1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for inline asm statements. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ExprCXX.h" 14 #include "clang/AST/GlobalDecl.h" 15 #include "clang/AST/RecordLayout.h" 16 #include "clang/AST/TypeLoc.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/Lex/Preprocessor.h" 19 #include "clang/Sema/Initialization.h" 20 #include "clang/Sema/Lookup.h" 21 #include "clang/Sema/Scope.h" 22 #include "clang/Sema/ScopeInfo.h" 23 #include "clang/Sema/SemaInternal.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/MC/MCParser/MCAsmParser.h" 27 using namespace clang; 28 using namespace sema; 29 30 /// Remove the upper-level LValueToRValue cast from an expression. 31 static void removeLValueToRValueCast(Expr *E) { 32 Expr *Parent = E; 33 Expr *ExprUnderCast = nullptr; 34 SmallVector<Expr *, 8> ParentsToUpdate; 35 36 while (true) { 37 ParentsToUpdate.push_back(Parent); 38 if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) { 39 Parent = ParenE->getSubExpr(); 40 continue; 41 } 42 43 Expr *Child = nullptr; 44 CastExpr *ParentCast = dyn_cast<CastExpr>(Parent); 45 if (ParentCast) 46 Child = ParentCast->getSubExpr(); 47 else 48 return; 49 50 if (auto *CastE = dyn_cast<CastExpr>(Child)) 51 if (CastE->getCastKind() == CK_LValueToRValue) { 52 ExprUnderCast = CastE->getSubExpr(); 53 // LValueToRValue cast inside GCCAsmStmt requires an explicit cast. 54 ParentCast->setSubExpr(ExprUnderCast); 55 break; 56 } 57 Parent = Child; 58 } 59 60 // Update parent expressions to have same ValueType as the underlying. 61 assert(ExprUnderCast && 62 "Should be reachable only if LValueToRValue cast was found!"); 63 auto ValueKind = ExprUnderCast->getValueKind(); 64 for (Expr *E : ParentsToUpdate) 65 E->setValueKind(ValueKind); 66 } 67 68 /// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension) 69 /// and fix the argument with removing LValueToRValue cast from the expression. 70 static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument, 71 Sema &S) { 72 if (!S.getLangOpts().HeinousExtensions) { 73 S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue) 74 << BadArgument->getSourceRange(); 75 } else { 76 S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue) 77 << BadArgument->getSourceRange(); 78 } 79 removeLValueToRValueCast(BadArgument); 80 } 81 82 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently 83 /// ignore "noop" casts in places where an lvalue is required by an inline asm. 84 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but 85 /// provide a strong guidance to not use it. 86 /// 87 /// This method checks to see if the argument is an acceptable l-value and 88 /// returns false if it is a case we can handle. 89 static bool CheckAsmLValue(Expr *E, Sema &S) { 90 // Type dependent expressions will be checked during instantiation. 91 if (E->isTypeDependent()) 92 return false; 93 94 if (E->isLValue()) 95 return false; // Cool, this is an lvalue. 96 97 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we 98 // are supposed to allow. 99 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); 100 if (E != E2 && E2->isLValue()) { 101 emitAndFixInvalidAsmCastLValue(E2, E, S); 102 // Accept, even if we emitted an error diagnostic. 103 return false; 104 } 105 106 // None of the above, just randomly invalid non-lvalue. 107 return true; 108 } 109 110 /// isOperandMentioned - Return true if the specified operand # is mentioned 111 /// anywhere in the decomposed asm string. 