xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaStmt.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for statements.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/ASTDiagnostic.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/IgnoreExpr.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/Initialization.h"
31 #include "clang/Sema/Lookup.h"
32 #include "clang/Sema/Ownership.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallString.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/StringExtras.h"
43 
44 using namespace clang;
45 using namespace sema;
46 
47 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
48   if (FE.isInvalid())
49     return StmtError();
50 
51   FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
52   if (FE.isInvalid())
53     return StmtError();
54 
55   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
56   // void expression for its side effects.  Conversion to void allows any
57   // operand, even incomplete types.
58 
59   // Same thing in for stmt first clause (when expr) and third clause.
60   return StmtResult(FE.getAs<Stmt>());
61 }
62 
63 
64 StmtResult Sema::ActOnExprStmtError() {
65   DiscardCleanupsInEvaluationContext();
66   return StmtError();
67 }
68 
69 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
70                                bool HasLeadingEmptyMacro) {
71   return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
72 }
73 
74 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
75                                SourceLocation EndLoc) {
76   DeclGroupRef DG = dg.get();
77 
78   // If we have an invalid decl, just return an error.
79   if (DG.isNull()) return StmtError();
80 
81   return new (Context) DeclStmt(DG, StartLoc, EndLoc);
82 }
83 
84 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
85   DeclGroupRef DG = dg.get();
86 
87   // If we don't have a declaration, or we have an invalid declaration,
88   // just return.
89   if (DG.isNull() || !DG.isSingleDecl())
90     return;
91 
92   Decl *decl = DG.getSingleDecl();
93   if (!decl || decl->isInvalidDecl())
94     return;
95 
96   // Only variable declarations are permitted.
97   VarDecl *var = dyn_cast<VarDecl>(decl);
98   if (!var) {
99     Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
100     decl->setInvalidDecl();
101     return;
102   }
103 
104   // foreach variables are never actually initialized in the way that
105   // the parser came up with.
106   var->setInit(nullptr);
107 
108   // In ARC, we don't need to retain the iteration variable of a fast
109   // enumeration loop.  Rather than actually trying to catch that
110   // during declaration processing, we remove the consequences here.
111   if (getLangOpts().ObjCAutoRefCount) {
112     QualType type = var->getType();
113 
114     // Only do this if we inferred the lifetime.  Inferred lifetime
115     // will show up as a local qualifier because explicit lifetime
116     // should have shown up as an AttributedType instead.
117     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
118       // Add 'const' and mark the variable as pseudo-strong.
119       var->setType(type.withConst());
120       var->setARCPseudoStrong(true);
121     }
122   }
123 }
124 
125 /// Diagnose unused comparisons, both builtin and overloaded operators.
126 /// For '==' and '!=', suggest fixits for '=' or '|='.
127 ///
128 /// Adding a cast to void (or other expression wrappers) will prevent the
129 /// warning from firing.
130 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
131   SourceLocation Loc;
132   bool CanAssign;
133   enum { Equality, Inequality, Relational, ThreeWay } Kind;
134 
135   if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
136     if (!Op->isComparisonOp())
137       return false;
138 
139     if (Op->getOpcode() == BO_EQ)
140       Kind = Equality;
141     else if (Op->getOpcode() == BO_NE)
142       Kind = Inequality;
143     else if (Op->getOpcode() == BO_Cmp)
144       Kind = ThreeWay;
145     else {
146       assert(Op->isRelationalOp());
147       Kind = Relational;
148     }
149     Loc = Op->getOperatorLoc();
150     CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
151   } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
152     switch (Op->getOperator()) {
153     case OO_EqualEqual:
154       Kind = Equality;
155       break;
156     case OO_ExclaimEqual:
157       Kind = Inequality;
158       break;
159     case OO_Less:
160     case OO_Greater:
161     case OO_GreaterEqual:
162     case OO_LessEqual:
163       Kind = Relational;
164       break;
165     case OO_Spaceship:
166       Kind = ThreeWay;
167       break;
168     default:
169       return false;
170     }
171 
172     Loc = Op->getOperatorLoc();
173     CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
174   } else {
175     // Not a typo-prone comparison.
176     return false;
177   }
178 
179   // Suppress warnings when the operator, suspicious as it may be, comes from
180   // a macro expansion.
181   if (S.SourceMgr.isMacroBodyExpansion(Loc))
182     return false;
183 
184   S.Diag(Loc, diag::warn_unused_comparison)
185     << (unsigned)Kind << E->getSourceRange();
186 
187   // If the LHS is a plausible entity to assign to, provide a fixit hint to
188   // correct common typos.
189   if (CanAssign) {
190     if (Kind == Inequality)
191       S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
192         << FixItHint::CreateReplacement(Loc, "|=");
193     else if (Kind == Equality)
194       S.Diag(Loc, diag::note_equality_comparison_to_assign)
195         << FixItHint::CreateReplacement(Loc, "=");
196   }
197 
198   return true;
199 }
200 
201 static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A,
202                               SourceLocation Loc, SourceRange R1,
203                               SourceRange R2, bool IsCtor) {
204   if (!A)
205     return false;
206   StringRef Msg = A->getMessage();
207 
208   if (Msg.empty()) {
209     if (IsCtor)
210       return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2;
211     return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
212   }
213 
214   if (IsCtor)
215     return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1
216                                                           << R2;
217   return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2;
218 }
219 
220 void Sema::DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID) {
221   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
222     return DiagnoseUnusedExprResult(Label->getSubStmt(), DiagID);
223 
224   const Expr *E = dyn_cast_or_null<Expr>(S);
225   if (!E)
226     return;
227 
228   // If we are in an unevaluated expression context, then there can be no unused
229   // results because the results aren't expected to be used in the first place.
230   if (isUnevaluatedContext())
231     return;
232 
233   SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
234   // In most cases, we don't want to warn if the expression is written in a
235   // macro body, or if the macro comes from a system header. If the offending
236   // expression is a call to a function with the warn_unused_result attribute,
237   // we warn no matter the location. Because of the order in which the various
238   // checks need to happen, we factor out the macro-related test here.
239   bool ShouldSuppress =
240       SourceMgr.isMacroBodyExpansion(ExprLoc) ||
241       SourceMgr.isInSystemMacro(ExprLoc);
242 
243   const Expr *WarnExpr;
244   SourceLocation Loc;
245   SourceRange R1, R2;
246   if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
247     return;
248 
249   // If this is a GNU statement expression expanded from a macro, it is probably
250   // unused because it is a function-like macro that can be used as either an
251   // expression or statement.  Don't warn, because it is almost certainly a
252   // false positive.
253   if (isa<StmtExpr>(E) && Loc.isMacroID())
254     return;
255 
256   // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
257   // That macro is frequently used to suppress "unused parameter" warnings,
258   // but its implementation makes clang's -Wunused-value fire.  Prevent this.
259   if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
260     SourceLocation SpellLoc = Loc;
261     if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
262       return;
263   }
264 
265   // Okay, we have an unused result.  Depending on what the base expression is,
266   // we might want to make a more specific diagnostic.  Check for one of these
267   // cases now.
268   if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
269     E = Temps->getSubExpr();
270   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
271     E = TempExpr->getSubExpr();
272 
273   if (DiagnoseUnusedComparison(*this, E))
274     return;
275 
276   E = WarnExpr;
277   if (const auto *Cast = dyn_cast<CastExpr>(E))
278     if (Cast->getCastKind() == CK_NoOp ||
279         Cast->getCastKind() == CK_ConstructorConversion)
280       E = Cast->getSubExpr()->IgnoreImpCasts();
281 
282   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
283     if (E->getType()->isVoidType())
284       return;
285 
286     if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>(
287                                      CE->getUnusedResultAttr(Context)),
288                           Loc, R1, R2, /*isCtor=*/false))
289       return;
290 
291     // If the callee has attribute pure, const, or warn_unused_result, warn with
292     // a more specific message to make it clear what is happening. If the call
293     // is written in a macro body, only warn if it has the warn_unused_result
294     // attribute.
295     if (const Decl *FD = CE->getCalleeDecl()) {
296       if (ShouldSuppress)
297         return;
298       if (FD->hasAttr<PureAttr>()) {
299         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
300         return;
301       }
302       if (FD->hasAttr<ConstAttr>()) {
303         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
304         return;
305       }
306     }
307   } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
308     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
309       const auto *A = Ctor->getAttr<WarnUnusedResultAttr>();
310       A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>();
311       if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true))
312         return;
313     }
314   } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
315     if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) {
316 
317       if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
318                             R2, /*isCtor=*/false))
319         return;
320     }
321   } else if (ShouldSuppress)
322     return;
323 
324   E = WarnExpr;
325   if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
326     if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
327       Diag(Loc, diag::err_arc_unused_init_message) << R1;
328       return;
329     }
330     const ObjCMethodDecl *MD = ME->getMethodDecl();
331     if (MD) {
332       if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
333                             R2, /*isCtor=*/false))
334         return;
335     }
336   } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
337     const Expr *Source = POE->getSyntacticForm();
338     // Handle the actually selected call of an OpenMP specialized call.
339     if (LangOpts.OpenMP && isa<CallExpr>(Source) &&
340         POE->getNumSemanticExprs() == 1 &&
341         isa<CallExpr>(POE->getSemanticExpr(0)))
342       return DiagnoseUnusedExprResult(POE->getSemanticExpr(0), DiagID);
343     if (isa<ObjCSubscriptRefExpr>(Source))
344       DiagID = diag::warn_unused_container_subscript_expr;
345     else if (isa<ObjCPropertyRefExpr>(Source))
346       DiagID = diag::warn_unused_property_expr;
347   } else if (const CXXFunctionalCastExpr *FC
348                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
349     const Expr *E = FC->getSubExpr();
350     if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
351       E = TE->getSubExpr();
352     if (isa<CXXTemporaryObjectExpr>(E))
353       return;
354     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
355       if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
356         if (!RD->getAttr<WarnUnusedAttr>())
357           return;
358   }
359   // Diagnose "(void*) blah" as a typo for "(void) blah".
360   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
361     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
362     QualType T = TI->getType();
363 
364     // We really do want to use the non-canonical type here.
365     if (T == Context.VoidPtrTy) {
366       PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
367 
368       Diag(Loc, diag::warn_unused_voidptr)
369         << FixItHint::CreateRemoval(TL.getStarLoc());
370       return;
371     }
372   }
373 
374   // Tell the user to assign it into a variable to force a volatile load if this
375   // isn't an array.
376   if (E->isGLValue() && E->getType().isVolatileQualified() &&
377       !E->getType()->isArrayType()) {
378     Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
379     return;
380   }
381 
382   // Do not diagnose use of a comma operator in a SFINAE context because the
383   // type of the left operand could be used for SFINAE, so technically it is
384   // *used*.
385   if (DiagID != diag::warn_unused_comma_left_operand || !isSFINAEContext())
386     DiagIfReachable(Loc, S ? llvm::ArrayRef(S) : std::nullopt,
387                     PDiag(DiagID) << R1 << R2);
388 }
389 
390 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
391   PushCompoundScope(IsStmtExpr);
392 }
393 
394 void Sema::ActOnAfterCompoundStatementLeadingPragmas() {
395   if (getCurFPFeatures().isFPConstrained()) {
396     FunctionScopeInfo *FSI = getCurFunction();
397     assert(FSI);
398     FSI->setUsesFPIntrin();
399   }
400 }
401 
402 void Sema::ActOnFinishOfCompoundStmt() {
403   PopCompoundScope();
404 }
405 
406 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
407   return getCurFunction()->CompoundScopes.back();
408 }
409 
410 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
411                                    ArrayRef<Stmt *> Elts, bool isStmtExpr) {
412   const unsigned NumElts = Elts.size();
413 
414   // If we're in C mode, check that we don't have any decls after stmts.  If
415   // so, emit an extension diagnostic in C89 and potentially a warning in later
416   // versions.
417   const unsigned MixedDeclsCodeID = getLangOpts().C99
418                                         ? diag::warn_mixed_decls_code
419                                         : diag::ext_mixed_decls_code;
420   if (!getLangOpts().CPlusPlus && !Diags.isIgnored(MixedDeclsCodeID, L)) {
421     // Note that __extension__ can be around a decl.
422     unsigned i = 0;
423     // Skip over all declarations.
424     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
425       /*empty*/;
426 
427     // We found the end of the list or a statement.  Scan for another declstmt.
428     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
429       /*empty*/;
430 
431     if (i != NumElts) {
432       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
433       Diag(D->getLocation(), MixedDeclsCodeID);
434     }
435   }
436 
437   // Check for suspicious empty body (null statement) in `for' and `while'
438   // statements.  Don't do anything for template instantiations, this just adds
439   // noise.
440   if (NumElts != 0 && !CurrentInstantiationScope &&
441       getCurCompoundScope().HasEmptyLoopBodies) {
442     for (unsigned i = 0; i != NumElts - 1; ++i)
443       DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
444   }
445 
446   // Calculate difference between FP options in this compound statement and in
447   // the enclosing one. If this is a function body, take the difference against
448   // default options. In this case the difference will indicate options that are
449   // changed upon entry to the statement.
450   FPOptions FPO = (getCurFunction()->CompoundScopes.size() == 1)
451                       ? FPOptions(getLangOpts())
452                       : getCurCompoundScope().InitialFPFeatures;
453   FPOptionsOverride FPDiff = getCurFPFeatures().getChangesFrom(FPO);
454 
455   return CompoundStmt::Create(Context, Elts, FPDiff, L, R);
456 }
457 
458 ExprResult
459 Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) {
460   if (!Val.get())
461     return Val;
462 
463   if (DiagnoseUnexpandedParameterPack(Val.get()))
464     return ExprError();
465 
466   // If we're not inside a switch, let the 'case' statement handling diagnose
467   // this. Just clean up after the expression as best we can.
468   if (getCurFunction()->SwitchStack.empty())
469     return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
470                                getLangOpts().CPlusPlus11);
471 
472   Expr *CondExpr =
473       getCurFunction()->SwitchStack.back().getPointer()->getCond();
474   if (!CondExpr)
475     return ExprError();
476   QualType CondType = CondExpr->getType();
477 
478   auto CheckAndFinish = [&](Expr *E) {
479     if (CondType->isDependentType() || E->isTypeDependent())
480       return ExprResult(E);
481 
482     if (getLangOpts().CPlusPlus11) {
483       // C++11 [stmt.switch]p2: the constant-expression shall be a converted
484       // constant expression of the promoted type of the switch condition.
485       llvm::APSInt TempVal;
486       return CheckConvertedConstantExpression(E, CondType, TempVal,
487                                               CCEK_CaseValue);
488     }
489 
490     ExprResult ER = E;
491     if (!E->isValueDependent())
492       ER = VerifyIntegerConstantExpression(E, AllowFold);
493     if (!ER.isInvalid())
494       ER = DefaultLvalueConversion(ER.get());
495     if (!ER.isInvalid())
496       ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
497     if (!ER.isInvalid())
498       ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false);
499     return ER;
500   };
501 
502   ExprResult Converted = CorrectDelayedTyposInExpr(
503       Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
504       CheckAndFinish);
505   if (Converted.get() == Val.get())
506     Converted = CheckAndFinish(Val.get());
507   return Converted;
508 }
509 
510 StmtResult
511 Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal,
512                     SourceLocation DotDotDotLoc, ExprResult RHSVal,
513                     SourceLocation ColonLoc) {
514   assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
515   assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
516                                    : RHSVal.isInvalid() || RHSVal.get()) &&
517          "missing RHS value");
518 
519   if (getCurFunction()->SwitchStack.empty()) {
520     Diag(CaseLoc, diag::err_case_not_in_switch);
521     return StmtError();
522   }
523 
524   if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
525     getCurFunction()->SwitchStack.back().setInt(true);
526     return StmtError();
527   }
528 
529   auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
530                               CaseLoc, DotDotDotLoc, ColonLoc);
531   getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
532   return CS;
533 }
534 
535 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
536 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
537   cast<CaseStmt>(S)->setSubStmt(SubStmt);
538 }
539 
540 StmtResult
541 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
542                        Stmt *SubStmt, Scope *CurScope) {
543   if (getCurFunction()->SwitchStack.empty()) {
544     Diag(DefaultLoc, diag::err_default_not_in_switch);
545     return SubStmt;
546   }
547 
548   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
549   getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
550   return DS;
551 }
552 
553 StmtResult
554 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
555                      SourceLocation ColonLoc, Stmt *SubStmt) {
556   // If the label was multiply defined, reject it now.
557   if (TheDecl->getStmt()) {
558     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
559     Diag(TheDecl->getLocation(), diag::note_previous_definition);
560     return SubStmt;
561   }
562 
563   ReservedIdentifierStatus Status = TheDecl->isReserved(getLangOpts());
564   if (isReservedInAllContexts(Status) &&
565       !Context.getSourceManager().isInSystemHeader(IdentLoc))
566     Diag(IdentLoc, diag::warn_reserved_extern_symbol)
567         << TheDecl << static_cast<int>(Status);
568 
569   // Otherwise, things are good.  Fill in the declaration and return it.
570   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
571   TheDecl->setStmt(LS);
572   if (!TheDecl->isGnuLocal()) {
573     TheDecl->setLocStart(IdentLoc);
574     if (!TheDecl->isMSAsmLabel()) {
575       // Don't update the location of MS ASM labels.  These will result in
576       // a diagnostic, and changing the location here will mess that up.
577       TheDecl->setLocation(IdentLoc);
578     }
579   }
580   return LS;
581 }
582 
583 StmtResult Sema::BuildAttributedStmt(SourceLocation AttrsLoc,
584                                      ArrayRef<const Attr *> Attrs,
585                                      Stmt *SubStmt) {
586   // FIXME: this code should move when a planned refactoring around statement
587   // attributes lands.
588   for (const auto *A : Attrs) {
589     if (A->getKind() == attr::MustTail) {
590       if (!checkAndRewriteMustTailAttr(SubStmt, *A)) {
591         return SubStmt;
592       }
593       setFunctionHasMustTail();
594     }
595   }
596 
597   return AttributedStmt::Create(Context, AttrsLoc, Attrs, SubStmt);
598 }
599 
600 StmtResult Sema::ActOnAttributedStmt(const ParsedAttributes &Attrs,
601                                      Stmt *SubStmt) {
602   SmallVector<const Attr *, 1> SemanticAttrs;
603   ProcessStmtAttributes(SubStmt, Attrs, SemanticAttrs);
604   if (!SemanticAttrs.empty())
605     return BuildAttributedStmt(Attrs.Range.getBegin(), SemanticAttrs, SubStmt);
606   // If none of the attributes applied, that's fine, we can recover by
607   // returning the substatement directly instead of making an AttributedStmt
608   // with no attributes on it.
609   return SubStmt;
610 }
611 
612 bool Sema::checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA) {
613   ReturnStmt *R = cast<ReturnStmt>(St);
614   Expr *E = R->getRetValue();
615 
616   if (CurContext->isDependentContext() || (E && E->isInstantiationDependent()))
617     // We have to suspend our check until template instantiation time.
618     return true;
619 
620   if (!checkMustTailAttr(St, MTA))
621     return false;
622 
623   // FIXME: Replace Expr::IgnoreImplicitAsWritten() with this function.
624   // Currently it does not skip implicit constructors in an initialization
625   // context.
626   auto IgnoreImplicitAsWritten = [](Expr *E) -> Expr * {
627     return IgnoreExprNodes(E, IgnoreImplicitAsWrittenSingleStep,
628                            IgnoreElidableImplicitConstructorSingleStep);
629   };
630 
631   // Now that we have verified that 'musttail' is valid here, rewrite the
632   // return value to remove all implicit nodes, but retain parentheses.
633   R->setRetValue(IgnoreImplicitAsWritten(E));
634   return true;
635 }
636 
637 bool Sema::checkMustTailAttr(const Stmt *St, const Attr &MTA) {
638   assert(!CurContext->isDependentContext() &&
639          "musttail cannot be checked from a dependent context");
640 
641   // FIXME: Add Expr::IgnoreParenImplicitAsWritten() with this definition.
642   auto IgnoreParenImplicitAsWritten = [](const Expr *E) -> const Expr * {
643     return IgnoreExprNodes(const_cast<Expr *>(E), IgnoreParensSingleStep,
644                            IgnoreImplicitAsWrittenSingleStep,
645                            IgnoreElidableImplicitConstructorSingleStep);
646   };
647 
648   const Expr *E = cast<ReturnStmt>(St)->getRetValue();
649   const auto *CE = dyn_cast_or_null<CallExpr>(IgnoreParenImplicitAsWritten(E));
650 
651   if (!CE) {
652     Diag(St->getBeginLoc(), diag::err_musttail_needs_call) << &MTA;
653     return false;
654   }
655 
656   if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) {
657     if (EWC->cleanupsHaveSideEffects()) {
658       Diag(St->getBeginLoc(), diag::err_musttail_needs_trivial_args) << &MTA;
659       return false;
660     }
661   }
662 
663   // We need to determine the full function type (including "this" type, if any)
664   // for both caller and callee.
