xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaStmt.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for statements.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/ASTDiagnostic.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/IgnoreExpr.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/EnterExpressionEvaluationContext.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Ownership.h"
34 #include "clang/Sema/Scope.h"
35 #include "clang/Sema/ScopeInfo.h"
36 #include "clang/Sema/SemaCUDA.h"
37 #include "clang/Sema/SemaInternal.h"
38 #include "clang/Sema/SemaObjC.h"
39 #include "clang/Sema/SemaOpenMP.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/STLExtras.h"
43 #include "llvm/ADT/STLForwardCompat.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/ADT/SmallString.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/StringExtras.h"
48 
49 using namespace clang;
50 using namespace sema;
51 
52 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
53   if (FE.isInvalid())
54     return StmtError();
55 
56   FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
57   if (FE.isInvalid())
58     return StmtError();
59 
60   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
61   // void expression for its side effects.  Conversion to void allows any
62   // operand, even incomplete types.
63 
64   // Same thing in for stmt first clause (when expr) and third clause.
65   return StmtResult(FE.getAs<Stmt>());
66 }
67 
68 
69 StmtResult Sema::ActOnExprStmtError() {
70   DiscardCleanupsInEvaluationContext();
71   return StmtError();
72 }
73 
74 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
75                                bool HasLeadingEmptyMacro) {
76   return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
77 }
78 
79 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
80                                SourceLocation EndLoc) {
81   DeclGroupRef DG = dg.get();
82 
83   // If we have an invalid decl, just return an error.
84   if (DG.isNull()) return StmtError();
85 
86   return new (Context) DeclStmt(DG, StartLoc, EndLoc);
87 }
88 
89 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
90   DeclGroupRef DG = dg.get();
91 
92   // If we don't have a declaration, or we have an invalid declaration,
93   // just return.
94   if (DG.isNull() || !DG.isSingleDecl())
95     return;
96 
97   Decl *decl = DG.getSingleDecl();
98   if (!decl || decl->isInvalidDecl())
99     return;
100 
101   // Only variable declarations are permitted.
102   VarDecl *var = dyn_cast<VarDecl>(decl);
103   if (!var) {
104     Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
105     decl->setInvalidDecl();
106     return;
107   }
108 
109   // foreach variables are never actually initialized in the way that
110   // the parser came up with.
111   var->setInit(nullptr);
112 
113   // In ARC, we don't need to retain the iteration variable of a fast
114   // enumeration loop.  Rather than actually trying to catch that
115   // during declaration processing, we remove the consequences here.
116   if (getLangOpts().ObjCAutoRefCount) {
117     QualType type = var->getType();
118 
119     // Only do this if we inferred the lifetime.  Inferred lifetime
120     // will show up as a local qualifier because explicit lifetime
121     // should have shown up as an AttributedType instead.
122     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
123       // Add 'const' and mark the variable as pseudo-strong.
124       var->setType(type.withConst());
125       var->setARCPseudoStrong(true);
126     }
127   }
128 }
129 
130 /// Diagnose unused comparisons, both builtin and overloaded operators.
131 /// For '==' and '!=', suggest fixits for '=' or '|='.
132 ///
133 /// Adding a cast to void (or other expression wrappers) will prevent the
134 /// warning from firing.
135 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
136   SourceLocation Loc;
137   bool CanAssign;
138   enum { Equality, Inequality, Relational, ThreeWay } Kind;
139 
140   if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
141     if (!Op->isComparisonOp())
142       return false;
143 
144     if (Op->getOpcode() == BO_EQ)
145       Kind = Equality;
146     else if (Op->getOpcode() == BO_NE)
147       Kind = Inequality;
148     else if (Op->getOpcode() == BO_Cmp)
149       Kind = ThreeWay;
150     else {
151       assert(Op->isRelationalOp());
152       Kind = Relational;
153     }
154     Loc = Op->getOperatorLoc();
155     CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
156   } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
157     switch (Op->getOperator()) {
158     case OO_EqualEqual:
159       Kind = Equality;
160       break;
161     case OO_ExclaimEqual:
162       Kind = Inequality;
163       break;
164     case OO_Less:
165     case OO_Greater:
166     case OO_GreaterEqual:
167     case OO_LessEqual:
168       Kind = Relational;
169       break;
170     case OO_Spaceship:
171       Kind = ThreeWay;
172       break;
173     default:
174       return false;
175     }
176 
177     Loc = Op->getOperatorLoc();
178     CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
179   } else {
180     // Not a typo-prone comparison.
181     return false;
182   }
183 
184   // Suppress warnings when the operator, suspicious as it may be, comes from
185   // a macro expansion.
186   if (S.SourceMgr.isMacroBodyExpansion(Loc))
187     return false;
188 
189   S.Diag(Loc, diag::warn_unused_comparison)
190     << (unsigned)Kind << E->getSourceRange();
191 
192   // If the LHS is a plausible entity to assign to, provide a fixit hint to
193   // correct common typos.
194   if (CanAssign) {
195     if (Kind == Inequality)
196       S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
197         << FixItHint::CreateReplacement(Loc, "|=");
198     else if (Kind == Equality)
199       S.Diag(Loc, diag::note_equality_comparison_to_assign)
200         << FixItHint::CreateReplacement(Loc, "=");
201   }
202 
203   return true;
204 }
205 
206 static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A,
207                               SourceLocation Loc, SourceRange R1,
208                               SourceRange R2, bool IsCtor) {
209   if (!A)
210     return false;
211   StringRef Msg = A->getMessage();
212 
213   if (Msg.empty()) {
214     if (IsCtor)
215       return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2;
216     return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
217   }
218 
219   if (IsCtor)
220     return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1
221                                                           << R2;
222   return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2;
223 }
224 
225 void Sema::DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID) {
226   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
227     return DiagnoseUnusedExprResult(Label->getSubStmt(), DiagID);
228 
229   const Expr *E = dyn_cast_or_null<Expr>(S);
230   if (!E)
231     return;
232 
233   // If we are in an unevaluated expression context, then there can be no unused
234   // results because the results aren't expected to be used in the first place.
235   if (isUnevaluatedContext())
236     return;
237 
238   SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
239   // In most cases, we don't want to warn if the expression is written in a
240   // macro body, or if the macro comes from a system header. If the offending
241   // expression is a call to a function with the warn_unused_result attribute,
242   // we warn no matter the location. Because of the order in which the various
243   // checks need to happen, we factor out the macro-related test here.
244   bool ShouldSuppress =
245       SourceMgr.isMacroBodyExpansion(ExprLoc) ||
246       SourceMgr.isInSystemMacro(ExprLoc);
247 
248   const Expr *WarnExpr;
249   SourceLocation Loc;
250   SourceRange R1, R2;
251   if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
252     return;
253 
254   // If this is a GNU statement expression expanded from a macro, it is probably
255   // unused because it is a function-like macro that can be used as either an
256   // expression or statement.  Don't warn, because it is almost certainly a
257   // false positive.
258   if (isa<StmtExpr>(E) && Loc.isMacroID())
259     return;
260 
261   // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
262   // That macro is frequently used to suppress "unused parameter" warnings,
263   // but its implementation makes clang's -Wunused-value fire.  Prevent this.
264   if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
265     SourceLocation SpellLoc = Loc;
266     if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
267       return;
268   }
269 
270   // Okay, we have an unused result.  Depending on what the base expression is,
271   // we might want to make a more specific diagnostic.  Check for one of these
272   // cases now.
273   if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
274     E = Temps->getSubExpr();
275   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
276     E = TempExpr->getSubExpr();
277 
278   if (DiagnoseUnusedComparison(*this, E))
279     return;
280 
281   E = WarnExpr;
282   if (const auto *Cast = dyn_cast<CastExpr>(E))
283     if (Cast->getCastKind() == CK_NoOp ||
284         Cast->getCastKind() == CK_ConstructorConversion)
285       E = Cast->getSubExpr()->IgnoreImpCasts();
286 
287   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
288     if (E->getType()->isVoidType())
289       return;
290 
291     if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>(
292                                      CE->getUnusedResultAttr(Context)),
293                           Loc, R1, R2, /*isCtor=*/false))
294       return;
295 
296     // If the callee has attribute pure, const, or warn_unused_result, warn with
297     // a more specific message to make it clear what is happening. If the call
298     // is written in a macro body, only warn if it has the warn_unused_result
299     // attribute.
300     if (const Decl *FD = CE->getCalleeDecl()) {
301       if (ShouldSuppress)
302         return;
303       if (FD->hasAttr<PureAttr>()) {
304         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
305         return;
306       }
307       if (FD->hasAttr<ConstAttr>()) {
308         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
309         return;
310       }
311     }
312   } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
313     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
314       const auto *A = Ctor->getAttr<WarnUnusedResultAttr>();
315       A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>();
316       if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true))
317         return;
318     }
319   } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
320     if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) {
321 
322       if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
323                             R2, /*isCtor=*/false))
324         return;
325     }
326   } else if (ShouldSuppress)
327     return;
328 
329   E = WarnExpr;
330   if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
331     if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
332       Diag(Loc, diag::err_arc_unused_init_message) << R1;
333       return;
334     }
335     const ObjCMethodDecl *MD = ME->getMethodDecl();
336     if (MD) {
337       if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
338                             R2, /*isCtor=*/false))
339         return;
340     }
341   } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
342     const Expr *Source = POE->getSyntacticForm();
343     // Handle the actually selected call of an OpenMP specialized call.
344     if (LangOpts.OpenMP && isa<CallExpr>(Source) &&
345         POE->getNumSemanticExprs() == 1 &&
346         isa<CallExpr>(POE->getSemanticExpr(0)))
347       return DiagnoseUnusedExprResult(POE->getSemanticExpr(0), DiagID);
348     if (isa<ObjCSubscriptRefExpr>(Source))
349       DiagID = diag::warn_unused_container_subscript_expr;
350     else if (isa<ObjCPropertyRefExpr>(Source))
351       DiagID = diag::warn_unused_property_expr;
352   } else if (const CXXFunctionalCastExpr *FC
353                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
354     const Expr *E = FC->getSubExpr();
355     if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
356       E = TE->getSubExpr();
357     if (isa<CXXTemporaryObjectExpr>(E))
358       return;
359     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
360       if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
361         if (!RD->getAttr<WarnUnusedAttr>())
362           return;
363   }
364   // Diagnose "(void*) blah" as a typo for "(void) blah".
365   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
366     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
367     QualType T = TI->getType();
368 
369     // We really do want to use the non-canonical type here.
370     if (T == Context.VoidPtrTy) {
371       PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
372 
373       Diag(Loc, diag::warn_unused_voidptr)
374         << FixItHint::CreateRemoval(TL.getStarLoc());
375       return;
376     }
377   }
378 
379   // Tell the user to assign it into a variable to force a volatile load if this
380   // isn't an array.
381   if (E->isGLValue() && E->getType().isVolatileQualified() &&
382       !E->getType()->isArrayType()) {
383     Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
384     return;
385   }
386 
387   // Do not diagnose use of a comma operator in a SFINAE context because the
388   // type of the left operand could be used for SFINAE, so technically it is
389   // *used*.
390   if (DiagID != diag::warn_unused_comma_left_operand || !isSFINAEContext())
391     DiagIfReachable(Loc, S ? llvm::ArrayRef(S) : std::nullopt,
392                     PDiag(DiagID) << R1 << R2);
393 }
394 
395 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
396   PushCompoundScope(IsStmtExpr);
397 }
398 
399 void Sema::ActOnAfterCompoundStatementLeadingPragmas() {
400   if (getCurFPFeatures().isFPConstrained()) {
401     FunctionScopeInfo *FSI = getCurFunction();
402     assert(FSI);
403     FSI->setUsesFPIntrin();
404   }
405 }
406 
407 void Sema::ActOnFinishOfCompoundStmt() {
408   PopCompoundScope();
409 }
410 
411 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
412   return getCurFunction()->CompoundScopes.back();
413 }
414 
415 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
416                                    ArrayRef<Stmt *> Elts, bool isStmtExpr) {
417   const unsigned NumElts = Elts.size();
418 
419   // If we're in C mode, check that we don't have any decls after stmts.  If
420   // so, emit an extension diagnostic in C89 and potentially a warning in later
421   // versions.
422   const unsigned MixedDeclsCodeID = getLangOpts().C99
423                                         ? diag::warn_mixed_decls_code
424                                         : diag::ext_mixed_decls_code;
425   if (!getLangOpts().CPlusPlus && !Diags.isIgnored(MixedDeclsCodeID, L)) {
426     // Note that __extension__ can be around a decl.
427     unsigned i = 0;
428     // Skip over all declarations.
429     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
430       /*empty*/;
431 
432     // We found the end of the list or a statement.  Scan for another declstmt.
433     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
434       /*empty*/;
435 
436     if (i != NumElts) {
437       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
438       Diag(D->getLocation(), MixedDeclsCodeID);
439     }
440   }
441 
442   // Check for suspicious empty body (null statement) in `for' and `while'
443   // statements.  Don't do anything for template instantiations, this just adds
444   // noise.
445   if (NumElts != 0 && !CurrentInstantiationScope &&
446       getCurCompoundScope().HasEmptyLoopBodies) {
447     for (unsigned i = 0; i != NumElts - 1; ++i)
448       DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
449   }
450 
451   // Calculate difference between FP options in this compound statement and in
452   // the enclosing one. If this is a function body, take the difference against
453   // default options. In this case the difference will indicate options that are
454   // changed upon entry to the statement.
455   FPOptions FPO = (getCurFunction()->CompoundScopes.size() == 1)
456                       ? FPOptions(getLangOpts())
457                       : getCurCompoundScope().InitialFPFeatures;
458   FPOptionsOverride FPDiff = getCurFPFeatures().getChangesFrom(FPO);
459 
460   return CompoundStmt::Create(Context, Elts, FPDiff, L, R);
461 }
462 
463 ExprResult
464 Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) {
465   if (!Val.get())
466     return Val;
467 
468   if (DiagnoseUnexpandedParameterPack(Val.get()))
469     return ExprError();
470 
471   // If we're not inside a switch, let the 'case' statement handling diagnose
472   // this. Just clean up after the expression as best we can.
473   if (getCurFunction()->SwitchStack.empty())
474     return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
475                                getLangOpts().CPlusPlus11);
476 
477   Expr *CondExpr =
478       getCurFunction()->SwitchStack.back().getPointer()->getCond();
479   if (!CondExpr)
480     return ExprError();
481   QualType CondType = CondExpr->getType();
482 
483   auto CheckAndFinish = [&](Expr *E) {
484     if (CondType->isDependentType() || E->isTypeDependent())
485       return ExprResult(E);
486 
487     if (getLangOpts().CPlusPlus11) {
488       // C++11 [stmt.switch]p2: the constant-expression shall be a converted
489       // constant expression of the promoted type of the switch condition.
490       llvm::APSInt TempVal;
491       return CheckConvertedConstantExpression(E, CondType, TempVal,
492                                               CCEK_CaseValue);
493     }
494 
495     ExprResult ER = E;
496     if (!E->isValueDependent())
497       ER = VerifyIntegerConstantExpression(E, AllowFold);
498     if (!ER.isInvalid())
499       ER = DefaultLvalueConversion(ER.get());
500     if (!ER.isInvalid())
501       ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
502     if (!ER.isInvalid())
503       ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false);
504     return ER;
505   };
506 
507   ExprResult Converted = CorrectDelayedTyposInExpr(
508       Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
509       CheckAndFinish);
510   if (Converted.get() == Val.get())
511     Converted = CheckAndFinish(Val.get());
512   return Converted;
513 }
514 
515 StmtResult
516 Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal,
517                     SourceLocation DotDotDotLoc, ExprResult RHSVal,
518                     SourceLocation ColonLoc) {
519   assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
520   assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
521                                    : RHSVal.isInvalid() || RHSVal.get()) &&
522          "missing RHS value");
523 
524   if (getCurFunction()->SwitchStack.empty()) {
525     Diag(CaseLoc, diag::err_case_not_in_switch);
526     return StmtError();
527   }
528 
529   if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
530     getCurFunction()->SwitchStack.back().setInt(true);
531     return StmtError();
532   }
533 
534   if (LangOpts.OpenACC &&
535       getCurScope()->isInOpenACCComputeConstructScope(Scope::SwitchScope)) {
536     Diag(CaseLoc, diag::err_acc_branch_in_out_compute_construct)
537         << /*branch*/ 0 << /*into*/ 1;
538     return StmtError();
539   }
540 
541   auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
542                               CaseLoc, DotDotDotLoc, ColonLoc);
543   getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
544   return CS;
545 }
546 
547 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
548   cast<CaseStmt>(S)->setSubStmt(SubStmt);
549 }
550 
551 StmtResult
552 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
553                        Stmt *SubStmt, Scope *CurScope) {
554   if (getCurFunction()->SwitchStack.empty()) {
555     Diag(DefaultLoc, diag::err_default_not_in_switch);
556     return SubStmt;
557   }
558 
559   if (LangOpts.OpenACC &&
560       getCurScope()->isInOpenACCComputeConstructScope(Scope::SwitchScope)) {
561     Diag(DefaultLoc, diag::err_acc_branch_in_out_compute_construct)
562         << /*branch*/ 0 << /*into*/ 1;
563     return StmtError();
564   }
565 
566   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
567   getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
568   return DS;
569 }
570 
571 StmtResult
572 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
573                      SourceLocation ColonLoc, Stmt *SubStmt) {
574   // If the label was multiply defined, reject it now.
575   if (TheDecl->getStmt()) {
576     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
577     Diag(TheDecl->getLocation(), diag::note_previous_definition);
578     return SubStmt;
579   }
580 
581   ReservedIdentifierStatus Status = TheDecl->isReserved(getLangOpts());
582   if (isReservedInAllContexts(Status) &&
583       !Context.getSourceManager().isInSystemHeader(IdentLoc))
584     Diag(IdentLoc, diag::warn_reserved_extern_symbol)
585         << TheDecl << static_cast<int>(Status);
586 
587   // If this label is in a compute construct scope, we need to make sure we
588   // check gotos in/out.
589   if (getCurScope()->isInOpenACCComputeConstructScope())
590     setFunctionHasBranchProtectedScope();
591 
592   // Otherwise, things are good.  Fill in the declaration and return it.
593   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
594   TheDecl->setStmt(LS);
595   if (!TheDecl->isGnuLocal()) {
596     TheDecl->setLocStart(IdentLoc);
597     if (!TheDecl->isMSAsmLabel()) {
598       // Don't update the location of MS ASM labels.  These will result in
599       // a diagnostic, and changing the location here will mess that up.
600       TheDecl->setLocation(IdentLoc);
601     }
602   }
603   return LS;
604 }
605 
606 StmtResult Sema::BuildAttributedStmt(SourceLocation AttrsLoc,
607                                      ArrayRef<const Attr *> Attrs,
608                                      Stmt *SubStmt) {
609   // FIXME: this code should move when a planned refactoring around statement
610   // attributes lands.
611   for (const auto *A : Attrs) {
612     if (A->getKind() == attr::MustTail) {
613       if (!checkAndRewriteMustTailAttr(SubStmt, *A)) {
614         return SubStmt;
615       }
616       setFunctionHasMustTail();
617     }
618   }
619 
620   return AttributedStmt::Create(Context, AttrsLoc, Attrs, SubStmt);
621 }
622 
623 StmtResult Sema::ActOnAttributedStmt(const ParsedAttributes &Attrs,
624                                      Stmt *SubStmt) {
625   SmallVector<const Attr *, 1> SemanticAttrs;
626   ProcessStmtAttributes(SubStmt, Attrs, SemanticAttrs);
627   if (!SemanticAttrs.empty())
628     return BuildAttributedStmt(Attrs.Range.getBegin(), SemanticAttrs, SubStmt);
629   // If none of the attributes applied, that's fine, we can recover by
630   // returning the substatement directly instead of making an AttributedStmt
631   // with no attributes on it.
632   return SubStmt;
633 }
634 
635 bool Sema::checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA) {
636   ReturnStmt *R = cast<ReturnStmt>(St);
637   Expr *E = R->getRetValue();
638 
639   if (CurContext->isDependentContext() || (E && E->isInstantiationDependent()))
640     // We have to suspend our check until template instantiation time.
