1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for statements. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/ASTDiagnostic.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/CharUnits.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/EvaluatedExprVisitor.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/ExprObjC.h" 22 #include "clang/AST/IgnoreExpr.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/AST/TypeOrdering.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Sema/Initialization.h" 31 #include "clang/Sema/Lookup.h" 32 #include "clang/Sema/Ownership.h" 33 #include "clang/Sema/Scope.h" 34 #include "clang/Sema/ScopeInfo.h" 35 #include "clang/Sema/SemaInternal.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallString.h" 41 #include "llvm/ADT/SmallVector.h" 42 43 using namespace clang; 44 using namespace sema; 45 46 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) { 47 if (FE.isInvalid()) 48 return StmtError(); 49 50 FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue); 51 if (FE.isInvalid()) 52 return StmtError(); 53 54 // C99 6.8.3p2: The expression in an expression statement is evaluated as a 55 // void expression for its side effects. Conversion to void allows any 56 // operand, even incomplete types. 57 58 // Same thing in for stmt first clause (when expr) and third clause. 59 return StmtResult(FE.getAs<Stmt>()); 60 } 61 62 63 StmtResult Sema::ActOnExprStmtError() { 64 DiscardCleanupsInEvaluationContext(); 65 return StmtError(); 66 } 67 68 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc, 69 bool HasLeadingEmptyMacro) { 70 return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro); 71 } 72 73 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc, 74 SourceLocation EndLoc) { 75 DeclGroupRef DG = dg.get(); 76 77 // If we have an invalid decl, just return an error. 78 if (DG.isNull()) return StmtError(); 79 80 return new (Context) DeclStmt(DG, StartLoc, EndLoc); 81 } 82 83 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) { 84 DeclGroupRef DG = dg.get(); 85 86 // If we don't have a declaration, or we have an invalid declaration, 87 // just return. 88 if (DG.isNull() || !DG.isSingleDecl()) 89 return; 90 91 Decl *decl = DG.getSingleDecl(); 92 if (!decl || decl->isInvalidDecl()) 93 return; 94 95 // Only variable declarations are permitted. 96 VarDecl *var = dyn_cast<VarDecl>(decl); 97 if (!var) { 98 Diag(decl->getLocation(), diag::err_non_variable_decl_in_for); 99 decl->setInvalidDecl(); 100 return; 101 } 102 103 // foreach variables are never actually initialized in the way that 104 // the parser came up with. 105 var->setInit(nullptr); 106 107 // In ARC, we don't need to retain the iteration variable of a fast 108 // enumeration loop. Rather than actually trying to catch that 109 // during declaration processing, we remove the consequences here. 110 if (getLangOpts().ObjCAutoRefCount) { 111 QualType type = var->getType(); 112 113 // Only do this if we inferred the lifetime. Inferred lifetime 114 // will show up as a local qualifier because explicit lifetime 115 // should have shown up as an AttributedType instead. 116 if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) { 117 // Add 'const' and mark the variable as pseudo-strong. 118 var->setType(type.withConst()); 119 var->setARCPseudoStrong(true); 120 } 121 } 122 } 123 124 /// Diagnose unused comparisons, both builtin and overloaded operators. 125 /// For '==' and '!=', suggest fixits for '=' or '|='. 126 /// 127 /// Adding a cast to void (or other expression wrappers) will prevent the 128 /// warning from firing. 129 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) { 130 SourceLocation Loc; 131 bool CanAssign; 132 enum { Equality, Inequality, Relational, ThreeWay } Kind; 133 134 if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) { 135 if (!Op->isComparisonOp()) 136 return false; 137 138 if (Op->getOpcode() == BO_EQ) 139 Kind = Equality; 140 else if (Op->getOpcode() == BO_NE) 141 Kind = Inequality; 142 else if (Op->getOpcode() == BO_Cmp) 143 Kind = ThreeWay; 144 else { 145 assert(Op->isRelationalOp()); 146 Kind = Relational; 147 } 148 Loc = Op->getOperatorLoc(); 149 CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue(); 150 } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) { 151 switch (Op->getOperator()) { 152 case OO_EqualEqual: 153 Kind = Equality; 154 break; 155 case OO_ExclaimEqual: 156 Kind = Inequality; 157 break; 158 case OO_Less: 159 case OO_Greater: 160 case OO_GreaterEqual: 161 case OO_LessEqual: 162 Kind = Relational; 163 break; 164 case OO_Spaceship: 165 Kind = ThreeWay; 166 break; 167 default: 168 return false; 169 } 170 171 Loc = Op->getOperatorLoc(); 172 CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue(); 173 } else { 174 // Not a typo-prone comparison. 175 return false; 176 } 177 178 // Suppress warnings when the operator, suspicious as it may be, comes from 179 // a macro expansion. 180 if (S.SourceMgr.isMacroBodyExpansion(Loc)) 181 return false; 182 183 S.Diag(Loc, diag::warn_unused_comparison) 184 << (unsigned)Kind << E->getSourceRange(); 185 186 // If the LHS is a plausible entity to assign to, provide a fixit hint to 187 // correct common typos. 188 if (CanAssign) { 189 if (Kind == Inequality) 190 S.Diag(Loc, diag::note_inequality_comparison_to_or_assign) 191 << FixItHint::CreateReplacement(Loc, "|="); 192 else if (Kind == Equality) 193 S.Diag(Loc, diag::note_equality_comparison_to_assign) 194 << FixItHint::CreateReplacement(Loc, "="); 195 } 196 197 return true; 198 } 199 200 static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A, 201 SourceLocation Loc, SourceRange R1, 202 SourceRange R2, bool IsCtor) { 203 if (!A) 204 return false; 205 StringRef Msg = A->getMessage(); 206 207 if (Msg.empty()) { 208 if (IsCtor) 209 return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2; 210 return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2; 211 } 212 213 if (IsCtor) 214 return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1 215 << R2; 216 return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2; 217 } 218 219 void Sema::DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID) { 220 if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S)) 221 return DiagnoseUnusedExprResult(Label->getSubStmt(), DiagID); 222 223 const Expr *E = dyn_cast_or_null<Expr>(S); 224 if (!E) 225 return; 226 227 // If we are in an unevaluated expression context, then there can be no unused 228 // results because the results aren't expected to be used in the first place. 229 if (isUnevaluatedContext()) 230 return; 231 232 SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc(); 233 // In most cases, we don't want to warn if the expression is written in a 234 // macro body, or if the macro comes from a system header. If the offending 235 // expression is a call to a function with the warn_unused_result attribute, 236 // we warn no matter the location. Because of the order in which the various 237 // checks need to happen, we factor out the macro-related test here. 238 bool ShouldSuppress = 239 SourceMgr.isMacroBodyExpansion(ExprLoc) || 240 SourceMgr.isInSystemMacro(ExprLoc); 241 242 const Expr *WarnExpr; 243 SourceLocation Loc; 244 SourceRange R1, R2; 245 if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context)) 246 return; 247 248 // If this is a GNU statement expression expanded from a macro, it is probably 249 // unused because it is a function-like macro that can be used as either an 250 // expression or statement. Don't warn, because it is almost certainly a 251 // false positive. 252 if (isa<StmtExpr>(E) && Loc.isMacroID()) 253 return; 254 255 // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers. 256 // That macro is frequently used to suppress "unused parameter" warnings, 257 // but its implementation makes clang's -Wunused-value fire. Prevent this. 258 if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) { 259 SourceLocation SpellLoc = Loc; 260 if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER")) 261 return; 262 } 263 264 // Okay, we have an unused result. Depending on what the base expression is, 265 // we might want to make a more specific diagnostic. Check for one of these 266 // cases now. 267 if (const FullExpr *Temps = dyn_cast<FullExpr>(E)) 268 E = Temps->getSubExpr(); 269 if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E)) 270 E = TempExpr->getSubExpr(); 271 272 if (DiagnoseUnusedComparison(*this, E)) 273 return; 274 275 E = WarnExpr; 276 if (const auto *Cast = dyn_cast<CastExpr>(E)) 277 if (Cast->getCastKind() == CK_NoOp || 278 Cast->getCastKind() == CK_ConstructorConversion) 279 E = Cast->getSubExpr()->IgnoreImpCasts(); 280 281 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 282 if (E->getType()->isVoidType()) 283 return; 284 285 if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>( 286 CE->getUnusedResultAttr(Context)), 287 Loc, R1, R2, /*isCtor=*/false)) 288 return; 289 290 // If the callee has attribute pure, const, or warn_unused_result, warn with 291 // a more specific message to make it clear what is happening. If the call 292 // is written in a macro body, only warn if it has the warn_unused_result 293 // attribute. 294 if (const Decl *FD = CE->getCalleeDecl()) { 295 if (ShouldSuppress) 296 return; 297 if (FD->hasAttr<PureAttr>()) { 298 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure"; 299 return; 300 } 301 if (FD->hasAttr<ConstAttr>()) { 302 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const"; 303 return; 304 } 305 } 306 } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) { 307 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 308 const auto *A = Ctor->getAttr<WarnUnusedResultAttr>(); 309 A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>(); 310 if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true)) 311 return; 312 } 313 } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) { 314 if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) { 315 316 if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1, 317 R2, /*isCtor=*/false)) 318 return; 319 } 320 } else if (ShouldSuppress) 321 return; 322 323 E = WarnExpr; 324 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) { 325 if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) { 326 Diag(Loc, diag::err_arc_unused_init_message) << R1; 327 return; 328 } 329 const ObjCMethodDecl *MD = ME->getMethodDecl(); 330 if (MD) { 331 if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1, 332 R2, /*isCtor=*/false)) 333 return; 334 } 335 } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 336 const Expr *Source = POE->getSyntacticForm(); 337 // Handle the actually selected call of an OpenMP specialized call. 338 if (LangOpts.OpenMP && isa<CallExpr>(Source) && 339 POE->getNumSemanticExprs() == 1 && 340 isa<CallExpr>(POE->getSemanticExpr(0))) 341 return DiagnoseUnusedExprResult(POE->getSemanticExpr(0), DiagID); 342 if (isa<ObjCSubscriptRefExpr>(Source)) 343 DiagID = diag::warn_unused_container_subscript_expr; 344 else 345 DiagID = diag::warn_unused_property_expr; 346 } else if (const CXXFunctionalCastExpr *FC 347 = dyn_cast<CXXFunctionalCastExpr>(E)) { 348 const Expr *E = FC->getSubExpr(); 349 if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E)) 350 E = TE->getSubExpr(); 351 if (isa<CXXTemporaryObjectExpr>(E)) 352 return; 353 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E)) 354 if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl()) 355 if (!RD->getAttr<WarnUnusedAttr>()) 356 return; 357 } 358 // Diagnose "(void*) blah" as a typo for "(void) blah". 359 else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) { 360 TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); 361 QualType T = TI->getType(); 362 363 // We really do want to use the non-canonical type here. 364 if (T == Context.VoidPtrTy) { 365 PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>(); 366 367 Diag(Loc, diag::warn_unused_voidptr) 368 << FixItHint::CreateRemoval(TL.getStarLoc()); 369 return; 370 } 371 } 372 373 // Tell the user to assign it into a variable to force a volatile load if this 374 // isn't an array. 375 if (E->isGLValue() && E->getType().isVolatileQualified() && 376 !E->getType()->isArrayType()) { 377 Diag(Loc, diag::warn_unused_volatile) << R1 << R2; 378 return; 379 } 380 381 // Do not diagnose use of a comma operator in a SFINAE context because the 382 // type of the left operand could be used for SFINAE, so technically it is 383 // *used*. 384 if (DiagID != diag::warn_unused_comma_left_operand || !isSFINAEContext()) 385 DiagIfReachable(Loc, S ? llvm::makeArrayRef(S) : llvm::None, 386 PDiag(DiagID) << R1 << R2); 387 } 388 389 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) { 390 PushCompoundScope(IsStmtExpr); 391 } 392 393 void Sema::ActOnAfterCompoundStatementLeadingPragmas() { 394 if (getCurFPFeatures().isFPConstrained()) { 395 FunctionScopeInfo *FSI = getCurFunction(); 396 assert(FSI); 397 FSI->setUsesFPIntrin(); 398 } 399 } 400 401 void Sema::ActOnFinishOfCompoundStmt() { 402 PopCompoundScope(); 403 } 404 405 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const { 406 return getCurFunction()->CompoundScopes.back(); 407 } 408 409 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, 410 ArrayRef<Stmt *> Elts, bool isStmtExpr) { 411 const unsigned NumElts = Elts.size(); 412 413 // If we're in C mode, check that we don't have any decls after stmts. If 414 // so, emit an extension diagnostic in C89 and potentially a warning in later 415 // versions. 416 const unsigned MixedDeclsCodeID = getLangOpts().C99 417 ? diag::warn_mixed_decls_code 418 : diag::ext_mixed_decls_code; 419 if (!getLangOpts().CPlusPlus && !Diags.isIgnored(MixedDeclsCodeID, L)) { 420 // Note that __extension__ can be around a decl. 421 unsigned i = 0; 422 // Skip over all declarations. 423 for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i) 424 /*empty*/; 425 426 // We found the end of the list or a statement. Scan for another declstmt. 427 for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i) 428 /*empty*/; 429 430 if (i != NumElts) { 431 Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin(); 432 Diag(D->getLocation(), MixedDeclsCodeID); 433 } 434 } 435 436 // Check for suspicious empty body (null statement) in `for' and `while' 437 // statements. Don't do anything for template instantiations, this just adds 438 // noise. 439 if (NumElts != 0 && !CurrentInstantiationScope && 440 getCurCompoundScope().HasEmptyLoopBodies) { 441 for (unsigned i = 0; i != NumElts - 1; ++i) 442 DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]); 443 } 444 445 return CompoundStmt::Create(Context, Elts, L, R); 446 } 447 448 ExprResult 449 Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) { 450 if (!Val.get()) 451 return Val; 452 453 if (DiagnoseUnexpandedParameterPack(Val.get())) 454 return ExprError(); 455 456 // If we're not inside a switch, let the 'case' statement handling diagnose 457 // this. Just clean up after the expression as best we can. 458 if (getCurFunction()->SwitchStack.empty()) 459 return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false, 460 getLangOpts().CPlusPlus11); 461 462 Expr *CondExpr = 463 getCurFunction()->SwitchStack.back().getPointer()->getCond(); 464 if (!CondExpr) 465 return ExprError(); 466 QualType CondType = CondExpr->getType(); 467 468 auto CheckAndFinish = [&](Expr *E) { 469 if (CondType->isDependentType() || E->isTypeDependent()) 470 return ExprResult(E); 471 472 if (getLangOpts().CPlusPlus11) { 473 // C++11 [stmt.switch]p2: the constant-expression shall be a converted 474 // constant expression of the promoted type of the switch condition. 475 llvm::APSInt TempVal; 476 return CheckConvertedConstantExpression(E, CondType, TempVal, 477 CCEK_CaseValue); 478 } 479 480 ExprResult ER = E; 481 if (!E->isValueDependent()) 482 ER = VerifyIntegerConstantExpression(E, AllowFold); 483 if (!ER.isInvalid()) 484 ER = DefaultLvalueConversion(ER.get()); 485 if (!ER.isInvalid()) 486 ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast); 487 if (!ER.isInvalid()) 488 ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false); 489 return ER; 490 }; 491 492 ExprResult Converted = CorrectDelayedTyposInExpr( 493 Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false, 494 CheckAndFinish); 495 if (Converted.get() == Val.get()) 496 Converted = CheckAndFinish(Val.get()); 497 return Converted; 498 } 499 500 StmtResult 501 Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal, 502 SourceLocation DotDotDotLoc, ExprResult RHSVal, 503 SourceLocation ColonLoc) { 504 assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value"); 505 assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset() 506 : RHSVal.isInvalid() || RHSVal.get()) && 507 "missing RHS value"); 508 509 if (getCurFunction()->SwitchStack.empty()) { 510 Diag(CaseLoc, diag::err_case_not_in_switch); 511 return StmtError(); 512 } 513 514 if (LHSVal.isInvalid() || RHSVal.isInvalid()) { 515 getCurFunction()->SwitchStack.back().setInt(true); 516 return StmtError(); 517 } 518 519 auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(), 520 CaseLoc, DotDotDotLoc, ColonLoc); 521 getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS); 522 return CS; 523 } 524 525 /// ActOnCaseStmtBody - This installs a statement as the body of a case. 526 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) { 527 cast<CaseStmt>(S)->setSubStmt(SubStmt); 528 } 529 530 StmtResult 531 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, 532 Stmt *SubStmt, Scope *CurScope) { 533 if (getCurFunction()->SwitchStack.empty()) { 534 Diag(DefaultLoc, diag::err_default_not_in_switch); 535 return SubStmt; 536 } 537 538 DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt); 539 getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS); 540 return DS; 541 } 542 543 StmtResult 544 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, 545 SourceLocation ColonLoc, Stmt *SubStmt) { 546 // If the label was multiply defined, reject it now. 547 if (TheDecl->getStmt()) { 548 Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName(); 549 Diag(TheDecl->getLocation(), diag::note_previous_definition); 550 return SubStmt; 551 } 552 553 ReservedIdentifierStatus Status = TheDecl->isReserved(getLangOpts()); 554 if (isReservedInAllContexts(Status) && 555 !Context.getSourceManager().isInSystemHeader(IdentLoc)) 556 Diag(IdentLoc, diag::warn_reserved_extern_symbol) 557 << TheDecl << static_cast<int>(Status); 558 559 // Otherwise, things are good. Fill in the declaration and return it. 560 LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt); 561 TheDecl->setStmt(LS); 562 if (!TheDecl->isGnuLocal()) { 563 TheDecl->setLocStart(IdentLoc); 564 if (!TheDecl->isMSAsmLabel()) { 565 // Don't update the location of MS ASM labels. These will result in 566 // a diagnostic, and changing the location here will mess that up. 567 TheDecl->setLocation(IdentLoc); 568 } 569 } 570 return LS; 571 } 572 573 StmtResult Sema::BuildAttributedStmt(SourceLocation AttrsLoc, 574 ArrayRef<const Attr *> Attrs, 575 Stmt *SubStmt) { 576 // FIXME: this code should move when a planned refactoring around statement 577 // attributes lands. 578 for (const auto *A : Attrs) { 579 if (A->getKind() == attr::MustTail) { 580 if (!checkAndRewriteMustTailAttr(SubStmt, *A)) { 581 return SubStmt; 582 } 583 setFunctionHasMustTail(); 584 } 585 } 586 587 return AttributedStmt::Create(Context, AttrsLoc, Attrs, SubStmt); 588 } 589 590 StmtResult Sema::ActOnAttributedStmt(const ParsedAttributesWithRange &Attrs, 591 Stmt *SubStmt) { 592 SmallVector<const Attr *, 1> SemanticAttrs; 593 ProcessStmtAttributes(SubStmt, Attrs, SemanticAttrs); 594 if (!SemanticAttrs.empty()) 595 return BuildAttributedStmt(Attrs.Range.getBegin(), SemanticAttrs, SubStmt); 596 // If none of the attributes applied, that's fine, we can recover by 597 // returning the substatement directly instead of making an AttributedStmt 598 // with no attributes on it. 599 return SubStmt; 600 } 601 602 bool Sema::checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA) { 603 ReturnStmt *R = cast<ReturnStmt>(St); 604 Expr *E = R->getRetValue(); 605 606 if (CurContext->isDependentContext() || (E && E->isInstantiationDependent())) 607 // We have to suspend our check until template instantiation time. 608 return true; 609 610 if (!checkMustTailAttr(St, MTA)) 611 return false; 612 613 // FIXME: Replace Expr::IgnoreImplicitAsWritten() with this function. 614 // Currently it does not skip implicit constructors in an initialization 615 // context. 616 auto IgnoreImplicitAsWritten = [](Expr *E) -> Expr * { 617 return IgnoreExprNodes(E, IgnoreImplicitAsWrittenSingleStep, 618 IgnoreElidableImplicitConstructorSingleStep); 619 }; 620 621 // Now that we have verified that 'musttail' is valid here, rewrite the 622 // return value to remove all implicit nodes, but retain parentheses. 623 R->setRetValue(IgnoreImplicitAsWritten(E)); 624 return true; 625 } 626 627 bool Sema::checkMustTailAttr(const Stmt *St, const Attr &MTA) { 628 assert(!CurContext->isDependentContext() && 629 "musttail cannot be checked from a dependent context"); 630 631 // FIXME: Add Expr::IgnoreParenImplicitAsWritten() with this definition. 632 auto IgnoreParenImplicitAsWritten = [](const Expr *E) -> const Expr * { 633 return IgnoreExprNodes(const_cast<Expr *>(E), IgnoreParensSingleStep, 634 IgnoreImplicitAsWrittenSingleStep, 635 IgnoreElidableImplicitConstructorSingleStep); 636 }; 637 638 const Expr *E = cast<ReturnStmt>(St)->getRetValue(); 639 const auto *CE = dyn_cast_or_null<CallExpr>(IgnoreParenImplicitAsWritten(E)); 640 641 if (!CE) { 642 Diag(St->getBeginLoc(), diag::err_musttail_needs_call) << &MTA; 643 return false; 644 } 645 646 if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) { 647 if (EWC->cleanupsHaveSideEffects()) { 648 Diag(St->getBeginLoc(), diag::err_musttail_needs_trivial_args) << &MTA; 649 return false; 650 } 651 } 652 653 // We need to determine the full function type (including "this" type, if any) 654 // for both caller and callee. 