1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for inline asm statements. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ExprCXX.h" 14 #include "clang/AST/GlobalDecl.h" 15 #include "clang/AST/RecordLayout.h" 16 #include "clang/AST/TypeLoc.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/Lex/Preprocessor.h" 19 #include "clang/Sema/Initialization.h" 20 #include "clang/Sema/Lookup.h" 21 #include "clang/Sema/Scope.h" 22 #include "clang/Sema/ScopeInfo.h" 23 #include "clang/Sema/SemaInternal.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSet.h" 27 #include "llvm/MC/MCParser/MCAsmParser.h" 28 #include <optional> 29 using namespace clang; 30 using namespace sema; 31 32 /// Remove the upper-level LValueToRValue cast from an expression. 33 static void removeLValueToRValueCast(Expr *E) { 34 Expr *Parent = E; 35 Expr *ExprUnderCast = nullptr; 36 SmallVector<Expr *, 8> ParentsToUpdate; 37 38 while (true) { 39 ParentsToUpdate.push_back(Parent); 40 if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) { 41 Parent = ParenE->getSubExpr(); 42 continue; 43 } 44 45 Expr *Child = nullptr; 46 CastExpr *ParentCast = dyn_cast<CastExpr>(Parent); 47 if (ParentCast) 48 Child = ParentCast->getSubExpr(); 49 else 50 return; 51 52 if (auto *CastE = dyn_cast<CastExpr>(Child)) 53 if (CastE->getCastKind() == CK_LValueToRValue) { 54 ExprUnderCast = CastE->getSubExpr(); 55 // LValueToRValue cast inside GCCAsmStmt requires an explicit cast. 56 ParentCast->setSubExpr(ExprUnderCast); 57 break; 58 } 59 Parent = Child; 60 } 61 62 // Update parent expressions to have same ValueType as the underlying. 63 assert(ExprUnderCast && 64 "Should be reachable only if LValueToRValue cast was found!"); 65 auto ValueKind = ExprUnderCast->getValueKind(); 66 for (Expr *E : ParentsToUpdate) 67 E->setValueKind(ValueKind); 68 } 69 70 /// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension) 71 /// and fix the argument with removing LValueToRValue cast from the expression. 72 static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument, 73 Sema &S) { 74 if (!S.getLangOpts().HeinousExtensions) { 75 S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue) 76 << BadArgument->getSourceRange(); 77 } else { 78 S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue) 79 << BadArgument->getSourceRange(); 80 } 81 removeLValueToRValueCast(BadArgument); 82 } 83 84 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently 85 /// ignore "noop" casts in places where an lvalue is required by an inline asm. 86 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but 87 /// provide a strong guidance to not use it. 88 /// 89 /// This method checks to see if the argument is an acceptable l-value and 90 /// returns false if it is a case we can handle. 91 static bool CheckAsmLValue(Expr *E, Sema &S) { 92 // Type dependent expressions will be checked during instantiation. 93 if (E->isTypeDependent()) 94 return false; 95 96 if (E->isLValue()) 97 return false; // Cool, this is an lvalue. 98 99 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we 100 // are supposed to allow. 101 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); 102 if (E != E2 && E2->isLValue()) { 103 emitAndFixInvalidAsmCastLValue(E2, E, S); 104 // Accept, even if we emitted an error diagnostic. 105 return false; 106 } 107 108 // None of the above, just randomly invalid non-lvalue. 109 return true; 110 } 111 112 /// isOperandMentioned - Return true if the specified operand # is mentioned 113 /// anywhere in the decomposed asm string. 114 static bool 115 isOperandMentioned(unsigned OpNo, 116 ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { 117 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { 118 const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; 119 if (!Piece.isOperand()) 120 continue; 121 122 // If this is a reference to the input and if the input was the smaller 123 // one, then we have to reject this asm. 124 if (Piece.getOperandNo() == OpNo) 125 return true; 126 } 127 return false; 128 } 129 130 static bool CheckNakedParmReference(Expr *E, Sema &S) { 131 FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext); 132 if (!Func) 133 return false; 134 if (!Func->hasAttr<NakedAttr>()) 135 return false; 136 137 SmallVector<Expr*, 4> WorkList; 138 WorkList.push_back(E); 139 while (WorkList.size()) { 140 Expr *E = WorkList.pop_back_val(); 141 if (isa<CXXThisExpr>(E)) { 