641     return true;
642 
643   if (!checkMustTailAttr(St, MTA))
644     return false;
645 
646   // FIXME: Replace Expr::IgnoreImplicitAsWritten() with this function.
647   // Currently it does not skip implicit constructors in an initialization
648   // context.
649   auto IgnoreImplicitAsWritten = [](Expr *E) -> Expr * {
650     return IgnoreExprNodes(E, IgnoreImplicitAsWrittenSingleStep,
651                            IgnoreElidableImplicitConstructorSingleStep);
652   };
653 
654   // Now that we have verified that 'musttail' is valid here, rewrite the
655   // return value to remove all implicit nodes, but retain parentheses.
656   R->setRetValue(IgnoreImplicitAsWritten(E));
657   return true;
658 }
659 
660 bool Sema::checkMustTailAttr(const Stmt *St, const Attr &MTA) {
661   assert(!CurContext->isDependentContext() &&
662          "musttail cannot be checked from a dependent context");
663 
664   // FIXME: Add Expr::IgnoreParenImplicitAsWritten() with this definition.
665   auto IgnoreParenImplicitAsWritten = [](const Expr *E) -> const Expr * {
666     return IgnoreExprNodes(const_cast<Expr *>(E), IgnoreParensSingleStep,
667                            IgnoreImplicitAsWrittenSingleStep,
668                            IgnoreElidableImplicitConstructorSingleStep);
669   };
670 
671   const Expr *E = cast<ReturnStmt>(St)->getRetValue();
672   const auto *CE = dyn_cast_or_null<CallExpr>(IgnoreParenImplicitAsWritten(E));
673 
674   if (!CE) {
675     Diag(St->getBeginLoc(), diag::err_musttail_needs_call) << &MTA;
676     return false;
677   }
678 
679   if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) {
680     if (EWC->cleanupsHaveSideEffects()) {
681       Diag(St->getBeginLoc(), diag::err_musttail_needs_trivial_args) << &MTA;
682       return false;
683     }
684   }
685 
686   // We need to determine the full function type (including "this" type, if any)
687   // for both caller and callee.
688   struct FuncType {
689     enum {
690       ft_non_member,
691       ft_static_member,
692       ft_non_static_member,
693       ft_pointer_to_member,
694     } MemberType = ft_non_member;
695 
696     QualType This;
697     const FunctionProtoType *Func;
698     const CXXMethodDecl *Method = nullptr;
699   } CallerType, CalleeType;
700 
701   auto GetMethodType = [this, St, MTA](const CXXMethodDecl *CMD, FuncType &Type,
702                                        bool IsCallee) -> bool {
703     if (isa<CXXConstructorDecl, CXXDestructorDecl>(CMD)) {
704       Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
705           << IsCallee << isa<CXXDestructorDecl>(CMD);
706       if (IsCallee)
707         Diag(CMD->getBeginLoc(), diag::note_musttail_structors_forbidden)
708             << isa<CXXDestructorDecl>(CMD);
709       Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
710       return false;
711     }
712     if (CMD->isStatic())
713       Type.MemberType = FuncType::ft_static_member;
714     else {
715       Type.This = CMD->getFunctionObjectParameterType();
716       Type.MemberType = FuncType::ft_non_static_member;
717     }
718     Type.Func = CMD->getType()->castAs<FunctionProtoType>();
719     return true;
720   };
721 
722   const auto *CallerDecl = dyn_cast<FunctionDecl>(CurContext);
723 
724   // Find caller function signature.
725   if (!CallerDecl) {
726     int ContextType;
727     if (isa<BlockDecl>(CurContext))
728       ContextType = 0;
729     else if (isa<ObjCMethodDecl>(CurContext))
730       ContextType = 1;
731     else
732       ContextType = 2;
733     Diag(St->getBeginLoc(), diag::err_musttail_forbidden_from_this_context)
734         << &MTA << ContextType;
735     return false;
736   } else if (const auto *CMD = dyn_cast<CXXMethodDecl>(CurContext)) {
737     // Caller is a class/struct method.
738     if (!GetMethodType(CMD, CallerType, false))
739       return false;
740   } else {
741     // Caller is a non-method function.
742     CallerType.Func = CallerDecl->getType()->getAs<FunctionProtoType>();
743   }
744 
745   const Expr *CalleeExpr = CE->getCallee()->IgnoreParens();
746   const auto *CalleeBinOp = dyn_cast<BinaryOperator>(CalleeExpr);
747   SourceLocation CalleeLoc = CE->getCalleeDecl()
748                                  ? CE->getCalleeDecl()->getBeginLoc()
749                                  : St->getBeginLoc();
750 
751   // Find callee function signature.
752   if (const CXXMethodDecl *CMD =
753           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) {
754     // Call is: obj.method(), obj->method(), functor(), etc.
755     if (!GetMethodType(CMD, CalleeType, true))
756       return false;
757   } else if (CalleeBinOp && CalleeBinOp->isPtrMemOp()) {
758     // Call is: obj->*method_ptr or obj.*method_ptr
759     const auto *MPT =
760         CalleeBinOp->getRHS()->getType()->castAs<MemberPointerType>();
761     CalleeType.This = QualType(MPT->getClass(), 0);
762     CalleeType.Func = MPT->getPointeeType()->castAs<FunctionProtoType>();
763     CalleeType.MemberType = FuncType::ft_pointer_to_member;
764   } else if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) {
765     Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
766         << /* IsCallee = */ 1 << /* IsDestructor = */ 1;
767     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
768     return false;
769   } else {
770     // Non-method function.
771     CalleeType.Func =
772         CalleeExpr->getType()->getPointeeType()->getAs<FunctionProtoType>();
773   }
774 
775   // Both caller and callee must have a prototype (no K&R declarations).
776   if (!CalleeType.Func || !CallerType.Func) {
777     Diag(St->getBeginLoc(), diag::err_musttail_needs_prototype) << &MTA;
778     if (!CalleeType.Func && CE->getDirectCallee()) {
779       Diag(CE->getDirectCallee()->getBeginLoc(),
780            diag::note_musttail_fix_non_prototype);
781     }
782     if (!CallerType.Func)
783       Diag(CallerDecl->getBeginLoc(), diag::note_musttail_fix_non_prototype);
784     return false;
785   }
786 
787   // Caller and callee must have matching calling conventions.
788   //
789   // Some calling conventions are physically capable of supporting tail calls
790   // even if the function types don't perfectly match. LLVM is currently too
791   // strict to allow this, but if LLVM added support for this in the future, we
792   // could exit early here and skip the remaining checks if the functions are
793   // using such a calling convention.
794   if (CallerType.Func->getCallConv() != CalleeType.Func->getCallConv()) {
795     if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
796       Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch)
797           << true << ND->getDeclName();
798     else
799       Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) << false;
800     Diag(CalleeLoc, diag::note_musttail_callconv_mismatch)
801         << FunctionType::getNameForCallConv(CallerType.Func->getCallConv())
802         << FunctionType::getNameForCallConv(CalleeType.Func->getCallConv());
803     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
804     return false;
805   }
806 
807   if (CalleeType.Func->isVariadic() || CallerType.Func->isVariadic()) {
808     Diag(St->getBeginLoc(), diag::err_musttail_no_variadic) << &MTA;
809     return false;
810   }
811 
812   const auto *CalleeDecl = CE->getCalleeDecl();
813   if (CalleeDecl && CalleeDecl->hasAttr<CXX11NoReturnAttr>()) {
814     Diag(St->getBeginLoc(), diag::err_musttail_no_return) << &MTA;
815     return false;
816   }
817 
818   // Caller and callee must match in whether they have a "this" parameter.
819   if (CallerType.This.isNull() != CalleeType.This.isNull()) {
820     if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
821       Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
822           << CallerType.MemberType << CalleeType.MemberType << true
823           << ND->getDeclName();
824       Diag(CalleeLoc, diag::note_musttail_callee_defined_here)
825           << ND->getDeclName();
826     } else
827       Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
828           << CallerType.MemberType << CalleeType.MemberType << false;
829     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
830     return false;
831   }
832 
833   auto CheckTypesMatch = [this](FuncType CallerType, FuncType CalleeType,
834                                 PartialDiagnostic &PD) -> bool {
835     enum {
836       ft_different_class,
837       ft_parameter_arity,
838       ft_parameter_mismatch,
839       ft_return_type,
840     };
841 
842     auto DoTypesMatch = [this, &PD](QualType A, QualType B,
843                                     unsigned Select) -> bool {
844       if (!Context.hasSimilarType(A, B)) {
845         PD << Select << A.getUnqualifiedType() << B.getUnqualifiedType();
846         return false;
847       }
848       return true;
849     };
850 
851     if (!CallerType.This.isNull() &&
852         !DoTypesMatch(CallerType.This, CalleeType.This, ft_different_class))
853       return false;
854 
855     if (!DoTypesMatch(CallerType.Func->getReturnType(),
856                       CalleeType.Func->getReturnType(), ft_return_type))
857       return false;
858 
859     if (CallerType.Func->getNumParams() != CalleeType.Func->getNumParams()) {
860       PD << ft_parameter_arity << CallerType.Func->getNumParams()
861          << CalleeType.Func->getNumParams();
862       return false;
863     }
864 
865     ArrayRef<QualType> CalleeParams = CalleeType.Func->getParamTypes();
866     ArrayRef<QualType> CallerParams = CallerType.Func->getParamTypes();
867     size_t N = CallerType.Func->getNumParams();
868     for (size_t I = 0; I < N; I++) {
869       if (!DoTypesMatch(CalleeParams[I], CallerParams[I],
870                         ft_parameter_mismatch)) {
871         PD << static_cast<int>(I) + 1;
872         return false;
873       }
874     }
875 
876     return true;
877   };
878 
879   PartialDiagnostic PD = PDiag(diag::note_musttail_mismatch);
880   if (!CheckTypesMatch(CallerType, CalleeType, PD)) {
881     if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
882       Diag(St->getBeginLoc(), diag::err_musttail_mismatch)
883           << true << ND->getDeclName();
884     else
885       Diag(St->getBeginLoc(), diag::err_musttail_mismatch) << false;
886     Diag(CalleeLoc, PD);
887     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
888     return false;
889   }
890 
891   return true;
892 }
893 
894 namespace {
895 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
896   typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
897   Sema &SemaRef;
898 public:
899   CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
900   void VisitBinaryOperator(BinaryOperator *E) {
901     if (E->getOpcode() == BO_Comma)
902       SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
903     EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E);
904   }
905 };
906 }
907 
908 StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc,
909                              IfStatementKind StatementKind,
910                              SourceLocation LParenLoc, Stmt *InitStmt,
911                              ConditionResult Cond, SourceLocation RParenLoc,
912                              Stmt *thenStmt, SourceLocation ElseLoc,
913                              Stmt *elseStmt) {
914   if (Cond.isInvalid())
915     return StmtError();
916 
917   bool ConstevalOrNegatedConsteval =
918       StatementKind == IfStatementKind::ConstevalNonNegated ||
919       StatementKind == IfStatementKind::ConstevalNegated;
920 
921   Expr *CondExpr = Cond.get().second;
922   assert((CondExpr || ConstevalOrNegatedConsteval) &&
923          "If statement: missing condition");
924   // Only call the CommaVisitor when not C89 due to differences in scope flags.
925   if (CondExpr && (getLangOpts().C99 || getLangOpts().CPlusPlus) &&
926       !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
927     CommaVisitor(*this).Visit(CondExpr);
928 
929   if (!ConstevalOrNegatedConsteval && !elseStmt)
930     DiagnoseEmptyStmtBody(RParenLoc, thenStmt, diag::warn_empty_if_body);
931 
932   if (ConstevalOrNegatedConsteval ||
933       StatementKind == IfStatementKind::Constexpr) {
934     auto DiagnoseLikelihood = [&](const Stmt *S) {
935       if (const Attr *A = Stmt::getLikelihoodAttr(S)) {
936         Diags.Report(A->getLocation(),
937                      diag::warn_attribute_has_no_effect_on_compile_time_if)
938             << A << ConstevalOrNegatedConsteval << A->getRange();
939         Diags.Report(IfLoc,
940                      diag::note_attribute_has_no_effect_on_compile_time_if_here)
941             << ConstevalOrNegatedConsteval
942             << SourceRange(IfLoc, (ConstevalOrNegatedConsteval
943                                        ? thenStmt->getBeginLoc()
944                                        : LParenLoc)
945                                       .getLocWithOffset(-1));
946       }
947     };
948     DiagnoseLikelihood(thenStmt);
949     DiagnoseLikelihood(elseStmt);
950   } else {
951     std::tuple<bool, const Attr *, const Attr *> LHC =
952         Stmt::determineLikelihoodConflict(thenStmt, elseStmt);
953     if (std::get<0>(LHC)) {
954       const Attr *ThenAttr = std::get<1>(LHC);
955       const Attr *ElseAttr = std::get<2>(LHC);
956       Diags.Report(ThenAttr->getLocation(),
957                    diag::warn_attributes_likelihood_ifstmt_conflict)
958           << ThenAttr << ThenAttr->getRange();
959       Diags.Report(ElseAttr->getLocation(), diag::note_conflicting_attribute)
960           << ElseAttr << ElseAttr->getRange();
961     }
962   }
963 
964   if (ConstevalOrNegatedConsteval) {
965     bool Immediate = ExprEvalContexts.back().Context ==
966                      ExpressionEvaluationContext::ImmediateFunctionContext;
967     if (CurContext->isFunctionOrMethod()) {
968       const auto *FD =
969           dyn_cast<FunctionDecl>(Decl::castFromDeclContext(CurContext));
970       if (FD && FD->isImmediateFunction())
971         Immediate = true;
972     }
973     if (isUnevaluatedContext() || Immediate)
974       Diags.Report(IfLoc, diag::warn_consteval_if_always_true) << Immediate;
975   }
976 
977   return BuildIfStmt(IfLoc, StatementKind, LParenLoc, InitStmt, Cond, RParenLoc,
978                      thenStmt, ElseLoc, elseStmt);
979 }
980 
981 StmtResult Sema::BuildIfStmt(SourceLocation IfLoc,
982                              IfStatementKind StatementKind,
983                              SourceLocation LParenLoc, Stmt *InitStmt,
984                              ConditionResult Cond, SourceLocation RParenLoc,
985                              Stmt *thenStmt, SourceLocation ElseLoc,
986                              Stmt *elseStmt) {
987   if (Cond.isInvalid())
988     return StmtError();
989 
990   if (StatementKind != IfStatementKind::Ordinary ||
991       isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
992     setFunctionHasBranchProtectedScope();
993 
994   return IfStmt::Create(Context, IfLoc, StatementKind, InitStmt,
995                         Cond.get().first, Cond.get().second, LParenLoc,
996                         RParenLoc, thenStmt, ElseLoc, elseStmt);
997 }
998 
999 namespace {
1000   struct CaseCompareFunctor {
1001     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
1002                     const llvm::APSInt &RHS) {
1003       return LHS.first < RHS;
1004     }
1005     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
1006                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
1007       return LHS.first < RHS.first;
1008     }
1009     bool operator()(const llvm::APSInt &LHS,
1010                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
1011       return LHS < RHS.first;
1012     }
1013   };
1014 }
1015 
1016 /// CmpCaseVals - Comparison predicate for sorting case values.
1017 ///
1018 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
1019                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
1020   if (lhs.first < rhs.first)
1021     return true;
1022 
1023   if (lhs.first == rhs.first &&
1024       lhs.second->getCaseLoc() < rhs.second->getCaseLoc())
1025     return true;
1026   return false;
1027 }
1028 
1029 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
1030 ///
1031 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1032                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1033 {
1034   return lhs.first < rhs.first;
1035 }
1036 
1037 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
1038 ///
1039 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1040                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1041 {
1042   return lhs.first == rhs.first;
1043 }
1044 
1045 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
1046 /// potentially integral-promoted expression @p expr.
1047 static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) {
1048   if (const auto *FE = dyn_cast<FullExpr>(E))
1049     E = FE->getSubExpr();
1050   while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
1051     if (ImpCast->getCastKind() != CK_IntegralCast) break;
1052     E = ImpCast->getSubExpr();
1053   }
1054   return E->getType();
1055 }
1056 
1057 ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) {
1058   class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
1059     Expr *Cond;
1060 
1061   public:
1062     SwitchConvertDiagnoser(Expr *Cond)
1063         : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
1064           Cond(Cond) {}
1065 
1066     SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1067                                          QualType T) override {
1068       return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
1069     }
1070 
1071     SemaDiagnosticBuilder diagnoseIncomplete(
1072         Sema &S, SourceLocation Loc, QualType T) override {
1073       return S.Diag(Loc, diag::err_switch_incomplete_class_type)
1074                << T << Cond->getSourceRange();
1075     }
1076 
1077     SemaDiagnosticBuilder diagnoseExplicitConv(
1078         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1079       return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
1080     }
1081 
1082     SemaDiagnosticBuilder noteExplicitConv(
1083         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1084       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1085         << ConvTy->isEnumeralType() << ConvTy;
1086     }
1087 
1088     SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1089                                             QualType T) override {
1090       return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
1091     }
1092 
1093     SemaDiagnosticBuilder noteAmbiguous(
1094         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1095       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1096       << ConvTy->isEnumeralType() << ConvTy;
1097     }
1098 
1099     SemaDiagnosticBuilder diagnoseConversion(
1100         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1101       llvm_unreachable("conversion functions are permitted");
1102     }
1103   } SwitchDiagnoser(Cond);
1104 
1105   ExprResult CondResult =
1106       PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
1107   if (CondResult.isInvalid())
1108     return ExprError();
1109 
1110   // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
1111   // failed and produced a diagnostic.
1112   Cond = CondResult.get();
1113   if (!Cond->isTypeDependent() &&
1114       !Cond->getType()->isIntegralOrEnumerationType())
1115     return ExprError();
1116 
1117   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
1118   return UsualUnaryConversions(Cond);
1119 }
1120 
1121 StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
1122                                         SourceLocation LParenLoc,
1123                                         Stmt *InitStmt, ConditionResult Cond,
1124                                         SourceLocation RParenLoc) {
1125   Expr *CondExpr = Cond.get().second;
1126   assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
1127 
1128   if (CondExpr && !CondExpr->isTypeDependent()) {
1129     // We have already converted the expression to an integral or enumeration
1130     // type, when we parsed the switch condition. There are cases where we don't
1131     // have an appropriate type, e.g. a typo-expr Cond was corrected to an
1132     // inappropriate-type expr, we just return an error.
1133     if (!CondExpr->getType()->isIntegralOrEnumerationType())
1134       return StmtError();
1135     if (CondExpr->isKnownToHaveBooleanValue()) {
1136       // switch(bool_expr) {...} is often a programmer error, e.g.
1137       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
1138       // One can always use an if statement instead of switch(bool_expr).
1139       Diag(SwitchLoc, diag::warn_bool_switch_condition)
1140           << CondExpr->getSourceRange();
1141     }
1142   }
1143 
1144   setFunctionHasBranchIntoScope();
1145 
1146   auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr,
1147                                 LParenLoc, RParenLoc);
1148   getCurFunction()->SwitchStack.push_back(
1149       FunctionScopeInfo::SwitchInfo(SS, false));
1150   return SS;
1151 }
1152 
1153 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
1154   Val = Val.extOrTrunc(BitWidth);
1155   Val.setIsSigned(IsSigned);
1156 }
1157 
1158 /// Check the specified case value is in range for the given unpromoted switch
1159 /// type.
1160 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
1161                            unsigned UnpromotedWidth, bool UnpromotedSign) {
1162   // In C++11 onwards, this is checked by the language rules.
1163   if (S.getLangOpts().CPlusPlus11)
1164     return;
1165 
1166   // If the case value was signed and negative and the switch expression is
1167   // unsigned, don't bother to warn: this is implementation-defined behavior.
1168   // FIXME: Introduce a second, default-ignored warning for this case?
1169   if (UnpromotedWidth < Val.getBitWidth()) {
1170     llvm::APSInt ConvVal(Val);
1171     AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
1172     AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
1173     // FIXME: Use different diagnostics for overflow  in conversion to promoted
1174     // type versus "switch expression cannot have this value". Use proper
1175     // IntRange checking rather than just looking at the unpromoted type here.
