1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for inline asm statements. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ExprCXX.h" 14 #include "clang/AST/GlobalDecl.h" 15 #include "clang/AST/RecordLayout.h" 16 #include "clang/AST/TypeLoc.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/Lex/Preprocessor.h" 19 #include "clang/Sema/Initialization.h" 20 #include "clang/Sema/Lookup.h" 21 #include "clang/Sema/Scope.h" 22 #include "clang/Sema/ScopeInfo.h" 23 #include "clang/Sema/SemaInternal.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSet.h" 27 #include "llvm/MC/MCParser/MCAsmParser.h" 28 #include <optional> 29 using namespace clang; 30 using namespace sema; 31 32 /// Remove the upper-level LValueToRValue cast from an expression. 33 static void removeLValueToRValueCast(Expr *E) { 34 Expr *Parent = E; 35 Expr *ExprUnderCast = nullptr; 36 SmallVector<Expr *, 8> ParentsToUpdate; 37 38 while (true) { 39 ParentsToUpdate.push_back(Parent); 40 if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) { 41 Parent = ParenE->getSubExpr(); 42 continue; 43 } 44 45 Expr *Child = nullptr; 46 CastExpr *ParentCast = dyn_cast<CastExpr>(Parent); 47 if (ParentCast) 48 Child = ParentCast->getSubExpr(); 49 else 50 return; 51 52 if (auto *CastE = dyn_cast<CastExpr>(Child)) 53 if (CastE->getCastKind() == CK_LValueToRValue) { 54 ExprUnderCast = CastE->getSubExpr(); 55 // LValueToRValue cast inside GCCAsmStmt requires an explicit cast. 56 ParentCast->setSubExpr(ExprUnderCast); 57 break; 58 } 59 Parent = Child; 60 } 61 62 // Update parent expressions to have same ValueType as the underlying. 63 assert(ExprUnderCast && 64 "Should be reachable only if LValueToRValue cast was found!"); 65 auto ValueKind = ExprUnderCast->getValueKind(); 66 for (Expr *E : ParentsToUpdate) 67 E->setValueKind(ValueKind); 68 } 69 70 /// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension) 71 /// and fix the argument with removing LValueToRValue cast from the expression. 72 static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument, 73 Sema &S) { 74 if (!S.getLangOpts().HeinousExtensions) { 75 S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue) 76 << BadArgument->getSourceRange(); 77 } else { 78 S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue) 79 << BadArgument->getSourceRange(); 80 } 81 removeLValueToRValueCast(BadArgument); 82 } 83 84 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently 85 /// ignore "noop" casts in places where an lvalue is required by an inline asm. 86 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but 87 /// provide a strong guidance to not use it. 88 /// 89 /// This method checks to see if the argument is an acceptable l-value and 90 /// returns false if it is a case we can handle. 91 static bool CheckAsmLValue(Expr *E, Sema &S) { 92 // Type dependent expressions will be checked during instantiation. 93 if (E->isTypeDependent()) 94 return false; 95 96 if (E->isLValue()) 97 return false; // Cool, this is an lvalue. 98 99 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we 100 // are supposed to allow. 101 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); 102 if (E != E2 && E2->isLValue()) { 103 emitAndFixInvalidAsmCastLValue(E2, E, S); 104 // Accept, even if we emitted an error diagnostic. 105 return false; 106 } 107 108 // None of the above, just randomly invalid non-lvalue. 109 return true; 110 } 111 112 /// isOperandMentioned - Return true if the specified operand # is mentioned 113 /// anywhere in the decomposed asm string. 114 static bool 115 isOperandMentioned(unsigned OpNo, 116 ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { 117 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { 118 const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; 119 if (!Piece.isOperand()) 120 continue; 121 122 // If this is a reference to the input and if the input was the smaller 123 // one, then we have to reject this asm. 124 if (Piece.getOperandNo() == OpNo) 125 return true; 126 } 127 return false; 128 } 129 130 static bool CheckNakedParmReference(Expr *E, Sema &S) { 131 FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext); 132 if (!Func) 133 return false; 134 if (!Func->hasAttr<NakedAttr>()) 135 return false; 136 137 SmallVector<Expr*, 4> WorkList; 138 WorkList.push_back(E); 139 while (WorkList.size()) { 140 Expr *E = WorkList.pop_back_val(); 141 if (isa<CXXThisExpr>(E)) { 