142 S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref); 143 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 144 return true; 145 } 146 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 147 if (isa<ParmVarDecl>(DRE->getDecl())) { 148 S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref); 149 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 150 return true; 151 } 152 } 153 for (Stmt *Child : E->children()) { 154 if (Expr *E = dyn_cast_or_null<Expr>(Child)) 155 WorkList.push_back(E); 156 } 157 } 158 return false; 159 } 160 161 /// Returns true if given expression is not compatible with inline 162 /// assembly's memory constraint; false otherwise. 163 static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E, 164 TargetInfo::ConstraintInfo &Info, 165 bool is_input_expr) { 166 enum { 167 ExprBitfield = 0, 168 ExprVectorElt, 169 ExprGlobalRegVar, 170 ExprSafeType 171 } EType = ExprSafeType; 172 173 // Bitfields, vector elements and global register variables are not 174 // compatible. 175 if (E->refersToBitField()) 176 EType = ExprBitfield; 177 else if (E->refersToVectorElement()) 178 EType = ExprVectorElt; 179 else if (E->refersToGlobalRegisterVar()) 180 EType = ExprGlobalRegVar; 181 182 if (EType != ExprSafeType) { 183 S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint) 184 << EType << is_input_expr << Info.getConstraintStr() 185 << E->getSourceRange(); 186 return true; 187 } 188 189 return false; 190 } 191 192 // Extracting the register name from the Expression value, 193 // if there is no register name to extract, returns "" 194 static StringRef extractRegisterName(const Expr *Expression, 195 const TargetInfo &Target) { 196 Expression = Expression->IgnoreImpCasts(); 197 if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) { 198 // Handle cases where the expression is a variable 199 const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl()); 200 if (Variable && Variable->getStorageClass() == SC_Register) { 201 if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>()) 202 if (Target.isValidGCCRegisterName(Attr->getLabel())) 203 return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true); 204 } 205 } 206 return ""; 207 } 208 209 // Checks if there is a conflict between the input and output lists with the 210 // clobbers list. If there's a conflict, returns the location of the 211 // conflicted clobber, else returns nullptr 212 static SourceLocation 213 getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints, 214 StringLiteral **Clobbers, int NumClobbers, 215 unsigned NumLabels, 216 const TargetInfo &Target, ASTContext &Cont) { 217 llvm::StringSet<> InOutVars; 218 // Collect all the input and output registers from the extended asm 219 // statement in order to check for conflicts with the clobber list 220 for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) { 221 StringRef Constraint = Constraints[i]->getString(); 222 StringRef InOutReg = Target.getConstraintRegister( 223 Constraint, extractRegisterName(Exprs[i], Target)); 224 if (InOutReg != "") 225 InOutVars.insert(InOutReg); 226 } 227 // Check for each item in the clobber list if it conflicts with the input 228 // or output 229 for (int i = 0; i < NumClobbers; ++i) { 230 StringRef Clobber = Clobbers[i]->getString(); 231 // We only check registers, therefore we don't check cc and memory 232 // clobbers 233 if (Clobber == "cc" || Clobber == "memory" || Clobber == "unwind") 234 continue; 235 Clobber = Target.getNormalizedGCCRegisterName(Clobber, true); 236 // Go over the output's registers we collected 237 if (InOutVars.count(Clobber)) 238 return Clobbers[i]->getBeginLoc(); 239 } 240 return SourceLocation(); 241 } 242 243 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, 244 bool IsVolatile, unsigned NumOutputs, 245 unsigned NumInputs, IdentifierInfo **Names, 246 MultiExprArg constraints, MultiExprArg Exprs, 247 Expr *asmString, MultiExprArg clobbers, 248 unsigned NumLabels, 249 SourceLocation RParenLoc) { 250 unsigned NumClobbers = clobbers.size(); 251 StringLiteral **Constraints = 252 reinterpret_cast<StringLiteral**>(constraints.data()); 253 StringLiteral *AsmString = cast<StringLiteral>(asmString); 254 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); 255 256 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 257 258 // The parser verifies that there is a string literal here. 259 assert(AsmString->isOrdinary()); 260 261 FunctionDecl *FD = dyn_cast<FunctionDecl>(getCurLexicalContext()); 262 llvm::StringMap<bool> FeatureMap; 263 Context.getFunctionFeatureMap(FeatureMap, FD); 264 265 for (unsigned i = 0; i != NumOutputs; i++) { 266 StringLiteral *Literal = Constraints[i]; 267 assert(Literal->isOrdinary()); 268 269 StringRef OutputName; 270 if (Names[i]) 271 OutputName = Names[i]->getName(); 272 273 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); 274 if (!Context.getTargetInfo().validateOutputConstraint(Info) && 275 !