1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for statements. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/ASTDiagnostic.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/CharUnits.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/EvaluatedExprVisitor.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/ExprObjC.h" 22 #include "clang/AST/IgnoreExpr.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/AST/TypeOrdering.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Sema/Initialization.h" 31 #include "clang/Sema/Lookup.h" 32 #include "clang/Sema/Ownership.h" 33 #include "clang/Sema/Scope.h" 34 #include "clang/Sema/ScopeInfo.h" 35 #include "clang/Sema/SemaInternal.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallString.h" 41 #include "llvm/ADT/SmallVector.h" 42 #include "llvm/ADT/StringExtras.h" 43 44 using namespace clang; 45 using namespace sema; 46 47 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) { 48 if (FE.isInvalid()) 49 return StmtError(); 50 51 FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue); 52 if (FE.isInvalid()) 53 return StmtError(); 54 55 // C99 6.8.3p2: The expression in an expression statement is evaluated as a 56 // void expression for its side effects. Conversion to void allows any 57 // operand, even incomplete types. 58 59 // Same thing in for stmt first clause (when expr) and third clause. 60 return StmtResult(FE.getAs<Stmt>()); 61 } 62 63 64 StmtResult Sema::ActOnExprStmtError() { 65 DiscardCleanupsInEvaluationContext(); 66 return StmtError(); 67 } 68 69 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc, 70 bool HasLeadingEmptyMacro) { 71 return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro); 72 } 73 74 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc, 75 SourceLocation EndLoc) { 76 DeclGroupRef DG = dg.get(); 77 78 // If we have an invalid decl, just return an error. 79 if (DG.isNull()) return StmtError(); 80 81 return new (Context) DeclStmt(DG, StartLoc, EndLoc); 82 } 83 84 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) { 85 DeclGroupRef DG = dg.get(); 86 87 // If we don't have a declaration, or we have an invalid declaration, 88 // just return. 89 if (DG.isNull() || !DG.isSingleDecl()) 90 return; 91 92 Decl *decl = DG.getSingleDecl(); 93 if (!decl || decl->isInvalidDecl()) 94 return; 95 96 // Only variable declarations are permitted. 97 VarDecl *var = dyn_cast<VarDecl>(decl); 98 if (!var) { 99 Diag(decl->getLocation(), diag::err_non_variable_decl_in_for); 100 decl->setInvalidDecl(); 101 return; 102 } 103 104 // foreach variables are never actually initialized in the way that 105 // the parser came up with. 106 var->setInit(nullptr); 107 108 // In ARC, we don't need to retain the iteration variable of a fast 109 // enumeration loop. Rather than actually trying to catch that 110 // during declaration processing, we remove the consequences here. 111 if (getLangOpts().ObjCAutoRefCount) { 112 QualType type = var->getType(); 113 114 // Only do this if we inferred the lifetime. Inferred lifetime 115 // will show up as a local qualifier because explicit lifetime 116 // should have shown up as an AttributedType instead. 117 if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) { 118 // Add 'const' and mark the variable as pseudo-strong. 119 var->setType(type.withConst()); 120 var->setARCPseudoStrong(true); 121 } 122 } 123 } 124 125 /// Diagnose unused comparisons, both builtin and overloaded operators. 126 /// For '==' and '!=', suggest fixits for '=' or '|='. 127 /// 128 /// Adding a cast to void (or other expression wrappers) will prevent the 129 /// warning from firing. 130 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) { 131 SourceLocation Loc; 132 bool CanAssign; 133 enum { Equality, Inequality, Relational, ThreeWay } Kind; 134 135 if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) { 136 if (!Op->isComparisonOp()) 137 return false; 138 139 if (Op->getOpcode() == BO_EQ) 140 Kind = Equality; 141 else if (Op->getOpcode() == BO_NE) 142 Kind = Inequality; 143 else if (Op->getOpcode() == BO_Cmp) 144 Kind = ThreeWay; 145 else { 146 assert(Op->isRelationalOp()); 147 Kind = Relational; 148 } 149 Loc = Op->getOperatorLoc(); 150 CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue(); 151 } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) { 152 switch (Op->getOperator()) { 153 case OO_EqualEqual: 154 Kind = Equality; 155 break; 156 case OO_ExclaimEqual: 157 Kind = Inequality; 158 break; 159 case OO_Less: 160 case OO_Greater: 161 case OO_GreaterEqual: 162 case OO_LessEqual: 163 Kind = Relational; 164 break; 165 case OO_Spaceship: 166 Kind = ThreeWay; 167 break; 168 default: 169 return false; 170 } 171 172 Loc = Op->getOperatorLoc(); 173 CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue(); 174 } else { 175 // Not a typo-prone comparison. 176 return false; 177 } 178 179 // Suppress warnings when the operator, suspicious as it may be, comes from 180 // a macro expansion. 181 if (S.SourceMgr.isMacroBodyExpansion(Loc)) 182 return false; 183 184 S.Diag(Loc, diag::warn_unused_comparison) 185 << (unsigned)Kind << E->getSourceRange(); 186 187 // If the LHS is a plausible entity to assign to, provide a fixit hint to 188 // correct common typos. 189 if (CanAssign) { 190 if (Kind == Inequality) 191 S.Diag(Loc, diag::note_inequality_comparison_to_or_assign) 192 << FixItHint::CreateReplacement(Loc, "|="); 193 else if (Kind == Equality) 194 S.Diag(Loc, diag::note_equality_comparison_to_assign) 195 << FixItHint::CreateReplacement(Loc, "="); 196 } 197 198 return true; 199 } 200 201 static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A, 202 SourceLocation Loc, SourceRange R1, 203 SourceRange R2, bool IsCtor) { 204 if (!A) 205 return false; 206 StringRef Msg = A->getMessage(); 207 208 if (Msg.empty()) { 209 if (IsCtor) 210 return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2; 211 return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2; 212 } 213 214 if (IsCtor) 215 return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1 216 << R2; 217 return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2; 218 } 219 220 void Sema::DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID) { 221 if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S)) 222 return DiagnoseUnusedExprResult(Label->getSubStmt(), DiagID); 223 224 const Expr *E = dyn_cast_or_null<Expr>(S); 225 if (!E) 226 return; 227 228 // If we are in an unevaluated expression context, then there can be no unused 229 // results because the results aren't expected to be used in the first place. 230 if (isUnevaluatedContext()) 231 return; 232 233 SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc(); 234 // In most cases, we don't want to warn if the expression is written in a 235 // macro body, or if the macro comes from a system header. If the offending 236 // expression is a call to a function with the warn_unused_result attribute, 237 // we warn no matter the location. Because of the order in which the various 238 // checks need to happen, we factor out the macro-related test here. 239 bool ShouldSuppress = 240 SourceMgr.isMacroBodyExpansion(ExprLoc) || 241 SourceMgr.isInSystemMacro(ExprLoc); 242 243 const Expr *WarnExpr; 244 SourceLocation Loc; 245 SourceRange R1, R2; 246 if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context)) 247 return; 248 249 // If this is a GNU statement expression expanded from a macro, it is probably 250 // unused because it is a function-like macro that can be used as either an 251 // expression or statement. Don't warn, because it is almost certainly a 252 // false positive. 253 if (isa<StmtExpr>(E) && Loc.isMacroID()) 254 return; 255 256 // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers. 257 // That macro is frequently used to suppress "unused parameter" warnings, 258 // but its implementation makes clang's -Wunused-value fire. Prevent this. 259 if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) { 260 SourceLocation SpellLoc = Loc; 261 if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER")) 262 return; 263 } 264 265 // Okay, we have an unused result. Depending on what the base expression is, 266 // we might want to make a more specific diagnostic. Check for one of these 267 // cases now. 268 if (const FullExpr *Temps = dyn_cast<FullExpr>(E)) 269 E = Temps->getSubExpr(); 270 if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E)) 271 E = TempExpr->getSubExpr(); 272 273 if (DiagnoseUnusedComparison(*this, E)) 274 return; 275 276 E = WarnExpr; 277 if (const auto *Cast = dyn_cast<CastExpr>(E)) 278 if (Cast->getCastKind() == CK_NoOp || 279 Cast->getCastKind() == CK_ConstructorConversion) 280 E = Cast->getSubExpr()->IgnoreImpCasts(); 281 282 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 283 if (E->getType()->isVoidType()) 284 return; 285 286 if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>( 287 CE->getUnusedResultAttr(Context)), 288 Loc, R1, R2, /*isCtor=*/false)) 289 return; 290 291 // If the callee has attribute pure, const, or warn_unused_result, warn with 292 // a more specific message to make it clear what is happening. If the call 293 // is written in a macro body, only warn if it has the warn_unused_result 294 // attribute. 295 if (const Decl *FD = CE->getCalleeDecl()) { 296 if (ShouldSuppress) 297 return; 298 if (FD->hasAttr<PureAttr>()) { 299 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure"; 300 return; 301 } 302 if (FD->hasAttr<ConstAttr>()) { 303 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const"; 304 return; 305 } 306 } 307 } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) { 308 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 309 const auto *A = Ctor->getAttr<WarnUnusedResultAttr>(); 310 A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>(); 311 if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true)) 312 return; 313 } 314 } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) { 315 if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) { 316 317 if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1, 318 R2, /*isCtor=*/false)) 319 return; 320 } 321 } else if (ShouldSuppress) 322 return; 323 324 E = WarnExpr; 325 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) { 326 if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) { 327 Diag(Loc, diag::err_arc_unused_init_message) << R1; 328 return; 329 } 330 const ObjCMethodDecl *MD = ME->getMethodDecl(); 331 if (MD) { 332 if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1, 333 R2, /*isCtor=*/false)) 334 return; 335 } 336 } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 337 const Expr *Source = POE->getSyntacticForm(); 338 // Handle the actually selected call of an OpenMP specialized call. 339 if (LangOpts.OpenMP && isa<CallExpr>(Source) && 340 POE->getNumSemanticExprs() == 1 && 341 isa<CallExpr>(POE->getSemanticExpr(0))) 342 return DiagnoseUnusedExprResult(POE->getSemanticExpr(0), DiagID); 343 if (isa<ObjCSubscriptRefExpr>(Source)) 344 DiagID = diag::warn_unused_container_subscript_expr; 345 else if (isa<ObjCPropertyRefExpr>(Source)) 346 DiagID = diag::warn_unused_property_expr; 347 } else if (const CXXFunctionalCastExpr *FC 348 = dyn_cast<CXXFunctionalCastExpr>(E)) { 349 const Expr *E = FC->getSubExpr(); 350 if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E)) 351 E = TE->getSubExpr(); 352 if (isa<CXXTemporaryObjectExpr>(E)) 353 return; 354 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E)) 355 if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl()) 356 if (!RD->getAttr<WarnUnusedAttr>()) 357 return; 358 } 359 // Diagnose "(void*) blah" as a typo for "(void) blah". 360 else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) { 361 TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); 362 QualType T = TI->getType(); 363 364 // We really do want to use the non-canonical type here. 365 if (T == Context.VoidPtrTy) { 366 PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>(); 367 368 Diag(Loc, diag::warn_unused_voidptr) 369 << FixItHint::CreateRemoval(TL.getStarLoc()); 370 return; 371 } 372 } 373 374 // Tell the user to assign it into a variable to force a volatile load if this 375 // isn't an array. 376 if (E->isGLValue() && E->getType().isVolatileQualified() && 377 !E->getType()->isArrayType()) { 378 Diag(Loc, diag::warn_unused_volatile) << R1 << R2; 379 return; 380 } 381 382 // Do not diagnose use of a comma operator in a SFINAE context because the 383 // type of the left operand could be used for SFINAE, so technically it is 384 // *used*. 385 if (DiagID != diag::warn_unused_comma_left_operand || !isSFINAEContext()) 386 DiagIfReachable(Loc, S ? llvm::ArrayRef(S) : std::nullopt, 387 PDiag(DiagID) << R1 << R2); 388 } 389 390 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) { 391 PushCompoundScope(IsStmtExpr); 392 } 393 394 void Sema::ActOnAfterCompoundStatementLeadingPragmas() { 395 if (getCurFPFeatures().isFPConstrained()) { 396 FunctionScopeInfo *FSI = getCurFunction(); 397 assert(FSI); 398 FSI->setUsesFPIntrin(); 399 } 400 } 401 402 void Sema::ActOnFinishOfCompoundStmt() { 403 PopCompoundScope(); 404 } 405 406 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const { 407 return getCurFunction()->CompoundScopes.back(); 408 } 409 410 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, 411 ArrayRef<Stmt *> Elts, bool isStmtExpr) { 412 const unsigned NumElts = Elts.size(); 413 414 // If we're in C mode, check that we don't have any decls after stmts. If 415 // so, emit an extension diagnostic in C89 and potentially a warning in later 416 // versions. 417 const unsigned MixedDeclsCodeID = getLangOpts().C99 418 ? diag::warn_mixed_decls_code 419 : diag::ext_mixed_decls_code; 420 if (!getLangOpts().CPlusPlus && !Diags.isIgnored(MixedDeclsCodeID, L)) { 421 // Note that __extension__ can be around a decl. 422 unsigned i = 0; 423 // Skip over all declarations. 424 for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i) 425 /*empty*/; 426 427 // We found the end of the list or a statement. Scan for another declstmt. 428 for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i) 429 /*empty*/; 430 431 if (i != NumElts) { 432 Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin(); 433 Diag(D->getLocation(), MixedDeclsCodeID); 434 } 435 } 436 437 // Check for suspicious empty body (null statement) in `for' and `while' 438 // statements. Don't do anything for template instantiations, this just adds 439 // noise. 440 if (NumElts != 0 && !CurrentInstantiationScope && 441 getCurCompoundScope().HasEmptyLoopBodies) { 442 for (unsigned i = 0; i != NumElts - 1; ++i) 443 DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]); 444 } 445 446 // Calculate difference between FP options in this compound statement and in 447 // the enclosing one. If this is a function body, take the difference against 448 // default options. In this case the difference will indicate options that are 449 // changed upon entry to the statement. 450 FPOptions FPO = (getCurFunction()->CompoundScopes.size() == 1) 451 ? FPOptions(getLangOpts()) 452 : getCurCompoundScope().InitialFPFeatures; 453 FPOptionsOverride FPDiff = getCurFPFeatures().getChangesFrom(FPO); 454 455 return CompoundStmt::Create(Context, Elts, FPDiff, L, R); 456 } 457 458 ExprResult 459 Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) { 460 if (!Val.get()) 461 return Val; 462 463 if (DiagnoseUnexpandedParameterPack(Val.get())) 464 return ExprError(); 465 466 // If we're not inside a switch, let the 'case' statement handling diagnose 467 // this. Just clean up after the expression as best we can. 468 if (getCurFunction()->SwitchStack.empty()) 469 return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false, 470 getLangOpts().CPlusPlus11); 471 472 Expr *CondExpr = 473 getCurFunction()->SwitchStack.back().getPointer()->getCond(); 474 if (!CondExpr) 475 return ExprError(); 476 QualType CondType = CondExpr->getType(); 477 478 auto CheckAndFinish = [&](Expr *E) { 479 if (CondType->isDependentType() || E->isTypeDependent()) 480 return ExprResult(E); 481 482 if (getLangOpts().CPlusPlus11) { 483 // C++11 [stmt.switch]p2: the constant-expression shall be a converted 484 // constant expression of the promoted type of the switch condition. 485 llvm::APSInt TempVal; 486 return CheckConvertedConstantExpression(E, CondType, TempVal, 487 CCEK_CaseValue); 488 } 489 490 ExprResult ER = E; 491 if (!E->isValueDependent()) 492 ER = VerifyIntegerConstantExpression(E, AllowFold); 493 if (!ER.isInvalid()) 494 ER = DefaultLvalueConversion(ER.get()); 495 if (!ER.isInvalid()) 496 ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast); 497 if (!ER.isInvalid()) 498 ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false); 499 return ER; 500 }; 501 502 ExprResult Converted = CorrectDelayedTyposInExpr( 503 Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false, 504 CheckAndFinish); 505 if (Converted.get() == Val.get()) 506 Converted = CheckAndFinish(Val.get()); 507 return Converted; 508 } 509 510 StmtResult 511 Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal, 512 SourceLocation DotDotDotLoc, ExprResult RHSVal, 513 SourceLocation ColonLoc) { 514 assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value"); 515 assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset() 516 : RHSVal.isInvalid() || RHSVal.get()) && 517 "missing RHS value"); 518 519 if (getCurFunction()->SwitchStack.empty()) { 520 Diag(CaseLoc, diag::err_case_not_in_switch); 521 return StmtError(); 522 } 523 524 if (LHSVal.isInvalid() || RHSVal.isInvalid()) { 525 getCurFunction()->SwitchStack.back().setInt(true); 526 return StmtError(); 527 } 528 529 auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(), 530 CaseLoc, DotDotDotLoc, ColonLoc); 531 getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS); 532 return CS; 533 } 534 535 /// ActOnCaseStmtBody - This installs a statement as the body of a case. 536 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) { 537 cast<CaseStmt>(S)->setSubStmt(SubStmt); 538 } 539 540 StmtResult 541 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, 542 Stmt *SubStmt, Scope *CurScope) { 543 if (getCurFunction()->SwitchStack.empty()) { 544 Diag(DefaultLoc, diag::err_default_not_in_switch); 545 return SubStmt; 546 } 547 548 DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt); 549 getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS); 550 return DS; 551 } 552 553 StmtResult 554 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, 555 SourceLocation ColonLoc, Stmt *SubStmt) { 556 // If the label was multiply defined, reject it now. 557 if (TheDecl->getStmt()) { 558 Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName(); 559 Diag(TheDecl->getLocation(), diag::note_previous_definition); 560 return SubStmt; 561 } 562 563 ReservedIdentifierStatus Status = TheDecl->isReserved(getLangOpts()); 564 if (isReservedInAllContexts(Status) && 565 !Context.getSourceManager().isInSystemHeader(IdentLoc)) 566 Diag(IdentLoc, diag::warn_reserved_extern_symbol) 567 << TheDecl << static_cast<int>(Status); 568 569 // Otherwise, things are good. Fill in the declaration and return it. 570 LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt); 571 TheDecl->setStmt(LS); 572 if (!TheDecl->isGnuLocal()) { 573 TheDecl->setLocStart(IdentLoc); 574 if (!TheDecl->isMSAsmLabel()) { 575 // Don't update the location of MS ASM labels. These will result in 576 // a diagnostic, and changing the location here will mess that up. 577 TheDecl->setLocation(IdentLoc); 578 } 579 } 580 return LS; 581 } 582 583 StmtResult Sema::BuildAttributedStmt(SourceLocation AttrsLoc, 584 ArrayRef<const Attr *> Attrs, 585 Stmt *SubStmt) { 586 // FIXME: this code should move when a planned refactoring around statement 587 // attributes lands. 588 for (const auto *A : Attrs) { 589 if (A->getKind() == attr::MustTail) { 590 if (!checkAndRewriteMustTailAttr(SubStmt, *A)) { 591 return SubStmt; 592 } 593 setFunctionHasMustTail(); 594 } 595 } 596 597 return AttributedStmt::Create(Context, AttrsLoc, Attrs, SubStmt); 598 } 599 600 StmtResult Sema::ActOnAttributedStmt(const ParsedAttributes &Attrs, 601 Stmt *SubStmt) { 602 SmallVector<const Attr *, 1> SemanticAttrs; 603 ProcessStmtAttributes(SubStmt, Attrs, SemanticAttrs); 604 if (!SemanticAttrs.empty()) 605 return BuildAttributedStmt(Attrs.Range.getBegin(), SemanticAttrs, SubStmt); 606 // If none of the attributes applied, that's fine, we can recover by 607 // returning the substatement directly instead of making an AttributedStmt 608 // with no attributes on it. 609 return SubStmt; 610 } 611 612 bool Sema::checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA) { 613 ReturnStmt *R = cast<ReturnStmt>(St); 614 Expr *E = R->getRetValue(); 615 616 if (CurContext->isDependentContext() || (E && E->isInstantiationDependent())) 617 // We have to suspend our check until template instantiation time. 618 return true; 619 620 if (!checkMustTailAttr(St, MTA)) 621 return false; 622 623 // FIXME: Replace Expr::IgnoreImplicitAsWritten() with this function. 624 // Currently it does not skip implicit constructors in an initialization 625 // context. 626 auto IgnoreImplicitAsWritten = [](Expr *E) -> Expr * { 627 return IgnoreExprNodes(E, IgnoreImplicitAsWrittenSingleStep, 628 IgnoreElidableImplicitConstructorSingleStep); 629 }; 630 631 // Now that we have verified that 'musttail' is valid here, rewrite the 632 // return value to remove all implicit nodes, but retain parentheses. 633 R->setRetValue(IgnoreImplicitAsWritten(E)); 634 return true; 635 } 636 637 bool Sema::checkMustTailAttr(const Stmt *St, const Attr &MTA) { 638 assert(!CurContext->isDependentContext() && 639 "musttail cannot be checked from a dependent context"); 640 641 // FIXME: Add Expr::IgnoreParenImplicitAsWritten() with this definition. 642 auto IgnoreParenImplicitAsWritten = [](const Expr *E) -> const Expr * { 643 return IgnoreExprNodes(const_cast<Expr *>(E), IgnoreParensSingleStep, 644 IgnoreImplicitAsWrittenSingleStep, 645 IgnoreElidableImplicitConstructorSingleStep); 646 }; 647 648 const Expr *E = cast<ReturnStmt>(St)->getRetValue(); 649 const auto *CE = dyn_cast_or_null<CallExpr>(IgnoreParenImplicitAsWritten(E)); 650 651 if (!CE) { 652 Diag(St->getBeginLoc(), diag::err_musttail_needs_call) << &MTA; 653 return false; 654 } 655 656 if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) { 657 if (EWC->cleanupsHaveSideEffects()) { 658 Diag(St->getBeginLoc(), diag::err_musttail_needs_trivial_args) << &MTA; 659 return false; 660 } 661 } 662 663 // We need to determine the full function type (including "this" type, if any) 664 // for both caller and callee. 