655 struct FuncType { 656 enum { 657 ft_non_member, 658 ft_static_member, 659 ft_non_static_member, 660 ft_pointer_to_member, 661 } MemberType = ft_non_member; 662 663 QualType This; 664 const FunctionProtoType *Func; 665 const CXXMethodDecl *Method = nullptr; 666 } CallerType, CalleeType; 667 668 auto GetMethodType = [this, St, MTA](const CXXMethodDecl *CMD, FuncType &Type, 669 bool IsCallee) -> bool { 670 if (isa<CXXConstructorDecl, CXXDestructorDecl>(CMD)) { 671 Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden) 672 << IsCallee << isa<CXXDestructorDecl>(CMD); 673 if (IsCallee) 674 Diag(CMD->getBeginLoc(), diag::note_musttail_structors_forbidden) 675 << isa<CXXDestructorDecl>(CMD); 676 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 677 return false; 678 } 679 if (CMD->isStatic()) 680 Type.MemberType = FuncType::ft_static_member; 681 else { 682 Type.This = CMD->getThisType()->getPointeeType(); 683 Type.MemberType = FuncType::ft_non_static_member; 684 } 685 Type.Func = CMD->getType()->castAs<FunctionProtoType>(); 686 return true; 687 }; 688 689 const auto *CallerDecl = dyn_cast<FunctionDecl>(CurContext); 690 691 // Find caller function signature. 692 if (!CallerDecl) { 693 int ContextType; 694 if (isa<BlockDecl>(CurContext)) 695 ContextType = 0; 696 else if (isa<ObjCMethodDecl>(CurContext)) 697 ContextType = 1; 698 else 699 ContextType = 2; 700 Diag(St->getBeginLoc(), diag::err_musttail_forbidden_from_this_context) 701 << &MTA << ContextType; 702 return false; 703 } else if (const auto *CMD = dyn_cast<CXXMethodDecl>(CurContext)) { 704 // Caller is a class/struct method. 705 if (!GetMethodType(CMD, CallerType, false)) 706 return false; 707 } else { 708 // Caller is a non-method function. 709 CallerType.Func = CallerDecl->getType()->getAs<FunctionProtoType>(); 710 } 711 712 const Expr *CalleeExpr = CE->getCallee()->IgnoreParens(); 713 const auto *CalleeBinOp = dyn_cast<BinaryOperator>(CalleeExpr); 714 SourceLocation CalleeLoc = CE->getCalleeDecl() 715 ? CE->getCalleeDecl()->getBeginLoc() 716 : St->getBeginLoc(); 717 718 // Find callee function signature. 719 if (const CXXMethodDecl *CMD = 720 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) { 721 // Call is: obj.method(), obj->method(), functor(), etc. 722 if (!GetMethodType(CMD, CalleeType, true)) 723 return false; 724 } else if (CalleeBinOp && CalleeBinOp->isPtrMemOp()) { 725 // Call is: obj->*method_ptr or obj.*method_ptr 726 const auto *MPT = 727 CalleeBinOp->getRHS()->getType()->castAs<MemberPointerType>(); 728 CalleeType.This = QualType(MPT->getClass(), 0); 729 CalleeType.Func = MPT->getPointeeType()->castAs<FunctionProtoType>(); 730 CalleeType.MemberType = FuncType::ft_pointer_to_member; 731 } else if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) { 732 Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden) 733 << /* IsCallee = */ 1 << /* IsDestructor = */ 1; 734 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 735 return false; 736 } else { 737 // Non-method function. 738 CalleeType.Func = 739 CalleeExpr->getType()->getPointeeType()->getAs<FunctionProtoType>(); 740 } 741 742 // Both caller and callee must have a prototype (no K&R declarations). 743 if (!CalleeType.Func || !CallerType.Func) { 744 Diag(St->getBeginLoc(), diag::err_musttail_needs_prototype) << &MTA; 745 if (!CalleeType.Func && CE->getDirectCallee()) { 746 Diag(CE->getDirectCallee()->getBeginLoc(), 747 diag::note_musttail_fix_non_prototype); 748 } 749 if (!CallerType.Func) 750 Diag(CallerDecl->getBeginLoc(), diag::note_musttail_fix_non_prototype); 751 return false; 752 } 753 754 // Caller and callee must have matching calling conventions. 755 // 756 // Some calling conventions are physically capable of supporting tail calls 757 // even if the function types don't perfectly match. LLVM is currently too 758 // strict to allow this, but if LLVM added support for this in the future, we 759 // could exit early here and skip the remaining checks if the functions are 760 // using such a calling convention. 761 if (CallerType.Func->getCallConv() != CalleeType.Func->getCallConv()) { 762 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) 763 Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) 764 << true << ND->getDeclName(); 765 else 766 Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) << false; 767 Diag(CalleeLoc, diag::note_musttail_callconv_mismatch) 768 << FunctionType::getNameForCallConv(CallerType.Func->getCallConv()) 769 << FunctionType::getNameForCallConv(CalleeType.Func->getCallConv()); 770 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 771 return false; 772 } 773 774 if (CalleeType.Func->isVariadic() || CallerType.Func->isVariadic()) { 775 Diag(St->getBeginLoc(), diag::err_musttail_no_variadic) << &MTA; 776 return false; 777 } 778 779 // Caller and callee must match in whether they have a "this" parameter. 780 if (CallerType.This.isNull() != CalleeType.This.isNull()) { 781 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { 782 Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch) 783 << CallerType.MemberType << CalleeType.MemberType << true 784 << ND->getDeclName(); 785 Diag(CalleeLoc, diag::note_musttail_callee_defined_here) 786 << ND->getDeclName(); 787 } else 788 Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch) 789 << CallerType.MemberType << CalleeType.MemberType << false; 790 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 791 return false; 792 } 793 794 auto CheckTypesMatch = [this](FuncType CallerType, FuncType CalleeType, 795 PartialDiagnostic &PD) -> bool { 796 enum { 797 ft_different_class, 798 ft_parameter_arity, 799 ft_parameter_mismatch, 800 ft_return_type, 801 }; 802 803 auto DoTypesMatch = [this, &PD](QualType A, QualType B, 804 unsigned Select) -> bool { 805 if (!Context.hasSimilarType(A, B)) { 806 PD << Select << A.getUnqualifiedType() << B.getUnqualifiedType(); 807 return false; 808 } 809 return true; 810 }; 811 812 if (!CallerType.This.isNull() && 813 !DoTypesMatch(CallerType.This, CalleeType.This, ft_different_class)) 814 return false; 815 816 if (!DoTypesMatch(CallerType.Func->getReturnType(), 817 CalleeType.Func->getReturnType(), ft_return_type)) 818 return false; 819 820 if (CallerType.Func->getNumParams() != CalleeType.Func->getNumParams()) { 821 PD << ft_parameter_arity << CallerType.Func->getNumParams() 822 << CalleeType.Func->getNumParams(); 823 return false; 824 } 825 826 ArrayRef<QualType> CalleeParams = CalleeType.Func->getParamTypes(); 827 ArrayRef<QualType> CallerParams = CallerType.Func->getParamTypes(); 828 size_t N = CallerType.Func->getNumParams(); 829 for (size_t I = 0; I < N; I++) { 830 if (!DoTypesMatch(CalleeParams[I], CallerParams[I], 831 ft_parameter_mismatch)) { 832 PD << static_cast<int>(I) + 1; 833 return false; 834 } 835 } 836 837 return true; 838 }; 839 840 PartialDiagnostic PD = PDiag(diag::note_musttail_mismatch); 841 if (!CheckTypesMatch(CallerType, CalleeType, PD)) { 842 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) 843 Diag(St->getBeginLoc(), diag::err_musttail_mismatch) 844 << true << ND->getDeclName(); 845 else 846 Diag(St->getBeginLoc(), diag::err_musttail_mismatch) << false; 847 Diag(CalleeLoc, PD); 848 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 849 return false; 850 } 851 852 return true; 853 } 854 855 namespace { 856 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> { 857 typedef EvaluatedExprVisitor<CommaVisitor> Inherited; 858 Sema &SemaRef; 859 public: 860 CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {} 861 void VisitBinaryOperator(BinaryOperator *E) { 862 if (E->getOpcode() == BO_Comma) 863 SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc()); 864 EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E); 865 } 866 }; 867 } 868 869 StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc, 870 IfStatementKind StatementKind, 871 SourceLocation LParenLoc, Stmt *InitStmt, 872 ConditionResult Cond, SourceLocation RParenLoc, 873 Stmt *thenStmt, SourceLocation ElseLoc, 874 Stmt *elseStmt) { 875 if (Cond.isInvalid()) 876 return StmtError(); 877 878 bool ConstevalOrNegatedConsteval = 879 StatementKind == IfStatementKind::ConstevalNonNegated || 880 StatementKind == IfStatementKind::ConstevalNegated; 881 882 Expr *CondExpr = Cond.get().second; 883 assert((CondExpr || ConstevalOrNegatedConsteval) && 884 "If statement: missing condition"); 885 // Only call the CommaVisitor when not C89 due to differences in scope flags. 886 if (CondExpr && (getLangOpts().C99 || getLangOpts().CPlusPlus) && 887 !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc())) 888 CommaVisitor(*this).Visit(CondExpr); 889 890 if (!ConstevalOrNegatedConsteval && !elseStmt) 891 DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), thenStmt, 892 diag::warn_empty_if_body); 893 894 if (ConstevalOrNegatedConsteval || 895 StatementKind == IfStatementKind::Constexpr) { 896 auto DiagnoseLikelihood = [&](const Stmt *S) { 897 if (const Attr *A = Stmt::getLikelihoodAttr(S)) { 898 Diags.Report(A->getLocation(), 899 diag::warn_attribute_has_no_effect_on_compile_time_if) 900 << A << ConstevalOrNegatedConsteval << A->getRange(); 901 Diags.Report(IfLoc, 902 diag::note_attribute_has_no_effect_on_compile_time_if_here) 903 << ConstevalOrNegatedConsteval 904 << SourceRange(IfLoc, (ConstevalOrNegatedConsteval 905 ? thenStmt->getBeginLoc() 906 : LParenLoc) 907 .getLocWithOffset(-1)); 908 } 909 }; 910 DiagnoseLikelihood(thenStmt); 911 DiagnoseLikelihood(elseStmt); 912 } else { 913 std::tuple<bool, const Attr *, const Attr *> LHC = 914 Stmt::determineLikelihoodConflict(thenStmt, elseStmt); 915 if (std::get<0>(LHC)) { 916 const Attr *ThenAttr = std::get<1>(LHC); 917 const Attr *ElseAttr = std::get<2>(LHC); 918 Diags.Report(ThenAttr->getLocation(), 919 diag::warn_attributes_likelihood_ifstmt_conflict) 920 << ThenAttr << ThenAttr->getRange(); 921 Diags.Report(ElseAttr->getLocation(), diag::note_conflicting_attribute) 922 << ElseAttr << ElseAttr->getRange(); 923 } 924 } 925 926 if (ConstevalOrNegatedConsteval) { 927 bool Immediate = isImmediateFunctionContext(); 928 if (CurContext->isFunctionOrMethod()) { 929 const auto *FD = 930 dyn_cast<FunctionDecl>(Decl::castFromDeclContext(CurContext)); 931 if (FD && FD->isConsteval()) 932 Immediate = true; 933 } 934 if (isUnevaluatedContext() || Immediate) 935 Diags.Report(IfLoc, diag::warn_consteval_if_always_true) << Immediate; 936 } 937 938 return BuildIfStmt(IfLoc, StatementKind, LParenLoc, InitStmt, Cond, RParenLoc, 939 thenStmt, ElseLoc, elseStmt); 940 } 941 942 StmtResult Sema::BuildIfStmt(SourceLocation IfLoc, 943 IfStatementKind StatementKind, 944 SourceLocation LParenLoc, Stmt *InitStmt, 945 ConditionResult Cond, SourceLocation RParenLoc, 946 Stmt *thenStmt, SourceLocation ElseLoc, 947 Stmt *elseStmt) { 948 if (Cond.isInvalid()) 949 return StmtError(); 950 951 if (StatementKind != IfStatementKind::Ordinary || 952 isa<ObjCAvailabilityCheckExpr>(Cond.get().second)) 953 setFunctionHasBranchProtectedScope(); 954 955 return IfStmt::Create(Context, IfLoc, StatementKind, InitStmt, 956 Cond.get().first, Cond.get().second, LParenLoc, 957 RParenLoc, thenStmt, ElseLoc, elseStmt); 958 } 959 960 namespace { 961 struct CaseCompareFunctor { 962 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, 963 const llvm::APSInt &RHS) { 964 return LHS.first < RHS; 965 } 966 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, 967 const std::pair<llvm::APSInt, CaseStmt*> &RHS) { 968 return LHS.first < RHS.first; 969 } 970 bool operator()(const llvm::APSInt &LHS, 971 const std::pair<llvm::APSInt, CaseStmt*> &RHS) { 972 return LHS < RHS.first; 973 } 974 }; 975 } 976 977 /// CmpCaseVals - Comparison predicate for sorting case values. 978 /// 979 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs, 980 const std::pair<llvm::APSInt, CaseStmt*>& rhs) { 981 if (lhs.first < rhs.first) 982 return true; 983 984 if (lhs.first == rhs.first && 985 lhs.second->getCaseLoc() < rhs.second->getCaseLoc()) 986 return true; 987 return false; 988 } 989 990 /// CmpEnumVals - Comparison predicate for sorting enumeration values. 991 /// 992 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, 993 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) 994 { 995 return lhs.first < rhs.first; 996 } 997 998 /// EqEnumVals - Comparison preficate for uniqing enumeration values. 999 /// 1000 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, 1001 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) 1002 { 1003 return lhs.first == rhs.first; 1004 } 1005 1006 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of 1007 /// potentially integral-promoted expression @p expr. 1008 static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) { 1009 if (const auto *FE = dyn_cast<FullExpr>(E)) 1010 E = FE->getSubExpr(); 1011 while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) { 1012 if (ImpCast->getCastKind() != CK_IntegralCast) break; 1013 E = ImpCast->getSubExpr(); 1014 } 1015 return E->getType(); 1016 } 1017 1018 ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) { 1019 class SwitchConvertDiagnoser : public ICEConvertDiagnoser { 1020 Expr *Cond; 1021 1022 public: 1023 SwitchConvertDiagnoser(Expr *Cond) 1024 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true), 1025 Cond(Cond) {} 1026 1027 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 1028 QualType T) override { 1029 return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T; 1030 } 1031 1032 SemaDiagnosticBuilder diagnoseIncomplete( 1033 Sema &S, SourceLocation Loc, QualType T) override { 1034 return S.Diag(Loc, diag::err_switch_incomplete_class_type) 1035 << T << Cond->getSourceRange(); 1036 } 1037 1038 SemaDiagnosticBuilder diagnoseExplicitConv( 1039 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 1040 return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy; 1041 } 1042 1043 SemaDiagnosticBuilder noteExplicitConv( 1044 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1045 return S.Diag(Conv->getLocation(), diag::note_switch_conversion) 1046 << ConvTy->isEnumeralType() << ConvTy; 1047 } 1048 1049 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 1050 QualType T) override { 1051 return S.Diag(Loc, diag::err_switch_multiple_conversions) << T; 1052 } 1053 1054 SemaDiagnosticBuilder noteAmbiguous( 1055 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1056 return S.Diag(Conv->getLocation(), diag::note_switch_conversion) 1057 << ConvTy->isEnumeralType() << ConvTy; 1058 } 1059 1060 SemaDiagnosticBuilder diagnoseConversion( 1061 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 1062 llvm_unreachable("conversion functions are permitted"); 1063 } 1064 } SwitchDiagnoser(Cond); 1065 1066 ExprResult CondResult = 1067 PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser); 1068 if (CondResult.isInvalid()) 1069 return ExprError(); 1070 1071 // FIXME: PerformContextualImplicitConversion doesn't always tell us if it 1072 // failed and produced a diagnostic. 1073 Cond = CondResult.get(); 1074 if (!Cond->isTypeDependent() && 1075 !Cond->getType()->isIntegralOrEnumerationType()) 1076 return ExprError(); 1077 1078 // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. 1079 return UsualUnaryConversions(Cond); 1080 } 1081 1082 StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, 1083 SourceLocation LParenLoc, 1084 Stmt *InitStmt, ConditionResult Cond, 1085 SourceLocation RParenLoc) { 1086 Expr *CondExpr = Cond.get().second; 1087 assert((Cond.isInvalid() || CondExpr) && "switch with no condition"); 1088 1089 if (CondExpr && !CondExpr->isTypeDependent()) { 1090 // We have already converted the expression to an integral or enumeration 1091 // type, when we parsed the switch condition. There are cases where we don't 1092 // have an appropriate type, e.g. a typo-expr Cond was corrected to an 1093 // inappropriate-type expr, we just return an error. 1094 if (!CondExpr->getType()->isIntegralOrEnumerationType()) 1095 return StmtError(); 1096 if (CondExpr->isKnownToHaveBooleanValue()) { 1097 // switch(bool_expr) {...} is often a programmer error, e.g. 1098 // switch(n && mask) { ... } // Doh - should be "n & mask". 1099 // One can always use an if statement instead of switch(bool_expr). 1100 Diag(SwitchLoc, diag::warn_bool_switch_condition) 1101 << CondExpr->getSourceRange(); 1102 } 1103 } 1104 1105 setFunctionHasBranchIntoScope(); 1106 1107 auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr, 1108 LParenLoc, RParenLoc); 1109 getCurFunction()->SwitchStack.push_back( 1110 FunctionScopeInfo::SwitchInfo(SS, false)); 1111 return SS; 1112 } 1113 1114 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) { 1115 Val = Val.extOrTrunc(BitWidth); 1116 Val.setIsSigned(IsSigned); 1117 } 1118 1119 /// Check the specified case value is in range for the given unpromoted switch 1120 /// type. 1121 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val, 1122 unsigned UnpromotedWidth, bool UnpromotedSign) { 1123 // In C++11 onwards, this is checked by the language rules. 1124 if (S.getLangOpts().CPlusPlus11) 1125 return; 1126 1127 // If the case value was signed and negative and the switch expression is 1128 // unsigned, don't bother to warn: this is implementation-defined behavior. 1129 // FIXME: Introduce a second, default-ignored warning for this case? 1130 if (UnpromotedWidth < Val.getBitWidth()) { 1131 llvm::APSInt ConvVal(Val); 1132 AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign); 1133 AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned()); 1134 // FIXME: Use different diagnostics for overflow in conversion to promoted 1135 // type versus "switch expression cannot have this value". Use proper 1136 // IntRange checking rather than just looking at the unpromoted type here. 1137 if (ConvVal != Val) 1138 S.Diag(Loc, diag::warn_case_value_overflow) << toString(Val, 10) 1139 << toString(ConvVal, 10); 1140 } 1141 } 1142 1143 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy; 1144 1145 /// Returns true if we should emit a diagnostic about this case expression not 1146 /// being a part of the enum used in the switch controlling expression. 1147 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S, 1148 const EnumDecl *ED, 1149 const Expr *CaseExpr, 1150 EnumValsTy::iterator &EI, 1151 EnumValsTy::iterator &EIEnd, 1152 const llvm::APSInt &Val) { 1153 if (!ED->isClosed()) 1154 return false; 1155 1156 if (const DeclRefExpr *DRE = 1157 dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) { 1158 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 1159 QualType VarType = VD->getType(); 1160 QualType EnumType = S.Context.getTypeDeclType(ED); 1161 if (VD->hasGlobalStorage() && VarType.isConstQualified() && 1162 S.Context.hasSameUnqualifiedType(EnumType, VarType)) 1163 return false; 1164 } 1165 } 1166 1167 if (ED->hasAttr<FlagEnumAttr>()) 1168 return !S.IsValueInFlagEnum(ED, Val, false); 1169 1170 while (EI != EIEnd && EI->first < Val) 1171 EI++; 1172 1173 if (EI != EIEnd && EI->first == Val) 1174 return false; 1175 1176 return true; 1177 } 1178 1179 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond, 1180 const Expr *Case) { 1181 QualType CondType = Cond->getType(); 1182 QualType CaseType = Case->getType(); 1183 1184 const EnumType *CondEnumType = CondType->getAs<EnumType>(); 1185 const EnumType *CaseEnumType = CaseType->getAs<EnumType>(); 1186 if (!CondEnumType || !CaseEnumType) 1187 return; 1188 1189 // Ignore anonymous enums. 1190 if (!CondEnumType->getDecl()->getIdentifier() && 1191 !CondEnumType->getDecl()->getTypedefNameForAnonDecl()) 1192 return; 1193 if (!CaseEnumType->getDecl()->getIdentifier() && 1194 !CaseEnumType->getDecl()->getTypedefNameForAnonDecl()) 1195 return; 1196 1197 if (S.Context.hasSameUnqualifiedType(CondType, CaseType)) 1198 return; 1199 1200 S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch) 1201 << CondType << CaseType << Cond->getSourceRange() 1202 << Case->getSourceRange(); 1203 } 1204 1205 StmtResult 1206 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, 1207 Stmt *BodyStmt) { 1208 SwitchStmt *SS = cast<SwitchStmt>(Switch); 1209 bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt(); 1210 assert(SS == getCurFunction()->SwitchStack.back().getPointer() && 1211 "switch stack missing push/pop!"); 1212 1213 getCurFunction()->SwitchStack.pop_back(); 1214 1215 if (!BodyStmt) return StmtError(); 1216 SS->setBody(BodyStmt, SwitchLoc); 1217 1218 Expr *CondExpr = SS->getCond(); 1219 if (!CondExpr) return StmtError(); 1220 1221 QualType CondType = CondExpr->getType(); 1222 1223 // C++ 6.4.2.p2: 1224 // Integral promotions are performed (on the switch condition). 1225 // 1226 // A case value unrepresentable by the original switch condition 1227 // type (before the promotion) doesn't make sense, even when it can 1228 // be represented by the promoted type. Therefore we need to find 1229 // the pre-promotion type of the switch condition. 1230 const Expr *CondExprBeforePromotion = CondExpr; 1231 QualType CondTypeBeforePromotion = 1232 GetTypeBeforeIntegralPromotion(CondExprBeforePromotion); 1233 1234 // Get the bitwidth of the switched-on value after promotions. We must 1235 // convert the integer case values to this width before comparison. 1236 bool HasDependentValue 1237 = CondExpr->isTypeDependent() || CondExpr->isValueDependent(); 1238 unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType); 1239 bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType(); 1240 1241 // Get the width and signedness that the condition might actually have, for 1242 // warning purposes. 1243 // FIXME: Grab an IntRange for the condition rather than using the unpromoted 1244 // type. 1245 unsigned CondWidthBeforePromotion 1246 = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion); 1247 bool CondIsSignedBeforePromotion 1248 = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType(); 1249 1250 // Accumulate all of the case values in a vector so that we can sort them 1251 // and detect duplicates. This vector contains the APInt for the case after 1252 // it has been converted to the condition type. 1253 typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy; 1254 CaseValsTy CaseVals; 1255 1256 // Keep track of any GNU case ranges we see. The APSInt is the low value. 