xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaStmtAsm.cpp (revision f2530c80db7b29b95368fce956b3a778f096b368)
1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for inline asm statements.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ExprCXX.h"
14 #include "clang/AST/RecordLayout.h"
15 #include "clang/AST/TypeLoc.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Lex/Preprocessor.h"
18 #include "clang/Sema/Initialization.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/ScopeInfo.h"
22 #include "clang/Sema/SemaInternal.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/MC/MCParser/MCAsmParser.h"
26 using namespace clang;
27 using namespace sema;
28 
29 /// Remove the upper-level LValueToRValue cast from an expression.
30 static void removeLValueToRValueCast(Expr *E) {
31   Expr *Parent = E;
32   Expr *ExprUnderCast = nullptr;
33   SmallVector<Expr *, 8> ParentsToUpdate;
34 
35   while (true) {
36     ParentsToUpdate.push_back(Parent);
37     if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) {
38       Parent = ParenE->getSubExpr();
39       continue;
40     }
41 
42     Expr *Child = nullptr;
43     CastExpr *ParentCast = dyn_cast<CastExpr>(Parent);
44     if (ParentCast)
45       Child = ParentCast->getSubExpr();
46     else
47       return;
48 
49     if (auto *CastE = dyn_cast<CastExpr>(Child))
50       if (CastE->getCastKind() == CK_LValueToRValue) {
51         ExprUnderCast = CastE->getSubExpr();
52         // LValueToRValue cast inside GCCAsmStmt requires an explicit cast.
53         ParentCast->setSubExpr(ExprUnderCast);
54         break;
55       }
56     Parent = Child;
57   }
58 
59   // Update parent expressions to have same ValueType as the underlying.
60   assert(ExprUnderCast &&
61          "Should be reachable only if LValueToRValue cast was found!");
62   auto ValueKind = ExprUnderCast->getValueKind();
63   for (Expr *E : ParentsToUpdate)
64     E->setValueKind(ValueKind);
65 }
66 
67 /// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension)
68 /// and fix the argument with removing LValueToRValue cast from the expression.
69 static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument,
70                                            Sema &S) {
71   if (!S.getLangOpts().HeinousExtensions) {
72     S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue)
73         << BadArgument->getSourceRange();
74   } else {
75     S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue)
76         << BadArgument->getSourceRange();
77   }
78   removeLValueToRValueCast(BadArgument);
79 }
80 
81 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
82 /// ignore "noop" casts in places where an lvalue is required by an inline asm.
83 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but
84 /// provide a strong guidance to not use it.
85 ///
86 /// This method checks to see if the argument is an acceptable l-value and
87 /// returns false if it is a case we can handle.
88 static bool CheckAsmLValue(Expr *E, Sema &S) {
89   // Type dependent expressions will be checked during instantiation.
90   if (E->isTypeDependent())
91     return false;
92 
93   if (E->isLValue())
94     return false;  // Cool, this is an lvalue.
95 
96   // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
97   // are supposed to allow.
98   const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
99   if (E != E2 && E2->isLValue()) {
100     emitAndFixInvalidAsmCastLValue(E2, E, S);
101     // Accept, even if we emitted an error diagnostic.
102     return false;
103   }
104 
105   // None of the above, just randomly invalid non-lvalue.
106   return true;
107 }
108 
109 /// isOperandMentioned - Return true if the specified operand # is mentioned
110 /// anywhere in the decomposed asm string.
111 static bool
112 isOperandMentioned(unsigned OpNo,
113                    ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
114   for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
115     const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
116     if (!Piece.isOperand())
117       continue;
118 
119     // If this is a reference to the input and if the input was the smaller
120     // one, then we have to reject this asm.
