1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for inline asm statements. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ExprCXX.h" 14 #include "clang/AST/GlobalDecl.h" 15 #include "clang/AST/RecordLayout.h" 16 #include "clang/AST/TypeLoc.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/Lex/Preprocessor.h" 19 #include "clang/Sema/Initialization.h" 20 #include "clang/Sema/Lookup.h" 21 #include "clang/Sema/Scope.h" 22 #include "clang/Sema/ScopeInfo.h" 23 #include "clang/Sema/SemaInternal.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/MC/MCParser/MCAsmParser.h" 27 #include <optional> 28 using namespace clang; 29 using namespace sema; 30 31 /// Remove the upper-level LValueToRValue cast from an expression. 32 static void removeLValueToRValueCast(Expr *E) { 33 Expr *Parent = E; 34 Expr *ExprUnderCast = nullptr; 35 SmallVector<Expr *, 8> ParentsToUpdate; 36 37 while (true) { 38 ParentsToUpdate.push_back(Parent); 39 if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) { 40 Parent = ParenE->getSubExpr(); 41 continue; 42 } 43 44 Expr *Child = nullptr; 45 CastExpr *ParentCast = dyn_cast<CastExpr>(Parent); 46 if (ParentCast) 47 Child = ParentCast->getSubExpr(); 48 else 49 return; 50 51 if (auto *CastE = dyn_cast<CastExpr>(Child)) 52 if (CastE->getCastKind() == CK_LValueToRValue) { 53 ExprUnderCast = CastE->getSubExpr(); 54 // LValueToRValue cast inside GCCAsmStmt requires an explicit cast. 55 ParentCast->setSubExpr(ExprUnderCast); 56 break; 57 } 58 Parent = Child; 59 } 60 61 // Update parent expressions to have same ValueType as the underlying. 62 assert(ExprUnderCast && 63 "Should be reachable only if LValueToRValue cast was found!"); 64 auto ValueKind = ExprUnderCast->getValueKind(); 65 for (Expr *E : ParentsToUpdate) 66 E->setValueKind(ValueKind); 67 } 68 69 /// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension) 70 /// and fix the argument with removing LValueToRValue cast from the expression. 71 static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument, 72 Sema &S) { 73 if (!S.getLangOpts().HeinousExtensions) { 74 S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue) 75 << BadArgument->getSourceRange(); 76 } else { 77 S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue) 78 << BadArgument->getSourceRange(); 79 } 80 removeLValueToRValueCast(BadArgument); 81 } 82 83 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently 84 /// ignore "noop" casts in places where an lvalue is required by an inline asm. 85 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but 86 /// provide a strong guidance to not use it. 87 /// 88 /// This method checks to see if the argument is an acceptable l-value and 89 /// returns false if it is a case we can handle. 90 static bool CheckAsmLValue(Expr *E, Sema &S) { 91 // Type dependent expressions will be checked during instantiation. 92 if (E->isTypeDependent()) 93 return false; 94 95 if (E->isLValue()) 96 return false; // Cool, this is an lvalue. 97 98 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we 99 // are supposed to allow. 100 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); 101 if (E != E2 && E2->isLValue()) { 102 emitAndFixInvalidAsmCastLValue(E2, E, S); 103 // Accept, even if we emitted an error diagnostic. 104 return false; 105 } 106 107 // None of the above, just randomly invalid non-lvalue. 108 return true; 109 } 110 111 /// isOperandMentioned - Return true if the specified operand # is mentioned 112 /// anywhere in the decomposed asm string. 113 static bool 114 isOperandMentioned(unsigned OpNo, 115 ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { 116 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { 117 const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; 118 if (!Piece.isOperand()) 119 continue; 120 121 // If this is a reference to the input and if the input was the smaller 122 // one, then we have to reject this asm. 123 if (Piece.getOperandNo() == OpNo) 124 return true; 125 } 126 return false; 127 } 128 129 static bool CheckNakedParmReference(Expr *E, Sema &S) { 130 FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext); 131 if (!Func) 132 return false; 133 if (!Func->hasAttr<NakedAttr>()) 134 return false; 135 136 SmallVector<Expr*, 4> WorkList; 137 WorkList.push_back(E); 138 while (WorkList.size()) { 139 Expr *E = WorkList.pop_back_val(); 140 if (isa<CXXThisExpr>(E)) { 141 