1257 typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy; 1258 CaseRangesTy CaseRanges; 1259 1260 DefaultStmt *TheDefaultStmt = nullptr; 1261 1262 bool CaseListIsErroneous = false; 1263 1264 for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue; 1265 SC = SC->getNextSwitchCase()) { 1266 1267 if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) { 1268 if (TheDefaultStmt) { 1269 Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); 1270 Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev); 1271 1272 // FIXME: Remove the default statement from the switch block so that 1273 // we'll return a valid AST. This requires recursing down the AST and 1274 // finding it, not something we are set up to do right now. For now, 1275 // just lop the entire switch stmt out of the AST. 1276 CaseListIsErroneous = true; 1277 } 1278 TheDefaultStmt = DS; 1279 1280 } else { 1281 CaseStmt *CS = cast<CaseStmt>(SC); 1282 1283 Expr *Lo = CS->getLHS(); 1284 1285 if (Lo->isValueDependent()) { 1286 HasDependentValue = true; 1287 break; 1288 } 1289 1290 // We already verified that the expression has a constant value; 1291 // get that value (prior to conversions). 1292 const Expr *LoBeforePromotion = Lo; 1293 GetTypeBeforeIntegralPromotion(LoBeforePromotion); 1294 llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context); 1295 1296 // Check the unconverted value is within the range of possible values of 1297 // the switch expression. 1298 checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion, 1299 CondIsSignedBeforePromotion); 1300 1301 // FIXME: This duplicates the check performed for warn_not_in_enum below. 1302 checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion, 1303 LoBeforePromotion); 1304 1305 // Convert the value to the same width/sign as the condition. 1306 AdjustAPSInt(LoVal, CondWidth, CondIsSigned); 1307 1308 // If this is a case range, remember it in CaseRanges, otherwise CaseVals. 1309 if (CS->getRHS()) { 1310 if (CS->getRHS()->isValueDependent()) { 1311 HasDependentValue = true; 1312 break; 1313 } 1314 CaseRanges.push_back(std::make_pair(LoVal, CS)); 1315 } else 1316 CaseVals.push_back(std::make_pair(LoVal, CS)); 1317 } 1318 } 1319 1320 if (!HasDependentValue) { 1321 // If we don't have a default statement, check whether the 1322 // condition is constant. 1323 llvm::APSInt ConstantCondValue; 1324 bool HasConstantCond = false; 1325 if (!TheDefaultStmt) { 1326 Expr::EvalResult Result; 1327 HasConstantCond = CondExpr->EvaluateAsInt(Result, Context, 1328 Expr::SE_AllowSideEffects); 1329 if (Result.Val.isInt()) 1330 ConstantCondValue = Result.Val.getInt(); 1331 assert(!HasConstantCond || 1332 (ConstantCondValue.getBitWidth() == CondWidth && 1333 ConstantCondValue.isSigned() == CondIsSigned)); 1334 } 1335 bool ShouldCheckConstantCond = HasConstantCond; 1336 1337 // Sort all the scalar case values so we can easily detect duplicates. 1338 llvm::stable_sort(CaseVals, CmpCaseVals); 1339 1340 if (!CaseVals.empty()) { 1341 for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) { 1342 if (ShouldCheckConstantCond && 1343 CaseVals[i].first == ConstantCondValue) 1344 ShouldCheckConstantCond = false; 1345 1346 if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) { 1347 // If we have a duplicate, report it. 1348 // First, determine if either case value has a name 1349 StringRef PrevString, CurrString; 1350 Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts(); 1351 Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts(); 1352 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) { 1353 PrevString = DeclRef->getDecl()->getName(); 1354 } 1355 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) { 1356 CurrString = DeclRef->getDecl()->getName(); 1357 } 1358 SmallString<16> CaseValStr; 1359 CaseVals[i-1].first.toString(CaseValStr); 1360 1361 if (PrevString == CurrString) 1362 Diag(CaseVals[i].second->getLHS()->getBeginLoc(), 1363 diag::err_duplicate_case) 1364 << (PrevString.empty() ? CaseValStr.str() : PrevString); 1365 else 1366 Diag(CaseVals[i].second->getLHS()->getBeginLoc(), 1367 diag::err_duplicate_case_differing_expr) 1368 << (PrevString.empty() ? CaseValStr.str() : PrevString) 1369 << (CurrString.empty() ? CaseValStr.str() : CurrString) 1370 << CaseValStr; 1371 1372 Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(), 1373 diag::note_duplicate_case_prev); 1374 // FIXME: We really want to remove the bogus case stmt from the 1375 // substmt, but we have no way to do this right now. 1376 CaseListIsErroneous = true; 1377 } 1378 } 1379 } 1380 1381 // Detect duplicate case ranges, which usually don't exist at all in 1382 // the first place. 1383 if (!CaseRanges.empty()) { 1384 // Sort all the case ranges by their low value so we can easily detect 1385 // overlaps between ranges. 1386 llvm::stable_sort(CaseRanges); 1387 1388 // Scan the ranges, computing the high values and removing empty ranges. 1389 std::vector<llvm::APSInt> HiVals; 1390 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { 1391 llvm::APSInt &LoVal = CaseRanges[i].first; 1392 CaseStmt *CR = CaseRanges[i].second; 1393 Expr *Hi = CR->getRHS(); 1394 1395 const Expr *HiBeforePromotion = Hi; 1396 GetTypeBeforeIntegralPromotion(HiBeforePromotion); 1397 llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context); 1398 1399 // Check the unconverted value is within the range of possible values of 1400 // the switch expression. 1401 checkCaseValue(*this, Hi->getBeginLoc(), HiVal, 1402 CondWidthBeforePromotion, CondIsSignedBeforePromotion); 1403 1404 // Convert the value to the same width/sign as the condition. 1405 AdjustAPSInt(HiVal, CondWidth, CondIsSigned); 1406 1407 // If the low value is bigger than the high value, the case is empty. 1408 if (LoVal > HiVal) { 1409 Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range) 1410 << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc()); 1411 CaseRanges.erase(CaseRanges.begin()+i); 1412 --i; 1413 --e; 1414 continue; 1415 } 1416 1417 if (ShouldCheckConstantCond && 1418 LoVal <= ConstantCondValue && 1419 ConstantCondValue <= HiVal) 1420 ShouldCheckConstantCond = false; 1421 1422 HiVals.push_back(HiVal); 1423 } 1424 1425 // Rescan the ranges, looking for overlap with singleton values and other 1426 // ranges. Since the range list is sorted, we only need to compare case 1427 // ranges with their neighbors. 1428 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { 1429 llvm::APSInt &CRLo = CaseRanges[i].first; 1430 llvm::APSInt &CRHi = HiVals[i]; 1431 CaseStmt *CR = CaseRanges[i].second; 1432 1433 // Check to see whether the case range overlaps with any 1434 // singleton cases. 1435 CaseStmt *OverlapStmt = nullptr; 1436 llvm::APSInt OverlapVal(32); 1437 1438 // Find the smallest value >= the lower bound. If I is in the 1439 // case range, then we have overlap. 1440 CaseValsTy::iterator I = 1441 llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor()); 1442 if (I != CaseVals.end() && I->first < CRHi) { 1443 OverlapVal = I->first; // Found overlap with scalar. 1444 OverlapStmt = I->second; 1445 } 1446 1447 // Find the smallest value bigger than the upper bound. 1448 I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); 1449 if (I != CaseVals.begin() && (I-1)->first >= CRLo) { 1450 OverlapVal = (I-1)->first; // Found overlap with scalar. 1451 OverlapStmt = (I-1)->second; 1452 } 1453 1454 // Check to see if this case stmt overlaps with the subsequent 1455 // case range. 1456 if (i && CRLo <= HiVals[i-1]) { 1457 OverlapVal = HiVals[i-1]; // Found overlap with range. 1458 OverlapStmt = CaseRanges[i-1].second; 1459 } 1460 1461 if (OverlapStmt) { 1462 // If we have a duplicate, report it. 1463 Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case) 1464 << toString(OverlapVal, 10); 1465 Diag(OverlapStmt->getLHS()->getBeginLoc(), 1466 diag::note_duplicate_case_prev); 1467 // FIXME: We really want to remove the bogus case stmt from the 1468 // substmt, but we have no way to do this right now. 1469 CaseListIsErroneous = true; 1470 } 1471 } 1472 } 1473 1474 // Complain if we have a constant condition and we didn't find a match. 1475 if (!CaseListIsErroneous && !CaseListIsIncomplete && 1476 ShouldCheckConstantCond) { 1477 // TODO: it would be nice if we printed enums as enums, chars as 1478 // chars, etc. 1479 Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition) 1480 << toString(ConstantCondValue, 10) 1481 << CondExpr->getSourceRange(); 1482 } 1483 1484 // Check to see if switch is over an Enum and handles all of its 1485 // values. We only issue a warning if there is not 'default:', but 1486 // we still do the analysis to preserve this information in the AST 1487 // (which can be used by flow-based analyes). 1488 // 1489 const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>(); 1490 1491 // If switch has default case, then ignore it. 1492 if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond && 1493 ET && ET->getDecl()->isCompleteDefinition() && 1494 !empty(ET->getDecl()->enumerators())) { 1495 const EnumDecl *ED = ET->getDecl(); 1496 EnumValsTy EnumVals; 1497 1498 // Gather all enum values, set their type and sort them, 1499 // allowing easier comparison with CaseVals. 1500 for (auto *EDI : ED->enumerators()) { 1501 llvm::APSInt Val = EDI->getInitVal(); 1502 AdjustAPSInt(Val, CondWidth, CondIsSigned); 1503 EnumVals.push_back(std::make_pair(Val, EDI)); 1504 } 1505 llvm::stable_sort(EnumVals, CmpEnumVals); 1506 auto EI = EnumVals.begin(), EIEnd = 1507 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); 1508 1509 // See which case values aren't in enum. 1510 for (CaseValsTy::const_iterator CI = CaseVals.begin(); 1511 CI != CaseVals.end(); CI++) { 1512 Expr *CaseExpr = CI->second->getLHS(); 1513 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, 1514 CI->first)) 1515 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) 1516 << CondTypeBeforePromotion; 1517 } 1518 1519 // See which of case ranges aren't in enum 1520 EI = EnumVals.begin(); 1521 for (CaseRangesTy::const_iterator RI = CaseRanges.begin(); 1522 RI != CaseRanges.end(); RI++) { 1523 Expr *CaseExpr = RI->second->getLHS(); 1524 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, 1525 RI->first)) 1526 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) 1527 << CondTypeBeforePromotion; 1528 1529 llvm::APSInt Hi = 1530 RI->second->getRHS()->EvaluateKnownConstInt(Context); 1531 AdjustAPSInt(Hi, CondWidth, CondIsSigned); 1532 1533 CaseExpr = RI->second->getRHS(); 1534 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, 1535 Hi)) 1536 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) 1537 << CondTypeBeforePromotion; 1538 } 1539 1540 // Check which enum vals aren't in switch 1541 auto CI = CaseVals.begin(); 1542 auto RI = CaseRanges.begin(); 1543 bool hasCasesNotInSwitch = false; 1544 1545 SmallVector<DeclarationName,8> UnhandledNames; 1546 1547 for (EI = EnumVals.begin(); EI != EIEnd; EI++) { 1548 // Don't warn about omitted unavailable EnumConstantDecls. 1549 switch (EI->second->getAvailability()) { 1550 case AR_Deprecated: 1551 // Omitting a deprecated constant is ok; it should never materialize. 1552 case AR_Unavailable: 1553 continue; 1554 1555 case AR_NotYetIntroduced: 1556 // Partially available enum constants should be present. Note that we 1557 // suppress -Wunguarded-availability diagnostics for such uses. 1558 case AR_Available: 1559 break; 1560 } 1561 1562 if (EI->second->hasAttr<UnusedAttr>()) 1563 continue; 1564 1565 // Drop unneeded case values 1566 while (CI != CaseVals.end() && CI->first < EI->first) 1567 CI++; 1568 1569 if (CI != CaseVals.end() && CI->first == EI->first) 1570 continue; 1571 1572 // Drop unneeded case ranges 1573 for (; RI != CaseRanges.end(); RI++) { 1574 llvm::APSInt Hi = 1575 RI->second->getRHS()->EvaluateKnownConstInt(Context); 1576 AdjustAPSInt(Hi, CondWidth, CondIsSigned); 1577 if (EI->first <= Hi) 1578 break; 1579 } 1580 1581 if (RI == CaseRanges.end() || EI->first < RI->first) { 1582 hasCasesNotInSwitch = true; 1583 UnhandledNames.push_back(EI->second->getDeclName()); 1584 } 1585 } 1586 1587 if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag()) 1588 Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default); 1589 1590 // Produce a nice diagnostic if multiple values aren't handled. 1591 if (!UnhandledNames.empty()) { 1592 auto DB = Diag(CondExpr->getExprLoc(), TheDefaultStmt 1593 ? diag::warn_def_missing_case 1594 : diag::warn_missing_case) 1595 << CondExpr->getSourceRange() << (int)UnhandledNames.size(); 1596 1597 for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3); 1598 I != E; ++I) 1599 DB << UnhandledNames[I]; 1600 } 1601 1602 if (!hasCasesNotInSwitch) 1603 SS->setAllEnumCasesCovered(); 1604 } 1605 } 1606 1607 if (BodyStmt) 1608 DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt, 1609 diag::warn_empty_switch_body); 1610 1611 // FIXME: If the case list was broken is some way, we don't have a good system 1612 // to patch it up. Instead, just return the whole substmt as broken. 1613 if (CaseListIsErroneous) 1614 return StmtError(); 1615 1616 return SS; 1617 } 1618 1619 void 1620 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, 1621 Expr *SrcExpr) { 1622 if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc())) 1623 return; 1624 1625 if (const EnumType *ET = DstType->getAs<EnumType>()) 1626 if (!Context.hasSameUnqualifiedType(SrcType, DstType) && 1627 SrcType->isIntegerType()) { 1628 if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() && 1629 SrcExpr->isIntegerConstantExpr(Context)) { 1630 // Get the bitwidth of the enum value before promotions. 1631 unsigned DstWidth = Context.getIntWidth(DstType); 1632 bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType(); 1633 1634 llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context); 1635 AdjustAPSInt(RhsVal, DstWidth, DstIsSigned); 1636 const EnumDecl *ED = ET->getDecl(); 1637 1638 if (!ED->isClosed()) 1639 return; 1640 1641 if (ED->hasAttr<FlagEnumAttr>()) { 1642 if (!IsValueInFlagEnum(ED, RhsVal, true)) 1643 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) 1644 << DstType.getUnqualifiedType(); 1645 } else { 1646 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64> 1647 EnumValsTy; 1648 EnumValsTy EnumVals; 1649 1650 // Gather all enum values, set their type and sort them, 1651 // allowing easier comparison with rhs constant. 1652 for (auto *EDI : ED->enumerators()) { 1653 llvm::APSInt Val = EDI->getInitVal(); 1654 AdjustAPSInt(Val, DstWidth, DstIsSigned); 1655 EnumVals.push_back(std::make_pair(Val, EDI)); 1656 } 1657 if (EnumVals.empty()) 1658 return; 1659 llvm::stable_sort(EnumVals, CmpEnumVals); 1660 EnumValsTy::iterator EIend = 1661 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); 1662 1663 // See which values aren't in the enum. 1664 EnumValsTy::const_iterator EI = EnumVals.begin(); 1665 while (EI != EIend && EI->first < RhsVal) 1666 EI++; 1667 if (EI == EIend || EI->first != RhsVal) { 1668 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) 1669 << DstType.getUnqualifiedType(); 1670 } 1671 } 1672 } 1673 } 1674 } 1675 1676 StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, 1677 SourceLocation LParenLoc, ConditionResult Cond, 1678 SourceLocation RParenLoc, Stmt *Body) { 1679 if (Cond.isInvalid()) 1680 return StmtError(); 1681 1682 auto CondVal = Cond.get(); 1683 CheckBreakContinueBinding(CondVal.second); 1684 1685 if (CondVal.second && 1686 !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc())) 1687 CommaVisitor(*this).Visit(CondVal.second); 1688 1689 if (isa<NullStmt>(Body)) 1690 getCurCompoundScope().setHasEmptyLoopBodies(); 1691 1692 return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body, 1693 WhileLoc, LParenLoc, RParenLoc); 1694 } 1695 1696 StmtResult 1697 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, 1698 SourceLocation WhileLoc, SourceLocation CondLParen, 1699 Expr *Cond, SourceLocation CondRParen) { 1700 assert(Cond && "ActOnDoStmt(): missing expression"); 1701 1702 CheckBreakContinueBinding(Cond); 1703 ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond); 1704 if (CondResult.isInvalid()) 1705 return StmtError(); 1706 Cond = CondResult.get(); 1707 1708 CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false); 1709 if (CondResult.isInvalid()) 1710 return StmtError(); 1711 Cond = CondResult.get(); 1712 1713 // Only call the CommaVisitor for C89 due to differences in scope flags. 1714 if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus && 1715 !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc())) 1716 CommaVisitor(*this).Visit(Cond); 1717 1718 return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen); 1719 } 1720 1721 namespace { 1722 // Use SetVector since the diagnostic cares about the ordering of the Decl's. 1723 using DeclSetVector = 1724 llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>, 1725 llvm::SmallPtrSet<VarDecl *, 8>>; 1726 1727 // This visitor will traverse a conditional statement and store all 1728 // the evaluated decls into a vector. Simple is set to true if none 1729 // of the excluded constructs are used. 1730 class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> { 1731 DeclSetVector &Decls; 1732 SmallVectorImpl<SourceRange> &Ranges; 1733 bool Simple; 1734 public: 1735 typedef EvaluatedExprVisitor<DeclExtractor> Inherited; 1736 1737 DeclExtractor(Sema &S, DeclSetVector &Decls, 1738 SmallVectorImpl<SourceRange> &Ranges) : 1739 Inherited(S.Context), 1740 Decls(Decls), 1741 Ranges(Ranges), 1742 Simple(true) {} 1743 1744 bool isSimple() { return Simple; } 1745 1746 // Replaces the method in EvaluatedExprVisitor. 1747 void VisitMemberExpr(MemberExpr* E) { 1748 Simple = false; 1749 } 1750 1751 // Any Stmt not explicitly listed will cause the condition to be marked 1752 // complex. 1753 void VisitStmt(Stmt *S) { Simple = false; } 1754 1755 void VisitBinaryOperator(BinaryOperator *E) { 1756 Visit(E->getLHS()); 1757 Visit(E->getRHS()); 1758 } 1759 1760 void VisitCastExpr(CastExpr *E) { 1761 Visit(E->getSubExpr()); 1762 } 1763 1764 void VisitUnaryOperator(UnaryOperator *E) { 1765 // Skip checking conditionals with derefernces. 1766 if (E->getOpcode() == UO_Deref) 1767 Simple = false; 1768 else 1769 Visit(E->getSubExpr()); 1770 } 1771 1772 void VisitConditionalOperator(ConditionalOperator *E) { 1773 Visit(E->getCond()); 1774 Visit(E->getTrueExpr()); 1775 Visit(E->getFalseExpr()); 1776 } 1777 1778 void VisitParenExpr(ParenExpr *E) { 1779 Visit(E->getSubExpr()); 1780 } 1781 1782 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { 1783 Visit(E->getOpaqueValue()->getSourceExpr()); 1784 Visit(E->getFalseExpr()); 1785 } 1786 1787 void VisitIntegerLiteral(IntegerLiteral *E) { } 1788 void VisitFloatingLiteral(FloatingLiteral *E) { } 1789 void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { } 1790 void VisitCharacterLiteral(CharacterLiteral *E) { } 1791 void VisitGNUNullExpr(GNUNullExpr *E) { } 1792 void VisitImaginaryLiteral(ImaginaryLiteral *E) { } 1793 1794 void VisitDeclRefExpr(DeclRefExpr *E) { 1795 VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()); 1796 if (!VD) { 1797 // Don't allow unhandled Decl types. 1798 Simple = false; 1799 return; 1800 } 1801 1802 Ranges.push_back(E->getSourceRange()); 1803 1804 Decls.insert(VD); 1805 } 1806 1807 }; // end class DeclExtractor 1808 1809 // DeclMatcher checks to see if the decls are used in a non-evaluated 1810 // context. 1811 class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> { 1812 DeclSetVector &Decls; 1813 bool FoundDecl; 1814 1815 public: 1816 typedef EvaluatedExprVisitor<DeclMatcher> Inherited; 1817 1818 DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) : 1819 Inherited(S.Context), Decls(Decls), FoundDecl(false) { 1820 if (!Statement) return; 1821 1822 Visit(Statement); 1823 } 1824 1825 void VisitReturnStmt(ReturnStmt *S) { 1826 FoundDecl = true; 1827 } 1828 1829 void VisitBreakStmt(BreakStmt *S) { 1830 FoundDecl = true; 1831 } 1832 1833 void VisitGotoStmt(GotoStmt *S) { 1834 FoundDecl = true; 1835 } 1836 1837 void VisitCastExpr(CastExpr *E) { 1838 if (E->getCastKind() == CK_LValueToRValue) 1839 CheckLValueToRValueCast(E->getSubExpr()); 1840 else 1841 Visit(E->getSubExpr()); 1842 } 1843 1844 void CheckLValueToRValueCast(Expr *E) { 1845 E = E->IgnoreParenImpCasts(); 1846 1847 if (isa<DeclRefExpr>(E)) { 1848 return; 1849 } 1850 1851 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 1852 Visit(CO->getCond()); 1853 CheckLValueToRValueCast(CO->getTrueExpr()); 1854 CheckLValueToRValueCast(CO->getFalseExpr()); 1855 return; 1856 } 1857 1858 if (BinaryConditionalOperator *BCO = 1859 dyn_cast<BinaryConditionalOperator>(E)) { 1860 CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr()); 1861 CheckLValueToRValueCast(BCO->getFalseExpr()); 1862 return; 1863 } 1864 1865 Visit(E); 1866 } 1867 1868 void VisitDeclRefExpr(DeclRefExpr *E) { 1869 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) 1870 if (Decls.count(VD)) 1871 FoundDecl = true; 1872 } 1873 1874 void VisitPseudoObjectExpr(PseudoObjectExpr *POE) { 1875 // Only need to visit the semantics for POE. 1876 // SyntaticForm doesn't really use the Decal. 1877 for (auto *S : POE->semantics()) { 1878 if (auto *OVE = dyn_cast<OpaqueValueExpr>(S)) 1879 // Look past the OVE into the expression it binds. 1880 Visit(OVE->getSourceExpr()); 1881 else 1882 Visit(S); 1883 } 1884 } 1885 1886 bool FoundDeclInUse() { return FoundDecl; } 1887 1888 }; // end class DeclMatcher 1889 1890 void CheckForLoopConditionalStatement(Sema &S, Expr *Second, 1891 Expr *Third, Stmt *Body) { 1892 // Condition is empty 1893 if (!Second) return; 1894 1895 if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body, 1896 Second->getBeginLoc())) 1897 return; 1898 1899 PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body); 1900 DeclSetVector Decls; 1901 SmallVector<SourceRange, 10> Ranges; 1902 DeclExtractor DE(S, Decls, Ranges); 1903 DE.Visit(Second); 1904 1905 // Don't analyze complex conditionals. 