1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for inline asm statements. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ExprCXX.h" 14 #include "clang/AST/GlobalDecl.h" 15 #include "clang/AST/RecordLayout.h" 16 #include "clang/AST/TypeLoc.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/Lex/Preprocessor.h" 19 #include "clang/Sema/Initialization.h" 20 #include "clang/Sema/Lookup.h" 21 #include "clang/Sema/Scope.h" 22 #include "clang/Sema/ScopeInfo.h" 23 #include "clang/Sema/SemaInternal.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/MC/MCParser/MCAsmParser.h" 27 using namespace clang; 28 using namespace sema; 29 30 /// Remove the upper-level LValueToRValue cast from an expression. 31 static void removeLValueToRValueCast(Expr *E) { 32 Expr *Parent = E; 33 Expr *ExprUnderCast = nullptr; 34 SmallVector<Expr *, 8> ParentsToUpdate; 35 36 while (true) { 37 ParentsToUpdate.push_back(Parent); 38 if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) { 39 Parent = ParenE->getSubExpr(); 40 continue; 41 } 42 43 Expr *Child = nullptr; 44 CastExpr *ParentCast = dyn_cast<CastExpr>(Parent); 45 if (ParentCast) 46 Child = ParentCast->getSubExpr(); 47 else 48 return; 49 50 if (auto *CastE = dyn_cast<CastExpr>(Child)) 51 if (CastE->getCastKind() == CK_LValueToRValue) { 52 ExprUnderCast = CastE->getSubExpr(); 53 // LValueToRValue cast inside GCCAsmStmt requires an explicit cast. 54 ParentCast->setSubExpr(ExprUnderCast); 55 break; 56 } 57 Parent = Child; 58 } 59 60 // Update parent expressions to have same ValueType as the underlying. 61 assert(ExprUnderCast && 62 "Should be reachable only if LValueToRValue cast was found!"); 63 auto ValueKind = ExprUnderCast->getValueKind(); 64 for (Expr *E : ParentsToUpdate) 65 E->setValueKind(ValueKind); 66 } 67 68 /// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension) 69 /// and fix the argument with removing LValueToRValue cast from the expression. 70 static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument, 71 Sema &S) { 72 if (!S.getLangOpts().HeinousExtensions) { 73 S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue) 74 << BadArgument->getSourceRange(); 75 } else { 76 S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue) 77 << BadArgument->getSourceRange(); 78 } 79 removeLValueToRValueCast(BadArgument); 80 } 81 82 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently 83 /// ignore "noop" casts in places where an lvalue is required by an inline asm. 84 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but 85 /// provide a strong guidance to not use it. 86 /// 87 /// This method checks to see if the argument is an acceptable l-value and 88 /// returns false if it is a case we can handle. 89 static bool CheckAsmLValue(Expr *E, Sema &S) { 90 // Type dependent expressions will be checked during instantiation. 91 if (E->isTypeDependent()) 92 return false; 93 94 if (E->isLValue()) 95 return false; // Cool, this is an lvalue. 96 97 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we 98 // are supposed to allow. 99 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); 100 if (E != E2 && E2->isLValue()) { 101 emitAndFixInvalidAsmCastLValue(E2, E, S); 102 // Accept, even if we emitted an error diagnostic. 103 return false; 104 } 105 106 // None of the above, just randomly invalid non-lvalue. 107 return true; 108 } 109 110 /// isOperandMentioned - Return true if the specified operand # is mentioned 111 /// anywhere in the decomposed asm string. 112 static bool 113 isOperandMentioned(unsigned OpNo, 114 ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { 115 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { 116 const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; 117 if (!Piece.isOperand()) 118 continue; 119 120 // If this is a reference to the input and if the input was the smaller 121 // one, then we have to reject this asm. 122 if (Piece.getOperandNo() == OpNo) 123 return true; 124 } 125 return false; 126 } 127 128 static bool CheckNakedParmReference(Expr *E, Sema &S) { 129 FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext); 130 if (!Func) 131 return false; 132 if (!Func->hasAttr<NakedAttr>()) 133 return false; 134 135 