xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaStmt.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for statements.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/Ownership.h"
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/AST/TypeOrdering.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallString.h"
40 #include "llvm/ADT/SmallVector.h"
41 
42 using namespace clang;
43 using namespace sema;
44 
45 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
46   if (FE.isInvalid())
47     return StmtError();
48 
49   FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
50   if (FE.isInvalid())
51     return StmtError();
52 
53   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
54   // void expression for its side effects.  Conversion to void allows any
55   // operand, even incomplete types.
56 
57   // Same thing in for stmt first clause (when expr) and third clause.
58   return StmtResult(FE.getAs<Stmt>());
59 }
60 
61 
62 StmtResult Sema::ActOnExprStmtError() {
63   DiscardCleanupsInEvaluationContext();
64   return StmtError();
65 }
66 
67 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
68                                bool HasLeadingEmptyMacro) {
69   return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
70 }
71 
72 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
73                                SourceLocation EndLoc) {
74   DeclGroupRef DG = dg.get();
75 
76   // If we have an invalid decl, just return an error.
77   if (DG.isNull()) return StmtError();
78 
79   return new (Context) DeclStmt(DG, StartLoc, EndLoc);
80 }
81 
82 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
83   DeclGroupRef DG = dg.get();
84 
85   // If we don't have a declaration, or we have an invalid declaration,
86   // just return.
87   if (DG.isNull() || !DG.isSingleDecl())
88     return;
89 
90   Decl *decl = DG.getSingleDecl();
91   if (!decl || decl->isInvalidDecl())
92     return;
93 
94   // Only variable declarations are permitted.
95   VarDecl *var = dyn_cast<VarDecl>(decl);
96   if (!var) {
97     Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
98     decl->setInvalidDecl();
99     return;
100   }
101 
102   // foreach variables are never actually initialized in the way that
103   // the parser came up with.
104   var->setInit(nullptr);
105 
106   // In ARC, we don't need to retain the iteration variable of a fast
107   // enumeration loop.  Rather than actually trying to catch that
108   // during declaration processing, we remove the consequences here.
109   if (getLangOpts().ObjCAutoRefCount) {
110     QualType type = var->getType();
111 
112     // Only do this if we inferred the lifetime.  Inferred lifetime
113     // will show up as a local qualifier because explicit lifetime
114     // should have shown up as an AttributedType instead.
115     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
116       // Add 'const' and mark the variable as pseudo-strong.
117       var->setType(type.withConst());
118       var->setARCPseudoStrong(true);
119     }
120   }
121 }
122 
123 /// Diagnose unused comparisons, both builtin and overloaded operators.
124 /// For '==' and '!=', suggest fixits for '=' or '|='.
125 ///
126 /// Adding a cast to void (or other expression wrappers) will prevent the
127 /// warning from firing.
128 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
129   SourceLocation Loc;
130   bool CanAssign;
131   enum { Equality, Inequality, Relational, ThreeWay } Kind;
132 
133   if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
134     if (!Op->isComparisonOp())
135       return false;
136 
137     if (Op->getOpcode() == BO_EQ)
138       Kind = Equality;
139     else if (Op->getOpcode() == BO_NE)
140       Kind = Inequality;
141     else if (Op->getOpcode() == BO_Cmp)
142       Kind = ThreeWay;
143     else {
144       assert(Op->isRelationalOp());
145       Kind = Relational;
146     }
147     Loc = Op->getOperatorLoc();
148     CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
149   } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
150     switch (Op->getOperator()) {
151     case OO_EqualEqual:
152       Kind = Equality;
153       break;
154     case OO_ExclaimEqual:
155       Kind = Inequality;
156       break;
157     case OO_Less:
158     case OO_Greater:
159     case OO_GreaterEqual:
160     case OO_LessEqual:
161       Kind = Relational;
162       break;
163     case OO_Spaceship:
164       Kind = ThreeWay;
165       break;
166     default:
167       return false;
168     }
169 
170     Loc = Op->getOperatorLoc();
171     CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
172   } else {
173     // Not a typo-prone comparison.
174     return false;
175   }
176 
177   // Suppress warnings when the operator, suspicious as it may be, comes from
178   // a macro expansion.
179   if (S.SourceMgr.isMacroBodyExpansion(Loc))
180     return false;
181 
182   S.Diag(Loc, diag::warn_unused_comparison)
183     << (unsigned)Kind << E->getSourceRange();
184 
185   // If the LHS is a plausible entity to assign to, provide a fixit hint to
186   // correct common typos.
187   if (CanAssign) {
188     if (Kind == Inequality)
189       S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
190         << FixItHint::CreateReplacement(Loc, "|=");
191     else if (Kind == Equality)
192       S.Diag(Loc, diag::note_equality_comparison_to_assign)
193         << FixItHint::CreateReplacement(Loc, "=");
194   }
195 
196   return true;
197 }
198 
199 static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A,
200                               SourceLocation Loc, SourceRange R1,
201                               SourceRange R2, bool IsCtor) {
202   if (!A)
203     return false;
204   StringRef Msg = A->getMessage();
205 
206   if (Msg.empty()) {
207     if (IsCtor)
208       return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2;
209     return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
210   }
211 
212   if (IsCtor)
213     return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1
214                                                           << R2;
215   return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2;
216 }
217 
218 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
219   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
220     return DiagnoseUnusedExprResult(Label->getSubStmt());
221 
222   const Expr *E = dyn_cast_or_null<Expr>(S);
223   if (!E)
224     return;
225 
226   // If we are in an unevaluated expression context, then there can be no unused
227   // results because the results aren't expected to be used in the first place.
228   if (isUnevaluatedContext())
229     return;
230 
231   SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
232   // In most cases, we don't want to warn if the expression is written in a
233   // macro body, or if the macro comes from a system header. If the offending
234   // expression is a call to a function with the warn_unused_result attribute,
235   // we warn no matter the location. Because of the order in which the various
236   // checks need to happen, we factor out the macro-related test here.
237   bool ShouldSuppress =
238       SourceMgr.isMacroBodyExpansion(ExprLoc) ||
239       SourceMgr.isInSystemMacro(ExprLoc);
240 
241   const Expr *WarnExpr;
242   SourceLocation Loc;
243   SourceRange R1, R2;
244   if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
245     return;
246 
247   // If this is a GNU statement expression expanded from a macro, it is probably
248   // unused because it is a function-like macro that can be used as either an
249   // expression or statement.  Don't warn, because it is almost certainly a
250   // false positive.
251   if (isa<StmtExpr>(E) && Loc.isMacroID())
252     return;
253 
254   // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
255   // That macro is frequently used to suppress "unused parameter" warnings,
256   // but its implementation makes clang's -Wunused-value fire.  Prevent this.
257   if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
258     SourceLocation SpellLoc = Loc;
259     if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
260       return;
261   }
262 
263   // Okay, we have an unused result.  Depending on what the base expression is,
264   // we might want to make a more specific diagnostic.  Check for one of these
265   // cases now.
266   unsigned DiagID = diag::warn_unused_expr;
267   if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
268     E = Temps->getSubExpr();
269   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
270     E = TempExpr->getSubExpr();
271 
272   if (DiagnoseUnusedComparison(*this, E))
273     return;
274 
275   E = WarnExpr;
276   if (const auto *Cast = dyn_cast<CastExpr>(E))
277     if (Cast->getCastKind() == CK_NoOp ||
278         Cast->getCastKind() == CK_ConstructorConversion)
279       E = Cast->getSubExpr()->IgnoreImpCasts();
280 
281   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
282     if (E->getType()->isVoidType())
283       return;
284 
285     if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>(
286                                      CE->getUnusedResultAttr(Context)),
287                           Loc, R1, R2, /*isCtor=*/false))
288       return;
289 
290     // If the callee has attribute pure, const, or warn_unused_result, warn with
291     // a more specific message to make it clear what is happening. If the call
292     // is written in a macro body, only warn if it has the warn_unused_result
293     // attribute.
294     if (const Decl *FD = CE->getCalleeDecl()) {
295       if (ShouldSuppress)
296         return;
297       if (FD->hasAttr<PureAttr>()) {
298         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
299         return;
300       }
301       if (FD->hasAttr<ConstAttr>()) {
302         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
303         return;
304       }
305     }
306   } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
307     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
308       const auto *A = Ctor->getAttr<WarnUnusedResultAttr>();
309       A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>();
310       if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true))
311         return;
312     }
313   } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
314     if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) {
315 
316       if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
317                             R2, /*isCtor=*/false))
318         return;
319     }
320   } else if (ShouldSuppress)
321     return;
322 
323   E = WarnExpr;
324   if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
325     if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
326       Diag(Loc, diag::err_arc_unused_init_message) << R1;
327       return;
328     }
329     const ObjCMethodDecl *MD = ME->getMethodDecl();
330     if (MD) {
331       if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
332                             R2, /*isCtor=*/false))
333         return;
334     }
335   } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
336     const Expr *Source = POE->getSyntacticForm();
337     if (isa<ObjCSubscriptRefExpr>(Source))
338       DiagID = diag::warn_unused_container_subscript_expr;
339     else
340       DiagID = diag::warn_unused_property_expr;
341   } else if (const CXXFunctionalCastExpr *FC
342                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
343     const Expr *E = FC->getSubExpr();
344     if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
345       E = TE->getSubExpr();
346     if (isa<CXXTemporaryObjectExpr>(E))
347       return;
348     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
349       if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
350         if (!RD->getAttr<WarnUnusedAttr>())
351           return;
352   }
353   // Diagnose "(void*) blah" as a typo for "(void) blah".
354   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
355     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
356     QualType T = TI->getType();
357 
358     // We really do want to use the non-canonical type here.
359     if (T == Context.VoidPtrTy) {
360       PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
361 
362       Diag(Loc, diag::warn_unused_voidptr)
363         << FixItHint::CreateRemoval(TL.getStarLoc());
364       return;
365     }
366   }
367 
368   if (E->isGLValue() && E->getType().isVolatileQualified()) {
369     Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
370     return;
371   }
372 
373   DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
374 }
375 
376 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
377   PushCompoundScope(IsStmtExpr);
378 }
379 
380 void Sema::ActOnFinishOfCompoundStmt() {
381   PopCompoundScope();
382 }
383 
384 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
385   return getCurFunction()->CompoundScopes.back();
386 }
387 
388 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
389                                    ArrayRef<Stmt *> Elts, bool isStmtExpr) {
390   const unsigned NumElts = Elts.size();
391 
392   // If we're in C89 mode, check that we don't have any decls after stmts.  If
393   // so, emit an extension diagnostic.
394   if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
395     // Note that __extension__ can be around a decl.
396     unsigned i = 0;
397     // Skip over all declarations.
398     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
399       /*empty*/;
400 
401     // We found the end of the list or a statement.  Scan for another declstmt.
402     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
403       /*empty*/;
404 
405     if (i != NumElts) {
406       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
407       Diag(D->getLocation(), diag::ext_mixed_decls_code);
408     }
409   }
410 
411   // Check for suspicious empty body (null statement) in `for' and `while'
412   // statements.  Don't do anything for template instantiations, this just adds
413   // noise.
414   if (NumElts != 0 && !CurrentInstantiationScope &&
415       getCurCompoundScope().HasEmptyLoopBodies) {
416     for (unsigned i = 0; i != NumElts - 1; ++i)
417       DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
418   }
419 
420   return CompoundStmt::Create(Context, Elts, L, R);
421 }
422 
423 ExprResult
424 Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) {
425   if (!Val.get())
426     return Val;
427 
428   if (DiagnoseUnexpandedParameterPack(Val.get()))
429     return ExprError();
430 
431   // If we're not inside a switch, let the 'case' statement handling diagnose
432   // this. Just clean up after the expression as best we can.
433   if (getCurFunction()->SwitchStack.empty())
434     return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
435                                getLangOpts().CPlusPlus11);
436 
437   Expr *CondExpr =
438       getCurFunction()->SwitchStack.back().getPointer()->getCond();
439   if (!CondExpr)
440     return ExprError();
441   QualType CondType = CondExpr->getType();
442 
443   auto CheckAndFinish = [&](Expr *E) {
444     if (CondType->isDependentType() || E->isTypeDependent())
445       return ExprResult(E);
446 
447     if (getLangOpts().CPlusPlus11) {
448       // C++11 [stmt.switch]p2: the constant-expression shall be a converted
449       // constant expression of the promoted type of the switch condition.
450       llvm::APSInt TempVal;
451       return CheckConvertedConstantExpression(E, CondType, TempVal,
452                                               CCEK_CaseValue);
453     }
454 
455     ExprResult ER = E;
456     if (!E->isValueDependent())
457       ER = VerifyIntegerConstantExpression(E);
458     if (!ER.isInvalid())
459       ER = DefaultLvalueConversion(ER.get());
460     if (!ER.isInvalid())
461       ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
462     if (!ER.isInvalid())
463       ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false);
464     return ER;
465   };
466 
467   ExprResult Converted = CorrectDelayedTyposInExpr(Val, CheckAndFinish);
468   if (Converted.get() == Val.get())
469     Converted = CheckAndFinish(Val.get());
470   return Converted;
471 }
472 
473 StmtResult
474 Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal,
475                     SourceLocation DotDotDotLoc, ExprResult RHSVal,
476                     SourceLocation ColonLoc) {
477   assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
478   assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
479                                    : RHSVal.isInvalid() || RHSVal.get()) &&
480          "missing RHS value");
481 
482   if (getCurFunction()->SwitchStack.empty()) {
483     Diag(CaseLoc, diag::err_case_not_in_switch);
484     return StmtError();
485   }
486 
487   if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
488     getCurFunction()->SwitchStack.back().setInt(true);
489     return StmtError();
490   }
491 
492   auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
493                               CaseLoc, DotDotDotLoc, ColonLoc);
494   getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
495   return CS;
496 }
497 
498 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
499 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
500   cast<CaseStmt>(S)->setSubStmt(SubStmt);
501 }
502 
503 StmtResult
504 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
505                        Stmt *SubStmt, Scope *CurScope) {
506   if (getCurFunction()->SwitchStack.empty()) {
507     Diag(DefaultLoc, diag::err_default_not_in_switch);
508     return SubStmt;
509   }
510 
511   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
512   getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
513   return DS;
514 }
515 
516 StmtResult
517 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
518                      SourceLocation ColonLoc, Stmt *SubStmt) {
519   // If the label was multiply defined, reject it now.
520   if (TheDecl->getStmt()) {
521     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
522     Diag(TheDecl->getLocation(), diag::note_previous_definition);
523     return SubStmt;
524   }
525 
526   // Otherwise, things are good.  Fill in the declaration and return it.
527   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
528   TheDecl->setStmt(LS);
529   if (!TheDecl->isGnuLocal()) {
530     TheDecl->setLocStart(IdentLoc);
531     if (!TheDecl->isMSAsmLabel()) {
532       // Don't update the location of MS ASM labels.  These will result in
533       // a diagnostic, and changing the location here will mess that up.
534       TheDecl->setLocation(IdentLoc);
535     }
536   }
537   return LS;
538 }
539 
540 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
541                                      ArrayRef<const Attr*> Attrs,
542                                      Stmt *SubStmt) {
543   // Fill in the declaration and return it.
544   AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
545   return LS;
546 }
547 
548 namespace {
549 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
550   typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
551   Sema &SemaRef;
552 public:
553   CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
554   void VisitBinaryOperator(BinaryOperator *E) {
555     if (E->getOpcode() == BO_Comma)
556       SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
557     EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E);
558   }
559 };
560 }
561 
562 StmtResult
563 Sema::ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt,
564                   ConditionResult Cond,
565                   Stmt *thenStmt, SourceLocation ElseLoc,
566                   Stmt *elseStmt) {
567   if (Cond.isInvalid())
568     Cond = ConditionResult(
569         *this, nullptr,
570         MakeFullExpr(new (Context) OpaqueValueExpr(SourceLocation(),
571                                                    Context.BoolTy, VK_RValue),
572                      IfLoc),
573         false);
574 
575   Expr *CondExpr = Cond.get().second;
576   // Only call the CommaVisitor when not C89 due to differences in scope flags.
577   if ((getLangOpts().C99 || getLangOpts().CPlusPlus) &&
578       !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
579     CommaVisitor(*this).Visit(CondExpr);
580 
581   if (!elseStmt)
582     DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), thenStmt,
583                           diag::warn_empty_if_body);
584 
585   return BuildIfStmt(IfLoc, IsConstexpr, InitStmt, Cond, thenStmt, ElseLoc,
586                      elseStmt);
587 }
588 
589 StmtResult Sema::BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
590                              Stmt *InitStmt, ConditionResult Cond,
591                              Stmt *thenStmt, SourceLocation ElseLoc,
592                              Stmt *elseStmt) {
593   if (Cond.isInvalid())
594     return StmtError();
595 
596   if (IsConstexpr || isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
597     setFunctionHasBranchProtectedScope();
598 
599   return IfStmt::Create(Context, IfLoc, IsConstexpr, InitStmt, Cond.get().first,
600                         Cond.get().second, thenStmt, ElseLoc, elseStmt);
601 }
602 
603 namespace {
604   struct CaseCompareFunctor {
605     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
606                     const llvm::APSInt &RHS) {
607       return LHS.first < RHS;
608     }
609     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
610                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
611       return LHS.first < RHS.first;
612     }
613     bool operator()(const llvm::APSInt &LHS,
614                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
615       return LHS < RHS.first;
616     }
617   };
618 }
619 
620 /// CmpCaseVals - Comparison predicate for sorting case values.
621 ///
622 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
623                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
624   if (lhs.first < rhs.first)
625     return true;
626 
627   if (lhs.first == rhs.first &&
628       lhs.second->getCaseLoc().getRawEncoding()
629        < rhs.second->getCaseLoc().getRawEncoding())
630     return true;
631   return false;
632 }
633 
634 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
635 ///
636 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
637                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
638 {
639   return lhs.first < rhs.first;
640 }
641 
642 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
643 ///
644 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
645                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
646 {
647   return lhs.first == rhs.first;
648 }
649 
650 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
651 /// potentially integral-promoted expression @p expr.