112 static bool 113 isOperandMentioned(unsigned OpNo, 114 ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { 115 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { 116 const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; 117 if (!Piece.isOperand()) 118 continue; 119 120 // If this is a reference to the input and if the input was the smaller 121 // one, then we have to reject this asm. 122 if (Piece.getOperandNo() == OpNo) 123 return true; 124 } 125 return false; 126 } 127 128 static bool CheckNakedParmReference(Expr *E, Sema &S) { 129 FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext); 130 if (!Func) 131 return false; 132 if (!Func->hasAttr<NakedAttr>()) 133 return false; 134 135 SmallVector<Expr*, 4> WorkList; 136 WorkList.push_back(E); 137 while (WorkList.size()) { 138 Expr *E = WorkList.pop_back_val(); 139 if (isa<CXXThisExpr>(E)) { 140 S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref); 141 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 142 return true; 143 } 144 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 145 if (isa<ParmVarDecl>(DRE->getDecl())) { 146 S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref); 147 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 148 return true; 149 } 150 } 151 for (Stmt *Child : E->children()) { 152 if (Expr *E = dyn_cast_or_null<Expr>(Child)) 153 WorkList.push_back(E); 154 } 155 } 156 return false; 157 } 158 159 /// Returns true if given expression is not compatible with inline 160 /// assembly's memory constraint; false otherwise. 161 static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E, 162 TargetInfo::ConstraintInfo &Info, 163 bool is_input_expr) { 164 enum { 165 ExprBitfield = 0, 166 ExprVectorElt, 167 ExprGlobalRegVar, 168 ExprSafeType 169 } EType = ExprSafeType; 170 171 // Bitfields, vector elements and global register variables are not 172 // compatible. 173 if (E->refersToBitField()) 174 EType = ExprBitfield; 175 else if (E->refersToVectorElement()) 176 EType = ExprVectorElt; 177 else if (E->refersToGlobalRegisterVar()) 178 EType = ExprGlobalRegVar; 179 180 if (EType != ExprSafeType) { 181 S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint) 182 << EType << is_input_expr << Info.getConstraintStr() 183 << E->getSourceRange(); 184 return true; 185 } 186 187 return false; 188 } 189 190 // Extracting the register name from the Expression value, 191 // if there is no register name to extract, returns "" 192 static StringRef extractRegisterName(const Expr *Expression, 193 const TargetInfo &Target) { 194 Expression = Expression->IgnoreImpCasts(); 195 if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) { 196 // Handle cases where the expression is a variable 197 const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl()); 198 if (Variable && Variable->getStorageClass() == SC_Register) { 199 if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>()) 200 if (Target.isValidGCCRegisterName(Attr->getLabel())) 201 return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true); 202 } 203 } 204 return ""; 205 } 206 207 // Checks if there is a conflict between the input and output lists with the 208 // clobbers list. If there's a conflict, returns the location of the 209 // conflicted clobber, else returns nullptr 210 static SourceLocation 211 getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints, 212 StringLiteral **Clobbers, int NumClobbers, 213 unsigned NumLabels, 214 const TargetInfo &Target, ASTContext &Cont) { 215 llvm::StringSet<> InOutVars; 216 // Collect all the input and output registers from the extended asm 217 // statement in order to check for conflicts with the clobber list 218 for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) { 219 StringRef Constraint = Constraints[i]->getString(); 220 StringRef InOutReg = Target.getConstraintRegister( 221 Constraint, extractRegisterName(Exprs[i], Target)); 222 if (InOutReg != "") 223 InOutVars.insert(InOutReg); 224 } 225 // Check for each item in the clobber list if it conflicts with the input 226 // or output 227 for (int i = 0; i < NumClobbers; ++i) { 228 StringRef Clobber = Clobbers[i]->getString(); 229 // We only check registers, therefore we don't check cc and memory 230 // clobbers 231 if (Clobber == "cc" || Clobber == "memory") 232 continue; 233 Clobber = Target.getNormalizedGCCRegisterName(Clobber, true); 234 // Go over the output's registers we collected 235 if (InOutVars.count(Clobber)) 236 return Clobbers[i]->getBeginLoc(); 237 } 238 return SourceLocation(); 239 } 240 241 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, 242 bool IsVolatile, unsigned NumOutputs, 243 unsigned NumInputs, IdentifierInfo **Names, 244 MultiExprArg