xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaStmt.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for statements.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/ASTDiagnostic.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/IgnoreExpr.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/Initialization.h"
31 #include "clang/Sema/Lookup.h"
32 #include "clang/Sema/Ownership.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallString.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/StringExtras.h"
43 
44 using namespace clang;
45 using namespace sema;
46 
47 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
48   if (FE.isInvalid())
49     return StmtError();
50 
51   FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
52   if (FE.isInvalid())
53     return StmtError();
54 
55   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
56   // void expression for its side effects.  Conversion to void allows any
57   // operand, even incomplete types.
58 
59   // Same thing in for stmt first clause (when expr) and third clause.
60   return StmtResult(FE.getAs<Stmt>());
61 }
62 
63 
64 StmtResult Sema::ActOnExprStmtError() {
65   DiscardCleanupsInEvaluationContext();
66   return StmtError();
67 }
68 
69 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
70                                bool HasLeadingEmptyMacro) {
71   return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
72 }
73 
74 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
75                                SourceLocation EndLoc) {
76   DeclGroupRef DG = dg.get();
77 
78   // If we have an invalid decl, just return an error.
79   if (DG.isNull()) return StmtError();
80 
81   return new (Context) DeclStmt(DG, StartLoc, EndLoc);
82 }
83 
84 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
85   DeclGroupRef DG = dg.get();
86 
87   // If we don't have a declaration, or we have an invalid declaration,
88   // just return.
89   if (DG.isNull() || !DG.isSingleDecl())
90     return;
91 
92   Decl *decl = DG.getSingleDecl();
93   if (!decl || decl->isInvalidDecl())
94     return;
95 
96   // Only variable declarations are permitted.
97   VarDecl *var = dyn_cast<VarDecl>(decl);
98   if (!var) {
99     Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
100     decl->setInvalidDecl();
101     return;
102   }
103 
104   // foreach variables are never actually initialized in the way that
105   // the parser came up with.
106   var->setInit(nullptr);
107 
108   // In ARC, we don't need to retain the iteration variable of a fast
109   // enumeration loop.  Rather than actually trying to catch that
110   // during declaration processing, we remove the consequences here.
111   if (getLangOpts().ObjCAutoRefCount) {
112     QualType type = var->getType();
113 
114     // Only do this if we inferred the lifetime.  Inferred lifetime
115     // will show up as a local qualifier because explicit lifetime
116     // should have shown up as an AttributedType instead.
117     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
118       // Add 'const' and mark the variable as pseudo-strong.
119       var->setType(type.withConst());
120       var->setARCPseudoStrong(true);
121     }
122   }
123 }
124 
125 /// Diagnose unused comparisons, both builtin and overloaded operators.
126 /// For '==' and '!=', suggest fixits for '=' or '|='.
127 ///
128 /// Adding a cast to void (or other expression wrappers) will prevent the
129 /// warning from firing.
130 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
131   SourceLocation Loc;
132   bool CanAssign;
133   enum { Equality, Inequality, Relational, ThreeWay } Kind;
134 
135   if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
136     if (!Op->isComparisonOp())
137       return false;
138 
139     if (Op->getOpcode() == BO_EQ)
140       Kind = Equality;
141     else if (Op->getOpcode() == BO_NE)
142       Kind = Inequality;
143     else if (Op->getOpcode() == BO_Cmp)
144       Kind = ThreeWay;
145     else {
146       assert(Op->isRelationalOp());
147       Kind = Relational;
148     }
149     Loc = Op->getOperatorLoc();
150     CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
151   } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
152     switch (Op->getOperator()) {
153     case OO_EqualEqual:
154       Kind = Equality;
155       break;
156     case OO_ExclaimEqual:
157       Kind = Inequality;
158       break;
159     case OO_Less:
160     case OO_Greater:
161     case OO_GreaterEqual:
162     case OO_LessEqual:
163       Kind = Relational;
164       break;
165     case OO_Spaceship:
166       Kind = ThreeWay;
167       break;
168     default:
169       return false;
170     }
171 
172     Loc = Op->getOperatorLoc();
173     CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
174   } else {
175     // Not a typo-prone comparison.
176     return false;
177   }
178 
179   // Suppress warnings when the operator, suspicious as it may be, comes from
180   // a macro expansion.
181   if (S.SourceMgr.isMacroBodyExpansion(Loc))
182     return false;
183 
184   S.Diag(Loc, diag::warn_unused_comparison)
185     << (unsigned)Kind << E->getSourceRange();
186 
187   // If the LHS is a plausible entity to assign to, provide a fixit hint to
188   // correct common typos.
189   if (CanAssign) {
190     if (Kind == Inequality)
191       S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
192         << FixItHint::CreateReplacement(Loc, "|=");
193     else if (Kind == Equality)
194       S.Diag(Loc, diag::note_equality_comparison_to_assign)
195         << FixItHint::CreateReplacement(Loc, "=");
196   }
197 
198   return true;
199 }
200 
201 static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A,
202                               SourceLocation Loc, SourceRange R1,
203                               SourceRange R2, bool IsCtor) {
204   if (!A)
205     return false;
206   StringRef Msg = A->getMessage();
207 
208   if (Msg.empty()) {
209     if (IsCtor)
210       return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2;
211     return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
212   }
213 
214   if (IsCtor)
215     return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1
216                                                           << R2;
217   return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2;
218 }
219 
220 void Sema::DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID) {
221   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
222     return DiagnoseUnusedExprResult(Label->getSubStmt(), DiagID);
223 
224   const Expr *E = dyn_cast_or_null<Expr>(S);
225   if (!E)
226     return;
227 
228   // If we are in an unevaluated expression context, then there can be no unused
229   // results because the results aren't expected to be used in the first place.
230   if (isUnevaluatedContext())
231     return;
232 
233   SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
234   // In most cases, we don't want to warn if the expression is written in a
235   // macro body, or if the macro comes from a system header. If the offending
236   // expression is a call to a function with the warn_unused_result attribute,
237   // we warn no matter the location. Because of the order in which the various
238   // checks need to happen, we factor out the macro-related test here.
239   bool ShouldSuppress =
240       SourceMgr.isMacroBodyExpansion(ExprLoc) ||
241       SourceMgr.isInSystemMacro(ExprLoc);
242 
243   const Expr *WarnExpr;
244   SourceLocation Loc;
245   SourceRange R1, R2;
246   if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
247     return;
248 
249   // If this is a GNU statement expression expanded from a macro, it is probably
250   // unused because it is a function-like macro that can be used as either an
251   // expression or statement.  Don't warn, because it is almost certainly a
252   // false positive.
253   if (isa<StmtExpr>(E) && Loc.isMacroID())
254     return;
255 
256   // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
257   // That macro is frequently used to suppress "unused parameter" warnings,
258   // but its implementation makes clang's -Wunused-value fire.  Prevent this.
259   if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
260     SourceLocation SpellLoc = Loc;
261     if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
262       return;
263   }
264 
265   // Okay, we have an unused result.  Depending on what the base expression is,
266   // we might want to make a more specific diagnostic.  Check for one of these
267   // cases now.
268   if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
269     E = Temps->getSubExpr();
270   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
271     E = TempExpr->getSubExpr();
272 
273   if (DiagnoseUnusedComparison(*this, E))
274     return;
275 
276   E = WarnExpr;
277   if (const auto *Cast = dyn_cast<CastExpr>(E))
278     if (Cast->getCastKind() == CK_NoOp ||
279         Cast->getCastKind() == CK_ConstructorConversion)
280       E = Cast->getSubExpr()->IgnoreImpCasts();
281 
282   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
283     if (E->getType()->isVoidType())
284       return;
285 
286     if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>(
287                                      CE->getUnusedResultAttr(Context)),
288                           Loc, R1, R2, /*isCtor=*/false))
289       return;
290 
291     // If the callee has attribute pure, const, or warn_unused_result, warn with
292     // a more specific message to make it clear what is happening. If the call
293     // is written in a macro body, only warn if it has the warn_unused_result
294     // attribute.
295     if (const Decl *FD = CE->getCalleeDecl()) {
296       if (ShouldSuppress)
297         return;
298       if (FD->hasAttr<PureAttr>()) {
299         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
300         return;
301       }
302       if (FD->hasAttr<ConstAttr>()) {
303         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
304         return;
305       }
306     }
307   } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
308     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
309       const auto *A = Ctor->getAttr<WarnUnusedResultAttr>();
310       A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>();
311       if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true))
312         return;
313     }
314   } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
315     if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) {
316 
317       if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
318                             R2, /*isCtor=*/false))
319         return;
320     }
321   } else if (ShouldSuppress)
322     return;
323 
324   E = WarnExpr;
325   if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
326     if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
327       Diag(Loc, diag::err_arc_unused_init_message) << R1;
328       return;
329     }
330     const ObjCMethodDecl *MD = ME->getMethodDecl();
331     if (MD) {
332       if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
333                             R2, /*isCtor=*/false))
334         return;
335     }
336   } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
337     const Expr *Source = POE->getSyntacticForm();
338     // Handle the actually selected call of an OpenMP specialized call.
339     if (LangOpts.OpenMP && isa<CallExpr>(Source) &&
340         POE->getNumSemanticExprs() == 1 &&
341         isa<CallExpr>(POE->getSemanticExpr(0)))
342       return DiagnoseUnusedExprResult(POE->getSemanticExpr(0), DiagID);
343     if (isa<ObjCSubscriptRefExpr>(Source))
344       DiagID = diag::warn_unused_container_subscript_expr;
345     else if (isa<ObjCPropertyRefExpr>(Source))
346       DiagID = diag::warn_unused_property_expr;
347   } else if (const CXXFunctionalCastExpr *FC
348                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
349     const Expr *E = FC->getSubExpr();
350     if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
351       E = TE->getSubExpr();
352     if (isa<CXXTemporaryObjectExpr>(E))
353       return;
354     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
355       if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
356         if (!RD->getAttr<WarnUnusedAttr>())
357           return;
358   }
359   // Diagnose "(void*) blah" as a typo for "(void) blah".
360   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
361     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
362     QualType T = TI->getType();
363 
364     // We really do want to use the non-canonical type here.
365     if (T == Context.VoidPtrTy) {
366       PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
367 
368       Diag(Loc, diag::warn_unused_voidptr)
369         << FixItHint::CreateRemoval(TL.getStarLoc());
370       return;
371     }
372   }
373 
374   // Tell the user to assign it into a variable to force a volatile load if this
375   // isn't an array.
376   if (E->isGLValue() && E->getType().isVolatileQualified() &&
377       !E->getType()->isArrayType()) {
378     Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
379     return;
380   }
381 
382   // Do not diagnose use of a comma operator in a SFINAE context because the
383   // type of the left operand could be used for SFINAE, so technically it is
384   // *used*.
385   if (DiagID != diag::warn_unused_comma_left_operand || !isSFINAEContext())
386     DiagIfReachable(Loc, S ? llvm::ArrayRef(S) : std::nullopt,
387                     PDiag(DiagID) << R1 << R2);
388 }
389 
390 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
391   PushCompoundScope(IsStmtExpr);
392 }
393 
394 void Sema::ActOnAfterCompoundStatementLeadingPragmas() {
395   if (getCurFPFeatures().isFPConstrained()) {
396     FunctionScopeInfo *FSI = getCurFunction();
397     assert(FSI);
398     FSI->setUsesFPIntrin();
399   }
400 }
401 
402 void Sema::ActOnFinishOfCompoundStmt() {
403   PopCompoundScope();
404 }
405 
406 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
407   return getCurFunction()->CompoundScopes.back();
408 }
409 
410 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
411                                    ArrayRef<Stmt *> Elts, bool isStmtExpr) {
412   const unsigned NumElts = Elts.size();
413 
414   // If we're in C mode, check that we don't have any decls after stmts.  If
415   // so, emit an extension diagnostic in C89 and potentially a warning in later
416   // versions.
417   const unsigned MixedDeclsCodeID = getLangOpts().C99
418                                         ? diag::warn_mixed_decls_code
419                                         : diag::ext_mixed_decls_code;
420   if (!getLangOpts().CPlusPlus && !Diags.isIgnored(MixedDeclsCodeID, L)) {
421     // Note that __extension__ can be around a decl.
422     unsigned i = 0;
423     // Skip over all declarations.
424     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
425       /*empty*/;
426 
427     // We found the end of the list or a statement.  Scan for another declstmt.
428     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
429       /*empty*/;
430 
431     if (i != NumElts) {
432       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
433       Diag(D->getLocation(), MixedDeclsCodeID);
434     }
435   }
436 
437   // Check for suspicious empty body (null statement) in `for' and `while'
438   // statements.  Don't do anything for template instantiations, this just adds
439   // noise.
440   if (NumElts != 0 && !CurrentInstantiationScope &&
441       getCurCompoundScope().HasEmptyLoopBodies) {
442     for (unsigned i = 0; i != NumElts - 1; ++i)
443       DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
444   }
445 
446   // Calculate difference between FP options in this compound statement and in
447   // the enclosing one. If this is a function body, take the difference against
448   // default options. In this case the difference will indicate options that are
449   // changed upon entry to the statement.
450   FPOptions FPO = (getCurFunction()->CompoundScopes.size() == 1)
451                       ? FPOptions(getLangOpts())
452                       : getCurCompoundScope().InitialFPFeatures;
453   FPOptionsOverride FPDiff = getCurFPFeatures().getChangesFrom(FPO);
454 
455   return CompoundStmt::Create(Context, Elts, FPDiff, L, R);
456 }
457 
458 ExprResult
459 Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) {
460   if (!Val.get())
461     return Val;
462 
463   if (DiagnoseUnexpandedParameterPack(Val.get()))
464     return ExprError();
465 
466   // If we're not inside a switch, let the 'case' statement handling diagnose
467   // this. Just clean up after the expression as best we can.
468   if (getCurFunction()->SwitchStack.empty())
469     return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
470                                getLangOpts().CPlusPlus11);
471 
472   Expr *CondExpr =
473       getCurFunction()->SwitchStack.back().getPointer()->getCond();
474   if (!CondExpr)
475     return ExprError();
476   QualType CondType = CondExpr->getType();
477 
478   auto CheckAndFinish = [&](Expr *E) {
479     if (CondType->isDependentType() || E->isTypeDependent())
480       return ExprResult(E);
481 
482     if (getLangOpts().CPlusPlus11) {
483       // C++11 [stmt.switch]p2: the constant-expression shall be a converted
484       // constant expression of the promoted type of the switch condition.
485       llvm::APSInt TempVal;
486       return CheckConvertedConstantExpression(E, CondType, TempVal,
487                                               CCEK_CaseValue);
488     }
489 
490     ExprResult ER = E;
491     if (!E->isValueDependent())
492       ER = VerifyIntegerConstantExpression(E, AllowFold);
493     if (!ER.isInvalid())
494       ER = DefaultLvalueConversion(ER.get());
495     if (!ER.isInvalid())
496       ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
497     if (!ER.isInvalid())
498       ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false);
499     return ER;
500   };
501 
502   ExprResult Converted = CorrectDelayedTyposInExpr(
503       Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
504       CheckAndFinish);
505   if (Converted.get() == Val.get())
506     Converted = CheckAndFinish(Val.get());
507   return Converted;
508 }
509 
510 StmtResult
511 Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal,
512                     SourceLocation DotDotDotLoc, ExprResult RHSVal,
513                     SourceLocation ColonLoc) {
514   assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
515   assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
516                                    : RHSVal.isInvalid() || RHSVal.get()) &&
517          "missing RHS value");
518 
519   if (getCurFunction()->SwitchStack.empty()) {
520     Diag(CaseLoc, diag::err_case_not_in_switch);
521     return StmtError();
522   }
523 
524   if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
525     getCurFunction()->SwitchStack.back().setInt(true);
526     return StmtError();
527   }
528 
529   auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
530                               CaseLoc, DotDotDotLoc, ColonLoc);
531   getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
532   return CS;
533 }
534 
535 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
536 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
537   cast<CaseStmt>(S)->setSubStmt(SubStmt);
538 }
539 
540 StmtResult
541 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
542                        Stmt *SubStmt, Scope *CurScope) {
543   if (getCurFunction()->SwitchStack.empty()) {
544     Diag(DefaultLoc, diag::err_default_not_in_switch);
545     return SubStmt;
546   }
547 
548   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
549   getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
550   return DS;
551 }
552 
553 StmtResult
554 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
555                      SourceLocation ColonLoc, Stmt *SubStmt) {
556   // If the label was multiply defined, reject it now.
557   if (TheDecl->getStmt()) {
558     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
559     Diag(TheDecl->getLocation(), diag::note_previous_definition);
560     return SubStmt;
561   }
562 
563   ReservedIdentifierStatus Status = TheDecl->isReserved(getLangOpts());
564   if (isReservedInAllContexts(Status) &&
565       !Context.getSourceManager().isInSystemHeader(IdentLoc))
566     Diag(IdentLoc, diag::warn_reserved_extern_symbol)
567         << TheDecl << static_cast<int>(Status);
568 
569   // Otherwise, things are good.  Fill in the declaration and return it.
570   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
571   TheDecl->setStmt(LS);
572   if (!TheDecl->isGnuLocal()) {
573     TheDecl->setLocStart(IdentLoc);
574     if (!TheDecl->isMSAsmLabel()) {
575       // Don't update the location of MS ASM labels.  These will result in
576       // a diagnostic, and changing the location here will mess that up.
577       TheDecl->setLocation(IdentLoc);
578     }
579   }
580   return LS;
581 }
582 
583 StmtResult Sema::BuildAttributedStmt(SourceLocation AttrsLoc,
584                                      ArrayRef<const Attr *> Attrs,
585                                      Stmt *SubStmt) {
586   // FIXME: this code should move when a planned refactoring around statement
587   // attributes lands.
588   for (const auto *A : Attrs) {
589     if (A->getKind() == attr::MustTail) {
590       if (!checkAndRewriteMustTailAttr(SubStmt, *A)) {
591         return SubStmt;
592       }
593       setFunctionHasMustTail();
594     }
595   }
596 
597   return AttributedStmt::Create(Context, AttrsLoc, Attrs, SubStmt);
598 }
599 
600 StmtResult Sema::ActOnAttributedStmt(const ParsedAttributes &Attrs,
601                                      Stmt *SubStmt) {
602   SmallVector<const Attr *, 1> SemanticAttrs;
603   ProcessStmtAttributes(SubStmt, Attrs, SemanticAttrs);
604   if (!SemanticAttrs.empty())
605     return BuildAttributedStmt(Attrs.Range.getBegin(), SemanticAttrs, SubStmt);
606   // If none of the attributes applied, that's fine, we can recover by
607   // returning the substatement directly instead of making an AttributedStmt
608   // with no attributes on it.
609   return SubStmt;
610 }
611 
612 bool Sema::checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA) {
613   ReturnStmt *R = cast<ReturnStmt>(St);
614   Expr *E = R->getRetValue();
615 
616   if (CurContext->isDependentContext() || (E && E->isInstantiationDependent()))
617     // We have to suspend our check until template instantiation time.
618     return true;
619 
620   if (!checkMustTailAttr(St, MTA))
621     return false;
622 
623   // FIXME: Replace Expr::IgnoreImplicitAsWritten() with this function.
624   // Currently it does not skip implicit constructors in an initialization
625   // context.
626   auto IgnoreImplicitAsWritten = [](Expr *E) -> Expr * {
627     return IgnoreExprNodes(E, IgnoreImplicitAsWrittenSingleStep,
628                            IgnoreElidableImplicitConstructorSingleStep);
629   };
630 
631   // Now that we have verified that 'musttail' is valid here, rewrite the
632   // return value to remove all implicit nodes, but retain parentheses.
633   R->setRetValue(IgnoreImplicitAsWritten(E));
634   return true;
635 }
636 
637 bool Sema::checkMustTailAttr(const Stmt *St, const Attr &MTA) {
638   assert(!CurContext->isDependentContext() &&
639          "musttail cannot be checked from a dependent context");
640 
641   // FIXME: Add Expr::IgnoreParenImplicitAsWritten() with this definition.
642   auto IgnoreParenImplicitAsWritten = [](const Expr *E) -> const Expr * {
643     return IgnoreExprNodes(const_cast<Expr *>(E), IgnoreParensSingleStep,
644                            IgnoreImplicitAsWrittenSingleStep,
645                            IgnoreElidableImplicitConstructorSingleStep);
646   };
647 
648   const Expr *E = cast<ReturnStmt>(St)->getRetValue();
649   const auto *CE = dyn_cast_or_null<CallExpr>(IgnoreParenImplicitAsWritten(E));
650 
651   if (!CE) {
652     Diag(St->getBeginLoc(), diag::err_musttail_needs_call) << &MTA;
653     return false;
654   }
655 
656   if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) {
657     if (EWC->cleanupsHaveSideEffects()) {
658       Diag(St->getBeginLoc(), diag::err_musttail_needs_trivial_args) << &MTA;
659       return false;
660     }
661   }
662 
663   // We need to determine the full function type (including "this" type, if any)
664   // for both caller and callee.