S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref); 142 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 143 return true; 144 } 145 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 146 if (isa<ParmVarDecl>(DRE->getDecl())) { 147 S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref); 148 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 149 return true; 150 } 151 } 152 for (Stmt *Child : E->children()) { 153 if (Expr *E = dyn_cast_or_null<Expr>(Child)) 154 WorkList.push_back(E); 155 } 156 } 157 return false; 158 } 159 160 /// Returns true if given expression is not compatible with inline 161 /// assembly's memory constraint; false otherwise. 162 static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E, 163 TargetInfo::ConstraintInfo &Info, 164 bool is_input_expr) { 165 enum { 166 ExprBitfield = 0, 167 ExprVectorElt, 168 ExprGlobalRegVar, 169 ExprSafeType 170 } EType = ExprSafeType; 171 172 // Bitfields, vector elements and global register variables are not 173 // compatible. 174 if (E->refersToBitField()) 175 EType = ExprBitfield; 176 else if (E->refersToVectorElement()) 177 EType = ExprVectorElt; 178 else if (E->refersToGlobalRegisterVar()) 179 EType = ExprGlobalRegVar; 180 181 if (EType != ExprSafeType) { 182 S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint) 183 << EType << is_input_expr << Info.getConstraintStr() 184 << E->getSourceRange(); 185 return true; 186 } 187 188 return false; 189 } 190 191 // Extracting the register name from the Expression value, 192 // if there is no register name to extract, returns "" 193 static StringRef extractRegisterName(const Expr *Expression, 194 const TargetInfo &Target) { 195 Expression = Expression->IgnoreImpCasts(); 196 if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) { 197 // Handle cases where the expression is a variable 198 const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl()); 199 if (Variable && Variable->getStorageClass() == SC_Register) { 200 if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>()) 201 if (Target.isValidGCCRegisterName(Attr->getLabel())) 202 return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true); 203 } 204 } 205 return ""; 206 } 207 208 // Checks if there is a conflict between the input and output lists with the 209 // clobbers list. If there's a conflict, returns the location of the 210 // conflicted clobber, else returns nullptr 211 static SourceLocation 212 getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints, 213 StringLiteral **Clobbers, int NumClobbers, 214 unsigned NumLabels, 215 const TargetInfo &Target, ASTContext &Cont) { 216 llvm::StringSet<> InOutVars; 217 // Collect all the input and output registers from the extended asm 218 // statement in order to check for conflicts with the clobber list 219 for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) { 220 StringRef Constraint = Constraints[i]->getString(); 221 StringRef InOutReg = Target.getConstraintRegister( 222 Constraint, extractRegisterName(Exprs[i], Target)); 223 if (InOutReg != "") 224 InOutVars.insert(InOutReg); 225 } 226 // Check for each item in the clobber list if it conflicts with the input 227 // or output 228 for (int i = 0; i < NumClobbers; ++i) { 229 StringRef Clobber = Clobbers[i]->getString(); 230 // We only check registers, therefore we don't check cc and memory 231 // clobbers 232 if (Clobber == "cc" || Clobber == "memory" || Clobber == "unwind") 233 continue; 234 Clobber = Target.getNormalizedGCCRegisterName(Clobber, true); 235 // Go over the output's registers we collected 236 if (InOutVars.count(Clobber)) 237 return Clobbers[i]->getBeginLoc(); 238 } 239 return SourceLocation(); 240 } 241 242 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, 243 bool IsVolatile, unsigned NumOutputs, 244 unsigned NumInputs, IdentifierInfo **Names, 245 MultiExprArg constraints, MultiExprArg Exprs, 246 Expr *asmString, MultiExprArg clobbers, 247 unsigned NumLabels, 248 SourceLocation RParenLoc) { 249 unsigned NumClobbers = clobbers.size(); 250 StringLiteral **Constraints = 251 reinterpret_cast<StringLiteral**>(constraints.data()); 252 StringLiteral *AsmString = cast<StringLiteral>(asmString); 253 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); 254 255 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 256 257 // The parser verifies that there is a string literal here. 258 