(LangOpts.HIPStdPar && LangOpts.CUDAIsDevice)) { 276 targetDiag(Literal->getBeginLoc(), 277 diag::err_asm_invalid_output_constraint) 278 << Info.getConstraintStr(); 279 return new (Context) 280 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 281 NumInputs, Names, Constraints, Exprs.data(), AsmString, 282 NumClobbers, Clobbers, NumLabels, RParenLoc); 283 } 284 285 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 286 if (ER.isInvalid()) 287 return StmtError(); 288 Exprs[i] = ER.get(); 289 290 // Check that the output exprs are valid lvalues. 291 Expr *OutputExpr = Exprs[i]; 292 293 // Referring to parameters is not allowed in naked functions. 294 if (CheckNakedParmReference(OutputExpr, *this)) 295 return StmtError(); 296 297 // Check that the output expression is compatible with memory constraint. 298 if (Info.allowsMemory() && 299 checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false)) 300 return StmtError(); 301 302 // Disallow bit-precise integer types, since the backends tend to have 303 // difficulties with abnormal sizes. 304 if (OutputExpr->getType()->isBitIntType()) 305 return StmtError( 306 Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type) 307 << OutputExpr->getType() << 0 /*Input*/ 308 << OutputExpr->getSourceRange()); 309 310 OutputConstraintInfos.push_back(Info); 311 312 // If this is dependent, just continue. 313 if (OutputExpr->isTypeDependent()) 314 continue; 315 316 Expr::isModifiableLvalueResult IsLV = 317 OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr); 318 switch (IsLV) { 319 case Expr::MLV_Valid: 320 // Cool, this is an lvalue. 321 break; 322 case Expr::MLV_ArrayType: 323 // This is OK too. 324 break; 325 case Expr::MLV_LValueCast: { 326 const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context); 327 emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this); 328 // Accept, even if we emitted an error diagnostic. 329 break; 330 } 331 case Expr::MLV_IncompleteType: 332 case Expr::MLV_IncompleteVoidType: 333 if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(), 334 diag::err_dereference_incomplete_type)) 335 return StmtError(); 336 [[fallthrough]]; 337 default: 338 return StmtError(Diag(OutputExpr->getBeginLoc(), 339 diag::err_asm_invalid_lvalue_in_output) 340 << OutputExpr->getSourceRange()); 341 } 342 343 unsigned Size = Context.getTypeSize(OutputExpr->getType()); 344 if (!Context.getTargetInfo().validateOutputSize( 345 FeatureMap, Literal->getString(), Size)) { 346 targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size) 347 << Info.getConstraintStr(); 348 return new (Context) 349 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 350 NumInputs, Names, Constraints, Exprs.data(), AsmString, 351 NumClobbers, Clobbers, NumLabels, RParenLoc); 352 } 353 } 354 355 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 356 357 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { 358 StringLiteral *Literal = Constraints[i]; 359 assert(Literal->isOrdinary()); 360 361 StringRef InputName; 362 if (Names[i]) 363 InputName = Names[i]->getName(); 364 365 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); 366 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos, 367 Info)) { 368 targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint) 369 << Info.getConstraintStr(); 370 return new (Context) 371 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 372 NumInputs, Names, Constraints, Exprs.data(), AsmString, 373 NumClobbers, Clobbers, NumLabels, RParenLoc); 374 } 375 376 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 377 if (ER.isInvalid()) 378 return StmtError(); 379 Exprs[i] = ER.get(); 380 381 Expr *InputExpr = Exprs[i]; 382 383 if (InputExpr->getType()->isMemberPointerType()) 384 return StmtError(Diag(InputExpr->getBeginLoc(), 385 diag::err_asm_pmf_through_constraint_not_permitted) 386 << InputExpr->getSourceRange()); 387 388 // Referring to parameters is not allowed in naked functions. 