665   struct FuncType {
666     enum {
667       ft_non_member,
668       ft_static_member,
669       ft_non_static_member,
670       ft_pointer_to_member,
671     } MemberType = ft_non_member;
672 
673     QualType This;
674     const FunctionProtoType *Func;
675     const CXXMethodDecl *Method = nullptr;
676   } CallerType, CalleeType;
677 
678   auto GetMethodType = [this, St, MTA](const CXXMethodDecl *CMD, FuncType &Type,
679                                        bool IsCallee) -> bool {
680     if (isa<CXXConstructorDecl, CXXDestructorDecl>(CMD)) {
681       Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
682           << IsCallee << isa<CXXDestructorDecl>(CMD);
683       if (IsCallee)
684         Diag(CMD->getBeginLoc(), diag::note_musttail_structors_forbidden)
685             << isa<CXXDestructorDecl>(CMD);
686       Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
687       return false;
688     }
689     if (CMD->isStatic())
690       Type.MemberType = FuncType::ft_static_member;
691     else {
692       Type.This = CMD->getFunctionObjectParameterType();
693       Type.MemberType = FuncType::ft_non_static_member;
694     }
695     Type.Func = CMD->getType()->castAs<FunctionProtoType>();
696     return true;
697   };
698 
699   const auto *CallerDecl = dyn_cast<FunctionDecl>(CurContext);
700 
701   // Find caller function signature.
702   if (!CallerDecl) {
703     int ContextType;
704     if (isa<BlockDecl>(CurContext))
705       ContextType = 0;
706     else if (isa<ObjCMethodDecl>(CurContext))
707       ContextType = 1;
708     else
709       ContextType = 2;
710     Diag(St->getBeginLoc(), diag::err_musttail_forbidden_from_this_context)
711         << &MTA << ContextType;
712     return false;
713   } else if (const auto *CMD = dyn_cast<CXXMethodDecl>(CurContext)) {
714     // Caller is a class/struct method.
715     if (!GetMethodType(CMD, CallerType, false))
716       return false;
717   } else {
718     // Caller is a non-method function.
719     CallerType.Func = CallerDecl->getType()->getAs<FunctionProtoType>();
720   }
721 
722   const Expr *CalleeExpr = CE->getCallee()->IgnoreParens();
723   const auto *CalleeBinOp = dyn_cast<BinaryOperator>(CalleeExpr);
724   SourceLocation CalleeLoc = CE->getCalleeDecl()
725                                  ? CE->getCalleeDecl()->getBeginLoc()
726                                  : St->getBeginLoc();
727 
728   // Find callee function signature.
729   if (const CXXMethodDecl *CMD =
730           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) {
731     // Call is: obj.method(), obj->method(), functor(), etc.
732     if (!GetMethodType(CMD, CalleeType, true))
733       return false;
734   } else if (CalleeBinOp && CalleeBinOp->isPtrMemOp()) {
735     // Call is: obj->*method_ptr or obj.*method_ptr
736     const auto *MPT =
737         CalleeBinOp->getRHS()->getType()->castAs<MemberPointerType>();
738     CalleeType.This = QualType(MPT->getClass(), 0);
739     CalleeType.Func = MPT->getPointeeType()->castAs<FunctionProtoType>();
740     CalleeType.MemberType = FuncType::ft_pointer_to_member;
741   } else if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) {
742     Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
743         << /* IsCallee = */ 1 << /* IsDestructor = */ 1;
744     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
745     return false;
746   } else {
747     // Non-method function.
748     CalleeType.Func =
749         CalleeExpr->getType()->getPointeeType()->getAs<FunctionProtoType>();
750   }
751 
752   // Both caller and callee must have a prototype (no K&R declarations).
753   if (!CalleeType.Func || !CallerType.Func) {
754     Diag(St->getBeginLoc(), diag::err_musttail_needs_prototype) << &MTA;
755     if (!CalleeType.Func && CE->getDirectCallee()) {
756       Diag(CE->getDirectCallee()->getBeginLoc(),
757            diag::note_musttail_fix_non_prototype);
758     }
759     if (!CallerType.Func)
760       Diag(CallerDecl->getBeginLoc(), diag::note_musttail_fix_non_prototype);
761     return false;
762   }
763 
764   // Caller and callee must have matching calling conventions.
765   //
766   // Some calling conventions are physically capable of supporting tail calls
767   // even if the function types don't perfectly match. LLVM is currently too
768   // strict to allow this, but if LLVM added support for this in the future, we
769   // could exit early here and skip the remaining checks if the functions are
770   // using such a calling convention.
771   if (CallerType.Func->getCallConv() != CalleeType.Func->getCallConv()) {
772     if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
773       Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch)
774           << true << ND->getDeclName();
775     else
776       Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) << false;
777     Diag(CalleeLoc, diag::note_musttail_callconv_mismatch)
778         << FunctionType::getNameForCallConv(CallerType.Func->getCallConv())
779         << FunctionType::getNameForCallConv(CalleeType.Func->getCallConv());
780     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
781     return false;
782   }
783 
784   if (CalleeType.Func->isVariadic() || CallerType.Func->isVariadic()) {
785     Diag(St->getBeginLoc(), diag::err_musttail_no_variadic) << &MTA;
786     return false;
787   }
788 
789   // Caller and callee must match in whether they have a "this" parameter.
790   if (CallerType.This.isNull() != CalleeType.This.isNull()) {
791     if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
792       Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
793           << CallerType.MemberType << CalleeType.MemberType << true
794           << ND->getDeclName();
795       Diag(CalleeLoc, diag::note_musttail_callee_defined_here)
796           << ND->getDeclName();
797     } else
798       Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
799           << CallerType.MemberType << CalleeType.MemberType << false;
800     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
801     return false;
802   }
803 
804   auto CheckTypesMatch = [this](FuncType CallerType, FuncType CalleeType,
805                                 PartialDiagnostic &PD) -> bool {
806     enum {
807       ft_different_class,
808       ft_parameter_arity,
809       ft_parameter_mismatch,
810       ft_return_type,
811     };
812 
813     auto DoTypesMatch = [this, &PD](QualType A, QualType B,
814                                     unsigned Select) -> bool {
815       if (!Context.hasSimilarType(A, B)) {
816         PD << Select << A.getUnqualifiedType() << B.getUnqualifiedType();
817         return false;
818       }
819       return true;
820     };
821 
822     if (!CallerType.This.isNull() &&
823         !DoTypesMatch(CallerType.This, CalleeType.This, ft_different_class))
824       return false;
825 
826     if (!DoTypesMatch(CallerType.Func->getReturnType(),
827                       CalleeType.Func->getReturnType(), ft_return_type))
828       return false;
829 
830     if (CallerType.Func->getNumParams() != CalleeType.Func->getNumParams()) {
831       PD << ft_parameter_arity << CallerType.Func->getNumParams()
832          << CalleeType.Func->getNumParams();
833       return false;
834     }
835 
836     ArrayRef<QualType> CalleeParams = CalleeType.Func->getParamTypes();
837     ArrayRef<QualType> CallerParams = CallerType.Func->getParamTypes();
838     size_t N = CallerType.Func->getNumParams();
839     for (size_t I = 0; I < N; I++) {
840       if (!DoTypesMatch(CalleeParams[I], CallerParams[I],
841                         ft_parameter_mismatch)) {
842         PD << static_cast<int>(I) + 1;
843         return false;
844       }
845     }
846 
847     return true;
848   };
849 
850   PartialDiagnostic PD = PDiag(diag::note_musttail_mismatch);
851   if (!CheckTypesMatch(CallerType, CalleeType, PD)) {
852     if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
853       Diag(St->getBeginLoc(), diag::err_musttail_mismatch)
854           << true << ND->getDeclName();
855     else
856       Diag(St->getBeginLoc(), diag::err_musttail_mismatch) << false;
857     Diag(CalleeLoc, PD);
858     Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
859     return false;
860   }
861 
862   return true;
863 }
864 
865 namespace {
866 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
867   typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
868   Sema &SemaRef;
869 public:
870   CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
871   void VisitBinaryOperator(BinaryOperator *E) {
872     if (E->getOpcode() == BO_Comma)
873       SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
874     EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E);
875   }
876 };
877 }
878 
879 StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc,
880                              IfStatementKind StatementKind,
881                              SourceLocation LParenLoc, Stmt *InitStmt,
882                              ConditionResult Cond, SourceLocation RParenLoc,
883                              Stmt *thenStmt, SourceLocation ElseLoc,
884                              Stmt *elseStmt) {
885   if (Cond.isInvalid())
886     return StmtError();
887 
888   bool ConstevalOrNegatedConsteval =
889       StatementKind == IfStatementKind::ConstevalNonNegated ||
890       StatementKind == IfStatementKind::ConstevalNegated;
891 
892   Expr *CondExpr = Cond.get().second;
893   assert((CondExpr || ConstevalOrNegatedConsteval) &&
894          "If statement: missing condition");
895   // Only call the CommaVisitor when not C89 due to differences in scope flags.
896   if (CondExpr && (getLangOpts().C99 || getLangOpts().CPlusPlus) &&
897       !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
898     CommaVisitor(*this).Visit(CondExpr);
899 
900   if (!ConstevalOrNegatedConsteval && !elseStmt)
901     DiagnoseEmptyStmtBody(RParenLoc, thenStmt, diag::warn_empty_if_body);
902 
903   if (ConstevalOrNegatedConsteval ||
904       StatementKind == IfStatementKind::Constexpr) {
905     auto DiagnoseLikelihood = [&](const Stmt *S) {
906       if (const Attr *A = Stmt::getLikelihoodAttr(S)) {
907         Diags.Report(A->getLocation(),
908                      diag::warn_attribute_has_no_effect_on_compile_time_if)
909             << A << ConstevalOrNegatedConsteval << A->getRange();
910         Diags.Report(IfLoc,
911                      diag::note_attribute_has_no_effect_on_compile_time_if_here)
912             << ConstevalOrNegatedConsteval
913             << SourceRange(IfLoc, (ConstevalOrNegatedConsteval
914                                        ? thenStmt->getBeginLoc()
915                                        : LParenLoc)
916                                       .getLocWithOffset(-1));
917       }
918     };
919     DiagnoseLikelihood(thenStmt);
920     DiagnoseLikelihood(elseStmt);
921   } else {
922     std::tuple<bool, const Attr *, const Attr *> LHC =
923         Stmt::determineLikelihoodConflict(thenStmt, elseStmt);
924     if (std::get<0>(LHC)) {
925       const Attr *ThenAttr = std::get<1>(LHC);
926       const Attr *ElseAttr = std::get<2>(LHC);
927       Diags.Report(ThenAttr->getLocation(),
928                    diag::warn_attributes_likelihood_ifstmt_conflict)
929           << ThenAttr << ThenAttr->getRange();
930       Diags.Report(ElseAttr->getLocation(), diag::note_conflicting_attribute)
931           << ElseAttr << ElseAttr->getRange();
932     }
933   }
934 
935   if (ConstevalOrNegatedConsteval) {
936     bool Immediate = ExprEvalContexts.back().Context ==
937                      ExpressionEvaluationContext::ImmediateFunctionContext;
938     if (CurContext->isFunctionOrMethod()) {
939       const auto *FD =
940           dyn_cast<FunctionDecl>(Decl::castFromDeclContext(CurContext));
941       if (FD && FD->isImmediateFunction())
942         Immediate = true;
943     }
944     if (isUnevaluatedContext() || Immediate)
945       Diags.Report(IfLoc, diag::warn_consteval_if_always_true) << Immediate;
946   }
947 
948   return BuildIfStmt(IfLoc, StatementKind, LParenLoc, InitStmt, Cond, RParenLoc,
949                      thenStmt, ElseLoc, elseStmt);
950 }
951 
952 StmtResult Sema::BuildIfStmt(SourceLocation IfLoc,
953                              IfStatementKind StatementKind,
954                              SourceLocation LParenLoc, Stmt *InitStmt,
955                              ConditionResult Cond, SourceLocation RParenLoc,
956                              Stmt *thenStmt, SourceLocation ElseLoc,
957                              Stmt *elseStmt) {
958   if (Cond.isInvalid())
959     return StmtError();
960 
961   if (StatementKind != IfStatementKind::Ordinary ||
962       isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
963     setFunctionHasBranchProtectedScope();
964 
965   return IfStmt::Create(Context, IfLoc, StatementKind, InitStmt,
966                         Cond.get().first, Cond.get().second, LParenLoc,
967                         RParenLoc, thenStmt, ElseLoc, elseStmt);
968 }
969 
970 namespace {
971   struct CaseCompareFunctor {
972     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
973                     const llvm::APSInt &RHS) {
974       return LHS.first < RHS;
975     }
976     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
977                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
978       return LHS.first < RHS.first;
979     }
980     bool operator()(const llvm::APSInt &LHS,
981                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
982       return LHS < RHS.first;
983     }
984   };
985 }
986 
987 /// CmpCaseVals - Comparison predicate for sorting case values.
988 ///
989 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
990                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
991   if (lhs.first < rhs.first)
992     return true;
993 
994   if (lhs.first == rhs.first &&
995       lhs.second->getCaseLoc() < rhs.second->getCaseLoc())
996     return true;
997   return false;
998 }
999 
1000 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
1001 ///
1002 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1003                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1004 {
1005   return lhs.first < rhs.first;
1006 }
1007 
1008 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
1009 ///
1010 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
1011                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
1012 {
1013   return lhs.first == rhs.first;
1014 }
1015 
1016 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
1017 /// potentially integral-promoted expression @p expr.
1018 static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) {
1019   if (const auto *FE = dyn_cast<FullExpr>(E))
1020     E = FE->getSubExpr();
1021   while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
1022     if (ImpCast->getCastKind() != CK_IntegralCast) break;
1023     E = ImpCast->getSubExpr();
1024   }
1025   return E->getType();
1026 }
1027 
1028 ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) {
1029   class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
1030     Expr *Cond;
1031 
1032   public:
1033     SwitchConvertDiagnoser(Expr *Cond)
1034         : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
1035           Cond(Cond) {}
1036 
1037     SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1038                                          QualType T) override {
1039       return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
1040     }
1041 
1042     SemaDiagnosticBuilder diagnoseIncomplete(
1043         Sema &S, SourceLocation Loc, QualType T) override {
1044       return S.Diag(Loc, diag::err_switch_incomplete_class_type)
1045                << T << Cond->getSourceRange();
1046     }
1047 
1048     SemaDiagnosticBuilder diagnoseExplicitConv(
1049         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1050       return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
1051     }
1052 
1053     SemaDiagnosticBuilder noteExplicitConv(
1054         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1055       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1056         << ConvTy->isEnumeralType() << ConvTy;
1057     }
1058 
1059     SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1060                                             QualType T) override {
1061       return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
1062     }
1063 
1064     SemaDiagnosticBuilder noteAmbiguous(
1065         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1066       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
1067       << ConvTy->isEnumeralType() << ConvTy;
1068     }
1069 
1070     SemaDiagnosticBuilder diagnoseConversion(
1071         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1072       llvm_unreachable("conversion functions are permitted");
1073     }
1074   } SwitchDiagnoser(Cond);
1075 
1076   ExprResult CondResult =
1077       PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
1078   if (CondResult.isInvalid())
1079     return ExprError();
1080 
1081   // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
1082   // failed and produced a diagnostic.
1083   Cond = CondResult.get();
1084   if (!Cond->isTypeDependent() &&
1085       !Cond->getType()->isIntegralOrEnumerationType())
1086     return ExprError();
1087 
1088   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
1089   return UsualUnaryConversions(Cond);
1090 }
1091 
1092 StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
1093                                         SourceLocation LParenLoc,
1094                                         Stmt *InitStmt, ConditionResult Cond,
1095                                         SourceLocation RParenLoc) {
1096   Expr *CondExpr = Cond.get().second;
1097   assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
1098 
1099   if (CondExpr && !CondExpr->isTypeDependent()) {
1100     // We have already converted the expression to an integral or enumeration
1101     // type, when we parsed the switch condition. There are cases where we don't
1102     // have an appropriate type, e.g. a typo-expr Cond was corrected to an
1103     // inappropriate-type expr, we just return an error.
1104     if (!CondExpr->getType()->isIntegralOrEnumerationType())
1105       return StmtError();
1106     if (CondExpr->isKnownToHaveBooleanValue()) {
1107       // switch(bool_expr) {...} is often a programmer error, e.g.
1108       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
1109       // One can always use an if statement instead of switch(bool_expr).
1110       Diag(SwitchLoc, diag::warn_bool_switch_condition)
1111           << CondExpr->getSourceRange();
1112     }
1113   }
1114 
1115   setFunctionHasBranchIntoScope();
1116 
1117   auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr,
1118                                 LParenLoc, RParenLoc);
1119   getCurFunction()->SwitchStack.push_back(
1120       FunctionScopeInfo::SwitchInfo(SS, false));
1121   return SS;
1122 }
1123 
1124 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
1125   Val = Val.extOrTrunc(BitWidth);
1126   Val.setIsSigned(IsSigned);
1127 }
1128 
1129 /// Check the specified case value is in range for the given unpromoted switch
1130 /// type.
1131 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
1132                            unsigned UnpromotedWidth, bool UnpromotedSign) {
1133   // In C++11 onwards, this is checked by the language rules.
1134   if (S.getLangOpts().CPlusPlus11)
1135     return;
1136 
1137   // If the case value was signed and negative and the switch expression is
1138   // unsigned, don't bother to warn: this is implementation-defined behavior.
1139   // FIXME: Introduce a second, default-ignored warning for this case?
1140   if (UnpromotedWidth < Val.getBitWidth()) {
1141     llvm::APSInt ConvVal(Val);
1142     AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
1143     AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
1144     // FIXME: Use different diagnostics for overflow  in conversion to promoted
1145     // type versus "switch expression cannot have this value". Use proper
1146     // IntRange checking rather than just looking at the unpromoted type here.
1147     if (ConvVal != Val)
1148       S.Diag(Loc, diag::warn_case_value_overflow) << toString(Val, 10)
1149                                                   << toString(ConvVal, 10);
1150   }
1151 }
1152 
1153 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
1154 
1155 /// Returns true if we should emit a diagnostic about this case expression not
1156 /// being a part of the enum used in the switch controlling expression.
1157 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
1158                                               const EnumDecl *ED,
1159                                               const Expr *CaseExpr,
1160                                               EnumValsTy::iterator &EI,
1161                                               EnumValsTy::iterator &EIEnd,
1162                                               const llvm::APSInt &Val) {
1163   if (!ED->isClosed())
1164     return false;
1165 
1166   if (const DeclRefExpr *DRE =
1167           dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
1168     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
1169       QualType VarType = VD->getType();
1170       QualType EnumType = S.Context.getTypeDeclType(ED);
1171       if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
1172           S.Context.hasSameUnqualifiedType(EnumType, VarType))
1173         return false;
1174     }
1175   }
1176 
1177   if (ED->hasAttr<FlagEnumAttr>())
1178     return !S.IsValueInFlagEnum(ED, Val, false);
1179 
1180   while (EI != EIEnd && EI->first < Val)
1181     EI++;
1182 
1183   if (EI != EIEnd && EI->first == Val)
1184     return false;
1185 
1186   return true;
1187 }
1188 
1189 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
1190                                        const Expr *Case) {
1191   QualType CondType = Cond->getType();
1192   QualType CaseType = Case->getType();
1193 
1194   const EnumType *CondEnumType = CondType->getAs<EnumType>();
1195   const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
1196   if (!CondEnumType || !CaseEnumType)
1197     return;
1198 
1199   // Ignore anonymous enums.
1200   if (!CondEnumType->getDecl()->getIdentifier() &&
1201       !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
1202     return;
1203   if (!CaseEnumType->getDecl()->getIdentifier() &&
1204       !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
1205     return;
1206 
1207   if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
1208     return;
1209 
1210   S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
1211       << CondType << CaseType << Cond->getSourceRange()
1212       << Case->getSourceRange();
1213 }
1214 
1215 StmtResult
1216 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
1217                             Stmt *BodyStmt) {
1218   SwitchStmt *SS = cast<SwitchStmt>(Switch);
1219   bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
1220   assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
1221          "switch stack missing push/pop!");
1222 
1223   getCurFunction()->SwitchStack.pop_back();
1224 
1225   if (!BodyStmt) return StmtError();
1226   SS->setBody(BodyStmt, SwitchLoc);
1227 
1228   Expr *CondExpr = SS->getCond();
1229   if (!CondExpr) return StmtError();
1230 
1231   QualType CondType = CondExpr->getType();
1232 
1233   // C++ 6.4.2.p2:
1234   // Integral promotions are performed (on the switch condition).
1235   //
1236   // A case value unrepresentable by the original switch condition
1237   // type (before the promotion) doesn't make sense, even when it can
1238   // be represented by the promoted type.  Therefore we need to find
1239   // the pre-promotion type of the switch condition.
1240   const Expr *CondExprBeforePromotion = CondExpr;
1241   QualType CondTypeBeforePromotion =
1242       GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
1243 
1244   // Get the bitwidth of the switched-on value after promotions. We must
1245   // convert the integer case values to this width before comparison.
1246   bool HasDependentValue
1247     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
1248   unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
1249   bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
1250 
1251   // Get the width and signedness that the condition might actually have, for
1252   // warning purposes.
1253   // FIXME: Grab an IntRange for the condition rather than using the unpromoted
1254   // type.
1255   unsigned CondWidthBeforePromotion
1256     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
1257   bool CondIsSignedBeforePromotion
1258     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
1259 
1260   // Accumulate all of the case values in a vector so that we can sort them
1261   // and detect duplicates.  This vector contains the APInt for the case after
1262   // it has been converted to the condition type.