assert(AsmString->isOrdinary()); 259 260 FunctionDecl *FD = dyn_cast<FunctionDecl>(getCurLexicalContext()); 261 llvm::StringMap<bool> FeatureMap; 262 Context.getFunctionFeatureMap(FeatureMap, FD); 263 264 for (unsigned i = 0; i != NumOutputs; i++) { 265 StringLiteral *Literal = Constraints[i]; 266 assert(Literal->isOrdinary()); 267 268 StringRef OutputName; 269 if (Names[i]) 270 OutputName = Names[i]->getName(); 271 272 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); 273 if (!Context.getTargetInfo().validateOutputConstraint(Info)) { 274 targetDiag(Literal->getBeginLoc(), 275 diag::err_asm_invalid_output_constraint) 276 << Info.getConstraintStr(); 277 return new (Context) 278 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 279 NumInputs, Names, Constraints, Exprs.data(), AsmString, 280 NumClobbers, Clobbers, NumLabels, RParenLoc); 281 } 282 283 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 284 if (ER.isInvalid()) 285 return StmtError(); 286 Exprs[i] = ER.get(); 287 288 // Check that the output exprs are valid lvalues. 289 Expr *OutputExpr = Exprs[i]; 290 291 // Referring to parameters is not allowed in naked functions. 292 if (CheckNakedParmReference(OutputExpr, *this)) 293 return StmtError(); 294 295 // Check that the output expression is compatible with memory constraint. 296 if (Info.allowsMemory() && 297 checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false)) 298 return StmtError(); 299 300 // Disallow bit-precise integer types, since the backends tend to have 301 // difficulties with abnormal sizes. 302 if (OutputExpr->getType()->isBitIntType()) 303 return StmtError( 304 Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type) 305 << OutputExpr->getType() << 0 /*Input*/ 306 << OutputExpr->getSourceRange()); 307 308 OutputConstraintInfos.push_back(Info); 309 310 // If this is dependent, just continue. 311 if (OutputExpr->isTypeDependent()) 312 continue; 313 314 Expr::isModifiableLvalueResult IsLV = 315 OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr); 316 switch (IsLV) { 317 case Expr::MLV_Valid: 318 // Cool, this is an lvalue. 319 break; 320 case Expr::MLV_ArrayType: 321 // This is OK too. 322 break; 323 case Expr::MLV_LValueCast: { 324 const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context); 325 emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this); 326 // Accept, even if we emitted an error diagnostic. 327 break; 328 } 329 case Expr::MLV_IncompleteType: 330 case Expr::MLV_IncompleteVoidType: 331 if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(), 332 diag::err_dereference_incomplete_type)) 333 return StmtError(); 334 [[fallthrough]]; 335 default: 336 return StmtError(Diag(OutputExpr->getBeginLoc(), 337 diag::err_asm_invalid_lvalue_in_output) 338 << OutputExpr->getSourceRange()); 339 } 340 341 unsigned Size = Context.getTypeSize(OutputExpr->getType()); 342 if (!Context.getTargetInfo().validateOutputSize( 343 FeatureMap, Literal->getString(), Size)) { 344 targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size) 345 << Info.getConstraintStr(); 346 return new (Context) 347 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 348 NumInputs, Names, Constraints, Exprs.data(), AsmString, 349 NumClobbers, Clobbers, NumLabels, RParenLoc); 350 } 351 } 352 353 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 354 355 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { 356 StringLiteral *Literal = Constraints[i]; 357 assert(Literal->isOrdinary()); 358 359 StringRef InputName; 360 if (Names[i]) 361 InputName = Names[i]->getName(); 362 363 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); 364 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos, 365 Info)) { 366 targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint) 367 << Info.getConstraintStr(); 368 return new (Context) 369 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 370 NumInputs, Names, Constraints, Exprs.data(), AsmString, 371 NumClobbers, Clobbers, NumLabels, RParenLoc); 372 } 373 374 ExprResult ER = CheckPlaceholderExpr(Exprs[i]); 375 if (ER.isInvalid()) 376 return StmtError(); 377 Exprs[i] = ER.get(); 378 379 Expr *InputExpr = Exprs[i]; 380 381 if (InputExpr->getType()->isMemberPointerType()) 382 return StmtError(Diag(InputExpr->getBeginLoc(), 383 diag::err_asm_pmf_through_constraint_not_permitted) 384 << InputExpr->getSourceRange()); 385 386 // Referring to parameters is not allowed in naked functions. 