SmallVector<Expr*, 4> WorkList; 136 WorkList.push_back(E); 137 while (WorkList.size()) { 138 Expr *E = WorkList.pop_back_val(); 139 if (isa<CXXThisExpr>(E)) { 140 S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref); 141 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 142 return true; 143 } 144 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 145 if (isa<ParmVarDecl>(DRE->getDecl())) { 146 S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref); 147 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 148 return true; 149 } 150 } 151 for (Stmt *Child : E->children()) { 152 if (Expr *E = dyn_cast_or_null<Expr>(Child)) 153 WorkList.push_back(E); 154 } 155 } 156 return false; 157 } 158 159 /// Returns true if given expression is not compatible with inline 160 /// assembly's memory constraint; false otherwise. 161 static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E, 162 TargetInfo::ConstraintInfo &Info, 163 bool is_input_expr) { 164 enum { 165 ExprBitfield = 0, 166 ExprVectorElt, 167 ExprGlobalRegVar, 168 ExprSafeType 169 } EType = ExprSafeType; 170 171 // Bitfields, vector elements and global register variables are not 172 // compatible. 173 if (E->refersToBitField()) 174 EType = ExprBitfield; 175 else if (E->refersToVectorElement()) 176 EType = ExprVectorElt; 177 else if (E->refersToGlobalRegisterVar()) 178 EType = ExprGlobalRegVar; 179 180 if (EType != ExprSafeType) { 181 S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint) 182 << EType << is_input_expr << Info.getConstraintStr() 183 << E->getSourceRange(); 184 return true; 185 } 186 187 return false; 188 } 189 190 // Extracting the register name from the Expression value, 191 // if there is no register name to extract, returns "" 192 static StringRef extractRegisterName(const Expr *Expression, 193 const TargetInfo &Target) { 194 Expression = Expression->IgnoreImpCasts(); 195 if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) { 196 // Handle cases where the expression is a variable 197 const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl()); 198 if (Variable && Variable->getStorageClass() == SC_Register) { 199 if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>()) 200 if (Target.isValidGCCRegisterName(Attr->getLabel())) 201 return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true); 202 } 203 } 204 return ""; 205 } 206 207 // Checks if there is a conflict between the input and output lists with the 208 // clobbers list. If there's a conflict, returns the location of the 209 // conflicted clobber, else returns nullptr 210 static SourceLocation 211 getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints, 212 StringLiteral **Clobbers, int NumClobbers, 213 unsigned NumLabels, 214 const TargetInfo &Target, ASTContext &Cont) { 215 llvm::StringSet<> InOutVars; 216 // Collect all the input and output registers from the extended asm 217 // statement in order to check for conflicts with the clobber list 218 for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) { 219 StringRef Constraint = Constraints[i]->getString(); 220 StringRef InOutReg = Target.getConstraintRegister( 221 Constraint, extractRegisterName(Exprs[i], Target)); 222 if (InOutReg != "") 223 InOutVars.insert(InOutReg); 224 } 225 // Check for each item in the clobber list if it conflicts with the input 226 // or output 227 for (int i = 0; i < NumClobbers; ++i) { 228 StringRef Clobber = Clobbers[i]->getString(); 229 // We only check registers, therefore we don't check cc and memory 230 // clobbers 231 if (Clobber == "cc" || Clobber == "memory") 232 continue; 233 Clobber = Target.getNormalizedGCCRegisterName(Clobber, true); 234 // Go over the output's registers we collected 235 if (InOutVars.count(Clobber)) 236 return Clobbers[i]->getBeginLoc(); 237 } 238 return SourceLocation(); 239 } 240 241 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, 242 bool IsVolatile, unsigned NumOutputs, 243 unsigned NumInputs, IdentifierInfo **Names, 244 MultiExprArg constraints, MultiExprArg Exprs, 245 Expr *asmString, MultiExprArg clobbers, 246 unsigned NumLabels, 247 SourceLocation RParenLoc) { 248 unsigned NumClobbers = clobbers.size(); 249 StringLiteral **Constraints = 250 reinterpret_cast<StringLiteral**>(constraints.data()); 251 StringLiteral *AsmString = cast<StringLiteral>(asmString); 252 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); 253 254 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 255 256 // The parser verifies that there is a string literal here. 257 assert(AsmString->isAscii()); 258 259 FunctionDecl *FD = dyn_cast<FunctionDecl>(getCurLexicalContext()); 260 llvm::StringMap<bool> FeatureMap; 261 Context.getFunctionFeatureMap(FeatureMap, FD); 262 263 for (unsigned i = 0; i != NumOutputs; i++) { 264 StringLiteral *Literal = Constraints[i]; 265 assert(Literal->isAscii()); 266 267 StringRef OutputName; 268 if (Names[i]) 269 OutputName = Names[i]->getName(); 270 271 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); 272 if (!Context.getTargetInfo().validateOutputConstraint(Info)) { 273 targetDiag(Literal->getBeginLoc(), 274 diag::err_asm_invalid_output_constraint) 275 << Info.getConstraintStr(); 276 return new (Context) 277 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 278 NumInputs, Names, Constraints, Exprs.data(), AsmString, 279 NumClobbers, Clobbers, NumLabels, RParenLoc); 280 } 281 282 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 283 if (ER.isInvalid()) 284 return StmtError(); 285 Exprs[i] = ER.get(); 286 287 // Check that the output exprs are valid lvalues. 288 Expr *OutputExpr = Exprs[i]; 289 290 // Referring to parameters is not allowed in naked functions. 291 if (CheckNakedParmReference(OutputExpr, *this)) 292 return StmtError(); 293 294 // Check that the output expression is compatible with memory constraint. 295 if (Info.allowsMemory() && 296 checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false)) 297 return StmtError(); 298 299 // Disallow _ExtInt, since the backends tend to have difficulties with 300 // non-normal sizes. 301 if (OutputExpr->getType()->isExtIntType()) 302 return StmtError( 303 Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type) 304 << OutputExpr->getType() << 0 /*Input*/ 305 << OutputExpr->getSourceRange()); 306 307 OutputConstraintInfos.push_back(Info); 308 309 // If this is dependent, just continue. 310 if (OutputExpr->isTypeDependent()) 311 continue; 312 313 Expr::isModifiableLvalueResult IsLV = 314 OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr); 315 switch (IsLV) { 316 case Expr::MLV_Valid: 317 // Cool, this is an lvalue. 318 break; 319 case Expr::MLV_ArrayType: 320 // This is OK too. 321 break; 322 case Expr::MLV_LValueCast: { 323 const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context); 324 emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this); 325 // Accept, even if we emitted an error diagnostic. 326 break; 327 } 328 case Expr::MLV_IncompleteType: 329 case Expr::MLV_IncompleteVoidType: 330 if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(), 331 diag::err_dereference_incomplete_type)) 332 return StmtError(); 333 LLVM_FALLTHROUGH; 334 default: 335 return StmtError(Diag(OutputExpr->getBeginLoc(), 336 diag::err_asm_invalid_lvalue_in_output) 337 << OutputExpr->getSourceRange()); 338 } 339 340 unsigned Size = Context.getTypeSize(OutputExpr->getType()); 341 if (!Context.getTargetInfo().validateOutputSize( 342 FeatureMap, Literal->getString(), Size)) { 343 targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size) 344 << Info.getConstraintStr(); 345 return new (Context) 346 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 347 NumInputs, Names, Constraints, Exprs.data(), AsmString, 348 NumClobbers, Clobbers, NumLabels, RParenLoc); 349 } 350 } 351 352 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 353 354 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { 355 StringLiteral *Literal = Constraints[i]; 356 assert(Literal->isAscii()); 357 358 StringRef InputName; 359 if (Names[i]) 360 InputName = Names[i]->getName(); 361 362 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); 363 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos, 364 Info)) { 365 targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint) 366 << Info.getConstraintStr(); 367 return new (Context) 368 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 369 NumInputs, Names, Constraints, Exprs.data(), AsmString, 370 NumClobbers, Clobbers, NumLabels, RParenLoc); 371 } 372 373 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 374 if (ER.isInvalid()) 375 return StmtError(); 376 Exprs[i] = ER.get(); 377 378 Expr *InputExpr = Exprs[i]; 379 380 // Referring to parameters is not allowed in naked functions. 