly necessary; i.e., when the 5047 // nested-name-specifier or the expression on the left of the -> 5048 // or . is not dependent on a template-parameter, or the use 5049 // does not appear in the scope of a template. -end note] 5050 // 5051 // Note: C++03 was more strict here, because it banned the use of 5052 // the "template" keyword prior to a template-name that was not a 5053 // dependent name. C++ DR468 relaxed this requirement (the 5054 // "template" keyword is now permitted). We follow the C++0x 5055 // rules, even in C++03 mode with a warning, retroactively applying the DR. 5056 bool MemberOfUnknownSpecialization; 5057 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 5058 ObjectType, EnteringContext, Result, 5059 MemberOfUnknownSpecialization); 5060 if (TNK != TNK_Non_template) { 5061 // We resolved this to a (non-dependent) template name. Return it. 5062 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 5063 if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD && 5064 Name.getKind() == UnqualifiedIdKind::IK_Identifier && 5065 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { 5066 // C++14 [class.qual]p2: 5067 // In a lookup in which function names are not ignored and the 5068 // nested-name-specifier nominates a class C, if the name specified 5069 // [...] is the injected-class-name of C, [...] the name is instead 5070 // considered to name the constructor 5071 // 5072 // We don't get here if naming the constructor would be valid, so we 5073 // just reject immediately and recover by treating the 5074 // injected-class-name as naming the template. 5075 Diag(Name.getBeginLoc(), 5076 diag::ext_out_of_line_qualified_id_type_names_constructor) 5077 << Name.Identifier 5078 << 0 /*injected-class-name used as template name*/ 5079 << TemplateKWLoc.isValid(); 5080 } 5081 return TNK; 5082 } 5083 5084 if (!MemberOfUnknownSpecialization) { 5085 // Didn't find a template name, and the lookup wasn't dependent. 5086 // Do the lookup again to determine if this is a "nothing found" case or 5087 // a "not a template" case. FIXME: Refactor isTemplateName so we don't 5088 // need to do this. 5089 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); 5090 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(), 5091 LookupOrdinaryName); 5092 bool MOUS; 5093 // Tell LookupTemplateName that we require a template so that it diagnoses 5094 // cases where it finds a non-template. 5095 RequiredTemplateKind RTK = TemplateKWLoc.isValid() 5096 ? RequiredTemplateKind(TemplateKWLoc) 5097 : TemplateNameIsRequired; 5098 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS, 5099 RTK, nullptr, /*AllowTypoCorrection=*/false) && 5100 !R.isAmbiguous()) { 5101 if (LookupCtx) 5102 Diag(Name.getBeginLoc(), diag::err_no_member) 5103 << DNI.getName() << LookupCtx << SS.getRange(); 5104 else 5105 Diag(Name.getBeginLoc(), diag::err_undeclared_use) 5106 << DNI.getName() << SS.getRange(); 5107 } 5108 return TNK_Non_template; 5109 } 5110 5111 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 5112 5113 switch (Name.getKind()) { 5114 case UnqualifiedIdKind::IK_Identifier: 5115 Result = TemplateTy::make( 5116 Context.getDependentTemplateName(Qualifier, Name.Identifier)); 5117 return TNK_Dependent_template_name; 5118 5119 case UnqualifiedIdKind::IK_OperatorFunctionId: 5120 Result = TemplateTy::make(Context.getDependentTemplateName( 5121 Qualifier, Name.OperatorFunctionId.Operator)); 5122 return TNK_Function_template; 5123 5124 case UnqualifiedIdKind::IK_LiteralOperatorId: 5125 // This is a kind of template name, but can never occur in a dependent 5126 // scope (literal operators can only be declared at namespace scope). 5127 break; 5128 5129 default: 5130 break; 5131 } 5132 5133 // This name cannot possibly name a dependent template. Diagnose this now 5134 // rather than building a dependent template name that can never be valid. 5135 Diag(Name.getBeginLoc(), 5136 diag::err_template_kw_refers_to_dependent_non_template) 5137 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange() 5138 << TemplateKWLoc.isValid() << TemplateKWLoc; 5139 return TNK_Non_template; 5140 } 5141 5142 bool Sema::CheckTemplateTypeArgument( 5143 TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL, 5144 SmallVectorImpl<TemplateArgument> &SugaredConverted, 5145 SmallVectorImpl<TemplateArgument> &CanonicalConverted) { 5146 const TemplateArgument &Arg = AL.getArgument(); 5147 QualType ArgType; 5148 TypeSourceInfo *TSI = nullptr; 5149 5150 // Check template type parameter. 5151 switch(Arg.getKind()) { 5152 case TemplateArgument::Type: 5153 // C++ [temp.arg.type]p1: 5154 // A template-argument for a template-parameter which is a 5155 // type shall be a type-id. 5156 ArgType = Arg.getAsType(); 5157 TSI = AL.getTypeSourceInfo(); 5158 break; 5159 case TemplateArgument::Template: 5160 case TemplateArgument::TemplateExpansion: { 5161 // We have a template type parameter but the template argument 5162 // is a template without any arguments. 5163 SourceRange SR = AL.getSourceRange(); 5164 TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); 5165 diagnoseMissingTemplateArguments(Name, SR.getEnd()); 5166 return true; 5167 } 5168 case TemplateArgument::Expression: { 5169 // We have a template type parameter but the template argument is an 5170 // expression; see if maybe it is missing the "typename" keyword. 5171 CXXScopeSpec SS; 5172 DeclarationNameInfo NameInfo; 5173 5174 if (DependentScopeDeclRefExpr *ArgExpr = 5175 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 5176 SS.Adopt(ArgExpr->getQualifierLoc()); 5177 NameInfo = ArgExpr->getNameInfo(); 5178 } else if (CXXDependentScopeMemberExpr *ArgExpr = 5179 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 5180 if (ArgExpr->isImplicitAccess()) { 5181 SS.Adopt(ArgExpr->getQualifierLoc()); 5182 NameInfo = ArgExpr->getMemberNameInfo(); 5183 } 5184 } 5185 5186 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { 5187 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 5188 LookupParsedName(Result, CurScope, &SS); 5189 5190 if (Result.getAsSingle<TypeDecl>() || 5191 Result.getResultKind() == 5192 LookupResult::NotFoundInCurrentInstantiation) { 5193 assert(SS.getScopeRep() && "dependent scope expr must has a scope!"); 5194 // Suggest that the user add 'typename' before the NNS. 5195 SourceLocation Loc = AL.getSourceRange().getBegin(); 5196 Diag(Loc, getLangOpts().MSVCCompat 5197 ? diag::ext_ms_template_type_arg_missing_typename 5198 : diag::err_template_arg_must_be_type_suggest) 5199 << FixItHint::CreateInsertion(Loc, "typename "); 5200 Diag(Param->getLocation(), diag::note_template_param_here); 5201 5202 // Recover by synthesizing a type using the location information that we 5203 // already have. 5204 ArgType = 5205 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II); 5206 TypeLocBuilder TLB; 5207 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType); 5208 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); 5209 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 5210 TL.setNameLoc(NameInfo.getLoc()); 5211 TSI = TLB.getTypeSourceInfo(Context, ArgType); 5212 5213 // Overwrite our input TemplateArgumentLoc so that we can recover 5214 // properly. 5215 AL = TemplateArgumentLoc(TemplateArgument(ArgType), 5216 TemplateArgumentLocInfo(TSI)); 5217 5218 break; 5219 } 5220 } 5221 // fallthrough 5222 [[fallthrough]]; 5223 } 5224 default: { 5225 // We have a template type parameter but the template argument 5226 // is not a type. 5227 SourceRange SR = AL.getSourceRange(); 5228 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 5229 Diag(Param->getLocation(), diag::note_template_param_here); 5230 5231 return true; 5232 } 5233 } 5234 5235 if (CheckTemplateArgument(TSI)) 5236 return true; 5237 5238 // Objective-C ARC: 5239 // If an explicitly-specified template argument type is a lifetime type 5240 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 5241 if (getLangOpts().ObjCAutoRefCount && 5242 ArgType->isObjCLifetimeType() && 5243 !ArgType.getObjCLifetime()) { 5244 Qualifiers Qs; 5245 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 5246 ArgType = Context.getQualifiedType(ArgType, Qs); 5247 } 5248 5249 SugaredConverted.push_back(TemplateArgument(ArgType)); 5250 CanonicalConverted.push_back( 5251 TemplateArgument(Context.getCanonicalType(ArgType))); 5252 return false; 5253 } 5254 5255 /// Substitute template arguments into the default template argument for 5256 /// the given template type parameter. 5257 /// 5258 /// \param SemaRef the semantic analysis object for which we are performing 5259 /// the substitution. 5260 /// 5261 /// \param Template the template that we are synthesizing template arguments 5262 /// for. 5263 /// 5264 /// \param TemplateLoc the location of the template name that started the 5265 /// template-id we are checking. 5266 /// 5267 /// \param RAngleLoc the location of the right angle bracket ('>') that 5268 /// terminates the template-id. 5269 /// 5270 /// \param Param the template template parameter whose default we are 5271 /// substituting into. 5272 /// 5273 /// \param Converted the list of template arguments provided for template 5274 /// parameters that precede \p Param in the template parameter list. 5275 /// \returns the substituted template argument, or NULL if an error occurred. 5276 static TypeSourceInfo *SubstDefaultTemplateArgument( 5277 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, 5278 SourceLocation RAngleLoc, TemplateTypeParmDecl *Param, 5279 ArrayRef<TemplateArgument> SugaredConverted, 5280 ArrayRef<TemplateArgument> CanonicalConverted) { 5281 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 5282 5283 // If the argument type is dependent, instantiate it now based 5284 // on the previously-computed template arguments. 5285 if (ArgType->getType()->isInstantiationDependentType()) { 5286 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template, 5287 SugaredConverted, 5288 SourceRange(TemplateLoc, RAngleLoc)); 5289 if (Inst.isInvalid()) 5290 return nullptr; 5291 5292 // Only substitute for the innermost template argument list. 5293 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, 5294 /*Final=*/true); 5295 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5296 TemplateArgLists.addOuterTemplateArguments(std::nullopt); 5297 5298 bool ForLambdaCallOperator = false; 5299 if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext())) 5300 ForLambdaCallOperator = Rec->isLambda(); 5301 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(), 5302 !ForLambdaCallOperator); 5303 ArgType = 5304 SemaRef.SubstType(ArgType, TemplateArgLists, 5305 Param->getDefaultArgumentLoc(), Param->getDeclName()); 5306 } 5307 5308 return ArgType; 5309 } 5310 5311 /// Substitute template arguments into the default template argument for 5312 /// the given non-type template parameter. 5313 /// 5314 /// \param SemaRef the semantic analysis object for which we are performing 5315 /// the substitution. 5316 /// 5317 /// \param Template the template that we are synthesizing template arguments 5318 /// for. 5319 /// 5320 /// \param TemplateLoc the location of the template name that started the 5321 /// template-id we are checking. 5322 /// 5323 /// \param RAngleLoc the location of the right angle bracket ('>') that 5324 /// terminates the template-id. 5325 /// 5326 /// \param Param the non-type template parameter whose default we are 5327 /// substituting into. 5328 /// 5329 /// \param Converted the list of template arguments provided for template 5330 /// parameters that precede \p Param in the template parameter list. 5331 /// 5332 /// \returns the substituted template argument, or NULL if an error occurred. 5333 static ExprResult SubstDefaultTemplateArgument( 5334 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, 5335 SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param, 5336 ArrayRef<TemplateArgument> SugaredConverted, 5337 ArrayRef<TemplateArgument> CanonicalConverted) { 5338 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template, 5339 SugaredConverted, 5340 SourceRange(TemplateLoc, RAngleLoc)); 5341 if (Inst.isInvalid()) 5342 return ExprError(); 5343 5344 // Only substitute for the innermost template argument list. 5345 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, 5346 /*Final=*/true); 5347 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5348 TemplateArgLists.addOuterTemplateArguments(std::nullopt); 5349 5350 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5351 EnterExpressionEvaluationContext ConstantEvaluated( 5352 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 5353 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists); 5354 } 5355 5356 /// Substitute template arguments into the default template argument for 5357 /// the given template template parameter. 5358 /// 5359 /// \param SemaRef the semantic analysis object for which we are performing 5360 /// the substitution. 5361 /// 5362 /// \param Template the template that we are synthesizing template arguments 5363 /// for. 5364 /// 5365 /// \param TemplateLoc the location of the template name that started the 5366 /// template-id we are checking. 5367 /// 5368 /// \param RAngleLoc the location of the right angle bracket ('>') that 5369 /// terminates the template-id. 5370 /// 5371 /// \param Param the template template parameter whose default we are 5372 /// substituting into. 5373 /// 5374 /// \param Converted the list of template arguments provided for template 5375 /// parameters that precede \p Param in the template parameter list. 5376 /// 5377 /// \param QualifierLoc Will be set to the nested-name-specifier (with 5378 /// source-location information) that precedes the template name. 5379 /// 5380 /// \returns the substituted template argument, or NULL if an error occurred. 5381 static TemplateName SubstDefaultTemplateArgument( 5382 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, 5383 SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param, 5384 ArrayRef<TemplateArgument> SugaredConverted, 5385 ArrayRef<TemplateArgument> CanonicalConverted, 5386 NestedNameSpecifierLoc &QualifierLoc) { 5387 Sema::InstantiatingTemplate Inst( 5388 SemaRef, TemplateLoc, TemplateParameter(Param), Template, 5389 SugaredConverted, SourceRange(TemplateLoc, RAngleLoc)); 5390 if (Inst.isInvalid()) 5391 return TemplateName(); 5392 5393 // Only substitute for the innermost template argument list. 5394 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, 5395 /*Final=*/true); 5396 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5397 TemplateArgLists.addOuterTemplateArguments(std::nullopt); 5398 5399 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5400 // Substitute into the nested-name-specifier first, 5401 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 5402 if (QualifierLoc) { 5403 QualifierLoc = 5404 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); 5405 if (!QualifierLoc) 5406 return TemplateName(); 5407 } 5408 5409 return SemaRef.SubstTemplateName( 5410 QualifierLoc, 5411 Param->getDefaultArgument().getArgument().getAsTemplate(), 5412 Param->getDefaultArgument().getTemplateNameLoc(), 5413 TemplateArgLists); 5414 } 5415 5416 /// If the given template parameter has a default template 5417 /// argument, substitute into that default template argument and 5418 /// return the corresponding template argument. 5419 TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable( 5420 TemplateDecl *Template, SourceLocation TemplateLoc, 5421 SourceLocation RAngleLoc, Decl *Param, 5422 ArrayRef<TemplateArgument> SugaredConverted, 5423 ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) { 5424 HasDefaultArg = false; 5425 5426 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 5427 if (!hasReachableDefaultArgument(TypeParm)) 5428 return TemplateArgumentLoc(); 5429 5430 HasDefaultArg = true; 5431 TypeSourceInfo *DI = SubstDefaultTemplateArgument( 5432 *this, Template, TemplateLoc, RAngleLoc, TypeParm, SugaredConverted, 5433 CanonicalConverted); 5434 if (DI) 5435 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 5436 5437 return TemplateArgumentLoc(); 5438 } 5439 5440 if (NonTypeTemplateParmDecl *NonTypeParm 5441 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5442 if (!hasReachableDefaultArgument(NonTypeParm)) 5443 return TemplateArgumentLoc(); 5444 5445 HasDefaultArg = true; 5446 ExprResult Arg = SubstDefaultTemplateArgument( 5447 *this, Template, TemplateLoc, RAngleLoc, NonTypeParm, SugaredConverted, 5448 CanonicalConverted); 5449 if (Arg.isInvalid()) 5450 return TemplateArgumentLoc(); 5451 5452 Expr *ArgE = Arg.getAs<Expr>(); 5453 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 5454 } 5455 5456 TemplateTemplateParmDecl *TempTempParm 5457 = cast<TemplateTemplateParmDecl>(Param); 5458 if (!hasReachableDefaultArgument(TempTempParm)) 5459 return TemplateArgumentLoc(); 5460 5461 HasDefaultArg = true; 5462 NestedNameSpecifierLoc QualifierLoc; 5463 TemplateName TName = SubstDefaultTemplateArgument( 5464 *this, Template, TemplateLoc, RAngleLoc, TempTempParm, SugaredConverted, 5465 CanonicalConverted, QualifierLoc); 5466 if (TName.isNull()) 5467 return TemplateArgumentLoc(); 5468 5469 return TemplateArgumentLoc( 5470 Context, TemplateArgument(TName), 5471 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 5472 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 5473 } 5474 5475 /// Convert a template-argument that we parsed as a type into a template, if 5476 /// possible. C++ permits injected-class-names to perform dual service as 5477 /// template template arguments and as template type arguments. 5478 static TemplateArgumentLoc 5479 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) { 5480 // Extract and step over any surrounding nested-name-specifier. 5481 NestedNameSpecifierLoc QualLoc; 5482 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { 5483 if (ETLoc.getTypePtr()->getKeyword() != ETK_None) 5484 return TemplateArgumentLoc(); 5485 5486 QualLoc = ETLoc.getQualifierLoc(); 5487 TLoc = ETLoc.getNamedTypeLoc(); 5488 } 5489 // If this type was written as an injected-class-name, it can be used as a 5490 // template template argument. 5491 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) 5492 return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(), 5493 QualLoc, InjLoc.getNameLoc()); 5494 5495 // If this type was written as an injected-class-name, it may have been 5496 // converted to a RecordType during instantiation. If the RecordType is 5497 // *not* wrapped in a TemplateSpecializationType and denotes a class 5498 // template specialization, it must have come from an injected-class-name. 5499 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) 5500 if (auto *CTSD = 5501 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl())) 5502 return TemplateArgumentLoc(Context, 5503 TemplateName(CTSD->getSpecializedTemplate()), 5504 QualLoc, RecLoc.getNameLoc()); 5505 5506 return TemplateArgumentLoc(); 5507 } 5508 5509 /// Check that the given template argument corresponds to the given 5510 /// template parameter. 5511 /// 5512 /// \param Param The template parameter against which the argument will be 5513 /// checked. 5514 /// 5515 /// \param Arg The template argument, which may be updated due to conversions. 5516 /// 5517 /// \param Template The template in which the template argument resides. 5518 /// 5519 /// \param TemplateLoc The location of the template name for the template 5520 /// whose argument list we're matching. 5521 /// 5522 /// \param RAngleLoc The location of the right angle bracket ('>') that closes 5523 /// the template argument list. 5524 /// 5525 /// \param ArgumentPackIndex The index into the argument pack where this 5526 /// argument will be placed. Only valid if the parameter is a parameter pack. 5527 /// 5528 /// \param Converted The checked, converted argument will be added to the 5529 /// end of this small vector. 5530 /// 5531 /// \param CTAK Describes how we arrived at this particular template argument: 5532 /// explicitly written, deduced, etc. 5533 /// 5534 /// \returns true on error, false otherwise. 5535 bool Sema::CheckTemplateArgument( 5536 NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template, 5537 SourceLocation TemplateLoc, SourceLocation RAngleLoc, 5538 unsigned ArgumentPackIndex, 5539 SmallVectorImpl<TemplateArgument> &SugaredConverted, 5540 SmallVectorImpl<TemplateArgument> &CanonicalConverted, 5541 CheckTemplateArgumentKind CTAK) { 5542 // Check template type parameters. 5543 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 5544 return CheckTemplateTypeArgument(TTP, Arg, SugaredConverted, 5545 CanonicalConverted); 5546 5547 // Check non-type template parameters. 5548 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5549 // Do substitution on the type of the non-type template parameter 5550 // with the template arguments we've seen thus far. But if the 5551 // template has a dependent context then we cannot substitute yet. 5552 QualType NTTPType = NTTP->getType(); 5553 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 5554 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 5555 5556 if (NTTPType->isInstantiationDependentType() && 5557 !isa<TemplateTemplateParmDecl>(Template) && 5558 !Template->getDeclContext()->isDependentContext()) { 5559 // Do substitution on the type of the non-type template parameter. 5560 InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP, 5561 SugaredConverted, 5562 SourceRange(TemplateLoc, RAngleLoc)); 5563 if (Inst.isInvalid()) 5564 return true; 5565 5566 MultiLevelTemplateArgumentList MLTAL(Template, SugaredConverted, 5567 /*Final=*/true); 5568 // If the parameter is a pack expansion, expand this slice of the pack. 5569 if (auto *PET = NTTPType->getAs<PackExpansionType>()) { 5570 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, 5571 ArgumentPackIndex); 5572 NTTPType = SubstType(PET->getPattern(), MLTAL, NTTP->getLocation(), 5573 NTTP->getDeclName()); 5574 } else { 5575 NTTPType = SubstType(NTTPType, MLTAL, NTTP->getLocation(), 5576 NTTP->getDeclName()); 5577 } 5578 5579 // If that worked, check the non-type template parameter type 5580 // for validity. 5581 if (!NTTPType.isNull()) 5582 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 5583 NTTP->getLocation()); 5584 if (NTTPType.isNull()) 5585 return true; 5586 } 5587 5588 switch (Arg.getArgument().getKind()) { 5589 case TemplateArgument::Null: 5590 llvm_unreachable("Should never see a NULL template argument here"); 5591 5592 case TemplateArgument::Expression: { 5593 Expr *E = Arg.getArgument().getAsExpr(); 5594 TemplateArgument SugaredResult, CanonicalResult; 5595 unsigned CurSFINAEErrors = NumSFINAEErrors; 5596 ExprResult Res = CheckTemplateArgument(NTTP, NTTPType, E, SugaredResult, 5597 CanonicalResult, CTAK); 5598 if (Res.isInvalid()) 5599 return true; 5600 // If the current template argument causes an error, give up now. 5601 if (CurSFINAEErrors < NumSFINAEErrors) 5602 return true; 5603 5604 // If the resulting expression is new, then use it in place of the 5605 // old expression in the template argument. 5606 if (Res.get() != E) { 5607 TemplateArgument TA(Res.get()); 5608 Arg = TemplateArgumentLoc(TA, Res.get()); 5609 } 5610 5611 SugaredConverted.push_back(SugaredResult); 5612 CanonicalConverted.push_back(CanonicalResult); 5613 break; 5614 } 5615 5616 case TemplateArgument::Declaration: 5617 case TemplateArgument::Integral: 5618 case TemplateArgument::NullPtr: 5619 // We've already checked this template argument, so just copy 5620 // it to the list of converted arguments. 5621 SugaredConverted.push_back(Arg.getArgument()); 5622 CanonicalConverted.push_back( 5623 Context.getCanonicalTemplateArgument(Arg.getArgument())); 5624 break; 5625 5626 case TemplateArgument::Template: 5627 case TemplateArgument::TemplateExpansion: 5628 // We were given a template template argument. It may not be ill-formed; 5629 // see below. 5630 if (DependentTemplateName *DTN 5631 = Arg.getArgument().getAsTemplateOrTemplatePattern() 5632 .getAsDependentTemplateName()) { 5633 // We have a template argument such as \c T::template X, which we 5634 // parsed as a template template argument. However, since we now 5635 // know that we need a non-type template argument, convert this 5636 // template name into an expression. 5637 5638 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 5639 Arg.getTemplateNameLoc()); 5640 5641 CXXScopeSpec SS; 5642 SS.Adopt(Arg.getTemplateQualifierLoc()); 5643 // FIXME: the template-template arg was a DependentTemplateName, 5644 // so it was provided with a template keyword. However, its source 5645 // location is not stored in the template argument structure. 5646 SourceLocation TemplateKWLoc; 5647 ExprResult E = DependentScopeDeclRefExpr::Create( 5648 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 5649 nullptr); 5650 5651 // If we parsed the template argument as a pack expansion, create a 5652 // pack expansion expression. 5653 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 5654 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc()); 5655 if (E.isInvalid()) 5656 return true; 5657 } 5658 5659 TemplateArgument SugaredResult, CanonicalResult; 5660 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), SugaredResult, 5661 CanonicalResult, CTAK_Specified); 5662 if (E.isInvalid()) 5663 return true; 5664 5665 SugaredConverted.push_back(SugaredResult); 5666 CanonicalConverted.push_back(CanonicalResult); 5667 break; 5668 } 5669 5670 // We have a template argument that actually does refer to a class 5671 // template, alias template, or template template parameter, and 5672 // therefore cannot be a non-type template argument. 5673 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 5674 << Arg.getSourceRange(); 5675 5676 Diag(Param->getLocation(), diag::note_template_param_here); 5677 return true; 5678 5679 case TemplateArgument::Type: { 5680 // We have a non-type template parameter but the template 5681 // argument is a type. 5682 5683 // C++ [temp.arg]p2: 5684 // In a template-argument, an ambiguity between a type-id and 5685 // an expression is resolved to a type-id, regardless of the 5686 // form of the corresponding template-parameter. 5687 // 5688 // We warn specifically about this case, since it can be rather 5689 // confusing for users. 5690 QualType T = Arg.getArgument().getAsType(); 5691 SourceRange SR = Arg.getSourceRange(); 5692 if (T->isFunctionType()) 5693 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 5694 else 5695 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 5696 Diag(Param->getLocation(), diag::note_template_param_here); 5697 return true; 5698 } 5699 5700 case TemplateArgument::Pack: 5701 llvm_unreachable("Caller must expand template argument packs"); 5702 } 5703 5704 return false; 5705 } 5706 5707 5708 // Check template template parameters. 5709 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 5710 5711 TemplateParameterList *Params = TempParm->getTemplateParameters(); 5712 if (TempParm->isExpandedParameterPack()) 5713 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex); 5714 5715 // Substitute into the template parameter list of the template 5716 // template parameter, since previously-supplied template arguments 5717 // may appear within the template template parameter. 5718 // 5719 // FIXME: Skip this if the parameters aren't instantiation-dependent. 5720 { 5721 // Set up a template instantiation context. 5722 LocalInstantiationScope Scope(*this); 5723 InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm, 5724 SugaredConverted, 5725 SourceRange(TemplateLoc, RAngleLoc)); 5726 if (Inst.isInvalid()) 5727 return true; 5728 5729 Params = 5730 SubstTemplateParams(Params, CurContext, 5731 MultiLevelTemplateArgumentList( 5732 Template, SugaredConverted, /*Final=*/true), 5733 /*EvaluateConstraints=*/false); 5734 if (!Params) 5735 return true; 5736 } 5737 5738 // C++1z [temp.local]p1: (DR1004) 5739 // When [the injected-class-name] is used [...] as a template-argument for 5740 // a template template-parameter [...] it refers to the class template 5741 // itself. 5742 if (Arg.getArgument().getKind() == TemplateArgument::Type) { 5743 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( 5744 Context, Arg.getTypeSourceInfo()->getTypeLoc()); 5745 if (!ConvertedArg.getArgument().isNull()) 5746 Arg = ConvertedArg; 5747 } 5748 5749 switch (Arg.getArgument().getKind()) { 5750 case TemplateArgument::Null: 5751 llvm_unreachable("Should never see a NULL template argument here"); 5752 5753 case TemplateArgument::Template: 5754 case TemplateArgument::TemplateExpansion: 5755 if (CheckTemplateTemplateArgument(TempParm, Params, Arg)) 5756 return true; 5757 5758 SugaredConverted.push_back(Arg.getArgument()); 5759 CanonicalConverted.push_back( 5760 Context.getCanonicalTemplateArgument(Arg.getArgument())); 5761 break; 5762 5763 case TemplateArgument::Expression: 5764 case TemplateArgument::Type: 5765 // We have a template template parameter but the template 5766 // argument does not refer to a template. 5767 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 5768 << getLangOpts().CPlusPlus11; 5769 return true; 5770 5771 case TemplateArgument::Declaration: 5772 llvm_unreachable("Declaration argument with template template parameter"); 5773 case TemplateArgument::Integral: 5774 llvm_unreachable("Integral argument with template template parameter"); 5775 case TemplateArgument::NullPtr: 5776 llvm_unreachable("Null pointer argument with template template parameter"); 5777 5778 case TemplateArgument::Pack: 5779 llvm_unreachable("Caller must expand template argument packs"); 5780 } 5781 5782 return false; 5783 } 5784 5785 /// Diagnose a missing template argument. 5786 template<typename TemplateParmDecl> 5787 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, 5788 TemplateDecl *TD, 5789 const TemplateParmDecl *D, 5790 TemplateArgumentListInfo &Args) { 5791 // Dig out the most recent declaration of the template parameter; there may be 5792 // declarations of the template that are more recent than TD. 5793 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) 5794 ->getTemplateParameters() 5795 ->getParam(D->getIndex())); 5796 5797 // If there's a default argument that's not reachable, diagnose that we're 5798 // missing a module import. 5799 llvm::SmallVector<Module*, 8> Modules; 5800 if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, &Modules)) { 5801 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD), 5802 D->getDefaultArgumentLoc(), Modules, 5803 Sema::MissingImportKind::DefaultArgument, 5804 /*Recover*/true); 5805 return true; 5806 } 5807 5808 // FIXME: If there's a more recent default argument that *is* visible, 5809 // diagnose that it was declared too late. 5810 5811 TemplateParameterList *Params = TD->getTemplateParameters(); 5812 5813 S.Diag(Loc, diag::err_template_arg_list_different_arity) 5814 << /*not enough args*/0 5815 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD)) 5816 << TD; 5817 S.Diag(TD->getLocation(), diag::note_template_decl_here) 5818 << Params->getSourceRange(); 5819 return true; 5820 } 5821 5822 /// Check that the given template argument list is well-formed 5823 /// for specializing the given template. 