xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaStmt.cpp (revision 9dba64be9536c28e4800e06512b7f29b43ade345)
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for statements.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/Ownership.h"
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/AST/TypeOrdering.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallString.h"
40 #include "llvm/ADT/SmallVector.h"
41 
42 using namespace clang;
43 using namespace sema;
44 
45 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
46   if (FE.isInvalid())
47     return StmtError();
48 
49   FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
50   if (FE.isInvalid())
51     return StmtError();
52 
53   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
54   // void expression for its side effects.  Conversion to void allows any
55   // operand, even incomplete types.
56 
57   // Same thing in for stmt first clause (when expr) and third clause.
58   return StmtResult(FE.getAs<Stmt>());
59 }
60 
61 
62 StmtResult Sema::ActOnExprStmtError() {
63   DiscardCleanupsInEvaluationContext();
64   return StmtError();
65 }
66 
67 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
68                                bool HasLeadingEmptyMacro) {
69   return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
70 }
71 
72 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
73                                SourceLocation EndLoc) {
74   DeclGroupRef DG = dg.get();
75 
76   // If we have an invalid decl, just return an error.
77   if (DG.isNull()) return StmtError();
78 
79   return new (Context) DeclStmt(DG, StartLoc, EndLoc);
80 }
81 
82 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
83   DeclGroupRef DG = dg.get();
84 
85   // If we don't have a declaration, or we have an invalid declaration,
86   // just return.
87   if (DG.isNull() || !DG.isSingleDecl())
88     return;
89 
90   Decl *decl = DG.getSingleDecl();
91   if (!decl || decl->isInvalidDecl())
92     return;
93 
94   // Only variable declarations are permitted.
95   VarDecl *var = dyn_cast<VarDecl>(decl);
96   if (!var) {
97     Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
98     decl->setInvalidDecl();
99     return;
100   }
101 
102   // foreach variables are never actually initialized in the way that
103   // the parser came up with.
104   var->setInit(nullptr);
105 
106   // In ARC, we don't need to retain the iteration variable of a fast
107   // enumeration loop.  Rather than actually trying to catch that
108   // during declaration processing, we remove the consequences here.
109   if (getLangOpts().ObjCAutoRefCount) {
110     QualType type = var->getType();
111 
112     // Only do this if we inferred the lifetime.  Inferred lifetime
113     // will show up as a local qualifier because explicit lifetime
114     // should have shown up as an AttributedType instead.
115     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
116       // Add 'const' and mark the variable as pseudo-strong.
117       var->setType(type.withConst());
118       var->setARCPseudoStrong(true);
119     }
120   }
121 }
122 
123 /// Diagnose unused comparisons, both builtin and overloaded operators.
124 /// For '==' and '!=', suggest fixits for '=' or '|='.
125 ///
126 /// Adding a cast to void (or other expression wrappers) will prevent the
127 /// warning from firing.
128 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
129   SourceLocation Loc;
130   bool CanAssign;
131   enum { Equality, Inequality, Relational, ThreeWay } Kind;
132 
133   if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
134     if (!Op->isComparisonOp())
135       return false;
136 
137     if (Op->getOpcode() == BO_EQ)
138       Kind = Equality;
139     else if (Op->getOpcode() == BO_NE)
140       Kind = Inequality;
141     else if (Op->getOpcode() == BO_Cmp)
142       Kind = ThreeWay;
143     else {
144       assert(Op->isRelationalOp());
145       Kind = Relational;
146     }
147     Loc = Op->getOperatorLoc();
148     CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
149   } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
150     switch (Op->getOperator()) {
151     case OO_EqualEqual:
152       Kind = Equality;
153       break;
154     case OO_ExclaimEqual:
155       Kind = Inequality;
156       break;
157     case OO_Less:
158     case OO_Greater:
159     case OO_GreaterEqual:
160     case OO_LessEqual:
161       Kind = Relational;
162       break;
163     case OO_Spaceship:
164       Kind = ThreeWay;
165       break;
166     default:
167       return false;
168     }
169 
170     Loc = Op->getOperatorLoc();
171     CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
172   } else {
173     // Not a typo-prone comparison.
174     return false;
175   }
176 
177   // Suppress warnings when the operator, suspicious as it may be, comes from
178   // a macro expansion.
179   if (S.SourceMgr.isMacroBodyExpansion(Loc))
180     return false;
181 
182   S.Diag(Loc, diag::warn_unused_comparison)
183     << (unsigned)Kind << E->getSourceRange();
184 
185   // If the LHS is a plausible entity to assign to, provide a fixit hint to
186   // correct common typos.
187   if (CanAssign) {
188     if (Kind == Inequality)
189       S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
190         << FixItHint::CreateReplacement(Loc, "|=");
191     else if (Kind == Equality)
192       S.Diag(Loc, diag::note_equality_comparison_to_assign)
193         << FixItHint::CreateReplacement(Loc, "=");
194   }
195 
196   return true;
197 }
198 
199 static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A,
200                               SourceLocation Loc, SourceRange R1,
201                               SourceRange R2, bool IsCtor) {
202   if (!A)
203     return false;
204   StringRef Msg = A->getMessage();
205 
206   if (Msg.empty()) {
207     if (IsCtor)
208       return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2;
209     return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
210   }
211 
212   if (IsCtor)
213     return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1
214                                                           << R2;
215   return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2;
216 }
217 
218 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
219   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
220     return DiagnoseUnusedExprResult(Label->getSubStmt());
221 
222   const Expr *E = dyn_cast_or_null<Expr>(S);
223   if (!E)
224     return;
225 
226   // If we are in an unevaluated expression context, then there can be no unused
227   // results because the results aren't expected to be used in the first place.
228   if (isUnevaluatedContext())
229     return;
230 
231   SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
232   // In most cases, we don't want to warn if the expression is written in a
233   // macro body, or if the macro comes from a system header. If the offending
234   // expression is a call to a function with the warn_unused_result attribute,
235   // we warn no matter the location. Because of the order in which the various
236   // checks need to happen, we factor out the macro-related test here.
237   bool ShouldSuppress =
238       SourceMgr.isMacroBodyExpansion(ExprLoc) ||
239       SourceMgr.isInSystemMacro(ExprLoc);
240 
241   const Expr *WarnExpr;
242   SourceLocation Loc;
243   SourceRange R1, R2;
244   if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
245     return;
246 
247   // If this is a GNU statement expression expanded from a macro, it is probably
248   // unused because it is a function-like macro that can be used as either an
249   // expression or statement.  Don't warn, because it is almost certainly a
250   // false positive.
251   if (isa<StmtExpr>(E) && Loc.isMacroID())
252     return;
253 
254   // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
255   // That macro is frequently used to suppress "unused parameter" warnings,
256   // but its implementation makes clang's -Wunused-value fire.  Prevent this.
257   if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
258     SourceLocation SpellLoc = Loc;
259     if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
260       return;
261   }
262 
263   // Okay, we have an unused result.  Depending on what the base expression is,
264   // we might want to make a more specific diagnostic.  Check for one of these
265   // cases now.
266   unsigned DiagID = diag::warn_unused_expr;
267   if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
268     E = Temps->getSubExpr();
269   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
270     E = TempExpr->getSubExpr();
271 
272   if (DiagnoseUnusedComparison(*this, E))
273     return;
274 
275   E = WarnExpr;
276   if (const auto *Cast = dyn_cast<CastExpr>(E))
277     if (Cast->getCastKind() == CK_NoOp ||
278         Cast->getCastKind() == CK_ConstructorConversion)
279       E = Cast->getSubExpr()->IgnoreImpCasts();
280 
281   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
282     if (E->getType()->isVoidType())
283       return;
284 
285     if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>(
286                                      CE->getUnusedResultAttr(Context)),
287                           Loc, R1, R2, /*isCtor=*/false))
288       return;
289 
290     // If the callee has attribute pure, const, or warn_unused_result, warn with
291     // a more specific message to make it clear what is happening. If the call
292     // is written in a macro body, only warn if it has the warn_unused_result
293     // attribute.
294     if (const Decl *FD = CE->getCalleeDecl()) {
295       if (ShouldSuppress)
296         return;
297       if (FD->hasAttr<PureAttr>()) {
298         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
299         return;
300       }
301       if (FD->hasAttr<ConstAttr>()) {
302         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
303         return;
304       }
305     }
306   } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
307     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
308       const auto *A = Ctor->getAttr<WarnUnusedResultAttr>();
309       A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>();
310       if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true))
311         return;
312     }
313   } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
314     if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) {
315 
316       if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
317                             R2, /*isCtor=*/false))
318         return;
319     }
320   } else if (ShouldSuppress)
321     return;
322 
323   E = WarnExpr;
324   if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
325     if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
326       Diag(Loc, diag::err_arc_unused_init_message) << R1;
327       return;
328     }
329     const ObjCMethodDecl *MD = ME->getMethodDecl();
330     if (MD) {
331       if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
332                             R2, /*isCtor=*/false))
333         return;
334     }
335   } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
336     const Expr *Source = POE->getSyntacticForm();
337     if (isa<ObjCSubscriptRefExpr>(Source))
338       DiagID = diag::warn_unused_container_subscript_expr;
339     else
340       DiagID = diag::warn_unused_property_expr;
341   } else if (const CXXFunctionalCastExpr *FC
342                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
343     const Expr *E = FC->getSubExpr();
344     if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
345       E = TE->getSubExpr();
346     if (isa<CXXTemporaryObjectExpr>(E))
347       return;
348     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
349       if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
350         if (!RD->getAttr<WarnUnusedAttr>())
351           return;
352   }
353   // Diagnose "(void*) blah" as a typo for "(void) blah".
354   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
355     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
356     QualType T = TI->getType();
357 
358     // We really do want to use the non-canonical type here.
359     if (T == Context.VoidPtrTy) {
360       PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
361 
362       Diag(Loc, diag::warn_unused_voidptr)
363         << FixItHint::CreateRemoval(TL.getStarLoc());
364       return;
365     }
366   }
367 
368   if (E->isGLValue() && E->getType().isVolatileQualified()) {
369     Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
370     return;
371   }
372 
373   DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
374 }
375 
376 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
377   PushCompoundScope(IsStmtExpr);
378 }
379 
380 void Sema::ActOnFinishOfCompoundStmt() {
381   PopCompoundScope();
382 }
383 
384 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
385   return getCurFunction()->CompoundScopes.back();
386 }
387 
388 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
389                                    ArrayRef<Stmt *> Elts, bool isStmtExpr) {
390   const unsigned NumElts = Elts.size();
391 
392   // If we're in C89 mode, check that we don't have any decls after stmts.  If
393   // so, emit an extension diagnostic.
394   if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
395     // Note that __extension__ can be around a decl.
396     unsigned i = 0;
397     // Skip over all declarations.
398     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
399       /*empty*/;
400 
401     // We found the end of the list or a statement.  Scan for another declstmt.
402     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
403       /*empty*/;
404 
405     if (i != NumElts) {
406       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
407       Diag(D->getLocation(), diag::ext_mixed_decls_code);
408     }
409   }
410 
411   // Check for suspicious empty body (null statement) in `for' and `while'
412   // statements.  Don't do anything for template instantiations, this just adds
413   // noise.
414   if (NumElts != 0 && !CurrentInstantiationScope &&
415       getCurCompoundScope().HasEmptyLoopBodies) {
416     for (unsigned i = 0; i != NumElts - 1; ++i)
417       DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
418   }
419 
420   return CompoundStmt::Create(Context, Elts, L, R);
421 }
422 
423 ExprResult
424 Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) {
425   if (!Val.get())
426     return Val;
427 
428   if (DiagnoseUnexpandedParameterPack(Val.get()))
429     return ExprError();
430 
431   // If we're not inside a switch, let the 'case' statement handling diagnose
432   // this. Just clean up after the expression as best we can.
433   if (getCurFunction()->SwitchStack.empty())
434     return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
435                                getLangOpts().CPlusPlus11);
436 
437   Expr *CondExpr =
438       getCurFunction()->SwitchStack.back().getPointer()->getCond();
439   if (!CondExpr)
440     return ExprError();
441   QualType CondType = CondExpr->getType();
442 
443   auto CheckAndFinish = [&](Expr *E) {
444     if (CondType->isDependentType() || E->isTypeDependent())
445       return ExprResult(E);
446 
447     if (getLangOpts().CPlusPlus11) {
448       // C++11 [stmt.switch]p2: the constant-expression shall be a converted
449       // constant expression of the promoted type of the switch condition.
450       llvm::APSInt TempVal;
451       return CheckConvertedConstantExpression(E, CondType, TempVal,
452                                               CCEK_CaseValue);
453     }
454 
455     ExprResult ER = E;
456     if (!E->isValueDependent())
457       ER = VerifyIntegerConstantExpression(E);
458     if (!ER.isInvalid())
459       ER = DefaultLvalueConversion(ER.get());
460     if (!ER.isInvalid())
461       ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
462     if (!ER.isInvalid())
463       ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false);
464     return ER;
465   };
466 
467   ExprResult Converted = CorrectDelayedTyposInExpr(Val, CheckAndFinish);
468   if (Converted.get() == Val.get())
469     Converted = CheckAndFinish(Val.get());
470   return Converted;
471 }
472 
473 StmtResult
474 Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal,
475                     SourceLocation DotDotDotLoc, ExprResult RHSVal,
476                     SourceLocation ColonLoc) {
477   assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
478   assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
479                                    : RHSVal.isInvalid() || RHSVal.get()) &&
480          "missing RHS value");
481 
482   if (getCurFunction()->SwitchStack.empty()) {
483     Diag(CaseLoc, diag::err_case_not_in_switch);
484     return StmtError();
485   }
486 
487   if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
488     getCurFunction()->SwitchStack.back().setInt(true);
489     return StmtError();
490   }
491 
492   auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
493                               CaseLoc, DotDotDotLoc, ColonLoc);
494   getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
495   return CS;
496 }
497 
498 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
499 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
500   cast<CaseStmt>(S)->setSubStmt(SubStmt);
501 }
502 
503 StmtResult
504 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
505                        Stmt *SubStmt, Scope *CurScope) {
506   if (getCurFunction()->SwitchStack.empty()) {
507     Diag(DefaultLoc, diag::err_default_not_in_switch);
508     return SubStmt;
509   }
510 
511   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
512   getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
513   return DS;
514 }
515 
516 StmtResult
517 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
518                      SourceLocation ColonLoc, Stmt *SubStmt) {
519   // If the label was multiply defined, reject it now.
520   if (TheDecl->getStmt()) {
521     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
522     Diag(TheDecl->getLocation(), diag::note_previous_definition);
523     return SubStmt;
524   }
525 
526   // Otherwise, things are good.  Fill in the declaration and return it.
527   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
528   TheDecl->setStmt(LS);
529   if (!TheDecl->isGnuLocal()) {
530     TheDecl->setLocStart(IdentLoc);
531     if (!TheDecl->isMSAsmLabel()) {
532       // Don't update the location of MS ASM labels.  These will result in
533       // a diagnostic, and changing the location here will mess that up.
534       TheDecl->setLocation(IdentLoc);
535     }
536   }
537   return LS;
538 }
539 
540 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
541                                      ArrayRef<const Attr*> Attrs,
542                                      Stmt *SubStmt) {
543   // Fill in the declaration and return it.
544   AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
545   return LS;
546 }
547 
548 namespace {
549 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
550   typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
551   Sema &SemaRef;
552 public:
553   CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
554   void VisitBinaryOperator(BinaryOperator *E) {
555     if (E->getOpcode() == BO_Comma)
556       SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
557     EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E);
558   }
559 };
560 }
561 
562 StmtResult
563 Sema::ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt,
564                   ConditionResult Cond,
565                   Stmt *thenStmt, SourceLocation ElseLoc,
566                   Stmt *elseStmt) {
567   if (Cond.isInvalid())
568     Cond = ConditionResult(
569         *this, nullptr,
570         MakeFullExpr(new (Context) OpaqueValueExpr(SourceLocation(),
571                                                    Context.BoolTy, VK_RValue),
572                      IfLoc),
573         false);
574 
575   Expr *CondExpr = Cond.get().second;
576   // Only call the CommaVisitor when not C89 due to differences in scope flags.
577   if ((getLangOpts().C99 || getLangOpts().CPlusPlus) &&
578       !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
579     CommaVisitor(*this).Visit(CondExpr);
580 
581   if (!elseStmt)
582     DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), thenStmt,
583                           diag::warn_empty_if_body);
584 
585   return BuildIfStmt(IfLoc, IsConstexpr, InitStmt, Cond, thenStmt, ElseLoc,
586                      elseStmt);
587 }
588 
589 StmtResult Sema::BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
590                              Stmt *InitStmt, ConditionResult Cond,
591                              Stmt *thenStmt, SourceLocation ElseLoc,
592                              Stmt *elseStmt) {
593   if (Cond.isInvalid())
594     return StmtError();
595 
596   if (IsConstexpr || isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
597     setFunctionHasBranchProtectedScope();
598 
599   return IfStmt::Create(Context, IfLoc, IsConstexpr, InitStmt, Cond.get().first,
600                         Cond.get().second, thenStmt, ElseLoc, elseStmt);
601 }
602 
603 namespace {
604   struct CaseCompareFunctor {
605     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
606                     const llvm::APSInt &RHS) {
607       return LHS.first < RHS;
608     }
609     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
610                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
611       return LHS.first < RHS.first;
612     }
613     bool operator()(const llvm::APSInt &LHS,
614                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
615       return LHS < RHS.first;
616     }
617   };
618 }
619 
620 /// CmpCaseVals - Comparison predicate for sorting case values.
621 ///
622 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
623                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
624   if (lhs.first < rhs.first)
625     return true;
626 
627   if (lhs.first == rhs.first &&
628       lhs.second->getCaseLoc().getRawEncoding()
629        < rhs.second->getCaseLoc().getRawEncoding())
630     return true;
631   return false;
632 }
633 
634 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
635 ///
636 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
637                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
638 {
639   return lhs.first < rhs.first;
640 }
641 
642 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
643 ///
644 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
645                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
646 {
647   return lhs.first == rhs.first;
648 }
649 
650 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
651 /// potentially integral-promoted expression @p expr.