constraints, MultiExprArg Exprs, 245 Expr *asmString, MultiExprArg clobbers, 246 unsigned NumLabels, 247 SourceLocation RParenLoc) { 248 unsigned NumClobbers = clobbers.size(); 249 StringLiteral **Constraints = 250 reinterpret_cast<StringLiteral**>(constraints.data()); 251 StringLiteral *AsmString = cast<StringLiteral>(asmString); 252 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); 253 254 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 255 256 // The parser verifies that there is a string literal here. 257 assert(AsmString->isAscii()); 258 259 FunctionDecl *FD = dyn_cast<FunctionDecl>(getCurLexicalContext()); 260 llvm::StringMap<bool> FeatureMap; 261 Context.getFunctionFeatureMap(FeatureMap, FD); 262 263 for (unsigned i = 0; i != NumOutputs; i++) { 264 StringLiteral *Literal = Constraints[i]; 265 assert(Literal->isAscii()); 266 267 StringRef OutputName; 268 if (Names[i]) 269 OutputName = Names[i]->getName(); 270 271 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); 272 if (!Context.getTargetInfo().validateOutputConstraint(Info)) { 273 targetDiag(Literal->getBeginLoc(), 274 diag::err_asm_invalid_output_constraint) 275 << Info.getConstraintStr(); 276 return new (Context) 277 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 278 NumInputs, Names, Constraints, Exprs.data(), AsmString, 279 NumClobbers, Clobbers, NumLabels, RParenLoc); 280 } 281 282 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 283 if (ER.isInvalid()) 284 return StmtError(); 285 Exprs[i] = ER.get(); 286 287 // Check that the output exprs are valid lvalues. 288 Expr *OutputExpr = Exprs[i]; 289 290 // Referring to parameters is not allowed in naked functions. 291 if (CheckNakedParmReference(OutputExpr, *this)) 292 return StmtError(); 293 294 // Check that the output expression is compatible with memory constraint. 295 if (Info.allowsMemory() && 296 checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false)) 297 return StmtError(); 298 299 OutputConstraintInfos.push_back(Info); 300 301 // If this is dependent, just continue. 302 if (OutputExpr->isTypeDependent()) 303 continue; 304 305 Expr::isModifiableLvalueResult IsLV = 306 OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr); 307 switch (IsLV) { 308 case Expr::MLV_Valid: 309 // Cool, this is an lvalue. 310 break; 311 case Expr::MLV_ArrayType: 312 // This is OK too. 313 break; 314 case Expr::MLV_LValueCast: { 315 const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context); 316 emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this); 317 // Accept, even if we emitted an error diagnostic. 318 break; 319 } 320 case Expr::MLV_IncompleteType: 321 case Expr::MLV_IncompleteVoidType: 322 if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(), 323 diag::err_dereference_incomplete_type)) 324 return StmtError(); 325 LLVM_FALLTHROUGH; 326 default: 327 return StmtError(Diag(OutputExpr->getBeginLoc(), 328 diag::err_asm_invalid_lvalue_in_output) 329 << OutputExpr->getSourceRange()); 330 } 331 332 unsigned Size = Context.getTypeSize(OutputExpr->getType()); 333 if (!Context.getTargetInfo().validateOutputSize( 334 FeatureMap, Literal->getString(), Size)) { 335 targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size) 336 << Info.getConstraintStr(); 337 return new (Context) 338 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 339 NumInputs, Names, Constraints, Exprs.data(), AsmString, 340 NumClobbers, Clobbers, NumLabels, RParenLoc); 341 } 342 } 343 344 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 345 346 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { 347 StringLiteral *Literal = Constraints[i]; 348 assert(Literal->isAscii()); 349 350 StringRef InputName; 351 if (Names[i]) 352 InputName = Names[i]->getName(); 353 354 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); 355 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos, 356 Info)) { 357 targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint) 358 << Info.getConstraintStr(); 359 return new (Context) 360 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 361 NumInputs, Names, Constraints, Exprs.data(), AsmString, 362 NumClobbers, Clobbers, NumLabels, RParenLoc); 363 } 364 365 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 366 if (ER.isInvalid()) 367 return StmtError(); 368 Exprs[i] = ER.get(); 369 370 Expr *InputExpr = Exprs[i]; 371 372 // Referring to parameters is not allowed in naked functions. 