665   struct FuncType {
666     enum {
667       ft_non_member,
668       ft_static_member,
669       ft_non_static_member,
670       ft_pointer_to_member,
671     } MemberType = ft_non_member;
672 
673     QualType This;
674     const FunctionProtoType *Func;
675     const CXXMethodDecl *Method = nullptr;
676   } CallerType, CalleeType;
677 
678   auto GetMethodType = [this, St, MTA](const CXXMethodDecl *CMD, FuncType &Type,
679                                        bool IsCallee) -> bool {
680     if (isa<CXXConstructorDecl, CXXDestructorDecl>(CMD)) {
681       Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
682           << IsCallee << isa<CXXDestructorDecl>(CMD);
683       if (IsCallee)
684         Diag(CMD->getBeginLoc(), diag::note_musttail_structors_forbidden)
685             << isa<CXXDestructorDecl>(CMD);
686       Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
687       return false;
688     }
689     if (CMD->isStatic())
690       Type.MemberType = FuncType::ft_static_member;
691     else {
692       Type.This = CMD->getFunctionObjectParameterType();
693       Type.MemberType = FuncType::ft_non_static_member;
694     }
695     Type.Func = CMD->getType()->castAs<FunctionProtoType>();
696     return true;
697   };
698 
699   const auto *CallerDecl = dyn_cast<FunctionDecl>(CurContext);
700 
701   // Find caller function signature.
702   if (!CallerDecl) {
703     int ContextType;
704     if (isa<BlockDecl>(CurContext))
705       ContextType = 0;
706     else if (isa<ObjCMethodDecl>(CurContext))
707       ContextType = 1;
708     else
709       ContextType = 2;
710     Diag(St->getBeginLoc(), diag::err_musttail_forbidden_from_this_context)
711         << &MTA << ContextType;
712     return false;
713   } else if (const auto *CMD = dyn_cast<CXXMethodDecl>(CurContext)) {
714     // Caller is a class/struct method.
715     if (!GetMethodType(CMD, CallerType, false))
716       return false;
717   } else {
718     // Caller is a non-method function.
719     CallerType.Func = CallerDecl->getType()->getAs<FunctionProtoType>();
720   }
721 
722   const Expr *CalleeExpr = CE->getCallee()->IgnoreParens();
723   const auto *CalleeBinOp = dyn_cast<BinaryOperator>(CalleeExpr);
724   SourceLocation CalleeLoc = CE->getCalleeDecl()
725                                  ? CE->getCalleeDecl()->getBeginLoc()
726                                  : St->getBeginLoc();
727 
728   // Find callee function signature.
729   if (const CXXMethodDecl *CMD =
730           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) {
731     // Call is: obj.method(), obj->method(), functor(), etc.
732     if (!GetMethodType(CMD, CalleeType, true))
733       return false;
734   } else if (CalleeBinOp && CalleeBinOp->isPtrMemOp()) {
735     // Call is: obj->*method_ptr or obj.*method_ptr
736     const auto *MPT =
737         CalleeBinOp->getRHS()->getType()->castAs<MemberPointerType>();
738     CalleeType.This = QualType(MPT->getClass(), 0);
739     CalleeType.Func = MPT->getPointeeType()->castAs<FunctionProtoType>();
740     CalleeType.MemberType = FuncType::ft_pointer_to_member;
741   } else if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) {
742     Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
743         << /* IsCallee = */ 1 << /* IsDestructor = */ 1;
744     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
745     return false;
746   } else {
747     // Non-method function.
748     CalleeType.Func =
749         CalleeExpr->getType()->getPointeeType()->getAs<FunctionProtoType>();
750   }
751 
752   // Both caller and callee must have a prototype (no K&R declarations).
753   if (!CalleeType.Func || !CallerType.Func) {
754     Diag(St->getBeginLoc(), diag::err_musttail_needs_prototype) << &MTA;
755     if (!CalleeType.Func && CE->getDirectCallee()) {
756       Diag(CE->getDirectCallee()->getBeginLoc(),
757            diag::note_musttail_fix_non_prototype);
758     }
759     if (!CallerType.Func)
760       Diag(CallerDecl->getBeginLoc(), diag::note_musttail_fix_non_prototype);
761     return false;
762   }
763 
764   // Caller and callee must have matching calling conventions.
765   //
766   // Some calling conventions are physically capable of supporting tail calls
767   // even if the function types don't perfectly match. LLVM is currently too
768   // strict to allow this, but if LLVM added support for this in the future, we
769   // could exit early here and skip the remaining checks if the functions are
770   // using such a calling convention.
771   if (CallerType.Func->getCallConv() != CalleeType.Func->getCallConv()) {
772     if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
773       Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch)
774           << true << ND->getDeclName();
775     else
776       Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) << false;
777     Diag(CalleeLoc, diag::note_musttail_callconv_mismatch)
778         << FunctionType::getNameForCallConv(CallerType.Func->getCallConv())
779         << FunctionType::getNameForCallConv(CalleeType.Func->getCallConv());
780     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
781     return false;
782   }
783 
784   if (CalleeType.Func->isVariadic() || CallerType.Func->isVariadic()) {
785     Diag(St->getBeginLoc(), diag::err_musttail_no_variadic) << &MTA;
786     return false;
787   }
788 
789   const auto *CalleeDecl = CE->getCalleeDecl();
790   if (CalleeDecl && CalleeDecl->hasAttr<CXX11NoReturnAttr>()) {
791     Diag(St->getBeginLoc(), diag::err_musttail_no_return) << &MTA;
792     return false;
793   }
794 
795   // Caller and callee must match in whether they have a "this" parameter.
796   if (CallerType.This.isNull() != CalleeType.This.isNull()) {
797     if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
798       Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
799           << CallerType.MemberType << CalleeType.MemberType << true
800           << ND->getDeclName();
801       Diag(CalleeLoc, diag::note_musttail_callee_defined_here)
802           << ND->getDeclName();
803     } else
804       Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
805           << CallerType.MemberType << CalleeType.MemberType << false;
806     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
807     return false;
808   }
809 
810   auto CheckTypesMatch = [this](FuncType CallerType, FuncType CalleeType,
811                                 PartialDiagnostic &PD) -> bool {
812     enum {
813       ft_different_class,
814       ft_parameter_arity,
815       ft_parameter_mismatch,
816       ft_return_type,
817     };
818 
819     auto DoTypesMatch = [this, &PD](QualType A, QualType B,
820                                     unsigned Select) -> bool {
821       if (!Context.hasSimilarType(A, B)) {
822         PD << Select << A.getUnqualifiedType() << B.getUnqualifiedType();
823         return false;
824       }
825       return true;
826     };
827 
828     if (!CallerType.This.isNull() &&
829         !DoTypesMatch(CallerType.This, CalleeType.This, ft_different_class))
830       return false;
831 
832     if (!DoTypesMatch(CallerType.Func->getReturnType(),
833                       CalleeType.Func->getReturnType(), ft_return_type))
834       return false;
835 
836     if (CallerType.Func->getNumParams() != CalleeType.Func->getNumParams()) {
837       PD << ft_parameter_arity << CallerType.Func->getNumParams()
838          << CalleeType.Func->getNumParams();
839       return false;
840     }
841 
842     ArrayRef<QualType> CalleeParams = CalleeType.Func->getParamTypes();
843     ArrayRef<QualType> CallerParams = CallerType.Func->getParamTypes();
844     size_t N = CallerType.Func->getNumParams();
845     for (size_t I = 0; I < N; I++) {
846       if (!DoTypesMatch(CalleeParams[I], CallerParams[I],
847                         ft_parameter_mismatch)) {
848         PD << static_cast<int>(I) + 1;
849         return false;
850       }
851     }
852 
853     return true;
854   };
855 
856   PartialDiagnostic PD = PDiag(diag::note_musttail_mismatch);
857   if (!CheckTypesMatch(CallerType, CalleeType, PD)) {
858     if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
859       Diag(St->getBeginLoc(), diag::err_musttail_mismatch)
860           << true << ND->getDeclName();
861     else
862       Diag(St->getBeginLoc(), diag::err_musttail_mismatch) << false;
863     Diag(CalleeLoc, PD);
864     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
865     return false;
866   }
867 
868   return true;
869 }
870 
871 namespace {
872 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
873   typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
874   Sema &SemaRef;
875 public:
876   CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
877   void VisitBinaryOperator(BinaryOperator *E) {
878     if (E->getOpcode() == BO_Comma)
879       SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
880     EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E);
881   }
882 };
883 }
884 
885 StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc,
886                              IfStatementKind StatementKind,
887                              SourceLocation LParenLoc, Stmt *InitStmt,
888                              ConditionResult Cond, SourceLocation RParenLoc,
889                              Stmt *thenStmt, SourceLocation ElseLoc,
890                              Stmt *elseStmt) {
891   if (Cond.isInvalid())
892     return StmtError();
893 
894   bool ConstevalOrNegatedConsteval =
895       StatementKind == IfStatementKind::ConstevalNonNegated ||
896       StatementKind == IfStatementKind::ConstevalNegated;
897 
898   Expr *CondExpr = Cond.get().second;
899   assert((CondExpr || ConstevalOrNegatedConsteval) &&
900          "If statement: missing condition");
901   // Only call the CommaVisitor when not C89 due to differences in scope flags.
902   if (CondExpr && (getLangOpts().C99 || getLangOpts().CPlusPlus) &&
903       !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
904     CommaVisitor(*this).Visit(CondExpr);
905 
906   if (!ConstevalOrNegatedConsteval && !elseStmt)
907     DiagnoseEmptyStmtBody(RParenLoc, thenStmt, diag::warn_empty_if_body);
908 
909   if (ConstevalOrNegatedConsteval ||
910       StatementKind == IfStatementKind::Constexpr) {
911     auto DiagnoseLikelihood = [&](const Stmt *S) {
912       if (const Attr *A = Stmt::getLikelihoodAttr(S)) {
913         Diags.Report(A->getLocation(),
914                      diag::warn_attribute_has_no_effect_on_compile_time_if)
915             << A << ConstevalOrNegatedConsteval << A->getRange();
916         Diags.Report(IfLoc,
917                      diag::note_attribute_has_no_effect_on_compile_time_if_here)
918             << ConstevalOrNegatedConsteval
919             << SourceRange(IfLoc, (ConstevalOrNegatedConsteval
920                                        ? thenStmt->getBeginLoc()
921                                        : LParenLoc)
922                                       .getLocWithOffset(-1));
923       }
924     };
925     DiagnoseLikelihood(thenStmt);
926     DiagnoseLikelihood(elseStmt);
927   } else {
928     std::tuple<bool, const Attr *, const Attr *> LHC =
929         Stmt::determineLikelihoodConflict(thenStmt, elseStmt);
930     if (std::get<0>(LHC)) {
931       const Attr *ThenAttr = std::get<1>(LHC);
932       const Attr *ElseAttr = std::get<2>(LHC);
933       Diags.Report(ThenAttr->getLocation(),
934                    diag::warn_attributes_likelihood_ifstmt_conflict)
935           << ThenAttr << ThenAttr->getRange();
936       Diags.Report(ElseAttr->getLocation(), diag::note_conflicting_attribute)
937           << ElseAttr << ElseAttr->getRange();
938     }
939   }
940 
941   if (ConstevalOrNegatedConsteval) {
942     bool Immediate = ExprEvalContexts.back().Context ==
943                      ExpressionEvaluationContext::ImmediateFunctionContext;
944     if (CurContext->isFunctionOrMethod()) {
945       const auto *FD =
946           dyn_cast<FunctionDecl>(Decl::castFromDeclContext(CurContext));
947       if (FD && FD->isImmediateFunction())
948         Immediate = true;
949     }
950     if (isUnevaluatedContext() || Immediate)
951       Diags.Report(IfLoc, diag::warn_consteval_if_always_true) << Immediate;
952   }
953 
954   return BuildIfStmt(IfLoc, StatementKind, LParenLoc, InitStmt, Cond, RParenLoc,
955                      thenStmt, ElseLoc, elseStmt);
956 }
957 
958 StmtResult Sema::BuildIfStmt(SourceLocation IfLoc,
959                              IfStatementKind StatementKind,
960                              SourceLocation LParenLoc, Stmt *InitStmt,
961                              ConditionResult Cond, SourceLocation RParenLoc,
962                              Stmt *thenStmt, SourceLocation ElseLoc,
963                              Stmt *elseStmt) {
964   if (Cond.isInvalid())
965     return StmtError();
966 
967   if (StatementKind != IfStatementKind::Ordinary ||
968       isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
969     setFunctionHasBranchProtectedScope();
970 
971   return IfStmt::Create(Context, IfLoc, StatementKind, InitStmt,
972                         Cond.get().first, Cond.get().second, LParenLoc,
973                         RParenLoc, thenStmt, ElseLoc, elseStmt);
974 }
975 
976 namespace {
977   struct CaseCompareFunctor {
978     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
979                     const llvm::APSInt &RHS) {
980       return LHS.first < RHS;
981     }
982     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
983                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
984       return LHS.first < RHS.first;
985     }
986     bool operator()(const llvm::APSInt &LHS,
987                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
988       return LHS < RHS.first;
989     }
990   };
991 }
992 
993 /// CmpCaseVals - Comparison predicate for sorting case values.
994 ///
995 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
996                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
997   if (lhs.first < rhs.first)
998     return true;
999 
1000   if (lhs.first == rhs.first &&
1001       lhs.second->getCaseLoc() < rhs.second->getCaseLoc())
1002     return true;
1003   return false;
1004 }
1005 
1006 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
1007 ///
1008 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1009                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1010 {
1011   return lhs.first < rhs.first;
1012 }
1013 
1014 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
1015 ///
1016 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1017                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1018 {
1019   return lhs.first == rhs.first;
1020 }
1021 
1022 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
1023 /// potentially integral-promoted expression @p expr.
1024 static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) {
1025   if (const auto *FE = dyn_cast<FullExpr>(E))
1026     E = FE->getSubExpr();
1027   while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
1028     if (ImpCast->getCastKind() != CK_IntegralCast) break;
1029     E = ImpCast->getSubExpr();
1030   }
1031   return E->getType();
1032 }
1033 
1034 ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) {
1035   class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
1036     Expr *Cond;
1037 
1038   public:
1039     SwitchConvertDiagnoser(Expr *Cond)
1040         : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
1041           Cond(Cond) {}
1042 
1043     SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1044                                          QualType T) override {
1045       return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
1046     }
1047 
1048     SemaDiagnosticBuilder diagnoseIncomplete(
1049         Sema &S, SourceLocation Loc, QualType T) override {
1050       return S.Diag(Loc, diag::err_switch_incomplete_class_type)
1051                << T << Cond->getSourceRange();
1052     }
1053 
1054     SemaDiagnosticBuilder diagnoseExplicitConv(
1055         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1056       return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
1057     }
1058 
1059     SemaDiagnosticBuilder noteExplicitConv(
1060         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1061       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1062         << ConvTy->isEnumeralType() << ConvTy;
1063     }
1064 
1065     SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1066                                             QualType T) override {
1067       return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
1068     }
1069 
1070     SemaDiagnosticBuilder noteAmbiguous(
1071         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1072       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1073       << ConvTy->isEnumeralType() << ConvTy;
1074     }
1075 
1076     SemaDiagnosticBuilder diagnoseConversion(
1077         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1078       llvm_unreachable("conversion functions are permitted");
1079     }
1080   } SwitchDiagnoser(Cond);
1081 
1082   ExprResult CondResult =
1083       PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
1084   if (CondResult.isInvalid())
1085     return ExprError();
1086 
1087   // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
1088   // failed and produced a diagnostic.
1089   Cond = CondResult.get();
1090   if (!Cond->isTypeDependent() &&
1091       !Cond->getType()->isIntegralOrEnumerationType())
1092     return ExprError();
1093 
1094   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
1095   return UsualUnaryConversions(Cond);
1096 }
1097 
1098 StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
1099                                         SourceLocation LParenLoc,
1100                                         Stmt *InitStmt, ConditionResult Cond,
1101                                         SourceLocation RParenLoc) {
1102   Expr *CondExpr = Cond.get().second;
1103   assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
1104 
1105   if (CondExpr && !CondExpr->isTypeDependent()) {
1106     // We have already converted the expression to an integral or enumeration
1107     // type, when we parsed the switch condition. There are cases where we don't
1108     // have an appropriate type, e.g. a typo-expr Cond was corrected to an
1109     // inappropriate-type expr, we just return an error.
1110     if (!CondExpr->getType()->isIntegralOrEnumerationType())
1111       return StmtError();
1112     if (CondExpr->isKnownToHaveBooleanValue()) {
1113       // switch(bool_expr) {...} is often a programmer error, e.g.
1114       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
1115       // One can always use an if statement instead of switch(bool_expr).
1116       Diag(SwitchLoc, diag::warn_bool_switch_condition)
1117           << CondExpr->getSourceRange();
1118     }
1119   }
1120 
1121   setFunctionHasBranchIntoScope();
1122 
1123   auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr,
1124                                 LParenLoc, RParenLoc);
1125   getCurFunction()->SwitchStack.push_back(
1126       FunctionScopeInfo::SwitchInfo(SS, false));
1127   return SS;
1128 }
1129 
1130 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
1131   Val = Val.extOrTrunc(BitWidth);
1132   Val.setIsSigned(IsSigned);
1133 }
1134 
1135 /// Check the specified case value is in range for the given unpromoted switch
1136 /// type.
1137 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
1138                            unsigned UnpromotedWidth, bool UnpromotedSign) {
1139   // In C++11 onwards, this is checked by the language rules.
1140   if (S.getLangOpts().CPlusPlus11)
1141     return;
1142 
1143   // If the case value was signed and negative and the switch expression is
1144   // unsigned, don't bother to warn: this is implementation-defined behavior.
1145   // FIXME: Introduce a second, default-ignored warning for this case?
1146   if (UnpromotedWidth < Val.getBitWidth()) {
1147     llvm::APSInt ConvVal(Val);
1148     AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
1149     AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
1150     // FIXME: Use different diagnostics for overflow  in conversion to promoted
1151     // type versus "switch expression cannot have this value". Use proper
1152     // IntRange checking rather than just looking at the unpromoted type here.
1153     if (ConvVal != Val)
1154       S.Diag(Loc, diag::warn_case_value_overflow) << toString(Val, 10)
1155                                                   << toString(ConvVal, 10);
1156   }
1157 }
1158 
1159 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
1160 
1161 /// Returns true if we should emit a diagnostic about this case expression not
1162 /// being a part of the enum used in the switch controlling expression.
1163 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
1164                                               const EnumDecl *ED,
1165                                               const Expr *CaseExpr,
1166                                               EnumValsTy::iterator &EI,
1167                                               EnumValsTy::iterator &EIEnd,
1168                                               const llvm::APSInt &Val) {
1169   if (!ED->isClosed())
1170     return false;
1171 
1172   if (const DeclRefExpr *DRE =
1173           dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
1174     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
1175       QualType VarType = VD->getType();
1176       QualType EnumType = S.Context.getTypeDeclType(ED);
1177       if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
1178           S.Context.hasSameUnqualifiedType(EnumType, VarType))
1179         return false;
1180     }
1181   }
1182 
1183   if (ED->hasAttr<FlagEnumAttr>())
1184     return !S.IsValueInFlagEnum(ED, Val, false);
1185 
1186   while (EI != EIEnd && EI->first < Val)
1187     EI++;
1188 
1189   if (EI != EIEnd && EI->first == Val)
1190     return false;
1191 
1192   return true;
1193 }
1194 
1195 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
1196                                        const Expr *Case) {
1197   QualType CondType = Cond->getType();
1198   QualType CaseType = Case->getType();
1199 
1200   const EnumType *CondEnumType = CondType->getAs<EnumType>();
1201   const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
1202   if (!CondEnumType || !CaseEnumType)
1203     return;
1204 
1205   // Ignore anonymous enums.
1206   if (!CondEnumType->getDecl()->getIdentifier() &&
1207       !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
1208     return;
1209   if (!CaseEnumType->getDecl()->getIdentifier() &&
1210       !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
1211     return;
1212 
1213   if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
1214     return;
1215 
1216   S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
1217       << CondType << CaseType << Cond->getSourceRange()
1218       << Case->getSourceRange();
1219 }
1220 
1221 StmtResult
1222 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
1223                             Stmt *BodyStmt) {
1224   SwitchStmt *SS = cast<SwitchStmt>(Switch);
1225   bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
1226   assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
1227          "switch stack missing push/pop!");
1228 
1229   getCurFunction()->SwitchStack.pop_back();
1230 
1231   if (!BodyStmt) return StmtError();
1232   SS->setBody(BodyStmt, SwitchLoc);
1233 
1234   Expr *CondExpr = SS->getCond();
1235   if (!CondExpr) return StmtError();
1236 
1237   QualType CondType = CondExpr->getType();
1238 
1239   // C++ 6.4.2.p2:
1240   // Integral promotions are performed (on the switch condition).
1241   //
1242   // A case value unrepresentable by the original switch condition
1243   // type (before the promotion) doesn't make sense, even when it can
1244   // be represented by the promoted type.  Therefore we need to find
1245   // the pre-promotion type of the switch condition.
1246   const Expr *CondExprBeforePromotion = CondExpr;
1247   QualType CondTypeBeforePromotion =
1248       GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
1249 
1250   // Get the bitwidth of the switched-on value after promotions. We must
1251   // convert the integer case values to this width before comparison.
1252   bool HasDependentValue
1253     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
1254   unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
1255   bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
1256 
1257   // Get the width and signedness that the condition might actually have, for
1258   // warning purposes.
