1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for statements. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/ASTDiagnostic.h" 15 #include "clang/AST/ASTLambda.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/CharUnits.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/EvaluatedExprVisitor.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/ExprObjC.h" 22 #include "clang/AST/IgnoreExpr.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/StmtCXX.h" 25 #include "clang/AST/StmtObjC.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/AST/TypeOrdering.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Sema/Initialization.h" 31 #include "clang/Sema/Lookup.h" 32 #include "clang/Sema/Ownership.h" 33 #include "clang/Sema/Scope.h" 34 #include "clang/Sema/ScopeInfo.h" 35 #include "clang/Sema/SemaInternal.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallString.h" 41 #include "llvm/ADT/SmallVector.h" 42 43 using namespace clang; 44 using namespace sema; 45 46 StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) { 47 if (FE.isInvalid()) 48 return StmtError(); 49 50 FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue); 51 if (FE.isInvalid()) 52 return StmtError(); 53 54 // C99 6.8.3p2: The expression in an expression statement is evaluated as a 55 // void expression for its side effects. Conversion to void allows any 56 // operand, even incomplete types. 57 58 // Same thing in for stmt first clause (when expr) and third clause. 59 return StmtResult(FE.getAs<Stmt>()); 60 } 61 62 63 StmtResult Sema::ActOnExprStmtError() { 64 DiscardCleanupsInEvaluationContext(); 65 return StmtError(); 66 } 67 68 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc, 69 bool HasLeadingEmptyMacro) { 70 return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro); 71 } 72 73 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc, 74 SourceLocation EndLoc) { 75 DeclGroupRef DG = dg.get(); 76 77 // If we have an invalid decl, just return an error. 78 if (DG.isNull()) return StmtError(); 79 80 return new (Context) DeclStmt(DG, StartLoc, EndLoc); 81 } 82 83 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) { 84 DeclGroupRef DG = dg.get(); 85 86 // If we don't have a declaration, or we have an invalid declaration, 87 // just return. 88 if (DG.isNull() || !DG.isSingleDecl()) 89 return; 90 91 Decl *decl = DG.getSingleDecl(); 92 if (!decl || decl->isInvalidDecl()) 93 return; 94 95 // Only variable declarations are permitted. 96 VarDecl *var = dyn_cast<VarDecl>(decl); 97 if (!var) { 98 Diag(decl->getLocation(), diag::err_non_variable_decl_in_for); 99 decl->setInvalidDecl(); 100 return; 101 } 102 103 // foreach variables are never actually initialized in the way that 104 // the parser came up with. 105 var->setInit(nullptr); 106 107 // In ARC, we don't need to retain the iteration variable of a fast 108 // enumeration loop. Rather than actually trying to catch that 109 // during declaration processing, we remove the consequences here. 110 if (getLangOpts().ObjCAutoRefCount) { 111 QualType type = var->getType(); 112 113 // Only do this if we inferred the lifetime. Inferred lifetime 114 // will show up as a local qualifier because explicit lifetime 115 // should have shown up as an AttributedType instead. 116 if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) { 117 // Add 'const' and mark the variable as pseudo-strong. 118 var->setType(type.withConst()); 119 var->setARCPseudoStrong(true); 120 } 121 } 122 } 123 124 /// Diagnose unused comparisons, both builtin and overloaded operators. 125 /// For '==' and '!=', suggest fixits for '=' or '|='. 126 /// 127 /// Adding a cast to void (or other expression wrappers) will prevent the 128 /// warning from firing. 129 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) { 130 SourceLocation Loc; 131 bool CanAssign; 132 enum { Equality, Inequality, Relational, ThreeWay } Kind; 133 134 if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) { 135 if (!Op->isComparisonOp()) 136 return false; 137 138 if (Op->getOpcode() == BO_EQ) 139 Kind = Equality; 140 else if (Op->getOpcode() == BO_NE) 141 Kind = Inequality; 142 else if (Op->getOpcode() == BO_Cmp) 143 Kind = ThreeWay; 144 else { 145 assert(Op->isRelationalOp()); 146 Kind = Relational; 147 } 148 Loc = Op->getOperatorLoc(); 149 CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue(); 150 } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) { 151 switch (Op->getOperator()) { 152 case OO_EqualEqual: 153 Kind = Equality; 154 break; 155 case OO_ExclaimEqual: 156 Kind = Inequality; 157 break; 158 case OO_Less: 159 case OO_Greater: 160 case OO_GreaterEqual: 161 case OO_LessEqual: 162 Kind = Relational; 163 break; 164 case OO_Spaceship: 165 Kind = ThreeWay; 166 break; 167 default: 168 return false; 169 } 170 171 Loc = Op->getOperatorLoc(); 172 CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue(); 173 } else { 174 // Not a typo-prone comparison. 175 return false; 176 } 177 178 // Suppress warnings when the operator, suspicious as it may be, comes from 179 // a macro expansion. 180 if (S.SourceMgr.isMacroBodyExpansion(Loc)) 181 return false; 182 183 S.Diag(Loc, diag::warn_unused_comparison) 184 << (unsigned)Kind << E->getSourceRange(); 185 186 // If the LHS is a plausible entity to assign to, provide a fixit hint to 187 // correct common typos. 