381 if (CheckNakedParmReference(InputExpr, *this)) 382 return StmtError(); 383 384 // Check that the input expression is compatible with memory constraint. 385 if (Info.allowsMemory() && 386 checkExprMemoryConstraintCompat(*this, InputExpr, Info, true)) 387 return StmtError(); 388 389 // Only allow void types for memory constraints. 390 if (Info.allowsMemory() && !Info.allowsRegister()) { 391 if (CheckAsmLValue(InputExpr, *this)) 392 return StmtError(Diag(InputExpr->getBeginLoc(), 393 diag::err_asm_invalid_lvalue_in_input) 394 << Info.getConstraintStr() 395 << InputExpr->getSourceRange()); 396 } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) { 397 if (!InputExpr->isValueDependent()) { 398 Expr::EvalResult EVResult; 399 if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) { 400 // For compatibility with GCC, we also allow pointers that would be 401 // integral constant expressions if they were cast to int. 402 llvm::APSInt IntResult; 403 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 404 Context)) 405 if (!Info.isValidAsmImmediate(IntResult)) 406 return StmtError(Diag(InputExpr->getBeginLoc(), 407 diag::err_invalid_asm_value_for_constraint) 408 << IntResult.toString(10) 409 << Info.getConstraintStr() 410 << InputExpr->getSourceRange()); 411 } 412 } 413 414 } else { 415 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); 416 if (Result.isInvalid()) 417 return StmtError(); 418 419 Exprs[i] = Result.get(); 420 } 421 422 if (Info.allowsRegister()) { 423 if (InputExpr->getType()->isVoidType()) { 424 return StmtError( 425 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input) 426 << InputExpr->getType() << Info.getConstraintStr() 427 << InputExpr->getSourceRange()); 428 } 429 } 430 431 if (InputExpr->getType()->isExtIntType()) 432 return StmtError( 433 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type) 434 << InputExpr->getType() << 1 /*Output*/ 435 << InputExpr->getSourceRange()); 436 437 InputConstraintInfos.push_back(Info); 438 439 const Type *Ty = Exprs[i]->getType().getTypePtr(); 440 if (Ty->isDependentType()) 441 continue; 442 443 if (!Ty->isVoidType() || !Info.allowsMemory()) 444 if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(), 445 diag::err_dereference_incomplete_type)) 446 return StmtError(); 447 448 unsigned Size = Context.getTypeSize(Ty); 449 if (!Context.getTargetInfo().validateInputSize(FeatureMap, 450 Literal->getString(), Size)) 451 return StmtResult( 452 targetDiag(InputExpr->getBeginLoc(), diag::err_asm_invalid_input_size) 453 << Info.getConstraintStr()); 454 } 455 456 // Check that the clobbers are valid. 457 for (unsigned i = 0; i != NumClobbers; i++) { 458 StringLiteral *Literal = Clobbers[i]; 459 assert(Literal->isAscii()); 460 461 StringRef Clobber = Literal->getString(); 462 463 if (!Context.getTargetInfo().isValidClobber(Clobber)) { 464 targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name) 465 << Clobber; 466 return new (Context) 467 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 468 NumInputs, Names, Constraints, Exprs.data(), AsmString, 469 NumClobbers, Clobbers, NumLabels, RParenLoc); 470 } 471 } 472 473 GCCAsmStmt *NS = 474 new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 475 NumInputs, Names, Constraints, Exprs.data(), 476 AsmString, NumClobbers, Clobbers, NumLabels, 477 RParenLoc); 478 // Validate the asm string, ensuring it makes sense given the operands we 479 // have. 480 SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; 481 unsigned DiagOffs; 482 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { 483 targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) 484 << AsmString->getSourceRange(); 485 return NS; 486 } 487 488 // Validate constraints and modifiers. 489 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { 490 GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; 491 if (!Piece.isOperand()) continue; 492 493 // Look for the correct constraint index. 