652 static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) {
653   if (const auto *FE = dyn_cast<FullExpr>(E))
654     E = FE->getSubExpr();
655   while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
656     if (ImpCast->getCastKind() != CK_IntegralCast) break;
657     E = ImpCast->getSubExpr();
658   }
659   return E->getType();
660 }
661 
662 ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) {
663   class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
664     Expr *Cond;
665 
666   public:
667     SwitchConvertDiagnoser(Expr *Cond)
668         : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
669           Cond(Cond) {}
670 
671     SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
672                                          QualType T) override {
673       return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
674     }
675 
676     SemaDiagnosticBuilder diagnoseIncomplete(
677         Sema &S, SourceLocation Loc, QualType T) override {
678       return S.Diag(Loc, diag::err_switch_incomplete_class_type)
679                << T << Cond->getSourceRange();
680     }
681 
682     SemaDiagnosticBuilder diagnoseExplicitConv(
683         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
684       return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
685     }
686 
687     SemaDiagnosticBuilder noteExplicitConv(
688         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
689       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
690         << ConvTy->isEnumeralType() << ConvTy;
691     }
692 
693     SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
694                                             QualType T) override {
695       return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
696     }
697 
698     SemaDiagnosticBuilder noteAmbiguous(
699         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
700       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
701       << ConvTy->isEnumeralType() << ConvTy;
702     }
703 
704     SemaDiagnosticBuilder diagnoseConversion(
705         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
706       llvm_unreachable("conversion functions are permitted");
707     }
708   } SwitchDiagnoser(Cond);
709 
710   ExprResult CondResult =
711       PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
712   if (CondResult.isInvalid())
713     return ExprError();
714 
715   // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
716   // failed and produced a diagnostic.
717   Cond = CondResult.get();
718   if (!Cond->isTypeDependent() &&
719       !Cond->getType()->isIntegralOrEnumerationType())
720     return ExprError();
721 
722   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
723   return UsualUnaryConversions(Cond);
724 }
725 
726 StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
727                                         Stmt *InitStmt, ConditionResult Cond) {
728   Expr *CondExpr = Cond.get().second;
729   assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
730 
731   if (CondExpr && !CondExpr->isTypeDependent()) {
732     // We have already converted the expression to an integral or enumeration
733     // type, when we parsed the switch condition. If we don't have an
734     // appropriate type now, enter the switch scope but remember that it's
735     // invalid.
736     assert(CondExpr->getType()->isIntegralOrEnumerationType() &&
737            "invalid condition type");
738     if (CondExpr->isKnownToHaveBooleanValue()) {
739       // switch(bool_expr) {...} is often a programmer error, e.g.
740       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
741       // One can always use an if statement instead of switch(bool_expr).
742       Diag(SwitchLoc, diag::warn_bool_switch_condition)
743           << CondExpr->getSourceRange();
744     }
745   }
746 
747   setFunctionHasBranchIntoScope();
748 
749   auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr);
750   getCurFunction()->SwitchStack.push_back(
751       FunctionScopeInfo::SwitchInfo(SS, false));
752   return SS;
753 }
754 
755 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
756   Val = Val.extOrTrunc(BitWidth);
757   Val.setIsSigned(IsSigned);
758 }
759 
760 /// Check the specified case value is in range for the given unpromoted switch
761 /// type.
762 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
763                            unsigned UnpromotedWidth, bool UnpromotedSign) {
764   // In C++11 onwards, this is checked by the language rules.
765   if (S.getLangOpts().CPlusPlus11)
766     return;
767 
768   // If the case value was signed and negative and the switch expression is
769   // unsigned, don't bother to warn: this is implementation-defined behavior.
770   // FIXME: Introduce a second, default-ignored warning for this case?
771   if (UnpromotedWidth < Val.getBitWidth()) {
772     llvm::APSInt ConvVal(Val);
773     AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
774     AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
775     // FIXME: Use different diagnostics for overflow  in conversion to promoted
776     // type versus "switch expression cannot have this value". Use proper
777     // IntRange checking rather than just looking at the unpromoted type here.
778     if (ConvVal != Val)
779       S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
780                                                   << ConvVal.toString(10);
781   }
782 }
783 
784 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
785 
786 /// Returns true if we should emit a diagnostic about this case expression not
787 /// being a part of the enum used in the switch controlling expression.
788 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
789                                               const EnumDecl *ED,
790                                               const Expr *CaseExpr,
791                                               EnumValsTy::iterator &EI,
792                                               EnumValsTy::iterator &EIEnd,
793                                               const llvm::APSInt &Val) {
794   if (!ED->isClosed())
795     return false;
796 
797   if (const DeclRefExpr *DRE =
798           dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
799     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
800       QualType VarType = VD->getType();
801       QualType EnumType = S.Context.getTypeDeclType(ED);
802       if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
803           S.Context.hasSameUnqualifiedType(EnumType, VarType))
804         return false;
805     }
806   }
807 
808   if (ED->hasAttr<FlagEnumAttr>())
809     return !S.IsValueInFlagEnum(ED, Val, false);
810 
811   while (EI != EIEnd && EI->first < Val)
812     EI++;
813 
814   if (EI != EIEnd && EI->first == Val)
815     return false;
816 
817   return true;
818 }
819 
820 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
821                                        const Expr *Case) {
822   QualType CondType = Cond->getType();
823   QualType CaseType = Case->getType();
824 
825   const EnumType *CondEnumType = CondType->getAs<EnumType>();
826   const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
827   if (!CondEnumType || !CaseEnumType)
828     return;
829 
830   // Ignore anonymous enums.
831   if (!CondEnumType->getDecl()->getIdentifier() &&
832       !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
833     return;
834   if (!CaseEnumType->getDecl()->getIdentifier() &&
835       !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
836     return;
837 
838   if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
839     return;
840 
841   S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
842       << CondType << CaseType << Cond->getSourceRange()
843       << Case->getSourceRange();
844 }
845 
846 StmtResult
847 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
848                             Stmt *BodyStmt) {
849   SwitchStmt *SS = cast<SwitchStmt>(Switch);
850   bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
851   assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
852          "switch stack missing push/pop!");
853 
854   getCurFunction()->SwitchStack.pop_back();
855 
856   if (!BodyStmt) return StmtError();
857   SS->setBody(BodyStmt, SwitchLoc);
858 
859   Expr *CondExpr = SS->getCond();
860   if (!CondExpr) return StmtError();
861 
862   QualType CondType = CondExpr->getType();
863 
864   // C++ 6.4.2.p2:
865   // Integral promotions are performed (on the switch condition).
866   //
867   // A case value unrepresentable by the original switch condition
868   // type (before the promotion) doesn't make sense, even when it can
869   // be represented by the promoted type.  Therefore we need to find
870   // the pre-promotion type of the switch condition.
871   const Expr *CondExprBeforePromotion = CondExpr;
872   QualType CondTypeBeforePromotion =
873       GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
874 
875   // Get the bitwidth of the switched-on value after promotions. We must
876   // convert the integer case values to this width before comparison.
877   bool HasDependentValue
878     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
879   unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
880   bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
881 
882   // Get the width and signedness that the condition might actually have, for
883   // warning purposes.
884   // FIXME: Grab an IntRange for the condition rather than using the unpromoted
885   // type.
886   unsigned CondWidthBeforePromotion
887     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
888   bool CondIsSignedBeforePromotion
889     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
890 
891   // Accumulate all of the case values in a vector so that we can sort them
892   // and detect duplicates.  This vector contains the APInt for the case after
893   // it has been converted to the condition type.
894   typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
895   CaseValsTy CaseVals;
896 
897   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
898   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
899   CaseRangesTy CaseRanges;
900 
901   DefaultStmt *TheDefaultStmt = nullptr;
902 
903   bool CaseListIsErroneous = false;
904 
905   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
906        SC = SC->getNextSwitchCase()) {
907 
908     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
909       if (TheDefaultStmt) {
910         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
911         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
912 
913         // FIXME: Remove the default statement from the switch block so that
914         // we'll return a valid AST.  This requires recursing down the AST and
915         // finding it, not something we are set up to do right now.  For now,
916         // just lop the entire switch stmt out of the AST.
917         CaseListIsErroneous = true;
918       }
919       TheDefaultStmt = DS;
920 
921     } else {
922       CaseStmt *CS = cast<CaseStmt>(SC);
923 
924       Expr *Lo = CS->getLHS();
925 
926       if (Lo->isValueDependent()) {
927         HasDependentValue = true;
928         break;
929       }
930 
931       // We already verified that the expression has a constant value;
932       // get that value (prior to conversions).
933       const Expr *LoBeforePromotion = Lo;
934       GetTypeBeforeIntegralPromotion(LoBeforePromotion);
935       llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
936 
937       // Check the unconverted value is within the range of possible values of
938       // the switch expression.
939       checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
940                      CondIsSignedBeforePromotion);
941 
942       // FIXME: This duplicates the check performed for warn_not_in_enum below.
943       checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
944                                  LoBeforePromotion);
945 
946       // Convert the value to the same width/sign as the condition.
947       AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
948 
949       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
950       if (CS->getRHS()) {
951         if (CS->getRHS()->isValueDependent()) {
952           HasDependentValue = true;
953           break;
954         }
955         CaseRanges.push_back(std::make_pair(LoVal, CS));
956       } else
957         CaseVals.push_back(std::make_pair(LoVal, CS));
958     }
959   }
960 
961   if (!HasDependentValue) {
962     // If we don't have a default statement, check whether the
963     // condition is constant.
964     llvm::APSInt ConstantCondValue;
965     bool HasConstantCond = false;
966     if (!TheDefaultStmt) {
967       Expr::EvalResult Result;
968       HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
969                                                 Expr::SE_AllowSideEffects);
970       if (Result.Val.isInt())
971         ConstantCondValue = Result.Val.getInt();
972       assert(!HasConstantCond ||
973              (ConstantCondValue.getBitWidth() == CondWidth &&
974               ConstantCondValue.isSigned() == CondIsSigned));
975     }
976     bool ShouldCheckConstantCond = HasConstantCond;
977 
978     // Sort all the scalar case values so we can easily detect duplicates.
979     llvm::stable_sort(CaseVals, CmpCaseVals);
980 
981     if (!CaseVals.empty()) {
982       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
983         if (ShouldCheckConstantCond &&
984             CaseVals[i].first == ConstantCondValue)
985           ShouldCheckConstantCond = false;
986 
987         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
988           // If we have a duplicate, report it.
989           // First, determine if either case value has a name
990           StringRef PrevString, CurrString;
991           Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
992           Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
993           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
994             PrevString = DeclRef->getDecl()->getName();
995           }
996           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
997             CurrString = DeclRef->getDecl()->getName();
998           }
999           SmallString<16> CaseValStr;
1000           CaseVals[i-1].first.toString(CaseValStr);
1001 
1002           if (PrevString == CurrString)
1003             Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1004                  diag::err_duplicate_case)
1005                 << (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
1006           else
1007             Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1008                  diag::err_duplicate_case_differing_expr)
1009                 << (PrevString.empty() ? StringRef(CaseValStr) : PrevString)
1010                 << (CurrString.empty() ? StringRef(CaseValStr) : CurrString)
1011                 << CaseValStr;
1012 
1013           Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
1014                diag::note_duplicate_case_prev);
1015           // FIXME: We really want to remove the bogus case stmt from the
1016           // substmt, but we have no way to do this right now.
1017           CaseListIsErroneous = true;
1018         }
1019       }
1020     }
1021 
1022     // Detect duplicate case ranges, which usually don't exist at all in
1023     // the first place.
1024     if (!CaseRanges.empty()) {
1025       // Sort all the case ranges by their low value so we can easily detect
1026       // overlaps between ranges.
1027       llvm::stable_sort(CaseRanges);
1028 
1029       // Scan the ranges, computing the high values and removing empty ranges.
1030       std::vector<llvm::APSInt> HiVals;
1031       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1032         llvm::APSInt &LoVal = CaseRanges[i].first;
1033         CaseStmt *CR = CaseRanges[i].second;
1034         Expr *Hi = CR->getRHS();
1035 
1036         const Expr *HiBeforePromotion = Hi;
1037         GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1038         llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1039 
1040         // Check the unconverted value is within the range of possible values of
1041         // the switch expression.
1042         checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
1043                        CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1044 
1045         // Convert the value to the same width/sign as the condition.
1046         AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1047 
1048         // If the low value is bigger than the high value, the case is empty.
1049         if (LoVal > HiVal) {
1050           Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
1051               << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
1052           CaseRanges.erase(CaseRanges.begin()+i);
1053           --i;
1054           --e;
1055           continue;
1056         }
1057 
1058         if (ShouldCheckConstantCond &&
1059             LoVal <= ConstantCondValue &&
1060             ConstantCondValue <= HiVal)
1061           ShouldCheckConstantCond = false;
1062 
1063         HiVals.push_back(HiVal);
1064       }
1065 
1066       // Rescan the ranges, looking for overlap with singleton values and other
1067       // ranges.  Since the range list is sorted, we only need to compare case
1068       // ranges with their neighbors.
1069       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1070         llvm::APSInt &CRLo = CaseRanges[i].first;
1071         llvm::APSInt &CRHi = HiVals[i];
1072         CaseStmt *CR = CaseRanges[i].second;
1073 
1074         // Check to see whether the case range overlaps with any
1075         // singleton cases.
1076         CaseStmt *OverlapStmt = nullptr;
1077         llvm::APSInt OverlapVal(32);
1078 
1079         // Find the smallest value >= the lower bound.  If I is in the
1080         // case range, then we have overlap.
1081         CaseValsTy::iterator I =
1082             llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor());
1083         if (I != CaseVals.end() && I->first < CRHi) {
1084           OverlapVal  = I->first;   // Found overlap with scalar.
1085           OverlapStmt = I->second;
1086         }
1087 
1088         // Find the smallest value bigger than the upper bound.
1089         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1090         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1091           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
1092           OverlapStmt = (I-1)->second;
1093         }
1094 
1095         // Check to see if this case stmt overlaps with the subsequent
1096         // case range.
1097         if (i && CRLo <= HiVals[i-1]) {
1098           OverlapVal  = HiVals[i-1];       // Found overlap with range.
1099           OverlapStmt = CaseRanges[i-1].second;
1100         }
1101 
1102         if (OverlapStmt) {
1103           // If we have a duplicate, report it.
1104           Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
1105               << OverlapVal.toString(10);
1106           Diag(OverlapStmt->getLHS()->getBeginLoc(),
1107                diag::note_duplicate_case_prev);
1108           // FIXME: We really want to remove the bogus case stmt from the
1109           // substmt, but we have no way to do this right now.
1110           CaseListIsErroneous = true;
1111         }
1112       }
1113     }
1114 
1115     // Complain if we have a constant condition and we didn't find a match.
1116     if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1117         ShouldCheckConstantCond) {
1118       // TODO: it would be nice if we printed enums as enums, chars as
1119       // chars, etc.
1120       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1121         << ConstantCondValue.toString(10)
1122         << CondExpr->getSourceRange();
1123     }
1124 
1125     // Check to see if switch is over an Enum and handles all of its
1126     // values.  We only issue a warning if there is not 'default:', but
1127     // we still do the analysis to preserve this information in the AST
1128     // (which can be used by flow-based analyes).
1129     //
1130     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1131 
1132     // If switch has default case, then ignore it.
1133     if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1134         ET && ET->getDecl()->isCompleteDefinition()) {
1135       const EnumDecl *ED = ET->getDecl();
1136       EnumValsTy EnumVals;
1137 
1138       // Gather all enum values, set their type and sort them,
1139       // allowing easier comparison with CaseVals.
1140       for (auto *EDI : ED->enumerators()) {
1141         llvm::APSInt Val = EDI->getInitVal();
1142         AdjustAPSInt(Val, CondWidth, CondIsSigned);
1143         EnumVals.push_back(std::make_pair(Val, EDI));
1144       }
1145       llvm::stable_sort(EnumVals, CmpEnumVals);
1146       auto EI = EnumVals.begin(), EIEnd =
1147         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1148 
1149       // See which case values aren't in enum.
1150       for (CaseValsTy::const_iterator CI = CaseVals.begin();
1151           CI != CaseVals.end(); CI++) {
1152         Expr *CaseExpr = CI->second->getLHS();
1153         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1154                                               CI->first))
1155           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1156             << CondTypeBeforePromotion;
1157       }
1158 
1159       // See which of case ranges aren't in enum
1160       EI = EnumVals.begin();
1161       for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1162           RI != CaseRanges.end(); RI++) {
1163         Expr *CaseExpr = RI->second->getLHS();
1164         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1165                                               RI->first))
1166           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1167             << CondTypeBeforePromotion;
1168 
1169         llvm::APSInt Hi =
1170           RI->second->getRHS()->EvaluateKnownConstInt(Context);
1171         AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1172 
1173         CaseExpr = RI->second->getRHS();
1174         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1175                                               Hi))
1176           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1177             << CondTypeBeforePromotion;
1178       }
1179 
1180       // Check which enum vals aren't in switch
1181       auto CI = CaseVals.begin();
1182       auto RI = CaseRanges.begin();
1183       bool hasCasesNotInSwitch = false;
1184 
1185       SmallVector<DeclarationName,8> UnhandledNames;
1186 
1187       for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
1188         // Don't warn about omitted unavailable EnumConstantDecls.
1189         switch (EI->second->getAvailability()) {
1190         case AR_Deprecated:
1191           // Omitting a deprecated constant is ok; it should never materialize.
1192         case AR_Unavailable:
1193           continue;
1194 
1195         case AR_NotYetIntroduced:
1196           // Partially available enum constants should be present. Note that we
1197           // suppress -Wunguarded-availability diagnostics for such uses.
1198         case AR_Available:
1199           break;
1200         }
1201 
1202         if (EI->second->hasAttr<UnusedAttr>())
1203           continue;
1204 
1205         // Drop unneeded case values
1206         while (CI != CaseVals.end() && CI->first < EI->first)
1207           CI++;
1208 
1209         if (CI != CaseVals.end() && CI->first == EI->first)
1210           continue;
1211 
1212         // Drop unneeded case ranges
1213         for (; RI != CaseRanges.end(); RI++) {
1214           llvm::APSInt Hi =
1215             RI->second->getRHS()->EvaluateKnownConstInt(Context);
1216           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1217           if (EI->first <= Hi)
1218             break;
1219         }
1220 
1221         if (RI == CaseRanges.end() || EI->first < RI->first) {
1222           hasCasesNotInSwitch = true;
1223           UnhandledNames.push_back(EI->second->getDeclName());
1224         }
1225       }
1226 
1227       if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1228         Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1229 
1230       // Produce a nice diagnostic if multiple values aren't handled.