1176     if (ConvVal != Val)
1177       S.Diag(Loc, diag::warn_case_value_overflow) << toString(Val, 10)
1178                                                   << toString(ConvVal, 10);
1179   }
1180 }
1181 
1182 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
1183 
1184 /// Returns true if we should emit a diagnostic about this case expression not
1185 /// being a part of the enum used in the switch controlling expression.
1186 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
1187                                               const EnumDecl *ED,
1188                                               const Expr *CaseExpr,
1189                                               EnumValsTy::iterator &EI,
1190                                               EnumValsTy::iterator &EIEnd,
1191                                               const llvm::APSInt &Val) {
1192   if (!ED->isClosed())
1193     return false;
1194 
1195   if (const DeclRefExpr *DRE =
1196           dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
1197     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
1198       QualType VarType = VD->getType();
1199       QualType EnumType = S.Context.getTypeDeclType(ED);
1200       if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
1201           S.Context.hasSameUnqualifiedType(EnumType, VarType))
1202         return false;
1203     }
1204   }
1205 
1206   if (ED->hasAttr<FlagEnumAttr>())
1207     return !S.IsValueInFlagEnum(ED, Val, false);
1208 
1209   while (EI != EIEnd && EI->first < Val)
1210     EI++;
1211 
1212   if (EI != EIEnd && EI->first == Val)
1213     return false;
1214 
1215   return true;
1216 }
1217 
1218 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
1219                                        const Expr *Case) {
1220   QualType CondType = Cond->getType();
1221   QualType CaseType = Case->getType();
1222 
1223   const EnumType *CondEnumType = CondType->getAs<EnumType>();
1224   const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
1225   if (!CondEnumType || !CaseEnumType)
1226     return;
1227 
1228   // Ignore anonymous enums.
1229   if (!CondEnumType->getDecl()->getIdentifier() &&
1230       !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
1231     return;
1232   if (!CaseEnumType->getDecl()->getIdentifier() &&
1233       !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
1234     return;
1235 
1236   if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
1237     return;
1238 
1239   S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
1240       << CondType << CaseType << Cond->getSourceRange()
1241       << Case->getSourceRange();
1242 }
1243 
1244 StmtResult
1245 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
1246                             Stmt *BodyStmt) {
1247   SwitchStmt *SS = cast<SwitchStmt>(Switch);
1248   bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
1249   assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
1250          "switch stack missing push/pop!");
1251 
1252   getCurFunction()->SwitchStack.pop_back();
1253 
1254   if (!BodyStmt) return StmtError();
1255   SS->setBody(BodyStmt, SwitchLoc);
1256 
1257   Expr *CondExpr = SS->getCond();
1258   if (!CondExpr) return StmtError();
1259 
1260   QualType CondType = CondExpr->getType();
1261 
1262   // C++ 6.4.2.p2:
1263   // Integral promotions are performed (on the switch condition).
1264   //
1265   // A case value unrepresentable by the original switch condition
1266   // type (before the promotion) doesn't make sense, even when it can
1267   // be represented by the promoted type.  Therefore we need to find
1268   // the pre-promotion type of the switch condition.
1269   const Expr *CondExprBeforePromotion = CondExpr;
1270   QualType CondTypeBeforePromotion =
1271       GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
1272 
1273   // Get the bitwidth of the switched-on value after promotions. We must
1274   // convert the integer case values to this width before comparison.
1275   bool HasDependentValue
1276     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
1277   unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
1278   bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
1279 
1280   // Get the width and signedness that the condition might actually have, for
1281   // warning purposes.
1282   // FIXME: Grab an IntRange for the condition rather than using the unpromoted
1283   // type.
1284   unsigned CondWidthBeforePromotion
1285     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
1286   bool CondIsSignedBeforePromotion
1287     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
1288 
1289   // Accumulate all of the case values in a vector so that we can sort them
1290   // and detect duplicates.  This vector contains the APInt for the case after
1291   // it has been converted to the condition type.
1292   typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
1293   CaseValsTy CaseVals;
1294 
1295   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
1296   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
1297   CaseRangesTy CaseRanges;
1298 
1299   DefaultStmt *TheDefaultStmt = nullptr;
1300 
1301   bool CaseListIsErroneous = false;
1302 
1303   // FIXME: We'd better diagnose missing or duplicate default labels even
1304   // in the dependent case. Because default labels themselves are never
1305   // dependent.
1306   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
1307        SC = SC->getNextSwitchCase()) {
1308 
1309     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
1310       if (TheDefaultStmt) {
1311         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
1312         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
1313 
1314         // FIXME: Remove the default statement from the switch block so that
1315         // we'll return a valid AST.  This requires recursing down the AST and
1316         // finding it, not something we are set up to do right now.  For now,
1317         // just lop the entire switch stmt out of the AST.
1318         CaseListIsErroneous = true;
1319       }
1320       TheDefaultStmt = DS;
1321 
1322     } else {
1323       CaseStmt *CS = cast<CaseStmt>(SC);
1324 
1325       Expr *Lo = CS->getLHS();
1326 
1327       if (Lo->isValueDependent()) {
1328         HasDependentValue = true;
1329         break;
1330       }
1331 
1332       // We already verified that the expression has a constant value;
1333       // get that value (prior to conversions).
1334       const Expr *LoBeforePromotion = Lo;
1335       GetTypeBeforeIntegralPromotion(LoBeforePromotion);
1336       llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
1337 
1338       // Check the unconverted value is within the range of possible values of
1339       // the switch expression.
1340       checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
1341                      CondIsSignedBeforePromotion);
1342 
1343       // FIXME: This duplicates the check performed for warn_not_in_enum below.
1344       checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
1345                                  LoBeforePromotion);
1346 
1347       // Convert the value to the same width/sign as the condition.
1348       AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
1349 
1350       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
1351       if (CS->getRHS()) {
1352         if (CS->getRHS()->isValueDependent()) {
1353           HasDependentValue = true;
1354           break;
1355         }
1356         CaseRanges.push_back(std::make_pair(LoVal, CS));
1357       } else
1358         CaseVals.push_back(std::make_pair(LoVal, CS));
1359     }
1360   }
1361 
1362   if (!HasDependentValue) {
1363     // If we don't have a default statement, check whether the
1364     // condition is constant.
1365     llvm::APSInt ConstantCondValue;
1366     bool HasConstantCond = false;
1367     if (!TheDefaultStmt) {
1368       Expr::EvalResult Result;
1369       HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
1370                                                 Expr::SE_AllowSideEffects);
1371       if (Result.Val.isInt())
1372         ConstantCondValue = Result.Val.getInt();
1373       assert(!HasConstantCond ||
1374              (ConstantCondValue.getBitWidth() == CondWidth &&
1375               ConstantCondValue.isSigned() == CondIsSigned));
1376       Diag(SwitchLoc, diag::warn_switch_default);
1377     }
1378     bool ShouldCheckConstantCond = HasConstantCond;
1379 
1380     // Sort all the scalar case values so we can easily detect duplicates.
1381     llvm::stable_sort(CaseVals, CmpCaseVals);
1382 
1383     if (!CaseVals.empty()) {
1384       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
1385         if (ShouldCheckConstantCond &&
1386             CaseVals[i].first == ConstantCondValue)
1387           ShouldCheckConstantCond = false;
1388 
1389         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
1390           // If we have a duplicate, report it.
1391           // First, determine if either case value has a name
1392           StringRef PrevString, CurrString;
1393           Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
1394           Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
1395           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
1396             PrevString = DeclRef->getDecl()->getName();
1397           }
1398           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
1399             CurrString = DeclRef->getDecl()->getName();
1400           }
1401           SmallString<16> CaseValStr;
1402           CaseVals[i-1].first.toString(CaseValStr);
1403 
1404           if (PrevString == CurrString)
1405             Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1406                  diag::err_duplicate_case)
1407                 << (PrevString.empty() ? CaseValStr.str() : PrevString);
1408           else
1409             Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1410                  diag::err_duplicate_case_differing_expr)
1411                 << (PrevString.empty() ? CaseValStr.str() : PrevString)
1412                 << (CurrString.empty() ? CaseValStr.str() : CurrString)
1413                 << CaseValStr;
1414 
1415           Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
1416                diag::note_duplicate_case_prev);
1417           // FIXME: We really want to remove the bogus case stmt from the
1418           // substmt, but we have no way to do this right now.
1419           CaseListIsErroneous = true;
1420         }
1421       }
1422     }
1423 
1424     // Detect duplicate case ranges, which usually don't exist at all in
1425     // the first place.
1426     if (!CaseRanges.empty()) {
1427       // Sort all the case ranges by their low value so we can easily detect
1428       // overlaps between ranges.
1429       llvm::stable_sort(CaseRanges);
1430 
1431       // Scan the ranges, computing the high values and removing empty ranges.
1432       std::vector<llvm::APSInt> HiVals;
1433       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1434         llvm::APSInt &LoVal = CaseRanges[i].first;
1435         CaseStmt *CR = CaseRanges[i].second;
1436         Expr *Hi = CR->getRHS();
1437 
1438         const Expr *HiBeforePromotion = Hi;
1439         GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1440         llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1441 
1442         // Check the unconverted value is within the range of possible values of
1443         // the switch expression.
1444         checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
1445                        CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1446 
1447         // Convert the value to the same width/sign as the condition.
1448         AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1449 
1450         // If the low value is bigger than the high value, the case is empty.
1451         if (LoVal > HiVal) {
1452           Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
1453               << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
1454           CaseRanges.erase(CaseRanges.begin()+i);
1455           --i;
1456           --e;
1457           continue;
1458         }
1459 
1460         if (ShouldCheckConstantCond &&
1461             LoVal <= ConstantCondValue &&
1462             ConstantCondValue <= HiVal)
1463           ShouldCheckConstantCond = false;
1464 
1465         HiVals.push_back(HiVal);
1466       }
1467 
1468       // Rescan the ranges, looking for overlap with singleton values and other
1469       // ranges.  Since the range list is sorted, we only need to compare case
1470       // ranges with their neighbors.
1471       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1472         llvm::APSInt &CRLo = CaseRanges[i].first;
1473         llvm::APSInt &CRHi = HiVals[i];
1474         CaseStmt *CR = CaseRanges[i].second;
1475 
1476         // Check to see whether the case range overlaps with any
1477         // singleton cases.
1478         CaseStmt *OverlapStmt = nullptr;
1479         llvm::APSInt OverlapVal(32);
1480 
1481         // Find the smallest value >= the lower bound.  If I is in the
1482         // case range, then we have overlap.
1483         CaseValsTy::iterator I =
1484             llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor());
1485         if (I != CaseVals.end() && I->first < CRHi) {
1486           OverlapVal  = I->first;   // Found overlap with scalar.
1487           OverlapStmt = I->second;
1488         }
1489 
1490         // Find the smallest value bigger than the upper bound.
1491         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1492         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1493           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
1494           OverlapStmt = (I-1)->second;
1495         }
1496 
1497         // Check to see if this case stmt overlaps with the subsequent
1498         // case range.
1499         if (i && CRLo <= HiVals[i-1]) {
1500           OverlapVal  = HiVals[i-1];       // Found overlap with range.
1501           OverlapStmt = CaseRanges[i-1].second;
1502         }
1503 
1504         if (OverlapStmt) {
1505           // If we have a duplicate, report it.
1506           Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
1507               << toString(OverlapVal, 10);
1508           Diag(OverlapStmt->getLHS()->getBeginLoc(),
1509                diag::note_duplicate_case_prev);
1510           // FIXME: We really want to remove the bogus case stmt from the
1511           // substmt, but we have no way to do this right now.
1512           CaseListIsErroneous = true;
1513         }
1514       }
1515     }
1516 
1517     // Complain if we have a constant condition and we didn't find a match.
1518     if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1519         ShouldCheckConstantCond) {
1520       // TODO: it would be nice if we printed enums as enums, chars as
1521       // chars, etc.
1522       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1523         << toString(ConstantCondValue, 10)
1524         << CondExpr->getSourceRange();
1525     }
1526 
1527     // Check to see if switch is over an Enum and handles all of its
1528     // values.  We only issue a warning if there is not 'default:', but
1529     // we still do the analysis to preserve this information in the AST
1530     // (which can be used by flow-based analyes).
1531     //
1532     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1533 
1534     // If switch has default case, then ignore it.
1535     if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1536         ET && ET->getDecl()->isCompleteDefinition() &&
1537         !ET->getDecl()->enumerators().empty()) {
1538       const EnumDecl *ED = ET->getDecl();
1539       EnumValsTy EnumVals;
1540 
1541       // Gather all enum values, set their type and sort them,
1542       // allowing easier comparison with CaseVals.
1543       for (auto *EDI : ED->enumerators()) {
1544         llvm::APSInt Val = EDI->getInitVal();
1545         AdjustAPSInt(Val, CondWidth, CondIsSigned);
1546         EnumVals.push_back(std::make_pair(Val, EDI));
1547       }
1548       llvm::stable_sort(EnumVals, CmpEnumVals);
1549       auto EI = EnumVals.begin(), EIEnd =
1550         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1551 
1552       // See which case values aren't in enum.
1553       for (CaseValsTy::const_iterator CI = CaseVals.begin();
1554           CI != CaseVals.end(); CI++) {
1555         Expr *CaseExpr = CI->second->getLHS();
1556         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1557                                               CI->first))
1558           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1559             << CondTypeBeforePromotion;
1560       }
1561 
1562       // See which of case ranges aren't in enum
1563       EI = EnumVals.begin();
1564       for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1565           RI != CaseRanges.end(); RI++) {
1566         Expr *CaseExpr = RI->second->getLHS();
1567         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1568                                               RI->first))
1569           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1570             << CondTypeBeforePromotion;
1571 
1572         llvm::APSInt Hi =
1573           RI->second->getRHS()->EvaluateKnownConstInt(Context);
1574         AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1575 
1576         CaseExpr = RI->second->getRHS();
1577         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1578                                               Hi))
1579           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1580             << CondTypeBeforePromotion;
1581       }
1582 
1583       // Check which enum vals aren't in switch
1584       auto CI = CaseVals.begin();
1585       auto RI = CaseRanges.begin();
1586       bool hasCasesNotInSwitch = false;
1587 
1588       SmallVector<DeclarationName,8> UnhandledNames;
1589 
1590       for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
1591         // Don't warn about omitted unavailable EnumConstantDecls.
1592         switch (EI->second->getAvailability()) {
1593         case AR_Deprecated:
1594           // Omitting a deprecated constant is ok; it should never materialize.
1595         case AR_Unavailable:
1596           continue;
1597 
1598         case AR_NotYetIntroduced:
1599           // Partially available enum constants should be present. Note that we
1600           // suppress -Wunguarded-availability diagnostics for such uses.
1601         case AR_Available:
1602           break;
1603         }
1604 
1605         if (EI->second->hasAttr<UnusedAttr>())
1606           continue;
1607 
1608         // Drop unneeded case values
1609         while (CI != CaseVals.end() && CI->first < EI->first)
1610           CI++;
1611 
1612         if (CI != CaseVals.end() && CI->first == EI->first)
1613           continue;
1614 
1615         // Drop unneeded case ranges
1616         for (; RI != CaseRanges.end(); RI++) {
1617           llvm::APSInt Hi =
1618             RI->second->getRHS()->EvaluateKnownConstInt(Context);
1619           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1620           if (EI->first <= Hi)
1621             break;
1622         }
1623 
1624         if (RI == CaseRanges.end() || EI->first < RI->first) {
1625           hasCasesNotInSwitch = true;
1626           UnhandledNames.push_back(EI->second->getDeclName());
1627         }
1628       }
1629 
1630       if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1631         Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1632 
1633       // Produce a nice diagnostic if multiple values aren't handled.
1634       if (!UnhandledNames.empty()) {
1635         auto DB = Diag(CondExpr->getExprLoc(), TheDefaultStmt
1636                                                    ? diag::warn_def_missing_case
1637                                                    : diag::warn_missing_case)
1638                   << CondExpr->getSourceRange() << (int)UnhandledNames.size();
1639 
1640         for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1641              I != E; ++I)
1642           DB << UnhandledNames[I];
1643       }
1644 
1645       if (!hasCasesNotInSwitch)
1646         SS->setAllEnumCasesCovered();
1647     }
1648   }
1649 
1650   if (BodyStmt)
1651     DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
1652                           diag::warn_empty_switch_body);
1653 
1654   // FIXME: If the case list was broken is some way, we don't have a good system
1655   // to patch it up.  Instead, just return the whole substmt as broken.
1656   if (CaseListIsErroneous)
1657     return StmtError();
1658 
1659   return SS;
1660 }
1661 
1662 void
1663 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1664                              Expr *SrcExpr) {
1665   if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1666     return;
1667 
1668   if (const EnumType *ET = DstType->getAs<EnumType>())
1669     if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1670         SrcType->isIntegerType()) {
1671       if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1672           SrcExpr->isIntegerConstantExpr(Context)) {
1673         // Get the bitwidth of the enum value before promotions.
1674         unsigned DstWidth = Context.getIntWidth(DstType);
1675         bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1676 
1677         llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1678         AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1679         const EnumDecl *ED = ET->getDecl();
1680 
1681         if (!ED->isClosed())
1682           return;
1683 
1684         if (ED->hasAttr<FlagEnumAttr>()) {
1685           if (!IsValueInFlagEnum(ED, RhsVal, true))
1686             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1687               << DstType.getUnqualifiedType();
1688         } else {
1689           typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1690               EnumValsTy;
1691           EnumValsTy EnumVals;
1692 
1693           // Gather all enum values, set their type and sort them,
1694           // allowing easier comparison with rhs constant.
1695           for (auto *EDI : ED->enumerators()) {
1696             llvm::APSInt Val = EDI->getInitVal();
1697             AdjustAPSInt(Val, DstWidth, DstIsSigned);
1698             EnumVals.push_back(std::make_pair(Val, EDI));
1699           }
1700           if (EnumVals.empty())
1701             return;
1702           llvm::stable_sort(EnumVals, CmpEnumVals);
1703           EnumValsTy::iterator EIend =
1704               std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1705 
1706           // See which values aren't in the enum.
1707           EnumValsTy::const_iterator EI = EnumVals.begin();
1708           while (EI != EIend && EI->first < RhsVal)
1709             EI++;
1710           if (EI == EIend || EI->first != RhsVal) {
1711             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1712                 << DstType.getUnqualifiedType();
1713           }
1714         }
1715       }
1716     }
1717 }
1718 
1719 StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc,
1720                                 SourceLocation LParenLoc, ConditionResult Cond,
1721                                 SourceLocation RParenLoc, Stmt *Body) {
1722   if (Cond.isInvalid())
1723     return StmtError();
1724 
1725   auto CondVal = Cond.get();
1726   CheckBreakContinueBinding(CondVal.second);
1727 
1728   if (CondVal.second &&
1729       !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1730     CommaVisitor(*this).Visit(CondVal.second);
1731 
1732   if (isa<NullStmt>(Body))
1733     getCurCompoundScope().setHasEmptyLoopBodies();
1734 
1735   return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
1736                            WhileLoc, LParenLoc, RParenLoc);
1737 }
1738 
1739 StmtResult
1740 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1741                   SourceLocation WhileLoc, SourceLocation CondLParen,
1742                   Expr *Cond, SourceLocation CondRParen) {
1743   assert(Cond && "ActOnDoStmt(): missing expression");
1744 
1745   CheckBreakContinueBinding(Cond);
1746   ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1747   if (CondResult.isInvalid())
1748     return StmtError();
1749   Cond = CondResult.get();
1750 
1751   CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
1752   if (CondResult.isInvalid())
1753     return StmtError();
1754   Cond = CondResult.get();
1755 
1756   // Only call the CommaVisitor for C89 due to differences in scope flags.
1757   if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
1758       !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
1759     CommaVisitor(*this).Visit(Cond);
1760 
1761   return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1762 }
1763 
1764 namespace {
1765   // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1766   using DeclSetVector = llvm::SmallSetVector<VarDecl *, 8>;
1767 
1768   // This visitor will traverse a conditional statement and store all
1769   // the evaluated decls into a vector.  Simple is set to true if none
1770   // of the excluded constructs are used.