121     if (Piece.getOperandNo() == OpNo)
122       return true;
123   }
124   return false;
125 }
126 
127 static bool CheckNakedParmReference(Expr *E, Sema &S) {
128   FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext);
129   if (!Func)
130     return false;
131   if (!Func->hasAttr<NakedAttr>())
132     return false;
133 
134   SmallVector<Expr*, 4> WorkList;
135   WorkList.push_back(E);
136   while (WorkList.size()) {
137     Expr *E = WorkList.pop_back_val();
138     if (isa<CXXThisExpr>(E)) {
139       S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref);
140       S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
141       return true;
142     }
143     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
144       if (isa<ParmVarDecl>(DRE->getDecl())) {
145         S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref);
146         S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
147         return true;
148       }
149     }
150     for (Stmt *Child : E->children()) {
151       if (Expr *E = dyn_cast_or_null<Expr>(Child))
152         WorkList.push_back(E);
153     }
154   }
155   return false;
156 }
157 
158 /// Returns true if given expression is not compatible with inline
159 /// assembly's memory constraint; false otherwise.
160 static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E,
161                                             TargetInfo::ConstraintInfo &Info,
162                                             bool is_input_expr) {
163   enum {
164     ExprBitfield = 0,
165     ExprVectorElt,
166     ExprGlobalRegVar,
167     ExprSafeType
168   } EType = ExprSafeType;
169 
170   // Bitfields, vector elements and global register variables are not
171   // compatible.
172   if (E->refersToBitField())
173     EType = ExprBitfield;
174   else if (E->refersToVectorElement())
175     EType = ExprVectorElt;
176   else if (E->refersToGlobalRegisterVar())
177     EType = ExprGlobalRegVar;
178 
179   if (EType != ExprSafeType) {
180     S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint)
181         << EType << is_input_expr << Info.getConstraintStr()
182         << E->getSourceRange();
183     return true;
184   }
185 
186   return false;
187 }
188 
189 // Extracting the register name from the Expression value,
190 // if there is no register name to extract, returns ""
191 static StringRef extractRegisterName(const Expr *Expression,
192                                      const TargetInfo &Target) {
193   Expression = Expression->IgnoreImpCasts();
194   if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) {
195     // Handle cases where the expression is a variable
196     const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl());
197     if (Variable && Variable->getStorageClass() == SC_Register) {
198       if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>())
199         if (Target.isValidGCCRegisterName(Attr->getLabel()))
200           return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true);
201     }
202   }
203   return "";
204 }
205 
206 // Checks if there is a conflict between the input and output lists with the
207 // clobbers list. If there's a conflict, returns the location of the
208 // conflicted clobber, else returns nullptr
209 static SourceLocation
210 getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints,
211                            StringLiteral **Clobbers, int NumClobbers,
212                            unsigned NumLabels,
213                            const TargetInfo &Target, ASTContext &Cont) {
214   llvm::StringSet<> InOutVars;
215   // Collect all the input and output registers from the extended asm
216   // statement in order to check for conflicts with the clobber list
217   for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) {
218     StringRef Constraint = Constraints[i]->getString();
219     StringRef InOutReg = Target.getConstraintRegister(
220         Constraint, extractRegisterName(Exprs[i], Target));
221     if (InOutReg != "")
222       InOutVars.insert(InOutReg);
223   }
224   // Check for each item in the clobber list if it conflicts with the input
225   // or output
226   for (int i = 0; i < NumClobbers; ++i) {
227     StringRef Clobber = Clobbers[i]->getString();
228     // We only check registers, therefore we don't check cc and memory
229     // clobbers
230     if (Clobber == "cc" || Clobber == "memory")
231       continue;
232     Clobber = Target.getNormalizedGCCRegisterName(Clobber, true);
233     // Go over the output's registers we collected
234     if (InOutVars.count(Clobber))
235       return Clobbers[i]->getBeginLoc();
236   }
237   return SourceLocation();
238 }
239 
240 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
241                                  bool IsVolatile, unsigned NumOutputs,
242                                  unsigned NumInputs, IdentifierInfo **Names,
243                                  MultiExprArg constraints, MultiExprArg Exprs,
244                                  Expr *asmString, MultiExprArg clobbers,
245                                  unsigned NumLabels,
246                                  SourceLocation RParenLoc) {
247   unsigned NumClobbers = clobbers.size();
248   StringLiteral **Constraints =
249     reinterpret_cast<StringLiteral**>(constraints.data());
250   StringLiteral *AsmString = cast<StringLiteral>(asmString);
251   StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
252 
253   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
254 
255   // The parser verifies that there is a string literal here.