1906 if (!DE.isSimple()) return; 1907 1908 // No decls found. 1909 if (Decls.size() == 0) return; 1910 1911 // Don't warn on volatile, static, or global variables. 1912 for (auto *VD : Decls) 1913 if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage()) 1914 return; 1915 1916 if (DeclMatcher(S, Decls, Second).FoundDeclInUse() || 1917 DeclMatcher(S, Decls, Third).FoundDeclInUse() || 1918 DeclMatcher(S, Decls, Body).FoundDeclInUse()) 1919 return; 1920 1921 // Load decl names into diagnostic. 1922 if (Decls.size() > 4) { 1923 PDiag << 0; 1924 } else { 1925 PDiag << (unsigned)Decls.size(); 1926 for (auto *VD : Decls) 1927 PDiag << VD->getDeclName(); 1928 } 1929 1930 for (auto Range : Ranges) 1931 PDiag << Range; 1932 1933 S.Diag(Ranges.begin()->getBegin(), PDiag); 1934 } 1935 1936 // If Statement is an incemement or decrement, return true and sets the 1937 // variables Increment and DRE. 1938 bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment, 1939 DeclRefExpr *&DRE) { 1940 if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement)) 1941 if (!Cleanups->cleanupsHaveSideEffects()) 1942 Statement = Cleanups->getSubExpr(); 1943 1944 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) { 1945 switch (UO->getOpcode()) { 1946 default: return false; 1947 case UO_PostInc: 1948 case UO_PreInc: 1949 Increment = true; 1950 break; 1951 case UO_PostDec: 1952 case UO_PreDec: 1953 Increment = false; 1954 break; 1955 } 1956 DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr()); 1957 return DRE; 1958 } 1959 1960 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) { 1961 FunctionDecl *FD = Call->getDirectCallee(); 1962 if (!FD || !FD->isOverloadedOperator()) return false; 1963 switch (FD->getOverloadedOperator()) { 1964 default: return false; 1965 case OO_PlusPlus: 1966 Increment = true; 1967 break; 1968 case OO_MinusMinus: 1969 Increment = false; 1970 break; 1971 } 1972 DRE = dyn_cast<DeclRefExpr>(Call->getArg(0)); 1973 return DRE; 1974 } 1975 1976 return false; 1977 } 1978 1979 // A visitor to determine if a continue or break statement is a 1980 // subexpression. 1981 class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> { 1982 SourceLocation BreakLoc; 1983 SourceLocation ContinueLoc; 1984 bool InSwitch = false; 1985 1986 public: 1987 BreakContinueFinder(Sema &S, const Stmt* Body) : 1988 Inherited(S.Context) { 1989 Visit(Body); 1990 } 1991 1992 typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited; 1993 1994 void VisitContinueStmt(const ContinueStmt* E) { 1995 ContinueLoc = E->getContinueLoc(); 1996 } 1997 1998 void VisitBreakStmt(const BreakStmt* E) { 1999 if (!InSwitch) 2000 BreakLoc = E->getBreakLoc(); 2001 } 2002 2003 void VisitSwitchStmt(const SwitchStmt* S) { 2004 if (const Stmt *Init = S->getInit()) 2005 Visit(Init); 2006 if (const Stmt *CondVar = S->getConditionVariableDeclStmt()) 2007 Visit(CondVar); 2008 if (const Stmt *Cond = S->getCond()) 2009 Visit(Cond); 2010 2011 // Don't return break statements from the body of a switch. 2012 InSwitch = true; 2013 if (const Stmt *Body = S->getBody()) 2014 Visit(Body); 2015 InSwitch = false; 2016 } 2017 2018 void VisitForStmt(const ForStmt *S) { 2019 // Only visit the init statement of a for loop; the body 2020 // has a different break/continue scope. 2021 if (const Stmt *Init = S->getInit()) 2022 Visit(Init); 2023 } 2024 2025 void VisitWhileStmt(const WhileStmt *) { 2026 // Do nothing; the children of a while loop have a different 2027 // break/continue scope. 2028 } 2029 2030 void VisitDoStmt(const DoStmt *) { 2031 // Do nothing; the children of a while loop have a different 2032 // break/continue scope. 2033 } 2034 2035 void VisitCXXForRangeStmt(const CXXForRangeStmt *S) { 2036 // Only visit the initialization of a for loop; the body 2037 // has a different break/continue scope. 2038 if (const Stmt *Init = S->getInit()) 2039 Visit(Init); 2040 if (const Stmt *Range = S->getRangeStmt()) 2041 Visit(Range); 2042 if (const Stmt *Begin = S->getBeginStmt()) 2043 Visit(Begin); 2044 if (const Stmt *End = S->getEndStmt()) 2045 Visit(End); 2046 } 2047 2048 void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) { 2049 // Only visit the initialization of a for loop; the body 2050 // has a different break/continue scope. 2051 if (const Stmt *Element = S->getElement()) 2052 Visit(Element); 2053 if (const Stmt *Collection = S->getCollection()) 2054 Visit(Collection); 2055 } 2056 2057 bool ContinueFound() { return ContinueLoc.isValid(); } 2058 bool BreakFound() { return BreakLoc.isValid(); } 2059 SourceLocation GetContinueLoc() { return ContinueLoc; } 2060 SourceLocation GetBreakLoc() { return BreakLoc; } 2061 2062 }; // end class BreakContinueFinder 2063 2064 // Emit a warning when a loop increment/decrement appears twice per loop 2065 // iteration. The conditions which trigger this warning are: 2066 // 1) The last statement in the loop body and the third expression in the 2067 // for loop are both increment or both decrement of the same variable 2068 // 2) No continue statements in the loop body. 2069 void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) { 2070 // Return when there is nothing to check. 2071 if (!Body || !Third) return; 2072 2073 if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration, 2074 Third->getBeginLoc())) 2075 return; 2076 2077 // Get the last statement from the loop body. 2078 CompoundStmt *CS = dyn_cast<CompoundStmt>(Body); 2079 if (!CS || CS->body_empty()) return; 2080 Stmt *LastStmt = CS->body_back(); 2081 if (!LastStmt) return; 2082 2083 bool LoopIncrement, LastIncrement; 2084 DeclRefExpr *LoopDRE, *LastDRE; 2085 2086 if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return; 2087 if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return; 2088 2089 // Check that the two statements are both increments or both decrements 2090 // on the same variable. 2091 if (LoopIncrement != LastIncrement || 2092 LoopDRE->getDecl() != LastDRE->getDecl()) return; 2093 2094 if (BreakContinueFinder(S, Body).ContinueFound()) return; 2095 2096 S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration) 2097 << LastDRE->getDecl() << LastIncrement; 2098 S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here) 2099 << LoopIncrement; 2100 } 2101 2102 } // end namespace 2103 2104 2105 void Sema::CheckBreakContinueBinding(Expr *E) { 2106 if (!E || getLangOpts().CPlusPlus) 2107 return; 2108 BreakContinueFinder BCFinder(*this, E); 2109 Scope *BreakParent = CurScope->getBreakParent(); 2110 if (BCFinder.BreakFound() && BreakParent) { 2111 if (BreakParent->getFlags() & Scope::SwitchScope) { 2112 Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch); 2113 } else { 2114 Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner) 2115 << "break"; 2116 } 2117 } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) { 2118 Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner) 2119 << "continue"; 2120 } 2121 } 2122 2123 StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, 2124 Stmt *First, ConditionResult Second, 2125 FullExprArg third, SourceLocation RParenLoc, 2126 Stmt *Body) { 2127 if (Second.isInvalid()) 2128 return StmtError(); 2129 2130 if (!getLangOpts().CPlusPlus) { 2131 if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) { 2132 // C99 6.8.5p3: The declaration part of a 'for' statement shall only 2133 // declare identifiers for objects having storage class 'auto' or 2134 // 'register'. 2135 const Decl *NonVarSeen = nullptr; 2136 bool VarDeclSeen = false; 2137 for (auto *DI : DS->decls()) { 2138 if (VarDecl *VD = dyn_cast<VarDecl>(DI)) { 2139 VarDeclSeen = true; 2140 if (VD->isLocalVarDecl() && !VD->hasLocalStorage()) { 2141 Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for); 2142 DI->setInvalidDecl(); 2143 } 2144 } else if (!NonVarSeen) { 2145 // Keep track of the first non-variable declaration we saw so that 2146 // we can diagnose if we don't see any variable declarations. This 2147 // covers a case like declaring a typedef, function, or structure 2148 // type rather than a variable. 2149 NonVarSeen = DI; 2150 } 2151 } 2152 // Diagnose if we saw a non-variable declaration but no variable 2153 // declarations. 2154 if (NonVarSeen && !VarDeclSeen) 2155 Diag(NonVarSeen->getLocation(), diag::err_non_variable_decl_in_for); 2156 } 2157 } 2158 2159 CheckBreakContinueBinding(Second.get().second); 2160 CheckBreakContinueBinding(third.get()); 2161 2162 if (!Second.get().first) 2163 CheckForLoopConditionalStatement(*this, Second.get().second, third.get(), 2164 Body); 2165 CheckForRedundantIteration(*this, third.get(), Body); 2166 2167 if (Second.get().second && 2168 !Diags.isIgnored(diag::warn_comma_operator, 2169 Second.get().second->getExprLoc())) 2170 CommaVisitor(*this).Visit(Second.get().second); 2171 2172 Expr *Third = third.release().getAs<Expr>(); 2173 if (isa<NullStmt>(Body)) 2174 getCurCompoundScope().setHasEmptyLoopBodies(); 2175 2176 return new (Context) 2177 ForStmt(Context, First, Second.get().second, Second.get().first, Third, 2178 Body, ForLoc, LParenLoc, RParenLoc); 2179 } 2180 2181 /// In an Objective C collection iteration statement: 2182 /// for (x in y) 2183 /// x can be an arbitrary l-value expression. Bind it up as a 2184 /// full-expression. 2185 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) { 2186 // Reduce placeholder expressions here. Note that this rejects the 2187 // use of pseudo-object l-values in this position. 2188 ExprResult result = CheckPlaceholderExpr(E); 2189 if (result.isInvalid()) return StmtError(); 2190 E = result.get(); 2191 2192 ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false); 2193 if (FullExpr.isInvalid()) 2194 return StmtError(); 2195 return StmtResult(static_cast<Stmt*>(FullExpr.get())); 2196 } 2197 2198 ExprResult 2199 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) { 2200 if (!collection) 2201 return ExprError(); 2202 2203 ExprResult result = CorrectDelayedTyposInExpr(collection); 2204 if (!result.isUsable()) 2205 return ExprError(); 2206 collection = result.get(); 2207 2208 // Bail out early if we've got a type-dependent expression. 2209 if (collection->isTypeDependent()) return collection; 2210 2211 // Perform normal l-value conversion. 2212 result = DefaultFunctionArrayLvalueConversion(collection); 2213 if (result.isInvalid()) 2214 return ExprError(); 2215 collection = result.get(); 2216 2217 // The operand needs to have object-pointer type. 2218 // TODO: should we do a contextual conversion? 2219 const ObjCObjectPointerType *pointerType = 2220 collection->getType()->getAs<ObjCObjectPointerType>(); 2221 if (!pointerType) 2222 return Diag(forLoc, diag::err_collection_expr_type) 2223 << collection->getType() << collection->getSourceRange(); 2224 2225 // Check that the operand provides 2226 // - countByEnumeratingWithState:objects:count: 2227 const ObjCObjectType *objectType = pointerType->getObjectType(); 2228 ObjCInterfaceDecl *iface = objectType->getInterface(); 2229 2230 // If we have a forward-declared type, we can't do this check. 2231 // Under ARC, it is an error not to have a forward-declared class. 2232 if (iface && 2233 (getLangOpts().ObjCAutoRefCount 2234 ? RequireCompleteType(forLoc, QualType(objectType, 0), 2235 diag::err_arc_collection_forward, collection) 2236 : !isCompleteType(forLoc, QualType(objectType, 0)))) { 2237 // Otherwise, if we have any useful type information, check that 2238 // the type declares the appropriate method. 2239 } else if (iface || !objectType->qual_empty()) { 2240 IdentifierInfo *selectorIdents[] = { 2241 &Context.Idents.get("countByEnumeratingWithState"), 2242 &Context.Idents.get("objects"), 2243 &Context.Idents.get("count") 2244 }; 2245 Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]); 2246 2247 ObjCMethodDecl *method = nullptr; 2248 2249 // If there's an interface, look in both the public and private APIs. 2250 if (iface) { 2251 method = iface->lookupInstanceMethod(selector); 2252 if (!method) method = iface->lookupPrivateMethod(selector); 2253 } 2254 2255 // Also check protocol qualifiers. 2256 if (!method) 2257 method = LookupMethodInQualifiedType(selector, pointerType, 2258 /*instance*/ true); 2259 2260 // If we didn't find it anywhere, give up. 2261 if (!method) { 2262 Diag(forLoc, diag::warn_collection_expr_type) 2263 << collection->getType() << selector << collection->getSourceRange(); 2264 } 2265 2266 // TODO: check for an incompatible signature? 2267 } 2268 2269 // Wrap up any cleanups in the expression. 2270 return collection; 2271 } 2272 2273 StmtResult 2274 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc, 2275 Stmt *First, Expr *collection, 2276 SourceLocation RParenLoc) { 2277 setFunctionHasBranchProtectedScope(); 2278 2279 ExprResult CollectionExprResult = 2280 CheckObjCForCollectionOperand(ForLoc, collection); 2281 2282 if (First) { 2283 QualType FirstType; 2284 if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) { 2285 if (!DS->isSingleDecl()) 2286 return StmtError(Diag((*DS->decl_begin())->getLocation(), 2287 diag::err_toomany_element_decls)); 2288 2289 VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl()); 2290 if (!D || D->isInvalidDecl()) 2291 return StmtError(); 2292 2293 FirstType = D->getType(); 2294 // C99 6.8.5p3: The declaration part of a 'for' statement shall only 2295 // declare identifiers for objects having storage class 'auto' or 2296 // 'register'. 2297 if (!D->hasLocalStorage()) 2298 return StmtError(Diag(D->getLocation(), 2299 diag::err_non_local_variable_decl_in_for)); 2300 2301 // If the type contained 'auto', deduce the 'auto' to 'id'. 2302 if (FirstType->getContainedAutoType()) { 2303 OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(), 2304 VK_PRValue); 2305 Expr *DeducedInit = &OpaqueId; 2306 if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) == 2307 DAR_Failed) 2308 DiagnoseAutoDeductionFailure(D, DeducedInit); 2309 if (FirstType.isNull()) { 2310 D->setInvalidDecl(); 2311 return StmtError(); 2312 } 2313 2314 D->setType(FirstType); 2315 2316 if (!inTemplateInstantiation()) { 2317 SourceLocation Loc = 2318 D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(); 2319 Diag(Loc, diag::warn_auto_var_is_id) 2320 << D->getDeclName(); 2321 } 2322 } 2323 2324 } else { 2325 Expr *FirstE = cast<Expr>(First); 2326 if (!FirstE->isTypeDependent() && !FirstE->isLValue()) 2327 return StmtError( 2328 Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue) 2329 << First->getSourceRange()); 2330 2331 FirstType = static_cast<Expr*>(First)->getType(); 2332 if (FirstType.isConstQualified()) 2333 Diag(ForLoc, diag::err_selector_element_const_type) 2334 << FirstType << First->getSourceRange(); 2335 } 2336 if (!FirstType->isDependentType() && 2337 !FirstType->isObjCObjectPointerType() && 2338 !FirstType->isBlockPointerType()) 2339 return StmtError(Diag(ForLoc, diag::err_selector_element_type) 2340 << FirstType << First->getSourceRange()); 2341 } 2342 2343 if (CollectionExprResult.isInvalid()) 2344 return StmtError(); 2345 2346 CollectionExprResult = 2347 ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false); 2348 if (CollectionExprResult.isInvalid()) 2349 return StmtError(); 2350 2351 return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(), 2352 nullptr, ForLoc, RParenLoc); 2353 } 2354 2355 /// Finish building a variable declaration for a for-range statement. 2356 /// \return true if an error occurs. 2357 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init, 2358 SourceLocation Loc, int DiagID) { 2359 if (Decl->getType()->isUndeducedType()) { 2360 ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init); 2361 if (!Res.isUsable()) { 2362 Decl->setInvalidDecl(); 2363 return true; 2364 } 2365 Init = Res.get(); 2366 } 2367 2368 // Deduce the type for the iterator variable now rather than leaving it to 2369 // AddInitializerToDecl, so we can produce a more suitable diagnostic. 2370 QualType InitType; 2371 if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) || 2372 SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) == 2373 Sema::DAR_Failed) 2374 SemaRef.Diag(Loc, DiagID) << Init->getType(); 2375 if (InitType.isNull()) { 2376 Decl->setInvalidDecl(); 2377 return true; 2378 } 2379 Decl->setType(InitType); 2380 2381 // In ARC, infer lifetime. 2382 // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if 2383 // we're doing the equivalent of fast iteration. 2384 if (SemaRef.getLangOpts().ObjCAutoRefCount && 2385 SemaRef.inferObjCARCLifetime(Decl)) 2386 Decl->setInvalidDecl(); 2387 2388 SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false); 2389 SemaRef.FinalizeDeclaration(Decl); 2390 SemaRef.CurContext->addHiddenDecl(Decl); 2391 return false; 2392 } 2393 2394 namespace { 2395 // An enum to represent whether something is dealing with a call to begin() 2396 // or a call to end() in a range-based for loop. 2397 enum BeginEndFunction { 2398 BEF_begin, 2399 BEF_end 2400 }; 2401 2402 /// Produce a note indicating which begin/end function was implicitly called 2403 /// by a C++11 for-range statement. This is often not obvious from the code, 2404 /// nor from the diagnostics produced when analysing the implicit expressions 2405 /// required in a for-range statement. 2406 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E, 2407 BeginEndFunction BEF) { 2408 CallExpr *CE = dyn_cast<CallExpr>(E); 2409 if (!CE) 2410 return; 2411 FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 2412 if (!D) 2413 return; 2414 SourceLocation Loc = D->getLocation(); 2415 2416 std::string Description; 2417 bool IsTemplate = false; 2418 if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) { 2419 Description = SemaRef.getTemplateArgumentBindingsText( 2420 FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs()); 2421 IsTemplate = true; 2422 } 2423 2424 SemaRef.Diag(Loc, diag::note_for_range_begin_end) 2425 << BEF << IsTemplate << Description << E->getType(); 2426 } 2427 2428 /// Build a variable declaration for a for-range statement. 2429 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc, 2430 QualType Type, StringRef Name) { 2431 DeclContext *DC = SemaRef.CurContext; 2432 IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name); 2433 TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc); 2434 VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type, 2435 TInfo, SC_None); 2436 Decl->setImplicit(); 2437 return Decl; 2438 } 2439 2440 } 2441 2442 static bool ObjCEnumerationCollection(Expr *Collection) { 2443 return !Collection->isTypeDependent() 2444 && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr; 2445 } 2446 2447 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement. 2448 /// 2449 /// C++11 [stmt.ranged]: 2450 /// A range-based for statement is equivalent to 2451 /// 2452 /// { 2453 /// auto && __range = range-init; 2454 /// for ( auto __begin = begin-expr, 2455 /// __end = end-expr; 2456 /// __begin != __end; 2457 /// ++__begin ) { 2458 /// for-range-declaration = *__begin; 2459 /// statement 2460 /// } 2461 /// } 2462 /// 2463 /// The body of the loop is not available yet, since it cannot be analysed until 2464 /// we have determined the type of the for-range-declaration. 2465 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, 2466 SourceLocation CoawaitLoc, Stmt *InitStmt, 2467 Stmt *First, SourceLocation ColonLoc, 2468 Expr *Range, SourceLocation RParenLoc, 2469 BuildForRangeKind Kind) { 2470 // FIXME: recover in order to allow the body to be parsed. 2471 if (!First) 2472 return StmtError(); 2473 2474 if (Range && ObjCEnumerationCollection(Range)) { 2475 // FIXME: Support init-statements in Objective-C++20 ranged for statement. 2476 if (InitStmt) 2477 return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt) 2478 << InitStmt->getSourceRange(); 2479 return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc); 2480 } 2481 2482 DeclStmt *DS = dyn_cast<DeclStmt>(First); 2483 assert(DS && "first part of for range not a decl stmt"); 2484 2485 if (!DS->isSingleDecl()) { 2486 Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range); 2487 return StmtError(); 2488 } 2489 2490 // This function is responsible for attaching an initializer to LoopVar. We 2491 // must call ActOnInitializerError if we fail to do so. 2492 Decl *LoopVar = DS->getSingleDecl(); 2493 if (LoopVar->isInvalidDecl() || !Range || 2494 DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) { 2495 ActOnInitializerError(LoopVar); 2496 return StmtError(); 2497 } 2498 2499 // Build the coroutine state immediately and not later during template 2500 // instantiation 2501 if (!CoawaitLoc.isInvalid()) { 2502 if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) { 2503 ActOnInitializerError(LoopVar); 2504 return StmtError(); 2505 } 2506 } 2507 2508 // Build auto && __range = range-init 2509 // Divide by 2, since the variables are in the inner scope (loop body). 2510 const auto DepthStr = std::to_string(S->getDepth() / 2); 2511 SourceLocation RangeLoc = Range->getBeginLoc(); 2512 VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc, 2513 Context.getAutoRRefDeductType(), 2514 std::string("__range") + DepthStr); 2515 if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc, 2516 diag::err_for_range_deduction_failure)) { 2517 ActOnInitializerError(LoopVar); 2518 return StmtError(); 2519 } 2520 2521 // Claim the type doesn't contain auto: we've already done the checking. 2522 DeclGroupPtrTy RangeGroup = 2523 BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1)); 2524 StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc); 2525 if (RangeDecl.isInvalid()) { 2526 ActOnInitializerError(LoopVar); 2527 return StmtError(); 2528 } 2529 2530 StmtResult R = BuildCXXForRangeStmt( 2531 ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(), 2532 /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr, 2533 /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind); 2534 if (R.isInvalid()) { 2535 ActOnInitializerError(LoopVar); 2536 return StmtError(); 2537 } 2538 2539 return R; 2540 } 2541 2542 /// Create the initialization, compare, and increment steps for 2543 /// the range-based for loop expression. 