1231       if (!UnhandledNames.empty()) {
1232         DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
1233                                     TheDefaultStmt ? diag::warn_def_missing_case
1234                                                    : diag::warn_missing_case)
1235                                << (int)UnhandledNames.size();
1236 
1237         for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1238              I != E; ++I)
1239           DB << UnhandledNames[I];
1240       }
1241 
1242       if (!hasCasesNotInSwitch)
1243         SS->setAllEnumCasesCovered();
1244     }
1245   }
1246 
1247   if (BodyStmt)
1248     DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
1249                           diag::warn_empty_switch_body);
1250 
1251   // FIXME: If the case list was broken is some way, we don't have a good system
1252   // to patch it up.  Instead, just return the whole substmt as broken.
1253   if (CaseListIsErroneous)
1254     return StmtError();
1255 
1256   return SS;
1257 }
1258 
1259 void
1260 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1261                              Expr *SrcExpr) {
1262   if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1263     return;
1264 
1265   if (const EnumType *ET = DstType->getAs<EnumType>())
1266     if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1267         SrcType->isIntegerType()) {
1268       if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1269           SrcExpr->isIntegerConstantExpr(Context)) {
1270         // Get the bitwidth of the enum value before promotions.
1271         unsigned DstWidth = Context.getIntWidth(DstType);
1272         bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1273 
1274         llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1275         AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1276         const EnumDecl *ED = ET->getDecl();
1277 
1278         if (!ED->isClosed())
1279           return;
1280 
1281         if (ED->hasAttr<FlagEnumAttr>()) {
1282           if (!IsValueInFlagEnum(ED, RhsVal, true))
1283             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1284               << DstType.getUnqualifiedType();
1285         } else {
1286           typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1287               EnumValsTy;
1288           EnumValsTy EnumVals;
1289 
1290           // Gather all enum values, set their type and sort them,
1291           // allowing easier comparison with rhs constant.
1292           for (auto *EDI : ED->enumerators()) {
1293             llvm::APSInt Val = EDI->getInitVal();
1294             AdjustAPSInt(Val, DstWidth, DstIsSigned);
1295             EnumVals.push_back(std::make_pair(Val, EDI));
1296           }
1297           if (EnumVals.empty())
1298             return;
1299           llvm::stable_sort(EnumVals, CmpEnumVals);
1300           EnumValsTy::iterator EIend =
1301               std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1302 
1303           // See which values aren't in the enum.
1304           EnumValsTy::const_iterator EI = EnumVals.begin();
1305           while (EI != EIend && EI->first < RhsVal)
1306             EI++;
1307           if (EI == EIend || EI->first != RhsVal) {
1308             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1309                 << DstType.getUnqualifiedType();
1310           }
1311         }
1312       }
1313     }
1314 }
1315 
1316 StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, ConditionResult Cond,
1317                                 Stmt *Body) {
1318   if (Cond.isInvalid())
1319     return StmtError();
1320 
1321   auto CondVal = Cond.get();
1322   CheckBreakContinueBinding(CondVal.second);
1323 
1324   if (CondVal.second &&
1325       !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1326     CommaVisitor(*this).Visit(CondVal.second);
1327 
1328   if (isa<NullStmt>(Body))
1329     getCurCompoundScope().setHasEmptyLoopBodies();
1330 
1331   return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
1332                            WhileLoc);
1333 }
1334 
1335 StmtResult
1336 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1337                   SourceLocation WhileLoc, SourceLocation CondLParen,
1338                   Expr *Cond, SourceLocation CondRParen) {
1339   assert(Cond && "ActOnDoStmt(): missing expression");
1340 
1341   CheckBreakContinueBinding(Cond);
1342   ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1343   if (CondResult.isInvalid())
1344     return StmtError();
1345   Cond = CondResult.get();
1346 
1347   CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
1348   if (CondResult.isInvalid())
1349     return StmtError();
1350   Cond = CondResult.get();
1351 
1352   // Only call the CommaVisitor for C89 due to differences in scope flags.
1353   if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
1354       !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
1355     CommaVisitor(*this).Visit(Cond);
1356 
1357   return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1358 }
1359 
1360 namespace {
1361   // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1362   using DeclSetVector =
1363       llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>,
1364                       llvm::SmallPtrSet<VarDecl *, 8>>;
1365 
1366   // This visitor will traverse a conditional statement and store all
1367   // the evaluated decls into a vector.  Simple is set to true if none
1368   // of the excluded constructs are used.
1369   class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1370     DeclSetVector &Decls;
1371     SmallVectorImpl<SourceRange> &Ranges;
1372     bool Simple;
1373   public:
1374     typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1375 
1376     DeclExtractor(Sema &S, DeclSetVector &Decls,
1377                   SmallVectorImpl<SourceRange> &Ranges) :
1378         Inherited(S.Context),
1379         Decls(Decls),
1380         Ranges(Ranges),
1381         Simple(true) {}
1382 
1383     bool isSimple() { return Simple; }
1384 
1385     // Replaces the method in EvaluatedExprVisitor.
1386     void VisitMemberExpr(MemberExpr* E) {
1387       Simple = false;
1388     }
1389 
1390     // Any Stmt not whitelisted will cause the condition to be marked complex.
1391     void VisitStmt(Stmt *S) {
1392       Simple = false;
1393     }
1394 
1395     void VisitBinaryOperator(BinaryOperator *E) {
1396       Visit(E->getLHS());
1397       Visit(E->getRHS());
1398     }
1399 
1400     void VisitCastExpr(CastExpr *E) {
1401       Visit(E->getSubExpr());
1402     }
1403 
1404     void VisitUnaryOperator(UnaryOperator *E) {
1405       // Skip checking conditionals with derefernces.
1406       if (E->getOpcode() == UO_Deref)
1407         Simple = false;
1408       else
1409         Visit(E->getSubExpr());
1410     }
1411 
1412     void VisitConditionalOperator(ConditionalOperator *E) {
1413       Visit(E->getCond());
1414       Visit(E->getTrueExpr());
1415       Visit(E->getFalseExpr());
1416     }
1417 
1418     void VisitParenExpr(ParenExpr *E) {
1419       Visit(E->getSubExpr());
1420     }
1421 
1422     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1423       Visit(E->getOpaqueValue()->getSourceExpr());
1424       Visit(E->getFalseExpr());
1425     }
1426 
1427     void VisitIntegerLiteral(IntegerLiteral *E) { }
1428     void VisitFloatingLiteral(FloatingLiteral *E) { }
1429     void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1430     void VisitCharacterLiteral(CharacterLiteral *E) { }
1431     void VisitGNUNullExpr(GNUNullExpr *E) { }
1432     void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1433 
1434     void VisitDeclRefExpr(DeclRefExpr *E) {
1435       VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1436       if (!VD) {
1437         // Don't allow unhandled Decl types.
1438         Simple = false;
1439         return;
1440       }
1441 
1442       Ranges.push_back(E->getSourceRange());
1443 
1444       Decls.insert(VD);
1445     }
1446 
1447   }; // end class DeclExtractor
1448 
1449   // DeclMatcher checks to see if the decls are used in a non-evaluated
1450   // context.
1451   class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1452     DeclSetVector &Decls;
1453     bool FoundDecl;
1454 
1455   public:
1456     typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1457 
1458     DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1459         Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1460       if (!Statement) return;
1461 
1462       Visit(Statement);
1463     }
1464 
1465     void VisitReturnStmt(ReturnStmt *S) {
1466       FoundDecl = true;
1467     }
1468 
1469     void VisitBreakStmt(BreakStmt *S) {
1470       FoundDecl = true;
1471     }
1472 
1473     void VisitGotoStmt(GotoStmt *S) {
1474       FoundDecl = true;
1475     }
1476 
1477     void VisitCastExpr(CastExpr *E) {
1478       if (E->getCastKind() == CK_LValueToRValue)
1479         CheckLValueToRValueCast(E->getSubExpr());
1480       else
1481         Visit(E->getSubExpr());
1482     }
1483 
1484     void CheckLValueToRValueCast(Expr *E) {
1485       E = E->IgnoreParenImpCasts();
1486 
1487       if (isa<DeclRefExpr>(E)) {
1488         return;
1489       }
1490 
1491       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1492         Visit(CO->getCond());
1493         CheckLValueToRValueCast(CO->getTrueExpr());
1494         CheckLValueToRValueCast(CO->getFalseExpr());
1495         return;
1496       }
1497 
1498       if (BinaryConditionalOperator *BCO =
1499               dyn_cast<BinaryConditionalOperator>(E)) {
1500         CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1501         CheckLValueToRValueCast(BCO->getFalseExpr());
1502         return;
1503       }
1504 
1505       Visit(E);
1506     }
1507 
1508     void VisitDeclRefExpr(DeclRefExpr *E) {
1509       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1510         if (Decls.count(VD))
1511           FoundDecl = true;
1512     }
1513 
1514     void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1515       // Only need to visit the semantics for POE.
1516       // SyntaticForm doesn't really use the Decal.
1517       for (auto *S : POE->semantics()) {
1518         if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1519           // Look past the OVE into the expression it binds.
1520           Visit(OVE->getSourceExpr());
1521         else
1522           Visit(S);
1523       }
1524     }
1525 
1526     bool FoundDeclInUse() { return FoundDecl; }
1527 
1528   };  // end class DeclMatcher
1529 
1530   void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1531                                         Expr *Third, Stmt *Body) {
1532     // Condition is empty
1533     if (!Second) return;
1534 
1535     if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1536                           Second->getBeginLoc()))
1537       return;
1538 
1539     PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1540     DeclSetVector Decls;
1541     SmallVector<SourceRange, 10> Ranges;
1542     DeclExtractor DE(S, Decls, Ranges);
1543     DE.Visit(Second);
1544 
1545     // Don't analyze complex conditionals.
1546     if (!DE.isSimple()) return;
1547 
1548     // No decls found.
1549     if (Decls.size() == 0) return;
1550 
1551     // Don't warn on volatile, static, or global variables.
1552     for (auto *VD : Decls)
1553       if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1554         return;
1555 
1556     if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1557         DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1558         DeclMatcher(S, Decls, Body).FoundDeclInUse())
1559       return;
1560 
1561     // Load decl names into diagnostic.
1562     if (Decls.size() > 4) {
1563       PDiag << 0;
1564     } else {
1565       PDiag << (unsigned)Decls.size();
1566       for (auto *VD : Decls)
1567         PDiag << VD->getDeclName();
1568     }
1569 
1570     for (auto Range : Ranges)
1571       PDiag << Range;
1572 
1573     S.Diag(Ranges.begin()->getBegin(), PDiag);
1574   }
1575 
1576   // If Statement is an incemement or decrement, return true and sets the
1577   // variables Increment and DRE.
1578   bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1579                             DeclRefExpr *&DRE) {
1580     if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1581       if (!Cleanups->cleanupsHaveSideEffects())
1582         Statement = Cleanups->getSubExpr();
1583 
1584     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1585       switch (UO->getOpcode()) {
1586         default: return false;
1587         case UO_PostInc:
1588         case UO_PreInc:
1589           Increment = true;
1590           break;
1591         case UO_PostDec:
1592         case UO_PreDec:
1593           Increment = false;
1594           break;
1595       }
1596       DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1597       return DRE;
1598     }
1599 
1600     if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1601       FunctionDecl *FD = Call->getDirectCallee();
1602       if (!FD || !FD->isOverloadedOperator()) return false;
1603       switch (FD->getOverloadedOperator()) {
1604         default: return false;
1605         case OO_PlusPlus:
1606           Increment = true;
1607           break;
1608         case OO_MinusMinus:
1609           Increment = false;
1610           break;
1611       }
1612       DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1613       return DRE;
1614     }
1615 
1616     return false;
1617   }
1618 
1619   // A visitor to determine if a continue or break statement is a
1620   // subexpression.
1621   class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
1622     SourceLocation BreakLoc;
1623     SourceLocation ContinueLoc;
1624     bool InSwitch = false;
1625 
1626   public:
1627     BreakContinueFinder(Sema &S, const Stmt* Body) :
1628         Inherited(S.Context) {
1629       Visit(Body);
1630     }
1631 
1632     typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited;
1633 
1634     void VisitContinueStmt(const ContinueStmt* E) {
1635       ContinueLoc = E->getContinueLoc();
1636     }
1637 
1638     void VisitBreakStmt(const BreakStmt* E) {
1639       if (!InSwitch)
1640         BreakLoc = E->getBreakLoc();
1641     }
1642 
1643     void VisitSwitchStmt(const SwitchStmt* S) {
1644       if (const Stmt *Init = S->getInit())
1645         Visit(Init);
1646       if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
1647         Visit(CondVar);
1648       if (const Stmt *Cond = S->getCond())
1649         Visit(Cond);
1650 
1651       // Don't return break statements from the body of a switch.
1652       InSwitch = true;
1653       if (const Stmt *Body = S->getBody())
1654         Visit(Body);
1655       InSwitch = false;
1656     }
1657 
1658     void VisitForStmt(const ForStmt *S) {
1659       // Only visit the init statement of a for loop; the body
1660       // has a different break/continue scope.
1661       if (const Stmt *Init = S->getInit())
1662         Visit(Init);
1663     }
1664 
1665     void VisitWhileStmt(const WhileStmt *) {
1666       // Do nothing; the children of a while loop have a different
1667       // break/continue scope.
1668     }
1669 
1670     void VisitDoStmt(const DoStmt *) {
1671       // Do nothing; the children of a while loop have a different
1672       // break/continue scope.
1673     }
1674 
1675     void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
1676       // Only visit the initialization of a for loop; the body
1677       // has a different break/continue scope.
1678       if (const Stmt *Init = S->getInit())
1679         Visit(Init);
1680       if (const Stmt *Range = S->getRangeStmt())
1681         Visit(Range);
1682       if (const Stmt *Begin = S->getBeginStmt())
1683         Visit(Begin);
1684       if (const Stmt *End = S->getEndStmt())
1685         Visit(End);
1686     }
1687 
1688     void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
1689       // Only visit the initialization of a for loop; the body
1690       // has a different break/continue scope.
1691       if (const Stmt *Element = S->getElement())
1692         Visit(Element);
1693       if (const Stmt *Collection = S->getCollection())
1694         Visit(Collection);
1695     }
1696 
1697     bool ContinueFound() { return ContinueLoc.isValid(); }
1698     bool BreakFound() { return BreakLoc.isValid(); }
1699     SourceLocation GetContinueLoc() { return ContinueLoc; }
1700     SourceLocation GetBreakLoc() { return BreakLoc; }
1701 
1702   };  // end class BreakContinueFinder
1703 
1704   // Emit a warning when a loop increment/decrement appears twice per loop
1705   // iteration.  The conditions which trigger this warning are:
1706   // 1) The last statement in the loop body and the third expression in the
1707   //    for loop are both increment or both decrement of the same variable
1708   // 2) No continue statements in the loop body.
1709   void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1710     // Return when there is nothing to check.
1711     if (!Body || !Third) return;
1712 
1713     if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
1714                           Third->getBeginLoc()))
1715       return;
1716 
1717     // Get the last statement from the loop body.
1718     CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1719     if (!CS || CS->body_empty()) return;
1720     Stmt *LastStmt = CS->body_back();
1721     if (!LastStmt) return;
1722 
1723     bool LoopIncrement, LastIncrement;
1724     DeclRefExpr *LoopDRE, *LastDRE;
1725 
1726     if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1727     if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1728 
1729     // Check that the two statements are both increments or both decrements
1730     // on the same variable.
1731     if (LoopIncrement != LastIncrement ||
1732         LoopDRE->getDecl() != LastDRE->getDecl()) return;
1733 
1734     if (BreakContinueFinder(S, Body).ContinueFound()) return;
1735 
1736     S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1737          << LastDRE->getDecl() << LastIncrement;
1738     S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1739          << LoopIncrement;
1740   }
1741 
1742 } // end namespace
1743 
1744 
1745 void Sema::CheckBreakContinueBinding(Expr *E) {
1746   if (!E || getLangOpts().CPlusPlus)
1747     return;
1748   BreakContinueFinder BCFinder(*this, E);
1749   Scope *BreakParent = CurScope->getBreakParent();
1750   if (BCFinder.BreakFound() && BreakParent) {
1751     if (BreakParent->getFlags() & Scope::SwitchScope) {
1752       Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
1753     } else {
1754       Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
1755           << "break";
1756     }
1757   } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
1758     Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
1759         << "continue";
1760   }
1761 }
1762 
1763 StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1764                               Stmt *First, ConditionResult Second,
1765                               FullExprArg third, SourceLocation RParenLoc,
1766                               Stmt *Body) {
1767   if (Second.isInvalid())
1768     return StmtError();
1769 
1770   if (!getLangOpts().CPlusPlus) {
1771     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1772       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1773       // declare identifiers for objects having storage class 'auto' or
1774       // 'register'.
1775       for (auto *DI : DS->decls()) {
1776         VarDecl *VD = dyn_cast<VarDecl>(DI);
1777         if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1778           VD = nullptr;
1779         if (!VD) {
1780           Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
1781           DI->setInvalidDecl();
1782         }
1783       }
1784     }
1785   }
1786 
1787   CheckBreakContinueBinding(Second.get().second);
1788   CheckBreakContinueBinding(third.get());
1789 
1790   if (!Second.get().first)
1791     CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
1792                                      Body);
1793   CheckForRedundantIteration(*this, third.get(), Body);
1794 
1795   if (Second.get().second &&
1796       !Diags.isIgnored(diag::warn_comma_operator,
1797                        Second.get().second->getExprLoc()))
1798     CommaVisitor(*this).Visit(Second.get().second);
1799 
1800   Expr *Third  = third.release().getAs<Expr>();
1801   if (isa<NullStmt>(Body))
1802     getCurCompoundScope().setHasEmptyLoopBodies();
1803 
1804   return new (Context)
1805       ForStmt(Context, First, Second.get().second, Second.get().first, Third,
1806               Body, ForLoc, LParenLoc, RParenLoc);
1807 }
1808 
1809 /// In an Objective C collection iteration statement:
1810 ///   for (x in y)
1811 /// x can be an arbitrary l-value expression.  Bind it up as a
1812 /// full-expression.