5824 bool Sema::CheckTemplateArgumentList( 5825 TemplateDecl *Template, SourceLocation TemplateLoc, 5826 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, 5827 SmallVectorImpl<TemplateArgument> &SugaredConverted, 5828 SmallVectorImpl<TemplateArgument> &CanonicalConverted, 5829 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) { 5830 5831 if (ConstraintsNotSatisfied) 5832 *ConstraintsNotSatisfied = false; 5833 5834 // Make a copy of the template arguments for processing. Only make the 5835 // changes at the end when successful in matching the arguments to the 5836 // template. 5837 TemplateArgumentListInfo NewArgs = TemplateArgs; 5838 5839 // Make sure we get the template parameter list from the most 5840 // recent declaration, since that is the only one that is guaranteed to 5841 // have all the default template argument information. 5842 TemplateParameterList *Params = 5843 cast<TemplateDecl>(Template->getMostRecentDecl()) 5844 ->getTemplateParameters(); 5845 5846 SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); 5847 5848 // C++ [temp.arg]p1: 5849 // [...] The type and form of each template-argument specified in 5850 // a template-id shall match the type and form specified for the 5851 // corresponding parameter declared by the template in its 5852 // template-parameter-list. 5853 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 5854 SmallVector<TemplateArgument, 2> SugaredArgumentPack; 5855 SmallVector<TemplateArgument, 2> CanonicalArgumentPack; 5856 unsigned ArgIdx = 0, NumArgs = NewArgs.size(); 5857 LocalInstantiationScope InstScope(*this, true); 5858 for (TemplateParameterList::iterator Param = Params->begin(), 5859 ParamEnd = Params->end(); 5860 Param != ParamEnd; /* increment in loop */) { 5861 // If we have an expanded parameter pack, make sure we don't have too 5862 // many arguments. 5863 if (std::optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 5864 if (*Expansions == SugaredArgumentPack.size()) { 5865 // We're done with this parameter pack. Pack up its arguments and add 5866 // them to the list. 5867 SugaredConverted.push_back( 5868 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack)); 5869 SugaredArgumentPack.clear(); 5870 5871 CanonicalConverted.push_back( 5872 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack)); 5873 CanonicalArgumentPack.clear(); 5874 5875 // This argument is assigned to the next parameter. 5876 ++Param; 5877 continue; 5878 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 5879 // Not enough arguments for this parameter pack. 5880 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5881 << /*not enough args*/0 5882 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5883 << Template; 5884 Diag(Template->getLocation(), diag::note_template_decl_here) 5885 << Params->getSourceRange(); 5886 return true; 5887 } 5888 } 5889 5890 if (ArgIdx < NumArgs) { 5891 // Check the template argument we were given. 5892 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, TemplateLoc, 5893 RAngleLoc, SugaredArgumentPack.size(), 5894 SugaredConverted, CanonicalConverted, 5895 CTAK_Specified)) 5896 return true; 5897 5898 bool PackExpansionIntoNonPack = 5899 NewArgs[ArgIdx].getArgument().isPackExpansion() && 5900 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param)); 5901 if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) || 5902 isa<ConceptDecl>(Template))) { 5903 // Core issue 1430: we have a pack expansion as an argument to an 5904 // alias template, and it's not part of a parameter pack. This 5905 // can't be canonicalized, so reject it now. 5906 // As for concepts - we cannot normalize constraints where this 5907 // situation exists. 5908 Diag(NewArgs[ArgIdx].getLocation(), 5909 diag::err_template_expansion_into_fixed_list) 5910 << (isa<ConceptDecl>(Template) ? 1 : 0) 5911 << NewArgs[ArgIdx].getSourceRange(); 5912 Diag((*Param)->getLocation(), diag::note_template_param_here); 5913 return true; 5914 } 5915 5916 // We're now done with this argument. 5917 ++ArgIdx; 5918 5919 if ((*Param)->isTemplateParameterPack()) { 5920 // The template parameter was a template parameter pack, so take the 5921 // deduced argument and place it on the argument pack. Note that we 5922 // stay on the same template parameter so that we can deduce more 5923 // arguments. 5924 SugaredArgumentPack.push_back(SugaredConverted.pop_back_val()); 5925 CanonicalArgumentPack.push_back(CanonicalConverted.pop_back_val()); 5926 } else { 5927 // Move to the next template parameter. 5928 ++Param; 5929 } 5930 5931 // If we just saw a pack expansion into a non-pack, then directly convert 5932 // the remaining arguments, because we don't know what parameters they'll 5933 // match up with. 5934 if (PackExpansionIntoNonPack) { 5935 if (!SugaredArgumentPack.empty()) { 5936 // If we were part way through filling in an expanded parameter pack, 5937 // fall back to just producing individual arguments. 5938 SugaredConverted.insert(SugaredConverted.end(), 5939 SugaredArgumentPack.begin(), 5940 SugaredArgumentPack.end()); 5941 SugaredArgumentPack.clear(); 5942 5943 CanonicalConverted.insert(CanonicalConverted.end(), 5944 CanonicalArgumentPack.begin(), 5945 CanonicalArgumentPack.end()); 5946 CanonicalArgumentPack.clear(); 5947 } 5948 5949 while (ArgIdx < NumArgs) { 5950 const TemplateArgument &Arg = NewArgs[ArgIdx].getArgument(); 5951 SugaredConverted.push_back(Arg); 5952 CanonicalConverted.push_back( 5953 Context.getCanonicalTemplateArgument(Arg)); 5954 ++ArgIdx; 5955 } 5956 5957 return false; 5958 } 5959 5960 continue; 5961 } 5962 5963 // If we're checking a partial template argument list, we're done. 5964 if (PartialTemplateArgs) { 5965 if ((*Param)->isTemplateParameterPack() && !SugaredArgumentPack.empty()) { 5966 SugaredConverted.push_back( 5967 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack)); 5968 CanonicalConverted.push_back( 5969 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack)); 5970 } 5971 return false; 5972 } 5973 5974 // If we have a template parameter pack with no more corresponding 5975 // arguments, just break out now and we'll fill in the argument pack below. 5976 if ((*Param)->isTemplateParameterPack()) { 5977 assert(!getExpandedPackSize(*Param) && 5978 "Should have dealt with this already"); 5979 5980 // A non-expanded parameter pack before the end of the parameter list 5981 // only occurs for an ill-formed template parameter list, unless we've 5982 // got a partial argument list for a function template, so just bail out. 5983 if (Param + 1 != ParamEnd) { 5984 assert( 5985 (Template->getMostRecentDecl()->getKind() != Decl::Kind::Concept) && 5986 "Concept templates must have parameter packs at the end."); 5987 return true; 5988 } 5989 5990 SugaredConverted.push_back( 5991 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack)); 5992 SugaredArgumentPack.clear(); 5993 5994 CanonicalConverted.push_back( 5995 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack)); 5996 CanonicalArgumentPack.clear(); 5997 5998 ++Param; 5999 continue; 6000 } 6001 6002 // Check whether we have a default argument. 6003 TemplateArgumentLoc Arg; 6004 6005 // Retrieve the default template argument from the template 6006 // parameter. For each kind of template parameter, we substitute the 6007 // template arguments provided thus far and any "outer" template arguments 6008 // (when the template parameter was part of a nested template) into 6009 // the default argument. 6010 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 6011 if (!hasReachableDefaultArgument(TTP)) 6012 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP, 6013 NewArgs); 6014 6015 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument( 6016 *this, Template, TemplateLoc, RAngleLoc, TTP, SugaredConverted, 6017 CanonicalConverted); 6018 if (!ArgType) 6019 return true; 6020 6021 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 6022 ArgType); 6023 } else if (NonTypeTemplateParmDecl *NTTP 6024 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 6025 if (!hasReachableDefaultArgument(NTTP)) 6026 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP, 6027 NewArgs); 6028 6029 ExprResult E = SubstDefaultTemplateArgument( 6030 *this, Template, TemplateLoc, RAngleLoc, NTTP, SugaredConverted, 6031 CanonicalConverted); 6032 if (E.isInvalid()) 6033 return true; 6034 6035 Expr *Ex = E.getAs<Expr>(); 6036 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 6037 } else { 6038 TemplateTemplateParmDecl *TempParm 6039 = cast<TemplateTemplateParmDecl>(*Param); 6040 6041 if (!hasReachableDefaultArgument(TempParm)) 6042 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm, 6043 NewArgs); 6044 6045 NestedNameSpecifierLoc QualifierLoc; 6046 TemplateName Name = SubstDefaultTemplateArgument( 6047 *this, Template, TemplateLoc, RAngleLoc, TempParm, SugaredConverted, 6048 CanonicalConverted, QualifierLoc); 6049 if (Name.isNull()) 6050 return true; 6051 6052 Arg = TemplateArgumentLoc( 6053 Context, TemplateArgument(Name), QualifierLoc, 6054 TempParm->getDefaultArgument().getTemplateNameLoc()); 6055 } 6056 6057 // Introduce an instantiation record that describes where we are using 6058 // the default template argument. We're not actually instantiating a 6059 // template here, we just create this object to put a note into the 6060 // context stack. 6061 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, 6062 SugaredConverted, 6063 SourceRange(TemplateLoc, RAngleLoc)); 6064 if (Inst.isInvalid()) 6065 return true; 6066 6067 // Check the default template argument. 6068 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, RAngleLoc, 0, 6069 SugaredConverted, CanonicalConverted, 6070 CTAK_Specified)) 6071 return true; 6072 6073 // Core issue 150 (assumed resolution): if this is a template template 6074 // parameter, keep track of the default template arguments from the 6075 // template definition. 6076 if (isTemplateTemplateParameter) 6077 NewArgs.addArgument(Arg); 6078 6079 // Move to the next template parameter and argument. 6080 ++Param; 6081 ++ArgIdx; 6082 } 6083 6084 // If we're performing a partial argument substitution, allow any trailing 6085 // pack expansions; they might be empty. This can happen even if 6086 // PartialTemplateArgs is false (the list of arguments is complete but 6087 // still dependent). 6088 if (ArgIdx < NumArgs && CurrentInstantiationScope && 6089 CurrentInstantiationScope->getPartiallySubstitutedPack()) { 6090 while (ArgIdx < NumArgs && 6091 NewArgs[ArgIdx].getArgument().isPackExpansion()) { 6092 const TemplateArgument &Arg = NewArgs[ArgIdx++].getArgument(); 6093 SugaredConverted.push_back(Arg); 6094 CanonicalConverted.push_back(Context.getCanonicalTemplateArgument(Arg)); 6095 } 6096 } 6097 6098 // If we have any leftover arguments, then there were too many arguments. 6099 // Complain and fail. 6100 if (ArgIdx < NumArgs) { 6101 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 6102 << /*too many args*/1 6103 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 6104 << Template 6105 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); 6106 Diag(Template->getLocation(), diag::note_template_decl_here) 6107 << Params->getSourceRange(); 6108 return true; 6109 } 6110 6111 // No problems found with the new argument list, propagate changes back 6112 // to caller. 6113 if (UpdateArgsWithConversions) 6114 TemplateArgs = std::move(NewArgs); 6115 6116 if (!PartialTemplateArgs) { 6117 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack, 6118 CanonicalConverted); 6119 // Setup the context/ThisScope for the case where we are needing to 6120 // re-instantiate constraints outside of normal instantiation. 6121 DeclContext *NewContext = Template->getDeclContext(); 6122 6123 // If this template is in a template, make sure we extract the templated 6124 // decl. 6125 if (auto *TD = dyn_cast<TemplateDecl>(NewContext)) 6126 NewContext = Decl::castToDeclContext(TD->getTemplatedDecl()); 6127 auto *RD = dyn_cast<CXXRecordDecl>(NewContext); 6128 6129 Qualifiers ThisQuals; 6130 if (const auto *Method = 6131 dyn_cast_or_null<CXXMethodDecl>(Template->getTemplatedDecl())) 6132 ThisQuals = Method->getMethodQualifiers(); 6133 6134 ContextRAII Context(*this, NewContext); 6135 CXXThisScopeRAII(*this, RD, ThisQuals, RD != nullptr); 6136 6137 MultiLevelTemplateArgumentList MLTAL = getTemplateInstantiationArgs( 6138 Template, /*Final=*/false, &StackTemplateArgs, 6139 /*RelativeToPrimary=*/true, 6140 /*Pattern=*/nullptr, 6141 /*ForConceptInstantiation=*/true); 6142 if (EnsureTemplateArgumentListConstraints( 6143 Template, MLTAL, 6144 SourceRange(TemplateLoc, TemplateArgs.getRAngleLoc()))) { 6145 if (ConstraintsNotSatisfied) 6146 *ConstraintsNotSatisfied = true; 6147 return true; 6148 } 6149 } 6150 6151 return false; 6152 } 6153 6154 namespace { 6155 class UnnamedLocalNoLinkageFinder 6156 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 6157 { 6158 Sema &S; 6159 SourceRange SR; 6160 6161 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 6162 6163 public: 6164 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 6165 6166 bool Visit(QualType T) { 6167 return T.isNull() ? false : inherited::Visit(T.getTypePtr()); 6168 } 6169 6170 #define TYPE(Class, Parent) \ 6171 bool Visit##Class##Type(const Class##Type *); 6172 #define ABSTRACT_TYPE(Class, Parent) \ 6173 bool Visit##Class##Type(const Class##Type *) { return false; } 6174 #define NON_CANONICAL_TYPE(Class, Parent) \ 6175 bool Visit##Class##Type(const Class##Type *) { return false; } 6176 #include "clang/AST/TypeNodes.inc" 6177 6178 bool VisitTagDecl(const TagDecl *Tag); 6179 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 6180 }; 6181 } // end anonymous namespace 6182 6183 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 6184 return false; 6185 } 6186 6187 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 6188 return Visit(T->getElementType()); 6189 } 6190 6191 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 6192 return Visit(T->getPointeeType()); 6193 } 6194 6195 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 6196 const BlockPointerType* T) { 6197 return Visit(T->getPointeeType()); 6198 } 6199 6200 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 6201 const LValueReferenceType* T) { 6202 return Visit(T->getPointeeType()); 6203 } 6204 6205 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 6206 const RValueReferenceType* T) { 6207 return Visit(T->getPointeeType()); 6208 } 6209 6210 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 6211 const MemberPointerType* T) { 6212 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 6213 } 6214 6215 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 6216 const ConstantArrayType* T) { 6217 return Visit(T->getElementType()); 6218 } 6219 6220 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 6221 const IncompleteArrayType* T) { 6222 return Visit(T->getElementType()); 6223 } 6224 6225 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 6226 const VariableArrayType* T) { 6227 return Visit(T->getElementType()); 6228 } 6229 6230 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 6231 const DependentSizedArrayType* T) { 6232 return Visit(T->getElementType()); 6233 } 6234 6235 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 6236 const DependentSizedExtVectorType* T) { 6237 return Visit(T->getElementType()); 6238 } 6239 6240 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType( 6241 const DependentSizedMatrixType *T) { 6242 return Visit(T->getElementType()); 6243 } 6244 6245 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( 6246 const DependentAddressSpaceType *T) { 6247 return Visit(T->getPointeeType()); 6248 } 6249 6250 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 6251 return Visit(T->getElementType()); 6252 } 6253 6254 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( 6255 const DependentVectorType *T) { 6256 return Visit(T->getElementType()); 6257 } 6258 6259 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 6260 return Visit(T->getElementType()); 6261 } 6262 6263 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType( 6264 const ConstantMatrixType *T) { 6265 return Visit(T->getElementType()); 6266 } 6267 6268 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 6269 const FunctionProtoType* T) { 6270 for (const auto &A : T->param_types()) { 6271 if (Visit(A)) 6272 return true; 6273 } 6274 6275 return Visit(T->getReturnType()); 6276 } 6277 6278 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 6279 const FunctionNoProtoType* T) { 6280 return Visit(T->getReturnType()); 6281 } 6282 6283 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 6284 const UnresolvedUsingType*) { 6285 return false; 6286 } 6287 6288 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 6289 return false; 6290 } 6291 6292 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 6293 return Visit(T->getUnmodifiedType()); 6294 } 6295 6296 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 6297 return false; 6298 } 6299 6300 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 6301 const UnaryTransformType*) { 6302 return false; 6303 } 6304 6305 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 6306 return Visit(T->getDeducedType()); 6307 } 6308 6309 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( 6310 const DeducedTemplateSpecializationType *T) { 6311 return Visit(T->getDeducedType()); 6312 } 6313 6314 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 6315 return VisitTagDecl(T->getDecl()); 6316 } 6317 6318 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 6319 return VisitTagDecl(T->getDecl()); 6320 } 6321 6322 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 6323 const TemplateTypeParmType*) { 6324 return false; 6325 } 6326 6327 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 6328 const SubstTemplateTypeParmPackType *) { 6329 return false; 6330 } 6331 6332 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 6333 const TemplateSpecializationType*) { 6334 return false; 6335 } 6336 6337 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 6338 const InjectedClassNameType* T) { 6339 return VisitTagDecl(T->getDecl()); 6340 } 6341 6342 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 6343 const DependentNameType* T) { 6344 return VisitNestedNameSpecifier(T->getQualifier()); 6345 } 6346 6347 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 6348 const DependentTemplateSpecializationType* T) { 6349 if (auto *Q = T->getQualifier()) 6350 return VisitNestedNameSpecifier(Q); 6351 return false; 6352 } 6353 6354 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 6355 const PackExpansionType* T) { 6356 return Visit(T->getPattern()); 6357 } 6358 6359 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 6360 return false; 6361 } 6362 6363 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 6364 const ObjCInterfaceType *) { 6365 return false; 6366 } 6367 6368 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 6369 const ObjCObjectPointerType *) { 6370 return false; 6371 } 6372 6373 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 6374 return Visit(T->getValueType()); 6375 } 6376 6377 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { 6378 return false; 6379 } 6380 6381 bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) { 6382 return false; 6383 } 6384 6385 bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType( 6386 const DependentBitIntType *T) { 6387 return false; 6388 } 6389 6390 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 6391 if (Tag->getDeclContext()->isFunctionOrMethod()) { 6392 S.Diag(SR.getBegin(), 6393 S.getLangOpts().CPlusPlus11 ? 6394 diag::warn_cxx98_compat_template_arg_local_type : 6395 diag::ext_template_arg_local_type) 6396 << S.Context.getTypeDeclType(Tag) << SR; 6397 return true; 6398 } 6399 6400 if (!Tag->hasNameForLinkage()) { 6401 S.Diag(SR.getBegin(), 6402 S.getLangOpts().CPlusPlus11 ? 6403 diag::warn_cxx98_compat_template_arg_unnamed_type : 6404 diag::ext_template_arg_unnamed_type) << SR; 6405 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 6406 return true; 6407 } 6408 6409 return false; 6410 } 6411 6412 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 6413 NestedNameSpecifier *NNS) { 6414 assert(NNS); 6415 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 6416 return true; 6417 6418 switch (NNS->getKind()) { 6419 case NestedNameSpecifier::Identifier: 6420 case NestedNameSpecifier::Namespace: 6421 case NestedNameSpecifier::NamespaceAlias: 6422 case NestedNameSpecifier::Global: 6423 case NestedNameSpecifier::Super: 6424 return false; 6425 6426 case NestedNameSpecifier::TypeSpec: 6427 case NestedNameSpecifier::TypeSpecWithTemplate: 6428 return Visit(QualType(NNS->getAsType(), 0)); 6429 } 6430 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 6431 } 6432 6433 /// Check a template argument against its corresponding 6434 /// template type parameter. 6435 /// 6436 /// This routine implements the semantics of C++ [temp.arg.type]. It 6437 /// returns true if an error occurred, and false otherwise. 6438 bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) { 6439 assert(ArgInfo && "invalid TypeSourceInfo"); 6440 QualType Arg = ArgInfo->getType(); 6441 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 6442 QualType CanonArg = Context.getCanonicalType(Arg); 6443 6444 if (CanonArg->isVariablyModifiedType()) { 6445 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 6446 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 6447 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 6448 } 6449 6450 // C++03 [temp.arg.type]p2: 6451 // A local type, a type with no linkage, an unnamed type or a type 6452 // compounded from any of these types shall not be used as a 6453 // template-argument for a template type-parameter. 6454 // 6455 // C++11 allows these, and even in C++03 we allow them as an extension with 6456 // a warning. 6457 if (LangOpts.CPlusPlus11 || CanonArg->hasUnnamedOrLocalType()) { 6458 UnnamedLocalNoLinkageFinder Finder(*this, SR); 6459 (void)Finder.Visit(CanonArg); 6460 } 6461 6462 return false; 6463 } 6464 6465 enum NullPointerValueKind { 6466 NPV_NotNullPointer, 6467 NPV_NullPointer, 6468 NPV_Error 6469 }; 6470 6471 /// Determine whether the given template argument is a null pointer 6472 /// value of the appropriate type. 6473 static NullPointerValueKind 6474 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 6475 QualType ParamType, Expr *Arg, 6476 Decl *Entity = nullptr) { 6477 if (Arg->isValueDependent() || Arg->isTypeDependent()) 6478 return NPV_NotNullPointer; 6479 6480 // dllimport'd entities aren't constant but are available inside of template 6481 // arguments. 6482 if (Entity && Entity->hasAttr<DLLImportAttr>()) 6483 return NPV_NotNullPointer; 6484 6485 if (!S.isCompleteType(Arg->getExprLoc(), ParamType)) 6486 llvm_unreachable( 6487 "Incomplete parameter type in isNullPointerValueTemplateArgument!"); 6488 6489 if (!S.getLangOpts().CPlusPlus11) 6490 return NPV_NotNullPointer; 6491 6492 // Determine whether we have a constant expression. 6493 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 6494 if (ArgRV.isInvalid()) 6495 return NPV_Error; 6496 Arg = ArgRV.get(); 6497 6498 Expr::EvalResult EvalResult; 6499 SmallVector<PartialDiagnosticAt, 8> Notes; 6500 EvalResult.Diag = &Notes; 6501 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 6502 EvalResult.HasSideEffects) { 6503 SourceLocation DiagLoc = Arg->getExprLoc(); 6504 6505 // If our only note is the usual "invalid subexpression" note, just point 6506 // the caret at its location rather than producing an essentially 6507 // redundant note. 6508 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 6509 diag::note_invalid_subexpr_in_const_expr) { 6510 DiagLoc = Notes[0].first; 6511 Notes.clear(); 6512 } 6513 6514 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 6515 << Arg->getType() << Arg->getSourceRange(); 6516 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 6517 S.Diag(Notes[I].first, Notes[I].second); 6518 6519 S.Diag(Param->getLocation(), diag::note_template_param_here); 6520 return NPV_Error; 6521 } 6522 6523 // C++11 [temp.arg.nontype]p1: 6524 // - an address constant expression of type std::nullptr_t 6525 if (Arg->getType()->isNullPtrType()) 6526 return NPV_NullPointer; 6527 6528 // - a constant expression that evaluates to a null pointer value (4.10); or 6529 // - a constant expression that evaluates to a null member pointer value 6530 // (4.11); or 6531 if ((EvalResult.Val.isLValue() && EvalResult.Val.isNullPointer()) || 6532 (EvalResult.Val.isMemberPointer() && 6533 !EvalResult.Val.getMemberPointerDecl())) { 6534 // If our expression has an appropriate type, we've succeeded. 6535 bool ObjCLifetimeConversion; 6536 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 6537 S.IsQualificationConversion(Arg->getType(), ParamType, false, 6538 ObjCLifetimeConversion)) 6539 return NPV_NullPointer; 6540 6541 // The types didn't match, but we know we got a null pointer; complain, 6542 // then recover as if the types were correct. 6543 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 6544 << Arg->getType() << ParamType << Arg->getSourceRange(); 6545 S.Diag(Param->getLocation(), diag::note_template_param_here); 6546 return NPV_NullPointer; 6547 } 6548 6549 if (EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) { 6550 // We found a pointer that isn't null, but doesn't refer to an object. 6551 // We could just return NPV_NotNullPointer, but we can print a better 6552 // message with the information we have here. 6553 S.Diag(Arg->getExprLoc(), diag::err_template_arg_invalid) 6554 << EvalResult.Val.getAsString(S.Context, ParamType); 6555 S.Diag(Param->getLocation(), diag::note_template_param_here); 6556 return NPV_Error; 6557 } 6558 6559 // If we don't have a null pointer value, but we do have a NULL pointer 6560 // constant, suggest a cast to the appropriate type. 6561 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 6562 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 6563 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 6564 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code) 6565 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()), 6566 ")"); 6567 S.Diag(Param->getLocation(), diag::note_template_param_here); 6568 return NPV_NullPointer; 6569 } 6570 6571 // FIXME: If we ever want to support general, address-constant expressions 6572 // as non-type template arguments, we should return the ExprResult here to 6573 // be interpreted by the caller. 6574 return NPV_NotNullPointer; 6575 } 6576 6577 /// Checks whether the given template argument is compatible with its 6578 /// template parameter. 6579 static bool CheckTemplateArgumentIsCompatibleWithParameter( 6580 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 6581 Expr *Arg, QualType ArgType) { 6582 bool ObjCLifetimeConversion; 6583 if (ParamType->isPointerType() && 6584 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() && 6585 S.IsQualificationConversion(ArgType, ParamType, false, 6586 ObjCLifetimeConversion)) { 6587 // For pointer-to-object types, qualification conversions are 6588 // permitted. 6589 } else { 6590 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 6591 if (!ParamRef->getPointeeType()->isFunctionType()) { 6592 // C++ [temp.arg.nontype]p5b3: 6593 // For a non-type template-parameter of type reference to 6594 // object, no conversions apply. The type referred to by the 6595 // reference may be more cv-qualified than the (otherwise 6596 // identical) type of the template- argument. The 6597 // template-parameter is bound directly to the 6598 // template-argument, which shall be an lvalue. 6599 6600 // FIXME: Other qualifiers? 6601 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 6602 unsigned ArgQuals = ArgType.getCVRQualifiers(); 6603 6604 if ((ParamQuals | ArgQuals) != ParamQuals) { 6605 S.Diag(Arg->getBeginLoc(), 6606 diag::err_template_arg_ref_bind_ignores_quals) 6607 << ParamType << Arg->getType() << Arg->getSourceRange(); 6608 S.Diag(Param->getLocation(), diag::note_template_param_here); 6609 return true; 6610 } 6611 } 6612 } 6613 6614 // At this point, the template argument refers to an object or 6615 // function with external linkage. We now need to check whether the 6616 // argument and parameter types are compatible. 6617 if (!S.Context.hasSameUnqualifiedType(ArgType, 6618 ParamType.getNonReferenceType())) { 6619 // We can't perform this conversion or binding. 6620 if (ParamType->isReferenceType()) 6621 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind) 6622 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 6623 else 6624 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 6625 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 6626 S.Diag(Param->getLocation(), diag::note_template_param_here); 6627 return true; 6628 } 6629 } 6630 6631 return false; 6632 } 6633 6634 /// Checks whether the given template argument is the address 6635 /// of an object or function according to C++ [temp.arg.nontype]p1. 6636 static bool CheckTemplateArgumentAddressOfObjectOrFunction( 6637 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 6638 TemplateArgument &SugaredConverted, TemplateArgument &CanonicalConverted) { 6639 bool Invalid = false; 6640 Expr *Arg = ArgIn; 6641 QualType ArgType = Arg->getType(); 6642 6643 bool AddressTaken = false; 6644 SourceLocation AddrOpLoc; 6645 if (S.getLangOpts().MicrosoftExt) { 6646 // Microsoft Visual C++ strips all casts, allows an arbitrary number of 6647 // dereference and address-of operators. 6648 Arg = Arg->IgnoreParenCasts(); 6649 6650 bool ExtWarnMSTemplateArg = false; 6651 UnaryOperatorKind FirstOpKind; 6652 SourceLocation FirstOpLoc; 6653 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6654 UnaryOperatorKind UnOpKind = UnOp->getOpcode(); 6655 if (UnOpKind == UO_Deref) 6656 ExtWarnMSTemplateArg = true; 6657 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { 6658 Arg = UnOp->getSubExpr()->IgnoreParenCasts(); 6659 if (!AddrOpLoc.isValid()) { 6660 FirstOpKind = UnOpKind; 6661 FirstOpLoc = UnOp->getOperatorLoc(); 6662 } 6663 } else 6664 break; 6665 } 6666 if (FirstOpLoc.isValid()) { 6667 if (ExtWarnMSTemplateArg) 6668 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument) 6669 << ArgIn->getSourceRange(); 6670 6671 if (FirstOpKind == UO_AddrOf) 6672 AddressTaken = true; 6673 else if (Arg->getType()->isPointerType()) { 6674 // We cannot let pointers get dereferenced here, that is obviously not a 6675 // constant expression. 6676 assert(FirstOpKind == UO_Deref); 6677 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6678 << Arg->getSourceRange(); 6679 } 6680 } 6681 } else { 6682 // See through any implicit casts we added to fix the type. 6683 Arg = Arg->IgnoreImpCasts(); 6684 6685 // C++ [temp.arg.nontype]p1: 6686 // 6687 // A template-argument for a non-type, non-template 6688 // template-parameter shall be one of: [...] 6689 // 6690 // -- the address of an object or function with external 6691 // linkage, including function templates and function 6692 // template-ids but excluding non-static class members, 6693 // expressed as & id-expression where the & is optional if 6694 // the name refers to a function or array, or if the 6695 // corresponding template-parameter is a reference; or 6696 6697 // In C++98/03 mode, give an extension warning on any extra parentheses. 