494 unsigned ConstraintIdx = Piece.getOperandNo(); 495 unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs(); 496 // Labels are the last in the Exprs list. 497 if (NS->isAsmGoto() && ConstraintIdx >= NumOperands) 498 continue; 499 // Look for the (ConstraintIdx - NumOperands + 1)th constraint with 500 // modifier '+'. 501 if (ConstraintIdx >= NumOperands) { 502 unsigned I = 0, E = NS->getNumOutputs(); 503 504 for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I) 505 if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) { 506 ConstraintIdx = I; 507 break; 508 } 509 510 assert(I != E && "Invalid operand number should have been caught in " 511 " AnalyzeAsmString"); 512 } 513 514 // Now that we have the right indexes go ahead and check. 515 StringLiteral *Literal = Constraints[ConstraintIdx]; 516 const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); 517 if (Ty->isDependentType() || Ty->isIncompleteType()) 518 continue; 519 520 unsigned Size = Context.getTypeSize(Ty); 521 std::string SuggestedModifier; 522 if (!Context.getTargetInfo().validateConstraintModifier( 523 Literal->getString(), Piece.getModifier(), Size, 524 SuggestedModifier)) { 525 targetDiag(Exprs[ConstraintIdx]->getBeginLoc(), 526 diag::warn_asm_mismatched_size_modifier); 527 528 if (!SuggestedModifier.empty()) { 529 auto B = targetDiag(Piece.getRange().getBegin(), 530 diag::note_asm_missing_constraint_modifier) 531 << SuggestedModifier; 532 SuggestedModifier = "%" + SuggestedModifier + Piece.getString(); 533 B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier); 534 } 535 } 536 } 537 538 // Validate tied input operands for type mismatches. 539 unsigned NumAlternatives = ~0U; 540 for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) { 541 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 542 StringRef ConstraintStr = Info.getConstraintStr(); 543 unsigned AltCount = ConstraintStr.count(',') + 1; 544 if (NumAlternatives == ~0U) { 545 NumAlternatives = AltCount; 546 } else if (NumAlternatives != AltCount) { 547 targetDiag(NS->getOutputExpr(i)->getBeginLoc(), 548 diag::err_asm_unexpected_constraint_alternatives) 549 << NumAlternatives << AltCount; 550 return NS; 551 } 552 } 553 SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(), 554 ~0U); 555 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { 556 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 557 StringRef ConstraintStr = Info.getConstraintStr(); 558 unsigned AltCount = ConstraintStr.count(',') + 1; 559 if (NumAlternatives == ~0U) { 560 NumAlternatives = AltCount; 561 } else if (NumAlternatives != AltCount) { 562 targetDiag(NS->getInputExpr(i)->getBeginLoc(), 563 diag::err_asm_unexpected_constraint_alternatives) 564 << NumAlternatives << AltCount; 565 return NS; 566 } 567 568 // If this is a tied constraint, verify that the output and input have 569 // either exactly the same type, or that they are int/ptr operands with the 570 // same size (int/long, int*/long, are ok etc). 571 if (!Info.hasTiedOperand()) continue; 572 573 unsigned TiedTo = Info.getTiedOperand(); 574 unsigned InputOpNo = i+NumOutputs; 575 Expr *OutputExpr = Exprs[TiedTo]; 576 Expr *InputExpr = Exprs[InputOpNo]; 577 578 // Make sure no more than one input constraint matches each output. 579 assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range"); 580 if (InputMatchedToOutput[TiedTo] != ~0U) { 581 targetDiag(NS->getInputExpr(i)->getBeginLoc(), 582 diag::err_asm_input_duplicate_match) 583 << TiedTo; 584 targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(), 585 diag::note_asm_input_duplicate_first) 586 << TiedTo; 587 return NS; 588 } 589 InputMatchedToOutput[TiedTo] = i; 590 591 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) 592 continue; 593 594 QualType InTy = InputExpr->getType(); 595 QualType OutTy = OutputExpr->getType(); 596 if (Context.hasSameType(InTy, OutTy)) 597 continue; // All types can be tied to themselves. 598 599 // Decide if the input and output are in the same domain (integer/ptr or 600 // floating point. 