142 S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref); 143 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 144 return true; 145 } 146 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 147 if (isa<ParmVarDecl>(DRE->getDecl())) { 148 S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref); 149 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 150 return true; 151 } 152 } 153 for (Stmt *Child : E->children()) { 154 if (Expr *E = dyn_cast_or_null<Expr>(Child)) 155 WorkList.push_back(E); 156 } 157 } 158 return false; 159 } 160 161 /// Returns true if given expression is not compatible with inline 162 /// assembly's memory constraint; false otherwise. 163 static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E, 164 TargetInfo::ConstraintInfo &Info, 165 bool is_input_expr) { 166 enum { 167 ExprBitfield = 0, 168 ExprVectorElt, 169 ExprGlobalRegVar, 170 ExprSafeType 171 } EType = ExprSafeType; 172 173 // Bitfields, vector elements and global register variables are not 174 // compatible. 175 if (E->refersToBitField()) 176 EType = ExprBitfield; 177 else if (E->refersToVectorElement()) 178 EType = ExprVectorElt; 179 else if (E->refersToGlobalRegisterVar()) 180 EType = ExprGlobalRegVar; 181 182 if (EType != ExprSafeType) { 183 S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint) 184 << EType << is_input_expr << Info.getConstraintStr() 185 << E->getSourceRange(); 186 return true; 187 } 188 189 return false; 190 } 191 192 // Extracting the register name from the Expression value, 193 // if there is no register name to extract, returns "" 194 static StringRef extractRegisterName(const Expr *Expression, 195 const TargetInfo &Target) { 196 Expression = Expression->IgnoreImpCasts(); 197 if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) { 198 // Handle cases where the expression is a variable 199 const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl()); 200 if (Variable && Variable->getStorageClass() == SC_Register) { 201 if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>()) 202 if (Target.isValidGCCRegisterName(Attr->getLabel())) 203 return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true); 204 } 205 } 206 return ""; 207 } 208 209 // Checks if there is a conflict between the input and output lists with the 210 // clobbers list. If there's a conflict, returns the location of the 211 // conflicted clobber, else returns nullptr 212 static SourceLocation 213 getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints, 214 StringLiteral **Clobbers, int NumClobbers, 215 unsigned NumLabels, 216 const TargetInfo &Target, ASTContext &Cont) { 217 llvm::StringSet<> InOutVars; 218 // Collect all the input and output registers from the extended asm 219 // statement in order to check for conflicts with the clobber list 220 for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) { 221 StringRef Constraint = Constraints[i]->getString(); 222 StringRef InOutReg = Target.getConstraintRegister( 223 Constraint, extractRegisterName(Exprs[i], Target)); 224 if (InOutReg != "") 225 InOutVars.insert(InOutReg); 226 } 227 // Check for each item in the clobber list if it conflicts with the input 228 // or output 229 for (int i = 0; i < NumClobbers; ++i) { 230 StringRef Clobber = Clobbers[i]->getString(); 231 // We only check registers, therefore we don't check cc and memory 232 // clobbers 233 if (Clobber == "cc" || Clobber == "memory" || Clobber == "unwind") 234 continue; 235 Clobber = Target.getNormalizedGCCRegisterName(Clobber, true); 236 // Go over the output's registers we collected 237 if (InOutVars.count(Clobber)) 238 return Clobbers[i]->getBeginLoc(); 239 } 240 return SourceLocation(); 241 } 242 243 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, 244 bool IsVolatile, unsigned NumOutputs, 245 unsigned NumInputs, IdentifierInfo **Names, 246 MultiExprArg constraints, MultiExprArg Exprs, 247 Expr *asmString, MultiExprArg clobbers, 248 unsigned NumLabels, 249 SourceLocation RParenLoc) { 250 unsigned NumClobbers = clobbers.size(); 251 StringLiteral **Constraints = 252 reinterpret_cast<StringLiteral**>(constraints.data()); 253 StringLiteral *AsmString = cast<StringLiteral>(asmString); 254 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); 255 256 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 257 258 // The parser verifies that there is a string literal here. 