1813 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1814   // Reduce placeholder expressions here.  Note that this rejects the
1815   // use of pseudo-object l-values in this position.
1816   ExprResult result = CheckPlaceholderExpr(E);
1817   if (result.isInvalid()) return StmtError();
1818   E = result.get();
1819 
1820   ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
1821   if (FullExpr.isInvalid())
1822     return StmtError();
1823   return StmtResult(static_cast<Stmt*>(FullExpr.get()));
1824 }
1825 
1826 ExprResult
1827 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1828   if (!collection)
1829     return ExprError();
1830 
1831   ExprResult result = CorrectDelayedTyposInExpr(collection);
1832   if (!result.isUsable())
1833     return ExprError();
1834   collection = result.get();
1835 
1836   // Bail out early if we've got a type-dependent expression.
1837   if (collection->isTypeDependent()) return collection;
1838 
1839   // Perform normal l-value conversion.
1840   result = DefaultFunctionArrayLvalueConversion(collection);
1841   if (result.isInvalid())
1842     return ExprError();
1843   collection = result.get();
1844 
1845   // The operand needs to have object-pointer type.
1846   // TODO: should we do a contextual conversion?
1847   const ObjCObjectPointerType *pointerType =
1848     collection->getType()->getAs<ObjCObjectPointerType>();
1849   if (!pointerType)
1850     return Diag(forLoc, diag::err_collection_expr_type)
1851              << collection->getType() << collection->getSourceRange();
1852 
1853   // Check that the operand provides
1854   //   - countByEnumeratingWithState:objects:count:
1855   const ObjCObjectType *objectType = pointerType->getObjectType();
1856   ObjCInterfaceDecl *iface = objectType->getInterface();
1857 
1858   // If we have a forward-declared type, we can't do this check.
1859   // Under ARC, it is an error not to have a forward-declared class.
1860   if (iface &&
1861       (getLangOpts().ObjCAutoRefCount
1862            ? RequireCompleteType(forLoc, QualType(objectType, 0),
1863                                  diag::err_arc_collection_forward, collection)
1864            : !isCompleteType(forLoc, QualType(objectType, 0)))) {
1865     // Otherwise, if we have any useful type information, check that
1866     // the type declares the appropriate method.
1867   } else if (iface || !objectType->qual_empty()) {
1868     IdentifierInfo *selectorIdents[] = {
1869       &Context.Idents.get("countByEnumeratingWithState"),
1870       &Context.Idents.get("objects"),
1871       &Context.Idents.get("count")
1872     };
1873     Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1874 
1875     ObjCMethodDecl *method = nullptr;
1876 
1877     // If there's an interface, look in both the public and private APIs.
1878     if (iface) {
1879       method = iface->lookupInstanceMethod(selector);
1880       if (!method) method = iface->lookupPrivateMethod(selector);
1881     }
1882 
1883     // Also check protocol qualifiers.
1884     if (!method)
1885       method = LookupMethodInQualifiedType(selector, pointerType,
1886                                            /*instance*/ true);
1887 
1888     // If we didn't find it anywhere, give up.
1889     if (!method) {
1890       Diag(forLoc, diag::warn_collection_expr_type)
1891         << collection->getType() << selector << collection->getSourceRange();
1892     }
1893 
1894     // TODO: check for an incompatible signature?
1895   }
1896 
1897   // Wrap up any cleanups in the expression.
1898   return collection;
1899 }
1900 
1901 StmtResult
1902 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1903                                  Stmt *First, Expr *collection,
1904                                  SourceLocation RParenLoc) {
1905   setFunctionHasBranchProtectedScope();
1906 
1907   ExprResult CollectionExprResult =
1908     CheckObjCForCollectionOperand(ForLoc, collection);
1909 
1910   if (First) {
1911     QualType FirstType;
1912     if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1913       if (!DS->isSingleDecl())
1914         return StmtError(Diag((*DS->decl_begin())->getLocation(),
1915                          diag::err_toomany_element_decls));
1916 
1917       VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1918       if (!D || D->isInvalidDecl())
1919         return StmtError();
1920 
1921       FirstType = D->getType();
1922       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1923       // declare identifiers for objects having storage class 'auto' or
1924       // 'register'.
1925       if (!D->hasLocalStorage())
1926         return StmtError(Diag(D->getLocation(),
1927                               diag::err_non_local_variable_decl_in_for));
1928 
1929       // If the type contained 'auto', deduce the 'auto' to 'id'.
1930       if (FirstType->getContainedAutoType()) {
1931         OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1932                                  VK_RValue);
1933         Expr *DeducedInit = &OpaqueId;
1934         if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1935                 DAR_Failed)
1936           DiagnoseAutoDeductionFailure(D, DeducedInit);
1937         if (FirstType.isNull()) {
1938           D->setInvalidDecl();
1939           return StmtError();
1940         }
1941 
1942         D->setType(FirstType);
1943 
1944         if (!inTemplateInstantiation()) {
1945           SourceLocation Loc =
1946               D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
1947           Diag(Loc, diag::warn_auto_var_is_id)
1948             << D->getDeclName();
1949         }
1950       }
1951 
1952     } else {
1953       Expr *FirstE = cast<Expr>(First);
1954       if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1955         return StmtError(
1956             Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue)
1957             << First->getSourceRange());
1958 
1959       FirstType = static_cast<Expr*>(First)->getType();
1960       if (FirstType.isConstQualified())
1961         Diag(ForLoc, diag::err_selector_element_const_type)
1962           << FirstType << First->getSourceRange();
1963     }
1964     if (!FirstType->isDependentType() &&
1965         !FirstType->isObjCObjectPointerType() &&
1966         !FirstType->isBlockPointerType())
1967         return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1968                            << FirstType << First->getSourceRange());
1969   }
1970 
1971   if (CollectionExprResult.isInvalid())
1972     return StmtError();
1973 
1974   CollectionExprResult =
1975       ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false);
1976   if (CollectionExprResult.isInvalid())
1977     return StmtError();
1978 
1979   return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
1980                                              nullptr, ForLoc, RParenLoc);
1981 }
1982 
1983 /// Finish building a variable declaration for a for-range statement.
1984 /// \return true if an error occurs.
1985 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1986                                   SourceLocation Loc, int DiagID) {
1987   if (Decl->getType()->isUndeducedType()) {
1988     ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
1989     if (!Res.isUsable()) {
1990       Decl->setInvalidDecl();
1991       return true;
1992     }
1993     Init = Res.get();
1994   }
1995 
1996   // Deduce the type for the iterator variable now rather than leaving it to
1997   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1998   QualType InitType;
1999   if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
2000       SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
2001           Sema::DAR_Failed)
2002     SemaRef.Diag(Loc, DiagID) << Init->getType();
2003   if (InitType.isNull()) {
2004     Decl->setInvalidDecl();
2005     return true;
2006   }
2007   Decl->setType(InitType);
2008 
2009   // In ARC, infer lifetime.
2010   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
2011   // we're doing the equivalent of fast iteration.
2012   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2013       SemaRef.inferObjCARCLifetime(Decl))
2014     Decl->setInvalidDecl();
2015 
2016   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
2017   SemaRef.FinalizeDeclaration(Decl);
2018   SemaRef.CurContext->addHiddenDecl(Decl);
2019   return false;
2020 }
2021 
2022 namespace {
2023 // An enum to represent whether something is dealing with a call to begin()
2024 // or a call to end() in a range-based for loop.
2025 enum BeginEndFunction {
2026   BEF_begin,
2027   BEF_end
2028 };
2029 
2030 /// Produce a note indicating which begin/end function was implicitly called
2031 /// by a C++11 for-range statement. This is often not obvious from the code,
2032 /// nor from the diagnostics produced when analysing the implicit expressions
2033 /// required in a for-range statement.
2034 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
2035                                   BeginEndFunction BEF) {
2036   CallExpr *CE = dyn_cast<CallExpr>(E);
2037   if (!CE)
2038     return;
2039   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2040   if (!D)
2041     return;
2042   SourceLocation Loc = D->getLocation();
2043 
2044   std::string Description;
2045   bool IsTemplate = false;
2046   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2047     Description = SemaRef.getTemplateArgumentBindingsText(
2048       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2049     IsTemplate = true;
2050   }
2051 
2052   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2053     << BEF << IsTemplate << Description << E->getType();
2054 }
2055 
2056 /// Build a variable declaration for a for-range statement.
2057 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2058                               QualType Type, StringRef Name) {
2059   DeclContext *DC = SemaRef.CurContext;
2060   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2061   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2062   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2063                                   TInfo, SC_None);
2064   Decl->setImplicit();
2065   return Decl;
2066 }
2067 
2068 }
2069 
2070 static bool ObjCEnumerationCollection(Expr *Collection) {
2071   return !Collection->isTypeDependent()
2072           && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2073 }
2074 
2075 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
2076 ///
2077 /// C++11 [stmt.ranged]:
2078 ///   A range-based for statement is equivalent to
2079 ///
2080 ///   {
2081 ///     auto && __range = range-init;
2082 ///     for ( auto __begin = begin-expr,
2083 ///           __end = end-expr;
2084 ///           __begin != __end;
2085 ///           ++__begin ) {
2086 ///       for-range-declaration = *__begin;
2087 ///       statement
2088 ///     }
2089 ///   }
2090 ///
2091 /// The body of the loop is not available yet, since it cannot be analysed until
2092 /// we have determined the type of the for-range-declaration.
2093 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
2094                                       SourceLocation CoawaitLoc, Stmt *InitStmt,
2095                                       Stmt *First, SourceLocation ColonLoc,
2096                                       Expr *Range, SourceLocation RParenLoc,
2097                                       BuildForRangeKind Kind) {
2098   if (!First)
2099     return StmtError();
2100 
2101   if (Range && ObjCEnumerationCollection(Range)) {
2102     // FIXME: Support init-statements in Objective-C++20 ranged for statement.
2103     if (InitStmt)
2104       return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
2105                  << InitStmt->getSourceRange();
2106     return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2107   }
2108 
2109   DeclStmt *DS = dyn_cast<DeclStmt>(First);
2110   assert(DS && "first part of for range not a decl stmt");
2111 
2112   if (!DS->isSingleDecl()) {
2113     Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
2114     return StmtError();
2115   }
2116 
2117   Decl *LoopVar = DS->getSingleDecl();
2118   if (LoopVar->isInvalidDecl() || !Range ||
2119       DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2120     LoopVar->setInvalidDecl();
2121     return StmtError();
2122   }
2123 
2124   // Build the coroutine state immediately and not later during template
2125   // instantiation
2126   if (!CoawaitLoc.isInvalid()) {
2127     if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await"))
2128       return StmtError();
2129   }
2130 
2131   // Build  auto && __range = range-init
2132   // Divide by 2, since the variables are in the inner scope (loop body).
2133   const auto DepthStr = std::to_string(S->getDepth() / 2);
2134   SourceLocation RangeLoc = Range->getBeginLoc();
2135   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2136                                            Context.getAutoRRefDeductType(),
2137                                            std::string("__range") + DepthStr);
2138   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2139                             diag::err_for_range_deduction_failure)) {
2140     LoopVar->setInvalidDecl();
2141     return StmtError();
2142   }
2143 
2144   // Claim the type doesn't contain auto: we've already done the checking.
2145   DeclGroupPtrTy RangeGroup =
2146       BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2147   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2148   if (RangeDecl.isInvalid()) {
2149     LoopVar->setInvalidDecl();
2150     return StmtError();
2151   }
2152 
2153   return BuildCXXForRangeStmt(
2154       ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
2155       /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2156       /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind);
2157 }
2158 
2159 /// Create the initialization, compare, and increment steps for
2160 /// the range-based for loop expression.
2161 /// This function does not handle array-based for loops,
2162 /// which are created in Sema::BuildCXXForRangeStmt.
2163 ///
2164 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2165 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2166 /// CandidateSet and BEF are set and some non-success value is returned on
2167 /// failure.
2168 static Sema::ForRangeStatus
2169 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2170                       QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2171                       SourceLocation ColonLoc, SourceLocation CoawaitLoc,
2172                       OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2173                       ExprResult *EndExpr, BeginEndFunction *BEF) {
2174   DeclarationNameInfo BeginNameInfo(
2175       &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2176   DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2177                                   ColonLoc);
2178 
2179   LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2180                                  Sema::LookupMemberName);
2181   LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2182 
2183   auto BuildBegin = [&] {
2184     *BEF = BEF_begin;
2185     Sema::ForRangeStatus RangeStatus =
2186         SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2187                                           BeginMemberLookup, CandidateSet,
2188                                           BeginRange, BeginExpr);
2189 
2190     if (RangeStatus != Sema::FRS_Success) {
2191       if (RangeStatus == Sema::FRS_DiagnosticIssued)
2192         SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
2193             << ColonLoc << BEF_begin << BeginRange->getType();
2194       return RangeStatus;
2195     }
2196     if (!CoawaitLoc.isInvalid()) {
2197       // FIXME: getCurScope() should not be used during template instantiation.
2198       // We should pick up the set of unqualified lookup results for operator
2199       // co_await during the initial parse.
2200       *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2201                                             BeginExpr->get());
2202       if (BeginExpr->isInvalid())
2203         return Sema::FRS_DiagnosticIssued;
2204     }
2205     if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2206                               diag::err_for_range_iter_deduction_failure)) {
2207       NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2208       return Sema::FRS_DiagnosticIssued;
2209     }
2210     return Sema::FRS_Success;
2211   };
2212 
2213   auto BuildEnd = [&] {
2214     *BEF = BEF_end;
2215     Sema::ForRangeStatus RangeStatus =
2216         SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2217                                           EndMemberLookup, CandidateSet,
2218                                           EndRange, EndExpr);
2219     if (RangeStatus != Sema::FRS_Success) {
2220       if (RangeStatus == Sema::FRS_DiagnosticIssued)
2221         SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
2222             << ColonLoc << BEF_end << EndRange->getType();
2223       return RangeStatus;
2224     }
2225     if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2226                               diag::err_for_range_iter_deduction_failure)) {
2227       NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2228       return Sema::FRS_DiagnosticIssued;
2229     }
2230     return Sema::FRS_Success;
2231   };
2232 
2233   if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2234     // - if _RangeT is a class type, the unqualified-ids begin and end are
2235     //   looked up in the scope of class _RangeT as if by class member access
2236     //   lookup (3.4.5), and if either (or both) finds at least one
2237     //   declaration, begin-expr and end-expr are __range.begin() and
2238     //   __range.end(), respectively;
2239     SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2240     if (BeginMemberLookup.isAmbiguous())
2241       return Sema::FRS_DiagnosticIssued;
2242 
2243     SemaRef.LookupQualifiedName(EndMemberLookup, D);
2244     if (EndMemberLookup.isAmbiguous())
2245       return Sema::FRS_DiagnosticIssued;
2246 
2247     if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2248       // Look up the non-member form of the member we didn't find, first.
2249       // This way we prefer a "no viable 'end'" diagnostic over a "i found
2250       // a 'begin' but ignored it because there was no member 'end'"
2251       // diagnostic.
2252       auto BuildNonmember = [&](
2253           BeginEndFunction BEFFound, LookupResult &Found,
2254           llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
2255           llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
2256         LookupResult OldFound = std::move(Found);
2257         Found.clear();
2258 
2259         if (Sema::ForRangeStatus Result = BuildNotFound())
2260           return Result;
2261 
2262         switch (BuildFound()) {
2263         case Sema::FRS_Success:
2264           return Sema::FRS_Success;
2265 
2266         case Sema::FRS_NoViableFunction:
2267           CandidateSet->NoteCandidates(
2268               PartialDiagnosticAt(BeginRange->getBeginLoc(),
2269                                   SemaRef.PDiag(diag::err_for_range_invalid)
2270                                       << BeginRange->getType() << BEFFound),
2271               SemaRef, OCD_AllCandidates, BeginRange);
2272           LLVM_FALLTHROUGH;
2273 
2274         case Sema::FRS_DiagnosticIssued:
2275           for (NamedDecl *D : OldFound) {
2276             SemaRef.Diag(D->getLocation(),
2277                          diag::note_for_range_member_begin_end_ignored)
2278                 << BeginRange->getType() << BEFFound;
2279           }
2280           return Sema::FRS_DiagnosticIssued;
2281         }
2282         llvm_unreachable("unexpected ForRangeStatus");
2283       };
2284       if (BeginMemberLookup.empty())
2285         return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
2286       return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
2287     }
2288   } else {
2289     // - otherwise, begin-expr and end-expr are begin(__range) and
2290     //   end(__range), respectively, where begin and end are looked up with
2291     //   argument-dependent lookup (3.4.2). For the purposes of this name
2292     //   lookup, namespace std is an associated namespace.
2293   }
2294 
2295   if (Sema::ForRangeStatus Result = BuildBegin())
2296     return Result;
2297   return BuildEnd();
2298 }
2299 
2300 /// Speculatively attempt to dereference an invalid range expression.
2301 /// If the attempt fails, this function will return a valid, null StmtResult
2302 /// and emit no diagnostics.
2303 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2304                                                  SourceLocation ForLoc,
2305                                                  SourceLocation CoawaitLoc,
2306                                                  Stmt *InitStmt,
2307                                                  Stmt *LoopVarDecl,
2308                                                  SourceLocation ColonLoc,
2309                                                  Expr *Range,
2310                                                  SourceLocation RangeLoc,
2311                                                  SourceLocation RParenLoc) {
2312   // Determine whether we can rebuild the for-range statement with a
2313   // dereferenced range expression.
2314   ExprResult AdjustedRange;
2315   {
2316     Sema::SFINAETrap Trap(SemaRef);
2317 
2318     AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2319     if (AdjustedRange.isInvalid())
2320       return StmtResult();
2321 
2322     StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2323         S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2324         AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
2325     if (SR.isInvalid())
2326       return StmtResult();
2327   }
2328 
2329   // The attempt to dereference worked well enough that it could produce a valid
2330   // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2331   // case there are any other (non-fatal) problems with it.