665 struct FuncType { 666 enum { 667 ft_non_member, 668 ft_static_member, 669 ft_non_static_member, 670 ft_pointer_to_member, 671 } MemberType = ft_non_member; 672 673 QualType This; 674 const FunctionProtoType *Func; 675 const CXXMethodDecl *Method = nullptr; 676 } CallerType, CalleeType; 677 678 auto GetMethodType = [this, St, MTA](const CXXMethodDecl *CMD, FuncType &Type, 679 bool IsCallee) -> bool { 680 if (isa<CXXConstructorDecl, CXXDestructorDecl>(CMD)) { 681 Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden) 682 << IsCallee << isa<CXXDestructorDecl>(CMD); 683 if (IsCallee) 684 Diag(CMD->getBeginLoc(), diag::note_musttail_structors_forbidden) 685 << isa<CXXDestructorDecl>(CMD); 686 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 687 return false; 688 } 689 if (CMD->isStatic()) 690 Type.MemberType = FuncType::ft_static_member; 691 else { 692 Type.This = CMD->getFunctionObjectParameterType(); 693 Type.MemberType = FuncType::ft_non_static_member; 694 } 695 Type.Func = CMD->getType()->castAs<FunctionProtoType>(); 696 return true; 697 }; 698 699 const auto *CallerDecl = dyn_cast<FunctionDecl>(CurContext); 700 701 // Find caller function signature. 702 if (!CallerDecl) { 703 int ContextType; 704 if (isa<BlockDecl>(CurContext)) 705 ContextType = 0; 706 else if (isa<ObjCMethodDecl>(CurContext)) 707 ContextType = 1; 708 else 709 ContextType = 2; 710 Diag(St->getBeginLoc(), diag::err_musttail_forbidden_from_this_context) 711 << &MTA << ContextType; 712 return false; 713 } else if (const auto *CMD = dyn_cast<CXXMethodDecl>(CurContext)) { 714 // Caller is a class/struct method. 715 if (!GetMethodType(CMD, CallerType, false)) 716 return false; 717 } else { 718 // Caller is a non-method function. 719 CallerType.Func = CallerDecl->getType()->getAs<FunctionProtoType>(); 720 } 721 722 const Expr *CalleeExpr = CE->getCallee()->IgnoreParens(); 723 const auto *CalleeBinOp = dyn_cast<BinaryOperator>(CalleeExpr); 724 SourceLocation CalleeLoc = CE->getCalleeDecl() 725 ? CE->getCalleeDecl()->getBeginLoc() 726 : St->getBeginLoc(); 727 728 // Find callee function signature. 729 if (const CXXMethodDecl *CMD = 730 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) { 731 // Call is: obj.method(), obj->method(), functor(), etc. 732 if (!GetMethodType(CMD, CalleeType, true)) 733 return false; 734 } else if (CalleeBinOp && CalleeBinOp->isPtrMemOp()) { 735 // Call is: obj->*method_ptr or obj.*method_ptr 736 const auto *MPT = 737 CalleeBinOp->getRHS()->getType()->castAs<MemberPointerType>(); 738 CalleeType.This = QualType(MPT->getClass(), 0); 739 CalleeType.Func = MPT->getPointeeType()->castAs<FunctionProtoType>(); 740 CalleeType.MemberType = FuncType::ft_pointer_to_member; 741 } else if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) { 742 Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden) 743 << /* IsCallee = */ 1 << /* IsDestructor = */ 1; 744 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 745 return false; 746 } else { 747 // Non-method function. 748 CalleeType.Func = 749 CalleeExpr->getType()->getPointeeType()->getAs<FunctionProtoType>(); 750 } 751 752 // Both caller and callee must have a prototype (no K&R declarations). 753 if (!CalleeType.Func || !CallerType.Func) { 754 Diag(St->getBeginLoc(), diag::err_musttail_needs_prototype) << &MTA; 755 if (!CalleeType.Func && CE->getDirectCallee()) { 756 Diag(CE->getDirectCallee()->getBeginLoc(), 757 diag::note_musttail_fix_non_prototype); 758 } 759 if (!CallerType.Func) 760 Diag(CallerDecl->getBeginLoc(), diag::note_musttail_fix_non_prototype); 761 return false; 762 } 763 764 // Caller and callee must have matching calling conventions. 765 // 766 // Some calling conventions are physically capable of supporting tail calls 767 // even if the function types don't perfectly match. LLVM is currently too 768 // strict to allow this, but if LLVM added support for this in the future, we 769 // could exit early here and skip the remaining checks if the functions are 770 // using such a calling convention. 771 if (CallerType.Func->getCallConv() != CalleeType.Func->getCallConv()) { 772 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) 773 Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) 774 << true << ND->getDeclName(); 775 else 776 Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) << false; 777 Diag(CalleeLoc, diag::note_musttail_callconv_mismatch) 778 << FunctionType::getNameForCallConv(CallerType.Func->getCallConv()) 779 << FunctionType::getNameForCallConv(CalleeType.Func->getCallConv()); 780 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 781 return false; 782 } 783 784 if (CalleeType.Func->isVariadic() || CallerType.Func->isVariadic()) { 785 Diag(St->getBeginLoc(), diag::err_musttail_no_variadic) << &MTA; 786 return false; 787 } 788 789 const auto *CalleeDecl = CE->getCalleeDecl(); 790 if (CalleeDecl && CalleeDecl->hasAttr<CXX11NoReturnAttr>()) { 791 Diag(St->getBeginLoc(), diag::err_musttail_no_return) << &MTA; 792 return false; 793 } 794 795 // Caller and callee must match in whether they have a "this" parameter. 796 if (CallerType.This.isNull() != CalleeType.This.isNull()) { 797 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { 798 Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch) 799 << CallerType.MemberType << CalleeType.MemberType << true 800 << ND->getDeclName(); 801 Diag(CalleeLoc, diag::note_musttail_callee_defined_here) 802 << ND->getDeclName(); 803 } else 804 Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch) 805 << CallerType.MemberType << CalleeType.MemberType << false; 806 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 807 return false; 808 } 809 810 auto CheckTypesMatch = [this](FuncType CallerType, FuncType CalleeType, 811 PartialDiagnostic &PD) -> bool { 812 enum { 813 ft_different_class, 814 ft_parameter_arity, 815 ft_parameter_mismatch, 816 ft_return_type, 817 }; 818 819 auto DoTypesMatch = [this, &PD](QualType A, QualType B, 820 unsigned Select) -> bool { 821 if (!Context.hasSimilarType(A, B)) { 822 PD << Select << A.getUnqualifiedType() << B.getUnqualifiedType(); 823 return false; 824 } 825 return true; 826 }; 827 828 if (!CallerType.This.isNull() && 829 !DoTypesMatch(CallerType.This, CalleeType.This, ft_different_class)) 830 return false; 831 832 if (!DoTypesMatch(CallerType.Func->getReturnType(), 833 CalleeType.Func->getReturnType(), ft_return_type)) 834 return false; 835 836 if (CallerType.Func->getNumParams() != CalleeType.Func->getNumParams()) { 837 PD << ft_parameter_arity << CallerType.Func->getNumParams() 838 << CalleeType.Func->getNumParams(); 839 return false; 840 } 841 842 ArrayRef<QualType> CalleeParams = CalleeType.Func->getParamTypes(); 843 ArrayRef<QualType> CallerParams = CallerType.Func->getParamTypes(); 844 size_t N = CallerType.Func->getNumParams(); 845 for (size_t I = 0; I < N; I++) { 846 if (!DoTypesMatch(CalleeParams[I], CallerParams[I], 847 ft_parameter_mismatch)) { 848 PD << static_cast<int>(I) + 1; 849 return false; 850 } 851 } 852 853 return true; 854 }; 855 856 PartialDiagnostic PD = PDiag(diag::note_musttail_mismatch); 857 if (!CheckTypesMatch(CallerType, CalleeType, PD)) { 858 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) 859 Diag(St->getBeginLoc(), diag::err_musttail_mismatch) 860 << true << ND->getDeclName(); 861 else 862 Diag(St->getBeginLoc(), diag::err_musttail_mismatch) << false; 863 Diag(CalleeLoc, PD); 864 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 865 return false; 866 } 867 868 return true; 869 } 870 871 namespace { 872 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> { 873 typedef EvaluatedExprVisitor<CommaVisitor> Inherited; 874 Sema &SemaRef; 875 public: 876 CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {} 877 void VisitBinaryOperator(BinaryOperator *E) { 878 if (E->getOpcode() == BO_Comma) 879 SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc()); 880 EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E); 881 } 882 }; 883 } 884 885 StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc, 886 IfStatementKind StatementKind, 887 SourceLocation LParenLoc, Stmt *InitStmt, 888 ConditionResult Cond, SourceLocation RParenLoc, 889 Stmt *thenStmt, SourceLocation ElseLoc, 890 Stmt *elseStmt) { 891 if (Cond.isInvalid()) 892 return StmtError(); 893 894 bool ConstevalOrNegatedConsteval = 895 StatementKind == IfStatementKind::ConstevalNonNegated || 896 StatementKind == IfStatementKind::ConstevalNegated; 897 898 Expr *CondExpr = Cond.get().second; 899 assert((CondExpr || ConstevalOrNegatedConsteval) && 900 "If statement: missing condition"); 901 // Only call the CommaVisitor when not C89 due to differences in scope flags. 902 if (CondExpr && (getLangOpts().C99 || getLangOpts().CPlusPlus) && 903 !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc())) 904 CommaVisitor(*this).Visit(CondExpr); 905 906 if (!ConstevalOrNegatedConsteval && !elseStmt) 907 DiagnoseEmptyStmtBody(RParenLoc, thenStmt, diag::warn_empty_if_body); 908 909 if (ConstevalOrNegatedConsteval || 910 StatementKind == IfStatementKind::Constexpr) { 911 auto DiagnoseLikelihood = [&](const Stmt *S) { 912 if (const Attr *A = Stmt::getLikelihoodAttr(S)) { 913 Diags.Report(A->getLocation(), 914 diag::warn_attribute_has_no_effect_on_compile_time_if) 915 << A << ConstevalOrNegatedConsteval << A->getRange(); 916 Diags.Report(IfLoc, 917 diag::note_attribute_has_no_effect_on_compile_time_if_here) 918 << ConstevalOrNegatedConsteval 919 << SourceRange(IfLoc, (ConstevalOrNegatedConsteval 920 ? thenStmt->getBeginLoc() 921 : LParenLoc) 922 .getLocWithOffset(-1)); 923 } 924 }; 925 DiagnoseLikelihood(thenStmt); 926 DiagnoseLikelihood(elseStmt); 927 } else { 928 std::tuple<bool, const Attr *, const Attr *> LHC = 929 Stmt::determineLikelihoodConflict(thenStmt, elseStmt); 930 if (std::get<0>(LHC)) { 931 const Attr *ThenAttr = std::get<1>(LHC); 932 const Attr *ElseAttr = std::get<2>(LHC); 933 Diags.Report(ThenAttr->getLocation(), 934 diag::warn_attributes_likelihood_ifstmt_conflict) 935 << ThenAttr << ThenAttr->getRange(); 936 Diags.Report(ElseAttr->getLocation(), diag::note_conflicting_attribute) 937 << ElseAttr << ElseAttr->getRange(); 938 } 939 } 940 941 if (ConstevalOrNegatedConsteval) { 942 bool Immediate = ExprEvalContexts.back().Context == 943 ExpressionEvaluationContext::ImmediateFunctionContext; 944 if (CurContext->isFunctionOrMethod()) { 945 const auto *FD = 946 dyn_cast<FunctionDecl>(Decl::castFromDeclContext(CurContext)); 947 if (FD && FD->isImmediateFunction()) 948 Immediate = true; 949 } 950 if (isUnevaluatedContext() || Immediate) 951 Diags.Report(IfLoc, diag::warn_consteval_if_always_true) << Immediate; 952 } 953 954 return BuildIfStmt(IfLoc, StatementKind, LParenLoc, InitStmt, Cond, RParenLoc, 955 thenStmt, ElseLoc, elseStmt); 956 } 957 958 StmtResult Sema::BuildIfStmt(SourceLocation IfLoc, 959 IfStatementKind StatementKind, 960 SourceLocation LParenLoc, Stmt *InitStmt, 961 ConditionResult Cond, SourceLocation RParenLoc, 962 Stmt *thenStmt, SourceLocation ElseLoc, 963 Stmt *elseStmt) { 964 if (Cond.isInvalid()) 965 return StmtError(); 966 967 if (StatementKind != IfStatementKind::Ordinary || 968 isa<ObjCAvailabilityCheckExpr>(Cond.get().second)) 969 setFunctionHasBranchProtectedScope(); 970 971 return IfStmt::Create(Context, IfLoc, StatementKind, InitStmt, 972 Cond.get().first, Cond.get().second, LParenLoc, 973 RParenLoc, thenStmt, ElseLoc, elseStmt); 974 } 975 976 namespace { 977 struct CaseCompareFunctor { 978 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, 979 const llvm::APSInt &RHS) { 980 return LHS.first < RHS; 981 } 982 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, 983 const std::pair<llvm::APSInt, CaseStmt*> &RHS) { 984 return LHS.first < RHS.first; 985 } 986 bool operator()(const llvm::APSInt &LHS, 987 const std::pair<llvm::APSInt, CaseStmt*> &RHS) { 988 return LHS < RHS.first; 989 } 990 }; 991 } 992 993 /// CmpCaseVals - Comparison predicate for sorting case values. 994 /// 995 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs, 996 const std::pair<llvm::APSInt, CaseStmt*>& rhs) { 997 if (lhs.first < rhs.first) 998 return true; 999 1000 if (lhs.first == rhs.first && 1001 lhs.second->getCaseLoc() < rhs.second->getCaseLoc()) 1002 return true; 1003 return false; 1004 } 1005 1006 /// CmpEnumVals - Comparison predicate for sorting enumeration values. 1007 /// 1008 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, 1009 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) 1010 { 1011 return lhs.first < rhs.first; 1012 } 1013 1014 /// EqEnumVals - Comparison preficate for uniqing enumeration values. 1015 /// 1016 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, 1017 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) 1018 { 1019 return lhs.first == rhs.first; 1020 } 1021 1022 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of 1023 /// potentially integral-promoted expression @p expr. 1024 static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) { 1025 if (const auto *FE = dyn_cast<FullExpr>(E)) 1026 E = FE->getSubExpr(); 1027 while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) { 1028 if (ImpCast->getCastKind() != CK_IntegralCast) break; 1029 E = ImpCast->getSubExpr(); 1030 } 1031 return E->getType(); 1032 } 1033 1034 ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) { 1035 class SwitchConvertDiagnoser : public ICEConvertDiagnoser { 1036 Expr *Cond; 1037 1038 public: 1039 SwitchConvertDiagnoser(Expr *Cond) 1040 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true), 1041 Cond(Cond) {} 1042 1043 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 1044 QualType T) override { 1045 return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T; 1046 } 1047 1048 SemaDiagnosticBuilder diagnoseIncomplete( 1049 Sema &S, SourceLocation Loc, QualType T) override { 1050 return S.Diag(Loc, diag::err_switch_incomplete_class_type) 1051 << T << Cond->getSourceRange(); 1052 } 1053 1054 SemaDiagnosticBuilder diagnoseExplicitConv( 1055 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 1056 return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy; 1057 } 1058 1059 SemaDiagnosticBuilder noteExplicitConv( 1060 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1061 return S.Diag(Conv->getLocation(), diag::note_switch_conversion) 1062 << ConvTy->isEnumeralType() << ConvTy; 1063 } 1064 1065 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 1066 QualType T) override { 1067 return S.Diag(Loc, diag::err_switch_multiple_conversions) << T; 1068 } 1069 1070 SemaDiagnosticBuilder noteAmbiguous( 1071 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1072 return S.Diag(Conv->getLocation(), diag::note_switch_conversion) 1073 << ConvTy->isEnumeralType() << ConvTy; 1074 } 1075 1076 SemaDiagnosticBuilder diagnoseConversion( 1077 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 1078 llvm_unreachable("conversion functions are permitted"); 1079 } 1080 } SwitchDiagnoser(Cond); 1081 1082 ExprResult CondResult = 1083 PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser); 1084 if (CondResult.isInvalid()) 1085 return ExprError(); 1086 1087 // FIXME: PerformContextualImplicitConversion doesn't always tell us if it 1088 // failed and produced a diagnostic. 1089 Cond = CondResult.get(); 1090 if (!Cond->isTypeDependent() && 1091 !Cond->getType()->isIntegralOrEnumerationType()) 1092 return ExprError(); 1093 1094 // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. 1095 return UsualUnaryConversions(Cond); 1096 } 1097 1098 StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, 1099 SourceLocation LParenLoc, 1100 Stmt *InitStmt, ConditionResult Cond, 1101 SourceLocation RParenLoc) { 1102 Expr *CondExpr = Cond.get().second; 1103 assert((Cond.isInvalid() || CondExpr) && "switch with no condition"); 1104 1105 if (CondExpr && !CondExpr->isTypeDependent()) { 1106 // We have already converted the expression to an integral or enumeration 1107 // type, when we parsed the switch condition. There are cases where we don't 1108 // have an appropriate type, e.g. a typo-expr Cond was corrected to an 1109 // inappropriate-type expr, we just return an error. 1110 if (!CondExpr->getType()->isIntegralOrEnumerationType()) 1111 return StmtError(); 1112 if (CondExpr->isKnownToHaveBooleanValue()) { 1113 // switch(bool_expr) {...} is often a programmer error, e.g. 1114 // switch(n && mask) { ... } // Doh - should be "n & mask". 1115 // One can always use an if statement instead of switch(bool_expr). 1116 Diag(SwitchLoc, diag::warn_bool_switch_condition) 1117 << CondExpr->getSourceRange(); 1118 } 1119 } 1120 1121 setFunctionHasBranchIntoScope(); 1122 1123 auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr, 1124 LParenLoc, RParenLoc); 1125 getCurFunction()->SwitchStack.push_back( 1126 FunctionScopeInfo::SwitchInfo(SS, false)); 1127 return SS; 1128 } 1129 1130 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) { 1131 Val = Val.extOrTrunc(BitWidth); 1132 Val.setIsSigned(IsSigned); 1133 } 1134 1135 /// Check the specified case value is in range for the given unpromoted switch 1136 /// type. 1137 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val, 1138 unsigned UnpromotedWidth, bool UnpromotedSign) { 1139 // In C++11 onwards, this is checked by the language rules. 1140 if (S.getLangOpts().CPlusPlus11) 1141 return; 1142 1143 // If the case value was signed and negative and the switch expression is 1144 // unsigned, don't bother to warn: this is implementation-defined behavior. 1145 // FIXME: Introduce a second, default-ignored warning for this case? 1146 if (UnpromotedWidth < Val.getBitWidth()) { 1147 llvm::APSInt ConvVal(Val); 1148 AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign); 1149 AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned()); 1150 // FIXME: Use different diagnostics for overflow in conversion to promoted 1151 // type versus "switch expression cannot have this value". Use proper 1152 // IntRange checking rather than just looking at the unpromoted type here. 1153 if (ConvVal != Val) 1154 S.Diag(Loc, diag::warn_case_value_overflow) << toString(Val, 10) 1155 << toString(ConvVal, 10); 1156 } 1157 } 1158 1159 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy; 1160 1161 /// Returns true if we should emit a diagnostic about this case expression not 1162 /// being a part of the enum used in the switch controlling expression. 1163 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S, 1164 const EnumDecl *ED, 1165 const Expr *CaseExpr, 1166 EnumValsTy::iterator &EI, 1167 EnumValsTy::iterator &EIEnd, 1168 const llvm::APSInt &Val) { 1169 if (!ED->isClosed()) 1170 return false; 1171 1172 if (const DeclRefExpr *DRE = 1173 dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) { 1174 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 1175 QualType VarType = VD->getType(); 1176 QualType EnumType = S.Context.getTypeDeclType(ED); 1177 if (VD->hasGlobalStorage() && VarType.isConstQualified() && 1178 S.Context.hasSameUnqualifiedType(EnumType, VarType)) 1179 return false; 1180 } 1181 } 1182 1183 if (ED->hasAttr<FlagEnumAttr>()) 1184 return !S.IsValueInFlagEnum(ED, Val, false); 1185 1186 while (EI != EIEnd && EI->first < Val) 1187 EI++; 1188 1189 if (EI != EIEnd && EI->first == Val) 1190 return false; 1191 1192 return true; 1193 } 1194 1195 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond, 1196 const Expr *Case) { 1197 QualType CondType = Cond->getType(); 1198 QualType CaseType = Case->getType(); 1199 1200 const EnumType *CondEnumType = CondType->getAs<EnumType>(); 1201 const EnumType *CaseEnumType = CaseType->getAs<EnumType>(); 1202 if (!CondEnumType || !CaseEnumType) 1203 return; 1204 1205 // Ignore anonymous enums. 1206 if (!CondEnumType->getDecl()->getIdentifier() && 1207 !CondEnumType->getDecl()->getTypedefNameForAnonDecl()) 1208 return; 1209 if (!CaseEnumType->getDecl()->getIdentifier() && 1210 !CaseEnumType->getDecl()->getTypedefNameForAnonDecl()) 1211 return; 1212 1213 if (S.Context.hasSameUnqualifiedType(CondType, CaseType)) 1214 return; 1215 1216 S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch) 1217 << CondType << CaseType << Cond->getSourceRange() 1218 << Case->getSourceRange(); 1219 } 1220 1221 StmtResult 1222 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, 1223 Stmt *BodyStmt) { 1224 SwitchStmt *SS = cast<SwitchStmt>(Switch); 1225 bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt(); 1226 assert(SS == getCurFunction()->SwitchStack.back().getPointer() && 1227 "switch stack missing push/pop!"); 1228 1229 getCurFunction()->SwitchStack.pop_back(); 1230 1231 if (!BodyStmt) return StmtError(); 1232 SS->setBody(BodyStmt, SwitchLoc); 1233 1234 Expr *CondExpr = SS->getCond(); 1235 if (!CondExpr) return StmtError(); 1236 1237 QualType CondType = CondExpr->getType(); 1238 1239 // C++ 6.4.2.p2: 1240 // Integral promotions are performed (on the switch condition). 1241 // 1242 // A case value unrepresentable by the original switch condition 1243 // type (before the promotion) doesn't make sense, even when it can 1244 // be represented by the promoted type. Therefore we need to find 1245 // the pre-promotion type of the switch condition. 1246 const Expr *CondExprBeforePromotion = CondExpr; 1247 QualType CondTypeBeforePromotion = 1248 GetTypeBeforeIntegralPromotion(CondExprBeforePromotion); 1249 1250 // Get the bitwidth of the switched-on value after promotions. We must 1251 // convert the integer case values to this width before comparison. 1252 bool HasDependentValue 1253 = CondExpr->isTypeDependent() || CondExpr->isValueDependent(); 1254 unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType); 1255 bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType(); 1256 1257 // Get the width and signedness that the condition might actually have, for 1258 // warning purposes. 1259 // FIXME: Grab an IntRange for the condition rather than using the unpromoted 1260 // type. 1261 unsigned CondWidthBeforePromotion 1262 = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion); 1263 bool CondIsSignedBeforePromotion 1264 = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType(); 1265 1266 // Accumulate all of the case values in a vector so that we can sort them 1267 // and detect duplicates. This vector contains the APInt for the case after 1268 // it has been converted to the condition type. 1269 typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy; 1270 CaseValsTy CaseVals; 1271 1272 // Keep track of any GNU case ranges we see. The APSInt is the low value. 