1259   // FIXME: Grab an IntRange for the condition rather than using the unpromoted
1260   // type.
1261   unsigned CondWidthBeforePromotion
1262     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
1263   bool CondIsSignedBeforePromotion
1264     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
1265 
1266   // Accumulate all of the case values in a vector so that we can sort them
1267   // and detect duplicates.  This vector contains the APInt for the case after
1268   // it has been converted to the condition type.
1269   typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
1270   CaseValsTy CaseVals;
1271 
1272   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
1273   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
1274   CaseRangesTy CaseRanges;
1275 
1276   DefaultStmt *TheDefaultStmt = nullptr;
1277 
1278   bool CaseListIsErroneous = false;
1279 
1280   // FIXME: We'd better diagnose missing or duplicate default labels even
1281   // in the dependent case. Because default labels themselves are never
1282   // dependent.
1283   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
1284        SC = SC->getNextSwitchCase()) {
1285 
1286     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
1287       if (TheDefaultStmt) {
1288         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
1289         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
1290 
1291         // FIXME: Remove the default statement from the switch block so that
1292         // we'll return a valid AST.  This requires recursing down the AST and
1293         // finding it, not something we are set up to do right now.  For now,
1294         // just lop the entire switch stmt out of the AST.
1295         CaseListIsErroneous = true;
1296       }
1297       TheDefaultStmt = DS;
1298 
1299     } else {
1300       CaseStmt *CS = cast<CaseStmt>(SC);
1301 
1302       Expr *Lo = CS->getLHS();
1303 
1304       if (Lo->isValueDependent()) {
1305         HasDependentValue = true;
1306         break;
1307       }
1308 
1309       // We already verified that the expression has a constant value;
1310       // get that value (prior to conversions).
1311       const Expr *LoBeforePromotion = Lo;
1312       GetTypeBeforeIntegralPromotion(LoBeforePromotion);
1313       llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
1314 
1315       // Check the unconverted value is within the range of possible values of
1316       // the switch expression.
1317       checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
1318                      CondIsSignedBeforePromotion);
1319 
1320       // FIXME: This duplicates the check performed for warn_not_in_enum below.
1321       checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
1322                                  LoBeforePromotion);
1323 
1324       // Convert the value to the same width/sign as the condition.
1325       AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
1326 
1327       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
1328       if (CS->getRHS()) {
1329         if (CS->getRHS()->isValueDependent()) {
1330           HasDependentValue = true;
1331           break;
1332         }
1333         CaseRanges.push_back(std::make_pair(LoVal, CS));
1334       } else
1335         CaseVals.push_back(std::make_pair(LoVal, CS));
1336     }
1337   }
1338 
1339   if (!HasDependentValue) {
1340     // If we don't have a default statement, check whether the
1341     // condition is constant.
1342     llvm::APSInt ConstantCondValue;
1343     bool HasConstantCond = false;
1344     if (!TheDefaultStmt) {
1345       Expr::EvalResult Result;
1346       HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
1347                                                 Expr::SE_AllowSideEffects);
1348       if (Result.Val.isInt())
1349         ConstantCondValue = Result.Val.getInt();
1350       assert(!HasConstantCond ||
1351              (ConstantCondValue.getBitWidth() == CondWidth &&
1352               ConstantCondValue.isSigned() == CondIsSigned));
1353       Diag(SwitchLoc, diag::warn_switch_default);
1354     }
1355     bool ShouldCheckConstantCond = HasConstantCond;
1356 
1357     // Sort all the scalar case values so we can easily detect duplicates.
1358     llvm::stable_sort(CaseVals, CmpCaseVals);
1359 
1360     if (!CaseVals.empty()) {
1361       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
1362         if (ShouldCheckConstantCond &&
1363             CaseVals[i].first == ConstantCondValue)
1364           ShouldCheckConstantCond = false;
1365 
1366         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
1367           // If we have a duplicate, report it.
1368           // First, determine if either case value has a name
1369           StringRef PrevString, CurrString;
1370           Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
1371           Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
1372           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
1373             PrevString = DeclRef->getDecl()->getName();
1374           }
1375           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
1376             CurrString = DeclRef->getDecl()->getName();
1377           }
1378           SmallString<16> CaseValStr;
1379           CaseVals[i-1].first.toString(CaseValStr);
1380 
1381           if (PrevString == CurrString)
1382             Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1383                  diag::err_duplicate_case)
1384                 << (PrevString.empty() ? CaseValStr.str() : PrevString);
1385           else
1386             Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1387                  diag::err_duplicate_case_differing_expr)
1388                 << (PrevString.empty() ? CaseValStr.str() : PrevString)
1389                 << (CurrString.empty() ? CaseValStr.str() : CurrString)
1390                 << CaseValStr;
1391 
1392           Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
1393                diag::note_duplicate_case_prev);
1394           // FIXME: We really want to remove the bogus case stmt from the
1395           // substmt, but we have no way to do this right now.
1396           CaseListIsErroneous = true;
1397         }
1398       }
1399     }
1400 
1401     // Detect duplicate case ranges, which usually don't exist at all in
1402     // the first place.
1403     if (!CaseRanges.empty()) {
1404       // Sort all the case ranges by their low value so we can easily detect
1405       // overlaps between ranges.
1406       llvm::stable_sort(CaseRanges);
1407 
1408       // Scan the ranges, computing the high values and removing empty ranges.
1409       std::vector<llvm::APSInt> HiVals;
1410       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1411         llvm::APSInt &LoVal = CaseRanges[i].first;
1412         CaseStmt *CR = CaseRanges[i].second;
1413         Expr *Hi = CR->getRHS();
1414 
1415         const Expr *HiBeforePromotion = Hi;
1416         GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1417         llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1418 
1419         // Check the unconverted value is within the range of possible values of
1420         // the switch expression.
1421         checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
1422                        CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1423 
1424         // Convert the value to the same width/sign as the condition.
1425         AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1426 
1427         // If the low value is bigger than the high value, the case is empty.
1428         if (LoVal > HiVal) {
1429           Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
1430               << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
1431           CaseRanges.erase(CaseRanges.begin()+i);
1432           --i;
1433           --e;
1434           continue;
1435         }
1436 
1437         if (ShouldCheckConstantCond &&
1438             LoVal <= ConstantCondValue &&
1439             ConstantCondValue <= HiVal)
1440           ShouldCheckConstantCond = false;
1441 
1442         HiVals.push_back(HiVal);
1443       }
1444 
1445       // Rescan the ranges, looking for overlap with singleton values and other
1446       // ranges.  Since the range list is sorted, we only need to compare case
1447       // ranges with their neighbors.
1448       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1449         llvm::APSInt &CRLo = CaseRanges[i].first;
1450         llvm::APSInt &CRHi = HiVals[i];
1451         CaseStmt *CR = CaseRanges[i].second;
1452 
1453         // Check to see whether the case range overlaps with any
1454         // singleton cases.
1455         CaseStmt *OverlapStmt = nullptr;
1456         llvm::APSInt OverlapVal(32);
1457 
1458         // Find the smallest value >= the lower bound.  If I is in the
1459         // case range, then we have overlap.
1460         CaseValsTy::iterator I =
1461             llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor());
1462         if (I != CaseVals.end() && I->first < CRHi) {
1463           OverlapVal  = I->first;   // Found overlap with scalar.
1464           OverlapStmt = I->second;
1465         }
1466 
1467         // Find the smallest value bigger than the upper bound.
1468         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1469         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1470           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
1471           OverlapStmt = (I-1)->second;
1472         }
1473 
1474         // Check to see if this case stmt overlaps with the subsequent
1475         // case range.
1476         if (i && CRLo <= HiVals[i-1]) {
1477           OverlapVal  = HiVals[i-1];       // Found overlap with range.
1478           OverlapStmt = CaseRanges[i-1].second;
1479         }
1480 
1481         if (OverlapStmt) {
1482           // If we have a duplicate, report it.
1483           Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
1484               << toString(OverlapVal, 10);
1485           Diag(OverlapStmt->getLHS()->getBeginLoc(),
1486                diag::note_duplicate_case_prev);
1487           // FIXME: We really want to remove the bogus case stmt from the
1488           // substmt, but we have no way to do this right now.
1489           CaseListIsErroneous = true;
1490         }
1491       }
1492     }
1493 
1494     // Complain if we have a constant condition and we didn't find a match.
1495     if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1496         ShouldCheckConstantCond) {
1497       // TODO: it would be nice if we printed enums as enums, chars as
1498       // chars, etc.
1499       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1500         << toString(ConstantCondValue, 10)
1501         << CondExpr->getSourceRange();
1502     }
1503 
1504     // Check to see if switch is over an Enum and handles all of its
1505     // values.  We only issue a warning if there is not 'default:', but
1506     // we still do the analysis to preserve this information in the AST
1507     // (which can be used by flow-based analyes).
1508     //
1509     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1510 
1511     // If switch has default case, then ignore it.
1512     if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1513         ET && ET->getDecl()->isCompleteDefinition() &&
1514         !ET->getDecl()->enumerators().empty()) {
1515       const EnumDecl *ED = ET->getDecl();
1516       EnumValsTy EnumVals;
1517 
1518       // Gather all enum values, set their type and sort them,
1519       // allowing easier comparison with CaseVals.
1520       for (auto *EDI : ED->enumerators()) {
1521         llvm::APSInt Val = EDI->getInitVal();
1522         AdjustAPSInt(Val, CondWidth, CondIsSigned);
1523         EnumVals.push_back(std::make_pair(Val, EDI));
1524       }
1525       llvm::stable_sort(EnumVals, CmpEnumVals);
1526       auto EI = EnumVals.begin(), EIEnd =
1527         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1528 
1529       // See which case values aren't in enum.
1530       for (CaseValsTy::const_iterator CI = CaseVals.begin();
1531           CI != CaseVals.end(); CI++) {
1532         Expr *CaseExpr = CI->second->getLHS();
1533         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1534                                               CI->first))
1535           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1536             << CondTypeBeforePromotion;
1537       }
1538 
1539       // See which of case ranges aren't in enum
1540       EI = EnumVals.begin();
1541       for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1542           RI != CaseRanges.end(); RI++) {
1543         Expr *CaseExpr = RI->second->getLHS();
1544         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1545                                               RI->first))
1546           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1547             << CondTypeBeforePromotion;
1548 
1549         llvm::APSInt Hi =
1550           RI->second->getRHS()->EvaluateKnownConstInt(Context);
1551         AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1552 
1553         CaseExpr = RI->second->getRHS();
1554         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1555                                               Hi))
1556           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1557             << CondTypeBeforePromotion;
1558       }
1559 
1560       // Check which enum vals aren't in switch
1561       auto CI = CaseVals.begin();
1562       auto RI = CaseRanges.begin();
1563       bool hasCasesNotInSwitch = false;
1564 
1565       SmallVector<DeclarationName,8> UnhandledNames;
1566 
1567       for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
1568         // Don't warn about omitted unavailable EnumConstantDecls.
1569         switch (EI->second->getAvailability()) {
1570         case AR_Deprecated:
1571           // Omitting a deprecated constant is ok; it should never materialize.
1572         case AR_Unavailable:
1573           continue;
1574 
1575         case AR_NotYetIntroduced:
1576           // Partially available enum constants should be present. Note that we
1577           // suppress -Wunguarded-availability diagnostics for such uses.
1578         case AR_Available:
1579           break;
1580         }
1581 
1582         if (EI->second->hasAttr<UnusedAttr>())
1583           continue;
1584 
1585         // Drop unneeded case values
1586         while (CI != CaseVals.end() && CI->first < EI->first)
1587           CI++;
1588 
1589         if (CI != CaseVals.end() && CI->first == EI->first)
1590           continue;
1591 
1592         // Drop unneeded case ranges
1593         for (; RI != CaseRanges.end(); RI++) {
1594           llvm::APSInt Hi =
1595             RI->second->getRHS()->EvaluateKnownConstInt(Context);
1596           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1597           if (EI->first <= Hi)
1598             break;
1599         }
1600 
1601         if (RI == CaseRanges.end() || EI->first < RI->first) {
1602           hasCasesNotInSwitch = true;
1603           UnhandledNames.push_back(EI->second->getDeclName());
1604         }
1605       }
1606 
1607       if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1608         Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1609 
1610       // Produce a nice diagnostic if multiple values aren't handled.
1611       if (!UnhandledNames.empty()) {
1612         auto DB = Diag(CondExpr->getExprLoc(), TheDefaultStmt
1613                                                    ? diag::warn_def_missing_case
1614                                                    : diag::warn_missing_case)
1615                   << CondExpr->getSourceRange() << (int)UnhandledNames.size();
1616 
1617         for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1618              I != E; ++I)
1619           DB << UnhandledNames[I];
1620       }
1621 
1622       if (!hasCasesNotInSwitch)
1623         SS->setAllEnumCasesCovered();
1624     }
1625   }
1626 
1627   if (BodyStmt)
1628     DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
1629                           diag::warn_empty_switch_body);
1630 
1631   // FIXME: If the case list was broken is some way, we don't have a good system
1632   // to patch it up.  Instead, just return the whole substmt as broken.
1633   if (CaseListIsErroneous)
1634     return StmtError();
1635 
1636   return SS;
1637 }
1638 
1639 void
1640 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1641                              Expr *SrcExpr) {
1642   if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1643     return;
1644 
1645   if (const EnumType *ET = DstType->getAs<EnumType>())
1646     if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1647         SrcType->isIntegerType()) {
1648       if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1649           SrcExpr->isIntegerConstantExpr(Context)) {
1650         // Get the bitwidth of the enum value before promotions.
1651         unsigned DstWidth = Context.getIntWidth(DstType);
1652         bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1653 
1654         llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1655         AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1656         const EnumDecl *ED = ET->getDecl();
1657 
1658         if (!ED->isClosed())
1659           return;
1660 
1661         if (ED->hasAttr<FlagEnumAttr>()) {
1662           if (!IsValueInFlagEnum(ED, RhsVal, true))
1663             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1664               << DstType.getUnqualifiedType();
1665         } else {
1666           typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1667               EnumValsTy;
1668           EnumValsTy EnumVals;
1669 
1670           // Gather all enum values, set their type and sort them,
1671           // allowing easier comparison with rhs constant.
1672           for (auto *EDI : ED->enumerators()) {
1673             llvm::APSInt Val = EDI->getInitVal();
1674             AdjustAPSInt(Val, DstWidth, DstIsSigned);
1675             EnumVals.push_back(std::make_pair(Val, EDI));
1676           }
1677           if (EnumVals.empty())
1678             return;
1679           llvm::stable_sort(EnumVals, CmpEnumVals);
1680           EnumValsTy::iterator EIend =
1681               std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1682 
1683           // See which values aren't in the enum.
1684           EnumValsTy::const_iterator EI = EnumVals.begin();
1685           while (EI != EIend && EI->first < RhsVal)
1686             EI++;
1687           if (EI == EIend || EI->first != RhsVal) {
1688             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1689                 << DstType.getUnqualifiedType();
1690           }
1691         }
1692       }
1693     }
1694 }
1695 
1696 StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc,
1697                                 SourceLocation LParenLoc, ConditionResult Cond,
1698                                 SourceLocation RParenLoc, Stmt *Body) {
1699   if (Cond.isInvalid())
1700     return StmtError();
1701 
1702   auto CondVal = Cond.get();
1703   CheckBreakContinueBinding(CondVal.second);
1704 
1705   if (CondVal.second &&
1706       !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1707     CommaVisitor(*this).Visit(CondVal.second);
1708 
1709   if (isa<NullStmt>(Body))
1710     getCurCompoundScope().setHasEmptyLoopBodies();
1711 
1712   return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
1713                            WhileLoc, LParenLoc, RParenLoc);
1714 }
1715 
1716 StmtResult
1717 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1718                   SourceLocation WhileLoc, SourceLocation CondLParen,
1719                   Expr *Cond, SourceLocation CondRParen) {
1720   assert(Cond && "ActOnDoStmt(): missing expression");
1721 
1722   CheckBreakContinueBinding(Cond);
1723   ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1724   if (CondResult.isInvalid())
1725     return StmtError();
1726   Cond = CondResult.get();
1727 
1728   CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
1729   if (CondResult.isInvalid())
1730     return StmtError();
1731   Cond = CondResult.get();
1732 
1733   // Only call the CommaVisitor for C89 due to differences in scope flags.
1734   if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
1735       !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
1736     CommaVisitor(*this).Visit(Cond);
1737 
1738   return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1739 }
1740 
1741 namespace {
1742   // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1743   using DeclSetVector = llvm::SmallSetVector<VarDecl *, 8>;
1744 
1745   // This visitor will traverse a conditional statement and store all
1746   // the evaluated decls into a vector.  Simple is set to true if none
1747   // of the excluded constructs are used.
1748   class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1749     DeclSetVector &Decls;
1750     SmallVectorImpl<SourceRange> &Ranges;
1751     bool Simple;
1752   public:
1753     typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1754 
1755     DeclExtractor(Sema &S, DeclSetVector &Decls,
1756                   SmallVectorImpl<SourceRange> &Ranges) :
1757         Inherited(S.Context),
1758         Decls(Decls),
1759         Ranges(Ranges),
1760         Simple(true) {}
1761 
1762     bool isSimple() { return Simple; }
1763 
1764     // Replaces the method in EvaluatedExprVisitor.
1765     void VisitMemberExpr(MemberExpr* E) {
1766       Simple = false;
1767     }
1768 
1769     // Any Stmt not explicitly listed will cause the condition to be marked
1770     // complex.
1771     void VisitStmt(Stmt *S) { Simple = false; }
1772 
1773     void VisitBinaryOperator(BinaryOperator *E) {
1774       Visit(E->getLHS());
1775       Visit(E->getRHS());
1776     }
1777 
1778     void VisitCastExpr(CastExpr *E) {
1779       Visit(E->getSubExpr());
1780     }
1781 
1782     void VisitUnaryOperator(UnaryOperator *E) {
1783       // Skip checking conditionals with derefernces.
1784       if (E->getOpcode() == UO_Deref)
1785         Simple = false;
1786       else
1787         Visit(E->getSubExpr());
1788     }
1789 
1790     void VisitConditionalOperator(ConditionalOperator *E) {
1791       Visit(E->getCond());
1792       Visit(E->getTrueExpr());
1793       Visit(E->getFalseExpr());
1794     }
1795 
1796     void VisitParenExpr(ParenExpr *E) {
1797       Visit(E->getSubExpr());
1798     }
1799 
1800     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1801       Visit(E->getOpaqueValue()->getSourceExpr());
1802       Visit(E->getFalseExpr());
1803     }
1804 
1805     void VisitIntegerLiteral(IntegerLiteral *E) { }
1806     void VisitFloatingLiteral(FloatingLiteral *E) { }
1807     void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1808     void VisitCharacterLiteral(CharacterLiteral *E) { }
1809     void VisitGNUNullExpr(GNUNullExpr *E) { }
1810     void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1811 
1812     void VisitDeclRefExpr(DeclRefExpr *E) {
1813       VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1814       if (!VD) {
1815         // Don't allow unhandled Decl types.
1816         Simple = false;
1817         return;
1818       }
1819 
1820       Ranges.push_back(E->getSourceRange());
1821 
1822       Decls.insert(VD);
1823     }
1824 
1825   }; // end class DeclExtractor
1826 
1827   // DeclMatcher checks to see if the decls are used in a non-evaluated
1828   // context.
1829   class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1830     DeclSetVector &Decls;
1831     bool FoundDecl;
1832 
1833   public:
1834     typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1835 
1836     DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1837         Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1838       if (!Statement) return;
1839 
1840       Visit(Statement);
1841     }
1842 
1843     void VisitReturnStmt(ReturnStmt *S) {
1844       FoundDecl = true;
1845     }
1846 
1847     void VisitBreakStmt(BreakStmt *S) {
1848       FoundDecl = true;
1849     }
1850 
1851     void VisitGotoStmt(GotoStmt *S) {
1852       FoundDecl = true;
1853     }
1854 
1855     void VisitCastExpr(CastExpr *E) {
1856       if (E->getCastKind() == CK_LValueToRValue)
1857         CheckLValueToRValueCast(E->getSubExpr());
1858       else
1859         Visit(E->getSubExpr());
1860     }
1861 
1862     void CheckLValueToRValueCast(Expr *E) {
1863       E = E->IgnoreParenImpCasts();
1864 
1865       if (isa<DeclRefExpr>(E)) {
1866         return;
1867       }
1868 
1869       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1870         Visit(CO->getCond());
1871         CheckLValueToRValueCast(CO->getTrueExpr());
1872         CheckLValueToRValueCast(CO->getFalseExpr());
1873         return;
1874       }
1875 
1876       if (BinaryConditionalOperator *BCO =
1877               dyn_cast<BinaryConditionalOperator>(E)) {
1878         CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1879         CheckLValueToRValueCast(BCO->getFalseExpr());
1880         return;
1881       }
1882 
1883       Visit(E);
1884     }
1885 
1886     void VisitDeclRefExpr(DeclRefExpr *E) {
1887       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1888         if (Decls.count(VD))
1889           FoundDecl = true;
1890     }
1891 
1892     void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1893       // Only need to visit the semantics for POE.
1894       // SyntaticForm doesn't really use the Decal.
1895       for (auto *S : POE->semantics()) {
1896         if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1897           // Look past the OVE into the expression it binds.