2544 /// This function does not handle array-based for loops, 2545 /// which are created in Sema::BuildCXXForRangeStmt. 2546 /// 2547 /// \returns a ForRangeStatus indicating success or what kind of error occurred. 2548 /// BeginExpr and EndExpr are set and FRS_Success is returned on success; 2549 /// CandidateSet and BEF are set and some non-success value is returned on 2550 /// failure. 2551 static Sema::ForRangeStatus 2552 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange, 2553 QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar, 2554 SourceLocation ColonLoc, SourceLocation CoawaitLoc, 2555 OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr, 2556 ExprResult *EndExpr, BeginEndFunction *BEF) { 2557 DeclarationNameInfo BeginNameInfo( 2558 &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc); 2559 DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"), 2560 ColonLoc); 2561 2562 LookupResult BeginMemberLookup(SemaRef, BeginNameInfo, 2563 Sema::LookupMemberName); 2564 LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName); 2565 2566 auto BuildBegin = [&] { 2567 *BEF = BEF_begin; 2568 Sema::ForRangeStatus RangeStatus = 2569 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo, 2570 BeginMemberLookup, CandidateSet, 2571 BeginRange, BeginExpr); 2572 2573 if (RangeStatus != Sema::FRS_Success) { 2574 if (RangeStatus == Sema::FRS_DiagnosticIssued) 2575 SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range) 2576 << ColonLoc << BEF_begin << BeginRange->getType(); 2577 return RangeStatus; 2578 } 2579 if (!CoawaitLoc.isInvalid()) { 2580 // FIXME: getCurScope() should not be used during template instantiation. 2581 // We should pick up the set of unqualified lookup results for operator 2582 // co_await during the initial parse. 2583 *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc, 2584 BeginExpr->get()); 2585 if (BeginExpr->isInvalid()) 2586 return Sema::FRS_DiagnosticIssued; 2587 } 2588 if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc, 2589 diag::err_for_range_iter_deduction_failure)) { 2590 NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF); 2591 return Sema::FRS_DiagnosticIssued; 2592 } 2593 return Sema::FRS_Success; 2594 }; 2595 2596 auto BuildEnd = [&] { 2597 *BEF = BEF_end; 2598 Sema::ForRangeStatus RangeStatus = 2599 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo, 2600 EndMemberLookup, CandidateSet, 2601 EndRange, EndExpr); 2602 if (RangeStatus != Sema::FRS_Success) { 2603 if (RangeStatus == Sema::FRS_DiagnosticIssued) 2604 SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range) 2605 << ColonLoc << BEF_end << EndRange->getType(); 2606 return RangeStatus; 2607 } 2608 if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc, 2609 diag::err_for_range_iter_deduction_failure)) { 2610 NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF); 2611 return Sema::FRS_DiagnosticIssued; 2612 } 2613 return Sema::FRS_Success; 2614 }; 2615 2616 if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) { 2617 // - if _RangeT is a class type, the unqualified-ids begin and end are 2618 // looked up in the scope of class _RangeT as if by class member access 2619 // lookup (3.4.5), and if either (or both) finds at least one 2620 // declaration, begin-expr and end-expr are __range.begin() and 2621 // __range.end(), respectively; 2622 SemaRef.LookupQualifiedName(BeginMemberLookup, D); 2623 if (BeginMemberLookup.isAmbiguous()) 2624 return Sema::FRS_DiagnosticIssued; 2625 2626 SemaRef.LookupQualifiedName(EndMemberLookup, D); 2627 if (EndMemberLookup.isAmbiguous()) 2628 return Sema::FRS_DiagnosticIssued; 2629 2630 if (BeginMemberLookup.empty() != EndMemberLookup.empty()) { 2631 // Look up the non-member form of the member we didn't find, first. 2632 // This way we prefer a "no viable 'end'" diagnostic over a "i found 2633 // a 'begin' but ignored it because there was no member 'end'" 2634 // diagnostic. 2635 auto BuildNonmember = [&]( 2636 BeginEndFunction BEFFound, LookupResult &Found, 2637 llvm::function_ref<Sema::ForRangeStatus()> BuildFound, 2638 llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) { 2639 LookupResult OldFound = std::move(Found); 2640 Found.clear(); 2641 2642 if (Sema::ForRangeStatus Result = BuildNotFound()) 2643 return Result; 2644 2645 switch (BuildFound()) { 2646 case Sema::FRS_Success: 2647 return Sema::FRS_Success; 2648 2649 case Sema::FRS_NoViableFunction: 2650 CandidateSet->NoteCandidates( 2651 PartialDiagnosticAt(BeginRange->getBeginLoc(), 2652 SemaRef.PDiag(diag::err_for_range_invalid) 2653 << BeginRange->getType() << BEFFound), 2654 SemaRef, OCD_AllCandidates, BeginRange); 2655 LLVM_FALLTHROUGH; 2656 2657 case Sema::FRS_DiagnosticIssued: 2658 for (NamedDecl *D : OldFound) { 2659 SemaRef.Diag(D->getLocation(), 2660 diag::note_for_range_member_begin_end_ignored) 2661 << BeginRange->getType() << BEFFound; 2662 } 2663 return Sema::FRS_DiagnosticIssued; 2664 } 2665 llvm_unreachable("unexpected ForRangeStatus"); 2666 }; 2667 if (BeginMemberLookup.empty()) 2668 return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin); 2669 return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd); 2670 } 2671 } else { 2672 // - otherwise, begin-expr and end-expr are begin(__range) and 2673 // end(__range), respectively, where begin and end are looked up with 2674 // argument-dependent lookup (3.4.2). For the purposes of this name 2675 // lookup, namespace std is an associated namespace. 2676 } 2677 2678 if (Sema::ForRangeStatus Result = BuildBegin()) 2679 return Result; 2680 return BuildEnd(); 2681 } 2682 2683 /// Speculatively attempt to dereference an invalid range expression. 2684 /// If the attempt fails, this function will return a valid, null StmtResult 2685 /// and emit no diagnostics. 2686 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S, 2687 SourceLocation ForLoc, 2688 SourceLocation CoawaitLoc, 2689 Stmt *InitStmt, 2690 Stmt *LoopVarDecl, 2691 SourceLocation ColonLoc, 2692 Expr *Range, 2693 SourceLocation RangeLoc, 2694 SourceLocation RParenLoc) { 2695 // Determine whether we can rebuild the for-range statement with a 2696 // dereferenced range expression. 2697 ExprResult AdjustedRange; 2698 { 2699 Sema::SFINAETrap Trap(SemaRef); 2700 2701 AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range); 2702 if (AdjustedRange.isInvalid()) 2703 return StmtResult(); 2704 2705 StmtResult SR = SemaRef.ActOnCXXForRangeStmt( 2706 S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc, 2707 AdjustedRange.get(), RParenLoc, Sema::BFRK_Check); 2708 if (SR.isInvalid()) 2709 return StmtResult(); 2710 } 2711 2712 // The attempt to dereference worked well enough that it could produce a valid 2713 // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in 2714 // case there are any other (non-fatal) problems with it. 2715 SemaRef.Diag(RangeLoc, diag::err_for_range_dereference) 2716 << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*"); 2717 return SemaRef.ActOnCXXForRangeStmt( 2718 S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc, 2719 AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild); 2720 } 2721 2722 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement. 2723 StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, 2724 SourceLocation CoawaitLoc, Stmt *InitStmt, 2725 SourceLocation ColonLoc, Stmt *RangeDecl, 2726 Stmt *Begin, Stmt *End, Expr *Cond, 2727 Expr *Inc, Stmt *LoopVarDecl, 2728 SourceLocation RParenLoc, 2729 BuildForRangeKind Kind) { 2730 // FIXME: This should not be used during template instantiation. We should 2731 // pick up the set of unqualified lookup results for the != and + operators 2732 // in the initial parse. 2733 // 2734 // Testcase (accepts-invalid): 2735 // template<typename T> void f() { for (auto x : T()) {} } 2736 // namespace N { struct X { X begin(); X end(); int operator*(); }; } 2737 // bool operator!=(N::X, N::X); void operator++(N::X); 2738 // void g() { f<N::X>(); } 2739 Scope *S = getCurScope(); 2740 2741 DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl); 2742 VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl()); 2743 QualType RangeVarType = RangeVar->getType(); 2744 2745 DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl); 2746 VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl()); 2747 2748 StmtResult BeginDeclStmt = Begin; 2749 StmtResult EndDeclStmt = End; 2750 ExprResult NotEqExpr = Cond, IncrExpr = Inc; 2751 2752 if (RangeVarType->isDependentType()) { 2753 // The range is implicitly used as a placeholder when it is dependent. 2754 RangeVar->markUsed(Context); 2755 2756 // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill 2757 // them in properly when we instantiate the loop. 2758 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { 2759 if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar)) 2760 for (auto *Binding : DD->bindings()) 2761 Binding->setType(Context.DependentTy); 2762 LoopVar->setType(SubstAutoTypeDependent(LoopVar->getType())); 2763 } 2764 } else if (!BeginDeclStmt.get()) { 2765 SourceLocation RangeLoc = RangeVar->getLocation(); 2766 2767 const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType(); 2768 2769 ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, 2770 VK_LValue, ColonLoc); 2771 if (BeginRangeRef.isInvalid()) 2772 return StmtError(); 2773 2774 ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, 2775 VK_LValue, ColonLoc); 2776 if (EndRangeRef.isInvalid()) 2777 return StmtError(); 2778 2779 QualType AutoType = Context.getAutoDeductType(); 2780 Expr *Range = RangeVar->getInit(); 2781 if (!Range) 2782 return StmtError(); 2783 QualType RangeType = Range->getType(); 2784 2785 if (RequireCompleteType(RangeLoc, RangeType, 2786 diag::err_for_range_incomplete_type)) 2787 return StmtError(); 2788 2789 // Build auto __begin = begin-expr, __end = end-expr. 2790 // Divide by 2, since the variables are in the inner scope (loop body). 2791 const auto DepthStr = std::to_string(S->getDepth() / 2); 2792 VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, 2793 std::string("__begin") + DepthStr); 2794 VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, 2795 std::string("__end") + DepthStr); 2796 2797 // Build begin-expr and end-expr and attach to __begin and __end variables. 2798 ExprResult BeginExpr, EndExpr; 2799 if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) { 2800 // - if _RangeT is an array type, begin-expr and end-expr are __range and 2801 // __range + __bound, respectively, where __bound is the array bound. If 2802 // _RangeT is an array of unknown size or an array of incomplete type, 2803 // the program is ill-formed; 2804 2805 // begin-expr is __range. 2806 BeginExpr = BeginRangeRef; 2807 if (!CoawaitLoc.isInvalid()) { 2808 BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get()); 2809 if (BeginExpr.isInvalid()) 2810 return StmtError(); 2811 } 2812 if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc, 2813 diag::err_for_range_iter_deduction_failure)) { 2814 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2815 return StmtError(); 2816 } 2817 2818 // Find the array bound. 2819 ExprResult BoundExpr; 2820 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT)) 2821 BoundExpr = IntegerLiteral::Create( 2822 Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc); 2823 else if (const VariableArrayType *VAT = 2824 dyn_cast<VariableArrayType>(UnqAT)) { 2825 // For a variably modified type we can't just use the expression within 2826 // the array bounds, since we don't want that to be re-evaluated here. 2827 // Rather, we need to determine what it was when the array was first 2828 // created - so we resort to using sizeof(vla)/sizeof(element). 2829 // For e.g. 2830 // void f(int b) { 2831 // int vla[b]; 2832 // b = -1; <-- This should not affect the num of iterations below 2833 // for (int &c : vla) { .. } 2834 // } 2835 2836 // FIXME: This results in codegen generating IR that recalculates the 2837 // run-time number of elements (as opposed to just using the IR Value 2838 // that corresponds to the run-time value of each bound that was 2839 // generated when the array was created.) If this proves too embarrassing 2840 // even for unoptimized IR, consider passing a magic-value/cookie to 2841 // codegen that then knows to simply use that initial llvm::Value (that 2842 // corresponds to the bound at time of array creation) within 2843 // getelementptr. But be prepared to pay the price of increasing a 2844 // customized form of coupling between the two components - which could 2845 // be hard to maintain as the codebase evolves. 2846 2847 ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr( 2848 EndVar->getLocation(), UETT_SizeOf, 2849 /*IsType=*/true, 2850 CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo( 2851 VAT->desugar(), RangeLoc)) 2852 .getAsOpaquePtr(), 2853 EndVar->getSourceRange()); 2854 if (SizeOfVLAExprR.isInvalid()) 2855 return StmtError(); 2856 2857 ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr( 2858 EndVar->getLocation(), UETT_SizeOf, 2859 /*IsType=*/true, 2860 CreateParsedType(VAT->desugar(), 2861 Context.getTrivialTypeSourceInfo( 2862 VAT->getElementType(), RangeLoc)) 2863 .getAsOpaquePtr(), 2864 EndVar->getSourceRange()); 2865 if (SizeOfEachElementExprR.isInvalid()) 2866 return StmtError(); 2867 2868 BoundExpr = 2869 ActOnBinOp(S, EndVar->getLocation(), tok::slash, 2870 SizeOfVLAExprR.get(), SizeOfEachElementExprR.get()); 2871 if (BoundExpr.isInvalid()) 2872 return StmtError(); 2873 2874 } else { 2875 // Can't be a DependentSizedArrayType or an IncompleteArrayType since 2876 // UnqAT is not incomplete and Range is not type-dependent. 2877 llvm_unreachable("Unexpected array type in for-range"); 2878 } 2879 2880 // end-expr is __range + __bound. 2881 EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(), 2882 BoundExpr.get()); 2883 if (EndExpr.isInvalid()) 2884 return StmtError(); 2885 if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc, 2886 diag::err_for_range_iter_deduction_failure)) { 2887 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); 2888 return StmtError(); 2889 } 2890 } else { 2891 OverloadCandidateSet CandidateSet(RangeLoc, 2892 OverloadCandidateSet::CSK_Normal); 2893 BeginEndFunction BEFFailure; 2894 ForRangeStatus RangeStatus = BuildNonArrayForRange( 2895 *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar, 2896 EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr, 2897 &BEFFailure); 2898 2899 if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction && 2900 BEFFailure == BEF_begin) { 2901 // If the range is being built from an array parameter, emit a 2902 // a diagnostic that it is being treated as a pointer. 2903 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) { 2904 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 2905 QualType ArrayTy = PVD->getOriginalType(); 2906 QualType PointerTy = PVD->getType(); 2907 if (PointerTy->isPointerType() && ArrayTy->isArrayType()) { 2908 Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter) 2909 << RangeLoc << PVD << ArrayTy << PointerTy; 2910 Diag(PVD->getLocation(), diag::note_declared_at); 2911 return StmtError(); 2912 } 2913 } 2914 } 2915 2916 // If building the range failed, try dereferencing the range expression 2917 // unless a diagnostic was issued or the end function is problematic. 2918 StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc, 2919 CoawaitLoc, InitStmt, 2920 LoopVarDecl, ColonLoc, 2921 Range, RangeLoc, 2922 RParenLoc); 2923 if (SR.isInvalid() || SR.isUsable()) 2924 return SR; 2925 } 2926 2927 // Otherwise, emit diagnostics if we haven't already. 2928 if (RangeStatus == FRS_NoViableFunction) { 2929 Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get(); 2930 CandidateSet.NoteCandidates( 2931 PartialDiagnosticAt(Range->getBeginLoc(), 2932 PDiag(diag::err_for_range_invalid) 2933 << RangeLoc << Range->getType() 2934 << BEFFailure), 2935 *this, OCD_AllCandidates, Range); 2936 } 2937 // Return an error if no fix was discovered. 2938 if (RangeStatus != FRS_Success) 2939 return StmtError(); 2940 } 2941 2942 assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() && 2943 "invalid range expression in for loop"); 2944 2945 // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same. 2946 // C++1z removes this restriction. 2947 QualType BeginType = BeginVar->getType(), EndType = EndVar->getType(); 2948 if (!Context.hasSameType(BeginType, EndType)) { 2949 Diag(RangeLoc, getLangOpts().CPlusPlus17 2950 ? diag::warn_for_range_begin_end_types_differ 2951 : diag::ext_for_range_begin_end_types_differ) 2952 << BeginType << EndType; 2953 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2954 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); 2955 } 2956 2957 BeginDeclStmt = 2958 ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc); 2959 EndDeclStmt = 2960 ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc); 2961 2962 const QualType BeginRefNonRefType = BeginType.getNonReferenceType(); 2963 ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, 2964 VK_LValue, ColonLoc); 2965 if (BeginRef.isInvalid()) 2966 return StmtError(); 2967 2968 ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(), 2969 VK_LValue, ColonLoc); 2970 if (EndRef.isInvalid()) 2971 return StmtError(); 2972 2973 // Build and check __begin != __end expression. 2974 NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal, 2975 BeginRef.get(), EndRef.get()); 2976 if (!NotEqExpr.isInvalid()) 2977 NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get()); 2978 if (!NotEqExpr.isInvalid()) 2979 NotEqExpr = 2980 ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false); 2981 if (NotEqExpr.isInvalid()) { 2982 Diag(RangeLoc, diag::note_for_range_invalid_iterator) 2983 << RangeLoc << 0 << BeginRangeRef.get()->getType(); 2984 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2985 if (!Context.hasSameType(BeginType, EndType)) 2986 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); 2987 return StmtError(); 2988 } 2989 2990 // Build and check ++__begin expression. 2991 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, 2992 VK_LValue, ColonLoc); 2993 if (BeginRef.isInvalid()) 2994 return StmtError(); 2995 2996 IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get()); 2997 if (!IncrExpr.isInvalid() && CoawaitLoc.isValid()) 2998 // FIXME: getCurScope() should not be used during template instantiation. 2999 // We should pick up the set of unqualified lookup results for operator 3000 // co_await during the initial parse. 3001 IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get()); 3002 if (!IncrExpr.isInvalid()) 3003 IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false); 3004 if (IncrExpr.isInvalid()) { 3005 Diag(RangeLoc, diag::note_for_range_invalid_iterator) 3006 << RangeLoc << 2 << BeginRangeRef.get()->getType() ; 3007 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 3008 return StmtError(); 3009 } 3010 3011 // Build and check *__begin expression. 3012 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, 3013 VK_LValue, ColonLoc); 3014 if (BeginRef.isInvalid()) 3015 return StmtError(); 3016 3017 ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get()); 3018 if (DerefExpr.isInvalid()) { 3019 Diag(RangeLoc, diag::note_for_range_invalid_iterator) 3020 << RangeLoc << 1 << BeginRangeRef.get()->getType(); 3021 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 3022 return StmtError(); 3023 } 3024 3025 // Attach *__begin as initializer for VD. Don't touch it if we're just 3026 // trying to determine whether this would be a valid range. 3027 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { 3028 AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false); 3029 if (LoopVar->isInvalidDecl() || 3030 (LoopVar->getInit() && LoopVar->getInit()->containsErrors())) 3031 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 3032 } 3033 } 3034 3035 // Don't bother to actually allocate the result if we're just trying to 3036 // determine whether it would be valid. 3037 if (Kind == BFRK_Check) 3038 return StmtResult(); 3039 3040 // In OpenMP loop region loop control variable must be private. Perform 3041 // analysis of first part (if any). 3042 if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable()) 3043 ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get()); 3044 3045 return new (Context) CXXForRangeStmt( 3046 InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()), 3047 cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(), 3048 IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc, 3049 ColonLoc, RParenLoc); 3050 } 3051 3052 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach 3053 /// statement. 3054 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) { 3055 if (!S || !B) 3056 return StmtError(); 3057 ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S); 3058 3059 ForStmt->setBody(B); 3060 return S; 3061 } 3062 3063 // Warn when the loop variable is a const reference that creates a copy. 3064 // Suggest using the non-reference type for copies. If a copy can be prevented 3065 // suggest the const reference type that would do so. 3066 // For instance, given "for (const &Foo : Range)", suggest 3067 // "for (const Foo : Range)" to denote a copy is made for the loop. If 3068 // possible, also suggest "for (const &Bar : Range)" if this type prevents 3069 // the copy altogether. 