1273 typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy; 1274 CaseRangesTy CaseRanges; 1275 1276 DefaultStmt *TheDefaultStmt = nullptr; 1277 1278 bool CaseListIsErroneous = false; 1279 1280 // FIXME: We'd better diagnose missing or duplicate default labels even 1281 // in the dependent case. Because default labels themselves are never 1282 // dependent. 1283 for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue; 1284 SC = SC->getNextSwitchCase()) { 1285 1286 if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) { 1287 if (TheDefaultStmt) { 1288 Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); 1289 Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev); 1290 1291 // FIXME: Remove the default statement from the switch block so that 1292 // we'll return a valid AST. This requires recursing down the AST and 1293 // finding it, not something we are set up to do right now. For now, 1294 // just lop the entire switch stmt out of the AST. 1295 CaseListIsErroneous = true; 1296 } 1297 TheDefaultStmt = DS; 1298 1299 } else { 1300 CaseStmt *CS = cast<CaseStmt>(SC); 1301 1302 Expr *Lo = CS->getLHS(); 1303 1304 if (Lo->isValueDependent()) { 1305 HasDependentValue = true; 1306 break; 1307 } 1308 1309 // We already verified that the expression has a constant value; 1310 // get that value (prior to conversions). 1311 const Expr *LoBeforePromotion = Lo; 1312 GetTypeBeforeIntegralPromotion(LoBeforePromotion); 1313 llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context); 1314 1315 // Check the unconverted value is within the range of possible values of 1316 // the switch expression. 1317 checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion, 1318 CondIsSignedBeforePromotion); 1319 1320 // FIXME: This duplicates the check performed for warn_not_in_enum below. 1321 checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion, 1322 LoBeforePromotion); 1323 1324 // Convert the value to the same width/sign as the condition. 1325 AdjustAPSInt(LoVal, CondWidth, CondIsSigned); 1326 1327 // If this is a case range, remember it in CaseRanges, otherwise CaseVals. 1328 if (CS->getRHS()) { 1329 if (CS->getRHS()->isValueDependent()) { 1330 HasDependentValue = true; 1331 break; 1332 } 1333 CaseRanges.push_back(std::make_pair(LoVal, CS)); 1334 } else 1335 CaseVals.push_back(std::make_pair(LoVal, CS)); 1336 } 1337 } 1338 1339 if (!HasDependentValue) { 1340 // If we don't have a default statement, check whether the 1341 // condition is constant. 1342 llvm::APSInt ConstantCondValue; 1343 bool HasConstantCond = false; 1344 if (!TheDefaultStmt) { 1345 Expr::EvalResult Result; 1346 HasConstantCond = CondExpr->EvaluateAsInt(Result, Context, 1347 Expr::SE_AllowSideEffects); 1348 if (Result.Val.isInt()) 1349 ConstantCondValue = Result.Val.getInt(); 1350 assert(!HasConstantCond || 1351 (ConstantCondValue.getBitWidth() == CondWidth && 1352 ConstantCondValue.isSigned() == CondIsSigned)); 1353 Diag(SwitchLoc, diag::warn_switch_default); 1354 } 1355 bool ShouldCheckConstantCond = HasConstantCond; 1356 1357 // Sort all the scalar case values so we can easily detect duplicates. 1358 llvm::stable_sort(CaseVals, CmpCaseVals); 1359 1360 if (!CaseVals.empty()) { 1361 for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) { 1362 if (ShouldCheckConstantCond && 1363 CaseVals[i].first == ConstantCondValue) 1364 ShouldCheckConstantCond = false; 1365 1366 if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) { 1367 // If we have a duplicate, report it. 1368 // First, determine if either case value has a name 1369 StringRef PrevString, CurrString; 1370 Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts(); 1371 Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts(); 1372 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) { 1373 PrevString = DeclRef->getDecl()->getName(); 1374 } 1375 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) { 1376 CurrString = DeclRef->getDecl()->getName(); 1377 } 1378 SmallString<16> CaseValStr; 1379 CaseVals[i-1].first.toString(CaseValStr); 1380 1381 if (PrevString == CurrString) 1382 Diag(CaseVals[i].second->getLHS()->getBeginLoc(), 1383 diag::err_duplicate_case) 1384 << (PrevString.empty() ? CaseValStr.str() : PrevString); 1385 else 1386 Diag(CaseVals[i].second->getLHS()->getBeginLoc(), 1387 diag::err_duplicate_case_differing_expr) 1388 << (PrevString.empty() ? CaseValStr.str() : PrevString) 1389 << (CurrString.empty() ? CaseValStr.str() : CurrString) 1390 << CaseValStr; 1391 1392 Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(), 1393 diag::note_duplicate_case_prev); 1394 // FIXME: We really want to remove the bogus case stmt from the 1395 // substmt, but we have no way to do this right now. 1396 CaseListIsErroneous = true; 1397 } 1398 } 1399 } 1400 1401 // Detect duplicate case ranges, which usually don't exist at all in 1402 // the first place. 1403 if (!CaseRanges.empty()) { 1404 // Sort all the case ranges by their low value so we can easily detect 1405 // overlaps between ranges. 1406 llvm::stable_sort(CaseRanges); 1407 1408 // Scan the ranges, computing the high values and removing empty ranges. 1409 std::vector<llvm::APSInt> HiVals; 1410 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { 1411 llvm::APSInt &LoVal = CaseRanges[i].first; 1412 CaseStmt *CR = CaseRanges[i].second; 1413 Expr *Hi = CR->getRHS(); 1414 1415 const Expr *HiBeforePromotion = Hi; 1416 GetTypeBeforeIntegralPromotion(HiBeforePromotion); 1417 llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context); 1418 1419 // Check the unconverted value is within the range of possible values of 1420 // the switch expression. 1421 checkCaseValue(*this, Hi->getBeginLoc(), HiVal, 1422 CondWidthBeforePromotion, CondIsSignedBeforePromotion); 1423 1424 // Convert the value to the same width/sign as the condition. 1425 AdjustAPSInt(HiVal, CondWidth, CondIsSigned); 1426 1427 // If the low value is bigger than the high value, the case is empty. 1428 if (LoVal > HiVal) { 1429 Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range) 1430 << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc()); 1431 CaseRanges.erase(CaseRanges.begin()+i); 1432 --i; 1433 --e; 1434 continue; 1435 } 1436 1437 if (ShouldCheckConstantCond && 1438 LoVal <= ConstantCondValue && 1439 ConstantCondValue <= HiVal) 1440 ShouldCheckConstantCond = false; 1441 1442 HiVals.push_back(HiVal); 1443 } 1444 1445 // Rescan the ranges, looking for overlap with singleton values and other 1446 // ranges. Since the range list is sorted, we only need to compare case 1447 // ranges with their neighbors. 1448 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { 1449 llvm::APSInt &CRLo = CaseRanges[i].first; 1450 llvm::APSInt &CRHi = HiVals[i]; 1451 CaseStmt *CR = CaseRanges[i].second; 1452 1453 // Check to see whether the case range overlaps with any 1454 // singleton cases. 1455 CaseStmt *OverlapStmt = nullptr; 1456 llvm::APSInt OverlapVal(32); 1457 1458 // Find the smallest value >= the lower bound. If I is in the 1459 // case range, then we have overlap. 1460 CaseValsTy::iterator I = 1461 llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor()); 1462 if (I != CaseVals.end() && I->first < CRHi) { 1463 OverlapVal = I->first; // Found overlap with scalar. 1464 OverlapStmt = I->second; 1465 } 1466 1467 // Find the smallest value bigger than the upper bound. 1468 I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); 1469 if (I != CaseVals.begin() && (I-1)->first >= CRLo) { 1470 OverlapVal = (I-1)->first; // Found overlap with scalar. 1471 OverlapStmt = (I-1)->second; 1472 } 1473 1474 // Check to see if this case stmt overlaps with the subsequent 1475 // case range. 1476 if (i && CRLo <= HiVals[i-1]) { 1477 OverlapVal = HiVals[i-1]; // Found overlap with range. 1478 OverlapStmt = CaseRanges[i-1].second; 1479 } 1480 1481 if (OverlapStmt) { 1482 // If we have a duplicate, report it. 1483 Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case) 1484 << toString(OverlapVal, 10); 1485 Diag(OverlapStmt->getLHS()->getBeginLoc(), 1486 diag::note_duplicate_case_prev); 1487 // FIXME: We really want to remove the bogus case stmt from the 1488 // substmt, but we have no way to do this right now. 1489 CaseListIsErroneous = true; 1490 } 1491 } 1492 } 1493 1494 // Complain if we have a constant condition and we didn't find a match. 1495 if (!CaseListIsErroneous && !CaseListIsIncomplete && 1496 ShouldCheckConstantCond) { 1497 // TODO: it would be nice if we printed enums as enums, chars as 1498 // chars, etc. 1499 Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition) 1500 << toString(ConstantCondValue, 10) 1501 << CondExpr->getSourceRange(); 1502 } 1503 1504 // Check to see if switch is over an Enum and handles all of its 1505 // values. We only issue a warning if there is not 'default:', but 1506 // we still do the analysis to preserve this information in the AST 1507 // (which can be used by flow-based analyes). 1508 // 1509 const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>(); 1510 1511 // If switch has default case, then ignore it. 1512 if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond && 1513 ET && ET->getDecl()->isCompleteDefinition() && 1514 !ET->getDecl()->enumerators().empty()) { 1515 const EnumDecl *ED = ET->getDecl(); 1516 EnumValsTy EnumVals; 1517 1518 // Gather all enum values, set their type and sort them, 1519 // allowing easier comparison with CaseVals. 1520 for (auto *EDI : ED->enumerators()) { 1521 llvm::APSInt Val = EDI->getInitVal(); 1522 AdjustAPSInt(Val, CondWidth, CondIsSigned); 1523 EnumVals.push_back(std::make_pair(Val, EDI)); 1524 } 1525 llvm::stable_sort(EnumVals, CmpEnumVals); 1526 auto EI = EnumVals.begin(), EIEnd = 1527 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); 1528 1529 // See which case values aren't in enum. 1530 for (CaseValsTy::const_iterator CI = CaseVals.begin(); 1531 CI != CaseVals.end(); CI++) { 1532 Expr *CaseExpr = CI->second->getLHS(); 1533 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, 1534 CI->first)) 1535 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) 1536 << CondTypeBeforePromotion; 1537 } 1538 1539 // See which of case ranges aren't in enum 1540 EI = EnumVals.begin(); 1541 for (CaseRangesTy::const_iterator RI = CaseRanges.begin(); 1542 RI != CaseRanges.end(); RI++) { 1543 Expr *CaseExpr = RI->second->getLHS(); 1544 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, 1545 RI->first)) 1546 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) 1547 << CondTypeBeforePromotion; 1548 1549 llvm::APSInt Hi = 1550 RI->second->getRHS()->EvaluateKnownConstInt(Context); 1551 AdjustAPSInt(Hi, CondWidth, CondIsSigned); 1552 1553 CaseExpr = RI->second->getRHS(); 1554 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, 1555 Hi)) 1556 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) 1557 << CondTypeBeforePromotion; 1558 } 1559 1560 // Check which enum vals aren't in switch 1561 auto CI = CaseVals.begin(); 1562 auto RI = CaseRanges.begin(); 1563 bool hasCasesNotInSwitch = false; 1564 1565 SmallVector<DeclarationName,8> UnhandledNames; 1566 1567 for (EI = EnumVals.begin(); EI != EIEnd; EI++) { 1568 // Don't warn about omitted unavailable EnumConstantDecls. 1569 switch (EI->second->getAvailability()) { 1570 case AR_Deprecated: 1571 // Omitting a deprecated constant is ok; it should never materialize. 1572 case AR_Unavailable: 1573 continue; 1574 1575 case AR_NotYetIntroduced: 1576 // Partially available enum constants should be present. Note that we 1577 // suppress -Wunguarded-availability diagnostics for such uses. 1578 case AR_Available: 1579 break; 1580 } 1581 1582 if (EI->second->hasAttr<UnusedAttr>()) 1583 continue; 1584 1585 // Drop unneeded case values 1586 while (CI != CaseVals.end() && CI->first < EI->first) 1587 CI++; 1588 1589 if (CI != CaseVals.end() && CI->first == EI->first) 1590 continue; 1591 1592 // Drop unneeded case ranges 1593 for (; RI != CaseRanges.end(); RI++) { 1594 llvm::APSInt Hi = 1595 RI->second->getRHS()->EvaluateKnownConstInt(Context); 1596 AdjustAPSInt(Hi, CondWidth, CondIsSigned); 1597 if (EI->first <= Hi) 1598 break; 1599 } 1600 1601 if (RI == CaseRanges.end() || EI->first < RI->first) { 1602 hasCasesNotInSwitch = true; 1603 UnhandledNames.push_back(EI->second->getDeclName()); 1604 } 1605 } 1606 1607 if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag()) 1608 Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default); 1609 1610 // Produce a nice diagnostic if multiple values aren't handled. 1611 if (!UnhandledNames.empty()) { 1612 auto DB = Diag(CondExpr->getExprLoc(), TheDefaultStmt 1613 ? diag::warn_def_missing_case 1614 : diag::warn_missing_case) 1615 << CondExpr->getSourceRange() << (int)UnhandledNames.size(); 1616 1617 for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3); 1618 I != E; ++I) 1619 DB << UnhandledNames[I]; 1620 } 1621 1622 if (!hasCasesNotInSwitch) 1623 SS->setAllEnumCasesCovered(); 1624 } 1625 } 1626 1627 if (BodyStmt) 1628 DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt, 1629 diag::warn_empty_switch_body); 1630 1631 // FIXME: If the case list was broken is some way, we don't have a good system 1632 // to patch it up. Instead, just return the whole substmt as broken. 1633 if (CaseListIsErroneous) 1634 return StmtError(); 1635 1636 return SS; 1637 } 1638 1639 void 1640 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, 1641 Expr *SrcExpr) { 1642 if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc())) 1643 return; 1644 1645 if (const EnumType *ET = DstType->getAs<EnumType>()) 1646 if (!Context.hasSameUnqualifiedType(SrcType, DstType) && 1647 SrcType->isIntegerType()) { 1648 if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() && 1649 SrcExpr->isIntegerConstantExpr(Context)) { 1650 // Get the bitwidth of the enum value before promotions. 1651 unsigned DstWidth = Context.getIntWidth(DstType); 1652 bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType(); 1653 1654 llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context); 1655 AdjustAPSInt(RhsVal, DstWidth, DstIsSigned); 1656 const EnumDecl *ED = ET->getDecl(); 1657 1658 if (!ED->isClosed()) 1659 return; 1660 1661 if (ED->hasAttr<FlagEnumAttr>()) { 1662 if (!IsValueInFlagEnum(ED, RhsVal, true)) 1663 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) 1664 << DstType.getUnqualifiedType(); 1665 } else { 1666 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64> 1667 EnumValsTy; 1668 EnumValsTy EnumVals; 1669 1670 // Gather all enum values, set their type and sort them, 1671 // allowing easier comparison with rhs constant. 1672 for (auto *EDI : ED->enumerators()) { 1673 llvm::APSInt Val = EDI->getInitVal(); 1674 AdjustAPSInt(Val, DstWidth, DstIsSigned); 1675 EnumVals.push_back(std::make_pair(Val, EDI)); 1676 } 1677 if (EnumVals.empty()) 1678 return; 1679 llvm::stable_sort(EnumVals, CmpEnumVals); 1680 EnumValsTy::iterator EIend = 1681 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); 1682 1683 // See which values aren't in the enum. 1684 EnumValsTy::const_iterator EI = EnumVals.begin(); 1685 while (EI != EIend && EI->first < RhsVal) 1686 EI++; 1687 if (EI == EIend || EI->first != RhsVal) { 1688 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) 1689 << DstType.getUnqualifiedType(); 1690 } 1691 } 1692 } 1693 } 1694 } 1695 1696 StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, 1697 SourceLocation LParenLoc, ConditionResult Cond, 1698 SourceLocation RParenLoc, Stmt *Body) { 1699 if (Cond.isInvalid()) 1700 return StmtError(); 1701 1702 auto CondVal = Cond.get(); 1703 CheckBreakContinueBinding(CondVal.second); 1704 1705 if (CondVal.second && 1706 !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc())) 1707 CommaVisitor(*this).Visit(CondVal.second); 1708 1709 if (isa<NullStmt>(Body)) 1710 getCurCompoundScope().setHasEmptyLoopBodies(); 1711 1712 return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body, 1713 WhileLoc, LParenLoc, RParenLoc); 1714 } 1715 1716 StmtResult 1717 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, 1718 SourceLocation WhileLoc, SourceLocation CondLParen, 1719 Expr *Cond, SourceLocation CondRParen) { 1720 assert(Cond && "ActOnDoStmt(): missing expression"); 1721 1722 CheckBreakContinueBinding(Cond); 1723 ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond); 1724 if (CondResult.isInvalid()) 1725 return StmtError(); 1726 Cond = CondResult.get(); 1727 1728 CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false); 1729 if (CondResult.isInvalid()) 1730 return StmtError(); 1731 Cond = CondResult.get(); 1732 1733 // Only call the CommaVisitor for C89 due to differences in scope flags. 1734 if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus && 1735 !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc())) 1736 CommaVisitor(*this).Visit(Cond); 1737 1738 return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen); 1739 } 1740 1741 namespace { 1742 // Use SetVector since the diagnostic cares about the ordering of the Decl's. 1743 using DeclSetVector = llvm::SmallSetVector<VarDecl *, 8>; 1744 1745 // This visitor will traverse a conditional statement and store all 1746 // the evaluated decls into a vector. Simple is set to true if none 1747 // of the excluded constructs are used. 1748 class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> { 1749 DeclSetVector &Decls; 1750 SmallVectorImpl<SourceRange> &Ranges; 1751 bool Simple; 1752 public: 1753 typedef EvaluatedExprVisitor<DeclExtractor> Inherited; 1754 1755 DeclExtractor(Sema &S, DeclSetVector &Decls, 1756 SmallVectorImpl<SourceRange> &Ranges) : 1757 Inherited(S.Context), 1758 Decls(Decls), 1759 Ranges(Ranges), 1760 Simple(true) {} 1761 1762 bool isSimple() { return Simple; } 1763 1764 // Replaces the method in EvaluatedExprVisitor. 1765 void VisitMemberExpr(MemberExpr* E) { 1766 Simple = false; 1767 } 1768 1769 // Any Stmt not explicitly listed will cause the condition to be marked 1770 // complex. 1771 void VisitStmt(Stmt *S) { Simple = false; } 1772 1773 void VisitBinaryOperator(BinaryOperator *E) { 1774 Visit(E->getLHS()); 1775 Visit(E->getRHS()); 1776 } 1777 1778 void VisitCastExpr(CastExpr *E) { 1779 Visit(E->getSubExpr()); 1780 } 1781 1782 void VisitUnaryOperator(UnaryOperator *E) { 1783 // Skip checking conditionals with derefernces. 1784 if (E->getOpcode() == UO_Deref) 1785 Simple = false; 1786 else 1787 Visit(E->getSubExpr()); 1788 } 1789 1790 void VisitConditionalOperator(ConditionalOperator *E) { 1791 Visit(E->getCond()); 1792 Visit(E->getTrueExpr()); 1793 Visit(E->getFalseExpr()); 1794 } 1795 1796 void VisitParenExpr(ParenExpr *E) { 1797 Visit(E->getSubExpr()); 1798 } 1799 1800 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { 1801 Visit(E->getOpaqueValue()->getSourceExpr()); 1802 Visit(E->getFalseExpr()); 1803 } 1804 1805 void VisitIntegerLiteral(IntegerLiteral *E) { } 1806 void VisitFloatingLiteral(FloatingLiteral *E) { } 1807 void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { } 1808 void VisitCharacterLiteral(CharacterLiteral *E) { } 1809 void VisitGNUNullExpr(GNUNullExpr *E) { } 1810 void VisitImaginaryLiteral(ImaginaryLiteral *E) { } 1811 1812 void VisitDeclRefExpr(DeclRefExpr *E) { 1813 VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()); 1814 if (!VD) { 1815 // Don't allow unhandled Decl types. 1816 Simple = false; 1817 return; 1818 } 1819 1820 Ranges.push_back(E->getSourceRange()); 1821 1822 Decls.insert(VD); 1823 } 1824 1825 }; // end class DeclExtractor 1826 1827 // DeclMatcher checks to see if the decls are used in a non-evaluated 1828 // context. 1829 class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> { 1830 DeclSetVector &Decls; 1831 bool FoundDecl; 1832 1833 public: 1834 typedef EvaluatedExprVisitor<DeclMatcher> Inherited; 1835 1836 DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) : 1837 Inherited(S.Context), Decls(Decls), FoundDecl(false) { 1838 if (!Statement) return; 1839 1840 Visit(Statement); 1841 } 1842 1843 void VisitReturnStmt(ReturnStmt *S) { 1844 FoundDecl = true; 1845 } 1846 1847 void VisitBreakStmt(BreakStmt *S) { 1848 FoundDecl = true; 1849 } 1850 1851 void VisitGotoStmt(GotoStmt *S) { 1852 FoundDecl = true; 1853 } 1854 1855 void VisitCastExpr(CastExpr *E) { 1856 if (E->getCastKind() == CK_LValueToRValue) 1857 CheckLValueToRValueCast(E->getSubExpr()); 1858 else 1859 Visit(E->getSubExpr()); 1860 } 1861 1862 void CheckLValueToRValueCast(Expr *E) { 1863 E = E->IgnoreParenImpCasts(); 1864 1865 if (isa<DeclRefExpr>(E)) { 1866 return; 1867 } 1868 1869 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 1870 Visit(CO->getCond()); 1871 CheckLValueToRValueCast(CO->getTrueExpr()); 1872 CheckLValueToRValueCast(CO->getFalseExpr()); 1873 return; 1874 } 1875 1876 if (BinaryConditionalOperator *BCO = 1877 dyn_cast<BinaryConditionalOperator>(E)) { 1878 CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr()); 1879 CheckLValueToRValueCast(BCO->getFalseExpr()); 1880 return; 1881 } 1882 1883 Visit(E); 1884 } 1885 1886 void VisitDeclRefExpr(DeclRefExpr *E) { 1887 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) 1888 if (Decls.count(VD)) 1889 FoundDecl = true; 1890 } 1891 1892 void VisitPseudoObjectExpr(PseudoObjectExpr *POE) { 1893 // Only need to visit the semantics for POE. 1894 // SyntaticForm doesn't really use the Decal. 1895 for (auto *S : POE->semantics()) { 1896 if (auto *OVE = dyn_cast<OpaqueValueExpr>(S)) 1897 // Look past the OVE into the expression it binds. 1898 Visit(OVE->getSourceExpr()); 1899 else 1900 Visit(S); 1901 } 1902 } 1903 1904 bool FoundDeclInUse() { return FoundDecl; } 1905 1906 }; // end class DeclMatcher 1907 1908 void CheckForLoopConditionalStatement(Sema &S, Expr *Second, 1909 Expr *Third, Stmt *Body) { 1910 // Condition is empty 1911 if (!Second) return; 1912 1913 if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body, 1914 Second->getBeginLoc())) 1915 return; 1916 1917 PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body); 1918 DeclSetVector Decls; 1919 SmallVector<SourceRange, 10> Ranges; 1920 DeclExtractor DE(S, Decls, Ranges); 1921 DE.Visit(Second); 1922 1923 // Don't analyze complex conditionals. 1924 if (!DE.isSimple()) return; 1925 1926 // No decls found. 