259 assert(AsmString->isOrdinary()); 260 261 FunctionDecl *FD = dyn_cast<FunctionDecl>(getCurLexicalContext()); 262 llvm::StringMap<bool> FeatureMap; 263 Context.getFunctionFeatureMap(FeatureMap, FD); 264 265 for (unsigned i = 0; i != NumOutputs; i++) { 266 StringLiteral *Literal = Constraints[i]; 267 assert(Literal->isOrdinary()); 268 269 StringRef OutputName; 270 if (Names[i]) 271 OutputName = Names[i]->getName(); 272 273 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); 274 if (!Context.getTargetInfo().validateOutputConstraint(Info)) { 275 targetDiag(Literal->getBeginLoc(), 276 diag::err_asm_invalid_output_constraint) 277 << Info.getConstraintStr(); 278 return new (Context) 279 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 280 NumInputs, Names, Constraints, Exprs.data(), AsmString, 281 NumClobbers, Clobbers, NumLabels, RParenLoc); 282 } 283 284 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 285 if (ER.isInvalid()) 286 return StmtError(); 287 Exprs[i] = ER.get(); 288 289 // Check that the output exprs are valid lvalues. 290 Expr *OutputExpr = Exprs[i]; 291 292 // Referring to parameters is not allowed in naked functions. 293 if (CheckNakedParmReference(OutputExpr, *this)) 294 return StmtError(); 295 296 // Check that the output expression is compatible with memory constraint. 297 if (Info.allowsMemory() && 298 checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false)) 299 return StmtError(); 300 301 // Disallow bit-precise integer types, since the backends tend to have 302 // difficulties with abnormal sizes. 303 if (OutputExpr->getType()->isBitIntType()) 304 return StmtError( 305 Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type) 306 << OutputExpr->getType() << 0 /*Input*/ 307 << OutputExpr->getSourceRange()); 308 309 OutputConstraintInfos.push_back(Info); 310 311 // If this is dependent, just continue. 312 if (OutputExpr->isTypeDependent()) 313 continue; 314 315 Expr::isModifiableLvalueResult IsLV = 316 OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr); 317 switch (IsLV) { 318 case Expr::MLV_Valid: 319 // Cool, this is an lvalue. 320 break; 321 case Expr::MLV_ArrayType: 322 // This is OK too. 323 break; 324 case Expr::MLV_LValueCast: { 325 const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context); 326 emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this); 327 // Accept, even if we emitted an error diagnostic. 328 break; 329 } 330 case Expr::MLV_IncompleteType: 331 case Expr::MLV_IncompleteVoidType: 332 if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(), 333 diag::err_dereference_incomplete_type)) 334 return StmtError(); 335 [[fallthrough]]; 336 default: 337 return StmtError(Diag(OutputExpr->getBeginLoc(), 338 diag::err_asm_invalid_lvalue_in_output) 339 << OutputExpr->getSourceRange()); 340 } 341 342 unsigned Size = Context.getTypeSize(OutputExpr->getType()); 343 if (!Context.getTargetInfo().validateOutputSize( 344 FeatureMap, Literal->getString(), Size)) { 345 targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size) 346 << Info.getConstraintStr(); 347 return new (Context) 348 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 349 NumInputs, Names, Constraints, Exprs.data(), AsmString, 350 NumClobbers, Clobbers, NumLabels, RParenLoc); 351 } 352 } 353 354 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 355 356 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { 357 StringLiteral *Literal = Constraints[i]; 358 assert(Literal->isOrdinary()); 359 360 StringRef InputName; 361 if (Names[i]) 362 InputName = Names[i]->getName(); 363 364 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); 365 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos, 366 Info)) { 367 targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint) 368 << Info.getConstraintStr(); 369 return new (Context) 370 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 371 NumInputs, Names, Constraints, Exprs.data(), AsmString, 372 NumClobbers, Clobbers, NumLabels, RParenLoc); 373 } 374 375 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 376 if (ER.isInvalid()) 377 return StmtError(); 378 Exprs[i] = ER.get(); 379 380 Expr *InputExpr = Exprs[i]; 381 382 if (InputExpr->getType()->isMemberPointerType()) 383 return StmtError(Diag(InputExpr->getBeginLoc(), 384 diag::err_asm_pmf_through_constraint_not_permitted) 385 << InputExpr->getSourceRange()); 386 387 // Referring to parameters is not allowed in naked functions. 