256   assert(AsmString->isAscii());
257 
258   for (unsigned i = 0; i != NumOutputs; i++) {
259     StringLiteral *Literal = Constraints[i];
260     assert(Literal->isAscii());
261 
262     StringRef OutputName;
263     if (Names[i])
264       OutputName = Names[i]->getName();
265 
266     TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
267     if (!Context.getTargetInfo().validateOutputConstraint(Info)) {
268       targetDiag(Literal->getBeginLoc(),
269                  diag::err_asm_invalid_output_constraint)
270           << Info.getConstraintStr();
271       return new (Context)
272           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
273                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
274                      NumClobbers, Clobbers, NumLabels, RParenLoc);
275     }
276 
277     ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
278     if (ER.isInvalid())
279       return StmtError();
280     Exprs[i] = ER.get();
281 
282     // Check that the output exprs are valid lvalues.
283     Expr *OutputExpr = Exprs[i];
284 
285     // Referring to parameters is not allowed in naked functions.
286     if (CheckNakedParmReference(OutputExpr, *this))
287       return StmtError();
288 
289     // Check that the output expression is compatible with memory constraint.
290     if (Info.allowsMemory() &&
291         checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false))
292       return StmtError();
293 
294     OutputConstraintInfos.push_back(Info);
295 
296     // If this is dependent, just continue.
297     if (OutputExpr->isTypeDependent())
298       continue;
299 
300     Expr::isModifiableLvalueResult IsLV =
301         OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
302     switch (IsLV) {
303     case Expr::MLV_Valid:
304       // Cool, this is an lvalue.
305       break;
306     case Expr::MLV_ArrayType:
307       // This is OK too.
308       break;
309     case Expr::MLV_LValueCast: {
310       const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
311       emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this);
312       // Accept, even if we emitted an error diagnostic.
313       break;
314     }
315     case Expr::MLV_IncompleteType:
316     case Expr::MLV_IncompleteVoidType:
317       if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(),
318                               diag::err_dereference_incomplete_type))
319         return StmtError();
320       LLVM_FALLTHROUGH;
321     default:
322       return StmtError(Diag(OutputExpr->getBeginLoc(),
323                             diag::err_asm_invalid_lvalue_in_output)
324                        << OutputExpr->getSourceRange());
325     }
326 
327     unsigned Size = Context.getTypeSize(OutputExpr->getType());
328     if (!Context.getTargetInfo().validateOutputSize(Literal->getString(),
329                                                     Size)) {
330       targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size)
331           << Info.getConstraintStr();
332       return new (Context)
333           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
334                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
335                      NumClobbers, Clobbers, NumLabels, RParenLoc);
336     }
337   }
338 
339   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
340 
341   for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
342     StringLiteral *Literal = Constraints[i];
343     assert(Literal->isAscii());
344 
345     StringRef InputName;
346     if (Names[i])
347       InputName = Names[i]->getName();
348 
349     TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
350     if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos,
351                                                          Info)) {
352       targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint)
353           << Info.getConstraintStr();
354       return new (Context)
355           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
356                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
357                      NumClobbers, Clobbers, NumLabels, RParenLoc);
358     }
359 
360     ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
361     if (ER.isInvalid())
362       return StmtError();
363     Exprs[i] = ER.get();
364 
365     Expr *InputExpr = Exprs[i];
366 
367     // Referring to parameters is not allowed in naked functions.
368     if (CheckNakedParmReference(InputExpr, *this))
369       return StmtError();
370 
371     // Check that the input expression is compatible with memory constraint.