188 if (CanAssign) { 189 if (Kind == Inequality) 190 S.Diag(Loc, diag::note_inequality_comparison_to_or_assign) 191 << FixItHint::CreateReplacement(Loc, "|="); 192 else if (Kind == Equality) 193 S.Diag(Loc, diag::note_equality_comparison_to_assign) 194 << FixItHint::CreateReplacement(Loc, "="); 195 } 196 197 return true; 198 } 199 200 static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A, 201 SourceLocation Loc, SourceRange R1, 202 SourceRange R2, bool IsCtor) { 203 if (!A) 204 return false; 205 StringRef Msg = A->getMessage(); 206 207 if (Msg.empty()) { 208 if (IsCtor) 209 return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2; 210 return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2; 211 } 212 213 if (IsCtor) 214 return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1 215 << R2; 216 return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2; 217 } 218 219 void Sema::DiagnoseUnusedExprResult(const Stmt *S) { 220 if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S)) 221 return DiagnoseUnusedExprResult(Label->getSubStmt()); 222 223 const Expr *E = dyn_cast_or_null<Expr>(S); 224 if (!E) 225 return; 226 227 // If we are in an unevaluated expression context, then there can be no unused 228 // results because the results aren't expected to be used in the first place. 229 if (isUnevaluatedContext()) 230 return; 231 232 SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc(); 233 // In most cases, we don't want to warn if the expression is written in a 234 // macro body, or if the macro comes from a system header. If the offending 235 // expression is a call to a function with the warn_unused_result attribute, 236 // we warn no matter the location. Because of the order in which the various 237 // checks need to happen, we factor out the macro-related test here. 238 bool ShouldSuppress = 239 SourceMgr.isMacroBodyExpansion(ExprLoc) || 240 SourceMgr.isInSystemMacro(ExprLoc); 241 242 const Expr *WarnExpr; 243 SourceLocation Loc; 244 SourceRange R1, R2; 245 if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context)) 246 return; 247 248 // If this is a GNU statement expression expanded from a macro, it is probably 249 // unused because it is a function-like macro that can be used as either an 250 // expression or statement. Don't warn, because it is almost certainly a 251 // false positive. 252 if (isa<StmtExpr>(E) && Loc.isMacroID()) 253 return; 254 255 // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers. 256 // That macro is frequently used to suppress "unused parameter" warnings, 257 // but its implementation makes clang's -Wunused-value fire. Prevent this. 258 if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) { 259 SourceLocation SpellLoc = Loc; 260 if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER")) 261 return; 262 } 263 264 // Okay, we have an unused result. Depending on what the base expression is, 265 // we might want to make a more specific diagnostic. Check for one of these 266 // cases now. 267 unsigned DiagID = diag::warn_unused_expr; 268 if (const FullExpr *Temps = dyn_cast<FullExpr>(E)) 269 E = Temps->getSubExpr(); 270 if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E)) 271 E = TempExpr->getSubExpr(); 272 273 if (DiagnoseUnusedComparison(*this, E)) 274 return; 275 276 E = WarnExpr; 277 if (const auto *Cast = dyn_cast<CastExpr>(E)) 278 if (Cast->getCastKind() == CK_NoOp || 279 Cast->getCastKind() == CK_ConstructorConversion) 280 E = Cast->getSubExpr()->IgnoreImpCasts(); 281 282 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 283 if (E->getType()->isVoidType()) 284 return; 285 286 if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>( 287 CE->getUnusedResultAttr(Context)), 288 Loc, R1, R2, /*isCtor=*/false)) 289 return; 290 291 // If the callee has attribute pure, const, or warn_unused_result, warn with 292 // a more specific message to make it clear what is happening. If the call 293 // is written in a macro body, only warn if it has the warn_unused_result 294 // attribute. 295 if (const Decl *FD = CE->getCalleeDecl()) { 296 if (ShouldSuppress) 297 return; 298 if (FD->hasAttr<PureAttr>()) { 299 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure"; 300 return; 301 } 302 if (FD->hasAttr<ConstAttr>()) { 303 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const"; 304 return; 305 } 306 } 307 } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) { 308 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { 309 const auto *A = Ctor->getAttr<WarnUnusedResultAttr>(); 310 A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>(); 311 if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true)) 312 return; 313 } 314 } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) { 315 if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) { 316 317 if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1, 318 R2, /*isCtor=*/false)) 319 return; 320 } 321 } else if (ShouldSuppress) 322 return; 323 324 E = WarnExpr; 325 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) { 326 if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) { 327 Diag(Loc, diag::err_arc_unused_init_message) << R1; 328 return; 329 } 330 const ObjCMethodDecl *MD = ME->getMethodDecl(); 331 if (MD) { 332 if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1, 333 R2, /*isCtor=*/false)) 334 return; 335 } 336 } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 337 const Expr *Source = POE->getSyntacticForm(); 338 // Handle the actually selected call of an OpenMP specialized call. 339 if (LangOpts.OpenMP && isa<CallExpr>(Source) && 340 POE->getNumSemanticExprs() == 1 && 341 isa<CallExpr>(POE->getSemanticExpr(0))) 342 return DiagnoseUnusedExprResult(POE->getSemanticExpr(0)); 343 if (isa<ObjCSubscriptRefExpr>(Source)) 344 DiagID = diag::warn_unused_container_subscript_expr; 345 else 346 DiagID = diag::warn_unused_property_expr; 347 } else if (const CXXFunctionalCastExpr *FC 348 = dyn_cast<CXXFunctionalCastExpr>(E)) { 349 const Expr *E = FC->getSubExpr(); 350 if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E)) 351 E = TE->getSubExpr(); 352 if (isa<CXXTemporaryObjectExpr>(E)) 353 return; 354 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E)) 355 if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl()) 356 if (!RD->getAttr<WarnUnusedAttr>()) 357 return; 358 } 359 // Diagnose "(void*) blah" as a typo for "(void) blah". 