373 if (CheckNakedParmReference(InputExpr, *this)) 374 return StmtError(); 375 376 // Check that the input expression is compatible with memory constraint. 377 if (Info.allowsMemory() && 378 checkExprMemoryConstraintCompat(*this, InputExpr, Info, true)) 379 return StmtError(); 380 381 // Only allow void types for memory constraints. 382 if (Info.allowsMemory() && !Info.allowsRegister()) { 383 if (CheckAsmLValue(InputExpr, *this)) 384 return StmtError(Diag(InputExpr->getBeginLoc(), 385 diag::err_asm_invalid_lvalue_in_input) 386 << Info.getConstraintStr() 387 << InputExpr->getSourceRange()); 388 } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) { 389 if (!InputExpr->isValueDependent()) { 390 Expr::EvalResult EVResult; 391 if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) { 392 // For compatibility with GCC, we also allow pointers that would be 393 // integral constant expressions if they were cast to int. 394 llvm::APSInt IntResult; 395 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 396 Context)) 397 if (!Info.isValidAsmImmediate(IntResult)) 398 return StmtError(Diag(InputExpr->getBeginLoc(), 399 diag::err_invalid_asm_value_for_constraint) 400 << IntResult.toString(10) 401 << Info.getConstraintStr() 402 << InputExpr->getSourceRange()); 403 } 404 } 405 406 } else { 407 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); 408 if (Result.isInvalid()) 409 return StmtError(); 410 411 Exprs[i] = Result.get(); 412 } 413 414 if (Info.allowsRegister()) { 415 if (InputExpr->getType()->isVoidType()) { 416 return StmtError( 417 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input) 418 << InputExpr->getType() << Info.getConstraintStr() 419 << InputExpr->getSourceRange()); 420 } 421 } 422 423 InputConstraintInfos.push_back(Info); 424 425 const Type *Ty = Exprs[i]->getType().getTypePtr(); 426 if (Ty->isDependentType()) 427 continue; 428 429 if (!Ty->isVoidType() || !Info.allowsMemory()) 430 if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(), 431 diag::err_dereference_incomplete_type)) 432 return StmtError(); 433 434 unsigned Size = Context.getTypeSize(Ty); 435 if (!Context.getTargetInfo().validateInputSize(FeatureMap, 436 Literal->getString(), Size)) 437 return StmtResult( 438 targetDiag(InputExpr->getBeginLoc(), diag::err_asm_invalid_input_size) 439 << Info.getConstraintStr()); 440 } 441 442 // Check that the clobbers are valid. 443 for (unsigned i = 0; i != NumClobbers; i++) { 444 StringLiteral *Literal = Clobbers[i]; 445 assert(Literal->isAscii()); 446 447 StringRef Clobber = Literal->getString(); 448 449 if (!Context.getTargetInfo().isValidClobber(Clobber)) { 450 targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name) 451 << Clobber; 452 return new (Context) 453 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 454 NumInputs, Names, Constraints, Exprs.data(), AsmString, 455 NumClobbers, Clobbers, NumLabels, RParenLoc); 456 } 457 } 458 459 GCCAsmStmt *NS = 460 new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 461 NumInputs, Names, Constraints, Exprs.data(), 462 AsmString, NumClobbers, Clobbers, NumLabels, 463 RParenLoc); 464 // Validate the asm string, ensuring it makes sense given the operands we 465 // have. 466 SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; 467 unsigned DiagOffs; 468 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { 469 targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) 470 << AsmString->getSourceRange(); 471 return NS; 472 } 473 474 // Validate constraints and modifiers. 475 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { 476 GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; 477 if (!Piece.isOperand()) continue; 478 479 // Look for the correct constraint index. 