389 if (CheckNakedParmReference(InputExpr, *this)) 390 return StmtError(); 391 392 // Check that the input expression is compatible with memory constraint. 393 if (Info.allowsMemory() && 394 checkExprMemoryConstraintCompat(*this, InputExpr, Info, true)) 395 return StmtError(); 396 397 // Only allow void types for memory constraints. 398 if (Info.allowsMemory() && !Info.allowsRegister()) { 399 if (CheckAsmLValue(InputExpr, *this)) 400 return StmtError(Diag(InputExpr->getBeginLoc(), 401 diag::err_asm_invalid_lvalue_in_input) 402 << Info.getConstraintStr() 403 << InputExpr->getSourceRange()); 404 } else { 405 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); 406 if (Result.isInvalid()) 407 return StmtError(); 408 409 InputExpr = Exprs[i] = Result.get(); 410 411 if (Info.requiresImmediateConstant() && !Info.allowsRegister()) { 412 if (!InputExpr->isValueDependent()) { 413 Expr::EvalResult EVResult; 414 if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) { 415 // For compatibility with GCC, we also allow pointers that would be 416 // integral constant expressions if they were cast to int. 417 llvm::APSInt IntResult; 418 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 419 Context)) 420 if (!Info.isValidAsmImmediate(IntResult)) 421 return StmtError( 422 Diag(InputExpr->getBeginLoc(), 423 diag::err_invalid_asm_value_for_constraint) 424 << toString(IntResult, 10) << Info.getConstraintStr() 425 << InputExpr->getSourceRange()); 426 } 427 } 428 } 429 } 430 431 if (Info.allowsRegister()) { 432 if (InputExpr->getType()->isVoidType()) { 433 return StmtError( 434 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input) 435 << InputExpr->getType() << Info.getConstraintStr() 436 << InputExpr->getSourceRange()); 437 } 438 } 439 440 if (InputExpr->getType()->isBitIntType()) 441 return StmtError( 442 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type) 443 << InputExpr->getType() << 1 /*Output*/ 444 << InputExpr->getSourceRange()); 445 446 InputConstraintInfos.push_back(Info); 447 448 const Type *Ty = Exprs[i]->getType().getTypePtr(); 449 if (Ty->isDependentType()) 450 continue; 451 452 if (!Ty->isVoidType() || !Info.allowsMemory()) 453 if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(), 454 diag::err_dereference_incomplete_type)) 455 return StmtError(); 456 457 unsigned Size = Context.getTypeSize(Ty); 458 if (!Context.getTargetInfo().validateInputSize(FeatureMap, 459 Literal->getString(), Size)) 460 return targetDiag(InputExpr->getBeginLoc(), 461 diag::err_asm_invalid_input_size) 462 << Info.getConstraintStr(); 463 } 464 465 std::optional<SourceLocation> UnwindClobberLoc; 466 467 // Check that the clobbers are valid. 468 for (unsigned i = 0; i != NumClobbers; i++) { 469 StringLiteral *Literal = Clobbers[i]; 470 assert(Literal->isOrdinary()); 471 472 StringRef Clobber = Literal->getString(); 473 474 if (!Context.getTargetInfo().isValidClobber(Clobber)) { 475 targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name) 476 << Clobber; 477 return new (Context) 478 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 479 NumInputs, Names, Constraints, Exprs.data(), AsmString, 480 NumClobbers, Clobbers, NumLabels, RParenLoc); 481 } 482 483 if (Clobber == "unwind") { 484 UnwindClobberLoc = Literal->getBeginLoc(); 485 } 486 } 487 488 // Using unwind clobber and asm-goto together is not supported right now. 489 if (UnwindClobberLoc && NumLabels > 0) { 490 targetDiag(*UnwindClobberLoc, diag::err_asm_unwind_and_goto); 491 return new (Context) 492 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, 493 Names, Constraints, Exprs.data(), AsmString, NumClobbers, 494 Clobbers, NumLabels, RParenLoc); 495 } 496 497 GCCAsmStmt *NS = 498 new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 499 NumInputs, Names, Constraints, Exprs.data(), 500 AsmString, NumClobbers, Clobbers, NumLabels, 501 RParenLoc); 502 // Validate the asm string, ensuring it makes sense given the operands we 503 // have. 504 SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; 505 unsigned DiagOffs; 506 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { 507 targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) 508 << AsmString->getSourceRange(); 509 return NS; 510 } 511 512 // Validate constraints and modifiers. 