1263   typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
1264   CaseValsTy CaseVals;
1265 
1266   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
1267   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
1268   CaseRangesTy CaseRanges;
1269 
1270   DefaultStmt *TheDefaultStmt = nullptr;
1271 
1272   bool CaseListIsErroneous = false;
1273 
1274   // FIXME: We'd better diagnose missing or duplicate default labels even
1275   // in the dependent case. Because default labels themselves are never
1276   // dependent.
1277   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
1278        SC = SC->getNextSwitchCase()) {
1279 
1280     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
1281       if (TheDefaultStmt) {
1282         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
1283         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
1284 
1285         // FIXME: Remove the default statement from the switch block so that
1286         // we'll return a valid AST.  This requires recursing down the AST and
1287         // finding it, not something we are set up to do right now.  For now,
1288         // just lop the entire switch stmt out of the AST.
1289         CaseListIsErroneous = true;
1290       }
1291       TheDefaultStmt = DS;
1292 
1293     } else {
1294       CaseStmt *CS = cast<CaseStmt>(SC);
1295 
1296       Expr *Lo = CS->getLHS();
1297 
1298       if (Lo->isValueDependent()) {
1299         HasDependentValue = true;
1300         break;
1301       }
1302 
1303       // We already verified that the expression has a constant value;
1304       // get that value (prior to conversions).
1305       const Expr *LoBeforePromotion = Lo;
1306       GetTypeBeforeIntegralPromotion(LoBeforePromotion);
1307       llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
1308 
1309       // Check the unconverted value is within the range of possible values of
1310       // the switch expression.
1311       checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
1312                      CondIsSignedBeforePromotion);
1313 
1314       // FIXME: This duplicates the check performed for warn_not_in_enum below.
1315       checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
1316                                  LoBeforePromotion);
1317 
1318       // Convert the value to the same width/sign as the condition.
1319       AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
1320 
1321       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
1322       if (CS->getRHS()) {
1323         if (CS->getRHS()->isValueDependent()) {
1324           HasDependentValue = true;
1325           break;
1326         }
1327         CaseRanges.push_back(std::make_pair(LoVal, CS));
1328       } else
1329         CaseVals.push_back(std::make_pair(LoVal, CS));
1330     }
1331   }
1332 
1333   if (!HasDependentValue) {
1334     // If we don't have a default statement, check whether the
1335     // condition is constant.
1336     llvm::APSInt ConstantCondValue;
1337     bool HasConstantCond = false;
1338     if (!TheDefaultStmt) {
1339       Expr::EvalResult Result;
1340       HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
1341                                                 Expr::SE_AllowSideEffects);
1342       if (Result.Val.isInt())
1343         ConstantCondValue = Result.Val.getInt();
1344       assert(!HasConstantCond ||
1345              (ConstantCondValue.getBitWidth() == CondWidth &&
1346               ConstantCondValue.isSigned() == CondIsSigned));
1347       Diag(SwitchLoc, diag::warn_switch_default);
1348     }
1349     bool ShouldCheckConstantCond = HasConstantCond;
1350 
1351     // Sort all the scalar case values so we can easily detect duplicates.
1352     llvm::stable_sort(CaseVals, CmpCaseVals);
1353 
1354     if (!CaseVals.empty()) {
1355       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
1356         if (ShouldCheckConstantCond &&
1357             CaseVals[i].first == ConstantCondValue)
1358           ShouldCheckConstantCond = false;
1359 
1360         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
1361           // If we have a duplicate, report it.
1362           // First, determine if either case value has a name
1363           StringRef PrevString, CurrString;
1364           Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
1365           Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
1366           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
1367             PrevString = DeclRef->getDecl()->getName();
1368           }
1369           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
1370             CurrString = DeclRef->getDecl()->getName();
1371           }
1372           SmallString<16> CaseValStr;
1373           CaseVals[i-1].first.toString(CaseValStr);
1374 
1375           if (PrevString == CurrString)
1376             Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1377                  diag::err_duplicate_case)
1378                 << (PrevString.empty() ? CaseValStr.str() : PrevString);
1379           else
1380             Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1381                  diag::err_duplicate_case_differing_expr)
1382                 << (PrevString.empty() ? CaseValStr.str() : PrevString)
1383                 << (CurrString.empty() ? CaseValStr.str() : CurrString)
1384                 << CaseValStr;
1385 
1386           Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
1387                diag::note_duplicate_case_prev);
1388           // FIXME: We really want to remove the bogus case stmt from the
1389           // substmt, but we have no way to do this right now.
1390           CaseListIsErroneous = true;
1391         }
1392       }
1393     }
1394 
1395     // Detect duplicate case ranges, which usually don't exist at all in
1396     // the first place.
1397     if (!CaseRanges.empty()) {
1398       // Sort all the case ranges by their low value so we can easily detect
1399       // overlaps between ranges.
1400       llvm::stable_sort(CaseRanges);
1401 
1402       // Scan the ranges, computing the high values and removing empty ranges.
1403       std::vector<llvm::APSInt> HiVals;
1404       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1405         llvm::APSInt &LoVal = CaseRanges[i].first;
1406         CaseStmt *CR = CaseRanges[i].second;
1407         Expr *Hi = CR->getRHS();
1408 
1409         const Expr *HiBeforePromotion = Hi;
1410         GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1411         llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1412 
1413         // Check the unconverted value is within the range of possible values of
1414         // the switch expression.
1415         checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
1416                        CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1417 
1418         // Convert the value to the same width/sign as the condition.
1419         AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1420 
1421         // If the low value is bigger than the high value, the case is empty.
1422         if (LoVal > HiVal) {
1423           Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
1424               << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
1425           CaseRanges.erase(CaseRanges.begin()+i);
1426           --i;
1427           --e;
1428           continue;
1429         }
1430 
1431         if (ShouldCheckConstantCond &&
1432             LoVal <= ConstantCondValue &&
1433             ConstantCondValue <= HiVal)
1434           ShouldCheckConstantCond = false;
1435 
1436         HiVals.push_back(HiVal);
1437       }
1438 
1439       // Rescan the ranges, looking for overlap with singleton values and other
1440       // ranges.  Since the range list is sorted, we only need to compare case
1441       // ranges with their neighbors.
1442       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1443         llvm::APSInt &CRLo = CaseRanges[i].first;
1444         llvm::APSInt &CRHi = HiVals[i];
1445         CaseStmt *CR = CaseRanges[i].second;
1446 
1447         // Check to see whether the case range overlaps with any
1448         // singleton cases.
1449         CaseStmt *OverlapStmt = nullptr;
1450         llvm::APSInt OverlapVal(32);
1451 
1452         // Find the smallest value >= the lower bound.  If I is in the
1453         // case range, then we have overlap.
1454         CaseValsTy::iterator I =
1455             llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor());
1456         if (I != CaseVals.end() && I->first < CRHi) {
1457           OverlapVal  = I->first;   // Found overlap with scalar.
1458           OverlapStmt = I->second;
1459         }
1460 
1461         // Find the smallest value bigger than the upper bound.
1462         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1463         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1464           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
1465           OverlapStmt = (I-1)->second;
1466         }
1467 
1468         // Check to see if this case stmt overlaps with the subsequent
1469         // case range.
1470         if (i && CRLo <= HiVals[i-1]) {
1471           OverlapVal  = HiVals[i-1];       // Found overlap with range.
1472           OverlapStmt = CaseRanges[i-1].second;
1473         }
1474 
1475         if (OverlapStmt) {
1476           // If we have a duplicate, report it.
1477           Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
1478               << toString(OverlapVal, 10);
1479           Diag(OverlapStmt->getLHS()->getBeginLoc(),
1480                diag::note_duplicate_case_prev);
1481           // FIXME: We really want to remove the bogus case stmt from the
1482           // substmt, but we have no way to do this right now.
1483           CaseListIsErroneous = true;
1484         }
1485       }
1486     }
1487 
1488     // Complain if we have a constant condition and we didn't find a match.
1489     if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1490         ShouldCheckConstantCond) {
1491       // TODO: it would be nice if we printed enums as enums, chars as
1492       // chars, etc.
1493       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1494         << toString(ConstantCondValue, 10)
1495         << CondExpr->getSourceRange();
1496     }
1497 
1498     // Check to see if switch is over an Enum and handles all of its
1499     // values.  We only issue a warning if there is not 'default:', but
1500     // we still do the analysis to preserve this information in the AST
1501     // (which can be used by flow-based analyes).
1502     //
1503     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1504 
1505     // If switch has default case, then ignore it.
1506     if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1507         ET && ET->getDecl()->isCompleteDefinition() &&
1508         !ET->getDecl()->enumerators().empty()) {
1509       const EnumDecl *ED = ET->getDecl();
1510       EnumValsTy EnumVals;
1511 
1512       // Gather all enum values, set their type and sort them,
1513       // allowing easier comparison with CaseVals.
1514       for (auto *EDI : ED->enumerators()) {
1515         llvm::APSInt Val = EDI->getInitVal();
1516         AdjustAPSInt(Val, CondWidth, CondIsSigned);
1517         EnumVals.push_back(std::make_pair(Val, EDI));
1518       }
1519       llvm::stable_sort(EnumVals, CmpEnumVals);
1520       auto EI = EnumVals.begin(), EIEnd =
1521         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1522 
1523       // See which case values aren't in enum.
1524       for (CaseValsTy::const_iterator CI = CaseVals.begin();
1525           CI != CaseVals.end(); CI++) {
1526         Expr *CaseExpr = CI->second->getLHS();
1527         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1528                                               CI->first))
1529           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1530             << CondTypeBeforePromotion;
1531       }
1532 
1533       // See which of case ranges aren't in enum
1534       EI = EnumVals.begin();
1535       for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1536           RI != CaseRanges.end(); RI++) {
1537         Expr *CaseExpr = RI->second->getLHS();
1538         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1539                                               RI->first))
1540           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1541             << CondTypeBeforePromotion;
1542 
1543         llvm::APSInt Hi =
1544           RI->second->getRHS()->EvaluateKnownConstInt(Context);
1545         AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1546 
1547         CaseExpr = RI->second->getRHS();
1548         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1549                                               Hi))
1550           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1551             << CondTypeBeforePromotion;
1552       }
1553 
1554       // Check which enum vals aren't in switch
1555       auto CI = CaseVals.begin();
1556       auto RI = CaseRanges.begin();
1557       bool hasCasesNotInSwitch = false;
1558 
1559       SmallVector<DeclarationName,8> UnhandledNames;
1560 
1561       for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
1562         // Don't warn about omitted unavailable EnumConstantDecls.
1563         switch (EI->second->getAvailability()) {
1564         case AR_Deprecated:
1565           // Omitting a deprecated constant is ok; it should never materialize.
1566         case AR_Unavailable:
1567           continue;
1568 
1569         case AR_NotYetIntroduced:
1570           // Partially available enum constants should be present. Note that we
1571           // suppress -Wunguarded-availability diagnostics for such uses.
1572         case AR_Available:
1573           break;
1574         }
1575 
1576         if (EI->second->hasAttr<UnusedAttr>())
1577           continue;
1578 
1579         // Drop unneeded case values
1580         while (CI != CaseVals.end() && CI->first < EI->first)
1581           CI++;
1582 
1583         if (CI != CaseVals.end() && CI->first == EI->first)
1584           continue;
1585 
1586         // Drop unneeded case ranges
1587         for (; RI != CaseRanges.end(); RI++) {
1588           llvm::APSInt Hi =
1589             RI->second->getRHS()->EvaluateKnownConstInt(Context);
1590           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1591           if (EI->first <= Hi)
1592             break;
1593         }
1594 
1595         if (RI == CaseRanges.end() || EI->first < RI->first) {
1596           hasCasesNotInSwitch = true;
1597           UnhandledNames.push_back(EI->second->getDeclName());
1598         }
1599       }
1600 
1601       if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1602         Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1603 
1604       // Produce a nice diagnostic if multiple values aren't handled.
1605       if (!UnhandledNames.empty()) {
1606         auto DB = Diag(CondExpr->getExprLoc(), TheDefaultStmt
1607                                                    ? diag::warn_def_missing_case
1608                                                    : diag::warn_missing_case)
1609                   << CondExpr->getSourceRange() << (int)UnhandledNames.size();
1610 
1611         for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1612              I != E; ++I)
1613           DB << UnhandledNames[I];
1614       }
1615 
1616       if (!hasCasesNotInSwitch)
1617         SS->setAllEnumCasesCovered();
1618     }
1619   }
1620 
1621   if (BodyStmt)
1622     DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
1623                           diag::warn_empty_switch_body);
1624 
1625   // FIXME: If the case list was broken is some way, we don't have a good system
1626   // to patch it up.  Instead, just return the whole substmt as broken.
1627   if (CaseListIsErroneous)
1628     return StmtError();
1629 
1630   return SS;
1631 }
1632 
1633 void
1634 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1635                              Expr *SrcExpr) {
1636   if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1637     return;
1638 
1639   if (const EnumType *ET = DstType->getAs<EnumType>())
1640     if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1641         SrcType->isIntegerType()) {
1642       if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1643           SrcExpr->isIntegerConstantExpr(Context)) {
1644         // Get the bitwidth of the enum value before promotions.
1645         unsigned DstWidth = Context.getIntWidth(DstType);
1646         bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1647 
1648         llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1649         AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1650         const EnumDecl *ED = ET->getDecl();
1651 
1652         if (!ED->isClosed())
1653           return;
1654 
1655         if (ED->hasAttr<FlagEnumAttr>()) {
1656           if (!IsValueInFlagEnum(ED, RhsVal, true))
1657             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1658               << DstType.getUnqualifiedType();
1659         } else {
1660           typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1661               EnumValsTy;
1662           EnumValsTy EnumVals;
1663 
1664           // Gather all enum values, set their type and sort them,
1665           // allowing easier comparison with rhs constant.
1666           for (auto *EDI : ED->enumerators()) {
1667             llvm::APSInt Val = EDI->getInitVal();
1668             AdjustAPSInt(Val, DstWidth, DstIsSigned);
1669             EnumVals.push_back(std::make_pair(Val, EDI));
1670           }
1671           if (EnumVals.empty())
1672             return;
1673           llvm::stable_sort(EnumVals, CmpEnumVals);
1674           EnumValsTy::iterator EIend =
1675               std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1676 
1677           // See which values aren't in the enum.
1678           EnumValsTy::const_iterator EI = EnumVals.begin();
1679           while (EI != EIend && EI->first < RhsVal)
1680             EI++;
1681           if (EI == EIend || EI->first != RhsVal) {
1682             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1683                 << DstType.getUnqualifiedType();
1684           }
1685         }
1686       }
1687     }
1688 }
1689 
1690 StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc,
1691                                 SourceLocation LParenLoc, ConditionResult Cond,
1692                                 SourceLocation RParenLoc, Stmt *Body) {
1693   if (Cond.isInvalid())
1694     return StmtError();
1695 
1696   auto CondVal = Cond.get();
1697   CheckBreakContinueBinding(CondVal.second);
1698 
1699   if (CondVal.second &&
1700       !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1701     CommaVisitor(*this).Visit(CondVal.second);
1702 
1703   if (isa<NullStmt>(Body))
1704     getCurCompoundScope().setHasEmptyLoopBodies();
1705 
1706   return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
1707                            WhileLoc, LParenLoc, RParenLoc);
1708 }
1709 
1710 StmtResult
1711 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1712                   SourceLocation WhileLoc, SourceLocation CondLParen,
1713                   Expr *Cond, SourceLocation CondRParen) {
1714   assert(Cond && "ActOnDoStmt(): missing expression");
1715 
1716   CheckBreakContinueBinding(Cond);
1717   ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1718   if (CondResult.isInvalid())
1719     return StmtError();
1720   Cond = CondResult.get();
1721 
1722   CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
1723   if (CondResult.isInvalid())
1724     return StmtError();
1725   Cond = CondResult.get();
1726 
1727   // Only call the CommaVisitor for C89 due to differences in scope flags.
1728   if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
1729       !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
1730     CommaVisitor(*this).Visit(Cond);
1731 
1732   return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1733 }
1734 
1735 namespace {
1736   // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1737   using DeclSetVector = llvm::SmallSetVector<VarDecl *, 8>;
1738 
1739   // This visitor will traverse a conditional statement and store all
1740   // the evaluated decls into a vector.  Simple is set to true if none
1741   // of the excluded constructs are used.
1742   class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1743     DeclSetVector &Decls;
1744     SmallVectorImpl<SourceRange> &Ranges;
1745     bool Simple;
1746   public:
1747     typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1748 
1749     DeclExtractor(Sema &S, DeclSetVector &Decls,
1750                   SmallVectorImpl<SourceRange> &Ranges) :
1751         Inherited(S.Context),
1752         Decls(Decls),
1753         Ranges(Ranges),
1754         Simple(true) {}
1755 
1756     bool isSimple() { return Simple; }
1757 
1758     // Replaces the method in EvaluatedExprVisitor.
1759     void VisitMemberExpr(MemberExpr* E) {
1760       Simple = false;
1761     }
1762 
1763     // Any Stmt not explicitly listed will cause the condition to be marked
1764     // complex.
1765     void VisitStmt(Stmt *S) { Simple = false; }
1766 
1767     void VisitBinaryOperator(BinaryOperator *E) {
1768       Visit(E->getLHS());
1769       Visit(E->getRHS());
1770     }
1771 
1772     void VisitCastExpr(CastExpr *E) {
1773       Visit(E->getSubExpr());
1774     }
1775 
1776     void VisitUnaryOperator(UnaryOperator *E) {
1777       // Skip checking conditionals with derefernces.
1778       if (E->getOpcode() == UO_Deref)
1779         Simple = false;
1780       else
1781         Visit(E->getSubExpr());
1782     }
1783 
1784     void VisitConditionalOperator(ConditionalOperator *E) {
1785       Visit(E->getCond());
1786       Visit(E->getTrueExpr());
1787       Visit(E->getFalseExpr());
1788     }
1789 
1790     void VisitParenExpr(ParenExpr *E) {
1791       Visit(E->getSubExpr());
1792     }
1793 
1794     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1795       Visit(E->getOpaqueValue()->getSourceExpr());
1796       Visit(E->getFalseExpr());
1797     }
1798 
1799     void VisitIntegerLiteral(IntegerLiteral *E) { }
1800     void VisitFloatingLiteral(FloatingLiteral *E) { }
1801     void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1802     void VisitCharacterLiteral(CharacterLiteral *E) { }
1803     void VisitGNUNullExpr(GNUNullExpr *E) { }
1804     void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1805 
1806     void VisitDeclRefExpr(DeclRefExpr *E) {
1807       VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1808       if (!VD) {
1809         // Don't allow unhandled Decl types.
1810         Simple = false;
1811         return;
1812       }
1813 
1814       Ranges.push_back(E->getSourceRange());
1815 
1816       Decls.insert(VD);
1817     }
1818 
1819   }; // end class DeclExtractor
1820 
1821   // DeclMatcher checks to see if the decls are used in a non-evaluated
1822   // context.
1823   class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1824     DeclSetVector &Decls;
1825     bool FoundDecl;
1826 
1827   public:
1828     typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1829 
1830     DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1831         Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1832       if (!Statement) return;
1833 
1834       Visit(Statement);
1835     }
1836 
1837     void VisitReturnStmt(ReturnStmt *S) {
1838       FoundDecl = true;
1839     }
1840 
1841     void VisitBreakStmt(BreakStmt *S) {
1842       FoundDecl = true;
1843     }
1844 
1845     void VisitGotoStmt(GotoStmt *S) {
1846       FoundDecl = true;
1847     }
1848 
1849     void VisitCastExpr(CastExpr *E) {
1850       if (E->getCastKind() == CK_LValueToRValue)
1851         CheckLValueToRValueCast(E->getSubExpr());
1852       else
1853         Visit(E->getSubExpr());
1854     }
1855 
1856     void CheckLValueToRValueCast(Expr *E) {
1857       E = E->IgnoreParenImpCasts();
1858 
1859       if (isa<DeclRefExpr>(E)) {
1860         return;
1861       }
1862 
1863       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1864         Visit(CO->getCond());
1865         CheckLValueToRValueCast(CO->getTrueExpr());
1866         CheckLValueToRValueCast(CO->getFalseExpr());
1867         return;
1868       }
1869 
1870       if (BinaryConditionalOperator *BCO =
1871               dyn_cast<BinaryConditionalOperator>(E)) {
1872         CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1873         CheckLValueToRValueCast(BCO->getFalseExpr());
1874         return;
1875       }
1876 
1877       Visit(E);
1878     }
1879 
1880     void VisitDeclRefExpr(DeclRefExpr *E) {
1881       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1882         if (Decls.count(VD))
1883           FoundDecl = true;
1884     }
1885 
1886     void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1887       // Only need to visit the semantics for POE.
1888       // SyntaticForm doesn't really use the Decal.
1889       for (auto *S : POE->semantics()) {
1890         if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1891           // Look past the OVE into the expression it binds.