480 unsigned ConstraintIdx = Piece.getOperandNo(); 481 // Labels are the last in the Exprs list. 482 if (NS->isAsmGoto() && ConstraintIdx >= NS->getNumInputs()) 483 continue; 484 unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs(); 485 // Look for the (ConstraintIdx - NumOperands + 1)th constraint with 486 // modifier '+'. 487 if (ConstraintIdx >= NumOperands) { 488 unsigned I = 0, E = NS->getNumOutputs(); 489 490 for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I) 491 if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) { 492 ConstraintIdx = I; 493 break; 494 } 495 496 assert(I != E && "Invalid operand number should have been caught in " 497 " AnalyzeAsmString"); 498 } 499 500 // Now that we have the right indexes go ahead and check. 501 StringLiteral *Literal = Constraints[ConstraintIdx]; 502 const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); 503 if (Ty->isDependentType() || Ty->isIncompleteType()) 504 continue; 505 506 unsigned Size = Context.getTypeSize(Ty); 507 std::string SuggestedModifier; 508 if (!Context.getTargetInfo().validateConstraintModifier( 509 Literal->getString(), Piece.getModifier(), Size, 510 SuggestedModifier)) { 511 targetDiag(Exprs[ConstraintIdx]->getBeginLoc(), 512 diag::warn_asm_mismatched_size_modifier); 513 514 if (!SuggestedModifier.empty()) { 515 auto B = targetDiag(Piece.getRange().getBegin(), 516 diag::note_asm_missing_constraint_modifier) 517 << SuggestedModifier; 518 SuggestedModifier = "%" + SuggestedModifier + Piece.getString(); 519 B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier); 520 } 521 } 522 } 523 524 // Validate tied input operands for type mismatches. 525 unsigned NumAlternatives = ~0U; 526 for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) { 527 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 528 StringRef ConstraintStr = Info.getConstraintStr(); 529 unsigned AltCount = ConstraintStr.count(',') + 1; 530 if (NumAlternatives == ~0U) { 531 NumAlternatives = AltCount; 532 } else if (NumAlternatives != AltCount) { 533 targetDiag(NS->getOutputExpr(i)->getBeginLoc(), 534 diag::err_asm_unexpected_constraint_alternatives) 535 << NumAlternatives << AltCount; 536 return NS; 537 } 538 } 539 SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(), 540 ~0U); 541 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { 542 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 543 StringRef ConstraintStr = Info.getConstraintStr(); 544 unsigned AltCount = ConstraintStr.count(',') + 1; 545 if (NumAlternatives == ~0U) { 546 NumAlternatives = AltCount; 547 } else if (NumAlternatives != AltCount) { 548 targetDiag(NS->getInputExpr(i)->getBeginLoc(), 549 diag::err_asm_unexpected_constraint_alternatives) 550 << NumAlternatives << AltCount; 551 return NS; 552 } 553 554 // If this is a tied constraint, verify that the output and input have 555 // either exactly the same type, or that they are int/ptr operands with the 556 // same size (int/long, int*/long, are ok etc). 557 if (!Info.hasTiedOperand()) continue; 558 559 unsigned TiedTo = Info.getTiedOperand(); 560 unsigned InputOpNo = i+NumOutputs; 561 Expr *OutputExpr = Exprs[TiedTo]; 562 Expr *InputExpr = Exprs[InputOpNo]; 563 564 // Make sure no more than one input constraint matches each output. 565 assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range"); 566 if (InputMatchedToOutput[TiedTo] != ~0U) { 567 targetDiag(NS->getInputExpr(i)->getBeginLoc(), 568 diag::err_asm_input_duplicate_match) 569 << TiedTo; 570 targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(), 571 diag::note_asm_input_duplicate_first) 572 << TiedTo; 573 return NS; 574 } 575 InputMatchedToOutput[TiedTo] = i; 576 577 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) 578 continue; 579 580 QualType InTy = InputExpr->getType(); 581 QualType OutTy = OutputExpr->getType(); 582 if (Context.hasSameType(InTy, OutTy)) 583 continue; // All types can be tied to themselves. 584 585 // Decide if the input and output are in the same domain (integer/ptr or 586 // floating point. 