1898           Visit(OVE->getSourceExpr());
1899         else
1900           Visit(S);
1901       }
1902     }
1903 
1904     bool FoundDeclInUse() { return FoundDecl; }
1905 
1906   };  // end class DeclMatcher
1907 
1908   void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1909                                         Expr *Third, Stmt *Body) {
1910     // Condition is empty
1911     if (!Second) return;
1912 
1913     if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1914                           Second->getBeginLoc()))
1915       return;
1916 
1917     PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1918     DeclSetVector Decls;
1919     SmallVector<SourceRange, 10> Ranges;
1920     DeclExtractor DE(S, Decls, Ranges);
1921     DE.Visit(Second);
1922 
1923     // Don't analyze complex conditionals.
1924     if (!DE.isSimple()) return;
1925 
1926     // No decls found.
1927     if (Decls.size() == 0) return;
1928 
1929     // Don't warn on volatile, static, or global variables.
1930     for (auto *VD : Decls)
1931       if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1932         return;
1933 
1934     if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1935         DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1936         DeclMatcher(S, Decls, Body).FoundDeclInUse())
1937       return;
1938 
1939     // Load decl names into diagnostic.
1940     if (Decls.size() > 4) {
1941       PDiag << 0;
1942     } else {
1943       PDiag << (unsigned)Decls.size();
1944       for (auto *VD : Decls)
1945         PDiag << VD->getDeclName();
1946     }
1947 
1948     for (auto Range : Ranges)
1949       PDiag << Range;
1950 
1951     S.Diag(Ranges.begin()->getBegin(), PDiag);
1952   }
1953 
1954   // If Statement is an incemement or decrement, return true and sets the
1955   // variables Increment and DRE.
1956   bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1957                             DeclRefExpr *&DRE) {
1958     if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1959       if (!Cleanups->cleanupsHaveSideEffects())
1960         Statement = Cleanups->getSubExpr();
1961 
1962     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1963       switch (UO->getOpcode()) {
1964         default: return false;
1965         case UO_PostInc:
1966         case UO_PreInc:
1967           Increment = true;
1968           break;
1969         case UO_PostDec:
1970         case UO_PreDec:
1971           Increment = false;
1972           break;
1973       }
1974       DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1975       return DRE;
1976     }
1977 
1978     if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1979       FunctionDecl *FD = Call->getDirectCallee();
1980       if (!FD || !FD->isOverloadedOperator()) return false;
1981       switch (FD->getOverloadedOperator()) {
1982         default: return false;
1983         case OO_PlusPlus:
1984           Increment = true;
1985           break;
1986         case OO_MinusMinus:
1987           Increment = false;
1988           break;
1989       }
1990       DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1991       return DRE;
1992     }
1993 
1994     return false;
1995   }
1996 
1997   // A visitor to determine if a continue or break statement is a
1998   // subexpression.
1999   class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
2000     SourceLocation BreakLoc;
2001     SourceLocation ContinueLoc;
2002     bool InSwitch = false;
2003 
2004   public:
2005     BreakContinueFinder(Sema &S, const Stmt* Body) :
2006         Inherited(S.Context) {
2007       Visit(Body);
2008     }
2009 
2010     typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited;
2011 
2012     void VisitContinueStmt(const ContinueStmt* E) {
2013       ContinueLoc = E->getContinueLoc();
2014     }
2015 
2016     void VisitBreakStmt(const BreakStmt* E) {
2017       if (!InSwitch)
2018         BreakLoc = E->getBreakLoc();
2019     }
2020 
2021     void VisitSwitchStmt(const SwitchStmt* S) {
2022       if (const Stmt *Init = S->getInit())
2023         Visit(Init);
2024       if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
2025         Visit(CondVar);
2026       if (const Stmt *Cond = S->getCond())
2027         Visit(Cond);
2028 
2029       // Don't return break statements from the body of a switch.
2030       InSwitch = true;
2031       if (const Stmt *Body = S->getBody())
2032         Visit(Body);
2033       InSwitch = false;
2034     }
2035 
2036     void VisitForStmt(const ForStmt *S) {
2037       // Only visit the init statement of a for loop; the body
2038       // has a different break/continue scope.
2039       if (const Stmt *Init = S->getInit())
2040         Visit(Init);
2041     }
2042 
2043     void VisitWhileStmt(const WhileStmt *) {
2044       // Do nothing; the children of a while loop have a different
2045       // break/continue scope.
2046     }
2047 
2048     void VisitDoStmt(const DoStmt *) {
2049       // Do nothing; the children of a while loop have a different
2050       // break/continue scope.
2051     }
2052 
2053     void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
2054       // Only visit the initialization of a for loop; the body
2055       // has a different break/continue scope.
2056       if (const Stmt *Init = S->getInit())
2057         Visit(Init);
2058       if (const Stmt *Range = S->getRangeStmt())
2059         Visit(Range);
2060       if (const Stmt *Begin = S->getBeginStmt())
2061         Visit(Begin);
2062       if (const Stmt *End = S->getEndStmt())
2063         Visit(End);
2064     }
2065 
2066     void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
2067       // Only visit the initialization of a for loop; the body
2068       // has a different break/continue scope.
2069       if (const Stmt *Element = S->getElement())
2070         Visit(Element);
2071       if (const Stmt *Collection = S->getCollection())
2072         Visit(Collection);
2073     }
2074 
2075     bool ContinueFound() { return ContinueLoc.isValid(); }
2076     bool BreakFound() { return BreakLoc.isValid(); }
2077     SourceLocation GetContinueLoc() { return ContinueLoc; }
2078     SourceLocation GetBreakLoc() { return BreakLoc; }
2079 
2080   };  // end class BreakContinueFinder
2081 
2082   // Emit a warning when a loop increment/decrement appears twice per loop
2083   // iteration.  The conditions which trigger this warning are:
2084   // 1) The last statement in the loop body and the third expression in the
2085   //    for loop are both increment or both decrement of the same variable
2086   // 2) No continue statements in the loop body.
2087   void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
2088     // Return when there is nothing to check.
2089     if (!Body || !Third) return;
2090 
2091     if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
2092                           Third->getBeginLoc()))
2093       return;
2094 
2095     // Get the last statement from the loop body.
2096     CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
2097     if (!CS || CS->body_empty()) return;
2098     Stmt *LastStmt = CS->body_back();
2099     if (!LastStmt) return;
2100 
2101     bool LoopIncrement, LastIncrement;
2102     DeclRefExpr *LoopDRE, *LastDRE;
2103 
2104     if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
2105     if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
2106 
2107     // Check that the two statements are both increments or both decrements
2108     // on the same variable.
2109     if (LoopIncrement != LastIncrement ||
2110         LoopDRE->getDecl() != LastDRE->getDecl()) return;
2111 
2112     if (BreakContinueFinder(S, Body).ContinueFound()) return;
2113 
2114     S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
2115          << LastDRE->getDecl() << LastIncrement;
2116     S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
2117          << LoopIncrement;
2118   }
2119 
2120 } // end namespace
2121 
2122 
2123 void Sema::CheckBreakContinueBinding(Expr *E) {
2124   if (!E || getLangOpts().CPlusPlus)
2125     return;
2126   BreakContinueFinder BCFinder(*this, E);
2127   Scope *BreakParent = CurScope->getBreakParent();
2128   if (BCFinder.BreakFound() && BreakParent) {
2129     if (BreakParent->getFlags() & Scope::SwitchScope) {
2130       Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
2131     } else {
2132       Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
2133           << "break";
2134     }
2135   } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
2136     Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
2137         << "continue";
2138   }
2139 }
2140 
2141 StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
2142                               Stmt *First, ConditionResult Second,
2143                               FullExprArg third, SourceLocation RParenLoc,
2144                               Stmt *Body) {
2145   if (Second.isInvalid())
2146     return StmtError();
2147 
2148   if (!getLangOpts().CPlusPlus) {
2149     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
2150       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
2151       // declare identifiers for objects having storage class 'auto' or
2152       // 'register'.
2153       const Decl *NonVarSeen = nullptr;
2154       bool VarDeclSeen = false;
2155       for (auto *DI : DS->decls()) {
2156         if (VarDecl *VD = dyn_cast<VarDecl>(DI)) {
2157           VarDeclSeen = true;
2158           if (VD->isLocalVarDecl() && !VD->hasLocalStorage()) {
2159             Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
2160             DI->setInvalidDecl();
2161           }
2162         } else if (!NonVarSeen) {
2163           // Keep track of the first non-variable declaration we saw so that
2164           // we can diagnose if we don't see any variable declarations. This
2165           // covers a case like declaring a typedef, function, or structure
2166           // type rather than a variable.
2167           NonVarSeen = DI;
2168         }
2169       }
2170       // Diagnose if we saw a non-variable declaration but no variable
2171       // declarations.
2172       if (NonVarSeen && !VarDeclSeen)
2173         Diag(NonVarSeen->getLocation(), diag::err_non_variable_decl_in_for);
2174     }
2175   }
2176 
2177   CheckBreakContinueBinding(Second.get().second);
2178   CheckBreakContinueBinding(third.get());
2179 
2180   if (!Second.get().first)
2181     CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
2182                                      Body);
2183   CheckForRedundantIteration(*this, third.get(), Body);
2184 
2185   if (Second.get().second &&
2186       !Diags.isIgnored(diag::warn_comma_operator,
2187                        Second.get().second->getExprLoc()))
2188     CommaVisitor(*this).Visit(Second.get().second);
2189 
2190   Expr *Third  = third.release().getAs<Expr>();
2191   if (isa<NullStmt>(Body))
2192     getCurCompoundScope().setHasEmptyLoopBodies();
2193 
2194   return new (Context)
2195       ForStmt(Context, First, Second.get().second, Second.get().first, Third,
2196               Body, ForLoc, LParenLoc, RParenLoc);
2197 }
2198 
2199 /// In an Objective C collection iteration statement:
2200 ///   for (x in y)
2201 /// x can be an arbitrary l-value expression.  Bind it up as a
2202 /// full-expression.
2203 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
2204   // Reduce placeholder expressions here.  Note that this rejects the
2205   // use of pseudo-object l-values in this position.
2206   ExprResult result = CheckPlaceholderExpr(E);
2207   if (result.isInvalid()) return StmtError();
2208   E = result.get();
2209 
2210   ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
2211   if (FullExpr.isInvalid())
2212     return StmtError();
2213   return StmtResult(static_cast<Stmt*>(FullExpr.get()));
2214 }
2215 
2216 ExprResult
2217 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
2218   if (!collection)
2219     return ExprError();
2220 
2221   ExprResult result = CorrectDelayedTyposInExpr(collection);
2222   if (!result.isUsable())
2223     return ExprError();
2224   collection = result.get();
2225 
2226   // Bail out early if we've got a type-dependent expression.
2227   if (collection->isTypeDependent()) return collection;
2228 
2229   // Perform normal l-value conversion.
2230   result = DefaultFunctionArrayLvalueConversion(collection);
2231   if (result.isInvalid())
2232     return ExprError();
2233   collection = result.get();
2234 
2235   // The operand needs to have object-pointer type.
2236   // TODO: should we do a contextual conversion?
2237   const ObjCObjectPointerType *pointerType =
2238     collection->getType()->getAs<ObjCObjectPointerType>();
2239   if (!pointerType)
2240     return Diag(forLoc, diag::err_collection_expr_type)
2241              << collection->getType() << collection->getSourceRange();
2242 
2243   // Check that the operand provides
2244   //   - countByEnumeratingWithState:objects:count:
2245   const ObjCObjectType *objectType = pointerType->getObjectType();
2246   ObjCInterfaceDecl *iface = objectType->getInterface();
2247 
2248   // If we have a forward-declared type, we can't do this check.
2249   // Under ARC, it is an error not to have a forward-declared class.
2250   if (iface &&
2251       (getLangOpts().ObjCAutoRefCount
2252            ? RequireCompleteType(forLoc, QualType(objectType, 0),
2253                                  diag::err_arc_collection_forward, collection)
2254            : !isCompleteType(forLoc, QualType(objectType, 0)))) {
2255     // Otherwise, if we have any useful type information, check that
2256     // the type declares the appropriate method.
2257   } else if (iface || !objectType->qual_empty()) {
2258     IdentifierInfo *selectorIdents[] = {
2259       &Context.Idents.get("countByEnumeratingWithState"),
2260       &Context.Idents.get("objects"),
2261       &Context.Idents.get("count")
2262     };
2263     Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
2264 
2265     ObjCMethodDecl *method = nullptr;
2266 
2267     // If there's an interface, look in both the public and private APIs.
2268     if (iface) {
2269       method = iface->lookupInstanceMethod(selector);
2270       if (!method) method = iface->lookupPrivateMethod(selector);
2271     }
2272 
2273     // Also check protocol qualifiers.
2274     if (!method)
2275       method = LookupMethodInQualifiedType(selector, pointerType,
2276                                            /*instance*/ true);
2277 
2278     // If we didn't find it anywhere, give up.
2279     if (!method) {
2280       Diag(forLoc, diag::warn_collection_expr_type)
2281         << collection->getType() << selector << collection->getSourceRange();
2282     }
2283 
2284     // TODO: check for an incompatible signature?
2285   }
2286 
2287   // Wrap up any cleanups in the expression.
2288   return collection;
2289 }
2290 
2291 StmtResult
2292 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
2293                                  Stmt *First, Expr *collection,
2294                                  SourceLocation RParenLoc) {
2295   setFunctionHasBranchProtectedScope();
2296 
2297   ExprResult CollectionExprResult =
2298     CheckObjCForCollectionOperand(ForLoc, collection);
2299 
2300   if (First) {
2301     QualType FirstType;
2302     if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
2303       if (!DS->isSingleDecl())
2304         return StmtError(Diag((*DS->decl_begin())->getLocation(),
2305                          diag::err_toomany_element_decls));
2306 
2307       VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
2308       if (!D || D->isInvalidDecl())
2309         return StmtError();
2310 
2311       FirstType = D->getType();
2312       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
2313       // declare identifiers for objects having storage class 'auto' or
2314       // 'register'.
2315       if (!D->hasLocalStorage())
2316         return StmtError(Diag(D->getLocation(),
2317                               diag::err_non_local_variable_decl_in_for));
2318 
2319       // If the type contained 'auto', deduce the 'auto' to 'id'.
2320       if (FirstType->getContainedAutoType()) {
2321         SourceLocation Loc = D->getLocation();
2322         OpaqueValueExpr OpaqueId(Loc, Context.getObjCIdType(), VK_PRValue);
2323         Expr *DeducedInit = &OpaqueId;
2324         TemplateDeductionInfo Info(Loc);
2325         FirstType = QualType();
2326         TemplateDeductionResult Result = DeduceAutoType(
2327             D->getTypeSourceInfo()->getTypeLoc(), DeducedInit, FirstType, Info);
2328         if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
2329           DiagnoseAutoDeductionFailure(D, DeducedInit);
2330         if (FirstType.isNull()) {
2331           D->setInvalidDecl();
2332           return StmtError();
2333         }
2334 
2335         D->setType(FirstType);
2336 
2337         if (!inTemplateInstantiation()) {
2338           SourceLocation Loc =
2339               D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
2340           Diag(Loc, diag::warn_auto_var_is_id)
2341             << D->getDeclName();
2342         }
2343       }
2344 
2345     } else {
2346       Expr *FirstE = cast<Expr>(First);
2347       if (!FirstE->isTypeDependent() && !FirstE->isLValue())
2348         return StmtError(
2349             Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue)
2350             << First->getSourceRange());
2351 
2352       FirstType = static_cast<Expr*>(First)->getType();
2353       if (FirstType.isConstQualified())
2354         Diag(ForLoc, diag::err_selector_element_const_type)
2355           << FirstType << First->getSourceRange();
2356     }
2357     if (!FirstType->isDependentType() &&
2358         !FirstType->isObjCObjectPointerType() &&
2359         !FirstType->isBlockPointerType())
2360         return StmtError(Diag(ForLoc, diag::err_selector_element_type)
2361                            << FirstType << First->getSourceRange());
2362   }
2363 
2364   if (CollectionExprResult.isInvalid())
2365     return StmtError();
2366 
2367   CollectionExprResult =
2368       ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false);
2369   if (CollectionExprResult.isInvalid())
2370     return StmtError();
2371 
2372   return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
2373                                              nullptr, ForLoc, RParenLoc);
2374 }
2375 
2376 /// Finish building a variable declaration for a for-range statement.
2377 /// \return true if an error occurs.
2378 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
2379                                   SourceLocation Loc, int DiagID) {
2380   if (Decl->getType()->isUndeducedType()) {
2381     ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
2382     if (!Res.isUsable()) {
2383       Decl->setInvalidDecl();
2384       return true;
2385     }
2386     Init = Res.get();
2387   }
2388 
2389   // Deduce the type for the iterator variable now rather than leaving it to
2390   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
2391   QualType InitType;
2392   if (!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) {
2393     SemaRef.Diag(Loc, DiagID) << Init->getType();
2394   } else {
2395     TemplateDeductionInfo Info(Init->getExprLoc());
2396     Sema::TemplateDeductionResult Result = SemaRef.DeduceAutoType(
2397         Decl->getTypeSourceInfo()->getTypeLoc(), Init, InitType, Info);
2398     if (Result != Sema::TDK_Success && Result != Sema::TDK_AlreadyDiagnosed)
2399       SemaRef.Diag(Loc, DiagID) << Init->getType();
2400   }
2401 
2402   if (InitType.isNull()) {
2403     Decl->setInvalidDecl();
2404     return true;
2405   }
2406   Decl->setType(InitType);
2407 
2408   // In ARC, infer lifetime.
2409   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
2410   // we're doing the equivalent of fast iteration.
2411   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2412       SemaRef.inferObjCARCLifetime(Decl))
2413     Decl->setInvalidDecl();
2414 
2415   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
2416   SemaRef.FinalizeDeclaration(Decl);
2417   SemaRef.CurContext->addHiddenDecl(Decl);
2418   return false;
2419 }
2420 
2421 namespace {
2422 // An enum to represent whether something is dealing with a call to begin()
2423 // or a call to end() in a range-based for loop.
2424 enum BeginEndFunction {
2425   BEF_begin,
2426   BEF_end
2427 };
2428 
2429 /// Produce a note indicating which begin/end function was implicitly called
2430 /// by a C++11 for-range statement. This is often not obvious from the code,
2431 /// nor from the diagnostics produced when analysing the implicit expressions
2432 /// required in a for-range statement.
2433 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
2434                                   BeginEndFunction BEF) {
2435   CallExpr *CE = dyn_cast<CallExpr>(E);
2436   if (!CE)
2437     return;
2438   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2439   if (!D)
2440     return;
2441   SourceLocation Loc = D->getLocation();
2442 
2443   std::string Description;
2444   bool IsTemplate = false;
2445   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2446     Description = SemaRef.getTemplateArgumentBindingsText(
2447       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2448     IsTemplate = true;
2449   }
2450 
2451   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2452     << BEF << IsTemplate << Description << E->getType();
2453 }
2454 
2455 /// Build a variable declaration for a for-range statement.
2456 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2457                               QualType Type, StringRef Name) {
2458   DeclContext *DC = SemaRef.CurContext;
2459   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2460   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2461   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2462                                   TInfo, SC_None);
2463   Decl->setImplicit();
2464   return Decl;
2465 }
2466 
2467 }
2468 
2469 static bool ObjCEnumerationCollection(Expr *Collection) {
2470   return !Collection->isTypeDependent()
2471           && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2472 }
2473 
2474 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
2475 ///
2476 /// C++11 [stmt.ranged]:
2477 ///   A range-based for statement is equivalent to
2478 ///
2479 ///   {
2480 ///     auto && __range = range-init;
2481 ///     for ( auto __begin = begin-expr,
2482 ///           __end = end-expr;
2483 ///           __begin != __end;
2484 ///           ++__begin ) {
2485 ///       for-range-declaration = *__begin;
2486 ///       statement
2487 ///     }
2488 ///   }
2489 ///
2490 /// The body of the loop is not available yet, since it cannot be analysed until
2491 /// we have determined the type of the for-range-declaration.
2492 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
2493                                       SourceLocation CoawaitLoc, Stmt *InitStmt,
2494                                       Stmt *First, SourceLocation ColonLoc,
2495                                       Expr *Range, SourceLocation RParenLoc,
2496                                       BuildForRangeKind Kind) {
2497   // FIXME: recover in order to allow the body to be parsed.
2498   if (!First)
2499     return StmtError();
2500 
2501   if (Range && ObjCEnumerationCollection(Range)) {
2502     // FIXME: Support init-statements in Objective-C++20 ranged for statement.
2503     if (InitStmt)
2504       return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
2505                  << InitStmt->getSourceRange();
2506     return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2507   }
2508 
2509   DeclStmt *DS = dyn_cast<DeclStmt>(First);
2510   assert(DS && "first part of for range not a decl stmt");
2511 
2512   if (!DS->isSingleDecl()) {
2513     Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
2514     return StmtError();
2515   }
2516 
2517   // This function is responsible for attaching an initializer to LoopVar. We
2518   // must call ActOnInitializerError if we fail to do so.