1892           Visit(OVE->getSourceExpr());
1893         else
1894           Visit(S);
1895       }
1896     }
1897 
1898     bool FoundDeclInUse() { return FoundDecl; }
1899 
1900   };  // end class DeclMatcher
1901 
1902   void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1903                                         Expr *Third, Stmt *Body) {
1904     // Condition is empty
1905     if (!Second) return;
1906 
1907     if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1908                           Second->getBeginLoc()))
1909       return;
1910 
1911     PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1912     DeclSetVector Decls;
1913     SmallVector<SourceRange, 10> Ranges;
1914     DeclExtractor DE(S, Decls, Ranges);
1915     DE.Visit(Second);
1916 
1917     // Don't analyze complex conditionals.
1918     if (!DE.isSimple()) return;
1919 
1920     // No decls found.
1921     if (Decls.size() == 0) return;
1922 
1923     // Don't warn on volatile, static, or global variables.
1924     for (auto *VD : Decls)
1925       if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1926         return;
1927 
1928     if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1929         DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1930         DeclMatcher(S, Decls, Body).FoundDeclInUse())
1931       return;
1932 
1933     // Load decl names into diagnostic.
1934     if (Decls.size() > 4) {
1935       PDiag << 0;
1936     } else {
1937       PDiag << (unsigned)Decls.size();
1938       for (auto *VD : Decls)
1939         PDiag << VD->getDeclName();
1940     }
1941 
1942     for (auto Range : Ranges)
1943       PDiag << Range;
1944 
1945     S.Diag(Ranges.begin()->getBegin(), PDiag);
1946   }
1947 
1948   // If Statement is an incemement or decrement, return true and sets the
1949   // variables Increment and DRE.
1950   bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1951                             DeclRefExpr *&DRE) {
1952     if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1953       if (!Cleanups->cleanupsHaveSideEffects())
1954         Statement = Cleanups->getSubExpr();
1955 
1956     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1957       switch (UO->getOpcode()) {
1958         default: return false;
1959         case UO_PostInc:
1960         case UO_PreInc:
1961           Increment = true;
1962           break;
1963         case UO_PostDec:
1964         case UO_PreDec:
1965           Increment = false;
1966           break;
1967       }
1968       DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1969       return DRE;
1970     }
1971 
1972     if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1973       FunctionDecl *FD = Call->getDirectCallee();
1974       if (!FD || !FD->isOverloadedOperator()) return false;
1975       switch (FD->getOverloadedOperator()) {
1976         default: return false;
1977         case OO_PlusPlus:
1978           Increment = true;
1979           break;
1980         case OO_MinusMinus:
1981           Increment = false;
1982           break;
1983       }
1984       DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1985       return DRE;
1986     }
1987 
1988     return false;
1989   }
1990 
1991   // A visitor to determine if a continue or break statement is a
1992   // subexpression.
1993   class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
1994     SourceLocation BreakLoc;
1995     SourceLocation ContinueLoc;
1996     bool InSwitch = false;
1997 
1998   public:
1999     BreakContinueFinder(Sema &S, const Stmt* Body) :
2000         Inherited(S.Context) {
2001       Visit(Body);
2002     }
2003 
2004     typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited;
2005 
2006     void VisitContinueStmt(const ContinueStmt* E) {
2007       ContinueLoc = E->getContinueLoc();
2008     }
2009 
2010     void VisitBreakStmt(const BreakStmt* E) {
2011       if (!InSwitch)
2012         BreakLoc = E->getBreakLoc();
2013     }
2014 
2015     void VisitSwitchStmt(const SwitchStmt* S) {
2016       if (const Stmt *Init = S->getInit())
2017         Visit(Init);
2018       if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
2019         Visit(CondVar);
2020       if (const Stmt *Cond = S->getCond())
2021         Visit(Cond);
2022 
2023       // Don't return break statements from the body of a switch.
2024       InSwitch = true;
2025       if (const Stmt *Body = S->getBody())
2026         Visit(Body);
2027       InSwitch = false;
2028     }
2029 
2030     void VisitForStmt(const ForStmt *S) {
2031       // Only visit the init statement of a for loop; the body
2032       // has a different break/continue scope.
2033       if (const Stmt *Init = S->getInit())
2034         Visit(Init);
2035     }
2036 
2037     void VisitWhileStmt(const WhileStmt *) {
2038       // Do nothing; the children of a while loop have a different
2039       // break/continue scope.
2040     }
2041 
2042     void VisitDoStmt(const DoStmt *) {
2043       // Do nothing; the children of a while loop have a different
2044       // break/continue scope.
2045     }
2046 
2047     void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
2048       // Only visit the initialization of a for loop; the body
2049       // has a different break/continue scope.
2050       if (const Stmt *Init = S->getInit())
2051         Visit(Init);
2052       if (const Stmt *Range = S->getRangeStmt())
2053         Visit(Range);
2054       if (const Stmt *Begin = S->getBeginStmt())
2055         Visit(Begin);
2056       if (const Stmt *End = S->getEndStmt())
2057         Visit(End);
2058     }
2059 
2060     void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
2061       // Only visit the initialization of a for loop; the body
2062       // has a different break/continue scope.
2063       if (const Stmt *Element = S->getElement())
2064         Visit(Element);
2065       if (const Stmt *Collection = S->getCollection())
2066         Visit(Collection);
2067     }
2068 
2069     bool ContinueFound() { return ContinueLoc.isValid(); }
2070     bool BreakFound() { return BreakLoc.isValid(); }
2071     SourceLocation GetContinueLoc() { return ContinueLoc; }
2072     SourceLocation GetBreakLoc() { return BreakLoc; }
2073 
2074   };  // end class BreakContinueFinder
2075 
2076   // Emit a warning when a loop increment/decrement appears twice per loop
2077   // iteration.  The conditions which trigger this warning are:
2078   // 1) The last statement in the loop body and the third expression in the
2079   //    for loop are both increment or both decrement of the same variable
2080   // 2) No continue statements in the loop body.
2081   void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
2082     // Return when there is nothing to check.
2083     if (!Body || !Third) return;
2084 
2085     if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
2086                           Third->getBeginLoc()))
2087       return;
2088 
2089     // Get the last statement from the loop body.
2090     CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
2091     if (!CS || CS->body_empty()) return;
2092     Stmt *LastStmt = CS->body_back();
2093     if (!LastStmt) return;
2094 
2095     bool LoopIncrement, LastIncrement;
2096     DeclRefExpr *LoopDRE, *LastDRE;
2097 
2098     if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
2099     if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
2100 
2101     // Check that the two statements are both increments or both decrements
2102     // on the same variable.
2103     if (LoopIncrement != LastIncrement ||
2104         LoopDRE->getDecl() != LastDRE->getDecl()) return;
2105 
2106     if (BreakContinueFinder(S, Body).ContinueFound()) return;
2107 
2108     S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
2109          << LastDRE->getDecl() << LastIncrement;
2110     S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
2111          << LoopIncrement;
2112   }
2113 
2114 } // end namespace
2115 
2116 
2117 void Sema::CheckBreakContinueBinding(Expr *E) {
2118   if (!E || getLangOpts().CPlusPlus)
2119     return;
2120   BreakContinueFinder BCFinder(*this, E);
2121   Scope *BreakParent = CurScope->getBreakParent();
2122   if (BCFinder.BreakFound() && BreakParent) {
2123     if (BreakParent->getFlags() & Scope::SwitchScope) {
2124       Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
2125     } else {
2126       Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
2127           << "break";
2128     }
2129   } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
2130     Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
2131         << "continue";
2132   }
2133 }
2134 
2135 StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
2136                               Stmt *First, ConditionResult Second,
2137                               FullExprArg third, SourceLocation RParenLoc,
2138                               Stmt *Body) {
2139   if (Second.isInvalid())
2140     return StmtError();
2141 
2142   if (!getLangOpts().CPlusPlus) {
2143     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
2144       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
2145       // declare identifiers for objects having storage class 'auto' or
2146       // 'register'.
2147       const Decl *NonVarSeen = nullptr;
2148       bool VarDeclSeen = false;
2149       for (auto *DI : DS->decls()) {
2150         if (VarDecl *VD = dyn_cast<VarDecl>(DI)) {
2151           VarDeclSeen = true;
2152           if (VD->isLocalVarDecl() && !VD->hasLocalStorage()) {
2153             Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
2154             DI->setInvalidDecl();
2155           }
2156         } else if (!NonVarSeen) {
2157           // Keep track of the first non-variable declaration we saw so that
2158           // we can diagnose if we don't see any variable declarations. This
2159           // covers a case like declaring a typedef, function, or structure
2160           // type rather than a variable.
2161           NonVarSeen = DI;
2162         }
2163       }
2164       // Diagnose if we saw a non-variable declaration but no variable
2165       // declarations.
2166       if (NonVarSeen && !VarDeclSeen)
2167         Diag(NonVarSeen->getLocation(), diag::err_non_variable_decl_in_for);
2168     }
2169   }
2170 
2171   CheckBreakContinueBinding(Second.get().second);
2172   CheckBreakContinueBinding(third.get());
2173 
2174   if (!Second.get().first)
2175     CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
2176                                      Body);
2177   CheckForRedundantIteration(*this, third.get(), Body);
2178 
2179   if (Second.get().second &&
2180       !Diags.isIgnored(diag::warn_comma_operator,
2181                        Second.get().second->getExprLoc()))
2182     CommaVisitor(*this).Visit(Second.get().second);
2183 
2184   Expr *Third  = third.release().getAs<Expr>();
2185   if (isa<NullStmt>(Body))
2186     getCurCompoundScope().setHasEmptyLoopBodies();
2187 
2188   return new (Context)
2189       ForStmt(Context, First, Second.get().second, Second.get().first, Third,
2190               Body, ForLoc, LParenLoc, RParenLoc);
2191 }
2192 
2193 /// In an Objective C collection iteration statement:
2194 ///   for (x in y)
2195 /// x can be an arbitrary l-value expression.  Bind it up as a
2196 /// full-expression.
2197 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
2198   // Reduce placeholder expressions here.  Note that this rejects the
2199   // use of pseudo-object l-values in this position.
2200   ExprResult result = CheckPlaceholderExpr(E);
2201   if (result.isInvalid()) return StmtError();
2202   E = result.get();
2203 
2204   ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
2205   if (FullExpr.isInvalid())
2206     return StmtError();
2207   return StmtResult(static_cast<Stmt*>(FullExpr.get()));
2208 }
2209 
2210 ExprResult
2211 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
2212   if (!collection)
2213     return ExprError();
2214 
2215   ExprResult result = CorrectDelayedTyposInExpr(collection);
2216   if (!result.isUsable())
2217     return ExprError();
2218   collection = result.get();
2219 
2220   // Bail out early if we've got a type-dependent expression.
2221   if (collection->isTypeDependent()) return collection;
2222 
2223   // Perform normal l-value conversion.
2224   result = DefaultFunctionArrayLvalueConversion(collection);
2225   if (result.isInvalid())
2226     return ExprError();
2227   collection = result.get();
2228 
2229   // The operand needs to have object-pointer type.
2230   // TODO: should we do a contextual conversion?
2231   const ObjCObjectPointerType *pointerType =
2232     collection->getType()->getAs<ObjCObjectPointerType>();
2233   if (!pointerType)
2234     return Diag(forLoc, diag::err_collection_expr_type)
2235              << collection->getType() << collection->getSourceRange();
2236 
2237   // Check that the operand provides
2238   //   - countByEnumeratingWithState:objects:count:
2239   const ObjCObjectType *objectType = pointerType->getObjectType();
2240   ObjCInterfaceDecl *iface = objectType->getInterface();
2241 
2242   // If we have a forward-declared type, we can't do this check.
2243   // Under ARC, it is an error not to have a forward-declared class.
2244   if (iface &&
2245       (getLangOpts().ObjCAutoRefCount
2246            ? RequireCompleteType(forLoc, QualType(objectType, 0),
2247                                  diag::err_arc_collection_forward, collection)
2248            : !isCompleteType(forLoc, QualType(objectType, 0)))) {
2249     // Otherwise, if we have any useful type information, check that
2250     // the type declares the appropriate method.
2251   } else if (iface || !objectType->qual_empty()) {
2252     IdentifierInfo *selectorIdents[] = {
2253       &Context.Idents.get("countByEnumeratingWithState"),
2254       &Context.Idents.get("objects"),
2255       &Context.Idents.get("count")
2256     };
2257     Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
2258 
2259     ObjCMethodDecl *method = nullptr;
2260 
2261     // If there's an interface, look in both the public and private APIs.
2262     if (iface) {
2263       method = iface->lookupInstanceMethod(selector);
2264       if (!method) method = iface->lookupPrivateMethod(selector);
2265     }
2266 
2267     // Also check protocol qualifiers.
2268     if (!method)
2269       method = LookupMethodInQualifiedType(selector, pointerType,
2270                                            /*instance*/ true);
2271 
2272     // If we didn't find it anywhere, give up.
2273     if (!method) {
2274       Diag(forLoc, diag::warn_collection_expr_type)
2275         << collection->getType() << selector << collection->getSourceRange();
2276     }
2277 
2278     // TODO: check for an incompatible signature?
2279   }
2280 
2281   // Wrap up any cleanups in the expression.
2282   return collection;
2283 }
2284 
2285 StmtResult
2286 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
2287                                  Stmt *First, Expr *collection,
2288                                  SourceLocation RParenLoc) {
2289   setFunctionHasBranchProtectedScope();
2290 
2291   ExprResult CollectionExprResult =
2292     CheckObjCForCollectionOperand(ForLoc, collection);
2293 
2294   if (First) {
2295     QualType FirstType;
2296     if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
2297       if (!DS->isSingleDecl())
2298         return StmtError(Diag((*DS->decl_begin())->getLocation(),
2299                          diag::err_toomany_element_decls));
2300 
2301       VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
2302       if (!D || D->isInvalidDecl())
2303         return StmtError();
2304 
2305       FirstType = D->getType();
2306       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
2307       // declare identifiers for objects having storage class 'auto' or
2308       // 'register'.
2309       if (!D->hasLocalStorage())
2310         return StmtError(Diag(D->getLocation(),
2311                               diag::err_non_local_variable_decl_in_for));
2312 
2313       // If the type contained 'auto', deduce the 'auto' to 'id'.
2314       if (FirstType->getContainedAutoType()) {
2315         SourceLocation Loc = D->getLocation();
2316         OpaqueValueExpr OpaqueId(Loc, Context.getObjCIdType(), VK_PRValue);
2317         Expr *DeducedInit = &OpaqueId;
2318         TemplateDeductionInfo Info(Loc);
2319         FirstType = QualType();
2320         TemplateDeductionResult Result = DeduceAutoType(
2321             D->getTypeSourceInfo()->getTypeLoc(), DeducedInit, FirstType, Info);
2322         if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
2323           DiagnoseAutoDeductionFailure(D, DeducedInit);
2324         if (FirstType.isNull()) {
2325           D->setInvalidDecl();
2326           return StmtError();
2327         }
2328 
2329         D->setType(FirstType);
2330 
2331         if (!inTemplateInstantiation()) {
2332           SourceLocation Loc =
2333               D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
2334           Diag(Loc, diag::warn_auto_var_is_id)
2335             << D->getDeclName();
2336         }
2337       }
2338 
2339     } else {
2340       Expr *FirstE = cast<Expr>(First);
2341       if (!FirstE->isTypeDependent() && !FirstE->isLValue())
2342         return StmtError(
2343             Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue)
2344             << First->getSourceRange());
2345 
2346       FirstType = static_cast<Expr*>(First)->getType();
2347       if (FirstType.isConstQualified())
2348         Diag(ForLoc, diag::err_selector_element_const_type)
2349           << FirstType << First->getSourceRange();
2350     }
2351     if (!FirstType->isDependentType() &&
2352         !FirstType->isObjCObjectPointerType() &&
2353         !FirstType->isBlockPointerType())
2354         return StmtError(Diag(ForLoc, diag::err_selector_element_type)
2355                            << FirstType << First->getSourceRange());
2356   }
2357 
2358   if (CollectionExprResult.isInvalid())
2359     return StmtError();
2360 
2361   CollectionExprResult =
2362       ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false);
2363   if (CollectionExprResult.isInvalid())
2364     return StmtError();
2365 
2366   return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
2367                                              nullptr, ForLoc, RParenLoc);
2368 }
2369 
2370 /// Finish building a variable declaration for a for-range statement.
2371 /// \return true if an error occurs.
2372 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
2373                                   SourceLocation Loc, int DiagID) {
2374   if (Decl->getType()->isUndeducedType()) {
2375     ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
2376     if (!Res.isUsable()) {
2377       Decl->setInvalidDecl();
2378       return true;
2379     }
2380     Init = Res.get();
2381   }
2382 
2383   // Deduce the type for the iterator variable now rather than leaving it to
2384   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
2385   QualType InitType;
2386   if (!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) {
2387     SemaRef.Diag(Loc, DiagID) << Init->getType();
2388   } else {
2389     TemplateDeductionInfo Info(Init->getExprLoc());
2390     Sema::TemplateDeductionResult Result = SemaRef.DeduceAutoType(
2391         Decl->getTypeSourceInfo()->getTypeLoc(), Init, InitType, Info);
2392     if (Result != Sema::TDK_Success && Result != Sema::TDK_AlreadyDiagnosed)
2393       SemaRef.Diag(Loc, DiagID) << Init->getType();
2394   }
2395 
2396   if (InitType.isNull()) {
2397     Decl->setInvalidDecl();
2398     return true;
2399   }
2400   Decl->setType(InitType);
2401 
2402   // In ARC, infer lifetime.
2403   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
2404   // we're doing the equivalent of fast iteration.
2405   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2406       SemaRef.inferObjCARCLifetime(Decl))
2407     Decl->setInvalidDecl();
2408 
2409   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
2410   SemaRef.FinalizeDeclaration(Decl);
2411   SemaRef.CurContext->addHiddenDecl(Decl);
2412   return false;
2413 }
2414 
2415 namespace {
2416 // An enum to represent whether something is dealing with a call to begin()
2417 // or a call to end() in a range-based for loop.
2418 enum BeginEndFunction {
2419   BEF_begin,
2420   BEF_end
2421 };
2422 
2423 /// Produce a note indicating which begin/end function was implicitly called
2424 /// by a C++11 for-range statement. This is often not obvious from the code,
2425 /// nor from the diagnostics produced when analysing the implicit expressions
2426 /// required in a for-range statement.
2427 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
2428                                   BeginEndFunction BEF) {
2429   CallExpr *CE = dyn_cast<CallExpr>(E);
2430   if (!CE)
2431     return;
2432   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2433   if (!D)
2434     return;
2435   SourceLocation Loc = D->getLocation();
2436 
2437   std::string Description;
2438   bool IsTemplate = false;
2439   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2440     Description = SemaRef.getTemplateArgumentBindingsText(
2441       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2442     IsTemplate = true;
2443   }
2444 
2445   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2446     << BEF << IsTemplate << Description << E->getType();
2447 }
2448 
2449 /// Build a variable declaration for a for-range statement.
2450 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2451                               QualType Type, StringRef Name) {
2452   DeclContext *DC = SemaRef.CurContext;
2453   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2454   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2455   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2456                                   TInfo, SC_None);
2457   Decl->setImplicit();
2458   return Decl;
2459 }
2460 
2461 }
2462 
2463 static bool ObjCEnumerationCollection(Expr *Collection) {
2464   return !Collection->isTypeDependent()
2465           && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2466 }
2467 
2468 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
2469 ///
2470 /// C++11 [stmt.ranged]:
2471 ///   A range-based for statement is equivalent to
2472 ///
2473 ///   {
2474 ///     auto && __range = range-init;
2475 ///     for ( auto __begin = begin-expr,
2476 ///           __end = end-expr;
2477 ///           __begin != __end;
2478 ///           ++__begin ) {
2479 ///       for-range-declaration = *__begin;
2480 ///       statement
2481 ///     }
2482 ///   }
2483 ///
2484 /// The body of the loop is not available yet, since it cannot be analysed until
2485 /// we have determined the type of the for-range-declaration.
2486 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
2487                                       SourceLocation CoawaitLoc, Stmt *InitStmt,
2488                                       Stmt *First, SourceLocation ColonLoc,
2489                                       Expr *Range, SourceLocation RParenLoc,
2490                                       BuildForRangeKind Kind) {
2491   // FIXME: recover in order to allow the body to be parsed.
2492   if (!First)
2493     return StmtError();
2494 
2495   if (Range && ObjCEnumerationCollection(Range)) {
2496     // FIXME: Support init-statements in Objective-C++20 ranged for statement.
2497     if (InitStmt)
2498       return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
2499                  << InitStmt->getSourceRange();
2500     return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2501   }
2502 
2503   DeclStmt *DS = dyn_cast<DeclStmt>(First);
2504   assert(DS && "first part of for range not a decl stmt");
2505 
2506   if (!DS->isSingleDecl()) {
2507     Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
2508     return StmtError();
2509   }
2510 
2511   // This function is responsible for attaching an initializer to LoopVar. We
2512   // must call ActOnInitializerError if we fail to do so.
2513   Decl *LoopVar = DS->getSingleDecl();
2514   if (LoopVar->isInvalidDecl() || !Range ||
2515       DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2516     ActOnInitializerError(LoopVar);
2517     return StmtError();
2518   }
2519 
2520   // Build the coroutine state immediately and not later during template
2521   // instantiation
2522   if (!CoawaitLoc.isInvalid()) {
2523     if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) {
2524       ActOnInitializerError(LoopVar);
2525       return StmtError();
2526     }
2527   }
2528 
2529   // Build  auto && __range = range-init
2530   // Divide by 2, since the variables are in the inner scope (loop body).