1927 if (Decls.size() == 0) return; 1928 1929 // Don't warn on volatile, static, or global variables. 1930 for (auto *VD : Decls) 1931 if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage()) 1932 return; 1933 1934 if (DeclMatcher(S, Decls, Second).FoundDeclInUse() || 1935 DeclMatcher(S, Decls, Third).FoundDeclInUse() || 1936 DeclMatcher(S, Decls, Body).FoundDeclInUse()) 1937 return; 1938 1939 // Load decl names into diagnostic. 1940 if (Decls.size() > 4) { 1941 PDiag << 0; 1942 } else { 1943 PDiag << (unsigned)Decls.size(); 1944 for (auto *VD : Decls) 1945 PDiag << VD->getDeclName(); 1946 } 1947 1948 for (auto Range : Ranges) 1949 PDiag << Range; 1950 1951 S.Diag(Ranges.begin()->getBegin(), PDiag); 1952 } 1953 1954 // If Statement is an incemement or decrement, return true and sets the 1955 // variables Increment and DRE. 1956 bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment, 1957 DeclRefExpr *&DRE) { 1958 if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement)) 1959 if (!Cleanups->cleanupsHaveSideEffects()) 1960 Statement = Cleanups->getSubExpr(); 1961 1962 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) { 1963 switch (UO->getOpcode()) { 1964 default: return false; 1965 case UO_PostInc: 1966 case UO_PreInc: 1967 Increment = true; 1968 break; 1969 case UO_PostDec: 1970 case UO_PreDec: 1971 Increment = false; 1972 break; 1973 } 1974 DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr()); 1975 return DRE; 1976 } 1977 1978 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) { 1979 FunctionDecl *FD = Call->getDirectCallee(); 1980 if (!FD || !FD->isOverloadedOperator()) return false; 1981 switch (FD->getOverloadedOperator()) { 1982 default: return false; 1983 case OO_PlusPlus: 1984 Increment = true; 1985 break; 1986 case OO_MinusMinus: 1987 Increment = false; 1988 break; 1989 } 1990 DRE = dyn_cast<DeclRefExpr>(Call->getArg(0)); 1991 return DRE; 1992 } 1993 1994 return false; 1995 } 1996 1997 // A visitor to determine if a continue or break statement is a 1998 // subexpression. 1999 class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> { 2000 SourceLocation BreakLoc; 2001 SourceLocation ContinueLoc; 2002 bool InSwitch = false; 2003 2004 public: 2005 BreakContinueFinder(Sema &S, const Stmt* Body) : 2006 Inherited(S.Context) { 2007 Visit(Body); 2008 } 2009 2010 typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited; 2011 2012 void VisitContinueStmt(const ContinueStmt* E) { 2013 ContinueLoc = E->getContinueLoc(); 2014 } 2015 2016 void VisitBreakStmt(const BreakStmt* E) { 2017 if (!InSwitch) 2018 BreakLoc = E->getBreakLoc(); 2019 } 2020 2021 void VisitSwitchStmt(const SwitchStmt* S) { 2022 if (const Stmt *Init = S->getInit()) 2023 Visit(Init); 2024 if (const Stmt *CondVar = S->getConditionVariableDeclStmt()) 2025 Visit(CondVar); 2026 if (const Stmt *Cond = S->getCond()) 2027 Visit(Cond); 2028 2029 // Don't return break statements from the body of a switch. 2030 InSwitch = true; 2031 if (const Stmt *Body = S->getBody()) 2032 Visit(Body); 2033 InSwitch = false; 2034 } 2035 2036 void VisitForStmt(const ForStmt *S) { 2037 // Only visit the init statement of a for loop; the body 2038 // has a different break/continue scope. 2039 if (const Stmt *Init = S->getInit()) 2040 Visit(Init); 2041 } 2042 2043 void VisitWhileStmt(const WhileStmt *) { 2044 // Do nothing; the children of a while loop have a different 2045 // break/continue scope. 2046 } 2047 2048 void VisitDoStmt(const DoStmt *) { 2049 // Do nothing; the children of a while loop have a different 2050 // break/continue scope. 2051 } 2052 2053 void VisitCXXForRangeStmt(const CXXForRangeStmt *S) { 2054 // Only visit the initialization of a for loop; the body 2055 // has a different break/continue scope. 2056 if (const Stmt *Init = S->getInit()) 2057 Visit(Init); 2058 if (const Stmt *Range = S->getRangeStmt()) 2059 Visit(Range); 2060 if (const Stmt *Begin = S->getBeginStmt()) 2061 Visit(Begin); 2062 if (const Stmt *End = S->getEndStmt()) 2063 Visit(End); 2064 } 2065 2066 void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) { 2067 // Only visit the initialization of a for loop; the body 2068 // has a different break/continue scope. 2069 if (const Stmt *Element = S->getElement()) 2070 Visit(Element); 2071 if (const Stmt *Collection = S->getCollection()) 2072 Visit(Collection); 2073 } 2074 2075 bool ContinueFound() { return ContinueLoc.isValid(); } 2076 bool BreakFound() { return BreakLoc.isValid(); } 2077 SourceLocation GetContinueLoc() { return ContinueLoc; } 2078 SourceLocation GetBreakLoc() { return BreakLoc; } 2079 2080 }; // end class BreakContinueFinder 2081 2082 // Emit a warning when a loop increment/decrement appears twice per loop 2083 // iteration. The conditions which trigger this warning are: 2084 // 1) The last statement in the loop body and the third expression in the 2085 // for loop are both increment or both decrement of the same variable 2086 // 2) No continue statements in the loop body. 2087 void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) { 2088 // Return when there is nothing to check. 2089 if (!Body || !Third) return; 2090 2091 if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration, 2092 Third->getBeginLoc())) 2093 return; 2094 2095 // Get the last statement from the loop body. 2096 CompoundStmt *CS = dyn_cast<CompoundStmt>(Body); 2097 if (!CS || CS->body_empty()) return; 2098 Stmt *LastStmt = CS->body_back(); 2099 if (!LastStmt) return; 2100 2101 bool LoopIncrement, LastIncrement; 2102 DeclRefExpr *LoopDRE, *LastDRE; 2103 2104 if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return; 2105 if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return; 2106 2107 // Check that the two statements are both increments or both decrements 2108 // on the same variable. 2109 if (LoopIncrement != LastIncrement || 2110 LoopDRE->getDecl() != LastDRE->getDecl()) return; 2111 2112 if (BreakContinueFinder(S, Body).ContinueFound()) return; 2113 2114 S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration) 2115 << LastDRE->getDecl() << LastIncrement; 2116 S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here) 2117 << LoopIncrement; 2118 } 2119 2120 } // end namespace 2121 2122 2123 void Sema::CheckBreakContinueBinding(Expr *E) { 2124 if (!E || getLangOpts().CPlusPlus) 2125 return; 2126 BreakContinueFinder BCFinder(*this, E); 2127 Scope *BreakParent = CurScope->getBreakParent(); 2128 if (BCFinder.BreakFound() && BreakParent) { 2129 if (BreakParent->getFlags() & Scope::SwitchScope) { 2130 Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch); 2131 } else { 2132 Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner) 2133 << "break"; 2134 } 2135 } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) { 2136 Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner) 2137 << "continue"; 2138 } 2139 } 2140 2141 StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, 2142 Stmt *First, ConditionResult Second, 2143 FullExprArg third, SourceLocation RParenLoc, 2144 Stmt *Body) { 2145 if (Second.isInvalid()) 2146 return StmtError(); 2147 2148 if (!getLangOpts().CPlusPlus) { 2149 if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) { 2150 // C99 6.8.5p3: The declaration part of a 'for' statement shall only 2151 // declare identifiers for objects having storage class 'auto' or 2152 // 'register'. 2153 const Decl *NonVarSeen = nullptr; 2154 bool VarDeclSeen = false; 2155 for (auto *DI : DS->decls()) { 2156 if (VarDecl *VD = dyn_cast<VarDecl>(DI)) { 2157 VarDeclSeen = true; 2158 if (VD->isLocalVarDecl() && !VD->hasLocalStorage()) { 2159 Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for); 2160 DI->setInvalidDecl(); 2161 } 2162 } else if (!NonVarSeen) { 2163 // Keep track of the first non-variable declaration we saw so that 2164 // we can diagnose if we don't see any variable declarations. This 2165 // covers a case like declaring a typedef, function, or structure 2166 // type rather than a variable. 2167 NonVarSeen = DI; 2168 } 2169 } 2170 // Diagnose if we saw a non-variable declaration but no variable 2171 // declarations. 2172 if (NonVarSeen && !VarDeclSeen) 2173 Diag(NonVarSeen->getLocation(), diag::err_non_variable_decl_in_for); 2174 } 2175 } 2176 2177 CheckBreakContinueBinding(Second.get().second); 2178 CheckBreakContinueBinding(third.get()); 2179 2180 if (!Second.get().first) 2181 CheckForLoopConditionalStatement(*this, Second.get().second, third.get(), 2182 Body); 2183 CheckForRedundantIteration(*this, third.get(), Body); 2184 2185 if (Second.get().second && 2186 !Diags.isIgnored(diag::warn_comma_operator, 2187 Second.get().second->getExprLoc())) 2188 CommaVisitor(*this).Visit(Second.get().second); 2189 2190 Expr *Third = third.release().getAs<Expr>(); 2191 if (isa<NullStmt>(Body)) 2192 getCurCompoundScope().setHasEmptyLoopBodies(); 2193 2194 return new (Context) 2195 ForStmt(Context, First, Second.get().second, Second.get().first, Third, 2196 Body, ForLoc, LParenLoc, RParenLoc); 2197 } 2198 2199 /// In an Objective C collection iteration statement: 2200 /// for (x in y) 2201 /// x can be an arbitrary l-value expression. Bind it up as a 2202 /// full-expression. 2203 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) { 2204 // Reduce placeholder expressions here. Note that this rejects the 2205 // use of pseudo-object l-values in this position. 2206 ExprResult result = CheckPlaceholderExpr(E); 2207 if (result.isInvalid()) return StmtError(); 2208 E = result.get(); 2209 2210 ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false); 2211 if (FullExpr.isInvalid()) 2212 return StmtError(); 2213 return StmtResult(static_cast<Stmt*>(FullExpr.get())); 2214 } 2215 2216 ExprResult 2217 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) { 2218 if (!collection) 2219 return ExprError(); 2220 2221 ExprResult result = CorrectDelayedTyposInExpr(collection); 2222 if (!result.isUsable()) 2223 return ExprError(); 2224 collection = result.get(); 2225 2226 // Bail out early if we've got a type-dependent expression. 2227 if (collection->isTypeDependent()) return collection; 2228 2229 // Perform normal l-value conversion. 2230 result = DefaultFunctionArrayLvalueConversion(collection); 2231 if (result.isInvalid()) 2232 return ExprError(); 2233 collection = result.get(); 2234 2235 // The operand needs to have object-pointer type. 2236 // TODO: should we do a contextual conversion? 2237 const ObjCObjectPointerType *pointerType = 2238 collection->getType()->getAs<ObjCObjectPointerType>(); 2239 if (!pointerType) 2240 return Diag(forLoc, diag::err_collection_expr_type) 2241 << collection->getType() << collection->getSourceRange(); 2242 2243 // Check that the operand provides 2244 // - countByEnumeratingWithState:objects:count: 2245 const ObjCObjectType *objectType = pointerType->getObjectType(); 2246 ObjCInterfaceDecl *iface = objectType->getInterface(); 2247 2248 // If we have a forward-declared type, we can't do this check. 2249 // Under ARC, it is an error not to have a forward-declared class. 2250 if (iface && 2251 (getLangOpts().ObjCAutoRefCount 2252 ? RequireCompleteType(forLoc, QualType(objectType, 0), 2253 diag::err_arc_collection_forward, collection) 2254 : !isCompleteType(forLoc, QualType(objectType, 0)))) { 2255 // Otherwise, if we have any useful type information, check that 2256 // the type declares the appropriate method. 2257 } else if (iface || !objectType->qual_empty()) { 2258 IdentifierInfo *selectorIdents[] = { 2259 &Context.Idents.get("countByEnumeratingWithState"), 2260 &Context.Idents.get("objects"), 2261 &Context.Idents.get("count") 2262 }; 2263 Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]); 2264 2265 ObjCMethodDecl *method = nullptr; 2266 2267 // If there's an interface, look in both the public and private APIs. 2268 if (iface) { 2269 method = iface->lookupInstanceMethod(selector); 2270 if (!method) method = iface->lookupPrivateMethod(selector); 2271 } 2272 2273 // Also check protocol qualifiers. 2274 if (!method) 2275 method = LookupMethodInQualifiedType(selector, pointerType, 2276 /*instance*/ true); 2277 2278 // If we didn't find it anywhere, give up. 2279 if (!method) { 2280 Diag(forLoc, diag::warn_collection_expr_type) 2281 << collection->getType() << selector << collection->getSourceRange(); 2282 } 2283 2284 // TODO: check for an incompatible signature? 2285 } 2286 2287 // Wrap up any cleanups in the expression. 2288 return collection; 2289 } 2290 2291 StmtResult 2292 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc, 2293 Stmt *First, Expr *collection, 2294 SourceLocation RParenLoc) { 2295 setFunctionHasBranchProtectedScope(); 2296 2297 ExprResult CollectionExprResult = 2298 CheckObjCForCollectionOperand(ForLoc, collection); 2299 2300 if (First) { 2301 QualType FirstType; 2302 if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) { 2303 if (!DS->isSingleDecl()) 2304 return StmtError(Diag((*DS->decl_begin())->getLocation(), 2305 diag::err_toomany_element_decls)); 2306 2307 VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl()); 2308 if (!D || D->isInvalidDecl()) 2309 return StmtError(); 2310 2311 FirstType = D->getType(); 2312 // C99 6.8.5p3: The declaration part of a 'for' statement shall only 2313 // declare identifiers for objects having storage class 'auto' or 2314 // 'register'. 2315 if (!D->hasLocalStorage()) 2316 return StmtError(Diag(D->getLocation(), 2317 diag::err_non_local_variable_decl_in_for)); 2318 2319 // If the type contained 'auto', deduce the 'auto' to 'id'. 2320 if (FirstType->getContainedAutoType()) { 2321 SourceLocation Loc = D->getLocation(); 2322 OpaqueValueExpr OpaqueId(Loc, Context.getObjCIdType(), VK_PRValue); 2323 Expr *DeducedInit = &OpaqueId; 2324 TemplateDeductionInfo Info(Loc); 2325 FirstType = QualType(); 2326 TemplateDeductionResult Result = DeduceAutoType( 2327 D->getTypeSourceInfo()->getTypeLoc(), DeducedInit, FirstType, Info); 2328 if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) 2329 DiagnoseAutoDeductionFailure(D, DeducedInit); 2330 if (FirstType.isNull()) { 2331 D->setInvalidDecl(); 2332 return StmtError(); 2333 } 2334 2335 D->setType(FirstType); 2336 2337 if (!inTemplateInstantiation()) { 2338 SourceLocation Loc = 2339 D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(); 2340 Diag(Loc, diag::warn_auto_var_is_id) 2341 << D->getDeclName(); 2342 } 2343 } 2344 2345 } else { 2346 Expr *FirstE = cast<Expr>(First); 2347 if (!FirstE->isTypeDependent() && !FirstE->isLValue()) 2348 return StmtError( 2349 Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue) 2350 << First->getSourceRange()); 2351 2352 FirstType = static_cast<Expr*>(First)->getType(); 2353 if (FirstType.isConstQualified()) 2354 Diag(ForLoc, diag::err_selector_element_const_type) 2355 << FirstType << First->getSourceRange(); 2356 } 2357 if (!FirstType->isDependentType() && 2358 !FirstType->isObjCObjectPointerType() && 2359 !FirstType->isBlockPointerType()) 2360 return StmtError(Diag(ForLoc, diag::err_selector_element_type) 2361 << FirstType << First->getSourceRange()); 2362 } 2363 2364 if (CollectionExprResult.isInvalid()) 2365 return StmtError(); 2366 2367 CollectionExprResult = 2368 ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false); 2369 if (CollectionExprResult.isInvalid()) 2370 return StmtError(); 2371 2372 return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(), 2373 nullptr, ForLoc, RParenLoc); 2374 } 2375 2376 /// Finish building a variable declaration for a for-range statement. 2377 /// \return true if an error occurs. 2378 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init, 2379 SourceLocation Loc, int DiagID) { 2380 if (Decl->getType()->isUndeducedType()) { 2381 ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init); 2382 if (!Res.isUsable()) { 2383 Decl->setInvalidDecl(); 2384 return true; 2385 } 2386 Init = Res.get(); 2387 } 2388 2389 // Deduce the type for the iterator variable now rather than leaving it to 2390 // AddInitializerToDecl, so we can produce a more suitable diagnostic. 2391 QualType InitType; 2392 if (!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) { 2393 SemaRef.Diag(Loc, DiagID) << Init->getType(); 2394 } else { 2395 TemplateDeductionInfo Info(Init->getExprLoc()); 2396 Sema::TemplateDeductionResult Result = SemaRef.DeduceAutoType( 2397 Decl->getTypeSourceInfo()->getTypeLoc(), Init, InitType, Info); 2398 if (Result != Sema::TDK_Success && Result != Sema::TDK_AlreadyDiagnosed) 2399 SemaRef.Diag(Loc, DiagID) << Init->getType(); 2400 } 2401 2402 if (InitType.isNull()) { 2403 Decl->setInvalidDecl(); 2404 return true; 2405 } 2406 Decl->setType(InitType); 2407 2408 // In ARC, infer lifetime. 2409 // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if 2410 // we're doing the equivalent of fast iteration. 2411 if (SemaRef.getLangOpts().ObjCAutoRefCount && 2412 SemaRef.inferObjCARCLifetime(Decl)) 2413 Decl->setInvalidDecl(); 2414 2415 SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false); 2416 SemaRef.FinalizeDeclaration(Decl); 2417 SemaRef.CurContext->addHiddenDecl(Decl); 2418 return false; 2419 } 2420 2421 namespace { 2422 // An enum to represent whether something is dealing with a call to begin() 2423 // or a call to end() in a range-based for loop. 2424 enum BeginEndFunction { 2425 BEF_begin, 2426 BEF_end 2427 }; 2428 2429 /// Produce a note indicating which begin/end function was implicitly called 2430 /// by a C++11 for-range statement. This is often not obvious from the code, 2431 /// nor from the diagnostics produced when analysing the implicit expressions 2432 /// required in a for-range statement. 2433 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E, 2434 BeginEndFunction BEF) { 2435 CallExpr *CE = dyn_cast<CallExpr>(E); 2436 if (!CE) 2437 return; 2438 FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 2439 if (!D) 2440 return; 2441 SourceLocation Loc = D->getLocation(); 2442 2443 std::string Description; 2444 bool IsTemplate = false; 2445 if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) { 2446 Description = SemaRef.getTemplateArgumentBindingsText( 2447 FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs()); 2448 IsTemplate = true; 2449 } 2450 2451 SemaRef.Diag(Loc, diag::note_for_range_begin_end) 2452 << BEF << IsTemplate << Description << E->getType(); 2453 } 2454 2455 /// Build a variable declaration for a for-range statement. 2456 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc, 2457 QualType Type, StringRef Name) { 2458 DeclContext *DC = SemaRef.CurContext; 2459 IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name); 2460 TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc); 2461 VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type, 2462 TInfo, SC_None); 2463 Decl->setImplicit(); 2464 return Decl; 2465 } 2466 2467 } 2468 2469 static bool ObjCEnumerationCollection(Expr *Collection) { 2470 return !Collection->isTypeDependent() 2471 && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr; 2472 } 2473 2474 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement. 2475 /// 2476 /// C++11 [stmt.ranged]: 2477 /// A range-based for statement is equivalent to 2478 /// 2479 /// { 2480 /// auto && __range = range-init; 2481 /// for ( auto __begin = begin-expr, 2482 /// __end = end-expr; 2483 /// __begin != __end; 2484 /// ++__begin ) { 2485 /// for-range-declaration = *__begin; 2486 /// statement 2487 /// } 2488 /// } 2489 /// 2490 /// The body of the loop is not available yet, since it cannot be analysed until 2491 /// we have determined the type of the for-range-declaration. 2492 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, 2493 SourceLocation CoawaitLoc, Stmt *InitStmt, 2494 Stmt *First, SourceLocation ColonLoc, 2495 Expr *Range, SourceLocation RParenLoc, 2496 BuildForRangeKind Kind) { 2497 // FIXME: recover in order to allow the body to be parsed. 2498 if (!First) 2499 return StmtError(); 2500 2501 if (Range && ObjCEnumerationCollection(Range)) { 2502 // FIXME: Support init-statements in Objective-C++20 ranged for statement. 2503 if (InitStmt) 2504 return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt) 2505 << InitStmt->getSourceRange(); 2506 return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc); 2507 } 2508 2509 DeclStmt *DS = dyn_cast<DeclStmt>(First); 2510 assert(DS && "first part of for range not a decl stmt"); 2511 2512 if (!DS->isSingleDecl()) { 2513 Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range); 2514 return StmtError(); 2515 } 2516 2517 // This function is responsible for attaching an initializer to LoopVar. We 2518 // must call ActOnInitializerError if we fail to do so. 2519 Decl *LoopVar = DS->getSingleDecl(); 2520 if (LoopVar->isInvalidDecl() || !Range || 2521 DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) { 2522 ActOnInitializerError(LoopVar); 2523 return StmtError(); 2524 } 2525 2526 // Build the coroutine state immediately and not later during template 2527 // instantiation 2528 if (!CoawaitLoc.isInvalid()) { 2529 if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) { 2530 ActOnInitializerError(LoopVar); 2531 return StmtError(); 2532 } 2533 } 2534 2535 // Build auto && __range = range-init 2536 // Divide by 2, since the variables are in the inner scope (loop body). 2537 const auto DepthStr = std::to_string(S->getDepth() / 2); 2538 SourceLocation RangeLoc = Range->getBeginLoc(); 2539 VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc, 2540 Context.getAutoRRefDeductType(), 2541 std::string("__range") + DepthStr); 2542 if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc, 2543 diag::err_for_range_deduction_failure)) { 2544 ActOnInitializerError(LoopVar); 2545 return StmtError(); 2546 } 2547 2548 // Claim the type doesn't contain auto: we've already done the checking. 2549 DeclGroupPtrTy RangeGroup = 2550 BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1)); 2551 StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc); 2552 if (RangeDecl.isInvalid()) { 2553 ActOnInitializerError(LoopVar); 2554 return StmtError(); 2555 } 2556 2557 StmtResult R = BuildCXXForRangeStmt( 2558 ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(), 2559 /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr, 2560 /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind); 2561 if (R.isInvalid()) { 2562 ActOnInitializerError(LoopVar); 2563 return StmtError(); 2564 } 2565 2566 return R; 2567 } 2568 2569 /// Create the initialization, compare, and increment steps for 2570 /// the range-based for loop expression. 