2519   Decl *LoopVar = DS->getSingleDecl();
2520   if (LoopVar->isInvalidDecl() || !Range ||
2521       DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2522     ActOnInitializerError(LoopVar);
2523     return StmtError();
2524   }
2525 
2526   // Build the coroutine state immediately and not later during template
2527   // instantiation
2528   if (!CoawaitLoc.isInvalid()) {
2529     if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) {
2530       ActOnInitializerError(LoopVar);
2531       return StmtError();
2532     }
2533   }
2534 
2535   // Build  auto && __range = range-init
2536   // Divide by 2, since the variables are in the inner scope (loop body).
2537   const auto DepthStr = std::to_string(S->getDepth() / 2);
2538   SourceLocation RangeLoc = Range->getBeginLoc();
2539   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2540                                            Context.getAutoRRefDeductType(),
2541                                            std::string("__range") + DepthStr);
2542   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2543                             diag::err_for_range_deduction_failure)) {
2544     ActOnInitializerError(LoopVar);
2545     return StmtError();
2546   }
2547 
2548   // Claim the type doesn't contain auto: we've already done the checking.
2549   DeclGroupPtrTy RangeGroup =
2550       BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2551   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2552   if (RangeDecl.isInvalid()) {
2553     ActOnInitializerError(LoopVar);
2554     return StmtError();
2555   }
2556 
2557   StmtResult R = BuildCXXForRangeStmt(
2558       ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
2559       /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2560       /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind);
2561   if (R.isInvalid()) {
2562     ActOnInitializerError(LoopVar);
2563     return StmtError();
2564   }
2565 
2566   return R;
2567 }
2568 
2569 /// Create the initialization, compare, and increment steps for
2570 /// the range-based for loop expression.
2571 /// This function does not handle array-based for loops,
2572 /// which are created in Sema::BuildCXXForRangeStmt.
2573 ///
2574 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2575 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2576 /// CandidateSet and BEF are set and some non-success value is returned on
2577 /// failure.
2578 static Sema::ForRangeStatus
2579 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2580                       QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2581                       SourceLocation ColonLoc, SourceLocation CoawaitLoc,
2582                       OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2583                       ExprResult *EndExpr, BeginEndFunction *BEF) {
2584   DeclarationNameInfo BeginNameInfo(
2585       &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2586   DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2587                                   ColonLoc);
2588 
2589   LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2590                                  Sema::LookupMemberName);
2591   LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2592 
2593   auto BuildBegin = [&] {
2594     *BEF = BEF_begin;
2595     Sema::ForRangeStatus RangeStatus =
2596         SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2597                                           BeginMemberLookup, CandidateSet,
2598                                           BeginRange, BeginExpr);
2599 
2600     if (RangeStatus != Sema::FRS_Success) {
2601       if (RangeStatus == Sema::FRS_DiagnosticIssued)
2602         SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
2603             << ColonLoc << BEF_begin << BeginRange->getType();
2604       return RangeStatus;
2605     }
2606     if (!CoawaitLoc.isInvalid()) {
2607       // FIXME: getCurScope() should not be used during template instantiation.
2608       // We should pick up the set of unqualified lookup results for operator
2609       // co_await during the initial parse.
2610       *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2611                                             BeginExpr->get());
2612       if (BeginExpr->isInvalid())
2613         return Sema::FRS_DiagnosticIssued;
2614     }
2615     if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2616                               diag::err_for_range_iter_deduction_failure)) {
2617       NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2618       return Sema::FRS_DiagnosticIssued;
2619     }
2620     return Sema::FRS_Success;
2621   };
2622 
2623   auto BuildEnd = [&] {
2624     *BEF = BEF_end;
2625     Sema::ForRangeStatus RangeStatus =
2626         SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2627                                           EndMemberLookup, CandidateSet,
2628                                           EndRange, EndExpr);
2629     if (RangeStatus != Sema::FRS_Success) {
2630       if (RangeStatus == Sema::FRS_DiagnosticIssued)
2631         SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
2632             << ColonLoc << BEF_end << EndRange->getType();
2633       return RangeStatus;
2634     }
2635     if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2636                               diag::err_for_range_iter_deduction_failure)) {
2637       NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2638       return Sema::FRS_DiagnosticIssued;
2639     }
2640     return Sema::FRS_Success;
2641   };
2642 
2643   if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2644     // - if _RangeT is a class type, the unqualified-ids begin and end are
2645     //   looked up in the scope of class _RangeT as if by class member access
2646     //   lookup (3.4.5), and if either (or both) finds at least one
2647     //   declaration, begin-expr and end-expr are __range.begin() and
2648     //   __range.end(), respectively;
2649     SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2650     if (BeginMemberLookup.isAmbiguous())
2651       return Sema::FRS_DiagnosticIssued;
2652 
2653     SemaRef.LookupQualifiedName(EndMemberLookup, D);
2654     if (EndMemberLookup.isAmbiguous())
2655       return Sema::FRS_DiagnosticIssued;
2656 
2657     if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2658       // Look up the non-member form of the member we didn't find, first.
2659       // This way we prefer a "no viable 'end'" diagnostic over a "i found
2660       // a 'begin' but ignored it because there was no member 'end'"
2661       // diagnostic.
2662       auto BuildNonmember = [&](
2663           BeginEndFunction BEFFound, LookupResult &Found,
2664           llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
2665           llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
2666         LookupResult OldFound = std::move(Found);
2667         Found.clear();
2668 
2669         if (Sema::ForRangeStatus Result = BuildNotFound())
2670           return Result;
2671 
2672         switch (BuildFound()) {
2673         case Sema::FRS_Success:
2674           return Sema::FRS_Success;
2675 
2676         case Sema::FRS_NoViableFunction:
2677           CandidateSet->NoteCandidates(
2678               PartialDiagnosticAt(BeginRange->getBeginLoc(),
2679                                   SemaRef.PDiag(diag::err_for_range_invalid)
2680                                       << BeginRange->getType() << BEFFound),
2681               SemaRef, OCD_AllCandidates, BeginRange);
2682           [[fallthrough]];
2683 
2684         case Sema::FRS_DiagnosticIssued:
2685           for (NamedDecl *D : OldFound) {
2686             SemaRef.Diag(D->getLocation(),
2687                          diag::note_for_range_member_begin_end_ignored)
2688                 << BeginRange->getType() << BEFFound;
2689           }
2690           return Sema::FRS_DiagnosticIssued;
2691         }
2692         llvm_unreachable("unexpected ForRangeStatus");
2693       };
2694       if (BeginMemberLookup.empty())
2695         return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
2696       return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
2697     }
2698   } else {
2699     // - otherwise, begin-expr and end-expr are begin(__range) and
2700     //   end(__range), respectively, where begin and end are looked up with
2701     //   argument-dependent lookup (3.4.2). For the purposes of this name
2702     //   lookup, namespace std is an associated namespace.
2703   }
2704 
2705   if (Sema::ForRangeStatus Result = BuildBegin())
2706     return Result;
2707   return BuildEnd();
2708 }
2709 
2710 /// Speculatively attempt to dereference an invalid range expression.
2711 /// If the attempt fails, this function will return a valid, null StmtResult
2712 /// and emit no diagnostics.
2713 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2714                                                  SourceLocation ForLoc,
2715                                                  SourceLocation CoawaitLoc,
2716                                                  Stmt *InitStmt,
2717                                                  Stmt *LoopVarDecl,
2718                                                  SourceLocation ColonLoc,
2719                                                  Expr *Range,
2720                                                  SourceLocation RangeLoc,
2721                                                  SourceLocation RParenLoc) {
2722   // Determine whether we can rebuild the for-range statement with a
2723   // dereferenced range expression.
2724   ExprResult AdjustedRange;
2725   {
2726     Sema::SFINAETrap Trap(SemaRef);
2727 
2728     AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2729     if (AdjustedRange.isInvalid())
2730       return StmtResult();
2731 
2732     StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2733         S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2734         AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
2735     if (SR.isInvalid())
2736       return StmtResult();
2737   }
2738 
2739   // The attempt to dereference worked well enough that it could produce a valid
2740   // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2741   // case there are any other (non-fatal) problems with it.
2742   SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2743     << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2744   return SemaRef.ActOnCXXForRangeStmt(
2745       S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2746       AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
2747 }
2748 
2749 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2750 StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc,
2751                                       SourceLocation CoawaitLoc, Stmt *InitStmt,
2752                                       SourceLocation ColonLoc, Stmt *RangeDecl,
2753                                       Stmt *Begin, Stmt *End, Expr *Cond,
2754                                       Expr *Inc, Stmt *LoopVarDecl,
2755                                       SourceLocation RParenLoc,
2756                                       BuildForRangeKind Kind) {
2757   // FIXME: This should not be used during template instantiation. We should
2758   // pick up the set of unqualified lookup results for the != and + operators
2759   // in the initial parse.
2760   //
2761   // Testcase (accepts-invalid):
2762   //   template<typename T> void f() { for (auto x : T()) {} }
2763   //   namespace N { struct X { X begin(); X end(); int operator*(); }; }
2764   //   bool operator!=(N::X, N::X); void operator++(N::X);
2765   //   void g() { f<N::X>(); }
2766   Scope *S = getCurScope();
2767 
2768   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2769   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2770   QualType RangeVarType = RangeVar->getType();
2771 
2772   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2773   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2774 
2775   StmtResult BeginDeclStmt = Begin;
2776   StmtResult EndDeclStmt = End;
2777   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2778 
2779   if (RangeVarType->isDependentType()) {
2780     // The range is implicitly used as a placeholder when it is dependent.
2781     RangeVar->markUsed(Context);
2782 
2783     // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2784     // them in properly when we instantiate the loop.
2785     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2786       if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2787         for (auto *Binding : DD->bindings())
2788           Binding->setType(Context.DependentTy);
2789       LoopVar->setType(SubstAutoTypeDependent(LoopVar->getType()));
2790     }
2791   } else if (!BeginDeclStmt.get()) {
2792     SourceLocation RangeLoc = RangeVar->getLocation();
2793 
2794     const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2795 
2796     ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2797                                                 VK_LValue, ColonLoc);
2798     if (BeginRangeRef.isInvalid())
2799       return StmtError();
2800 
2801     ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2802                                               VK_LValue, ColonLoc);
2803     if (EndRangeRef.isInvalid())
2804       return StmtError();
2805 
2806     QualType AutoType = Context.getAutoDeductType();
2807     Expr *Range = RangeVar->getInit();
2808     if (!Range)
2809       return StmtError();
2810     QualType RangeType = Range->getType();
2811 
2812     if (RequireCompleteType(RangeLoc, RangeType,
2813                             diag::err_for_range_incomplete_type))
2814       return StmtError();
2815 
2816     // Build auto __begin = begin-expr, __end = end-expr.
2817     // Divide by 2, since the variables are in the inner scope (loop body).
2818     const auto DepthStr = std::to_string(S->getDepth() / 2);
2819     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2820                                              std::string("__begin") + DepthStr);
2821     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2822                                            std::string("__end") + DepthStr);
2823 
2824     // Build begin-expr and end-expr and attach to __begin and __end variables.
2825     ExprResult BeginExpr, EndExpr;
2826     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2827       // - if _RangeT is an array type, begin-expr and end-expr are __range and
2828       //   __range + __bound, respectively, where __bound is the array bound. If
2829       //   _RangeT is an array of unknown size or an array of incomplete type,
2830       //   the program is ill-formed;
2831 
2832       // begin-expr is __range.
2833       BeginExpr = BeginRangeRef;
2834       if (!CoawaitLoc.isInvalid()) {
2835         BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2836         if (BeginExpr.isInvalid())
2837           return StmtError();
2838       }
2839       if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2840                                 diag::err_for_range_iter_deduction_failure)) {
2841         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2842         return StmtError();
2843       }
2844 
2845       // Find the array bound.
2846       ExprResult BoundExpr;
2847       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2848         BoundExpr = IntegerLiteral::Create(
2849             Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2850       else if (const VariableArrayType *VAT =
2851                dyn_cast<VariableArrayType>(UnqAT)) {
2852         // For a variably modified type we can't just use the expression within
2853         // the array bounds, since we don't want that to be re-evaluated here.
2854         // Rather, we need to determine what it was when the array was first
2855         // created - so we resort to using sizeof(vla)/sizeof(element).
2856         // For e.g.
2857         //  void f(int b) {
2858         //    int vla[b];
2859         //    b = -1;   <-- This should not affect the num of iterations below
2860         //    for (int &c : vla) { .. }
2861         //  }
2862 
2863         // FIXME: This results in codegen generating IR that recalculates the
2864         // run-time number of elements (as opposed to just using the IR Value
2865         // that corresponds to the run-time value of each bound that was
2866         // generated when the array was created.) If this proves too embarrassing
2867         // even for unoptimized IR, consider passing a magic-value/cookie to
2868         // codegen that then knows to simply use that initial llvm::Value (that
2869         // corresponds to the bound at time of array creation) within
2870         // getelementptr.  But be prepared to pay the price of increasing a
2871         // customized form of coupling between the two components - which  could
2872         // be hard to maintain as the codebase evolves.
2873 
2874         ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2875             EndVar->getLocation(), UETT_SizeOf,
2876             /*IsType=*/true,
2877             CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2878                                                  VAT->desugar(), RangeLoc))
2879                 .getAsOpaquePtr(),
2880             EndVar->getSourceRange());
2881         if (SizeOfVLAExprR.isInvalid())
2882           return StmtError();
2883 
2884         ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2885             EndVar->getLocation(), UETT_SizeOf,
2886             /*IsType=*/true,
2887             CreateParsedType(VAT->desugar(),
2888                              Context.getTrivialTypeSourceInfo(
2889                                  VAT->getElementType(), RangeLoc))
2890                 .getAsOpaquePtr(),
2891             EndVar->getSourceRange());
2892         if (SizeOfEachElementExprR.isInvalid())
2893           return StmtError();
2894 
2895         BoundExpr =
2896             ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2897                        SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2898         if (BoundExpr.isInvalid())
2899           return StmtError();
2900 
2901       } else {
2902         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2903         // UnqAT is not incomplete and Range is not type-dependent.
2904         llvm_unreachable("Unexpected array type in for-range");
2905       }
2906 
2907       // end-expr is __range + __bound.
2908       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2909                            BoundExpr.get());
2910       if (EndExpr.isInvalid())
2911         return StmtError();
2912       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2913                                 diag::err_for_range_iter_deduction_failure)) {
2914         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2915         return StmtError();
2916       }
2917     } else {
2918       OverloadCandidateSet CandidateSet(RangeLoc,
2919                                         OverloadCandidateSet::CSK_Normal);
2920       BeginEndFunction BEFFailure;
2921       ForRangeStatus RangeStatus = BuildNonArrayForRange(
2922           *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2923           EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2924           &BEFFailure);
2925 
2926       if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2927           BEFFailure == BEF_begin) {
2928         // If the range is being built from an array parameter, emit a
2929         // a diagnostic that it is being treated as a pointer.
2930         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2931           if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2932             QualType ArrayTy = PVD->getOriginalType();
2933             QualType PointerTy = PVD->getType();
2934             if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2935               Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
2936                   << RangeLoc << PVD << ArrayTy << PointerTy;
2937               Diag(PVD->getLocation(), diag::note_declared_at);
2938               return StmtError();
2939             }
2940           }
2941         }
2942 
2943         // If building the range failed, try dereferencing the range expression
2944         // unless a diagnostic was issued or the end function is problematic.
2945         StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2946                                                        CoawaitLoc, InitStmt,
2947                                                        LoopVarDecl, ColonLoc,
2948                                                        Range, RangeLoc,
2949                                                        RParenLoc);
2950         if (SR.isInvalid() || SR.isUsable())
2951           return SR;
2952       }
2953 
2954       // Otherwise, emit diagnostics if we haven't already.
2955       if (RangeStatus == FRS_NoViableFunction) {
2956         Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2957         CandidateSet.NoteCandidates(
2958             PartialDiagnosticAt(Range->getBeginLoc(),
2959                                 PDiag(diag::err_for_range_invalid)
2960                                     << RangeLoc << Range->getType()
2961                                     << BEFFailure),
2962             *this, OCD_AllCandidates, Range);
2963       }
2964       // Return an error if no fix was discovered.
2965       if (RangeStatus != FRS_Success)
2966         return StmtError();
2967     }
2968 
2969     assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2970            "invalid range expression in for loop");
2971 
2972     // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2973     // C++1z removes this restriction.
2974     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2975     if (!Context.hasSameType(BeginType, EndType)) {
2976       Diag(RangeLoc, getLangOpts().CPlusPlus17
2977                          ? diag::warn_for_range_begin_end_types_differ
2978                          : diag::ext_for_range_begin_end_types_differ)
2979           << BeginType << EndType;
2980       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2981       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2982     }
2983 
2984     BeginDeclStmt =
2985         ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2986     EndDeclStmt =
2987         ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2988 
2989     const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2990     ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2991                                            VK_LValue, ColonLoc);
2992     if (BeginRef.isInvalid())
2993       return StmtError();
2994 
2995     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2996                                          VK_LValue, ColonLoc);
2997     if (EndRef.isInvalid())
2998       return StmtError();
2999 
3000     // Build and check __begin != __end expression.
3001     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
3002                            BeginRef.get(), EndRef.get());
3003     if (!NotEqExpr.isInvalid())
3004       NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
3005     if (!NotEqExpr.isInvalid())
3006       NotEqExpr =
3007           ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
3008     if (NotEqExpr.isInvalid()) {
3009       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3010         << RangeLoc << 0 << BeginRangeRef.get()->getType();
3011       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3012       if (!Context.hasSameType(BeginType, EndType))
3013         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
3014       return StmtError();
3015     }
3016 
3017     // Build and check ++__begin expression.
3018     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
3019                                 VK_LValue, ColonLoc);
3020     if (BeginRef.isInvalid())
3021       return StmtError();
3022 
3023     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
3024     if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
3025       // FIXME: getCurScope() should not be used during template instantiation.
3026       // We should pick up the set of unqualified lookup results for operator
3027       // co_await during the initial parse.
3028       IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
3029     if (!IncrExpr.isInvalid())
3030       IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
3031     if (IncrExpr.isInvalid()) {
3032       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3033         << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
3034       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3035       return StmtError();
3036     }
3037 
3038     // Build and check *__begin  expression.
3039     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
3040                                 VK_LValue, ColonLoc);
3041     if (BeginRef.isInvalid())
3042       return StmtError();
3043 
3044     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
3045     if (DerefExpr.isInvalid()) {
3046       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3047         << RangeLoc << 1 << BeginRangeRef.get()->getType();
3048       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3049       return StmtError();
3050     }
3051 
3052     // Attach  *__begin  as initializer for VD. Don't touch it if we're just
3053     // trying to determine whether this would be a valid range.
3054     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
3055       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
3056       if (LoopVar->isInvalidDecl() ||
3057           (LoopVar->getInit() && LoopVar->getInit()->containsErrors()))
3058         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3059     }
3060   }
3061 
3062   // Don't bother to actually allocate the result if we're just trying to
3063   // determine whether it would be valid.
3064   if (Kind == BFRK_Check)
3065     return StmtResult();
3066 
3067   // In OpenMP loop region loop control variable must be private. Perform
3068   // analysis of first part (if any).
3069   if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable())
3070     ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get());
3071 
3072   return new (Context) CXXForRangeStmt(
3073       InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
3074       cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
3075       IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
3076       ColonLoc, RParenLoc);
3077 }
3078 
3079 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
3080 /// statement.
3081 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
3082   if (!S || !B)
3083     return StmtError();
3084   ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
3085 
3086   ForStmt->setBody(B);
3087   return S;
3088 }
3089 
3090 // Warn when the loop variable is a const reference that creates a copy.
3091 // Suggest using the non-reference type for copies.  If a copy can be prevented
3092 // suggest the const reference type that would do so.
3093 // For instance, given "for (const &Foo : Range)", suggest
3094 // "for (const Foo : Range)" to denote a copy is made for the loop.  If
3095 // possible, also suggest "for (const &Bar : Range)" if this type prevents
3096 // the copy altogether.
3097 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
3098                                                     const VarDecl *VD,
3099                                                     QualType RangeInitType) {
3100   const Expr *InitExpr = VD->getInit();
3101   if (!InitExpr)
3102     return;
3103 
3104   QualType VariableType = VD->getType();
3105 
3106   if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
3107     if (!Cleanups->cleanupsHaveSideEffects())
3108       InitExpr = Cleanups->getSubExpr();
3109 
3110   const MaterializeTemporaryExpr *MTE =
3111       dyn_cast<MaterializeTemporaryExpr>(InitExpr);
3112 
3113   // No copy made.
3114   if (!MTE)
3115     return;
3116 
3117   const Expr *E = MTE->getSubExpr()->IgnoreImpCasts();
3118 
3119   // Searching for either UnaryOperator for dereference of a pointer or
3120   // CXXOperatorCallExpr for handling iterators.
3121   while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
3122     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
3123       E = CCE->getArg(0);
3124     } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
3125       const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
3126       E = ME->getBase();
3127     } else {
3128       const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
3129       E = MTE->getSubExpr();
3130     }
3131     E = E->IgnoreImpCasts();
3132   }
3133 
3134   QualType ReferenceReturnType;
3135   if (isa<UnaryOperator>(E)) {
3136     ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType());
3137   } else {
3138     const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
3139     const FunctionDecl *FD = Call->getDirectCallee();
3140     QualType ReturnType = FD->getReturnType();
3141     if (ReturnType->isReferenceType())
3142       ReferenceReturnType = ReturnType;
3143   }
3144 
3145   if (!ReferenceReturnType.isNull()) {
3146     // Loop variable creates a temporary.  Suggest either to go with
3147     // non-reference loop variable to indicate a copy is made, or
3148     // the correct type to bind a const reference.