372     if (Info.allowsMemory() &&
373         checkExprMemoryConstraintCompat(*this, InputExpr, Info, true))
374       return StmtError();
375 
376     // Only allow void types for memory constraints.
377     if (Info.allowsMemory() && !Info.allowsRegister()) {
378       if (CheckAsmLValue(InputExpr, *this))
379         return StmtError(Diag(InputExpr->getBeginLoc(),
380                               diag::err_asm_invalid_lvalue_in_input)
381                          << Info.getConstraintStr()
382                          << InputExpr->getSourceRange());
383     } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
384       if (!InputExpr->isValueDependent()) {
385         Expr::EvalResult EVResult;
386         if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) {
387           // For compatibility with GCC, we also allow pointers that would be
388           // integral constant expressions if they were cast to int.
389           llvm::APSInt IntResult;
390           if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
391                                                Context))
392             if (!Info.isValidAsmImmediate(IntResult))
393               return StmtError(Diag(InputExpr->getBeginLoc(),
394                                     diag::err_invalid_asm_value_for_constraint)
395                                << IntResult.toString(10)
396                                << Info.getConstraintStr()
397                                << InputExpr->getSourceRange());
398         }
399       }
400 
401     } else {
402       ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
403       if (Result.isInvalid())
404         return StmtError();
405 
406       Exprs[i] = Result.get();
407     }
408 
409     if (Info.allowsRegister()) {
410       if (InputExpr->getType()->isVoidType()) {
411         return StmtError(
412             Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input)
413             << InputExpr->getType() << Info.getConstraintStr()
414             << InputExpr->getSourceRange());
415       }
416     }
417 
418     InputConstraintInfos.push_back(Info);
419 
420     const Type *Ty = Exprs[i]->getType().getTypePtr();
421     if (Ty->isDependentType())
422       continue;
423 
424     if (!Ty->isVoidType() || !Info.allowsMemory())
425       if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(),
426                               diag::err_dereference_incomplete_type))
427         return StmtError();
428 
429     unsigned Size = Context.getTypeSize(Ty);
430     if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
431                                                    Size))
432       return StmtResult(
433           targetDiag(InputExpr->getBeginLoc(), diag::err_asm_invalid_input_size)
434           << Info.getConstraintStr());
435   }
436 
437   // Check that the clobbers are valid.
438   for (unsigned i = 0; i != NumClobbers; i++) {
439     StringLiteral *Literal = Clobbers[i];
440     assert(Literal->isAscii());
441 
442     StringRef Clobber = Literal->getString();
443 
444     if (!Context.getTargetInfo().isValidClobber(Clobber)) {
445       targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name)
446           << Clobber;
447       return new (Context)
448           GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
449                      NumInputs, Names, Constraints, Exprs.data(), AsmString,
450                      NumClobbers, Clobbers, NumLabels, RParenLoc);
451     }
452   }
453 
454   GCCAsmStmt *NS =
455     new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
456                              NumInputs, Names, Constraints, Exprs.data(),
457                              AsmString, NumClobbers, Clobbers, NumLabels,
458                              RParenLoc);
459   // Validate the asm string, ensuring it makes sense given the operands we
460   // have.
461   SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
462   unsigned DiagOffs;
463   if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
464     targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
465         << AsmString->getSourceRange();
466     return NS;
467   }
468 
469   // Validate constraints and modifiers.
470   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
471     GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
472     if (!Piece.isOperand()) continue;
473 
474     // Look for the correct constraint index.
475     unsigned ConstraintIdx = Piece.getOperandNo();
476     // Labels are the last in the Exprs list.
477     if (NS->isAsmGoto() && ConstraintIdx >= NS->getNumInputs())
478       continue;
479     unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();
480     // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
481     // modifier '+'.
482     if (ConstraintIdx >= NumOperands) {
483       unsigned I = 0, E = NS->getNumOutputs();
484 
485       for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
486         if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
487           ConstraintIdx = I;
488           break;
489         }
490 
491       assert(I != E && "Invalid operand number should have been caught in "
492                        " AnalyzeAsmString");
493     }
494 
495     // Now that we have the right indexes go ahead and check.