360 else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) { 361 TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); 362 QualType T = TI->getType(); 363 364 // We really do want to use the non-canonical type here. 365 if (T == Context.VoidPtrTy) { 366 PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>(); 367 368 Diag(Loc, diag::warn_unused_voidptr) 369 << FixItHint::CreateRemoval(TL.getStarLoc()); 370 return; 371 } 372 } 373 374 // Tell the user to assign it into a variable to force a volatile load if this 375 // isn't an array. 376 if (E->isGLValue() && E->getType().isVolatileQualified() && 377 !E->getType()->isArrayType()) { 378 Diag(Loc, diag::warn_unused_volatile) << R1 << R2; 379 return; 380 } 381 382 DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2); 383 } 384 385 void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) { 386 PushCompoundScope(IsStmtExpr); 387 } 388 389 void Sema::ActOnAfterCompoundStatementLeadingPragmas() { 390 if (getCurFPFeatures().isFPConstrained()) { 391 FunctionScopeInfo *FSI = getCurFunction(); 392 assert(FSI); 393 FSI->setUsesFPIntrin(); 394 } 395 } 396 397 void Sema::ActOnFinishOfCompoundStmt() { 398 PopCompoundScope(); 399 } 400 401 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const { 402 return getCurFunction()->CompoundScopes.back(); 403 } 404 405 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, 406 ArrayRef<Stmt *> Elts, bool isStmtExpr) { 407 const unsigned NumElts = Elts.size(); 408 409 // If we're in C89 mode, check that we don't have any decls after stmts. If 410 // so, emit an extension diagnostic. 411 if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) { 412 // Note that __extension__ can be around a decl. 413 unsigned i = 0; 414 // Skip over all declarations. 415 for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i) 416 /*empty*/; 417 418 // We found the end of the list or a statement. Scan for another declstmt. 419 for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i) 420 /*empty*/; 421 422 if (i != NumElts) { 423 Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin(); 424 Diag(D->getLocation(), diag::ext_mixed_decls_code); 425 } 426 } 427 428 // Check for suspicious empty body (null statement) in `for' and `while' 429 // statements. Don't do anything for template instantiations, this just adds 430 // noise. 431 if (NumElts != 0 && !CurrentInstantiationScope && 432 getCurCompoundScope().HasEmptyLoopBodies) { 433 for (unsigned i = 0; i != NumElts - 1; ++i) 434 DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]); 435 } 436 437 return CompoundStmt::Create(Context, Elts, L, R); 438 } 439 440 ExprResult 441 Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) { 442 if (!Val.get()) 443 return Val; 444 445 if (DiagnoseUnexpandedParameterPack(Val.get())) 446 return ExprError(); 447 448 // If we're not inside a switch, let the 'case' statement handling diagnose 449 // this. Just clean up after the expression as best we can. 450 if (getCurFunction()->SwitchStack.empty()) 451 return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false, 452 getLangOpts().CPlusPlus11); 453 454 Expr *CondExpr = 455 getCurFunction()->SwitchStack.back().getPointer()->getCond(); 456 if (!CondExpr) 457 return ExprError(); 458 QualType CondType = CondExpr->getType(); 459 460 auto CheckAndFinish = [&](Expr *E) { 461 if (CondType->isDependentType() || E->isTypeDependent()) 462 return ExprResult(E); 463 464 if (getLangOpts().CPlusPlus11) { 465 // C++11 [stmt.switch]p2: the constant-expression shall be a converted 466 // constant expression of the promoted type of the switch condition. 467 llvm::APSInt TempVal; 468 return CheckConvertedConstantExpression(E, CondType, TempVal, 469 CCEK_CaseValue); 470 } 471 472 ExprResult ER = E; 473 if (!E->isValueDependent()) 474 ER = VerifyIntegerConstantExpression(E, AllowFold); 475 if (!ER.isInvalid()) 476 ER = DefaultLvalueConversion(ER.get()); 477 if (!ER.isInvalid()) 478 ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast); 479 if (!ER.isInvalid()) 480 ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false); 481 return ER; 482 }; 483 484 ExprResult Converted = CorrectDelayedTyposInExpr( 485 Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false, 486 CheckAndFinish); 487 if (Converted.get() == Val.get()) 488 Converted = CheckAndFinish(Val.get()); 489 return Converted; 490 } 491 492 StmtResult 493 Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal, 494 SourceLocation DotDotDotLoc, ExprResult RHSVal, 495 SourceLocation ColonLoc) { 496 assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value"); 497 assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset() 498 : RHSVal.isInvalid() || RHSVal.get()) && 499 "missing RHS value"); 500 501 if (getCurFunction()->SwitchStack.empty()) { 502 Diag(CaseLoc, diag::err_case_not_in_switch); 503 return StmtError(); 504 } 505 506 if (LHSVal.isInvalid() || RHSVal.isInvalid()) { 507 getCurFunction()->SwitchStack.back().setInt(true); 508 return StmtError(); 509 } 510 511 auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(), 