587 enum AsmDomain { 588 AD_Int, AD_FP, AD_Other 589 } InputDomain, OutputDomain; 590 591 if (InTy->isIntegerType() || InTy->isPointerType()) 592 InputDomain = AD_Int; 593 else if (InTy->isRealFloatingType()) 594 InputDomain = AD_FP; 595 else 596 InputDomain = AD_Other; 597 598 if (OutTy->isIntegerType() || OutTy->isPointerType()) 599 OutputDomain = AD_Int; 600 else if (OutTy->isRealFloatingType()) 601 OutputDomain = AD_FP; 602 else 603 OutputDomain = AD_Other; 604 605 // They are ok if they are the same size and in the same domain. This 606 // allows tying things like: 607 // void* to int* 608 // void* to int if they are the same size. 609 // double to long double if they are the same size. 610 // 611 uint64_t OutSize = Context.getTypeSize(OutTy); 612 uint64_t InSize = Context.getTypeSize(InTy); 613 if (OutSize == InSize && InputDomain == OutputDomain && 614 InputDomain != AD_Other) 615 continue; 616 617 // If the smaller input/output operand is not mentioned in the asm string, 618 // then we can promote the smaller one to a larger input and the asm string 619 // won't notice. 620 bool SmallerValueMentioned = false; 621 622 // If this is a reference to the input and if the input was the smaller 623 // one, then we have to reject this asm. 624 if (isOperandMentioned(InputOpNo, Pieces)) { 625 // This is a use in the asm string of the smaller operand. Since we 626 // codegen this by promoting to a wider value, the asm will get printed 627 // "wrong". 628 SmallerValueMentioned |= InSize < OutSize; 629 } 630 if (isOperandMentioned(TiedTo, Pieces)) { 631 // If this is a reference to the output, and if the output is the larger 632 // value, then it's ok because we'll promote the input to the larger type. 633 SmallerValueMentioned |= OutSize < InSize; 634 } 635 636 // If the smaller value wasn't mentioned in the asm string, and if the 637 // output was a register, just extend the shorter one to the size of the 638 // larger one. 639 if (!SmallerValueMentioned && InputDomain != AD_Other && 640 OutputConstraintInfos[TiedTo].allowsRegister()) 641 continue; 642 643 // Either both of the operands were mentioned or the smaller one was 644 // mentioned. One more special case that we'll allow: if the tied input is 645 // integer, unmentioned, and is a constant, then we'll allow truncating it 646 // down to the size of the destination. 647 if (InputDomain == AD_Int && OutputDomain == AD_Int && 648 !isOperandMentioned(InputOpNo, Pieces) && 649 InputExpr->isEvaluatable(Context)) { 650 CastKind castKind = 651 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); 652 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get(); 653 Exprs[InputOpNo] = InputExpr; 654 NS->setInputExpr(i, InputExpr); 655 continue; 656 } 657 658 targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types) 659 << InTy << OutTy << OutputExpr->getSourceRange() 660 << InputExpr->getSourceRange(); 661 return NS; 662 } 663 664 // Check for conflicts between clobber list and input or output lists 665 SourceLocation ConstraintLoc = 666 getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers, 667 NumLabels, 668 Context.getTargetInfo(), Context); 669 if (ConstraintLoc.isValid()) 670 targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber); 671 672 // Check for duplicate asm operand name between input, output and label lists. 673 typedef std::pair<StringRef , Expr *> NamedOperand; 674 SmallVector<NamedOperand, 4> NamedOperandList; 675 for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i) 676 if (Names[i]) 677 NamedOperandList.emplace_back( 678 std::make_pair(Names[i]->getName(), Exprs[i])); 679 // Sort NamedOperandList. 680 std::stable_sort(NamedOperandList.begin(), NamedOperandList.end(), 681 [](const NamedOperand &LHS, const NamedOperand &RHS) { 682 return LHS.first < RHS.first; 683 }); 684 // Find adjacent duplicate operand. 