2332   SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2333     << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2334   return SemaRef.ActOnCXXForRangeStmt(
2335       S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2336       AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
2337 }
2338 
2339 namespace {
2340 /// RAII object to automatically invalidate a declaration if an error occurs.
2341 struct InvalidateOnErrorScope {
2342   InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
2343       : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
2344   ~InvalidateOnErrorScope() {
2345     if (Enabled && Trap.hasErrorOccurred())
2346       D->setInvalidDecl();
2347   }
2348 
2349   DiagnosticErrorTrap Trap;
2350   Decl *D;
2351   bool Enabled;
2352 };
2353 }
2354 
2355 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2356 StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc,
2357                                       SourceLocation CoawaitLoc, Stmt *InitStmt,
2358                                       SourceLocation ColonLoc, Stmt *RangeDecl,
2359                                       Stmt *Begin, Stmt *End, Expr *Cond,
2360                                       Expr *Inc, Stmt *LoopVarDecl,
2361                                       SourceLocation RParenLoc,
2362                                       BuildForRangeKind Kind) {
2363   // FIXME: This should not be used during template instantiation. We should
2364   // pick up the set of unqualified lookup results for the != and + operators
2365   // in the initial parse.
2366   //
2367   // Testcase (accepts-invalid):
2368   //   template<typename T> void f() { for (auto x : T()) {} }
2369   //   namespace N { struct X { X begin(); X end(); int operator*(); }; }
2370   //   bool operator!=(N::X, N::X); void operator++(N::X);
2371   //   void g() { f<N::X>(); }
2372   Scope *S = getCurScope();
2373 
2374   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2375   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2376   QualType RangeVarType = RangeVar->getType();
2377 
2378   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2379   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2380 
2381   // If we hit any errors, mark the loop variable as invalid if its type
2382   // contains 'auto'.
2383   InvalidateOnErrorScope Invalidate(*this, LoopVar,
2384                                     LoopVar->getType()->isUndeducedType());
2385 
2386   StmtResult BeginDeclStmt = Begin;
2387   StmtResult EndDeclStmt = End;
2388   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2389 
2390   if (RangeVarType->isDependentType()) {
2391     // The range is implicitly used as a placeholder when it is dependent.
2392     RangeVar->markUsed(Context);
2393 
2394     // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2395     // them in properly when we instantiate the loop.
2396     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2397       if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2398         for (auto *Binding : DD->bindings())
2399           Binding->setType(Context.DependentTy);
2400       LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2401     }
2402   } else if (!BeginDeclStmt.get()) {
2403     SourceLocation RangeLoc = RangeVar->getLocation();
2404 
2405     const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2406 
2407     ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2408                                                 VK_LValue, ColonLoc);
2409     if (BeginRangeRef.isInvalid())
2410       return StmtError();
2411 
2412     ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2413                                               VK_LValue, ColonLoc);
2414     if (EndRangeRef.isInvalid())
2415       return StmtError();
2416 
2417     QualType AutoType = Context.getAutoDeductType();
2418     Expr *Range = RangeVar->getInit();
2419     if (!Range)
2420       return StmtError();
2421     QualType RangeType = Range->getType();
2422 
2423     if (RequireCompleteType(RangeLoc, RangeType,
2424                             diag::err_for_range_incomplete_type))
2425       return StmtError();
2426 
2427     // Build auto __begin = begin-expr, __end = end-expr.
2428     // Divide by 2, since the variables are in the inner scope (loop body).
2429     const auto DepthStr = std::to_string(S->getDepth() / 2);
2430     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2431                                              std::string("__begin") + DepthStr);
2432     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2433                                            std::string("__end") + DepthStr);
2434 
2435     // Build begin-expr and end-expr and attach to __begin and __end variables.
2436     ExprResult BeginExpr, EndExpr;
2437     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2438       // - if _RangeT is an array type, begin-expr and end-expr are __range and
2439       //   __range + __bound, respectively, where __bound is the array bound. If
2440       //   _RangeT is an array of unknown size or an array of incomplete type,
2441       //   the program is ill-formed;
2442 
2443       // begin-expr is __range.
2444       BeginExpr = BeginRangeRef;
2445       if (!CoawaitLoc.isInvalid()) {
2446         BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2447         if (BeginExpr.isInvalid())
2448           return StmtError();
2449       }
2450       if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2451                                 diag::err_for_range_iter_deduction_failure)) {
2452         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2453         return StmtError();
2454       }
2455 
2456       // Find the array bound.
2457       ExprResult BoundExpr;
2458       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2459         BoundExpr = IntegerLiteral::Create(
2460             Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2461       else if (const VariableArrayType *VAT =
2462                dyn_cast<VariableArrayType>(UnqAT)) {
2463         // For a variably modified type we can't just use the expression within
2464         // the array bounds, since we don't want that to be re-evaluated here.
2465         // Rather, we need to determine what it was when the array was first
2466         // created - so we resort to using sizeof(vla)/sizeof(element).
2467         // For e.g.
2468         //  void f(int b) {
2469         //    int vla[b];
2470         //    b = -1;   <-- This should not affect the num of iterations below
2471         //    for (int &c : vla) { .. }
2472         //  }
2473 
2474         // FIXME: This results in codegen generating IR that recalculates the
2475         // run-time number of elements (as opposed to just using the IR Value
2476         // that corresponds to the run-time value of each bound that was
2477         // generated when the array was created.) If this proves too embarrassing
2478         // even for unoptimized IR, consider passing a magic-value/cookie to
2479         // codegen that then knows to simply use that initial llvm::Value (that
2480         // corresponds to the bound at time of array creation) within
2481         // getelementptr.  But be prepared to pay the price of increasing a
2482         // customized form of coupling between the two components - which  could
2483         // be hard to maintain as the codebase evolves.
2484 
2485         ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2486             EndVar->getLocation(), UETT_SizeOf,
2487             /*IsType=*/true,
2488             CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2489                                                  VAT->desugar(), RangeLoc))
2490                 .getAsOpaquePtr(),
2491             EndVar->getSourceRange());
2492         if (SizeOfVLAExprR.isInvalid())
2493           return StmtError();
2494 
2495         ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2496             EndVar->getLocation(), UETT_SizeOf,
2497             /*IsType=*/true,
2498             CreateParsedType(VAT->desugar(),
2499                              Context.getTrivialTypeSourceInfo(
2500                                  VAT->getElementType(), RangeLoc))
2501                 .getAsOpaquePtr(),
2502             EndVar->getSourceRange());
2503         if (SizeOfEachElementExprR.isInvalid())
2504           return StmtError();
2505 
2506         BoundExpr =
2507             ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2508                        SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2509         if (BoundExpr.isInvalid())
2510           return StmtError();
2511 
2512       } else {
2513         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2514         // UnqAT is not incomplete and Range is not type-dependent.
2515         llvm_unreachable("Unexpected array type in for-range");
2516       }
2517 
2518       // end-expr is __range + __bound.
2519       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2520                            BoundExpr.get());
2521       if (EndExpr.isInvalid())
2522         return StmtError();
2523       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2524                                 diag::err_for_range_iter_deduction_failure)) {
2525         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2526         return StmtError();
2527       }
2528     } else {
2529       OverloadCandidateSet CandidateSet(RangeLoc,
2530                                         OverloadCandidateSet::CSK_Normal);
2531       BeginEndFunction BEFFailure;
2532       ForRangeStatus RangeStatus = BuildNonArrayForRange(
2533           *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2534           EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2535           &BEFFailure);
2536 
2537       if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2538           BEFFailure == BEF_begin) {
2539         // If the range is being built from an array parameter, emit a
2540         // a diagnostic that it is being treated as a pointer.
2541         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2542           if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2543             QualType ArrayTy = PVD->getOriginalType();
2544             QualType PointerTy = PVD->getType();
2545             if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2546               Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
2547                   << RangeLoc << PVD << ArrayTy << PointerTy;
2548               Diag(PVD->getLocation(), diag::note_declared_at);
2549               return StmtError();
2550             }
2551           }
2552         }
2553 
2554         // If building the range failed, try dereferencing the range expression
2555         // unless a diagnostic was issued or the end function is problematic.
2556         StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2557                                                        CoawaitLoc, InitStmt,
2558                                                        LoopVarDecl, ColonLoc,
2559                                                        Range, RangeLoc,
2560                                                        RParenLoc);
2561         if (SR.isInvalid() || SR.isUsable())
2562           return SR;
2563       }
2564 
2565       // Otherwise, emit diagnostics if we haven't already.
2566       if (RangeStatus == FRS_NoViableFunction) {
2567         Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2568         CandidateSet.NoteCandidates(
2569             PartialDiagnosticAt(Range->getBeginLoc(),
2570                                 PDiag(diag::err_for_range_invalid)
2571                                     << RangeLoc << Range->getType()
2572                                     << BEFFailure),
2573             *this, OCD_AllCandidates, Range);
2574       }
2575       // Return an error if no fix was discovered.
2576       if (RangeStatus != FRS_Success)
2577         return StmtError();
2578     }
2579 
2580     assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2581            "invalid range expression in for loop");
2582 
2583     // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2584     // C++1z removes this restriction.
2585     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2586     if (!Context.hasSameType(BeginType, EndType)) {
2587       Diag(RangeLoc, getLangOpts().CPlusPlus17
2588                          ? diag::warn_for_range_begin_end_types_differ
2589                          : diag::ext_for_range_begin_end_types_differ)
2590           << BeginType << EndType;
2591       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2592       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2593     }
2594 
2595     BeginDeclStmt =
2596         ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2597     EndDeclStmt =
2598         ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2599 
2600     const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2601     ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2602                                            VK_LValue, ColonLoc);
2603     if (BeginRef.isInvalid())
2604       return StmtError();
2605 
2606     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2607                                          VK_LValue, ColonLoc);
2608     if (EndRef.isInvalid())
2609       return StmtError();
2610 
2611     // Build and check __begin != __end expression.
2612     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2613                            BeginRef.get(), EndRef.get());
2614     if (!NotEqExpr.isInvalid())
2615       NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2616     if (!NotEqExpr.isInvalid())
2617       NotEqExpr =
2618           ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
2619     if (NotEqExpr.isInvalid()) {
2620       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2621         << RangeLoc << 0 << BeginRangeRef.get()->getType();
2622       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2623       if (!Context.hasSameType(BeginType, EndType))
2624         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2625       return StmtError();
2626     }
2627 
2628     // Build and check ++__begin expression.
2629     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2630                                 VK_LValue, ColonLoc);
2631     if (BeginRef.isInvalid())
2632       return StmtError();
2633 
2634     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2635     if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
2636       // FIXME: getCurScope() should not be used during template instantiation.
2637       // We should pick up the set of unqualified lookup results for operator
2638       // co_await during the initial parse.
2639       IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
2640     if (!IncrExpr.isInvalid())
2641       IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
2642     if (IncrExpr.isInvalid()) {
2643       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2644         << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2645       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2646       return StmtError();
2647     }
2648 
2649     // Build and check *__begin  expression.
2650     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2651                                 VK_LValue, ColonLoc);
2652     if (BeginRef.isInvalid())
2653       return StmtError();
2654 
2655     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2656     if (DerefExpr.isInvalid()) {
2657       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2658         << RangeLoc << 1 << BeginRangeRef.get()->getType();
2659       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2660       return StmtError();
2661     }
2662 
2663     // Attach  *__begin  as initializer for VD. Don't touch it if we're just
2664     // trying to determine whether this would be a valid range.
2665     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2666       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
2667       if (LoopVar->isInvalidDecl())
2668         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2669     }
2670   }
2671 
2672   // Don't bother to actually allocate the result if we're just trying to
2673   // determine whether it would be valid.
2674   if (Kind == BFRK_Check)
2675     return StmtResult();
2676 
2677   // In OpenMP loop region loop control variable must be private. Perform
2678   // analysis of first part (if any).
2679   if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable())
2680     ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get());
2681 
2682   return new (Context) CXXForRangeStmt(
2683       InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
2684       cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
2685       IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
2686       ColonLoc, RParenLoc);
2687 }
2688 
2689 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2690 /// statement.
2691 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2692   if (!S || !B)
2693     return StmtError();
2694   ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2695 
2696   ForStmt->setBody(B);
2697   return S;
2698 }
2699 
2700 // Warn when the loop variable is a const reference that creates a copy.
2701 // Suggest using the non-reference type for copies.  If a copy can be prevented
2702 // suggest the const reference type that would do so.
2703 // For instance, given "for (const &Foo : Range)", suggest
2704 // "for (const Foo : Range)" to denote a copy is made for the loop.  If
2705 // possible, also suggest "for (const &Bar : Range)" if this type prevents
2706 // the copy altogether.
2707 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
2708                                                     const VarDecl *VD,
2709                                                     QualType RangeInitType) {
2710   const Expr *InitExpr = VD->getInit();
2711   if (!InitExpr)
2712     return;
2713 
2714   QualType VariableType = VD->getType();
2715 
2716   if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
2717     if (!Cleanups->cleanupsHaveSideEffects())
2718       InitExpr = Cleanups->getSubExpr();
2719 
2720   const MaterializeTemporaryExpr *MTE =
2721       dyn_cast<MaterializeTemporaryExpr>(InitExpr);
2722 
2723   // No copy made.
2724   if (!MTE)
2725     return;
2726 
2727   const Expr *E = MTE->getSubExpr()->IgnoreImpCasts();
2728 
2729   // Searching for either UnaryOperator for dereference of a pointer or
2730   // CXXOperatorCallExpr for handling iterators.
2731   while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
2732     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
2733       E = CCE->getArg(0);
2734     } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
2735       const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
2736       E = ME->getBase();
2737     } else {
2738       const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
2739       E = MTE->getSubExpr();
2740     }
2741     E = E->IgnoreImpCasts();
2742   }
2743 
2744   bool ReturnsReference = false;
2745   if (isa<UnaryOperator>(E)) {
2746     ReturnsReference = true;
2747   } else {
2748     const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
2749     const FunctionDecl *FD = Call->getDirectCallee();
2750     QualType ReturnType = FD->getReturnType();
2751     ReturnsReference = ReturnType->isReferenceType();
2752   }
2753 
2754   if (ReturnsReference) {
2755     // Loop variable creates a temporary.  Suggest either to go with
2756     // non-reference loop variable to indicate a copy is made, or
2757     // the correct time to bind a const reference.
2758     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
2759         << VD << VariableType << E->getType();
2760     QualType NonReferenceType = VariableType.getNonReferenceType();
2761     NonReferenceType.removeLocalConst();
2762     QualType NewReferenceType =
2763         SemaRef.Context.getLValueReferenceType(E->getType().withConst());
2764     SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
2765         << NonReferenceType << NewReferenceType << VD->getSourceRange()
2766         << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
2767   } else if (!VariableType->isRValueReferenceType()) {
2768     // The range always returns a copy, so a temporary is always created.
2769     // Suggest removing the reference from the loop variable.
2770     // If the type is a rvalue reference do not warn since that changes the
2771     // semantic of the code.
2772     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
2773         << VD << RangeInitType;
2774     QualType NonReferenceType = VariableType.getNonReferenceType();
2775     NonReferenceType.removeLocalConst();
2776     SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
2777         << NonReferenceType << VD->getSourceRange()
2778         << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
2779   }
2780 }
2781 
2782 /// Determines whether the @p VariableType's declaration is a record with the
2783 /// clang::trivial_abi attribute.
2784 static bool hasTrivialABIAttr(QualType VariableType) {
2785   if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl())
2786     return RD->hasAttr<TrivialABIAttr>();
2787 
2788   return false;
2789 }
2790 
2791 // Warns when the loop variable can be changed to a reference type to
2792 // prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
2793 // "for (const Foo &x : Range)" if this form does not make a copy.
2794 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
2795                                                 const VarDecl *VD) {
2796   const Expr *InitExpr = VD->getInit();
2797   if (!InitExpr)
2798     return;
2799 
2800   QualType VariableType = VD->getType();
2801 
2802   if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
2803     if (!CE->getConstructor()->isCopyConstructor())
2804       return;
2805   } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
2806     if (CE->getCastKind() != CK_LValueToRValue)
2807       return;
2808   } else {
2809     return;
2810   }
2811 
2812   // Small trivially copyable types are cheap to copy. Do not emit the
2813   // diagnostic for these instances. 64 bytes is a common size of a cache line.
2814   // (The function `getTypeSize` returns the size in bits.)
2815   ASTContext &Ctx = SemaRef.Context;
2816   if (Ctx.getTypeSize(VariableType) <= 64 * 8 &&
2817       (VariableType.isTriviallyCopyableType(Ctx) ||
2818        hasTrivialABIAttr(VariableType)))
2819     return;
2820 
2821   // Suggest changing from a const variable to a const reference variable
2822   // if doing so will prevent a copy.
2823   SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
2824       << VD << VariableType << InitExpr->getType();
2825   SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
2826       << SemaRef.Context.getLValueReferenceType(VariableType)
2827       << VD->getSourceRange()
2828       << FixItHint::CreateInsertion(VD->getLocation(), "&");
2829 }
2830 
2831 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
2832 /// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
2833 ///    using "const foo x" to show that a copy is made
2834 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
2835 ///    Suggest either "const bar x" to keep the copying or "const foo& x" to
2836 ///    prevent the copy.
2837 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
2838 ///    Suggest "const foo &x" to prevent the copy.
2839 static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
2840                                            const CXXForRangeStmt *ForStmt) {
2841   if (SemaRef.inTemplateInstantiation())
2842     return;
2843 
2844   if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
2845                               ForStmt->getBeginLoc()) &&
2846       SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
2847                               ForStmt->getBeginLoc()) &&
2848       SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
2849                               ForStmt->getBeginLoc())) {
2850     return;
2851   }
2852 
2853   const VarDecl *VD = ForStmt->getLoopVariable();
2854   if (!VD)
2855     return;
2856 
2857   QualType VariableType = VD->getType();
2858 
2859   if (VariableType->isIncompleteType())
2860     return;
2861 
2862   const Expr *InitExpr = VD->getInit();
2863   if (!InitExpr)
2864     return;
2865 
2866   if (InitExpr->getExprLoc().isMacroID())
2867     return;
2868 
2869   if (VariableType->isReferenceType()) {
2870     DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
2871                                             ForStmt->getRangeInit()->getType());
2872   } else if (VariableType.isConstQualified()) {
2873     DiagnoseForRangeConstVariableCopies(SemaRef, VD);
2874   }
2875 }
2876 
2877 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2878 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2879 /// body cannot be performed until after the type of the range variable is
2880 /// determined.