2571 /// This function does not handle array-based for loops, 2572 /// which are created in Sema::BuildCXXForRangeStmt. 2573 /// 2574 /// \returns a ForRangeStatus indicating success or what kind of error occurred. 2575 /// BeginExpr and EndExpr are set and FRS_Success is returned on success; 2576 /// CandidateSet and BEF are set and some non-success value is returned on 2577 /// failure. 2578 static Sema::ForRangeStatus 2579 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange, 2580 QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar, 2581 SourceLocation ColonLoc, SourceLocation CoawaitLoc, 2582 OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr, 2583 ExprResult *EndExpr, BeginEndFunction *BEF) { 2584 DeclarationNameInfo BeginNameInfo( 2585 &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc); 2586 DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"), 2587 ColonLoc); 2588 2589 LookupResult BeginMemberLookup(SemaRef, BeginNameInfo, 2590 Sema::LookupMemberName); 2591 LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName); 2592 2593 auto BuildBegin = [&] { 2594 *BEF = BEF_begin; 2595 Sema::ForRangeStatus RangeStatus = 2596 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo, 2597 BeginMemberLookup, CandidateSet, 2598 BeginRange, BeginExpr); 2599 2600 if (RangeStatus != Sema::FRS_Success) { 2601 if (RangeStatus == Sema::FRS_DiagnosticIssued) 2602 SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range) 2603 << ColonLoc << BEF_begin << BeginRange->getType(); 2604 return RangeStatus; 2605 } 2606 if (!CoawaitLoc.isInvalid()) { 2607 // FIXME: getCurScope() should not be used during template instantiation. 2608 // We should pick up the set of unqualified lookup results for operator 2609 // co_await during the initial parse. 2610 *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc, 2611 BeginExpr->get()); 2612 if (BeginExpr->isInvalid()) 2613 return Sema::FRS_DiagnosticIssued; 2614 } 2615 if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc, 2616 diag::err_for_range_iter_deduction_failure)) { 2617 NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF); 2618 return Sema::FRS_DiagnosticIssued; 2619 } 2620 return Sema::FRS_Success; 2621 }; 2622 2623 auto BuildEnd = [&] { 2624 *BEF = BEF_end; 2625 Sema::ForRangeStatus RangeStatus = 2626 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo, 2627 EndMemberLookup, CandidateSet, 2628 EndRange, EndExpr); 2629 if (RangeStatus != Sema::FRS_Success) { 2630 if (RangeStatus == Sema::FRS_DiagnosticIssued) 2631 SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range) 2632 << ColonLoc << BEF_end << EndRange->getType(); 2633 return RangeStatus; 2634 } 2635 if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc, 2636 diag::err_for_range_iter_deduction_failure)) { 2637 NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF); 2638 return Sema::FRS_DiagnosticIssued; 2639 } 2640 return Sema::FRS_Success; 2641 }; 2642 2643 if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) { 2644 // - if _RangeT is a class type, the unqualified-ids begin and end are 2645 // looked up in the scope of class _RangeT as if by class member access 2646 // lookup (3.4.5), and if either (or both) finds at least one 2647 // declaration, begin-expr and end-expr are __range.begin() and 2648 // __range.end(), respectively; 2649 SemaRef.LookupQualifiedName(BeginMemberLookup, D); 2650 if (BeginMemberLookup.isAmbiguous()) 2651 return Sema::FRS_DiagnosticIssued; 2652 2653 SemaRef.LookupQualifiedName(EndMemberLookup, D); 2654 if (EndMemberLookup.isAmbiguous()) 2655 return Sema::FRS_DiagnosticIssued; 2656 2657 if (BeginMemberLookup.empty() != EndMemberLookup.empty()) { 2658 // Look up the non-member form of the member we didn't find, first. 2659 // This way we prefer a "no viable 'end'" diagnostic over a "i found 2660 // a 'begin' but ignored it because there was no member 'end'" 2661 // diagnostic. 2662 auto BuildNonmember = [&]( 2663 BeginEndFunction BEFFound, LookupResult &Found, 2664 llvm::function_ref<Sema::ForRangeStatus()> BuildFound, 2665 llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) { 2666 LookupResult OldFound = std::move(Found); 2667 Found.clear(); 2668 2669 if (Sema::ForRangeStatus Result = BuildNotFound()) 2670 return Result; 2671 2672 switch (BuildFound()) { 2673 case Sema::FRS_Success: 2674 return Sema::FRS_Success; 2675 2676 case Sema::FRS_NoViableFunction: 2677 CandidateSet->NoteCandidates( 2678 PartialDiagnosticAt(BeginRange->getBeginLoc(), 2679 SemaRef.PDiag(diag::err_for_range_invalid) 2680 << BeginRange->getType() << BEFFound), 2681 SemaRef, OCD_AllCandidates, BeginRange); 2682 [[fallthrough]]; 2683 2684 case Sema::FRS_DiagnosticIssued: 2685 for (NamedDecl *D : OldFound) { 2686 SemaRef.Diag(D->getLocation(), 2687 diag::note_for_range_member_begin_end_ignored) 2688 << BeginRange->getType() << BEFFound; 2689 } 2690 return Sema::FRS_DiagnosticIssued; 2691 } 2692 llvm_unreachable("unexpected ForRangeStatus"); 2693 }; 2694 if (BeginMemberLookup.empty()) 2695 return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin); 2696 return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd); 2697 } 2698 } else { 2699 // - otherwise, begin-expr and end-expr are begin(__range) and 2700 // end(__range), respectively, where begin and end are looked up with 2701 // argument-dependent lookup (3.4.2). For the purposes of this name 2702 // lookup, namespace std is an associated namespace. 2703 } 2704 2705 if (Sema::ForRangeStatus Result = BuildBegin()) 2706 return Result; 2707 return BuildEnd(); 2708 } 2709 2710 /// Speculatively attempt to dereference an invalid range expression. 2711 /// If the attempt fails, this function will return a valid, null StmtResult 2712 /// and emit no diagnostics. 2713 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S, 2714 SourceLocation ForLoc, 2715 SourceLocation CoawaitLoc, 2716 Stmt *InitStmt, 2717 Stmt *LoopVarDecl, 2718 SourceLocation ColonLoc, 2719 Expr *Range, 2720 SourceLocation RangeLoc, 2721 SourceLocation RParenLoc) { 2722 // Determine whether we can rebuild the for-range statement with a 2723 // dereferenced range expression. 2724 ExprResult AdjustedRange; 2725 { 2726 Sema::SFINAETrap Trap(SemaRef); 2727 2728 AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range); 2729 if (AdjustedRange.isInvalid()) 2730 return StmtResult(); 2731 2732 StmtResult SR = SemaRef.ActOnCXXForRangeStmt( 2733 S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc, 2734 AdjustedRange.get(), RParenLoc, Sema::BFRK_Check); 2735 if (SR.isInvalid()) 2736 return StmtResult(); 2737 } 2738 2739 // The attempt to dereference worked well enough that it could produce a valid 2740 // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in 2741 // case there are any other (non-fatal) problems with it. 2742 SemaRef.Diag(RangeLoc, diag::err_for_range_dereference) 2743 << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*"); 2744 return SemaRef.ActOnCXXForRangeStmt( 2745 S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc, 2746 AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild); 2747 } 2748 2749 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement. 2750 StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, 2751 SourceLocation CoawaitLoc, Stmt *InitStmt, 2752 SourceLocation ColonLoc, Stmt *RangeDecl, 2753 Stmt *Begin, Stmt *End, Expr *Cond, 2754 Expr *Inc, Stmt *LoopVarDecl, 2755 SourceLocation RParenLoc, 2756 BuildForRangeKind Kind) { 2757 // FIXME: This should not be used during template instantiation. We should 2758 // pick up the set of unqualified lookup results for the != and + operators 2759 // in the initial parse. 2760 // 2761 // Testcase (accepts-invalid): 2762 // template<typename T> void f() { for (auto x : T()) {} } 2763 // namespace N { struct X { X begin(); X end(); int operator*(); }; } 2764 // bool operator!=(N::X, N::X); void operator++(N::X); 2765 // void g() { f<N::X>(); } 2766 Scope *S = getCurScope(); 2767 2768 DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl); 2769 VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl()); 2770 QualType RangeVarType = RangeVar->getType(); 2771 2772 DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl); 2773 VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl()); 2774 2775 StmtResult BeginDeclStmt = Begin; 2776 StmtResult EndDeclStmt = End; 2777 ExprResult NotEqExpr = Cond, IncrExpr = Inc; 2778 2779 if (RangeVarType->isDependentType()) { 2780 // The range is implicitly used as a placeholder when it is dependent. 2781 RangeVar->markUsed(Context); 2782 2783 // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill 2784 // them in properly when we instantiate the loop. 2785 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { 2786 if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar)) 2787 for (auto *Binding : DD->bindings()) 2788 Binding->setType(Context.DependentTy); 2789 LoopVar->setType(SubstAutoTypeDependent(LoopVar->getType())); 2790 } 2791 } else if (!BeginDeclStmt.get()) { 2792 SourceLocation RangeLoc = RangeVar->getLocation(); 2793 2794 const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType(); 2795 2796 ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, 2797 VK_LValue, ColonLoc); 2798 if (BeginRangeRef.isInvalid()) 2799 return StmtError(); 2800 2801 ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, 2802 VK_LValue, ColonLoc); 2803 if (EndRangeRef.isInvalid()) 2804 return StmtError(); 2805 2806 QualType AutoType = Context.getAutoDeductType(); 2807 Expr *Range = RangeVar->getInit(); 2808 if (!Range) 2809 return StmtError(); 2810 QualType RangeType = Range->getType(); 2811 2812 if (RequireCompleteType(RangeLoc, RangeType, 2813 diag::err_for_range_incomplete_type)) 2814 return StmtError(); 2815 2816 // Build auto __begin = begin-expr, __end = end-expr. 2817 // Divide by 2, since the variables are in the inner scope (loop body). 2818 const auto DepthStr = std::to_string(S->getDepth() / 2); 2819 VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, 2820 std::string("__begin") + DepthStr); 2821 VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, 2822 std::string("__end") + DepthStr); 2823 2824 // Build begin-expr and end-expr and attach to __begin and __end variables. 2825 ExprResult BeginExpr, EndExpr; 2826 if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) { 2827 // - if _RangeT is an array type, begin-expr and end-expr are __range and 2828 // __range + __bound, respectively, where __bound is the array bound. If 2829 // _RangeT is an array of unknown size or an array of incomplete type, 2830 // the program is ill-formed; 2831 2832 // begin-expr is __range. 2833 BeginExpr = BeginRangeRef; 2834 if (!CoawaitLoc.isInvalid()) { 2835 BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get()); 2836 if (BeginExpr.isInvalid()) 2837 return StmtError(); 2838 } 2839 if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc, 2840 diag::err_for_range_iter_deduction_failure)) { 2841 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2842 return StmtError(); 2843 } 2844 2845 // Find the array bound. 2846 ExprResult BoundExpr; 2847 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT)) 2848 BoundExpr = IntegerLiteral::Create( 2849 Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc); 2850 else if (const VariableArrayType *VAT = 2851 dyn_cast<VariableArrayType>(UnqAT)) { 2852 // For a variably modified type we can't just use the expression within 2853 // the array bounds, since we don't want that to be re-evaluated here. 2854 // Rather, we need to determine what it was when the array was first 2855 // created - so we resort to using sizeof(vla)/sizeof(element). 2856 // For e.g. 2857 // void f(int b) { 2858 // int vla[b]; 2859 // b = -1; <-- This should not affect the num of iterations below 2860 // for (int &c : vla) { .. } 2861 // } 2862 2863 // FIXME: This results in codegen generating IR that recalculates the 2864 // run-time number of elements (as opposed to just using the IR Value 2865 // that corresponds to the run-time value of each bound that was 2866 // generated when the array was created.) If this proves too embarrassing 2867 // even for unoptimized IR, consider passing a magic-value/cookie to 2868 // codegen that then knows to simply use that initial llvm::Value (that 2869 // corresponds to the bound at time of array creation) within 2870 // getelementptr. But be prepared to pay the price of increasing a 2871 // customized form of coupling between the two components - which could 2872 // be hard to maintain as the codebase evolves. 2873 2874 ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr( 2875 EndVar->getLocation(), UETT_SizeOf, 2876 /*IsType=*/true, 2877 CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo( 2878 VAT->desugar(), RangeLoc)) 2879 .getAsOpaquePtr(), 2880 EndVar->getSourceRange()); 2881 if (SizeOfVLAExprR.isInvalid()) 2882 return StmtError(); 2883 2884 ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr( 2885 EndVar->getLocation(), UETT_SizeOf, 2886 /*IsType=*/true, 2887 CreateParsedType(VAT->desugar(), 2888 Context.getTrivialTypeSourceInfo( 2889 VAT->getElementType(), RangeLoc)) 2890 .getAsOpaquePtr(), 2891 EndVar->getSourceRange()); 2892 if (SizeOfEachElementExprR.isInvalid()) 2893 return StmtError(); 2894 2895 BoundExpr = 2896 ActOnBinOp(S, EndVar->getLocation(), tok::slash, 2897 SizeOfVLAExprR.get(), SizeOfEachElementExprR.get()); 2898 if (BoundExpr.isInvalid()) 2899 return StmtError(); 2900 2901 } else { 2902 // Can't be a DependentSizedArrayType or an IncompleteArrayType since 2903 // UnqAT is not incomplete and Range is not type-dependent. 2904 llvm_unreachable("Unexpected array type in for-range"); 2905 } 2906 2907 // end-expr is __range + __bound. 2908 EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(), 2909 BoundExpr.get()); 2910 if (EndExpr.isInvalid()) 2911 return StmtError(); 2912 if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc, 2913 diag::err_for_range_iter_deduction_failure)) { 2914 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); 2915 return StmtError(); 2916 } 2917 } else { 2918 OverloadCandidateSet CandidateSet(RangeLoc, 2919 OverloadCandidateSet::CSK_Normal); 2920 BeginEndFunction BEFFailure; 2921 ForRangeStatus RangeStatus = BuildNonArrayForRange( 2922 *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar, 2923 EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr, 2924 &BEFFailure); 2925 2926 if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction && 2927 BEFFailure == BEF_begin) { 2928 // If the range is being built from an array parameter, emit a 2929 // a diagnostic that it is being treated as a pointer. 2930 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) { 2931 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 2932 QualType ArrayTy = PVD->getOriginalType(); 2933 QualType PointerTy = PVD->getType(); 2934 if (PointerTy->isPointerType() && ArrayTy->isArrayType()) { 2935 Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter) 2936 << RangeLoc << PVD << ArrayTy << PointerTy; 2937 Diag(PVD->getLocation(), diag::note_declared_at); 2938 return StmtError(); 2939 } 2940 } 2941 } 2942 2943 // If building the range failed, try dereferencing the range expression 2944 // unless a diagnostic was issued or the end function is problematic. 2945 StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc, 2946 CoawaitLoc, InitStmt, 2947 LoopVarDecl, ColonLoc, 2948 Range, RangeLoc, 2949 RParenLoc); 2950 if (SR.isInvalid() || SR.isUsable()) 2951 return SR; 2952 } 2953 2954 // Otherwise, emit diagnostics if we haven't already. 2955 if (RangeStatus == FRS_NoViableFunction) { 2956 Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get(); 2957 CandidateSet.NoteCandidates( 2958 PartialDiagnosticAt(Range->getBeginLoc(), 2959 PDiag(diag::err_for_range_invalid) 2960 << RangeLoc << Range->getType() 2961 << BEFFailure), 2962 *this, OCD_AllCandidates, Range); 2963 } 2964 // Return an error if no fix was discovered. 2965 if (RangeStatus != FRS_Success) 2966 return StmtError(); 2967 } 2968 2969 assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() && 2970 "invalid range expression in for loop"); 2971 2972 // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same. 2973 // C++1z removes this restriction. 2974 QualType BeginType = BeginVar->getType(), EndType = EndVar->getType(); 2975 if (!Context.hasSameType(BeginType, EndType)) { 2976 Diag(RangeLoc, getLangOpts().CPlusPlus17 2977 ? diag::warn_for_range_begin_end_types_differ 2978 : diag::ext_for_range_begin_end_types_differ) 2979 << BeginType << EndType; 2980 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2981 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); 2982 } 2983 2984 BeginDeclStmt = 2985 ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc); 2986 EndDeclStmt = 2987 ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc); 2988 2989 const QualType BeginRefNonRefType = BeginType.getNonReferenceType(); 2990 ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, 2991 VK_LValue, ColonLoc); 2992 if (BeginRef.isInvalid()) 2993 return StmtError(); 2994 2995 ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(), 2996 VK_LValue, ColonLoc); 2997 if (EndRef.isInvalid()) 2998 return StmtError(); 2999 3000 // Build and check __begin != __end expression. 3001 NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal, 3002 BeginRef.get(), EndRef.get()); 3003 if (!NotEqExpr.isInvalid()) 3004 NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get()); 3005 if (!NotEqExpr.isInvalid()) 3006 NotEqExpr = 3007 ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false); 3008 if (NotEqExpr.isInvalid()) { 3009 Diag(RangeLoc, diag::note_for_range_invalid_iterator) 3010 << RangeLoc << 0 << BeginRangeRef.get()->getType(); 3011 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 3012 if (!Context.hasSameType(BeginType, EndType)) 3013 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); 3014 return StmtError(); 3015 } 3016 3017 // Build and check ++__begin expression. 3018 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, 3019 VK_LValue, ColonLoc); 3020 if (BeginRef.isInvalid()) 3021 return StmtError(); 3022 3023 IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get()); 3024 if (!IncrExpr.isInvalid() && CoawaitLoc.isValid()) 3025 // FIXME: getCurScope() should not be used during template instantiation. 3026 // We should pick up the set of unqualified lookup results for operator 3027 // co_await during the initial parse. 3028 IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get()); 3029 if (!IncrExpr.isInvalid()) 3030 IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false); 3031 if (IncrExpr.isInvalid()) { 3032 Diag(RangeLoc, diag::note_for_range_invalid_iterator) 3033 << RangeLoc << 2 << BeginRangeRef.get()->getType() ; 3034 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 3035 return StmtError(); 3036 } 3037 3038 // Build and check *__begin expression. 3039 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, 3040 VK_LValue, ColonLoc); 3041 if (BeginRef.isInvalid()) 3042 return StmtError(); 3043 3044 ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get()); 3045 if (DerefExpr.isInvalid()) { 3046 Diag(RangeLoc, diag::note_for_range_invalid_iterator) 3047 << RangeLoc << 1 << BeginRangeRef.get()->getType(); 3048 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 3049 return StmtError(); 3050 } 3051 3052 // Attach *__begin as initializer for VD. Don't touch it if we're just 3053 // trying to determine whether this would be a valid range. 3054 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { 3055 AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false); 3056 if (LoopVar->isInvalidDecl() || 3057 (LoopVar->getInit() && LoopVar->getInit()->containsErrors())) 3058 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 3059 } 3060 } 3061 3062 // Don't bother to actually allocate the result if we're just trying to 3063 // determine whether it would be valid. 3064 if (Kind == BFRK_Check) 3065 return StmtResult(); 3066 3067 // In OpenMP loop region loop control variable must be private. Perform 3068 // analysis of first part (if any). 3069 if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable()) 3070 ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get()); 3071 3072 return new (Context) CXXForRangeStmt( 3073 InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()), 3074 cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(), 3075 IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc, 3076 ColonLoc, RParenLoc); 3077 } 3078 3079 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach 3080 /// statement. 3081 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) { 3082 if (!S || !B) 3083 return StmtError(); 3084 ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S); 3085 3086 ForStmt->setBody(B); 3087 return S; 3088 } 3089 3090 // Warn when the loop variable is a const reference that creates a copy. 3091 // Suggest using the non-reference type for copies. If a copy can be prevented 3092 // suggest the const reference type that would do so. 3093 // For instance, given "for (const &Foo : Range)", suggest 3094 // "for (const Foo : Range)" to denote a copy is made for the loop. If 3095 // possible, also suggest "for (const &Bar : Range)" if this type prevents 3096 // the copy altogether. 3097 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef, 3098 const VarDecl *VD, 3099 QualType RangeInitType) { 3100 const Expr *InitExpr = VD->getInit(); 3101 if (!InitExpr) 3102 return; 3103 3104 QualType VariableType = VD->getType(); 3105 3106 if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr)) 3107 if (!Cleanups->cleanupsHaveSideEffects()) 3108 InitExpr = Cleanups->getSubExpr(); 3109 3110 const MaterializeTemporaryExpr *MTE = 3111 dyn_cast<MaterializeTemporaryExpr>(InitExpr); 3112 3113 // No copy made. 3114 if (!MTE) 3115 return; 3116 3117 const Expr *E = MTE->getSubExpr()->IgnoreImpCasts(); 3118 3119 // Searching for either UnaryOperator for dereference of a pointer or 3120 // CXXOperatorCallExpr for handling iterators. 