496     StringLiteral *Literal = Constraints[ConstraintIdx];
497     const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
498     if (Ty->isDependentType() || Ty->isIncompleteType())
499       continue;
500 
501     unsigned Size = Context.getTypeSize(Ty);
502     std::string SuggestedModifier;
503     if (!Context.getTargetInfo().validateConstraintModifier(
504             Literal->getString(), Piece.getModifier(), Size,
505             SuggestedModifier)) {
506       targetDiag(Exprs[ConstraintIdx]->getBeginLoc(),
507                  diag::warn_asm_mismatched_size_modifier);
508 
509       if (!SuggestedModifier.empty()) {
510         auto B = targetDiag(Piece.getRange().getBegin(),
511                             diag::note_asm_missing_constraint_modifier)
512                  << SuggestedModifier;
513         SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
514         B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier);
515       }
516     }
517   }
518 
519   // Validate tied input operands for type mismatches.
520   unsigned NumAlternatives = ~0U;
521   for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
522     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
523     StringRef ConstraintStr = Info.getConstraintStr();
524     unsigned AltCount = ConstraintStr.count(',') + 1;
525     if (NumAlternatives == ~0U) {
526       NumAlternatives = AltCount;
527     } else if (NumAlternatives != AltCount) {
528       targetDiag(NS->getOutputExpr(i)->getBeginLoc(),
529                  diag::err_asm_unexpected_constraint_alternatives)
530           << NumAlternatives << AltCount;
531       return NS;
532     }
533   }
534   SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(),
535                                               ~0U);
536   for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
537     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
538     StringRef ConstraintStr = Info.getConstraintStr();
539     unsigned AltCount = ConstraintStr.count(',') + 1;
540     if (NumAlternatives == ~0U) {
541       NumAlternatives = AltCount;
542     } else if (NumAlternatives != AltCount) {
543       targetDiag(NS->getInputExpr(i)->getBeginLoc(),
544                  diag::err_asm_unexpected_constraint_alternatives)
545           << NumAlternatives << AltCount;
546       return NS;
547     }
548 
549     // If this is a tied constraint, verify that the output and input have
550     // either exactly the same type, or that they are int/ptr operands with the
551     // same size (int/long, int*/long, are ok etc).
552     if (!Info.hasTiedOperand()) continue;
553 
554     unsigned TiedTo = Info.getTiedOperand();
555     unsigned InputOpNo = i+NumOutputs;
556     Expr *OutputExpr = Exprs[TiedTo];
557     Expr *InputExpr = Exprs[InputOpNo];
558 
559     // Make sure no more than one input constraint matches each output.
560     assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range");
561     if (InputMatchedToOutput[TiedTo] != ~0U) {
562       targetDiag(NS->getInputExpr(i)->getBeginLoc(),
563                  diag::err_asm_input_duplicate_match)
564           << TiedTo;
565       targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(),
566                  diag::note_asm_input_duplicate_first)
567           << TiedTo;
568       return NS;
569     }
570     InputMatchedToOutput[TiedTo] = i;
571 
572     if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
573       continue;
574 
575     QualType InTy = InputExpr->getType();
576     QualType OutTy = OutputExpr->getType();
577     if (Context.hasSameType(InTy, OutTy))
578       continue;  // All types can be tied to themselves.
579 
580     // Decide if the input and output are in the same domain (integer/ptr or
581     // floating point.
582     enum AsmDomain {
583       AD_Int, AD_FP, AD_Other
584     } InputDomain, OutputDomain;
585 
586     if (InTy->isIntegerType() || InTy->isPointerType())
587       InputDomain = AD_Int;
588     else if (InTy->isRealFloatingType())
589       InputDomain = AD_FP;
590     else
591       InputDomain = AD_Other;
592 
593     if (OutTy->isIntegerType() || OutTy->isPointerType())
594       OutputDomain = AD_Int;
595     else if (OutTy->isRealFloatingType())
596       OutputDomain = AD_FP;
597     else
598       OutputDomain = AD_Other;
599 
600     // They are ok if they are the same size and in the same domain.  This
601     // allows tying things like:
602     //   void* to int*
603     //   void* to int            if they are the same size.