512 CaseLoc, DotDotDotLoc, ColonLoc); 513 getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS); 514 return CS; 515 } 516 517 /// ActOnCaseStmtBody - This installs a statement as the body of a case. 518 void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) { 519 cast<CaseStmt>(S)->setSubStmt(SubStmt); 520 } 521 522 StmtResult 523 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, 524 Stmt *SubStmt, Scope *CurScope) { 525 if (getCurFunction()->SwitchStack.empty()) { 526 Diag(DefaultLoc, diag::err_default_not_in_switch); 527 return SubStmt; 528 } 529 530 DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt); 531 getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS); 532 return DS; 533 } 534 535 StmtResult 536 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, 537 SourceLocation ColonLoc, Stmt *SubStmt) { 538 // If the label was multiply defined, reject it now. 539 if (TheDecl->getStmt()) { 540 Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName(); 541 Diag(TheDecl->getLocation(), diag::note_previous_definition); 542 return SubStmt; 543 } 544 545 ReservedIdentifierStatus Status = TheDecl->isReserved(getLangOpts()); 546 if (Status != ReservedIdentifierStatus::NotReserved && 547 !Context.getSourceManager().isInSystemHeader(IdentLoc)) 548 Diag(IdentLoc, diag::warn_reserved_extern_symbol) 549 << TheDecl << static_cast<int>(Status); 550 551 // Otherwise, things are good. Fill in the declaration and return it. 552 LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt); 553 TheDecl->setStmt(LS); 554 if (!TheDecl->isGnuLocal()) { 555 TheDecl->setLocStart(IdentLoc); 556 if (!TheDecl->isMSAsmLabel()) { 557 // Don't update the location of MS ASM labels. These will result in 558 // a diagnostic, and changing the location here will mess that up. 559 TheDecl->setLocation(IdentLoc); 560 } 561 } 562 return LS; 563 } 564 565 StmtResult Sema::BuildAttributedStmt(SourceLocation AttrsLoc, 566 ArrayRef<const Attr *> Attrs, 567 Stmt *SubStmt) { 568 // FIXME: this code should move when a planned refactoring around statement 569 // attributes lands. 570 for (const auto *A : Attrs) { 571 if (A->getKind() == attr::MustTail) { 572 if (!checkAndRewriteMustTailAttr(SubStmt, *A)) { 573 return SubStmt; 574 } 575 setFunctionHasMustTail(); 576 } 577 } 578 579 return AttributedStmt::Create(Context, AttrsLoc, Attrs, SubStmt); 580 } 581 582 StmtResult Sema::ActOnAttributedStmt(const ParsedAttributesWithRange &Attrs, 583 Stmt *SubStmt) { 584 SmallVector<const Attr *, 1> SemanticAttrs; 585 ProcessStmtAttributes(SubStmt, Attrs, SemanticAttrs); 586 if (!SemanticAttrs.empty()) 587 return BuildAttributedStmt(Attrs.Range.getBegin(), SemanticAttrs, SubStmt); 588 // If none of the attributes applied, that's fine, we can recover by 589 // returning the substatement directly instead of making an AttributedStmt 590 // with no attributes on it. 591 return SubStmt; 592 } 593 594 bool Sema::checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA) { 595 ReturnStmt *R = cast<ReturnStmt>(St); 596 Expr *E = R->getRetValue(); 597 598 if (CurContext->isDependentContext() || (E && E->isInstantiationDependent())) 599 // We have to suspend our check until template instantiation time. 600 return true; 601 602 if (!checkMustTailAttr(St, MTA)) 603 return false; 604 605 // FIXME: Replace Expr::IgnoreImplicitAsWritten() with this function. 606 // Currently it does not skip implicit constructors in an initialization 607 // context. 608 auto IgnoreImplicitAsWritten = [](Expr *E) -> Expr * { 609 return IgnoreExprNodes(E, IgnoreImplicitAsWrittenSingleStep, 610 IgnoreElidableImplicitConstructorSingleStep); 611 }; 612 613 // Now that we have verified that 'musttail' is valid here, rewrite the 614 // return value to remove all implicit nodes, but retain parentheses. 615 R->setRetValue(IgnoreImplicitAsWritten(E)); 616 return true; 617 } 618 619 bool Sema::checkMustTailAttr(const Stmt *St, const Attr &MTA) { 620 assert(!CurContext->isDependentContext() && 621 "musttail cannot be checked from a dependent context"); 622 623 // FIXME: Add Expr::IgnoreParenImplicitAsWritten() with this definition. 624 auto IgnoreParenImplicitAsWritten = [](const Expr *E) -> const Expr * { 625 return IgnoreExprNodes(const_cast<Expr *>(E), IgnoreParensSingleStep, 626 IgnoreImplicitAsWrittenSingleStep, 627 IgnoreElidableImplicitConstructorSingleStep); 628 }; 629 630 const Expr *E = cast<ReturnStmt>(St)->getRetValue(); 631 const auto *CE = dyn_cast_or_null<CallExpr>(IgnoreParenImplicitAsWritten(E)); 632 633 if (!CE) { 634 Diag(St->getBeginLoc(), diag::err_musttail_needs_call) << &MTA; 635 return false; 636 } 637 638 if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) { 639 if (EWC->cleanupsHaveSideEffects()) { 640 Diag(St->getBeginLoc(), diag::err_musttail_needs_trivial_args) << &MTA; 641 return false; 642 } 643 } 644 645 // We need to determine the full function type (including "this" type, if any) 646 // for both caller and callee. 647 struct FuncType { 648 enum { 649 ft_non_member, 650 ft_static_member, 651 ft_non_static_member, 652 ft_pointer_to_member, 653 } MemberType = ft_non_member; 654 655 QualType This; 656 const FunctionProtoType *Func; 657 const CXXMethodDecl *Method = nullptr; 658 } CallerType, CalleeType; 659 660 auto GetMethodType = [this, St, MTA](const CXXMethodDecl *CMD, FuncType &Type, 661 bool IsCallee) -> bool { 662 if (isa<CXXConstructorDecl, CXXDestructorDecl>(CMD)) { 663 Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden) 664 << IsCallee << isa<CXXDestructorDecl>(CMD); 665 if (IsCallee) 666 Diag(CMD->getBeginLoc(), diag::note_musttail_structors_forbidden) 667 << isa<CXXDestructorDecl>(CMD); 668 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 669 return false; 670 } 671 if (CMD->isStatic()) 672 Type.MemberType = FuncType::ft_static_member; 673 else { 674 Type.This = CMD->getThisType()->getPointeeType(); 675 Type.MemberType = FuncType::ft_non_static_member; 676 } 677 Type.Func = CMD->getType()->castAs<FunctionProtoType>(); 678 return true; 679 }; 680 681 const auto *CallerDecl = dyn_cast<FunctionDecl>(CurContext); 682 683 // Find caller function signature. 