6698 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6699 bool ExtraParens = false; 6700 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6701 if (!Invalid && !ExtraParens) { 6702 S.Diag(Arg->getBeginLoc(), 6703 S.getLangOpts().CPlusPlus11 6704 ? diag::warn_cxx98_compat_template_arg_extra_parens 6705 : diag::ext_template_arg_extra_parens) 6706 << Arg->getSourceRange(); 6707 ExtraParens = true; 6708 } 6709 6710 Arg = Parens->getSubExpr(); 6711 } 6712 6713 while (SubstNonTypeTemplateParmExpr *subst = 6714 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6715 Arg = subst->getReplacement()->IgnoreImpCasts(); 6716 6717 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6718 if (UnOp->getOpcode() == UO_AddrOf) { 6719 Arg = UnOp->getSubExpr(); 6720 AddressTaken = true; 6721 AddrOpLoc = UnOp->getOperatorLoc(); 6722 } 6723 } 6724 6725 while (SubstNonTypeTemplateParmExpr *subst = 6726 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6727 Arg = subst->getReplacement()->IgnoreImpCasts(); 6728 } 6729 6730 ValueDecl *Entity = nullptr; 6731 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg)) 6732 Entity = DRE->getDecl(); 6733 else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg)) 6734 Entity = CUE->getGuidDecl(); 6735 6736 // If our parameter has pointer type, check for a null template value. 6737 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 6738 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn, 6739 Entity)) { 6740 case NPV_NullPointer: 6741 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6742 SugaredConverted = TemplateArgument(ParamType, 6743 /*isNullPtr=*/true); 6744 CanonicalConverted = 6745 TemplateArgument(S.Context.getCanonicalType(ParamType), 6746 /*isNullPtr=*/true); 6747 return false; 6748 6749 case NPV_Error: 6750 return true; 6751 6752 case NPV_NotNullPointer: 6753 break; 6754 } 6755 } 6756 6757 // Stop checking the precise nature of the argument if it is value dependent, 6758 // it should be checked when instantiated. 6759 if (Arg->isValueDependent()) { 6760 SugaredConverted = TemplateArgument(ArgIn); 6761 CanonicalConverted = 6762 S.Context.getCanonicalTemplateArgument(SugaredConverted); 6763 return false; 6764 } 6765 6766 if (!Entity) { 6767 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6768 << Arg->getSourceRange(); 6769 S.Diag(Param->getLocation(), diag::note_template_param_here); 6770 return true; 6771 } 6772 6773 // Cannot refer to non-static data members 6774 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) { 6775 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field) 6776 << Entity << Arg->getSourceRange(); 6777 S.Diag(Param->getLocation(), diag::note_template_param_here); 6778 return true; 6779 } 6780 6781 // Cannot refer to non-static member functions 6782 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 6783 if (!Method->isStatic()) { 6784 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method) 6785 << Method << Arg->getSourceRange(); 6786 S.Diag(Param->getLocation(), diag::note_template_param_here); 6787 return true; 6788 } 6789 } 6790 6791 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 6792 VarDecl *Var = dyn_cast<VarDecl>(Entity); 6793 MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity); 6794 6795 // A non-type template argument must refer to an object or function. 6796 if (!Func && !Var && !Guid) { 6797 // We found something, but we don't know specifically what it is. 6798 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func) 6799 << Arg->getSourceRange(); 6800 S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here); 6801 return true; 6802 } 6803 6804 // Address / reference template args must have external linkage in C++98. 6805 if (Entity->getFormalLinkage() == InternalLinkage) { 6806 S.Diag(Arg->getBeginLoc(), 6807 S.getLangOpts().CPlusPlus11 6808 ? diag::warn_cxx98_compat_template_arg_object_internal 6809 : diag::ext_template_arg_object_internal) 6810 << !Func << Entity << Arg->getSourceRange(); 6811 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6812 << !Func; 6813 } else if (!Entity->hasLinkage()) { 6814 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage) 6815 << !Func << Entity << Arg->getSourceRange(); 6816 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6817 << !Func; 6818 return true; 6819 } 6820 6821 if (Var) { 6822 // A value of reference type is not an object. 6823 if (Var->getType()->isReferenceType()) { 6824 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var) 6825 << Var->getType() << Arg->getSourceRange(); 6826 S.Diag(Param->getLocation(), diag::note_template_param_here); 6827 return true; 6828 } 6829 6830 // A template argument must have static storage duration. 6831 if (Var->getTLSKind()) { 6832 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local) 6833 << Arg->getSourceRange(); 6834 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 6835 return true; 6836 } 6837 } 6838 6839 if (AddressTaken && ParamType->isReferenceType()) { 6840 // If we originally had an address-of operator, but the 6841 // parameter has reference type, complain and (if things look 6842 // like they will work) drop the address-of operator. 6843 if (!S.Context.hasSameUnqualifiedType(Entity->getType(), 6844 ParamType.getNonReferenceType())) { 6845 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6846 << ParamType; 6847 S.Diag(Param->getLocation(), diag::note_template_param_here); 6848 return true; 6849 } 6850 6851 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6852 << ParamType 6853 << FixItHint::CreateRemoval(AddrOpLoc); 6854 S.Diag(Param->getLocation(), diag::note_template_param_here); 6855 6856 ArgType = Entity->getType(); 6857 } 6858 6859 // If the template parameter has pointer type, either we must have taken the 6860 // address or the argument must decay to a pointer. 6861 if (!AddressTaken && ParamType->isPointerType()) { 6862 if (Func) { 6863 // Function-to-pointer decay. 6864 ArgType = S.Context.getPointerType(Func->getType()); 6865 } else if (Entity->getType()->isArrayType()) { 6866 // Array-to-pointer decay. 6867 ArgType = S.Context.getArrayDecayedType(Entity->getType()); 6868 } else { 6869 // If the template parameter has pointer type but the address of 6870 // this object was not taken, complain and (possibly) recover by 6871 // taking the address of the entity. 6872 ArgType = S.Context.getPointerType(Entity->getType()); 6873 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 6874 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6875 << ParamType; 6876 S.Diag(Param->getLocation(), diag::note_template_param_here); 6877 return true; 6878 } 6879 6880 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6881 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&"); 6882 6883 S.Diag(Param->getLocation(), diag::note_template_param_here); 6884 } 6885 } 6886 6887 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, 6888 Arg, ArgType)) 6889 return true; 6890 6891 // Create the template argument. 6892 SugaredConverted = TemplateArgument(Entity, ParamType); 6893 CanonicalConverted = 6894 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), 6895 S.Context.getCanonicalType(ParamType)); 6896 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false); 6897 return false; 6898 } 6899 6900 /// Checks whether the given template argument is a pointer to 6901 /// member constant according to C++ [temp.arg.nontype]p1. 6902 static bool 6903 CheckTemplateArgumentPointerToMember(Sema &S, NonTypeTemplateParmDecl *Param, 6904 QualType ParamType, Expr *&ResultArg, 6905 TemplateArgument &SugaredConverted, 6906 TemplateArgument &CanonicalConverted) { 6907 bool Invalid = false; 6908 6909 Expr *Arg = ResultArg; 6910 bool ObjCLifetimeConversion; 6911 6912 // C++ [temp.arg.nontype]p1: 6913 // 6914 // A template-argument for a non-type, non-template 6915 // template-parameter shall be one of: [...] 6916 // 6917 // -- a pointer to member expressed as described in 5.3.1. 6918 DeclRefExpr *DRE = nullptr; 6919 6920 // In C++98/03 mode, give an extension warning on any extra parentheses. 6921 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6922 bool ExtraParens = false; 6923 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6924 if (!Invalid && !ExtraParens) { 6925 S.Diag(Arg->getBeginLoc(), 6926 S.getLangOpts().CPlusPlus11 6927 ? diag::warn_cxx98_compat_template_arg_extra_parens 6928 : diag::ext_template_arg_extra_parens) 6929 << Arg->getSourceRange(); 6930 ExtraParens = true; 6931 } 6932 6933 Arg = Parens->getSubExpr(); 6934 } 6935 6936 while (SubstNonTypeTemplateParmExpr *subst = 6937 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6938 Arg = subst->getReplacement()->IgnoreImpCasts(); 6939 6940 // A pointer-to-member constant written &Class::member. 6941 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6942 if (UnOp->getOpcode() == UO_AddrOf) { 6943 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 6944 if (DRE && !DRE->getQualifier()) 6945 DRE = nullptr; 6946 } 6947 } 6948 // A constant of pointer-to-member type. 6949 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 6950 ValueDecl *VD = DRE->getDecl(); 6951 if (VD->getType()->isMemberPointerType()) { 6952 if (isa<NonTypeTemplateParmDecl>(VD)) { 6953 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6954 SugaredConverted = TemplateArgument(Arg); 6955 CanonicalConverted = 6956 S.Context.getCanonicalTemplateArgument(SugaredConverted); 6957 } else { 6958 SugaredConverted = TemplateArgument(VD, ParamType); 6959 CanonicalConverted = 6960 TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()), 6961 S.Context.getCanonicalType(ParamType)); 6962 } 6963 return Invalid; 6964 } 6965 } 6966 6967 DRE = nullptr; 6968 } 6969 6970 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; 6971 6972 // Check for a null pointer value. 6973 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg, 6974 Entity)) { 6975 case NPV_Error: 6976 return true; 6977 case NPV_NullPointer: 6978 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6979 SugaredConverted = TemplateArgument(ParamType, 6980 /*isNullPtr*/ true); 6981 CanonicalConverted = TemplateArgument(S.Context.getCanonicalType(ParamType), 6982 /*isNullPtr*/ true); 6983 return false; 6984 case NPV_NotNullPointer: 6985 break; 6986 } 6987 6988 if (S.IsQualificationConversion(ResultArg->getType(), 6989 ParamType.getNonReferenceType(), false, 6990 ObjCLifetimeConversion)) { 6991 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp, 6992 ResultArg->getValueKind()) 6993 .get(); 6994 } else if (!S.Context.hasSameUnqualifiedType( 6995 ResultArg->getType(), ParamType.getNonReferenceType())) { 6996 // We can't perform this conversion. 6997 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible) 6998 << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); 6999 S.Diag(Param->getLocation(), diag::note_template_param_here); 7000 return true; 7001 } 7002 7003 if (!DRE) 7004 return S.Diag(Arg->getBeginLoc(), 7005 diag::err_template_arg_not_pointer_to_member_form) 7006 << Arg->getSourceRange(); 7007 7008 if (isa<FieldDecl>(DRE->getDecl()) || 7009 isa<IndirectFieldDecl>(DRE->getDecl()) || 7010 isa<CXXMethodDecl>(DRE->getDecl())) { 7011 assert((isa<FieldDecl>(DRE->getDecl()) || 7012 isa<IndirectFieldDecl>(DRE->getDecl()) || 7013 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 7014 "Only non-static member pointers can make it here"); 7015 7016 // Okay: this is the address of a non-static member, and therefore 7017 // a member pointer constant. 7018 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 7019 SugaredConverted = TemplateArgument(Arg); 7020 CanonicalConverted = 7021 S.Context.getCanonicalTemplateArgument(SugaredConverted); 7022 } else { 7023 ValueDecl *D = DRE->getDecl(); 7024 SugaredConverted = TemplateArgument(D, ParamType); 7025 CanonicalConverted = 7026 TemplateArgument(cast<ValueDecl>(D->getCanonicalDecl()), 7027 S.Context.getCanonicalType(ParamType)); 7028 } 7029 return Invalid; 7030 } 7031 7032 // We found something else, but we don't know specifically what it is. 7033 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form) 7034 << Arg->getSourceRange(); 7035 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 7036 return true; 7037 } 7038 7039 /// Check a template argument against its corresponding 7040 /// non-type template parameter. 7041 /// 7042 /// This routine implements the semantics of C++ [temp.arg.nontype]. 7043 /// If an error occurred, it returns ExprError(); otherwise, it 7044 /// returns the converted template argument. \p ParamType is the 7045 /// type of the non-type template parameter after it has been instantiated. 7046 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 7047 QualType ParamType, Expr *Arg, 7048 TemplateArgument &SugaredConverted, 7049 TemplateArgument &CanonicalConverted, 7050 CheckTemplateArgumentKind CTAK) { 7051 SourceLocation StartLoc = Arg->getBeginLoc(); 7052 7053 // If the parameter type somehow involves auto, deduce the type now. 7054 DeducedType *DeducedT = ParamType->getContainedDeducedType(); 7055 if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) { 7056 // During template argument deduction, we allow 'decltype(auto)' to 7057 // match an arbitrary dependent argument. 7058 // FIXME: The language rules don't say what happens in this case. 7059 // FIXME: We get an opaque dependent type out of decltype(auto) if the 7060 // expression is merely instantiation-dependent; is this enough? 7061 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) { 7062 auto *AT = dyn_cast<AutoType>(DeducedT); 7063 if (AT && AT->isDecltypeAuto()) { 7064 SugaredConverted = TemplateArgument(Arg); 7065 CanonicalConverted = TemplateArgument( 7066 Context.getCanonicalTemplateArgument(SugaredConverted)); 7067 return Arg; 7068 } 7069 } 7070 7071 // When checking a deduced template argument, deduce from its type even if 7072 // the type is dependent, in order to check the types of non-type template 7073 // arguments line up properly in partial ordering. 7074 Expr *DeductionArg = Arg; 7075 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg)) 7076 DeductionArg = PE->getPattern(); 7077 TypeSourceInfo *TSI = 7078 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()); 7079 if (isa<DeducedTemplateSpecializationType>(DeducedT)) { 7080 InitializedEntity Entity = 7081 InitializedEntity::InitializeTemplateParameter(ParamType, Param); 7082 InitializationKind Kind = InitializationKind::CreateForInit( 7083 DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg); 7084 Expr *Inits[1] = {DeductionArg}; 7085 ParamType = 7086 DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits); 7087 if (ParamType.isNull()) 7088 return ExprError(); 7089 } else { 7090 TemplateDeductionInfo Info(DeductionArg->getExprLoc(), 7091 Param->getDepth() + 1); 7092 ParamType = QualType(); 7093 TemplateDeductionResult Result = 7094 DeduceAutoType(TSI->getTypeLoc(), DeductionArg, ParamType, Info, 7095 /*DependentDeduction=*/true, 7096 // We do not check constraints right now because the 7097 // immediately-declared constraint of the auto type is 7098 // also an associated constraint, and will be checked 7099 // along with the other associated constraints after 7100 // checking the template argument list. 7101 /*IgnoreConstraints=*/true); 7102 if (Result == TDK_AlreadyDiagnosed) { 7103 if (ParamType.isNull()) 7104 return ExprError(); 7105 } else if (Result != TDK_Success) { 7106 Diag(Arg->getExprLoc(), 7107 diag::err_non_type_template_parm_type_deduction_failure) 7108 << Param->getDeclName() << Param->getType() << Arg->getType() 7109 << Arg->getSourceRange(); 7110 Diag(Param->getLocation(), diag::note_template_param_here); 7111 return ExprError(); 7112 } 7113 } 7114 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's 7115 // an error. The error message normally references the parameter 7116 // declaration, but here we'll pass the argument location because that's 7117 // where the parameter type is deduced. 7118 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc()); 7119 if (ParamType.isNull()) { 7120 Diag(Param->getLocation(), diag::note_template_param_here); 7121 return ExprError(); 7122 } 7123 } 7124 7125 // We should have already dropped all cv-qualifiers by now. 7126 assert(!ParamType.hasQualifiers() && 7127 "non-type template parameter type cannot be qualified"); 7128 7129 // FIXME: When Param is a reference, should we check that Arg is an lvalue? 7130 if (CTAK == CTAK_Deduced && 7131 (ParamType->isReferenceType() 7132 ? !Context.hasSameType(ParamType.getNonReferenceType(), 7133 Arg->getType()) 7134 : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) { 7135 // FIXME: If either type is dependent, we skip the check. This isn't 7136 // correct, since during deduction we're supposed to have replaced each 7137 // template parameter with some unique (non-dependent) placeholder. 7138 // FIXME: If the argument type contains 'auto', we carry on and fail the 7139 // type check in order to force specific types to be more specialized than 7140 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to 7141 // work. Similarly for CTAD, when comparing 'A<x>' against 'A'. 7142 if ((ParamType->isDependentType() || Arg->isTypeDependent()) && 7143 !Arg->getType()->getContainedDeducedType()) { 7144 SugaredConverted = TemplateArgument(Arg); 7145 CanonicalConverted = TemplateArgument( 7146 Context.getCanonicalTemplateArgument(SugaredConverted)); 7147 return Arg; 7148 } 7149 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, 7150 // we should actually be checking the type of the template argument in P, 7151 // not the type of the template argument deduced from A, against the 7152 // template parameter type. 7153 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 7154 << Arg->getType() 7155 << ParamType.getUnqualifiedType(); 7156 Diag(Param->getLocation(), diag::note_template_param_here); 7157 return ExprError(); 7158 } 7159 7160 // If either the parameter has a dependent type or the argument is 7161 // type-dependent, there's nothing we can check now. 7162 if (ParamType->isDependentType() || Arg->isTypeDependent()) { 7163 // Force the argument to the type of the parameter to maintain invariants. 7164 auto *PE = dyn_cast<PackExpansionExpr>(Arg); 7165 if (PE) 7166 Arg = PE->getPattern(); 7167 ExprResult E = ImpCastExprToType( 7168 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent, 7169 ParamType->isLValueReferenceType() ? VK_LValue 7170 : ParamType->isRValueReferenceType() ? VK_XValue 7171 : VK_PRValue); 7172 if (E.isInvalid()) 7173 return ExprError(); 7174 if (PE) { 7175 // Recreate a pack expansion if we unwrapped one. 7176 E = new (Context) 7177 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(), 7178 PE->getNumExpansions()); 7179 } 7180 SugaredConverted = TemplateArgument(E.get()); 7181 CanonicalConverted = TemplateArgument( 7182 Context.getCanonicalTemplateArgument(SugaredConverted)); 7183 return E; 7184 } 7185 7186 // The initialization of the parameter from the argument is 7187 // a constant-evaluated context. 7188 EnterExpressionEvaluationContext ConstantEvaluated( 7189 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 7190 7191 if (getLangOpts().CPlusPlus17) { 7192 QualType CanonParamType = Context.getCanonicalType(ParamType); 7193 7194 // Avoid making a copy when initializing a template parameter of class type 7195 // from a template parameter object of the same type. This is going beyond 7196 // the standard, but is required for soundness: in 7197 // template<A a> struct X { X *p; X<a> *q; }; 7198 // ... we need p and q to have the same type. 7199 // 7200 // Similarly, don't inject a call to a copy constructor when initializing 7201 // from a template parameter of the same type. 7202 Expr *InnerArg = Arg->IgnoreParenImpCasts(); 7203 if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) && 7204 Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) { 7205 NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl(); 7206 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 7207 7208 SugaredConverted = TemplateArgument(TPO, ParamType); 7209 CanonicalConverted = 7210 TemplateArgument(TPO->getCanonicalDecl(), CanonParamType); 7211 return Arg; 7212 } 7213 if (isa<NonTypeTemplateParmDecl>(ND)) { 7214 SugaredConverted = TemplateArgument(Arg); 7215 CanonicalConverted = 7216 Context.getCanonicalTemplateArgument(SugaredConverted); 7217 return Arg; 7218 } 7219 } 7220 7221 // C++17 [temp.arg.nontype]p1: 7222 // A template-argument for a non-type template parameter shall be 7223 // a converted constant expression of the type of the template-parameter. 7224 APValue Value; 7225 ExprResult ArgResult = CheckConvertedConstantExpression( 7226 Arg, ParamType, Value, CCEK_TemplateArg, Param); 7227 if (ArgResult.isInvalid()) 7228 return ExprError(); 7229 7230 // For a value-dependent argument, CheckConvertedConstantExpression is 7231 // permitted (and expected) to be unable to determine a value. 7232 if (ArgResult.get()->isValueDependent()) { 7233 SugaredConverted = TemplateArgument(ArgResult.get()); 7234 CanonicalConverted = 7235 Context.getCanonicalTemplateArgument(SugaredConverted); 7236 return ArgResult; 7237 } 7238 7239 // Convert the APValue to a TemplateArgument. 7240 switch (Value.getKind()) { 7241 case APValue::None: 7242 assert(ParamType->isNullPtrType()); 7243 SugaredConverted = TemplateArgument(ParamType, /*isNullPtr=*/true); 7244 CanonicalConverted = TemplateArgument(CanonParamType, /*isNullPtr=*/true); 7245 break; 7246 case APValue::Indeterminate: 7247 llvm_unreachable("result of constant evaluation should be initialized"); 7248 break; 7249 case APValue::Int: 7250 assert(ParamType->isIntegralOrEnumerationType()); 7251 SugaredConverted = TemplateArgument(Context, Value.getInt(), ParamType); 7252 CanonicalConverted = 7253 TemplateArgument(Context, Value.getInt(), CanonParamType); 7254 break; 7255 case APValue::MemberPointer: { 7256 assert(ParamType->isMemberPointerType()); 7257 7258 // FIXME: We need TemplateArgument representation and mangling for these. 7259 if (!Value.getMemberPointerPath().empty()) { 7260 Diag(Arg->getBeginLoc(), 7261 diag::err_template_arg_member_ptr_base_derived_not_supported) 7262 << Value.getMemberPointerDecl() << ParamType 7263 << Arg->getSourceRange(); 7264 return ExprError(); 7265 } 7266 7267 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl()); 7268 SugaredConverted = VD ? TemplateArgument(VD, ParamType) 7269 : TemplateArgument(ParamType, /*isNullPtr=*/true); 7270 CanonicalConverted = 7271 VD ? TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()), 7272 CanonParamType) 7273 : TemplateArgument(CanonParamType, /*isNullPtr=*/true); 7274 break; 7275 } 7276 case APValue::LValue: { 7277 // For a non-type template-parameter of pointer or reference type, 7278 // the value of the constant expression shall not refer to 7279 assert(ParamType->isPointerType() || ParamType->isReferenceType() || 7280 ParamType->isNullPtrType()); 7281 // -- a temporary object 7282 // -- a string literal 7283 // -- the result of a typeid expression, or 7284 // -- a predefined __func__ variable 7285 APValue::LValueBase Base = Value.getLValueBase(); 7286 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>()); 7287 if (Base && 7288 (!VD || 7289 isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(VD))) { 7290 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 7291 << Arg->getSourceRange(); 7292 return ExprError(); 7293 } 7294 // -- a subobject 7295 // FIXME: Until C++20 7296 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && 7297 VD && VD->getType()->isArrayType() && 7298 Value.getLValuePath()[0].getAsArrayIndex() == 0 && 7299 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { 7300 // Per defect report (no number yet): 7301 // ... other than a pointer to the first element of a complete array 7302 // object. 7303 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() || 7304 Value.isLValueOnePastTheEnd()) { 7305 Diag(StartLoc, diag::err_non_type_template_arg_subobject) 7306 << Value.getAsString(Context, ParamType); 7307 return ExprError(); 7308 } 7309 assert((VD || !ParamType->isReferenceType()) && 7310 "null reference should not be a constant expression"); 7311 assert((!VD || !ParamType->isNullPtrType()) && 7312 "non-null value of type nullptr_t?"); 7313 7314 SugaredConverted = VD ? TemplateArgument(VD, ParamType) 7315 : TemplateArgument(ParamType, /*isNullPtr=*/true); 7316 CanonicalConverted = 7317 VD ? TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()), 7318 CanonParamType) 7319 : TemplateArgument(CanonParamType, /*isNullPtr=*/true); 7320 break; 7321 } 7322 case APValue::Struct: 7323 case APValue::Union: { 7324 // Get or create the corresponding template parameter object. 7325 TemplateParamObjectDecl *D = 7326 Context.getTemplateParamObjectDecl(ParamType, Value); 7327 SugaredConverted = TemplateArgument(D, ParamType); 7328 CanonicalConverted = 7329 TemplateArgument(D->getCanonicalDecl(), CanonParamType); 7330 break; 7331 } 7332 case APValue::AddrLabelDiff: 7333 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); 7334 case APValue::FixedPoint: 7335 case APValue::Float: 7336 case APValue::ComplexInt: 7337 case APValue::ComplexFloat: 7338 case APValue::Vector: 7339 case APValue::Array: 7340 return Diag(StartLoc, diag::err_non_type_template_arg_unsupported) 7341 << ParamType; 7342 } 7343 7344 return ArgResult.get(); 7345 } 7346 7347 // C++ [temp.arg.nontype]p5: 7348 // The following conversions are performed on each expression used 7349 // as a non-type template-argument. If a non-type 7350 // template-argument cannot be converted to the type of the 7351 // corresponding template-parameter then the program is 7352 // ill-formed. 7353 if (ParamType->isIntegralOrEnumerationType()) { 7354 // C++11: 7355 // -- for a non-type template-parameter of integral or 7356 // enumeration type, conversions permitted in a converted 7357 // constant expression are applied. 7358 // 7359 // C++98: 7360 // -- for a non-type template-parameter of integral or 7361 // enumeration type, integral promotions (4.5) and integral 7362 // conversions (4.7) are applied. 7363 7364 if (getLangOpts().CPlusPlus11) { 7365 // C++ [temp.arg.nontype]p1: 7366 // A template-argument for a non-type, non-template template-parameter 7367 // shall be one of: 7368 // 7369 // -- for a non-type template-parameter of integral or enumeration 7370 // type, a converted constant expression of the type of the 7371 // template-parameter; or 7372 llvm::APSInt Value; 7373 ExprResult ArgResult = 7374 CheckConvertedConstantExpression(Arg, ParamType, Value, 7375 CCEK_TemplateArg); 7376 if (ArgResult.isInvalid()) 7377 return ExprError(); 7378 7379 // We can't check arbitrary value-dependent arguments. 7380 if (ArgResult.get()->isValueDependent()) { 7381 SugaredConverted = TemplateArgument(ArgResult.get()); 7382 CanonicalConverted = 7383 Context.getCanonicalTemplateArgument(SugaredConverted); 7384 return ArgResult; 7385 } 7386 7387 // Widen the argument value to sizeof(parameter type). This is almost 7388 // always a no-op, except when the parameter type is bool. In 7389 // that case, this may extend the argument from 1 bit to 8 bits. 7390 QualType IntegerType = ParamType; 7391 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 7392 IntegerType = Enum->getDecl()->getIntegerType(); 7393 Value = Value.extOrTrunc(IntegerType->isBitIntType() 7394 ? Context.getIntWidth(IntegerType) 7395 : Context.getTypeSize(IntegerType)); 7396 7397 SugaredConverted = TemplateArgument(Context, Value, ParamType); 7398 CanonicalConverted = 7399 TemplateArgument(Context, Value, Context.getCanonicalType(ParamType)); 7400 return ArgResult; 7401 } 7402 7403 ExprResult ArgResult = DefaultLvalueConversion(Arg); 7404 if (ArgResult.isInvalid()) 7405 return ExprError(); 7406 Arg = ArgResult.get(); 7407 7408 QualType ArgType = Arg->getType(); 7409 7410 // C++ [temp.arg.nontype]p1: 7411 // A template-argument for a non-type, non-template 7412 // template-parameter shall be one of: 7413 // 7414 // -- an integral constant-expression of integral or enumeration 7415 // type; or 7416 // -- the name of a non-type template-parameter; or 7417 llvm::APSInt Value; 7418 if (!ArgType->isIntegralOrEnumerationType()) { 7419 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral) 7420 << ArgType << Arg->getSourceRange(); 7421 Diag(Param->getLocation(), diag::note_template_param_here); 7422 return ExprError(); 7423 } else if (!Arg->isValueDependent()) { 7424 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 7425 QualType T; 7426 7427 public: 7428 TmplArgICEDiagnoser(QualType T) : T(T) { } 7429 7430 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, 7431 SourceLocation Loc) override { 7432 return S.Diag(Loc, diag::err_template_arg_not_ice) << T; 7433 } 7434 } Diagnoser(ArgType); 7435 7436 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get(); 7437 if (!Arg) 7438 return ExprError(); 7439 } 7440 7441 // From here on out, all we care about is the unqualified form 7442 // of the argument type. 7443 ArgType = ArgType.getUnqualifiedType(); 7444 7445 // Try to convert the argument to the parameter's type. 7446 if (Context.hasSameType(ParamType, ArgType)) { 7447 // Okay: no conversion necessary 7448 } else if (ParamType->isBooleanType()) { 7449 // This is an integral-to-boolean conversion. 7450 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get(); 7451 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 7452 !ParamType->isEnumeralType()) { 7453 // This is an integral promotion or conversion. 7454 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get(); 7455 } else { 7456 // We can't perform this conversion. 7457 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 7458 << Arg->getType() << ParamType << Arg->getSourceRange(); 7459 Diag(Param->getLocation(), diag::note_template_param_here); 7460 return ExprError(); 7461 } 7462 7463 // Add the value of this argument to the list of converted 7464 // arguments. We use the bitwidth and signedness of the template 7465 // parameter. 7466 if (Arg->isValueDependent()) { 7467 // The argument is value-dependent. Create a new 7468 // TemplateArgument with the converted expression. 7469 SugaredConverted = TemplateArgument(Arg); 7470 CanonicalConverted = 7471 Context.getCanonicalTemplateArgument(SugaredConverted); 7472 return Arg; 7473 } 7474 7475 QualType IntegerType = ParamType; 7476 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) { 7477 IntegerType = Enum->getDecl()->getIntegerType(); 7478 } 7479 7480 if (ParamType->isBooleanType()) { 7481 // Value must be zero or one. 7482 Value = Value != 0; 7483 unsigned AllowedBits = Context.getTypeSize(IntegerType); 7484 if (Value.getBitWidth() != AllowedBits) 7485 Value = Value.extOrTrunc(AllowedBits); 7486 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7487 } else { 7488 llvm::APSInt OldValue = Value; 7489 7490 // Coerce the template argument's value to the value it will have 7491 // based on the template parameter's type. 7492 unsigned AllowedBits = IntegerType->isBitIntType() 7493 ? Context.getIntWidth(IntegerType) 7494 : Context.getTypeSize(IntegerType); 7495 if (Value.getBitWidth() != AllowedBits) 7496 Value = Value.extOrTrunc(AllowedBits); 7497 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7498 7499 // Complain if an unsigned parameter received a negative value. 