387 if (CheckNakedParmReference(InputExpr, *this)) 388 return StmtError(); 389 390 // Check that the input expression is compatible with memory constraint. 391 if (Info.allowsMemory() && 392 checkExprMemoryConstraintCompat(*this, InputExpr, Info, true)) 393 return StmtError(); 394 395 // Only allow void types for memory constraints. 396 if (Info.allowsMemory() && !Info.allowsRegister()) { 397 if (CheckAsmLValue(InputExpr, *this)) 398 return StmtError(Diag(InputExpr->getBeginLoc(), 399 diag::err_asm_invalid_lvalue_in_input) 400 << Info.getConstraintStr() 401 << InputExpr->getSourceRange()); 402 } else { 403 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); 404 if (Result.isInvalid()) 405 return StmtError(); 406 407 InputExpr = Exprs[i] = Result.get(); 408 409 if (Info.requiresImmediateConstant() && !Info.allowsRegister()) { 410 if (!InputExpr->isValueDependent()) { 411 Expr::EvalResult EVResult; 412 if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) { 413 // For compatibility with GCC, we also allow pointers that would be 414 // integral constant expressions if they were cast to int. 415 llvm::APSInt IntResult; 416 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 417 Context)) 418 if (!Info.isValidAsmImmediate(IntResult)) 419 return StmtError( 420 Diag(InputExpr->getBeginLoc(), 421 diag::err_invalid_asm_value_for_constraint) 422 << toString(IntResult, 10) << Info.getConstraintStr() 423 << InputExpr->getSourceRange()); 424 } 425 } 426 } 427 } 428 429 if (Info.allowsRegister()) { 430 if (InputExpr->getType()->isVoidType()) { 431 return StmtError( 432 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input) 433 << InputExpr->getType() << Info.getConstraintStr() 434 << InputExpr->getSourceRange()); 435 } 436 } 437 438 if (InputExpr->getType()->isBitIntType()) 439 return StmtError( 440 Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type) 441 << InputExpr->getType() << 1 /*Output*/ 442 << InputExpr->getSourceRange()); 443 444 InputConstraintInfos.push_back(Info); 445 446 const Type *Ty = Exprs[i]->getType().getTypePtr(); 447 if (Ty->isDependentType()) 448 continue; 449 450 if (!Ty->isVoidType() || !Info.allowsMemory()) 451 if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(), 452 diag::err_dereference_incomplete_type)) 453 return StmtError(); 454 455 unsigned Size = Context.getTypeSize(Ty); 456 if (!Context.getTargetInfo().validateInputSize(FeatureMap, 457 Literal->getString(), Size)) 458 return targetDiag(InputExpr->getBeginLoc(), 459 diag::err_asm_invalid_input_size) 460 << Info.getConstraintStr(); 461 } 462 463 std::optional<SourceLocation> UnwindClobberLoc; 464 465 // Check that the clobbers are valid. 466 for (unsigned i = 0; i != NumClobbers; i++) { 467 StringLiteral *Literal = Clobbers[i]; 468 assert(Literal->isOrdinary()); 469 470 StringRef Clobber = Literal->getString(); 471 472 if (!Context.getTargetInfo().isValidClobber(Clobber)) { 473 targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name) 474 << Clobber; 475 return new (Context) 476 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 477 NumInputs, Names, Constraints, Exprs.data(), AsmString, 478 NumClobbers, Clobbers, NumLabels, RParenLoc); 479 } 480 481 if (Clobber == "unwind") { 482 UnwindClobberLoc = Literal->getBeginLoc(); 483 } 484 } 485 486 // Using unwind clobber and asm-goto together is not supported right now. 487 if (UnwindClobberLoc && NumLabels > 0) { 488 targetDiag(*UnwindClobberLoc, diag::err_asm_unwind_and_goto); 489 return new (Context) 490 GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, 491 Names, Constraints, Exprs.data(), AsmString, NumClobbers, 492 Clobbers, NumLabels, RParenLoc); 493 } 494 495 GCCAsmStmt *NS = 496 new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 497 NumInputs, Names, Constraints, Exprs.data(), 498 AsmString, NumClobbers, Clobbers, NumLabels, 499 RParenLoc); 500 // Validate the asm string, ensuring it makes sense given the operands we 501 // have. 502 SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; 503 unsigned DiagOffs; 504 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { 505 targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) 506 << AsmString->getSourceRange(); 507 return NS; 508 } 509 510 // Validate constraints and modifiers. 