3149     SemaRef.Diag(VD->getLocation(),
3150                  diag::warn_for_range_const_ref_binds_temp_built_from_ref)
3151         << VD << VariableType << ReferenceReturnType;
3152     QualType NonReferenceType = VariableType.getNonReferenceType();
3153     NonReferenceType.removeLocalConst();
3154     QualType NewReferenceType =
3155         SemaRef.Context.getLValueReferenceType(E->getType().withConst());
3156     SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
3157         << NonReferenceType << NewReferenceType << VD->getSourceRange()
3158         << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
3159   } else if (!VariableType->isRValueReferenceType()) {
3160     // The range always returns a copy, so a temporary is always created.
3161     // Suggest removing the reference from the loop variable.
3162     // If the type is a rvalue reference do not warn since that changes the
3163     // semantic of the code.
3164     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp)
3165         << VD << RangeInitType;
3166     QualType NonReferenceType = VariableType.getNonReferenceType();
3167     NonReferenceType.removeLocalConst();
3168     SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
3169         << NonReferenceType << VD->getSourceRange()
3170         << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
3171   }
3172 }
3173 
3174 /// Determines whether the @p VariableType's declaration is a record with the
3175 /// clang::trivial_abi attribute.
3176 static bool hasTrivialABIAttr(QualType VariableType) {
3177   if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl())
3178     return RD->hasAttr<TrivialABIAttr>();
3179 
3180   return false;
3181 }
3182 
3183 // Warns when the loop variable can be changed to a reference type to
3184 // prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
3185 // "for (const Foo &x : Range)" if this form does not make a copy.
3186 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
3187                                                 const VarDecl *VD) {
3188   const Expr *InitExpr = VD->getInit();
3189   if (!InitExpr)
3190     return;
3191 
3192   QualType VariableType = VD->getType();
3193 
3194   if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
3195     if (!CE->getConstructor()->isCopyConstructor())
3196       return;
3197   } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
3198     if (CE->getCastKind() != CK_LValueToRValue)
3199       return;
3200   } else {
3201     return;
3202   }
3203 
3204   // Small trivially copyable types are cheap to copy. Do not emit the
3205   // diagnostic for these instances. 64 bytes is a common size of a cache line.
3206   // (The function `getTypeSize` returns the size in bits.)
3207   ASTContext &Ctx = SemaRef.Context;
3208   if (Ctx.getTypeSize(VariableType) <= 64 * 8 &&
3209       (VariableType.isTriviallyCopyConstructibleType(Ctx) ||
3210        hasTrivialABIAttr(VariableType)))
3211     return;
3212 
3213   // Suggest changing from a const variable to a const reference variable
3214   // if doing so will prevent a copy.
3215   SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
3216       << VD << VariableType;
3217   SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
3218       << SemaRef.Context.getLValueReferenceType(VariableType)
3219       << VD->getSourceRange()
3220       << FixItHint::CreateInsertion(VD->getLocation(), "&");
3221 }
3222 
3223 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
3224 /// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
3225 ///    using "const foo x" to show that a copy is made
3226 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
3227 ///    Suggest either "const bar x" to keep the copying or "const foo& x" to
3228 ///    prevent the copy.
3229 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
3230 ///    Suggest "const foo &x" to prevent the copy.
3231 static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
3232                                            const CXXForRangeStmt *ForStmt) {
3233   if (SemaRef.inTemplateInstantiation())
3234     return;
3235 
3236   if (SemaRef.Diags.isIgnored(
3237           diag::warn_for_range_const_ref_binds_temp_built_from_ref,
3238           ForStmt->getBeginLoc()) &&
3239       SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp,
3240                               ForStmt->getBeginLoc()) &&
3241       SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
3242                               ForStmt->getBeginLoc())) {
3243     return;
3244   }
3245 
3246   const VarDecl *VD = ForStmt->getLoopVariable();
3247   if (!VD)
3248     return;
3249 
3250   QualType VariableType = VD->getType();
3251 
3252   if (VariableType->isIncompleteType())
3253     return;
3254 
3255   const Expr *InitExpr = VD->getInit();
3256   if (!InitExpr)
3257     return;
3258 
3259   if (InitExpr->getExprLoc().isMacroID())
3260     return;
3261 
3262   if (VariableType->isReferenceType()) {
3263     DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
3264                                             ForStmt->getRangeInit()->getType());
3265   } else if (VariableType.isConstQualified()) {
3266     DiagnoseForRangeConstVariableCopies(SemaRef, VD);
3267   }
3268 }
3269 
3270 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
3271 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
3272 /// body cannot be performed until after the type of the range variable is
3273 /// determined.
3274 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
3275   if (!S || !B)
3276     return StmtError();
3277 
3278   if (isa<ObjCForCollectionStmt>(S))
3279     return FinishObjCForCollectionStmt(S, B);
3280 
3281   CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
3282   ForStmt->setBody(B);
3283 
3284   DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
3285                         diag::warn_empty_range_based_for_body);
3286 
3287   DiagnoseForRangeVariableCopies(*this, ForStmt);
3288 
3289   return S;
3290 }
3291 
3292 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
3293                                SourceLocation LabelLoc,
3294                                LabelDecl *TheDecl) {
3295   setFunctionHasBranchIntoScope();
3296   TheDecl->markUsed(Context);
3297   return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
3298 }
3299 
3300 StmtResult
3301 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
3302                             Expr *E) {
3303   // Convert operand to void*
3304   if (!E->isTypeDependent()) {
3305     QualType ETy = E->getType();
3306     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
3307     ExprResult ExprRes = E;
3308     AssignConvertType ConvTy =
3309       CheckSingleAssignmentConstraints(DestTy, ExprRes);
3310     if (ExprRes.isInvalid())
3311       return StmtError();
3312     E = ExprRes.get();
3313     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
3314       return StmtError();
3315   }
3316 
3317   ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
3318   if (ExprRes.isInvalid())
3319     return StmtError();
3320   E = ExprRes.get();
3321 
3322   setFunctionHasIndirectGoto();
3323 
3324   return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
3325 }
3326 
3327 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
3328                                      const Scope &DestScope) {
3329   if (!S.CurrentSEHFinally.empty() &&
3330       DestScope.Contains(*S.CurrentSEHFinally.back())) {
3331     S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
3332   }
3333 }
3334 
3335 StmtResult
3336 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
3337   Scope *S = CurScope->getContinueParent();
3338   if (!S) {
3339     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
3340     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
3341   }
3342   if (S->isConditionVarScope()) {
3343     // We cannot 'continue;' from within a statement expression in the
3344     // initializer of a condition variable because we would jump past the
3345     // initialization of that variable.
3346     return StmtError(Diag(ContinueLoc, diag::err_continue_from_cond_var_init));
3347   }
3348   CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
3349 
3350   return new (Context) ContinueStmt(ContinueLoc);
3351 }
3352 
3353 StmtResult
3354 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
3355   Scope *S = CurScope->getBreakParent();
3356   if (!S) {
3357     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
3358     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
3359   }
3360   if (S->isOpenMPLoopScope())
3361     return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
3362                      << "break");
3363   CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
3364 
3365   return new (Context) BreakStmt(BreakLoc);
3366 }
3367 
3368 /// Determine whether the given expression might be move-eligible or
3369 /// copy-elidable in either a (co_)return statement or throw expression,
3370 /// without considering function return type, if applicable.
3371 ///
3372 /// \param E The expression being returned from the function or block,
3373 /// being thrown, or being co_returned from a coroutine. This expression
3374 /// might be modified by the implementation.
3375 ///
3376 /// \param Mode Overrides detection of current language mode
3377 /// and uses the rules for C++23.
3378 ///
3379 /// \returns An aggregate which contains the Candidate and isMoveEligible
3380 /// and isCopyElidable methods. If Candidate is non-null, it means
3381 /// isMoveEligible() would be true under the most permissive language standard.
3382 Sema::NamedReturnInfo Sema::getNamedReturnInfo(Expr *&E,
3383                                                SimplerImplicitMoveMode Mode) {
3384   if (!E)
3385     return NamedReturnInfo();
3386   // - in a return statement in a function [where] ...
3387   // ... the expression is the name of a non-volatile automatic object ...
3388   const auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
3389   if (!DR || DR->refersToEnclosingVariableOrCapture())
3390     return NamedReturnInfo();
3391   const auto *VD = dyn_cast<VarDecl>(DR->getDecl());
3392   if (!VD)
3393     return NamedReturnInfo();
3394   NamedReturnInfo Res = getNamedReturnInfo(VD);
3395   if (Res.Candidate && !E->isXValue() &&
3396       (Mode == SimplerImplicitMoveMode::ForceOn ||
3397        (Mode != SimplerImplicitMoveMode::ForceOff &&
3398         getLangOpts().CPlusPlus23))) {
3399     E = ImplicitCastExpr::Create(Context, VD->getType().getNonReferenceType(),
3400                                  CK_NoOp, E, nullptr, VK_XValue,
3401                                  FPOptionsOverride());
3402   }
3403   return Res;
3404 }
3405 
3406 /// Determine whether the given NRVO candidate variable is move-eligible or
3407 /// copy-elidable, without considering function return type.
3408 ///
3409 /// \param VD The NRVO candidate variable.
3410 ///
3411 /// \returns An aggregate which contains the Candidate and isMoveEligible
3412 /// and isCopyElidable methods. If Candidate is non-null, it means
3413 /// isMoveEligible() would be true under the most permissive language standard.
3414 Sema::NamedReturnInfo Sema::getNamedReturnInfo(const VarDecl *VD) {
3415   NamedReturnInfo Info{VD, NamedReturnInfo::MoveEligibleAndCopyElidable};
3416 
3417   // C++20 [class.copy.elision]p3:
3418   // - in a return statement in a function with ...
3419   // (other than a function ... parameter)
3420   if (VD->getKind() == Decl::ParmVar)
3421     Info.S = NamedReturnInfo::MoveEligible;
3422   else if (VD->getKind() != Decl::Var)
3423     return NamedReturnInfo();
3424 
3425   // (other than ... a catch-clause parameter)
3426   if (VD->isExceptionVariable())
3427     Info.S = NamedReturnInfo::MoveEligible;
3428 
3429   // ...automatic...
3430   if (!VD->hasLocalStorage())
3431     return NamedReturnInfo();
3432 
3433   // We don't want to implicitly move out of a __block variable during a return
3434   // because we cannot assume the variable will no longer be used.
3435   if (VD->hasAttr<BlocksAttr>())
3436     return NamedReturnInfo();
3437 
3438   QualType VDType = VD->getType();
3439   if (VDType->isObjectType()) {
3440     // C++17 [class.copy.elision]p3:
3441     // ...non-volatile automatic object...
3442     if (VDType.isVolatileQualified())
3443       return NamedReturnInfo();
3444   } else if (VDType->isRValueReferenceType()) {
3445     // C++20 [class.copy.elision]p3:
3446     // ...either a non-volatile object or an rvalue reference to a non-volatile
3447     // object type...
3448     QualType VDReferencedType = VDType.getNonReferenceType();
3449     if (VDReferencedType.isVolatileQualified() ||
3450         !VDReferencedType->isObjectType())
3451       return NamedReturnInfo();
3452     Info.S = NamedReturnInfo::MoveEligible;
3453   } else {
3454     return NamedReturnInfo();
3455   }
3456 
3457   // Variables with higher required alignment than their type's ABI
3458   // alignment cannot use NRVO.
3459   if (!VD->hasDependentAlignment() &&
3460       Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VDType))
3461     Info.S = NamedReturnInfo::MoveEligible;
3462 
3463   return Info;
3464 }
3465 
3466 /// Updates given NamedReturnInfo's move-eligible and
3467 /// copy-elidable statuses, considering the function
3468 /// return type criteria as applicable to return statements.
3469 ///
3470 /// \param Info The NamedReturnInfo object to update.
3471 ///
3472 /// \param ReturnType This is the return type of the function.
3473 /// \returns The copy elision candidate, in case the initial return expression
3474 /// was copy elidable, or nullptr otherwise.
3475 const VarDecl *Sema::getCopyElisionCandidate(NamedReturnInfo &Info,
3476                                              QualType ReturnType) {
3477   if (!Info.Candidate)
3478     return nullptr;
3479 
3480   auto invalidNRVO = [&] {
3481     Info = NamedReturnInfo();
3482     return nullptr;
3483   };
3484 
3485   // If we got a non-deduced auto ReturnType, we are in a dependent context and
3486   // there is no point in allowing copy elision since we won't have it deduced
3487   // by the point the VardDecl is instantiated, which is the last chance we have
3488   // of deciding if the candidate is really copy elidable.
3489   if ((ReturnType->getTypeClass() == Type::TypeClass::Auto &&
3490        ReturnType->isCanonicalUnqualified()) ||
3491       ReturnType->isSpecificBuiltinType(BuiltinType::Dependent))
3492     return invalidNRVO();
3493 
3494   if (!ReturnType->isDependentType()) {
3495     // - in a return statement in a function with ...
3496     // ... a class return type ...
3497     if (!ReturnType->isRecordType())
3498       return invalidNRVO();
3499 
3500     QualType VDType = Info.Candidate->getType();
3501     // ... the same cv-unqualified type as the function return type ...
3502     // When considering moving this expression out, allow dissimilar types.
3503     if (!VDType->isDependentType() &&
3504         !Context.hasSameUnqualifiedType(ReturnType, VDType))
3505       Info.S = NamedReturnInfo::MoveEligible;
3506   }
3507   return Info.isCopyElidable() ? Info.Candidate : nullptr;
3508 }
3509 
3510 /// Verify that the initialization sequence that was picked for the
3511 /// first overload resolution is permissible under C++98.
3512 ///
3513 /// Reject (possibly converting) constructors not taking an rvalue reference,
3514 /// or user conversion operators which are not ref-qualified.
3515 static bool
3516 VerifyInitializationSequenceCXX98(const Sema &S,
3517                                   const InitializationSequence &Seq) {
3518   const auto *Step = llvm::find_if(Seq.steps(), [](const auto &Step) {
3519     return Step.Kind == InitializationSequence::SK_ConstructorInitialization ||
3520            Step.Kind == InitializationSequence::SK_UserConversion;
3521   });
3522   if (Step != Seq.step_end()) {
3523     const auto *FD = Step->Function.Function;
3524     if (isa<CXXConstructorDecl>(FD)
3525             ? !FD->getParamDecl(0)->getType()->isRValueReferenceType()
3526             : cast<CXXMethodDecl>(FD)->getRefQualifier() == RQ_None)
3527       return false;
3528   }
3529   return true;
3530 }
3531 
3532 /// Perform the initialization of a potentially-movable value, which
3533 /// is the result of return value.
3534 ///
3535 /// This routine implements C++20 [class.copy.elision]p3, which attempts to
3536 /// treat returned lvalues as rvalues in certain cases (to prefer move
3537 /// construction), then falls back to treating them as lvalues if that failed.
3538 ExprResult Sema::PerformMoveOrCopyInitialization(
3539     const InitializedEntity &Entity, const NamedReturnInfo &NRInfo, Expr *Value,
3540     bool SupressSimplerImplicitMoves) {
3541   if (getLangOpts().CPlusPlus &&
3542       (!getLangOpts().CPlusPlus23 || SupressSimplerImplicitMoves) &&
3543       NRInfo.isMoveEligible()) {
3544     ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
3545                               CK_NoOp, Value, VK_XValue, FPOptionsOverride());
3546     Expr *InitExpr = &AsRvalue;
3547     auto Kind = InitializationKind::CreateCopy(Value->getBeginLoc(),
3548                                                Value->getBeginLoc());
3549     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3550     auto Res = Seq.getFailedOverloadResult();
3551     if ((Res == OR_Success || Res == OR_Deleted) &&
3552         (getLangOpts().CPlusPlus11 ||
3553          VerifyInitializationSequenceCXX98(*this, Seq))) {
3554       // Promote "AsRvalue" to the heap, since we now need this
3555       // expression node to persist.
3556       Value =
3557           ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp, Value,
3558                                    nullptr, VK_XValue, FPOptionsOverride());
3559       // Complete type-checking the initialization of the return type
3560       // using the constructor we found.
3561       return Seq.Perform(*this, Entity, Kind, Value);
3562     }
3563   }
3564   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3565   // above, or overload resolution failed. Either way, we need to try
3566   // (again) now with the return value expression as written.
3567   return PerformCopyInitialization(Entity, SourceLocation(), Value);
3568 }
3569 
3570 /// Determine whether the declared return type of the specified function
3571 /// contains 'auto'.
3572 static bool hasDeducedReturnType(FunctionDecl *FD) {
3573   const FunctionProtoType *FPT =
3574       FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
3575   return FPT->getReturnType()->isUndeducedType();
3576 }
3577 
3578 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
3579 /// for capturing scopes.
3580 ///
3581 StmtResult Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,
3582                                          Expr *RetValExp,
3583                                          NamedReturnInfo &NRInfo,
3584                                          bool SupressSimplerImplicitMoves) {
3585   // If this is the first return we've seen, infer the return type.
3586   // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3587   CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3588   QualType FnRetType = CurCap->ReturnType;
3589   LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3590   if (CurLambda && CurLambda->CallOperator->getType().isNull())
3591     return StmtError();
3592   bool HasDeducedReturnType =
3593       CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3594 
3595   if (ExprEvalContexts.back().isDiscardedStatementContext() &&
3596       (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3597     if (RetValExp) {
3598       ExprResult ER =
3599           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3600       if (ER.isInvalid())
3601         return StmtError();
3602       RetValExp = ER.get();
3603     }
3604     return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3605                               /* NRVOCandidate=*/nullptr);
3606   }
3607 
3608   if (HasDeducedReturnType) {
3609     FunctionDecl *FD = CurLambda->CallOperator;
3610     // If we've already decided this lambda is invalid, e.g. because
3611     // we saw a `return` whose expression had an error, don't keep
3612     // trying to deduce its return type.
3613     if (FD->isInvalidDecl())
3614       return StmtError();
3615     // In C++1y, the return type may involve 'auto'.
3616     // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3617     if (CurCap->ReturnType.isNull())
3618       CurCap->ReturnType = FD->getReturnType();
3619 
3620     AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3621     assert(AT && "lost auto type from lambda return type");
3622     if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3623       FD->setInvalidDecl();
3624       // FIXME: preserve the ill-formed return expression.
3625       return StmtError();
3626     }
3627     CurCap->ReturnType = FnRetType = FD->getReturnType();
3628   } else if (CurCap->HasImplicitReturnType) {
3629     // For blocks/lambdas with implicit return types, we check each return
3630     // statement individually, and deduce the common return type when the block
3631     // or lambda is completed.
3632     // FIXME: Fold this into the 'auto' codepath above.
3633     if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3634       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3635       if (Result.isInvalid())
3636         return StmtError();
3637       RetValExp = Result.get();
3638 
3639       // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3640       // when deducing a return type for a lambda-expression (or by extension
3641       // for a block). These rules differ from the stated C++11 rules only in
3642       // that they remove top-level cv-qualifiers.
3643       if (!CurContext->isDependentContext())
3644         FnRetType = RetValExp->getType().getUnqualifiedType();
3645       else
3646         FnRetType = CurCap->ReturnType = Context.DependentTy;
3647     } else {
3648       if (RetValExp) {
3649         // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3650         // initializer list, because it is not an expression (even
3651         // though we represent it as one). We still deduce 'void'.
3652         Diag(ReturnLoc, diag::err_lambda_return_init_list)
3653           << RetValExp->getSourceRange();
3654       }
3655 
3656       FnRetType = Context.VoidTy;
3657     }
3658 
3659     // Although we'll properly infer the type of the block once it's completed,
3660     // make sure we provide a return type now for better error recovery.
3661     if (CurCap->ReturnType.isNull())
3662       CurCap->ReturnType = FnRetType;
3663   }
3664   const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
3665 
3666   if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3667     if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) {
3668       Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3669       return StmtError();
3670     }
3671   } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3672     Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3673     return StmtError();
3674   } else {
3675     assert(CurLambda && "unknown kind of captured scope");
3676     if (CurLambda->CallOperator->getType()
3677             ->castAs<FunctionType>()
3678             ->getNoReturnAttr()) {
3679       Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3680       return StmtError();
3681     }
3682   }
3683 
3684   // Otherwise, verify that this result type matches the previous one.  We are
3685   // pickier with blocks than for normal functions because we don't have GCC
3686   // compatibility to worry about here.
3687   if (FnRetType->isDependentType()) {
3688     // Delay processing for now.  TODO: there are lots of dependent
3689     // types we can conclusively prove aren't void.
3690   } else if (FnRetType->isVoidType()) {
3691     if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3692         !(getLangOpts().CPlusPlus &&
3693           (RetValExp->isTypeDependent() ||
3694            RetValExp->getType()->isVoidType()))) {
3695       if (!getLangOpts().CPlusPlus &&
3696           RetValExp->getType()->isVoidType())
3697         Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3698       else {
3699         Diag(ReturnLoc, diag::err_return_block_has_expr);
3700         RetValExp = nullptr;
3701       }
3702     }
3703   } else if (!RetValExp) {
3704     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3705   } else if (!RetValExp->isTypeDependent()) {
3706     // we have a non-void block with an expression, continue checking
3707 
3708     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3709     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3710     // function return.