652 static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) {
653   if (const auto *FE = dyn_cast<FullExpr>(E))
654     E = FE->getSubExpr();
655   while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
656     if (ImpCast->getCastKind() != CK_IntegralCast) break;
657     E = ImpCast->getSubExpr();
658   }
659   return E->getType();
660 }
661 
662 ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) {
663   class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
664     Expr *Cond;
665 
666   public:
667     SwitchConvertDiagnoser(Expr *Cond)
668         : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
669           Cond(Cond) {}
670 
671     SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
672                                          QualType T) override {
673       return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
674     }
675 
676     SemaDiagnosticBuilder diagnoseIncomplete(
677         Sema &S, SourceLocation Loc, QualType T) override {
678       return S.Diag(Loc, diag::err_switch_incomplete_class_type)
679                << T << Cond->getSourceRange();
680     }
681 
682     SemaDiagnosticBuilder diagnoseExplicitConv(
683         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
684       return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
685     }
686 
687     SemaDiagnosticBuilder noteExplicitConv(
688         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
689       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
690         << ConvTy->isEnumeralType() << ConvTy;
691     }
692 
693     SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
694                                             QualType T) override {
695       return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
696     }
697 
698     SemaDiagnosticBuilder noteAmbiguous(
699         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
700       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
701       << ConvTy->isEnumeralType() << ConvTy;
702     }
703 
704     SemaDiagnosticBuilder diagnoseConversion(
705         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
706       llvm_unreachable("conversion functions are permitted");
707     }
708   } SwitchDiagnoser(Cond);
709 
710   ExprResult CondResult =
711       PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
712   if (CondResult.isInvalid())
713     return ExprError();
714 
715   // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
716   // failed and produced a diagnostic.
717   Cond = CondResult.get();
718   if (!Cond->isTypeDependent() &&
719       !Cond->getType()->isIntegralOrEnumerationType())
720     return ExprError();
721 
722   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
723   return UsualUnaryConversions(Cond);
724 }
725 
726 StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
727                                         Stmt *InitStmt, ConditionResult Cond) {
728   Expr *CondExpr = Cond.get().second;
729   assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
730 
731   if (CondExpr && !CondExpr->isTypeDependent()) {
732     // We have already converted the expression to an integral or enumeration
733     // type, when we parsed the switch condition. If we don't have an
734     // appropriate type now, enter the switch scope but remember that it's
735     // invalid.
736     assert(CondExpr->getType()->isIntegralOrEnumerationType() &&
737            "invalid condition type");
738     if (CondExpr->isKnownToHaveBooleanValue()) {
739       // switch(bool_expr) {...} is often a programmer error, e.g.
740       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
741       // One can always use an if statement instead of switch(bool_expr).
742       Diag(SwitchLoc, diag::warn_bool_switch_condition)
743           << CondExpr->getSourceRange();
744     }
745   }
746 
747   setFunctionHasBranchIntoScope();
748 
749   auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr);
750   getCurFunction()->SwitchStack.push_back(
751       FunctionScopeInfo::SwitchInfo(SS, false));
752   return SS;
753 }
754 
755 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
756   Val = Val.extOrTrunc(BitWidth);
757   Val.setIsSigned(IsSigned);
758 }
759 
760 /// Check the specified case value is in range for the given unpromoted switch
761 /// type.
762 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
763                            unsigned UnpromotedWidth, bool UnpromotedSign) {
764   // In C++11 onwards, this is checked by the language rules.
765   if (S.getLangOpts().CPlusPlus11)
766     return;
767 
768   // If the case value was signed and negative and the switch expression is
769   // unsigned, don't bother to warn: this is implementation-defined behavior.
770   // FIXME: Introduce a second, default-ignored warning for this case?
771   if (UnpromotedWidth < Val.getBitWidth()) {
772     llvm::APSInt ConvVal(Val);
773     AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
774     AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
775     // FIXME: Use different diagnostics for overflow  in conversion to promoted
776     // type versus "switch expression cannot have this value". Use proper
777     // IntRange checking rather than just looking at the unpromoted type here.
778     if (ConvVal != Val)
779       S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
780                                                   << ConvVal.toString(10);
781   }
782 }
783 
784 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
785 
786 /// Returns true if we should emit a diagnostic about this case expression not
787 /// being a part of the enum used in the switch controlling expression.
788 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
789                                               const EnumDecl *ED,
790                                               const Expr *CaseExpr,
791                                               EnumValsTy::iterator &EI,
792                                               EnumValsTy::iterator &EIEnd,
793                                               const llvm::APSInt &Val) {
794   if (!ED->isClosed())
795     return false;
796 
797   if (const DeclRefExpr *DRE =
798           dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
799     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
800       QualType VarType = VD->getType();
801       QualType EnumType = S.Context.getTypeDeclType(ED);
802       if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
803           S.Context.hasSameUnqualifiedType(EnumType, VarType))
804         return false;
805     }
806   }
807 
808   if (ED->hasAttr<FlagEnumAttr>())
809     return !S.IsValueInFlagEnum(ED, Val, false);
810 
811   while (EI != EIEnd && EI->first < Val)
812     EI++;
813 
814   if (EI != EIEnd && EI->first == Val)
815     return false;
816 
817   return true;
818 }
819 
820 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
821                                        const Expr *Case) {
822   QualType CondType = Cond->getType();
823   QualType CaseType = Case->getType();
824 
825   const EnumType *CondEnumType = CondType->getAs<EnumType>();
826   const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
827   if (!CondEnumType || !CaseEnumType)
828     return;
829 
830   // Ignore anonymous enums.
831   if (!CondEnumType->getDecl()->getIdentifier() &&
832       !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
833     return;
834   if (!CaseEnumType->getDecl()->getIdentifier() &&
835       !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
836     return;
837 
838   if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
839     return;
840 
841   S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
842       << CondType << CaseType << Cond->getSourceRange()
843       << Case->getSourceRange();
844 }
845 
846 StmtResult
847 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
848                             Stmt *BodyStmt) {
849   SwitchStmt *SS = cast<SwitchStmt>(Switch);
850   bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
851   assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
852          "switch stack missing push/pop!");
853 
854   getCurFunction()->SwitchStack.pop_back();
855 
856   if (!BodyStmt) return StmtError();
857   SS->setBody(BodyStmt, SwitchLoc);
858 
859   Expr *CondExpr = SS->getCond();
860   if (!CondExpr) return StmtError();
861 
862   QualType CondType = CondExpr->getType();
863 
864   // C++ 6.4.2.p2:
865   // Integral promotions are performed (on the switch condition).
866   //
867   // A case value unrepresentable by the original switch condition
868   // type (before the promotion) doesn't make sense, even when it can
869   // be represented by the promoted type.  Therefore we need to find
870   // the pre-promotion type of the switch condition.
871   const Expr *CondExprBeforePromotion = CondExpr;
872   QualType CondTypeBeforePromotion =
873       GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
874 
875   // Get the bitwidth of the switched-on value after promotions. We must
876   // convert the integer case values to this width before comparison.
877   bool HasDependentValue
878     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
879   unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
880   bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
881 
882   // Get the width and signedness that the condition might actually have, for
883   // warning purposes.
884   // FIXME: Grab an IntRange for the condition rather than using the unpromoted
885   // type.
886   unsigned CondWidthBeforePromotion
887     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
888   bool CondIsSignedBeforePromotion
889     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
890 
891   // Accumulate all of the case values in a vector so that we can sort them
892   // and detect duplicates.  This vector contains the APInt for the case after
893   // it has been converted to the condition type.
894   typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
895   CaseValsTy CaseVals;
896 
897   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
898   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
899   CaseRangesTy CaseRanges;
900 
901   DefaultStmt *TheDefaultStmt = nullptr;
902 
903   bool CaseListIsErroneous = false;
904 
905   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
906        SC = SC->getNextSwitchCase()) {
907 
908     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
909       if (TheDefaultStmt) {
910         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
911         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
912 
913         // FIXME: Remove the default statement from the switch block so that
914         // we'll return a valid AST.  This requires recursing down the AST and
915         // finding it, not something we are set up to do right now.  For now,
916         // just lop the entire switch stmt out of the AST.
917         CaseListIsErroneous = true;
918       }
919       TheDefaultStmt = DS;
920 
921     } else {
922       CaseStmt *CS = cast<CaseStmt>(SC);
923 
924       Expr *Lo = CS->getLHS();
925 
926       if (Lo->isValueDependent()) {
927         HasDependentValue = true;
928         break;
929       }
930 
931       // We already verified that the expression has a constant value;
932       // get that value (prior to conversions).
933       const Expr *LoBeforePromotion = Lo;
934       GetTypeBeforeIntegralPromotion(LoBeforePromotion);
935       llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
936 
937       // Check the unconverted value is within the range of possible values of
938       // the switch expression.
939       checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
940                      CondIsSignedBeforePromotion);
941 
942       // FIXME: This duplicates the check performed for warn_not_in_enum below.
943       checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
944                                  LoBeforePromotion);
945 
946       // Convert the value to the same width/sign as the condition.
947       AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
948 
949       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
950       if (CS->getRHS()) {
951         if (CS->getRHS()->isValueDependent()) {
952           HasDependentValue = true;
953           break;
954         }
955         CaseRanges.push_back(std::make_pair(LoVal, CS));
956       } else
957         CaseVals.push_back(std::make_pair(LoVal, CS));
958     }
959   }
960 
961   if (!HasDependentValue) {
962     // If we don't have a default statement, check whether the
963     // condition is constant.
964     llvm::APSInt ConstantCondValue;
965     bool HasConstantCond = false;
966     if (!TheDefaultStmt) {
967       Expr::EvalResult Result;
968       HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
969                                                 Expr::SE_AllowSideEffects);
970       if (Result.Val.isInt())
971         ConstantCondValue = Result.Val.getInt();
972       assert(!HasConstantCond ||
973              (ConstantCondValue.getBitWidth() == CondWidth &&
974               ConstantCondValue.isSigned() == CondIsSigned));
975     }
976     bool ShouldCheckConstantCond = HasConstantCond;
977 
978     // Sort all the scalar case values so we can easily detect duplicates.
979     llvm::stable_sort(CaseVals, CmpCaseVals);
980 
981     if (!CaseVals.empty()) {
982       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
983         if (ShouldCheckConstantCond &&
984             CaseVals[i].first == ConstantCondValue)
985           ShouldCheckConstantCond = false;
986 
987         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
988           // If we have a duplicate, report it.
989           // First, determine if either case value has a name
990           StringRef PrevString, CurrString;
991           Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
992           Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
993           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
994             PrevString = DeclRef->getDecl()->getName();
995           }
996           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
997             CurrString = DeclRef->getDecl()->getName();
998           }
999           SmallString<16> CaseValStr;
1000           CaseVals[i-1].first.toString(CaseValStr);
1001 
1002           if (PrevString == CurrString)
1003             Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1004                  diag::err_duplicate_case)
1005                 << (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
1006           else
1007             Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1008                  diag::err_duplicate_case_differing_expr)
1009                 << (PrevString.empty() ? StringRef(CaseValStr) : PrevString)
1010                 << (CurrString.empty() ? StringRef(CaseValStr) : CurrString)
1011                 << CaseValStr;
1012 
1013           Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
1014                diag::note_duplicate_case_prev);
1015           // FIXME: We really want to remove the bogus case stmt from the
1016           // substmt, but we have no way to do this right now.
1017           CaseListIsErroneous = true;
1018         }
1019       }
1020     }
1021 
1022     // Detect duplicate case ranges, which usually don't exist at all in
1023     // the first place.
1024     if (!CaseRanges.empty()) {
1025       // Sort all the case ranges by their low value so we can easily detect
1026       // overlaps between ranges.
1027       llvm::stable_sort(CaseRanges);
1028 
1029       // Scan the ranges, computing the high values and removing empty ranges.
1030       std::vector<llvm::APSInt> HiVals;
1031       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1032         llvm::APSInt &LoVal = CaseRanges[i].first;
1033         CaseStmt *CR = CaseRanges[i].second;
1034         Expr *Hi = CR->getRHS();
1035 
1036         const Expr *HiBeforePromotion = Hi;
1037         GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1038         llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1039 
1040         // Check the unconverted value is within the range of possible values of
1041         // the switch expression.
1042         checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
1043                        CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1044 
1045         // Convert the value to the same width/sign as the condition.
1046         AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1047 
1048         // If the low value is bigger than the high value, the case is empty.
1049         if (LoVal > HiVal) {
1050           Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
1051               << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
1052           CaseRanges.erase(CaseRanges.begin()+i);
1053           --i;
1054           --e;
1055           continue;
1056         }
1057 
1058         if (ShouldCheckConstantCond &&
1059             LoVal <= ConstantCondValue &&
1060             ConstantCondValue <= HiVal)
1061           ShouldCheckConstantCond = false;
1062 
1063         HiVals.push_back(HiVal);
1064       }
1065 
1066       // Rescan the ranges, looking for overlap with singleton values and other
1067       // ranges.  Since the range list is sorted, we only need to compare case
1068       // ranges with their neighbors.
1069       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1070         llvm::APSInt &CRLo = CaseRanges[i].first;
1071         llvm::APSInt &CRHi = HiVals[i];
1072         CaseStmt *CR = CaseRanges[i].second;
1073 
1074         // Check to see whether the case range overlaps with any
1075         // singleton cases.
1076         CaseStmt *OverlapStmt = nullptr;
1077         llvm::APSInt OverlapVal(32);
1078 
1079         // Find the smallest value >= the lower bound.  If I is in the
1080         // case range, then we have overlap.
1081         CaseValsTy::iterator I =
1082             llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor());
1083         if (I != CaseVals.end() && I->first < CRHi) {
1084           OverlapVal  = I->first;   // Found overlap with scalar.
1085           OverlapStmt = I->second;
1086         }
1087 
1088         // Find the smallest value bigger than the upper bound.
1089         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1090         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1091           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
1092           OverlapStmt = (I-1)->second;
1093         }
1094 
1095         // Check to see if this case stmt overlaps with the subsequent
1096         // case range.
1097         if (i && CRLo <= HiVals[i-1]) {
1098           OverlapVal  = HiVals[i-1];       // Found overlap with range.
1099           OverlapStmt = CaseRanges[i-1].second;
1100         }
1101 
1102         if (OverlapStmt) {
1103           // If we have a duplicate, report it.
1104           Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
1105               << OverlapVal.toString(10);
1106           Diag(OverlapStmt->getLHS()->getBeginLoc(),
1107                diag::note_duplicate_case_prev);
1108           // FIXME: We really want to remove the bogus case stmt from the
1109           // substmt, but we have no way to do this right now.
1110           CaseListIsErroneous = true;
1111         }
1112       }
1113     }
1114 
1115     // Complain if we have a constant condition and we didn't find a match.
1116     if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1117         ShouldCheckConstantCond) {
1118       // TODO: it would be nice if we printed enums as enums, chars as
1119       // chars, etc.
1120       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1121         << ConstantCondValue.toString(10)
1122         << CondExpr->getSourceRange();
1123     }
1124 
1125     // Check to see if switch is over an Enum and handles all of its
1126     // values.  We only issue a warning if there is not 'default:', but
1127     // we still do the analysis to preserve this information in the AST
1128     // (which can be used by flow-based analyes).
1129     //
1130     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1131 
1132     // If switch has default case, then ignore it.
1133     if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1134         ET && ET->getDecl()->isCompleteDefinition()) {
1135       const EnumDecl *ED = ET->getDecl();
1136       EnumValsTy EnumVals;
1137 
1138       // Gather all enum values, set their type and sort them,
1139       // allowing easier comparison with CaseVals.
1140       for (auto *EDI : ED->enumerators()) {
1141         llvm::APSInt Val = EDI->getInitVal();
1142         AdjustAPSInt(Val, CondWidth, CondIsSigned);
1143         EnumVals.push_back(std::make_pair(Val, EDI));
1144       }
1145       llvm::stable_sort(EnumVals, CmpEnumVals);
1146       auto EI = EnumVals.begin(), EIEnd =
1147         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1148 
1149       // See which case values aren't in enum.
1150       for (CaseValsTy::const_iterator CI = CaseVals.begin();
1151           CI != CaseVals.end(); CI++) {
1152         Expr *CaseExpr = CI->second->getLHS();
1153         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1154                                               CI->first))
1155           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1156             << CondTypeBeforePromotion;
1157       }
1158 
1159       // See which of case ranges aren't in enum
1160       EI = EnumVals.begin();
1161       for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1162           RI != CaseRanges.end(); RI++) {
1163         Expr *CaseExpr = RI->second->getLHS();
1164         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1165                                               RI->first))
1166           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1167             << CondTypeBeforePromotion;
1168 
1169         llvm::APSInt Hi =
1170           RI->second->getRHS()->EvaluateKnownConstInt(Context);
1171         AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1172 
1173         CaseExpr = RI->second->getRHS();
1174         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1175                                               Hi))
1176           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1177             << CondTypeBeforePromotion;
1178       }
1179 
1180       // Check which enum vals aren't in switch
1181       auto CI = CaseVals.begin();
1182       auto RI = CaseRanges.begin();
1183       bool hasCasesNotInSwitch = false;
1184 
1185       SmallVector<DeclarationName,8> UnhandledNames;
1186 
1187       for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
1188         // Don't warn about omitted unavailable EnumConstantDecls.
1189         switch (EI->second->getAvailability()) {
1190         case AR_Deprecated:
1191           // Omitting a deprecated constant is ok; it should never materialize.
1192         case AR_Unavailable:
1193           continue;
1194 
1195         case AR_NotYetIntroduced:
1196           // Partially available enum constants should be present. Note that we
1197           // suppress -Wunguarded-availability diagnostics for such uses.