511 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { 512 GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; 513 if (!Piece.isOperand()) continue; 514 515 // Look for the correct constraint index. 516 unsigned ConstraintIdx = Piece.getOperandNo(); 517 unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs(); 518 // Labels are the last in the Exprs list. 519 if (NS->isAsmGoto() && ConstraintIdx >= NumOperands) 520 continue; 521 // Look for the (ConstraintIdx - NumOperands + 1)th constraint with 522 // modifier '+'. 523 if (ConstraintIdx >= NumOperands) { 524 unsigned I = 0, E = NS->getNumOutputs(); 525 526 for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I) 527 if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) { 528 ConstraintIdx = I; 529 break; 530 } 531 532 assert(I != E && "Invalid operand number should have been caught in " 533 " AnalyzeAsmString"); 534 } 535 536 // Now that we have the right indexes go ahead and check. 537 StringLiteral *Literal = Constraints[ConstraintIdx]; 538 const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); 539 if (Ty->isDependentType() || Ty->isIncompleteType()) 540 continue; 541 542 unsigned Size = Context.getTypeSize(Ty); 543 std::string SuggestedModifier; 544 if (!Context.getTargetInfo().validateConstraintModifier( 545 Literal->getString(), Piece.getModifier(), Size, 546 SuggestedModifier)) { 547 targetDiag(Exprs[ConstraintIdx]->getBeginLoc(), 548 diag::warn_asm_mismatched_size_modifier); 549 550 if (!SuggestedModifier.empty()) { 551 auto B = targetDiag(Piece.getRange().getBegin(), 552 diag::note_asm_missing_constraint_modifier) 553 << SuggestedModifier; 554 SuggestedModifier = "%" + SuggestedModifier + Piece.getString(); 555 B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier); 556 } 557 } 558 } 559 560 // Validate tied input operands for type mismatches. 561 unsigned NumAlternatives = ~0U; 562 for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) { 563 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 564 StringRef ConstraintStr = Info.getConstraintStr(); 565 unsigned AltCount = ConstraintStr.count(',') + 1; 566 if (NumAlternatives == ~0U) { 567 NumAlternatives = AltCount; 568 } else if (NumAlternatives != AltCount) { 569 targetDiag(NS->getOutputExpr(i)->getBeginLoc(), 570 diag::err_asm_unexpected_constraint_alternatives) 571 << NumAlternatives << AltCount; 572 return NS; 573 } 574 } 575 SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(), 576 ~0U); 577 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { 578 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 579 StringRef ConstraintStr = Info.getConstraintStr(); 580 unsigned AltCount = ConstraintStr.count(',') + 1; 581 if (NumAlternatives == ~0U) { 582 NumAlternatives = AltCount; 583 } else if (NumAlternatives != AltCount) { 584 targetDiag(NS->getInputExpr(i)->getBeginLoc(), 585 diag::err_asm_unexpected_constraint_alternatives) 586 << NumAlternatives << AltCount; 587 return NS; 588 } 589 590 // If this is a tied constraint, verify that the output and input have 591 // either exactly the same type, or that they are int/ptr operands with the 592 // same size (int/long, int*/long, are ok etc). 593 if (!Info.hasTiedOperand()) continue; 594 595 unsigned TiedTo = Info.getTiedOperand(); 596 unsigned InputOpNo = i+NumOutputs; 597 Expr *OutputExpr = Exprs[TiedTo]; 598 Expr *InputExpr = Exprs[InputOpNo]; 599 600 // Make sure no more than one input constraint matches each output. 601 assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range"); 602 if (InputMatchedToOutput[TiedTo] != ~0U) { 603 targetDiag(NS->getInputExpr(i)->getBeginLoc(), 604 diag::err_asm_input_duplicate_match) 605 << TiedTo; 606 targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(), 607 diag::note_asm_input_duplicate_first) 608 << TiedTo; 609 return NS; 610 } 611 InputMatchedToOutput[TiedTo] = i; 612 613 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) 614 continue; 615 616 QualType InTy = InputExpr->getType(); 617 QualType OutTy = OutputExpr->getType(); 618 if (Context.hasSameType(InTy, OutTy)) 619 continue; // All types can be tied to themselves. 620 621 // Decide if the input and output are in the same domain (integer/ptr or 622 // floating point. 