1771   class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1772     DeclSetVector &Decls;
1773     SmallVectorImpl<SourceRange> &Ranges;
1774     bool Simple;
1775   public:
1776     typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1777 
1778     DeclExtractor(Sema &S, DeclSetVector &Decls,
1779                   SmallVectorImpl<SourceRange> &Ranges) :
1780         Inherited(S.Context),
1781         Decls(Decls),
1782         Ranges(Ranges),
1783         Simple(true) {}
1784 
1785     bool isSimple() { return Simple; }
1786 
1787     // Replaces the method in EvaluatedExprVisitor.
1788     void VisitMemberExpr(MemberExpr* E) {
1789       Simple = false;
1790     }
1791 
1792     // Any Stmt not explicitly listed will cause the condition to be marked
1793     // complex.
1794     void VisitStmt(Stmt *S) { Simple = false; }
1795 
1796     void VisitBinaryOperator(BinaryOperator *E) {
1797       Visit(E->getLHS());
1798       Visit(E->getRHS());
1799     }
1800 
1801     void VisitCastExpr(CastExpr *E) {
1802       Visit(E->getSubExpr());
1803     }
1804 
1805     void VisitUnaryOperator(UnaryOperator *E) {
1806       // Skip checking conditionals with derefernces.
1807       if (E->getOpcode() == UO_Deref)
1808         Simple = false;
1809       else
1810         Visit(E->getSubExpr());
1811     }
1812 
1813     void VisitConditionalOperator(ConditionalOperator *E) {
1814       Visit(E->getCond());
1815       Visit(E->getTrueExpr());
1816       Visit(E->getFalseExpr());
1817     }
1818 
1819     void VisitParenExpr(ParenExpr *E) {
1820       Visit(E->getSubExpr());
1821     }
1822 
1823     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1824       Visit(E->getOpaqueValue()->getSourceExpr());
1825       Visit(E->getFalseExpr());
1826     }
1827 
1828     void VisitIntegerLiteral(IntegerLiteral *E) { }
1829     void VisitFloatingLiteral(FloatingLiteral *E) { }
1830     void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1831     void VisitCharacterLiteral(CharacterLiteral *E) { }
1832     void VisitGNUNullExpr(GNUNullExpr *E) { }
1833     void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1834 
1835     void VisitDeclRefExpr(DeclRefExpr *E) {
1836       VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1837       if (!VD) {
1838         // Don't allow unhandled Decl types.
1839         Simple = false;
1840         return;
1841       }
1842 
1843       Ranges.push_back(E->getSourceRange());
1844 
1845       Decls.insert(VD);
1846     }
1847 
1848   }; // end class DeclExtractor
1849 
1850   // DeclMatcher checks to see if the decls are used in a non-evaluated
1851   // context.
1852   class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1853     DeclSetVector &Decls;
1854     bool FoundDecl;
1855 
1856   public:
1857     typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1858 
1859     DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1860         Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1861       if (!Statement) return;
1862 
1863       Visit(Statement);
1864     }
1865 
1866     void VisitReturnStmt(ReturnStmt *S) {
1867       FoundDecl = true;
1868     }
1869 
1870     void VisitBreakStmt(BreakStmt *S) {
1871       FoundDecl = true;
1872     }
1873 
1874     void VisitGotoStmt(GotoStmt *S) {
1875       FoundDecl = true;
1876     }
1877 
1878     void VisitCastExpr(CastExpr *E) {
1879       if (E->getCastKind() == CK_LValueToRValue)
1880         CheckLValueToRValueCast(E->getSubExpr());
1881       else
1882         Visit(E->getSubExpr());
1883     }
1884 
1885     void CheckLValueToRValueCast(Expr *E) {
1886       E = E->IgnoreParenImpCasts();
1887 
1888       if (isa<DeclRefExpr>(E)) {
1889         return;
1890       }
1891 
1892       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1893         Visit(CO->getCond());
1894         CheckLValueToRValueCast(CO->getTrueExpr());
1895         CheckLValueToRValueCast(CO->getFalseExpr());
1896         return;
1897       }
1898 
1899       if (BinaryConditionalOperator *BCO =
1900               dyn_cast<BinaryConditionalOperator>(E)) {
1901         CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1902         CheckLValueToRValueCast(BCO->getFalseExpr());
1903         return;
1904       }
1905 
1906       Visit(E);
1907     }
1908 
1909     void VisitDeclRefExpr(DeclRefExpr *E) {
1910       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1911         if (Decls.count(VD))
1912           FoundDecl = true;
1913     }
1914 
1915     void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1916       // Only need to visit the semantics for POE.
1917       // SyntaticForm doesn't really use the Decal.
1918       for (auto *S : POE->semantics()) {
1919         if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1920           // Look past the OVE into the expression it binds.
1921           Visit(OVE->getSourceExpr());
1922         else
1923           Visit(S);
1924       }
1925     }
1926 
1927     bool FoundDeclInUse() { return FoundDecl; }
1928 
1929   };  // end class DeclMatcher
1930 
1931   void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1932                                         Expr *Third, Stmt *Body) {
1933     // Condition is empty
1934     if (!Second) return;
1935 
1936     if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1937                           Second->getBeginLoc()))
1938       return;
1939 
1940     PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1941     DeclSetVector Decls;
1942     SmallVector<SourceRange, 10> Ranges;
1943     DeclExtractor DE(S, Decls, Ranges);
1944     DE.Visit(Second);
1945 
1946     // Don't analyze complex conditionals.
1947     if (!DE.isSimple()) return;
1948 
1949     // No decls found.
1950     if (Decls.size() == 0) return;
1951 
1952     // Don't warn on volatile, static, or global variables.
1953     for (auto *VD : Decls)
1954       if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1955         return;
1956 
1957     if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1958         DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1959         DeclMatcher(S, Decls, Body).FoundDeclInUse())
1960       return;
1961 
1962     // Load decl names into diagnostic.
1963     if (Decls.size() > 4) {
1964       PDiag << 0;
1965     } else {
1966       PDiag << (unsigned)Decls.size();
1967       for (auto *VD : Decls)
1968         PDiag << VD->getDeclName();
1969     }
1970 
1971     for (auto Range : Ranges)
1972       PDiag << Range;
1973 
1974     S.Diag(Ranges.begin()->getBegin(), PDiag);
1975   }
1976 
1977   // If Statement is an incemement or decrement, return true and sets the
1978   // variables Increment and DRE.
1979   bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1980                             DeclRefExpr *&DRE) {
1981     if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1982       if (!Cleanups->cleanupsHaveSideEffects())
1983         Statement = Cleanups->getSubExpr();
1984 
1985     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1986       switch (UO->getOpcode()) {
1987         default: return false;
1988         case UO_PostInc:
1989         case UO_PreInc:
1990           Increment = true;
1991           break;
1992         case UO_PostDec:
1993         case UO_PreDec:
1994           Increment = false;
1995           break;
1996       }
1997       DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1998       return DRE;
1999     }
2000 
2001     if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
2002       FunctionDecl *FD = Call->getDirectCallee();
2003       if (!FD || !FD->isOverloadedOperator()) return false;
2004       switch (FD->getOverloadedOperator()) {
2005         default: return false;
2006         case OO_PlusPlus:
2007           Increment = true;
2008           break;
2009         case OO_MinusMinus:
2010           Increment = false;
2011           break;
2012       }
2013       DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
2014       return DRE;
2015     }
2016 
2017     return false;
2018   }
2019 
2020   // A visitor to determine if a continue or break statement is a
2021   // subexpression.
2022   class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
2023     SourceLocation BreakLoc;
2024     SourceLocation ContinueLoc;
2025     bool InSwitch = false;
2026 
2027   public:
2028     BreakContinueFinder(Sema &S, const Stmt* Body) :
2029         Inherited(S.Context) {
2030       Visit(Body);
2031     }
2032 
2033     typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited;
2034 
2035     void VisitContinueStmt(const ContinueStmt* E) {
2036       ContinueLoc = E->getContinueLoc();
2037     }
2038 
2039     void VisitBreakStmt(const BreakStmt* E) {
2040       if (!InSwitch)
2041         BreakLoc = E->getBreakLoc();
2042     }
2043 
2044     void VisitSwitchStmt(const SwitchStmt* S) {
2045       if (const Stmt *Init = S->getInit())
2046         Visit(Init);
2047       if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
2048         Visit(CondVar);
2049       if (const Stmt *Cond = S->getCond())
2050         Visit(Cond);
2051 
2052       // Don't return break statements from the body of a switch.
2053       InSwitch = true;
2054       if (const Stmt *Body = S->getBody())
2055         Visit(Body);
2056       InSwitch = false;
2057     }
2058 
2059     void VisitForStmt(const ForStmt *S) {
2060       // Only visit the init statement of a for loop; the body
2061       // has a different break/continue scope.
2062       if (const Stmt *Init = S->getInit())
2063         Visit(Init);
2064     }
2065 
2066     void VisitWhileStmt(const WhileStmt *) {
2067       // Do nothing; the children of a while loop have a different
2068       // break/continue scope.
2069     }
2070 
2071     void VisitDoStmt(const DoStmt *) {
2072       // Do nothing; the children of a while loop have a different
2073       // break/continue scope.
2074     }
2075 
2076     void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
2077       // Only visit the initialization of a for loop; the body
2078       // has a different break/continue scope.
2079       if (const Stmt *Init = S->getInit())
2080         Visit(Init);
2081       if (const Stmt *Range = S->getRangeStmt())
2082         Visit(Range);
2083       if (const Stmt *Begin = S->getBeginStmt())
2084         Visit(Begin);
2085       if (const Stmt *End = S->getEndStmt())
2086         Visit(End);
2087     }
2088 
2089     void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
2090       // Only visit the initialization of a for loop; the body
2091       // has a different break/continue scope.
2092       if (const Stmt *Element = S->getElement())
2093         Visit(Element);
2094       if (const Stmt *Collection = S->getCollection())
2095         Visit(Collection);
2096     }
2097 
2098     bool ContinueFound() { return ContinueLoc.isValid(); }
2099     bool BreakFound() { return BreakLoc.isValid(); }
2100     SourceLocation GetContinueLoc() { return ContinueLoc; }
2101     SourceLocation GetBreakLoc() { return BreakLoc; }
2102 
2103   };  // end class BreakContinueFinder
2104 
2105   // Emit a warning when a loop increment/decrement appears twice per loop
2106   // iteration.  The conditions which trigger this warning are:
2107   // 1) The last statement in the loop body and the third expression in the
2108   //    for loop are both increment or both decrement of the same variable
2109   // 2) No continue statements in the loop body.
2110   void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
2111     // Return when there is nothing to check.
2112     if (!Body || !Third) return;
2113 
2114     if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
2115                           Third->getBeginLoc()))
2116       return;
2117 
2118     // Get the last statement from the loop body.
2119     CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
2120     if (!CS || CS->body_empty()) return;
2121     Stmt *LastStmt = CS->body_back();
2122     if (!LastStmt) return;
2123 
2124     bool LoopIncrement, LastIncrement;
2125     DeclRefExpr *LoopDRE, *LastDRE;
2126 
2127     if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
2128     if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
2129 
2130     // Check that the two statements are both increments or both decrements
2131     // on the same variable.
2132     if (LoopIncrement != LastIncrement ||
2133         LoopDRE->getDecl() != LastDRE->getDecl()) return;
2134 
2135     if (BreakContinueFinder(S, Body).ContinueFound()) return;
2136 
2137     S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
2138          << LastDRE->getDecl() << LastIncrement;
2139     S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
2140          << LoopIncrement;
2141   }
2142 
2143 } // end namespace
2144 
2145 
2146 void Sema::CheckBreakContinueBinding(Expr *E) {
2147   if (!E || getLangOpts().CPlusPlus)
2148     return;
2149   BreakContinueFinder BCFinder(*this, E);
2150   Scope *BreakParent = CurScope->getBreakParent();
2151   if (BCFinder.BreakFound() && BreakParent) {
2152     if (BreakParent->getFlags() & Scope::SwitchScope) {
2153       Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
2154     } else {
2155       Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
2156           << "break";
2157     }
2158   } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
2159     Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
2160         << "continue";
2161   }
2162 }
2163 
2164 StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
2165                               Stmt *First, ConditionResult Second,
2166                               FullExprArg third, SourceLocation RParenLoc,
2167                               Stmt *Body) {
2168   if (Second.isInvalid())
2169     return StmtError();
2170 
2171   if (!getLangOpts().CPlusPlus) {
2172     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
2173       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
2174       // declare identifiers for objects having storage class 'auto' or
2175       // 'register'.
2176       const Decl *NonVarSeen = nullptr;
2177       bool VarDeclSeen = false;
2178       for (auto *DI : DS->decls()) {
2179         if (VarDecl *VD = dyn_cast<VarDecl>(DI)) {
2180           VarDeclSeen = true;
2181           if (VD->isLocalVarDecl() && !VD->hasLocalStorage()) {
2182             Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
2183             DI->setInvalidDecl();
2184           }
2185         } else if (!NonVarSeen) {
2186           // Keep track of the first non-variable declaration we saw so that
2187           // we can diagnose if we don't see any variable declarations. This
2188           // covers a case like declaring a typedef, function, or structure
2189           // type rather than a variable.
2190           NonVarSeen = DI;
2191         }
2192       }
2193       // Diagnose if we saw a non-variable declaration but no variable
2194       // declarations.
2195       if (NonVarSeen && !VarDeclSeen)
2196         Diag(NonVarSeen->getLocation(), diag::err_non_variable_decl_in_for);
2197     }
2198   }
2199 
2200   CheckBreakContinueBinding(Second.get().second);
2201   CheckBreakContinueBinding(third.get());
2202 
2203   if (!Second.get().first)
2204     CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
2205                                      Body);
2206   CheckForRedundantIteration(*this, third.get(), Body);
2207 
2208   if (Second.get().second &&
2209       !Diags.isIgnored(diag::warn_comma_operator,
2210                        Second.get().second->getExprLoc()))
2211     CommaVisitor(*this).Visit(Second.get().second);
2212 
2213   Expr *Third  = third.release().getAs<Expr>();
2214   if (isa<NullStmt>(Body))
2215     getCurCompoundScope().setHasEmptyLoopBodies();
2216 
2217   return new (Context)
2218       ForStmt(Context, First, Second.get().second, Second.get().first, Third,
2219               Body, ForLoc, LParenLoc, RParenLoc);
2220 }
2221 
2222 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
2223   // Reduce placeholder expressions here.  Note that this rejects the
2224   // use of pseudo-object l-values in this position.
2225   ExprResult result = CheckPlaceholderExpr(E);
2226   if (result.isInvalid()) return StmtError();
2227   E = result.get();
2228 
2229   ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
2230   if (FullExpr.isInvalid())
2231     return StmtError();
2232   return StmtResult(static_cast<Stmt*>(FullExpr.get()));
2233 }
2234 
2235 /// Finish building a variable declaration for a for-range statement.
2236 /// \return true if an error occurs.
2237 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
2238                                   SourceLocation Loc, int DiagID) {
2239   if (Decl->getType()->isUndeducedType()) {
2240     ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
2241     if (!Res.isUsable()) {
2242       Decl->setInvalidDecl();
2243       return true;
2244     }
2245     Init = Res.get();
2246   }
2247 
2248   // Deduce the type for the iterator variable now rather than leaving it to
2249   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
2250   QualType InitType;
2251   if (!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) {
2252     SemaRef.Diag(Loc, DiagID) << Init->getType();
2253   } else {
2254     TemplateDeductionInfo Info(Init->getExprLoc());
2255     TemplateDeductionResult Result = SemaRef.DeduceAutoType(
2256         Decl->getTypeSourceInfo()->getTypeLoc(), Init, InitType, Info);
2257     if (Result != TemplateDeductionResult::Success &&
2258         Result != TemplateDeductionResult::AlreadyDiagnosed)
2259       SemaRef.Diag(Loc, DiagID) << Init->getType();
2260   }
2261 
2262   if (InitType.isNull()) {
2263     Decl->setInvalidDecl();
2264     return true;
2265   }
2266   Decl->setType(InitType);
2267 
2268   // In ARC, infer lifetime.
2269   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
2270   // we're doing the equivalent of fast iteration.
2271   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2272       SemaRef.ObjC().inferObjCARCLifetime(Decl))
2273     Decl->setInvalidDecl();
2274 
2275   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
2276   SemaRef.FinalizeDeclaration(Decl);
2277   SemaRef.CurContext->addHiddenDecl(Decl);
2278   return false;
2279 }
2280 
2281 namespace {
2282 // An enum to represent whether something is dealing with a call to begin()
2283 // or a call to end() in a range-based for loop.
2284 enum BeginEndFunction {
2285   BEF_begin,
2286   BEF_end
2287 };
2288 
2289 /// Produce a note indicating which begin/end function was implicitly called
2290 /// by a C++11 for-range statement. This is often not obvious from the code,
2291 /// nor from the diagnostics produced when analysing the implicit expressions
2292 /// required in a for-range statement.
2293 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
2294                                   BeginEndFunction BEF) {
2295   CallExpr *CE = dyn_cast<CallExpr>(E);
2296   if (!CE)
2297     return;
2298   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2299   if (!D)
2300     return;
2301   SourceLocation Loc = D->getLocation();
2302 
2303   std::string Description;
2304   bool IsTemplate = false;
2305   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2306     Description = SemaRef.getTemplateArgumentBindingsText(
2307       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2308     IsTemplate = true;
2309   }
2310 
2311   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2312     << BEF << IsTemplate << Description << E->getType();
2313 }
2314 
2315 /// Build a variable declaration for a for-range statement.
2316 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2317                               QualType Type, StringRef Name) {
2318   DeclContext *DC = SemaRef.CurContext;
2319   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2320   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2321   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2322                                   TInfo, SC_None);
2323   Decl->setImplicit();
2324   return Decl;
2325 }
2326 
2327 }
2328 
2329 static bool ObjCEnumerationCollection(Expr *Collection) {
2330   return !Collection->isTypeDependent()
2331           && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2332 }
2333 
2334 StmtResult Sema::ActOnCXXForRangeStmt(
2335     Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt,
2336     Stmt *First, SourceLocation ColonLoc, Expr *Range, SourceLocation RParenLoc,
2337     BuildForRangeKind Kind,
2338     ArrayRef<MaterializeTemporaryExpr *> LifetimeExtendTemps) {
2339   // FIXME: recover in order to allow the body to be parsed.
2340   if (!First)
2341     return StmtError();
2342 
2343   if (Range && ObjCEnumerationCollection(Range)) {
2344     // FIXME: Support init-statements in Objective-C++20 ranged for statement.
2345     if (InitStmt)
2346       return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
2347                  << InitStmt->getSourceRange();
2348     return ObjC().ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2349   }
2350 
2351   DeclStmt *DS = dyn_cast<DeclStmt>(First);
2352   assert(DS && "first part of for range not a decl stmt");
2353 
2354   if (!DS->isSingleDecl()) {
2355     Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
2356     return StmtError();
2357   }
2358 
2359   // This function is responsible for attaching an initializer to LoopVar. We
2360   // must call ActOnInitializerError if we fail to do so.
2361   Decl *LoopVar = DS->getSingleDecl();
2362   if (LoopVar->isInvalidDecl() || !Range ||
2363       DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2364     ActOnInitializerError(LoopVar);
2365     return StmtError();
2366   }
2367 
2368   // Build the coroutine state immediately and not later during template
2369   // instantiation
2370   if (!CoawaitLoc.isInvalid()) {
2371     if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) {
2372       ActOnInitializerError(LoopVar);
2373       return StmtError();
2374     }
2375   }
2376 
2377   // Build  auto && __range = range-init
2378   // Divide by 2, since the variables are in the inner scope (loop body).
2379   const auto DepthStr = std::to_string(S->getDepth() / 2);
2380   SourceLocation RangeLoc = Range->getBeginLoc();
2381   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2382                                            Context.getAutoRRefDeductType(),
2383                                            std::string("__range") + DepthStr);
2384   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2385                             diag::err_for_range_deduction_failure)) {
2386     ActOnInitializerError(LoopVar);
2387     return StmtError();
2388   }
2389 
2390   // Claim the type doesn't contain auto: we've already done the checking.