685 SmallVector<NamedOperand, 4>::iterator Found = 686 std::adjacent_find(begin(NamedOperandList), end(NamedOperandList), 687 [](const NamedOperand &LHS, const NamedOperand &RHS) { 688 return LHS.first == RHS.first; 689 }); 690 if (Found != NamedOperandList.end()) { 691 Diag((Found + 1)->second->getBeginLoc(), 692 diag::error_duplicate_asm_operand_name) 693 << (Found + 1)->first; 694 Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name) 695 << Found->first; 696 return StmtError(); 697 } 698 if (NS->isAsmGoto()) 699 setFunctionHasBranchIntoScope(); 700 return NS; 701 } 702 703 void Sema::FillInlineAsmIdentifierInfo(Expr *Res, 704 llvm::InlineAsmIdentifierInfo &Info) { 705 QualType T = Res->getType(); 706 Expr::EvalResult Eval; 707 if (T->isFunctionType() || T->isDependentType()) 708 return Info.setLabel(Res); 709 if (Res->isRValue()) { 710 bool IsEnum = isa<clang::EnumType>(T); 711 if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Res)) 712 if (DRE->getDecl()->getKind() == Decl::EnumConstant) 713 IsEnum = true; 714 if (IsEnum && Res->EvaluateAsRValue(Eval, Context)) 715 return Info.setEnum(Eval.Val.getInt().getSExtValue()); 716 717 return Info.setLabel(Res); 718 } 719 unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); 720 unsigned Type = Size; 721 if (const auto *ATy = Context.getAsArrayType(T)) 722 Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity(); 723 bool IsGlobalLV = false; 724 if (Res->EvaluateAsLValue(Eval, Context)) 725 IsGlobalLV = Eval.isGlobalLValue(); 726 Info.setVar(Res, IsGlobalLV, Size, Type); 727 } 728 729 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS, 730 SourceLocation TemplateKWLoc, 731 UnqualifiedId &Id, 732 bool IsUnevaluatedContext) { 733 734 if (IsUnevaluatedContext) 735 PushExpressionEvaluationContext( 736 ExpressionEvaluationContext::UnevaluatedAbstract, 737 ReuseLambdaContextDecl); 738 739 ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id, 740 /*trailing lparen*/ false, 741 /*is & operand*/ false, 742 /*CorrectionCandidateCallback=*/nullptr, 743 /*IsInlineAsmIdentifier=*/ true); 744 745 if (IsUnevaluatedContext) 746 PopExpressionEvaluationContext(); 747 748 if (!Result.isUsable()) return Result; 749 750 Result = CheckPlaceholderExpr(Result.get()); 751 if (!Result.isUsable()) return Result; 752 753 // Referring to parameters is not allowed in naked functions. 754 if (CheckNakedParmReference(Result.get(), *this)) 755 return ExprError(); 756 757 QualType T = Result.get()->getType(); 758 759 if (T->isDependentType()) { 760 return Result; 761 } 762 763 // Any sort of function type is fine. 764 if (T->isFunctionType()) { 765 return Result; 766 } 767 768 // Otherwise, it needs to be a complete type. 769 if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) { 770 return ExprError(); 771 } 772 773 return Result; 774 } 775 776 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, 777 unsigned &Offset, SourceLocation AsmLoc) { 778 Offset = 0; 779 SmallVector<StringRef, 2> Members; 780 Member.split(Members, "."); 781 782 NamedDecl *FoundDecl = nullptr; 783 784 // MS InlineAsm uses 'this' as a base 785 if (getLangOpts().CPlusPlus && Base.equals("this")) { 786 if (const Type *PT = getCurrentThisType().getTypePtrOrNull()) 787 FoundDecl = PT->getPointeeType()->getAsTagDecl(); 788 } else { 789 LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(), 790 LookupOrdinaryName); 791 if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult()) 792 FoundDecl = BaseResult.getFoundDecl(); 793 } 794 795 if (!FoundDecl) 796 return true; 797 798 for (StringRef NextMember : Members) { 799 const RecordType *RT = nullptr; 800 if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) 801 RT = VD->getType()->getAs<RecordType>(); 802 else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) { 803 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 804 // MS InlineAsm often uses struct pointer aliases as a base 805 QualType QT = TD->getUnderlyingType(); 806 if (const auto *PT = QT->getAs<PointerType>()) 807 QT = PT->getPointeeType(); 808 RT = QT->getAs<RecordType>(); 809 } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl)) 810 RT = TD->getTypeForDecl()->getAs<RecordType>(); 811 else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl)) 812 RT = TD->getType()->getAs<RecordType>(); 813 if (!RT) 814 return true; 815 816 if (RequireCompleteType(AsmLoc, QualType(RT, 0), 817 diag::err_asm_incomplete_type)) 818 return true; 819 820 LookupResult FieldResult(*this, &Context.Idents.get(NextMember), 821 SourceLocation(), LookupMemberName); 822 823 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 824 return true; 825 826 if (!FieldResult.isSingleResult()) 827 return true; 828 FoundDecl = FieldResult.getFoundDecl(); 829 830 // FIXME: Handle IndirectFieldDecl? 