2531   const auto DepthStr = std::to_string(S->getDepth() / 2);
2532   SourceLocation RangeLoc = Range->getBeginLoc();
2533   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2534                                            Context.getAutoRRefDeductType(),
2535                                            std::string("__range") + DepthStr);
2536   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2537                             diag::err_for_range_deduction_failure)) {
2538     ActOnInitializerError(LoopVar);
2539     return StmtError();
2540   }
2541 
2542   // Claim the type doesn't contain auto: we've already done the checking.
2543   DeclGroupPtrTy RangeGroup =
2544       BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2545   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2546   if (RangeDecl.isInvalid()) {
2547     ActOnInitializerError(LoopVar);
2548     return StmtError();
2549   }
2550 
2551   StmtResult R = BuildCXXForRangeStmt(
2552       ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
2553       /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2554       /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind);
2555   if (R.isInvalid()) {
2556     ActOnInitializerError(LoopVar);
2557     return StmtError();
2558   }
2559 
2560   return R;
2561 }
2562 
2563 /// Create the initialization, compare, and increment steps for
2564 /// the range-based for loop expression.
2565 /// This function does not handle array-based for loops,
2566 /// which are created in Sema::BuildCXXForRangeStmt.
2567 ///
2568 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2569 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2570 /// CandidateSet and BEF are set and some non-success value is returned on
2571 /// failure.
2572 static Sema::ForRangeStatus
2573 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2574                       QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2575                       SourceLocation ColonLoc, SourceLocation CoawaitLoc,
2576                       OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2577                       ExprResult *EndExpr, BeginEndFunction *BEF) {
2578   DeclarationNameInfo BeginNameInfo(
2579       &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2580   DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2581                                   ColonLoc);
2582 
2583   LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2584                                  Sema::LookupMemberName);
2585   LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2586 
2587   auto BuildBegin = [&] {
2588     *BEF = BEF_begin;
2589     Sema::ForRangeStatus RangeStatus =
2590         SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2591                                           BeginMemberLookup, CandidateSet,
2592                                           BeginRange, BeginExpr);
2593 
2594     if (RangeStatus != Sema::FRS_Success) {
2595       if (RangeStatus == Sema::FRS_DiagnosticIssued)
2596         SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
2597             << ColonLoc << BEF_begin << BeginRange->getType();
2598       return RangeStatus;
2599     }
2600     if (!CoawaitLoc.isInvalid()) {
2601       // FIXME: getCurScope() should not be used during template instantiation.
2602       // We should pick up the set of unqualified lookup results for operator
2603       // co_await during the initial parse.
2604       *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2605                                             BeginExpr->get());
2606       if (BeginExpr->isInvalid())
2607         return Sema::FRS_DiagnosticIssued;
2608     }
2609     if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2610                               diag::err_for_range_iter_deduction_failure)) {
2611       NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2612       return Sema::FRS_DiagnosticIssued;
2613     }
2614     return Sema::FRS_Success;
2615   };
2616 
2617   auto BuildEnd = [&] {
2618     *BEF = BEF_end;
2619     Sema::ForRangeStatus RangeStatus =
2620         SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2621                                           EndMemberLookup, CandidateSet,
2622                                           EndRange, EndExpr);
2623     if (RangeStatus != Sema::FRS_Success) {
2624       if (RangeStatus == Sema::FRS_DiagnosticIssued)
2625         SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
2626             << ColonLoc << BEF_end << EndRange->getType();
2627       return RangeStatus;
2628     }
2629     if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2630                               diag::err_for_range_iter_deduction_failure)) {
2631       NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2632       return Sema::FRS_DiagnosticIssued;
2633     }
2634     return Sema::FRS_Success;
2635   };
2636 
2637   if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2638     // - if _RangeT is a class type, the unqualified-ids begin and end are
2639     //   looked up in the scope of class _RangeT as if by class member access
2640     //   lookup (3.4.5), and if either (or both) finds at least one
2641     //   declaration, begin-expr and end-expr are __range.begin() and
2642     //   __range.end(), respectively;
2643     SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2644     if (BeginMemberLookup.isAmbiguous())
2645       return Sema::FRS_DiagnosticIssued;
2646 
2647     SemaRef.LookupQualifiedName(EndMemberLookup, D);
2648     if (EndMemberLookup.isAmbiguous())
2649       return Sema::FRS_DiagnosticIssued;
2650 
2651     if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2652       // Look up the non-member form of the member we didn't find, first.
2653       // This way we prefer a "no viable 'end'" diagnostic over a "i found
2654       // a 'begin' but ignored it because there was no member 'end'"
2655       // diagnostic.
2656       auto BuildNonmember = [&](
2657           BeginEndFunction BEFFound, LookupResult &Found,
2658           llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
2659           llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
2660         LookupResult OldFound = std::move(Found);
2661         Found.clear();
2662 
2663         if (Sema::ForRangeStatus Result = BuildNotFound())
2664           return Result;
2665 
2666         switch (BuildFound()) {
2667         case Sema::FRS_Success:
2668           return Sema::FRS_Success;
2669 
2670         case Sema::FRS_NoViableFunction:
2671           CandidateSet->NoteCandidates(
2672               PartialDiagnosticAt(BeginRange->getBeginLoc(),
2673                                   SemaRef.PDiag(diag::err_for_range_invalid)
2674                                       << BeginRange->getType() << BEFFound),
2675               SemaRef, OCD_AllCandidates, BeginRange);
2676           [[fallthrough]];
2677 
2678         case Sema::FRS_DiagnosticIssued:
2679           for (NamedDecl *D : OldFound) {
2680             SemaRef.Diag(D->getLocation(),
2681                          diag::note_for_range_member_begin_end_ignored)
2682                 << BeginRange->getType() << BEFFound;
2683           }
2684           return Sema::FRS_DiagnosticIssued;
2685         }
2686         llvm_unreachable("unexpected ForRangeStatus");
2687       };
2688       if (BeginMemberLookup.empty())
2689         return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
2690       return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
2691     }
2692   } else {
2693     // - otherwise, begin-expr and end-expr are begin(__range) and
2694     //   end(__range), respectively, where begin and end are looked up with
2695     //   argument-dependent lookup (3.4.2). For the purposes of this name
2696     //   lookup, namespace std is an associated namespace.
2697   }
2698 
2699   if (Sema::ForRangeStatus Result = BuildBegin())
2700     return Result;
2701   return BuildEnd();
2702 }
2703 
2704 /// Speculatively attempt to dereference an invalid range expression.
2705 /// If the attempt fails, this function will return a valid, null StmtResult
2706 /// and emit no diagnostics.
2707 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2708                                                  SourceLocation ForLoc,
2709                                                  SourceLocation CoawaitLoc,
2710                                                  Stmt *InitStmt,
2711                                                  Stmt *LoopVarDecl,
2712                                                  SourceLocation ColonLoc,
2713                                                  Expr *Range,
2714                                                  SourceLocation RangeLoc,
2715                                                  SourceLocation RParenLoc) {
2716   // Determine whether we can rebuild the for-range statement with a
2717   // dereferenced range expression.
2718   ExprResult AdjustedRange;
2719   {
2720     Sema::SFINAETrap Trap(SemaRef);
2721 
2722     AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2723     if (AdjustedRange.isInvalid())
2724       return StmtResult();
2725 
2726     StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2727         S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2728         AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
2729     if (SR.isInvalid())
2730       return StmtResult();
2731   }
2732 
2733   // The attempt to dereference worked well enough that it could produce a valid
2734   // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2735   // case there are any other (non-fatal) problems with it.
2736   SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2737     << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2738   return SemaRef.ActOnCXXForRangeStmt(
2739       S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2740       AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
2741 }
2742 
2743 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2744 StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc,
2745                                       SourceLocation CoawaitLoc, Stmt *InitStmt,
2746                                       SourceLocation ColonLoc, Stmt *RangeDecl,
2747                                       Stmt *Begin, Stmt *End, Expr *Cond,
2748                                       Expr *Inc, Stmt *LoopVarDecl,
2749                                       SourceLocation RParenLoc,
2750                                       BuildForRangeKind Kind) {
2751   // FIXME: This should not be used during template instantiation. We should
2752   // pick up the set of unqualified lookup results for the != and + operators
2753   // in the initial parse.
2754   //
2755   // Testcase (accepts-invalid):
2756   //   template<typename T> void f() { for (auto x : T()) {} }
2757   //   namespace N { struct X { X begin(); X end(); int operator*(); }; }
2758   //   bool operator!=(N::X, N::X); void operator++(N::X);
2759   //   void g() { f<N::X>(); }
2760   Scope *S = getCurScope();
2761 
2762   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2763   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2764   QualType RangeVarType = RangeVar->getType();
2765 
2766   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2767   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2768 
2769   StmtResult BeginDeclStmt = Begin;
2770   StmtResult EndDeclStmt = End;
2771   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2772 
2773   if (RangeVarType->isDependentType()) {
2774     // The range is implicitly used as a placeholder when it is dependent.
2775     RangeVar->markUsed(Context);
2776 
2777     // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2778     // them in properly when we instantiate the loop.
2779     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2780       if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2781         for (auto *Binding : DD->bindings())
2782           Binding->setType(Context.DependentTy);
2783       LoopVar->setType(SubstAutoTypeDependent(LoopVar->getType()));
2784     }
2785   } else if (!BeginDeclStmt.get()) {
2786     SourceLocation RangeLoc = RangeVar->getLocation();
2787 
2788     const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2789 
2790     ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2791                                                 VK_LValue, ColonLoc);
2792     if (BeginRangeRef.isInvalid())
2793       return StmtError();
2794 
2795     ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2796                                               VK_LValue, ColonLoc);
2797     if (EndRangeRef.isInvalid())
2798       return StmtError();
2799 
2800     QualType AutoType = Context.getAutoDeductType();
2801     Expr *Range = RangeVar->getInit();
2802     if (!Range)
2803       return StmtError();
2804     QualType RangeType = Range->getType();
2805 
2806     if (RequireCompleteType(RangeLoc, RangeType,
2807                             diag::err_for_range_incomplete_type))
2808       return StmtError();
2809 
2810     // Build auto __begin = begin-expr, __end = end-expr.
2811     // Divide by 2, since the variables are in the inner scope (loop body).
2812     const auto DepthStr = std::to_string(S->getDepth() / 2);
2813     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2814                                              std::string("__begin") + DepthStr);
2815     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2816                                            std::string("__end") + DepthStr);
2817 
2818     // Build begin-expr and end-expr and attach to __begin and __end variables.
2819     ExprResult BeginExpr, EndExpr;
2820     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2821       // - if _RangeT is an array type, begin-expr and end-expr are __range and
2822       //   __range + __bound, respectively, where __bound is the array bound. If
2823       //   _RangeT is an array of unknown size or an array of incomplete type,
2824       //   the program is ill-formed;
2825 
2826       // begin-expr is __range.
2827       BeginExpr = BeginRangeRef;
2828       if (!CoawaitLoc.isInvalid()) {
2829         BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2830         if (BeginExpr.isInvalid())
2831           return StmtError();
2832       }
2833       if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2834                                 diag::err_for_range_iter_deduction_failure)) {
2835         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2836         return StmtError();
2837       }
2838 
2839       // Find the array bound.
2840       ExprResult BoundExpr;
2841       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2842         BoundExpr = IntegerLiteral::Create(
2843             Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2844       else if (const VariableArrayType *VAT =
2845                dyn_cast<VariableArrayType>(UnqAT)) {
2846         // For a variably modified type we can't just use the expression within
2847         // the array bounds, since we don't want that to be re-evaluated here.
2848         // Rather, we need to determine what it was when the array was first
2849         // created - so we resort to using sizeof(vla)/sizeof(element).
2850         // For e.g.
2851         //  void f(int b) {
2852         //    int vla[b];
2853         //    b = -1;   <-- This should not affect the num of iterations below
2854         //    for (int &c : vla) { .. }
2855         //  }
2856 
2857         // FIXME: This results in codegen generating IR that recalculates the
2858         // run-time number of elements (as opposed to just using the IR Value
2859         // that corresponds to the run-time value of each bound that was
2860         // generated when the array was created.) If this proves too embarrassing
2861         // even for unoptimized IR, consider passing a magic-value/cookie to
2862         // codegen that then knows to simply use that initial llvm::Value (that
2863         // corresponds to the bound at time of array creation) within
2864         // getelementptr.  But be prepared to pay the price of increasing a
2865         // customized form of coupling between the two components - which  could
2866         // be hard to maintain as the codebase evolves.
2867 
2868         ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2869             EndVar->getLocation(), UETT_SizeOf,
2870             /*IsType=*/true,
2871             CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2872                                                  VAT->desugar(), RangeLoc))
2873                 .getAsOpaquePtr(),
2874             EndVar->getSourceRange());
2875         if (SizeOfVLAExprR.isInvalid())
2876           return StmtError();
2877 
2878         ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2879             EndVar->getLocation(), UETT_SizeOf,
2880             /*IsType=*/true,
2881             CreateParsedType(VAT->desugar(),
2882                              Context.getTrivialTypeSourceInfo(
2883                                  VAT->getElementType(), RangeLoc))
2884                 .getAsOpaquePtr(),
2885             EndVar->getSourceRange());
2886         if (SizeOfEachElementExprR.isInvalid())
2887           return StmtError();
2888 
2889         BoundExpr =
2890             ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2891                        SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2892         if (BoundExpr.isInvalid())
2893           return StmtError();
2894 
2895       } else {
2896         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2897         // UnqAT is not incomplete and Range is not type-dependent.
2898         llvm_unreachable("Unexpected array type in for-range");
2899       }
2900 
2901       // end-expr is __range + __bound.
2902       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2903                            BoundExpr.get());
2904       if (EndExpr.isInvalid())
2905         return StmtError();
2906       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2907                                 diag::err_for_range_iter_deduction_failure)) {
2908         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2909         return StmtError();
2910       }
2911     } else {
2912       OverloadCandidateSet CandidateSet(RangeLoc,
2913                                         OverloadCandidateSet::CSK_Normal);
2914       BeginEndFunction BEFFailure;
2915       ForRangeStatus RangeStatus = BuildNonArrayForRange(
2916           *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2917           EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2918           &BEFFailure);
2919 
2920       if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2921           BEFFailure == BEF_begin) {
2922         // If the range is being built from an array parameter, emit a
2923         // a diagnostic that it is being treated as a pointer.
2924         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2925           if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2926             QualType ArrayTy = PVD->getOriginalType();
2927             QualType PointerTy = PVD->getType();
2928             if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2929               Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
2930                   << RangeLoc << PVD << ArrayTy << PointerTy;
2931               Diag(PVD->getLocation(), diag::note_declared_at);
2932               return StmtError();
2933             }
2934           }
2935         }
2936 
2937         // If building the range failed, try dereferencing the range expression
2938         // unless a diagnostic was issued or the end function is problematic.
2939         StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2940                                                        CoawaitLoc, InitStmt,
2941                                                        LoopVarDecl, ColonLoc,
2942                                                        Range, RangeLoc,
2943                                                        RParenLoc);
2944         if (SR.isInvalid() || SR.isUsable())
2945           return SR;
2946       }
2947 
2948       // Otherwise, emit diagnostics if we haven't already.
2949       if (RangeStatus == FRS_NoViableFunction) {
2950         Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2951         CandidateSet.NoteCandidates(
2952             PartialDiagnosticAt(Range->getBeginLoc(),
2953                                 PDiag(diag::err_for_range_invalid)
2954                                     << RangeLoc << Range->getType()
2955                                     << BEFFailure),
2956             *this, OCD_AllCandidates, Range);
2957       }
2958       // Return an error if no fix was discovered.
2959       if (RangeStatus != FRS_Success)
2960         return StmtError();
2961     }
2962 
2963     assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2964            "invalid range expression in for loop");
2965 
2966     // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2967     // C++1z removes this restriction.
2968     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2969     if (!Context.hasSameType(BeginType, EndType)) {
2970       Diag(RangeLoc, getLangOpts().CPlusPlus17
2971                          ? diag::warn_for_range_begin_end_types_differ
2972                          : diag::ext_for_range_begin_end_types_differ)
2973           << BeginType << EndType;
2974       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2975       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2976     }
2977 
2978     BeginDeclStmt =
2979         ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2980     EndDeclStmt =
2981         ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2982 
2983     const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2984     ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2985                                            VK_LValue, ColonLoc);
2986     if (BeginRef.isInvalid())
2987       return StmtError();
2988 
2989     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2990                                          VK_LValue, ColonLoc);
2991     if (EndRef.isInvalid())
2992       return StmtError();
2993 
2994     // Build and check __begin != __end expression.
2995     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2996                            BeginRef.get(), EndRef.get());
2997     if (!NotEqExpr.isInvalid())
2998       NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2999     if (!NotEqExpr.isInvalid())
3000       NotEqExpr =
3001           ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
3002     if (NotEqExpr.isInvalid()) {
3003       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3004         << RangeLoc << 0 << BeginRangeRef.get()->getType();
3005       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3006       if (!Context.hasSameType(BeginType, EndType))
3007         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
3008       return StmtError();
3009     }
3010 
3011     // Build and check ++__begin expression.
3012     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
3013                                 VK_LValue, ColonLoc);
3014     if (BeginRef.isInvalid())
3015       return StmtError();
3016 
3017     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
3018     if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
3019       // FIXME: getCurScope() should not be used during template instantiation.
3020       // We should pick up the set of unqualified lookup results for operator
3021       // co_await during the initial parse.
3022       IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
3023     if (!IncrExpr.isInvalid())
3024       IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
3025     if (IncrExpr.isInvalid()) {
3026       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3027         << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
3028       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3029       return StmtError();
3030     }
3031 
3032     // Build and check *__begin  expression.
3033     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
3034                                 VK_LValue, ColonLoc);
3035     if (BeginRef.isInvalid())
3036       return StmtError();
3037 
3038     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
3039     if (DerefExpr.isInvalid()) {
3040       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
3041         << RangeLoc << 1 << BeginRangeRef.get()->getType();
3042       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3043       return StmtError();
3044     }
3045 
3046     // Attach  *__begin  as initializer for VD. Don't touch it if we're just
3047     // trying to determine whether this would be a valid range.
3048     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
3049       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
3050       if (LoopVar->isInvalidDecl() ||
3051           (LoopVar->getInit() && LoopVar->getInit()->containsErrors()))
3052         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
3053     }
3054   }
3055 
3056   // Don't bother to actually allocate the result if we're just trying to
3057   // determine whether it would be valid.
3058   if (Kind == BFRK_Check)
3059     return StmtResult();
3060 
3061   // In OpenMP loop region loop control variable must be private. Perform
3062   // analysis of first part (if any).
3063   if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable())
3064     ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get());
3065 
3066   return new (Context) CXXForRangeStmt(
3067       InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
3068       cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
3069       IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
3070       ColonLoc, RParenLoc);
3071 }
3072 
3073 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
3074 /// statement.
3075 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
3076   if (!S || !B)
3077     return StmtError();
3078   ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
3079 
3080   ForStmt->setBody(B);
3081   return S;
3082 }
3083 
3084 // Warn when the loop variable is a const reference that creates a copy.
3085 // Suggest using the non-reference type for copies.  If a copy can be prevented
3086 // suggest the const reference type that would do so.
3087 // For instance, given "for (const &Foo : Range)", suggest
3088 // "for (const Foo : Range)" to denote a copy is made for the loop.  If
3089 // possible, also suggest "for (const &Bar : Range)" if this type prevents
3090 // the copy altogether.
3091 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
3092                                                     const VarDecl *VD,
3093                                                     QualType RangeInitType) {
3094   const Expr *InitExpr = VD->getInit();
3095   if (!InitExpr)
3096     return;
3097 
3098   QualType VariableType = VD->getType();
3099 
3100   if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
3101     if (!Cleanups->cleanupsHaveSideEffects())
3102       InitExpr = Cleanups->getSubExpr();
3103 
3104   const MaterializeTemporaryExpr *MTE =
3105       dyn_cast<MaterializeTemporaryExpr>(InitExpr);
3106 
3107   // No copy made.
3108   if (!MTE)
3109     return;
3110 
3111   const Expr *E = MTE->getSubExpr()->IgnoreImpCasts();
3112 
3113   // Searching for either UnaryOperator for dereference of a pointer or
3114   // CXXOperatorCallExpr for handling iterators.
3115   while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
3116     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
3117       E = CCE->getArg(0);
3118     } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
3119       const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
3120       E = ME->getBase();
3121     } else {
3122       const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
3123       E = MTE->getSubExpr();
3124     }
3125     E = E->IgnoreImpCasts();
3126   }
3127 
3128   QualType ReferenceReturnType;
3129   if (isa<UnaryOperator>(E)) {
3130     ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType());
3131   } else {
3132     const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
3133     const FunctionDecl *FD = Call->getDirectCallee();
3134     QualType ReturnType = FD->getReturnType();
3135     if (ReturnType->isReferenceType())
3136       ReferenceReturnType = ReturnType;
3137   }
3138 
3139   if (!ReferenceReturnType.isNull()) {
3140     // Loop variable creates a temporary.  Suggest either to go with
3141     // non-reference loop variable to indicate a copy is made, or
3142     // the correct type to bind a const reference.