604     //   double to long double   if they are the same size.
605     //
606     uint64_t OutSize = Context.getTypeSize(OutTy);
607     uint64_t InSize = Context.getTypeSize(InTy);
608     if (OutSize == InSize && InputDomain == OutputDomain &&
609         InputDomain != AD_Other)
610       continue;
611 
612     // If the smaller input/output operand is not mentioned in the asm string,
613     // then we can promote the smaller one to a larger input and the asm string
614     // won't notice.
615     bool SmallerValueMentioned = false;
616 
617     // If this is a reference to the input and if the input was the smaller
618     // one, then we have to reject this asm.
619     if (isOperandMentioned(InputOpNo, Pieces)) {
620       // This is a use in the asm string of the smaller operand.  Since we
621       // codegen this by promoting to a wider value, the asm will get printed
622       // "wrong".
623       SmallerValueMentioned |= InSize < OutSize;
624     }
625     if (isOperandMentioned(TiedTo, Pieces)) {
626       // If this is a reference to the output, and if the output is the larger
627       // value, then it's ok because we'll promote the input to the larger type.
628       SmallerValueMentioned |= OutSize < InSize;
629     }
630 
631     // If the smaller value wasn't mentioned in the asm string, and if the
632     // output was a register, just extend the shorter one to the size of the
633     // larger one.
634     if (!SmallerValueMentioned && InputDomain != AD_Other &&
635         OutputConstraintInfos[TiedTo].allowsRegister())
636       continue;
637 
638     // Either both of the operands were mentioned or the smaller one was
639     // mentioned.  One more special case that we'll allow: if the tied input is
640     // integer, unmentioned, and is a constant, then we'll allow truncating it
641     // down to the size of the destination.
642     if (InputDomain == AD_Int && OutputDomain == AD_Int &&
643         !isOperandMentioned(InputOpNo, Pieces) &&
644         InputExpr->isEvaluatable(Context)) {
645       CastKind castKind =
646         (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
647       InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
648       Exprs[InputOpNo] = InputExpr;
649       NS->setInputExpr(i, InputExpr);
650       continue;
651     }
652 
653     targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types)
654         << InTy << OutTy << OutputExpr->getSourceRange()
655         << InputExpr->getSourceRange();
656     return NS;
657   }
658 
659   // Check for conflicts between clobber list and input or output lists
660   SourceLocation ConstraintLoc =
661       getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers,
662                                  NumLabels,
663                                  Context.getTargetInfo(), Context);
664   if (ConstraintLoc.isValid())
665     targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber);
666 
667   // Check for duplicate asm operand name between input, output and label lists.
668   typedef std::pair<StringRef , Expr *> NamedOperand;
669   SmallVector<NamedOperand, 4> NamedOperandList;
670   for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i)
671     if (Names[i])
672       NamedOperandList.emplace_back(
673           std::make_pair(Names[i]->getName(), Exprs[i]));
674   // Sort NamedOperandList.
675   std::stable_sort(NamedOperandList.begin(), NamedOperandList.end(),
676               [](const NamedOperand &LHS, const NamedOperand &RHS) {
677                 return LHS.first < RHS.first;
678               });
679   // Find adjacent duplicate operand.