2391   DeclGroupPtrTy RangeGroup =
2392       BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2393   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2394   if (RangeDecl.isInvalid()) {
2395     ActOnInitializerError(LoopVar);
2396     return StmtError();
2397   }
2398 
2399   StmtResult R = BuildCXXForRangeStmt(
2400       ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
2401       /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2402       /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind,
2403       LifetimeExtendTemps);
2404   if (R.isInvalid()) {
2405     ActOnInitializerError(LoopVar);
2406     return StmtError();
2407   }
2408 
2409   return R;
2410 }
2411 
2412 /// Create the initialization, compare, and increment steps for
2413 /// the range-based for loop expression.
2414 /// This function does not handle array-based for loops,
2415 /// which are created in Sema::BuildCXXForRangeStmt.
2416 ///
2417 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2418 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2419 /// CandidateSet and BEF are set and some non-success value is returned on
2420 /// failure.
2421 static Sema::ForRangeStatus
2422 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2423                       QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2424                       SourceLocation ColonLoc, SourceLocation CoawaitLoc,
2425                       OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2426                       ExprResult *EndExpr, BeginEndFunction *BEF) {
2427   DeclarationNameInfo BeginNameInfo(
2428       &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2429   DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2430                                   ColonLoc);
2431 
2432   LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2433                                  Sema::LookupMemberName);
2434   LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2435 
2436   auto BuildBegin = [&] {
2437     *BEF = BEF_begin;
2438     Sema::ForRangeStatus RangeStatus =
2439         SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2440                                           BeginMemberLookup, CandidateSet,
2441                                           BeginRange, BeginExpr);
2442 
2443     if (RangeStatus != Sema::FRS_Success) {
2444       if (RangeStatus == Sema::FRS_DiagnosticIssued)
2445         SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
2446             << ColonLoc << BEF_begin << BeginRange->getType();
2447       return RangeStatus;
2448     }
2449     if (!CoawaitLoc.isInvalid()) {
2450       // FIXME: getCurScope() should not be used during template instantiation.
2451       // We should pick up the set of unqualified lookup results for operator
2452       // co_await during the initial parse.
2453       *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2454                                             BeginExpr->get());
2455       if (BeginExpr->isInvalid())
2456         return Sema::FRS_DiagnosticIssued;
2457     }
2458     if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2459                               diag::err_for_range_iter_deduction_failure)) {
2460       NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2461       return Sema::FRS_DiagnosticIssued;
2462     }
2463     return Sema::FRS_Success;
2464   };
2465 
2466   auto BuildEnd = [&] {
2467     *BEF = BEF_end;
2468     Sema::ForRangeStatus RangeStatus =
2469         SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2470                                           EndMemberLookup, CandidateSet,
2471                                           EndRange, EndExpr);
2472     if (RangeStatus != Sema::FRS_Success) {
2473       if (RangeStatus == Sema::FRS_DiagnosticIssued)
2474         SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
2475             << ColonLoc << BEF_end << EndRange->getType();
2476       return RangeStatus;
2477     }
2478     if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2479                               diag::err_for_range_iter_deduction_failure)) {
2480       NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2481       return Sema::FRS_DiagnosticIssued;
2482     }
2483     return Sema::FRS_Success;
2484   };
2485 
2486   if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2487     // - if _RangeT is a class type, the unqualified-ids begin and end are
2488     //   looked up in the scope of class _RangeT as if by class member access
2489     //   lookup (3.4.5), and if either (or both) finds at least one
2490     //   declaration, begin-expr and end-expr are __range.begin() and
2491     //   __range.end(), respectively;
2492     SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2493     if (BeginMemberLookup.isAmbiguous())
2494       return Sema::FRS_DiagnosticIssued;
2495 
2496     SemaRef.LookupQualifiedName(EndMemberLookup, D);
2497     if (EndMemberLookup.isAmbiguous())
2498       return Sema::FRS_DiagnosticIssued;
2499 
2500     if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2501       // Look up the non-member form of the member we didn't find, first.
2502       // This way we prefer a "no viable 'end'" diagnostic over a "i found
2503       // a 'begin' but ignored it because there was no member 'end'"
2504       // diagnostic.
2505       auto BuildNonmember = [&](
2506           BeginEndFunction BEFFound, LookupResult &Found,
2507           llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
2508           llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
2509         LookupResult OldFound = std::move(Found);
2510         Found.clear();
2511 
2512         if (Sema::ForRangeStatus Result = BuildNotFound())
2513           return Result;
2514 
2515         switch (BuildFound()) {
2516         case Sema::FRS_Success:
2517           return Sema::FRS_Success;
2518 
2519         case Sema::FRS_NoViableFunction:
2520           CandidateSet->NoteCandidates(
2521               PartialDiagnosticAt(BeginRange->getBeginLoc(),
2522                                   SemaRef.PDiag(diag::err_for_range_invalid)
2523                                       << BeginRange->getType() << BEFFound),
2524               SemaRef, OCD_AllCandidates, BeginRange);
2525           [[fallthrough]];
2526 
2527         case Sema::FRS_DiagnosticIssued:
2528           for (NamedDecl *D : OldFound) {
2529             SemaRef.Diag(D->getLocation(),
2530                          diag::note_for_range_member_begin_end_ignored)
2531                 << BeginRange->getType() << BEFFound;
2532           }
2533           return Sema::FRS_DiagnosticIssued;
2534         }
2535         llvm_unreachable("unexpected ForRangeStatus");
2536       };
2537       if (BeginMemberLookup.empty())
2538         return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
2539       return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
2540     }
2541   } else {
2542     // - otherwise, begin-expr and end-expr are begin(__range) and
2543     //   end(__range), respectively, where begin and end are looked up with
2544     //   argument-dependent lookup (3.4.2). For the purposes of this name
2545     //   lookup, namespace std is an associated namespace.
2546   }
2547 
2548   if (Sema::ForRangeStatus Result = BuildBegin())
2549     return Result;
2550   return BuildEnd();
2551 }
2552 
2553 /// Speculatively attempt to dereference an invalid range expression.
2554 /// If the attempt fails, this function will return a valid, null StmtResult
2555 /// and emit no diagnostics.
2556 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2557                                                  SourceLocation ForLoc,
2558                                                  SourceLocation CoawaitLoc,
2559                                                  Stmt *InitStmt,
2560                                                  Stmt *LoopVarDecl,
2561                                                  SourceLocation ColonLoc,
2562                                                  Expr *Range,
2563                                                  SourceLocation RangeLoc,
2564                                                  SourceLocation RParenLoc) {
2565   // Determine whether we can rebuild the for-range statement with a
2566   // dereferenced range expression.
2567   ExprResult AdjustedRange;
2568   {
2569     Sema::SFINAETrap Trap(SemaRef);
2570 
2571     AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2572     if (AdjustedRange.isInvalid())
2573       return StmtResult();
2574 
2575     StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2576         S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2577         AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
2578     if (SR.isInvalid())
2579       return StmtResult();
2580   }
2581 
2582   // The attempt to dereference worked well enough that it could produce a valid
2583   // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2584   // case there are any other (non-fatal) problems with it.
2585   SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2586     << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2587   return SemaRef.ActOnCXXForRangeStmt(
2588       S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2589       AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
2590 }
2591 
2592 StmtResult Sema::BuildCXXForRangeStmt(
2593     SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt,
2594     SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *Begin, Stmt *End,
2595     Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc,
2596     BuildForRangeKind Kind,
2597     ArrayRef<MaterializeTemporaryExpr *> LifetimeExtendTemps) {
2598   // FIXME: This should not be used during template instantiation. We should
2599   // pick up the set of unqualified lookup results for the != and + operators
2600   // in the initial parse.
2601   //
2602   // Testcase (accepts-invalid):
2603   //   template<typename T> void f() { for (auto x : T()) {} }
2604   //   namespace N { struct X { X begin(); X end(); int operator*(); }; }
2605   //   bool operator!=(N::X, N::X); void operator++(N::X);
2606   //   void g() { f<N::X>(); }
2607   Scope *S = getCurScope();
2608 
2609   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2610   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2611   QualType RangeVarType = RangeVar->getType();
2612 
2613   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2614   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2615 
2616   StmtResult BeginDeclStmt = Begin;
2617   StmtResult EndDeclStmt = End;
2618   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2619 
2620   if (RangeVarType->isDependentType()) {
2621     // The range is implicitly used as a placeholder when it is dependent.
2622     RangeVar->markUsed(Context);
2623 
2624     // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2625     // them in properly when we instantiate the loop.
2626     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2627       if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2628         for (auto *Binding : DD->bindings())
2629           Binding->setType(Context.DependentTy);
2630       LoopVar->setType(SubstAutoTypeDependent(LoopVar->getType()));
2631     }
2632   } else if (!BeginDeclStmt.get()) {
2633     SourceLocation RangeLoc = RangeVar->getLocation();
2634 
2635     const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2636 
2637     ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2638                                                 VK_LValue, ColonLoc);
2639     if (BeginRangeRef.isInvalid())
2640       return StmtError();
2641 
2642     ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2643                                               VK_LValue, ColonLoc);
2644     if (EndRangeRef.isInvalid())
2645       return StmtError();
2646 
2647     QualType AutoType = Context.getAutoDeductType();
2648     Expr *Range = RangeVar->getInit();
2649     if (!Range)
2650       return StmtError();
2651     QualType RangeType = Range->getType();
2652 
2653     if (RequireCompleteType(RangeLoc, RangeType,
2654                             diag::err_for_range_incomplete_type))
2655       return StmtError();
2656 
2657     // P2718R0 - Lifetime extension in range-based for loops.
2658     if (getLangOpts().CPlusPlus23 && !LifetimeExtendTemps.empty()) {
2659       InitializedEntity Entity =
2660           InitializedEntity::InitializeVariable(RangeVar);
2661       for (auto *MTE : LifetimeExtendTemps)
2662         MTE->setExtendingDecl(RangeVar, Entity.allocateManglingNumber());
2663     }
2664 
2665     // Build auto __begin = begin-expr, __end = end-expr.
2666     // Divide by 2, since the variables are in the inner scope (loop body).
2667     const auto DepthStr = std::to_string(S->getDepth() / 2);
2668     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2669                                              std::string("__begin") + DepthStr);
2670     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2671                                            std::string("__end") + DepthStr);
2672 
2673     // Build begin-expr and end-expr and attach to __begin and __end variables.
2674     ExprResult BeginExpr, EndExpr;
2675     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2676       // - if _RangeT is an array type, begin-expr and end-expr are __range and
2677       //   __range + __bound, respectively, where __bound is the array bound. If
2678       //   _RangeT is an array of unknown size or an array of incomplete type,
2679       //   the program is ill-formed;
2680 
2681       // begin-expr is __range.
2682       BeginExpr = BeginRangeRef;
2683       if (!CoawaitLoc.isInvalid()) {
2684         BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2685         if (BeginExpr.isInvalid())
2686           return StmtError();
2687       }
2688       if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2689                                 diag::err_for_range_iter_deduction_failure)) {
2690         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2691         return StmtError();
2692       }
2693 
2694       // Find the array bound.
2695       ExprResult BoundExpr;
2696       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2697         BoundExpr = IntegerLiteral::Create(
2698             Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2699       else if (const VariableArrayType *VAT =
2700                dyn_cast<VariableArrayType>(UnqAT)) {
2701         // For a variably modified type we can't just use the expression within
2702         // the array bounds, since we don't want that to be re-evaluated here.
2703         // Rather, we need to determine what it was when the array was first
2704         // created - so we resort to using sizeof(vla)/sizeof(element).
2705         // For e.g.
2706         //  void f(int b) {
2707         //    int vla[b];
2708         //    b = -1;   <-- This should not affect the num of iterations below
2709         //    for (int &c : vla) { .. }
2710         //  }
2711 
2712         // FIXME: This results in codegen generating IR that recalculates the
2713         // run-time number of elements (as opposed to just using the IR Value
2714         // that corresponds to the run-time value of each bound that was
2715         // generated when the array was created.) If this proves too embarrassing
2716         // even for unoptimized IR, consider passing a magic-value/cookie to
2717         // codegen that then knows to simply use that initial llvm::Value (that
2718         // corresponds to the bound at time of array creation) within
2719         // getelementptr.  But be prepared to pay the price of increasing a
2720         // customized form of coupling between the two components - which  could
2721         // be hard to maintain as the codebase evolves.
2722 
2723         ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2724             EndVar->getLocation(), UETT_SizeOf,
2725             /*IsType=*/true,
2726             CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2727                                                  VAT->desugar(), RangeLoc))
2728                 .getAsOpaquePtr(),
2729             EndVar->getSourceRange());
2730         if (SizeOfVLAExprR.isInvalid())
2731           return StmtError();
2732 
2733         ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2734             EndVar->getLocation(), UETT_SizeOf,
2735             /*IsType=*/true,
2736             CreateParsedType(VAT->desugar(),
2737                              Context.getTrivialTypeSourceInfo(
2738                                  VAT->getElementType(), RangeLoc))
2739                 .getAsOpaquePtr(),
2740             EndVar->getSourceRange());
2741         if (SizeOfEachElementExprR.isInvalid())
2742           return StmtError();
2743 
2744         BoundExpr =
2745             ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2746                        SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2747         if (BoundExpr.isInvalid())
2748           return StmtError();
2749 
2750       } else {
2751         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2752         // UnqAT is not incomplete and Range is not type-dependent.
2753         llvm_unreachable("Unexpected array type in for-range");
2754       }
2755 
2756       // end-expr is __range + __bound.
2757       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2758                            BoundExpr.get());
2759       if (EndExpr.isInvalid())
2760         return StmtError();
2761       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2762                                 diag::err_for_range_iter_deduction_failure)) {
2763         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2764         return StmtError();
2765       }
2766     } else {
2767       OverloadCandidateSet CandidateSet(RangeLoc,
2768                                         OverloadCandidateSet::CSK_Normal);
2769       BeginEndFunction BEFFailure;
2770       ForRangeStatus RangeStatus = BuildNonArrayForRange(
2771           *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2772           EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2773           &BEFFailure);
2774 
2775       if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2776           BEFFailure == BEF_begin) {
2777         // If the range is being built from an array parameter, emit a
2778         // a diagnostic that it is being treated as a pointer.
2779         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2780           if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2781             QualType ArrayTy = PVD->getOriginalType();
2782             QualType PointerTy = PVD->getType();
2783             if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2784               Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
2785                   << RangeLoc << PVD << ArrayTy << PointerTy;
2786               Diag(PVD->getLocation(), diag::note_declared_at);
2787               return StmtError();
2788             }
2789           }
2790         }
2791 
2792         // If building the range failed, try dereferencing the range expression
2793         // unless a diagnostic was issued or the end function is problematic.
2794         StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2795                                                        CoawaitLoc, InitStmt,
2796                                                        LoopVarDecl, ColonLoc,
2797                                                        Range, RangeLoc,
2798                                                        RParenLoc);
2799         if (SR.isInvalid() || SR.isUsable())
2800           return SR;
2801       }
2802 
2803       // Otherwise, emit diagnostics if we haven't already.
2804       if (RangeStatus == FRS_NoViableFunction) {
2805         Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2806         CandidateSet.NoteCandidates(
2807             PartialDiagnosticAt(Range->getBeginLoc(),
2808                                 PDiag(diag::err_for_range_invalid)
2809                                     << RangeLoc << Range->getType()
2810                                     << BEFFailure),
2811             *this, OCD_AllCandidates, Range);
2812       }
2813       // Return an error if no fix was discovered.
2814       if (RangeStatus != FRS_Success)
2815         return StmtError();
2816     }
2817 
2818     assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2819            "invalid range expression in for loop");
2820 
2821     // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2822     // C++1z removes this restriction.
2823     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2824     if (!Context.hasSameType(BeginType, EndType)) {
2825       Diag(RangeLoc, getLangOpts().CPlusPlus17
2826                          ? diag::warn_for_range_begin_end_types_differ
2827                          : diag::ext_for_range_begin_end_types_differ)
2828           << BeginType << EndType;
2829       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2830       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2831     }
2832 
2833     BeginDeclStmt =
2834         ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2835     EndDeclStmt =
2836         ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2837 
2838     const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2839     ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2840                                            VK_LValue, ColonLoc);
2841     if (BeginRef.isInvalid())
2842       return StmtError();
2843 
2844     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2845                                          VK_LValue, ColonLoc);
2846     if (EndRef.isInvalid())
2847       return StmtError();
2848 
2849     // Build and check __begin != __end expression.
2850     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2851                            BeginRef.get(), EndRef.get());
2852     if (!NotEqExpr.isInvalid())
2853       NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2854     if (!NotEqExpr.isInvalid())
2855       NotEqExpr =
2856           ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
2857     if (NotEqExpr.isInvalid()) {
2858       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2859         << RangeLoc << 0 << BeginRangeRef.get()->getType();
2860       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2861       if (!Context.hasSameType(BeginType, EndType))
2862         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2863       return StmtError();
2864     }
2865 
2866     // Build and check ++__begin expression.
2867     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2868                                 VK_LValue, ColonLoc);
2869     if (BeginRef.isInvalid())
2870       return StmtError();
2871 
2872     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2873     if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
2874       // FIXME: getCurScope() should not be used during template instantiation.
2875       // We should pick up the set of unqualified lookup results for operator
2876       // co_await during the initial parse.
2877       IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
2878     if (!IncrExpr.isInvalid())
2879       IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
2880     if (IncrExpr.isInvalid()) {
2881       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2882         << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2883       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2884       return StmtError();
2885     }
2886 
2887     // Build and check *__begin  expression.
2888     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2889                                 VK_LValue, ColonLoc);
2890     if (BeginRef.isInvalid())
2891       return StmtError();
2892 
2893     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2894     if (DerefExpr.isInvalid()) {
2895       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2896         << RangeLoc << 1 << BeginRangeRef.get()->getType();
2897       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2898       return StmtError();
2899     }
2900 
2901     // Attach  *__begin  as initializer for VD. Don't touch it if we're just
2902     // trying to determine whether this would be a valid range.
2903     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2904       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
2905       if (LoopVar->isInvalidDecl() ||
2906           (LoopVar->getInit() && LoopVar->getInit()->containsErrors()))
2907         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2908     }
2909   }
2910 
2911   // Don't bother to actually allocate the result if we're just trying to
2912   // determine whether it would be valid.
2913   if (Kind == BFRK_Check)
2914     return StmtResult();
2915 
2916   // In OpenMP loop region loop control variable must be private. Perform
2917   // analysis of first part (if any).
2918   if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable())
2919     OpenMP().ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get());
2920 
2921   return new (Context) CXXForRangeStmt(
2922       InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
2923       cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
2924       IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
2925       ColonLoc, RParenLoc);
2926 }
2927 
2928 // Warn when the loop variable is a const reference that creates a copy.
2929 // Suggest using the non-reference type for copies.  If a copy can be prevented
2930 // suggest the const reference type that would do so.
2931 // For instance, given "for (const &Foo : Range)", suggest
2932 // "for (const Foo : Range)" to denote a copy is made for the loop.  If
2933 // possible, also suggest "for (const &Bar : Range)" if this type prevents
2934 // the copy altogether.
2935 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
2936                                                     const VarDecl *VD,
2937                                                     QualType RangeInitType) {
2938   const Expr *InitExpr = VD->getInit();
2939   if (!InitExpr)
2940     return;
2941 
2942   QualType VariableType = VD->getType();
2943 
2944   if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
2945     if (!Cleanups->cleanupsHaveSideEffects())
2946       InitExpr = Cleanups->getSubExpr();
2947 
2948   const MaterializeTemporaryExpr *MTE =
2949       dyn_cast<MaterializeTemporaryExpr>(InitExpr);
2950 
2951   // No copy made.
2952   if (!MTE)
2953     return;
2954 
2955   const Expr *E = MTE->getSubExpr()->IgnoreImpCasts();
2956 
2957   // Searching for either UnaryOperator for dereference of a pointer or
2958   // CXXOperatorCallExpr for handling iterators.