684 if (!CallerDecl) { 685 int ContextType; 686 if (isa<BlockDecl>(CurContext)) 687 ContextType = 0; 688 else if (isa<ObjCMethodDecl>(CurContext)) 689 ContextType = 1; 690 else 691 ContextType = 2; 692 Diag(St->getBeginLoc(), diag::err_musttail_forbidden_from_this_context) 693 << &MTA << ContextType; 694 return false; 695 } else if (const auto *CMD = dyn_cast<CXXMethodDecl>(CurContext)) { 696 // Caller is a class/struct method. 697 if (!GetMethodType(CMD, CallerType, false)) 698 return false; 699 } else { 700 // Caller is a non-method function. 701 CallerType.Func = CallerDecl->getType()->getAs<FunctionProtoType>(); 702 } 703 704 const Expr *CalleeExpr = CE->getCallee()->IgnoreParens(); 705 const auto *CalleeBinOp = dyn_cast<BinaryOperator>(CalleeExpr); 706 SourceLocation CalleeLoc = CE->getCalleeDecl() 707 ? CE->getCalleeDecl()->getBeginLoc() 708 : St->getBeginLoc(); 709 710 // Find callee function signature. 711 if (const CXXMethodDecl *CMD = 712 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) { 713 // Call is: obj.method(), obj->method(), functor(), etc. 714 if (!GetMethodType(CMD, CalleeType, true)) 715 return false; 716 } else if (CalleeBinOp && CalleeBinOp->isPtrMemOp()) { 717 // Call is: obj->*method_ptr or obj.*method_ptr 718 const auto *MPT = 719 CalleeBinOp->getRHS()->getType()->castAs<MemberPointerType>(); 720 CalleeType.This = QualType(MPT->getClass(), 0); 721 CalleeType.Func = MPT->getPointeeType()->castAs<FunctionProtoType>(); 722 CalleeType.MemberType = FuncType::ft_pointer_to_member; 723 } else if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) { 724 Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden) 725 << /* IsCallee = */ 1 << /* IsDestructor = */ 1; 726 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 727 return false; 728 } else { 729 // Non-method function. 730 CalleeType.Func = 731 CalleeExpr->getType()->getPointeeType()->getAs<FunctionProtoType>(); 732 } 733 734 // Both caller and callee must have a prototype (no K&R declarations). 735 if (!CalleeType.Func || !CallerType.Func) { 736 Diag(St->getBeginLoc(), diag::err_musttail_needs_prototype) << &MTA; 737 if (!CalleeType.Func && CE->getDirectCallee()) { 738 Diag(CE->getDirectCallee()->getBeginLoc(), 739 diag::note_musttail_fix_non_prototype); 740 } 741 if (!CallerType.Func) 742 Diag(CallerDecl->getBeginLoc(), diag::note_musttail_fix_non_prototype); 743 return false; 744 } 745 746 // Caller and callee must have matching calling conventions. 747 // 748 // Some calling conventions are physically capable of supporting tail calls 749 // even if the function types don't perfectly match. LLVM is currently too 750 // strict to allow this, but if LLVM added support for this in the future, we 751 // could exit early here and skip the remaining checks if the functions are 752 // using such a calling convention. 753 if (CallerType.Func->getCallConv() != CalleeType.Func->getCallConv()) { 754 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) 755 Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) 756 << true << ND->getDeclName(); 757 else 758 Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) << false; 759 Diag(CalleeLoc, diag::note_musttail_callconv_mismatch) 760 << FunctionType::getNameForCallConv(CallerType.Func->getCallConv()) 761 << FunctionType::getNameForCallConv(CalleeType.Func->getCallConv()); 762 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 763 return false; 764 } 765 766 if (CalleeType.Func->isVariadic() || CallerType.Func->isVariadic()) { 767 Diag(St->getBeginLoc(), diag::err_musttail_no_variadic) << &MTA; 768 return false; 769 } 770 771 // Caller and callee must match in whether they have a "this" parameter. 772 if (CallerType.This.isNull() != CalleeType.This.isNull()) { 773 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { 774 Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch) 775 << CallerType.MemberType << CalleeType.MemberType << true 776 << ND->getDeclName(); 777 Diag(CalleeLoc, diag::note_musttail_callee_defined_here) 778 << ND->getDeclName(); 779 } else 780 Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch) 781 << CallerType.MemberType << CalleeType.MemberType << false; 782 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 783 return false; 784 } 785 786 auto CheckTypesMatch = [this](FuncType CallerType, FuncType CalleeType, 787 PartialDiagnostic &PD) -> bool { 788 enum { 789 ft_different_class, 790 ft_parameter_arity, 791 ft_parameter_mismatch, 792 ft_return_type, 793 }; 794 795 auto DoTypesMatch = [this, &PD](QualType A, QualType B, 796 unsigned Select) -> bool { 797 if (!Context.hasSimilarType(A, B)) { 798 PD << Select << A.getUnqualifiedType() << B.getUnqualifiedType(); 799 return false; 800 } 801 return true; 802 }; 803 804 if (!CallerType.This.isNull() && 805 !DoTypesMatch(CallerType.This, CalleeType.This, ft_different_class)) 806 return false; 807 808 if (!DoTypesMatch(CallerType.Func->getReturnType(), 809 CalleeType.Func->getReturnType(), ft_return_type)) 810 return false; 811 812 if (CallerType.Func->getNumParams() != CalleeType.Func->getNumParams()) { 