601 enum AsmDomain { 602 AD_Int, AD_FP, AD_Other 603 } InputDomain, OutputDomain; 604 605 if (InTy->isIntegerType() || InTy->isPointerType()) 606 InputDomain = AD_Int; 607 else if (InTy->isRealFloatingType()) 608 InputDomain = AD_FP; 609 else 610 InputDomain = AD_Other; 611 612 if (OutTy->isIntegerType() || OutTy->isPointerType()) 613 OutputDomain = AD_Int; 614 else if (OutTy->isRealFloatingType()) 615 OutputDomain = AD_FP; 616 else 617 OutputDomain = AD_Other; 618 619 // They are ok if they are the same size and in the same domain. This 620 // allows tying things like: 621 // void* to int* 622 // void* to int if they are the same size. 623 // double to long double if they are the same size. 624 // 625 uint64_t OutSize = Context.getTypeSize(OutTy); 626 uint64_t InSize = Context.getTypeSize(InTy); 627 if (OutSize == InSize && InputDomain == OutputDomain && 628 InputDomain != AD_Other) 629 continue; 630 631 // If the smaller input/output operand is not mentioned in the asm string, 632 // then we can promote the smaller one to a larger input and the asm string 633 // won't notice. 634 bool SmallerValueMentioned = false; 635 636 // If this is a reference to the input and if the input was the smaller 637 // one, then we have to reject this asm. 638 if (isOperandMentioned(InputOpNo, Pieces)) { 639 // This is a use in the asm string of the smaller operand. Since we 640 // codegen this by promoting to a wider value, the asm will get printed 641 // "wrong". 642 SmallerValueMentioned |= InSize < OutSize; 643 } 644 if (isOperandMentioned(TiedTo, Pieces)) { 645 // If this is a reference to the output, and if the output is the larger 646 // value, then it's ok because we'll promote the input to the larger type. 647 SmallerValueMentioned |= OutSize < InSize; 648 } 649 650 // If the smaller value wasn't mentioned in the asm string, and if the 651 // output was a register, just extend the shorter one to the size of the 652 // larger one. 653 if (!SmallerValueMentioned && InputDomain != AD_Other && 654 OutputConstraintInfos[TiedTo].allowsRegister()) 655 continue; 656 657 // Either both of the operands were mentioned or the smaller one was 658 // mentioned. One more special case that we'll allow: if the tied input is 659 // integer, unmentioned, and is a constant, then we'll allow truncating it 660 // down to the size of the destination. 661 if (InputDomain == AD_Int && OutputDomain == AD_Int && 662 !isOperandMentioned(InputOpNo, Pieces) && 663 InputExpr->isEvaluatable(Context)) { 664 CastKind castKind = 665 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); 666 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get(); 667 Exprs[InputOpNo] = InputExpr; 668 NS->setInputExpr(i, InputExpr); 669 continue; 670 } 671 672 targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types) 673 << InTy << OutTy << OutputExpr->getSourceRange() 674 << InputExpr->getSourceRange(); 675 return NS; 676 } 677 678 // Check for conflicts between clobber list and input or output lists 679 SourceLocation ConstraintLoc = 680 getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers, 681 NumLabels, 682 Context.getTargetInfo(), Context); 683 if (ConstraintLoc.isValid()) 684 targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber); 685 686 // Check for duplicate asm operand name between input, output and label lists. 687 typedef std::pair<StringRef , Expr *> NamedOperand; 688 SmallVector<NamedOperand, 4> NamedOperandList; 689 for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i) 690 if (Names[i]) 691 NamedOperandList.emplace_back( 692 std::make_pair(Names[i]->getName(), Exprs[i])); 693 // Sort NamedOperandList. 694 std::stable_sort(NamedOperandList.begin(), NamedOperandList.end(), 695 [](const NamedOperand &LHS, const NamedOperand &RHS) { 696 return LHS.first < RHS.first; 697 }); 698 // Find adjacent duplicate operand. 