3121 while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) { 3122 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) { 3123 E = CCE->getArg(0); 3124 } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) { 3125 const MemberExpr *ME = cast<MemberExpr>(Call->getCallee()); 3126 E = ME->getBase(); 3127 } else { 3128 const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E); 3129 E = MTE->getSubExpr(); 3130 } 3131 E = E->IgnoreImpCasts(); 3132 } 3133 3134 QualType ReferenceReturnType; 3135 if (isa<UnaryOperator>(E)) { 3136 ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType()); 3137 } else { 3138 const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E); 3139 const FunctionDecl *FD = Call->getDirectCallee(); 3140 QualType ReturnType = FD->getReturnType(); 3141 if (ReturnType->isReferenceType()) 3142 ReferenceReturnType = ReturnType; 3143 } 3144 3145 if (!ReferenceReturnType.isNull()) { 3146 // Loop variable creates a temporary. Suggest either to go with 3147 // non-reference loop variable to indicate a copy is made, or 3148 // the correct type to bind a const reference. 3149 SemaRef.Diag(VD->getLocation(), 3150 diag::warn_for_range_const_ref_binds_temp_built_from_ref) 3151 << VD << VariableType << ReferenceReturnType; 3152 QualType NonReferenceType = VariableType.getNonReferenceType(); 3153 NonReferenceType.removeLocalConst(); 3154 QualType NewReferenceType = 3155 SemaRef.Context.getLValueReferenceType(E->getType().withConst()); 3156 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference) 3157 << NonReferenceType << NewReferenceType << VD->getSourceRange() 3158 << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc()); 3159 } else if (!VariableType->isRValueReferenceType()) { 3160 // The range always returns a copy, so a temporary is always created. 3161 // Suggest removing the reference from the loop variable. 3162 // If the type is a rvalue reference do not warn since that changes the 3163 // semantic of the code. 3164 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp) 3165 << VD << RangeInitType; 3166 QualType NonReferenceType = VariableType.getNonReferenceType(); 3167 NonReferenceType.removeLocalConst(); 3168 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type) 3169 << NonReferenceType << VD->getSourceRange() 3170 << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc()); 3171 } 3172 } 3173 3174 /// Determines whether the @p VariableType's declaration is a record with the 3175 /// clang::trivial_abi attribute. 3176 static bool hasTrivialABIAttr(QualType VariableType) { 3177 if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl()) 3178 return RD->hasAttr<TrivialABIAttr>(); 3179 3180 return false; 3181 } 3182 3183 // Warns when the loop variable can be changed to a reference type to 3184 // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest 3185 // "for (const Foo &x : Range)" if this form does not make a copy. 3186 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef, 3187 const VarDecl *VD) { 3188 const Expr *InitExpr = VD->getInit(); 3189 if (!InitExpr) 3190 return; 3191 3192 QualType VariableType = VD->getType(); 3193 3194 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) { 3195 if (!CE->getConstructor()->isCopyConstructor()) 3196 return; 3197 } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) { 3198 if (CE->getCastKind() != CK_LValueToRValue) 3199 return; 3200 } else { 3201 return; 3202 } 3203 3204 // Small trivially copyable types are cheap to copy. Do not emit the 3205 // diagnostic for these instances. 64 bytes is a common size of a cache line. 3206 // (The function `getTypeSize` returns the size in bits.) 3207 ASTContext &Ctx = SemaRef.Context; 3208 if (Ctx.getTypeSize(VariableType) <= 64 * 8 && 3209 (VariableType.isTriviallyCopyConstructibleType(Ctx) || 3210 hasTrivialABIAttr(VariableType))) 3211 return; 3212 3213 // Suggest changing from a const variable to a const reference variable 3214 // if doing so will prevent a copy. 3215 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy) 3216 << VD << VariableType; 3217 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type) 3218 << SemaRef.Context.getLValueReferenceType(VariableType) 3219 << VD->getSourceRange() 3220 << FixItHint::CreateInsertion(VD->getLocation(), "&"); 3221 } 3222 3223 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them. 3224 /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest 3225 /// using "const foo x" to show that a copy is made 3226 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar. 3227 /// Suggest either "const bar x" to keep the copying or "const foo& x" to 3228 /// prevent the copy. 3229 /// 3) for (const foo x : foos) where x is constructed from a reference foo. 3230 /// Suggest "const foo &x" to prevent the copy. 3231 static void DiagnoseForRangeVariableCopies(Sema &SemaRef, 3232 const CXXForRangeStmt *ForStmt) { 3233 if (SemaRef.inTemplateInstantiation()) 3234 return; 3235 3236 if (SemaRef.Diags.isIgnored( 3237 diag::warn_for_range_const_ref_binds_temp_built_from_ref, 3238 ForStmt->getBeginLoc()) && 3239 SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp, 3240 ForStmt->getBeginLoc()) && 3241 SemaRef.Diags.isIgnored(diag::warn_for_range_copy, 3242 ForStmt->getBeginLoc())) { 3243 return; 3244 } 3245 3246 const VarDecl *VD = ForStmt->getLoopVariable(); 3247 if (!VD) 3248 return; 3249 3250 QualType VariableType = VD->getType(); 3251 3252 if (VariableType->isIncompleteType()) 3253 return; 3254 3255 const Expr *InitExpr = VD->getInit(); 3256 if (!InitExpr) 3257 return; 3258 3259 if (InitExpr->getExprLoc().isMacroID()) 3260 return; 3261 3262 if (VariableType->isReferenceType()) { 3263 DiagnoseForRangeReferenceVariableCopies(SemaRef, VD, 3264 ForStmt->getRangeInit()->getType()); 3265 } else if (VariableType.isConstQualified()) { 3266 DiagnoseForRangeConstVariableCopies(SemaRef, VD); 3267 } 3268 } 3269 3270 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement. 3271 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the 3272 /// body cannot be performed until after the type of the range variable is 3273 /// determined. 3274 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) { 3275 if (!S || !B) 3276 return StmtError(); 3277 3278 if (isa<ObjCForCollectionStmt>(S)) 3279 return FinishObjCForCollectionStmt(S, B); 3280 3281 CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S); 3282 ForStmt->setBody(B); 3283 3284 DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B, 3285 diag::warn_empty_range_based_for_body); 3286 3287 DiagnoseForRangeVariableCopies(*this, ForStmt); 3288 3289 return S; 3290 } 3291 3292 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc, 3293 SourceLocation LabelLoc, 3294 LabelDecl *TheDecl) { 3295 setFunctionHasBranchIntoScope(); 3296 TheDecl->markUsed(Context); 3297 return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc); 3298 } 3299 3300 StmtResult 3301 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, 3302 Expr *E) { 3303 // Convert operand to void* 3304 if (!E->isTypeDependent()) { 3305 QualType ETy = E->getType(); 3306 QualType DestTy = Context.getPointerType(Context.VoidTy.withConst()); 3307 ExprResult ExprRes = E; 3308 AssignConvertType ConvTy = 3309 CheckSingleAssignmentConstraints(DestTy, ExprRes); 3310 if (ExprRes.isInvalid()) 3311 return StmtError(); 3312 E = ExprRes.get(); 3313 if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing)) 3314 return StmtError(); 3315 } 3316 3317 ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false); 3318 if (ExprRes.isInvalid()) 3319 return StmtError(); 3320 E = ExprRes.get(); 3321 3322 setFunctionHasIndirectGoto(); 3323 3324 return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E); 3325 } 3326 3327 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc, 3328 const Scope &DestScope) { 3329 if (!S.CurrentSEHFinally.empty() && 3330 DestScope.Contains(*S.CurrentSEHFinally.back())) { 3331 S.Diag(Loc, diag::warn_jump_out_of_seh_finally); 3332 } 3333 } 3334 3335 StmtResult 3336 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { 3337 Scope *S = CurScope->getContinueParent(); 3338 if (!S) { 3339 // C99 6.8.6.2p1: A break shall appear only in or as a loop body. 3340 return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop)); 3341 } 3342 if (S->isConditionVarScope()) { 3343 // We cannot 'continue;' from within a statement expression in the 3344 // initializer of a condition variable because we would jump past the 3345 // initialization of that variable. 3346 return StmtError(Diag(ContinueLoc, diag::err_continue_from_cond_var_init)); 3347 } 3348 CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S); 3349 3350 return new (Context) ContinueStmt(ContinueLoc); 3351 } 3352 3353 StmtResult 3354 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { 3355 Scope *S = CurScope->getBreakParent(); 3356 if (!S) { 3357 // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. 3358 return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch)); 3359 } 3360 if (S->isOpenMPLoopScope()) 3361 return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt) 3362 << "break"); 3363 CheckJumpOutOfSEHFinally(*this, BreakLoc, *S); 3364 3365 return new (Context) BreakStmt(BreakLoc); 3366 } 3367 3368 /// Determine whether the given expression might be move-eligible or 3369 /// copy-elidable in either a (co_)return statement or throw expression, 3370 /// without considering function return type, if applicable. 3371 /// 3372 /// \param E The expression being returned from the function or block, 3373 /// being thrown, or being co_returned from a coroutine. This expression 3374 /// might be modified by the implementation. 3375 /// 3376 /// \param Mode Overrides detection of current language mode 3377 /// and uses the rules for C++23. 3378 /// 3379 /// \returns An aggregate which contains the Candidate and isMoveEligible 3380 /// and isCopyElidable methods. If Candidate is non-null, it means 3381 /// isMoveEligible() would be true under the most permissive language standard. 3382 Sema::NamedReturnInfo Sema::getNamedReturnInfo(Expr *&E, 3383 SimplerImplicitMoveMode Mode) { 3384 if (!E) 3385 return NamedReturnInfo(); 3386 // - in a return statement in a function [where] ... 3387 // ... the expression is the name of a non-volatile automatic object ... 3388 const auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens()); 3389 if (!DR || DR->refersToEnclosingVariableOrCapture()) 3390 return NamedReturnInfo(); 3391 const auto *VD = dyn_cast<VarDecl>(DR->getDecl()); 3392 if (!VD) 3393 return NamedReturnInfo(); 3394 NamedReturnInfo Res = getNamedReturnInfo(VD); 3395 if (Res.Candidate && !E->isXValue() && 3396 (Mode == SimplerImplicitMoveMode::ForceOn || 3397 (Mode != SimplerImplicitMoveMode::ForceOff && 3398 getLangOpts().CPlusPlus23))) { 3399 E = ImplicitCastExpr::Create(Context, VD->getType().getNonReferenceType(), 3400 CK_NoOp, E, nullptr, VK_XValue, 3401 FPOptionsOverride()); 3402 } 3403 return Res; 3404 } 3405 3406 /// Determine whether the given NRVO candidate variable is move-eligible or 3407 /// copy-elidable, without considering function return type. 3408 /// 3409 /// \param VD The NRVO candidate variable. 3410 /// 3411 /// \returns An aggregate which contains the Candidate and isMoveEligible 3412 /// and isCopyElidable methods. If Candidate is non-null, it means 3413 /// isMoveEligible() would be true under the most permissive language standard. 3414 Sema::NamedReturnInfo Sema::getNamedReturnInfo(const VarDecl *VD) { 3415 NamedReturnInfo Info{VD, NamedReturnInfo::MoveEligibleAndCopyElidable}; 3416 3417 // C++20 [class.copy.elision]p3: 3418 // - in a return statement in a function with ... 3419 // (other than a function ... parameter) 3420 if (VD->getKind() == Decl::ParmVar) 3421 Info.S = NamedReturnInfo::MoveEligible; 3422 else if (VD->getKind() != Decl::Var) 3423 return NamedReturnInfo(); 3424 3425 // (other than ... a catch-clause parameter) 3426 if (VD->isExceptionVariable()) 3427 Info.S = NamedReturnInfo::MoveEligible; 3428 3429 // ...automatic... 3430 if (!VD->hasLocalStorage()) 3431 return NamedReturnInfo(); 3432 3433 // We don't want to implicitly move out of a __block variable during a return 3434 // because we cannot assume the variable will no longer be used. 3435 if (VD->hasAttr<BlocksAttr>()) 3436 return NamedReturnInfo(); 3437 3438 QualType VDType = VD->getType(); 3439 if (VDType->isObjectType()) { 3440 // C++17 [class.copy.elision]p3: 3441 // ...non-volatile automatic object... 3442 if (VDType.isVolatileQualified()) 3443 return NamedReturnInfo(); 3444 } else if (VDType->isRValueReferenceType()) { 3445 // C++20 [class.copy.elision]p3: 3446 // ...either a non-volatile object or an rvalue reference to a non-volatile 3447 // object type... 3448 QualType VDReferencedType = VDType.getNonReferenceType(); 3449 if (VDReferencedType.isVolatileQualified() || 3450 !VDReferencedType->isObjectType()) 3451 return NamedReturnInfo(); 3452 Info.S = NamedReturnInfo::MoveEligible; 3453 } else { 3454 return NamedReturnInfo(); 3455 } 3456 3457 // Variables with higher required alignment than their type's ABI 3458 // alignment cannot use NRVO. 3459 if (!VD->hasDependentAlignment() && 3460 Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VDType)) 3461 Info.S = NamedReturnInfo::MoveEligible; 3462 3463 return Info; 3464 } 3465 3466 /// Updates given NamedReturnInfo's move-eligible and 3467 /// copy-elidable statuses, considering the function 3468 /// return type criteria as applicable to return statements. 3469 /// 3470 /// \param Info The NamedReturnInfo object to update. 3471 /// 3472 /// \param ReturnType This is the return type of the function. 3473 /// \returns The copy elision candidate, in case the initial return expression 3474 /// was copy elidable, or nullptr otherwise. 3475 const VarDecl *Sema::getCopyElisionCandidate(NamedReturnInfo &Info, 3476 QualType ReturnType) { 3477 if (!Info.Candidate) 3478 return nullptr; 3479 3480 auto invalidNRVO = [&] { 3481 Info = NamedReturnInfo(); 3482 return nullptr; 3483 }; 3484 3485 // If we got a non-deduced auto ReturnType, we are in a dependent context and 3486 // there is no point in allowing copy elision since we won't have it deduced 3487 // by the point the VardDecl is instantiated, which is the last chance we have 3488 // of deciding if the candidate is really copy elidable. 3489 if ((ReturnType->getTypeClass() == Type::TypeClass::Auto && 3490 ReturnType->isCanonicalUnqualified()) || 3491 ReturnType->isSpecificBuiltinType(BuiltinType::Dependent)) 3492 return invalidNRVO(); 3493 3494 if (!ReturnType->isDependentType()) { 3495 // - in a return statement in a function with ... 3496 // ... a class return type ... 3497 if (!ReturnType->isRecordType()) 3498 return invalidNRVO(); 3499 3500 QualType VDType = Info.Candidate->getType(); 3501 // ... the same cv-unqualified type as the function return type ... 3502 // When considering moving this expression out, allow dissimilar types. 3503 if (!VDType->isDependentType() && 3504 !Context.hasSameUnqualifiedType(ReturnType, VDType)) 3505 Info.S = NamedReturnInfo::MoveEligible; 3506 } 3507 return Info.isCopyElidable() ? Info.Candidate : nullptr; 3508 } 3509 3510 /// Verify that the initialization sequence that was picked for the 3511 /// first overload resolution is permissible under C++98. 3512 /// 3513 /// Reject (possibly converting) constructors not taking an rvalue reference, 3514 /// or user conversion operators which are not ref-qualified. 3515 static bool 3516 VerifyInitializationSequenceCXX98(const Sema &S, 3517 const InitializationSequence &Seq) { 3518 const auto *Step = llvm::find_if(Seq.steps(), [](const auto &Step) { 3519 return Step.Kind == InitializationSequence::SK_ConstructorInitialization || 3520 Step.Kind == InitializationSequence::SK_UserConversion; 3521 }); 3522 if (Step != Seq.step_end()) { 3523 const auto *FD = Step->Function.Function; 3524 if (isa<CXXConstructorDecl>(FD) 3525 ? !FD->getParamDecl(0)->getType()->isRValueReferenceType() 3526 : cast<CXXMethodDecl>(FD)->getRefQualifier() == RQ_None) 3527 return false; 3528 } 3529 return true; 3530 } 3531 3532 /// Perform the initialization of a potentially-movable value, which 3533 /// is the result of return value. 3534 /// 3535 /// This routine implements C++20 [class.copy.elision]p3, which attempts to 3536 /// treat returned lvalues as rvalues in certain cases (to prefer move 3537 /// construction), then falls back to treating them as lvalues if that failed. 3538 ExprResult Sema::PerformMoveOrCopyInitialization( 3539 const InitializedEntity &Entity, const NamedReturnInfo &NRInfo, Expr *Value, 3540 bool SupressSimplerImplicitMoves) { 3541 if (getLangOpts().CPlusPlus && 3542 (!getLangOpts().CPlusPlus23 || SupressSimplerImplicitMoves) && 3543 NRInfo.isMoveEligible()) { 3544 ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(), 3545 CK_NoOp, Value, VK_XValue, FPOptionsOverride()); 3546 Expr *InitExpr = &AsRvalue; 3547 auto Kind = InitializationKind::CreateCopy(Value->getBeginLoc(), 3548 Value->getBeginLoc()); 3549 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 3550 auto Res = Seq.getFailedOverloadResult(); 3551 if ((Res == OR_Success || Res == OR_Deleted) && 3552 (getLangOpts().CPlusPlus11 || 3553 VerifyInitializationSequenceCXX98(*this, Seq))) { 3554 // Promote "AsRvalue" to the heap, since we now need this 3555 // expression node to persist. 3556 Value = 3557 ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp, Value, 3558 nullptr, VK_XValue, FPOptionsOverride()); 3559 // Complete type-checking the initialization of the return type 3560 // using the constructor we found. 3561 return Seq.Perform(*this, Entity, Kind, Value); 3562 } 3563 } 3564 // Either we didn't meet the criteria for treating an lvalue as an rvalue, 3565 // above, or overload resolution failed. Either way, we need to try 3566 // (again) now with the return value expression as written. 3567 return PerformCopyInitialization(Entity, SourceLocation(), Value); 3568 } 3569 3570 /// Determine whether the declared return type of the specified function 3571 /// contains 'auto'. 3572 static bool hasDeducedReturnType(FunctionDecl *FD) { 3573 const FunctionProtoType *FPT = 3574 FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); 3575 return FPT->getReturnType()->isUndeducedType(); 3576 } 3577 3578 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements 3579 /// for capturing scopes. 3580 /// 3581 StmtResult Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, 3582 Expr *RetValExp, 3583 NamedReturnInfo &NRInfo, 3584 bool SupressSimplerImplicitMoves) { 3585 // If this is the first return we've seen, infer the return type. 3586 // [expr.prim.lambda]p4 in C++11; block literals follow the same rules. 3587 CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction()); 3588 QualType FnRetType = CurCap->ReturnType; 3589 LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap); 3590 if (CurLambda && CurLambda->CallOperator->getType().isNull()) 3591 return StmtError(); 3592 bool HasDeducedReturnType = 3593 CurLambda && hasDeducedReturnType(CurLambda->CallOperator); 3594 3595 if (ExprEvalContexts.back().isDiscardedStatementContext() && 3596 (HasDeducedReturnType || CurCap->HasImplicitReturnType)) { 3597 if (RetValExp) { 3598 ExprResult ER = 3599 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 3600 if (ER.isInvalid()) 3601 return StmtError(); 3602 RetValExp = ER.get(); 3603 } 3604 return ReturnStmt::Create(Context, ReturnLoc, RetValExp, 3605 /* NRVOCandidate=*/nullptr); 3606 } 3607 3608 if (HasDeducedReturnType) { 3609 FunctionDecl *FD = CurLambda->CallOperator; 3610 // If we've already decided this lambda is invalid, e.g. because 3611 // we saw a `return` whose expression had an error, don't keep 3612 // trying to deduce its return type. 3613 if (FD->isInvalidDecl()) 3614 return StmtError(); 3615 // In C++1y, the return type may involve 'auto'. 3616 // FIXME: Blocks might have a return type of 'auto' explicitly specified. 3617 if (CurCap->ReturnType.isNull()) 3618 CurCap->ReturnType = FD->getReturnType(); 3619 3620 AutoType *AT = CurCap->ReturnType->getContainedAutoType(); 3621 assert(AT && "lost auto type from lambda return type"); 3622 if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { 3623 FD->setInvalidDecl(); 3624 // FIXME: preserve the ill-formed return expression. 3625 return StmtError(); 3626 } 3627 CurCap->ReturnType = FnRetType = FD->getReturnType(); 3628 } else if (CurCap->HasImplicitReturnType) { 3629 // For blocks/lambdas with implicit return types, we check each return 3630 // statement individually, and deduce the common return type when the block 3631 // or lambda is completed. 3632 // FIXME: Fold this into the 'auto' codepath above. 3633 if (RetValExp && !isa<InitListExpr>(RetValExp)) { 3634 ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp); 3635 if (Result.isInvalid()) 3636 return StmtError(); 3637 RetValExp = Result.get(); 3638 3639 // DR1048: even prior to C++14, we should use the 'auto' deduction rules 3640 // when deducing a return type for a lambda-expression (or by extension 3641 // for a block). These rules differ from the stated C++11 rules only in 3642 // that they remove top-level cv-qualifiers. 3643 if (!CurContext->isDependentContext()) 3644 FnRetType = RetValExp->getType().getUnqualifiedType(); 3645 else 3646 FnRetType = CurCap->ReturnType = Context.DependentTy; 3647 } else { 3648 if (RetValExp) { 3649 // C++11 [expr.lambda.prim]p4 bans inferring the result from an 3650 // initializer list, because it is not an expression (even 3651 // though we represent it as one). We still deduce 'void'. 3652 Diag(ReturnLoc, diag::err_lambda_return_init_list) 3653 << RetValExp->getSourceRange(); 3654 } 3655 3656 FnRetType = Context.VoidTy; 3657 } 3658 3659 // Although we'll properly infer the type of the block once it's completed, 3660 // make sure we provide a return type now for better error recovery. 3661 if (CurCap->ReturnType.isNull()) 3662 CurCap->ReturnType = FnRetType; 3663 } 3664 const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType); 3665 3666 if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) { 3667 if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) { 3668 Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr); 3669 return StmtError(); 3670 } 3671 } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) { 3672 Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName(); 3673 return StmtError(); 3674 } else { 3675 assert(CurLambda && "unknown kind of captured scope"); 3676 if (CurLambda->CallOperator->getType() 3677 ->castAs<FunctionType>() 3678 ->getNoReturnAttr()) { 3679 Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr); 3680 return StmtError(); 3681 } 3682 } 3683 3684 // Otherwise, verify that this result type matches the previous one. We are 3685 // pickier with blocks than for normal functions because we don't have GCC 3686 // compatibility to worry about here. 3687 if (FnRetType->isDependentType()) { 3688 // Delay processing for now. TODO: there are lots of dependent 3689 // types we can conclusively prove aren't void. 3690 } else if (FnRetType->isVoidType()) { 3691 if (RetValExp && !isa<InitListExpr>(RetValExp) && 3692 !