623 enum AsmDomain { 624 AD_Int, AD_FP, AD_Other 625 } InputDomain, OutputDomain; 626 627 if (InTy->isIntegerType() || InTy->isPointerType()) 628 InputDomain = AD_Int; 629 else if (InTy->isRealFloatingType()) 630 InputDomain = AD_FP; 631 else 632 InputDomain = AD_Other; 633 634 if (OutTy->isIntegerType() || OutTy->isPointerType()) 635 OutputDomain = AD_Int; 636 else if (OutTy->isRealFloatingType()) 637 OutputDomain = AD_FP; 638 else 639 OutputDomain = AD_Other; 640 641 // They are ok if they are the same size and in the same domain. This 642 // allows tying things like: 643 // void* to int* 644 // void* to int if they are the same size. 645 // double to long double if they are the same size. 646 // 647 uint64_t OutSize = Context.getTypeSize(OutTy); 648 uint64_t InSize = Context.getTypeSize(InTy); 649 if (OutSize == InSize && InputDomain == OutputDomain && 650 InputDomain != AD_Other) 651 continue; 652 653 // If the smaller input/output operand is not mentioned in the asm string, 654 // then we can promote the smaller one to a larger input and the asm string 655 // won't notice. 656 bool SmallerValueMentioned = false; 657 658 // If this is a reference to the input and if the input was the smaller 659 // one, then we have to reject this asm. 660 if (isOperandMentioned(InputOpNo, Pieces)) { 661 // This is a use in the asm string of the smaller operand. Since we 662 // codegen this by promoting to a wider value, the asm will get printed 663 // "wrong". 664 SmallerValueMentioned |= InSize < OutSize; 665 } 666 if (isOperandMentioned(TiedTo, Pieces)) { 667 // If this is a reference to the output, and if the output is the larger 668 // value, then it's ok because we'll promote the input to the larger type. 669 SmallerValueMentioned |= OutSize < InSize; 670 } 671 672 // If the smaller value wasn't mentioned in the asm string, and if the 673 // output was a register, just extend the shorter one to the size of the 674 // larger one. 675 if (!SmallerValueMentioned && InputDomain != AD_Other && 676 OutputConstraintInfos[TiedTo].allowsRegister()) { 677 // FIXME: GCC supports the OutSize to be 128 at maximum. Currently codegen 678 // crash when the size larger than the register size. So we limit it here. 679 if (OutTy->isStructureType() && 680 Context.getIntTypeForBitwidth(OutSize, /*Signed*/ false).isNull()) { 681 targetDiag(OutputExpr->getExprLoc(), diag::err_store_value_to_reg); 682 return NS; 683 } 684 685 continue; 686 } 687 688 // Either both of the operands were mentioned or the smaller one was 689 // mentioned. One more special case that we'll allow: if the tied input is 690 // integer, unmentioned, and is a constant, then we'll allow truncating it 691 // down to the size of the destination. 692 if (InputDomain == AD_Int && OutputDomain == AD_Int && 693 !isOperandMentioned(InputOpNo, Pieces) && 694 InputExpr->isEvaluatable(Context)) { 695 CastKind castKind = 696 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); 697 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get(); 698 Exprs[InputOpNo] = InputExpr; 699 NS->setInputExpr(i, InputExpr); 700 continue; 701 } 702 703 targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types) 704 << InTy << OutTy << OutputExpr->getSourceRange() 705 << InputExpr->getSourceRange(); 706 return NS; 707 } 708 709 // Check for conflicts between clobber list and input or output lists 710 SourceLocation ConstraintLoc = 711 getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers, 712 NumLabels, 713 Context.getTargetInfo(), Context); 714 if (ConstraintLoc.isValid()) 715 targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber); 716 717 // Check for duplicate asm operand name between input, output and label lists. 718 typedef std::pair<StringRef , Expr *> NamedOperand; 719 SmallVector<NamedOperand, 4> NamedOperandList; 720 for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i) 721 if (Names[i]) 722 NamedOperandList.emplace_back( 723 std::make_pair(Names[i]->getName(), Exprs[i])); 724 // Sort NamedOperandList. 725 llvm::stable_sort(NamedOperandList, llvm::less_first()); 726 // Find adjacent duplicate operand. 