3143     SemaRef.Diag(VD->getLocation(),
3144                  diag::warn_for_range_const_ref_binds_temp_built_from_ref)
3145         << VD << VariableType << ReferenceReturnType;
3146     QualType NonReferenceType = VariableType.getNonReferenceType();
3147     NonReferenceType.removeLocalConst();
3148     QualType NewReferenceType =
3149         SemaRef.Context.getLValueReferenceType(E->getType().withConst());
3150     SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
3151         << NonReferenceType << NewReferenceType << VD->getSourceRange()
3152         << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
3153   } else if (!VariableType->isRValueReferenceType()) {
3154     // The range always returns a copy, so a temporary is always created.
3155     // Suggest removing the reference from the loop variable.
3156     // If the type is a rvalue reference do not warn since that changes the
3157     // semantic of the code.
3158     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp)
3159         << VD << RangeInitType;
3160     QualType NonReferenceType = VariableType.getNonReferenceType();
3161     NonReferenceType.removeLocalConst();
3162     SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
3163         << NonReferenceType << VD->getSourceRange()
3164         << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
3165   }
3166 }
3167 
3168 /// Determines whether the @p VariableType's declaration is a record with the
3169 /// clang::trivial_abi attribute.
3170 static bool hasTrivialABIAttr(QualType VariableType) {
3171   if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl())
3172     return RD->hasAttr<TrivialABIAttr>();
3173 
3174   return false;
3175 }
3176 
3177 // Warns when the loop variable can be changed to a reference type to
3178 // prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
3179 // "for (const Foo &x : Range)" if this form does not make a copy.
3180 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
3181                                                 const VarDecl *VD) {
3182   const Expr *InitExpr = VD->getInit();
3183   if (!InitExpr)
3184     return;
3185 
3186   QualType VariableType = VD->getType();
3187 
3188   if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
3189     if (!CE->getConstructor()->isCopyConstructor())
3190       return;
3191   } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
3192     if (CE->getCastKind() != CK_LValueToRValue)
3193       return;
3194   } else {
3195     return;
3196   }
3197 
3198   // Small trivially copyable types are cheap to copy. Do not emit the
3199   // diagnostic for these instances. 64 bytes is a common size of a cache line.
3200   // (The function `getTypeSize` returns the size in bits.)
3201   ASTContext &Ctx = SemaRef.Context;
3202   if (Ctx.getTypeSize(VariableType) <= 64 * 8 &&
3203       (VariableType.isTriviallyCopyableType(Ctx) ||
3204        hasTrivialABIAttr(VariableType)))
3205     return;
3206 
3207   // Suggest changing from a const variable to a const reference variable
3208   // if doing so will prevent a copy.
3209   SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
3210       << VD << VariableType;
3211   SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
3212       << SemaRef.Context.getLValueReferenceType(VariableType)
3213       << VD->getSourceRange()
3214       << FixItHint::CreateInsertion(VD->getLocation(), "&");
3215 }
3216 
3217 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
3218 /// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
3219 ///    using "const foo x" to show that a copy is made
3220 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
3221 ///    Suggest either "const bar x" to keep the copying or "const foo& x" to
3222 ///    prevent the copy.
3223 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
3224 ///    Suggest "const foo &x" to prevent the copy.
3225 static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
3226                                            const CXXForRangeStmt *ForStmt) {
3227   if (SemaRef.inTemplateInstantiation())
3228     return;
3229 
3230   if (SemaRef.Diags.isIgnored(
3231           diag::warn_for_range_const_ref_binds_temp_built_from_ref,
3232           ForStmt->getBeginLoc()) &&
3233       SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp,
3234                               ForStmt->getBeginLoc()) &&
3235       SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
3236                               ForStmt->getBeginLoc())) {
3237     return;
3238   }
3239 
3240   const VarDecl *VD = ForStmt->getLoopVariable();
3241   if (!VD)
3242     return;
3243 
3244   QualType VariableType = VD->getType();
3245 
3246   if (VariableType->isIncompleteType())
3247     return;
3248 
3249   const Expr *InitExpr = VD->getInit();
3250   if (!InitExpr)
3251     return;
3252 
3253   if (InitExpr->getExprLoc().isMacroID())
3254     return;
3255 
3256   if (VariableType->isReferenceType()) {
3257     DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
3258                                             ForStmt->getRangeInit()->getType());
3259   } else if (VariableType.isConstQualified()) {
3260     DiagnoseForRangeConstVariableCopies(SemaRef, VD);
3261   }
3262 }
3263 
3264 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
3265 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
3266 /// body cannot be performed until after the type of the range variable is
3267 /// determined.
3268 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
3269   if (!S || !B)
3270     return StmtError();
3271 
3272   if (isa<ObjCForCollectionStmt>(S))
3273     return FinishObjCForCollectionStmt(S, B);
3274 
3275   CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
3276   ForStmt->setBody(B);
3277 
3278   DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
3279                         diag::warn_empty_range_based_for_body);
3280 
3281   DiagnoseForRangeVariableCopies(*this, ForStmt);
3282 
3283   return S;
3284 }
3285 
3286 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
3287                                SourceLocation LabelLoc,
3288                                LabelDecl *TheDecl) {
3289   setFunctionHasBranchIntoScope();
3290   TheDecl->markUsed(Context);
3291   return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
3292 }
3293 
3294 StmtResult
3295 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
3296                             Expr *E) {
3297   // Convert operand to void*
3298   if (!E->isTypeDependent()) {
3299     QualType ETy = E->getType();
3300     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
3301     ExprResult ExprRes = E;
3302     AssignConvertType ConvTy =
3303       CheckSingleAssignmentConstraints(DestTy, ExprRes);
3304     if (ExprRes.isInvalid())
3305       return StmtError();
3306     E = ExprRes.get();
3307     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
3308       return StmtError();
3309   }
3310 
3311   ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
3312   if (ExprRes.isInvalid())
3313     return StmtError();
3314   E = ExprRes.get();
3315 
3316   setFunctionHasIndirectGoto();
3317 
3318   return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
3319 }
3320 
3321 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
3322                                      const Scope &DestScope) {
3323   if (!S.CurrentSEHFinally.empty() &&
3324       DestScope.Contains(*S.CurrentSEHFinally.back())) {
3325     S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
3326   }
3327 }
3328 
3329 StmtResult
3330 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
3331   Scope *S = CurScope->getContinueParent();
3332   if (!S) {
3333     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
3334     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
3335   }
3336   if (S->isConditionVarScope()) {
3337     // We cannot 'continue;' from within a statement expression in the
3338     // initializer of a condition variable because we would jump past the
3339     // initialization of that variable.
3340     return StmtError(Diag(ContinueLoc, diag::err_continue_from_cond_var_init));
3341   }
3342   CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
3343 
3344   return new (Context) ContinueStmt(ContinueLoc);
3345 }
3346 
3347 StmtResult
3348 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
3349   Scope *S = CurScope->getBreakParent();
3350   if (!S) {
3351     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
3352     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
3353   }
3354   if (S->isOpenMPLoopScope())
3355     return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
3356                      << "break");
3357   CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
3358 
3359   return new (Context) BreakStmt(BreakLoc);
3360 }
3361 
3362 /// Determine whether the given expression might be move-eligible or
3363 /// copy-elidable in either a (co_)return statement or throw expression,
3364 /// without considering function return type, if applicable.
3365 ///
3366 /// \param E The expression being returned from the function or block,
3367 /// being thrown, or being co_returned from a coroutine. This expression
3368 /// might be modified by the implementation.
3369 ///
3370 /// \param Mode Overrides detection of current language mode
3371 /// and uses the rules for C++23.
3372 ///
3373 /// \returns An aggregate which contains the Candidate and isMoveEligible
3374 /// and isCopyElidable methods. If Candidate is non-null, it means
3375 /// isMoveEligible() would be true under the most permissive language standard.
3376 Sema::NamedReturnInfo Sema::getNamedReturnInfo(Expr *&E,
3377                                                SimplerImplicitMoveMode Mode) {
3378   if (!E)
3379     return NamedReturnInfo();
3380   // - in a return statement in a function [where] ...
3381   // ... the expression is the name of a non-volatile automatic object ...
3382   const auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
3383   if (!DR || DR->refersToEnclosingVariableOrCapture())
3384     return NamedReturnInfo();
3385   const auto *VD = dyn_cast<VarDecl>(DR->getDecl());
3386   if (!VD)
3387     return NamedReturnInfo();
3388   NamedReturnInfo Res = getNamedReturnInfo(VD);
3389   if (Res.Candidate && !E->isXValue() &&
3390       (Mode == SimplerImplicitMoveMode::ForceOn ||
3391        (Mode != SimplerImplicitMoveMode::ForceOff &&
3392         getLangOpts().CPlusPlus23))) {
3393     E = ImplicitCastExpr::Create(Context, VD->getType().getNonReferenceType(),
3394                                  CK_NoOp, E, nullptr, VK_XValue,
3395                                  FPOptionsOverride());
3396   }
3397   return Res;
3398 }
3399 
3400 /// Determine whether the given NRVO candidate variable is move-eligible or
3401 /// copy-elidable, without considering function return type.
3402 ///
3403 /// \param VD The NRVO candidate variable.
3404 ///
3405 /// \returns An aggregate which contains the Candidate and isMoveEligible
3406 /// and isCopyElidable methods. If Candidate is non-null, it means
3407 /// isMoveEligible() would be true under the most permissive language standard.
3408 Sema::NamedReturnInfo Sema::getNamedReturnInfo(const VarDecl *VD) {
3409   NamedReturnInfo Info{VD, NamedReturnInfo::MoveEligibleAndCopyElidable};
3410 
3411   // C++20 [class.copy.elision]p3:
3412   // - in a return statement in a function with ...
3413   // (other than a function ... parameter)
3414   if (VD->getKind() == Decl::ParmVar)
3415     Info.S = NamedReturnInfo::MoveEligible;
3416   else if (VD->getKind() != Decl::Var)
3417     return NamedReturnInfo();
3418 
3419   // (other than ... a catch-clause parameter)
3420   if (VD->isExceptionVariable())
3421     Info.S = NamedReturnInfo::MoveEligible;
3422 
3423   // ...automatic...
3424   if (!VD->hasLocalStorage())
3425     return NamedReturnInfo();
3426 
3427   // We don't want to implicitly move out of a __block variable during a return
3428   // because we cannot assume the variable will no longer be used.
3429   if (VD->hasAttr<BlocksAttr>())
3430     return NamedReturnInfo();
3431 
3432   QualType VDType = VD->getType();
3433   if (VDType->isObjectType()) {
3434     // C++17 [class.copy.elision]p3:
3435     // ...non-volatile automatic object...
3436     if (VDType.isVolatileQualified())
3437       return NamedReturnInfo();
3438   } else if (VDType->isRValueReferenceType()) {
3439     // C++20 [class.copy.elision]p3:
3440     // ...either a non-volatile object or an rvalue reference to a non-volatile
3441     // object type...
3442     QualType VDReferencedType = VDType.getNonReferenceType();
3443     if (VDReferencedType.isVolatileQualified() ||
3444         !VDReferencedType->isObjectType())
3445       return NamedReturnInfo();
3446     Info.S = NamedReturnInfo::MoveEligible;
3447   } else {
3448     return NamedReturnInfo();
3449   }
3450 
3451   // Variables with higher required alignment than their type's ABI
3452   // alignment cannot use NRVO.
3453   if (!VD->hasDependentAlignment() &&
3454       Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VDType))
3455     Info.S = NamedReturnInfo::MoveEligible;
3456 
3457   return Info;
3458 }
3459 
3460 /// Updates given NamedReturnInfo's move-eligible and
3461 /// copy-elidable statuses, considering the function
3462 /// return type criteria as applicable to return statements.
3463 ///
3464 /// \param Info The NamedReturnInfo object to update.
3465 ///
3466 /// \param ReturnType This is the return type of the function.
3467 /// \returns The copy elision candidate, in case the initial return expression
3468 /// was copy elidable, or nullptr otherwise.
3469 const VarDecl *Sema::getCopyElisionCandidate(NamedReturnInfo &Info,
3470                                              QualType ReturnType) {
3471   if (!Info.Candidate)
3472     return nullptr;
3473 
3474   auto invalidNRVO = [&] {
3475     Info = NamedReturnInfo();
3476     return nullptr;
3477   };
3478 
3479   // If we got a non-deduced auto ReturnType, we are in a dependent context and
3480   // there is no point in allowing copy elision since we won't have it deduced
3481   // by the point the VardDecl is instantiated, which is the last chance we have
3482   // of deciding if the candidate is really copy elidable.
3483   if ((ReturnType->getTypeClass() == Type::TypeClass::Auto &&
3484        ReturnType->isCanonicalUnqualified()) ||
3485       ReturnType->isSpecificBuiltinType(BuiltinType::Dependent))
3486     return invalidNRVO();
3487 
3488   if (!ReturnType->isDependentType()) {
3489     // - in a return statement in a function with ...
3490     // ... a class return type ...
3491     if (!ReturnType->isRecordType())
3492       return invalidNRVO();
3493 
3494     QualType VDType = Info.Candidate->getType();
3495     // ... the same cv-unqualified type as the function return type ...
3496     // When considering moving this expression out, allow dissimilar types.
3497     if (!VDType->isDependentType() &&
3498         !Context.hasSameUnqualifiedType(ReturnType, VDType))
3499       Info.S = NamedReturnInfo::MoveEligible;
3500   }
3501   return Info.isCopyElidable() ? Info.Candidate : nullptr;
3502 }
3503 
3504 /// Verify that the initialization sequence that was picked for the
3505 /// first overload resolution is permissible under C++98.
3506 ///
3507 /// Reject (possibly converting) constructors not taking an rvalue reference,
3508 /// or user conversion operators which are not ref-qualified.
3509 static bool
3510 VerifyInitializationSequenceCXX98(const Sema &S,
3511                                   const InitializationSequence &Seq) {
3512   const auto *Step = llvm::find_if(Seq.steps(), [](const auto &Step) {
3513     return Step.Kind == InitializationSequence::SK_ConstructorInitialization ||
3514            Step.Kind == InitializationSequence::SK_UserConversion;
3515   });
3516   if (Step != Seq.step_end()) {
3517     const auto *FD = Step->Function.Function;
3518     if (isa<CXXConstructorDecl>(FD)
3519             ? !FD->getParamDecl(0)->getType()->isRValueReferenceType()
3520             : cast<CXXMethodDecl>(FD)->getRefQualifier() == RQ_None)
3521       return false;
3522   }
3523   return true;
3524 }
3525 
3526 /// Perform the initialization of a potentially-movable value, which
3527 /// is the result of return value.
3528 ///
3529 /// This routine implements C++20 [class.copy.elision]p3, which attempts to
3530 /// treat returned lvalues as rvalues in certain cases (to prefer move
3531 /// construction), then falls back to treating them as lvalues if that failed.
3532 ExprResult Sema::PerformMoveOrCopyInitialization(
3533     const InitializedEntity &Entity, const NamedReturnInfo &NRInfo, Expr *Value,
3534     bool SupressSimplerImplicitMoves) {
3535   if (getLangOpts().CPlusPlus &&
3536       (!getLangOpts().CPlusPlus23 || SupressSimplerImplicitMoves) &&
3537       NRInfo.isMoveEligible()) {
3538     ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
3539                               CK_NoOp, Value, VK_XValue, FPOptionsOverride());
3540     Expr *InitExpr = &AsRvalue;
3541     auto Kind = InitializationKind::CreateCopy(Value->getBeginLoc(),
3542                                                Value->getBeginLoc());
3543     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3544     auto Res = Seq.getFailedOverloadResult();
3545     if ((Res == OR_Success || Res == OR_Deleted) &&
3546         (getLangOpts().CPlusPlus11 ||
3547          VerifyInitializationSequenceCXX98(*this, Seq))) {
3548       // Promote "AsRvalue" to the heap, since we now need this
3549       // expression node to persist.
3550       Value =
3551           ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp, Value,
3552                                    nullptr, VK_XValue, FPOptionsOverride());
3553       // Complete type-checking the initialization of the return type
3554       // using the constructor we found.
3555       return Seq.Perform(*this, Entity, Kind, Value);
3556     }
3557   }
3558   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3559   // above, or overload resolution failed. Either way, we need to try
3560   // (again) now with the return value expression as written.
3561   return PerformCopyInitialization(Entity, SourceLocation(), Value);
3562 }
3563 
3564 /// Determine whether the declared return type of the specified function
3565 /// contains 'auto'.
3566 static bool hasDeducedReturnType(FunctionDecl *FD) {
3567   const FunctionProtoType *FPT =
3568       FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
3569   return FPT->getReturnType()->isUndeducedType();
3570 }
3571 
3572 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
3573 /// for capturing scopes.
3574 ///
3575 StmtResult Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,
3576                                          Expr *RetValExp,
3577                                          NamedReturnInfo &NRInfo,
3578                                          bool SupressSimplerImplicitMoves) {
3579   // If this is the first return we've seen, infer the return type.
3580   // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3581   CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3582   QualType FnRetType = CurCap->ReturnType;
3583   LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3584   if (CurLambda && CurLambda->CallOperator->getType().isNull())
3585     return StmtError();
3586   bool HasDeducedReturnType =
3587       CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3588 
3589   if (ExprEvalContexts.back().isDiscardedStatementContext() &&
3590       (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3591     if (RetValExp) {
3592       ExprResult ER =
3593           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3594       if (ER.isInvalid())
3595         return StmtError();
3596       RetValExp = ER.get();
3597     }
3598     return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3599                               /* NRVOCandidate=*/nullptr);
3600   }
3601 
3602   if (HasDeducedReturnType) {
3603     FunctionDecl *FD = CurLambda->CallOperator;
3604     // If we've already decided this lambda is invalid, e.g. because
3605     // we saw a `return` whose expression had an error, don't keep
3606     // trying to deduce its return type.
3607     if (FD->isInvalidDecl())
3608       return StmtError();
3609     // In C++1y, the return type may involve 'auto'.
3610     // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3611     if (CurCap->ReturnType.isNull())
3612       CurCap->ReturnType = FD->getReturnType();
3613 
3614     AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3615     assert(AT && "lost auto type from lambda return type");
3616     if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3617       FD->setInvalidDecl();
3618       // FIXME: preserve the ill-formed return expression.
3619       return StmtError();
3620     }
3621     CurCap->ReturnType = FnRetType = FD->getReturnType();
3622   } else if (CurCap->HasImplicitReturnType) {
3623     // For blocks/lambdas with implicit return types, we check each return
3624     // statement individually, and deduce the common return type when the block
3625     // or lambda is completed.
3626     // FIXME: Fold this into the 'auto' codepath above.
3627     if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3628       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3629       if (Result.isInvalid())
3630         return StmtError();
3631       RetValExp = Result.get();
3632 
3633       // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3634       // when deducing a return type for a lambda-expression (or by extension
3635       // for a block). These rules differ from the stated C++11 rules only in
3636       // that they remove top-level cv-qualifiers.
3637       if (!CurContext->isDependentContext())
3638         FnRetType = RetValExp->getType().getUnqualifiedType();
3639       else
3640         FnRetType = CurCap->ReturnType = Context.DependentTy;
3641     } else {
3642       if (RetValExp) {
3643         // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3644         // initializer list, because it is not an expression (even
3645         // though we represent it as one). We still deduce 'void'.
3646         Diag(ReturnLoc, diag::err_lambda_return_init_list)
3647           << RetValExp->getSourceRange();
3648       }
3649 
3650       FnRetType = Context.VoidTy;
3651     }
3652 
3653     // Although we'll properly infer the type of the block once it's completed,
3654     // make sure we provide a return type now for better error recovery.
3655     if (CurCap->ReturnType.isNull())
3656       CurCap->ReturnType = FnRetType;
3657   }
3658   const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
3659 
3660   if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3661     if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) {
3662       Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3663       return StmtError();
3664     }
3665   } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3666     Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3667     return StmtError();
3668   } else {
3669     assert(CurLambda && "unknown kind of captured scope");
3670     if (CurLambda->CallOperator->getType()
3671             ->castAs<FunctionType>()
3672             ->getNoReturnAttr()) {
3673       Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3674       return StmtError();
3675     }
3676   }
3677 
3678   // Otherwise, verify that this result type matches the previous one.  We are
3679   // pickier with blocks than for normal functions because we don't have GCC
3680   // compatibility to worry about here.
3681   if (FnRetType->isDependentType()) {
3682     // Delay processing for now.  TODO: there are lots of dependent
3683     // types we can conclusively prove aren't void.
3684   } else if (FnRetType->isVoidType()) {
3685     if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3686         !(getLangOpts().CPlusPlus &&
3687           (RetValExp->isTypeDependent() ||
3688            RetValExp->getType()->isVoidType()))) {
3689       if (!getLangOpts().CPlusPlus &&
3690           RetValExp->getType()->isVoidType())
3691         Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3692       else {
3693         Diag(ReturnLoc, diag::err_return_block_has_expr);
3694         RetValExp = nullptr;
3695       }
3696     }
3697   } else if (!RetValExp) {
3698     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3699   } else if (!RetValExp->isTypeDependent()) {
3700     // we have a non-void block with an expression, continue checking
3701 
3702     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3703     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3704     // function return.