(getLangOpts().CPlusPlus && 3693 (RetValExp->isTypeDependent() || 3694 RetValExp->getType()->isVoidType()))) { 3695 if (!getLangOpts().CPlusPlus && 3696 RetValExp->getType()->isVoidType()) 3697 Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2; 3698 else { 3699 Diag(ReturnLoc, diag::err_return_block_has_expr); 3700 RetValExp = nullptr; 3701 } 3702 } 3703 } else if (!RetValExp) { 3704 return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr)); 3705 } else if (!RetValExp->isTypeDependent()) { 3706 // we have a non-void block with an expression, continue checking 3707 3708 // C99 6.8.6.4p3(136): The return statement is not an assignment. The 3709 // overlap restriction of subclause 6.5.16.1 does not apply to the case of 3710 // function return. 3711 3712 // In C++ the return statement is handled via a copy initialization. 3713 // the C version of which boils down to CheckSingleAssignmentConstraints. 3714 InitializedEntity Entity = 3715 InitializedEntity::InitializeResult(ReturnLoc, FnRetType); 3716 ExprResult Res = PerformMoveOrCopyInitialization( 3717 Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves); 3718 if (Res.isInvalid()) { 3719 // FIXME: Cleanup temporaries here, anyway? 3720 return StmtError(); 3721 } 3722 RetValExp = Res.get(); 3723 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc); 3724 } 3725 3726 if (RetValExp) { 3727 ExprResult ER = 3728 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 3729 if (ER.isInvalid()) 3730 return StmtError(); 3731 RetValExp = ER.get(); 3732 } 3733 auto *Result = 3734 ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate); 3735 3736 // If we need to check for the named return value optimization, 3737 // or if we need to infer the return type, 3738 // save the return statement in our scope for later processing. 3739 if (CurCap->HasImplicitReturnType || NRVOCandidate) 3740 FunctionScopes.back()->Returns.push_back(Result); 3741 3742 if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) 3743 FunctionScopes.back()->FirstReturnLoc = ReturnLoc; 3744 3745 if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap); 3746 CurBlock && CurCap->HasImplicitReturnType && RetValExp && 3747 RetValExp->containsErrors()) 3748 CurBlock->TheDecl->setInvalidDecl(); 3749 3750 return Result; 3751 } 3752 3753 namespace { 3754 /// Marks all typedefs in all local classes in a type referenced. 3755 /// 3756 /// In a function like 3757 /// auto f() { 3758 /// struct S { typedef int a; }; 3759 /// return S(); 3760 /// } 3761 /// 3762 /// the local type escapes and could be referenced in some TUs but not in 3763 /// others. Pretend that all local typedefs are always referenced, to not warn 3764 /// on this. This isn't necessary if f has internal linkage, or the typedef 3765 /// is private. 3766 class LocalTypedefNameReferencer 3767 : public RecursiveASTVisitor<LocalTypedefNameReferencer> { 3768 public: 3769 LocalTypedefNameReferencer(Sema &S) : S(S) {} 3770 bool VisitRecordType(const RecordType *RT); 3771 private: 3772 Sema &S; 3773 }; 3774 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) { 3775 auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl()); 3776 if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() || 3777 R->isDependentType()) 3778 return true; 3779 for (auto *TmpD : R->decls()) 3780 if (auto *T = dyn_cast<TypedefNameDecl>(TmpD)) 3781 if (T->getAccess() != AS_private || R->hasFriends()) 3782 S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false); 3783 return true; 3784 } 3785 } 3786 3787 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const { 3788 return FD->getTypeSourceInfo() 3789 ->getTypeLoc() 3790 .getAsAdjusted<FunctionProtoTypeLoc>() 3791 .getReturnLoc(); 3792 } 3793 3794 /// Deduce the return type for a function from a returned expression, per 3795 /// C++1y [dcl.spec.auto]p6. 3796 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, 3797 SourceLocation ReturnLoc, 3798 Expr *RetExpr, const AutoType *AT) { 3799 // If this is the conversion function for a lambda, we choose to deduce its 3800 // type from the corresponding call operator, not from the synthesized return 3801 // statement within it. See Sema::DeduceReturnType. 3802 if (isLambdaConversionOperator(FD)) 3803 return false; 3804 3805 if (RetExpr && isa<InitListExpr>(RetExpr)) { 3806 // If the deduction is for a return statement and the initializer is 3807 // a braced-init-list, the program is ill-formed. 3808 Diag(RetExpr->getExprLoc(), 3809 getCurLambda() ? diag::err_lambda_return_init_list 3810 : diag::err_auto_fn_return_init_list) 3811 << RetExpr->getSourceRange(); 3812 return true; 3813 } 3814 3815 if (FD->isDependentContext()) { 3816 // C++1y [dcl.spec.auto]p12: 3817 // Return type deduction [...] occurs when the definition is 3818 // instantiated even if the function body contains a return 3819 // statement with a non-type-dependent operand. 3820 assert(AT->isDeduced() && "should have deduced to dependent type"); 3821 return false; 3822 } 3823 3824 TypeLoc OrigResultType = getReturnTypeLoc(FD); 3825 // In the case of a return with no operand, the initializer is considered 3826 // to be void(). 3827 CXXScalarValueInitExpr VoidVal(Context.VoidTy, nullptr, SourceLocation()); 3828 if (!RetExpr) { 3829 // For a function with a deduced result type to return with omitted 3830 // expression, the result type as written must be 'auto' or 3831 // 'decltype(auto)', possibly cv-qualified or constrained, but not 3832 // ref-qualified. 3833 if (!OrigResultType.getType()->getAs<AutoType>()) { 3834 Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto) 3835 << OrigResultType.getType(); 3836 return true; 3837 } 3838 RetExpr = &VoidVal; 3839 } 3840 3841 QualType Deduced = AT->getDeducedType(); 3842 { 3843 // Otherwise, [...] deduce a value for U using the rules of template 3844 // argument deduction. 3845 auto RetExprLoc = RetExpr->getExprLoc(); 3846 TemplateDeductionInfo Info(RetExprLoc); 3847 SourceLocation TemplateSpecLoc; 3848 if (RetExpr->getType() == Context.OverloadTy) { 3849 auto FindResult = OverloadExpr::find(RetExpr); 3850 if (FindResult.Expression) 3851 TemplateSpecLoc = FindResult.Expression->getNameLoc(); 3852 } 3853 TemplateSpecCandidateSet FailedTSC(TemplateSpecLoc); 3854 TemplateDeductionResult Res = DeduceAutoType( 3855 OrigResultType, RetExpr, Deduced, Info, /*DependentDeduction=*/false, 3856 /*IgnoreConstraints=*/false, &FailedTSC); 3857 if (Res != TDK_Success && FD->isInvalidDecl()) 3858 return true; 3859 switch (Res) { 3860 case TDK_Success: 3861 break; 3862 case TDK_AlreadyDiagnosed: 3863 return true; 3864 case TDK_Inconsistent: { 3865 // If a function with a declared return type that contains a placeholder 3866 // type has multiple return statements, the return type is deduced for 3867 // each return statement. [...] if the type deduced is not the same in 3868 // each deduction, the program is ill-formed. 3869 const LambdaScopeInfo *LambdaSI = getCurLambda(); 3870 if (LambdaSI && LambdaSI->HasImplicitReturnType) 3871 Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible) 3872 << Info.SecondArg << Info.FirstArg << true /*IsLambda*/; 3873 else 3874 Diag(ReturnLoc, diag::err_auto_fn_different_deductions) 3875 << (AT->isDecltypeAuto() ? 1 : 0) << Info.SecondArg 3876 << Info.FirstArg; 3877 return true; 3878 } 3879 default: 3880 Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure) 3881 << OrigResultType.getType() << RetExpr->getType(); 3882 FailedTSC.NoteCandidates(*this, RetExprLoc); 3883 return true; 3884 } 3885 } 3886 3887 // If a local type is part of the returned type, mark its fields as 3888 // referenced. 3889 LocalTypedefNameReferencer(*this).TraverseType(RetExpr->getType()); 3890 3891 // CUDA: Kernel function must have 'void' return type. 3892 if (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>() && 3893 !Deduced->isVoidType()) { 3894 Diag(FD->getLocation(), diag::err_kern_type_not_void_return) 3895 << FD->getType() << FD->getSourceRange(); 3896 return true; 3897 } 3898 3899 if (!FD->isInvalidDecl() && AT->getDeducedType() != Deduced) 3900 // Update all declarations of the function to have the deduced return type. 3901 Context.adjustDeducedFunctionResultType(FD, Deduced); 3902 3903 return false; 3904 } 3905 3906 StmtResult 3907 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, 3908 Scope *CurScope) { 3909 // Correct typos, in case the containing function returns 'auto' and 3910 // RetValExp should determine the deduced type. 3911 ExprResult RetVal = CorrectDelayedTyposInExpr( 3912 RetValExp, nullptr, /*RecoverUncorrectedTypos=*/true); 3913 if (RetVal.isInvalid()) 3914 return StmtError(); 3915 StmtResult R = 3916 BuildReturnStmt(ReturnLoc, RetVal.get(), /*AllowRecovery=*/true); 3917 if (R.isInvalid() || ExprEvalContexts.back().isDiscardedStatementContext()) 3918 return R; 3919 3920 VarDecl *VD = 3921 const_cast<VarDecl *>(cast<ReturnStmt>(R.get())->getNRVOCandidate()); 3922 3923 CurScope->updateNRVOCandidate(VD); 3924 3925 CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent()); 3926 3927 return R; 3928 } 3929 3930 static bool CheckSimplerImplicitMovesMSVCWorkaround(const Sema &S, 3931 const Expr *E) { 3932 if (!E || !S.getLangOpts().CPlusPlus23 || !S.getLangOpts().MSVCCompat) 3933 return false; 3934 const Decl *D = E->getReferencedDeclOfCallee(); 3935 if (!D || !S.SourceMgr.isInSystemHeader(D->getLocation())) 3936 return false; 3937 for (const DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) { 3938 if (DC->isStdNamespace()) 3939 return true; 3940 } 3941 return false; 3942 } 3943 3944 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, 3945 bool AllowRecovery) { 3946 // Check for unexpanded parameter packs. 3947 if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp)) 3948 return StmtError(); 3949 3950 // HACK: We suppress simpler implicit move here in msvc compatibility mode 3951 // just as a temporary work around, as the MSVC STL has issues with 3952 // this change. 3953 bool SupressSimplerImplicitMoves = 3954 CheckSimplerImplicitMovesMSVCWorkaround(*this, RetValExp); 3955 NamedReturnInfo NRInfo = getNamedReturnInfo( 3956 RetValExp, SupressSimplerImplicitMoves ? SimplerImplicitMoveMode::ForceOff 3957 : SimplerImplicitMoveMode::Normal); 3958 3959 if (isa<CapturingScopeInfo>(getCurFunction())) 3960 return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp, NRInfo, 3961 SupressSimplerImplicitMoves); 3962 3963 QualType FnRetType; 3964 QualType RelatedRetType; 3965 const AttrVec *Attrs = nullptr; 3966 bool isObjCMethod = false; 3967 3968 if (const FunctionDecl *FD = getCurFunctionDecl()) { 3969 FnRetType = FD->getReturnType(); 3970 if (FD->hasAttrs()) 3971 Attrs = &FD->getAttrs(); 3972 if (FD->isNoReturn()) 3973 Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD; 3974 if (FD->isMain() && RetValExp) 3975 if (isa<CXXBoolLiteralExpr>(RetValExp)) 3976 Diag(ReturnLoc, diag::warn_main_returns_bool_literal) 3977 << RetValExp->getSourceRange(); 3978 if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) { 3979 if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) { 3980 if (RT->getDecl()->isOrContainsUnion()) 3981 Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1; 3982 } 3983 } 3984 } else if (ObjCMethodDecl *MD = getCurMethodDecl()) { 3985 FnRetType = MD->getReturnType(); 3986 isObjCMethod = true; 3987 if (MD->hasAttrs()) 3988 Attrs = &MD->getAttrs(); 3989 if (MD->hasRelatedResultType() && MD->getClassInterface()) { 3990 // In the implementation of a method with a related return type, the 3991 // type used to type-check the validity of return statements within the 3992 // method body is a pointer to the type of the class being implemented. 3993 RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface()); 3994 RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType); 3995 } 3996 } else // If we don't have a function/method context, bail. 3997 return StmtError(); 3998 3999 if (RetValExp) { 4000 const auto *ATy = dyn_cast<ArrayType>(RetValExp->getType()); 4001 if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) { 4002 Diag(ReturnLoc, diag::err_wasm_table_art) << 1; 4003 return StmtError(); 4004 } 4005 } 4006 4007 // C++1z: discarded return statements are not considered when deducing a 4008 // return type. 4009 if (ExprEvalContexts.back().isDiscardedStatementContext() && 4010 FnRetType->getContainedAutoType()) { 4011 if (RetValExp) { 4012 ExprResult ER = 4013 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 4014 if (ER.isInvalid()) 4015 return StmtError(); 4016 RetValExp = ER.get(); 4017 } 4018 return ReturnStmt::Create(Context, ReturnLoc, RetValExp, 4019 /* NRVOCandidate=*/nullptr); 4020 } 4021 4022 // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing 4023 // deduction. 4024 if (getLangOpts().CPlusPlus14) { 4025 if (AutoType *AT = FnRetType->getContainedAutoType()) { 4026 FunctionDecl *FD = cast<FunctionDecl>(CurContext); 4027 // If we've already decided this function is invalid, e.g. because 4028 // we saw a `return` whose expression had an error, don't keep 4029 // trying to deduce its return type. 4030 // (Some return values may be needlessly wrapped in RecoveryExpr). 4031 if (FD->isInvalidDecl() || 4032 DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { 4033 FD->setInvalidDecl(); 4034 if (!AllowRecovery) 4035 return StmtError(); 4036 // The deduction failure is diagnosed and marked, try to recover. 4037 if (RetValExp) { 4038 // Wrap return value with a recovery expression of the previous type. 4039 // If no deduction yet, use DependentTy. 4040 auto Recovery = CreateRecoveryExpr( 4041 RetValExp->getBeginLoc(), RetValExp->getEndLoc(), RetValExp, 4042 AT->isDeduced() ? FnRetType : QualType()); 4043 if (Recovery.isInvalid()) 4044 return StmtError(); 4045 RetValExp = Recovery.get(); 4046 } else { 4047 // Nothing to do: a ReturnStmt with no value is fine recovery. 4048 } 4049 } else { 4050 FnRetType = FD->getReturnType(); 4051 } 4052 } 4053 } 4054 const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType); 4055 4056 bool HasDependentReturnType = FnRetType->isDependentType(); 4057 4058 ReturnStmt *Result = nullptr; 4059 if (FnRetType->isVoidType()) { 4060 if (RetValExp) { 4061 if (auto *ILE = dyn_cast<InitListExpr>(RetValExp)) { 4062 // We simply never allow init lists as the return value of void 4063 // functions. This is compatible because this was never allowed before, 4064 // so there's no legacy code to deal with. 4065 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 4066 int FunctionKind = 0; 4067 if (isa<ObjCMethodDecl>(CurDecl)) 4068 FunctionKind = 1; 4069 else if (isa<CXXConstructorDecl>(CurDecl)) 4070 FunctionKind = 2; 4071 else if (isa<CXXDestructorDecl>(CurDecl)) 4072 FunctionKind = 3; 4073 4074 Diag(ReturnLoc, diag::err_return_init_list) 4075 << CurDecl << FunctionKind << RetValExp->getSourceRange(); 4076 4077 // Preserve the initializers in the AST. 4078 RetValExp = AllowRecovery 4079 ? CreateRecoveryExpr(ILE->getLBraceLoc(), 4080 ILE->getRBraceLoc(), ILE->inits()) 4081 .get() 4082 : nullptr; 4083 } else if (!RetValExp->isTypeDependent()) { 4084 // C99 6.8.6.4p1 (ext_ since GCC warns) 4085 unsigned D = diag::ext_return_has_expr; 4086 if (RetValExp->getType()->isVoidType()) { 4087 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 4088 if (isa<CXXConstructorDecl>(CurDecl) || 4089 isa<CXXDestructorDecl>(CurDecl)) 4090 D = diag::err_ctor_dtor_returns_void; 4091 else 4092 D = diag::ext_return_has_void_expr; 4093 } 4094 else { 4095 ExprResult Result = RetValExp; 4096 Result = IgnoredValueConversions(Result.get()); 4097 if (Result.isInvalid()) 4098 return StmtError(); 4099 RetValExp = Result.get(); 4100 RetValExp = ImpCastExprToType(RetValExp, 4101 Context.VoidTy, CK_ToVoid).get(); 4102 } 4103 // return of void in constructor/destructor is illegal in C++. 4104 if (D == diag::err_ctor_dtor_returns_void) { 4105 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 4106 Diag(ReturnLoc, D) << CurDecl << isa<CXXDestructorDecl>(CurDecl) 4107 << RetValExp->getSourceRange(); 4108 } 4109 // return (some void expression); is legal in C++. 4110 else if (D != diag::ext_return_has_void_expr || 4111 !getLangOpts().CPlusPlus) { 4112 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 4113 4114 int FunctionKind = 0; 4115 if (isa<ObjCMethodDecl>(CurDecl)) 4116 FunctionKind = 1; 4117 else if (isa<CXXConstructorDecl>(CurDecl)) 4118 FunctionKind = 2; 4119 else if (isa<CXXDestructorDecl>(CurDecl)) 4120 FunctionKind = 3; 4121 4122 Diag(ReturnLoc, D) 4123 << CurDecl << FunctionKind << RetValExp->getSourceRange(); 4124 } 4125 } 4126 4127 if (RetValExp) { 4128 ExprResult ER = 4129 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 4130 if (ER.isInvalid()) 4131 return StmtError(); 4132 RetValExp = ER.get(); 4133 } 4134 } 4135 4136 Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, 4137 /* NRVOCandidate=*/nullptr); 4138 } else if (!RetValExp && !HasDependentReturnType) { 4139 FunctionDecl *FD = getCurFunctionDecl(); 4140 4141 if ((FD && FD->isInvalidDecl()) || FnRetType->containsErrors()) { 4142 // The intended return type might have been "void", so don't warn. 4143 } else if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) { 4144 // C++11 [stmt.return]p2 4145 Diag(ReturnLoc, diag::err_constexpr_return_missing_expr) 4146 << FD << FD->isConsteval(); 4147 FD->setInvalidDecl(); 4148 } else { 4149 // C99 6.8.6.4p1 (ext_ since GCC warns) 4150 // C90 6.6.6.4p4 4151 unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr 4152 : diag::warn_return_missing_expr; 4153 // Note that at this point one of getCurFunctionDecl() or 4154 // getCurMethodDecl() must be non-null (see above). 4155 assert((getCurFunctionDecl() || getCurMethodDecl()) && 4156 "Not in a FunctionDecl or ObjCMethodDecl?"); 4157 bool IsMethod = FD == nullptr; 4158 const NamedDecl *ND = 4159 IsMethod ? cast<NamedDecl>(getCurMethodDecl()) : cast<NamedDecl>(FD); 4160 Diag(ReturnLoc, DiagID) << ND << IsMethod; 4161 } 4162 4163 Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr, 4164 /* NRVOCandidate=*/nullptr); 4165 } else { 4166 assert(RetValExp || HasDependentReturnType); 4167 QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType; 4168 4169 // C99 6.8.6.4p3(136): The return statement is not an assignment. The 4170 // overlap restriction of subclause 6.5.16.1 does not apply to the case of 4171 // function return. 4172 4173 // In C++ the return statement is handled via a copy initialization, 4174 // the C version of which boils down to CheckSingleAssignmentConstraints. 4175 if (!HasDependentReturnType && !RetValExp->isTypeDependent()) { 4176 // we have a non-void function with an expression, continue checking 4177 InitializedEntity Entity = 4178 InitializedEntity::InitializeResult(ReturnLoc, RetType); 4179 ExprResult Res = PerformMoveOrCopyInitialization( 4180 Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves); 4181 if (Res.isInvalid() && AllowRecovery) 4182 Res = CreateRecoveryExpr(RetValExp->getBeginLoc(), 4183 RetValExp->getEndLoc(), RetValExp, RetType); 4184 if (Res.isInvalid()) { 4185 // FIXME: Clean up temporaries here anyway? 4186 return StmtError(); 4187 } 4188 RetValExp = Res.getAs<Expr>(); 4189 4190 // If we have a related result type, we need to implicitly 4191 // convert back to the formal result type. We can't pretend to 4192 // initialize the result again --- we might end double-retaining 4193 // --- so instead we initialize a notional temporary. 4194 if (!RelatedRetType.isNull()) { 4195 Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(), 4196 FnRetType); 4197 Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp); 4198 if (Res.isInvalid()) { 4199 // FIXME: Clean up temporaries here anyway? 4200 return StmtError(); 4201 } 4202 RetValExp = Res.getAs<Expr>(); 4203 } 4204 4205 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs, 4206 getCurFunctionDecl()); 4207 } 4208 4209 if (RetValExp) { 4210 ExprResult ER = 4211 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 4212 if (ER.isInvalid()) 4213 return StmtError(); 4214 RetValExp = ER.get(); 4215 } 4216 Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate); 4217 } 4218 4219 // If we need to check for the named return value optimization, save the 4220 // return statement in our scope for later processing. 4221 if (Result->getNRVOCandidate()) 4222 FunctionScopes.back()->Returns.push_back(Result); 4223 4224 if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) 4225 FunctionScopes.back()->FirstReturnLoc = ReturnLoc; 4226 4227 return Result; 4228 } 4229 4230 StmtResult 4231 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc, 4232 SourceLocation RParen, Decl *Parm, 4233 Stmt *Body) { 4234 VarDecl *Var = cast_or_null<VarDecl>(Parm); 4235 if (Var && Var->isInvalidDecl()) 4236 return StmtError(); 4237 4238 return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body); 4239 } 4240 4241 StmtResult 4242 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) { 4243 return new (Context) ObjCAtFinallyStmt(AtLoc, Body); 4244 } 4245 4246 StmtResult 4247 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, 4248 MultiStmtArg CatchStmts, Stmt *Finally) { 4249 if (!getLangOpts().ObjCExceptions) 4250 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try"; 4251 4252 // Objective-C try is incompatible with SEH __try. 4253 sema::FunctionScopeInfo *FSI = getCurFunction(); 4254 if (FSI->FirstSEHTryLoc.isValid()) { 4255 Diag(AtLoc, diag::err_mixing_cxx_try_seh_try) << 1; 4256 Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'"; 4257 } 4258 4259 FSI->setHasObjCTry(AtLoc); 4260 unsigned NumCatchStmts = CatchStmts.size(); 4261 return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(), 4262 NumCatchStmts, Finally); 4263 } 4264 4265 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) { 4266 if (Throw) { 4267 ExprResult Result = DefaultLvalueConversion(Throw); 4268 if (Result.isInvalid()) 4269 return StmtError(); 4270 4271 Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false); 4272 if (Result.isInvalid()) 4273 return StmtError(); 4274 Throw = Result.get(); 4275 4276 QualType ThrowType = Throw->getType(); 4277 // Make sure the expression type is an ObjC pointer or "void *". 