513 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { 514 GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; 515 if (!Piece.isOperand()) continue; 516 517 // Look for the correct constraint index. 518 unsigned ConstraintIdx = Piece.getOperandNo(); 519 unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs(); 520 // Labels are the last in the Exprs list. 521 if (NS->isAsmGoto() && ConstraintIdx >= NumOperands) 522 continue; 523 // Look for the (ConstraintIdx - NumOperands + 1)th constraint with 524 // modifier '+'. 525 if (ConstraintIdx >= NumOperands) { 526 unsigned I = 0, E = NS->getNumOutputs(); 527 528 for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I) 529 if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) { 530 ConstraintIdx = I; 531 break; 532 } 533 534 assert(I != E && "Invalid operand number should have been caught in " 535 " AnalyzeAsmString"); 536 } 537 538 // Now that we have the right indexes go ahead and check. 539 StringLiteral *Literal = Constraints[ConstraintIdx]; 540 const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); 541 if (Ty->isDependentType() || Ty->isIncompleteType()) 542 continue; 543 544 unsigned Size = Context.getTypeSize(Ty); 545 std::string SuggestedModifier; 546 if (!Context.getTargetInfo().validateConstraintModifier( 547 Literal->getString(), Piece.getModifier(), Size, 548 SuggestedModifier)) { 549 targetDiag(Exprs[ConstraintIdx]->getBeginLoc(), 550 diag::warn_asm_mismatched_size_modifier); 551 552 if (!SuggestedModifier.empty()) { 553 auto B = targetDiag(Piece.getRange().getBegin(), 554 diag::note_asm_missing_constraint_modifier) 555 << SuggestedModifier; 556 SuggestedModifier = "%" + SuggestedModifier + Piece.getString(); 557 B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier); 558 } 559 } 560 } 561 562 // Validate tied input operands for type mismatches. 563 unsigned NumAlternatives = ~0U; 564 for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) { 565 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 566 StringRef ConstraintStr = Info.getConstraintStr(); 567 unsigned AltCount = ConstraintStr.count(',') + 1; 568 if (NumAlternatives == ~0U) { 569 NumAlternatives = AltCount; 570 } else if (NumAlternatives != AltCount) { 571 targetDiag(NS->getOutputExpr(i)->getBeginLoc(), 572 diag::err_asm_unexpected_constraint_alternatives) 573 << NumAlternatives << AltCount; 574 return NS; 575 } 576 } 577 SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(), 578 ~0U); 579 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { 580 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 581 StringRef ConstraintStr = Info.getConstraintStr(); 582 unsigned AltCount = ConstraintStr.count(',') + 1; 583 if (NumAlternatives == ~0U) { 584 NumAlternatives = AltCount; 585 } else if (NumAlternatives != AltCount) { 586 targetDiag(NS->getInputExpr(i)->getBeginLoc(), 587 diag::err_asm_unexpected_constraint_alternatives) 588 << NumAlternatives << AltCount; 589 return NS; 590 } 591 592 // If this is a tied constraint, verify that the output and input have 593 // either exactly the same type, or that they are int/ptr operands with the 594 // same size (int/long, int*/long, are ok etc). 595 if (!Info.hasTiedOperand()) continue; 596 597 unsigned TiedTo = Info.getTiedOperand(); 598 unsigned InputOpNo = i+NumOutputs; 599 Expr *OutputExpr = Exprs[TiedTo]; 600 Expr *InputExpr = Exprs[InputOpNo]; 601 602 // Make sure no more than one input constraint matches each output. 603 assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range"); 604 if (InputMatchedToOutput[TiedTo] != ~0U) { 605 targetDiag(NS->getInputExpr(i)->getBeginLoc(), 606 diag::err_asm_input_duplicate_match) 607 << TiedTo; 608 targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(), 609 diag::note_asm_input_duplicate_first) 610 << TiedTo; 611 return NS; 612 } 613 InputMatchedToOutput[TiedTo] = i; 614 615 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) 616 continue; 617 618 QualType InTy = InputExpr->getType(); 619 QualType OutTy = OutputExpr->getType(); 620 if (Context.hasSameType(InTy, OutTy)) 621 continue; // All types can be tied to themselves. 622 623 // Decide if the input and output are in the same domain (integer/ptr or 624 // floating point. 