2881 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2882   if (!S || !B)
2883     return StmtError();
2884 
2885   if (isa<ObjCForCollectionStmt>(S))
2886     return FinishObjCForCollectionStmt(S, B);
2887 
2888   CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2889   ForStmt->setBody(B);
2890 
2891   DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2892                         diag::warn_empty_range_based_for_body);
2893 
2894   DiagnoseForRangeVariableCopies(*this, ForStmt);
2895 
2896   return S;
2897 }
2898 
2899 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2900                                SourceLocation LabelLoc,
2901                                LabelDecl *TheDecl) {
2902   setFunctionHasBranchIntoScope();
2903   TheDecl->markUsed(Context);
2904   return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
2905 }
2906 
2907 StmtResult
2908 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2909                             Expr *E) {
2910   // Convert operand to void*
2911   if (!E->isTypeDependent()) {
2912     QualType ETy = E->getType();
2913     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2914     ExprResult ExprRes = E;
2915     AssignConvertType ConvTy =
2916       CheckSingleAssignmentConstraints(DestTy, ExprRes);
2917     if (ExprRes.isInvalid())
2918       return StmtError();
2919     E = ExprRes.get();
2920     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2921       return StmtError();
2922   }
2923 
2924   ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
2925   if (ExprRes.isInvalid())
2926     return StmtError();
2927   E = ExprRes.get();
2928 
2929   setFunctionHasIndirectGoto();
2930 
2931   return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
2932 }
2933 
2934 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
2935                                      const Scope &DestScope) {
2936   if (!S.CurrentSEHFinally.empty() &&
2937       DestScope.Contains(*S.CurrentSEHFinally.back())) {
2938     S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
2939   }
2940 }
2941 
2942 StmtResult
2943 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2944   Scope *S = CurScope->getContinueParent();
2945   if (!S) {
2946     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2947     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2948   }
2949   CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
2950 
2951   return new (Context) ContinueStmt(ContinueLoc);
2952 }
2953 
2954 StmtResult
2955 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2956   Scope *S = CurScope->getBreakParent();
2957   if (!S) {
2958     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2959     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2960   }
2961   if (S->isOpenMPLoopScope())
2962     return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
2963                      << "break");
2964   CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
2965 
2966   return new (Context) BreakStmt(BreakLoc);
2967 }
2968 
2969 /// Determine whether the given expression is a candidate for
2970 /// copy elision in either a return statement or a throw expression.
2971 ///
2972 /// \param ReturnType If we're determining the copy elision candidate for
2973 /// a return statement, this is the return type of the function. If we're
2974 /// determining the copy elision candidate for a throw expression, this will
2975 /// be a NULL type.
2976 ///
2977 /// \param E The expression being returned from the function or block, or
2978 /// being thrown.
2979 ///
2980 /// \param CESK Whether we allow function parameters or
2981 /// id-expressions that could be moved out of the function to be considered NRVO
2982 /// candidates. C++ prohibits these for NRVO itself, but we re-use this logic to
2983 /// determine whether we should try to move as part of a return or throw (which
2984 /// does allow function parameters).
2985 ///
2986 /// \returns The NRVO candidate variable, if the return statement may use the
2987 /// NRVO, or NULL if there is no such candidate.
2988 VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType, Expr *E,
2989                                        CopyElisionSemanticsKind CESK) {
2990   // - in a return statement in a function [where] ...
2991   // ... the expression is the name of a non-volatile automatic object ...
2992   DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2993   if (!DR || DR->refersToEnclosingVariableOrCapture())
2994     return nullptr;
2995   VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2996   if (!VD)
2997     return nullptr;
2998 
2999   if (isCopyElisionCandidate(ReturnType, VD, CESK))
3000     return VD;
3001   return nullptr;
3002 }
3003 
3004 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
3005                                   CopyElisionSemanticsKind CESK) {
3006   QualType VDType = VD->getType();
3007   // - in a return statement in a function with ...
3008   // ... a class return type ...
3009   if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
3010     if (!ReturnType->isRecordType())
3011       return false;
3012     // ... the same cv-unqualified type as the function return type ...
3013     // When considering moving this expression out, allow dissimilar types.
3014     if (!(CESK & CES_AllowDifferentTypes) && !VDType->isDependentType() &&
3015         !Context.hasSameUnqualifiedType(ReturnType, VDType))
3016       return false;
3017   }
3018 
3019   // ...object (other than a function or catch-clause parameter)...
3020   if (VD->getKind() != Decl::Var &&
3021       !((CESK & CES_AllowParameters) && VD->getKind() == Decl::ParmVar))
3022     return false;
3023   if (!(CESK & CES_AllowExceptionVariables) && VD->isExceptionVariable())
3024     return false;
3025 
3026   // ...automatic...
3027   if (!VD->hasLocalStorage()) return false;
3028 
3029   // Return false if VD is a __block variable. We don't want to implicitly move
3030   // out of a __block variable during a return because we cannot assume the
3031   // variable will no longer be used.
3032   if (VD->hasAttr<BlocksAttr>()) return false;
3033 
3034   if (CESK & CES_AllowDifferentTypes)
3035     return true;
3036 
3037   // ...non-volatile...
3038   if (VD->getType().isVolatileQualified()) return false;
3039 
3040   // Variables with higher required alignment than their type's ABI
3041   // alignment cannot use NRVO.
3042   if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
3043       Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
3044     return false;
3045 
3046   return true;
3047 }
3048 
3049 /// Try to perform the initialization of a potentially-movable value,
3050 /// which is the operand to a return or throw statement.
3051 ///
3052 /// This routine implements C++14 [class.copy]p32, which attempts to treat
3053 /// returned lvalues as rvalues in certain cases (to prefer move construction),
3054 /// then falls back to treating them as lvalues if that failed.
3055 ///
3056 /// \param ConvertingConstructorsOnly If true, follow [class.copy]p32 and reject
3057 /// resolutions that find non-constructors, such as derived-to-base conversions
3058 /// or `operator T()&&` member functions. If false, do consider such
3059 /// conversion sequences.
3060 ///
3061 /// \param Res We will fill this in if move-initialization was possible.
3062 /// If move-initialization is not possible, such that we must fall back to
3063 /// treating the operand as an lvalue, we will leave Res in its original
3064 /// invalid state.
3065 static void TryMoveInitialization(Sema& S,
3066                                   const InitializedEntity &Entity,
3067                                   const VarDecl *NRVOCandidate,
3068                                   QualType ResultType,
3069                                   Expr *&Value,
3070                                   bool ConvertingConstructorsOnly,
3071                                   ExprResult &Res) {
3072   ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
3073                             CK_NoOp, Value, VK_XValue);
3074 
3075   Expr *InitExpr = &AsRvalue;
3076 
3077   InitializationKind Kind = InitializationKind::CreateCopy(
3078       Value->getBeginLoc(), Value->getBeginLoc());
3079 
3080   InitializationSequence Seq(S, Entity, Kind, InitExpr);
3081 
3082   if (!Seq)
3083     return;
3084 
3085   for (const InitializationSequence::Step &Step : Seq.steps()) {
3086     if (Step.Kind != InitializationSequence::SK_ConstructorInitialization &&
3087         Step.Kind != InitializationSequence::SK_UserConversion)
3088       continue;
3089 
3090     FunctionDecl *FD = Step.Function.Function;
3091     if (ConvertingConstructorsOnly) {
3092       if (isa<CXXConstructorDecl>(FD)) {
3093         // C++14 [class.copy]p32:
3094         // [...] If the first overload resolution fails or was not performed,
3095         // or if the type of the first parameter of the selected constructor
3096         // is not an rvalue reference to the object's type (possibly
3097         // cv-qualified), overload resolution is performed again, considering
3098         // the object as an lvalue.
3099         const RValueReferenceType *RRefType =
3100             FD->getParamDecl(0)->getType()->getAs<RValueReferenceType>();
3101         if (!RRefType)
3102           break;
3103         if (!S.Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
3104                                               NRVOCandidate->getType()))
3105           break;
3106       } else {
3107         continue;
3108       }
3109     } else {
3110       if (isa<CXXConstructorDecl>(FD)) {
3111         // Check that overload resolution selected a constructor taking an
3112         // rvalue reference. If it selected an lvalue reference, then we
3113         // didn't need to cast this thing to an rvalue in the first place.
3114         if (!isa<RValueReferenceType>(FD->getParamDecl(0)->getType()))
3115           break;
3116       } else if (isa<CXXMethodDecl>(FD)) {
3117         // Check that overload resolution selected a conversion operator
3118         // taking an rvalue reference.
3119         if (cast<CXXMethodDecl>(FD)->getRefQualifier() != RQ_RValue)
3120           break;
3121       } else {
3122         continue;
3123       }
3124     }
3125 
3126     // Promote "AsRvalue" to the heap, since we now need this
3127     // expression node to persist.
3128     Value = ImplicitCastExpr::Create(S.Context, Value->getType(), CK_NoOp,
3129                                      Value, nullptr, VK_XValue);
3130 
3131     // Complete type-checking the initialization of the return type
3132     // using the constructor we found.
3133     Res = Seq.Perform(S, Entity, Kind, Value);
3134   }
3135 }
3136 
3137 /// Perform the initialization of a potentially-movable value, which
3138 /// is the result of return value.
3139 ///
3140 /// This routine implements C++14 [class.copy]p32, which attempts to treat
3141 /// returned lvalues as rvalues in certain cases (to prefer move construction),
3142 /// then falls back to treating them as lvalues if that failed.
3143 ExprResult
3144 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
3145                                       const VarDecl *NRVOCandidate,
3146                                       QualType ResultType,
3147                                       Expr *Value,
3148                                       bool AllowNRVO) {
3149   // C++14 [class.copy]p32:
3150   // When the criteria for elision of a copy/move operation are met, but not for
3151   // an exception-declaration, and the object to be copied is designated by an
3152   // lvalue, or when the expression in a return statement is a (possibly
3153   // parenthesized) id-expression that names an object with automatic storage
3154   // duration declared in the body or parameter-declaration-clause of the
3155   // innermost enclosing function or lambda-expression, overload resolution to
3156   // select the constructor for the copy is first performed as if the object
3157   // were designated by an rvalue.
3158   ExprResult Res = ExprError();
3159 
3160   if (AllowNRVO) {
3161     bool AffectedByCWG1579 = false;
3162 
3163     if (!NRVOCandidate) {
3164       NRVOCandidate = getCopyElisionCandidate(ResultType, Value, CES_Default);
3165       if (NRVOCandidate &&
3166           !getDiagnostics().isIgnored(diag::warn_return_std_move_in_cxx11,
3167                                       Value->getExprLoc())) {
3168         const VarDecl *NRVOCandidateInCXX11 =
3169             getCopyElisionCandidate(ResultType, Value, CES_FormerDefault);
3170         AffectedByCWG1579 = (!NRVOCandidateInCXX11);
3171       }
3172     }
3173 
3174     if (NRVOCandidate) {
3175       TryMoveInitialization(*this, Entity, NRVOCandidate, ResultType, Value,
3176                             true, Res);
3177     }
3178 
3179     if (!Res.isInvalid() && AffectedByCWG1579) {
3180       QualType QT = NRVOCandidate->getType();
3181       if (QT.getNonReferenceType()
3182                      .getUnqualifiedType()
3183                      .isTriviallyCopyableType(Context)) {
3184         // Adding 'std::move' around a trivially copyable variable is probably
3185         // pointless. Don't suggest it.
3186       } else {
3187         // Common cases for this are returning unique_ptr<Derived> from a
3188         // function of return type unique_ptr<Base>, or returning T from a
3189         // function of return type Expected<T>. This is totally fine in a
3190         // post-CWG1579 world, but was not fine before.
3191         assert(!ResultType.isNull());
3192         SmallString<32> Str;
3193         Str += "std::move(";
3194         Str += NRVOCandidate->getDeclName().getAsString();
3195         Str += ")";
3196         Diag(Value->getExprLoc(), diag::warn_return_std_move_in_cxx11)
3197             << Value->getSourceRange()
3198             << NRVOCandidate->getDeclName() << ResultType << QT;
3199         Diag(Value->getExprLoc(), diag::note_add_std_move_in_cxx11)
3200             << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3201       }
3202     } else if (Res.isInvalid() &&
3203                !getDiagnostics().isIgnored(diag::warn_return_std_move,
3204                                            Value->getExprLoc())) {
3205       const VarDecl *FakeNRVOCandidate =
3206           getCopyElisionCandidate(QualType(), Value, CES_AsIfByStdMove);
3207       if (FakeNRVOCandidate) {
3208         QualType QT = FakeNRVOCandidate->getType();
3209         if (QT->isLValueReferenceType()) {
3210           // Adding 'std::move' around an lvalue reference variable's name is
3211           // dangerous. Don't suggest it.
3212         } else if (QT.getNonReferenceType()
3213                        .getUnqualifiedType()
3214                        .isTriviallyCopyableType(Context)) {
3215           // Adding 'std::move' around a trivially copyable variable is probably
3216           // pointless. Don't suggest it.
3217         } else {
3218           ExprResult FakeRes = ExprError();
3219           Expr *FakeValue = Value;
3220           TryMoveInitialization(*this, Entity, FakeNRVOCandidate, ResultType,
3221                                 FakeValue, false, FakeRes);
3222           if (!FakeRes.isInvalid()) {
3223             bool IsThrow =
3224                 (Entity.getKind() == InitializedEntity::EK_Exception);
3225             SmallString<32> Str;
3226             Str += "std::move(";
3227             Str += FakeNRVOCandidate->getDeclName().getAsString();
3228             Str += ")";
3229             Diag(Value->getExprLoc(), diag::warn_return_std_move)
3230                 << Value->getSourceRange()
3231                 << FakeNRVOCandidate->getDeclName() << IsThrow;
3232             Diag(Value->getExprLoc(), diag::note_add_std_move)
3233                 << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3234           }
3235         }
3236       }
3237     }
3238   }
3239 
3240   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3241   // above, or overload resolution failed. Either way, we need to try
3242   // (again) now with the return value expression as written.
3243   if (Res.isInvalid())
3244     Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
3245 
3246   return Res;
3247 }
3248 
3249 /// Determine whether the declared return type of the specified function
3250 /// contains 'auto'.
3251 static bool hasDeducedReturnType(FunctionDecl *FD) {
3252   const FunctionProtoType *FPT =
3253       FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
3254   return FPT->getReturnType()->isUndeducedType();
3255 }
3256 
3257 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
3258 /// for capturing scopes.
3259 ///
3260 StmtResult
3261 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
3262   // If this is the first return we've seen, infer the return type.
3263   // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3264   CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3265   QualType FnRetType = CurCap->ReturnType;
3266   LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3267   bool HasDeducedReturnType =
3268       CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3269 
3270   if (ExprEvalContexts.back().Context ==
3271           ExpressionEvaluationContext::DiscardedStatement &&
3272       (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3273     if (RetValExp) {
3274       ExprResult ER =
3275           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3276       if (ER.isInvalid())
3277         return StmtError();
3278       RetValExp = ER.get();
3279     }
3280     return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3281                               /* NRVOCandidate=*/nullptr);
3282   }
3283 
3284   if (HasDeducedReturnType) {
3285     // In C++1y, the return type may involve 'auto'.
3286     // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3287     FunctionDecl *FD = CurLambda->CallOperator;
3288     if (CurCap->ReturnType.isNull())
3289       CurCap->ReturnType = FD->getReturnType();
3290 
3291     AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3292     assert(AT && "lost auto type from lambda return type");
3293     if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3294       FD->setInvalidDecl();
3295       return StmtError();
3296     }
3297     CurCap->ReturnType = FnRetType = FD->getReturnType();
3298   } else if (CurCap->HasImplicitReturnType) {
3299     // For blocks/lambdas with implicit return types, we check each return
3300     // statement individually, and deduce the common return type when the block
3301     // or lambda is completed.
3302     // FIXME: Fold this into the 'auto' codepath above.
3303     if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3304       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3305       if (Result.isInvalid())
3306         return StmtError();
3307       RetValExp = Result.get();
3308 
3309       // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3310       // when deducing a return type for a lambda-expression (or by extension
3311       // for a block). These rules differ from the stated C++11 rules only in
3312       // that they remove top-level cv-qualifiers.
3313       if (!CurContext->isDependentContext())
3314         FnRetType = RetValExp->getType().getUnqualifiedType();
3315       else
3316         FnRetType = CurCap->ReturnType = Context.DependentTy;
3317     } else {
3318       if (RetValExp) {
3319         // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3320         // initializer list, because it is not an expression (even
3321         // though we represent it as one). We still deduce 'void'.
3322         Diag(ReturnLoc, diag::err_lambda_return_init_list)
3323           << RetValExp->getSourceRange();
3324       }
3325 
3326       FnRetType = Context.VoidTy;
3327     }
3328 
3329     // Although we'll properly infer the type of the block once it's completed,
3330     // make sure we provide a return type now for better error recovery.
3331     if (CurCap->ReturnType.isNull())
3332       CurCap->ReturnType = FnRetType;
3333   }
3334   assert(!FnRetType.isNull());
3335 
3336   if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3337     if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) {
3338       Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3339       return StmtError();
3340     }
3341   } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3342     Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3343     return StmtError();
3344   } else {
3345     assert(CurLambda && "unknown kind of captured scope");
3346     if (CurLambda->CallOperator->getType()
3347             ->castAs<FunctionType>()
3348             ->getNoReturnAttr()) {
3349       Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3350       return StmtError();
3351     }
3352   }
3353 
3354   // Otherwise, verify that this result type matches the previous one.  We are
3355   // pickier with blocks than for normal functions because we don't have GCC
3356   // compatibility to worry about here.
3357   const VarDecl *NRVOCandidate = nullptr;
3358   if (FnRetType->isDependentType()) {
3359     // Delay processing for now.  TODO: there are lots of dependent
3360     // types we can conclusively prove aren't void.