2959   while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
2960     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
2961       E = CCE->getArg(0);
2962     } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
2963       const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
2964       E = ME->getBase();
2965     } else {
2966       const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
2967       E = MTE->getSubExpr();
2968     }
2969     E = E->IgnoreImpCasts();
2970   }
2971 
2972   QualType ReferenceReturnType;
2973   if (isa<UnaryOperator>(E)) {
2974     ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType());
2975   } else {
2976     const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
2977     const FunctionDecl *FD = Call->getDirectCallee();
2978     QualType ReturnType = FD->getReturnType();
2979     if (ReturnType->isReferenceType())
2980       ReferenceReturnType = ReturnType;
2981   }
2982 
2983   if (!ReferenceReturnType.isNull()) {
2984     // Loop variable creates a temporary.  Suggest either to go with
2985     // non-reference loop variable to indicate a copy is made, or
2986     // the correct type to bind a const reference.
2987     SemaRef.Diag(VD->getLocation(),
2988                  diag::warn_for_range_const_ref_binds_temp_built_from_ref)
2989         << VD << VariableType << ReferenceReturnType;
2990     QualType NonReferenceType = VariableType.getNonReferenceType();
2991     NonReferenceType.removeLocalConst();
2992     QualType NewReferenceType =
2993         SemaRef.Context.getLValueReferenceType(E->getType().withConst());
2994     SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
2995         << NonReferenceType << NewReferenceType << VD->getSourceRange()
2996         << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
2997   } else if (!VariableType->isRValueReferenceType()) {
2998     // The range always returns a copy, so a temporary is always created.
2999     // Suggest removing the reference from the loop variable.
3000     // If the type is a rvalue reference do not warn since that changes the
3001     // semantic of the code.
3002     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp)
3003         << VD << RangeInitType;
3004     QualType NonReferenceType = VariableType.getNonReferenceType();
3005     NonReferenceType.removeLocalConst();
3006     SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
3007         << NonReferenceType << VD->getSourceRange()
3008         << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
3009   }
3010 }
3011 
3012 /// Determines whether the @p VariableType's declaration is a record with the
3013 /// clang::trivial_abi attribute.
3014 static bool hasTrivialABIAttr(QualType VariableType) {
3015   if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl())
3016     return RD->hasAttr<TrivialABIAttr>();
3017 
3018   return false;
3019 }
3020 
3021 // Warns when the loop variable can be changed to a reference type to
3022 // prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
3023 // "for (const Foo &x : Range)" if this form does not make a copy.
3024 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
3025                                                 const VarDecl *VD) {
3026   const Expr *InitExpr = VD->getInit();
3027   if (!InitExpr)
3028     return;
3029 
3030   QualType VariableType = VD->getType();
3031 
3032   if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
3033     if (!CE->getConstructor()->isCopyConstructor())
3034       return;
3035   } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
3036     if (CE->getCastKind() != CK_LValueToRValue)
3037       return;
3038   } else {
3039     return;
3040   }
3041 
3042   // Small trivially copyable types are cheap to copy. Do not emit the
3043   // diagnostic for these instances. 64 bytes is a common size of a cache line.
3044   // (The function `getTypeSize` returns the size in bits.)
3045   ASTContext &Ctx = SemaRef.Context;
3046   if (Ctx.getTypeSize(VariableType) <= 64 * 8 &&
3047       (VariableType.isTriviallyCopyConstructibleType(Ctx) ||
3048        hasTrivialABIAttr(VariableType)))
3049     return;
3050 
3051   // Suggest changing from a const variable to a const reference variable
3052   // if doing so will prevent a copy.
3053   SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
3054       << VD << VariableType;
3055   SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
3056       << SemaRef.Context.getLValueReferenceType(VariableType)
3057       << VD->getSourceRange()
3058       << FixItHint::CreateInsertion(VD->getLocation(), "&");
3059 }
3060 
3061 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
3062 /// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
3063 ///    using "const foo x" to show that a copy is made
3064 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
3065 ///    Suggest either "const bar x" to keep the copying or "const foo& x" to
3066 ///    prevent the copy.
3067 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
3068 ///    Suggest "const foo &x" to prevent the copy.
3069 static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
3070                                            const CXXForRangeStmt *ForStmt) {
3071   if (SemaRef.inTemplateInstantiation())
3072     return;
3073 
3074   if (SemaRef.Diags.isIgnored(
3075           diag::warn_for_range_const_ref_binds_temp_built_from_ref,
3076           ForStmt->getBeginLoc()) &&
3077       SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp,
3078                               ForStmt->getBeginLoc()) &&
3079       SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
3080                               ForStmt->getBeginLoc())) {
3081     return;
3082   }
3083 
3084   const VarDecl *VD = ForStmt->getLoopVariable();
3085   if (!VD)
3086     return;
3087 
3088   QualType VariableType = VD->getType();
3089 
3090   if (VariableType->isIncompleteType())
3091     return;
3092 
3093   const Expr *InitExpr = VD->getInit();
3094   if (!InitExpr)
3095     return;
3096 
3097   if (InitExpr->getExprLoc().isMacroID())
3098     return;
3099 
3100   if (VariableType->isReferenceType()) {
3101     DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
3102                                             ForStmt->getRangeInit()->getType());
3103   } else if (VariableType.isConstQualified()) {
3104     DiagnoseForRangeConstVariableCopies(SemaRef, VD);
3105   }
3106 }
3107 
3108 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
3109   if (!S || !B)
3110     return StmtError();
3111 
3112   if (isa<ObjCForCollectionStmt>(S))
3113     return ObjC().FinishObjCForCollectionStmt(S, B);
3114 
3115   CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
3116   ForStmt->setBody(B);
3117 
3118   DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
3119                         diag::warn_empty_range_based_for_body);
3120 
3121   DiagnoseForRangeVariableCopies(*this, ForStmt);
3122 
3123   return S;
3124 }
3125 
3126 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
3127                                SourceLocation LabelLoc,
3128                                LabelDecl *TheDecl) {
3129   setFunctionHasBranchIntoScope();
3130 
3131   // If this goto is in a compute construct scope, we need to make sure we check
3132   // gotos in/out.
3133   if (getCurScope()->isInOpenACCComputeConstructScope())
3134     setFunctionHasBranchProtectedScope();
3135 
3136   TheDecl->markUsed(Context);
3137   return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
3138 }
3139 
3140 StmtResult
3141 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
3142                             Expr *E) {
3143   // Convert operand to void*
3144   if (!E->isTypeDependent()) {
3145     QualType ETy = E->getType();
3146     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
3147     ExprResult ExprRes = E;
3148     AssignConvertType ConvTy =
3149       CheckSingleAssignmentConstraints(DestTy, ExprRes);
3150     if (ExprRes.isInvalid())
3151       return StmtError();
3152     E = ExprRes.get();
3153     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
3154       return StmtError();
3155   }
3156 
3157   ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
3158   if (ExprRes.isInvalid())
3159     return StmtError();
3160   E = ExprRes.get();
3161 
3162   setFunctionHasIndirectGoto();
3163 
3164   // If this goto is in a compute construct scope, we need to make sure we
3165   // check gotos in/out.
3166   if (getCurScope()->isInOpenACCComputeConstructScope())
3167     setFunctionHasBranchProtectedScope();
3168 
3169   return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
3170 }
3171 
3172 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
3173                                      const Scope &DestScope) {
3174   if (!S.CurrentSEHFinally.empty() &&
3175       DestScope.Contains(*S.CurrentSEHFinally.back())) {
3176     S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
3177   }
3178 }
3179 
3180 StmtResult
3181 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
3182   Scope *S = CurScope->getContinueParent();
3183   if (!S) {
3184     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
3185     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
3186   }
3187   if (S->isConditionVarScope()) {
3188     // We cannot 'continue;' from within a statement expression in the
3189     // initializer of a condition variable because we would jump past the
3190     // initialization of that variable.
3191     return StmtError(Diag(ContinueLoc, diag::err_continue_from_cond_var_init));
3192   }
3193 
3194   // A 'continue' that would normally have execution continue on a block outside
3195   // of a compute construct counts as 'branching out of' the compute construct,
3196   // so diagnose here.
3197   if (S->isOpenACCComputeConstructScope())
3198     return StmtError(
3199         Diag(ContinueLoc, diag::err_acc_branch_in_out_compute_construct)
3200         << /*branch*/ 0 << /*out of */ 0);
3201 
3202   CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
3203 
3204   return new (Context) ContinueStmt(ContinueLoc);
3205 }
3206 
3207 StmtResult
3208 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
3209   Scope *S = CurScope->getBreakParent();
3210   if (!S) {
3211     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
3212     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
3213   }
3214   if (S->isOpenMPLoopScope())
3215     return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
3216                      << "break");
3217 
3218   // OpenACC doesn't allow 'break'ing from a compute construct, so diagnose if
3219   // we are trying to do so.  This can come in 2 flavors: 1-the break'able thing
3220   // (besides the compute construct) 'contains' the compute construct, at which
3221   // point the 'break' scope will be the compute construct.  Else it could be a
3222   // loop of some sort that has a direct parent of the compute construct.
3223   // However, a 'break' in a 'switch' marked as a compute construct doesn't
3224   // count as 'branch out of' the compute construct.
3225   if (S->isOpenACCComputeConstructScope() ||
3226       (S->isLoopScope() && S->getParent() &&
3227        S->getParent()->isOpenACCComputeConstructScope()))
3228     return StmtError(
3229         Diag(BreakLoc, diag::err_acc_branch_in_out_compute_construct)
3230         << /*branch*/ 0 << /*out of */ 0);
3231 
3232   CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
3233 
3234   return new (Context) BreakStmt(BreakLoc);
3235 }
3236 
3237 Sema::NamedReturnInfo Sema::getNamedReturnInfo(Expr *&E,
3238                                                SimplerImplicitMoveMode Mode) {
3239   if (!E)
3240     return NamedReturnInfo();
3241   // - in a return statement in a function [where] ...
3242   // ... the expression is the name of a non-volatile automatic object ...
3243   const auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
3244   if (!DR || DR->refersToEnclosingVariableOrCapture())
3245     return NamedReturnInfo();
3246   const auto *VD = dyn_cast<VarDecl>(DR->getDecl());
3247   if (!VD)
3248     return NamedReturnInfo();
3249   if (VD->getInit() && VD->getInit()->containsErrors())
3250     return NamedReturnInfo();
3251   NamedReturnInfo Res = getNamedReturnInfo(VD);
3252   if (Res.Candidate && !E->isXValue() &&
3253       (Mode == SimplerImplicitMoveMode::ForceOn ||
3254        (Mode != SimplerImplicitMoveMode::ForceOff &&
3255         getLangOpts().CPlusPlus23))) {
3256     E = ImplicitCastExpr::Create(Context, VD->getType().getNonReferenceType(),
3257                                  CK_NoOp, E, nullptr, VK_XValue,
3258                                  FPOptionsOverride());
3259   }
3260   return Res;
3261 }
3262 
3263 Sema::NamedReturnInfo Sema::getNamedReturnInfo(const VarDecl *VD) {
3264   NamedReturnInfo Info{VD, NamedReturnInfo::MoveEligibleAndCopyElidable};
3265 
3266   // C++20 [class.copy.elision]p3:
3267   // - in a return statement in a function with ...
3268   // (other than a function ... parameter)
3269   if (VD->getKind() == Decl::ParmVar)
3270     Info.S = NamedReturnInfo::MoveEligible;
3271   else if (VD->getKind() != Decl::Var)
3272     return NamedReturnInfo();
3273 
3274   // (other than ... a catch-clause parameter)
3275   if (VD->isExceptionVariable())
3276     Info.S = NamedReturnInfo::MoveEligible;
3277 
3278   // ...automatic...
3279   if (!VD->hasLocalStorage())
3280     return NamedReturnInfo();
3281 
3282   // We don't want to implicitly move out of a __block variable during a return
3283   // because we cannot assume the variable will no longer be used.
3284   if (VD->hasAttr<BlocksAttr>())
3285     return NamedReturnInfo();
3286 
3287   QualType VDType = VD->getType();
3288   if (VDType->isObjectType()) {
3289     // C++17 [class.copy.elision]p3:
3290     // ...non-volatile automatic object...
3291     if (VDType.isVolatileQualified())
3292       return NamedReturnInfo();
3293   } else if (VDType->isRValueReferenceType()) {
3294     // C++20 [class.copy.elision]p3:
3295     // ...either a non-volatile object or an rvalue reference to a non-volatile
3296     // object type...
3297     QualType VDReferencedType = VDType.getNonReferenceType();
3298     if (VDReferencedType.isVolatileQualified() ||
3299         !VDReferencedType->isObjectType())
3300       return NamedReturnInfo();
3301     Info.S = NamedReturnInfo::MoveEligible;
3302   } else {
3303     return NamedReturnInfo();
3304   }
3305 
3306   // Variables with higher required alignment than their type's ABI
3307   // alignment cannot use NRVO.
3308   if (!VD->hasDependentAlignment() && !VDType->isIncompleteType() &&
3309       Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VDType))
3310     Info.S = NamedReturnInfo::MoveEligible;
3311 
3312   return Info;
3313 }
3314 
3315 const VarDecl *Sema::getCopyElisionCandidate(NamedReturnInfo &Info,
3316                                              QualType ReturnType) {
3317   if (!Info.Candidate)
3318     return nullptr;
3319 
3320   auto invalidNRVO = [&] {
3321     Info = NamedReturnInfo();
3322     return nullptr;
3323   };
3324 
3325   // If we got a non-deduced auto ReturnType, we are in a dependent context and
3326   // there is no point in allowing copy elision since we won't have it deduced
3327   // by the point the VardDecl is instantiated, which is the last chance we have
3328   // of deciding if the candidate is really copy elidable.
3329   if ((ReturnType->getTypeClass() == Type::TypeClass::Auto &&
3330        ReturnType->isCanonicalUnqualified()) ||
3331       ReturnType->isSpecificBuiltinType(BuiltinType::Dependent))
3332     return invalidNRVO();
3333 
3334   if (!ReturnType->isDependentType()) {
3335     // - in a return statement in a function with ...
3336     // ... a class return type ...
3337     if (!ReturnType->isRecordType())
3338       return invalidNRVO();
3339 
3340     QualType VDType = Info.Candidate->getType();
3341     // ... the same cv-unqualified type as the function return type ...
3342     // When considering moving this expression out, allow dissimilar types.
3343     if (!VDType->isDependentType() &&
3344         !Context.hasSameUnqualifiedType(ReturnType, VDType))
3345       Info.S = NamedReturnInfo::MoveEligible;
3346   }
3347   return Info.isCopyElidable() ? Info.Candidate : nullptr;
3348 }
3349 
3350 /// Verify that the initialization sequence that was picked for the
3351 /// first overload resolution is permissible under C++98.
3352 ///
3353 /// Reject (possibly converting) constructors not taking an rvalue reference,
3354 /// or user conversion operators which are not ref-qualified.
3355 static bool
3356 VerifyInitializationSequenceCXX98(const Sema &S,
3357                                   const InitializationSequence &Seq) {
3358   const auto *Step = llvm::find_if(Seq.steps(), [](const auto &Step) {
3359     return Step.Kind == InitializationSequence::SK_ConstructorInitialization ||
3360            Step.Kind == InitializationSequence::SK_UserConversion;
3361   });
3362   if (Step != Seq.step_end()) {
3363     const auto *FD = Step->Function.Function;
3364     if (isa<CXXConstructorDecl>(FD)
3365             ? !FD->getParamDecl(0)->getType()->isRValueReferenceType()
3366             : cast<CXXMethodDecl>(FD)->getRefQualifier() == RQ_None)
3367       return false;
3368   }
3369   return true;
3370 }
3371 
3372 ExprResult Sema::PerformMoveOrCopyInitialization(
3373     const InitializedEntity &Entity, const NamedReturnInfo &NRInfo, Expr *Value,
3374     bool SupressSimplerImplicitMoves) {
3375   if (getLangOpts().CPlusPlus &&
3376       (!getLangOpts().CPlusPlus23 || SupressSimplerImplicitMoves) &&
3377       NRInfo.isMoveEligible()) {
3378     ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
3379                               CK_NoOp, Value, VK_XValue, FPOptionsOverride());
3380     Expr *InitExpr = &AsRvalue;
3381     auto Kind = InitializationKind::CreateCopy(Value->getBeginLoc(),
3382                                                Value->getBeginLoc());
3383     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3384     auto Res = Seq.getFailedOverloadResult();
3385     if ((Res == OR_Success || Res == OR_Deleted) &&
3386         (getLangOpts().CPlusPlus11 ||
3387          VerifyInitializationSequenceCXX98(*this, Seq))) {
3388       // Promote "AsRvalue" to the heap, since we now need this
3389       // expression node to persist.
3390       Value =
3391           ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp, Value,
3392                                    nullptr, VK_XValue, FPOptionsOverride());
3393       // Complete type-checking the initialization of the return type
3394       // using the constructor we found.
3395       return Seq.Perform(*this, Entity, Kind, Value);
3396     }
3397   }
3398   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3399   // above, or overload resolution failed. Either way, we need to try
3400   // (again) now with the return value expression as written.
3401   return PerformCopyInitialization(Entity, SourceLocation(), Value);
3402 }
3403 
3404 /// Determine whether the declared return type of the specified function
3405 /// contains 'auto'.
3406 static bool hasDeducedReturnType(FunctionDecl *FD) {
3407   const FunctionProtoType *FPT =
3408       FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
3409   return FPT->getReturnType()->isUndeducedType();
3410 }
3411 
3412 StmtResult Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,
3413                                          Expr *RetValExp,
3414                                          NamedReturnInfo &NRInfo,
3415                                          bool SupressSimplerImplicitMoves) {
3416   // If this is the first return we've seen, infer the return type.
3417   // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3418   CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3419   QualType FnRetType = CurCap->ReturnType;
3420   LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3421   if (CurLambda && CurLambda->CallOperator->getType().isNull())
3422     return StmtError();
3423   bool HasDeducedReturnType =
3424       CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3425 
3426   if (ExprEvalContexts.back().isDiscardedStatementContext() &&
3427       (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3428     if (RetValExp) {
3429       ExprResult ER =
3430           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3431       if (ER.isInvalid())
3432         return StmtError();
3433       RetValExp = ER.get();
3434     }
3435     return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3436                               /* NRVOCandidate=*/nullptr);
3437   }
3438 
3439   if (HasDeducedReturnType) {
3440     FunctionDecl *FD = CurLambda->CallOperator;
3441     // If we've already decided this lambda is invalid, e.g. because
3442     // we saw a `return` whose expression had an error, don't keep
3443     // trying to deduce its return type.
3444     if (FD->isInvalidDecl())
3445       return StmtError();
3446     // In C++1y, the return type may involve 'auto'.
3447     // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3448     if (CurCap->ReturnType.isNull())
3449       CurCap->ReturnType = FD->getReturnType();
3450 
3451     AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3452     assert(AT && "lost auto type from lambda return type");
3453     if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3454       FD->setInvalidDecl();
3455       // FIXME: preserve the ill-formed return expression.
3456       return StmtError();
3457     }
3458     CurCap->ReturnType = FnRetType = FD->getReturnType();
3459   } else if (CurCap->HasImplicitReturnType) {
3460     // For blocks/lambdas with implicit return types, we check each return
3461     // statement individually, and deduce the common return type when the block
3462     // or lambda is completed.
3463     // FIXME: Fold this into the 'auto' codepath above.
3464     if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3465       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3466       if (Result.isInvalid())
3467         return StmtError();
3468       RetValExp = Result.get();
3469 
3470       // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3471       // when deducing a return type for a lambda-expression (or by extension
3472       // for a block). These rules differ from the stated C++11 rules only in
3473       // that they remove top-level cv-qualifiers.
3474       if (!CurContext->isDependentContext())
3475         FnRetType = RetValExp->getType().getUnqualifiedType();
3476       else
3477         FnRetType = CurCap->ReturnType = Context.DependentTy;
3478     } else {
3479       if (RetValExp) {
3480         // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3481         // initializer list, because it is not an expression (even
3482         // though we represent it as one). We still deduce 'void'.
3483         Diag(ReturnLoc, diag::err_lambda_return_init_list)
3484           << RetValExp->getSourceRange();
3485       }
3486 
3487       FnRetType = Context.VoidTy;
3488     }
3489 
3490     // Although we'll properly infer the type of the block once it's completed,
3491     // make sure we provide a return type now for better error recovery.