3705 
3706     // In C++ the return statement is handled via a copy initialization.
3707     // the C version of which boils down to CheckSingleAssignmentConstraints.
3708     InitializedEntity Entity =
3709         InitializedEntity::InitializeResult(ReturnLoc, FnRetType);
3710     ExprResult Res = PerformMoveOrCopyInitialization(
3711         Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
3712     if (Res.isInvalid()) {
3713       // FIXME: Cleanup temporaries here, anyway?
3714       return StmtError();
3715     }
3716     RetValExp = Res.get();
3717     CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3718   }
3719 
3720   if (RetValExp) {
3721     ExprResult ER =
3722         ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3723     if (ER.isInvalid())
3724       return StmtError();
3725     RetValExp = ER.get();
3726   }
3727   auto *Result =
3728       ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3729 
3730   // If we need to check for the named return value optimization,
3731   // or if we need to infer the return type,
3732   // save the return statement in our scope for later processing.
3733   if (CurCap->HasImplicitReturnType || NRVOCandidate)
3734     FunctionScopes.back()->Returns.push_back(Result);
3735 
3736   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3737     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3738 
3739   if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap);
3740       CurBlock && CurCap->HasImplicitReturnType && RetValExp &&
3741       RetValExp->containsErrors())
3742     CurBlock->TheDecl->setInvalidDecl();
3743 
3744   return Result;
3745 }
3746 
3747 namespace {
3748 /// Marks all typedefs in all local classes in a type referenced.
3749 ///
3750 /// In a function like
3751 /// auto f() {
3752 ///   struct S { typedef int a; };
3753 ///   return S();
3754 /// }
3755 ///
3756 /// the local type escapes and could be referenced in some TUs but not in
3757 /// others. Pretend that all local typedefs are always referenced, to not warn
3758 /// on this. This isn't necessary if f has internal linkage, or the typedef
3759 /// is private.
3760 class LocalTypedefNameReferencer
3761     : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3762 public:
3763   LocalTypedefNameReferencer(Sema &S) : S(S) {}
3764   bool VisitRecordType(const RecordType *RT);
3765 private:
3766   Sema &S;
3767 };
3768 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3769   auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3770   if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3771       R->isDependentType())
3772     return true;
3773   for (auto *TmpD : R->decls())
3774     if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3775       if (T->getAccess() != AS_private || R->hasFriends())
3776         S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3777   return true;
3778 }
3779 }
3780 
3781 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
3782   return FD->getTypeSourceInfo()
3783       ->getTypeLoc()
3784       .getAsAdjusted<FunctionProtoTypeLoc>()
3785       .getReturnLoc();
3786 }
3787 
3788 /// Deduce the return type for a function from a returned expression, per
3789 /// C++1y [dcl.spec.auto]p6.
3790 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
3791                                             SourceLocation ReturnLoc,
3792                                             Expr *RetExpr, const AutoType *AT) {
3793   // If this is the conversion function for a lambda, we choose to deduce its
3794   // type from the corresponding call operator, not from the synthesized return
3795   // statement within it. See Sema::DeduceReturnType.
3796   if (isLambdaConversionOperator(FD))
3797     return false;
3798 
3799   if (RetExpr && isa<InitListExpr>(RetExpr)) {
3800     //  If the deduction is for a return statement and the initializer is
3801     //  a braced-init-list, the program is ill-formed.
3802     Diag(RetExpr->getExprLoc(),
3803          getCurLambda() ? diag::err_lambda_return_init_list
3804                         : diag::err_auto_fn_return_init_list)
3805         << RetExpr->getSourceRange();
3806     return true;
3807   }
3808 
3809   if (FD->isDependentContext()) {
3810     // C++1y [dcl.spec.auto]p12:
3811     //   Return type deduction [...] occurs when the definition is
3812     //   instantiated even if the function body contains a return
3813     //   statement with a non-type-dependent operand.
3814     assert(AT->isDeduced() && "should have deduced to dependent type");
3815     return false;
3816   }
3817 
3818   TypeLoc OrigResultType = getReturnTypeLoc(FD);
3819   //  In the case of a return with no operand, the initializer is considered
3820   //  to be void().
3821   CXXScalarValueInitExpr VoidVal(Context.VoidTy, nullptr, SourceLocation());
3822   if (!RetExpr) {
3823     // For a function with a deduced result type to return with omitted
3824     // expression, the result type as written must be 'auto' or
3825     // 'decltype(auto)', possibly cv-qualified or constrained, but not
3826     // ref-qualified.
3827     if (!OrigResultType.getType()->getAs<AutoType>()) {
3828       Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3829           << OrigResultType.getType();
3830       return true;
3831     }
3832     RetExpr = &VoidVal;
3833   }
3834 
3835   QualType Deduced = AT->getDeducedType();
3836   {
3837     //  Otherwise, [...] deduce a value for U using the rules of template
3838     //  argument deduction.
3839     auto RetExprLoc = RetExpr->getExprLoc();
3840     TemplateDeductionInfo Info(RetExprLoc);
3841     SourceLocation TemplateSpecLoc;
3842     if (RetExpr->getType() == Context.OverloadTy) {
3843       auto FindResult = OverloadExpr::find(RetExpr);
3844       if (FindResult.Expression)
3845         TemplateSpecLoc = FindResult.Expression->getNameLoc();
3846     }
3847     TemplateSpecCandidateSet FailedTSC(TemplateSpecLoc);
3848     TemplateDeductionResult Res = DeduceAutoType(
3849         OrigResultType, RetExpr, Deduced, Info, /*DependentDeduction=*/false,
3850         /*IgnoreConstraints=*/false, &FailedTSC);
3851     if (Res != TDK_Success && FD->isInvalidDecl())
3852       return true;
3853     switch (Res) {
3854     case TDK_Success:
3855       break;
3856     case TDK_AlreadyDiagnosed:
3857       return true;
3858     case TDK_Inconsistent: {
3859       //  If a function with a declared return type that contains a placeholder
3860       //  type has multiple return statements, the return type is deduced for
3861       //  each return statement. [...] if the type deduced is not the same in
3862       //  each deduction, the program is ill-formed.
3863       const LambdaScopeInfo *LambdaSI = getCurLambda();
3864       if (LambdaSI && LambdaSI->HasImplicitReturnType)
3865         Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3866             << Info.SecondArg << Info.FirstArg << true /*IsLambda*/;
3867       else
3868         Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3869             << (AT->isDecltypeAuto() ? 1 : 0) << Info.SecondArg
3870             << Info.FirstArg;
3871       return true;
3872     }
3873     default:
3874       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3875           << OrigResultType.getType() << RetExpr->getType();
3876       FailedTSC.NoteCandidates(*this, RetExprLoc);
3877       return true;
3878     }
3879   }
3880 
3881   // If a local type is part of the returned type, mark its fields as
3882   // referenced.
3883   LocalTypedefNameReferencer(*this).TraverseType(RetExpr->getType());
3884 
3885   // CUDA: Kernel function must have 'void' return type.
3886   if (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>() &&
3887       !Deduced->isVoidType()) {
3888     Diag(FD->getLocation(), diag::err_kern_type_not_void_return)
3889         << FD->getType() << FD->getSourceRange();
3890     return true;
3891   }
3892 
3893   if (!FD->isInvalidDecl() && AT->getDeducedType() != Deduced)
3894     // Update all declarations of the function to have the deduced return type.
3895     Context.adjustDeducedFunctionResultType(FD, Deduced);
3896 
3897   return false;
3898 }
3899 
3900 StmtResult
3901 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3902                       Scope *CurScope) {
3903   // Correct typos, in case the containing function returns 'auto' and
3904   // RetValExp should determine the deduced type.
3905   ExprResult RetVal = CorrectDelayedTyposInExpr(
3906       RetValExp, nullptr, /*RecoverUncorrectedTypos=*/true);
3907   if (RetVal.isInvalid())
3908     return StmtError();
3909   StmtResult R =
3910       BuildReturnStmt(ReturnLoc, RetVal.get(), /*AllowRecovery=*/true);
3911   if (R.isInvalid() || ExprEvalContexts.back().isDiscardedStatementContext())
3912     return R;
3913 
3914   VarDecl *VD =
3915       const_cast<VarDecl *>(cast<ReturnStmt>(R.get())->getNRVOCandidate());
3916 
3917   CurScope->updateNRVOCandidate(VD);
3918 
3919   CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3920 
3921   return R;
3922 }
3923 
3924 static bool CheckSimplerImplicitMovesMSVCWorkaround(const Sema &S,
3925                                                     const Expr *E) {
3926   if (!E || !S.getLangOpts().CPlusPlus23 || !S.getLangOpts().MSVCCompat)
3927     return false;
3928   const Decl *D = E->getReferencedDeclOfCallee();
3929   if (!D || !S.SourceMgr.isInSystemHeader(D->getLocation()))
3930     return false;
3931   for (const DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) {
3932     if (DC->isStdNamespace())
3933       return true;
3934   }
3935   return false;
3936 }
3937 
3938 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3939                                  bool AllowRecovery) {
3940   // Check for unexpanded parameter packs.
3941   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3942     return StmtError();
3943 
3944   // HACK: We suppress simpler implicit move here in msvc compatibility mode
3945   // just as a temporary work around, as the MSVC STL has issues with
3946   // this change.
3947   bool SupressSimplerImplicitMoves =
3948       CheckSimplerImplicitMovesMSVCWorkaround(*this, RetValExp);
3949   NamedReturnInfo NRInfo = getNamedReturnInfo(
3950       RetValExp, SupressSimplerImplicitMoves ? SimplerImplicitMoveMode::ForceOff
3951                                              : SimplerImplicitMoveMode::Normal);
3952 
3953   if (isa<CapturingScopeInfo>(getCurFunction()))
3954     return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp, NRInfo,
3955                                    SupressSimplerImplicitMoves);
3956 
3957   QualType FnRetType;
3958   QualType RelatedRetType;
3959   const AttrVec *Attrs = nullptr;
3960   bool isObjCMethod = false;
3961 
3962   if (const FunctionDecl *FD = getCurFunctionDecl()) {
3963     FnRetType = FD->getReturnType();
3964     if (FD->hasAttrs())
3965       Attrs = &FD->getAttrs();
3966     if (FD->isNoReturn())
3967       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD;
3968     if (FD->isMain() && RetValExp)
3969       if (isa<CXXBoolLiteralExpr>(RetValExp))
3970         Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3971             << RetValExp->getSourceRange();
3972     if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) {
3973       if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) {
3974         if (RT->getDecl()->isOrContainsUnion())
3975           Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1;
3976       }
3977     }
3978   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3979     FnRetType = MD->getReturnType();
3980     isObjCMethod = true;
3981     if (MD->hasAttrs())
3982       Attrs = &MD->getAttrs();
3983     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3984       // In the implementation of a method with a related return type, the
3985       // type used to type-check the validity of return statements within the
3986       // method body is a pointer to the type of the class being implemented.
3987       RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3988       RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3989     }
3990   } else // If we don't have a function/method context, bail.
3991     return StmtError();
3992 
3993   if (RetValExp) {
3994     const auto *ATy = dyn_cast<ArrayType>(RetValExp->getType());
3995     if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) {
3996       Diag(ReturnLoc, diag::err_wasm_table_art) << 1;
3997       return StmtError();
3998     }
3999   }
4000 
4001   // C++1z: discarded return statements are not considered when deducing a
4002   // return type.
4003   if (ExprEvalContexts.back().isDiscardedStatementContext() &&
4004       FnRetType->getContainedAutoType()) {
4005     if (RetValExp) {
4006       ExprResult ER =
4007           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4008       if (ER.isInvalid())
4009         return StmtError();
4010       RetValExp = ER.get();
4011     }
4012     return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
4013                               /* NRVOCandidate=*/nullptr);
4014   }
4015 
4016   // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
4017   // deduction.
4018   if (getLangOpts().CPlusPlus14) {
4019     if (AutoType *AT = FnRetType->getContainedAutoType()) {
4020       FunctionDecl *FD = cast<FunctionDecl>(CurContext);
4021       // If we've already decided this function is invalid, e.g. because
4022       // we saw a `return` whose expression had an error, don't keep
4023       // trying to deduce its return type.
4024       // (Some return values may be needlessly wrapped in RecoveryExpr).
4025       if (FD->isInvalidDecl() ||
4026           DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
4027         FD->setInvalidDecl();
4028         if (!AllowRecovery)
4029           return StmtError();
4030         // The deduction failure is diagnosed and marked, try to recover.
4031         if (RetValExp) {
4032           // Wrap return value with a recovery expression of the previous type.
4033           // If no deduction yet, use DependentTy.
4034           auto Recovery = CreateRecoveryExpr(
4035               RetValExp->getBeginLoc(), RetValExp->getEndLoc(), RetValExp,
4036               AT->isDeduced() ? FnRetType : QualType());
4037           if (Recovery.isInvalid())
4038             return StmtError();
4039           RetValExp = Recovery.get();
4040         } else {
4041           // Nothing to do: a ReturnStmt with no value is fine recovery.
4042         }
4043       } else {
4044         FnRetType = FD->getReturnType();
4045       }
4046     }
4047   }
4048   const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
4049 
4050   bool HasDependentReturnType = FnRetType->isDependentType();
4051 
4052   ReturnStmt *Result = nullptr;
4053   if (FnRetType->isVoidType()) {
4054     if (RetValExp) {
4055       if (auto *ILE = dyn_cast<InitListExpr>(RetValExp)) {
4056         // We simply never allow init lists as the return value of void
4057         // functions. This is compatible because this was never allowed before,
4058         // so there's no legacy code to deal with.
4059         NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4060         int FunctionKind = 0;
4061         if (isa<ObjCMethodDecl>(CurDecl))
4062           FunctionKind = 1;
4063         else if (isa<CXXConstructorDecl>(CurDecl))
4064           FunctionKind = 2;
4065         else if (isa<CXXDestructorDecl>(CurDecl))
4066           FunctionKind = 3;
4067 
4068         Diag(ReturnLoc, diag::err_return_init_list)
4069             << CurDecl << FunctionKind << RetValExp->getSourceRange();
4070 
4071         // Preserve the initializers in the AST.
4072         RetValExp = AllowRecovery
4073                         ? CreateRecoveryExpr(ILE->getLBraceLoc(),
4074                                              ILE->getRBraceLoc(), ILE->inits())
4075                               .get()
4076                         : nullptr;
4077       } else if (!RetValExp->isTypeDependent()) {
4078         // C99 6.8.6.4p1 (ext_ since GCC warns)
4079         unsigned D = diag::ext_return_has_expr;
4080         if (RetValExp->getType()->isVoidType()) {
4081           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4082           if (isa<CXXConstructorDecl>(CurDecl) ||
4083               isa<CXXDestructorDecl>(CurDecl))
4084             D = diag::err_ctor_dtor_returns_void;
4085           else
4086             D = diag::ext_return_has_void_expr;
4087         }
4088         else {
4089           ExprResult Result = RetValExp;
4090           Result = IgnoredValueConversions(Result.get());
4091           if (Result.isInvalid())
4092             return StmtError();
4093           RetValExp = Result.get();
4094           RetValExp = ImpCastExprToType(RetValExp,
4095                                         Context.VoidTy, CK_ToVoid).get();
4096         }
4097         // return of void in constructor/destructor is illegal in C++.
4098         if (D == diag::err_ctor_dtor_returns_void) {
4099           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4100           Diag(ReturnLoc, D) << CurDecl << isa<CXXDestructorDecl>(CurDecl)
4101                              << RetValExp->getSourceRange();
4102         }
4103         // return (some void expression); is legal in C++.
4104         else if (D != diag::ext_return_has_void_expr ||
4105                  !getLangOpts().CPlusPlus) {
4106           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
4107 
4108           int FunctionKind = 0;
4109           if (isa<ObjCMethodDecl>(CurDecl))
4110             FunctionKind = 1;
4111           else if (isa<CXXConstructorDecl>(CurDecl))
4112             FunctionKind = 2;
4113           else if (isa<CXXDestructorDecl>(CurDecl))
4114             FunctionKind = 3;
4115 
4116           Diag(ReturnLoc, D)
4117               << CurDecl << FunctionKind << RetValExp->getSourceRange();
4118         }
4119       }
4120 
4121       if (RetValExp) {
4122         ExprResult ER =
4123             ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4124         if (ER.isInvalid())
4125           return StmtError();
4126         RetValExp = ER.get();
4127       }
4128     }
4129 
4130     Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
4131                                 /* NRVOCandidate=*/nullptr);
4132   } else if (!RetValExp && !HasDependentReturnType) {
4133     FunctionDecl *FD = getCurFunctionDecl();
4134 
4135     if ((FD && FD->isInvalidDecl()) || FnRetType->containsErrors()) {
4136       // The intended return type might have been "void", so don't warn.
4137     } else if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
4138       // C++11 [stmt.return]p2
4139       Diag(ReturnLoc, diag::err_constexpr_return_missing_expr)
4140           << FD << FD->isConsteval();
4141       FD->setInvalidDecl();
4142     } else {
4143       // C99 6.8.6.4p1 (ext_ since GCC warns)
4144       // C90 6.6.6.4p4
4145       unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr
4146                                           : diag::warn_return_missing_expr;
4147       // Note that at this point one of getCurFunctionDecl() or
4148       // getCurMethodDecl() must be non-null (see above).
4149       assert((getCurFunctionDecl() || getCurMethodDecl()) &&
4150              "Not in a FunctionDecl or ObjCMethodDecl?");
4151       bool IsMethod = FD == nullptr;
4152       const NamedDecl *ND =
4153           IsMethod ? cast<NamedDecl>(getCurMethodDecl()) : cast<NamedDecl>(FD);
4154       Diag(ReturnLoc, DiagID) << ND << IsMethod;
4155     }
4156 
4157     Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
4158                                 /* NRVOCandidate=*/nullptr);
4159   } else {
4160     assert(RetValExp || HasDependentReturnType);
4161     QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
4162 
4163     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
4164     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
4165     // function return.
4166 
4167     // In C++ the return statement is handled via a copy initialization,
4168     // the C version of which boils down to CheckSingleAssignmentConstraints.
4169     if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
4170       // we have a non-void function with an expression, continue checking
4171       InitializedEntity Entity =
4172           InitializedEntity::InitializeResult(ReturnLoc, RetType);
4173       ExprResult Res = PerformMoveOrCopyInitialization(
4174           Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
4175       if (Res.isInvalid() && AllowRecovery)
4176         Res = CreateRecoveryExpr(RetValExp->getBeginLoc(),
4177                                  RetValExp->getEndLoc(), RetValExp, RetType);
4178       if (Res.isInvalid()) {
4179         // FIXME: Clean up temporaries here anyway?
4180         return StmtError();
4181       }
4182       RetValExp = Res.getAs<Expr>();
4183 
4184       // If we have a related result type, we need to implicitly
4185       // convert back to the formal result type.  We can't pretend to
4186       // initialize the result again --- we might end double-retaining
4187       // --- so instead we initialize a notional temporary.
4188       if (!RelatedRetType.isNull()) {
4189         Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
4190                                                             FnRetType);
4191         Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
4192         if (Res.isInvalid()) {
4193           // FIXME: Clean up temporaries here anyway?
4194           return StmtError();
4195         }
4196         RetValExp = Res.getAs<Expr>();
4197       }
4198 
4199       CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
4200                          getCurFunctionDecl());
4201     }
4202 
4203     if (RetValExp) {
4204       ExprResult ER =
4205           ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
4206       if (ER.isInvalid())
4207         return StmtError();
4208       RetValExp = ER.get();
4209     }
4210     Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
4211   }
4212 
4213   // If we need to check for the named return value optimization, save the
4214   // return statement in our scope for later processing.
4215   if (Result->getNRVOCandidate())
4216     FunctionScopes.back()->Returns.push_back(Result);
4217 
4218   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
4219     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
4220 
4221   return Result;
4222 }
4223 
4224 StmtResult
4225 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
4226                            SourceLocation RParen, Decl *Parm,
4227                            Stmt *Body) {
4228   VarDecl *Var = cast_or_null<VarDecl>(Parm);
4229   if (Var && Var->isInvalidDecl())
4230     return StmtError();
4231 
4232   return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
4233 }
4234 
4235 StmtResult
4236 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
4237   return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
4238 }
4239 
4240 StmtResult
4241 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
4242                          MultiStmtArg CatchStmts, Stmt *Finally) {
4243   if (!getLangOpts().ObjCExceptions)
4244     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
4245 
4246   // Objective-C try is incompatible with SEH __try.
4247   sema::FunctionScopeInfo *FSI = getCurFunction();
4248   if (FSI->FirstSEHTryLoc.isValid()) {
4249     Diag(AtLoc, diag::err_mixing_cxx_try_seh_try) << 1;
4250     Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4251   }
4252 
4253   FSI->setHasObjCTry(AtLoc);
4254   unsigned NumCatchStmts = CatchStmts.size();
4255   return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
4256                                NumCatchStmts, Finally);
4257 }
4258 
4259 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
4260   if (Throw) {
4261     ExprResult Result = DefaultLvalueConversion(Throw);
4262     if (Result.isInvalid())
4263       return StmtError();
4264 
4265     Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false);
4266     if (Result.isInvalid())
4267       return StmtError();
4268     Throw = Result.get();
4269 
4270     QualType ThrowType = Throw->getType();
4271     // Make sure the expression type is an ObjC pointer or "void *".