7500 if (IntegerType->isUnsignedIntegerOrEnumerationType() && 7501 (OldValue.isSigned() && OldValue.isNegative())) { 7502 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative) 7503 << toString(OldValue, 10) << toString(Value, 10) << Param->getType() 7504 << Arg->getSourceRange(); 7505 Diag(Param->getLocation(), diag::note_template_param_here); 7506 } 7507 7508 // Complain if we overflowed the template parameter's type. 7509 unsigned RequiredBits; 7510 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 7511 RequiredBits = OldValue.getActiveBits(); 7512 else if (OldValue.isUnsigned()) 7513 RequiredBits = OldValue.getActiveBits() + 1; 7514 else 7515 RequiredBits = OldValue.getMinSignedBits(); 7516 if (RequiredBits > AllowedBits) { 7517 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large) 7518 << toString(OldValue, 10) << toString(Value, 10) << Param->getType() 7519 << Arg->getSourceRange(); 7520 Diag(Param->getLocation(), diag::note_template_param_here); 7521 } 7522 } 7523 7524 QualType T = ParamType->isEnumeralType() ? ParamType : IntegerType; 7525 SugaredConverted = TemplateArgument(Context, Value, T); 7526 CanonicalConverted = 7527 TemplateArgument(Context, Value, Context.getCanonicalType(T)); 7528 return Arg; 7529 } 7530 7531 QualType ArgType = Arg->getType(); 7532 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 7533 7534 // Handle pointer-to-function, reference-to-function, and 7535 // pointer-to-member-function all in (roughly) the same way. 7536 if (// -- For a non-type template-parameter of type pointer to 7537 // function, only the function-to-pointer conversion (4.3) is 7538 // applied. If the template-argument represents a set of 7539 // overloaded functions (or a pointer to such), the matching 7540 // function is selected from the set (13.4). 7541 (ParamType->isPointerType() && 7542 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) || 7543 // -- For a non-type template-parameter of type reference to 7544 // function, no conversions apply. If the template-argument 7545 // represents a set of overloaded functions, the matching 7546 // function is selected from the set (13.4). 7547 (ParamType->isReferenceType() && 7548 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 7549 // -- For a non-type template-parameter of type pointer to 7550 // member function, no conversions apply. If the 7551 // template-argument represents a set of overloaded member 7552 // functions, the matching member function is selected from 7553 // the set (13.4). 7554 (ParamType->isMemberPointerType() && 7555 ParamType->castAs<MemberPointerType>()->getPointeeType() 7556 ->isFunctionType())) { 7557 7558 if (Arg->getType() == Context.OverloadTy) { 7559 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 7560 true, 7561 FoundResult)) { 7562 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7563 return ExprError(); 7564 7565 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7566 ArgType = Arg->getType(); 7567 } else 7568 return ExprError(); 7569 } 7570 7571 if (!ParamType->isMemberPointerType()) { 7572 if (CheckTemplateArgumentAddressOfObjectOrFunction( 7573 *this, Param, ParamType, Arg, SugaredConverted, 7574 CanonicalConverted)) 7575 return ExprError(); 7576 return Arg; 7577 } 7578 7579 if (CheckTemplateArgumentPointerToMember( 7580 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7581 return ExprError(); 7582 return Arg; 7583 } 7584 7585 if (ParamType->isPointerType()) { 7586 // -- for a non-type template-parameter of type pointer to 7587 // object, qualification conversions (4.4) and the 7588 // array-to-pointer conversion (4.2) are applied. 7589 // C++0x also allows a value of std::nullptr_t. 7590 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 7591 "Only object pointers allowed here"); 7592 7593 if (CheckTemplateArgumentAddressOfObjectOrFunction( 7594 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7595 return ExprError(); 7596 return Arg; 7597 } 7598 7599 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 7600 // -- For a non-type template-parameter of type reference to 7601 // object, no conversions apply. The type referred to by the 7602 // reference may be more cv-qualified than the (otherwise 7603 // identical) type of the template-argument. The 7604 // template-parameter is bound directly to the 7605 // template-argument, which must be an lvalue. 7606 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 7607 "Only object references allowed here"); 7608 7609 if (Arg->getType() == Context.OverloadTy) { 7610 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 7611 ParamRefType->getPointeeType(), 7612 true, 7613 FoundResult)) { 7614 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7615 return ExprError(); 7616 7617 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7618 ArgType = Arg->getType(); 7619 } else 7620 return ExprError(); 7621 } 7622 7623 if (CheckTemplateArgumentAddressOfObjectOrFunction( 7624 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7625 return ExprError(); 7626 return Arg; 7627 } 7628 7629 // Deal with parameters of type std::nullptr_t. 7630 if (ParamType->isNullPtrType()) { 7631 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 7632 SugaredConverted = TemplateArgument(Arg); 7633 CanonicalConverted = 7634 Context.getCanonicalTemplateArgument(SugaredConverted); 7635 return Arg; 7636 } 7637 7638 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 7639 case NPV_NotNullPointer: 7640 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 7641 << Arg->getType() << ParamType; 7642 Diag(Param->getLocation(), diag::note_template_param_here); 7643 return ExprError(); 7644 7645 case NPV_Error: 7646 return ExprError(); 7647 7648 case NPV_NullPointer: 7649 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 7650 SugaredConverted = TemplateArgument(ParamType, 7651 /*isNullPtr=*/true); 7652 CanonicalConverted = TemplateArgument(Context.getCanonicalType(ParamType), 7653 /*isNullPtr=*/true); 7654 return Arg; 7655 } 7656 } 7657 7658 // -- For a non-type template-parameter of type pointer to data 7659 // member, qualification conversions (4.4) are applied. 7660 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 7661 7662 if (CheckTemplateArgumentPointerToMember( 7663 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7664 return ExprError(); 7665 return Arg; 7666 } 7667 7668 static void DiagnoseTemplateParameterListArityMismatch( 7669 Sema &S, TemplateParameterList *New, TemplateParameterList *Old, 7670 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); 7671 7672 /// Check a template argument against its corresponding 7673 /// template template parameter. 7674 /// 7675 /// This routine implements the semantics of C++ [temp.arg.template]. 7676 /// It returns true if an error occurred, and false otherwise. 7677 bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param, 7678 TemplateParameterList *Params, 7679 TemplateArgumentLoc &Arg) { 7680 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 7681 TemplateDecl *Template = Name.getAsTemplateDecl(); 7682 if (!Template) { 7683 // Any dependent template name is fine. 7684 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 7685 return false; 7686 } 7687 7688 if (Template->isInvalidDecl()) 7689 return true; 7690 7691 // C++0x [temp.arg.template]p1: 7692 // A template-argument for a template template-parameter shall be 7693 // the name of a class template or an alias template, expressed as an 7694 // id-expression. When the template-argument names a class template, only 7695 // primary class templates are considered when matching the 7696 // template template argument with the corresponding parameter; 7697 // partial specializations are not considered even if their 7698 // parameter lists match that of the template template parameter. 7699 // 7700 // Note that we also allow template template parameters here, which 7701 // will happen when we are dealing with, e.g., class template 7702 // partial specializations. 7703 if (!isa<ClassTemplateDecl>(Template) && 7704 !isa<TemplateTemplateParmDecl>(Template) && 7705 !isa<TypeAliasTemplateDecl>(Template) && 7706 !isa<BuiltinTemplateDecl>(Template)) { 7707 assert(isa<FunctionTemplateDecl>(Template) && 7708 "Only function templates are possible here"); 7709 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template); 7710 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 7711 << Template; 7712 } 7713 7714 // C++1z [temp.arg.template]p3: (DR 150) 7715 // A template-argument matches a template template-parameter P when P 7716 // is at least as specialized as the template-argument A. 7717 // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a 7718 // defect report resolution from C++17 and shouldn't be introduced by 7719 // concepts. 7720 if (getLangOpts().RelaxedTemplateTemplateArgs) { 7721 // Quick check for the common case: 7722 // If P contains a parameter pack, then A [...] matches P if each of A's 7723 // template parameters matches the corresponding template parameter in 7724 // the template-parameter-list of P. 7725 if (TemplateParameterListsAreEqual( 7726 Template->getTemplateParameters(), Params, false, 7727 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) && 7728 // If the argument has no associated constraints, then the parameter is 7729 // definitely at least as specialized as the argument. 7730 // Otherwise - we need a more thorough check. 7731 !Template->hasAssociatedConstraints()) 7732 return false; 7733 7734 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template, 7735 Arg.getLocation())) { 7736 // P2113 7737 // C++20[temp.func.order]p2 7738 // [...] If both deductions succeed, the partial ordering selects the 7739 // more constrained template (if one exists) as determined below. 7740 SmallVector<const Expr *, 3> ParamsAC, TemplateAC; 7741 Params->getAssociatedConstraints(ParamsAC); 7742 // C++2a[temp.arg.template]p3 7743 // [...] In this comparison, if P is unconstrained, the constraints on A 7744 // are not considered. 7745 if (ParamsAC.empty()) 7746 return false; 7747 7748 Template->getAssociatedConstraints(TemplateAC); 7749 7750 bool IsParamAtLeastAsConstrained; 7751 if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC, 7752 IsParamAtLeastAsConstrained)) 7753 return true; 7754 if (!IsParamAtLeastAsConstrained) { 7755 Diag(Arg.getLocation(), 7756 diag::err_template_template_parameter_not_at_least_as_constrained) 7757 << Template << Param << Arg.getSourceRange(); 7758 Diag(Param->getLocation(), diag::note_entity_declared_at) << Param; 7759 Diag(Template->getLocation(), diag::note_entity_declared_at) 7760 << Template; 7761 MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template, 7762 TemplateAC); 7763 return true; 7764 } 7765 return false; 7766 } 7767 // FIXME: Produce better diagnostics for deduction failures. 7768 } 7769 7770 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 7771 Params, 7772 true, 7773 TPL_TemplateTemplateArgumentMatch, 7774 Arg.getLocation()); 7775 } 7776 7777 /// Given a non-type template argument that refers to a 7778 /// declaration and the type of its corresponding non-type template 7779 /// parameter, produce an expression that properly refers to that 7780 /// declaration. 7781 ExprResult 7782 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 7783 QualType ParamType, 7784 SourceLocation Loc) { 7785 // C++ [temp.param]p8: 7786 // 7787 // A non-type template-parameter of type "array of T" or 7788 // "function returning T" is adjusted to be of type "pointer to 7789 // T" or "pointer to function returning T", respectively. 7790 if (ParamType->isArrayType()) 7791 ParamType = Context.getArrayDecayedType(ParamType); 7792 else if (ParamType->isFunctionType()) 7793 ParamType = Context.getPointerType(ParamType); 7794 7795 // For a NULL non-type template argument, return nullptr casted to the 7796 // parameter's type. 7797 if (Arg.getKind() == TemplateArgument::NullPtr) { 7798 return ImpCastExprToType( 7799 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 7800 ParamType, 7801 ParamType->getAs<MemberPointerType>() 7802 ? CK_NullToMemberPointer 7803 : CK_NullToPointer); 7804 } 7805 assert(Arg.getKind() == TemplateArgument::Declaration && 7806 "Only declaration template arguments permitted here"); 7807 7808 ValueDecl *VD = Arg.getAsDecl(); 7809 7810 CXXScopeSpec SS; 7811 if (ParamType->isMemberPointerType()) { 7812 // If this is a pointer to member, we need to use a qualified name to 7813 // form a suitable pointer-to-member constant. 7814 assert(VD->getDeclContext()->isRecord() && 7815 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || 7816 isa<IndirectFieldDecl>(VD))); 7817 QualType ClassType 7818 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 7819 NestedNameSpecifier *Qualifier 7820 = NestedNameSpecifier::Create(Context, nullptr, false, 7821 ClassType.getTypePtr()); 7822 SS.MakeTrivial(Context, Qualifier, Loc); 7823 } 7824 7825 ExprResult RefExpr = BuildDeclarationNameExpr( 7826 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD); 7827 if (RefExpr.isInvalid()) 7828 return ExprError(); 7829 7830 // For a pointer, the argument declaration is the pointee. Take its address. 7831 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0); 7832 if (ParamType->isPointerType() && !ElemT.isNull() && 7833 Context.hasSimilarType(ElemT, ParamType->getPointeeType())) { 7834 // Decay an array argument if we want a pointer to its first element. 7835 RefExpr = DefaultFunctionArrayConversion(RefExpr.get()); 7836 if (RefExpr.isInvalid()) 7837 return ExprError(); 7838 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 7839 // For any other pointer, take the address (or form a pointer-to-member). 7840 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 7841 if (RefExpr.isInvalid()) 7842 return ExprError(); 7843 } else if (ParamType->isRecordType()) { 7844 assert(isa<TemplateParamObjectDecl>(VD) && 7845 "arg for class template param not a template parameter object"); 7846 // No conversions apply in this case. 7847 return RefExpr; 7848 } else { 7849 assert(ParamType->isReferenceType() && 7850 "unexpected type for decl template argument"); 7851 } 7852 7853 // At this point we should have the right value category. 7854 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() && 7855 "value kind mismatch for non-type template argument"); 7856 7857 // The type of the template parameter can differ from the type of the 7858 // argument in various ways; convert it now if necessary. 7859 QualType DestExprType = ParamType.getNonLValueExprType(Context); 7860 if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) { 7861 CastKind CK; 7862 QualType Ignored; 7863 if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) || 7864 IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) { 7865 CK = CK_NoOp; 7866 } else if (ParamType->isVoidPointerType() && 7867 RefExpr.get()->getType()->isPointerType()) { 7868 CK = CK_BitCast; 7869 } else { 7870 // FIXME: Pointers to members can need conversion derived-to-base or 7871 // base-to-derived conversions. We currently don't retain enough 7872 // information to convert properly (we need to track a cast path or 7873 // subobject number in the template argument). 7874 llvm_unreachable( 7875 "unexpected conversion required for non-type template argument"); 7876 } 7877 RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK, 7878 RefExpr.get()->getValueKind()); 7879 } 7880 7881 return RefExpr; 7882 } 7883 7884 /// Construct a new expression that refers to the given 7885 /// integral template argument with the given source-location 7886 /// information. 7887 /// 7888 /// This routine takes care of the mapping from an integral template 7889 /// argument (which may have any integral type) to the appropriate 7890 /// literal value. 7891 ExprResult 7892 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 7893 SourceLocation Loc) { 7894 assert(Arg.getKind() == TemplateArgument::Integral && 7895 "Operation is only valid for integral template arguments"); 7896 QualType OrigT = Arg.getIntegralType(); 7897 7898 // If this is an enum type that we're instantiating, we need to use an integer 7899 // type the same size as the enumerator. We don't want to build an 7900 // IntegerLiteral with enum type. The integer type of an enum type can be of 7901 // any integral type with C++11 enum classes, make sure we create the right 7902 // type of literal for it. 7903 QualType T = OrigT; 7904 if (const EnumType *ET = OrigT->getAs<EnumType>()) 7905 T = ET->getDecl()->getIntegerType(); 7906 7907 Expr *E; 7908 if (T->isAnyCharacterType()) { 7909 CharacterLiteral::CharacterKind Kind; 7910 if (T->isWideCharType()) 7911 Kind = CharacterLiteral::Wide; 7912 else if (T->isChar8Type() && getLangOpts().Char8) 7913 Kind = CharacterLiteral::UTF8; 7914 else if (T->isChar16Type()) 7915 Kind = CharacterLiteral::UTF16; 7916 else if (T->isChar32Type()) 7917 Kind = CharacterLiteral::UTF32; 7918 else 7919 Kind = CharacterLiteral::Ascii; 7920 7921 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), 7922 Kind, T, Loc); 7923 } else if (T->isBooleanType()) { 7924 E = CXXBoolLiteralExpr::Create(Context, Arg.getAsIntegral().getBoolValue(), 7925 T, Loc); 7926 } else if (T->isNullPtrType()) { 7927 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 7928 } else { 7929 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); 7930 } 7931 7932 if (OrigT->isEnumeralType()) { 7933 // FIXME: This is a hack. We need a better way to handle substituted 7934 // non-type template parameters. 7935 E = CStyleCastExpr::Create(Context, OrigT, VK_PRValue, CK_IntegralCast, E, 7936 nullptr, CurFPFeatureOverrides(), 7937 Context.getTrivialTypeSourceInfo(OrigT, Loc), 7938 Loc, Loc); 7939 } 7940 7941 return E; 7942 } 7943 7944 /// Match two template parameters within template parameter lists. 7945 static bool MatchTemplateParameterKind( 7946 Sema &S, NamedDecl *New, const NamedDecl *NewInstFrom, NamedDecl *Old, 7947 const NamedDecl *OldInstFrom, bool Complain, 7948 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc, 7949 bool PartialOrdering) { 7950 // Check the actual kind (type, non-type, template). 7951 if (Old->getKind() != New->getKind()) { 7952 if (Complain) { 7953 unsigned NextDiag = diag::err_template_param_different_kind; 7954 if (TemplateArgLoc.isValid()) { 7955 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7956 NextDiag = diag::note_template_param_different_kind; 7957 } 7958 S.Diag(New->getLocation(), NextDiag) 7959 << (Kind != Sema::TPL_TemplateMatch); 7960 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 7961 << (Kind != Sema::TPL_TemplateMatch); 7962 } 7963 7964 return false; 7965 } 7966 7967 // Check that both are parameter packs or neither are parameter packs. 7968 // However, if we are matching a template template argument to a 7969 // template template parameter, the template template parameter can have 7970 // a parameter pack where the template template argument does not. 7971 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 7972 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 7973 Old->isTemplateParameterPack())) { 7974 if (Complain) { 7975 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 7976 if (TemplateArgLoc.isValid()) { 7977 S.Diag(TemplateArgLoc, 7978 diag::err_template_arg_template_params_mismatch); 7979 NextDiag = diag::note_template_parameter_pack_non_pack; 7980 } 7981 7982 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 7983 : isa<NonTypeTemplateParmDecl>(New)? 1 7984 : 2; 7985 S.Diag(New->getLocation(), NextDiag) 7986 << ParamKind << New->isParameterPack(); 7987 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 7988 << ParamKind << Old->isParameterPack(); 7989 } 7990 7991 return false; 7992 } 7993 7994 // For non-type template parameters, check the type of the parameter. 7995 if (NonTypeTemplateParmDecl *OldNTTP 7996 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 7997 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 7998 7999 // If we are matching a template template argument to a template 8000 // template parameter and one of the non-type template parameter types 8001 // is dependent, then we must wait until template instantiation time 8002 // to actually compare the arguments. 8003 if (Kind != Sema::TPL_TemplateTemplateArgumentMatch || 8004 (!OldNTTP->getType()->isDependentType() && 8005 !NewNTTP->getType()->isDependentType())) 8006 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 8007 if (Complain) { 8008 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 8009 if (TemplateArgLoc.isValid()) { 8010 S.Diag(TemplateArgLoc, 8011 diag::err_template_arg_template_params_mismatch); 8012 NextDiag = diag::note_template_nontype_parm_different_type; 8013 } 8014 S.Diag(NewNTTP->getLocation(), NextDiag) 8015 << NewNTTP->getType() 8016 << (Kind != Sema::TPL_TemplateMatch); 8017 S.Diag(OldNTTP->getLocation(), 8018 diag::note_template_nontype_parm_prev_declaration) 8019 << OldNTTP->getType(); 8020 } 8021 8022 return false; 8023 } 8024 } 8025 // For template template parameters, check the template parameter types. 8026 // The template parameter lists of template template 8027 // parameters must agree. 8028 else if (TemplateTemplateParmDecl *OldTTP 8029 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 8030 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 8031 if (!S.TemplateParameterListsAreEqual( 8032 NewInstFrom, NewTTP->getTemplateParameters(), OldInstFrom, 8033 OldTTP->getTemplateParameters(), Complain, 8034 (Kind == Sema::TPL_TemplateMatch 8035 ? Sema::TPL_TemplateTemplateParmMatch 8036 : Kind), 8037 TemplateArgLoc, PartialOrdering)) 8038 return false; 8039 } 8040 8041 if (!PartialOrdering && Kind != Sema::TPL_TemplateTemplateArgumentMatch && 8042 !isa<TemplateTemplateParmDecl>(Old)) { 8043 const Expr *NewC = nullptr, *OldC = nullptr; 8044 8045 if (isa<TemplateTypeParmDecl>(New)) { 8046 if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint()) 8047 NewC = TC->getImmediatelyDeclaredConstraint(); 8048 if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint()) 8049 OldC = TC->getImmediatelyDeclaredConstraint(); 8050 } else if (isa<NonTypeTemplateParmDecl>(New)) { 8051 if (const Expr *E = cast<NonTypeTemplateParmDecl>(New) 8052 ->getPlaceholderTypeConstraint()) 8053 NewC = E; 8054 if (const Expr *E = cast<NonTypeTemplateParmDecl>(Old) 8055 ->getPlaceholderTypeConstraint()) 8056 OldC = E; 8057 } else 8058 llvm_unreachable("unexpected template parameter type"); 8059 8060 auto Diagnose = [&] { 8061 S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(), 8062 diag::err_template_different_type_constraint); 8063 S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(), 8064 diag::note_template_prev_declaration) << /*declaration*/0; 8065 }; 8066 8067 if (!NewC != !OldC) { 8068 if (Complain) 8069 Diagnose(); 8070 return false; 8071 } 8072 8073 if (NewC) { 8074 if (!S.AreConstraintExpressionsEqual(OldInstFrom, OldC, NewInstFrom, 8075 NewC)) { 8076 if (Complain) 8077 Diagnose(); 8078 return false; 8079 } 8080 } 8081 } 8082 8083 return true; 8084 } 8085 8086 /// Diagnose a known arity mismatch when comparing template argument 8087 /// lists. 8088 static 8089 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 8090 TemplateParameterList *New, 8091 TemplateParameterList *Old, 8092 Sema::TemplateParameterListEqualKind Kind, 8093 SourceLocation TemplateArgLoc) { 8094 unsigned NextDiag = diag::err_template_param_list_different_arity; 8095 if (TemplateArgLoc.isValid()) { 8096 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 8097 NextDiag = diag::note_template_param_list_different_arity; 8098 } 8099 S.Diag(New->getTemplateLoc(), NextDiag) 8100 << (New->size() > Old->size()) 8101 << (Kind != Sema::TPL_TemplateMatch) 8102 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 8103 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 8104 << (Kind != Sema::TPL_TemplateMatch) 8105 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 8106 } 8107 8108 /// Determine whether the given template parameter lists are 8109 /// equivalent. 8110 /// 8111 /// \param New The new template parameter list, typically written in the 8112 /// source code as part of a new template declaration. 8113 /// 8114 /// \param Old The old template parameter list, typically found via 8115 /// name lookup of the template declared with this template parameter 8116 /// list. 8117 /// 8118 /// \param Complain If true, this routine will produce a diagnostic if 8119 /// the template parameter lists are not equivalent. 8120 /// 8121 /// \param Kind describes how we are to match the template parameter lists. 8122 /// 8123 /// \param TemplateArgLoc If this source location is valid, then we 8124 /// are actually checking the template parameter list of a template 8125 /// argument (New) against the template parameter list of its 8126 /// corresponding template template parameter (Old). We produce 8127 /// slightly different diagnostics in this scenario. 8128 /// 8129 /// \returns True if the template parameter lists are equal, false 8130 /// otherwise. 8131 bool Sema::TemplateParameterListsAreEqual( 8132 const NamedDecl *NewInstFrom, TemplateParameterList *New, 8133 const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain, 8134 TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc, 8135 bool PartialOrdering) { 8136 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 8137 if (Complain) 8138 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 8139 TemplateArgLoc); 8140 8141 return false; 8142 } 8143 8144 // C++0x [temp.arg.template]p3: 8145 // A template-argument matches a template template-parameter (call it P) 8146 // when each of the template parameters in the template-parameter-list of 8147 // the template-argument's corresponding class template or alias template 8148 // (call it A) matches the corresponding template parameter in the 8149 // template-parameter-list of P. [...] 8150 TemplateParameterList::iterator NewParm = New->begin(); 8151 TemplateParameterList::iterator NewParmEnd = New->end(); 8152 for (TemplateParameterList::iterator OldParm = Old->begin(), 8153 OldParmEnd = Old->end(); 8154 OldParm != OldParmEnd; ++OldParm) { 8155 if (Kind != TPL_TemplateTemplateArgumentMatch || 8156 !(*OldParm)->isTemplateParameterPack()) { 8157 if (NewParm == NewParmEnd) { 8158 if (Complain) 8159 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 8160 TemplateArgLoc); 8161 8162 return false; 8163 } 8164 8165 if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm, 8166 OldInstFrom, Complain, Kind, 8167 TemplateArgLoc, PartialOrdering)) 8168 return false; 8169 8170 ++NewParm; 8171 continue; 8172 } 8173 8174 // C++0x [temp.arg.template]p3: 8175 // [...] When P's template- parameter-list contains a template parameter 8176 // pack (14.5.3), the template parameter pack will match zero or more 8177 // template parameters or template parameter packs in the 8178 // template-parameter-list of A with the same type and form as the 8179 // template parameter pack in P (ignoring whether those template 8180 // parameters are template parameter packs). 8181 for (; NewParm != NewParmEnd; ++NewParm) { 8182 if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm, 8183 OldInstFrom, Complain, Kind, 8184 TemplateArgLoc, PartialOrdering)) 8185 return false; 8186 } 8187 } 8188 8189 // Make sure we exhausted all of the arguments. 8190 if (NewParm != NewParmEnd) { 8191 if (Complain) 8192 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 8193 TemplateArgLoc); 8194 8195 return false; 8196 } 8197 8198 if (!PartialOrdering && Kind != TPL_TemplateTemplateArgumentMatch) { 8199 const Expr *NewRC = New->getRequiresClause(); 8200 const Expr *OldRC = Old->getRequiresClause(); 8201 8202 auto Diagnose = [&] { 8203 Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(), 8204 diag::err_template_different_requires_clause); 8205 Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(), 8206 diag::note_template_prev_declaration) << /*declaration*/0; 8207 }; 8208 8209 if (!NewRC != !OldRC) { 8210 if (Complain) 8211 Diagnose(); 8212 return false; 8213 } 8214 8215 if (NewRC) { 8216 if (!AreConstraintExpressionsEqual(OldInstFrom, OldRC, NewInstFrom, 8217 NewRC)) { 8218 if (Complain) 8219 Diagnose(); 8220 return false; 8221 } 8222 } 8223 } 8224 8225 return true; 8226 } 8227 8228 /// Check whether a template can be declared within this scope. 8229 /// 8230 /// If the template declaration is valid in this scope, returns 8231 /// false. Otherwise, issues a diagnostic and returns true. 8232 bool 8233 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 8234 if (!S) 8235 return false; 8236 8237 // Find the nearest enclosing declaration scope. 8238 while ((S->getFlags() & Scope::DeclScope) == 0 || 8239 (S->getFlags() & Scope::TemplateParamScope) != 0) 8240 S = S->getParent(); 8241 8242 // C++ [temp.pre]p6: [P2096] 8243 // A template, explicit specialization, or partial specialization shall not 8244 // have C linkage. 8245 DeclContext *Ctx = S->getEntity(); 8246 if (Ctx && Ctx->isExternCContext()) { 8247 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 8248 << TemplateParams->getSourceRange(); 8249 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) 8250 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 8251 return true; 8252 } 8253 Ctx = Ctx ? Ctx->getRedeclContext() : nullptr; 8254 8255 // C++ [temp]p2: 8256 // A template-declaration can appear only as a namespace scope or 8257 // class scope declaration. 8258 // C++ [temp.expl.spec]p3: 8259 // An explicit specialization may be declared in any scope in which the 8260 // corresponding primary template may be defined. 8261 // C++ [temp.class.spec]p6: [P2096] 8262 // A partial specialization may be declared in any scope in which the 8263 // corresponding primary template may be defined. 8264 if (Ctx) { 8265 if (Ctx->isFileContext()) 8266 return false; 8267 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) { 8268 // C++ [temp.mem]p2: 8269 // A local class shall not have member templates. 8270 if (RD->isLocalClass()) 8271 return Diag(TemplateParams->getTemplateLoc(), 8272 diag::err_template_inside_local_class) 8273 << TemplateParams->getSourceRange(); 8274 else 8275 return false; 8276 } 8277 } 8278 8279 return Diag(TemplateParams->getTemplateLoc(), 8280 diag::err_template_outside_namespace_or_class_scope) 8281 << TemplateParams->getSourceRange(); 8282 } 8283 8284 /// Determine what kind of template specialization the given declaration 8285 /// is. 8286 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 8287 if (!D) 8288 return TSK_Undeclared; 8289 8290 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 8291 return Record->getTemplateSpecializationKind(); 8292 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 8293 return Function->getTemplateSpecializationKind(); 8294 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 8295 return Var->getTemplateSpecializationKind(); 8296 8297 return TSK_Undeclared; 8298 } 8299 8300 /// Check whether a specialization is well-formed in the current 8301 /// context. 8302 /// 8303 /// This routine determines whether a template specialization can be declared 8304 /// in the current context (C++ [temp.expl.spec]p2). 8305 /// 8306 /// \param S the semantic analysis object for which this check is being 8307 /// performed. 8308 /// 8309 /// \param Specialized the entity being specialized or instantiated, which 8310 /// may be a kind of template (class template, function template, etc.) or 8311 /// a member of a class template (member function, static data member, 8312 /// member class). 