1198         case AR_Available:
1199           break;
1200         }
1201 
1202         if (EI->second->hasAttr<UnusedAttr>())
1203           continue;
1204 
1205         // Drop unneeded case values
1206         while (CI != CaseVals.end() && CI->first < EI->first)
1207           CI++;
1208 
1209         if (CI != CaseVals.end() && CI->first == EI->first)
1210           continue;
1211 
1212         // Drop unneeded case ranges
1213         for (; RI != CaseRanges.end(); RI++) {
1214           llvm::APSInt Hi =
1215             RI->second->getRHS()->EvaluateKnownConstInt(Context);
1216           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1217           if (EI->first <= Hi)
1218             break;
1219         }
1220 
1221         if (RI == CaseRanges.end() || EI->first < RI->first) {
1222           hasCasesNotInSwitch = true;
1223           UnhandledNames.push_back(EI->second->getDeclName());
1224         }
1225       }
1226 
1227       if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1228         Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1229 
1230       // Produce a nice diagnostic if multiple values aren't handled.
1231       if (!UnhandledNames.empty()) {
1232         DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
1233                                     TheDefaultStmt ? diag::warn_def_missing_case
1234                                                    : diag::warn_missing_case)
1235                                << (int)UnhandledNames.size();
1236 
1237         for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1238              I != E; ++I)
1239           DB << UnhandledNames[I];
1240       }
1241 
1242       if (!hasCasesNotInSwitch)
1243         SS->setAllEnumCasesCovered();
1244     }
1245   }
1246 
1247   if (BodyStmt)
1248     DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
1249                           diag::warn_empty_switch_body);
1250 
1251   // FIXME: If the case list was broken is some way, we don't have a good system
1252   // to patch it up.  Instead, just return the whole substmt as broken.
1253   if (CaseListIsErroneous)
1254     return StmtError();
1255 
1256   return SS;
1257 }
1258 
1259 void
1260 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1261                              Expr *SrcExpr) {
1262   if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1263     return;
1264 
1265   if (const EnumType *ET = DstType->getAs<EnumType>())
1266     if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1267         SrcType->isIntegerType()) {
1268       if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1269           SrcExpr->isIntegerConstantExpr(Context)) {
1270         // Get the bitwidth of the enum value before promotions.
1271         unsigned DstWidth = Context.getIntWidth(DstType);
1272         bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1273 
1274         llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1275         AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1276         const EnumDecl *ED = ET->getDecl();
1277 
1278         if (!ED->isClosed())
1279           return;
1280 
1281         if (ED->hasAttr<FlagEnumAttr>()) {
1282           if (!IsValueInFlagEnum(ED, RhsVal, true))
1283             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1284               << DstType.getUnqualifiedType();
1285         } else {
1286           typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1287               EnumValsTy;
1288           EnumValsTy EnumVals;
1289 
1290           // Gather all enum values, set their type and sort them,
1291           // allowing easier comparison with rhs constant.
1292           for (auto *EDI : ED->enumerators()) {
1293             llvm::APSInt Val = EDI->getInitVal();
1294             AdjustAPSInt(Val, DstWidth, DstIsSigned);
1295             EnumVals.push_back(std::make_pair(Val, EDI));
1296           }
1297           if (EnumVals.empty())
1298             return;
1299           llvm::stable_sort(EnumVals, CmpEnumVals);
1300           EnumValsTy::iterator EIend =
1301               std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1302 
1303           // See which values aren't in the enum.
1304           EnumValsTy::const_iterator EI = EnumVals.begin();
1305           while (EI != EIend && EI->first < RhsVal)
1306             EI++;
1307           if (EI == EIend || EI->first != RhsVal) {
1308             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1309                 << DstType.getUnqualifiedType();
1310           }
1311         }
1312       }
1313     }
1314 }
1315 
1316 StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, ConditionResult Cond,
1317                                 Stmt *Body) {
1318   if (Cond.isInvalid())
1319     return StmtError();
1320 
1321   auto CondVal = Cond.get();
1322   CheckBreakContinueBinding(CondVal.second);
1323 
1324   if (CondVal.second &&
1325       !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1326     CommaVisitor(*this).Visit(CondVal.second);
1327 
1328   if (isa<NullStmt>(Body))
1329     getCurCompoundScope().setHasEmptyLoopBodies();
1330 
1331   return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
1332                            WhileLoc);
1333 }
1334 
1335 StmtResult
1336 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1337                   SourceLocation WhileLoc, SourceLocation CondLParen,
1338                   Expr *Cond, SourceLocation CondRParen) {
1339   assert(Cond && "ActOnDoStmt(): missing expression");
1340 
1341   CheckBreakContinueBinding(Cond);
1342   ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1343   if (CondResult.isInvalid())
1344     return StmtError();
1345   Cond = CondResult.get();
1346 
1347   CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
1348   if (CondResult.isInvalid())
1349     return StmtError();
1350   Cond = CondResult.get();
1351 
1352   // Only call the CommaVisitor for C89 due to differences in scope flags.
1353   if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
1354       !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
1355     CommaVisitor(*this).Visit(Cond);
1356 
1357   return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1358 }
1359 
1360 namespace {
1361   // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1362   using DeclSetVector =
1363       llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>,
1364                       llvm::SmallPtrSet<VarDecl *, 8>>;
1365 
1366   // This visitor will traverse a conditional statement and store all
1367   // the evaluated decls into a vector.  Simple is set to true if none
1368   // of the excluded constructs are used.
1369   class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1370     DeclSetVector &Decls;
1371     SmallVectorImpl<SourceRange> &Ranges;
1372     bool Simple;
1373   public:
1374     typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1375 
1376     DeclExtractor(Sema &S, DeclSetVector &Decls,
1377                   SmallVectorImpl<SourceRange> &Ranges) :
1378         Inherited(S.Context),
1379         Decls(Decls),
1380         Ranges(Ranges),
1381         Simple(true) {}
1382 
1383     bool isSimple() { return Simple; }
1384 
1385     // Replaces the method in EvaluatedExprVisitor.
1386     void VisitMemberExpr(MemberExpr* E) {
1387       Simple = false;
1388     }
1389 
1390     // Any Stmt not whitelisted will cause the condition to be marked complex.
1391     void VisitStmt(Stmt *S) {
1392       Simple = false;
1393     }
1394 
1395     void VisitBinaryOperator(BinaryOperator *E) {
1396       Visit(E->getLHS());
1397       Visit(E->getRHS());
1398     }
1399 
1400     void VisitCastExpr(CastExpr *E) {
1401       Visit(E->getSubExpr());
1402     }
1403 
1404     void VisitUnaryOperator(UnaryOperator *E) {
1405       // Skip checking conditionals with derefernces.
1406       if (E->getOpcode() == UO_Deref)
1407         Simple = false;
1408       else
1409         Visit(E->getSubExpr());
1410     }
1411 
1412     void VisitConditionalOperator(ConditionalOperator *E) {
1413       Visit(E->getCond());
1414       Visit(E->getTrueExpr());
1415       Visit(E->getFalseExpr());
1416     }
1417 
1418     void VisitParenExpr(ParenExpr *E) {
1419       Visit(E->getSubExpr());
1420     }
1421 
1422     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1423       Visit(E->getOpaqueValue()->getSourceExpr());
1424       Visit(E->getFalseExpr());
1425     }
1426 
1427     void VisitIntegerLiteral(IntegerLiteral *E) { }
1428     void VisitFloatingLiteral(FloatingLiteral *E) { }
1429     void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1430     void VisitCharacterLiteral(CharacterLiteral *E) { }
1431     void VisitGNUNullExpr(GNUNullExpr *E) { }
1432     void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1433 
1434     void VisitDeclRefExpr(DeclRefExpr *E) {
1435       VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1436       if (!VD) {
1437         // Don't allow unhandled Decl types.
1438         Simple = false;
1439         return;
1440       }
1441 
1442       Ranges.push_back(E->getSourceRange());
1443 
1444       Decls.insert(VD);
1445     }
1446 
1447   }; // end class DeclExtractor
1448 
1449   // DeclMatcher checks to see if the decls are used in a non-evaluated
1450   // context.
1451   class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1452     DeclSetVector &Decls;
1453     bool FoundDecl;
1454 
1455   public:
1456     typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1457 
1458     DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1459         Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1460       if (!Statement) return;
1461 
1462       Visit(Statement);
1463     }
1464 
1465     void VisitReturnStmt(ReturnStmt *S) {
1466       FoundDecl = true;
1467     }
1468 
1469     void VisitBreakStmt(BreakStmt *S) {
1470       FoundDecl = true;
1471     }
1472 
1473     void VisitGotoStmt(GotoStmt *S) {
1474       FoundDecl = true;
1475     }
1476 
1477     void VisitCastExpr(CastExpr *E) {
1478       if (E->getCastKind() == CK_LValueToRValue)
1479         CheckLValueToRValueCast(E->getSubExpr());
1480       else
1481         Visit(E->getSubExpr());
1482     }
1483 
1484     void CheckLValueToRValueCast(Expr *E) {
1485       E = E->IgnoreParenImpCasts();
1486 
1487       if (isa<DeclRefExpr>(E)) {
1488         return;
1489       }
1490 
1491       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1492         Visit(CO->getCond());
1493         CheckLValueToRValueCast(CO->getTrueExpr());
1494         CheckLValueToRValueCast(CO->getFalseExpr());
1495         return;
1496       }
1497 
1498       if (BinaryConditionalOperator *BCO =
1499               dyn_cast<BinaryConditionalOperator>(E)) {
1500         CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1501         CheckLValueToRValueCast(BCO->getFalseExpr());
1502         return;
1503       }
1504 
1505       Visit(E);
1506     }
1507 
1508     void VisitDeclRefExpr(DeclRefExpr *E) {
1509       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1510         if (Decls.count(VD))
1511           FoundDecl = true;
1512     }
1513 
1514     void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1515       // Only need to visit the semantics for POE.
1516       // SyntaticForm doesn't really use the Decal.
1517       for (auto *S : POE->semantics()) {
1518         if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1519           // Look past the OVE into the expression it binds.
1520           Visit(OVE->getSourceExpr());
1521         else
1522           Visit(S);
1523       }
1524     }
1525 
1526     bool FoundDeclInUse() { return FoundDecl; }
1527 
1528   };  // end class DeclMatcher
1529 
1530   void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1531                                         Expr *Third, Stmt *Body) {
1532     // Condition is empty
1533     if (!Second) return;
1534 
1535     if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1536                           Second->getBeginLoc()))
1537       return;
1538 
1539     PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1540     DeclSetVector Decls;
1541     SmallVector<SourceRange, 10> Ranges;
1542     DeclExtractor DE(S, Decls, Ranges);
1543     DE.Visit(Second);
1544 
1545     // Don't analyze complex conditionals.
1546     if (!DE.isSimple()) return;
1547 
1548     // No decls found.
1549     if (Decls.size() == 0) return;
1550 
1551     // Don't warn on volatile, static, or global variables.
1552     for (auto *VD : Decls)
1553       if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1554         return;
1555 
1556     if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1557         DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1558         DeclMatcher(S, Decls, Body).FoundDeclInUse())
1559       return;
1560 
1561     // Load decl names into diagnostic.
1562     if (Decls.size() > 4) {
1563       PDiag << 0;
1564     } else {
1565       PDiag << (unsigned)Decls.size();
1566       for (auto *VD : Decls)
1567         PDiag << VD->getDeclName();
1568     }
1569 
1570     for (auto Range : Ranges)
1571       PDiag << Range;
1572 
1573     S.Diag(Ranges.begin()->getBegin(), PDiag);
1574   }
1575 
1576   // If Statement is an incemement or decrement, return true and sets the
1577   // variables Increment and DRE.
1578   bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1579                             DeclRefExpr *&DRE) {
1580     if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1581       if (!Cleanups->cleanupsHaveSideEffects())
1582         Statement = Cleanups->getSubExpr();
1583 
1584     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1585       switch (UO->getOpcode()) {
1586         default: return false;
1587         case UO_PostInc:
1588         case UO_PreInc:
1589           Increment = true;
1590           break;
1591         case UO_PostDec:
1592         case UO_PreDec:
1593           Increment = false;
1594           break;
1595       }
1596       DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1597       return DRE;
1598     }
1599 
1600     if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1601       FunctionDecl *FD = Call->getDirectCallee();
1602       if (!FD || !FD->isOverloadedOperator()) return false;
1603       switch (FD->getOverloadedOperator()) {
1604         default: return false;
1605         case OO_PlusPlus:
1606           Increment = true;
1607           break;
1608         case OO_MinusMinus:
1609           Increment = false;
1610           break;
1611       }
1612       DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1613       return DRE;
1614     }
1615 
1616     return false;
1617   }
1618 
1619   // A visitor to determine if a continue or break statement is a
1620   // subexpression.
1621   class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
1622     SourceLocation BreakLoc;
1623     SourceLocation ContinueLoc;
1624     bool InSwitch = false;
1625 
1626   public:
1627     BreakContinueFinder(Sema &S, const Stmt* Body) :
1628         Inherited(S.Context) {
1629       Visit(Body);
1630     }
1631 
1632     typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited;
1633 
1634     void VisitContinueStmt(const ContinueStmt* E) {
1635       ContinueLoc = E->getContinueLoc();
1636     }
1637 
1638     void VisitBreakStmt(const BreakStmt* E) {
1639       if (!InSwitch)
1640         BreakLoc = E->getBreakLoc();
1641     }
1642 
1643     void VisitSwitchStmt(const SwitchStmt* S) {
1644       if (const Stmt *Init = S->getInit())
1645         Visit(Init);
1646       if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
1647         Visit(CondVar);
1648       if (const Stmt *Cond = S->getCond())
1649         Visit(Cond);
1650 
1651       // Don't return break statements from the body of a switch.
1652       InSwitch = true;
1653       if (const Stmt *Body = S->getBody())
1654         Visit(Body);
1655       InSwitch = false;
1656     }
1657 
1658     void VisitForStmt(const ForStmt *S) {
1659       // Only visit the init statement of a for loop; the body
1660       // has a different break/continue scope.
1661       if (const Stmt *Init = S->getInit())
1662         Visit(Init);
1663     }
1664 
1665     void VisitWhileStmt(const WhileStmt *) {
1666       // Do nothing; the children of a while loop have a different
1667       // break/continue scope.
1668     }
1669 
1670     void VisitDoStmt(const DoStmt *) {
1671       // Do nothing; the children of a while loop have a different
1672       // break/continue scope.
1673     }
1674 
1675     void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
1676       // Only visit the initialization of a for loop; the body
1677       // has a different break/continue scope.
1678       if (const Stmt *Init = S->getInit())
1679         Visit(Init);
1680       if (const Stmt *Range = S->getRangeStmt())
1681         Visit(Range);
1682       if (const Stmt *Begin = S->getBeginStmt())
1683         Visit(Begin);
1684       if (const Stmt *End = S->getEndStmt())
1685         Visit(End);
1686     }
1687 
1688     void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
1689       // Only visit the initialization of a for loop; the body
1690       // has a different break/continue scope.
1691       if (const Stmt *Element = S->getElement())
1692         Visit(Element);
1693       if (const Stmt *Collection = S->getCollection())
1694         Visit(Collection);
1695     }
1696 
1697     bool ContinueFound() { return ContinueLoc.isValid(); }
1698     bool BreakFound() { return BreakLoc.isValid(); }
1699     SourceLocation GetContinueLoc() { return ContinueLoc; }
1700     SourceLocation GetBreakLoc() { return BreakLoc; }
1701 
1702   };  // end class BreakContinueFinder
1703 
1704   // Emit a warning when a loop increment/decrement appears twice per loop
1705   // iteration.  The conditions which trigger this warning are:
1706   // 1) The last statement in the loop body and the third expression in the
1707   //    for loop are both increment or both decrement of the same variable
1708   // 2) No continue statements in the loop body.
1709   void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1710     // Return when there is nothing to check.
1711     if (!Body || !Third) return;
1712 
1713     if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
1714                           Third->getBeginLoc()))
1715       return;
1716 
1717     // Get the last statement from the loop body.
1718     CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1719     if (!CS || CS->body_empty()) return;
1720     Stmt *LastStmt = CS->body_back();
1721     if (!LastStmt) return;
1722 
1723     bool LoopIncrement, LastIncrement;
1724     DeclRefExpr *LoopDRE, *LastDRE;
1725 
1726     if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1727     if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1728 
1729     // Check that the two statements are both increments or both decrements
1730     // on the same variable.
1731     if (LoopIncrement != LastIncrement ||
1732         LoopDRE->getDecl() != LastDRE->getDecl()) return;
1733 
1734     if (BreakContinueFinder(S, Body).ContinueFound()) return;
1735 
1736     S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1737          << LastDRE->getDecl() << LastIncrement;
1738     S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1739          << LoopIncrement;
1740   }
1741 
1742 } // end namespace
1743 
1744 
1745 void Sema::CheckBreakContinueBinding(Expr *E) {
1746   if (!E || getLangOpts().CPlusPlus)
1747     return;
1748   BreakContinueFinder BCFinder(*this, E);
1749   Scope *BreakParent = CurScope->getBreakParent();
1750   if (BCFinder.BreakFound() && BreakParent) {
1751     if (BreakParent->getFlags() & Scope::SwitchScope) {
1752       Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
1753     } else {
1754       Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
1755           << "break";
1756     }
1757   } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
1758     Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
1759         << "continue";
1760   }
1761 }
1762 
1763 StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1764                               Stmt *First, ConditionResult Second,
1765                               FullExprArg third, SourceLocation RParenLoc,
1766                               Stmt *Body) {
1767   if (Second.isInvalid())
1768     return StmtError();
1769 
1770   if (!getLangOpts().CPlusPlus) {
1771     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1772       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1773       // declare identifiers for objects having storage class 'auto' or
1774       // 'register'.
1775       for (auto *DI : DS->decls()) {
1776         VarDecl *VD = dyn_cast<VarDecl>(DI);
1777         if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1778           VD = nullptr;
1779         if (!VD) {
1780           Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
1781           DI->setInvalidDecl();
1782         }
1783       }
1784     }
1785   }
1786 
1787   CheckBreakContinueBinding(Second.get().second);
1788   CheckBreakContinueBinding(third.get());
1789 
1790   if (!Second.get().first)
1791     CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
1792                                      Body);
1793   CheckForRedundantIteration(*this, third.get(), Body);
1794 
1795   if (Second.get().second &&
1796       !Diags.isIgnored(diag::warn_comma_operator,
1797                        Second.get().second->getExprLoc()))
1798     CommaVisitor(*this).Visit(Second.get().second);
1799 
1800   Expr *Third  = third.release().getAs<Expr>();
1801   if (isa<NullStmt>(Body))
1802     getCurCompoundScope().setHasEmptyLoopBodies();
1803 
1804   return new (Context)
1805       ForStmt(Context, First, Second.get().second, Second.get().first, Third,
1806               Body, ForLoc, LParenLoc, RParenLoc);
1807 }
1808 
1809 /// In an Objective C collection iteration statement:
1810 ///   for (x in y)
1811 /// x can be an arbitrary l-value expression.  Bind it up as a
1812 /// full-expression.