388 if (CheckNakedParmReference(InputExpr, *this)) 389 return StmtError(); 390 391 // Check that the input expression is compatible with memory constraint. 392 if (Info.allowsMemory() && 393 checkExprMemoryConstraintCompat(*this, InputExpr, Info, true)) 394 return StmtError(); 395 396 // Only allow void types for memory constraints. 397 if (Info.allowsMemory() && !Info.allowsRegister()) { 398 if (CheckAsmLValue(InputExpr, *this)) 399 return StmtError(Diag(InputExpr->getBeginLoc(), 400 diag::err_asm_invalid_lvalue_in_input) 401 << Info.getConstraintStr() 402 << InputExpr->getSourceRange()); 403 } else { 404 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); 405 if (Result.isInvalid()) 406 return StmtError(); 407 408 InputExpr = Exprs[i] = Result.get(); 409 410 if (Info.requiresImmediateConstant() && !Info.allowsRegister()) { 411 if (!InputExpr->isValueDependent()) { 412 Expr::EvalResult EVResult; 413 if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) { 414 // For compatibility with GCC, we also allow pointers that would be 415 // integral constant expressions if they were cast to int. 416 llvm::APSInt IntResult; 417 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 418 Context)) 419 if (!Info.isValidAsmImmediate(IntResult)) 420 return StmtError( 421 Diag(InputExpr->getBeginLoc(), 422 diag::err_invalid_asm_value_for_constraint) 423 << toString(IntResult, 10) << Info.getConstraintStr() 424 << InputExpr->getSourceRange()); 425 } 426 } 427 } 428 } 429 430 if (Info.allowsRegister()) { 431 if (InputExpr->getType()->isVoidType()) { 432 return StmtError( 433 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input) 434 << InputExpr->getType() << Info.getConstraintStr() 435 << InputExpr->getSourceRange()); 436 } 437 } 438 439 if (InputExpr->getType()->isBitIntType()) 440 return StmtError( 441 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type) 442 << InputExpr->getType() << 1 /*Output*/ 443 << InputExpr->getSourceRange()); 444 445 InputConstraintInfos.push_back(Info); 446 447 const Type *Ty = Exprs[i]->getType().getTypePtr(); 448 if (Ty->isDependentType()) 449 continue; 450 451 if (!Ty->isVoidType() || !Info.allowsMemory()) 452 if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(), 453 diag::err_dereference_incomplete_type)) 454 return StmtError(); 455 456 unsigned Size = Context.getTypeSize(Ty); 457 if (!Context.getTargetInfo().validateInputSize(FeatureMap, 458 Literal->getString(), Size)) 459 return targetDiag(InputExpr->getBeginLoc(), 460 diag::err_asm_invalid_input_size) 461 << Info.getConstraintStr(); 462 } 463 464 std::optional<SourceLocation> UnwindClobberLoc; 465 466 // Check that the clobbers are valid. 467 for (unsigned i = 0; i != NumClobbers; i++) { 468 StringLiteral *Literal = Clobbers[i]; 469 assert(Literal->isOrdinary()); 470 471 StringRef Clobber = Literal->getString(); 472 473 if (!Context.getTargetInfo().isValidClobber(Clobber)) { 474 targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name) 475 << Clobber; 476 return new (Context) 477 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 478 NumInputs, Names, Constraints, Exprs.data(), AsmString, 479 NumClobbers, Clobbers, NumLabels, RParenLoc); 480 } 481 482 if (Clobber == "unwind") { 483 UnwindClobberLoc = Literal->getBeginLoc(); 484 } 485 } 486 487 // Using unwind clobber and asm-goto together is not supported right now. 488 if (UnwindClobberLoc && NumLabels > 0) { 489 targetDiag(*UnwindClobberLoc, diag::err_asm_unwind_and_goto); 490 return new (Context) 491 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, 492 Names, Constraints, Exprs.data(), AsmString, NumClobbers, 493 Clobbers, NumLabels, RParenLoc); 494 } 495 496 GCCAsmStmt *NS = 497 new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 498 NumInputs, Names, Constraints, Exprs.data(), 499 AsmString, NumClobbers, Clobbers, NumLabels, 500 RParenLoc); 501 // Validate the asm string, ensuring it makes sense given the operands we 502 // have. 503 SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; 504 unsigned DiagOffs; 505 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { 506 targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) 507 << AsmString->getSourceRange(); 508 return NS; 509 } 510 511 // Validate constraints and modifiers. 