625 enum AsmDomain { 626 AD_Int, AD_FP, AD_Other 627 } InputDomain, OutputDomain; 628 629 if (InTy->isIntegerType() || InTy->isPointerType()) 630 InputDomain = AD_Int; 631 else if (InTy->isRealFloatingType()) 632 InputDomain = AD_FP; 633 else 634 InputDomain = AD_Other; 635 636 if (OutTy->isIntegerType() || OutTy->isPointerType()) 637 OutputDomain = AD_Int; 638 else if (OutTy->isRealFloatingType()) 639 OutputDomain = AD_FP; 640 else 641 OutputDomain = AD_Other; 642 643 // They are ok if they are the same size and in the same domain. This 644 // allows tying things like: 645 // void* to int* 646 // void* to int if they are the same size. 647 // double to long double if they are the same size. 648 // 649 uint64_t OutSize = Context.getTypeSize(OutTy); 650 uint64_t InSize = Context.getTypeSize(InTy); 651 if (OutSize == InSize && InputDomain == OutputDomain && 652 InputDomain != AD_Other) 653 continue; 654 655 // If the smaller input/output operand is not mentioned in the asm string, 656 // then we can promote the smaller one to a larger input and the asm string 657 // won't notice. 658 bool SmallerValueMentioned = false; 659 660 // If this is a reference to the input and if the input was the smaller 661 // one, then we have to reject this asm. 662 if (isOperandMentioned(InputOpNo, Pieces)) { 663 // This is a use in the asm string of the smaller operand. Since we 664 // codegen this by promoting to a wider value, the asm will get printed 665 // "wrong". 666 SmallerValueMentioned |= InSize < OutSize; 667 } 668 if (isOperandMentioned(TiedTo, Pieces)) { 669 // If this is a reference to the output, and if the output is the larger 670 // value, then it's ok because we'll promote the input to the larger type. 671 SmallerValueMentioned |= OutSize < InSize; 672 } 673 674 // If the smaller value wasn't mentioned in the asm string, and if the 675 // output was a register, just extend the shorter one to the size of the 676 // larger one. 677 if (!SmallerValueMentioned && InputDomain != AD_Other && 678 OutputConstraintInfos[TiedTo].allowsRegister()) { 679 // FIXME: GCC supports the OutSize to be 128 at maximum. Currently codegen 680 // crash when the size larger than the register size. So we limit it here. 681 if (OutTy->isStructureType() && 682 Context.getIntTypeForBitwidth(OutSize, /*Signed*/ false).isNull()) { 683 targetDiag(OutputExpr->getExprLoc(), diag::err_store_value_to_reg); 684 return NS; 685 } 686 687 continue; 688 } 689 690 // Either both of the operands were mentioned or the smaller one was 691 // mentioned. One more special case that we'll allow: if the tied input is 692 // integer, unmentioned, and is a constant, then we'll allow truncating it 693 // down to the size of the destination. 694 if (InputDomain == AD_Int && OutputDomain == AD_Int && 695 !isOperandMentioned(InputOpNo, Pieces) && 696 InputExpr->isEvaluatable(Context)) { 697 CastKind castKind = 698 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); 699 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get(); 700 Exprs[InputOpNo] = InputExpr; 701 NS->setInputExpr(i, InputExpr); 702 continue; 703 } 704 705 targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types) 706 << InTy << OutTy << OutputExpr->getSourceRange() 707 << InputExpr->getSourceRange(); 708 return NS; 709 } 710 711 // Check for conflicts between clobber list and input or output lists 712 SourceLocation ConstraintLoc = 713 getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers, 714 NumLabels, 715 Context.getTargetInfo(), Context); 716 if (ConstraintLoc.isValid()) 717 targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber); 718 719 // Check for duplicate asm operand name between input, output and label lists. 720 typedef std::pair<StringRef , Expr *> NamedOperand; 721 SmallVector<NamedOperand, 4> NamedOperandList; 722 for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i) 723 if (Names[i]) 724 NamedOperandList.emplace_back( 725 std::make_pair(Names[i]->getName(), Exprs[i])); 726 // Sort NamedOperandList. 727 llvm::stable_sort(NamedOperandList, llvm::less_first()); 728 // Find adjacent duplicate operand. 