1813 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1814   // Reduce placeholder expressions here.  Note that this rejects the
1815   // use of pseudo-object l-values in this position.
1816   ExprResult result = CheckPlaceholderExpr(E);
1817   if (result.isInvalid()) return StmtError();
1818   E = result.get();
1819 
1820   ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
1821   if (FullExpr.isInvalid())
1822     return StmtError();
1823   return StmtResult(static_cast<Stmt*>(FullExpr.get()));
1824 }
1825 
1826 ExprResult
1827 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1828   if (!collection)
1829     return ExprError();
1830 
1831   ExprResult result = CorrectDelayedTyposInExpr(collection);
1832   if (!result.isUsable())
1833     return ExprError();
1834   collection = result.get();
1835 
1836   // Bail out early if we've got a type-dependent expression.
1837   if (collection->isTypeDependent()) return collection;
1838 
1839   // Perform normal l-value conversion.
1840   result = DefaultFunctionArrayLvalueConversion(collection);
1841   if (result.isInvalid())
1842     return ExprError();
1843   collection = result.get();
1844 
1845   // The operand needs to have object-pointer type.
1846   // TODO: should we do a contextual conversion?
1847   const ObjCObjectPointerType *pointerType =
1848     collection->getType()->getAs<ObjCObjectPointerType>();
1849   if (!pointerType)
1850     return Diag(forLoc, diag::err_collection_expr_type)
1851              << collection->getType() << collection->getSourceRange();
1852 
1853   // Check that the operand provides
1854   //   - countByEnumeratingWithState:objects:count:
1855   const ObjCObjectType *objectType = pointerType->getObjectType();
1856   ObjCInterfaceDecl *iface = objectType->getInterface();
1857 
1858   // If we have a forward-declared type, we can't do this check.
1859   // Under ARC, it is an error not to have a forward-declared class.
1860   if (iface &&
1861       (getLangOpts().ObjCAutoRefCount
1862            ? RequireCompleteType(forLoc, QualType(objectType, 0),
1863                                  diag::err_arc_collection_forward, collection)
1864            : !isCompleteType(forLoc, QualType(objectType, 0)))) {
1865     // Otherwise, if we have any useful type information, check that
1866     // the type declares the appropriate method.
1867   } else if (iface || !objectType->qual_empty()) {
1868     IdentifierInfo *selectorIdents[] = {
1869       &Context.Idents.get("countByEnumeratingWithState"),
1870       &Context.Idents.get("objects"),
1871       &Context.Idents.get("count")
1872     };
1873     Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1874 
1875     ObjCMethodDecl *method = nullptr;
1876 
1877     // If there's an interface, look in both the public and private APIs.
1878     if (iface) {
1879       method = iface->lookupInstanceMethod(selector);
1880       if (!method) method = iface->lookupPrivateMethod(selector);
1881     }
1882 
1883     // Also check protocol qualifiers.
1884     if (!method)
1885       method = LookupMethodInQualifiedType(selector, pointerType,
1886                                            /*instance*/ true);
1887 
1888     // If we didn't find it anywhere, give up.
1889     if (!method) {
1890       Diag(forLoc, diag::warn_collection_expr_type)
1891         << collection->getType() << selector << collection->getSourceRange();
1892     }
1893 
1894     // TODO: check for an incompatible signature?
1895   }
1896 
1897   // Wrap up any cleanups in the expression.
1898   return collection;
1899 }
1900 
1901 StmtResult
1902 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1903                                  Stmt *First, Expr *collection,
1904                                  SourceLocation RParenLoc) {
1905   setFunctionHasBranchProtectedScope();
1906 
1907   ExprResult CollectionExprResult =
1908     CheckObjCForCollectionOperand(ForLoc, collection);
1909 
1910   if (First) {
1911     QualType FirstType;
1912     if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1913       if (!DS->isSingleDecl())
1914         return StmtError(Diag((*DS->decl_begin())->getLocation(),
1915                          diag::err_toomany_element_decls));
1916 
1917       VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1918       if (!D || D->isInvalidDecl())
1919         return StmtError();
1920 
1921       FirstType = D->getType();
1922       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1923       // declare identifiers for objects having storage class 'auto' or
1924       // 'register'.
1925       if (!D->hasLocalStorage())
1926         return StmtError(Diag(D->getLocation(),
1927                               diag::err_non_local_variable_decl_in_for));
1928 
1929       // If the type contained 'auto', deduce the 'auto' to 'id'.
1930       if (FirstType->getContainedAutoType()) {
1931         OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1932                                  VK_RValue);
1933         Expr *DeducedInit = &OpaqueId;
1934         if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1935                 DAR_Failed)
1936           DiagnoseAutoDeductionFailure(D, DeducedInit);
1937         if (FirstType.isNull()) {
1938           D->setInvalidDecl();
1939           return StmtError();
1940         }
1941 
1942         D->setType(FirstType);
1943 
1944         if (!inTemplateInstantiation()) {
1945           SourceLocation Loc =
1946               D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
1947           Diag(Loc, diag::warn_auto_var_is_id)
1948             << D->getDeclName();
1949         }
1950       }
1951 
1952     } else {
1953       Expr *FirstE = cast<Expr>(First);
1954       if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1955         return StmtError(
1956             Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue)
1957             << First->getSourceRange());
1958 
1959       FirstType = static_cast<Expr*>(First)->getType();
1960       if (FirstType.isConstQualified())
1961         Diag(ForLoc, diag::err_selector_element_const_type)
1962           << FirstType << First->getSourceRange();
1963     }
1964     if (!FirstType->isDependentType() &&
1965         !FirstType->isObjCObjectPointerType() &&
1966         !FirstType->isBlockPointerType())
1967         return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1968                            << FirstType << First->getSourceRange());
1969   }
1970 
1971   if (CollectionExprResult.isInvalid())
1972     return StmtError();
1973 
1974   CollectionExprResult =
1975       ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false);
1976   if (CollectionExprResult.isInvalid())
1977     return StmtError();
1978 
1979   return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
1980                                              nullptr, ForLoc, RParenLoc);
1981 }
1982 
1983 /// Finish building a variable declaration for a for-range statement.
1984 /// \return true if an error occurs.
1985 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1986                                   SourceLocation Loc, int DiagID) {
1987   if (Decl->getType()->isUndeducedType()) {
1988     ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
1989     if (!Res.isUsable()) {
1990       Decl->setInvalidDecl();
1991       return true;
1992     }
1993     Init = Res.get();
1994   }
1995 
1996   // Deduce the type for the iterator variable now rather than leaving it to
1997   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1998   QualType InitType;
1999   if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
2000       SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
2001           Sema::DAR_Failed)
2002     SemaRef.Diag(Loc, DiagID) << Init->getType();
2003   if (InitType.isNull()) {
2004     Decl->setInvalidDecl();
2005     return true;
2006   }
2007   Decl->setType(InitType);
2008 
2009   // In ARC, infer lifetime.
2010   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
2011   // we're doing the equivalent of fast iteration.
2012   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2013       SemaRef.inferObjCARCLifetime(Decl))
2014     Decl->setInvalidDecl();
2015 
2016   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
2017   SemaRef.FinalizeDeclaration(Decl);
2018   SemaRef.CurContext->addHiddenDecl(Decl);
2019   return false;
2020 }
2021 
2022 namespace {
2023 // An enum to represent whether something is dealing with a call to begin()
2024 // or a call to end() in a range-based for loop.
2025 enum BeginEndFunction {
2026   BEF_begin,
2027   BEF_end
2028 };
2029 
2030 /// Produce a note indicating which begin/end function was implicitly called
2031 /// by a C++11 for-range statement. This is often not obvious from the code,
2032 /// nor from the diagnostics produced when analysing the implicit expressions
2033 /// required in a for-range statement.
2034 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
2035                                   BeginEndFunction BEF) {
2036   CallExpr *CE = dyn_cast<CallExpr>(E);
2037   if (!CE)
2038     return;
2039   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2040   if (!D)
2041     return;
2042   SourceLocation Loc = D->getLocation();
2043 
2044   std::string Description;
2045   bool IsTemplate = false;
2046   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2047     Description = SemaRef.getTemplateArgumentBindingsText(
2048       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2049     IsTemplate = true;
2050   }
2051 
2052   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2053     << BEF << IsTemplate << Description << E->getType();
2054 }
2055 
2056 /// Build a variable declaration for a for-range statement.
2057 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2058                               QualType Type, StringRef Name) {
2059   DeclContext *DC = SemaRef.CurContext;
2060   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2061   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2062   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2063                                   TInfo, SC_None);
2064   Decl->setImplicit();
2065   return Decl;
2066 }
2067 
2068 }
2069 
2070 static bool ObjCEnumerationCollection(Expr *Collection) {
2071   return !Collection->isTypeDependent()
2072           && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2073 }
2074 
2075 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
2076 ///
2077 /// C++11 [stmt.ranged]:
2078 ///   A range-based for statement is equivalent to
2079 ///
2080 ///   {
2081 ///     auto && __range = range-init;
2082 ///     for ( auto __begin = begin-expr,
2083 ///           __end = end-expr;
2084 ///           __begin != __end;
2085 ///           ++__begin ) {
2086 ///       for-range-declaration = *__begin;
2087 ///       statement
2088 ///     }
2089 ///   }
2090 ///
2091 /// The body of the loop is not available yet, since it cannot be analysed until
2092 /// we have determined the type of the for-range-declaration.
2093 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
2094                                       SourceLocation CoawaitLoc, Stmt *InitStmt,
2095                                       Stmt *First, SourceLocation ColonLoc,
2096                                       Expr *Range, SourceLocation RParenLoc,
2097                                       BuildForRangeKind Kind) {
2098   if (!First)
2099     return StmtError();
2100 
2101   if (Range && ObjCEnumerationCollection(Range)) {
2102     // FIXME: Support init-statements in Objective-C++20 ranged for statement.
2103     if (InitStmt)
2104       return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
2105                  << InitStmt->getSourceRange();
2106     return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2107   }
2108 
2109   DeclStmt *DS = dyn_cast<DeclStmt>(First);
2110   assert(DS && "first part of for range not a decl stmt");
2111 
2112   if (!DS->isSingleDecl()) {
2113     Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
2114     return StmtError();
2115   }
2116 
2117   Decl *LoopVar = DS->getSingleDecl();
2118   if (LoopVar->isInvalidDecl() || !Range ||
2119       DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2120     LoopVar->setInvalidDecl();
2121     return StmtError();
2122   }
2123 
2124   // Build the coroutine state immediately and not later during template
2125   // instantiation
2126   if (!CoawaitLoc.isInvalid()) {
2127     if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await"))
2128       return StmtError();
2129   }
2130 
2131   // Build  auto && __range = range-init
2132   // Divide by 2, since the variables are in the inner scope (loop body).
2133   const auto DepthStr = std::to_string(S->getDepth() / 2);
2134   SourceLocation RangeLoc = Range->getBeginLoc();
2135   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2136                                            Context.getAutoRRefDeductType(),
2137                                            std::string("__range") + DepthStr);
2138   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2139                             diag::err_for_range_deduction_failure)) {
2140     LoopVar->setInvalidDecl();
2141     return StmtError();
2142   }
2143 
2144   // Claim the type doesn't contain auto: we've already done the checking.
2145   DeclGroupPtrTy RangeGroup =
2146       BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2147   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2148   if (RangeDecl.isInvalid()) {
2149     LoopVar->setInvalidDecl();
2150     return StmtError();
2151   }
2152 
2153   return BuildCXXForRangeStmt(
2154       ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
2155       /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2156       /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind);
2157 }
2158 
2159 /// Create the initialization, compare, and increment steps for
2160 /// the range-based for loop expression.
2161 /// This function does not handle array-based for loops,
2162 /// which are created in Sema::BuildCXXForRangeStmt.
2163 ///
2164 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2165 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2166 /// CandidateSet and BEF are set and some non-success value is returned on
2167 /// failure.
2168 static Sema::ForRangeStatus
2169 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2170                       QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2171                       SourceLocation ColonLoc, SourceLocation CoawaitLoc,
2172                       OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2173                       ExprResult *EndExpr, BeginEndFunction *BEF) {
2174   DeclarationNameInfo BeginNameInfo(
2175       &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2176   DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2177                                   ColonLoc);
2178 
2179   LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2180                                  Sema::LookupMemberName);
2181   LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2182 
2183   auto BuildBegin = [&] {
2184     *BEF = BEF_begin;
2185     Sema::ForRangeStatus RangeStatus =
2186         SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2187                                           BeginMemberLookup, CandidateSet,
2188                                           BeginRange, BeginExpr);
2189 
2190     if (RangeStatus != Sema::FRS_Success) {
2191       if (RangeStatus == Sema::FRS_DiagnosticIssued)
2192         SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
2193             << ColonLoc << BEF_begin << BeginRange->getType();
2194       return RangeStatus;
2195     }
2196     if (!CoawaitLoc.isInvalid()) {
2197       // FIXME: getCurScope() should not be used during template instantiation.
2198       // We should pick up the set of unqualified lookup results for operator
2199       // co_await during the initial parse.
2200       *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2201                                             BeginExpr->get());
2202       if (BeginExpr->isInvalid())
2203         return Sema::FRS_DiagnosticIssued;
2204     }
2205     if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2206                               diag::err_for_range_iter_deduction_failure)) {
2207       NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2208       return Sema::FRS_DiagnosticIssued;
2209     }
2210     return Sema::FRS_Success;
2211   };
2212 
2213   auto BuildEnd = [&] {
2214     *BEF = BEF_end;
2215     Sema::ForRangeStatus RangeStatus =
2216         SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2217                                           EndMemberLookup, CandidateSet,
2218                                           EndRange, EndExpr);
2219     if (RangeStatus != Sema::FRS_Success) {
2220       if (RangeStatus == Sema::FRS_DiagnosticIssued)
2221         SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
2222             << ColonLoc << BEF_end << EndRange->getType();
2223       return RangeStatus;
2224     }
2225     if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2226                               diag::err_for_range_iter_deduction_failure)) {
2227       NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2228       return Sema::FRS_DiagnosticIssued;
2229     }
2230     return Sema::FRS_Success;
2231   };
2232 
2233   if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2234     // - if _RangeT is a class type, the unqualified-ids begin and end are
2235     //   looked up in the scope of class _RangeT as if by class member access
2236     //   lookup (3.4.5), and if either (or both) finds at least one
2237     //   declaration, begin-expr and end-expr are __range.begin() and
2238     //   __range.end(), respectively;
2239     SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2240     if (BeginMemberLookup.isAmbiguous())
2241       return Sema::FRS_DiagnosticIssued;
2242 
2243     SemaRef.LookupQualifiedName(EndMemberLookup, D);
2244     if (EndMemberLookup.isAmbiguous())
2245       return Sema::FRS_DiagnosticIssued;
2246 
2247     if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2248       // Look up the non-member form of the member we didn't find, first.
2249       // This way we prefer a "no viable 'end'" diagnostic over a "i found
2250       // a 'begin' but ignored it because there was no member 'end'"
2251       // diagnostic.
2252       auto BuildNonmember = [&](
2253           BeginEndFunction BEFFound, LookupResult &Found,
2254           llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
2255           llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
2256         LookupResult OldFound = std::move(Found);
2257         Found.clear();
2258 
2259         if (Sema::ForRangeStatus Result = BuildNotFound())
2260           return Result;
2261 
2262         switch (BuildFound()) {
2263         case Sema::FRS_Success:
2264           return Sema::FRS_Success;
2265 
2266         case Sema::FRS_NoViableFunction:
2267           CandidateSet->NoteCandidates(
2268               PartialDiagnosticAt(BeginRange->getBeginLoc(),
2269                                   SemaRef.PDiag(diag::err_for_range_invalid)
2270                                       << BeginRange->getType() << BEFFound),
2271               SemaRef, OCD_AllCandidates, BeginRange);
2272           LLVM_FALLTHROUGH;
2273 
2274         case Sema::FRS_DiagnosticIssued:
2275           for (NamedDecl *D : OldFound) {
2276             SemaRef.Diag(D->getLocation(),
2277                          diag::note_for_range_member_begin_end_ignored)
2278                 << BeginRange->getType() << BEFFound;
2279           }
2280           return Sema::FRS_DiagnosticIssued;
2281         }
2282         llvm_unreachable("unexpected ForRangeStatus");
2283       };
2284       if (BeginMemberLookup.empty())
2285         return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
2286       return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
2287     }
2288   } else {
2289     // - otherwise, begin-expr and end-expr are begin(__range) and
2290     //   end(__range), respectively, where begin and end are looked up with
2291     //   argument-dependent lookup (3.4.2). For the purposes of this name
2292     //   lookup, namespace std is an associated namespace.
2293   }
2294 
2295   if (Sema::ForRangeStatus Result = BuildBegin())
2296     return Result;
2297   return BuildEnd();
2298 }
2299 
2300 /// Speculatively attempt to dereference an invalid range expression.
2301 /// If the attempt fails, this function will return a valid, null StmtResult
2302 /// and emit no diagnostics.
2303 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2304                                                  SourceLocation ForLoc,
2305                                                  SourceLocation CoawaitLoc,
2306                                                  Stmt *InitStmt,
2307                                                  Stmt *LoopVarDecl,
2308                                                  SourceLocation ColonLoc,
2309                                                  Expr *Range,
2310                                                  SourceLocation RangeLoc,
2311                                                  SourceLocation RParenLoc) {
2312   // Determine whether we can rebuild the for-range statement with a
2313   // dereferenced range expression.