512 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { 513 GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; 514 if (!Piece.isOperand()) continue; 515 516 // Look for the correct constraint index. 517 unsigned ConstraintIdx = Piece.getOperandNo(); 518 unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs(); 519 // Labels are the last in the Exprs list. 520 if (NS->isAsmGoto() && ConstraintIdx >= NumOperands) 521 continue; 522 // Look for the (ConstraintIdx - NumOperands + 1)th constraint with 523 // modifier '+'. 524 if (ConstraintIdx >= NumOperands) { 525 unsigned I = 0, E = NS->getNumOutputs(); 526 527 for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I) 528 if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) { 529 ConstraintIdx = I; 530 break; 531 } 532 533 assert(I != E && "Invalid operand number should have been caught in " 534 " AnalyzeAsmString"); 535 } 536 537 // Now that we have the right indexes go ahead and check. 538 StringLiteral *Literal = Constraints[ConstraintIdx]; 539 const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); 540 if (Ty->isDependentType() || Ty->isIncompleteType()) 541 continue; 542 543 unsigned Size = Context.getTypeSize(Ty); 544 std::string SuggestedModifier; 545 if (!Context.getTargetInfo().validateConstraintModifier( 546 Literal->getString(), Piece.getModifier(), Size, 547 SuggestedModifier)) { 548 targetDiag(Exprs[ConstraintIdx]->getBeginLoc(), 549 diag::warn_asm_mismatched_size_modifier); 550 551 if (!SuggestedModifier.empty()) { 552 auto B = targetDiag(Piece.getRange().getBegin(), 553 diag::note_asm_missing_constraint_modifier) 554 << SuggestedModifier; 555 SuggestedModifier = "%" + SuggestedModifier + Piece.getString(); 556 B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier); 557 } 558 } 559 } 560 561 // Validate tied input operands for type mismatches. 562 unsigned NumAlternatives = ~0U; 563 for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) { 564 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 565 StringRef ConstraintStr = Info.getConstraintStr(); 566 unsigned AltCount = ConstraintStr.count(',') + 1; 567 if (NumAlternatives == ~0U) { 568 NumAlternatives = AltCount; 569 } else if (NumAlternatives != AltCount) { 570 targetDiag(NS->getOutputExpr(i)->getBeginLoc(), 571 diag::err_asm_unexpected_constraint_alternatives) 572 << NumAlternatives << AltCount; 573 return NS; 574 } 575 } 576 SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(), 577 ~0U); 578 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { 579 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 580 StringRef ConstraintStr = Info.getConstraintStr(); 581 unsigned AltCount = ConstraintStr.count(',') + 1; 582 if (NumAlternatives == ~0U) { 583 NumAlternatives = AltCount; 584 } else if (NumAlternatives != AltCount) { 585 targetDiag(NS->getInputExpr(i)->getBeginLoc(), 586 diag::err_asm_unexpected_constraint_alternatives) 587 << NumAlternatives << AltCount; 588 return NS; 589 } 590 591 // If this is a tied constraint, verify that the output and input have 592 // either exactly the same type, or that they are int/ptr operands with the 593 // same size (int/long, int*/long, are ok etc). 594 if (!Info.hasTiedOperand()) continue; 595 596 unsigned TiedTo = Info.getTiedOperand(); 597 unsigned InputOpNo = i+NumOutputs; 598 Expr *OutputExpr = Exprs[TiedTo]; 599 Expr *InputExpr = Exprs[InputOpNo]; 600 601 // Make sure no more than one input constraint matches each output. 602 assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range"); 603 if (InputMatchedToOutput[TiedTo] != ~0U) { 604 targetDiag(NS->getInputExpr(i)->getBeginLoc(), 605 diag::err_asm_input_duplicate_match) 606 << TiedTo; 607 targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(), 608 diag::note_asm_input_duplicate_first) 609 << TiedTo; 610 return NS; 611 } 612 InputMatchedToOutput[TiedTo] = i; 613 614 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) 615 continue; 616 617 QualType InTy = InputExpr->getType(); 618 QualType OutTy = OutputExpr->getType(); 619 if (Context.hasSameType(InTy, OutTy)) 620 continue; // All types can be tied to themselves. 621 622 // Decide if the input and output are in the same domain (integer/ptr or 623 // floating point. 