3711 
3712     // In C++ the return statement is handled via a copy initialization.
3713     // the C version of which boils down to CheckSingleAssignmentConstraints.
3714     InitializedEntity Entity =
3715         InitializedEntity::InitializeResult(ReturnLoc, FnRetType);
3716     ExprResult Res = PerformMoveOrCopyInitialization(
3717         Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
3718     if (Res.isInvalid()) {
3719       // FIXME: Cleanup temporaries here, anyway?
3720       return StmtError();
3721     }
3722     RetValExp = Res.get();
3723     CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3724   }
3725 
3726   if (RetValExp) {
3727     ExprResult ER =
3728         ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3729     if (ER.isInvalid())
3730       return StmtError();
3731     RetValExp = ER.get();
3732   }
3733   auto *Result =
3734       ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3735 
3736   // If we need to check for the named return value optimization,
3737   // or if we need to infer the return type,
3738   // save the return statement in our scope for later processing.
3739   if (CurCap->HasImplicitReturnType || NRVOCandidate)
3740     FunctionScopes.back()->Returns.push_back(Result);
3741 
3742   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3743     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3744 
3745   if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap);
3746       CurBlock && CurCap->HasImplicitReturnType && RetValExp &&
3747       RetValExp->containsErrors())
3748     CurBlock->TheDecl->setInvalidDecl();
3749 
3750   return Result;
3751 }
3752 
3753 namespace {
3754 /// Marks all typedefs in all local classes in a type referenced.
3755 ///
3756 /// In a function like
3757 /// auto f() {
3758 ///   struct S { typedef int a; };
3759 ///   return S();
3760 /// }
3761 ///
3762 /// the local type escapes and could be referenced in some TUs but not in
3763 /// others. Pretend that all local typedefs are always referenced, to not warn
3764 /// on this. This isn't necessary if f has internal linkage, or the typedef
3765 /// is private.
3766 class LocalTypedefNameReferencer
3767     : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3768 public:
3769   LocalTypedefNameReferencer(Sema &S) : S(S) {}
3770   bool VisitRecordType(const RecordType *RT);
3771 private:
3772   Sema &S;
3773 };
3774 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3775   auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3776   if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3777       R->isDependentType())
3778     return true;
3779   for (auto *TmpD : R->decls())
3780     if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3781       if (T->getAccess() != AS_private || R->hasFriends())
3782         S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3783   return true;
3784 }
3785 }
3786 
3787 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
3788   return FD->getTypeSourceInfo()
3789       ->getTypeLoc()
3790       .getAsAdjusted<FunctionProtoTypeLoc>()
3791       .getReturnLoc();
3792 }
3793 
3794 /// Deduce the return type for a function from a returned expression, per
3795 /// C++1y [dcl.spec.auto]p6.
3796 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
3797                                             SourceLocation ReturnLoc,
3798                                             Expr *RetExpr, const AutoType *AT) {
3799   // If this is the conversion function for a lambda, we choose to deduce its
3800   // type from the corresponding call operator, not from the synthesized return
3801   // statement within it. See Sema::DeduceReturnType.
3802   if (isLambdaConversionOperator(FD))
3803     return false;
3804 
3805   if (RetExpr && isa<InitListExpr>(RetExpr)) {
3806     //  If the deduction is for a return statement and the initializer is
3807     //  a braced-init-list, the program is ill-formed.
3808     Diag(RetExpr->getExprLoc(),
3809          getCurLambda() ? diag::err_lambda_return_init_list
3810                         : diag::err_auto_fn_return_init_list)
3811         << RetExpr->getSourceRange();
3812     return true;
3813   }
3814 
3815   if (FD->isDependentContext()) {
3816     // C++1y [dcl.spec.auto]p12:
3817     //   Return type deduction [...] occurs when the definition is
3818     //   instantiated even if the function body contains a return
3819     //   statement with a non-type-dependent operand.
3820     assert(AT->isDeduced() && "should have deduced to dependent type");
3821     return false;
3822   }
3823 
3824   TypeLoc OrigResultType = getReturnTypeLoc(FD);
3825   //  In the case of a return with no operand, the initializer is considered
3826   //  to be void().
3827   CXXScalarValueInitExpr VoidVal(Context.VoidTy, nullptr, SourceLocation());
3828   if (!RetExpr) {
3829     // For a function with a deduced result type to return with omitted
3830     // expression, the result type as written must be 'auto' or
3831     // 'decltype(auto)', possibly cv-qualified or constrained, but not
3832     // ref-qualified.
3833     if (!OrigResultType.getType()->getAs<AutoType>()) {
3834       Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3835           << OrigResultType.getType();
3836       return true;
3837     }
3838     RetExpr = &VoidVal;
3839   }
3840 
3841   QualType Deduced = AT->getDeducedType();
3842   {
3843     //  Otherwise, [...] deduce a value for U using the rules of template
3844     //  argument deduction.
3845     auto RetExprLoc = RetExpr->getExprLoc();
3846     TemplateDeductionInfo Info(RetExprLoc);
3847     SourceLocation TemplateSpecLoc;
3848     if (RetExpr->getType() == Context.OverloadTy) {
3849       auto FindResult = OverloadExpr::find(RetExpr);
3850       if (FindResult.Expression)
3851         TemplateSpecLoc = FindResult.Expression->getNameLoc();
3852     }
3853     TemplateSpecCandidateSet FailedTSC(TemplateSpecLoc);
3854     TemplateDeductionResult Res = DeduceAutoType(
3855         OrigResultType, RetExpr, Deduced, Info, /*DependentDeduction=*/false,
3856         /*IgnoreConstraints=*/false, &FailedTSC);
3857     if (Res != TDK_Success && FD->isInvalidDecl())
3858       return true;
3859     switch (Res) {
3860     case TDK_Success:
3861       break;
3862     case TDK_AlreadyDiagnosed:
3863       return true;
3864     case TDK_Inconsistent: {
3865       //  If a function with a declared return type that contains a placeholder
3866       //  type has multiple return statements, the return type is deduced for
3867       //  each return statement. [...] if the type deduced is not the same in
3868       //  each deduction, the program is ill-formed.
3869       const LambdaScopeInfo *LambdaSI = getCurLambda();
3870       if (LambdaSI && LambdaSI->HasImplicitReturnType)
3871         Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3872             << Info.SecondArg << Info.FirstArg << true /*IsLambda*/;
3873       else
3874         Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3875             << (AT->isDecltypeAuto() ? 1 : 0) << Info.SecondArg
3876             << Info.FirstArg;
3877       return true;
3878     }
3879     default:
3880       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3881           << OrigResultType.getType() << RetExpr->getType();
3882       FailedTSC.NoteCandidates(*this, RetExprLoc);
3883       return true;
3884     }
3885   }
3886 
3887   // If a local type is part of the returned type, mark its fields as
3888   // referenced.
3889   LocalTypedefNameReferencer(*this).TraverseType(RetExpr->getType());
3890 
3891   // CUDA: Kernel function must have 'void' return type.
3892   if (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>() &&
3893       !Deduced->isVoidType()) {
3894     Diag(FD->getLocation(), diag::err_kern_type_not_void_return)
3895         << FD->getType() << FD->getSourceRange();
3896     return true;
3897   }
3898 
3899   if (!FD->isInvalidDecl() && AT->getDeducedType() != Deduced)
3900     // Update all declarations of the function to have the deduced return type.
3901     Context.adjustDeducedFunctionResultType(FD, Deduced);
3902 
3903   return false;
3904 }
3905 
3906 StmtResult
3907 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3908                       Scope *CurScope) {
3909   // Correct typos, in case the containing function returns 'auto' and
3910   // RetValExp should determine the deduced type.
3911   ExprResult RetVal = CorrectDelayedTyposInExpr(
3912       RetValExp, nullptr, /*RecoverUncorrectedTypos=*/true);
3913   if (RetVal.isInvalid())
3914     return StmtError();
3915   StmtResult R =
3916       BuildReturnStmt(ReturnLoc, RetVal.get(), /*AllowRecovery=*/true);
3917   if (R.isInvalid() || ExprEvalContexts.back().isDiscardedStatementContext())
3918     return R;
3919 
3920   VarDecl *VD =
3921       const_cast<VarDecl *>(cast<ReturnStmt>(R.get())->getNRVOCandidate());
3922 
3923   CurScope->updateNRVOCandidate(VD);
3924 
3925   CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3926 
3927   return R;
3928 }
3929 
3930 static bool CheckSimplerImplicitMovesMSVCWorkaround(const Sema &S,
3931                                                     const Expr *E) {
3932   if (!E || !S.getLangOpts().CPlusPlus23 || !S.getLangOpts().MSVCCompat)
3933     return false;
3934   const Decl *D = E->getReferencedDeclOfCallee();
3935   if (!D || !S.SourceMgr.isInSystemHeader(D->getLocation()))
3936     return false;
3937   for (const DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) {
3938     if (DC->isStdNamespace())
3939       return true;
3940   }
3941   return false;
3942 }
3943 
3944 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3945                                  bool AllowRecovery) {
3946   // Check for unexpanded parameter packs.
3947   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3948     return StmtError();
3949 
3950   // HACK: We suppress simpler implicit move here in msvc compatibility mode
3951   // just as a temporary work around, as the MSVC STL has issues with
3952   // this change.
3953   bool SupressSimplerImplicitMoves =
3954       CheckSimplerImplicitMovesMSVCWorkaround(*this, RetValExp);
3955   NamedReturnInfo NRInfo = getNamedReturnInfo(
3956       RetValExp, SupressSimplerImplicitMoves ? SimplerImplicitMoveMode::ForceOff
3957                                              : SimplerImplicitMoveMode::Normal);
3958 
3959   if (isa<CapturingScopeInfo>(getCurFunction()))
3960     return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp, NRInfo,
3961                                    SupressSimplerImplicitMoves);
3962 
3963   QualType FnRetType;
3964   QualType RelatedRetType;
3965   const AttrVec *Attrs = nullptr;
3966   bool isObjCMethod = false;
3967 
3968   if (const FunctionDecl *FD = getCurFunctionDecl()) {
3969     FnRetType = FD->getReturnType();
3970     if (FD->hasAttrs())
3971       Attrs = &FD->getAttrs();
3972     if (FD->isNoReturn())
3973       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD;
3974     if (FD->isMain() && RetValExp)
3975       if (isa<CXXBoolLiteralExpr>(RetValExp))
3976         Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3977             << RetValExp->getSourceRange();
3978     if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) {
3979       if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) {
3980         if (RT->getDecl()->isOrContainsUnion())
3981           Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1;
3982       }
3983     }
3984   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3985     FnRetType = MD->getReturnType();
3986     isObjCMethod = true;
3987     if (MD->hasAttrs())
3988       Attrs = &MD->getAttrs();
3989     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3990       // In the implementation of a method with a related return type, the
3991       // type used to type-check the validity of return statements within the
3992       // method body is a pointer to the type of the class being implemented.
3993       RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3994       RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3995     }
3996   } else // If we don't have a function/method context, bail.
3997     return StmtError();
3998 
3999   if (RetValExp) {
4000     const auto *ATy = dyn_cast<ArrayType>(RetValExp->getType());
4001     if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) {
4002       Diag(ReturnLoc, diag::err_wasm_table_art) << 1;
4003       return StmtError();
4004     }
4005   }
4006 
4007   // C++1z: discarded return statements are not considered when deducing a
4008   // return type.
4009   if (ExprEvalContexts.back().isDiscardedStatementContext() &&
4010       FnRetType->getContainedAutoType()) {
4011     if (RetValExp) {
4012       ExprResult ER =
4013           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4014       if (ER.isInvalid())
4015         return StmtError();
4016       RetValExp = ER.get();
4017     }
4018     return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
4019                               /* NRVOCandidate=*/nullptr);
4020   }
4021 
4022   // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
4023   // deduction.
4024   if (getLangOpts().CPlusPlus14) {
4025     if (AutoType *AT = FnRetType->getContainedAutoType()) {
4026       FunctionDecl *FD = cast<FunctionDecl>(CurContext);
4027       // If we've already decided this function is invalid, e.g. because
4028       // we saw a `return` whose expression had an error, don't keep
4029       // trying to deduce its return type.
4030       // (Some return values may be needlessly wrapped in RecoveryExpr).
4031       if (FD->isInvalidDecl() ||
4032           DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
4033         FD->setInvalidDecl();
4034         if (!AllowRecovery)
4035           return StmtError();
4036         // The deduction failure is diagnosed and marked, try to recover.
4037         if (RetValExp) {
4038           // Wrap return value with a recovery expression of the previous type.
4039           // If no deduction yet, use DependentTy.
4040           auto Recovery = CreateRecoveryExpr(
4041               RetValExp->getBeginLoc(), RetValExp->getEndLoc(), RetValExp,
4042               AT->isDeduced() ? FnRetType : QualType());
4043           if (Recovery.isInvalid())
4044             return StmtError();
4045           RetValExp = Recovery.get();
4046         } else {
4047           // Nothing to do: a ReturnStmt with no value is fine recovery.
4048         }
4049       } else {
4050         FnRetType = FD->getReturnType();
4051       }
4052     }
4053   }
4054   const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
4055 
4056   bool HasDependentReturnType = FnRetType->isDependentType();
4057 
4058   ReturnStmt *Result = nullptr;
4059   if (FnRetType->isVoidType()) {
4060     if (RetValExp) {
4061       if (auto *ILE = dyn_cast<InitListExpr>(RetValExp)) {
4062         // We simply never allow init lists as the return value of void
4063         // functions. This is compatible because this was never allowed before,
4064         // so there's no legacy code to deal with.
4065         NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4066         int FunctionKind = 0;
4067         if (isa<ObjCMethodDecl>(CurDecl))
4068           FunctionKind = 1;
4069         else if (isa<CXXConstructorDecl>(CurDecl))
4070           FunctionKind = 2;
4071         else if (isa<CXXDestructorDecl>(CurDecl))
4072           FunctionKind = 3;
4073 
4074         Diag(ReturnLoc, diag::err_return_init_list)
4075             << CurDecl << FunctionKind << RetValExp->getSourceRange();
4076 
4077         // Preserve the initializers in the AST.
4078         RetValExp = AllowRecovery
4079                         ? CreateRecoveryExpr(ILE->getLBraceLoc(),
4080                                              ILE->getRBraceLoc(), ILE->inits())
4081                               .get()
4082                         : nullptr;
4083       } else if (!RetValExp->isTypeDependent()) {
4084         // C99 6.8.6.4p1 (ext_ since GCC warns)
4085         unsigned D = diag::ext_return_has_expr;
4086         if (RetValExp->getType()->isVoidType()) {
4087           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4088           if (isa<CXXConstructorDecl>(CurDecl) ||
4089               isa<CXXDestructorDecl>(CurDecl))
4090             D = diag::err_ctor_dtor_returns_void;
4091           else
4092             D = diag::ext_return_has_void_expr;
4093         }
4094         else {
4095           ExprResult Result = RetValExp;
4096           Result = IgnoredValueConversions(Result.get());
4097           if (Result.isInvalid())
4098             return StmtError();
4099           RetValExp = Result.get();
4100           RetValExp = ImpCastExprToType(RetValExp,
4101                                         Context.VoidTy, CK_ToVoid).get();
4102         }
4103         // return of void in constructor/destructor is illegal in C++.
4104         if (D == diag::err_ctor_dtor_returns_void) {
4105           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4106           Diag(ReturnLoc, D) << CurDecl << isa<CXXDestructorDecl>(CurDecl)
4107                              << RetValExp->getSourceRange();
4108         }
4109         // return (some void expression); is legal in C++.
4110         else if (D != diag::ext_return_has_void_expr ||
4111                  !getLangOpts().CPlusPlus) {
4112           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4113 
4114           int FunctionKind = 0;
4115           if (isa<ObjCMethodDecl>(CurDecl))
4116             FunctionKind = 1;
4117           else if (isa<CXXConstructorDecl>(CurDecl))
4118             FunctionKind = 2;
4119           else if (isa<CXXDestructorDecl>(CurDecl))
4120             FunctionKind = 3;
4121 
4122           Diag(ReturnLoc, D)
4123               << CurDecl << FunctionKind << RetValExp->getSourceRange();
4124         }
4125       }
4126 
4127       if (RetValExp) {
4128         ExprResult ER =
4129             ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4130         if (ER.isInvalid())
4131           return StmtError();
4132         RetValExp = ER.get();
4133       }
4134     }
4135 
4136     Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
4137                                 /* NRVOCandidate=*/nullptr);
4138   } else if (!RetValExp && !HasDependentReturnType) {
4139     FunctionDecl *FD = getCurFunctionDecl();
4140 
4141     if ((FD && FD->isInvalidDecl()) || FnRetType->containsErrors()) {
4142       // The intended return type might have been "void", so don't warn.
4143     } else if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
4144       // C++11 [stmt.return]p2
4145       Diag(ReturnLoc, diag::err_constexpr_return_missing_expr)
4146           << FD << FD->isConsteval();
4147       FD->setInvalidDecl();
4148     } else {
4149       // C99 6.8.6.4p1 (ext_ since GCC warns)
4150       // C90 6.6.6.4p4
4151       unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr
4152                                           : diag::warn_return_missing_expr;
4153       // Note that at this point one of getCurFunctionDecl() or
4154       // getCurMethodDecl() must be non-null (see above).
4155       assert((getCurFunctionDecl() || getCurMethodDecl()) &&
4156              "Not in a FunctionDecl or ObjCMethodDecl?");
4157       bool IsMethod = FD == nullptr;
4158       const NamedDecl *ND =
4159           IsMethod ? cast<NamedDecl>(getCurMethodDecl()) : cast<NamedDecl>(FD);
4160       Diag(ReturnLoc, DiagID) << ND << IsMethod;
4161     }
4162 
4163     Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
4164                                 /* NRVOCandidate=*/nullptr);
4165   } else {
4166     assert(RetValExp || HasDependentReturnType);
4167     QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
4168 
4169     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
4170     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
4171     // function return.
4172 
4173     // In C++ the return statement is handled via a copy initialization,
4174     // the C version of which boils down to CheckSingleAssignmentConstraints.
4175     if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
4176       // we have a non-void function with an expression, continue checking
4177       InitializedEntity Entity =
4178           InitializedEntity::InitializeResult(ReturnLoc, RetType);
4179       ExprResult Res = PerformMoveOrCopyInitialization(
4180           Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
4181       if (Res.isInvalid() && AllowRecovery)
4182         Res = CreateRecoveryExpr(RetValExp->getBeginLoc(),
4183                                  RetValExp->getEndLoc(), RetValExp, RetType);
4184       if (Res.isInvalid()) {
4185         // FIXME: Clean up temporaries here anyway?
4186         return StmtError();
4187       }
4188       RetValExp = Res.getAs<Expr>();
4189 
4190       // If we have a related result type, we need to implicitly
4191       // convert back to the formal result type.  We can't pretend to
4192       // initialize the result again --- we might end double-retaining
4193       // --- so instead we initialize a notional temporary.
4194       if (!RelatedRetType.isNull()) {
4195         Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
4196                                                             FnRetType);
4197         Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
4198         if (Res.isInvalid()) {
4199           // FIXME: Clean up temporaries here anyway?
4200           return StmtError();
4201         }
4202         RetValExp = Res.getAs<Expr>();
4203       }
4204 
4205       CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
4206                          getCurFunctionDecl());
4207     }
4208 
4209     if (RetValExp) {
4210       ExprResult ER =
4211           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4212       if (ER.isInvalid())
4213         return StmtError();
4214       RetValExp = ER.get();
4215     }
4216     Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
4217   }
4218 
4219   // If we need to check for the named return value optimization, save the
4220   // return statement in our scope for later processing.
4221   if (Result->getNRVOCandidate())
4222     FunctionScopes.back()->Returns.push_back(Result);
4223 
4224   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
4225     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
4226 
4227   return Result;
4228 }
4229 
4230 StmtResult
4231 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
4232                            SourceLocation RParen, Decl *Parm,
4233                            Stmt *Body) {
4234   VarDecl *Var = cast_or_null<VarDecl>(Parm);
4235   if (Var && Var->isInvalidDecl())
4236     return StmtError();
4237 
4238   return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
4239 }
4240 
4241 StmtResult
4242 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
4243   return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
4244 }
4245 
4246 StmtResult
4247 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
4248                          MultiStmtArg CatchStmts, Stmt *Finally) {
4249   if (!getLangOpts().ObjCExceptions)
4250     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
4251 
4252   // Objective-C try is incompatible with SEH __try.
4253   sema::FunctionScopeInfo *FSI = getCurFunction();
4254   if (FSI->FirstSEHTryLoc.isValid()) {
4255     Diag(AtLoc, diag::err_mixing_cxx_try_seh_try) << 1;
4256     Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4257   }
4258 
4259   FSI->setHasObjCTry(AtLoc);
4260   unsigned NumCatchStmts = CatchStmts.size();
4261   return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
4262                                NumCatchStmts, Finally);
4263 }
4264 
4265 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
4266   if (Throw) {
4267     ExprResult Result = DefaultLvalueConversion(Throw);
4268     if (Result.isInvalid())
4269       return StmtError();
4270 
4271     Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false);
4272     if (Result.isInvalid())
4273       return StmtError();
4274     Throw = Result.get();
4275 
4276     QualType ThrowType = Throw->getType();
4277     // Make sure the expression type is an ObjC pointer or "void *".