3361   } else if (FnRetType->isVoidType()) {
3362     if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3363         !(getLangOpts().CPlusPlus &&
3364           (RetValExp->isTypeDependent() ||
3365            RetValExp->getType()->isVoidType()))) {
3366       if (!getLangOpts().CPlusPlus &&
3367           RetValExp->getType()->isVoidType())
3368         Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3369       else {
3370         Diag(ReturnLoc, diag::err_return_block_has_expr);
3371         RetValExp = nullptr;
3372       }
3373     }
3374   } else if (!RetValExp) {
3375     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3376   } else if (!RetValExp->isTypeDependent()) {
3377     // we have a non-void block with an expression, continue checking
3378 
3379     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3380     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3381     // function return.
3382 
3383     // In C++ the return statement is handled via a copy initialization.
3384     // the C version of which boils down to CheckSingleAssignmentConstraints.
3385     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3386     InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
3387                                                                    FnRetType,
3388                                                       NRVOCandidate != nullptr);
3389     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3390                                                      FnRetType, RetValExp);
3391     if (Res.isInvalid()) {
3392       // FIXME: Cleanup temporaries here, anyway?
3393       return StmtError();
3394     }
3395     RetValExp = Res.get();
3396     CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3397   } else {
3398     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3399   }
3400 
3401   if (RetValExp) {
3402     ExprResult ER =
3403         ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3404     if (ER.isInvalid())
3405       return StmtError();
3406     RetValExp = ER.get();
3407   }
3408   auto *Result =
3409       ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3410 
3411   // If we need to check for the named return value optimization,
3412   // or if we need to infer the return type,
3413   // save the return statement in our scope for later processing.
3414   if (CurCap->HasImplicitReturnType || NRVOCandidate)
3415     FunctionScopes.back()->Returns.push_back(Result);
3416 
3417   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3418     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3419 
3420   return Result;
3421 }
3422 
3423 namespace {
3424 /// Marks all typedefs in all local classes in a type referenced.
3425 ///
3426 /// In a function like
3427 /// auto f() {
3428 ///   struct S { typedef int a; };
3429 ///   return S();
3430 /// }
3431 ///
3432 /// the local type escapes and could be referenced in some TUs but not in
3433 /// others. Pretend that all local typedefs are always referenced, to not warn
3434 /// on this. This isn't necessary if f has internal linkage, or the typedef
3435 /// is private.
3436 class LocalTypedefNameReferencer
3437     : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3438 public:
3439   LocalTypedefNameReferencer(Sema &S) : S(S) {}
3440   bool VisitRecordType(const RecordType *RT);
3441 private:
3442   Sema &S;
3443 };
3444 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3445   auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3446   if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3447       R->isDependentType())
3448     return true;
3449   for (auto *TmpD : R->decls())
3450     if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3451       if (T->getAccess() != AS_private || R->hasFriends())
3452         S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3453   return true;
3454 }
3455 }
3456 
3457 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
3458   return FD->getTypeSourceInfo()
3459       ->getTypeLoc()
3460       .getAsAdjusted<FunctionProtoTypeLoc>()
3461       .getReturnLoc();
3462 }
3463 
3464 /// Deduce the return type for a function from a returned expression, per
3465 /// C++1y [dcl.spec.auto]p6.
3466 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
3467                                             SourceLocation ReturnLoc,
3468                                             Expr *&RetExpr,
3469                                             AutoType *AT) {
3470   // If this is the conversion function for a lambda, we choose to deduce it
3471   // type from the corresponding call operator, not from the synthesized return
3472   // statement within it. See Sema::DeduceReturnType.
3473   if (isLambdaConversionOperator(FD))
3474     return false;
3475 
3476   TypeLoc OrigResultType = getReturnTypeLoc(FD);
3477   QualType Deduced;
3478 
3479   if (RetExpr && isa<InitListExpr>(RetExpr)) {
3480     //  If the deduction is for a return statement and the initializer is
3481     //  a braced-init-list, the program is ill-formed.
3482     Diag(RetExpr->getExprLoc(),
3483          getCurLambda() ? diag::err_lambda_return_init_list
3484                         : diag::err_auto_fn_return_init_list)
3485         << RetExpr->getSourceRange();
3486     return true;
3487   }
3488 
3489   if (FD->isDependentContext()) {
3490     // C++1y [dcl.spec.auto]p12:
3491     //   Return type deduction [...] occurs when the definition is
3492     //   instantiated even if the function body contains a return
3493     //   statement with a non-type-dependent operand.
3494     assert(AT->isDeduced() && "should have deduced to dependent type");
3495     return false;
3496   }
3497 
3498   if (RetExpr) {
3499     //  Otherwise, [...] deduce a value for U using the rules of template
3500     //  argument deduction.
3501     DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
3502 
3503     if (DAR == DAR_Failed && !FD->isInvalidDecl())
3504       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3505         << OrigResultType.getType() << RetExpr->getType();
3506 
3507     if (DAR != DAR_Succeeded)
3508       return true;
3509 
3510     // If a local type is part of the returned type, mark its fields as
3511     // referenced.
3512     LocalTypedefNameReferencer Referencer(*this);
3513     Referencer.TraverseType(RetExpr->getType());
3514   } else {
3515     //  In the case of a return with no operand, the initializer is considered
3516     //  to be void().
3517     //
3518     // Deduction here can only succeed if the return type is exactly 'cv auto'
3519     // or 'decltype(auto)', so just check for that case directly.
3520     if (!OrigResultType.getType()->getAs<AutoType>()) {
3521       Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3522         << OrigResultType.getType();
3523       return true;
3524     }
3525     // We always deduce U = void in this case.
3526     Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
3527     if (Deduced.isNull())
3528       return true;
3529   }
3530 
3531   // CUDA: Kernel function must have 'void' return type.
3532   if (getLangOpts().CUDA)
3533     if (FD->hasAttr<CUDAGlobalAttr>() && !Deduced->isVoidType()) {
3534       Diag(FD->getLocation(), diag::err_kern_type_not_void_return)
3535           << FD->getType() << FD->getSourceRange();
3536       return true;
3537     }
3538 
3539   //  If a function with a declared return type that contains a placeholder type
3540   //  has multiple return statements, the return type is deduced for each return
3541   //  statement. [...] if the type deduced is not the same in each deduction,
3542   //  the program is ill-formed.
3543   QualType DeducedT = AT->getDeducedType();
3544   if (!DeducedT.isNull() && !FD->isInvalidDecl()) {
3545     AutoType *NewAT = Deduced->getContainedAutoType();
3546     // It is possible that NewAT->getDeducedType() is null. When that happens,
3547     // we should not crash, instead we ignore this deduction.
3548     if (NewAT->getDeducedType().isNull())
3549       return false;
3550 
3551     CanQualType OldDeducedType = Context.getCanonicalFunctionResultType(
3552                                    DeducedT);
3553     CanQualType NewDeducedType = Context.getCanonicalFunctionResultType(
3554                                    NewAT->getDeducedType());
3555     if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
3556       const LambdaScopeInfo *LambdaSI = getCurLambda();
3557       if (LambdaSI && LambdaSI->HasImplicitReturnType) {
3558         Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3559           << NewAT->getDeducedType() << DeducedT
3560           << true /*IsLambda*/;
3561       } else {
3562         Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3563           << (AT->isDecltypeAuto() ? 1 : 0)
3564           << NewAT->getDeducedType() << DeducedT;
3565       }
3566       return true;
3567     }
3568   } else if (!FD->isInvalidDecl()) {
3569     // Update all declarations of the function to have the deduced return type.
3570     Context.adjustDeducedFunctionResultType(FD, Deduced);
3571   }
3572 
3573   return false;
3574 }
3575 
3576 StmtResult
3577 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3578                       Scope *CurScope) {
3579   // Correct typos, in case the containing function returns 'auto' and
3580   // RetValExp should determine the deduced type.
3581   ExprResult RetVal = CorrectDelayedTyposInExpr(RetValExp);
3582   if (RetVal.isInvalid())
3583     return StmtError();
3584   StmtResult R = BuildReturnStmt(ReturnLoc, RetVal.get());
3585   if (R.isInvalid() || ExprEvalContexts.back().Context ==
3586                            ExpressionEvaluationContext::DiscardedStatement)
3587     return R;
3588 
3589   if (VarDecl *VD =
3590       const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
3591     CurScope->addNRVOCandidate(VD);
3592   } else {
3593     CurScope->setNoNRVO();
3594   }
3595 
3596   CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3597 
3598   return R;
3599 }
3600 
3601 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
3602   // Check for unexpanded parameter packs.
3603   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3604     return StmtError();
3605 
3606   if (isa<CapturingScopeInfo>(getCurFunction()))
3607     return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
3608 
3609   QualType FnRetType;
3610   QualType RelatedRetType;
3611   const AttrVec *Attrs = nullptr;
3612   bool isObjCMethod = false;
3613 
3614   if (const FunctionDecl *FD = getCurFunctionDecl()) {
3615     FnRetType = FD->getReturnType();
3616     if (FD->hasAttrs())
3617       Attrs = &FD->getAttrs();
3618     if (FD->isNoReturn())
3619       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
3620         << FD->getDeclName();
3621     if (FD->isMain() && RetValExp)
3622       if (isa<CXXBoolLiteralExpr>(RetValExp))
3623         Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3624           << RetValExp->getSourceRange();
3625   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3626     FnRetType = MD->getReturnType();
3627     isObjCMethod = true;
3628     if (MD->hasAttrs())
3629       Attrs = &MD->getAttrs();
3630     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3631       // In the implementation of a method with a related return type, the
3632       // type used to type-check the validity of return statements within the
3633       // method body is a pointer to the type of the class being implemented.
3634       RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3635       RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3636     }
3637   } else // If we don't have a function/method context, bail.
3638     return StmtError();
3639 
3640   // C++1z: discarded return statements are not considered when deducing a
3641   // return type.
3642   if (ExprEvalContexts.back().Context ==
3643           ExpressionEvaluationContext::DiscardedStatement &&
3644       FnRetType->getContainedAutoType()) {
3645     if (RetValExp) {
3646       ExprResult ER =
3647           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3648       if (ER.isInvalid())
3649         return StmtError();
3650       RetValExp = ER.get();
3651     }
3652     return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3653                               /* NRVOCandidate=*/nullptr);
3654   }
3655 
3656   // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3657   // deduction.
3658   if (getLangOpts().CPlusPlus14) {
3659     if (AutoType *AT = FnRetType->getContainedAutoType()) {
3660       FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3661       if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3662         FD->setInvalidDecl();
3663         return StmtError();
3664       } else {
3665         FnRetType = FD->getReturnType();
3666       }
3667     }
3668   }
3669 
3670   bool HasDependentReturnType = FnRetType->isDependentType();
3671 
3672   ReturnStmt *Result = nullptr;
3673   if (FnRetType->isVoidType()) {
3674     if (RetValExp) {
3675       if (isa<InitListExpr>(RetValExp)) {
3676         // We simply never allow init lists as the return value of void
3677         // functions. This is compatible because this was never allowed before,
3678         // so there's no legacy code to deal with.
3679         NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3680         int FunctionKind = 0;
3681         if (isa<ObjCMethodDecl>(CurDecl))
3682           FunctionKind = 1;
3683         else if (isa<CXXConstructorDecl>(CurDecl))
3684           FunctionKind = 2;
3685         else if (isa<CXXDestructorDecl>(CurDecl))
3686           FunctionKind = 3;
3687 
3688         Diag(ReturnLoc, diag::err_return_init_list)
3689           << CurDecl->getDeclName() << FunctionKind
3690           << RetValExp->getSourceRange();
3691 
3692         // Drop the expression.
3693         RetValExp = nullptr;
3694       } else if (!RetValExp->isTypeDependent()) {
3695         // C99 6.8.6.4p1 (ext_ since GCC warns)
3696         unsigned D = diag::ext_return_has_expr;
3697         if (RetValExp->getType()->isVoidType()) {
3698           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3699           if (isa<CXXConstructorDecl>(CurDecl) ||
3700               isa<CXXDestructorDecl>(CurDecl))
3701             D = diag::err_ctor_dtor_returns_void;
3702           else
3703             D = diag::ext_return_has_void_expr;
3704         }
3705         else {
3706           ExprResult Result = RetValExp;
3707           Result = IgnoredValueConversions(Result.get());
3708           if (Result.isInvalid())
3709             return StmtError();
3710           RetValExp = Result.get();
3711           RetValExp = ImpCastExprToType(RetValExp,
3712                                         Context.VoidTy, CK_ToVoid).get();
3713         }
3714         // return of void in constructor/destructor is illegal in C++.
3715         if (D == diag::err_ctor_dtor_returns_void) {
3716           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3717           Diag(ReturnLoc, D)
3718             << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
3719             << RetValExp->getSourceRange();
3720         }
3721         // return (some void expression); is legal in C++.
3722         else if (D != diag::ext_return_has_void_expr ||
3723                  !getLangOpts().CPlusPlus) {
3724           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3725 
3726           int FunctionKind = 0;
3727           if (isa<ObjCMethodDecl>(CurDecl))
3728             FunctionKind = 1;
3729           else if (isa<CXXConstructorDecl>(CurDecl))
3730             FunctionKind = 2;
3731           else if (isa<CXXDestructorDecl>(CurDecl))
3732             FunctionKind = 3;
3733 
3734           Diag(ReturnLoc, D)
3735             << CurDecl->getDeclName() << FunctionKind
3736             << RetValExp->getSourceRange();
3737         }
3738       }
3739 
3740       if (RetValExp) {
3741         ExprResult ER =
3742             ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3743         if (ER.isInvalid())
3744           return StmtError();
3745         RetValExp = ER.get();
3746       }
3747     }
3748 
3749     Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3750                                 /* NRVOCandidate=*/nullptr);
3751   } else if (!RetValExp && !HasDependentReturnType) {
3752     FunctionDecl *FD = getCurFunctionDecl();
3753 
3754     unsigned DiagID;
3755     if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
3756       // C++11 [stmt.return]p2
3757       DiagID = diag::err_constexpr_return_missing_expr;
3758       FD->setInvalidDecl();
3759     } else if (getLangOpts().C99) {
3760       // C99 6.8.6.4p1 (ext_ since GCC warns)
3761       DiagID = diag::ext_return_missing_expr;
3762     } else {
3763       // C90 6.6.6.4p4
3764       DiagID = diag::warn_return_missing_expr;
3765     }
3766 
3767     if (FD)
3768       Diag(ReturnLoc, DiagID)
3769           << FD->getIdentifier() << 0 /*fn*/ << FD->isConsteval();
3770     else
3771       Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
3772 
3773     Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
3774                                 /* NRVOCandidate=*/nullptr);
3775   } else {
3776     assert(RetValExp || HasDependentReturnType);
3777     const VarDecl *NRVOCandidate = nullptr;
3778 
3779     QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
3780 
3781     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3782     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3783     // function return.
3784 
3785     // In C++ the return statement is handled via a copy initialization,
3786     // the C version of which boils down to CheckSingleAssignmentConstraints.
3787     if (RetValExp)
3788       NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3789     if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
3790       // we have a non-void function with an expression, continue checking
3791       InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
3792                                                                      RetType,
3793                                                       NRVOCandidate != nullptr);
3794       ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3795                                                        RetType, RetValExp);
3796       if (Res.isInvalid()) {
3797         // FIXME: Clean up temporaries here anyway?
3798         return StmtError();
3799       }
3800       RetValExp = Res.getAs<Expr>();
3801 
3802       // If we have a related result type, we need to implicitly
3803       // convert back to the formal result type.  We can't pretend to
3804       // initialize the result again --- we might end double-retaining
3805       // --- so instead we initialize a notional temporary.
3806       if (!RelatedRetType.isNull()) {
3807         Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
3808                                                             FnRetType);
3809         Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
3810         if (Res.isInvalid()) {
3811           // FIXME: Clean up temporaries here anyway?
3812           return StmtError();
3813         }
3814         RetValExp = Res.getAs<Expr>();
3815       }
3816 
3817       CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
3818                          getCurFunctionDecl());
3819     }
3820 
3821     if (RetValExp) {
3822       ExprResult ER =
3823           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3824       if (ER.isInvalid())
3825         return StmtError();
3826       RetValExp = ER.get();
3827     }
3828     Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3829   }
3830 
3831   // If we need to check for the named return value optimization, save the
3832   // return statement in our scope for later processing.
3833   if (Result->getNRVOCandidate())
3834     FunctionScopes.back()->Returns.push_back(Result);
3835 
3836   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3837     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3838 
3839   return Result;
3840 }
3841 
3842 StmtResult
3843 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
3844                            SourceLocation RParen, Decl *Parm,
3845                            Stmt *Body) {
3846   VarDecl *Var = cast_or_null<VarDecl>(Parm);
3847   if (Var && Var->isInvalidDecl())
3848     return StmtError();
3849 
3850   return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
3851 }
3852 
3853 StmtResult
3854 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
3855   return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
3856 }
3857 
3858 StmtResult
3859 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
3860                          MultiStmtArg CatchStmts, Stmt *Finally) {
3861   if (!getLangOpts().ObjCExceptions)
3862     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3863 
3864   setFunctionHasBranchProtectedScope();
3865   unsigned NumCatchStmts = CatchStmts.size();
3866   return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
3867                                NumCatchStmts, Finally);
3868 }
3869 
3870 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
3871   if (Throw) {
3872     ExprResult Result = DefaultLvalueConversion(Throw);
3873     if (Result.isInvalid())
3874       return StmtError();
3875 
3876     Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false);
3877     if (Result.isInvalid())
3878       return StmtError();
3879     Throw = Result.get();
3880 
3881     QualType ThrowType = Throw->getType();
3882     // Make sure the expression type is an ObjC pointer or "void *".
3883     if (!ThrowType->isDependentType() &&
3884         !ThrowType->isObjCObjectPointerType()) {
3885       const PointerType *PT = ThrowType->getAs<PointerType>();
3886       if (!PT || !PT->getPointeeType()->isVoidType())
3887         return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
3888                          << Throw->getType() << Throw->getSourceRange());
3889     }
3890   }
3891 
3892   return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
3893 }
3894 
3895 StmtResult
3896 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
3897                            Scope *CurScope) {
3898   if (!getLangOpts().ObjCExceptions)
3899     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3900 
3901   if (!Throw) {
3902     // @throw without an expression designates a rethrow (which must occur
3903     // in the context of an @catch clause).