3492     if (CurCap->ReturnType.isNull())
3493       CurCap->ReturnType = FnRetType;
3494   }
3495   const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
3496 
3497   if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3498     if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) {
3499       Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3500       return StmtError();
3501     }
3502   } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3503     Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3504     return StmtError();
3505   } else {
3506     assert(CurLambda && "unknown kind of captured scope");
3507     if (CurLambda->CallOperator->getType()
3508             ->castAs<FunctionType>()
3509             ->getNoReturnAttr()) {
3510       Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3511       return StmtError();
3512     }
3513   }
3514 
3515   // Otherwise, verify that this result type matches the previous one.  We are
3516   // pickier with blocks than for normal functions because we don't have GCC
3517   // compatibility to worry about here.
3518   if (FnRetType->isDependentType()) {
3519     // Delay processing for now.  TODO: there are lots of dependent
3520     // types we can conclusively prove aren't void.
3521   } else if (FnRetType->isVoidType()) {
3522     if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3523         !(getLangOpts().CPlusPlus &&
3524           (RetValExp->isTypeDependent() ||
3525            RetValExp->getType()->isVoidType()))) {
3526       if (!getLangOpts().CPlusPlus &&
3527           RetValExp->getType()->isVoidType())
3528         Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3529       else {
3530         Diag(ReturnLoc, diag::err_return_block_has_expr);
3531         RetValExp = nullptr;
3532       }
3533     }
3534   } else if (!RetValExp) {
3535     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3536   } else if (!RetValExp->isTypeDependent()) {
3537     // we have a non-void block with an expression, continue checking
3538 
3539     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3540     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3541     // function return.
3542 
3543     // In C++ the return statement is handled via a copy initialization.
3544     // the C version of which boils down to CheckSingleAssignmentConstraints.
3545     InitializedEntity Entity =
3546         InitializedEntity::InitializeResult(ReturnLoc, FnRetType);
3547     ExprResult Res = PerformMoveOrCopyInitialization(
3548         Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
3549     if (Res.isInvalid()) {
3550       // FIXME: Cleanup temporaries here, anyway?
3551       return StmtError();
3552     }
3553     RetValExp = Res.get();
3554     CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3555   }
3556 
3557   if (RetValExp) {
3558     ExprResult ER =
3559         ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3560     if (ER.isInvalid())
3561       return StmtError();
3562     RetValExp = ER.get();
3563   }
3564   auto *Result =
3565       ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3566 
3567   // If we need to check for the named return value optimization,
3568   // or if we need to infer the return type,
3569   // save the return statement in our scope for later processing.
3570   if (CurCap->HasImplicitReturnType || NRVOCandidate)
3571     FunctionScopes.back()->Returns.push_back(Result);
3572 
3573   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3574     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3575 
3576   if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap);
3577       CurBlock && CurCap->HasImplicitReturnType && RetValExp &&
3578       RetValExp->containsErrors())
3579     CurBlock->TheDecl->setInvalidDecl();
3580 
3581   return Result;
3582 }
3583 
3584 namespace {
3585 /// Marks all typedefs in all local classes in a type referenced.
3586 ///
3587 /// In a function like
3588 /// auto f() {
3589 ///   struct S { typedef int a; };
3590 ///   return S();
3591 /// }
3592 ///
3593 /// the local type escapes and could be referenced in some TUs but not in
3594 /// others. Pretend that all local typedefs are always referenced, to not warn
3595 /// on this. This isn't necessary if f has internal linkage, or the typedef
3596 /// is private.
3597 class LocalTypedefNameReferencer
3598     : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3599 public:
3600   LocalTypedefNameReferencer(Sema &S) : S(S) {}
3601   bool VisitRecordType(const RecordType *RT);
3602 private:
3603   Sema &S;
3604 };
3605 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3606   auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3607   if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3608       R->isDependentType())
3609     return true;
3610   for (auto *TmpD : R->decls())
3611     if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3612       if (T->getAccess() != AS_private || R->hasFriends())
3613         S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3614   return true;
3615 }
3616 }
3617 
3618 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
3619   return FD->getTypeSourceInfo()
3620       ->getTypeLoc()
3621       .getAsAdjusted<FunctionProtoTypeLoc>()
3622       .getReturnLoc();
3623 }
3624 
3625 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
3626                                             SourceLocation ReturnLoc,
3627                                             Expr *RetExpr, const AutoType *AT) {
3628   // If this is the conversion function for a lambda, we choose to deduce its
3629   // type from the corresponding call operator, not from the synthesized return
3630   // statement within it. See Sema::DeduceReturnType.
3631   if (isLambdaConversionOperator(FD))
3632     return false;
3633 
3634   if (isa_and_nonnull<InitListExpr>(RetExpr)) {
3635     //  If the deduction is for a return statement and the initializer is
3636     //  a braced-init-list, the program is ill-formed.
3637     Diag(RetExpr->getExprLoc(),
3638          getCurLambda() ? diag::err_lambda_return_init_list
3639                         : diag::err_auto_fn_return_init_list)
3640         << RetExpr->getSourceRange();
3641     return true;
3642   }
3643 
3644   if (FD->isDependentContext()) {
3645     // C++1y [dcl.spec.auto]p12:
3646     //   Return type deduction [...] occurs when the definition is
3647     //   instantiated even if the function body contains a return
3648     //   statement with a non-type-dependent operand.
3649     assert(AT->isDeduced() && "should have deduced to dependent type");
3650     return false;
3651   }
3652 
3653   TypeLoc OrigResultType = getReturnTypeLoc(FD);
3654   //  In the case of a return with no operand, the initializer is considered
3655   //  to be void().
3656   CXXScalarValueInitExpr VoidVal(Context.VoidTy, nullptr, SourceLocation());
3657   if (!RetExpr) {
3658     // For a function with a deduced result type to return with omitted
3659     // expression, the result type as written must be 'auto' or
3660     // 'decltype(auto)', possibly cv-qualified or constrained, but not
3661     // ref-qualified.
3662     if (!OrigResultType.getType()->getAs<AutoType>()) {
3663       Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3664           << OrigResultType.getType();
3665       return true;
3666     }
3667     RetExpr = &VoidVal;
3668   }
3669 
3670   QualType Deduced = AT->getDeducedType();
3671   {
3672     //  Otherwise, [...] deduce a value for U using the rules of template
3673     //  argument deduction.
3674     auto RetExprLoc = RetExpr->getExprLoc();
3675     TemplateDeductionInfo Info(RetExprLoc);
3676     SourceLocation TemplateSpecLoc;
3677     if (RetExpr->getType() == Context.OverloadTy) {
3678       auto FindResult = OverloadExpr::find(RetExpr);
3679       if (FindResult.Expression)
3680         TemplateSpecLoc = FindResult.Expression->getNameLoc();
3681     }
3682     TemplateSpecCandidateSet FailedTSC(TemplateSpecLoc);
3683     TemplateDeductionResult Res = DeduceAutoType(
3684         OrigResultType, RetExpr, Deduced, Info, /*DependentDeduction=*/false,
3685         /*IgnoreConstraints=*/false, &FailedTSC);
3686     if (Res != TemplateDeductionResult::Success && FD->isInvalidDecl())
3687       return true;
3688     switch (Res) {
3689     case TemplateDeductionResult::Success:
3690       break;
3691     case TemplateDeductionResult::AlreadyDiagnosed:
3692       return true;
3693     case TemplateDeductionResult::Inconsistent: {
3694       //  If a function with a declared return type that contains a placeholder
3695       //  type has multiple return statements, the return type is deduced for
3696       //  each return statement. [...] if the type deduced is not the same in
3697       //  each deduction, the program is ill-formed.
3698       const LambdaScopeInfo *LambdaSI = getCurLambda();
3699       if (LambdaSI && LambdaSI->HasImplicitReturnType)
3700         Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3701             << Info.SecondArg << Info.FirstArg << true /*IsLambda*/;
3702       else
3703         Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3704             << (AT->isDecltypeAuto() ? 1 : 0) << Info.SecondArg
3705             << Info.FirstArg;
3706       return true;
3707     }
3708     default:
3709       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3710           << OrigResultType.getType() << RetExpr->getType();
3711       FailedTSC.NoteCandidates(*this, RetExprLoc);
3712       return true;
3713     }
3714   }
3715 
3716   // If a local type is part of the returned type, mark its fields as
3717   // referenced.
3718   LocalTypedefNameReferencer(*this).TraverseType(RetExpr->getType());
3719 
3720   // CUDA: Kernel function must have 'void' return type.
3721   if (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>() &&
3722       !Deduced->isVoidType()) {
3723     Diag(FD->getLocation(), diag::err_kern_type_not_void_return)
3724         << FD->getType() << FD->getSourceRange();
3725     return true;
3726   }
3727 
3728   if (!FD->isInvalidDecl() && AT->getDeducedType() != Deduced)
3729     // Update all declarations of the function to have the deduced return type.
3730     Context.adjustDeducedFunctionResultType(FD, Deduced);
3731 
3732   return false;
3733 }
3734 
3735 StmtResult
3736 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3737                       Scope *CurScope) {
3738   // Correct typos, in case the containing function returns 'auto' and
3739   // RetValExp should determine the deduced type.
3740   ExprResult RetVal = CorrectDelayedTyposInExpr(
3741       RetValExp, nullptr, /*RecoverUncorrectedTypos=*/true);
3742   if (RetVal.isInvalid())
3743     return StmtError();
3744 
3745   if (getCurScope()->isInOpenACCComputeConstructScope())
3746     return StmtError(
3747         Diag(ReturnLoc, diag::err_acc_branch_in_out_compute_construct)
3748         << /*return*/ 1 << /*out of */ 0);
3749 
3750   StmtResult R =
3751       BuildReturnStmt(ReturnLoc, RetVal.get(), /*AllowRecovery=*/true);
3752   if (R.isInvalid() || ExprEvalContexts.back().isDiscardedStatementContext())
3753     return R;
3754 
3755   VarDecl *VD =
3756       const_cast<VarDecl *>(cast<ReturnStmt>(R.get())->getNRVOCandidate());
3757 
3758   CurScope->updateNRVOCandidate(VD);
3759 
3760   CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3761 
3762   return R;
3763 }
3764 
3765 static bool CheckSimplerImplicitMovesMSVCWorkaround(const Sema &S,
3766                                                     const Expr *E) {
3767   if (!E || !S.getLangOpts().CPlusPlus23 || !S.getLangOpts().MSVCCompat)
3768     return false;
3769   const Decl *D = E->getReferencedDeclOfCallee();
3770   if (!D || !S.SourceMgr.isInSystemHeader(D->getLocation()))
3771     return false;
3772   for (const DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) {
3773     if (DC->isStdNamespace())
3774       return true;
3775   }
3776   return false;
3777 }
3778 
3779 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3780                                  bool AllowRecovery) {
3781   // Check for unexpanded parameter packs.
3782   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3783     return StmtError();
3784 
3785   // HACK: We suppress simpler implicit move here in msvc compatibility mode
3786   // just as a temporary work around, as the MSVC STL has issues with
3787   // this change.
3788   bool SupressSimplerImplicitMoves =
3789       CheckSimplerImplicitMovesMSVCWorkaround(*this, RetValExp);
3790   NamedReturnInfo NRInfo = getNamedReturnInfo(
3791       RetValExp, SupressSimplerImplicitMoves ? SimplerImplicitMoveMode::ForceOff
3792                                              : SimplerImplicitMoveMode::Normal);
3793 
3794   if (isa<CapturingScopeInfo>(getCurFunction()))
3795     return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp, NRInfo,
3796                                    SupressSimplerImplicitMoves);
3797 
3798   QualType FnRetType;
3799   QualType RelatedRetType;
3800   const AttrVec *Attrs = nullptr;
3801   bool isObjCMethod = false;
3802 
3803   if (const FunctionDecl *FD = getCurFunctionDecl()) {
3804     FnRetType = FD->getReturnType();
3805     if (FD->hasAttrs())
3806       Attrs = &FD->getAttrs();
3807     if (FD->isNoReturn())
3808       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD;
3809     if (FD->isMain() && RetValExp)
3810       if (isa<CXXBoolLiteralExpr>(RetValExp))
3811         Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3812             << RetValExp->getSourceRange();
3813     if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) {
3814       if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) {
3815         if (RT->getDecl()->isOrContainsUnion())
3816           Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1;
3817       }
3818     }
3819   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3820     FnRetType = MD->getReturnType();
3821     isObjCMethod = true;
3822     if (MD->hasAttrs())
3823       Attrs = &MD->getAttrs();
3824     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3825       // In the implementation of a method with a related return type, the
3826       // type used to type-check the validity of return statements within the
3827       // method body is a pointer to the type of the class being implemented.
3828       RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3829       RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3830     }
3831   } else // If we don't have a function/method context, bail.
3832     return StmtError();
3833 
3834   if (RetValExp) {
3835     const auto *ATy = dyn_cast<ArrayType>(RetValExp->getType());
3836     if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) {
3837       Diag(ReturnLoc, diag::err_wasm_table_art) << 1;
3838       return StmtError();
3839     }
3840   }
3841 
3842   // C++1z: discarded return statements are not considered when deducing a
3843   // return type.
3844   if (ExprEvalContexts.back().isDiscardedStatementContext() &&
3845       FnRetType->getContainedAutoType()) {
3846     if (RetValExp) {
3847       ExprResult ER =
3848           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3849       if (ER.isInvalid())
3850         return StmtError();
3851       RetValExp = ER.get();
3852     }
3853     return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3854                               /* NRVOCandidate=*/nullptr);
3855   }
3856 
3857   // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3858   // deduction.
3859   if (getLangOpts().CPlusPlus14) {
3860     if (AutoType *AT = FnRetType->getContainedAutoType()) {
3861       FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3862       // If we've already decided this function is invalid, e.g. because
3863       // we saw a `return` whose expression had an error, don't keep
3864       // trying to deduce its return type.
3865       // (Some return values may be needlessly wrapped in RecoveryExpr).
3866       if (FD->isInvalidDecl() ||
3867           DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3868         FD->setInvalidDecl();
3869         if (!AllowRecovery)
3870           return StmtError();
3871         // The deduction failure is diagnosed and marked, try to recover.
3872         if (RetValExp) {
3873           // Wrap return value with a recovery expression of the previous type.
3874           // If no deduction yet, use DependentTy.
3875           auto Recovery = CreateRecoveryExpr(
3876               RetValExp->getBeginLoc(), RetValExp->getEndLoc(), RetValExp,
3877               AT->isDeduced() ? FnRetType : QualType());
3878           if (Recovery.isInvalid())
3879             return StmtError();
3880           RetValExp = Recovery.get();
3881         } else {
3882           // Nothing to do: a ReturnStmt with no value is fine recovery.
3883         }
3884       } else {
3885         FnRetType = FD->getReturnType();
3886       }
3887     }
3888   }
3889   const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
3890 
3891   bool HasDependentReturnType = FnRetType->isDependentType();
3892 
3893   ReturnStmt *Result = nullptr;
3894   if (FnRetType->isVoidType()) {
3895     if (RetValExp) {
3896       if (auto *ILE = dyn_cast<InitListExpr>(RetValExp)) {
3897         // We simply never allow init lists as the return value of void
3898         // functions. This is compatible because this was never allowed before,
3899         // so there's no legacy code to deal with.
3900         NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3901         int FunctionKind = 0;
3902         if (isa<ObjCMethodDecl>(CurDecl))
3903           FunctionKind = 1;
3904         else if (isa<CXXConstructorDecl>(CurDecl))
3905           FunctionKind = 2;
3906         else if (isa<CXXDestructorDecl>(CurDecl))
3907           FunctionKind = 3;
3908 
3909         Diag(ReturnLoc, diag::err_return_init_list)
3910             << CurDecl << FunctionKind << RetValExp->getSourceRange();
3911 
3912         // Preserve the initializers in the AST.
3913         RetValExp = AllowRecovery
3914                         ? CreateRecoveryExpr(ILE->getLBraceLoc(),
3915                                              ILE->getRBraceLoc(), ILE->inits())
3916                               .get()
3917                         : nullptr;
3918       } else if (!RetValExp->isTypeDependent()) {
3919         // C99 6.8.6.4p1 (ext_ since GCC warns)
3920         unsigned D = diag::ext_return_has_expr;
3921         if (RetValExp->getType()->isVoidType()) {
3922           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3923           if (isa<CXXConstructorDecl>(CurDecl) ||
3924               isa<CXXDestructorDecl>(CurDecl))
3925             D = diag::err_ctor_dtor_returns_void;
3926           else
3927             D = diag::ext_return_has_void_expr;
3928         }
3929         else {
3930           ExprResult Result = RetValExp;
3931           Result = IgnoredValueConversions(Result.get());
3932           if (Result.isInvalid())
3933             return StmtError();
3934           RetValExp = Result.get();
3935           RetValExp = ImpCastExprToType(RetValExp,
3936                                         Context.VoidTy, CK_ToVoid).get();
3937         }
3938         // return of void in constructor/destructor is illegal in C++.
3939         if (D == diag::err_ctor_dtor_returns_void) {
3940           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3941           Diag(ReturnLoc, D) << CurDecl << isa<CXXDestructorDecl>(CurDecl)
3942                              << RetValExp->getSourceRange();
3943         }
3944         // return (some void expression); is legal in C++.
3945         else if (D != diag::ext_return_has_void_expr ||
3946                  !getLangOpts().CPlusPlus) {
3947           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3948 
3949           int FunctionKind = 0;
3950           if (isa<ObjCMethodDecl>(CurDecl))
3951             FunctionKind = 1;
3952           else if (isa<CXXConstructorDecl>(CurDecl))
3953             FunctionKind = 2;
3954           else if (isa<CXXDestructorDecl>(CurDecl))
3955             FunctionKind = 3;
3956 
3957           Diag(ReturnLoc, D)
3958               << CurDecl << FunctionKind << RetValExp->getSourceRange();
3959         }
3960       }
3961 
3962       if (RetValExp) {
3963         ExprResult ER =
3964             ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3965         if (ER.isInvalid())
3966           return StmtError();
3967         RetValExp = ER.get();
3968       }
3969     }
3970 
3971     Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3972                                 /* NRVOCandidate=*/nullptr);
3973   } else if (!RetValExp && !HasDependentReturnType) {
3974     FunctionDecl *FD = getCurFunctionDecl();
3975 
3976     if ((FD && FD->isInvalidDecl()) || FnRetType->containsErrors()) {
3977       // The intended return type might have been "void", so don't warn.
3978     } else if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
3979       // C++11 [stmt.return]p2
3980       Diag(ReturnLoc, diag::err_constexpr_return_missing_expr)
3981           << FD << FD->isConsteval();
3982       FD->setInvalidDecl();
3983     } else {
3984       // C99 6.8.6.4p1 (ext_ since GCC warns)
3985       // C90 6.6.6.4p4
3986       unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr
3987                                           : diag::warn_return_missing_expr;
3988       // Note that at this point one of getCurFunctionDecl() or
3989       // getCurMethodDecl() must be non-null (see above).
3990       assert((getCurFunctionDecl() || getCurMethodDecl()) &&
3991              "Not in a FunctionDecl or ObjCMethodDecl?");
3992       bool IsMethod = FD == nullptr;
3993       const NamedDecl *ND =
3994           IsMethod ? cast<NamedDecl>(getCurMethodDecl()) : cast<NamedDecl>(FD);
3995       Diag(ReturnLoc, DiagID) << ND << IsMethod;
3996     }
3997 
3998     Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
3999                                 /* NRVOCandidate=*/nullptr);
4000   } else {
4001     assert(RetValExp || HasDependentReturnType);
4002     QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
4003 
4004     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
4005     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
4006     // function return.
4007 
4008     // In C++ the return statement is handled via a copy initialization,
4009     // the C version of which boils down to CheckSingleAssignmentConstraints.
4010     if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
4011       // we have a non-void function with an expression, continue checking
4012       InitializedEntity Entity =
4013           InitializedEntity::InitializeResult(ReturnLoc, RetType);
4014       ExprResult Res = PerformMoveOrCopyInitialization(
4015           Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
4016       if (Res.isInvalid() && AllowRecovery)
4017         Res = CreateRecoveryExpr(RetValExp->getBeginLoc(),
4018                                  RetValExp->getEndLoc(), RetValExp, RetType);
4019       if (Res.isInvalid()) {
4020         // FIXME: Clean up temporaries here anyway?