727 SmallVector<NamedOperand, 4>::iterator Found = 728 std::adjacent_find(begin(NamedOperandList), end(NamedOperandList), 729 [](const NamedOperand &LHS, const NamedOperand &RHS) { 730 return LHS.first == RHS.first; 731 }); 732 if (Found != NamedOperandList.end()) { 733 Diag((Found + 1)->second->getBeginLoc(), 734 diag::error_duplicate_asm_operand_name) 735 << (Found + 1)->first; 736 Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name) 737 << Found->first; 738 return StmtError(); 739 } 740 if (NS->isAsmGoto()) 741 setFunctionHasBranchIntoScope(); 742 743 CleanupVarDeclMarking(); 744 DiscardCleanupsInEvaluationContext(); 745 return NS; 746 } 747 748 void Sema::FillInlineAsmIdentifierInfo(Expr *Res, 749 llvm::InlineAsmIdentifierInfo &Info) { 750 QualType T = Res->getType(); 751 Expr::EvalResult Eval; 752 if (T->isFunctionType() || T->isDependentType()) 753 return Info.setLabel(Res); 754 if (Res->isPRValue()) { 755 bool IsEnum = isa<clang::EnumType>(T); 756 if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Res)) 757 if (DRE->getDecl()->getKind() == Decl::EnumConstant) 758 IsEnum = true; 759 if (IsEnum && Res->EvaluateAsRValue(Eval, Context)) 760 return Info.setEnum(Eval.Val.getInt().getSExtValue()); 761 762 return Info.setLabel(Res); 763 } 764 unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); 765 unsigned Type = Size; 766 if (const auto *ATy = Context.getAsArrayType(T)) 767 Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity(); 768 bool IsGlobalLV = false; 769 if (Res->EvaluateAsLValue(Eval, Context)) 770 IsGlobalLV = Eval.isGlobalLValue(); 771 Info.setVar(Res, IsGlobalLV, Size, Type); 772 } 773 774 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS, 775 SourceLocation TemplateKWLoc, 776 UnqualifiedId &Id, 777 bool IsUnevaluatedContext) { 778 779 if (IsUnevaluatedContext) 780 PushExpressionEvaluationContext( 781 ExpressionEvaluationContext::UnevaluatedAbstract, 782 ReuseLambdaContextDecl); 783 784 ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id, 785 /*trailing lparen*/ false, 786 /*is & operand*/ false, 787 /*CorrectionCandidateCallback=*/nullptr, 788 /*IsInlineAsmIdentifier=*/ true); 789 790 if (IsUnevaluatedContext) 791 PopExpressionEvaluationContext(); 792 793 if (!Result.isUsable()) return Result; 794 795 Result = CheckPlaceholderExpr(Result.get()); 796 if (!Result.isUsable()) return Result; 797 798 // Referring to parameters is not allowed in naked functions. 799 if (CheckNakedParmReference(Result.get(), *this)) 800 return ExprError(); 801 802 QualType T = Result.get()->getType(); 803 804 if (T->isDependentType()) { 805 return Result; 806 } 807 808 // Any sort of function type is fine. 809 if (T->isFunctionType()) { 810 return Result; 811 } 812 813 // Otherwise, it needs to be a complete type. 814 if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) { 815 return ExprError(); 816 } 817 818 return Result; 819 } 820 821 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, 822 unsigned &Offset, SourceLocation AsmLoc) { 823 Offset = 0; 824 SmallVector<StringRef, 2> Members; 825 Member.split(Members, "."); 826 827 NamedDecl *FoundDecl = nullptr; 828 829 // MS InlineAsm uses 'this' as a base 830 if (getLangOpts().CPlusPlus && Base.equals("this")) { 831 if (const Type *PT = getCurrentThisType().getTypePtrOrNull()) 832 FoundDecl = PT->getPointeeType()->getAsTagDecl(); 833 } else { 834 LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(), 835 LookupOrdinaryName); 836 if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult()) 837 FoundDecl = BaseResult.getFoundDecl(); 838 } 839 840 if (!FoundDecl) 841 return true; 842 843 for (StringRef NextMember : Members) { 844 const RecordType *RT = nullptr; 845 if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) 846 RT = VD->getType()->getAs<RecordType>(); 847 else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) { 848 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 849 // MS InlineAsm often uses struct pointer aliases as a base 850 QualType QT = TD->getUnderlyingType(); 851 if (const auto *PT = QT->getAs<PointerType>()) 852 QT = PT->getPointeeType(); 853 RT = QT->getAs<RecordType>(); 854 } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl)) 855 RT = TD->getTypeForDecl()->getAs<RecordType>(); 856 else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl)) 857 RT = TD->getType()->getAs<RecordType>(); 858 if (!RT) 859 return true; 860 861 if (RequireCompleteType(AsmLoc, QualType(RT, 0), 862 diag::err_asm_incomplete_type)) 863 return true; 864 865 LookupResult FieldResult(*this, &Context.Idents.get(NextMember), 866 SourceLocation(), LookupMemberName); 867 868 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 869 return true; 870 871 if (!FieldResult.isSingleResult()) 872 return true; 873 FoundDecl = FieldResult.getFoundDecl(); 874 875 // FIXME: Handle IndirectFieldDecl? 