3904     Scope *AtCatchParent = CurScope;
3905     while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3906       AtCatchParent = AtCatchParent->getParent();
3907     if (!AtCatchParent)
3908       return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
3909   }
3910   return BuildObjCAtThrowStmt(AtLoc, Throw);
3911 }
3912 
3913 ExprResult
3914 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
3915   ExprResult result = DefaultLvalueConversion(operand);
3916   if (result.isInvalid())
3917     return ExprError();
3918   operand = result.get();
3919 
3920   // Make sure the expression type is an ObjC pointer or "void *".
3921   QualType type = operand->getType();
3922   if (!type->isDependentType() &&
3923       !type->isObjCObjectPointerType()) {
3924     const PointerType *pointerType = type->getAs<PointerType>();
3925     if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
3926       if (getLangOpts().CPlusPlus) {
3927         if (RequireCompleteType(atLoc, type,
3928                                 diag::err_incomplete_receiver_type))
3929           return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3930                    << type << operand->getSourceRange();
3931 
3932         ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
3933         if (result.isInvalid())
3934           return ExprError();
3935         if (!result.isUsable())
3936           return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3937                    << type << operand->getSourceRange();
3938 
3939         operand = result.get();
3940       } else {
3941           return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3942                    << type << operand->getSourceRange();
3943       }
3944     }
3945   }
3946 
3947   // The operand to @synchronized is a full-expression.
3948   return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false);
3949 }
3950 
3951 StmtResult
3952 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
3953                                   Stmt *SyncBody) {
3954   // We can't jump into or indirect-jump out of a @synchronized block.
3955   setFunctionHasBranchProtectedScope();
3956   return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
3957 }
3958 
3959 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
3960 /// and creates a proper catch handler from them.
3961 StmtResult
3962 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
3963                          Stmt *HandlerBlock) {
3964   // There's nothing to test that ActOnExceptionDecl didn't already test.
3965   return new (Context)
3966       CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
3967 }
3968 
3969 StmtResult
3970 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
3971   setFunctionHasBranchProtectedScope();
3972   return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
3973 }
3974 
3975 namespace {
3976 class CatchHandlerType {
3977   QualType QT;
3978   unsigned IsPointer : 1;
3979 
3980   // This is a special constructor to be used only with DenseMapInfo's
3981   // getEmptyKey() and getTombstoneKey() functions.
3982   friend struct llvm::DenseMapInfo<CatchHandlerType>;
3983   enum Unique { ForDenseMap };
3984   CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
3985 
3986 public:
3987   /// Used when creating a CatchHandlerType from a handler type; will determine
3988   /// whether the type is a pointer or reference and will strip off the top
3989   /// level pointer and cv-qualifiers.
3990   CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
3991     if (QT->isPointerType())
3992       IsPointer = true;
3993 
3994     if (IsPointer || QT->isReferenceType())
3995       QT = QT->getPointeeType();
3996     QT = QT.getUnqualifiedType();
3997   }
3998 
3999   /// Used when creating a CatchHandlerType from a base class type; pretends the
4000   /// type passed in had the pointer qualifier, does not need to get an
4001   /// unqualified type.
4002   CatchHandlerType(QualType QT, bool IsPointer)
4003       : QT(QT), IsPointer(IsPointer) {}
4004 
4005   QualType underlying() const { return QT; }
4006   bool isPointer() const { return IsPointer; }
4007 
4008   friend bool operator==(const CatchHandlerType &LHS,
4009                          const CatchHandlerType &RHS) {
4010     // If the pointer qualification does not match, we can return early.
4011     if (LHS.IsPointer != RHS.IsPointer)
4012       return false;
4013     // Otherwise, check the underlying type without cv-qualifiers.
4014     return LHS.QT == RHS.QT;
4015   }
4016 };
4017 } // namespace
4018 
4019 namespace llvm {
4020 template <> struct DenseMapInfo<CatchHandlerType> {
4021   static CatchHandlerType getEmptyKey() {
4022     return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
4023                        CatchHandlerType::ForDenseMap);
4024   }
4025 
4026   static CatchHandlerType getTombstoneKey() {
4027     return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
4028                        CatchHandlerType::ForDenseMap);
4029   }
4030 
4031   static unsigned getHashValue(const CatchHandlerType &Base) {
4032     return DenseMapInfo<QualType>::getHashValue(Base.underlying());
4033   }
4034 
4035   static bool isEqual(const CatchHandlerType &LHS,
4036                       const CatchHandlerType &RHS) {
4037     return LHS == RHS;
4038   }
4039 };
4040 }
4041 
4042 namespace {
4043 class CatchTypePublicBases {
4044   ASTContext &Ctx;
4045   const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
4046   const bool CheckAgainstPointer;
4047 
4048   CXXCatchStmt *FoundHandler;
4049   CanQualType FoundHandlerType;
4050 
4051 public:
4052   CatchTypePublicBases(
4053       ASTContext &Ctx,
4054       const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
4055       : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
4056         FoundHandler(nullptr) {}
4057 
4058   CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
4059   CanQualType getFoundHandlerType() const { return FoundHandlerType; }
4060 
4061   bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
4062     if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
4063       CatchHandlerType Check(S->getType(), CheckAgainstPointer);
4064       const auto &M = TypesToCheck;
4065       auto I = M.find(Check);
4066       if (I != M.end()) {
4067         FoundHandler = I->second;
4068         FoundHandlerType = Ctx.getCanonicalType(S->getType());
4069         return true;
4070       }
4071     }
4072     return false;
4073   }
4074 };
4075 }
4076 
4077 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
4078 /// handlers and creates a try statement from them.
4079 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4080                                   ArrayRef<Stmt *> Handlers) {
4081   // Don't report an error if 'try' is used in system headers.
4082   if (!getLangOpts().CXXExceptions &&
4083       !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) {
4084     // Delay error emission for the OpenMP device code.
4085     targetDiag(TryLoc, diag::err_exceptions_disabled) << "try";
4086   }
4087 
4088   // Exceptions aren't allowed in CUDA device code.
4089   if (getLangOpts().CUDA)
4090     CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
4091         << "try" << CurrentCUDATarget();
4092 
4093   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
4094     Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
4095 
4096   sema::FunctionScopeInfo *FSI = getCurFunction();
4097 
4098   // C++ try is incompatible with SEH __try.
4099   if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
4100     Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
4101     Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4102   }
4103 
4104   const unsigned NumHandlers = Handlers.size();
4105   assert(!Handlers.empty() &&
4106          "The parser shouldn't call this if there are no handlers.");
4107 
4108   llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
4109   for (unsigned i = 0; i < NumHandlers; ++i) {
4110     CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
4111 
4112     // Diagnose when the handler is a catch-all handler, but it isn't the last
4113     // handler for the try block. [except.handle]p5. Also, skip exception
4114     // declarations that are invalid, since we can't usefully report on them.
4115     if (!H->getExceptionDecl()) {
4116       if (i < NumHandlers - 1)
4117         return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
4118       continue;
4119     } else if (H->getExceptionDecl()->isInvalidDecl())
4120       continue;
4121 
4122     // Walk the type hierarchy to diagnose when this type has already been
4123     // handled (duplication), or cannot be handled (derivation inversion). We
4124     // ignore top-level cv-qualifiers, per [except.handle]p3
4125     CatchHandlerType HandlerCHT =
4126         (QualType)Context.getCanonicalType(H->getCaughtType());
4127 
4128     // We can ignore whether the type is a reference or a pointer; we need the
4129     // underlying declaration type in order to get at the underlying record
4130     // decl, if there is one.
4131     QualType Underlying = HandlerCHT.underlying();
4132     if (auto *RD = Underlying->getAsCXXRecordDecl()) {
4133       if (!RD->hasDefinition())
4134         continue;
4135       // Check that none of the public, unambiguous base classes are in the
4136       // map ([except.handle]p1). Give the base classes the same pointer
4137       // qualification as the original type we are basing off of. This allows
4138       // comparison against the handler type using the same top-level pointer
4139       // as the original type.
4140       CXXBasePaths Paths;
4141       Paths.setOrigin(RD);
4142       CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
4143       if (RD->lookupInBases(CTPB, Paths)) {
4144         const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4145         if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
4146           Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4147                diag::warn_exception_caught_by_earlier_handler)
4148               << H->getCaughtType();
4149           Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4150                 diag::note_previous_exception_handler)
4151               << Problem->getCaughtType();
4152         }
4153       }
4154     }
4155 
4156     // Add the type the list of ones we have handled; diagnose if we've already
4157     // handled it.
4158     auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
4159     if (!R.second) {
4160       const CXXCatchStmt *Problem = R.first->second;
4161       Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4162            diag::warn_exception_caught_by_earlier_handler)
4163           << H->getCaughtType();
4164       Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4165            diag::note_previous_exception_handler)
4166           << Problem->getCaughtType();
4167     }
4168   }
4169 
4170   FSI->setHasCXXTry(TryLoc);
4171 
4172   return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
4173 }
4174 
4175 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
4176                                   Stmt *TryBlock, Stmt *Handler) {
4177   assert(TryBlock && Handler);
4178 
4179   sema::FunctionScopeInfo *FSI = getCurFunction();
4180 
4181   // SEH __try is incompatible with C++ try. Borland appears to support this,
4182   // however.
4183   if (!getLangOpts().Borland) {
4184     if (FSI->FirstCXXTryLoc.isValid()) {
4185       Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
4186       Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
4187     }
4188   }
4189 
4190   FSI->setHasSEHTry(TryLoc);
4191 
4192   // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4193   // track if they use SEH.
4194   DeclContext *DC = CurContext;
4195   while (DC && !DC->isFunctionOrMethod())
4196     DC = DC->getParent();
4197   FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4198   if (FD)
4199     FD->setUsesSEHTry(true);
4200   else
4201     Diag(TryLoc, diag::err_seh_try_outside_functions);
4202 
4203   // Reject __try on unsupported targets.
4204   if (!Context.getTargetInfo().isSEHTrySupported())
4205     Diag(TryLoc, diag::err_seh_try_unsupported);
4206 
4207   return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4208 }
4209 
4210 StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr,
4211                                      Stmt *Block) {
4212   assert(FilterExpr && Block);
4213   QualType FTy = FilterExpr->getType();
4214   if (!FTy->isIntegerType() && !FTy->isDependentType()) {
4215     return StmtError(
4216         Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral)
4217         << FTy);
4218   }
4219   return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block);
4220 }
4221 
4222 void Sema::ActOnStartSEHFinallyBlock() {
4223   CurrentSEHFinally.push_back(CurScope);
4224 }
4225 
4226 void Sema::ActOnAbortSEHFinallyBlock() {
4227   CurrentSEHFinally.pop_back();
4228 }
4229 
4230 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
4231   assert(Block);
4232   CurrentSEHFinally.pop_back();
4233   return SEHFinallyStmt::Create(Context, Loc, Block);
4234 }
4235 
4236 StmtResult
4237 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
4238   Scope *SEHTryParent = CurScope;
4239   while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4240     SEHTryParent = SEHTryParent->getParent();
4241   if (!SEHTryParent)
4242     return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4243   CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4244 
4245   return new (Context) SEHLeaveStmt(Loc);
4246 }
4247 
4248 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
4249                                             bool IsIfExists,
4250                                             NestedNameSpecifierLoc QualifierLoc,
4251                                             DeclarationNameInfo NameInfo,
4252                                             Stmt *Nested)
4253 {
4254   return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4255                                              QualifierLoc, NameInfo,
4256                                              cast<CompoundStmt>(Nested));
4257 }
4258 
4259 
4260 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
4261                                             bool IsIfExists,
4262                                             CXXScopeSpec &SS,
4263                                             UnqualifiedId &Name,
4264                                             Stmt *Nested) {
4265   return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4266                                     SS.getWithLocInContext(Context),
4267                                     GetNameFromUnqualifiedId(Name),
4268                                     Nested);
4269 }
4270 
4271 RecordDecl*
4272 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
4273                                    unsigned NumParams) {
4274   DeclContext *DC = CurContext;
4275   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4276     DC = DC->getParent();
4277 
4278   RecordDecl *RD = nullptr;
4279   if (getLangOpts().CPlusPlus)
4280     RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
4281                                /*Id=*/nullptr);
4282   else
4283     RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
4284 
4285   RD->setCapturedRecord();
4286   DC->addDecl(RD);
4287   RD->setImplicit();
4288   RD->startDefinition();
4289 
4290   assert(NumParams > 0 && "CapturedStmt requires context parameter");
4291   CD = CapturedDecl::Create(Context, CurContext, NumParams);
4292   DC->addDecl(CD);
4293   return RD;
4294 }
4295 
4296 static bool
4297 buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI,
4298                              SmallVectorImpl<CapturedStmt::Capture> &Captures,
4299                              SmallVectorImpl<Expr *> &CaptureInits) {
4300   for (const sema::Capture &Cap : RSI->Captures) {
4301     if (Cap.isInvalid())
4302       continue;
4303 
4304     // Form the initializer for the capture.
4305     ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(),
4306                                          RSI->CapRegionKind == CR_OpenMP);
4307 
4308     // FIXME: Bail out now if the capture is not used and the initializer has
4309     // no side-effects.
4310 
4311     // Create a field for this capture.
4312     FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap);
4313 
4314     // Add the capture to our list of captures.
4315     if (Cap.isThisCapture()) {
4316       Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4317                                                CapturedStmt::VCK_This));
4318     } else if (Cap.isVLATypeCapture()) {
4319       Captures.push_back(
4320           CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
4321     } else {
4322       assert(Cap.isVariableCapture() && "unknown kind of capture");
4323 
4324       if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
4325         S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel);
4326 
4327       Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4328                                                Cap.isReferenceCapture()
4329                                                    ? CapturedStmt::VCK_ByRef
4330                                                    : CapturedStmt::VCK_ByCopy,
4331                                                Cap.getVariable()));
4332     }
4333     CaptureInits.push_back(Init.get());
4334   }
4335   return false;
4336 }
4337 
4338 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4339                                     CapturedRegionKind Kind,
4340                                     unsigned NumParams) {
4341   CapturedDecl *CD = nullptr;
4342   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4343 
4344   // Build the context parameter
4345   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4346   IdentifierInfo *ParamName = &Context.Idents.get("__context");
4347   QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4348   auto *Param =
4349       ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4350                                 ImplicitParamDecl::CapturedContext);
4351   DC->addDecl(Param);
4352 
4353   CD->setContextParam(0, Param);
4354 
4355   // Enter the capturing scope for this captured region.
4356   PushCapturedRegionScope(CurScope, CD, RD, Kind);
4357 
4358   if (CurScope)
4359     PushDeclContext(CurScope, CD);
4360   else
4361     CurContext = CD;
4362 
4363   PushExpressionEvaluationContext(
4364       ExpressionEvaluationContext::PotentiallyEvaluated);
4365 }
4366 
4367 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4368                                     CapturedRegionKind Kind,
4369                                     ArrayRef<CapturedParamNameType> Params,
4370                                     unsigned OpenMPCaptureLevel) {
4371   CapturedDecl *CD = nullptr;
4372   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4373 
4374   // Build the context parameter
4375   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4376   bool ContextIsFound = false;
4377   unsigned ParamNum = 0;
4378   for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4379                                                  E = Params.end();
4380        I != E; ++I, ++ParamNum) {
4381     if (I->second.isNull()) {
4382       assert(!ContextIsFound &&
4383              "null type has been found already for '__context' parameter");
4384       IdentifierInfo *ParamName = &Context.Idents.get("__context");
4385       QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4386                                .withConst()
4387                                .withRestrict();
4388       auto *Param =
4389           ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4390                                     ImplicitParamDecl::CapturedContext);
4391       DC->addDecl(Param);
4392       CD->setContextParam(ParamNum, Param);
4393       ContextIsFound = true;
4394     } else {
4395       IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4396       auto *Param =
4397           ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4398                                     ImplicitParamDecl::CapturedContext);
4399       DC->addDecl(Param);
4400       CD->setParam(ParamNum, Param);
4401     }
4402   }
4403   assert(ContextIsFound && "no null type for '__context' parameter");
4404   if (!ContextIsFound) {
4405     // Add __context implicitly if it is not specified.
4406     IdentifierInfo *ParamName = &Context.Idents.get("__context");
4407     QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4408     auto *Param =
4409         ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4410                                   ImplicitParamDecl::CapturedContext);
4411     DC->addDecl(Param);
4412     CD->setContextParam(ParamNum, Param);
4413   }
4414   // Enter the capturing scope for this captured region.
4415   PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel);
4416 
4417   if (CurScope)
4418     PushDeclContext(CurScope, CD);
4419   else
4420     CurContext = CD;
4421 
4422   PushExpressionEvaluationContext(
4423       ExpressionEvaluationContext::PotentiallyEvaluated);
4424 }
4425 
4426 void Sema::ActOnCapturedRegionError() {
4427   DiscardCleanupsInEvaluationContext();
4428   PopExpressionEvaluationContext();
4429   PopDeclContext();
4430   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4431   CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4432 
4433   RecordDecl *Record = RSI->TheRecordDecl;
4434   Record->setInvalidDecl();
4435 
4436   SmallVector<Decl*, 4> Fields(Record->fields());
4437   ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4438               SourceLocation(), SourceLocation(), ParsedAttributesView());
4439 }
4440 
4441 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
4442   // Leave the captured scope before we start creating captures in the
4443   // enclosing scope.
4444   DiscardCleanupsInEvaluationContext();
4445   PopExpressionEvaluationContext();
4446   PopDeclContext();
4447   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4448   CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4449 
4450   SmallVector<CapturedStmt::Capture, 4> Captures;
4451   SmallVector<Expr *, 4> CaptureInits;
4452   if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits))
4453     return StmtError();
4454 
4455   CapturedDecl *CD = RSI->TheCapturedDecl;
4456   RecordDecl *RD = RSI->TheRecordDecl;
4457 
4458   CapturedStmt *Res = CapturedStmt::Create(
4459       getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4460       Captures, CaptureInits, CD, RD);
4461 
4462   CD->setBody(Res->getCapturedStmt());
4463   RD->completeDefinition();
4464 
4465   return Res;
4466 }
4467