3070 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef, 3071 const VarDecl *VD, 3072 QualType RangeInitType) { 3073 const Expr *InitExpr = VD->getInit(); 3074 if (!InitExpr) 3075 return; 3076 3077 QualType VariableType = VD->getType(); 3078 3079 if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr)) 3080 if (!Cleanups->cleanupsHaveSideEffects()) 3081 InitExpr = Cleanups->getSubExpr(); 3082 3083 const MaterializeTemporaryExpr *MTE = 3084 dyn_cast<MaterializeTemporaryExpr>(InitExpr); 3085 3086 // No copy made. 3087 if (!MTE) 3088 return; 3089 3090 const Expr *E = MTE->getSubExpr()->IgnoreImpCasts(); 3091 3092 // Searching for either UnaryOperator for dereference of a pointer or 3093 // CXXOperatorCallExpr for handling iterators. 3094 while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) { 3095 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) { 3096 E = CCE->getArg(0); 3097 } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) { 3098 const MemberExpr *ME = cast<MemberExpr>(Call->getCallee()); 3099 E = ME->getBase(); 3100 } else { 3101 const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E); 3102 E = MTE->getSubExpr(); 3103 } 3104 E = E->IgnoreImpCasts(); 3105 } 3106 3107 QualType ReferenceReturnType; 3108 if (isa<UnaryOperator>(E)) { 3109 ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType()); 3110 } else { 3111 const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E); 3112 const FunctionDecl *FD = Call->getDirectCallee(); 3113 QualType ReturnType = FD->getReturnType(); 3114 if (ReturnType->isReferenceType()) 3115 ReferenceReturnType = ReturnType; 3116 } 3117 3118 if (!ReferenceReturnType.isNull()) { 3119 // Loop variable creates a temporary. Suggest either to go with 3120 // non-reference loop variable to indicate a copy is made, or 3121 // the correct type to bind a const reference. 3122 SemaRef.Diag(VD->getLocation(), 3123 diag::warn_for_range_const_ref_binds_temp_built_from_ref) 3124 << VD << VariableType << ReferenceReturnType; 3125 QualType NonReferenceType = VariableType.getNonReferenceType(); 3126 NonReferenceType.removeLocalConst(); 3127 QualType NewReferenceType = 3128 SemaRef.Context.getLValueReferenceType(E->getType().withConst()); 3129 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference) 3130 << NonReferenceType << NewReferenceType << VD->getSourceRange() 3131 << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc()); 3132 } else if (!VariableType->isRValueReferenceType()) { 3133 // The range always returns a copy, so a temporary is always created. 3134 // Suggest removing the reference from the loop variable. 3135 // If the type is a rvalue reference do not warn since that changes the 3136 // semantic of the code. 3137 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp) 3138 << VD << RangeInitType; 3139 QualType NonReferenceType = VariableType.getNonReferenceType(); 3140 NonReferenceType.removeLocalConst(); 3141 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type) 3142 << NonReferenceType << VD->getSourceRange() 3143 << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc()); 3144 } 3145 } 3146 3147 /// Determines whether the @p VariableType's declaration is a record with the 3148 /// clang::trivial_abi attribute. 3149 static bool hasTrivialABIAttr(QualType VariableType) { 3150 if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl()) 3151 return RD->hasAttr<TrivialABIAttr>(); 3152 3153 return false; 3154 } 3155 3156 // Warns when the loop variable can be changed to a reference type to 3157 // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest 3158 // "for (const Foo &x : Range)" if this form does not make a copy. 3159 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef, 3160 const VarDecl *VD) { 3161 const Expr *InitExpr = VD->getInit(); 3162 if (!InitExpr) 3163 return; 3164 3165 QualType VariableType = VD->getType(); 3166 3167 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) { 3168 if (!CE->getConstructor()->isCopyConstructor()) 3169 return; 3170 } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) { 3171 if (CE->getCastKind() != CK_LValueToRValue) 3172 return; 3173 } else { 3174 return; 3175 } 3176 3177 // Small trivially copyable types are cheap to copy. Do not emit the 3178 // diagnostic for these instances. 64 bytes is a common size of a cache line. 3179 // (The function `getTypeSize` returns the size in bits.) 3180 ASTContext &Ctx = SemaRef.Context; 3181 if (Ctx.getTypeSize(VariableType) <= 64 * 8 && 3182 (VariableType.isTriviallyCopyableType(Ctx) || 3183 hasTrivialABIAttr(VariableType))) 3184 return; 3185 3186 // Suggest changing from a const variable to a const reference variable 3187 // if doing so will prevent a copy. 3188 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy) 3189 << VD << VariableType; 3190 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type) 3191 << SemaRef.Context.getLValueReferenceType(VariableType) 3192 << VD->getSourceRange() 3193 << FixItHint::CreateInsertion(VD->getLocation(), "&"); 3194 } 3195 3196 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them. 3197 /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest 3198 /// using "const foo x" to show that a copy is made 3199 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar. 3200 /// Suggest either "const bar x" to keep the copying or "const foo& x" to 3201 /// prevent the copy. 3202 /// 3) for (const foo x : foos) where x is constructed from a reference foo. 3203 /// Suggest "const foo &x" to prevent the copy. 3204 static void DiagnoseForRangeVariableCopies(Sema &SemaRef, 3205 const CXXForRangeStmt *ForStmt) { 3206 if (SemaRef.inTemplateInstantiation()) 3207 return; 3208 3209 if (SemaRef.Diags.isIgnored( 3210 diag::warn_for_range_const_ref_binds_temp_built_from_ref, 3211 ForStmt->getBeginLoc()) && 3212 SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp, 3213 ForStmt->getBeginLoc()) && 3214 SemaRef.Diags.isIgnored(diag::warn_for_range_copy, 3215 ForStmt->getBeginLoc())) { 3216 return; 3217 } 3218 3219 const VarDecl *VD = ForStmt->getLoopVariable(); 3220 if (!VD) 3221 return; 3222 3223 QualType VariableType = VD->getType(); 3224 3225 if (VariableType->isIncompleteType()) 3226 return; 3227 3228 const Expr *InitExpr = VD->getInit(); 3229 if (!InitExpr) 3230 return; 3231 3232 if (InitExpr->getExprLoc().isMacroID()) 3233 return; 3234 3235 if (VariableType->isReferenceType()) { 3236 DiagnoseForRangeReferenceVariableCopies(SemaRef, VD, 3237 ForStmt->getRangeInit()->getType()); 3238 } else if (VariableType.isConstQualified()) { 3239 DiagnoseForRangeConstVariableCopies(SemaRef, VD); 3240 } 3241 } 3242 3243 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement. 3244 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the 3245 /// body cannot be performed until after the type of the range variable is 3246 /// determined. 3247 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) { 3248 if (!S || !B) 3249 return StmtError(); 3250 3251 if (isa<ObjCForCollectionStmt>(S)) 3252 return FinishObjCForCollectionStmt(S, B); 3253 3254 CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S); 3255 ForStmt->setBody(B); 3256 3257 DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B, 3258 diag::warn_empty_range_based_for_body); 3259 3260 DiagnoseForRangeVariableCopies(*this, ForStmt); 3261 3262 return S; 3263 } 3264 3265 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc, 3266 SourceLocation LabelLoc, 3267 LabelDecl *TheDecl) { 3268 setFunctionHasBranchIntoScope(); 3269 TheDecl->markUsed(Context); 3270 return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc); 3271 } 3272 3273 StmtResult 3274 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, 3275 Expr *E) { 3276 // Convert operand to void* 3277 if (!E->isTypeDependent()) { 3278 QualType ETy = E->getType(); 3279 QualType DestTy = Context.getPointerType(Context.VoidTy.withConst()); 3280 ExprResult ExprRes = E; 3281 AssignConvertType ConvTy = 3282 CheckSingleAssignmentConstraints(DestTy, ExprRes); 3283 if (ExprRes.isInvalid()) 3284 return StmtError(); 3285 E = ExprRes.get(); 3286 if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing)) 3287 return StmtError(); 3288 } 3289 3290 ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false); 3291 if (ExprRes.isInvalid()) 3292 return StmtError(); 3293 E = ExprRes.get(); 3294 3295 setFunctionHasIndirectGoto(); 3296 3297 return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E); 3298 } 3299 3300 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc, 3301 const Scope &DestScope) { 3302 if (!S.CurrentSEHFinally.empty() && 3303 DestScope.Contains(*S.CurrentSEHFinally.back())) { 3304 S.Diag(Loc, diag::warn_jump_out_of_seh_finally); 3305 } 3306 } 3307 3308 StmtResult 3309 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { 3310 Scope *S = CurScope->getContinueParent(); 3311 if (!S) { 3312 // C99 6.8.6.2p1: A break shall appear only in or as a loop body. 3313 return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop)); 3314 } 3315 if (S->getFlags() & Scope::ConditionVarScope) { 3316 // We cannot 'continue;' from within a statement expression in the 3317 // initializer of a condition variable because we would jump past the 3318 // initialization of that variable. 3319 return StmtError(Diag(ContinueLoc, diag::err_continue_from_cond_var_init)); 3320 } 3321 CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S); 3322 3323 return new (Context) ContinueStmt(ContinueLoc); 3324 } 3325 3326 StmtResult 3327 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { 3328 Scope *S = CurScope->getBreakParent(); 3329 if (!S) { 3330 // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. 3331 return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch)); 3332 } 3333 if (S->isOpenMPLoopScope()) 3334 return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt) 3335 << "break"); 3336 CheckJumpOutOfSEHFinally(*this, BreakLoc, *S); 3337 3338 return new (Context) BreakStmt(BreakLoc); 3339 } 3340 3341 /// Determine whether the given expression might be move-eligible or 3342 /// copy-elidable in either a (co_)return statement or throw expression, 3343 /// without considering function return type, if applicable. 3344 /// 3345 /// \param E The expression being returned from the function or block, 3346 /// being thrown, or being co_returned from a coroutine. This expression 3347 /// might be modified by the implementation. 3348 /// 3349 /// \param Mode Overrides detection of current language mode 3350 /// and uses the rules for C++2b. 3351 /// 3352 /// \returns An aggregate which contains the Candidate and isMoveEligible 3353 /// and isCopyElidable methods. If Candidate is non-null, it means 3354 /// isMoveEligible() would be true under the most permissive language standard. 3355 Sema::NamedReturnInfo Sema::getNamedReturnInfo(Expr *&E, 3356 SimplerImplicitMoveMode Mode) { 3357 if (!E) 3358 return NamedReturnInfo(); 3359 // - in a return statement in a function [where] ... 3360 // ... the expression is the name of a non-volatile automatic object ... 3361 const auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens()); 3362 if (!DR || DR->refersToEnclosingVariableOrCapture()) 3363 return NamedReturnInfo(); 3364 const auto *VD = dyn_cast<VarDecl>(DR->getDecl()); 3365 if (!VD) 3366 return NamedReturnInfo(); 3367 NamedReturnInfo Res = getNamedReturnInfo(VD); 3368 if (Res.Candidate && !E->isXValue() && 3369 (Mode == SimplerImplicitMoveMode::ForceOn || 3370 (Mode != SimplerImplicitMoveMode::ForceOff && 3371 getLangOpts().CPlusPlus2b))) { 3372 E = ImplicitCastExpr::Create(Context, VD->getType().getNonReferenceType(), 3373 CK_NoOp, E, nullptr, VK_XValue, 3374 FPOptionsOverride()); 3375 } 3376 return Res; 3377 } 3378 3379 /// Determine whether the given NRVO candidate variable is move-eligible or 3380 /// copy-elidable, without considering function return type. 3381 /// 3382 /// \param VD The NRVO candidate variable. 3383 /// 3384 /// \returns An aggregate which contains the Candidate and isMoveEligible 3385 /// and isCopyElidable methods. If Candidate is non-null, it means 3386 /// isMoveEligible() would be true under the most permissive language standard. 3387 Sema::NamedReturnInfo Sema::getNamedReturnInfo(const VarDecl *VD) { 3388 NamedReturnInfo Info{VD, NamedReturnInfo::MoveEligibleAndCopyElidable}; 3389 3390 // C++20 [class.copy.elision]p3: 3391 // - in a return statement in a function with ... 3392 // (other than a function ... parameter) 3393 if (VD->getKind() == Decl::ParmVar) 3394 Info.S = NamedReturnInfo::MoveEligible; 3395 else if (VD->getKind() != Decl::Var) 3396 return NamedReturnInfo(); 3397 3398 // (other than ... a catch-clause parameter) 3399 if (VD->isExceptionVariable()) 3400 Info.S = NamedReturnInfo::MoveEligible; 3401 3402 // ...automatic... 3403 if (!VD->hasLocalStorage()) 3404 return NamedReturnInfo(); 3405 3406 // We don't want to implicitly move out of a __block variable during a return 3407 // because we cannot assume the variable will no longer be used. 3408 if (VD->hasAttr<BlocksAttr>()) 3409 return NamedReturnInfo(); 3410 3411 QualType VDType = VD->getType(); 3412 if (VDType->isObjectType()) { 3413 // C++17 [class.copy.elision]p3: 3414 // ...non-volatile automatic object... 3415 if (VDType.isVolatileQualified()) 3416 return NamedReturnInfo(); 3417 } else if (VDType->isRValueReferenceType()) { 3418 // C++20 [class.copy.elision]p3: 3419 // ...either a non-volatile object or an rvalue reference to a non-volatile 3420 // object type... 3421 QualType VDReferencedType = VDType.getNonReferenceType(); 3422 if (VDReferencedType.isVolatileQualified() || 3423 !VDReferencedType->isObjectType()) 3424 return NamedReturnInfo(); 3425 Info.S = NamedReturnInfo::MoveEligible; 3426 } else { 3427 return NamedReturnInfo(); 3428 } 3429 3430 // Variables with higher required alignment than their type's ABI 3431 // alignment cannot use NRVO. 3432 if (!VD->hasDependentAlignment() && 3433 Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VDType)) 3434 Info.S = NamedReturnInfo::MoveEligible; 3435 3436 return Info; 3437 } 3438 3439 /// Updates given NamedReturnInfo's move-eligible and 3440 /// copy-elidable statuses, considering the function 3441 /// return type criteria as applicable to return statements. 3442 /// 3443 /// \param Info The NamedReturnInfo object to update. 3444 /// 3445 /// \param ReturnType This is the return type of the function. 3446 /// \returns The copy elision candidate, in case the initial return expression 3447 /// was copy elidable, or nullptr otherwise. 3448 const VarDecl *Sema::getCopyElisionCandidate(NamedReturnInfo &Info, 3449 QualType ReturnType) { 3450 if (!Info.Candidate) 3451 return nullptr; 3452 3453 auto invalidNRVO = [&] { 3454 Info = NamedReturnInfo(); 3455 return nullptr; 3456 }; 3457 3458 // If we got a non-deduced auto ReturnType, we are in a dependent context and 3459 // there is no point in allowing copy elision since we won't have it deduced 3460 // by the point the VardDecl is instantiated, which is the last chance we have 3461 // of deciding if the candidate is really copy elidable. 3462 if ((ReturnType->getTypeClass() == Type::TypeClass::Auto && 3463 ReturnType->isCanonicalUnqualified()) || 3464 ReturnType->isSpecificBuiltinType(BuiltinType::Dependent)) 3465 return invalidNRVO(); 3466 3467 if (!ReturnType->isDependentType()) { 3468 // - in a return statement in a function with ... 3469 // ... a class return type ... 3470 if (!ReturnType->isRecordType()) 3471 return invalidNRVO(); 3472 3473 QualType VDType = Info.Candidate->getType(); 3474 // ... the same cv-unqualified type as the function return type ... 3475 // When considering moving this expression out, allow dissimilar types. 3476 if (!VDType->isDependentType() && 3477 !Context.hasSameUnqualifiedType(ReturnType, VDType)) 3478 Info.S = NamedReturnInfo::MoveEligible; 3479 } 3480 return Info.isCopyElidable() ? Info.Candidate : nullptr; 3481 } 3482 3483 /// Verify that the initialization sequence that was picked for the 3484 /// first overload resolution is permissible under C++98. 3485 /// 3486 /// Reject (possibly converting) constructors not taking an rvalue reference, 3487 /// or user conversion operators which are not ref-qualified. 3488 static bool 3489 VerifyInitializationSequenceCXX98(const Sema &S, 3490 const InitializationSequence &Seq) { 3491 const auto *Step = llvm::find_if(Seq.steps(), [](const auto &Step) { 3492 return Step.Kind == InitializationSequence::SK_ConstructorInitialization || 3493 Step.Kind == InitializationSequence::SK_UserConversion; 3494 }); 3495 if (Step != Seq.step_end()) { 3496 const auto *FD = Step->Function.Function; 3497 if (isa<CXXConstructorDecl>(FD) 3498 ? !FD->getParamDecl(0)->getType()->isRValueReferenceType() 3499 : cast<CXXMethodDecl>(FD)->getRefQualifier() == RQ_None) 3500 return false; 3501 } 3502 return true; 3503 } 3504 3505 /// Perform the initialization of a potentially-movable value, which 3506 /// is the result of return value. 3507 /// 3508 /// This routine implements C++20 [class.copy.elision]p3, which attempts to 3509 /// treat returned lvalues as rvalues in certain cases (to prefer move 3510 /// construction), then falls back to treating them as lvalues if that failed. 3511 ExprResult Sema::PerformMoveOrCopyInitialization( 3512 const InitializedEntity &Entity, const NamedReturnInfo &NRInfo, Expr *Value, 3513 bool SupressSimplerImplicitMoves) { 3514 if (getLangOpts().CPlusPlus && 3515 (!getLangOpts().CPlusPlus2b || SupressSimplerImplicitMoves) && 3516 NRInfo.isMoveEligible()) { 3517 ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(), 3518 CK_NoOp, Value, VK_XValue, FPOptionsOverride()); 3519 Expr *InitExpr = &AsRvalue; 3520 auto Kind = InitializationKind::CreateCopy(Value->getBeginLoc(), 3521 Value->getBeginLoc()); 3522 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 3523 auto Res = Seq.getFailedOverloadResult(); 3524 if ((Res == OR_Success || Res == OR_Deleted) && 3525 (getLangOpts().CPlusPlus11 || 3526 VerifyInitializationSequenceCXX98(*this, Seq))) { 3527 // Promote "AsRvalue" to the heap, since we now need this 3528 // expression node to persist. 3529 Value = 3530 ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp, Value, 3531 nullptr, VK_XValue, FPOptionsOverride()); 3532 // Complete type-checking the initialization of the return type 3533 // using the constructor we found. 3534 return Seq.Perform(*this, Entity, Kind, Value); 3535 } 3536 } 3537 // Either we didn't meet the criteria for treating an lvalue as an rvalue, 3538 // above, or overload resolution failed. Either way, we need to try 3539 // (again) now with the return value expression as written. 3540 return PerformCopyInitialization(Entity, SourceLocation(), Value); 3541 } 3542 3543 /// Determine whether the declared return type of the specified function 3544 /// contains 'auto'. 3545 static bool hasDeducedReturnType(FunctionDecl *FD) { 3546 const FunctionProtoType *FPT = 3547 FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); 3548 return FPT->getReturnType()->isUndeducedType(); 3549 } 3550 3551 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements 3552 /// for capturing scopes. 3553 /// 3554 StmtResult Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, 3555 Expr *RetValExp, 3556 NamedReturnInfo &NRInfo, 3557 bool SupressSimplerImplicitMoves) { 3558 // If this is the first return we've seen, infer the return type. 3559 // [expr.prim.lambda]p4 in C++11; block literals follow the same rules. 3560 CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction()); 3561 QualType FnRetType = CurCap->ReturnType; 3562 LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap); 3563 bool HasDeducedReturnType = 3564 CurLambda && hasDeducedReturnType(CurLambda->CallOperator); 3565 3566 if (ExprEvalContexts.back().isDiscardedStatementContext() && 3567 (HasDeducedReturnType || CurCap->HasImplicitReturnType)) { 3568 if (RetValExp) { 3569 ExprResult ER = 3570 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 3571 if (ER.isInvalid()) 3572 return StmtError(); 3573 RetValExp = ER.get(); 3574 } 3575 return ReturnStmt::Create(Context, ReturnLoc, RetValExp, 3576 /* NRVOCandidate=*/nullptr); 3577 } 3578 3579 if (HasDeducedReturnType) { 3580 FunctionDecl *FD = CurLambda->CallOperator; 3581 // If we've already decided this lambda is invalid, e.g. because 3582 // we saw a `return` whose expression had an error, don't keep 3583 // trying to deduce its return type. 3584 if (FD->isInvalidDecl()) 3585 return StmtError(); 3586 // In C++1y, the return type may involve 'auto'. 3587 // FIXME: Blocks might have a return type of 'auto' explicitly specified. 3588 if (CurCap->ReturnType.isNull()) 3589 CurCap->ReturnType = FD->getReturnType(); 3590 3591 AutoType *AT = CurCap->ReturnType->getContainedAutoType(); 3592 assert(AT && "lost auto type from lambda return type"); 3593 if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { 3594 FD->setInvalidDecl(); 3595 // FIXME: preserve the ill-formed return expression. 3596 return StmtError(); 3597 } 3598 CurCap->ReturnType = FnRetType = FD->getReturnType(); 3599 } else if (CurCap->HasImplicitReturnType) { 3600 // For blocks/lambdas with implicit return types, we check each return 3601 // statement individually, and deduce the common return type when the block 3602 // or lambda is completed. 3603 // FIXME: Fold this into the 'auto' codepath above. 3604 if (RetValExp && !isa<InitListExpr>(RetValExp)) { 3605 ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp); 3606 if (Result.isInvalid()) 3607 return StmtError(); 3608 RetValExp = Result.get(); 3609 3610 // DR1048: even prior to C++14, we should use the 'auto' deduction rules 3611 // when deducing a return type for a lambda-expression (or by extension 3612 // for a block). These rules differ from the stated C++11 rules only in 3613 // that they remove top-level cv-qualifiers. 3614 if (!CurContext->isDependentContext()) 3615 FnRetType = RetValExp->getType().getUnqualifiedType(); 3616 else 3617 FnRetType = CurCap->ReturnType = Context.DependentTy; 3618 } else { 3619 if (RetValExp) { 3620 // C++11 [expr.lambda.prim]p4 bans inferring the result from an 3621 // initializer list, because it is not an expression (even 3622 // though we represent it as one). We still deduce 'void'. 