729 SmallVector<NamedOperand, 4>::iterator Found = 730 std::adjacent_find(begin(NamedOperandList), end(NamedOperandList), 731 [](const NamedOperand &LHS, const NamedOperand &RHS) { 732 return LHS.first == RHS.first; 733 }); 734 if (Found != NamedOperandList.end()) { 735 Diag((Found + 1)->second->getBeginLoc(), 736 diag::error_duplicate_asm_operand_name) 737 << (Found + 1)->first; 738 Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name) 739 << Found->first; 740 return StmtError(); 741 } 742 if (NS->isAsmGoto()) 743 setFunctionHasBranchIntoScope(); 744 745 CleanupVarDeclMarking(); 746 DiscardCleanupsInEvaluationContext(); 747 return NS; 748 } 749 750 void Sema::FillInlineAsmIdentifierInfo(Expr *Res, 751 llvm::InlineAsmIdentifierInfo &Info) { 752 QualType T = Res->getType(); 753 Expr::EvalResult Eval; 754 if (T->isFunctionType() || T->isDependentType()) 755 return Info.setLabel(Res); 756 if (Res->isPRValue()) { 757 bool IsEnum = isa<clang::EnumType>(T); 758 if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Res)) 759 if (DRE->getDecl()->getKind() == Decl::EnumConstant) 760 IsEnum = true; 761 if (IsEnum && Res->EvaluateAsRValue(Eval, Context)) 762 return Info.setEnum(Eval.Val.getInt().getSExtValue()); 763 764 return Info.setLabel(Res); 765 } 766 unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); 767 unsigned Type = Size; 768 if (const auto *ATy = Context.getAsArrayType(T)) 769 Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity(); 770 bool IsGlobalLV = false; 771 if (Res->EvaluateAsLValue(Eval, Context)) 772 IsGlobalLV = Eval.isGlobalLValue(); 773 Info.setVar(Res, IsGlobalLV, Size, Type); 774 } 775 776 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS, 777 SourceLocation TemplateKWLoc, 778 UnqualifiedId &Id, 779 bool IsUnevaluatedContext) { 780 781 if (IsUnevaluatedContext) 782 PushExpressionEvaluationContext( 783 ExpressionEvaluationContext::UnevaluatedAbstract, 784 ReuseLambdaContextDecl); 785 786 ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id, 787 /*trailing lparen*/ false, 788 /*is & operand*/ false, 789 /*CorrectionCandidateCallback=*/nullptr, 790 /*IsInlineAsmIdentifier=*/ true); 791 792 if (IsUnevaluatedContext) 793 PopExpressionEvaluationContext(); 794 795 if (!Result.isUsable()) return Result; 796 797 Result = CheckPlaceholderExpr(Result.get()); 798 if (!Result.isUsable()) return Result; 799 800 // Referring to parameters is not allowed in naked functions. 801 if (CheckNakedParmReference(Result.get(), *this)) 802 return ExprError(); 803 804 QualType T = Result.get()->getType(); 805 806 if (T->isDependentType()) { 807 return Result; 808 } 809 810 // Any sort of function type is fine. 811 if (T->isFunctionType()) { 812 return Result; 813 } 814 815 // Otherwise, it needs to be a complete type. 816 if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) { 817 return ExprError(); 818 } 819 820 return Result; 821 } 822 823 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, 824 unsigned &Offset, SourceLocation AsmLoc) { 825 Offset = 0; 826 SmallVector<StringRef, 2> Members; 827 Member.split(Members, "."); 828 829 NamedDecl *FoundDecl = nullptr; 830 831 // MS InlineAsm uses 'this' as a base 832 if (getLangOpts().CPlusPlus && Base == "this") { 833 if (const Type *PT = getCurrentThisType().getTypePtrOrNull()) 834 FoundDecl = PT->getPointeeType()->getAsTagDecl(); 835 } else { 836 LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(), 837 LookupOrdinaryName); 838 if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult()) 839 FoundDecl = BaseResult.getFoundDecl(); 840 } 841 842 if (!FoundDecl) 843 return true; 844 845 for (StringRef NextMember : Members) { 846 const RecordType *RT = nullptr; 847 if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) 848 RT = VD->getType()->getAs<RecordType>(); 849 else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) { 850 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 851 // MS InlineAsm often uses struct pointer aliases as a base 852 QualType QT = TD->getUnderlyingType(); 853 if (const auto *PT = QT->getAs<PointerType>()) 854 QT = PT->getPointeeType(); 855 RT = QT->getAs<RecordType>(); 856 } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl)) 857 RT = TD->getTypeForDecl()->getAs<RecordType>(); 858 else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl)) 859 RT = TD->getType()->getAs<RecordType>(); 860 if (!RT) 861 return true; 862 863 if (RequireCompleteType(AsmLoc, QualType(RT, 0), 864 diag::err_asm_incomplete_type)) 865 return true; 866 867 LookupResult FieldResult(*this, &Context.Idents.get(NextMember), 868 SourceLocation(), LookupMemberName); 869 870 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 871 return true; 872 873 if (!FieldResult.isSingleResult()) 874 return true; 875 FoundDecl = FieldResult.getFoundDecl(); 876 877 // FIXME: Handle IndirectFieldDecl? 