2314   ExprResult AdjustedRange;
2315   {
2316     Sema::SFINAETrap Trap(SemaRef);
2317 
2318     AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2319     if (AdjustedRange.isInvalid())
2320       return StmtResult();
2321 
2322     StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2323         S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2324         AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
2325     if (SR.isInvalid())
2326       return StmtResult();
2327   }
2328 
2329   // The attempt to dereference worked well enough that it could produce a valid
2330   // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2331   // case there are any other (non-fatal) problems with it.
2332   SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2333     << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2334   return SemaRef.ActOnCXXForRangeStmt(
2335       S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2336       AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
2337 }
2338 
2339 namespace {
2340 /// RAII object to automatically invalidate a declaration if an error occurs.
2341 struct InvalidateOnErrorScope {
2342   InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
2343       : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
2344   ~InvalidateOnErrorScope() {
2345     if (Enabled && Trap.hasErrorOccurred())
2346       D->setInvalidDecl();
2347   }
2348 
2349   DiagnosticErrorTrap Trap;
2350   Decl *D;
2351   bool Enabled;
2352 };
2353 }
2354 
2355 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2356 StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc,
2357                                       SourceLocation CoawaitLoc, Stmt *InitStmt,
2358                                       SourceLocation ColonLoc, Stmt *RangeDecl,
2359                                       Stmt *Begin, Stmt *End, Expr *Cond,
2360                                       Expr *Inc, Stmt *LoopVarDecl,
2361                                       SourceLocation RParenLoc,
2362                                       BuildForRangeKind Kind) {
2363   // FIXME: This should not be used during template instantiation. We should
2364   // pick up the set of unqualified lookup results for the != and + operators
2365   // in the initial parse.
2366   //
2367   // Testcase (accepts-invalid):
2368   //   template<typename T> void f() { for (auto x : T()) {} }
2369   //   namespace N { struct X { X begin(); X end(); int operator*(); }; }
2370   //   bool operator!=(N::X, N::X); void operator++(N::X);
2371   //   void g() { f<N::X>(); }
2372   Scope *S = getCurScope();
2373 
2374   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2375   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2376   QualType RangeVarType = RangeVar->getType();
2377 
2378   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2379   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2380 
2381   // If we hit any errors, mark the loop variable as invalid if its type
2382   // contains 'auto'.
2383   InvalidateOnErrorScope Invalidate(*this, LoopVar,
2384                                     LoopVar->getType()->isUndeducedType());
2385 
2386   StmtResult BeginDeclStmt = Begin;
2387   StmtResult EndDeclStmt = End;
2388   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2389 
2390   if (RangeVarType->isDependentType()) {
2391     // The range is implicitly used as a placeholder when it is dependent.
2392     RangeVar->markUsed(Context);
2393 
2394     // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2395     // them in properly when we instantiate the loop.
2396     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2397       if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2398         for (auto *Binding : DD->bindings())
2399           Binding->setType(Context.DependentTy);
2400       LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2401     }
2402   } else if (!BeginDeclStmt.get()) {
2403     SourceLocation RangeLoc = RangeVar->getLocation();
2404 
2405     const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2406 
2407     ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2408                                                 VK_LValue, ColonLoc);
2409     if (BeginRangeRef.isInvalid())
2410       return StmtError();
2411 
2412     ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2413                                               VK_LValue, ColonLoc);
2414     if (EndRangeRef.isInvalid())
2415       return StmtError();
2416 
2417     QualType AutoType = Context.getAutoDeductType();
2418     Expr *Range = RangeVar->getInit();
2419     if (!Range)
2420       return StmtError();
2421     QualType RangeType = Range->getType();
2422 
2423     if (RequireCompleteType(RangeLoc, RangeType,
2424                             diag::err_for_range_incomplete_type))
2425       return StmtError();
2426 
2427     // Build auto __begin = begin-expr, __end = end-expr.
2428     // Divide by 2, since the variables are in the inner scope (loop body).
2429     const auto DepthStr = std::to_string(S->getDepth() / 2);
2430     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2431                                              std::string("__begin") + DepthStr);
2432     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2433                                            std::string("__end") + DepthStr);
2434 
2435     // Build begin-expr and end-expr and attach to __begin and __end variables.
2436     ExprResult BeginExpr, EndExpr;
2437     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2438       // - if _RangeT is an array type, begin-expr and end-expr are __range and
2439       //   __range + __bound, respectively, where __bound is the array bound. If
2440       //   _RangeT is an array of unknown size or an array of incomplete type,
2441       //   the program is ill-formed;
2442 
2443       // begin-expr is __range.
2444       BeginExpr = BeginRangeRef;
2445       if (!CoawaitLoc.isInvalid()) {
2446         BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2447         if (BeginExpr.isInvalid())
2448           return StmtError();
2449       }
2450       if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2451                                 diag::err_for_range_iter_deduction_failure)) {
2452         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2453         return StmtError();
2454       }
2455 
2456       // Find the array bound.
2457       ExprResult BoundExpr;
2458       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2459         BoundExpr = IntegerLiteral::Create(
2460             Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2461       else if (const VariableArrayType *VAT =
2462                dyn_cast<VariableArrayType>(UnqAT)) {
2463         // For a variably modified type we can't just use the expression within
2464         // the array bounds, since we don't want that to be re-evaluated here.
2465         // Rather, we need to determine what it was when the array was first
2466         // created - so we resort to using sizeof(vla)/sizeof(element).
2467         // For e.g.
2468         //  void f(int b) {
2469         //    int vla[b];
2470         //    b = -1;   <-- This should not affect the num of iterations below
2471         //    for (int &c : vla) { .. }
2472         //  }
2473 
2474         // FIXME: This results in codegen generating IR that recalculates the
2475         // run-time number of elements (as opposed to just using the IR Value
2476         // that corresponds to the run-time value of each bound that was
2477         // generated when the array was created.) If this proves too embarrassing
2478         // even for unoptimized IR, consider passing a magic-value/cookie to
2479         // codegen that then knows to simply use that initial llvm::Value (that
2480         // corresponds to the bound at time of array creation) within
2481         // getelementptr.  But be prepared to pay the price of increasing a
2482         // customized form of coupling between the two components - which  could
2483         // be hard to maintain as the codebase evolves.
2484 
2485         ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2486             EndVar->getLocation(), UETT_SizeOf,
2487             /*IsType=*/true,
2488             CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2489                                                  VAT->desugar(), RangeLoc))
2490                 .getAsOpaquePtr(),
2491             EndVar->getSourceRange());
2492         if (SizeOfVLAExprR.isInvalid())
2493           return StmtError();
2494 
2495         ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2496             EndVar->getLocation(), UETT_SizeOf,
2497             /*IsType=*/true,
2498             CreateParsedType(VAT->desugar(),
2499                              Context.getTrivialTypeSourceInfo(
2500                                  VAT->getElementType(), RangeLoc))
2501                 .getAsOpaquePtr(),
2502             EndVar->getSourceRange());
2503         if (SizeOfEachElementExprR.isInvalid())
2504           return StmtError();
2505 
2506         BoundExpr =
2507             ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2508                        SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2509         if (BoundExpr.isInvalid())
2510           return StmtError();
2511 
2512       } else {
2513         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2514         // UnqAT is not incomplete and Range is not type-dependent.
2515         llvm_unreachable("Unexpected array type in for-range");
2516       }
2517 
2518       // end-expr is __range + __bound.
2519       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2520                            BoundExpr.get());
2521       if (EndExpr.isInvalid())
2522         return StmtError();
2523       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2524                                 diag::err_for_range_iter_deduction_failure)) {
2525         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2526         return StmtError();
2527       }
2528     } else {
2529       OverloadCandidateSet CandidateSet(RangeLoc,
2530                                         OverloadCandidateSet::CSK_Normal);
2531       BeginEndFunction BEFFailure;
2532       ForRangeStatus RangeStatus = BuildNonArrayForRange(
2533           *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2534           EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2535           &BEFFailure);
2536 
2537       if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2538           BEFFailure == BEF_begin) {
2539         // If the range is being built from an array parameter, emit a
2540         // a diagnostic that it is being treated as a pointer.
2541         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2542           if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2543             QualType ArrayTy = PVD->getOriginalType();
2544             QualType PointerTy = PVD->getType();
2545             if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2546               Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
2547                   << RangeLoc << PVD << ArrayTy << PointerTy;
2548               Diag(PVD->getLocation(), diag::note_declared_at);
2549               return StmtError();
2550             }
2551           }
2552         }
2553 
2554         // If building the range failed, try dereferencing the range expression
2555         // unless a diagnostic was issued or the end function is problematic.
2556         StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2557                                                        CoawaitLoc, InitStmt,
2558                                                        LoopVarDecl, ColonLoc,
2559                                                        Range, RangeLoc,
2560                                                        RParenLoc);
2561         if (SR.isInvalid() || SR.isUsable())
2562           return SR;
2563       }
2564 
2565       // Otherwise, emit diagnostics if we haven't already.
2566       if (RangeStatus == FRS_NoViableFunction) {
2567         Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2568         CandidateSet.NoteCandidates(
2569             PartialDiagnosticAt(Range->getBeginLoc(),
2570                                 PDiag(diag::err_for_range_invalid)
2571                                     << RangeLoc << Range->getType()
2572                                     << BEFFailure),
2573             *this, OCD_AllCandidates, Range);
2574       }
2575       // Return an error if no fix was discovered.
2576       if (RangeStatus != FRS_Success)
2577         return StmtError();
2578     }
2579 
2580     assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2581            "invalid range expression in for loop");
2582 
2583     // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2584     // C++1z removes this restriction.
2585     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2586     if (!Context.hasSameType(BeginType, EndType)) {
2587       Diag(RangeLoc, getLangOpts().CPlusPlus17
2588                          ? diag::warn_for_range_begin_end_types_differ
2589                          : diag::ext_for_range_begin_end_types_differ)
2590           << BeginType << EndType;
2591       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2592       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2593     }
2594 
2595     BeginDeclStmt =
2596         ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2597     EndDeclStmt =
2598         ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2599 
2600     const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2601     ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2602                                            VK_LValue, ColonLoc);
2603     if (BeginRef.isInvalid())
2604       return StmtError();
2605 
2606     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2607                                          VK_LValue, ColonLoc);
2608     if (EndRef.isInvalid())
2609       return StmtError();
2610 
2611     // Build and check __begin != __end expression.
2612     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2613                            BeginRef.get(), EndRef.get());
2614     if (!NotEqExpr.isInvalid())
2615       NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2616     if (!NotEqExpr.isInvalid())
2617       NotEqExpr =
2618           ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
2619     if (NotEqExpr.isInvalid()) {
2620       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2621         << RangeLoc << 0 << BeginRangeRef.get()->getType();
2622       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2623       if (!Context.hasSameType(BeginType, EndType))
2624         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2625       return StmtError();
2626     }
2627 
2628     // Build and check ++__begin expression.
2629     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2630                                 VK_LValue, ColonLoc);
2631     if (BeginRef.isInvalid())
2632       return StmtError();
2633 
2634     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2635     if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
2636       // FIXME: getCurScope() should not be used during template instantiation.
2637       // We should pick up the set of unqualified lookup results for operator
2638       // co_await during the initial parse.
2639       IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
2640     if (!IncrExpr.isInvalid())
2641       IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
2642     if (IncrExpr.isInvalid()) {
2643       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2644         << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2645       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2646       return StmtError();
2647     }
2648 
2649     // Build and check *__begin  expression.
2650     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2651                                 VK_LValue, ColonLoc);
2652     if (BeginRef.isInvalid())
2653       return StmtError();
2654 
2655     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2656     if (DerefExpr.isInvalid()) {
2657       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2658         << RangeLoc << 1 << BeginRangeRef.get()->getType();
2659       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2660       return StmtError();
2661     }
2662 
2663     // Attach  *__begin  as initializer for VD. Don't touch it if we're just
2664     // trying to determine whether this would be a valid range.
2665     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2666       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
2667       if (LoopVar->isInvalidDecl())
2668         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2669     }
2670   }
2671 
2672   // Don't bother to actually allocate the result if we're just trying to
2673   // determine whether it would be valid.
2674   if (Kind == BFRK_Check)
2675     return StmtResult();
2676 
2677   // In OpenMP loop region loop control variable must be private. Perform
2678   // analysis of first part (if any).
2679   if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable())
2680     ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get());
2681 
2682   return new (Context) CXXForRangeStmt(
2683       InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
2684       cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
2685       IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
2686       ColonLoc, RParenLoc);
2687 }
2688 
2689 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2690 /// statement.
2691 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2692   if (!S || !B)
2693     return StmtError();
2694   ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2695 
2696   ForStmt->setBody(B);
2697   return S;
2698 }
2699 
2700 // Warn when the loop variable is a const reference that creates a copy.
2701 // Suggest using the non-reference type for copies.  If a copy can be prevented
2702 // suggest the const reference type that would do so.
2703 // For instance, given "for (const &Foo : Range)", suggest
2704 // "for (const Foo : Range)" to denote a copy is made for the loop.  If
2705 // possible, also suggest "for (const &Bar : Range)" if this type prevents
2706 // the copy altogether.
2707 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
2708                                                     const VarDecl *VD,
2709                                                     QualType RangeInitType) {
2710   const Expr *InitExpr = VD->getInit();
2711   if (!InitExpr)
2712     return;
2713 
2714   QualType VariableType = VD->getType();
2715 
2716   if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
2717     if (!Cleanups->cleanupsHaveSideEffects())
2718       InitExpr = Cleanups->getSubExpr();
2719 
2720   const MaterializeTemporaryExpr *MTE =
2721       dyn_cast<MaterializeTemporaryExpr>(InitExpr);
2722 
2723   // No copy made.
2724   if (!MTE)
2725     return;
2726 
2727   const Expr *E = MTE->GetTemporaryExpr()->IgnoreImpCasts();
2728 
2729   // Searching for either UnaryOperator for dereference of a pointer or
2730   // CXXOperatorCallExpr for handling iterators.
2731   while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
2732     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
2733       E = CCE->getArg(0);
2734     } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
2735       const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
2736       E = ME->getBase();
2737     } else {
2738       const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
2739       E = MTE->GetTemporaryExpr();
2740     }
2741     E = E->IgnoreImpCasts();
2742   }
2743 
2744   bool ReturnsReference = false;
2745   if (isa<UnaryOperator>(E)) {
2746     ReturnsReference = true;
2747   } else {
2748     const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
2749     const FunctionDecl *FD = Call->getDirectCallee();
2750     QualType ReturnType = FD->getReturnType();
2751     ReturnsReference = ReturnType->isReferenceType();
2752   }
2753 
2754   if (ReturnsReference) {
2755     // Loop variable creates a temporary.  Suggest either to go with
2756     // non-reference loop variable to indicate a copy is made, or
2757     // the correct time to bind a const reference.
2758     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
2759         << VD << VariableType << E->getType();
2760     QualType NonReferenceType = VariableType.getNonReferenceType();
2761     NonReferenceType.removeLocalConst();
2762     QualType NewReferenceType =
2763         SemaRef.Context.getLValueReferenceType(E->getType().withConst());
2764     SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
2765         << NonReferenceType << NewReferenceType << VD->getSourceRange();
2766   } else {
2767     // The range always returns a copy, so a temporary is always created.
2768     // Suggest removing the reference from the loop variable.
2769     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
2770         << VD << RangeInitType;
2771     QualType NonReferenceType = VariableType.getNonReferenceType();
2772     NonReferenceType.removeLocalConst();
2773     SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
2774         << NonReferenceType << VD->getSourceRange();
2775   }
2776 }
2777 
2778 // Warns when the loop variable can be changed to a reference type to
2779 // prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
2780 // "for (const Foo &x : Range)" if this form does not make a copy.
2781 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
2782                                                 const VarDecl *VD) {
2783   const Expr *InitExpr = VD->getInit();
2784   if (!InitExpr)
2785     return;
2786 
2787   QualType VariableType = VD->getType();
2788 
2789   if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
2790     if (!CE->getConstructor()->isCopyConstructor())
2791       return;
2792   } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
2793     if (CE->getCastKind() != CK_LValueToRValue)
2794       return;
2795   } else {
2796     return;
2797   }
2798 
2799   // TODO: Determine a maximum size that a POD type can be before a diagnostic
2800   // should be emitted.  Also, only ignore POD types with trivial copy
2801   // constructors.
2802   if (VariableType.isPODType(SemaRef.Context))
2803     return;
2804 
2805   // Suggest changing from a const variable to a const reference variable
2806   // if doing so will prevent a copy.
2807   SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
2808       << VD << VariableType << InitExpr->getType();
2809   SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
2810       << SemaRef.Context.getLValueReferenceType(VariableType)
2811       << VD->getSourceRange();
2812 }
2813 
2814 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
2815 /// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
2816 ///    using "const foo x" to show that a copy is made
2817 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
2818 ///    Suggest either "const bar x" to keep the copying or "const foo& x" to
2819 ///    prevent the copy.
2820 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
2821 ///    Suggest "const foo &x" to prevent the copy.
2822 static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
2823                                            const CXXForRangeStmt *ForStmt) {
2824   if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
2825                               ForStmt->getBeginLoc()) &&
2826       SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
2827                               ForStmt->getBeginLoc()) &&
2828       SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
2829                               ForStmt->getBeginLoc())) {
2830     return;
2831   }
2832 
2833   const VarDecl *VD = ForStmt->getLoopVariable();
2834   if (!VD)
2835     return;
2836 
2837   QualType VariableType = VD->getType();
2838 
2839   if (VariableType->isIncompleteType())
2840     return;
2841 
2842   const Expr *InitExpr = VD->getInit();
2843   if (!InitExpr)
2844     return;
2845 
2846   if (VariableType->isReferenceType()) {
2847     DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
2848                                             ForStmt->getRangeInit()->getType());
2849   } else if (VariableType.isConstQualified()) {
2850     DiagnoseForRangeConstVariableCopies(SemaRef, VD);
2851   }
2852 }
2853 
2854 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2855 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2856 /// body cannot be performed until after the type of the range variable is
2857 /// determined.