813 PD << ft_parameter_arity << CallerType.Func->getNumParams() 814 << CalleeType.Func->getNumParams(); 815 return false; 816 } 817 818 ArrayRef<QualType> CalleeParams = CalleeType.Func->getParamTypes(); 819 ArrayRef<QualType> CallerParams = CallerType.Func->getParamTypes(); 820 size_t N = CallerType.Func->getNumParams(); 821 for (size_t I = 0; I < N; I++) { 822 if (!DoTypesMatch(CalleeParams[I], CallerParams[I], 823 ft_parameter_mismatch)) { 824 PD << static_cast<int>(I) + 1; 825 return false; 826 } 827 } 828 829 return true; 830 }; 831 832 PartialDiagnostic PD = PDiag(diag::note_musttail_mismatch); 833 if (!CheckTypesMatch(CallerType, CalleeType, PD)) { 834 if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) 835 Diag(St->getBeginLoc(), diag::err_musttail_mismatch) 836 << true << ND->getDeclName(); 837 else 838 Diag(St->getBeginLoc(), diag::err_musttail_mismatch) << false; 839 Diag(CalleeLoc, PD); 840 Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; 841 return false; 842 } 843 844 return true; 845 } 846 847 namespace { 848 class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> { 849 typedef EvaluatedExprVisitor<CommaVisitor> Inherited; 850 Sema &SemaRef; 851 public: 852 CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {} 853 void VisitBinaryOperator(BinaryOperator *E) { 854 if (E->getOpcode() == BO_Comma) 855 SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc()); 856 EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E); 857 } 858 }; 859 } 860 861 StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, 862 SourceLocation LParenLoc, Stmt *InitStmt, 863 ConditionResult Cond, SourceLocation RParenLoc, 864 Stmt *thenStmt, SourceLocation ElseLoc, 865 Stmt *elseStmt) { 866 if (Cond.isInvalid()) 867 Cond = ConditionResult( 868 *this, nullptr, 869 MakeFullExpr(new (Context) OpaqueValueExpr(SourceLocation(), 870 Context.BoolTy, VK_PRValue), 871 IfLoc), 872 false); 873 874 Expr *CondExpr = Cond.get().second; 875 // Only call the CommaVisitor when not C89 due to differences in scope flags. 876 if ((getLangOpts().C99 || getLangOpts().CPlusPlus) && 877 !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc())) 878 CommaVisitor(*this).Visit(CondExpr); 879 880 if (!elseStmt) 881 DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), thenStmt, 882 diag::warn_empty_if_body); 883 884 if (IsConstexpr) { 885 auto DiagnoseLikelihood = [&](const Stmt *S) { 886 if (const Attr *A = Stmt::getLikelihoodAttr(S)) { 887 Diags.Report(A->getLocation(), 888 diag::warn_attribute_has_no_effect_on_if_constexpr) 889 << A << A->getRange(); 890 Diags.Report(IfLoc, 891 diag::note_attribute_has_no_effect_on_if_constexpr_here) 892 << SourceRange(IfLoc, LParenLoc.getLocWithOffset(-1)); 893 } 894 }; 895 DiagnoseLikelihood(thenStmt); 896 DiagnoseLikelihood(elseStmt); 897 } else { 898 std::tuple<bool, const Attr *, const Attr *> LHC = 899 Stmt::determineLikelihoodConflict(thenStmt, elseStmt); 900 if (std::get<0>(LHC)) { 901 const Attr *ThenAttr = std::get<1>(LHC); 902 const Attr *ElseAttr = std::get<2>(LHC); 903 Diags.Report(ThenAttr->getLocation(), 904 diag::warn_attributes_likelihood_ifstmt_conflict) 905 << ThenAttr << ThenAttr->getRange(); 906 Diags.Report(ElseAttr->getLocation(), diag::note_conflicting_attribute) 907 << ElseAttr << ElseAttr->getRange(); 908 } 909 } 910 911 return BuildIfStmt(IfLoc, IsConstexpr, LParenLoc, InitStmt, Cond, RParenLoc, 912 thenStmt, ElseLoc, elseStmt); 913 } 914 915 StmtResult Sema::BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr, 916 SourceLocation LParenLoc, Stmt *InitStmt, 917 ConditionResult Cond, SourceLocation RParenLoc, 918 Stmt *thenStmt, SourceLocation ElseLoc, 919 Stmt *elseStmt) { 920 if (Cond.isInvalid()) 921 return StmtError(); 922 923 if (IsConstexpr || isa<ObjCAvailabilityCheckExpr>(Cond.get().second)) 924 setFunctionHasBranchProtectedScope(); 925 926 return IfStmt::Create(Context, IfLoc, IsConstexpr, InitStmt, Cond.get().first, 927 Cond.get().second, LParenLoc, RParenLoc, thenStmt, 928 ElseLoc, elseStmt); 929 } 930 931 namespace { 932 struct CaseCompareFunctor { 933 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, 934 const llvm::APSInt &RHS) { 935 return LHS.first < RHS; 936 } 937 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, 938 const std::pair<llvm::APSInt, CaseStmt*> &RHS) { 939 return LHS.first < RHS.first; 940 } 941 bool operator()(const llvm::APSInt &LHS, 942 const std::pair<llvm::APSInt, CaseStmt*> &RHS) { 943 return LHS < RHS.first; 944 } 945 }; 946 } 947 948 /// CmpCaseVals - Comparison predicate for sorting case values. 949 /// 950 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs, 951 const std::pair<llvm::APSInt, CaseStmt*>& rhs) { 952 if (lhs.first < rhs.first) 953 return true; 954 955 if (lhs.first == rhs.first && 956 lhs.second->getCaseLoc() < rhs.second->getCaseLoc()) 957 return true; 958 return false; 959 } 960 961 /// CmpEnumVals - Comparison predicate for sorting enumeration values. 962 /// 963 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, 964 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) 965 { 966 return lhs.first < rhs.first; 967 } 968 969 /// EqEnumVals - Comparison preficate for uniqing enumeration values. 