878 FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl); 879 if (!FD) 880 return true; 881 882 const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl()); 883 unsigned i = FD->getFieldIndex(); 884 CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i)); 885 Offset += (unsigned)Result.getQuantity(); 886 } 887 888 return false; 889 } 890 891 ExprResult 892 Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member, 893 SourceLocation AsmLoc) { 894 895 QualType T = E->getType(); 896 if (T->isDependentType()) { 897 DeclarationNameInfo NameInfo; 898 NameInfo.setLoc(AsmLoc); 899 NameInfo.setName(&Context.Idents.get(Member)); 900 return CXXDependentScopeMemberExpr::Create( 901 Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(), 902 SourceLocation(), 903 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr); 904 } 905 906 const RecordType *RT = T->getAs<RecordType>(); 907 // FIXME: Diagnose this as field access into a scalar type. 908 if (!RT) 909 return ExprResult(); 910 911 LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc, 912 LookupMemberName); 913 914 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 915 return ExprResult(); 916 917 // Only normal and indirect field results will work. 918 ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl()); 919 if (!FD) 920 FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl()); 921 if (!FD) 922 return ExprResult(); 923 924 // Make an Expr to thread through OpDecl. 925 ExprResult Result = BuildMemberReferenceExpr( 926 E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(), 927 SourceLocation(), nullptr, FieldResult, nullptr, nullptr); 928 929 return Result; 930 } 931 932 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, 933 ArrayRef<Token> AsmToks, 934 StringRef AsmString, 935 unsigned NumOutputs, unsigned NumInputs, 936 ArrayRef<StringRef> Constraints, 937 ArrayRef<StringRef> Clobbers, 938 ArrayRef<Expr*> Exprs, 939 SourceLocation EndLoc) { 940 bool IsSimple = (NumOutputs != 0 || NumInputs != 0); 941 setFunctionHasBranchProtectedScope(); 942 943 bool InvalidOperand = false; 944 for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) { 945 Expr *E = Exprs[I]; 946 if (E->getType()->isBitIntType()) { 947 InvalidOperand = true; 948 Diag(E->getBeginLoc(), diag::err_asm_invalid_type) 949 << E->getType() << (I < NumOutputs) 950 << E->getSourceRange(); 951 } else if (E->refersToBitField()) { 952 InvalidOperand = true; 953 FieldDecl *BitField = E->getSourceBitField(); 954 Diag(E->getBeginLoc(), diag::err_ms_asm_bitfield_unsupported) 955 << E->getSourceRange(); 956 Diag(BitField->getLocation(), diag::note_bitfield_decl); 957 } 958 } 959 if (InvalidOperand) 960 return StmtError(); 961 962 MSAsmStmt *NS = 963 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, 964 /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, 965 Constraints, Exprs, AsmString, 966 Clobbers, EndLoc); 967 return NS; 968 } 969 970 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName, 971 SourceLocation Location, 972 bool AlwaysCreate) { 973 LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName), 974 Location); 975 976 if (Label->isMSAsmLabel()) { 977 // If we have previously created this label implicitly, mark it as used. 978 Label->markUsed(Context); 979 } else { 980 // Otherwise, insert it, but only resolve it if we have seen the label itself. 981 std::string InternalName; 982 llvm::raw_string_ostream OS(InternalName); 983 // Create an internal name for the label. The name should not be a valid 984 // mangled name, and should be unique. We use a dot to make the name an 985 // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a 986 // unique label is generated each time this blob is emitted, even after 987 // inlining or LTO. 988 OS << "__MSASMLABEL_.${:uid}__"; 989 for (char C : ExternalLabelName) { 990 OS << C; 991 // We escape '$' in asm strings by replacing it with "$$" 992 if (C == '$') 993 OS << '$'; 994 } 995 Label->setMSAsmLabel(OS.str()); 996 } 997 if (AlwaysCreate) { 998 // The label might have been created implicitly from a previously encountered 999 // goto statement. So, for both newly created and looked up labels, we mark 1000 // them as resolved. 1001 Label->setMSAsmLabelResolved(); 1002 } 1003 // Adjust their location for being able to generate accurate diagnostics. 1004 Label->setLocation(Location); 1005 1006 return Label; 1007 } 1008