4278 if (!ThrowType->isDependentType() && 4279 !ThrowType->isObjCObjectPointerType()) { 4280 const PointerType *PT = ThrowType->getAs<PointerType>(); 4281 if (!PT || !PT->getPointeeType()->isVoidType()) 4282 return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object) 4283 << Throw->getType() << Throw->getSourceRange()); 4284 } 4285 } 4286 4287 return new (Context) ObjCAtThrowStmt(AtLoc, Throw); 4288 } 4289 4290 StmtResult 4291 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, 4292 Scope *CurScope) { 4293 if (!getLangOpts().ObjCExceptions) 4294 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw"; 4295 4296 if (!Throw) { 4297 // @throw without an expression designates a rethrow (which must occur 4298 // in the context of an @catch clause). 4299 Scope *AtCatchParent = CurScope; 4300 while (AtCatchParent && !AtCatchParent->isAtCatchScope()) 4301 AtCatchParent = AtCatchParent->getParent(); 4302 if (!AtCatchParent) 4303 return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch)); 4304 } 4305 return BuildObjCAtThrowStmt(AtLoc, Throw); 4306 } 4307 4308 ExprResult 4309 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) { 4310 ExprResult result = DefaultLvalueConversion(operand); 4311 if (result.isInvalid()) 4312 return ExprError(); 4313 operand = result.get(); 4314 4315 // Make sure the expression type is an ObjC pointer or "void *". 4316 QualType type = operand->getType(); 4317 if (!type->isDependentType() && 4318 !type->isObjCObjectPointerType()) { 4319 const PointerType *pointerType = type->getAs<PointerType>(); 4320 if (!pointerType || !pointerType->getPointeeType()->isVoidType()) { 4321 if (getLangOpts().CPlusPlus) { 4322 if (RequireCompleteType(atLoc, type, 4323 diag::err_incomplete_receiver_type)) 4324 return Diag(atLoc, diag::err_objc_synchronized_expects_object) 4325 << type << operand->getSourceRange(); 4326 4327 ExprResult result = PerformContextuallyConvertToObjCPointer(operand); 4328 if (result.isInvalid()) 4329 return ExprError(); 4330 if (!result.isUsable()) 4331 return Diag(atLoc, diag::err_objc_synchronized_expects_object) 4332 << type << operand->getSourceRange(); 4333 4334 operand = result.get(); 4335 } else { 4336 return Diag(atLoc, diag::err_objc_synchronized_expects_object) 4337 << type << operand->getSourceRange(); 4338 } 4339 } 4340 } 4341 4342 // The operand to @synchronized is a full-expression. 4343 return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false); 4344 } 4345 4346 StmtResult 4347 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr, 4348 Stmt *SyncBody) { 4349 // We can't jump into or indirect-jump out of a @synchronized block. 4350 setFunctionHasBranchProtectedScope(); 4351 return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody); 4352 } 4353 4354 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block 4355 /// and creates a proper catch handler from them. 4356 StmtResult 4357 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, 4358 Stmt *HandlerBlock) { 4359 // There's nothing to test that ActOnExceptionDecl didn't already test. 4360 return new (Context) 4361 CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock); 4362 } 4363 4364 StmtResult 4365 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) { 4366 setFunctionHasBranchProtectedScope(); 4367 return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body); 4368 } 4369 4370 namespace { 4371 class CatchHandlerType { 4372 QualType QT; 4373 unsigned IsPointer : 1; 4374 4375 // This is a special constructor to be used only with DenseMapInfo's 4376 // getEmptyKey() and getTombstoneKey() functions. 4377 friend struct llvm::DenseMapInfo<CatchHandlerType>; 4378 enum Unique { ForDenseMap }; 4379 CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {} 4380 4381 public: 4382 /// Used when creating a CatchHandlerType from a handler type; will determine 4383 /// whether the type is a pointer or reference and will strip off the top 4384 /// level pointer and cv-qualifiers. 4385 CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) { 4386 if (QT->isPointerType()) 4387 IsPointer = true; 4388 4389 QT = QT.getUnqualifiedType(); 4390 if (IsPointer || QT->isReferenceType()) 4391 QT = QT->getPointeeType(); 4392 } 4393 4394 /// Used when creating a CatchHandlerType from a base class type; pretends the 4395 /// type passed in had the pointer qualifier, does not need to get an 4396 /// unqualified type. 4397 CatchHandlerType(QualType QT, bool IsPointer) 4398 : QT(QT), IsPointer(IsPointer) {} 4399 4400 QualType underlying() const { return QT; } 4401 bool isPointer() const { return IsPointer; } 4402 4403 friend bool operator==(const CatchHandlerType &LHS, 4404 const CatchHandlerType &RHS) { 4405 // If the pointer qualification does not match, we can return early. 4406 if (LHS.IsPointer != RHS.IsPointer) 4407 return false; 4408 // Otherwise, check the underlying type without cv-qualifiers. 4409 return LHS.QT == RHS.QT; 4410 } 4411 }; 4412 } // namespace 4413 4414 namespace llvm { 4415 template <> struct DenseMapInfo<CatchHandlerType> { 4416 static CatchHandlerType getEmptyKey() { 4417 return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(), 4418 CatchHandlerType::ForDenseMap); 4419 } 4420 4421 static CatchHandlerType getTombstoneKey() { 4422 return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(), 4423 CatchHandlerType::ForDenseMap); 4424 } 4425 4426 static unsigned getHashValue(const CatchHandlerType &Base) { 4427 return DenseMapInfo<QualType>::getHashValue(Base.underlying()); 4428 } 4429 4430 static bool isEqual(const CatchHandlerType &LHS, 4431 const CatchHandlerType &RHS) { 4432 return LHS == RHS; 4433 } 4434 }; 4435 } 4436 4437 namespace { 4438 class CatchTypePublicBases { 4439 const llvm::DenseMap<QualType, CXXCatchStmt *> &TypesToCheck; 4440 4441 CXXCatchStmt *FoundHandler; 4442 QualType FoundHandlerType; 4443 QualType TestAgainstType; 4444 4445 public: 4446 CatchTypePublicBases(const llvm::DenseMap<QualType, CXXCatchStmt *> &T, 4447 QualType QT) 4448 : TypesToCheck(T), FoundHandler(nullptr), TestAgainstType(QT) {} 4449 4450 CXXCatchStmt *getFoundHandler() const { return FoundHandler; } 4451 QualType getFoundHandlerType() const { return FoundHandlerType; } 4452 4453 bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) { 4454 if (S->getAccessSpecifier() == AccessSpecifier::AS_public) { 4455 QualType Check = S->getType().getCanonicalType(); 4456 const auto &M = TypesToCheck; 4457 auto I = M.find(Check); 4458 if (I != M.end()) { 4459 // We're pretty sure we found what we need to find. However, we still 4460 // need to make sure that we properly compare for pointers and 4461 // references, to handle cases like: 4462 // 4463 // } catch (Base *b) { 4464 // } catch (Derived &d) { 4465 // } 4466 // 4467 // where there is a qualification mismatch that disqualifies this 4468 // handler as a potential problem. 4469 if (I->second->getCaughtType()->isPointerType() == 4470 TestAgainstType->isPointerType()) { 4471 FoundHandler = I->second; 4472 FoundHandlerType = Check; 4473 return true; 4474 } 4475 } 4476 } 4477 return false; 4478 } 4479 }; 4480 } 4481 4482 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of 4483 /// handlers and creates a try statement from them. 4484 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, 4485 ArrayRef<Stmt *> Handlers) { 4486 const llvm::Triple &T = Context.getTargetInfo().getTriple(); 4487 const bool IsOpenMPGPUTarget = 4488 getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN()); 4489 // Don't report an error if 'try' is used in system headers or in an OpenMP 4490 // target region compiled for a GPU architecture. 4491 if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions && 4492 !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) { 4493 // Delay error emission for the OpenMP device code. 4494 targetDiag(TryLoc, diag::err_exceptions_disabled) << "try"; 4495 } 4496 4497 // In OpenMP target regions, we assume that catch is never reached on GPU 4498 // targets. 4499 if (IsOpenMPGPUTarget) 4500 targetDiag(TryLoc, diag::warn_try_not_valid_on_target) << T.str(); 4501 4502 // Exceptions aren't allowed in CUDA device code. 4503 if (getLangOpts().CUDA) 4504 CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions) 4505 << "try" << CurrentCUDATarget(); 4506 4507 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 4508 Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try"; 4509 4510 sema::FunctionScopeInfo *FSI = getCurFunction(); 4511 4512 // C++ try is incompatible with SEH __try. 4513 if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) { 4514 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << 0; 4515 Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'"; 4516 } 4517 4518 const unsigned NumHandlers = Handlers.size(); 4519 assert(!Handlers.empty() && 4520 "The parser shouldn't call this if there are no handlers."); 4521 4522 llvm::DenseMap<QualType, CXXCatchStmt *> HandledBaseTypes; 4523 llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes; 4524 for (unsigned i = 0; i < NumHandlers; ++i) { 4525 CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]); 4526 4527 // Diagnose when the handler is a catch-all handler, but it isn't the last 4528 // handler for the try block. [except.handle]p5. Also, skip exception 4529 // declarations that are invalid, since we can't usefully report on them. 4530 if (!H->getExceptionDecl()) { 4531 if (i < NumHandlers - 1) 4532 return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all)); 4533 continue; 4534 } else if (H->getExceptionDecl()->isInvalidDecl()) 4535 continue; 4536 4537 // Walk the type hierarchy to diagnose when this type has already been 4538 // handled (duplication), or cannot be handled (derivation inversion). We 4539 // ignore top-level cv-qualifiers, per [except.handle]p3 4540 CatchHandlerType HandlerCHT = H->getCaughtType().getCanonicalType(); 4541 4542 // We can ignore whether the type is a reference or a pointer; we need the 4543 // underlying declaration type in order to get at the underlying record 4544 // decl, if there is one. 4545 QualType Underlying = HandlerCHT.underlying(); 4546 if (auto *RD = Underlying->getAsCXXRecordDecl()) { 4547 if (!RD->hasDefinition()) 4548 continue; 4549 // Check that none of the public, unambiguous base classes are in the 4550 // map ([except.handle]p1). Give the base classes the same pointer 4551 // qualification as the original type we are basing off of. This allows 4552 // comparison against the handler type using the same top-level pointer 4553 // as the original type. 4554 CXXBasePaths Paths; 4555 Paths.setOrigin(RD); 4556 CatchTypePublicBases CTPB(HandledBaseTypes, 4557 H->getCaughtType().getCanonicalType()); 4558 if (RD->lookupInBases(CTPB, Paths)) { 4559 const CXXCatchStmt *Problem = CTPB.getFoundHandler(); 4560 if (!Paths.isAmbiguous( 4561 CanQualType::CreateUnsafe(CTPB.getFoundHandlerType()))) { 4562 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), 4563 diag::warn_exception_caught_by_earlier_handler) 4564 << H->getCaughtType(); 4565 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), 4566 diag::note_previous_exception_handler) 4567 << Problem->getCaughtType(); 4568 } 4569 } 4570 // Strip the qualifiers here because we're going to be comparing this 4571 // type to the base type specifiers of a class, which are ignored in a 4572 // base specifier per [class.derived.general]p2. 4573 HandledBaseTypes[Underlying.getUnqualifiedType()] = H; 4574 } 4575 4576 // Add the type the list of ones we have handled; diagnose if we've already 4577 // handled it. 4578 auto R = HandledTypes.insert( 4579 std::make_pair(H->getCaughtType().getCanonicalType(), H)); 4580 if (!R.second) { 4581 const CXXCatchStmt *Problem = R.first->second; 4582 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), 4583 diag::warn_exception_caught_by_earlier_handler) 4584 << H->getCaughtType(); 4585 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), 4586 diag::note_previous_exception_handler) 4587 << Problem->getCaughtType(); 4588 } 4589 } 4590 4591 FSI->setHasCXXTry(TryLoc); 4592 4593 return CXXTryStmt::Create(Context, TryLoc, cast<CompoundStmt>(TryBlock), 4594 Handlers); 4595 } 4596 4597 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc, 4598 Stmt *TryBlock, Stmt *Handler) { 4599 assert(TryBlock && Handler); 4600 4601 sema::FunctionScopeInfo *FSI = getCurFunction(); 4602 4603 // SEH __try is incompatible with C++ try. Borland appears to support this, 4604 // however. 4605 if (!getLangOpts().Borland) { 4606 if (FSI->FirstCXXOrObjCTryLoc.isValid()) { 4607 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << FSI->FirstTryType; 4608 Diag(FSI->FirstCXXOrObjCTryLoc, diag::note_conflicting_try_here) 4609 << (FSI->FirstTryType == sema::FunctionScopeInfo::TryLocIsCXX 4610 ? "'try'" 4611 : "'@try'"); 4612 } 4613 } 4614 4615 FSI->setHasSEHTry(TryLoc); 4616 4617 // Reject __try in Obj-C methods, blocks, and captured decls, since we don't 4618 // track if they use SEH. 4619 DeclContext *DC = CurContext; 4620 while (DC && !DC->isFunctionOrMethod()) 4621 DC = DC->getParent(); 4622 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC); 4623 if (FD) 4624 FD->setUsesSEHTry(true); 4625 else 4626 Diag(TryLoc, diag::err_seh_try_outside_functions); 4627 4628 // Reject __try on unsupported targets. 4629 if (!Context.getTargetInfo().isSEHTrySupported()) 4630 Diag(TryLoc, diag::err_seh_try_unsupported); 4631 4632 return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler); 4633 } 4634 4635 StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, 4636 Stmt *Block) { 4637 assert(FilterExpr && Block); 4638 QualType FTy = FilterExpr->getType(); 4639 if (!FTy->isIntegerType() && !FTy->isDependentType()) { 4640 return StmtError( 4641 Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral) 4642 << FTy); 4643 } 4644 return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block); 4645 } 4646 4647 void Sema::ActOnStartSEHFinallyBlock() { 4648 CurrentSEHFinally.push_back(CurScope); 4649 } 4650 4651 void Sema::ActOnAbortSEHFinallyBlock() { 4652 CurrentSEHFinally.pop_back(); 4653 } 4654 4655 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) { 4656 assert(Block); 4657 CurrentSEHFinally.pop_back(); 4658 return SEHFinallyStmt::Create(Context, Loc, Block); 4659 } 4660 4661 StmtResult 4662 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) { 4663 Scope *SEHTryParent = CurScope; 4664 while (SEHTryParent && !SEHTryParent->isSEHTryScope()) 4665 SEHTryParent = SEHTryParent->getParent(); 4666 if (!SEHTryParent) 4667 return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try)); 4668 CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent); 4669 4670 return new (Context) SEHLeaveStmt(Loc); 4671 } 4672 4673 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc, 4674 bool IsIfExists, 4675 NestedNameSpecifierLoc QualifierLoc, 4676 DeclarationNameInfo NameInfo, 4677 Stmt *Nested) 4678 { 4679 return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists, 4680 QualifierLoc, NameInfo, 4681 cast<CompoundStmt>(Nested)); 4682 } 4683 4684 4685 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, 4686 bool IsIfExists, 4687 CXXScopeSpec &SS, 4688 UnqualifiedId &Name, 4689 Stmt *Nested) { 4690 return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, 4691 SS.getWithLocInContext(Context), 4692 GetNameFromUnqualifiedId(Name), 4693 Nested); 4694 } 4695 4696 RecordDecl* 4697 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, 4698 unsigned NumParams) { 4699 DeclContext *DC = CurContext; 4700 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 4701 DC = DC->getParent(); 4702 4703 RecordDecl *RD = nullptr; 4704 if (getLangOpts().CPlusPlus) 4705 RD = CXXRecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc, 4706 /*Id=*/nullptr); 4707 else 4708 RD = RecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc, 4709 /*Id=*/nullptr); 4710 4711 RD->setCapturedRecord(); 4712 DC->addDecl(RD); 4713 RD->setImplicit(); 4714 RD->startDefinition(); 4715 4716 assert(NumParams > 0 && "CapturedStmt requires context parameter"); 4717 CD = CapturedDecl::Create(Context, CurContext, NumParams); 4718 DC->addDecl(CD); 4719 return RD; 4720 } 4721 4722 static bool 4723 buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI, 4724 SmallVectorImpl<CapturedStmt::Capture> &Captures, 4725 SmallVectorImpl<Expr *> &CaptureInits) { 4726 for (const sema::Capture &Cap : RSI->Captures) { 4727 if (Cap.isInvalid()) 4728 continue; 4729 4730 // Form the initializer for the capture. 4731 ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(), 4732 RSI->CapRegionKind == CR_OpenMP); 4733 4734 // FIXME: Bail out now if the capture is not used and the initializer has 4735 // no side-effects. 4736 4737 // Create a field for this capture. 4738 FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap); 4739 4740 // Add the capture to our list of captures. 4741 if (Cap.isThisCapture()) { 4742 Captures.push_back(CapturedStmt::Capture(Cap.getLocation(), 4743 CapturedStmt::VCK_This)); 4744 } else if (Cap.isVLATypeCapture()) { 4745 Captures.push_back( 4746 CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType)); 4747 } else { 4748 assert(Cap.isVariableCapture() && "unknown kind of capture"); 4749 4750 if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) 4751 S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel); 4752 4753 Captures.push_back(CapturedStmt::Capture( 4754 Cap.getLocation(), 4755 Cap.isReferenceCapture() ? CapturedStmt::VCK_ByRef 4756 : CapturedStmt::VCK_ByCopy, 4757 cast<VarDecl>(Cap.getVariable()))); 4758 } 4759 CaptureInits.push_back(Init.get()); 4760 } 4761 return false; 4762 } 4763 4764 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, 4765 CapturedRegionKind Kind, 4766 unsigned NumParams) { 4767 CapturedDecl *CD = nullptr; 4768 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams); 4769 4770 // Build the context parameter 4771 DeclContext *DC = CapturedDecl::castToDeclContext(CD); 4772 IdentifierInfo *ParamName = &Context.Idents.get("__context"); 4773 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); 4774 auto *Param = 4775 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, 4776 ImplicitParamKind::CapturedContext); 4777 DC->addDecl(Param); 4778 4779 CD->setContextParam(0, Param); 4780 4781 // Enter the capturing scope for this captured region. 4782 PushCapturedRegionScope(CurScope, CD, RD, Kind); 4783 4784 if (CurScope) 4785 PushDeclContext(CurScope, CD); 4786 else 4787 CurContext = CD; 4788 4789 PushExpressionEvaluationContext( 4790 ExpressionEvaluationContext::PotentiallyEvaluated); 4791 ExprEvalContexts.back().InImmediateEscalatingFunctionContext = false; 4792 } 4793 4794 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, 4795 CapturedRegionKind Kind, 4796 ArrayRef<CapturedParamNameType> Params, 4797 unsigned OpenMPCaptureLevel) { 4798 CapturedDecl *CD = nullptr; 4799 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size()); 4800 4801 // Build the context parameter 4802 DeclContext *DC = CapturedDecl::castToDeclContext(CD); 4803 bool ContextIsFound = false; 4804 unsigned ParamNum = 0; 4805 for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(), 4806 E = Params.end(); 4807 I != E; ++I, ++ParamNum) { 4808 if (I->second.isNull()) { 4809 assert(!ContextIsFound && 4810 "null type has been found already for '__context' parameter"); 4811 IdentifierInfo *ParamName = &Context.Idents.get("__context"); 4812 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)) 4813 .withConst() 4814 .withRestrict(); 4815 auto *Param = 4816 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, 4817 ImplicitParamKind::CapturedContext); 4818 DC->addDecl(Param); 4819 CD->setContextParam(ParamNum, Param); 4820 ContextIsFound = true; 4821 } else { 4822 IdentifierInfo *ParamName = &Context.Idents.get(I->first); 4823 auto *Param = 4824 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second, 4825 ImplicitParamKind::CapturedContext); 4826 DC->addDecl(Param); 4827 CD->setParam(ParamNum, Param); 4828 } 4829 } 4830 assert(ContextIsFound && "no null type for '__context' parameter"); 4831 if (!ContextIsFound) { 4832 // Add __context implicitly if it is not specified. 4833 IdentifierInfo *ParamName = &Context.Idents.get("__context"); 4834 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); 4835 auto *Param = 4836 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, 4837 ImplicitParamKind::CapturedContext); 4838 DC->addDecl(Param); 4839 CD->setContextParam(ParamNum, Param); 4840 } 4841 // Enter the capturing scope for this captured region. 4842 PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel); 4843 4844 if (CurScope) 4845 PushDeclContext(CurScope, CD); 4846 else 4847 CurContext = CD; 4848 4849 PushExpressionEvaluationContext( 4850 ExpressionEvaluationContext::PotentiallyEvaluated); 4851 } 4852 4853 void Sema::ActOnCapturedRegionError() { 4854 DiscardCleanupsInEvaluationContext(); 4855 PopExpressionEvaluationContext(); 4856 PopDeclContext(); 4857 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(); 4858 CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get()); 4859 4860 RecordDecl *Record = RSI->TheRecordDecl; 4861 Record->setInvalidDecl(); 4862 4863 SmallVector<Decl*, 4> Fields(Record->fields()); 4864 ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields, 4865 SourceLocation(), SourceLocation(), ParsedAttributesView()); 4866 } 4867 4868 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) { 4869 // Leave the captured scope before we start creating captures in the 4870 // enclosing scope. 4871 DiscardCleanupsInEvaluationContext(); 4872 PopExpressionEvaluationContext(); 4873 PopDeclContext(); 4874 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(); 4875 CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get()); 4876 4877 SmallVector<CapturedStmt::Capture, 4> Captures; 4878 SmallVector<Expr *, 4> CaptureInits; 4879 if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits)) 4880 return StmtError(); 4881 4882 CapturedDecl *CD = RSI->TheCapturedDecl; 4883 RecordDecl *RD = RSI->TheRecordDecl; 4884 4885 CapturedStmt *Res = CapturedStmt::Create( 4886 getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind), 4887 Captures, CaptureInits, CD, RD); 4888 4889 CD->setBody(Res->getCapturedStmt()); 4890 RD->completeDefinition(); 4891 4892 return Res; 4893 } 4894