624 enum AsmDomain { 625 AD_Int, AD_FP, AD_Other 626 } InputDomain, OutputDomain; 627 628 if (InTy->isIntegerType() || InTy->isPointerType()) 629 InputDomain = AD_Int; 630 else if (InTy->isRealFloatingType()) 631 InputDomain = AD_FP; 632 else 633 InputDomain = AD_Other; 634 635 if (OutTy->isIntegerType() || OutTy->isPointerType()) 636 OutputDomain = AD_Int; 637 else if (OutTy->isRealFloatingType()) 638 OutputDomain = AD_FP; 639 else 640 OutputDomain = AD_Other; 641 642 // They are ok if they are the same size and in the same domain. This 643 // allows tying things like: 644 // void* to int* 645 // void* to int if they are the same size. 646 // double to long double if they are the same size. 647 // 648 uint64_t OutSize = Context.getTypeSize(OutTy); 649 uint64_t InSize = Context.getTypeSize(InTy); 650 if (OutSize == InSize && InputDomain == OutputDomain && 651 InputDomain != AD_Other) 652 continue; 653 654 // If the smaller input/output operand is not mentioned in the asm string, 655 // then we can promote the smaller one to a larger input and the asm string 656 // won't notice. 657 bool SmallerValueMentioned = false; 658 659 // If this is a reference to the input and if the input was the smaller 660 // one, then we have to reject this asm. 661 if (isOperandMentioned(InputOpNo, Pieces)) { 662 // This is a use in the asm string of the smaller operand. Since we 663 // codegen this by promoting to a wider value, the asm will get printed 664 // "wrong". 665 SmallerValueMentioned |= InSize < OutSize; 666 } 667 if (isOperandMentioned(TiedTo, Pieces)) { 668 // If this is a reference to the output, and if the output is the larger 669 // value, then it's ok because we'll promote the input to the larger type. 670 SmallerValueMentioned |= OutSize < InSize; 671 } 672 673 // If the smaller value wasn't mentioned in the asm string, and if the 674 // output was a register, just extend the shorter one to the size of the 675 // larger one. 676 if (!SmallerValueMentioned && InputDomain != AD_Other && 677 OutputConstraintInfos[TiedTo].allowsRegister()) { 678 // FIXME: GCC supports the OutSize to be 128 at maximum. Currently codegen 679 // crash when the size larger than the register size. So we limit it here. 680 if (OutTy->isStructureType() && 681 Context.getIntTypeForBitwidth(OutSize, /*Signed*/ false).isNull()) { 682 targetDiag(OutputExpr->getExprLoc(), diag::err_store_value_to_reg); 683 return NS; 684 } 685 686 continue; 687 } 688 689 // Either both of the operands were mentioned or the smaller one was 690 // mentioned. One more special case that we'll allow: if the tied input is 691 // integer, unmentioned, and is a constant, then we'll allow truncating it 692 // down to the size of the destination. 693 if (InputDomain == AD_Int && OutputDomain == AD_Int && 694 !isOperandMentioned(InputOpNo, Pieces) && 695 InputExpr->isEvaluatable(Context)) { 696 CastKind castKind = 697 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); 698 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get(); 699 Exprs[InputOpNo] = InputExpr; 700 NS->setInputExpr(i, InputExpr); 701 continue; 702 } 703 704 targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types) 705 << InTy << OutTy << OutputExpr->getSourceRange() 706 << InputExpr->getSourceRange(); 707 return NS; 708 } 709 710 // Check for conflicts between clobber list and input or output lists 711 SourceLocation ConstraintLoc = 712 getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers, 713 NumLabels, 714 Context.getTargetInfo(), Context); 715 if (ConstraintLoc.isValid()) 716 targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber); 717 718 // Check for duplicate asm operand name between input, output and label lists. 719 typedef std::pair<StringRef , Expr *> NamedOperand; 720 SmallVector<NamedOperand, 4> NamedOperandList; 721 for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i) 722 if (Names[i]) 723 NamedOperandList.emplace_back( 724 std::make_pair(Names[i]->getName(), Exprs[i])); 725 // Sort NamedOperandList. 726 llvm::stable_sort(NamedOperandList, llvm::less_first()); 727 // Find adjacent duplicate operand. 