4272     if (!ThrowType->isDependentType() &&
4273         !ThrowType->isObjCObjectPointerType()) {
4274       const PointerType *PT = ThrowType->getAs<PointerType>();
4275       if (!PT || !PT->getPointeeType()->isVoidType())
4276         return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
4277                          << Throw->getType() << Throw->getSourceRange());
4278     }
4279   }
4280 
4281   return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
4282 }
4283 
4284 StmtResult
4285 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
4286                            Scope *CurScope) {
4287   if (!getLangOpts().ObjCExceptions)
4288     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
4289 
4290   if (!Throw) {
4291     // @throw without an expression designates a rethrow (which must occur
4292     // in the context of an @catch clause).
4293     Scope *AtCatchParent = CurScope;
4294     while (AtCatchParent && !AtCatchParent->isAtCatchScope())
4295       AtCatchParent = AtCatchParent->getParent();
4296     if (!AtCatchParent)
4297       return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
4298   }
4299   return BuildObjCAtThrowStmt(AtLoc, Throw);
4300 }
4301 
4302 ExprResult
4303 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
4304   ExprResult result = DefaultLvalueConversion(operand);
4305   if (result.isInvalid())
4306     return ExprError();
4307   operand = result.get();
4308 
4309   // Make sure the expression type is an ObjC pointer or "void *".
4310   QualType type = operand->getType();
4311   if (!type->isDependentType() &&
4312       !type->isObjCObjectPointerType()) {
4313     const PointerType *pointerType = type->getAs<PointerType>();
4314     if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
4315       if (getLangOpts().CPlusPlus) {
4316         if (RequireCompleteType(atLoc, type,
4317                                 diag::err_incomplete_receiver_type))
4318           return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4319                    << type << operand->getSourceRange();
4320 
4321         ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
4322         if (result.isInvalid())
4323           return ExprError();
4324         if (!result.isUsable())
4325           return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4326                    << type << operand->getSourceRange();
4327 
4328         operand = result.get();
4329       } else {
4330           return Diag(atLoc, diag::err_objc_synchronized_expects_object)
4331                    << type << operand->getSourceRange();
4332       }
4333     }
4334   }
4335 
4336   // The operand to @synchronized is a full-expression.
4337   return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false);
4338 }
4339 
4340 StmtResult
4341 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
4342                                   Stmt *SyncBody) {
4343   // We can't jump into or indirect-jump out of a @synchronized block.
4344   setFunctionHasBranchProtectedScope();
4345   return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
4346 }
4347 
4348 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
4349 /// and creates a proper catch handler from them.
4350 StmtResult
4351 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
4352                          Stmt *HandlerBlock) {
4353   // There's nothing to test that ActOnExceptionDecl didn't already test.
4354   return new (Context)
4355       CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
4356 }
4357 
4358 StmtResult
4359 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
4360   setFunctionHasBranchProtectedScope();
4361   return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
4362 }
4363 
4364 namespace {
4365 class CatchHandlerType {
4366   QualType QT;
4367   unsigned IsPointer : 1;
4368 
4369   // This is a special constructor to be used only with DenseMapInfo's
4370   // getEmptyKey() and getTombstoneKey() functions.
4371   friend struct llvm::DenseMapInfo<CatchHandlerType>;
4372   enum Unique { ForDenseMap };
4373   CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
4374 
4375 public:
4376   /// Used when creating a CatchHandlerType from a handler type; will determine
4377   /// whether the type is a pointer or reference and will strip off the top
4378   /// level pointer and cv-qualifiers.
4379   CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
4380     if (QT->isPointerType())
4381       IsPointer = true;
4382 
4383     QT = QT.getUnqualifiedType();
4384     if (IsPointer || QT->isReferenceType())
4385       QT = QT->getPointeeType();
4386   }
4387 
4388   /// Used when creating a CatchHandlerType from a base class type; pretends the
4389   /// type passed in had the pointer qualifier, does not need to get an
4390   /// unqualified type.
4391   CatchHandlerType(QualType QT, bool IsPointer)
4392       : QT(QT), IsPointer(IsPointer) {}
4393 
4394   QualType underlying() const { return QT; }
4395   bool isPointer() const { return IsPointer; }
4396 
4397   friend bool operator==(const CatchHandlerType &LHS,
4398                          const CatchHandlerType &RHS) {
4399     // If the pointer qualification does not match, we can return early.
4400     if (LHS.IsPointer != RHS.IsPointer)
4401       return false;
4402     // Otherwise, check the underlying type without cv-qualifiers.
4403     return LHS.QT == RHS.QT;
4404   }
4405 };
4406 } // namespace
4407 
4408 namespace llvm {
4409 template <> struct DenseMapInfo<CatchHandlerType> {
4410   static CatchHandlerType getEmptyKey() {
4411     return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
4412                        CatchHandlerType::ForDenseMap);
4413   }
4414 
4415   static CatchHandlerType getTombstoneKey() {
4416     return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
4417                        CatchHandlerType::ForDenseMap);
4418   }
4419 
4420   static unsigned getHashValue(const CatchHandlerType &Base) {
4421     return DenseMapInfo<QualType>::getHashValue(Base.underlying());
4422   }
4423 
4424   static bool isEqual(const CatchHandlerType &LHS,
4425                       const CatchHandlerType &RHS) {
4426     return LHS == RHS;
4427   }
4428 };
4429 }
4430 
4431 namespace {
4432 class CatchTypePublicBases {
4433   const llvm::DenseMap<QualType, CXXCatchStmt *> &TypesToCheck;
4434 
4435   CXXCatchStmt *FoundHandler;
4436   QualType FoundHandlerType;
4437   QualType TestAgainstType;
4438 
4439 public:
4440   CatchTypePublicBases(const llvm::DenseMap<QualType, CXXCatchStmt *> &T,
4441                        QualType QT)
4442       : TypesToCheck(T), FoundHandler(nullptr), TestAgainstType(QT) {}
4443 
4444   CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
4445   QualType getFoundHandlerType() const { return FoundHandlerType; }
4446 
4447   bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
4448     if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
4449       QualType Check = S->getType().getCanonicalType();
4450       const auto &M = TypesToCheck;
4451       auto I = M.find(Check);
4452       if (I != M.end()) {
4453         // We're pretty sure we found what we need to find. However, we still
4454         // need to make sure that we properly compare for pointers and
4455         // references, to handle cases like:
4456         //
4457         // } catch (Base *b) {
4458         // } catch (Derived &d) {
4459         // }
4460         //
4461         // where there is a qualification mismatch that disqualifies this
4462         // handler as a potential problem.
4463         if (I->second->getCaughtType()->isPointerType() ==
4464                 TestAgainstType->isPointerType()) {
4465           FoundHandler = I->second;
4466           FoundHandlerType = Check;
4467           return true;
4468         }
4469       }
4470     }
4471     return false;
4472   }
4473 };
4474 }
4475 
4476 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
4477 /// handlers and creates a try statement from them.
4478 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4479                                   ArrayRef<Stmt *> Handlers) {
4480   const llvm::Triple &T = Context.getTargetInfo().getTriple();
4481   const bool IsOpenMPGPUTarget =
4482       getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN());
4483   // Don't report an error if 'try' is used in system headers or in an OpenMP
4484   // target region compiled for a GPU architecture.
4485   if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions &&
4486       !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) {
4487     // Delay error emission for the OpenMP device code.
4488     targetDiag(TryLoc, diag::err_exceptions_disabled) << "try";
4489   }
4490 
4491   // In OpenMP target regions, we assume that catch is never reached on GPU
4492   // targets.
4493   if (IsOpenMPGPUTarget)
4494     targetDiag(TryLoc, diag::warn_try_not_valid_on_target) << T.str();
4495 
4496   // Exceptions aren't allowed in CUDA device code.
4497   if (getLangOpts().CUDA)
4498     CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
4499         << "try" << CurrentCUDATarget();
4500 
4501   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
4502     Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
4503 
4504   sema::FunctionScopeInfo *FSI = getCurFunction();
4505 
4506   // C++ try is incompatible with SEH __try.
4507   if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
4508     Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << 0;
4509     Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4510   }
4511 
4512   const unsigned NumHandlers = Handlers.size();
4513   assert(!Handlers.empty() &&
4514          "The parser shouldn't call this if there are no handlers.");
4515 
4516   llvm::DenseMap<QualType, CXXCatchStmt *> HandledBaseTypes;
4517   llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
4518   for (unsigned i = 0; i < NumHandlers; ++i) {
4519     CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
4520 
4521     // Diagnose when the handler is a catch-all handler, but it isn't the last
4522     // handler for the try block. [except.handle]p5. Also, skip exception
4523     // declarations that are invalid, since we can't usefully report on them.
4524     if (!H->getExceptionDecl()) {
4525       if (i < NumHandlers - 1)
4526         return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
4527       continue;
4528     } else if (H->getExceptionDecl()->isInvalidDecl())
4529       continue;
4530 
4531     // Walk the type hierarchy to diagnose when this type has already been
4532     // handled (duplication), or cannot be handled (derivation inversion). We
4533     // ignore top-level cv-qualifiers, per [except.handle]p3
4534     CatchHandlerType HandlerCHT = H->getCaughtType().getCanonicalType();
4535 
4536     // We can ignore whether the type is a reference or a pointer; we need the
4537     // underlying declaration type in order to get at the underlying record
4538     // decl, if there is one.
4539     QualType Underlying = HandlerCHT.underlying();
4540     if (auto *RD = Underlying->getAsCXXRecordDecl()) {
4541       if (!RD->hasDefinition())
4542         continue;
4543       // Check that none of the public, unambiguous base classes are in the
4544       // map ([except.handle]p1). Give the base classes the same pointer
4545       // qualification as the original type we are basing off of. This allows
4546       // comparison against the handler type using the same top-level pointer
4547       // as the original type.
4548       CXXBasePaths Paths;
4549       Paths.setOrigin(RD);
4550       CatchTypePublicBases CTPB(HandledBaseTypes,
4551                                 H->getCaughtType().getCanonicalType());
4552       if (RD->lookupInBases(CTPB, Paths)) {
4553         const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4554         if (!Paths.isAmbiguous(
4555                 CanQualType::CreateUnsafe(CTPB.getFoundHandlerType()))) {
4556           Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4557                diag::warn_exception_caught_by_earlier_handler)
4558               << H->getCaughtType();
4559           Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4560                 diag::note_previous_exception_handler)
4561               << Problem->getCaughtType();
4562         }
4563       }
4564       // Strip the qualifiers here because we're going to be comparing this
4565       // type to the base type specifiers of a class, which are ignored in a
4566       // base specifier per [class.derived.general]p2.
4567       HandledBaseTypes[Underlying.getUnqualifiedType()] = H;
4568     }
4569 
4570     // Add the type the list of ones we have handled; diagnose if we've already
4571     // handled it.
4572     auto R = HandledTypes.insert(
4573         std::make_pair(H->getCaughtType().getCanonicalType(), H));
4574     if (!R.second) {
4575       const CXXCatchStmt *Problem = R.first->second;
4576       Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4577            diag::warn_exception_caught_by_earlier_handler)
4578           << H->getCaughtType();
4579       Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4580            diag::note_previous_exception_handler)
4581           << Problem->getCaughtType();
4582     }
4583   }
4584 
4585   FSI->setHasCXXTry(TryLoc);
4586 
4587   return CXXTryStmt::Create(Context, TryLoc, cast<CompoundStmt>(TryBlock),
4588                             Handlers);
4589 }
4590 
4591 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
4592                                   Stmt *TryBlock, Stmt *Handler) {
4593   assert(TryBlock && Handler);
4594 
4595   sema::FunctionScopeInfo *FSI = getCurFunction();
4596 
4597   // SEH __try is incompatible with C++ try. Borland appears to support this,
4598   // however.
4599   if (!getLangOpts().Borland) {
4600     if (FSI->FirstCXXOrObjCTryLoc.isValid()) {
4601       Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << FSI->FirstTryType;
4602       Diag(FSI->FirstCXXOrObjCTryLoc, diag::note_conflicting_try_here)
4603           << (FSI->FirstTryType == sema::FunctionScopeInfo::TryLocIsCXX
4604                   ? "'try'"
4605                   : "'@try'");
4606     }
4607   }
4608 
4609   FSI->setHasSEHTry(TryLoc);
4610 
4611   // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4612   // track if they use SEH.
4613   DeclContext *DC = CurContext;
4614   while (DC && !DC->isFunctionOrMethod())
4615     DC = DC->getParent();
4616   FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4617   if (FD)
4618     FD->setUsesSEHTry(true);
4619   else
4620     Diag(TryLoc, diag::err_seh_try_outside_functions);
4621 
4622   // Reject __try on unsupported targets.
4623   if (!Context.getTargetInfo().isSEHTrySupported())
4624     Diag(TryLoc, diag::err_seh_try_unsupported);
4625 
4626   return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4627 }
4628 
4629 StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr,
4630                                      Stmt *Block) {
4631   assert(FilterExpr && Block);
4632   QualType FTy = FilterExpr->getType();
4633   if (!FTy->isIntegerType() && !FTy->isDependentType()) {
4634     return StmtError(
4635         Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral)
4636         << FTy);
4637   }
4638   return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block);
4639 }
4640 
4641 void Sema::ActOnStartSEHFinallyBlock() {
4642   CurrentSEHFinally.push_back(CurScope);
4643 }
4644 
4645 void Sema::ActOnAbortSEHFinallyBlock() {
4646   CurrentSEHFinally.pop_back();
4647 }
4648 
4649 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
4650   assert(Block);
4651   CurrentSEHFinally.pop_back();
4652   return SEHFinallyStmt::Create(Context, Loc, Block);
4653 }
4654 
4655 StmtResult
4656 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
4657   Scope *SEHTryParent = CurScope;
4658   while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4659     SEHTryParent = SEHTryParent->getParent();
4660   if (!SEHTryParent)
4661     return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4662   CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4663 
4664   return new (Context) SEHLeaveStmt(Loc);
4665 }
4666 
4667 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
4668                                             bool IsIfExists,
4669                                             NestedNameSpecifierLoc QualifierLoc,
4670                                             DeclarationNameInfo NameInfo,
4671                                             Stmt *Nested)
4672 {
4673   return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4674                                              QualifierLoc, NameInfo,
4675                                              cast<CompoundStmt>(Nested));
4676 }
4677 
4678 
4679 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
4680                                             bool IsIfExists,
4681                                             CXXScopeSpec &SS,
4682                                             UnqualifiedId &Name,
4683                                             Stmt *Nested) {
4684   return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4685                                     SS.getWithLocInContext(Context),
4686                                     GetNameFromUnqualifiedId(Name),
4687                                     Nested);
4688 }
4689 
4690 RecordDecl*
4691 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
4692                                    unsigned NumParams) {
4693   DeclContext *DC = CurContext;
4694   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4695     DC = DC->getParent();
4696 
4697   RecordDecl *RD = nullptr;
4698   if (getLangOpts().CPlusPlus)
4699     RD = CXXRecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc,
4700                                /*Id=*/nullptr);
4701   else
4702     RD = RecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc,
4703                             /*Id=*/nullptr);
4704 
4705   RD->setCapturedRecord();
4706   DC->addDecl(RD);
4707   RD->setImplicit();
4708   RD->startDefinition();
4709 
4710   assert(NumParams > 0 && "CapturedStmt requires context parameter");
4711   CD = CapturedDecl::Create(Context, CurContext, NumParams);
4712   DC->addDecl(CD);
4713   return RD;
4714 }
4715 
4716 static bool
4717 buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI,
4718                              SmallVectorImpl<CapturedStmt::Capture> &Captures,
4719                              SmallVectorImpl<Expr *> &CaptureInits) {
4720   for (const sema::Capture &Cap : RSI->Captures) {
4721     if (Cap.isInvalid())
4722       continue;
4723 
4724     // Form the initializer for the capture.
4725     ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(),
4726                                          RSI->CapRegionKind == CR_OpenMP);
4727 
4728     // FIXME: Bail out now if the capture is not used and the initializer has
4729     // no side-effects.
4730 
4731     // Create a field for this capture.
4732     FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap);
4733 
4734     // Add the capture to our list of captures.
4735     if (Cap.isThisCapture()) {
4736       Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4737                                                CapturedStmt::VCK_This));
4738     } else if (Cap.isVLATypeCapture()) {
4739       Captures.push_back(
4740           CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
4741     } else {
4742       assert(Cap.isVariableCapture() && "unknown kind of capture");
4743 
4744       if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
4745         S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel);
4746 
4747       Captures.push_back(CapturedStmt::Capture(
4748           Cap.getLocation(),
4749           Cap.isReferenceCapture() ? CapturedStmt::VCK_ByRef
4750                                    : CapturedStmt::VCK_ByCopy,
4751           cast<VarDecl>(Cap.getVariable())));
4752     }
4753     CaptureInits.push_back(Init.get());
4754   }
4755   return false;
4756 }
4757 
4758 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4759                                     CapturedRegionKind Kind,
4760                                     unsigned NumParams) {
4761   CapturedDecl *CD = nullptr;
4762   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4763 
4764   // Build the context parameter
4765   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4766   IdentifierInfo *ParamName = &Context.Idents.get("__context");
4767   QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4768   auto *Param =
4769       ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4770                                 ImplicitParamKind::CapturedContext);
4771   DC->addDecl(Param);
4772 
4773   CD->setContextParam(0, Param);
4774 
4775   // Enter the capturing scope for this captured region.
4776   PushCapturedRegionScope(CurScope, CD, RD, Kind);
4777 
4778   if (CurScope)
4779     PushDeclContext(CurScope, CD);
4780   else
4781     CurContext = CD;
4782 
4783   PushExpressionEvaluationContext(
4784       ExpressionEvaluationContext::PotentiallyEvaluated);
4785   ExprEvalContexts.back().InImmediateEscalatingFunctionContext = false;
4786 }
4787 
4788 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4789                                     CapturedRegionKind Kind,
4790                                     ArrayRef<CapturedParamNameType> Params,
4791                                     unsigned OpenMPCaptureLevel) {
4792   CapturedDecl *CD = nullptr;
4793   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4794 
4795   // Build the context parameter
4796   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4797   bool ContextIsFound = false;
4798   unsigned ParamNum = 0;
4799   for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4800                                                  E = Params.end();
4801        I != E; ++I, ++ParamNum) {
4802     if (I->second.isNull()) {
4803       assert(!ContextIsFound &&
4804              "null type has been found already for '__context' parameter");
4805       IdentifierInfo *ParamName = &Context.Idents.get("__context");
4806       QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4807                                .withConst()
4808                                .withRestrict();
4809       auto *Param =
4810           ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4811                                     ImplicitParamKind::CapturedContext);
4812       DC->addDecl(Param);
4813       CD->setContextParam(ParamNum, Param);
4814       ContextIsFound = true;
4815     } else {
4816       IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4817       auto *Param =
4818           ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4819                                     ImplicitParamKind::CapturedContext);
4820       DC->addDecl(Param);
4821       CD->setParam(ParamNum, Param);
4822     }
4823   }
4824   assert(ContextIsFound && "no null type for '__context' parameter");
4825   if (!ContextIsFound) {
4826     // Add __context implicitly if it is not specified.
4827     IdentifierInfo *ParamName = &Context.Idents.get("__context");
4828     QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4829     auto *Param =
4830         ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4831                                   ImplicitParamKind::CapturedContext);
4832     DC->addDecl(Param);
4833     CD->setContextParam(ParamNum, Param);
4834   }
4835   // Enter the capturing scope for this captured region.
4836   PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel);
4837 
4838   if (CurScope)
4839     PushDeclContext(CurScope, CD);
4840   else
4841     CurContext = CD;
4842 
4843   PushExpressionEvaluationContext(
4844       ExpressionEvaluationContext::PotentiallyEvaluated);
4845 }
4846 
4847 void Sema::ActOnCapturedRegionError() {
4848   DiscardCleanupsInEvaluationContext();
4849   PopExpressionEvaluationContext();
4850   PopDeclContext();
4851   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4852   CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4853 
4854   RecordDecl *Record = RSI->TheRecordDecl;
4855   Record->setInvalidDecl();
4856 
4857   SmallVector<Decl*, 4> Fields(Record->fields());
4858   ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4859               SourceLocation(), SourceLocation(), ParsedAttributesView());
4860 }
4861 
4862 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
4863   // Leave the captured scope before we start creating captures in the
4864   // enclosing scope.
4865   DiscardCleanupsInEvaluationContext();
4866   PopExpressionEvaluationContext();
4867   PopDeclContext();
4868   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4869   CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4870 
4871   SmallVector<CapturedStmt::Capture, 4> Captures;
4872   SmallVector<Expr *, 4> CaptureInits;
4873   if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits))
4874     return StmtError();
4875 
4876   CapturedDecl *CD = RSI->TheCapturedDecl;
4877   RecordDecl *RD = RSI->TheRecordDecl;
4878 
4879   CapturedStmt *Res = CapturedStmt::Create(
4880       getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4881       Captures, CaptureInits, CD, RD);
4882 
4883   CD->setBody(Res->getCapturedStmt());
4884   RD->completeDefinition();
4885 
4886   return Res;
4887 }
4888