831 FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl); 832 if (!FD) 833 return true; 834 835 const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl()); 836 unsigned i = FD->getFieldIndex(); 837 CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i)); 838 Offset += (unsigned)Result.getQuantity(); 839 } 840 841 return false; 842 } 843 844 ExprResult 845 Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member, 846 SourceLocation AsmLoc) { 847 848 QualType T = E->getType(); 849 if (T->isDependentType()) { 850 DeclarationNameInfo NameInfo; 851 NameInfo.setLoc(AsmLoc); 852 NameInfo.setName(&Context.Idents.get(Member)); 853 return CXXDependentScopeMemberExpr::Create( 854 Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(), 855 SourceLocation(), 856 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr); 857 } 858 859 const RecordType *RT = T->getAs<RecordType>(); 860 // FIXME: Diagnose this as field access into a scalar type. 861 if (!RT) 862 return ExprResult(); 863 864 LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc, 865 LookupMemberName); 866 867 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 868 return ExprResult(); 869 870 // Only normal and indirect field results will work. 871 ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl()); 872 if (!FD) 873 FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl()); 874 if (!FD) 875 return ExprResult(); 876 877 // Make an Expr to thread through OpDecl. 878 ExprResult Result = BuildMemberReferenceExpr( 879 E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(), 880 SourceLocation(), nullptr, FieldResult, nullptr, nullptr); 881 882 return Result; 883 } 884 885 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, 886 ArrayRef<Token> AsmToks, 887 StringRef AsmString, 888 unsigned NumOutputs, unsigned NumInputs, 889 ArrayRef<StringRef> Constraints, 890 ArrayRef<StringRef> Clobbers, 891 ArrayRef<Expr*> Exprs, 892 SourceLocation EndLoc) { 893 bool IsSimple = (NumOutputs != 0 || NumInputs != 0); 894 setFunctionHasBranchProtectedScope(); 895 MSAsmStmt *NS = 896 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, 897 /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, 898 Constraints, Exprs, AsmString, 899 Clobbers, EndLoc); 900 return NS; 901 } 902 903 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName, 904 SourceLocation Location, 905 bool AlwaysCreate) { 906 LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName), 907 Location); 908 909 if (Label->isMSAsmLabel()) { 910 // If we have previously created this label implicitly, mark it as used. 911 Label->markUsed(Context); 912 } else { 913 // Otherwise, insert it, but only resolve it if we have seen the label itself. 914 std::string InternalName; 915 llvm::raw_string_ostream OS(InternalName); 916 // Create an internal name for the label. The name should not be a valid 917 // mangled name, and should be unique. We use a dot to make the name an 918 // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a 919 // unique label is generated each time this blob is emitted, even after 920 // inlining or LTO. 921 OS << "__MSASMLABEL_.${:uid}__"; 922 for (char C : ExternalLabelName) { 923 OS << C; 924 // We escape '$' in asm strings by replacing it with "$$" 925 if (C == '$') 926 OS << '$'; 927 } 928 Label->setMSAsmLabel(OS.str()); 929 } 930 if (AlwaysCreate) { 931 // The label might have been created implicitly from a previously encountered 932 // goto statement. So, for both newly created and looked up labels, we mark 933 // them as resolved. 934 Label->setMSAsmLabelResolved(); 935 } 936 // Adjust their location for being able to generate accurate diagnostics. 937 Label->setLocation(Location); 938 939 return Label; 940 } 941