2858 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2859   if (!S || !B)
2860     return StmtError();
2861 
2862   if (isa<ObjCForCollectionStmt>(S))
2863     return FinishObjCForCollectionStmt(S, B);
2864 
2865   CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2866   ForStmt->setBody(B);
2867 
2868   DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2869                         diag::warn_empty_range_based_for_body);
2870 
2871   DiagnoseForRangeVariableCopies(*this, ForStmt);
2872 
2873   return S;
2874 }
2875 
2876 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2877                                SourceLocation LabelLoc,
2878                                LabelDecl *TheDecl) {
2879   setFunctionHasBranchIntoScope();
2880   TheDecl->markUsed(Context);
2881   return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
2882 }
2883 
2884 StmtResult
2885 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2886                             Expr *E) {
2887   // Convert operand to void*
2888   if (!E->isTypeDependent()) {
2889     QualType ETy = E->getType();
2890     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2891     ExprResult ExprRes = E;
2892     AssignConvertType ConvTy =
2893       CheckSingleAssignmentConstraints(DestTy, ExprRes);
2894     if (ExprRes.isInvalid())
2895       return StmtError();
2896     E = ExprRes.get();
2897     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2898       return StmtError();
2899   }
2900 
2901   ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
2902   if (ExprRes.isInvalid())
2903     return StmtError();
2904   E = ExprRes.get();
2905 
2906   setFunctionHasIndirectGoto();
2907 
2908   return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
2909 }
2910 
2911 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
2912                                      const Scope &DestScope) {
2913   if (!S.CurrentSEHFinally.empty() &&
2914       DestScope.Contains(*S.CurrentSEHFinally.back())) {
2915     S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
2916   }
2917 }
2918 
2919 StmtResult
2920 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2921   Scope *S = CurScope->getContinueParent();
2922   if (!S) {
2923     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2924     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2925   }
2926   CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
2927 
2928   return new (Context) ContinueStmt(ContinueLoc);
2929 }
2930 
2931 StmtResult
2932 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2933   Scope *S = CurScope->getBreakParent();
2934   if (!S) {
2935     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2936     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2937   }
2938   if (S->isOpenMPLoopScope())
2939     return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
2940                      << "break");
2941   CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
2942 
2943   return new (Context) BreakStmt(BreakLoc);
2944 }
2945 
2946 /// Determine whether the given expression is a candidate for
2947 /// copy elision in either a return statement or a throw expression.
2948 ///
2949 /// \param ReturnType If we're determining the copy elision candidate for
2950 /// a return statement, this is the return type of the function. If we're
2951 /// determining the copy elision candidate for a throw expression, this will
2952 /// be a NULL type.
2953 ///
2954 /// \param E The expression being returned from the function or block, or
2955 /// being thrown.
2956 ///
2957 /// \param CESK Whether we allow function parameters or
2958 /// id-expressions that could be moved out of the function to be considered NRVO
2959 /// candidates. C++ prohibits these for NRVO itself, but we re-use this logic to
2960 /// determine whether we should try to move as part of a return or throw (which
2961 /// does allow function parameters).
2962 ///
2963 /// \returns The NRVO candidate variable, if the return statement may use the
2964 /// NRVO, or NULL if there is no such candidate.
2965 VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType, Expr *E,
2966                                        CopyElisionSemanticsKind CESK) {
2967   // - in a return statement in a function [where] ...
2968   // ... the expression is the name of a non-volatile automatic object ...
2969   DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2970   if (!DR || DR->refersToEnclosingVariableOrCapture())
2971     return nullptr;
2972   VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2973   if (!VD)
2974     return nullptr;
2975 
2976   if (isCopyElisionCandidate(ReturnType, VD, CESK))
2977     return VD;
2978   return nullptr;
2979 }
2980 
2981 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
2982                                   CopyElisionSemanticsKind CESK) {
2983   QualType VDType = VD->getType();
2984   // - in a return statement in a function with ...
2985   // ... a class return type ...
2986   if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
2987     if (!ReturnType->isRecordType())
2988       return false;
2989     // ... the same cv-unqualified type as the function return type ...
2990     // When considering moving this expression out, allow dissimilar types.
2991     if (!(CESK & CES_AllowDifferentTypes) && !VDType->isDependentType() &&
2992         !Context.hasSameUnqualifiedType(ReturnType, VDType))
2993       return false;
2994   }
2995 
2996   // ...object (other than a function or catch-clause parameter)...
2997   if (VD->getKind() != Decl::Var &&
2998       !((CESK & CES_AllowParameters) && VD->getKind() == Decl::ParmVar))
2999     return false;
3000   if (!(CESK & CES_AllowExceptionVariables) && VD->isExceptionVariable())
3001     return false;
3002 
3003   // ...automatic...
3004   if (!VD->hasLocalStorage()) return false;
3005 
3006   // Return false if VD is a __block variable. We don't want to implicitly move
3007   // out of a __block variable during a return because we cannot assume the
3008   // variable will no longer be used.
3009   if (VD->hasAttr<BlocksAttr>()) return false;
3010 
3011   if (CESK & CES_AllowDifferentTypes)
3012     return true;
3013 
3014   // ...non-volatile...
3015   if (VD->getType().isVolatileQualified()) return false;
3016 
3017   // Variables with higher required alignment than their type's ABI
3018   // alignment cannot use NRVO.
3019   if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
3020       Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
3021     return false;
3022 
3023   return true;
3024 }
3025 
3026 /// Try to perform the initialization of a potentially-movable value,
3027 /// which is the operand to a return or throw statement.
3028 ///
3029 /// This routine implements C++14 [class.copy]p32, which attempts to treat
3030 /// returned lvalues as rvalues in certain cases (to prefer move construction),
3031 /// then falls back to treating them as lvalues if that failed.
3032 ///
3033 /// \param ConvertingConstructorsOnly If true, follow [class.copy]p32 and reject
3034 /// resolutions that find non-constructors, such as derived-to-base conversions
3035 /// or `operator T()&&` member functions. If false, do consider such
3036 /// conversion sequences.
3037 ///
3038 /// \param Res We will fill this in if move-initialization was possible.
3039 /// If move-initialization is not possible, such that we must fall back to
3040 /// treating the operand as an lvalue, we will leave Res in its original
3041 /// invalid state.
3042 static void TryMoveInitialization(Sema& S,
3043                                   const InitializedEntity &Entity,
3044                                   const VarDecl *NRVOCandidate,
3045                                   QualType ResultType,
3046                                   Expr *&Value,
3047                                   bool ConvertingConstructorsOnly,
3048                                   ExprResult &Res) {
3049   ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
3050                             CK_NoOp, Value, VK_XValue);
3051 
3052   Expr *InitExpr = &AsRvalue;
3053 
3054   InitializationKind Kind = InitializationKind::CreateCopy(
3055       Value->getBeginLoc(), Value->getBeginLoc());
3056 
3057   InitializationSequence Seq(S, Entity, Kind, InitExpr);
3058 
3059   if (!Seq)
3060     return;
3061 
3062   for (const InitializationSequence::Step &Step : Seq.steps()) {
3063     if (Step.Kind != InitializationSequence::SK_ConstructorInitialization &&
3064         Step.Kind != InitializationSequence::SK_UserConversion)
3065       continue;
3066 
3067     FunctionDecl *FD = Step.Function.Function;
3068     if (ConvertingConstructorsOnly) {
3069       if (isa<CXXConstructorDecl>(FD)) {
3070         // C++14 [class.copy]p32:
3071         // [...] If the first overload resolution fails or was not performed,
3072         // or if the type of the first parameter of the selected constructor
3073         // is not an rvalue reference to the object's type (possibly
3074         // cv-qualified), overload resolution is performed again, considering
3075         // the object as an lvalue.
3076         const RValueReferenceType *RRefType =
3077             FD->getParamDecl(0)->getType()->getAs<RValueReferenceType>();
3078         if (!RRefType)
3079           break;
3080         if (!S.Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
3081                                               NRVOCandidate->getType()))
3082           break;
3083       } else {
3084         continue;
3085       }
3086     } else {
3087       if (isa<CXXConstructorDecl>(FD)) {
3088         // Check that overload resolution selected a constructor taking an
3089         // rvalue reference. If it selected an lvalue reference, then we
3090         // didn't need to cast this thing to an rvalue in the first place.
3091         if (!isa<RValueReferenceType>(FD->getParamDecl(0)->getType()))
3092           break;
3093       } else if (isa<CXXMethodDecl>(FD)) {
3094         // Check that overload resolution selected a conversion operator
3095         // taking an rvalue reference.
3096         if (cast<CXXMethodDecl>(FD)->getRefQualifier() != RQ_RValue)
3097           break;
3098       } else {
3099         continue;
3100       }
3101     }
3102 
3103     // Promote "AsRvalue" to the heap, since we now need this
3104     // expression node to persist.
3105     Value = ImplicitCastExpr::Create(S.Context, Value->getType(), CK_NoOp,
3106                                      Value, nullptr, VK_XValue);
3107 
3108     // Complete type-checking the initialization of the return type
3109     // using the constructor we found.
3110     Res = Seq.Perform(S, Entity, Kind, Value);
3111   }
3112 }
3113 
3114 /// Perform the initialization of a potentially-movable value, which
3115 /// is the result of return value.
3116 ///
3117 /// This routine implements C++14 [class.copy]p32, which attempts to treat
3118 /// returned lvalues as rvalues in certain cases (to prefer move construction),
3119 /// then falls back to treating them as lvalues if that failed.
3120 ExprResult
3121 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
3122                                       const VarDecl *NRVOCandidate,
3123                                       QualType ResultType,
3124                                       Expr *Value,
3125                                       bool AllowNRVO) {
3126   // C++14 [class.copy]p32:
3127   // When the criteria for elision of a copy/move operation are met, but not for
3128   // an exception-declaration, and the object to be copied is designated by an
3129   // lvalue, or when the expression in a return statement is a (possibly
3130   // parenthesized) id-expression that names an object with automatic storage
3131   // duration declared in the body or parameter-declaration-clause of the
3132   // innermost enclosing function or lambda-expression, overload resolution to
3133   // select the constructor for the copy is first performed as if the object
3134   // were designated by an rvalue.
3135   ExprResult Res = ExprError();
3136 
3137   if (AllowNRVO) {
3138     bool AffectedByCWG1579 = false;
3139 
3140     if (!NRVOCandidate) {
3141       NRVOCandidate = getCopyElisionCandidate(ResultType, Value, CES_Default);
3142       if (NRVOCandidate &&
3143           !getDiagnostics().isIgnored(diag::warn_return_std_move_in_cxx11,
3144                                       Value->getExprLoc())) {
3145         const VarDecl *NRVOCandidateInCXX11 =
3146             getCopyElisionCandidate(ResultType, Value, CES_FormerDefault);
3147         AffectedByCWG1579 = (!NRVOCandidateInCXX11);
3148       }
3149     }
3150 
3151     if (NRVOCandidate) {
3152       TryMoveInitialization(*this, Entity, NRVOCandidate, ResultType, Value,
3153                             true, Res);
3154     }
3155 
3156     if (!Res.isInvalid() && AffectedByCWG1579) {
3157       QualType QT = NRVOCandidate->getType();
3158       if (QT.getNonReferenceType()
3159                      .getUnqualifiedType()
3160                      .isTriviallyCopyableType(Context)) {
3161         // Adding 'std::move' around a trivially copyable variable is probably
3162         // pointless. Don't suggest it.
3163       } else {
3164         // Common cases for this are returning unique_ptr<Derived> from a
3165         // function of return type unique_ptr<Base>, or returning T from a
3166         // function of return type Expected<T>. This is totally fine in a
3167         // post-CWG1579 world, but was not fine before.
3168         assert(!ResultType.isNull());
3169         SmallString<32> Str;
3170         Str += "std::move(";
3171         Str += NRVOCandidate->getDeclName().getAsString();
3172         Str += ")";
3173         Diag(Value->getExprLoc(), diag::warn_return_std_move_in_cxx11)
3174             << Value->getSourceRange()
3175             << NRVOCandidate->getDeclName() << ResultType << QT;
3176         Diag(Value->getExprLoc(), diag::note_add_std_move_in_cxx11)
3177             << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3178       }
3179     } else if (Res.isInvalid() &&
3180                !getDiagnostics().isIgnored(diag::warn_return_std_move,
3181                                            Value->getExprLoc())) {
3182       const VarDecl *FakeNRVOCandidate =
3183           getCopyElisionCandidate(QualType(), Value, CES_AsIfByStdMove);
3184       if (FakeNRVOCandidate) {
3185         QualType QT = FakeNRVOCandidate->getType();
3186         if (QT->isLValueReferenceType()) {
3187           // Adding 'std::move' around an lvalue reference variable's name is
3188           // dangerous. Don't suggest it.
3189         } else if (QT.getNonReferenceType()
3190                        .getUnqualifiedType()
3191                        .isTriviallyCopyableType(Context)) {
3192           // Adding 'std::move' around a trivially copyable variable is probably
3193           // pointless. Don't suggest it.
3194         } else {
3195           ExprResult FakeRes = ExprError();
3196           Expr *FakeValue = Value;
3197           TryMoveInitialization(*this, Entity, FakeNRVOCandidate, ResultType,
3198                                 FakeValue, false, FakeRes);
3199           if (!FakeRes.isInvalid()) {
3200             bool IsThrow =
3201                 (Entity.getKind() == InitializedEntity::EK_Exception);
3202             SmallString<32> Str;
3203             Str += "std::move(";
3204             Str += FakeNRVOCandidate->getDeclName().getAsString();
3205             Str += ")";
3206             Diag(Value->getExprLoc(), diag::warn_return_std_move)
3207                 << Value->getSourceRange()
3208                 << FakeNRVOCandidate->getDeclName() << IsThrow;
3209             Diag(Value->getExprLoc(), diag::note_add_std_move)
3210                 << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3211           }
3212         }
3213       }
3214     }
3215   }
3216 
3217   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3218   // above, or overload resolution failed. Either way, we need to try
3219   // (again) now with the return value expression as written.
3220   if (Res.isInvalid())
3221     Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
3222 
3223   return Res;
3224 }
3225 
3226 /// Determine whether the declared return type of the specified function
3227 /// contains 'auto'.
3228 static bool hasDeducedReturnType(FunctionDecl *FD) {
3229   const FunctionProtoType *FPT =
3230       FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
3231   return FPT->getReturnType()->isUndeducedType();
3232 }
3233 
3234 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
3235 /// for capturing scopes.
3236 ///
3237 StmtResult
3238 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
3239   // If this is the first return we've seen, infer the return type.
3240   // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3241   CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3242   QualType FnRetType = CurCap->ReturnType;
3243   LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3244   bool HasDeducedReturnType =
3245       CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3246 
3247   if (ExprEvalContexts.back().Context ==
3248           ExpressionEvaluationContext::DiscardedStatement &&
3249       (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3250     if (RetValExp) {
3251       ExprResult ER =
3252           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3253       if (ER.isInvalid())
3254         return StmtError();
3255       RetValExp = ER.get();
3256     }
3257     return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3258                               /* NRVOCandidate=*/nullptr);
3259   }
3260 
3261   if (HasDeducedReturnType) {
3262     // In C++1y, the return type may involve 'auto'.
3263     // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3264     FunctionDecl *FD = CurLambda->CallOperator;
3265     if (CurCap->ReturnType.isNull())
3266       CurCap->ReturnType = FD->getReturnType();
3267 
3268     AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3269     assert(AT && "lost auto type from lambda return type");
3270     if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3271       FD->setInvalidDecl();
3272       return StmtError();
3273     }
3274     CurCap->ReturnType = FnRetType = FD->getReturnType();
3275   } else if (CurCap->HasImplicitReturnType) {
3276     // For blocks/lambdas with implicit return types, we check each return
3277     // statement individually, and deduce the common return type when the block
3278     // or lambda is completed.
3279     // FIXME: Fold this into the 'auto' codepath above.
3280     if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3281       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3282       if (Result.isInvalid())
3283         return StmtError();
3284       RetValExp = Result.get();
3285 
3286       // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3287       // when deducing a return type for a lambda-expression (or by extension
3288       // for a block). These rules differ from the stated C++11 rules only in
3289       // that they remove top-level cv-qualifiers.
3290       if (!CurContext->isDependentContext())
3291         FnRetType = RetValExp->getType().getUnqualifiedType();
3292       else
3293         FnRetType = CurCap->ReturnType = Context.DependentTy;
3294     } else {
3295       if (RetValExp) {
3296         // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3297         // initializer list, because it is not an expression (even
3298         // though we represent it as one). We still deduce 'void'.
3299         Diag(ReturnLoc, diag::err_lambda_return_init_list)
3300           << RetValExp->getSourceRange();
3301       }
3302 
3303       FnRetType = Context.VoidTy;
3304     }
3305 
3306     // Although we'll properly infer the type of the block once it's completed,
3307     // make sure we provide a return type now for better error recovery.
3308     if (CurCap->ReturnType.isNull())
3309       CurCap->ReturnType = FnRetType;
3310   }
3311   assert(!FnRetType.isNull());
3312 
3313   if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3314     if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) {
3315       Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3316       return StmtError();
3317     }
3318   } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3319     Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3320     return StmtError();
3321   } else {
3322     assert(CurLambda && "unknown kind of captured scope");
3323     if (CurLambda->CallOperator->getType()
3324             ->castAs<FunctionType>()
3325             ->getNoReturnAttr()) {
3326       Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3327       return StmtError();
3328     }
3329   }
3330 
3331   // Otherwise, verify that this result type matches the previous one.  We are
3332   // pickier with blocks than for normal functions because we don't have GCC
3333   // compatibility to worry about here.
3334   const VarDecl *NRVOCandidate = nullptr;
3335   if (FnRetType->isDependentType()) {
3336     // Delay processing for now.  TODO: there are lots of dependent
3337     // types we can conclusively prove aren't void.
3338   } else if (FnRetType->isVoidType()) {
3339     if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3340         !(getLangOpts().CPlusPlus &&
3341           (RetValExp->isTypeDependent() ||
3342            RetValExp->getType()->isVoidType()))) {
3343       if (!getLangOpts().CPlusPlus &&
3344           RetValExp->getType()->isVoidType())
3345         Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3346       else {
3347         Diag(ReturnLoc, diag::err_return_block_has_expr);
3348         RetValExp = nullptr;
3349       }
3350     }
3351   } else if (!RetValExp) {
3352     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3353   } else if (!RetValExp->isTypeDependent()) {
3354     // we have a non-void block with an expression, continue checking
3355 
3356     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3357     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3358     // function return.