680   SmallVector<NamedOperand, 4>::iterator Found =
681       std::adjacent_find(begin(NamedOperandList), end(NamedOperandList),
682                          [](const NamedOperand &LHS, const NamedOperand &RHS) {
683                            return LHS.first == RHS.first;
684                          });
685   if (Found != NamedOperandList.end()) {
686     Diag((Found + 1)->second->getBeginLoc(),
687          diag::error_duplicate_asm_operand_name)
688         << (Found + 1)->first;
689     Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name)
690         << Found->first;
691     return StmtError();
692   }
693   if (NS->isAsmGoto())
694     setFunctionHasBranchIntoScope();
695   return NS;
696 }
697 
698 void Sema::FillInlineAsmIdentifierInfo(Expr *Res,
699                                        llvm::InlineAsmIdentifierInfo &Info) {
700   QualType T = Res->getType();
701   Expr::EvalResult Eval;
702   if (T->isFunctionType() || T->isDependentType())
703     return Info.setLabel(Res);
704   if (Res->isRValue()) {
705     if (isa<clang::EnumType>(T) && Res->EvaluateAsRValue(Eval, Context))
706       return Info.setEnum(Eval.Val.getInt().getSExtValue());
707     return Info.setLabel(Res);
708   }
709   unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
710   unsigned Type = Size;
711   if (const auto *ATy = Context.getAsArrayType(T))
712     Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
713   bool IsGlobalLV = false;
714   if (Res->EvaluateAsLValue(Eval, Context))
715     IsGlobalLV = Eval.isGlobalLValue();
716   Info.setVar(Res, IsGlobalLV, Size, Type);
717 }
718 
719 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
720                                            SourceLocation TemplateKWLoc,
721                                            UnqualifiedId &Id,
722                                            bool IsUnevaluatedContext) {
723 
724   if (IsUnevaluatedContext)
725     PushExpressionEvaluationContext(
726         ExpressionEvaluationContext::UnevaluatedAbstract,
727         ReuseLambdaContextDecl);
728 
729   ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
730                                         /*trailing lparen*/ false,
731                                         /*is & operand*/ false,
732                                         /*CorrectionCandidateCallback=*/nullptr,
733                                         /*IsInlineAsmIdentifier=*/ true);
734 
735   if (IsUnevaluatedContext)
736     PopExpressionEvaluationContext();
737 
738   if (!Result.isUsable()) return Result;
739 
740   Result = CheckPlaceholderExpr(Result.get());
741   if (!Result.isUsable()) return Result;
742 
743   // Referring to parameters is not allowed in naked functions.
744   if (CheckNakedParmReference(Result.get(), *this))
745     return ExprError();
746 
747   QualType T = Result.get()->getType();
748 
749   if (T->isDependentType()) {
750     return Result;
751   }
752 
753   // Any sort of function type is fine.
754   if (T->isFunctionType()) {
755     return Result;
756   }
757 
758   // Otherwise, it needs to be a complete type.
759   if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
760     return ExprError();
761   }
762 
763   return Result;
764 }
765 
766 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
767                                 unsigned &Offset, SourceLocation AsmLoc) {
768   Offset = 0;
769   SmallVector<StringRef, 2> Members;
770   Member.split(Members, ".");
771 
772   NamedDecl *FoundDecl = nullptr;
773 
774   // MS InlineAsm uses 'this' as a base
775   if (getLangOpts().CPlusPlus && Base.equals("this")) {
776     if (const Type *PT = getCurrentThisType().getTypePtrOrNull())
777       FoundDecl = PT->getPointeeType()->getAsTagDecl();
778   } else {
779     LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
780                             LookupOrdinaryName);
781     if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult())
782       FoundDecl = BaseResult.getFoundDecl();
783   }
784 
785   if (!FoundDecl)
786     return true;
787 
788   for (StringRef NextMember : Members) {
789     const RecordType *RT = nullptr;
790     if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
791       RT = VD->getType()->getAs<RecordType>();
792     else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) {
793       MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
794       // MS InlineAsm often uses struct pointer aliases as a base
795       QualType QT = TD->getUnderlyingType();
796       if (const auto *PT = QT->getAs<PointerType>())
797         QT = PT->getPointeeType();
798       RT = QT->getAs<RecordType>();
799     } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl))
800       RT = TD->getTypeForDecl()->getAs<RecordType>();
801     else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl))
802       RT = TD->getType()->getAs<RecordType>();
803     if (!RT)
804       return true;
805 
806     if (RequireCompleteType(AsmLoc, QualType(RT, 0),
807                             diag::err_asm_incomplete_type))
808       return true;
809 
810     LookupResult FieldResult(*this, &Context.Idents.get(NextMember),
811                              SourceLocation(), LookupMemberName);
812 
813     if (!LookupQualifiedName(FieldResult, RT->getDecl()))
814       return true;
815 
816     if (!FieldResult.isSingleResult())
817       return true;
818     FoundDecl = FieldResult.getFoundDecl();
819 
820     // FIXME: Handle IndirectFieldDecl?