8313 /// 8314 /// \param PrevDecl the previous declaration of this entity, if any. 8315 /// 8316 /// \param Loc the location of the explicit specialization or instantiation of 8317 /// this entity. 8318 /// 8319 /// \param IsPartialSpecialization whether this is a partial specialization of 8320 /// a class template. 8321 /// 8322 /// \returns true if there was an error that we cannot recover from, false 8323 /// otherwise. 8324 static bool CheckTemplateSpecializationScope(Sema &S, 8325 NamedDecl *Specialized, 8326 NamedDecl *PrevDecl, 8327 SourceLocation Loc, 8328 bool IsPartialSpecialization) { 8329 // Keep these "kind" numbers in sync with the %select statements in the 8330 // various diagnostics emitted by this routine. 8331 int EntityKind = 0; 8332 if (isa<ClassTemplateDecl>(Specialized)) 8333 EntityKind = IsPartialSpecialization? 1 : 0; 8334 else if (isa<VarTemplateDecl>(Specialized)) 8335 EntityKind = IsPartialSpecialization ? 3 : 2; 8336 else if (isa<FunctionTemplateDecl>(Specialized)) 8337 EntityKind = 4; 8338 else if (isa<CXXMethodDecl>(Specialized)) 8339 EntityKind = 5; 8340 else if (isa<VarDecl>(Specialized)) 8341 EntityKind = 6; 8342 else if (isa<RecordDecl>(Specialized)) 8343 EntityKind = 7; 8344 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 8345 EntityKind = 8; 8346 else { 8347 S.Diag(Loc, diag::err_template_spec_unknown_kind) 8348 << S.getLangOpts().CPlusPlus11; 8349 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 8350 return true; 8351 } 8352 8353 // C++ [temp.expl.spec]p2: 8354 // An explicit specialization may be declared in any scope in which 8355 // the corresponding primary template may be defined. 8356 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 8357 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 8358 << Specialized; 8359 return true; 8360 } 8361 8362 // C++ [temp.class.spec]p6: 8363 // A class template partial specialization may be declared in any 8364 // scope in which the primary template may be defined. 8365 DeclContext *SpecializedContext = 8366 Specialized->getDeclContext()->getRedeclContext(); 8367 DeclContext *DC = S.CurContext->getRedeclContext(); 8368 8369 // Make sure that this redeclaration (or definition) occurs in the same 8370 // scope or an enclosing namespace. 8371 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext) 8372 : DC->Equals(SpecializedContext))) { 8373 if (isa<TranslationUnitDecl>(SpecializedContext)) 8374 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 8375 << EntityKind << Specialized; 8376 else { 8377 auto *ND = cast<NamedDecl>(SpecializedContext); 8378 int Diag = diag::err_template_spec_redecl_out_of_scope; 8379 if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) 8380 Diag = diag::ext_ms_template_spec_redecl_out_of_scope; 8381 S.Diag(Loc, Diag) << EntityKind << Specialized 8382 << ND << isa<CXXRecordDecl>(ND); 8383 } 8384 8385 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 8386 8387 // Don't allow specializing in the wrong class during error recovery. 8388 // Otherwise, things can go horribly wrong. 8389 if (DC->isRecord()) 8390 return true; 8391 } 8392 8393 return false; 8394 } 8395 8396 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { 8397 if (!E->isTypeDependent()) 8398 return SourceLocation(); 8399 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 8400 Checker.TraverseStmt(E); 8401 if (Checker.MatchLoc.isInvalid()) 8402 return E->getSourceRange(); 8403 return Checker.MatchLoc; 8404 } 8405 8406 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { 8407 if (!TL.getType()->isDependentType()) 8408 return SourceLocation(); 8409 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 8410 Checker.TraverseTypeLoc(TL); 8411 if (Checker.MatchLoc.isInvalid()) 8412 return TL.getSourceRange(); 8413 return Checker.MatchLoc; 8414 } 8415 8416 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs 8417 /// that checks non-type template partial specialization arguments. 8418 static bool CheckNonTypeTemplatePartialSpecializationArgs( 8419 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, 8420 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { 8421 for (unsigned I = 0; I != NumArgs; ++I) { 8422 if (Args[I].getKind() == TemplateArgument::Pack) { 8423 if (CheckNonTypeTemplatePartialSpecializationArgs( 8424 S, TemplateNameLoc, Param, Args[I].pack_begin(), 8425 Args[I].pack_size(), IsDefaultArgument)) 8426 return true; 8427 8428 continue; 8429 } 8430 8431 if (Args[I].getKind() != TemplateArgument::Expression) 8432 continue; 8433 8434 Expr *ArgExpr = Args[I].getAsExpr(); 8435 8436 // We can have a pack expansion of any of the bullets below. 8437 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 8438 ArgExpr = Expansion->getPattern(); 8439 8440 // Strip off any implicit casts we added as part of type checking. 8441 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 8442 ArgExpr = ICE->getSubExpr(); 8443 8444 // C++ [temp.class.spec]p8: 8445 // A non-type argument is non-specialized if it is the name of a 8446 // non-type parameter. All other non-type arguments are 8447 // specialized. 8448 // 8449 // Below, we check the two conditions that only apply to 8450 // specialized non-type arguments, so skip any non-specialized 8451 // arguments. 8452 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 8453 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 8454 continue; 8455 8456 // C++ [temp.class.spec]p9: 8457 // Within the argument list of a class template partial 8458 // specialization, the following restrictions apply: 8459 // -- A partially specialized non-type argument expression 8460 // shall not involve a template parameter of the partial 8461 // specialization except when the argument expression is a 8462 // simple identifier. 8463 // -- The type of a template parameter corresponding to a 8464 // specialized non-type argument shall not be dependent on a 8465 // parameter of the specialization. 8466 // DR1315 removes the first bullet, leaving an incoherent set of rules. 8467 // We implement a compromise between the original rules and DR1315: 8468 // -- A specialized non-type template argument shall not be 8469 // type-dependent and the corresponding template parameter 8470 // shall have a non-dependent type. 8471 SourceRange ParamUseRange = 8472 findTemplateParameterInType(Param->getDepth(), ArgExpr); 8473 if (ParamUseRange.isValid()) { 8474 if (IsDefaultArgument) { 8475 S.Diag(TemplateNameLoc, 8476 diag::err_dependent_non_type_arg_in_partial_spec); 8477 S.Diag(ParamUseRange.getBegin(), 8478 diag::note_dependent_non_type_default_arg_in_partial_spec) 8479 << ParamUseRange; 8480 } else { 8481 S.Diag(ParamUseRange.getBegin(), 8482 diag::err_dependent_non_type_arg_in_partial_spec) 8483 << ParamUseRange; 8484 } 8485 return true; 8486 } 8487 8488 ParamUseRange = findTemplateParameter( 8489 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); 8490 if (ParamUseRange.isValid()) { 8491 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(), 8492 diag::err_dependent_typed_non_type_arg_in_partial_spec) 8493 << Param->getType(); 8494 S.Diag(Param->getLocation(), diag::note_template_param_here) 8495 << (IsDefaultArgument ? ParamUseRange : SourceRange()) 8496 << ParamUseRange; 8497 return true; 8498 } 8499 } 8500 8501 return false; 8502 } 8503 8504 /// Check the non-type template arguments of a class template 8505 /// partial specialization according to C++ [temp.class.spec]p9. 8506 /// 8507 /// \param TemplateNameLoc the location of the template name. 8508 /// \param PrimaryTemplate the template parameters of the primary class 8509 /// template. 8510 /// \param NumExplicit the number of explicitly-specified template arguments. 8511 /// \param TemplateArgs the template arguments of the class template 8512 /// partial specialization. 8513 /// 8514 /// \returns \c true if there was an error, \c false otherwise. 8515 bool Sema::CheckTemplatePartialSpecializationArgs( 8516 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, 8517 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { 8518 // We have to be conservative when checking a template in a dependent 8519 // context. 8520 if (PrimaryTemplate->getDeclContext()->isDependentContext()) 8521 return false; 8522 8523 TemplateParameterList *TemplateParams = 8524 PrimaryTemplate->getTemplateParameters(); 8525 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8526 NonTypeTemplateParmDecl *Param 8527 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 8528 if (!Param) 8529 continue; 8530 8531 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc, 8532 Param, &TemplateArgs[I], 8533 1, I >= NumExplicit)) 8534 return true; 8535 } 8536 8537 return false; 8538 } 8539 8540 DeclResult Sema::ActOnClassTemplateSpecialization( 8541 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 8542 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, 8543 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, 8544 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { 8545 assert(TUK != TUK_Reference && "References are not specializations"); 8546 8547 // NOTE: KWLoc is the location of the tag keyword. This will instead 8548 // store the location of the outermost template keyword in the declaration. 8549 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 8550 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc; 8551 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; 8552 SourceLocation LAngleLoc = TemplateId.LAngleLoc; 8553 SourceLocation RAngleLoc = TemplateId.RAngleLoc; 8554 8555 // Find the class template we're specializing 8556 TemplateName Name = TemplateId.Template.get(); 8557 ClassTemplateDecl *ClassTemplate 8558 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 8559 8560 if (!ClassTemplate) { 8561 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 8562 << (Name.getAsTemplateDecl() && 8563 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 8564 return true; 8565 } 8566 8567 bool isMemberSpecialization = false; 8568 bool isPartialSpecialization = false; 8569 8570 // Check the validity of the template headers that introduce this 8571 // template. 8572 // FIXME: We probably shouldn't complain about these headers for 8573 // friend declarations. 8574 bool Invalid = false; 8575 TemplateParameterList *TemplateParams = 8576 MatchTemplateParametersToScopeSpecifier( 8577 KWLoc, TemplateNameLoc, SS, &TemplateId, 8578 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization, 8579 Invalid); 8580 if (Invalid) 8581 return true; 8582 8583 // Check that we can declare a template specialization here. 8584 if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams)) 8585 return true; 8586 8587 if (TemplateParams && TemplateParams->size() > 0) { 8588 isPartialSpecialization = true; 8589 8590 if (TUK == TUK_Friend) { 8591 Diag(KWLoc, diag::err_partial_specialization_friend) 8592 << SourceRange(LAngleLoc, RAngleLoc); 8593 return true; 8594 } 8595 8596 // C++ [temp.class.spec]p10: 8597 // The template parameter list of a specialization shall not 8598 // contain default template argument values. 8599 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8600 Decl *Param = TemplateParams->getParam(I); 8601 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 8602 if (TTP->hasDefaultArgument()) { 8603 Diag(TTP->getDefaultArgumentLoc(), 8604 diag::err_default_arg_in_partial_spec); 8605 TTP->removeDefaultArgument(); 8606 } 8607 } else if (NonTypeTemplateParmDecl *NTTP 8608 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 8609 if (Expr *DefArg = NTTP->getDefaultArgument()) { 8610 Diag(NTTP->getDefaultArgumentLoc(), 8611 diag::err_default_arg_in_partial_spec) 8612 << DefArg->getSourceRange(); 8613 NTTP->removeDefaultArgument(); 8614 } 8615 } else { 8616 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 8617 if (TTP->hasDefaultArgument()) { 8618 Diag(TTP->getDefaultArgument().getLocation(), 8619 diag::err_default_arg_in_partial_spec) 8620 << TTP->getDefaultArgument().getSourceRange(); 8621 TTP->removeDefaultArgument(); 8622 } 8623 } 8624 } 8625 } else if (TemplateParams) { 8626 if (TUK == TUK_Friend) 8627 Diag(KWLoc, diag::err_template_spec_friend) 8628 << FixItHint::CreateRemoval( 8629 SourceRange(TemplateParams->getTemplateLoc(), 8630 TemplateParams->getRAngleLoc())) 8631 << SourceRange(LAngleLoc, RAngleLoc); 8632 } else { 8633 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl"); 8634 } 8635 8636 // Check that the specialization uses the same tag kind as the 8637 // original template. 8638 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 8639 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 8640 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 8641 Kind, TUK == TUK_Definition, KWLoc, 8642 ClassTemplate->getIdentifier())) { 8643 Diag(KWLoc, diag::err_use_with_wrong_tag) 8644 << ClassTemplate 8645 << FixItHint::CreateReplacement(KWLoc, 8646 ClassTemplate->getTemplatedDecl()->getKindName()); 8647 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 8648 diag::note_previous_use); 8649 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 8650 } 8651 8652 // Translate the parser's template argument list in our AST format. 8653 TemplateArgumentListInfo TemplateArgs = 8654 makeTemplateArgumentListInfo(*this, TemplateId); 8655 8656 // Check for unexpanded parameter packs in any of the template arguments. 8657 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 8658 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 8659 UPPC_PartialSpecialization)) 8660 return true; 8661 8662 // Check that the template argument list is well-formed for this 8663 // template. 8664 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 8665 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs, 8666 false, SugaredConverted, CanonicalConverted, 8667 /*UpdateArgsWithConversions=*/true)) 8668 return true; 8669 8670 // Find the class template (partial) specialization declaration that 8671 // corresponds to these arguments. 8672 if (isPartialSpecialization) { 8673 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate, 8674 TemplateArgs.size(), 8675 CanonicalConverted)) 8676 return true; 8677 8678 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we 8679 // also do it during instantiation. 8680 if (!Name.isDependent() && 8681 !TemplateSpecializationType::anyDependentTemplateArguments( 8682 TemplateArgs, CanonicalConverted)) { 8683 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 8684 << ClassTemplate->getDeclName(); 8685 isPartialSpecialization = false; 8686 } 8687 } 8688 8689 void *InsertPos = nullptr; 8690 ClassTemplateSpecializationDecl *PrevDecl = nullptr; 8691 8692 if (isPartialSpecialization) 8693 PrevDecl = ClassTemplate->findPartialSpecialization( 8694 CanonicalConverted, TemplateParams, InsertPos); 8695 else 8696 PrevDecl = ClassTemplate->findSpecialization(CanonicalConverted, InsertPos); 8697 8698 ClassTemplateSpecializationDecl *Specialization = nullptr; 8699 8700 // Check whether we can declare a class template specialization in 8701 // the current scope. 8702 if (TUK != TUK_Friend && 8703 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 8704 TemplateNameLoc, 8705 isPartialSpecialization)) 8706 return true; 8707 8708 // The canonical type 8709 QualType CanonType; 8710 if (isPartialSpecialization) { 8711 // Build the canonical type that describes the converted template 8712 // arguments of the class template partial specialization. 8713 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8714 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 8715 CanonicalConverted); 8716 8717 if (Context.hasSameType(CanonType, 8718 ClassTemplate->getInjectedClassNameSpecialization()) && 8719 (!Context.getLangOpts().CPlusPlus20 || 8720 !TemplateParams->hasAssociatedConstraints())) { 8721 // C++ [temp.class.spec]p9b3: 8722 // 8723 // -- The argument list of the specialization shall not be identical 8724 // to the implicit argument list of the primary template. 8725 // 8726 // This rule has since been removed, because it's redundant given DR1495, 8727 // but we keep it because it produces better diagnostics and recovery. 8728 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 8729 << /*class template*/0 << (TUK == TUK_Definition) 8730 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 8731 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 8732 ClassTemplate->getIdentifier(), 8733 TemplateNameLoc, 8734 Attr, 8735 TemplateParams, 8736 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 8737 /*FriendLoc*/SourceLocation(), 8738 TemplateParameterLists.size() - 1, 8739 TemplateParameterLists.data()); 8740 } 8741 8742 // Create a new class template partial specialization declaration node. 8743 ClassTemplatePartialSpecializationDecl *PrevPartial 8744 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 8745 ClassTemplatePartialSpecializationDecl *Partial = 8746 ClassTemplatePartialSpecializationDecl::Create( 8747 Context, Kind, ClassTemplate->getDeclContext(), KWLoc, 8748 TemplateNameLoc, TemplateParams, ClassTemplate, CanonicalConverted, 8749 TemplateArgs, CanonType, PrevPartial); 8750 SetNestedNameSpecifier(*this, Partial, SS); 8751 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 8752 Partial->setTemplateParameterListsInfo( 8753 Context, TemplateParameterLists.drop_back(1)); 8754 } 8755 8756 if (!PrevPartial) 8757 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 8758 Specialization = Partial; 8759 8760 // If we are providing an explicit specialization of a member class 8761 // template specialization, make a note of that. 8762 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 8763 PrevPartial->setMemberSpecialization(); 8764 8765 CheckTemplatePartialSpecialization(Partial); 8766 } else { 8767 // Create a new class template specialization declaration node for 8768 // this explicit specialization or friend declaration. 8769 Specialization = ClassTemplateSpecializationDecl::Create( 8770 Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc, 8771 ClassTemplate, CanonicalConverted, PrevDecl); 8772 SetNestedNameSpecifier(*this, Specialization, SS); 8773 if (TemplateParameterLists.size() > 0) { 8774 Specialization->setTemplateParameterListsInfo(Context, 8775 TemplateParameterLists); 8776 } 8777 8778 if (!PrevDecl) 8779 ClassTemplate->AddSpecialization(Specialization, InsertPos); 8780 8781 if (CurContext->isDependentContext()) { 8782 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8783 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 8784 CanonicalConverted); 8785 } else { 8786 CanonType = Context.getTypeDeclType(Specialization); 8787 } 8788 } 8789 8790 // C++ [temp.expl.spec]p6: 8791 // If a template, a member template or the member of a class template is 8792 // explicitly specialized then that specialization shall be declared 8793 // before the first use of that specialization that would cause an implicit 8794 // instantiation to take place, in every translation unit in which such a 8795 // use occurs; no diagnostic is required. 8796 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 8797 bool Okay = false; 8798 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8799 // Is there any previous explicit specialization declaration? 8800 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8801 Okay = true; 8802 break; 8803 } 8804 } 8805 8806 if (!Okay) { 8807 SourceRange Range(TemplateNameLoc, RAngleLoc); 8808 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 8809 << Context.getTypeDeclType(Specialization) << Range; 8810 8811 Diag(PrevDecl->getPointOfInstantiation(), 8812 diag::note_instantiation_required_here) 8813 << (PrevDecl->getTemplateSpecializationKind() 8814 != TSK_ImplicitInstantiation); 8815 return true; 8816 } 8817 } 8818 8819 // If this is not a friend, note that this is an explicit specialization. 8820 if (TUK != TUK_Friend) 8821 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 8822 8823 // Check that this isn't a redefinition of this specialization. 8824 if (TUK == TUK_Definition) { 8825 RecordDecl *Def = Specialization->getDefinition(); 8826 NamedDecl *Hidden = nullptr; 8827 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 8828 SkipBody->ShouldSkip = true; 8829 SkipBody->Previous = Def; 8830 makeMergedDefinitionVisible(Hidden); 8831 } else if (Def) { 8832 SourceRange Range(TemplateNameLoc, RAngleLoc); 8833 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range; 8834 Diag(Def->getLocation(), diag::note_previous_definition); 8835 Specialization->setInvalidDecl(); 8836 return true; 8837 } 8838 } 8839 8840 ProcessDeclAttributeList(S, Specialization, Attr); 8841 8842 // Add alignment attributes if necessary; these attributes are checked when 8843 // the ASTContext lays out the structure. 8844 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 8845 AddAlignmentAttributesForRecord(Specialization); 8846 AddMsStructLayoutForRecord(Specialization); 8847 } 8848 8849 if (ModulePrivateLoc.isValid()) 8850 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 8851 << (isPartialSpecialization? 1 : 0) 8852 << FixItHint::CreateRemoval(ModulePrivateLoc); 8853 8854 // Build the fully-sugared type for this class template 8855 // specialization as the user wrote in the specialization 8856 // itself. This means that we'll pretty-print the type retrieved 8857 // from the specialization's declaration the way that the user 8858 // actually wrote the specialization, rather than formatting the 8859 // name based on the "canonical" representation used to store the 8860 // template arguments in the specialization. 8861 TypeSourceInfo *WrittenTy 8862 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 8863 TemplateArgs, CanonType); 8864 if (TUK != TUK_Friend) { 8865 Specialization->setTypeAsWritten(WrittenTy); 8866 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 8867 } 8868 8869 // C++ [temp.expl.spec]p9: 8870 // A template explicit specialization is in the scope of the 8871 // namespace in which the template was defined. 8872 // 8873 // We actually implement this paragraph where we set the semantic 8874 // context (in the creation of the ClassTemplateSpecializationDecl), 8875 // but we also maintain the lexical context where the actual 8876 // definition occurs. 8877 Specialization->setLexicalDeclContext(CurContext); 8878 8879 // We may be starting the definition of this specialization. 8880 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 8881 Specialization->startDefinition(); 8882 8883 if (TUK == TUK_Friend) { 8884 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 8885 TemplateNameLoc, 8886 WrittenTy, 8887 /*FIXME:*/KWLoc); 8888 Friend->setAccess(AS_public); 8889 CurContext->addDecl(Friend); 8890 } else { 8891 // Add the specialization into its lexical context, so that it can 8892 // be seen when iterating through the list of declarations in that 8893 // context. However, specializations are not found by name lookup. 8894 CurContext->addDecl(Specialization); 8895 } 8896 8897 if (SkipBody && SkipBody->ShouldSkip) 8898 return SkipBody->Previous; 8899 8900 return Specialization; 8901 } 8902 8903 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 8904 MultiTemplateParamsArg TemplateParameterLists, 8905 Declarator &D) { 8906 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 8907 ActOnDocumentableDecl(NewDecl); 8908 return NewDecl; 8909 } 8910 8911 Decl *Sema::ActOnConceptDefinition(Scope *S, 8912 MultiTemplateParamsArg TemplateParameterLists, 8913 IdentifierInfo *Name, SourceLocation NameLoc, 8914 Expr *ConstraintExpr) { 8915 DeclContext *DC = CurContext; 8916 8917 if (!DC->getRedeclContext()->isFileContext()) { 8918 Diag(NameLoc, 8919 diag::err_concept_decls_may_only_appear_in_global_namespace_scope); 8920 return nullptr; 8921 } 8922 8923 if (TemplateParameterLists.size() > 1) { 8924 Diag(NameLoc, diag::err_concept_extra_headers); 8925 return nullptr; 8926 } 8927 8928 TemplateParameterList *Params = TemplateParameterLists.front(); 8929 8930 if (Params->size() == 0) { 8931 Diag(NameLoc, diag::err_concept_no_parameters); 8932 return nullptr; 8933 } 8934 8935 // Ensure that the parameter pack, if present, is the last parameter in the 8936 // template. 8937 for (TemplateParameterList::const_iterator ParamIt = Params->begin(), 8938 ParamEnd = Params->end(); 8939 ParamIt != ParamEnd; ++ParamIt) { 8940 Decl const *Param = *ParamIt; 8941 if (Param->isParameterPack()) { 8942 if (++ParamIt == ParamEnd) 8943 break; 8944 Diag(Param->getLocation(), 8945 diag::err_template_param_pack_must_be_last_template_parameter); 8946 return nullptr; 8947 } 8948 } 8949 8950 if (DiagnoseUnexpandedParameterPack(ConstraintExpr)) 8951 return nullptr; 8952 8953 ConceptDecl *NewDecl = 8954 ConceptDecl::Create(Context, DC, NameLoc, Name, Params, ConstraintExpr); 8955 8956 if (NewDecl->hasAssociatedConstraints()) { 8957 // C++2a [temp.concept]p4: 8958 // A concept shall not have associated constraints. 8959 Diag(NameLoc, diag::err_concept_no_associated_constraints); 8960 NewDecl->setInvalidDecl(); 8961 } 8962 8963 // Check for conflicting previous declaration. 8964 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc); 8965 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 8966 forRedeclarationInCurContext()); 8967 LookupName(Previous, S); 8968 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false, 8969 /*AllowInlineNamespace*/false); 8970 bool AddToScope = true; 8971 CheckConceptRedefinition(NewDecl, Previous, AddToScope); 8972 8973 ActOnDocumentableDecl(NewDecl); 8974 if (AddToScope) 8975 PushOnScopeChains(NewDecl, S); 8976 return NewDecl; 8977 } 8978 8979 void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl, 8980 LookupResult &Previous, bool &AddToScope) { 8981 AddToScope = true; 8982 8983 if (Previous.empty()) 8984 return; 8985 8986 auto *OldConcept = dyn_cast<ConceptDecl>(Previous.getRepresentativeDecl()->getUnderlyingDecl()); 8987 if (!OldConcept) { 8988 auto *Old = Previous.getRepresentativeDecl(); 8989 Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind) 8990 << NewDecl->getDeclName(); 8991 notePreviousDefinition(Old, NewDecl->getLocation()); 8992 AddToScope = false; 8993 return; 8994 } 8995 // Check if we can merge with a concept declaration. 8996 bool IsSame = Context.isSameEntity(NewDecl, OldConcept); 8997 if (!IsSame) { 8998 Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept) 8999 << NewDecl->getDeclName(); 9000 notePreviousDefinition(OldConcept, NewDecl->getLocation()); 9001 AddToScope = false; 9002 return; 9003 } 9004 if (hasReachableDefinition(OldConcept) && 9005 IsRedefinitionInModule(NewDecl, OldConcept)) { 9006 Diag(NewDecl->getLocation(), diag::err_redefinition) 9007 << NewDecl->getDeclName(); 9008 notePreviousDefinition(OldConcept, NewDecl->getLocation()); 9009 AddToScope = false; 9010 return; 9011 } 9012 if (!Previous.isSingleResult()) { 9013 // FIXME: we should produce an error in case of ambig and failed lookups. 9014 // Other decls (e.g. namespaces) also have this shortcoming. 9015 return; 9016 } 9017 // We unwrap canonical decl late to check for module visibility. 9018 Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl()); 9019 } 9020 9021 /// \brief Strips various properties off an implicit instantiation 9022 /// that has just been explicitly specialized. 9023 static void StripImplicitInstantiation(NamedDecl *D, bool MinGW) { 9024 if (MinGW || (isa<FunctionDecl>(D) && 9025 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())) { 9026 D->dropAttr<DLLImportAttr>(); 9027 D->dropAttr<DLLExportAttr>(); 9028 } 9029 9030 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 9031 FD->setInlineSpecified(false); 9032 } 9033 9034 /// Compute the diagnostic location for an explicit instantiation 9035 // declaration or definition. 9036 static SourceLocation DiagLocForExplicitInstantiation( 9037 NamedDecl* D, SourceLocation PointOfInstantiation) { 9038 // Explicit instantiations following a specialization have no effect and 9039 // hence no PointOfInstantiation. In that case, walk decl backwards 9040 // until a valid name loc is found. 9041 SourceLocation PrevDiagLoc = PointOfInstantiation; 9042 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 9043 Prev = Prev->getPreviousDecl()) { 9044 PrevDiagLoc = Prev->getLocation(); 9045 } 9046 assert(PrevDiagLoc.isValid() && 9047 "Explicit instantiation without point of instantiation?"); 9048 return PrevDiagLoc; 9049 } 9050 9051 /// Diagnose cases where we have an explicit template specialization 9052 /// before/after an explicit template instantiation, producing diagnostics 9053 /// for those cases where they are required and determining whether the 9054 /// new specialization/instantiation will have any effect. 9055 /// 9056 /// \param NewLoc the location of the new explicit specialization or 9057 /// instantiation. 9058 /// 9059 /// \param NewTSK the kind of the new explicit specialization or instantiation. 9060 /// 9061 /// \param PrevDecl the previous declaration of the entity. 9062 /// 9063 /// \param PrevTSK the kind of the old explicit specialization or instantiatin. 9064 /// 9065 /// \param PrevPointOfInstantiation if valid, indicates where the previous 9066 /// declaration was instantiated (either implicitly or explicitly). 9067 /// 9068 /// \param HasNoEffect will be set to true to indicate that the new 9069 /// specialization or instantiation has no effect and should be ignored. 9070 /// 9071 /// \returns true if there was an error that should prevent the introduction of 9072 /// the new declaration into the AST, false otherwise. 9073 bool 9074 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 9075 TemplateSpecializationKind NewTSK, 9076 NamedDecl *PrevDecl, 9077 TemplateSpecializationKind PrevTSK, 9078 SourceLocation PrevPointOfInstantiation, 9079 bool &HasNoEffect) { 9080 HasNoEffect = false; 9081 9082 switch (NewTSK) { 9083 case TSK_Undeclared: 9084 case TSK_ImplicitInstantiation: 9085 assert( 9086 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && 9087 "previous declaration must be implicit!"); 9088 return false; 9089 9090 case TSK_ExplicitSpecialization: 9091 switch (PrevTSK) { 9092 case TSK_Undeclared: 9093 case TSK_ExplicitSpecialization: 9094 // Okay, we're just specializing something that is either already 9095 // explicitly specialized or has merely been mentioned without any 9096 // instantiation. 9097 return false; 9098 9099 case TSK_ImplicitInstantiation: 9100 if (PrevPointOfInstantiation.isInvalid()) { 9101 // The declaration itself has not actually been instantiated, so it is 9102 // still okay to specialize it. 9103 StripImplicitInstantiation( 9104 PrevDecl, 9105 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()); 9106 return false; 9107 } 9108 // Fall through 9109 [[fallthrough]]; 9110 9111 case TSK_ExplicitInstantiationDeclaration: 9112 case TSK_ExplicitInstantiationDefinition: 9113 assert((PrevTSK == TSK_ImplicitInstantiation || 9114 PrevPointOfInstantiation.isValid()) && 9115 "Explicit instantiation without point of instantiation?"); 9116 9117 // C++ [temp.expl.spec]p6: 9118 // If a template, a member template or the member of a class template 9119 // is explicitly specialized then that specialization shall be declared 9120 // before the first use of that specialization that would cause an 9121 // implicit instantiation to take place, in every translation unit in 9122 // which such a use occurs; no diagnostic is required. 9123 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 9124 // Is there any previous explicit specialization declaration? 