3359 
3360     // In C++ the return statement is handled via a copy initialization.
3361     // the C version of which boils down to CheckSingleAssignmentConstraints.
3362     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3363     InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
3364                                                                    FnRetType,
3365                                                       NRVOCandidate != nullptr);
3366     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3367                                                      FnRetType, RetValExp);
3368     if (Res.isInvalid()) {
3369       // FIXME: Cleanup temporaries here, anyway?
3370       return StmtError();
3371     }
3372     RetValExp = Res.get();
3373     CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3374   } else {
3375     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3376   }
3377 
3378   if (RetValExp) {
3379     ExprResult ER =
3380         ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3381     if (ER.isInvalid())
3382       return StmtError();
3383     RetValExp = ER.get();
3384   }
3385   auto *Result =
3386       ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3387 
3388   // If we need to check for the named return value optimization,
3389   // or if we need to infer the return type,
3390   // save the return statement in our scope for later processing.
3391   if (CurCap->HasImplicitReturnType || NRVOCandidate)
3392     FunctionScopes.back()->Returns.push_back(Result);
3393 
3394   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3395     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3396 
3397   return Result;
3398 }
3399 
3400 namespace {
3401 /// Marks all typedefs in all local classes in a type referenced.
3402 ///
3403 /// In a function like
3404 /// auto f() {
3405 ///   struct S { typedef int a; };
3406 ///   return S();
3407 /// }
3408 ///
3409 /// the local type escapes and could be referenced in some TUs but not in
3410 /// others. Pretend that all local typedefs are always referenced, to not warn
3411 /// on this. This isn't necessary if f has internal linkage, or the typedef
3412 /// is private.
3413 class LocalTypedefNameReferencer
3414     : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3415 public:
3416   LocalTypedefNameReferencer(Sema &S) : S(S) {}
3417   bool VisitRecordType(const RecordType *RT);
3418 private:
3419   Sema &S;
3420 };
3421 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3422   auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3423   if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3424       R->isDependentType())
3425     return true;
3426   for (auto *TmpD : R->decls())
3427     if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3428       if (T->getAccess() != AS_private || R->hasFriends())
3429         S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3430   return true;
3431 }
3432 }
3433 
3434 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
3435   return FD->getTypeSourceInfo()
3436       ->getTypeLoc()
3437       .getAsAdjusted<FunctionProtoTypeLoc>()
3438       .getReturnLoc();
3439 }
3440 
3441 /// Deduce the return type for a function from a returned expression, per
3442 /// C++1y [dcl.spec.auto]p6.
3443 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
3444                                             SourceLocation ReturnLoc,
3445                                             Expr *&RetExpr,
3446                                             AutoType *AT) {
3447   // If this is the conversion function for a lambda, we choose to deduce it
3448   // type from the corresponding call operator, not from the synthesized return
3449   // statement within it. See Sema::DeduceReturnType.
3450   if (isLambdaConversionOperator(FD))
3451     return false;
3452 
3453   TypeLoc OrigResultType = getReturnTypeLoc(FD);
3454   QualType Deduced;
3455 
3456   if (RetExpr && isa<InitListExpr>(RetExpr)) {
3457     //  If the deduction is for a return statement and the initializer is
3458     //  a braced-init-list, the program is ill-formed.
3459     Diag(RetExpr->getExprLoc(),
3460          getCurLambda() ? diag::err_lambda_return_init_list
3461                         : diag::err_auto_fn_return_init_list)
3462         << RetExpr->getSourceRange();
3463     return true;
3464   }
3465 
3466   if (FD->isDependentContext()) {
3467     // C++1y [dcl.spec.auto]p12:
3468     //   Return type deduction [...] occurs when the definition is
3469     //   instantiated even if the function body contains a return
3470     //   statement with a non-type-dependent operand.
3471     assert(AT->isDeduced() && "should have deduced to dependent type");
3472     return false;
3473   }
3474 
3475   if (RetExpr) {
3476     //  Otherwise, [...] deduce a value for U using the rules of template
3477     //  argument deduction.
3478     DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
3479 
3480     if (DAR == DAR_Failed && !FD->isInvalidDecl())
3481       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3482         << OrigResultType.getType() << RetExpr->getType();
3483 
3484     if (DAR != DAR_Succeeded)
3485       return true;
3486 
3487     // If a local type is part of the returned type, mark its fields as
3488     // referenced.
3489     LocalTypedefNameReferencer Referencer(*this);
3490     Referencer.TraverseType(RetExpr->getType());
3491   } else {
3492     //  In the case of a return with no operand, the initializer is considered
3493     //  to be void().
3494     //
3495     // Deduction here can only succeed if the return type is exactly 'cv auto'
3496     // or 'decltype(auto)', so just check for that case directly.
3497     if (!OrigResultType.getType()->getAs<AutoType>()) {
3498       Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3499         << OrigResultType.getType();
3500       return true;
3501     }
3502     // We always deduce U = void in this case.
3503     Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
3504     if (Deduced.isNull())
3505       return true;
3506   }
3507 
3508   // CUDA: Kernel function must have 'void' return type.
3509   if (getLangOpts().CUDA)
3510     if (FD->hasAttr<CUDAGlobalAttr>() && !Deduced->isVoidType()) {
3511       Diag(FD->getLocation(), diag::err_kern_type_not_void_return)
3512           << FD->getType() << FD->getSourceRange();
3513       return true;
3514     }
3515 
3516   //  If a function with a declared return type that contains a placeholder type
3517   //  has multiple return statements, the return type is deduced for each return
3518   //  statement. [...] if the type deduced is not the same in each deduction,
3519   //  the program is ill-formed.
3520   QualType DeducedT = AT->getDeducedType();
3521   if (!DeducedT.isNull() && !FD->isInvalidDecl()) {
3522     AutoType *NewAT = Deduced->getContainedAutoType();
3523     // It is possible that NewAT->getDeducedType() is null. When that happens,
3524     // we should not crash, instead we ignore this deduction.
3525     if (NewAT->getDeducedType().isNull())
3526       return false;
3527 
3528     CanQualType OldDeducedType = Context.getCanonicalFunctionResultType(
3529                                    DeducedT);
3530     CanQualType NewDeducedType = Context.getCanonicalFunctionResultType(
3531                                    NewAT->getDeducedType());
3532     if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
3533       const LambdaScopeInfo *LambdaSI = getCurLambda();
3534       if (LambdaSI && LambdaSI->HasImplicitReturnType) {
3535         Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3536           << NewAT->getDeducedType() << DeducedT
3537           << true /*IsLambda*/;
3538       } else {
3539         Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3540           << (AT->isDecltypeAuto() ? 1 : 0)
3541           << NewAT->getDeducedType() << DeducedT;
3542       }
3543       return true;
3544     }
3545   } else if (!FD->isInvalidDecl()) {
3546     // Update all declarations of the function to have the deduced return type.
3547     Context.adjustDeducedFunctionResultType(FD, Deduced);
3548   }
3549 
3550   return false;
3551 }
3552 
3553 StmtResult
3554 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3555                       Scope *CurScope) {
3556   // Correct typos, in case the containing function returns 'auto' and
3557   // RetValExp should determine the deduced type.
3558   ExprResult RetVal = CorrectDelayedTyposInExpr(RetValExp);
3559   if (RetVal.isInvalid())
3560     return StmtError();
3561   StmtResult R = BuildReturnStmt(ReturnLoc, RetVal.get());
3562   if (R.isInvalid() || ExprEvalContexts.back().Context ==
3563                            ExpressionEvaluationContext::DiscardedStatement)
3564     return R;
3565 
3566   if (VarDecl *VD =
3567       const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
3568     CurScope->addNRVOCandidate(VD);
3569   } else {
3570     CurScope->setNoNRVO();
3571   }
3572 
3573   CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3574 
3575   return R;
3576 }
3577 
3578 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
3579   // Check for unexpanded parameter packs.
3580   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3581     return StmtError();
3582 
3583   if (isa<CapturingScopeInfo>(getCurFunction()))
3584     return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
3585 
3586   QualType FnRetType;
3587   QualType RelatedRetType;
3588   const AttrVec *Attrs = nullptr;
3589   bool isObjCMethod = false;
3590 
3591   if (const FunctionDecl *FD = getCurFunctionDecl()) {
3592     FnRetType = FD->getReturnType();
3593     if (FD->hasAttrs())
3594       Attrs = &FD->getAttrs();
3595     if (FD->isNoReturn())
3596       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
3597         << FD->getDeclName();
3598     if (FD->isMain() && RetValExp)
3599       if (isa<CXXBoolLiteralExpr>(RetValExp))
3600         Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3601           << RetValExp->getSourceRange();
3602   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3603     FnRetType = MD->getReturnType();
3604     isObjCMethod = true;
3605     if (MD->hasAttrs())
3606       Attrs = &MD->getAttrs();
3607     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3608       // In the implementation of a method with a related return type, the
3609       // type used to type-check the validity of return statements within the
3610       // method body is a pointer to the type of the class being implemented.
3611       RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3612       RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3613     }
3614   } else // If we don't have a function/method context, bail.
3615     return StmtError();
3616 
3617   // C++1z: discarded return statements are not considered when deducing a
3618   // return type.
3619   if (ExprEvalContexts.back().Context ==
3620           ExpressionEvaluationContext::DiscardedStatement &&
3621       FnRetType->getContainedAutoType()) {
3622     if (RetValExp) {
3623       ExprResult ER =
3624           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3625       if (ER.isInvalid())
3626         return StmtError();
3627       RetValExp = ER.get();
3628     }
3629     return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3630                               /* NRVOCandidate=*/nullptr);
3631   }
3632 
3633   // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3634   // deduction.
3635   if (getLangOpts().CPlusPlus14) {
3636     if (AutoType *AT = FnRetType->getContainedAutoType()) {
3637       FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3638       if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3639         FD->setInvalidDecl();
3640         return StmtError();
3641       } else {
3642         FnRetType = FD->getReturnType();
3643       }
3644     }
3645   }
3646 
3647   bool HasDependentReturnType = FnRetType->isDependentType();
3648 
3649   ReturnStmt *Result = nullptr;
3650   if (FnRetType->isVoidType()) {
3651     if (RetValExp) {
3652       if (isa<InitListExpr>(RetValExp)) {
3653         // We simply never allow init lists as the return value of void
3654         // functions. This is compatible because this was never allowed before,
3655         // so there's no legacy code to deal with.
3656         NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3657         int FunctionKind = 0;
3658         if (isa<ObjCMethodDecl>(CurDecl))
3659           FunctionKind = 1;
3660         else if (isa<CXXConstructorDecl>(CurDecl))
3661           FunctionKind = 2;
3662         else if (isa<CXXDestructorDecl>(CurDecl))
3663           FunctionKind = 3;
3664 
3665         Diag(ReturnLoc, diag::err_return_init_list)
3666           << CurDecl->getDeclName() << FunctionKind
3667           << RetValExp->getSourceRange();
3668 
3669         // Drop the expression.
3670         RetValExp = nullptr;
3671       } else if (!RetValExp->isTypeDependent()) {
3672         // C99 6.8.6.4p1 (ext_ since GCC warns)
3673         unsigned D = diag::ext_return_has_expr;
3674         if (RetValExp->getType()->isVoidType()) {
3675           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3676           if (isa<CXXConstructorDecl>(CurDecl) ||
3677               isa<CXXDestructorDecl>(CurDecl))
3678             D = diag::err_ctor_dtor_returns_void;
3679           else
3680             D = diag::ext_return_has_void_expr;
3681         }
3682         else {
3683           ExprResult Result = RetValExp;
3684           Result = IgnoredValueConversions(Result.get());
3685           if (Result.isInvalid())
3686             return StmtError();
3687           RetValExp = Result.get();
3688           RetValExp = ImpCastExprToType(RetValExp,
3689                                         Context.VoidTy, CK_ToVoid).get();
3690         }
3691         // return of void in constructor/destructor is illegal in C++.
3692         if (D == diag::err_ctor_dtor_returns_void) {
3693           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3694           Diag(ReturnLoc, D)
3695             << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
3696             << RetValExp->getSourceRange();
3697         }
3698         // return (some void expression); is legal in C++.
3699         else if (D != diag::ext_return_has_void_expr ||
3700                  !getLangOpts().CPlusPlus) {
3701           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3702 
3703           int FunctionKind = 0;
3704           if (isa<ObjCMethodDecl>(CurDecl))
3705             FunctionKind = 1;
3706           else if (isa<CXXConstructorDecl>(CurDecl))
3707             FunctionKind = 2;
3708           else if (isa<CXXDestructorDecl>(CurDecl))
3709             FunctionKind = 3;
3710 
3711           Diag(ReturnLoc, D)
3712             << CurDecl->getDeclName() << FunctionKind
3713             << RetValExp->getSourceRange();
3714         }
3715       }
3716 
3717       if (RetValExp) {
3718         ExprResult ER =
3719             ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3720         if (ER.isInvalid())
3721           return StmtError();
3722         RetValExp = ER.get();
3723       }
3724     }
3725 
3726     Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3727                                 /* NRVOCandidate=*/nullptr);
3728   } else if (!RetValExp && !HasDependentReturnType) {
3729     FunctionDecl *FD = getCurFunctionDecl();
3730 
3731     unsigned DiagID;
3732     if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
3733       // C++11 [stmt.return]p2
3734       DiagID = diag::err_constexpr_return_missing_expr;
3735       FD->setInvalidDecl();
3736     } else if (getLangOpts().C99) {
3737       // C99 6.8.6.4p1 (ext_ since GCC warns)
3738       DiagID = diag::ext_return_missing_expr;
3739     } else {
3740       // C90 6.6.6.4p4
3741       DiagID = diag::warn_return_missing_expr;
3742     }
3743 
3744     if (FD)
3745       Diag(ReturnLoc, DiagID)
3746           << FD->getIdentifier() << 0 /*fn*/ << FD->isConsteval();
3747     else
3748       Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
3749 
3750     Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
3751                                 /* NRVOCandidate=*/nullptr);
3752   } else {
3753     assert(RetValExp || HasDependentReturnType);
3754     const VarDecl *NRVOCandidate = nullptr;
3755 
3756     QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
3757 
3758     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3759     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3760     // function return.
3761 
3762     // In C++ the return statement is handled via a copy initialization,
3763     // the C version of which boils down to CheckSingleAssignmentConstraints.
3764     if (RetValExp)
3765       NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3766     if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
3767       // we have a non-void function with an expression, continue checking
3768       InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
3769                                                                      RetType,
3770                                                       NRVOCandidate != nullptr);
3771       ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3772                                                        RetType, RetValExp);
3773       if (Res.isInvalid()) {
3774         // FIXME: Clean up temporaries here anyway?
3775         return StmtError();
3776       }
3777       RetValExp = Res.getAs<Expr>();
3778 
3779       // If we have a related result type, we need to implicitly
3780       // convert back to the formal result type.  We can't pretend to
3781       // initialize the result again --- we might end double-retaining
3782       // --- so instead we initialize a notional temporary.
3783       if (!RelatedRetType.isNull()) {
3784         Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
3785                                                             FnRetType);
3786         Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
3787         if (Res.isInvalid()) {
3788           // FIXME: Clean up temporaries here anyway?
3789           return StmtError();
3790         }
3791         RetValExp = Res.getAs<Expr>();
3792       }
3793 
3794       CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
3795                          getCurFunctionDecl());
3796     }
3797 
3798     if (RetValExp) {
3799       ExprResult ER =
3800           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3801       if (ER.isInvalid())
3802         return StmtError();
3803       RetValExp = ER.get();
3804     }
3805     Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3806   }
3807 
3808   // If we need to check for the named return value optimization, save the
3809   // return statement in our scope for later processing.
3810   if (Result->getNRVOCandidate())
3811     FunctionScopes.back()->Returns.push_back(Result);
3812 
3813   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3814     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3815 
3816   return Result;
3817 }
3818 
3819 StmtResult
3820 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
3821                            SourceLocation RParen, Decl *Parm,
3822                            Stmt *Body) {
3823   VarDecl *Var = cast_or_null<VarDecl>(Parm);
3824   if (Var && Var->isInvalidDecl())
3825     return StmtError();
3826 
3827   return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
3828 }
3829 
3830 StmtResult
3831 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
3832   return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
3833 }
3834 
3835 StmtResult
3836 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
3837                          MultiStmtArg CatchStmts, Stmt *Finally) {
3838   if (!getLangOpts().ObjCExceptions)
3839     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3840 
3841   setFunctionHasBranchProtectedScope();
3842   unsigned NumCatchStmts = CatchStmts.size();
3843   return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
3844                                NumCatchStmts, Finally);
3845 }
3846 
3847 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
3848   if (Throw) {
3849     ExprResult Result = DefaultLvalueConversion(Throw);
3850     if (Result.isInvalid())
3851       return StmtError();
3852 
3853     Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false);
3854     if (Result.isInvalid())
3855       return StmtError();
3856     Throw = Result.get();
3857 
3858     QualType ThrowType = Throw->getType();
3859     // Make sure the expression type is an ObjC pointer or "void *".
3860     if (!ThrowType->isDependentType() &&
3861         !ThrowType->isObjCObjectPointerType()) {
3862       const PointerType *PT = ThrowType->getAs<PointerType>();
3863       if (!PT || !PT->getPointeeType()->isVoidType())
3864         return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
3865                          << Throw->getType() << Throw->getSourceRange());
3866     }
3867   }
3868 
3869   return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
3870 }
3871 
3872 StmtResult
3873 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
3874                            Scope *CurScope) {
3875   if (!getLangOpts().ObjCExceptions)
3876     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3877 
3878   if (!Throw) {
3879     // @throw without an expression designates a rethrow (which must occur
3880     // in the context of an @catch clause).