699 SmallVector<NamedOperand, 4>::iterator Found = 700 std::adjacent_find(begin(NamedOperandList), end(NamedOperandList), 701 [](const NamedOperand &LHS, const NamedOperand &RHS) { 702 return LHS.first == RHS.first; 703 }); 704 if (Found != NamedOperandList.end()) { 705 Diag((Found + 1)->second->getBeginLoc(), 706 diag::error_duplicate_asm_operand_name) 707 << (Found + 1)->first; 708 Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name) 709 << Found->first; 710 return StmtError(); 711 } 712 if (NS->isAsmGoto()) 713 setFunctionHasBranchIntoScope(); 714 return NS; 715 } 716 717 void Sema::FillInlineAsmIdentifierInfo(Expr *Res, 718 llvm::InlineAsmIdentifierInfo &Info) { 719 QualType T = Res->getType(); 720 Expr::EvalResult Eval; 721 if (T->isFunctionType() || T->isDependentType()) 722 return Info.setLabel(Res); 723 if (Res->isRValue()) { 724 bool IsEnum = isa<clang::EnumType>(T); 725 if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Res)) 726 if (DRE->getDecl()->getKind() == Decl::EnumConstant) 727 IsEnum = true; 728 if (IsEnum && Res->EvaluateAsRValue(Eval, Context)) 729 return Info.setEnum(Eval.Val.getInt().getSExtValue()); 730 731 return Info.setLabel(Res); 732 } 733 unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); 734 unsigned Type = Size; 735 if (const auto *ATy = Context.getAsArrayType(T)) 736 Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity(); 737 bool IsGlobalLV = false; 738 if (Res->EvaluateAsLValue(Eval, Context)) 739 IsGlobalLV = Eval.isGlobalLValue(); 740 Info.setVar(Res, IsGlobalLV, Size, Type); 741 } 742 743 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS, 744 SourceLocation TemplateKWLoc, 745 UnqualifiedId &Id, 746 bool IsUnevaluatedContext) { 747 748 if (IsUnevaluatedContext) 749 PushExpressionEvaluationContext( 750 ExpressionEvaluationContext::UnevaluatedAbstract, 751 ReuseLambdaContextDecl); 752 753 ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id, 754 /*trailing lparen*/ false, 755 /*is & operand*/ false, 756 /*CorrectionCandidateCallback=*/nullptr, 757 /*IsInlineAsmIdentifier=*/ true); 758 759 if (IsUnevaluatedContext) 760 PopExpressionEvaluationContext(); 761 762 if (!Result.isUsable()) return Result; 763 764 Result = CheckPlaceholderExpr(Result.get()); 765 if (!Result.isUsable()) return Result; 766 767 // Referring to parameters is not allowed in naked functions. 768 if (CheckNakedParmReference(Result.get(), *this)) 769 return ExprError(); 770 771 QualType T = Result.get()->getType(); 772 773 if (T->isDependentType()) { 774 return Result; 775 } 776 777 // Any sort of function type is fine. 778 if (T->isFunctionType()) { 779 return Result; 780 } 781 782 // Otherwise, it needs to be a complete type. 783 if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) { 784 return ExprError(); 785 } 786 787 return Result; 788 } 789 790 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, 791 unsigned &Offset, SourceLocation AsmLoc) { 792 Offset = 0; 793 SmallVector<StringRef, 2> Members; 794 Member.split(Members, "."); 795 796 NamedDecl *FoundDecl = nullptr; 797 798 // MS InlineAsm uses 'this' as a base 799 if (getLangOpts().CPlusPlus && Base.equals("this")) { 800 if (const Type *PT = getCurrentThisType().getTypePtrOrNull()) 801 FoundDecl = PT->getPointeeType()->getAsTagDecl(); 802 } else { 803 LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(), 804 LookupOrdinaryName); 805 if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult()) 806 FoundDecl = BaseResult.getFoundDecl(); 807 } 808 809 if (!FoundDecl) 810 return true; 811 812 for (StringRef NextMember : Members) { 813 const RecordType *RT = nullptr; 814 if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) 815 RT = VD->getType()->getAs<RecordType>(); 816 else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) { 817 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 818 // MS InlineAsm often uses struct pointer aliases as a base 819 QualType QT = TD->getUnderlyingType(); 820 if (const auto *PT = QT->getAs<PointerType>()) 821 QT = PT->getPointeeType(); 822 RT = QT->getAs<RecordType>(); 823 } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl)) 824 RT = TD->getTypeForDecl()->getAs<RecordType>(); 825 else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl)) 826 RT = TD->getType()->getAs<RecordType>(); 827 if (!RT) 828 return true; 829 830 if (RequireCompleteType(AsmLoc, QualType(RT, 0), 831 diag::err_asm_incomplete_type)) 832 return true; 833 834 LookupResult FieldResult(*this, &Context.Idents.get(NextMember), 835 SourceLocation(), LookupMemberName); 836 837 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 838 return true; 839 840 if (!FieldResult.isSingleResult()) 841 return true; 842 FoundDecl = FieldResult.getFoundDecl(); 843 844 // FIXME: Handle IndirectFieldDecl? 