9125 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 9126 return false; 9127 } 9128 9129 Diag(NewLoc, diag::err_specialization_after_instantiation) 9130 << PrevDecl; 9131 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 9132 << (PrevTSK != TSK_ImplicitInstantiation); 9133 9134 return true; 9135 } 9136 llvm_unreachable("The switch over PrevTSK must be exhaustive."); 9137 9138 case TSK_ExplicitInstantiationDeclaration: 9139 switch (PrevTSK) { 9140 case TSK_ExplicitInstantiationDeclaration: 9141 // This explicit instantiation declaration is redundant (that's okay). 9142 HasNoEffect = true; 9143 return false; 9144 9145 case TSK_Undeclared: 9146 case TSK_ImplicitInstantiation: 9147 // We're explicitly instantiating something that may have already been 9148 // implicitly instantiated; that's fine. 9149 return false; 9150 9151 case TSK_ExplicitSpecialization: 9152 // C++0x [temp.explicit]p4: 9153 // For a given set of template parameters, if an explicit instantiation 9154 // of a template appears after a declaration of an explicit 9155 // specialization for that template, the explicit instantiation has no 9156 // effect. 9157 HasNoEffect = true; 9158 return false; 9159 9160 case TSK_ExplicitInstantiationDefinition: 9161 // C++0x [temp.explicit]p10: 9162 // If an entity is the subject of both an explicit instantiation 9163 // declaration and an explicit instantiation definition in the same 9164 // translation unit, the definition shall follow the declaration. 9165 Diag(NewLoc, 9166 diag::err_explicit_instantiation_declaration_after_definition); 9167 9168 // Explicit instantiations following a specialization have no effect and 9169 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 9170 // until a valid name loc is found. 9171 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 9172 diag::note_explicit_instantiation_definition_here); 9173 HasNoEffect = true; 9174 return false; 9175 } 9176 llvm_unreachable("Unexpected TemplateSpecializationKind!"); 9177 9178 case TSK_ExplicitInstantiationDefinition: 9179 switch (PrevTSK) { 9180 case TSK_Undeclared: 9181 case TSK_ImplicitInstantiation: 9182 // We're explicitly instantiating something that may have already been 9183 // implicitly instantiated; that's fine. 9184 return false; 9185 9186 case TSK_ExplicitSpecialization: 9187 // C++ DR 259, C++0x [temp.explicit]p4: 9188 // For a given set of template parameters, if an explicit 9189 // instantiation of a template appears after a declaration of 9190 // an explicit specialization for that template, the explicit 9191 // instantiation has no effect. 9192 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization) 9193 << PrevDecl; 9194 Diag(PrevDecl->getLocation(), 9195 diag::note_previous_template_specialization); 9196 HasNoEffect = true; 9197 return false; 9198 9199 case TSK_ExplicitInstantiationDeclaration: 9200 // We're explicitly instantiating a definition for something for which we 9201 // were previously asked to suppress instantiations. That's fine. 9202 9203 // C++0x [temp.explicit]p4: 9204 // For a given set of template parameters, if an explicit instantiation 9205 // of a template appears after a declaration of an explicit 9206 // specialization for that template, the explicit instantiation has no 9207 // effect. 9208 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 9209 // Is there any previous explicit specialization declaration? 9210 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 9211 HasNoEffect = true; 9212 break; 9213 } 9214 } 9215 9216 return false; 9217 9218 case TSK_ExplicitInstantiationDefinition: 9219 // C++0x [temp.spec]p5: 9220 // For a given template and a given set of template-arguments, 9221 // - an explicit instantiation definition shall appear at most once 9222 // in a program, 9223 9224 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. 9225 Diag(NewLoc, (getLangOpts().MSVCCompat) 9226 ? diag::ext_explicit_instantiation_duplicate 9227 : diag::err_explicit_instantiation_duplicate) 9228 << PrevDecl; 9229 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 9230 diag::note_previous_explicit_instantiation); 9231 HasNoEffect = true; 9232 return false; 9233 } 9234 } 9235 9236 llvm_unreachable("Missing specialization/instantiation case?"); 9237 } 9238 9239 /// Perform semantic analysis for the given dependent function 9240 /// template specialization. 9241 /// 9242 /// The only possible way to get a dependent function template specialization 9243 /// is with a friend declaration, like so: 9244 /// 9245 /// \code 9246 /// template \<class T> void foo(T); 9247 /// template \<class T> class A { 9248 /// friend void foo<>(T); 9249 /// }; 9250 /// \endcode 9251 /// 9252 /// There really isn't any useful analysis we can do here, so we 9253 /// just store the information. 9254 bool 9255 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 9256 const TemplateArgumentListInfo &ExplicitTemplateArgs, 9257 LookupResult &Previous) { 9258 // Remove anything from Previous that isn't a function template in 9259 // the correct context. 9260 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 9261 LookupResult::Filter F = Previous.makeFilter(); 9262 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; 9263 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; 9264 while (F.hasNext()) { 9265 NamedDecl *D = F.next()->getUnderlyingDecl(); 9266 if (!isa<FunctionTemplateDecl>(D)) { 9267 F.erase(); 9268 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D)); 9269 continue; 9270 } 9271 9272 if (!FDLookupContext->InEnclosingNamespaceSetOf( 9273 D->getDeclContext()->getRedeclContext())) { 9274 F.erase(); 9275 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D)); 9276 continue; 9277 } 9278 } 9279 F.done(); 9280 9281 if (Previous.empty()) { 9282 Diag(FD->getLocation(), 9283 diag::err_dependent_function_template_spec_no_match); 9284 for (auto &P : DiscardedCandidates) 9285 Diag(P.second->getLocation(), 9286 diag::note_dependent_function_template_spec_discard_reason) 9287 << P.first; 9288 return true; 9289 } 9290 9291 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 9292 ExplicitTemplateArgs); 9293 return false; 9294 } 9295 9296 /// Perform semantic analysis for the given function template 9297 /// specialization. 9298 /// 9299 /// This routine performs all of the semantic analysis required for an 9300 /// explicit function template specialization. On successful completion, 9301 /// the function declaration \p FD will become a function template 9302 /// specialization. 9303 /// 9304 /// \param FD the function declaration, which will be updated to become a 9305 /// function template specialization. 9306 /// 9307 /// \param ExplicitTemplateArgs the explicitly-provided template arguments, 9308 /// if any. Note that this may be valid info even when 0 arguments are 9309 /// explicitly provided as in, e.g., \c void sort<>(char*, char*); 9310 /// as it anyway contains info on the angle brackets locations. 9311 /// 9312 /// \param Previous the set of declarations that may be specialized by 9313 /// this function specialization. 9314 /// 9315 /// \param QualifiedFriend whether this is a lookup for a qualified friend 9316 /// declaration with no explicit template argument list that might be 9317 /// befriending a function template specialization. 9318 bool Sema::CheckFunctionTemplateSpecialization( 9319 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, 9320 LookupResult &Previous, bool QualifiedFriend) { 9321 // The set of function template specializations that could match this 9322 // explicit function template specialization. 9323 UnresolvedSet<8> Candidates; 9324 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), 9325 /*ForTakingAddress=*/false); 9326 9327 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> 9328 ConvertedTemplateArgs; 9329 9330 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 9331 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 9332 I != E; ++I) { 9333 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 9334 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 9335 // Only consider templates found within the same semantic lookup scope as 9336 // FD. 9337 if (!FDLookupContext->InEnclosingNamespaceSetOf( 9338 Ovl->getDeclContext()->getRedeclContext())) 9339 continue; 9340 9341 // When matching a constexpr member function template specialization 9342 // against the primary template, we don't yet know whether the 9343 // specialization has an implicit 'const' (because we don't know whether 9344 // it will be a static member function until we know which template it 9345 // specializes), so adjust it now assuming it specializes this template. 9346 QualType FT = FD->getType(); 9347 if (FD->isConstexpr()) { 9348 CXXMethodDecl *OldMD = 9349 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 9350 if (OldMD && OldMD->isConst()) { 9351 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 9352 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 9353 EPI.TypeQuals.addConst(); 9354 FT = Context.getFunctionType(FPT->getReturnType(), 9355 FPT->getParamTypes(), EPI); 9356 } 9357 } 9358 9359 TemplateArgumentListInfo Args; 9360 if (ExplicitTemplateArgs) 9361 Args = *ExplicitTemplateArgs; 9362 9363 // C++ [temp.expl.spec]p11: 9364 // A trailing template-argument can be left unspecified in the 9365 // template-id naming an explicit function template specialization 9366 // provided it can be deduced from the function argument type. 9367 // Perform template argument deduction to determine whether we may be 9368 // specializing this template. 9369 // FIXME: It is somewhat wasteful to build 9370 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 9371 FunctionDecl *Specialization = nullptr; 9372 if (TemplateDeductionResult TDK = DeduceTemplateArguments( 9373 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), 9374 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, 9375 Info)) { 9376 // Template argument deduction failed; record why it failed, so 9377 // that we can provide nifty diagnostics. 9378 FailedCandidates.addCandidate().set( 9379 I.getPair(), FunTmpl->getTemplatedDecl(), 9380 MakeDeductionFailureInfo(Context, TDK, Info)); 9381 (void)TDK; 9382 continue; 9383 } 9384 9385 // Target attributes are part of the cuda function signature, so 9386 // the deduced template's cuda target must match that of the 9387 // specialization. Given that C++ template deduction does not 9388 // take target attributes into account, we reject candidates 9389 // here that have a different target. 9390 if (LangOpts.CUDA && 9391 IdentifyCUDATarget(Specialization, 9392 /* IgnoreImplicitHDAttr = */ true) != 9393 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) { 9394 FailedCandidates.addCandidate().set( 9395 I.getPair(), FunTmpl->getTemplatedDecl(), 9396 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 9397 continue; 9398 } 9399 9400 // Record this candidate. 9401 if (ExplicitTemplateArgs) 9402 ConvertedTemplateArgs[Specialization] = std::move(Args); 9403 Candidates.addDecl(Specialization, I.getAccess()); 9404 } 9405 } 9406 9407 // For a qualified friend declaration (with no explicit marker to indicate 9408 // that a template specialization was intended), note all (template and 9409 // non-template) candidates. 9410 if (QualifiedFriend && Candidates.empty()) { 9411 Diag(FD->getLocation(), diag::err_qualified_friend_no_match) 9412 << FD->getDeclName() << FDLookupContext; 9413 // FIXME: We should form a single candidate list and diagnose all 9414 // candidates at once, to get proper sorting and limiting. 9415 for (auto *OldND : Previous) { 9416 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl())) 9417 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false); 9418 } 9419 FailedCandidates.NoteCandidates(*this, FD->getLocation()); 9420 return true; 9421 } 9422 9423 // Find the most specialized function template. 9424 UnresolvedSetIterator Result = getMostSpecialized( 9425 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(), 9426 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), 9427 PDiag(diag::err_function_template_spec_ambiguous) 9428 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), 9429 PDiag(diag::note_function_template_spec_matched)); 9430 9431 if (Result == Candidates.end()) 9432 return true; 9433 9434 // Ignore access information; it doesn't figure into redeclaration checking. 9435 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 9436 9437 FunctionTemplateSpecializationInfo *SpecInfo 9438 = Specialization->getTemplateSpecializationInfo(); 9439 assert(SpecInfo && "Function template specialization info missing?"); 9440 9441 // Note: do not overwrite location info if previous template 9442 // specialization kind was explicit. 9443 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 9444 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 9445 Specialization->setLocation(FD->getLocation()); 9446 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); 9447 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 9448 // function can differ from the template declaration with respect to 9449 // the constexpr specifier. 9450 // FIXME: We need an update record for this AST mutation. 9451 // FIXME: What if there are multiple such prior declarations (for instance, 9452 // from different modules)? 9453 Specialization->setConstexprKind(FD->getConstexprKind()); 9454 } 9455 9456 // FIXME: Check if the prior specialization has a point of instantiation. 9457 // If so, we have run afoul of . 9458 9459 // If this is a friend declaration, then we're not really declaring 9460 // an explicit specialization. 9461 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 9462 9463 // Check the scope of this explicit specialization. 9464 if (!isFriend && 9465 CheckTemplateSpecializationScope(*this, 9466 Specialization->getPrimaryTemplate(), 9467 Specialization, FD->getLocation(), 9468 false)) 9469 return true; 9470 9471 // C++ [temp.expl.spec]p6: 9472 // If a template, a member template or the member of a class template is 9473 // explicitly specialized then that specialization shall be declared 9474 // before the first use of that specialization that would cause an implicit 9475 // instantiation to take place, in every translation unit in which such a 9476 // use occurs; no diagnostic is required. 9477 bool HasNoEffect = false; 9478 if (!isFriend && 9479 CheckSpecializationInstantiationRedecl(FD->getLocation(), 9480 TSK_ExplicitSpecialization, 9481 Specialization, 9482 SpecInfo->getTemplateSpecializationKind(), 9483 SpecInfo->getPointOfInstantiation(), 9484 HasNoEffect)) 9485 return true; 9486 9487 // Mark the prior declaration as an explicit specialization, so that later 9488 // clients know that this is an explicit specialization. 9489 if (!isFriend) { 9490 // Since explicit specializations do not inherit '=delete' from their 9491 // primary function template - check if the 'specialization' that was 9492 // implicitly generated (during template argument deduction for partial 9493 // ordering) from the most specialized of all the function templates that 9494 // 'FD' could have been specializing, has a 'deleted' definition. If so, 9495 // first check that it was implicitly generated during template argument 9496 // deduction by making sure it wasn't referenced, and then reset the deleted 9497 // flag to not-deleted, so that we can inherit that information from 'FD'. 9498 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && 9499 !Specialization->getCanonicalDecl()->isReferenced()) { 9500 // FIXME: This assert will not hold in the presence of modules. 9501 assert( 9502 Specialization->getCanonicalDecl() == Specialization && 9503 "This must be the only existing declaration of this specialization"); 9504 // FIXME: We need an update record for this AST mutation. 9505 Specialization->setDeletedAsWritten(false); 9506 } 9507 // FIXME: We need an update record for this AST mutation. 9508 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 9509 MarkUnusedFileScopedDecl(Specialization); 9510 } 9511 9512 // Turn the given function declaration into a function template 9513 // specialization, with the template arguments from the previous 9514 // specialization. 9515 // Take copies of (semantic and syntactic) template argument lists. 9516 const TemplateArgumentList* TemplArgs = new (Context) 9517 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 9518 FD->setFunctionTemplateSpecialization( 9519 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr, 9520 SpecInfo->getTemplateSpecializationKind(), 9521 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); 9522 9523 // A function template specialization inherits the target attributes 9524 // of its template. (We require the attributes explicitly in the 9525 // code to match, but a template may have implicit attributes by 9526 // virtue e.g. of being constexpr, and it passes these implicit 9527 // attributes on to its specializations.) 9528 if (LangOpts.CUDA) 9529 inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate()); 9530 9531 // The "previous declaration" for this function template specialization is 9532 // the prior function template specialization. 9533 Previous.clear(); 9534 Previous.addDecl(Specialization); 9535 return false; 9536 } 9537 9538 /// Perform semantic analysis for the given non-template member 9539 /// specialization. 9540 /// 9541 /// This routine performs all of the semantic analysis required for an 9542 /// explicit member function specialization. On successful completion, 9543 /// the function declaration \p FD will become a member function 9544 /// specialization. 9545 /// 9546 /// \param Member the member declaration, which will be updated to become a 9547 /// specialization. 9548 /// 9549 /// \param Previous the set of declarations, one of which may be specialized 9550 /// by this function specialization; the set will be modified to contain the 9551 /// redeclared member. 9552 bool 9553 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 9554 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 9555 9556 // Try to find the member we are instantiating. 9557 NamedDecl *FoundInstantiation = nullptr; 9558 NamedDecl *Instantiation = nullptr; 9559 NamedDecl *InstantiatedFrom = nullptr; 9560 MemberSpecializationInfo *MSInfo = nullptr; 9561 9562 if (Previous.empty()) { 9563 // Nowhere to look anyway. 9564 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 9565 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 9566 I != E; ++I) { 9567 NamedDecl *D = (*I)->getUnderlyingDecl(); 9568 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 9569 QualType Adjusted = Function->getType(); 9570 if (!hasExplicitCallingConv(Adjusted)) 9571 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType()); 9572 // This doesn't handle deduced return types, but both function 9573 // declarations should be undeduced at this point. 9574 if (Context.hasSameType(Adjusted, Method->getType())) { 9575 FoundInstantiation = *I; 9576 Instantiation = Method; 9577 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 9578 MSInfo = Method->getMemberSpecializationInfo(); 9579 break; 9580 } 9581 } 9582 } 9583 } else if (isa<VarDecl>(Member)) { 9584 VarDecl *PrevVar; 9585 if (Previous.isSingleResult() && 9586 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 9587 if (PrevVar->isStaticDataMember()) { 9588 FoundInstantiation = Previous.getRepresentativeDecl(); 9589 Instantiation = PrevVar; 9590 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 9591 MSInfo = PrevVar->getMemberSpecializationInfo(); 9592 } 9593 } else if (isa<RecordDecl>(Member)) { 9594 CXXRecordDecl *PrevRecord; 9595 if (Previous.isSingleResult() && 9596 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 9597 FoundInstantiation = Previous.getRepresentativeDecl(); 9598 Instantiation = PrevRecord; 9599 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 9600 MSInfo = PrevRecord->getMemberSpecializationInfo(); 9601 } 9602 } else if (isa<EnumDecl>(Member)) { 9603 EnumDecl *PrevEnum; 9604 if (Previous.isSingleResult() && 9605 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 9606 FoundInstantiation = Previous.getRepresentativeDecl(); 9607 Instantiation = PrevEnum; 9608 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 9609 MSInfo = PrevEnum->getMemberSpecializationInfo(); 9610 } 9611 } 9612 9613 if (!Instantiation) { 9614 // There is no previous declaration that matches. Since member 9615 // specializations are always out-of-line, the caller will complain about 9616 // this mismatch later. 9617 return false; 9618 } 9619 9620 // A member specialization in a friend declaration isn't really declaring 9621 // an explicit specialization, just identifying a specific (possibly implicit) 9622 // specialization. Don't change the template specialization kind. 9623 // 9624 // FIXME: Is this really valid? Other compilers reject. 9625 if (Member->getFriendObjectKind() != Decl::FOK_None) { 9626 // Preserve instantiation information. 9627 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 9628 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 9629 cast<CXXMethodDecl>(InstantiatedFrom), 9630 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 9631 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 9632 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 9633 cast<CXXRecordDecl>(InstantiatedFrom), 9634 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 9635 } 9636 9637 Previous.clear(); 9638 Previous.addDecl(FoundInstantiation); 9639 return false; 9640 } 9641 9642 // Make sure that this is a specialization of a member. 9643 if (!InstantiatedFrom) { 9644 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 9645 << Member; 9646 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 9647 return true; 9648 } 9649 9650 // C++ [temp.expl.spec]p6: 9651 // If a template, a member template or the member of a class template is 9652 // explicitly specialized then that specialization shall be declared 9653 // before the first use of that specialization that would cause an implicit 9654 // instantiation to take place, in every translation unit in which such a 9655 // use occurs; no diagnostic is required. 9656 assert(MSInfo && "Member specialization info missing?"); 9657 9658 bool HasNoEffect = false; 9659 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 9660 TSK_ExplicitSpecialization, 9661 Instantiation, 9662 MSInfo->getTemplateSpecializationKind(), 9663 MSInfo->getPointOfInstantiation(), 9664 HasNoEffect)) 9665 return true; 9666 9667 // Check the scope of this explicit specialization. 9668 if (CheckTemplateSpecializationScope(*this, 9669 InstantiatedFrom, 9670 Instantiation, Member->getLocation(), 9671 false)) 9672 return true; 9673 9674 // Note that this member specialization is an "instantiation of" the 9675 // corresponding member of the original template. 9676 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) { 9677 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 9678 if (InstantiationFunction->getTemplateSpecializationKind() == 9679 TSK_ImplicitInstantiation) { 9680 // Explicit specializations of member functions of class templates do not 9681 // inherit '=delete' from the member function they are specializing. 9682 if (InstantiationFunction->isDeleted()) { 9683 // FIXME: This assert will not hold in the presence of modules. 9684 assert(InstantiationFunction->getCanonicalDecl() == 9685 InstantiationFunction); 9686 // FIXME: We need an update record for this AST mutation. 9687 InstantiationFunction->setDeletedAsWritten(false); 9688 } 9689 } 9690 9691 MemberFunction->setInstantiationOfMemberFunction( 9692 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9693 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) { 9694 MemberVar->setInstantiationOfStaticDataMember( 9695 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9696 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) { 9697 MemberClass->setInstantiationOfMemberClass( 9698 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9699 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) { 9700 MemberEnum->setInstantiationOfMemberEnum( 9701 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9702 } else { 9703 llvm_unreachable("unknown member specialization kind"); 9704 } 9705 9706 // Save the caller the trouble of having to figure out which declaration 9707 // this specialization matches. 9708 Previous.clear(); 9709 Previous.addDecl(FoundInstantiation); 9710 return false; 9711 } 9712 9713 /// Complete the explicit specialization of a member of a class template by 9714 /// updating the instantiated member to be marked as an explicit specialization. 9715 /// 9716 /// \param OrigD The member declaration instantiated from the template. 9717 /// \param Loc The location of the explicit specialization of the member. 9718 template<typename DeclT> 9719 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, 9720 SourceLocation Loc) { 9721 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 9722 return; 9723 9724 // FIXME: Inform AST mutation listeners of this AST mutation. 9725 // FIXME: If there are multiple in-class declarations of the member (from 9726 // multiple modules, or a declaration and later definition of a member type), 9727 // should we update all of them? 9728 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 9729 OrigD->setLocation(Loc); 9730 } 9731 9732 void Sema::CompleteMemberSpecialization(NamedDecl *Member, 9733 LookupResult &Previous) { 9734 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl()); 9735 if (Instantiation == Member) 9736 return; 9737 9738 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation)) 9739 completeMemberSpecializationImpl(*this, Function, Member->getLocation()); 9740 else if (auto *Var = dyn_cast<VarDecl>(Instantiation)) 9741 completeMemberSpecializationImpl(*this, Var, Member->getLocation()); 9742 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation)) 9743 completeMemberSpecializationImpl(*this, Record, Member->getLocation()); 9744 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation)) 9745 completeMemberSpecializationImpl(*this, Enum, Member->getLocation()); 9746 else 9747 llvm_unreachable("unknown member specialization kind"); 9748 } 9749 9750 /// Check the scope of an explicit instantiation. 9751 /// 9752 /// \returns true if a serious error occurs, false otherwise. 9753 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 9754 SourceLocation InstLoc, 9755 bool WasQualifiedName) { 9756 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 9757 DeclContext *CurContext = S.CurContext->getRedeclContext(); 9758 9759 if (CurContext->isRecord()) { 9760 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 9761 << D; 9762 return true; 9763 } 9764 9765 // C++11 [temp.explicit]p3: 9766 // An explicit instantiation shall appear in an enclosing namespace of its 9767 // template. If the name declared in the explicit instantiation is an 9768 // unqualified name, the explicit instantiation shall appear in the 9769 // namespace where its template is declared or, if that namespace is inline 9770 // (7.3.1), any namespace from its enclosing namespace set. 9771 // 9772 // This is DR275, which we do not retroactively apply to C++98/03. 9773 if (WasQualifiedName) { 9774 if (CurContext->Encloses(OrigContext)) 9775 return false; 9776 } else { 9777 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 9778 return false; 9779 } 9780 9781 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 9782 if (WasQualifiedName) 9783 S.Diag(InstLoc, 9784 S.getLangOpts().CPlusPlus11? 9785 diag::err_explicit_instantiation_out_of_scope : 9786 diag::warn_explicit_instantiation_out_of_scope_0x) 9787 << D << NS; 9788 else 9789 S.Diag(InstLoc, 9790 S.getLangOpts().CPlusPlus11? 9791 diag::err_explicit_instantiation_unqualified_wrong_namespace : 9792 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 9793 << D << NS; 9794 } else 9795 S.Diag(InstLoc, 9796 S.getLangOpts().CPlusPlus11? 9797 diag::err_explicit_instantiation_must_be_global : 9798 diag::warn_explicit_instantiation_must_be_global_0x) 9799 << D; 9800 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 9801 return false; 9802 } 9803 9804 /// Common checks for whether an explicit instantiation of \p D is valid. 9805 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D, 9806 SourceLocation InstLoc, 9807 bool WasQualifiedName, 9808 TemplateSpecializationKind TSK) { 9809 // C++ [temp.explicit]p13: 9810 // An explicit instantiation declaration shall not name a specialization of 9811 // a template with internal linkage. 9812 if (TSK == TSK_ExplicitInstantiationDeclaration && 9813 D->getFormalLinkage() == InternalLinkage) { 9814 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D; 9815 return true; 9816 } 9817 9818 // C++11 [temp.explicit]p3: [DR 275] 9819 // An explicit instantiation shall appear in an enclosing namespace of its 9820 // template. 9821 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName)) 9822 return true; 9823 9824 return false; 9825 } 9826 9827 /// Determine whether the given scope specifier has a template-id in it. 9828 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 9829 if (!SS.isSet()) 9830 return false; 9831 9832 // C++11 [temp.explicit]p3: 9833 // If the explicit instantiation is for a member function, a member class 9834 // or a static data member of a class template specialization, the name of 9835 // the class template specialization in the qualified-id for the member 9836 // name shall be a simple-template-id. 9837 // 9838 // C++98 has the same restriction, just worded differently. 9839 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; 9840 NNS = NNS->getPrefix()) 9841 if (const Type *T = NNS->getAsType()) 9842 if (isa<TemplateSpecializationType>(T)) 9843 return true; 9844 9845 return false; 9846 } 9847 9848 /// Make a dllexport or dllimport attr on a class template specialization take 9849 /// effect. 9850 static void dllExportImportClassTemplateSpecialization( 9851 Sema &S, ClassTemplateSpecializationDecl *Def) { 9852 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def)); 9853 assert(A && "dllExportImportClassTemplateSpecialization called " 9854 "on Def without dllexport or dllimport"); 9855 9856 // We reject explicit instantiations in class scope, so there should 9857 // never be any delayed exported classes to worry about. 9858 assert(S.DelayedDllExportClasses.empty() && 9859 "delayed exports present at explicit instantiation"); 9860 S.checkClassLevelDLLAttribute(Def); 9861 9862 // Propagate attribute to base class templates. 9863 for (auto &B : Def->bases()) { 9864 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 9865 B.getType()->getAsCXXRecordDecl())) 9866 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc()); 9867 } 9868 9869 S.referenceDLLExportedClassMethods(); 9870 } 9871 9872 // Explicit instantiation of a class template specialization 9873 DeclResult Sema::ActOnExplicitInstantiation( 9874 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, 9875 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, 9876 TemplateTy TemplateD, SourceLocation TemplateNameLoc, 9877 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, 9878 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { 9879 // Find the class template we're specializing 9880 TemplateName Name = TemplateD.get(); 9881 TemplateDecl *TD = Name.getAsTemplateDecl(); 9882 // Check that the specialization uses the same tag kind as the 9883 // original template. 