3881     Scope *AtCatchParent = CurScope;
3882     while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3883       AtCatchParent = AtCatchParent->getParent();
3884     if (!AtCatchParent)
3885       return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
3886   }
3887   return BuildObjCAtThrowStmt(AtLoc, Throw);
3888 }
3889 
3890 ExprResult
3891 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
3892   ExprResult result = DefaultLvalueConversion(operand);
3893   if (result.isInvalid())
3894     return ExprError();
3895   operand = result.get();
3896 
3897   // Make sure the expression type is an ObjC pointer or "void *".
3898   QualType type = operand->getType();
3899   if (!type->isDependentType() &&
3900       !type->isObjCObjectPointerType()) {
3901     const PointerType *pointerType = type->getAs<PointerType>();
3902     if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
3903       if (getLangOpts().CPlusPlus) {
3904         if (RequireCompleteType(atLoc, type,
3905                                 diag::err_incomplete_receiver_type))
3906           return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3907                    << type << operand->getSourceRange();
3908 
3909         ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
3910         if (result.isInvalid())
3911           return ExprError();
3912         if (!result.isUsable())
3913           return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3914                    << type << operand->getSourceRange();
3915 
3916         operand = result.get();
3917       } else {
3918           return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3919                    << type << operand->getSourceRange();
3920       }
3921     }
3922   }
3923 
3924   // The operand to @synchronized is a full-expression.
3925   return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false);
3926 }
3927 
3928 StmtResult
3929 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
3930                                   Stmt *SyncBody) {
3931   // We can't jump into or indirect-jump out of a @synchronized block.
3932   setFunctionHasBranchProtectedScope();
3933   return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
3934 }
3935 
3936 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
3937 /// and creates a proper catch handler from them.
3938 StmtResult
3939 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
3940                          Stmt *HandlerBlock) {
3941   // There's nothing to test that ActOnExceptionDecl didn't already test.
3942   return new (Context)
3943       CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
3944 }
3945 
3946 StmtResult
3947 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
3948   setFunctionHasBranchProtectedScope();
3949   return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
3950 }
3951 
3952 namespace {
3953 class CatchHandlerType {
3954   QualType QT;
3955   unsigned IsPointer : 1;
3956 
3957   // This is a special constructor to be used only with DenseMapInfo's
3958   // getEmptyKey() and getTombstoneKey() functions.
3959   friend struct llvm::DenseMapInfo<CatchHandlerType>;
3960   enum Unique { ForDenseMap };
3961   CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
3962 
3963 public:
3964   /// Used when creating a CatchHandlerType from a handler type; will determine
3965   /// whether the type is a pointer or reference and will strip off the top
3966   /// level pointer and cv-qualifiers.
3967   CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
3968     if (QT->isPointerType())
3969       IsPointer = true;
3970 
3971     if (IsPointer || QT->isReferenceType())
3972       QT = QT->getPointeeType();
3973     QT = QT.getUnqualifiedType();
3974   }
3975 
3976   /// Used when creating a CatchHandlerType from a base class type; pretends the
3977   /// type passed in had the pointer qualifier, does not need to get an
3978   /// unqualified type.
3979   CatchHandlerType(QualType QT, bool IsPointer)
3980       : QT(QT), IsPointer(IsPointer) {}
3981 
3982   QualType underlying() const { return QT; }
3983   bool isPointer() const { return IsPointer; }
3984 
3985   friend bool operator==(const CatchHandlerType &LHS,
3986                          const CatchHandlerType &RHS) {
3987     // If the pointer qualification does not match, we can return early.
3988     if (LHS.IsPointer != RHS.IsPointer)
3989       return false;
3990     // Otherwise, check the underlying type without cv-qualifiers.
3991     return LHS.QT == RHS.QT;
3992   }
3993 };
3994 } // namespace
3995 
3996 namespace llvm {
3997 template <> struct DenseMapInfo<CatchHandlerType> {
3998   static CatchHandlerType getEmptyKey() {
3999     return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
4000                        CatchHandlerType::ForDenseMap);
4001   }
4002 
4003   static CatchHandlerType getTombstoneKey() {
4004     return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
4005                        CatchHandlerType::ForDenseMap);
4006   }
4007 
4008   static unsigned getHashValue(const CatchHandlerType &Base) {
4009     return DenseMapInfo<QualType>::getHashValue(Base.underlying());
4010   }
4011 
4012   static bool isEqual(const CatchHandlerType &LHS,
4013                       const CatchHandlerType &RHS) {
4014     return LHS == RHS;
4015   }
4016 };
4017 }
4018 
4019 namespace {
4020 class CatchTypePublicBases {
4021   ASTContext &Ctx;
4022   const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
4023   const bool CheckAgainstPointer;
4024 
4025   CXXCatchStmt *FoundHandler;
4026   CanQualType FoundHandlerType;
4027 
4028 public:
4029   CatchTypePublicBases(
4030       ASTContext &Ctx,
4031       const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
4032       : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
4033         FoundHandler(nullptr) {}
4034 
4035   CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
4036   CanQualType getFoundHandlerType() const { return FoundHandlerType; }
4037 
4038   bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
4039     if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
4040       CatchHandlerType Check(S->getType(), CheckAgainstPointer);
4041       const auto &M = TypesToCheck;
4042       auto I = M.find(Check);
4043       if (I != M.end()) {
4044         FoundHandler = I->second;
4045         FoundHandlerType = Ctx.getCanonicalType(S->getType());
4046         return true;
4047       }
4048     }
4049     return false;
4050   }
4051 };
4052 }
4053 
4054 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
4055 /// handlers and creates a try statement from them.
4056 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4057                                   ArrayRef<Stmt *> Handlers) {
4058   // Don't report an error if 'try' is used in system headers.
4059   if (!getLangOpts().CXXExceptions &&
4060       !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) {
4061     // Delay error emission for the OpenMP device code.
4062     targetDiag(TryLoc, diag::err_exceptions_disabled) << "try";
4063   }
4064 
4065   // Exceptions aren't allowed in CUDA device code.
4066   if (getLangOpts().CUDA)
4067     CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
4068         << "try" << CurrentCUDATarget();
4069 
4070   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
4071     Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
4072 
4073   sema::FunctionScopeInfo *FSI = getCurFunction();
4074 
4075   // C++ try is incompatible with SEH __try.
4076   if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
4077     Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
4078     Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4079   }
4080 
4081   const unsigned NumHandlers = Handlers.size();
4082   assert(!Handlers.empty() &&
4083          "The parser shouldn't call this if there are no handlers.");
4084 
4085   llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
4086   for (unsigned i = 0; i < NumHandlers; ++i) {
4087     CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
4088 
4089     // Diagnose when the handler is a catch-all handler, but it isn't the last
4090     // handler for the try block. [except.handle]p5. Also, skip exception
4091     // declarations that are invalid, since we can't usefully report on them.
4092     if (!H->getExceptionDecl()) {
4093       if (i < NumHandlers - 1)
4094         return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
4095       continue;
4096     } else if (H->getExceptionDecl()->isInvalidDecl())
4097       continue;
4098 
4099     // Walk the type hierarchy to diagnose when this type has already been
4100     // handled (duplication), or cannot be handled (derivation inversion). We
4101     // ignore top-level cv-qualifiers, per [except.handle]p3
4102     CatchHandlerType HandlerCHT =
4103         (QualType)Context.getCanonicalType(H->getCaughtType());
4104 
4105     // We can ignore whether the type is a reference or a pointer; we need the
4106     // underlying declaration type in order to get at the underlying record
4107     // decl, if there is one.
4108     QualType Underlying = HandlerCHT.underlying();
4109     if (auto *RD = Underlying->getAsCXXRecordDecl()) {
4110       if (!RD->hasDefinition())
4111         continue;
4112       // Check that none of the public, unambiguous base classes are in the
4113       // map ([except.handle]p1). Give the base classes the same pointer
4114       // qualification as the original type we are basing off of. This allows
4115       // comparison against the handler type using the same top-level pointer
4116       // as the original type.
4117       CXXBasePaths Paths;
4118       Paths.setOrigin(RD);
4119       CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
4120       if (RD->lookupInBases(CTPB, Paths)) {
4121         const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4122         if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
4123           Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4124                diag::warn_exception_caught_by_earlier_handler)
4125               << H->getCaughtType();
4126           Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4127                 diag::note_previous_exception_handler)
4128               << Problem->getCaughtType();
4129         }
4130       }
4131     }
4132 
4133     // Add the type the list of ones we have handled; diagnose if we've already
4134     // handled it.
4135     auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
4136     if (!R.second) {
4137       const CXXCatchStmt *Problem = R.first->second;
4138       Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4139            diag::warn_exception_caught_by_earlier_handler)
4140           << H->getCaughtType();
4141       Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4142            diag::note_previous_exception_handler)
4143           << Problem->getCaughtType();
4144     }
4145   }
4146 
4147   FSI->setHasCXXTry(TryLoc);
4148 
4149   return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
4150 }
4151 
4152 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
4153                                   Stmt *TryBlock, Stmt *Handler) {
4154   assert(TryBlock && Handler);
4155 
4156   sema::FunctionScopeInfo *FSI = getCurFunction();
4157 
4158   // SEH __try is incompatible with C++ try. Borland appears to support this,
4159   // however.
4160   if (!getLangOpts().Borland) {
4161     if (FSI->FirstCXXTryLoc.isValid()) {
4162       Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
4163       Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
4164     }
4165   }
4166 
4167   FSI->setHasSEHTry(TryLoc);
4168 
4169   // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4170   // track if they use SEH.
4171   DeclContext *DC = CurContext;
4172   while (DC && !DC->isFunctionOrMethod())
4173     DC = DC->getParent();
4174   FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4175   if (FD)
4176     FD->setUsesSEHTry(true);
4177   else
4178     Diag(TryLoc, diag::err_seh_try_outside_functions);
4179 
4180   // Reject __try on unsupported targets.
4181   if (!Context.getTargetInfo().isSEHTrySupported())
4182     Diag(TryLoc, diag::err_seh_try_unsupported);
4183 
4184   return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4185 }
4186 
4187 StmtResult
4188 Sema::ActOnSEHExceptBlock(SourceLocation Loc,
4189                           Expr *FilterExpr,
4190                           Stmt *Block) {
4191   assert(FilterExpr && Block);
4192 
4193   if(!FilterExpr->getType()->isIntegerType()) {
4194     return StmtError(Diag(FilterExpr->getExprLoc(),
4195                      diag::err_filter_expression_integral)
4196                      << FilterExpr->getType());
4197   }
4198 
4199   return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block);
4200 }
4201 
4202 void Sema::ActOnStartSEHFinallyBlock() {
4203   CurrentSEHFinally.push_back(CurScope);
4204 }
4205 
4206 void Sema::ActOnAbortSEHFinallyBlock() {
4207   CurrentSEHFinally.pop_back();
4208 }
4209 
4210 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
4211   assert(Block);
4212   CurrentSEHFinally.pop_back();
4213   return SEHFinallyStmt::Create(Context, Loc, Block);
4214 }
4215 
4216 StmtResult
4217 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
4218   Scope *SEHTryParent = CurScope;
4219   while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4220     SEHTryParent = SEHTryParent->getParent();
4221   if (!SEHTryParent)
4222     return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4223   CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4224 
4225   return new (Context) SEHLeaveStmt(Loc);
4226 }
4227 
4228 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
4229                                             bool IsIfExists,
4230                                             NestedNameSpecifierLoc QualifierLoc,
4231                                             DeclarationNameInfo NameInfo,
4232                                             Stmt *Nested)
4233 {
4234   return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4235                                              QualifierLoc, NameInfo,
4236                                              cast<CompoundStmt>(Nested));
4237 }
4238 
4239 
4240 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
4241                                             bool IsIfExists,
4242                                             CXXScopeSpec &SS,
4243                                             UnqualifiedId &Name,
4244                                             Stmt *Nested) {
4245   return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4246                                     SS.getWithLocInContext(Context),
4247                                     GetNameFromUnqualifiedId(Name),
4248                                     Nested);
4249 }
4250 
4251 RecordDecl*
4252 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
4253                                    unsigned NumParams) {
4254   DeclContext *DC = CurContext;
4255   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4256     DC = DC->getParent();
4257 
4258   RecordDecl *RD = nullptr;
4259   if (getLangOpts().CPlusPlus)
4260     RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
4261                                /*Id=*/nullptr);
4262   else
4263     RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
4264 
4265   RD->setCapturedRecord();
4266   DC->addDecl(RD);
4267   RD->setImplicit();
4268   RD->startDefinition();
4269 
4270   assert(NumParams > 0 && "CapturedStmt requires context parameter");
4271   CD = CapturedDecl::Create(Context, CurContext, NumParams);
4272   DC->addDecl(CD);
4273   return RD;
4274 }
4275 
4276 static bool
4277 buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI,
4278                              SmallVectorImpl<CapturedStmt::Capture> &Captures,
4279                              SmallVectorImpl<Expr *> &CaptureInits) {
4280   for (const sema::Capture &Cap : RSI->Captures) {
4281     if (Cap.isInvalid())
4282       continue;
4283 
4284     // Form the initializer for the capture.
4285     ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(),
4286                                          RSI->CapRegionKind == CR_OpenMP);
4287 
4288     // FIXME: Bail out now if the capture is not used and the initializer has
4289     // no side-effects.
4290 
4291     // Create a field for this capture.
4292     FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap);
4293 
4294     // Add the capture to our list of captures.
4295     if (Cap.isThisCapture()) {
4296       Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4297                                                CapturedStmt::VCK_This));
4298     } else if (Cap.isVLATypeCapture()) {
4299       Captures.push_back(
4300           CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
4301     } else {
4302       assert(Cap.isVariableCapture() && "unknown kind of capture");
4303 
4304       if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
4305         S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel);
4306 
4307       Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4308                                                Cap.isReferenceCapture()
4309                                                    ? CapturedStmt::VCK_ByRef
4310                                                    : CapturedStmt::VCK_ByCopy,
4311                                                Cap.getVariable()));
4312     }
4313     CaptureInits.push_back(Init.get());
4314   }
4315   return false;
4316 }
4317 
4318 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4319                                     CapturedRegionKind Kind,
4320                                     unsigned NumParams) {
4321   CapturedDecl *CD = nullptr;
4322   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4323 
4324   // Build the context parameter
4325   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4326   IdentifierInfo *ParamName = &Context.Idents.get("__context");
4327   QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4328   auto *Param =
4329       ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4330                                 ImplicitParamDecl::CapturedContext);
4331   DC->addDecl(Param);
4332 
4333   CD->setContextParam(0, Param);
4334 
4335   // Enter the capturing scope for this captured region.
4336   PushCapturedRegionScope(CurScope, CD, RD, Kind);
4337 
4338   if (CurScope)
4339     PushDeclContext(CurScope, CD);
4340   else
4341     CurContext = CD;
4342 
4343   PushExpressionEvaluationContext(
4344       ExpressionEvaluationContext::PotentiallyEvaluated);
4345 }
4346 
4347 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4348                                     CapturedRegionKind Kind,
4349                                     ArrayRef<CapturedParamNameType> Params,
4350                                     unsigned OpenMPCaptureLevel) {
4351   CapturedDecl *CD = nullptr;
4352   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4353 
4354   // Build the context parameter
4355   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4356   bool ContextIsFound = false;
4357   unsigned ParamNum = 0;
4358   for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4359                                                  E = Params.end();
4360        I != E; ++I, ++ParamNum) {
4361     if (I->second.isNull()) {
4362       assert(!ContextIsFound &&
4363              "null type has been found already for '__context' parameter");
4364       IdentifierInfo *ParamName = &Context.Idents.get("__context");
4365       QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4366                                .withConst()
4367                                .withRestrict();
4368       auto *Param =
4369           ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4370                                     ImplicitParamDecl::CapturedContext);
4371       DC->addDecl(Param);
4372       CD->setContextParam(ParamNum, Param);
4373       ContextIsFound = true;
4374     } else {
4375       IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4376       auto *Param =
4377           ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4378                                     ImplicitParamDecl::CapturedContext);
4379       DC->addDecl(Param);
4380       CD->setParam(ParamNum, Param);
4381     }
4382   }
4383   assert(ContextIsFound && "no null type for '__context' parameter");
4384   if (!ContextIsFound) {
4385     // Add __context implicitly if it is not specified.
4386     IdentifierInfo *ParamName = &Context.Idents.get("__context");
4387     QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4388     auto *Param =
4389         ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4390                                   ImplicitParamDecl::CapturedContext);
4391     DC->addDecl(Param);
4392     CD->setContextParam(ParamNum, Param);
4393   }
4394   // Enter the capturing scope for this captured region.
4395   PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel);
4396 
4397   if (CurScope)
4398     PushDeclContext(CurScope, CD);
4399   else
4400     CurContext = CD;
4401 
4402   PushExpressionEvaluationContext(
4403       ExpressionEvaluationContext::PotentiallyEvaluated);
4404 }
4405 
4406 void Sema::ActOnCapturedRegionError() {
4407   DiscardCleanupsInEvaluationContext();
4408   PopExpressionEvaluationContext();
4409   PopDeclContext();
4410   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4411   CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4412 
4413   RecordDecl *Record = RSI->TheRecordDecl;
4414   Record->setInvalidDecl();
4415 
4416   SmallVector<Decl*, 4> Fields(Record->fields());
4417   ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4418               SourceLocation(), SourceLocation(), ParsedAttributesView());
4419 }
4420 
4421 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
4422   // Leave the captured scope before we start creating captures in the
4423   // enclosing scope.
4424   DiscardCleanupsInEvaluationContext();
4425   PopExpressionEvaluationContext();
4426   PopDeclContext();
4427   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4428   CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4429 
4430   SmallVector<CapturedStmt::Capture, 4> Captures;
4431   SmallVector<Expr *, 4> CaptureInits;
4432   if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits))
4433     return StmtError();
4434 
4435   CapturedDecl *CD = RSI->TheCapturedDecl;
4436   RecordDecl *RD = RSI->TheRecordDecl;
4437 
4438   CapturedStmt *Res = CapturedStmt::Create(
4439       getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4440       Captures, CaptureInits, CD, RD);
4441 
4442   CD->setBody(Res->getCapturedStmt());
4443   RD->completeDefinition();
4444 
4445   return Res;
4446 }
4447