728 SmallVector<NamedOperand, 4>::iterator Found = 729 std::adjacent_find(begin(NamedOperandList), end(NamedOperandList), 730 [](const NamedOperand &LHS, const NamedOperand &RHS) { 731 return LHS.first == RHS.first; 732 }); 733 if (Found != NamedOperandList.end()) { 734 Diag((Found + 1)->second->getBeginLoc(), 735 diag::error_duplicate_asm_operand_name) 736 << (Found + 1)->first; 737 Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name) 738 << Found->first; 739 return StmtError(); 740 } 741 if (NS->isAsmGoto()) 742 setFunctionHasBranchIntoScope(); 743 744 CleanupVarDeclMarking(); 745 DiscardCleanupsInEvaluationContext(); 746 return NS; 747 } 748 749 void Sema::FillInlineAsmIdentifierInfo(Expr *Res, 750 llvm::InlineAsmIdentifierInfo &Info) { 751 QualType T = Res->getType(); 752 Expr::EvalResult Eval; 753 if (T->isFunctionType() || T->isDependentType()) 754 return Info.setLabel(Res); 755 if (Res->isPRValue()) { 756 bool IsEnum = isa<clang::EnumType>(T); 757 if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Res)) 758 if (DRE->getDecl()->getKind() == Decl::EnumConstant) 759 IsEnum = true; 760 if (IsEnum && Res->EvaluateAsRValue(Eval, Context)) 761 return Info.setEnum(Eval.Val.getInt().getSExtValue()); 762 763 return Info.setLabel(Res); 764 } 765 unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); 766 unsigned Type = Size; 767 if (const auto *ATy = Context.getAsArrayType(T)) 768 Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity(); 769 bool IsGlobalLV = false; 770 if (Res->EvaluateAsLValue(Eval, Context)) 771 IsGlobalLV = Eval.isGlobalLValue(); 772 Info.setVar(Res, IsGlobalLV, Size, Type); 773 } 774 775 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS, 776 SourceLocation TemplateKWLoc, 777 UnqualifiedId &Id, 778 bool IsUnevaluatedContext) { 779 780 if (IsUnevaluatedContext) 781 PushExpressionEvaluationContext( 782 ExpressionEvaluationContext::UnevaluatedAbstract, 783 ReuseLambdaContextDecl); 784 785 ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id, 786 /*trailing lparen*/ false, 787 /*is & operand*/ false, 788 /*CorrectionCandidateCallback=*/nullptr, 789 /*IsInlineAsmIdentifier=*/ true); 790 791 if (IsUnevaluatedContext) 792 PopExpressionEvaluationContext(); 793 794 if (!Result.isUsable()) return Result; 795 796 Result = CheckPlaceholderExpr(Result.get()); 797 if (!Result.isUsable()) return Result; 798 799 // Referring to parameters is not allowed in naked functions. 800 if (CheckNakedParmReference(Result.get(), *this)) 801 return ExprError(); 802 803 QualType T = Result.get()->getType(); 804 805 if (T->isDependentType()) { 806 return Result; 807 } 808 809 // Any sort of function type is fine. 810 if (T->isFunctionType()) { 811 return Result; 812 } 813 814 // Otherwise, it needs to be a complete type. 815 if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) { 816 return ExprError(); 817 } 818 819 return Result; 820 } 821 822 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, 823 unsigned &Offset, SourceLocation AsmLoc) { 824 Offset = 0; 825 SmallVector<StringRef, 2> Members; 826 Member.split(Members, "."); 827 828 NamedDecl *FoundDecl = nullptr; 829 830 // MS InlineAsm uses 'this' as a base 831 if (getLangOpts().CPlusPlus && Base.equals("this")) { 832 if (const Type *PT = getCurrentThisType().getTypePtrOrNull()) 833 FoundDecl = PT->getPointeeType()->getAsTagDecl(); 834 } else { 835 LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(), 836 LookupOrdinaryName); 837 if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult()) 838 FoundDecl = BaseResult.getFoundDecl(); 839 } 840 841 if (!FoundDecl) 842 return true; 843 844 for (StringRef NextMember : Members) { 845 const RecordType *RT = nullptr; 846 if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) 847 RT = VD->getType()->getAs<RecordType>(); 848 else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) { 849 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 850 // MS InlineAsm often uses struct pointer aliases as a base 851 QualType QT = TD->getUnderlyingType(); 852 if (const auto *PT = QT->getAs<PointerType>()) 853 QT = PT->getPointeeType(); 854 RT = QT->getAs<RecordType>(); 855 } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl)) 856 RT = TD->getTypeForDecl()->getAs<RecordType>(); 857 else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl)) 858 RT = TD->getType()->getAs<RecordType>(); 859 if (!RT) 860 return true; 861 862 if (RequireCompleteType(AsmLoc, QualType(RT, 0), 863 diag::err_asm_incomplete_type)) 864 return true; 865 866 LookupResult FieldResult(*this, &Context.Idents.get(NextMember), 867 SourceLocation(), LookupMemberName); 868 869 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 870 return true; 871 872 if (!FieldResult.isSingleResult()) 873 return true; 874 FoundDecl = FieldResult.getFoundDecl(); 875 876 // FIXME: Handle IndirectFieldDecl? 