9884 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 9885 assert(Kind != TTK_Enum && 9886 "Invalid enum tag in class template explicit instantiation!"); 9887 9888 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD); 9889 9890 if (!ClassTemplate) { 9891 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind); 9892 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind; 9893 Diag(TD->getLocation(), diag::note_previous_use); 9894 return true; 9895 } 9896 9897 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 9898 Kind, /*isDefinition*/false, KWLoc, 9899 ClassTemplate->getIdentifier())) { 9900 Diag(KWLoc, diag::err_use_with_wrong_tag) 9901 << ClassTemplate 9902 << FixItHint::CreateReplacement(KWLoc, 9903 ClassTemplate->getTemplatedDecl()->getKindName()); 9904 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 9905 diag::note_previous_use); 9906 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 9907 } 9908 9909 // C++0x [temp.explicit]p2: 9910 // There are two forms of explicit instantiation: an explicit instantiation 9911 // definition and an explicit instantiation declaration. An explicit 9912 // instantiation declaration begins with the extern keyword. [...] 9913 TemplateSpecializationKind TSK = ExternLoc.isInvalid() 9914 ? TSK_ExplicitInstantiationDefinition 9915 : TSK_ExplicitInstantiationDeclaration; 9916 9917 if (TSK == TSK_ExplicitInstantiationDeclaration && 9918 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9919 // Check for dllexport class template instantiation declarations, 9920 // except for MinGW mode. 9921 for (const ParsedAttr &AL : Attr) { 9922 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9923 Diag(ExternLoc, 9924 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9925 Diag(AL.getLoc(), diag::note_attribute); 9926 break; 9927 } 9928 } 9929 9930 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { 9931 Diag(ExternLoc, 9932 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9933 Diag(A->getLocation(), diag::note_attribute); 9934 } 9935 } 9936 9937 // In MSVC mode, dllimported explicit instantiation definitions are treated as 9938 // instantiation declarations for most purposes. 9939 bool DLLImportExplicitInstantiationDef = false; 9940 if (TSK == TSK_ExplicitInstantiationDefinition && 9941 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 9942 // Check for dllimport class template instantiation definitions. 9943 bool DLLImport = 9944 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); 9945 for (const ParsedAttr &AL : Attr) { 9946 if (AL.getKind() == ParsedAttr::AT_DLLImport) 9947 DLLImport = true; 9948 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9949 // dllexport trumps dllimport here. 9950 DLLImport = false; 9951 break; 9952 } 9953 } 9954 if (DLLImport) { 9955 TSK = TSK_ExplicitInstantiationDeclaration; 9956 DLLImportExplicitInstantiationDef = true; 9957 } 9958 } 9959 9960 // Translate the parser's template argument list in our AST format. 9961 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 9962 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 9963 9964 // Check that the template argument list is well-formed for this 9965 // template. 9966 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 9967 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs, 9968 false, SugaredConverted, CanonicalConverted, 9969 /*UpdateArgsWithConversions=*/true)) 9970 return true; 9971 9972 // Find the class template specialization declaration that 9973 // corresponds to these arguments. 9974 void *InsertPos = nullptr; 9975 ClassTemplateSpecializationDecl *PrevDecl = 9976 ClassTemplate->findSpecialization(CanonicalConverted, InsertPos); 9977 9978 TemplateSpecializationKind PrevDecl_TSK 9979 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 9980 9981 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr && 9982 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9983 // Check for dllexport class template instantiation definitions in MinGW 9984 // mode, if a previous declaration of the instantiation was seen. 9985 for (const ParsedAttr &AL : Attr) { 9986 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9987 Diag(AL.getLoc(), 9988 diag::warn_attribute_dllexport_explicit_instantiation_def); 9989 break; 9990 } 9991 } 9992 } 9993 9994 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc, 9995 SS.isSet(), TSK)) 9996 return true; 9997 9998 ClassTemplateSpecializationDecl *Specialization = nullptr; 9999 10000 bool HasNoEffect = false; 10001 if (PrevDecl) { 10002 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 10003 PrevDecl, PrevDecl_TSK, 10004 PrevDecl->getPointOfInstantiation(), 10005 HasNoEffect)) 10006 return PrevDecl; 10007 10008 // Even though HasNoEffect == true means that this explicit instantiation 10009 // has no effect on semantics, we go on to put its syntax in the AST. 10010 10011 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 10012 PrevDecl_TSK == TSK_Undeclared) { 10013 // Since the only prior class template specialization with these 10014 // arguments was referenced but not declared, reuse that 10015 // declaration node as our own, updating the source location 10016 // for the template name to reflect our new declaration. 10017 // (Other source locations will be updated later.) 10018 Specialization = PrevDecl; 10019 Specialization->setLocation(TemplateNameLoc); 10020 PrevDecl = nullptr; 10021 } 10022 10023 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 10024 DLLImportExplicitInstantiationDef) { 10025 // The new specialization might add a dllimport attribute. 10026 HasNoEffect = false; 10027 } 10028 } 10029 10030 if (!Specialization) { 10031 // Create a new class template specialization declaration node for 10032 // this explicit specialization. 10033 Specialization = ClassTemplateSpecializationDecl::Create( 10034 Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc, 10035 ClassTemplate, CanonicalConverted, PrevDecl); 10036 SetNestedNameSpecifier(*this, Specialization, SS); 10037 10038 if (!HasNoEffect && !PrevDecl) { 10039 // Insert the new specialization. 10040 ClassTemplate->AddSpecialization(Specialization, InsertPos); 10041 } 10042 } 10043 10044 // Build the fully-sugared type for this explicit instantiation as 10045 // the user wrote in the explicit instantiation itself. This means 10046 // that we'll pretty-print the type retrieved from the 10047 // specialization's declaration the way that the user actually wrote 10048 // the explicit instantiation, rather than formatting the name based 10049 // on the "canonical" representation used to store the template 10050 // arguments in the specialization. 10051 TypeSourceInfo *WrittenTy 10052 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 10053 TemplateArgs, 10054 Context.getTypeDeclType(Specialization)); 10055 Specialization->setTypeAsWritten(WrittenTy); 10056 10057 // Set source locations for keywords. 10058 Specialization->setExternLoc(ExternLoc); 10059 Specialization->setTemplateKeywordLoc(TemplateLoc); 10060 Specialization->setBraceRange(SourceRange()); 10061 10062 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); 10063 ProcessDeclAttributeList(S, Specialization, Attr); 10064 10065 // Add the explicit instantiation into its lexical context. However, 10066 // since explicit instantiations are never found by name lookup, we 10067 // just put it into the declaration context directly. 10068 Specialization->setLexicalDeclContext(CurContext); 10069 CurContext->addDecl(Specialization); 10070 10071 // Syntax is now OK, so return if it has no other effect on semantics. 10072 if (HasNoEffect) { 10073 // Set the template specialization kind. 10074 Specialization->setTemplateSpecializationKind(TSK); 10075 return Specialization; 10076 } 10077 10078 // C++ [temp.explicit]p3: 10079 // A definition of a class template or class member template 10080 // shall be in scope at the point of the explicit instantiation of 10081 // the class template or class member template. 10082 // 10083 // This check comes when we actually try to perform the 10084 // instantiation. 10085 ClassTemplateSpecializationDecl *Def 10086 = cast_or_null<ClassTemplateSpecializationDecl>( 10087 Specialization->getDefinition()); 10088 if (!Def) 10089 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 10090 else if (TSK == TSK_ExplicitInstantiationDefinition) { 10091 MarkVTableUsed(TemplateNameLoc, Specialization, true); 10092 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 10093 } 10094 10095 // Instantiate the members of this class template specialization. 10096 Def = cast_or_null<ClassTemplateSpecializationDecl>( 10097 Specialization->getDefinition()); 10098 if (Def) { 10099 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 10100 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 10101 // TSK_ExplicitInstantiationDefinition 10102 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 10103 (TSK == TSK_ExplicitInstantiationDefinition || 10104 DLLImportExplicitInstantiationDef)) { 10105 // FIXME: Need to notify the ASTMutationListener that we did this. 10106 Def->setTemplateSpecializationKind(TSK); 10107 10108 if (!getDLLAttr(Def) && getDLLAttr(Specialization) && 10109 (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 10110 !Context.getTargetInfo().getTriple().isPS())) { 10111 // An explicit instantiation definition can add a dll attribute to a 10112 // template with a previous instantiation declaration. MinGW doesn't 10113 // allow this. 10114 auto *A = cast<InheritableAttr>( 10115 getDLLAttr(Specialization)->clone(getASTContext())); 10116 A->setInherited(true); 10117 Def->addAttr(A); 10118 dllExportImportClassTemplateSpecialization(*this, Def); 10119 } 10120 } 10121 10122 // Fix a TSK_ImplicitInstantiation followed by a 10123 // TSK_ExplicitInstantiationDefinition 10124 bool NewlyDLLExported = 10125 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); 10126 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && 10127 (Context.getTargetInfo().shouldDLLImportComdatSymbols() && 10128 !Context.getTargetInfo().getTriple().isPS())) { 10129 // An explicit instantiation definition can add a dll attribute to a 10130 // template with a previous implicit instantiation. MinGW doesn't allow 10131 // this. We limit clang to only adding dllexport, to avoid potentially 10132 // strange codegen behavior. For example, if we extend this conditional 10133 // to dllimport, and we have a source file calling a method on an 10134 // implicitly instantiated template class instance and then declaring a 10135 // dllimport explicit instantiation definition for the same template 10136 // class, the codegen for the method call will not respect the dllimport, 10137 // while it will with cl. The Def will already have the DLL attribute, 10138 // since the Def and Specialization will be the same in the case of 10139 // Old_TSK == TSK_ImplicitInstantiation, and we already added the 10140 // attribute to the Specialization; we just need to make it take effect. 10141 assert(Def == Specialization && 10142 "Def and Specialization should match for implicit instantiation"); 10143 dllExportImportClassTemplateSpecialization(*this, Def); 10144 } 10145 10146 // In MinGW mode, export the template instantiation if the declaration 10147 // was marked dllexport. 10148 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 10149 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() && 10150 PrevDecl->hasAttr<DLLExportAttr>()) { 10151 dllExportImportClassTemplateSpecialization(*this, Def); 10152 } 10153 10154 if (Def->hasAttr<MSInheritanceAttr>()) { 10155 Specialization->addAttr(Def->getAttr<MSInheritanceAttr>()); 10156 Consumer.AssignInheritanceModel(Specialization); 10157 } 10158 10159 // Set the template specialization kind. Make sure it is set before 10160 // instantiating the members which will trigger ASTConsumer callbacks. 10161 Specialization->setTemplateSpecializationKind(TSK); 10162 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 10163 } else { 10164 10165 // Set the template specialization kind. 10166 Specialization->setTemplateSpecializationKind(TSK); 10167 } 10168 10169 return Specialization; 10170 } 10171 10172 // Explicit instantiation of a member class of a class template. 10173 DeclResult 10174 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, 10175 SourceLocation TemplateLoc, unsigned TagSpec, 10176 SourceLocation KWLoc, CXXScopeSpec &SS, 10177 IdentifierInfo *Name, SourceLocation NameLoc, 10178 const ParsedAttributesView &Attr) { 10179 10180 bool Owned = false; 10181 bool IsDependent = false; 10182 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, KWLoc, SS, Name, 10183 NameLoc, Attr, AS_none, /*ModulePrivateLoc=*/SourceLocation(), 10184 MultiTemplateParamsArg(), Owned, IsDependent, SourceLocation(), 10185 false, TypeResult(), /*IsTypeSpecifier*/ false, 10186 /*IsTemplateParamOrArg*/ false, /*OOK=*/OOK_Outside).get(); 10187 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 10188 10189 if (!TagD) 10190 return true; 10191 10192 TagDecl *Tag = cast<TagDecl>(TagD); 10193 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 10194 10195 if (Tag->isInvalidDecl()) 10196 return true; 10197 10198 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 10199 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 10200 if (!Pattern) { 10201 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 10202 << Context.getTypeDeclType(Record); 10203 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 10204 return true; 10205 } 10206 10207 // C++0x [temp.explicit]p2: 10208 // If the explicit instantiation is for a class or member class, the 10209 // elaborated-type-specifier in the declaration shall include a 10210 // simple-template-id. 10211 // 10212 // C++98 has the same restriction, just worded differently. 10213 if (!ScopeSpecifierHasTemplateId(SS)) 10214 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 10215 << Record << SS.getRange(); 10216 10217 // C++0x [temp.explicit]p2: 10218 // There are two forms of explicit instantiation: an explicit instantiation 10219 // definition and an explicit instantiation declaration. An explicit 10220 // instantiation declaration begins with the extern keyword. [...] 10221 TemplateSpecializationKind TSK 10222 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 10223 : TSK_ExplicitInstantiationDeclaration; 10224 10225 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK); 10226 10227 // Verify that it is okay to explicitly instantiate here. 10228 CXXRecordDecl *PrevDecl 10229 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 10230 if (!PrevDecl && Record->getDefinition()) 10231 PrevDecl = Record; 10232 if (PrevDecl) { 10233 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 10234 bool HasNoEffect = false; 10235 assert(MSInfo && "No member specialization information?"); 10236 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 10237 PrevDecl, 10238 MSInfo->getTemplateSpecializationKind(), 10239 MSInfo->getPointOfInstantiation(), 10240 HasNoEffect)) 10241 return true; 10242 if (HasNoEffect) 10243 return TagD; 10244 } 10245 10246 CXXRecordDecl *RecordDef 10247 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 10248 if (!RecordDef) { 10249 // C++ [temp.explicit]p3: 10250 // A definition of a member class of a class template shall be in scope 10251 // at the point of an explicit instantiation of the member class. 10252 CXXRecordDecl *Def 10253 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 10254 if (!Def) { 10255 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 10256 << 0 << Record->getDeclName() << Record->getDeclContext(); 10257 Diag(Pattern->getLocation(), diag::note_forward_declaration) 10258 << Pattern; 10259 return true; 10260 } else { 10261 if (InstantiateClass(NameLoc, Record, Def, 10262 getTemplateInstantiationArgs(Record), 10263 TSK)) 10264 return true; 10265 10266 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 10267 if (!RecordDef) 10268 return true; 10269 } 10270 } 10271 10272 // Instantiate all of the members of the class. 10273 InstantiateClassMembers(NameLoc, RecordDef, 10274 getTemplateInstantiationArgs(Record), TSK); 10275 10276 if (TSK == TSK_ExplicitInstantiationDefinition) 10277 MarkVTableUsed(NameLoc, RecordDef, true); 10278 10279 // FIXME: We don't have any representation for explicit instantiations of 10280 // member classes. Such a representation is not needed for compilation, but it 10281 // should be available for clients that want to see all of the declarations in 10282 // the source code. 10283 return TagD; 10284 } 10285 10286 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 10287 SourceLocation ExternLoc, 10288 SourceLocation TemplateLoc, 10289 Declarator &D) { 10290 // Explicit instantiations always require a name. 10291 // TODO: check if/when DNInfo should replace Name. 10292 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 10293 DeclarationName Name = NameInfo.getName(); 10294 if (!Name) { 10295 if (!D.isInvalidType()) 10296 Diag(D.getDeclSpec().getBeginLoc(), 10297 diag::err_explicit_instantiation_requires_name) 10298 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 10299 10300 return true; 10301 } 10302 10303 // The scope passed in may not be a decl scope. Zip up the scope tree until 10304 // we find one that is. 10305 while ((S->getFlags() & Scope::DeclScope) == 0 || 10306 (S->getFlags() & Scope::TemplateParamScope) != 0) 10307 S = S->getParent(); 10308 10309 // Determine the type of the declaration. 10310 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 10311 QualType R = T->getType(); 10312 if (R.isNull()) 10313 return true; 10314 10315 // C++ [dcl.stc]p1: 10316 // A storage-class-specifier shall not be specified in [...] an explicit 10317 // instantiation (14.7.2) directive. 10318 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 10319 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 10320 << Name; 10321 return true; 10322 } else if (D.getDeclSpec().getStorageClassSpec() 10323 != DeclSpec::SCS_unspecified) { 10324 // Complain about then remove the storage class specifier. 10325 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 10326 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 10327 10328 D.getMutableDeclSpec().ClearStorageClassSpecs(); 10329 } 10330 10331 // C++0x [temp.explicit]p1: 10332 // [...] An explicit instantiation of a function template shall not use the 10333 // inline or constexpr specifiers. 10334 // Presumably, this also applies to member functions of class templates as 10335 // well. 10336 if (D.getDeclSpec().isInlineSpecified()) 10337 Diag(D.getDeclSpec().getInlineSpecLoc(), 10338 getLangOpts().CPlusPlus11 ? 10339 diag::err_explicit_instantiation_inline : 10340 diag::warn_explicit_instantiation_inline_0x) 10341 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 10342 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType()) 10343 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 10344 // not already specified. 10345 Diag(D.getDeclSpec().getConstexprSpecLoc(), 10346 diag::err_explicit_instantiation_constexpr); 10347 10348 // A deduction guide is not on the list of entities that can be explicitly 10349 // instantiated. 10350 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { 10351 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized) 10352 << /*explicit instantiation*/ 0; 10353 return true; 10354 } 10355 10356 // C++0x [temp.explicit]p2: 10357 // There are two forms of explicit instantiation: an explicit instantiation 10358 // definition and an explicit instantiation declaration. An explicit 10359 // instantiation declaration begins with the extern keyword. [...] 10360 TemplateSpecializationKind TSK 10361 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 10362 : TSK_ExplicitInstantiationDeclaration; 10363 10364 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 10365 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 10366 10367 if (!R->isFunctionType()) { 10368 // C++ [temp.explicit]p1: 10369 // A [...] static data member of a class template can be explicitly 10370 // instantiated from the member definition associated with its class 10371 // template. 10372 // C++1y [temp.explicit]p1: 10373 // A [...] variable [...] template specialization can be explicitly 10374 // instantiated from its template. 10375 if (Previous.isAmbiguous()) 10376 return true; 10377 10378 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 10379 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); 10380 10381 if (!PrevTemplate) { 10382 if (!Prev || !Prev->isStaticDataMember()) { 10383 // We expect to see a static data member here. 10384 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 10385 << Name; 10386 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 10387 P != PEnd; ++P) 10388 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 10389 return true; 10390 } 10391 10392 if (!Prev->getInstantiatedFromStaticDataMember()) { 10393 // FIXME: Check for explicit specialization? 10394 Diag(D.getIdentifierLoc(), 10395 diag::err_explicit_instantiation_data_member_not_instantiated) 10396 << Prev; 10397 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 10398 // FIXME: Can we provide a note showing where this was declared? 10399 return true; 10400 } 10401 } else { 10402 // Explicitly instantiate a variable template. 10403 10404 // C++1y [dcl.spec.auto]p6: 10405 // ... A program that uses auto or decltype(auto) in a context not 10406 // explicitly allowed in this section is ill-formed. 10407 // 10408 // This includes auto-typed variable template instantiations. 10409 if (R->isUndeducedType()) { 10410 Diag(T->getTypeLoc().getBeginLoc(), 10411 diag::err_auto_not_allowed_var_inst); 10412 return true; 10413 } 10414 10415 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 10416 // C++1y [temp.explicit]p3: 10417 // If the explicit instantiation is for a variable, the unqualified-id 10418 // in the declaration shall be a template-id. 10419 Diag(D.getIdentifierLoc(), 10420 diag::err_explicit_instantiation_without_template_id) 10421 << PrevTemplate; 10422 Diag(PrevTemplate->getLocation(), 10423 diag::note_explicit_instantiation_here); 10424 return true; 10425 } 10426 10427 // Translate the parser's template argument list into our AST format. 10428 TemplateArgumentListInfo TemplateArgs = 10429 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 10430 10431 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, 10432 D.getIdentifierLoc(), TemplateArgs); 10433 if (Res.isInvalid()) 10434 return true; 10435 10436 if (!Res.isUsable()) { 10437 // We somehow specified dependent template arguments in an explicit 10438 // instantiation. This should probably only happen during error 10439 // recovery. 10440 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent); 10441 return true; 10442 } 10443 10444 // Ignore access control bits, we don't need them for redeclaration 10445 // checking. 10446 Prev = cast<VarDecl>(Res.get()); 10447 } 10448 10449 // C++0x [temp.explicit]p2: 10450 // If the explicit instantiation is for a member function, a member class 10451 // or a static data member of a class template specialization, the name of 10452 // the class template specialization in the qualified-id for the member 10453 // name shall be a simple-template-id. 10454 // 10455 // C++98 has the same restriction, just worded differently. 10456 // 10457 // This does not apply to variable template specializations, where the 10458 // template-id is in the unqualified-id instead. 10459 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) 10460 Diag(D.getIdentifierLoc(), 10461 diag::ext_explicit_instantiation_without_qualified_id) 10462 << Prev << D.getCXXScopeSpec().getRange(); 10463 10464 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK); 10465 10466 // Verify that it is okay to explicitly instantiate here. 10467 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); 10468 SourceLocation POI = Prev->getPointOfInstantiation(); 10469 bool HasNoEffect = false; 10470 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 10471 PrevTSK, POI, HasNoEffect)) 10472 return true; 10473 10474 if (!HasNoEffect) { 10475 // Instantiate static data member or variable template. 10476 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10477 // Merge attributes. 10478 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes()); 10479 if (TSK == TSK_ExplicitInstantiationDefinition) 10480 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); 10481 } 10482 10483 // Check the new variable specialization against the parsed input. 10484 if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) { 10485 Diag(T->getTypeLoc().getBeginLoc(), 10486 diag::err_invalid_var_template_spec_type) 10487 << 0 << PrevTemplate << R << Prev->getType(); 10488 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) 10489 << 2 << PrevTemplate->getDeclName(); 10490 return true; 10491 } 10492 10493 // FIXME: Create an ExplicitInstantiation node? 10494 return (Decl*) nullptr; 10495 } 10496 10497 // If the declarator is a template-id, translate the parser's template 10498 // argument list into our AST format. 10499 bool HasExplicitTemplateArgs = false; 10500 TemplateArgumentListInfo TemplateArgs; 10501 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 10502 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 10503 HasExplicitTemplateArgs = true; 10504 } 10505 10506 // C++ [temp.explicit]p1: 10507 // A [...] function [...] can be explicitly instantiated from its template. 10508 // A member function [...] of a class template can be explicitly 10509 // instantiated from the member definition associated with its class 10510 // template. 10511 UnresolvedSet<8> TemplateMatches; 10512 FunctionDecl *NonTemplateMatch = nullptr; 10513 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); 10514 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 10515 P != PEnd; ++P) { 10516 NamedDecl *Prev = *P; 10517 if (!HasExplicitTemplateArgs) { 10518 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 10519 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(), 10520 /*AdjustExceptionSpec*/true); 10521 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) { 10522 if (Method->getPrimaryTemplate()) { 10523 TemplateMatches.addDecl(Method, P.getAccess()); 10524 } else { 10525 // FIXME: Can this assert ever happen? Needs a test. 10526 assert(!NonTemplateMatch && "Multiple NonTemplateMatches"); 10527 NonTemplateMatch = Method; 10528 } 10529 } 10530 } 10531 } 10532 10533 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 10534 if (!FunTmpl) 10535 continue; 10536 10537 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 10538 FunctionDecl *Specialization = nullptr; 10539 if (TemplateDeductionResult TDK 10540 = DeduceTemplateArguments(FunTmpl, 10541 (HasExplicitTemplateArgs ? &TemplateArgs 10542 : nullptr), 10543 R, Specialization, Info)) { 10544 // Keep track of almost-matches. 10545 FailedCandidates.addCandidate() 10546 .set(P.getPair(), FunTmpl->getTemplatedDecl(), 10547 MakeDeductionFailureInfo(Context, TDK, Info)); 10548 (void)TDK; 10549 continue; 10550 } 10551 10552 // Target attributes are part of the cuda function signature, so 10553 // the cuda target of the instantiated function must match that of its 10554 // template. Given that C++ template deduction does not take 10555 // target attributes into account, we reject candidates here that 10556 // have a different target. 10557 if (LangOpts.CUDA && 10558 IdentifyCUDATarget(Specialization, 10559 /* IgnoreImplicitHDAttr = */ true) != 10560 IdentifyCUDATarget(D.getDeclSpec().getAttributes())) { 10561 FailedCandidates.addCandidate().set( 10562 P.getPair(), FunTmpl->getTemplatedDecl(), 10563 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); 10564 continue; 10565 } 10566 10567 TemplateMatches.addDecl(Specialization, P.getAccess()); 10568 } 10569 10570 FunctionDecl *Specialization = NonTemplateMatch; 10571 if (!Specialization) { 10572 // Find the most specialized function template specialization. 10573 UnresolvedSetIterator Result = getMostSpecialized( 10574 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates, 10575 D.getIdentifierLoc(), 10576 PDiag(diag::err_explicit_instantiation_not_known) << Name, 10577 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 10578 PDiag(diag::note_explicit_instantiation_candidate)); 10579 10580 if (Result == TemplateMatches.end()) 10581 return true; 10582 10583 // Ignore access control bits, we don't need them for redeclaration checking. 10584 Specialization = cast<FunctionDecl>(*Result); 10585 } 10586 10587 // C++11 [except.spec]p4 10588 // In an explicit instantiation an exception-specification may be specified, 10589 // but is not required. 10590 // If an exception-specification is specified in an explicit instantiation 10591 // directive, it shall be compatible with the exception-specifications of 10592 // other declarations of that function. 10593 if (auto *FPT = R->getAs<FunctionProtoType>()) 10594 if (FPT->hasExceptionSpec()) { 10595 unsigned DiagID = 10596 diag::err_mismatched_exception_spec_explicit_instantiation; 10597 if (getLangOpts().MicrosoftExt) 10598 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; 10599 bool Result = CheckEquivalentExceptionSpec( 10600 PDiag(DiagID) << Specialization->getType(), 10601 PDiag(diag::note_explicit_instantiation_here), 10602 Specialization->getType()->getAs<FunctionProtoType>(), 10603 Specialization->getLocation(), FPT, D.getBeginLoc()); 10604 // In Microsoft mode, mismatching exception specifications just cause a 10605 // warning. 10606 if (!getLangOpts().MicrosoftExt && Result) 10607 return true; 10608 } 10609 10610 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 10611 Diag(D.getIdentifierLoc(), 10612 diag::err_explicit_instantiation_member_function_not_instantiated) 10613 << Specialization 10614 << (Specialization->getTemplateSpecializationKind() == 10615 TSK_ExplicitSpecialization); 10616 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 10617 return true; 10618 } 10619 10620 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 10621 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 10622 PrevDecl = Specialization; 10623 10624 if (PrevDecl) { 10625 bool HasNoEffect = false; 10626 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 10627 PrevDecl, 10628 PrevDecl->getTemplateSpecializationKind(), 10629 PrevDecl->getPointOfInstantiation(), 10630 HasNoEffect)) 10631 return true; 10632 10633 // FIXME: We may still want to build some representation of this 10634 // explicit specialization. 10635 if (HasNoEffect) 10636 return (Decl*) nullptr; 10637 } 10638 10639 // HACK: libc++ has a bug where it attempts to explicitly instantiate the 10640 // functions 10641 // valarray<size_t>::valarray(size_t) and 10642 // valarray<size_t>::~valarray() 10643 // that it declared to have internal linkage with the internal_linkage 10644 // attribute. Ignore the explicit instantiation declaration in this case. 10645 if (Specialization->hasAttr<InternalLinkageAttr>() && 10646 TSK == TSK_ExplicitInstantiationDeclaration) { 10647 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext())) 10648 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") && 10649 RD->isInStdNamespace()) 10650 return (Decl*) nullptr; 10651 } 10652 10653 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes()); 10654 10655 // In MSVC mode, dllimported explicit instantiation definitions are treated as 10656 // instantiation declarations. 