3623 Diag(ReturnLoc, diag::err_lambda_return_init_list) 3624 << RetValExp->getSourceRange(); 3625 } 3626 3627 FnRetType = Context.VoidTy; 3628 } 3629 3630 // Although we'll properly infer the type of the block once it's completed, 3631 // make sure we provide a return type now for better error recovery. 3632 if (CurCap->ReturnType.isNull()) 3633 CurCap->ReturnType = FnRetType; 3634 } 3635 const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType); 3636 3637 if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) { 3638 if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) { 3639 Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr); 3640 return StmtError(); 3641 } 3642 } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) { 3643 Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName(); 3644 return StmtError(); 3645 } else { 3646 assert(CurLambda && "unknown kind of captured scope"); 3647 if (CurLambda->CallOperator->getType() 3648 ->castAs<FunctionType>() 3649 ->getNoReturnAttr()) { 3650 Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr); 3651 return StmtError(); 3652 } 3653 } 3654 3655 // Otherwise, verify that this result type matches the previous one. We are 3656 // pickier with blocks than for normal functions because we don't have GCC 3657 // compatibility to worry about here. 3658 if (FnRetType->isDependentType()) { 3659 // Delay processing for now. TODO: there are lots of dependent 3660 // types we can conclusively prove aren't void. 3661 } else if (FnRetType->isVoidType()) { 3662 if (RetValExp && !isa<InitListExpr>(RetValExp) && 3663 !(getLangOpts().CPlusPlus && 3664 (RetValExp->isTypeDependent() || 3665 RetValExp->getType()->isVoidType()))) { 3666 if (!getLangOpts().CPlusPlus && 3667 RetValExp->getType()->isVoidType()) 3668 Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2; 3669 else { 3670 Diag(ReturnLoc, diag::err_return_block_has_expr); 3671 RetValExp = nullptr; 3672 } 3673 } 3674 } else if (!RetValExp) { 3675 return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr)); 3676 } else if (!RetValExp->isTypeDependent()) { 3677 // we have a non-void block with an expression, continue checking 3678 3679 // C99 6.8.6.4p3(136): The return statement is not an assignment. The 3680 // overlap restriction of subclause 6.5.16.1 does not apply to the case of 3681 // function return. 3682 3683 // In C++ the return statement is handled via a copy initialization. 3684 // the C version of which boils down to CheckSingleAssignmentConstraints. 3685 InitializedEntity Entity = 3686 InitializedEntity::InitializeResult(ReturnLoc, FnRetType); 3687 ExprResult Res = PerformMoveOrCopyInitialization( 3688 Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves); 3689 if (Res.isInvalid()) { 3690 // FIXME: Cleanup temporaries here, anyway? 3691 return StmtError(); 3692 } 3693 RetValExp = Res.get(); 3694 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc); 3695 } 3696 3697 if (RetValExp) { 3698 ExprResult ER = 3699 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 3700 if (ER.isInvalid()) 3701 return StmtError(); 3702 RetValExp = ER.get(); 3703 } 3704 auto *Result = 3705 ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate); 3706 3707 // If we need to check for the named return value optimization, 3708 // or if we need to infer the return type, 3709 // save the return statement in our scope for later processing. 3710 if (CurCap->HasImplicitReturnType || NRVOCandidate) 3711 FunctionScopes.back()->Returns.push_back(Result); 3712 3713 if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) 3714 FunctionScopes.back()->FirstReturnLoc = ReturnLoc; 3715 3716 return Result; 3717 } 3718 3719 namespace { 3720 /// Marks all typedefs in all local classes in a type referenced. 3721 /// 3722 /// In a function like 3723 /// auto f() { 3724 /// struct S { typedef int a; }; 3725 /// return S(); 3726 /// } 3727 /// 3728 /// the local type escapes and could be referenced in some TUs but not in 3729 /// others. Pretend that all local typedefs are always referenced, to not warn 3730 /// on this. This isn't necessary if f has internal linkage, or the typedef 3731 /// is private. 3732 class LocalTypedefNameReferencer 3733 : public RecursiveASTVisitor<LocalTypedefNameReferencer> { 3734 public: 3735 LocalTypedefNameReferencer(Sema &S) : S(S) {} 3736 bool VisitRecordType(const RecordType *RT); 3737 private: 3738 Sema &S; 3739 }; 3740 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) { 3741 auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl()); 3742 if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() || 3743 R->isDependentType()) 3744 return true; 3745 for (auto *TmpD : R->decls()) 3746 if (auto *T = dyn_cast<TypedefNameDecl>(TmpD)) 3747 if (T->getAccess() != AS_private || R->hasFriends()) 3748 S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false); 3749 return true; 3750 } 3751 } 3752 3753 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const { 3754 return FD->getTypeSourceInfo() 3755 ->getTypeLoc() 3756 .getAsAdjusted<FunctionProtoTypeLoc>() 3757 .getReturnLoc(); 3758 } 3759 3760 /// Deduce the return type for a function from a returned expression, per 3761 /// C++1y [dcl.spec.auto]p6. 3762 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, 3763 SourceLocation ReturnLoc, 3764 Expr *&RetExpr, 3765 AutoType *AT) { 3766 // If this is the conversion function for a lambda, we choose to deduce it 3767 // type from the corresponding call operator, not from the synthesized return 3768 // statement within it. See Sema::DeduceReturnType. 3769 if (isLambdaConversionOperator(FD)) 3770 return false; 3771 3772 TypeLoc OrigResultType = getReturnTypeLoc(FD); 3773 QualType Deduced; 3774 3775 if (RetExpr && isa<InitListExpr>(RetExpr)) { 3776 // If the deduction is for a return statement and the initializer is 3777 // a braced-init-list, the program is ill-formed. 3778 Diag(RetExpr->getExprLoc(), 3779 getCurLambda() ? diag::err_lambda_return_init_list 3780 : diag::err_auto_fn_return_init_list) 3781 << RetExpr->getSourceRange(); 3782 return true; 3783 } 3784 3785 if (FD->isDependentContext()) { 3786 // C++1y [dcl.spec.auto]p12: 3787 // Return type deduction [...] occurs when the definition is 3788 // instantiated even if the function body contains a return 3789 // statement with a non-type-dependent operand. 3790 assert(AT->isDeduced() && "should have deduced to dependent type"); 3791 return false; 3792 } 3793 3794 if (RetExpr) { 3795 // Otherwise, [...] deduce a value for U using the rules of template 3796 // argument deduction. 3797 DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced); 3798 3799 if (DAR == DAR_Failed && !FD->isInvalidDecl()) 3800 Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure) 3801 << OrigResultType.getType() << RetExpr->getType(); 3802 3803 if (DAR != DAR_Succeeded) 3804 return true; 3805 3806 // If a local type is part of the returned type, mark its fields as 3807 // referenced. 3808 LocalTypedefNameReferencer Referencer(*this); 3809 Referencer.TraverseType(RetExpr->getType()); 3810 } else { 3811 // In the case of a return with no operand, the initializer is considered 3812 // to be void(). 3813 // 3814 // Deduction here can only succeed if the return type is exactly 'cv auto' 3815 // or 'decltype(auto)', so just check for that case directly. 3816 if (!OrigResultType.getType()->getAs<AutoType>()) { 3817 Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto) 3818 << OrigResultType.getType(); 3819 return true; 3820 } 3821 // We always deduce U = void in this case. 3822 Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy); 3823 if (Deduced.isNull()) 3824 return true; 3825 } 3826 3827 // CUDA: Kernel function must have 'void' return type. 3828 if (getLangOpts().CUDA) 3829 if (FD->hasAttr<CUDAGlobalAttr>() && !Deduced->isVoidType()) { 3830 Diag(FD->getLocation(), diag::err_kern_type_not_void_return) 3831 << FD->getType() << FD->getSourceRange(); 3832 return true; 3833 } 3834 3835 // If a function with a declared return type that contains a placeholder type 3836 // has multiple return statements, the return type is deduced for each return 3837 // statement. [...] if the type deduced is not the same in each deduction, 3838 // the program is ill-formed. 3839 QualType DeducedT = AT->getDeducedType(); 3840 if (!DeducedT.isNull() && !FD->isInvalidDecl()) { 3841 AutoType *NewAT = Deduced->getContainedAutoType(); 3842 // It is possible that NewAT->getDeducedType() is null. When that happens, 3843 // we should not crash, instead we ignore this deduction. 3844 if (NewAT->getDeducedType().isNull()) 3845 return false; 3846 3847 CanQualType OldDeducedType = Context.getCanonicalFunctionResultType( 3848 DeducedT); 3849 CanQualType NewDeducedType = Context.getCanonicalFunctionResultType( 3850 NewAT->getDeducedType()); 3851 if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) { 3852 const LambdaScopeInfo *LambdaSI = getCurLambda(); 3853 if (LambdaSI && LambdaSI->HasImplicitReturnType) { 3854 Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible) 3855 << NewAT->getDeducedType() << DeducedT 3856 << true /*IsLambda*/; 3857 } else { 3858 Diag(ReturnLoc, diag::err_auto_fn_different_deductions) 3859 << (AT->isDecltypeAuto() ? 1 : 0) 3860 << NewAT->getDeducedType() << DeducedT; 3861 } 3862 return true; 3863 } 3864 } else if (!FD->isInvalidDecl()) { 3865 // Update all declarations of the function to have the deduced return type. 3866 Context.adjustDeducedFunctionResultType(FD, Deduced); 3867 } 3868 3869 return false; 3870 } 3871 3872 StmtResult 3873 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, 3874 Scope *CurScope) { 3875 // Correct typos, in case the containing function returns 'auto' and 3876 // RetValExp should determine the deduced type. 3877 ExprResult RetVal = CorrectDelayedTyposInExpr( 3878 RetValExp, nullptr, /*RecoverUncorrectedTypos=*/true); 3879 if (RetVal.isInvalid()) 3880 return StmtError(); 3881 StmtResult R = 3882 BuildReturnStmt(ReturnLoc, RetVal.get(), /*AllowRecovery=*/true); 3883 if (R.isInvalid() || ExprEvalContexts.back().isDiscardedStatementContext()) 3884 return R; 3885 3886 if (VarDecl *VD = 3887 const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) { 3888 CurScope->addNRVOCandidate(VD); 3889 } else { 3890 CurScope->setNoNRVO(); 3891 } 3892 3893 CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent()); 3894 3895 return R; 3896 } 3897 3898 static bool CheckSimplerImplicitMovesMSVCWorkaround(const Sema &S, 3899 const Expr *E) { 3900 if (!E || !S.getLangOpts().CPlusPlus2b || !S.getLangOpts().MSVCCompat) 3901 return false; 3902 const Decl *D = E->getReferencedDeclOfCallee(); 3903 if (!D || !S.SourceMgr.isInSystemHeader(D->getLocation())) 3904 return false; 3905 for (const DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) { 3906 if (DC->isStdNamespace()) 3907 return true; 3908 } 3909 return false; 3910 } 3911 3912 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, 3913 bool AllowRecovery) { 3914 // Check for unexpanded parameter packs. 3915 if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp)) 3916 return StmtError(); 3917 3918 // HACK: We suppress simpler implicit move here in msvc compatibility mode 3919 // just as a temporary work around, as the MSVC STL has issues with 3920 // this change. 3921 bool SupressSimplerImplicitMoves = 3922 CheckSimplerImplicitMovesMSVCWorkaround(*this, RetValExp); 3923 NamedReturnInfo NRInfo = getNamedReturnInfo( 3924 RetValExp, SupressSimplerImplicitMoves ? SimplerImplicitMoveMode::ForceOff 3925 : SimplerImplicitMoveMode::Normal); 3926 3927 if (isa<CapturingScopeInfo>(getCurFunction())) 3928 return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp, NRInfo, 3929 SupressSimplerImplicitMoves); 3930 3931 QualType FnRetType; 3932 QualType RelatedRetType; 3933 const AttrVec *Attrs = nullptr; 3934 bool isObjCMethod = false; 3935 3936 if (const FunctionDecl *FD = getCurFunctionDecl()) { 3937 FnRetType = FD->getReturnType(); 3938 if (FD->hasAttrs()) 3939 Attrs = &FD->getAttrs(); 3940 if (FD->isNoReturn()) 3941 Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD; 3942 if (FD->isMain() && RetValExp) 3943 if (isa<CXXBoolLiteralExpr>(RetValExp)) 3944 Diag(ReturnLoc, diag::warn_main_returns_bool_literal) 3945 << RetValExp->getSourceRange(); 3946 if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) { 3947 if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) { 3948 if (RT->getDecl()->isOrContainsUnion()) 3949 Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1; 3950 } 3951 } 3952 } else if (ObjCMethodDecl *MD = getCurMethodDecl()) { 3953 FnRetType = MD->getReturnType(); 3954 isObjCMethod = true; 3955 if (MD->hasAttrs()) 3956 Attrs = &MD->getAttrs(); 3957 if (MD->hasRelatedResultType() && MD->getClassInterface()) { 3958 // In the implementation of a method with a related return type, the 3959 // type used to type-check the validity of return statements within the 3960 // method body is a pointer to the type of the class being implemented. 3961 RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface()); 3962 RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType); 3963 } 3964 } else // If we don't have a function/method context, bail. 3965 return StmtError(); 3966 3967 // C++1z: discarded return statements are not considered when deducing a 3968 // return type. 3969 if (ExprEvalContexts.back().isDiscardedStatementContext() && 3970 FnRetType->getContainedAutoType()) { 3971 if (RetValExp) { 3972 ExprResult ER = 3973 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 3974 if (ER.isInvalid()) 3975 return StmtError(); 3976 RetValExp = ER.get(); 3977 } 3978 return ReturnStmt::Create(Context, ReturnLoc, RetValExp, 3979 /* NRVOCandidate=*/nullptr); 3980 } 3981 3982 // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing 3983 // deduction. 3984 if (getLangOpts().CPlusPlus14) { 3985 if (AutoType *AT = FnRetType->getContainedAutoType()) { 3986 FunctionDecl *FD = cast<FunctionDecl>(CurContext); 3987 // If we've already decided this function is invalid, e.g. because 3988 // we saw a `return` whose expression had an error, don't keep 3989 // trying to deduce its return type. 3990 // (Some return values may be needlessly wrapped in RecoveryExpr). 3991 if (FD->isInvalidDecl() || 3992 DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { 3993 FD->setInvalidDecl(); 3994 if (!AllowRecovery) 3995 return StmtError(); 3996 // The deduction failure is diagnosed and marked, try to recover. 3997 if (RetValExp) { 3998 // Wrap return value with a recovery expression of the previous type. 3999 // If no deduction yet, use DependentTy. 4000 auto Recovery = CreateRecoveryExpr( 4001 RetValExp->getBeginLoc(), RetValExp->getEndLoc(), RetValExp, 4002 AT->isDeduced() ? FnRetType : QualType()); 4003 if (Recovery.isInvalid()) 4004 return StmtError(); 4005 RetValExp = Recovery.get(); 4006 } else { 4007 // Nothing to do: a ReturnStmt with no value is fine recovery. 4008 } 4009 } else { 4010 FnRetType = FD->getReturnType(); 4011 } 4012 } 4013 } 4014 const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType); 4015 4016 bool HasDependentReturnType = FnRetType->isDependentType(); 4017 4018 ReturnStmt *Result = nullptr; 4019 if (FnRetType->isVoidType()) { 4020 if (RetValExp) { 4021 if (auto *ILE = dyn_cast<InitListExpr>(RetValExp)) { 4022 // We simply never allow init lists as the return value of void 4023 // functions. This is compatible because this was never allowed before, 4024 // so there's no legacy code to deal with. 4025 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 4026 int FunctionKind = 0; 4027 if (isa<ObjCMethodDecl>(CurDecl)) 4028 FunctionKind = 1; 4029 else if (isa<CXXConstructorDecl>(CurDecl)) 4030 FunctionKind = 2; 4031 else if (isa<CXXDestructorDecl>(CurDecl)) 4032 FunctionKind = 3; 4033 4034 Diag(ReturnLoc, diag::err_return_init_list) 4035 << CurDecl << FunctionKind << RetValExp->getSourceRange(); 4036 4037 // Preserve the initializers in the AST. 4038 RetValExp = AllowRecovery 4039 ? CreateRecoveryExpr(ILE->getLBraceLoc(), 4040 ILE->getRBraceLoc(), ILE->inits()) 4041 .get() 4042 : nullptr; 4043 } else if (!RetValExp->isTypeDependent()) { 4044 // C99 6.8.6.4p1 (ext_ since GCC warns) 4045 unsigned D = diag::ext_return_has_expr; 4046 if (RetValExp->getType()->isVoidType()) { 4047 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 4048 if (isa<CXXConstructorDecl>(CurDecl) || 4049 isa<CXXDestructorDecl>(CurDecl)) 4050 D = diag::err_ctor_dtor_returns_void; 4051 else 4052 D = diag::ext_return_has_void_expr; 4053 } 4054 else { 4055 ExprResult Result = RetValExp; 4056 Result = IgnoredValueConversions(Result.get()); 4057 if (Result.isInvalid()) 4058 return StmtError(); 4059 RetValExp = Result.get(); 4060 RetValExp = ImpCastExprToType(RetValExp, 4061 Context.VoidTy, CK_ToVoid).get(); 4062 } 4063 // return of void in constructor/destructor is illegal in C++. 4064 if (D == diag::err_ctor_dtor_returns_void) { 4065 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 4066 Diag(ReturnLoc, D) << CurDecl << isa<CXXDestructorDecl>(CurDecl) 4067 << RetValExp->getSourceRange(); 4068 } 4069 // return (some void expression); is legal in C++. 4070 else if (D != diag::ext_return_has_void_expr || 4071 !getLangOpts().CPlusPlus) { 4072 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 4073 4074 int FunctionKind = 0; 4075 if (isa<ObjCMethodDecl>(CurDecl)) 4076 FunctionKind = 1; 4077 else if (isa<CXXConstructorDecl>(CurDecl)) 4078 FunctionKind = 2; 4079 else if (isa<CXXDestructorDecl>(CurDecl)) 4080 FunctionKind = 3; 4081 4082 Diag(ReturnLoc, D) 4083 << CurDecl << FunctionKind << RetValExp->getSourceRange(); 4084 } 4085 } 4086 4087 if (RetValExp) { 4088 ExprResult ER = 4089 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 4090 if (ER.isInvalid()) 4091 return StmtError(); 4092 RetValExp = ER.get(); 4093 } 4094 } 4095 4096 Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, 4097 /* NRVOCandidate=*/nullptr); 4098 } else if (!RetValExp && !HasDependentReturnType) { 4099 FunctionDecl *FD = getCurFunctionDecl(); 4100 4101 if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) { 4102 // C++11 [stmt.return]p2 4103 Diag(ReturnLoc, diag::err_constexpr_return_missing_expr) 4104 << FD << FD->isConsteval(); 4105 FD->setInvalidDecl(); 4106 } else { 4107 // C99 6.8.6.4p1 (ext_ since GCC warns) 4108 // C90 6.6.6.4p4 4109 unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr 4110 : diag::warn_return_missing_expr; 4111 // Note that at this point one of getCurFunctionDecl() or 4112 // getCurMethodDecl() must be non-null (see above). 4113 assert((getCurFunctionDecl() || getCurMethodDecl()) && 4114 "Not in a FunctionDecl or ObjCMethodDecl?"); 4115 bool IsMethod = FD == nullptr; 4116 const NamedDecl *ND = 4117 IsMethod ? cast<NamedDecl>(getCurMethodDecl()) : cast<NamedDecl>(FD); 4118 Diag(ReturnLoc, DiagID) << ND << IsMethod; 4119 } 4120 4121 Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr, 4122 /* NRVOCandidate=*/nullptr); 4123 } else { 4124 assert(RetValExp || HasDependentReturnType); 4125 QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType; 4126 4127 // C99 6.8.6.4p3(136): The return statement is not an assignment. The 4128 // overlap restriction of subclause 6.5.16.1 does not apply to the case of 4129 // function return. 4130 4131 // In C++ the return statement is handled via a copy initialization, 4132 // the C version of which boils down to CheckSingleAssignmentConstraints. 4133 if (!HasDependentReturnType && !RetValExp->isTypeDependent()) { 4134 // we have a non-void function with an expression, continue checking 4135 InitializedEntity Entity = 4136 InitializedEntity::InitializeResult(ReturnLoc, RetType); 4137 ExprResult Res = PerformMoveOrCopyInitialization( 4138 Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves); 4139 if (Res.isInvalid() && AllowRecovery) 4140 Res = CreateRecoveryExpr(RetValExp->getBeginLoc(), 4141 RetValExp->getEndLoc(), RetValExp, RetType); 4142 if (Res.isInvalid()) { 4143 // FIXME: Clean up temporaries here anyway? 4144 return StmtError(); 4145 } 4146 RetValExp = Res.getAs<Expr>(); 4147 4148 // If we have a related result type, we need to implicitly 4149 // convert back to the formal result type. We can't pretend to 4150 // initialize the result again --- we might end double-retaining 4151 // --- so instead we initialize a notional temporary. 4152 if (!RelatedRetType.isNull()) { 4153 Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(), 4154 FnRetType); 4155 Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp); 4156 if (Res.isInvalid()) { 4157 // FIXME: Clean up temporaries here anyway? 4158 return StmtError(); 4159 } 4160 RetValExp = Res.getAs<Expr>(); 4161 } 4162 4163 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs, 4164 getCurFunctionDecl()); 4165 } 4166 4167 if (RetValExp) { 4168 ExprResult ER = 4169 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 4170 if (ER.isInvalid()) 4171 return StmtError(); 4172 RetValExp = ER.get(); 4173 } 4174 Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate); 4175 } 4176 4177 // If we need to check for the named return value optimization, save the 4178 // return statement in our scope for later processing. 