877 FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl); 878 if (!FD) 879 return true; 880 881 const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl()); 882 unsigned i = FD->getFieldIndex(); 883 CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i)); 884 Offset += (unsigned)Result.getQuantity(); 885 } 886 887 return false; 888 } 889 890 ExprResult 891 Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member, 892 SourceLocation AsmLoc) { 893 894 QualType T = E->getType(); 895 if (T->isDependentType()) { 896 DeclarationNameInfo NameInfo; 897 NameInfo.setLoc(AsmLoc); 898 NameInfo.setName(&Context.Idents.get(Member)); 899 return CXXDependentScopeMemberExpr::Create( 900 Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(), 901 SourceLocation(), 902 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr); 903 } 904 905 const RecordType *RT = T->getAs<RecordType>(); 906 // FIXME: Diagnose this as field access into a scalar type. 907 if (!RT) 908 return ExprResult(); 909 910 LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc, 911 LookupMemberName); 912 913 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 914 return ExprResult(); 915 916 // Only normal and indirect field results will work. 917 ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl()); 918 if (!FD) 919 FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl()); 920 if (!FD) 921 return ExprResult(); 922 923 // Make an Expr to thread through OpDecl. 924 ExprResult Result = BuildMemberReferenceExpr( 925 E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(), 926 SourceLocation(), nullptr, FieldResult, nullptr, nullptr); 927 928 return Result; 929 } 930 931 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, 932 ArrayRef<Token> AsmToks, 933 StringRef AsmString, 934 unsigned NumOutputs, unsigned NumInputs, 935 ArrayRef<StringRef> Constraints, 936 ArrayRef<StringRef> Clobbers, 937 ArrayRef<Expr*> Exprs, 938 SourceLocation EndLoc) { 939 bool IsSimple = (NumOutputs != 0 || NumInputs != 0); 940 setFunctionHasBranchProtectedScope(); 941 942 bool InvalidOperand = false; 943 for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) { 944 Expr *E = Exprs[I]; 945 if (E->getType()->isBitIntType()) { 946 InvalidOperand = true; 947 Diag(E->getBeginLoc(), diag::err_asm_invalid_type) 948 << E->getType() << (I < NumOutputs) 949 << E->getSourceRange(); 950 } else if (E->refersToBitField()) { 951 InvalidOperand = true; 952 FieldDecl *BitField = E->getSourceBitField(); 953 Diag(E->getBeginLoc(), diag::err_ms_asm_bitfield_unsupported) 954 << E->getSourceRange(); 955 Diag(BitField->getLocation(), diag::note_bitfield_decl); 956 } 957 } 958 if (InvalidOperand) 959 return StmtError(); 960 961 MSAsmStmt *NS = 962 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, 963 /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, 964 Constraints, Exprs, AsmString, 965 Clobbers, EndLoc); 966 return NS; 967 } 968 969 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName, 970 SourceLocation Location, 971 bool AlwaysCreate) { 972 LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName), 973 Location); 974 975 if (Label->isMSAsmLabel()) { 976 // If we have previously created this label implicitly, mark it as used. 977 Label->markUsed(Context); 978 } else { 979 // Otherwise, insert it, but only resolve it if we have seen the label itself. 980 std::string InternalName; 981 llvm::raw_string_ostream OS(InternalName); 982 // Create an internal name for the label. The name should not be a valid 983 // mangled name, and should be unique. We use a dot to make the name an 984 // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a 985 // unique label is generated each time this blob is emitted, even after 986 // inlining or LTO. 987 OS << "__MSASMLABEL_.${:uid}__"; 988 for (char C : ExternalLabelName) { 989 OS << C; 990 // We escape '$' in asm strings by replacing it with "$$" 991 if (C == '$') 992 OS << '$'; 993 } 994 Label->setMSAsmLabel(OS.str()); 995 } 996 if (AlwaysCreate) { 997 // The label might have been created implicitly from a previously encountered 998 // goto statement. So, for both newly created and looked up labels, we mark 999 // them as resolved. 1000 Label->setMSAsmLabelResolved(); 1001 } 1002 // Adjust their location for being able to generate accurate diagnostics. 1003 Label->setLocation(Location); 1004 1005 return Label; 1006 } 1007