4021         return StmtError();
4022       }
4023       RetValExp = Res.getAs<Expr>();
4024 
4025       // If we have a related result type, we need to implicitly
4026       // convert back to the formal result type.  We can't pretend to
4027       // initialize the result again --- we might end double-retaining
4028       // --- so instead we initialize a notional temporary.
4029       if (!RelatedRetType.isNull()) {
4030         Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
4031                                                             FnRetType);
4032         Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
4033         if (Res.isInvalid()) {
4034           // FIXME: Clean up temporaries here anyway?
4035           return StmtError();
4036         }
4037         RetValExp = Res.getAs<Expr>();
4038       }
4039 
4040       CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
4041                          getCurFunctionDecl());
4042     }
4043 
4044     if (RetValExp) {
4045       ExprResult ER =
4046           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4047       if (ER.isInvalid())
4048         return StmtError();
4049       RetValExp = ER.get();
4050     }
4051     Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
4052   }
4053 
4054   // If we need to check for the named return value optimization, save the
4055   // return statement in our scope for later processing.
4056   if (Result->getNRVOCandidate())
4057     FunctionScopes.back()->Returns.push_back(Result);
4058 
4059   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
4060     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
4061 
4062   return Result;
4063 }
4064 
4065 StmtResult
4066 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
4067                          Stmt *HandlerBlock) {
4068   // There's nothing to test that ActOnExceptionDecl didn't already test.
4069   return new (Context)
4070       CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
4071 }
4072 
4073 namespace {
4074 class CatchHandlerType {
4075   QualType QT;
4076   LLVM_PREFERRED_TYPE(bool)
4077   unsigned IsPointer : 1;
4078 
4079   // This is a special constructor to be used only with DenseMapInfo's
4080   // getEmptyKey() and getTombstoneKey() functions.
4081   friend struct llvm::DenseMapInfo<CatchHandlerType>;
4082   enum Unique { ForDenseMap };
4083   CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
4084 
4085 public:
4086   /// Used when creating a CatchHandlerType from a handler type; will determine
4087   /// whether the type is a pointer or reference and will strip off the top
4088   /// level pointer and cv-qualifiers.
4089   CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
4090     if (QT->isPointerType())
4091       IsPointer = true;
4092 
4093     QT = QT.getUnqualifiedType();
4094     if (IsPointer || QT->isReferenceType())
4095       QT = QT->getPointeeType();
4096   }
4097 
4098   /// Used when creating a CatchHandlerType from a base class type; pretends the
4099   /// type passed in had the pointer qualifier, does not need to get an
4100   /// unqualified type.
4101   CatchHandlerType(QualType QT, bool IsPointer)
4102       : QT(QT), IsPointer(IsPointer) {}
4103 
4104   QualType underlying() const { return QT; }
4105   bool isPointer() const { return IsPointer; }
4106 
4107   friend bool operator==(const CatchHandlerType &LHS,
4108                          const CatchHandlerType &RHS) {
4109     // If the pointer qualification does not match, we can return early.
4110     if (LHS.IsPointer != RHS.IsPointer)
4111       return false;
4112     // Otherwise, check the underlying type without cv-qualifiers.
4113     return LHS.QT == RHS.QT;
4114   }
4115 };
4116 } // namespace
4117 
4118 namespace llvm {
4119 template <> struct DenseMapInfo<CatchHandlerType> {
4120   static CatchHandlerType getEmptyKey() {
4121     return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
4122                        CatchHandlerType::ForDenseMap);
4123   }
4124 
4125   static CatchHandlerType getTombstoneKey() {
4126     return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
4127                        CatchHandlerType::ForDenseMap);
4128   }
4129 
4130   static unsigned getHashValue(const CatchHandlerType &Base) {
4131     return DenseMapInfo<QualType>::getHashValue(Base.underlying());
4132   }
4133 
4134   static bool isEqual(const CatchHandlerType &LHS,
4135                       const CatchHandlerType &RHS) {
4136     return LHS == RHS;
4137   }
4138 };
4139 }
4140 
4141 namespace {
4142 class CatchTypePublicBases {
4143   const llvm::DenseMap<QualType, CXXCatchStmt *> &TypesToCheck;
4144 
4145   CXXCatchStmt *FoundHandler;
4146   QualType FoundHandlerType;
4147   QualType TestAgainstType;
4148 
4149 public:
4150   CatchTypePublicBases(const llvm::DenseMap<QualType, CXXCatchStmt *> &T,
4151                        QualType QT)
4152       : TypesToCheck(T), FoundHandler(nullptr), TestAgainstType(QT) {}
4153 
4154   CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
4155   QualType getFoundHandlerType() const { return FoundHandlerType; }
4156 
4157   bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
4158     if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
4159       QualType Check = S->getType().getCanonicalType();
4160       const auto &M = TypesToCheck;
4161       auto I = M.find(Check);
4162       if (I != M.end()) {
4163         // We're pretty sure we found what we need to find. However, we still
4164         // need to make sure that we properly compare for pointers and
4165         // references, to handle cases like:
4166         //
4167         // } catch (Base *b) {
4168         // } catch (Derived &d) {
4169         // }
4170         //
4171         // where there is a qualification mismatch that disqualifies this
4172         // handler as a potential problem.
4173         if (I->second->getCaughtType()->isPointerType() ==
4174                 TestAgainstType->isPointerType()) {
4175           FoundHandler = I->second;
4176           FoundHandlerType = Check;
4177           return true;
4178         }
4179       }
4180     }
4181     return false;
4182   }
4183 };
4184 }
4185 
4186 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4187                                   ArrayRef<Stmt *> Handlers) {
4188   const llvm::Triple &T = Context.getTargetInfo().getTriple();
4189   const bool IsOpenMPGPUTarget =
4190       getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN());
4191   // Don't report an error if 'try' is used in system headers or in an OpenMP
4192   // target region compiled for a GPU architecture.
4193   if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions &&
4194       !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) {
4195     // Delay error emission for the OpenMP device code.
4196     targetDiag(TryLoc, diag::err_exceptions_disabled) << "try";
4197   }
4198 
4199   // In OpenMP target regions, we assume that catch is never reached on GPU
4200   // targets.
4201   if (IsOpenMPGPUTarget)
4202     targetDiag(TryLoc, diag::warn_try_not_valid_on_target) << T.str();
4203 
4204   // Exceptions aren't allowed in CUDA device code.
4205   if (getLangOpts().CUDA)
4206     CUDA().DiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
4207         << "try" << llvm::to_underlying(CUDA().CurrentTarget());
4208 
4209   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
4210     Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
4211 
4212   sema::FunctionScopeInfo *FSI = getCurFunction();
4213 
4214   // C++ try is incompatible with SEH __try.
4215   if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
4216     Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << 0;
4217     Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4218   }
4219 
4220   const unsigned NumHandlers = Handlers.size();
4221   assert(!Handlers.empty() &&
4222          "The parser shouldn't call this if there are no handlers.");
4223 
4224   llvm::DenseMap<QualType, CXXCatchStmt *> HandledBaseTypes;
4225   llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
4226   for (unsigned i = 0; i < NumHandlers; ++i) {
4227     CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
4228 
4229     // Diagnose when the handler is a catch-all handler, but it isn't the last
4230     // handler for the try block. [except.handle]p5. Also, skip exception
4231     // declarations that are invalid, since we can't usefully report on them.
4232     if (!H->getExceptionDecl()) {
4233       if (i < NumHandlers - 1)
4234         return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
4235       continue;
4236     } else if (H->getExceptionDecl()->isInvalidDecl())
4237       continue;
4238 
4239     // Walk the type hierarchy to diagnose when this type has already been
4240     // handled (duplication), or cannot be handled (derivation inversion). We
4241     // ignore top-level cv-qualifiers, per [except.handle]p3
4242     CatchHandlerType HandlerCHT = H->getCaughtType().getCanonicalType();
4243 
4244     // We can ignore whether the type is a reference or a pointer; we need the
4245     // underlying declaration type in order to get at the underlying record
4246     // decl, if there is one.
4247     QualType Underlying = HandlerCHT.underlying();
4248     if (auto *RD = Underlying->getAsCXXRecordDecl()) {
4249       if (!RD->hasDefinition())
4250         continue;
4251       // Check that none of the public, unambiguous base classes are in the
4252       // map ([except.handle]p1). Give the base classes the same pointer
4253       // qualification as the original type we are basing off of. This allows
4254       // comparison against the handler type using the same top-level pointer
4255       // as the original type.
4256       CXXBasePaths Paths;
4257       Paths.setOrigin(RD);
4258       CatchTypePublicBases CTPB(HandledBaseTypes,
4259                                 H->getCaughtType().getCanonicalType());
4260       if (RD->lookupInBases(CTPB, Paths)) {
4261         const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4262         if (!Paths.isAmbiguous(
4263                 CanQualType::CreateUnsafe(CTPB.getFoundHandlerType()))) {
4264           Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4265                diag::warn_exception_caught_by_earlier_handler)
4266               << H->getCaughtType();
4267           Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4268                 diag::note_previous_exception_handler)
4269               << Problem->getCaughtType();
4270         }
4271       }
4272       // Strip the qualifiers here because we're going to be comparing this
4273       // type to the base type specifiers of a class, which are ignored in a
4274       // base specifier per [class.derived.general]p2.
4275       HandledBaseTypes[Underlying.getUnqualifiedType()] = H;
4276     }
4277 
4278     // Add the type the list of ones we have handled; diagnose if we've already
4279     // handled it.
4280     auto R = HandledTypes.insert(
4281         std::make_pair(H->getCaughtType().getCanonicalType(), H));
4282     if (!R.second) {
4283       const CXXCatchStmt *Problem = R.first->second;
4284       Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4285            diag::warn_exception_caught_by_earlier_handler)
4286           << H->getCaughtType();
4287       Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4288            diag::note_previous_exception_handler)
4289           << Problem->getCaughtType();
4290     }
4291   }
4292 
4293   FSI->setHasCXXTry(TryLoc);
4294 
4295   return CXXTryStmt::Create(Context, TryLoc, cast<CompoundStmt>(TryBlock),
4296                             Handlers);
4297 }
4298 
4299 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
4300                                   Stmt *TryBlock, Stmt *Handler) {
4301   assert(TryBlock && Handler);
4302 
4303   sema::FunctionScopeInfo *FSI = getCurFunction();
4304 
4305   // SEH __try is incompatible with C++ try. Borland appears to support this,
4306   // however.
4307   if (!getLangOpts().Borland) {
4308     if (FSI->FirstCXXOrObjCTryLoc.isValid()) {
4309       Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << FSI->FirstTryType;
4310       Diag(FSI->FirstCXXOrObjCTryLoc, diag::note_conflicting_try_here)
4311           << (FSI->FirstTryType == sema::FunctionScopeInfo::TryLocIsCXX
4312                   ? "'try'"
4313                   : "'@try'");
4314     }
4315   }
4316 
4317   FSI->setHasSEHTry(TryLoc);
4318 
4319   // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4320   // track if they use SEH.
4321   DeclContext *DC = CurContext;
4322   while (DC && !DC->isFunctionOrMethod())
4323     DC = DC->getParent();
4324   FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4325   if (FD)
4326     FD->setUsesSEHTry(true);
4327   else
4328     Diag(TryLoc, diag::err_seh_try_outside_functions);
4329 
4330   // Reject __try on unsupported targets.
4331   if (!Context.getTargetInfo().isSEHTrySupported())
4332     Diag(TryLoc, diag::err_seh_try_unsupported);
4333 
4334   return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4335 }
4336 
4337 StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr,
4338                                      Stmt *Block) {
4339   assert(FilterExpr && Block);
4340   QualType FTy = FilterExpr->getType();
4341   if (!FTy->isIntegerType() && !FTy->isDependentType()) {
4342     return StmtError(
4343         Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral)
4344         << FTy);
4345   }
4346   return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block);
4347 }
4348 
4349 void Sema::ActOnStartSEHFinallyBlock() {
4350   CurrentSEHFinally.push_back(CurScope);
4351 }
4352 
4353 void Sema::ActOnAbortSEHFinallyBlock() {
4354   CurrentSEHFinally.pop_back();
4355 }
4356 
4357 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
4358   assert(Block);
4359   CurrentSEHFinally.pop_back();
4360   return SEHFinallyStmt::Create(Context, Loc, Block);
4361 }
4362 
4363 StmtResult
4364 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
4365   Scope *SEHTryParent = CurScope;
4366   while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4367     SEHTryParent = SEHTryParent->getParent();
4368   if (!SEHTryParent)
4369     return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4370   CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4371 
4372   return new (Context) SEHLeaveStmt(Loc);
4373 }
4374 
4375 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
4376                                             bool IsIfExists,
4377                                             NestedNameSpecifierLoc QualifierLoc,
4378                                             DeclarationNameInfo NameInfo,
4379                                             Stmt *Nested)
4380 {
4381   return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4382                                              QualifierLoc, NameInfo,
4383                                              cast<CompoundStmt>(Nested));
4384 }
4385 
4386 
4387 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
4388                                             bool IsIfExists,
4389                                             CXXScopeSpec &SS,
4390                                             UnqualifiedId &Name,
4391                                             Stmt *Nested) {
4392   return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4393                                     SS.getWithLocInContext(Context),
4394                                     GetNameFromUnqualifiedId(Name),
4395                                     Nested);
4396 }
4397 
4398 RecordDecl*
4399 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
4400                                    unsigned NumParams) {
4401   DeclContext *DC = CurContext;
4402   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4403     DC = DC->getParent();
4404 
4405   RecordDecl *RD = nullptr;
4406   if (getLangOpts().CPlusPlus)
4407     RD = CXXRecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc,
4408                                /*Id=*/nullptr);
4409   else
4410     RD = RecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc,
4411                             /*Id=*/nullptr);
4412 
4413   RD->setCapturedRecord();
4414   DC->addDecl(RD);
4415   RD->setImplicit();
4416   RD->startDefinition();
4417 
4418   assert(NumParams > 0 && "CapturedStmt requires context parameter");
4419   CD = CapturedDecl::Create(Context, CurContext, NumParams);
4420   DC->addDecl(CD);
4421   return RD;
4422 }
4423 
4424 static bool
4425 buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI,
4426                              SmallVectorImpl<CapturedStmt::Capture> &Captures,
4427                              SmallVectorImpl<Expr *> &CaptureInits) {
4428   for (const sema::Capture &Cap : RSI->Captures) {
4429     if (Cap.isInvalid())
4430       continue;
4431 
4432     // Form the initializer for the capture.
4433     ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(),
4434                                          RSI->CapRegionKind == CR_OpenMP);
4435 
4436     // FIXME: Bail out now if the capture is not used and the initializer has
4437     // no side-effects.
4438 
4439     // Create a field for this capture.
4440     FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap);
4441 
4442     // Add the capture to our list of captures.
4443     if (Cap.isThisCapture()) {
4444       Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4445                                                CapturedStmt::VCK_This));
4446     } else if (Cap.isVLATypeCapture()) {
4447       Captures.push_back(
4448           CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
4449     } else {
4450       assert(Cap.isVariableCapture() && "unknown kind of capture");
4451 
4452       if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
4453         S.OpenMP().setOpenMPCaptureKind(Field, Cap.getVariable(),
4454                                         RSI->OpenMPLevel);
4455 
4456       Captures.push_back(CapturedStmt::Capture(
4457           Cap.getLocation(),
4458           Cap.isReferenceCapture() ? CapturedStmt::VCK_ByRef
4459                                    : CapturedStmt::VCK_ByCopy,
4460           cast<VarDecl>(Cap.getVariable())));
4461     }
4462     CaptureInits.push_back(Init.get());
4463   }
4464   return false;
4465 }
4466 
4467 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4468                                     CapturedRegionKind Kind,
4469                                     unsigned NumParams) {
4470   CapturedDecl *CD = nullptr;
4471   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4472 
4473   // Build the context parameter
4474   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4475   IdentifierInfo *ParamName = &Context.Idents.get("__context");
4476   QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4477   auto *Param =
4478       ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4479                                 ImplicitParamKind::CapturedContext);
4480   DC->addDecl(Param);
4481 
4482   CD->setContextParam(0, Param);
4483 
4484   // Enter the capturing scope for this captured region.
4485   PushCapturedRegionScope(CurScope, CD, RD, Kind);
4486 
4487   if (CurScope)
4488     PushDeclContext(CurScope, CD);
4489   else
4490     CurContext = CD;
4491 
4492   PushExpressionEvaluationContext(
4493       ExpressionEvaluationContext::PotentiallyEvaluated);
4494   ExprEvalContexts.back().InImmediateEscalatingFunctionContext = false;
4495 }
4496 
4497 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4498                                     CapturedRegionKind Kind,
4499                                     ArrayRef<CapturedParamNameType> Params,
4500                                     unsigned OpenMPCaptureLevel) {
4501   CapturedDecl *CD = nullptr;
4502   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4503 
4504   // Build the context parameter
4505   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4506   bool ContextIsFound = false;
4507   unsigned ParamNum = 0;
4508   for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4509                                                  E = Params.end();
4510        I != E; ++I, ++ParamNum) {
4511     if (I->second.isNull()) {
4512       assert(!ContextIsFound &&
4513              "null type has been found already for '__context' parameter");
4514       IdentifierInfo *ParamName = &Context.Idents.get("__context");
4515       QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4516                                .withConst()
4517                                .withRestrict();
4518       auto *Param =
4519           ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4520                                     ImplicitParamKind::CapturedContext);
4521       DC->addDecl(Param);
4522       CD->setContextParam(ParamNum, Param);
4523       ContextIsFound = true;
4524     } else {
4525       IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4526       auto *Param =
4527           ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4528                                     ImplicitParamKind::CapturedContext);
4529       DC->addDecl(Param);
4530       CD->setParam(ParamNum, Param);
4531     }
4532   }
4533   assert(ContextIsFound && "no null type for '__context' parameter");
4534   if (!ContextIsFound) {
4535     // Add __context implicitly if it is not specified.
4536     IdentifierInfo *ParamName = &Context.Idents.get("__context");
4537     QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4538     auto *Param =
4539         ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4540                                   ImplicitParamKind::CapturedContext);
4541     DC->addDecl(Param);
4542     CD->setContextParam(ParamNum, Param);
4543   }
4544   // Enter the capturing scope for this captured region.
4545   PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel);
4546 
4547   if (CurScope)
4548     PushDeclContext(CurScope, CD);
4549   else
4550     CurContext = CD;
4551 
4552   PushExpressionEvaluationContext(
4553       ExpressionEvaluationContext::PotentiallyEvaluated);
4554 }
4555 
4556 void Sema::ActOnCapturedRegionError() {
4557   DiscardCleanupsInEvaluationContext();
4558   PopExpressionEvaluationContext();
4559   PopDeclContext();
4560   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4561   CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4562 
4563   RecordDecl *Record = RSI->TheRecordDecl;
4564   Record->setInvalidDecl();
4565 
4566   SmallVector<Decl*, 4> Fields(Record->fields());
4567   ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4568               SourceLocation(), SourceLocation(), ParsedAttributesView());
4569 }
4570 
4571 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
4572   // Leave the captured scope before we start creating captures in the
4573   // enclosing scope.
4574   DiscardCleanupsInEvaluationContext();
4575   PopExpressionEvaluationContext();
4576   PopDeclContext();
4577   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4578   CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4579 
4580   SmallVector<CapturedStmt::Capture, 4> Captures;
4581   SmallVector<Expr *, 4> CaptureInits;
4582   if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits))
4583     return StmtError();
4584 
4585   CapturedDecl *CD = RSI->TheCapturedDecl;
4586   RecordDecl *RD = RSI->TheRecordDecl;
4587 
4588   CapturedStmt *Res = CapturedStmt::Create(
4589       getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4590       Captures, CaptureInits, CD, RD);
4591 
4592   CD->setBody(Res->getCapturedStmt());
4593   RD->completeDefinition();
4594 
4595   return Res;
4596 }
4597