970 /// 971 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, 972 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) 973 { 974 return lhs.first == rhs.first; 975 } 976 977 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of 978 /// potentially integral-promoted expression @p expr. 979 static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) { 980 if (const auto *FE = dyn_cast<FullExpr>(E)) 981 E = FE->getSubExpr(); 982 while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) { 983 if (ImpCast->getCastKind() != CK_IntegralCast) break; 984 E = ImpCast->getSubExpr(); 985 } 986 return E->getType(); 987 } 988 989 ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) { 990 class SwitchConvertDiagnoser : public ICEConvertDiagnoser { 991 Expr *Cond; 992 993 public: 994 SwitchConvertDiagnoser(Expr *Cond) 995 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true), 996 Cond(Cond) {} 997 998 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 999 QualType T) override { 1000 return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T; 1001 } 1002 1003 SemaDiagnosticBuilder diagnoseIncomplete( 1004 Sema &S, SourceLocation Loc, QualType T) override { 1005 return S.Diag(Loc, diag::err_switch_incomplete_class_type) 1006 << T << Cond->getSourceRange(); 1007 } 1008 1009 SemaDiagnosticBuilder diagnoseExplicitConv( 1010 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 1011 return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy; 1012 } 1013 1014 SemaDiagnosticBuilder noteExplicitConv( 1015 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1016 return S.Diag(Conv->getLocation(), diag::note_switch_conversion) 1017 << ConvTy->isEnumeralType() << ConvTy; 1018 } 1019 1020 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 1021 QualType T) override { 1022 return S.Diag(Loc, diag::err_switch_multiple_conversions) << T; 1023 } 1024 1025 SemaDiagnosticBuilder noteAmbiguous( 1026 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1027 return S.Diag(Conv->getLocation(), diag::note_switch_conversion) 1028 << ConvTy->isEnumeralType() << ConvTy; 1029 } 1030 1031 SemaDiagnosticBuilder diagnoseConversion( 1032 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 1033 llvm_unreachable("conversion functions are permitted"); 1034 } 1035 } SwitchDiagnoser(Cond); 1036 1037 ExprResult CondResult = 1038 PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser); 1039 if (CondResult.isInvalid()) 1040 return ExprError(); 1041 1042 // FIXME: PerformContextualImplicitConversion doesn't always tell us if it 1043 // failed and produced a diagnostic. 1044 Cond = CondResult.get(); 1045 if (!Cond->isTypeDependent() && 1046 !Cond->getType()->isIntegralOrEnumerationType()) 1047 return ExprError(); 1048 1049 // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. 1050 return UsualUnaryConversions(Cond); 1051 } 1052 1053 StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, 1054 SourceLocation LParenLoc, 1055 Stmt *InitStmt, ConditionResult Cond, 1056 SourceLocation RParenLoc) { 1057 Expr *CondExpr = Cond.get().second; 1058 assert((Cond.isInvalid() || CondExpr) && "switch with no condition"); 1059 1060 if (CondExpr && !CondExpr->isTypeDependent()) { 1061 // We have already converted the expression to an integral or enumeration 1062 // type, when we parsed the switch condition. There are cases where we don't 1063 // have an appropriate type, e.g. a typo-expr Cond was corrected to an 1064 // inappropriate-type expr, we just return an error. 1065 if (!CondExpr->getType()->isIntegralOrEnumerationType()) 1066 return StmtError(); 1067 if (CondExpr->isKnownToHaveBooleanValue()) { 1068 // switch(bool_expr) {...} is often a programmer error, e.g. 1069 // switch(n && mask) { ... } // Doh - should be "n & mask". 1070 // One can always use an if statement instead of switch(bool_expr). 1071 Diag(SwitchLoc, diag::warn_bool_switch_condition) 1072 << CondExpr->getSourceRange(); 1073 } 1074 } 1075 1076 setFunctionHasBranchIntoScope(); 1077 1078 auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr, 1079 LParenLoc, RParenLoc); 1080 getCurFunction()->SwitchStack.push_back( 1081 FunctionScopeInfo::SwitchInfo(SS, false)); 1082 return SS; 1083 } 1084 1085 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) { 1086 Val = Val.extOrTrunc(BitWidth); 1087 Val.setIsSigned(IsSigned); 1088 } 1089 1090 /// Check the specified case value is in range for the given unpromoted switch 1091 /// type. 1092 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val, 1093 unsigned UnpromotedWidth, bool UnpromotedSign) { 1094 // In C++11 onwards, this is checked by the language rules. 1095 if (S.getLangOpts().CPlusPlus11) 1096 return; 1097 1098 // If the case value was signed and negative and the switch expression is 1099 // unsigned, don't bother to warn: this is implementation-defined behavior. 1100 // FIXME: Introduce a second, default-ignored warning for this case? 1101 if (UnpromotedWidth < Val.getBitWidth()) { 1102 llvm::APSInt ConvVal(Val); 1103 AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign); 1104 AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned()); 1105 // FIXME: Use different diagnostics for overflow in conversion to promoted 1106 // type versus "switch expression cannot have this value". Use proper 1107 // IntRange checking rather than just looking at the unpromoted type here. 1108 if (ConvVal != Val) 1109 S.Diag(Loc, diag::warn_case_value_overflow) << toString(Val, 10) 1110 << toString(ConvVal, 10); 1111 } 1112 } 1113 1114 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy; 1115 1116 /// Returns true if we should emit a diagnostic about this case expression not 1117 /// being a part of the enum used in the switch controlling expression. 