845 FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl); 846 if (!FD) 847 return true; 848 849 const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl()); 850 unsigned i = FD->getFieldIndex(); 851 CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i)); 852 Offset += (unsigned)Result.getQuantity(); 853 } 854 855 return false; 856 } 857 858 ExprResult 859 Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member, 860 SourceLocation AsmLoc) { 861 862 QualType T = E->getType(); 863 if (T->isDependentType()) { 864 DeclarationNameInfo NameInfo; 865 NameInfo.setLoc(AsmLoc); 866 NameInfo.setName(&Context.Idents.get(Member)); 867 return CXXDependentScopeMemberExpr::Create( 868 Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(), 869 SourceLocation(), 870 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr); 871 } 872 873 const RecordType *RT = T->getAs<RecordType>(); 874 // FIXME: Diagnose this as field access into a scalar type. 875 if (!RT) 876 return ExprResult(); 877 878 LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc, 879 LookupMemberName); 880 881 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 882 return ExprResult(); 883 884 // Only normal and indirect field results will work. 885 ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl()); 886 if (!FD) 887 FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl()); 888 if (!FD) 889 return ExprResult(); 890 891 // Make an Expr to thread through OpDecl. 892 ExprResult Result = BuildMemberReferenceExpr( 893 E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(), 894 SourceLocation(), nullptr, FieldResult, nullptr, nullptr); 895 896 return Result; 897 } 898 899 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, 900 ArrayRef<Token> AsmToks, 901 StringRef AsmString, 902 unsigned NumOutputs, unsigned NumInputs, 903 ArrayRef<StringRef> Constraints, 904 ArrayRef<StringRef> Clobbers, 905 ArrayRef<Expr*> Exprs, 906 SourceLocation EndLoc) { 907 bool IsSimple = (NumOutputs != 0 || NumInputs != 0); 908 setFunctionHasBranchProtectedScope(); 909 910 for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) { 911 if (Exprs[I]->getType()->isExtIntType()) 912 return StmtError( 913 Diag(Exprs[I]->getBeginLoc(), diag::err_asm_invalid_type) 914 << Exprs[I]->getType() << (I < NumOutputs) 915 << Exprs[I]->getSourceRange()); 916 } 917 918 MSAsmStmt *NS = 919 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, 920 /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, 921 Constraints, Exprs, AsmString, 922 Clobbers, EndLoc); 923 return NS; 924 } 925 926 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName, 927 SourceLocation Location, 928 bool AlwaysCreate) { 929 LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName), 930 Location); 931 932 if (Label->isMSAsmLabel()) { 933 // If we have previously created this label implicitly, mark it as used. 934 Label->markUsed(Context); 935 } else { 936 // Otherwise, insert it, but only resolve it if we have seen the label itself. 937 std::string InternalName; 938 llvm::raw_string_ostream OS(InternalName); 939 // Create an internal name for the label. The name should not be a valid 940 // mangled name, and should be unique. We use a dot to make the name an 941 // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a 942 // unique label is generated each time this blob is emitted, even after 943 // inlining or LTO. 944 OS << "__MSASMLABEL_.${:uid}__"; 945 for (char C : ExternalLabelName) { 946 OS << C; 947 // We escape '$' in asm strings by replacing it with "$$" 948 if (C == '$') 949 OS << '$'; 950 } 951 Label->setMSAsmLabel(OS.str()); 952 } 953 if (AlwaysCreate) { 954 // The label might have been created implicitly from a previously encountered 955 // goto statement. So, for both newly created and looked up labels, we mark 956 // them as resolved. 957 Label->setMSAsmLabelResolved(); 958 } 959 // Adjust their location for being able to generate accurate diagnostics. 960 Label->setLocation(Location); 961 962 return Label; 963 } 964