821     FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl);
822     if (!FD)
823       return true;
824 
825     const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
826     unsigned i = FD->getFieldIndex();
827     CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
828     Offset += (unsigned)Result.getQuantity();
829   }
830 
831   return false;
832 }
833 
834 ExprResult
835 Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member,
836                                   SourceLocation AsmLoc) {
837 
838   QualType T = E->getType();
839   if (T->isDependentType()) {
840     DeclarationNameInfo NameInfo;
841     NameInfo.setLoc(AsmLoc);
842     NameInfo.setName(&Context.Idents.get(Member));
843     return CXXDependentScopeMemberExpr::Create(
844         Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(),
845         SourceLocation(),
846         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr);
847   }
848 
849   const RecordType *RT = T->getAs<RecordType>();
850   // FIXME: Diagnose this as field access into a scalar type.
851   if (!RT)
852     return ExprResult();
853 
854   LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc,
855                            LookupMemberName);
856 
857   if (!LookupQualifiedName(FieldResult, RT->getDecl()))
858     return ExprResult();
859 
860   // Only normal and indirect field results will work.
861   ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
862   if (!FD)
863     FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl());
864   if (!FD)
865     return ExprResult();
866 
867   // Make an Expr to thread through OpDecl.
868   ExprResult Result = BuildMemberReferenceExpr(
869       E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(),
870       SourceLocation(), nullptr, FieldResult, nullptr, nullptr);
871 
872   return Result;
873 }
874 
875 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
876                                 ArrayRef<Token> AsmToks,
877                                 StringRef AsmString,
878                                 unsigned NumOutputs, unsigned NumInputs,
879                                 ArrayRef<StringRef> Constraints,
880                                 ArrayRef<StringRef> Clobbers,
881                                 ArrayRef<Expr*> Exprs,
882                                 SourceLocation EndLoc) {
883   bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
884   setFunctionHasBranchProtectedScope();
885   MSAsmStmt *NS =
886     new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
887                             /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
888                             Constraints, Exprs, AsmString,
889                             Clobbers, EndLoc);
890   return NS;
891 }
892 
893 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
894                                        SourceLocation Location,
895                                        bool AlwaysCreate) {
896   LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName),
897                                          Location);
898 
899   if (Label->isMSAsmLabel()) {
900     // If we have previously created this label implicitly, mark it as used.
901     Label->markUsed(Context);
902   } else {
903     // Otherwise, insert it, but only resolve it if we have seen the label itself.
904     std::string InternalName;
905     llvm::raw_string_ostream OS(InternalName);
906     // Create an internal name for the label.  The name should not be a valid
907     // mangled name, and should be unique.  We use a dot to make the name an
908     // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a
909     // unique label is generated each time this blob is emitted, even after
910     // inlining or LTO.
911     OS << "__MSASMLABEL_.${:uid}__";
912     for (char C : ExternalLabelName) {
913       OS << C;
914       // We escape '$' in asm strings by replacing it with "$$"
915       if (C == '$')
916         OS << '$';
917     }
918     Label->setMSAsmLabel(OS.str());
919   }
920   if (AlwaysCreate) {
921     // The label might have been created implicitly from a previously encountered
922     // goto statement.  So, for both newly created and looked up labels, we mark
923     // them as resolved.
924     Label->setMSAsmLabelResolved();
925   }
926   // Adjust their location for being able to generate accurate diagnostics.
927   Label->setLocation(Location);
928 
929   return Label;
930 }
931