4179 if (Result->getNRVOCandidate()) 4180 FunctionScopes.back()->Returns.push_back(Result); 4181 4182 if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) 4183 FunctionScopes.back()->FirstReturnLoc = ReturnLoc; 4184 4185 return Result; 4186 } 4187 4188 StmtResult 4189 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc, 4190 SourceLocation RParen, Decl *Parm, 4191 Stmt *Body) { 4192 VarDecl *Var = cast_or_null<VarDecl>(Parm); 4193 if (Var && Var->isInvalidDecl()) 4194 return StmtError(); 4195 4196 return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body); 4197 } 4198 4199 StmtResult 4200 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) { 4201 return new (Context) ObjCAtFinallyStmt(AtLoc, Body); 4202 } 4203 4204 StmtResult 4205 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, 4206 MultiStmtArg CatchStmts, Stmt *Finally) { 4207 if (!getLangOpts().ObjCExceptions) 4208 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try"; 4209 4210 // Objective-C try is incompatible with SEH __try. 4211 sema::FunctionScopeInfo *FSI = getCurFunction(); 4212 if (FSI->FirstSEHTryLoc.isValid()) { 4213 Diag(AtLoc, diag::err_mixing_cxx_try_seh_try) << 1; 4214 Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'"; 4215 } 4216 4217 FSI->setHasObjCTry(AtLoc); 4218 unsigned NumCatchStmts = CatchStmts.size(); 4219 return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(), 4220 NumCatchStmts, Finally); 4221 } 4222 4223 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) { 4224 if (Throw) { 4225 ExprResult Result = DefaultLvalueConversion(Throw); 4226 if (Result.isInvalid()) 4227 return StmtError(); 4228 4229 Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false); 4230 if (Result.isInvalid()) 4231 return StmtError(); 4232 Throw = Result.get(); 4233 4234 QualType ThrowType = Throw->getType(); 4235 // Make sure the expression type is an ObjC pointer or "void *". 4236 if (!ThrowType->isDependentType() && 4237 !ThrowType->isObjCObjectPointerType()) { 4238 const PointerType *PT = ThrowType->getAs<PointerType>(); 4239 if (!PT || !PT->getPointeeType()->isVoidType()) 4240 return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object) 4241 << Throw->getType() << Throw->getSourceRange()); 4242 } 4243 } 4244 4245 return new (Context) ObjCAtThrowStmt(AtLoc, Throw); 4246 } 4247 4248 StmtResult 4249 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, 4250 Scope *CurScope) { 4251 if (!getLangOpts().ObjCExceptions) 4252 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw"; 4253 4254 if (!Throw) { 4255 // @throw without an expression designates a rethrow (which must occur 4256 // in the context of an @catch clause). 4257 Scope *AtCatchParent = CurScope; 4258 while (AtCatchParent && !AtCatchParent->isAtCatchScope()) 4259 AtCatchParent = AtCatchParent->getParent(); 4260 if (!AtCatchParent) 4261 return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch)); 4262 } 4263 return BuildObjCAtThrowStmt(AtLoc, Throw); 4264 } 4265 4266 ExprResult 4267 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) { 4268 ExprResult result = DefaultLvalueConversion(operand); 4269 if (result.isInvalid()) 4270 return ExprError(); 4271 operand = result.get(); 4272 4273 // Make sure the expression type is an ObjC pointer or "void *". 4274 QualType type = operand->getType(); 4275 if (!type->isDependentType() && 4276 !type->isObjCObjectPointerType()) { 4277 const PointerType *pointerType = type->getAs<PointerType>(); 4278 if (!pointerType || !pointerType->getPointeeType()->isVoidType()) { 4279 if (getLangOpts().CPlusPlus) { 4280 if (RequireCompleteType(atLoc, type, 4281 diag::err_incomplete_receiver_type)) 4282 return Diag(atLoc, diag::err_objc_synchronized_expects_object) 4283 << type << operand->getSourceRange(); 4284 4285 ExprResult result = PerformContextuallyConvertToObjCPointer(operand); 4286 if (result.isInvalid()) 4287 return ExprError(); 4288 if (!result.isUsable()) 4289 return Diag(atLoc, diag::err_objc_synchronized_expects_object) 4290 << type << operand->getSourceRange(); 4291 4292 operand = result.get(); 4293 } else { 4294 return Diag(atLoc, diag::err_objc_synchronized_expects_object) 4295 << type << operand->getSourceRange(); 4296 } 4297 } 4298 } 4299 4300 // The operand to @synchronized is a full-expression. 4301 return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false); 4302 } 4303 4304 StmtResult 4305 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr, 4306 Stmt *SyncBody) { 4307 // We can't jump into or indirect-jump out of a @synchronized block. 4308 setFunctionHasBranchProtectedScope(); 4309 return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody); 4310 } 4311 4312 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block 4313 /// and creates a proper catch handler from them. 4314 StmtResult 4315 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, 4316 Stmt *HandlerBlock) { 4317 // There's nothing to test that ActOnExceptionDecl didn't already test. 4318 return new (Context) 4319 CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock); 4320 } 4321 4322 StmtResult 4323 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) { 4324 setFunctionHasBranchProtectedScope(); 4325 return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body); 4326 } 4327 4328 namespace { 4329 class CatchHandlerType { 4330 QualType QT; 4331 unsigned IsPointer : 1; 4332 4333 // This is a special constructor to be used only with DenseMapInfo's 4334 // getEmptyKey() and getTombstoneKey() functions. 4335 friend struct llvm::DenseMapInfo<CatchHandlerType>; 4336 enum Unique { ForDenseMap }; 4337 CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {} 4338 4339 public: 4340 /// Used when creating a CatchHandlerType from a handler type; will determine 4341 /// whether the type is a pointer or reference and will strip off the top 4342 /// level pointer and cv-qualifiers. 4343 CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) { 4344 if (QT->isPointerType()) 4345 IsPointer = true; 4346 4347 if (IsPointer || QT->isReferenceType()) 4348 QT = QT->getPointeeType(); 4349 QT = QT.getUnqualifiedType(); 4350 } 4351 4352 /// Used when creating a CatchHandlerType from a base class type; pretends the 4353 /// type passed in had the pointer qualifier, does not need to get an 4354 /// unqualified type. 4355 CatchHandlerType(QualType QT, bool IsPointer) 4356 : QT(QT), IsPointer(IsPointer) {} 4357 4358 QualType underlying() const { return QT; } 4359 bool isPointer() const { return IsPointer; } 4360 4361 friend bool operator==(const CatchHandlerType &LHS, 4362 const CatchHandlerType &RHS) { 4363 // If the pointer qualification does not match, we can return early. 4364 if (LHS.IsPointer != RHS.IsPointer) 4365 return false; 4366 // Otherwise, check the underlying type without cv-qualifiers. 4367 return LHS.QT == RHS.QT; 4368 } 4369 }; 4370 } // namespace 4371 4372 namespace llvm { 4373 template <> struct DenseMapInfo<CatchHandlerType> { 4374 static CatchHandlerType getEmptyKey() { 4375 return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(), 4376 CatchHandlerType::ForDenseMap); 4377 } 4378 4379 static CatchHandlerType getTombstoneKey() { 4380 return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(), 4381 CatchHandlerType::ForDenseMap); 4382 } 4383 4384 static unsigned getHashValue(const CatchHandlerType &Base) { 4385 return DenseMapInfo<QualType>::getHashValue(Base.underlying()); 4386 } 4387 4388 static bool isEqual(const CatchHandlerType &LHS, 4389 const CatchHandlerType &RHS) { 4390 return LHS == RHS; 4391 } 4392 }; 4393 } 4394 4395 namespace { 4396 class CatchTypePublicBases { 4397 ASTContext &Ctx; 4398 const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck; 4399 const bool CheckAgainstPointer; 4400 4401 CXXCatchStmt *FoundHandler; 4402 CanQualType FoundHandlerType; 4403 4404 public: 4405 CatchTypePublicBases( 4406 ASTContext &Ctx, 4407 const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C) 4408 : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C), 4409 FoundHandler(nullptr) {} 4410 4411 CXXCatchStmt *getFoundHandler() const { return FoundHandler; } 4412 CanQualType getFoundHandlerType() const { return FoundHandlerType; } 4413 4414 bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) { 4415 if (S->getAccessSpecifier() == AccessSpecifier::AS_public) { 4416 CatchHandlerType Check(S->getType(), CheckAgainstPointer); 4417 const auto &M = TypesToCheck; 4418 auto I = M.find(Check); 4419 if (I != M.end()) { 4420 FoundHandler = I->second; 4421 FoundHandlerType = Ctx.getCanonicalType(S->getType()); 4422 return true; 4423 } 4424 } 4425 return false; 4426 } 4427 }; 4428 } 4429 4430 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of 4431 /// handlers and creates a try statement from them. 4432 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, 4433 ArrayRef<Stmt *> Handlers) { 4434 // Don't report an error if 'try' is used in system headers. 4435 if (!getLangOpts().CXXExceptions && 4436 !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) { 4437 // Delay error emission for the OpenMP device code. 4438 targetDiag(TryLoc, diag::err_exceptions_disabled) << "try"; 4439 } 4440 4441 // Exceptions aren't allowed in CUDA device code. 4442 if (getLangOpts().CUDA) 4443 CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions) 4444 << "try" << CurrentCUDATarget(); 4445 4446 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 4447 Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try"; 4448 4449 sema::FunctionScopeInfo *FSI = getCurFunction(); 4450 4451 // C++ try is incompatible with SEH __try. 4452 if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) { 4453 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << 0; 4454 Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'"; 4455 } 4456 4457 const unsigned NumHandlers = Handlers.size(); 4458 assert(!Handlers.empty() && 4459 "The parser shouldn't call this if there are no handlers."); 4460 4461 llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes; 4462 for (unsigned i = 0; i < NumHandlers; ++i) { 4463 CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]); 4464 4465 // Diagnose when the handler is a catch-all handler, but it isn't the last 4466 // handler for the try block. [except.handle]p5. Also, skip exception 4467 // declarations that are invalid, since we can't usefully report on them. 4468 if (!H->getExceptionDecl()) { 4469 if (i < NumHandlers - 1) 4470 return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all)); 4471 continue; 4472 } else if (H->getExceptionDecl()->isInvalidDecl()) 4473 continue; 4474 4475 // Walk the type hierarchy to diagnose when this type has already been 4476 // handled (duplication), or cannot be handled (derivation inversion). We 4477 // ignore top-level cv-qualifiers, per [except.handle]p3 4478 CatchHandlerType HandlerCHT = 4479 (QualType)Context.getCanonicalType(H->getCaughtType()); 4480 4481 // We can ignore whether the type is a reference or a pointer; we need the 4482 // underlying declaration type in order to get at the underlying record 4483 // decl, if there is one. 4484 QualType Underlying = HandlerCHT.underlying(); 4485 if (auto *RD = Underlying->getAsCXXRecordDecl()) { 4486 if (!RD->hasDefinition()) 4487 continue; 4488 // Check that none of the public, unambiguous base classes are in the 4489 // map ([except.handle]p1). Give the base classes the same pointer 4490 // qualification as the original type we are basing off of. This allows 4491 // comparison against the handler type using the same top-level pointer 4492 // as the original type. 4493 CXXBasePaths Paths; 4494 Paths.setOrigin(RD); 4495 CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer()); 4496 if (RD->lookupInBases(CTPB, Paths)) { 4497 const CXXCatchStmt *Problem = CTPB.getFoundHandler(); 4498 if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) { 4499 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), 4500 diag::warn_exception_caught_by_earlier_handler) 4501 << H->getCaughtType(); 4502 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), 4503 diag::note_previous_exception_handler) 4504 << Problem->getCaughtType(); 4505 } 4506 } 4507 } 4508 4509 // Add the type the list of ones we have handled; diagnose if we've already 4510 // handled it. 4511 auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H)); 4512 if (!R.second) { 4513 const CXXCatchStmt *Problem = R.first->second; 4514 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), 4515 diag::warn_exception_caught_by_earlier_handler) 4516 << H->getCaughtType(); 4517 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), 4518 diag::note_previous_exception_handler) 4519 << Problem->getCaughtType(); 4520 } 4521 } 4522 4523 FSI->setHasCXXTry(TryLoc); 4524 4525 return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers); 4526 } 4527 4528 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc, 4529 Stmt *TryBlock, Stmt *Handler) { 4530 assert(TryBlock && Handler); 4531 4532 sema::FunctionScopeInfo *FSI = getCurFunction(); 4533 4534 // SEH __try is incompatible with C++ try. Borland appears to support this, 4535 // however. 4536 if (!getLangOpts().Borland) { 4537 if (FSI->FirstCXXOrObjCTryLoc.isValid()) { 4538 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << FSI->FirstTryType; 4539 Diag(FSI->FirstCXXOrObjCTryLoc, diag::note_conflicting_try_here) 4540 << (FSI->FirstTryType == sema::FunctionScopeInfo::TryLocIsCXX 4541 ? "'try'" 4542 : "'@try'"); 4543 } 4544 } 4545 4546 FSI->setHasSEHTry(TryLoc); 4547 4548 // Reject __try in Obj-C methods, blocks, and captured decls, since we don't 4549 // track if they use SEH. 4550 DeclContext *DC = CurContext; 4551 while (DC && !DC->isFunctionOrMethod()) 4552 DC = DC->getParent(); 4553 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC); 4554 if (FD) 4555 FD->setUsesSEHTry(true); 4556 else 4557 Diag(TryLoc, diag::err_seh_try_outside_functions); 4558 4559 // Reject __try on unsupported targets. 4560 if (!Context.getTargetInfo().isSEHTrySupported()) 4561 Diag(TryLoc, diag::err_seh_try_unsupported); 4562 4563 return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler); 4564 } 4565 4566 StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, 4567 Stmt *Block) { 4568 assert(FilterExpr && Block); 4569 QualType FTy = FilterExpr->getType(); 4570 if (!FTy->isIntegerType() && !FTy->isDependentType()) { 4571 return StmtError( 4572 Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral) 4573 << FTy); 4574 } 4575 return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block); 4576 } 4577 4578 void Sema::ActOnStartSEHFinallyBlock() { 4579 CurrentSEHFinally.push_back(CurScope); 4580 } 4581 4582 void Sema::ActOnAbortSEHFinallyBlock() { 4583 CurrentSEHFinally.pop_back(); 4584 } 4585 4586 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) { 4587 assert(Block); 4588 CurrentSEHFinally.pop_back(); 4589 return SEHFinallyStmt::Create(Context, Loc, Block); 4590 } 4591 4592 StmtResult 4593 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) { 4594 Scope *SEHTryParent = CurScope; 4595 while (SEHTryParent && !SEHTryParent->isSEHTryScope()) 4596 SEHTryParent = SEHTryParent->getParent(); 4597 if (!SEHTryParent) 4598 return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try)); 4599 CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent); 4600 4601 return new (Context) SEHLeaveStmt(Loc); 4602 } 4603 4604 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc, 4605 bool IsIfExists, 4606 NestedNameSpecifierLoc QualifierLoc, 4607 DeclarationNameInfo NameInfo, 4608 Stmt *Nested) 4609 { 4610 return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists, 4611 QualifierLoc, NameInfo, 4612 cast<CompoundStmt>(Nested)); 4613 } 4614 4615 4616 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, 4617 bool IsIfExists, 4618 CXXScopeSpec &SS, 4619 UnqualifiedId &Name, 4620 Stmt *Nested) { 4621 return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, 4622 SS.getWithLocInContext(Context), 4623 GetNameFromUnqualifiedId(Name), 4624 Nested); 4625 } 4626 4627 RecordDecl* 4628 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, 4629 unsigned NumParams) { 4630 DeclContext *DC = CurContext; 4631 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 4632 DC = DC->getParent(); 4633 4634 RecordDecl *RD = nullptr; 4635 if (getLangOpts().CPlusPlus) 4636 RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, 4637 /*Id=*/nullptr); 4638 else 4639 RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr); 4640 4641 RD->setCapturedRecord(); 4642 DC->addDecl(RD); 4643 RD->setImplicit(); 4644 RD->startDefinition(); 4645 4646 assert(NumParams > 0 && "CapturedStmt requires context parameter"); 4647 CD = CapturedDecl::Create(Context, CurContext, NumParams); 4648 DC->addDecl(CD); 4649 return RD; 4650 } 4651 4652 static bool 4653 buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI, 4654 SmallVectorImpl<CapturedStmt::Capture> &Captures, 4655 SmallVectorImpl<Expr *> &CaptureInits) { 4656 for (const sema::Capture &Cap : RSI->Captures) { 4657 if (Cap.isInvalid()) 4658 continue; 4659 4660 // Form the initializer for the capture. 4661 ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(), 4662 RSI->CapRegionKind == CR_OpenMP); 4663 4664 // FIXME: Bail out now if the capture is not used and the initializer has 4665 // no side-effects. 4666 4667 // Create a field for this capture. 4668 FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap); 4669 4670 // Add the capture to our list of captures. 4671 if (Cap.isThisCapture()) { 4672 Captures.push_back(CapturedStmt::Capture(Cap.getLocation(), 4673 CapturedStmt::VCK_This)); 4674 } else if (Cap.isVLATypeCapture()) { 4675 Captures.push_back( 4676 CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType)); 4677 } else { 4678 assert(Cap.isVariableCapture() && "unknown kind of capture"); 4679 4680 if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) 4681 S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel); 4682 4683 Captures.push_back(CapturedStmt::Capture(Cap.getLocation(), 4684 Cap.isReferenceCapture() 4685 ? CapturedStmt::VCK_ByRef 4686 : CapturedStmt::VCK_ByCopy, 4687 Cap.getVariable())); 4688 } 4689 CaptureInits.push_back(Init.get()); 4690 } 4691 return false; 4692 } 4693 4694 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, 4695 CapturedRegionKind Kind, 4696 unsigned NumParams) { 4697 CapturedDecl *CD = nullptr; 4698 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams); 4699 4700 // Build the context parameter 4701 DeclContext *DC = CapturedDecl::castToDeclContext(CD); 4702 IdentifierInfo *ParamName = &Context.Idents.get("__context"); 4703 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); 4704 auto *Param = 4705 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, 4706 ImplicitParamDecl::CapturedContext); 4707 DC->addDecl(Param); 4708 4709 CD->setContextParam(0, Param); 4710 4711 // Enter the capturing scope for this captured region. 4712 PushCapturedRegionScope(CurScope, CD, RD, Kind); 4713 4714 if (CurScope) 4715 PushDeclContext(CurScope, CD); 4716 else 4717 CurContext = CD; 4718 4719 PushExpressionEvaluationContext( 4720 ExpressionEvaluationContext::PotentiallyEvaluated); 4721 } 4722 4723 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, 4724 CapturedRegionKind Kind, 4725 ArrayRef<CapturedParamNameType> Params, 4726 unsigned OpenMPCaptureLevel) { 4727 CapturedDecl *CD = nullptr; 4728 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size()); 4729 4730 // Build the context parameter 4731 DeclContext *DC = CapturedDecl::castToDeclContext(CD); 4732 bool ContextIsFound = false; 4733 unsigned ParamNum = 0; 4734 for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(), 4735 E = Params.end(); 4736 I != E; ++I, ++ParamNum) { 4737 if (I->second.isNull()) { 4738 assert(!ContextIsFound && 4739 "null type has been found already for '__context' parameter"); 4740 IdentifierInfo *ParamName = &Context.Idents.get("__context"); 4741 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)) 4742 .withConst() 4743 .withRestrict(); 4744 auto *Param = 4745 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, 4746 ImplicitParamDecl::CapturedContext); 4747 DC->addDecl(Param); 4748 CD->setContextParam(ParamNum, Param); 4749 ContextIsFound = true; 4750 } else { 4751 IdentifierInfo *ParamName = &Context.Idents.get(I->first); 4752 auto *Param = 4753 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second, 4754 ImplicitParamDecl::CapturedContext); 4755 DC->addDecl(Param); 4756 CD->setParam(ParamNum, Param); 4757 } 4758 } 4759 assert(ContextIsFound && "no null type for '__context' parameter"); 4760 if (!ContextIsFound) { 4761 // Add __context implicitly if it is not specified. 4762 IdentifierInfo *ParamName = &Context.Idents.get("__context"); 4763 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); 4764 auto *Param = 4765 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, 4766 ImplicitParamDecl::CapturedContext); 4767 DC->addDecl(Param); 4768 CD->setContextParam(ParamNum, Param); 4769 } 4770 // Enter the capturing scope for this captured region. 4771 PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel); 4772 4773 if (CurScope) 4774 PushDeclContext(CurScope, CD); 4775 else 4776 CurContext = CD; 4777 4778 PushExpressionEvaluationContext( 4779 ExpressionEvaluationContext::PotentiallyEvaluated); 4780 } 4781 4782 void Sema::ActOnCapturedRegionError() { 4783 DiscardCleanupsInEvaluationContext(); 4784 PopExpressionEvaluationContext(); 4785 PopDeclContext(); 4786 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(); 4787 CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get()); 4788 4789 RecordDecl *Record = RSI->TheRecordDecl; 4790 Record->setInvalidDecl(); 4791 4792 SmallVector<Decl*, 4> Fields(Record->fields()); 4793 ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields, 4794 SourceLocation(), SourceLocation(), ParsedAttributesView()); 4795 } 4796 4797 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) { 4798 // Leave the captured scope before we start creating captures in the 4799 // enclosing scope. 4800 DiscardCleanupsInEvaluationContext(); 4801 PopExpressionEvaluationContext(); 4802 PopDeclContext(); 4803 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(); 4804 CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get()); 4805 4806 SmallVector<CapturedStmt::Capture, 4> Captures; 4807 SmallVector<Expr *, 4> CaptureInits; 4808 if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits)) 4809 return StmtError(); 4810 4811 CapturedDecl *CD = RSI->TheCapturedDecl; 4812 RecordDecl *RD = RSI->TheRecordDecl; 4813 4814 CapturedStmt *Res = CapturedStmt::Create( 4815 getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind), 4816 Captures, CaptureInits, CD, RD); 4817 4818 CD->setBody(Res->getCapturedStmt()); 4819 RD->completeDefinition(); 4820 4821 return Res; 4822 } 4823