10657 if (TSK == TSK_ExplicitInstantiationDefinition && 10658 Specialization->hasAttr<DLLImportAttr>() && 10659 Context.getTargetInfo().getCXXABI().isMicrosoft()) 10660 TSK = TSK_ExplicitInstantiationDeclaration; 10661 10662 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10663 10664 if (Specialization->isDefined()) { 10665 // Let the ASTConsumer know that this function has been explicitly 10666 // instantiated now, and its linkage might have changed. 10667 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization)); 10668 } else if (TSK == TSK_ExplicitInstantiationDefinition) 10669 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 10670 10671 // C++0x [temp.explicit]p2: 10672 // If the explicit instantiation is for a member function, a member class 10673 // or a static data member of a class template specialization, the name of 10674 // the class template specialization in the qualified-id for the member 10675 // name shall be a simple-template-id. 10676 // 10677 // C++98 has the same restriction, just worded differently. 10678 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 10679 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && 10680 D.getCXXScopeSpec().isSet() && 10681 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 10682 Diag(D.getIdentifierLoc(), 10683 diag::ext_explicit_instantiation_without_qualified_id) 10684 << Specialization << D.getCXXScopeSpec().getRange(); 10685 10686 CheckExplicitInstantiation( 10687 *this, 10688 FunTmpl ? (NamedDecl *)FunTmpl 10689 : Specialization->getInstantiatedFromMemberFunction(), 10690 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK); 10691 10692 // FIXME: Create some kind of ExplicitInstantiationDecl here. 10693 return (Decl*) nullptr; 10694 } 10695 10696 TypeResult 10697 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 10698 const CXXScopeSpec &SS, IdentifierInfo *Name, 10699 SourceLocation TagLoc, SourceLocation NameLoc) { 10700 // This has to hold, because SS is expected to be defined. 10701 assert(Name && "Expected a name in a dependent tag"); 10702 10703 NestedNameSpecifier *NNS = SS.getScopeRep(); 10704 if (!NNS) 10705 return true; 10706 10707 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 10708 10709 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 10710 Diag(NameLoc, diag::err_dependent_tag_decl) 10711 << (TUK == TUK_Definition) << Kind << SS.getRange(); 10712 return true; 10713 } 10714 10715 // Create the resulting type. 10716 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 10717 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 10718 10719 // Create type-source location information for this type. 10720 TypeLocBuilder TLB; 10721 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 10722 TL.setElaboratedKeywordLoc(TagLoc); 10723 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10724 TL.setNameLoc(NameLoc); 10725 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 10726 } 10727 10728 TypeResult Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 10729 const CXXScopeSpec &SS, 10730 const IdentifierInfo &II, 10731 SourceLocation IdLoc, 10732 ImplicitTypenameContext IsImplicitTypename) { 10733 if (SS.isInvalid()) 10734 return true; 10735 10736 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10737 Diag(TypenameLoc, 10738 getLangOpts().CPlusPlus11 ? 10739 diag::warn_cxx98_compat_typename_outside_of_template : 10740 diag::ext_typename_outside_of_template) 10741 << FixItHint::CreateRemoval(TypenameLoc); 10742 10743 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 10744 TypeSourceInfo *TSI = nullptr; 10745 QualType T = 10746 CheckTypenameType((TypenameLoc.isValid() || 10747 IsImplicitTypename == ImplicitTypenameContext::Yes) 10748 ? ETK_Typename 10749 : ETK_None, 10750 TypenameLoc, QualifierLoc, II, IdLoc, &TSI, 10751 /*DeducedTSTContext=*/true); 10752 if (T.isNull()) 10753 return true; 10754 return CreateParsedType(T, TSI); 10755 } 10756 10757 TypeResult 10758 Sema::ActOnTypenameType(Scope *S, 10759 SourceLocation TypenameLoc, 10760 const CXXScopeSpec &SS, 10761 SourceLocation TemplateKWLoc, 10762 TemplateTy TemplateIn, 10763 IdentifierInfo *TemplateII, 10764 SourceLocation TemplateIILoc, 10765 SourceLocation LAngleLoc, 10766 ASTTemplateArgsPtr TemplateArgsIn, 10767 SourceLocation RAngleLoc) { 10768 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10769 Diag(TypenameLoc, 10770 getLangOpts().CPlusPlus11 ? 10771 diag::warn_cxx98_compat_typename_outside_of_template : 10772 diag::ext_typename_outside_of_template) 10773 << FixItHint::CreateRemoval(TypenameLoc); 10774 10775 // Strangely, non-type results are not ignored by this lookup, so the 10776 // program is ill-formed if it finds an injected-class-name. 10777 if (TypenameLoc.isValid()) { 10778 auto *LookupRD = 10779 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false)); 10780 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 10781 Diag(TemplateIILoc, 10782 diag::ext_out_of_line_qualified_id_type_names_constructor) 10783 << TemplateII << 0 /*injected-class-name used as template name*/ 10784 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); 10785 } 10786 } 10787 10788 // Translate the parser's template argument list in our AST format. 10789 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 10790 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 10791 10792 TemplateName Template = TemplateIn.get(); 10793 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 10794 // Construct a dependent template specialization type. 10795 assert(DTN && "dependent template has non-dependent name?"); 10796 assert(DTN->getQualifier() == SS.getScopeRep()); 10797 QualType T = Context.getDependentTemplateSpecializationType( 10798 ETK_Typename, DTN->getQualifier(), DTN->getIdentifier(), 10799 TemplateArgs.arguments()); 10800 10801 // Create source-location information for this type. 10802 TypeLocBuilder Builder; 10803 DependentTemplateSpecializationTypeLoc SpecTL 10804 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 10805 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 10806 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 10807 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10808 SpecTL.setTemplateNameLoc(TemplateIILoc); 10809 SpecTL.setLAngleLoc(LAngleLoc); 10810 SpecTL.setRAngleLoc(RAngleLoc); 10811 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10812 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10813 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 10814 } 10815 10816 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 10817 if (T.isNull()) 10818 return true; 10819 10820 // Provide source-location information for the template specialization type. 10821 TypeLocBuilder Builder; 10822 TemplateSpecializationTypeLoc SpecTL 10823 = Builder.push<TemplateSpecializationTypeLoc>(T); 10824 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10825 SpecTL.setTemplateNameLoc(TemplateIILoc); 10826 SpecTL.setLAngleLoc(LAngleLoc); 10827 SpecTL.setRAngleLoc(RAngleLoc); 10828 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10829 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10830 10831 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 10832 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 10833 TL.setElaboratedKeywordLoc(TypenameLoc); 10834 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10835 10836 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 10837 return CreateParsedType(T, TSI); 10838 } 10839 10840 10841 /// Determine whether this failed name lookup should be treated as being 10842 /// disabled by a usage of std::enable_if. 10843 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 10844 SourceRange &CondRange, Expr *&Cond) { 10845 // We must be looking for a ::type... 10846 if (!II.isStr("type")) 10847 return false; 10848 10849 // ... within an explicitly-written template specialization... 10850 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 10851 return false; 10852 TypeLoc EnableIfTy = NNS.getTypeLoc(); 10853 TemplateSpecializationTypeLoc EnableIfTSTLoc = 10854 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 10855 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 10856 return false; 10857 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); 10858 10859 // ... which names a complete class template declaration... 10860 const TemplateDecl *EnableIfDecl = 10861 EnableIfTST->getTemplateName().getAsTemplateDecl(); 10862 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 10863 return false; 10864 10865 // ... called "enable_if". 10866 const IdentifierInfo *EnableIfII = 10867 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 10868 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 10869 return false; 10870 10871 // Assume the first template argument is the condition. 10872 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 10873 10874 // Dig out the condition. 10875 Cond = nullptr; 10876 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind() 10877 != TemplateArgument::Expression) 10878 return true; 10879 10880 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression(); 10881 10882 // Ignore Boolean literals; they add no value. 10883 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts())) 10884 Cond = nullptr; 10885 10886 return true; 10887 } 10888 10889 QualType 10890 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10891 SourceLocation KeywordLoc, 10892 NestedNameSpecifierLoc QualifierLoc, 10893 const IdentifierInfo &II, 10894 SourceLocation IILoc, 10895 TypeSourceInfo **TSI, 10896 bool DeducedTSTContext) { 10897 QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc, 10898 DeducedTSTContext); 10899 if (T.isNull()) 10900 return QualType(); 10901 10902 *TSI = Context.CreateTypeSourceInfo(T); 10903 if (isa<DependentNameType>(T)) { 10904 DependentNameTypeLoc TL = 10905 (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>(); 10906 TL.setElaboratedKeywordLoc(KeywordLoc); 10907 TL.setQualifierLoc(QualifierLoc); 10908 TL.setNameLoc(IILoc); 10909 } else { 10910 ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>(); 10911 TL.setElaboratedKeywordLoc(KeywordLoc); 10912 TL.setQualifierLoc(QualifierLoc); 10913 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc); 10914 } 10915 return T; 10916 } 10917 10918 /// Build the type that describes a C++ typename specifier, 10919 /// e.g., "typename T::type". 10920 QualType 10921 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10922 SourceLocation KeywordLoc, 10923 NestedNameSpecifierLoc QualifierLoc, 10924 const IdentifierInfo &II, 10925 SourceLocation IILoc, bool DeducedTSTContext) { 10926 CXXScopeSpec SS; 10927 SS.Adopt(QualifierLoc); 10928 10929 DeclContext *Ctx = nullptr; 10930 if (QualifierLoc) { 10931 Ctx = computeDeclContext(SS); 10932 if (!Ctx) { 10933 // If the nested-name-specifier is dependent and couldn't be 10934 // resolved to a type, build a typename type. 10935 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 10936 return Context.getDependentNameType(Keyword, 10937 QualifierLoc.getNestedNameSpecifier(), 10938 &II); 10939 } 10940 10941 // If the nested-name-specifier refers to the current instantiation, 10942 // the "typename" keyword itself is superfluous. In C++03, the 10943 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 10944 // allows such extraneous "typename" keywords, and we retroactively 10945 // apply this DR to C++03 code with only a warning. In any case we continue. 10946 10947 if (RequireCompleteDeclContext(SS, Ctx)) 10948 return QualType(); 10949 } 10950 10951 DeclarationName Name(&II); 10952 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 10953 if (Ctx) 10954 LookupQualifiedName(Result, Ctx, SS); 10955 else 10956 LookupName(Result, CurScope); 10957 unsigned DiagID = 0; 10958 Decl *Referenced = nullptr; 10959 switch (Result.getResultKind()) { 10960 case LookupResult::NotFound: { 10961 // If we're looking up 'type' within a template named 'enable_if', produce 10962 // a more specific diagnostic. 10963 SourceRange CondRange; 10964 Expr *Cond = nullptr; 10965 if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) { 10966 // If we have a condition, narrow it down to the specific failed 10967 // condition. 10968 if (Cond) { 10969 Expr *FailedCond; 10970 std::string FailedDescription; 10971 std::tie(FailedCond, FailedDescription) = 10972 findFailedBooleanCondition(Cond); 10973 10974 Diag(FailedCond->getExprLoc(), 10975 diag::err_typename_nested_not_found_requirement) 10976 << FailedDescription 10977 << FailedCond->getSourceRange(); 10978 return QualType(); 10979 } 10980 10981 Diag(CondRange.getBegin(), 10982 diag::err_typename_nested_not_found_enable_if) 10983 << Ctx << CondRange; 10984 return QualType(); 10985 } 10986 10987 DiagID = Ctx ? diag::err_typename_nested_not_found 10988 : diag::err_unknown_typename; 10989 break; 10990 } 10991 10992 case LookupResult::FoundUnresolvedValue: { 10993 // We found a using declaration that is a value. Most likely, the using 10994 // declaration itself is meant to have the 'typename' keyword. 10995 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10996 IILoc); 10997 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 10998 << Name << Ctx << FullRange; 10999 if (UnresolvedUsingValueDecl *Using 11000 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 11001 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 11002 Diag(Loc, diag::note_using_value_decl_missing_typename) 11003 << FixItHint::CreateInsertion(Loc, "typename "); 11004 } 11005 } 11006 // Fall through to create a dependent typename type, from which we can recover 11007 // better. 11008 [[fallthrough]]; 11009 11010 case LookupResult::NotFoundInCurrentInstantiation: 11011 // Okay, it's a member of an unknown instantiation. 11012 return Context.getDependentNameType(Keyword, 11013 QualifierLoc.getNestedNameSpecifier(), 11014 &II); 11015 11016 case LookupResult::Found: 11017 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 11018 // C++ [class.qual]p2: 11019 // In a lookup in which function names are not ignored and the 11020 // nested-name-specifier nominates a class C, if the name specified 11021 // after the nested-name-specifier, when looked up in C, is the 11022 // injected-class-name of C [...] then the name is instead considered 11023 // to name the constructor of class C. 11024 // 11025 // Unlike in an elaborated-type-specifier, function names are not ignored 11026 // in typename-specifier lookup. However, they are ignored in all the 11027 // contexts where we form a typename type with no keyword (that is, in 11028 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). 11029 // 11030 // FIXME: That's not strictly true: mem-initializer-id lookup does not 11031 // ignore functions, but that appears to be an oversight. 11032 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx); 11033 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type); 11034 if (Keyword == ETK_Typename && LookupRD && FoundRD && 11035 FoundRD->isInjectedClassName() && 11036 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) 11037 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor) 11038 << &II << 1 << 0 /*'typename' keyword used*/; 11039 11040 // We found a type. Build an ElaboratedType, since the 11041 // typename-specifier was just sugar. 11042 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 11043 return Context.getElaboratedType(Keyword, 11044 QualifierLoc.getNestedNameSpecifier(), 11045 Context.getTypeDeclType(Type)); 11046 } 11047 11048 // C++ [dcl.type.simple]p2: 11049 // A type-specifier of the form 11050 // typename[opt] nested-name-specifier[opt] template-name 11051 // is a placeholder for a deduced class type [...]. 11052 if (getLangOpts().CPlusPlus17) { 11053 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) { 11054 if (!DeducedTSTContext) { 11055 QualType T(QualifierLoc 11056 ? QualifierLoc.getNestedNameSpecifier()->getAsType() 11057 : nullptr, 0); 11058 if (!T.isNull()) 11059 Diag(IILoc, diag::err_dependent_deduced_tst) 11060 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T; 11061 else 11062 Diag(IILoc, diag::err_deduced_tst) 11063 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)); 11064 Diag(TD->getLocation(), diag::note_template_decl_here); 11065 return QualType(); 11066 } 11067 return Context.getElaboratedType( 11068 Keyword, QualifierLoc.getNestedNameSpecifier(), 11069 Context.getDeducedTemplateSpecializationType(TemplateName(TD), 11070 QualType(), false)); 11071 } 11072 } 11073 11074 DiagID = Ctx ? diag::err_typename_nested_not_type 11075 : diag::err_typename_not_type; 11076 Referenced = Result.getFoundDecl(); 11077 break; 11078 11079 case LookupResult::FoundOverloaded: 11080 DiagID = Ctx ? diag::err_typename_nested_not_type 11081 : diag::err_typename_not_type; 11082 Referenced = *Result.begin(); 11083 break; 11084 11085 case LookupResult::Ambiguous: 11086 return QualType(); 11087 } 11088 11089 // If we get here, it's because name lookup did not find a 11090 // type. Emit an appropriate diagnostic and return an error. 11091 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 11092 IILoc); 11093 if (Ctx) 11094 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 11095 else 11096 Diag(IILoc, DiagID) << FullRange << Name; 11097 if (Referenced) 11098 Diag(Referenced->getLocation(), 11099 Ctx ? diag::note_typename_member_refers_here 11100 : diag::note_typename_refers_here) 11101 << Name; 11102 return QualType(); 11103 } 11104 11105 namespace { 11106 // See Sema::RebuildTypeInCurrentInstantiation 11107 class CurrentInstantiationRebuilder 11108 : public TreeTransform<CurrentInstantiationRebuilder> { 11109 SourceLocation Loc; 11110 DeclarationName Entity; 11111 11112 public: 11113 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 11114 11115 CurrentInstantiationRebuilder(Sema &SemaRef, 11116 SourceLocation Loc, 11117 DeclarationName Entity) 11118 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 11119 Loc(Loc), Entity(Entity) { } 11120 11121 /// Determine whether the given type \p T has already been 11122 /// transformed. 11123 /// 11124 /// For the purposes of type reconstruction, a type has already been 11125 /// transformed if it is NULL or if it is not dependent. 11126 bool AlreadyTransformed(QualType T) { 11127 return T.isNull() || !T->isInstantiationDependentType(); 11128 } 11129 11130 /// Returns the location of the entity whose type is being 11131 /// rebuilt. 11132 SourceLocation getBaseLocation() { return Loc; } 11133 11134 /// Returns the name of the entity whose type is being rebuilt. 11135 DeclarationName getBaseEntity() { return Entity; } 11136 11137 /// Sets the "base" location and entity when that 11138 /// information is known based on another transformation. 11139 void setBase(SourceLocation Loc, DeclarationName Entity) { 11140 this->Loc = Loc; 11141 this->Entity = Entity; 11142 } 11143 11144 ExprResult TransformLambdaExpr(LambdaExpr *E) { 11145 // Lambdas never need to be transformed. 11146 return E; 11147 } 11148 }; 11149 } // end anonymous namespace 11150 11151 /// Rebuilds a type within the context of the current instantiation. 11152 /// 11153 /// The type \p T is part of the type of an out-of-line member definition of 11154 /// a class template (or class template partial specialization) that was parsed 11155 /// and constructed before we entered the scope of the class template (or 11156 /// partial specialization thereof). This routine will rebuild that type now 11157 /// that we have entered the declarator's scope, which may produce different 11158 /// canonical types, e.g., 11159 /// 11160 /// \code 11161 /// template<typename T> 11162 /// struct X { 11163 /// typedef T* pointer; 11164 /// pointer data(); 11165 /// }; 11166 /// 11167 /// template<typename T> 11168 /// typename X<T>::pointer X<T>::data() { ... } 11169 /// \endcode 11170 /// 11171 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 11172 /// since we do not know that we can look into X<T> when we parsed the type. 11173 /// This function will rebuild the type, performing the lookup of "pointer" 11174 /// in X<T> and returning an ElaboratedType whose canonical type is the same 11175 /// as the canonical type of T*, allowing the return types of the out-of-line 11176 /// definition and the declaration to match. 11177 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 11178 SourceLocation Loc, 11179 DeclarationName Name) { 11180 if (!T || !T->getType()->isInstantiationDependentType()) 11181 return T; 11182 11183 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 11184 return Rebuilder.TransformType(T); 11185 } 11186 11187 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 11188 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 11189 DeclarationName()); 11190 return Rebuilder.TransformExpr(E); 11191 } 11192 11193 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 11194 if (SS.isInvalid()) 11195 return true; 11196 11197 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 11198 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 11199 DeclarationName()); 11200 NestedNameSpecifierLoc Rebuilt 11201 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 11202 if (!Rebuilt) 11203 return true; 11204 11205 SS.Adopt(Rebuilt); 11206 return false; 11207 } 11208 11209 /// Rebuild the template parameters now that we know we're in a current 11210 /// instantiation. 11211 bool Sema::RebuildTemplateParamsInCurrentInstantiation( 11212 TemplateParameterList *Params) { 11213 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 11214 Decl *Param = Params->getParam(I); 11215 11216 // There is nothing to rebuild in a type parameter. 11217 if (isa<TemplateTypeParmDecl>(Param)) 11218 continue; 11219 11220 // Rebuild the template parameter list of a template template parameter. 11221 if (TemplateTemplateParmDecl *TTP 11222 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 11223 if (RebuildTemplateParamsInCurrentInstantiation( 11224 TTP->getTemplateParameters())) 11225 return true; 11226 11227 continue; 11228 } 11229 11230 // Rebuild the type of a non-type template parameter. 11231 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 11232 TypeSourceInfo *NewTSI 11233 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 11234 NTTP->getLocation(), 11235 NTTP->getDeclName()); 11236 if (!NewTSI) 11237 return true; 11238 11239 if (NewTSI->getType()->isUndeducedType()) { 11240 // C++17 [temp.dep.expr]p3: 11241 // An id-expression is type-dependent if it contains 11242 // - an identifier associated by name lookup with a non-type 11243 // template-parameter declared with a type that contains a 11244 // placeholder type (7.1.7.4), 11245 NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI); 11246 } 11247 11248 if (NewTSI != NTTP->getTypeSourceInfo()) { 11249 NTTP->setTypeSourceInfo(NewTSI); 11250 NTTP->setType(NewTSI->getType()); 11251 } 11252 } 11253 11254 return false; 11255 } 11256 11257 /// Produces a formatted string that describes the binding of 11258 /// template parameters to template arguments. 11259 std::string 11260 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 11261 const TemplateArgumentList &Args) { 11262 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 11263 } 11264 11265 std::string 11266 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 11267 const TemplateArgument *Args, 11268 unsigned NumArgs) { 11269 SmallString<128> Str; 11270 llvm::raw_svector_ostream Out(Str); 11271 11272 if (!Params || Params->size() == 0 || NumArgs == 0) 11273 return std::string(); 11274 11275 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 11276 if (I >= NumArgs) 11277 break; 11278 11279 if (I == 0) 11280 Out << "[with "; 11281 else 11282 Out << ", "; 11283 11284 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 11285 Out << Id->getName(); 11286 } else { 11287 Out << '$' << I; 11288 } 11289 11290 Out << " = "; 11291 Args[I].print(getPrintingPolicy(), Out, 11292 TemplateParameterList::shouldIncludeTypeForArgument( 11293 getPrintingPolicy(), Params, I)); 11294 } 11295 11296 Out << ']'; 11297 return std::string(Out.str()); 11298 } 11299 11300 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, 11301 CachedTokens &Toks) { 11302 if (!FD) 11303 return; 11304 11305 auto LPT = std::make_unique<LateParsedTemplate>(); 11306 11307 // Take tokens to avoid allocations 11308 LPT->Toks.swap(Toks); 11309 LPT->D = FnD; 11310 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT))); 11311 11312 FD->setLateTemplateParsed(true); 11313 } 11314 11315 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { 11316 if (!FD) 11317 return; 11318 FD->setLateTemplateParsed(false); 11319 } 11320 11321 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 11322 DeclContext *DC = CurContext; 11323 11324 while (DC) { 11325 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 11326 const FunctionDecl *FD = RD->isLocalClass(); 11327 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 11328 } else if (DC->isTranslationUnit() || DC->isNamespace()) 11329 return false; 11330 11331 DC = DC->getParent(); 11332 } 11333 return false; 11334 } 11335 11336 namespace { 11337 /// Walk the path from which a declaration was instantiated, and check 11338 /// that every explicit specialization along that path is visible. This enforces 11339 /// C++ [temp.expl.spec]/6: 11340 /// 11341 /// If a template, a member template or a member of a class template is 11342 /// explicitly specialized then that specialization shall be declared before 11343 /// the first use of that specialization that would cause an implicit 11344 /// instantiation to take place, in every translation unit in which such a 11345 /// use occurs; no diagnostic is required. 11346 /// 11347 /// and also C++ [temp.class.spec]/1: 11348 /// 11349 /// A partial specialization shall be declared before the first use of a 11350 /// class template specialization that would make use of the partial 11351 /// specialization as the result of an implicit or explicit instantiation 11352 /// in every translation unit in which such a use occurs; no diagnostic is 11353 /// required. 11354 class ExplicitSpecializationVisibilityChecker { 11355 Sema &S; 11356 SourceLocation Loc; 11357 llvm::SmallVector<Module *, 8> Modules; 11358 Sema::AcceptableKind Kind; 11359 11360 public: 11361 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc, 11362 Sema::AcceptableKind Kind) 11363 : S(S), Loc(Loc), Kind(Kind) {} 11364 11365 void check(NamedDecl *ND) { 11366 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 11367 return checkImpl(FD); 11368 if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) 11369 return checkImpl(RD); 11370 if (auto *VD = dyn_cast<VarDecl>(ND)) 11371 return checkImpl(VD); 11372 if (auto *ED = dyn_cast<EnumDecl>(ND)) 11373 return checkImpl(ED); 11374 } 11375 11376 private: 11377 void diagnose(NamedDecl *D, bool IsPartialSpec) { 11378 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization 11379 : Sema::MissingImportKind::ExplicitSpecialization; 11380 const bool Recover = true; 11381 11382 // If we got a custom set of modules (because only a subset of the 11383 // declarations are interesting), use them, otherwise let 11384 // diagnoseMissingImport intelligently pick some. 11385 if (Modules.empty()) 11386 S.diagnoseMissingImport(Loc, D, Kind, Recover); 11387 else 11388 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover); 11389 } 11390 11391 bool CheckMemberSpecialization(const NamedDecl *D) { 11392 return Kind == Sema::AcceptableKind::Visible 11393 ? S.hasVisibleMemberSpecialization(D) 11394 : S.hasReachableMemberSpecialization(D); 11395 } 11396 11397 bool CheckExplicitSpecialization(const NamedDecl *D) { 11398 return Kind == Sema::AcceptableKind::Visible 11399 ? S.hasVisibleExplicitSpecialization(D) 11400 : S.hasReachableExplicitSpecialization(D); 11401 } 11402 11403 bool CheckDeclaration(const NamedDecl *D) { 11404 return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D) 11405 : S.hasReachableDeclaration(D); 11406 } 11407 11408 // Check a specific declaration. There are three problematic cases: 11409 // 11410 // 1) The declaration is an explicit specialization of a template 11411 // specialization. 11412 // 2) The declaration is an explicit specialization of a member of an 11413 // templated class. 11414 // 3) The declaration is an instantiation of a template, and that template 11415 // is an explicit specialization of a member of a templated class. 11416 // 11417 // We don't need to go any deeper than that, as the instantiation of the 11418 // surrounding class / etc is not triggered by whatever triggered this 11419 // instantiation, and thus should be checked elsewhere. 11420 template<typename SpecDecl> 11421 void checkImpl(SpecDecl *Spec) { 11422 bool IsHiddenExplicitSpecialization = false; 11423 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { 11424 IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo() 11425 ? !CheckMemberSpecialization(Spec) 11426 : !CheckExplicitSpecialization(Spec); 11427 } else { 11428 checkInstantiated(Spec); 11429 } 11430 11431 if (IsHiddenExplicitSpecialization) 11432 diagnose(Spec->getMostRecentDecl(), false); 11433 } 11434 11435 void checkInstantiated(FunctionDecl *FD) { 11436 if (auto *TD = FD->getPrimaryTemplate()) 11437 checkTemplate(TD); 11438 } 11439 11440 void checkInstantiated(CXXRecordDecl *RD) { 11441 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD); 11442 if (!SD) 11443 return; 11444 11445 auto From = SD->getSpecializedTemplateOrPartial(); 11446 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) 11447 checkTemplate(TD); 11448 else if (auto *TD = 11449 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 11450 if (!CheckDeclaration(TD)) 11451 diagnose(TD, true); 11452 checkTemplate(TD); 11453 } 11454 } 11455 11456 void checkInstantiated(VarDecl *RD) { 11457 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD); 11458 if (!SD) 11459 return; 11460 11461 auto From = SD->getSpecializedTemplateOrPartial(); 11462 if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) 11463 checkTemplate(TD); 11464 else if (auto *TD = 11465 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 11466 if (!CheckDeclaration(TD)) 11467 diagnose(TD, true); 11468 checkTemplate(TD); 11469 } 11470 } 11471 11472 void checkInstantiated(EnumDecl *FD) {} 11473 11474 template<typename TemplDecl> 11475 void checkTemplate(TemplDecl *TD) { 11476 if (TD->isMemberSpecialization()) { 11477 if (!CheckMemberSpecialization(TD)) 11478 diagnose(TD->getMostRecentDecl(), false); 11479 } 11480 } 11481 }; 11482 } // end anonymous namespace 11483 11484 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { 11485 if (!getLangOpts().Modules) 11486 return; 11487 11488 ExplicitSpecializationVisibilityChecker(*this, Loc, 11489 Sema::AcceptableKind::Visible) 11490 .check(Spec); 11491 } 11492 11493 void Sema::checkSpecializationReachability(SourceLocation Loc, 11494 NamedDecl *Spec) { 11495 if (!getLangOpts().CPlusPlusModules) 11496 return checkSpecializationVisibility(Loc, Spec); 11497 11498 ExplicitSpecializationVisibilityChecker(*this, Loc, 11499 Sema::AcceptableKind::Reachable) 11500 .check(Spec); 11501 } 11502