4278     if (!ThrowType->isDependentType() &&
4279         !ThrowType->isObjCObjectPointerType()) {
4280       const PointerType *PT = ThrowType->getAs<PointerType>();
4281       if (!PT || !PT->getPointeeType()->isVoidType())
4282         return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
4283                          << Throw->getType() << Throw->getSourceRange());
4284     }
4285   }
4286 
4287   return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
4288 }
4289 
4290 StmtResult
4291 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
4292                            Scope *CurScope) {
4293   if (!getLangOpts().ObjCExceptions)
4294     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
4295 
4296   if (!Throw) {
4297     // @throw without an expression designates a rethrow (which must occur
4298     // in the context of an @catch clause).
4299     Scope *AtCatchParent = CurScope;
4300     while (AtCatchParent && !AtCatchParent->isAtCatchScope())
4301       AtCatchParent = AtCatchParent->getParent();
4302     if (!AtCatchParent)
4303       return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
4304   }
4305   return BuildObjCAtThrowStmt(AtLoc, Throw);
4306 }
4307 
4308 ExprResult
4309 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
4310   ExprResult result = DefaultLvalueConversion(operand);
4311   if (result.isInvalid())
4312     return ExprError();
4313   operand = result.get();
4314 
4315   // Make sure the expression type is an ObjC pointer or "void *".
4316   QualType type = operand->getType();
4317   if (!type->isDependentType() &&
4318       !type->isObjCObjectPointerType()) {
4319     const PointerType *pointerType = type->getAs<PointerType>();
4320     if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
4321       if (getLangOpts().CPlusPlus) {
4322         if (RequireCompleteType(atLoc, type,
4323                                 diag::err_incomplete_receiver_type))
4324           return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4325                    << type << operand->getSourceRange();
4326 
4327         ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
4328         if (result.isInvalid())
4329           return ExprError();
4330         if (!result.isUsable())
4331           return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4332                    << type << operand->getSourceRange();
4333 
4334         operand = result.get();
4335       } else {
4336           return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4337                    << type << operand->getSourceRange();
4338       }
4339     }
4340   }
4341 
4342   // The operand to @synchronized is a full-expression.
4343   return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false);
4344 }
4345 
4346 StmtResult
4347 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
4348                                   Stmt *SyncBody) {
4349   // We can't jump into or indirect-jump out of a @synchronized block.
4350   setFunctionHasBranchProtectedScope();
4351   return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
4352 }
4353 
4354 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
4355 /// and creates a proper catch handler from them.
4356 StmtResult
4357 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
4358                          Stmt *HandlerBlock) {
4359   // There's nothing to test that ActOnExceptionDecl didn't already test.
4360   return new (Context)
4361       CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
4362 }
4363 
4364 StmtResult
4365 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
4366   setFunctionHasBranchProtectedScope();
4367   return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
4368 }
4369 
4370 namespace {
4371 class CatchHandlerType {
4372   QualType QT;
4373   unsigned IsPointer : 1;
4374 
4375   // This is a special constructor to be used only with DenseMapInfo's
4376   // getEmptyKey() and getTombstoneKey() functions.
4377   friend struct llvm::DenseMapInfo<CatchHandlerType>;
4378   enum Unique { ForDenseMap };
4379   CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
4380 
4381 public:
4382   /// Used when creating a CatchHandlerType from a handler type; will determine
4383   /// whether the type is a pointer or reference and will strip off the top
4384   /// level pointer and cv-qualifiers.
4385   CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
4386     if (QT->isPointerType())
4387       IsPointer = true;
4388 
4389     QT = QT.getUnqualifiedType();
4390     if (IsPointer || QT->isReferenceType())
4391       QT = QT->getPointeeType();
4392   }
4393 
4394   /// Used when creating a CatchHandlerType from a base class type; pretends the
4395   /// type passed in had the pointer qualifier, does not need to get an
4396   /// unqualified type.
4397   CatchHandlerType(QualType QT, bool IsPointer)
4398       : QT(QT), IsPointer(IsPointer) {}
4399 
4400   QualType underlying() const { return QT; }
4401   bool isPointer() const { return IsPointer; }
4402 
4403   friend bool operator==(const CatchHandlerType &LHS,
4404                          const CatchHandlerType &RHS) {
4405     // If the pointer qualification does not match, we can return early.
4406     if (LHS.IsPointer != RHS.IsPointer)
4407       return false;
4408     // Otherwise, check the underlying type without cv-qualifiers.
4409     return LHS.QT == RHS.QT;
4410   }
4411 };
4412 } // namespace
4413 
4414 namespace llvm {
4415 template <> struct DenseMapInfo<CatchHandlerType> {
4416   static CatchHandlerType getEmptyKey() {
4417     return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
4418                        CatchHandlerType::ForDenseMap);
4419   }
4420 
4421   static CatchHandlerType getTombstoneKey() {
4422     return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
4423                        CatchHandlerType::ForDenseMap);
4424   }
4425 
4426   static unsigned getHashValue(const CatchHandlerType &Base) {
4427     return DenseMapInfo<QualType>::getHashValue(Base.underlying());
4428   }
4429 
4430   static bool isEqual(const CatchHandlerType &LHS,
4431                       const CatchHandlerType &RHS) {
4432     return LHS == RHS;
4433   }
4434 };
4435 }
4436 
4437 namespace {
4438 class CatchTypePublicBases {
4439   const llvm::DenseMap<QualType, CXXCatchStmt *> &TypesToCheck;
4440 
4441   CXXCatchStmt *FoundHandler;
4442   QualType FoundHandlerType;
4443   QualType TestAgainstType;
4444 
4445 public:
4446   CatchTypePublicBases(const llvm::DenseMap<QualType, CXXCatchStmt *> &T,
4447                        QualType QT)
4448       : TypesToCheck(T), FoundHandler(nullptr), TestAgainstType(QT) {}
4449 
4450   CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
4451   QualType getFoundHandlerType() const { return FoundHandlerType; }
4452 
4453   bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
4454     if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
4455       QualType Check = S->getType().getCanonicalType();
4456       const auto &M = TypesToCheck;
4457       auto I = M.find(Check);
4458       if (I != M.end()) {
4459         // We're pretty sure we found what we need to find. However, we still
4460         // need to make sure that we properly compare for pointers and
4461         // references, to handle cases like:
4462         //
4463         // } catch (Base *b) {
4464         // } catch (Derived &d) {
4465         // }
4466         //
4467         // where there is a qualification mismatch that disqualifies this
4468         // handler as a potential problem.
4469         if (I->second->getCaughtType()->isPointerType() ==
4470                 TestAgainstType->isPointerType()) {
4471           FoundHandler = I->second;
4472           FoundHandlerType = Check;
4473           return true;
4474         }
4475       }
4476     }
4477     return false;
4478   }
4479 };
4480 }
4481 
4482 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
4483 /// handlers and creates a try statement from them.
4484 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4485                                   ArrayRef<Stmt *> Handlers) {
4486   const llvm::Triple &T = Context.getTargetInfo().getTriple();
4487   const bool IsOpenMPGPUTarget =
4488       getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN());
4489   // Don't report an error if 'try' is used in system headers or in an OpenMP
4490   // target region compiled for a GPU architecture.
4491   if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions &&
4492       !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) {
4493     // Delay error emission for the OpenMP device code.
4494     targetDiag(TryLoc, diag::err_exceptions_disabled) << "try";
4495   }
4496 
4497   // In OpenMP target regions, we assume that catch is never reached on GPU
4498   // targets.
4499   if (IsOpenMPGPUTarget)
4500     targetDiag(TryLoc, diag::warn_try_not_valid_on_target) << T.str();
4501 
4502   // Exceptions aren't allowed in CUDA device code.
4503   if (getLangOpts().CUDA)
4504     CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
4505         << "try" << CurrentCUDATarget();
4506 
4507   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
4508     Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
4509 
4510   sema::FunctionScopeInfo *FSI = getCurFunction();
4511 
4512   // C++ try is incompatible with SEH __try.
4513   if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
4514     Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << 0;
4515     Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4516   }
4517 
4518   const unsigned NumHandlers = Handlers.size();
4519   assert(!Handlers.empty() &&
4520          "The parser shouldn't call this if there are no handlers.");
4521 
4522   llvm::DenseMap<QualType, CXXCatchStmt *> HandledBaseTypes;
4523   llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
4524   for (unsigned i = 0; i < NumHandlers; ++i) {
4525     CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
4526 
4527     // Diagnose when the handler is a catch-all handler, but it isn't the last
4528     // handler for the try block. [except.handle]p5. Also, skip exception
4529     // declarations that are invalid, since we can't usefully report on them.
4530     if (!H->getExceptionDecl()) {
4531       if (i < NumHandlers - 1)
4532         return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
4533       continue;
4534     } else if (H->getExceptionDecl()->isInvalidDecl())
4535       continue;
4536 
4537     // Walk the type hierarchy to diagnose when this type has already been
4538     // handled (duplication), or cannot be handled (derivation inversion). We
4539     // ignore top-level cv-qualifiers, per [except.handle]p3
4540     CatchHandlerType HandlerCHT = H->getCaughtType().getCanonicalType();
4541 
4542     // We can ignore whether the type is a reference or a pointer; we need the
4543     // underlying declaration type in order to get at the underlying record
4544     // decl, if there is one.
4545     QualType Underlying = HandlerCHT.underlying();
4546     if (auto *RD = Underlying->getAsCXXRecordDecl()) {
4547       if (!RD->hasDefinition())
4548         continue;
4549       // Check that none of the public, unambiguous base classes are in the
4550       // map ([except.handle]p1). Give the base classes the same pointer
4551       // qualification as the original type we are basing off of. This allows
4552       // comparison against the handler type using the same top-level pointer
4553       // as the original type.
4554       CXXBasePaths Paths;
4555       Paths.setOrigin(RD);
4556       CatchTypePublicBases CTPB(HandledBaseTypes,
4557                                 H->getCaughtType().getCanonicalType());
4558       if (RD->lookupInBases(CTPB, Paths)) {
4559         const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4560         if (!Paths.isAmbiguous(
4561                 CanQualType::CreateUnsafe(CTPB.getFoundHandlerType()))) {
4562           Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4563                diag::warn_exception_caught_by_earlier_handler)
4564               << H->getCaughtType();
4565           Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4566                 diag::note_previous_exception_handler)
4567               << Problem->getCaughtType();
4568         }
4569       }
4570       // Strip the qualifiers here because we're going to be comparing this
4571       // type to the base type specifiers of a class, which are ignored in a
4572       // base specifier per [class.derived.general]p2.
4573       HandledBaseTypes[Underlying.getUnqualifiedType()] = H;
4574     }
4575 
4576     // Add the type the list of ones we have handled; diagnose if we've already
4577     // handled it.
4578     auto R = HandledTypes.insert(
4579         std::make_pair(H->getCaughtType().getCanonicalType(), H));
4580     if (!R.second) {
4581       const CXXCatchStmt *Problem = R.first->second;
4582       Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4583            diag::warn_exception_caught_by_earlier_handler)
4584           << H->getCaughtType();
4585       Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4586            diag::note_previous_exception_handler)
4587           << Problem->getCaughtType();
4588     }
4589   }
4590 
4591   FSI->setHasCXXTry(TryLoc);
4592 
4593   return CXXTryStmt::Create(Context, TryLoc, cast<CompoundStmt>(TryBlock),
4594                             Handlers);
4595 }
4596 
4597 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
4598                                   Stmt *TryBlock, Stmt *Handler) {
4599   assert(TryBlock && Handler);
4600 
4601   sema::FunctionScopeInfo *FSI = getCurFunction();
4602 
4603   // SEH __try is incompatible with C++ try. Borland appears to support this,
4604   // however.
4605   if (!getLangOpts().Borland) {
4606     if (FSI->FirstCXXOrObjCTryLoc.isValid()) {
4607       Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << FSI->FirstTryType;
4608       Diag(FSI->FirstCXXOrObjCTryLoc, diag::note_conflicting_try_here)
4609           << (FSI->FirstTryType == sema::FunctionScopeInfo::TryLocIsCXX
4610                   ? "'try'"
4611                   : "'@try'");
4612     }
4613   }
4614 
4615   FSI->setHasSEHTry(TryLoc);
4616 
4617   // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4618   // track if they use SEH.
4619   DeclContext *DC = CurContext;
4620   while (DC && !DC->isFunctionOrMethod())
4621     DC = DC->getParent();
4622   FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4623   if (FD)
4624     FD->setUsesSEHTry(true);
4625   else
4626     Diag(TryLoc, diag::err_seh_try_outside_functions);
4627 
4628   // Reject __try on unsupported targets.
4629   if (!Context.getTargetInfo().isSEHTrySupported())
4630     Diag(TryLoc, diag::err_seh_try_unsupported);
4631 
4632   return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4633 }
4634 
4635 StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr,
4636                                      Stmt *Block) {
4637   assert(FilterExpr && Block);
4638   QualType FTy = FilterExpr->getType();
4639   if (!FTy->isIntegerType() && !FTy->isDependentType()) {
4640     return StmtError(
4641         Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral)
4642         << FTy);
4643   }
4644   return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block);
4645 }
4646 
4647 void Sema::ActOnStartSEHFinallyBlock() {
4648   CurrentSEHFinally.push_back(CurScope);
4649 }
4650 
4651 void Sema::ActOnAbortSEHFinallyBlock() {
4652   CurrentSEHFinally.pop_back();
4653 }
4654 
4655 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
4656   assert(Block);
4657   CurrentSEHFinally.pop_back();
4658   return SEHFinallyStmt::Create(Context, Loc, Block);
4659 }
4660 
4661 StmtResult
4662 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
4663   Scope *SEHTryParent = CurScope;
4664   while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4665     SEHTryParent = SEHTryParent->getParent();
4666   if (!SEHTryParent)
4667     return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4668   CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4669 
4670   return new (Context) SEHLeaveStmt(Loc);
4671 }
4672 
4673 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
4674                                             bool IsIfExists,
4675                                             NestedNameSpecifierLoc QualifierLoc,
4676                                             DeclarationNameInfo NameInfo,
4677                                             Stmt *Nested)
4678 {
4679   return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4680                                              QualifierLoc, NameInfo,
4681                                              cast<CompoundStmt>(Nested));
4682 }
4683 
4684 
4685 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
4686                                             bool IsIfExists,
4687                                             CXXScopeSpec &SS,
4688                                             UnqualifiedId &Name,
4689                                             Stmt *Nested) {
4690   return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4691                                     SS.getWithLocInContext(Context),
4692                                     GetNameFromUnqualifiedId(Name),
4693                                     Nested);
4694 }
4695 
4696 RecordDecl*
4697 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
4698                                    unsigned NumParams) {
4699   DeclContext *DC = CurContext;
4700   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4701     DC = DC->getParent();
4702 
4703   RecordDecl *RD = nullptr;
4704   if (getLangOpts().CPlusPlus)
4705     RD = CXXRecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc,
4706                                /*Id=*/nullptr);
4707   else
4708     RD = RecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc,
4709                             /*Id=*/nullptr);
4710 
4711   RD->setCapturedRecord();
4712   DC->addDecl(RD);
4713   RD->setImplicit();
4714   RD->startDefinition();
4715 
4716   assert(NumParams > 0 && "CapturedStmt requires context parameter");
4717   CD = CapturedDecl::Create(Context, CurContext, NumParams);
4718   DC->addDecl(CD);
4719   return RD;
4720 }
4721 
4722 static bool
4723 buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI,
4724                              SmallVectorImpl<CapturedStmt::Capture> &Captures,
4725                              SmallVectorImpl<Expr *> &CaptureInits) {
4726   for (const sema::Capture &Cap : RSI->Captures) {
4727     if (Cap.isInvalid())
4728       continue;
4729 
4730     // Form the initializer for the capture.
4731     ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(),
4732                                          RSI->CapRegionKind == CR_OpenMP);
4733 
4734     // FIXME: Bail out now if the capture is not used and the initializer has
4735     // no side-effects.
4736 
4737     // Create a field for this capture.
4738     FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap);
4739 
4740     // Add the capture to our list of captures.
4741     if (Cap.isThisCapture()) {
4742       Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4743                                                CapturedStmt::VCK_This));
4744     } else if (Cap.isVLATypeCapture()) {
4745       Captures.push_back(
4746           CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
4747     } else {
4748       assert(Cap.isVariableCapture() && "unknown kind of capture");
4749 
4750       if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
4751         S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel);
4752 
4753       Captures.push_back(CapturedStmt::Capture(
4754           Cap.getLocation(),
4755           Cap.isReferenceCapture() ? CapturedStmt::VCK_ByRef
4756                                    : CapturedStmt::VCK_ByCopy,
4757           cast<VarDecl>(Cap.getVariable())));
4758     }
4759     CaptureInits.push_back(Init.get());
4760   }
4761   return false;
4762 }
4763 
4764 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4765                                     CapturedRegionKind Kind,
4766                                     unsigned NumParams) {
4767   CapturedDecl *CD = nullptr;
4768   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4769 
4770   // Build the context parameter
4771   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4772   IdentifierInfo *ParamName = &Context.Idents.get("__context");
4773   QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4774   auto *Param =
4775       ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4776                                 ImplicitParamKind::CapturedContext);
4777   DC->addDecl(Param);
4778 
4779   CD->setContextParam(0, Param);
4780 
4781   // Enter the capturing scope for this captured region.
4782   PushCapturedRegionScope(CurScope, CD, RD, Kind);
4783 
4784   if (CurScope)
4785     PushDeclContext(CurScope, CD);
4786   else
4787     CurContext = CD;
4788 
4789   PushExpressionEvaluationContext(
4790       ExpressionEvaluationContext::PotentiallyEvaluated);
4791   ExprEvalContexts.back().InImmediateEscalatingFunctionContext = false;
4792 }
4793 
4794 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4795                                     CapturedRegionKind Kind,
4796                                     ArrayRef<CapturedParamNameType> Params,
4797                                     unsigned OpenMPCaptureLevel) {
4798   CapturedDecl *CD = nullptr;
4799   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4800 
4801   // Build the context parameter
4802   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4803   bool ContextIsFound = false;
4804   unsigned ParamNum = 0;
4805   for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4806                                                  E = Params.end();
4807        I != E; ++I, ++ParamNum) {
4808     if (I->second.isNull()) {
4809       assert(!ContextIsFound &&
4810              "null type has been found already for '__context' parameter");
4811       IdentifierInfo *ParamName = &Context.Idents.get("__context");
4812       QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4813                                .withConst()
4814                                .withRestrict();
4815       auto *Param =
4816           ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4817                                     ImplicitParamKind::CapturedContext);
4818       DC->addDecl(Param);
4819       CD->setContextParam(ParamNum, Param);
4820       ContextIsFound = true;
4821     } else {
4822       IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4823       auto *Param =
4824           ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4825                                     ImplicitParamKind::CapturedContext);
4826       DC->addDecl(Param);
4827       CD->setParam(ParamNum, Param);
4828     }
4829   }
4830   assert(ContextIsFound && "no null type for '__context' parameter");
4831   if (!ContextIsFound) {
4832     // Add __context implicitly if it is not specified.
4833     IdentifierInfo *ParamName = &Context.Idents.get("__context");
4834     QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4835     auto *Param =
4836         ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4837                                   ImplicitParamKind::CapturedContext);
4838     DC->addDecl(Param);
4839     CD->setContextParam(ParamNum, Param);
4840   }
4841   // Enter the capturing scope for this captured region.
4842   PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel);
4843 
4844   if (CurScope)
4845     PushDeclContext(CurScope, CD);
4846   else
4847     CurContext = CD;
4848 
4849   PushExpressionEvaluationContext(
4850       ExpressionEvaluationContext::PotentiallyEvaluated);
4851 }
4852 
4853 void Sema::ActOnCapturedRegionError() {
4854   DiscardCleanupsInEvaluationContext();
4855   PopExpressionEvaluationContext();
4856   PopDeclContext();
4857   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4858   CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4859 
4860   RecordDecl *Record = RSI->TheRecordDecl;
4861   Record->setInvalidDecl();
4862 
4863   SmallVector<Decl*, 4> Fields(Record->fields());
4864   ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4865               SourceLocation(), SourceLocation(), ParsedAttributesView());
4866 }
4867 
4868 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
4869   // Leave the captured scope before we start creating captures in the
4870   // enclosing scope.
4871   DiscardCleanupsInEvaluationContext();
4872   PopExpressionEvaluationContext();
4873   PopDeclContext();
4874   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4875   CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4876 
4877   SmallVector<CapturedStmt::Capture, 4> Captures;
4878   SmallVector<Expr *, 4> CaptureInits;
4879   if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits))
4880     return StmtError();
4881 
4882   CapturedDecl *CD = RSI->TheCapturedDecl;
4883   RecordDecl *RD = RSI->TheRecordDecl;
4884 
4885   CapturedStmt *Res = CapturedStmt::Create(
4886       getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4887       Captures, CaptureInits, CD, RD);
4888 
4889   CD->setBody(Res->getCapturedStmt());
4890   RD->completeDefinition();
4891 
4892   return Res;
4893 }
4894