876 FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl); 877 if (!FD) 878 return true; 879 880 const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl()); 881 unsigned i = FD->getFieldIndex(); 882 CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i)); 883 Offset += (unsigned)Result.getQuantity(); 884 } 885 886 return false; 887 } 888 889 ExprResult 890 Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member, 891 SourceLocation AsmLoc) { 892 893 QualType T = E->getType(); 894 if (T->isDependentType()) { 895 DeclarationNameInfo NameInfo; 896 NameInfo.setLoc(AsmLoc); 897 NameInfo.setName(&Context.Idents.get(Member)); 898 return CXXDependentScopeMemberExpr::Create( 899 Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(), 900 SourceLocation(), 901 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr); 902 } 903 904 const RecordType *RT = T->getAs<RecordType>(); 905 // FIXME: Diagnose this as field access into a scalar type. 906 if (!RT) 907 return ExprResult(); 908 909 LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc, 910 LookupMemberName); 911 912 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 913 return ExprResult(); 914 915 // Only normal and indirect field results will work. 916 ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl()); 917 if (!FD) 918 FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl()); 919 if (!FD) 920 return ExprResult(); 921 922 // Make an Expr to thread through OpDecl. 923 ExprResult Result = BuildMemberReferenceExpr( 924 E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(), 925 SourceLocation(), nullptr, FieldResult, nullptr, nullptr); 926 927 return Result; 928 } 929 930 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, 931 ArrayRef<Token> AsmToks, 932 StringRef AsmString, 933 unsigned NumOutputs, unsigned NumInputs, 934 ArrayRef<StringRef> Constraints, 935 ArrayRef<StringRef> Clobbers, 936 ArrayRef<Expr*> Exprs, 937 SourceLocation EndLoc) { 938 bool IsSimple = (NumOutputs != 0 || NumInputs != 0); 939 setFunctionHasBranchProtectedScope(); 940 941 bool InvalidOperand = false; 942 for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) { 943 Expr *E = Exprs[I]; 944 if (E->getType()->isBitIntType()) { 945 InvalidOperand = true; 946 Diag(E->getBeginLoc(), diag::err_asm_invalid_type) 947 << E->getType() << (I < NumOutputs) 948 << E->getSourceRange(); 949 } else if (E->refersToBitField()) { 950 InvalidOperand = true; 951 FieldDecl *BitField = E->getSourceBitField(); 952 Diag(E->getBeginLoc(), diag::err_ms_asm_bitfield_unsupported) 953 << E->getSourceRange(); 954 Diag(BitField->getLocation(), diag::note_bitfield_decl); 955 } 956 } 957 if (InvalidOperand) 958 return StmtError(); 959 960 MSAsmStmt *NS = 961 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, 962 /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, 963 Constraints, Exprs, AsmString, 964 Clobbers, EndLoc); 965 return NS; 966 } 967 968 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName, 969 SourceLocation Location, 970 bool AlwaysCreate) { 971 LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName), 972 Location); 973 974 if (Label->isMSAsmLabel()) { 975 // If we have previously created this label implicitly, mark it as used. 976 Label->markUsed(Context); 977 } else { 978 // Otherwise, insert it, but only resolve it if we have seen the label itself. 979 std::string InternalName; 980 llvm::raw_string_ostream OS(InternalName); 981 // Create an internal name for the label. The name should not be a valid 982 // mangled name, and should be unique. We use a dot to make the name an 983 // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a 984 // unique label is generated each time this blob is emitted, even after 985 // inlining or LTO. 986 OS << "__MSASMLABEL_.${:uid}__"; 987 for (char C : ExternalLabelName) { 988 OS << C; 989 // We escape '$' in asm strings by replacing it with "$$" 990 if (C == '$') 991 OS << '$'; 992 } 993 Label->setMSAsmLabel(OS.str()); 994 } 995 if (AlwaysCreate) { 996 // The label might have been created implicitly from a previously encountered 997 // goto statement. So, for both newly created and looked up labels, we mark 998 // them as resolved. 999 Label->setMSAsmLabelResolved(); 1000 } 1001 // Adjust their location for being able to generate accurate diagnostics. 1002 Label->setLocation(Location); 1003 1004 return Label; 1005 } 1006