1118 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S, 1119 const EnumDecl *ED, 1120 const Expr *CaseExpr, 1121 EnumValsTy::iterator &EI, 1122 EnumValsTy::iterator &EIEnd, 1123 const llvm::APSInt &Val) { 1124 if (!ED->isClosed()) 1125 return false; 1126 1127 if (const DeclRefExpr *DRE = 1128 dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) { 1129 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 1130 QualType VarType = VD->getType(); 1131 QualType EnumType = S.Context.getTypeDeclType(ED); 1132 if (VD->hasGlobalStorage() && VarType.isConstQualified() && 1133 S.Context.hasSameUnqualifiedType(EnumType, VarType)) 1134 return false; 1135 } 1136 } 1137 1138 if (ED->hasAttr<FlagEnumAttr>()) 1139 return !S.IsValueInFlagEnum(ED, Val, false); 1140 1141 while (EI != EIEnd && EI->first < Val) 1142 EI++; 1143 1144 if (EI != EIEnd && EI->first == Val) 1145 return false; 1146 1147 return true; 1148 } 1149 1150 static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond, 1151 const Expr *Case) { 1152 QualType CondType = Cond->getType(); 1153 QualType CaseType = Case->getType(); 1154 1155 const EnumType *CondEnumType = CondType->getAs<EnumType>(); 1156 const EnumType *CaseEnumType = CaseType->getAs<EnumType>(); 1157 if (!CondEnumType || !CaseEnumType) 1158 return; 1159 1160 // Ignore anonymous enums. 1161 if (!CondEnumType->getDecl()->getIdentifier() && 1162 !CondEnumType->getDecl()->getTypedefNameForAnonDecl()) 1163 return; 1164 if (!CaseEnumType->getDecl()->getIdentifier() && 1165 !CaseEnumType->getDecl()->getTypedefNameForAnonDecl()) 1166 return; 1167 1168 if (S.Context.hasSameUnqualifiedType(CondType, CaseType)) 1169 return; 1170 1171 S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch) 1172 << CondType << CaseType << Cond->getSourceRange() 1173 << Case->getSourceRange(); 1174 } 1175 1176 StmtResult 1177 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, 1178 Stmt *BodyStmt) { 1179 SwitchStmt *SS = cast<SwitchStmt>(Switch); 1180 bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt(); 1181 assert(SS == getCurFunction()->SwitchStack.back().getPointer() && 1182 "switch stack missing push/pop!"); 1183 1184 getCurFunction()->SwitchStack.pop_back(); 1185 1186 if (!BodyStmt) return StmtError(); 1187 SS->setBody(BodyStmt, SwitchLoc); 1188 1189 Expr *CondExpr = SS->getCond(); 1190 if (!CondExpr) return StmtError(); 1191 1192 QualType CondType = CondExpr->getType(); 1193 1194 // C++ 6.4.2.p2: 1195 // Integral promotions are performed (on the switch condition). 1196 // 1197 // A case value unrepresentable by the original switch condition 1198 // type (before the promotion) doesn't make sense, even when it can 1199 // be represented by the promoted type. Therefore we need to find 1200 // the pre-promotion type of the switch condition. 1201 const Expr *CondExprBeforePromotion = CondExpr; 1202 QualType CondTypeBeforePromotion = 1203 GetTypeBeforeIntegralPromotion(CondExprBeforePromotion); 1204 1205 // Get the bitwidth of the switched-on value after promotions. We must 1206 // convert the integer case values to this width before comparison. 1207 bool HasDependentValue 1208 = CondExpr->isTypeDependent() || CondExpr->isValueDependent(); 1209 unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType); 1210 bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType(); 1211 1212 // Get the width and signedness that the condition might actually have, for 1213 // warning purposes. 1214 // FIXME: Grab an IntRange for the condition rather than using the unpromoted 1215 // type. 1216 unsigned CondWidthBeforePromotion 1217 = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion); 1218 bool CondIsSignedBeforePromotion 1219 = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType(); 1220 1221 // Accumulate all of the case values in a vector so that we can sort them 1222 // and detect duplicates. This vector contains the APInt for the case after 1223 // it has been converted to the condition type. 1224 typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy; 1225 CaseValsTy CaseVals; 1226 1227 // Keep track of any GNU case ranges we see. The APSInt is the low value. 1228 typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy; 1229 CaseRangesTy CaseRanges; 1230 1231 DefaultStmt *TheDefaultStmt = nullptr; 1232 1233 bool CaseListIsErroneous = false; 1234 1235 for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue; 1236 SC = SC->getNextSwitchCase()) { 1237 1238 if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) { 1239 if (TheDefaultStmt) { 1240 Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); 1241 Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev); 1242 1243 // FIXME: Remove the default statement from the switch block so that 1244 // we'll return a valid AST. This requires recursing down the AST and 1245 // finding it, not something we are set up to do right now. For now, 1246 // just lop the entire switch stmt out of the AST. 1247 CaseListIsErroneous = true; 1248 } 1249 TheDefaultStmt = DS; 1250 1251 } else { 1252 CaseStmt *CS = cast<CaseStmt>(SC); 1253 1254 Expr *Lo = CS->getLHS(); 1255 1256 if (Lo->isValueDependent()) { 1257 HasDependentValue = true; 1258 break; 1259 } 1260 1261 // We already verified that the expression has a constant value; 1262 // get that value (prior to conversions). 1263 const Expr *LoBeforePromotion = Lo; 1264 GetTypeBeforeIntegralPromotion(LoBeforePromotion); 1265 llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context); 1266 1267 // Check the unconverted value is within the range of possible values of 1268 // the switch expression. 1269 checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion, 1270 CondIsSignedBeforePromotion); 1271 1272 // FIXME: This duplicates the check performed for warn_not_in_enum below. 1273 checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion, 1274 LoBeforePromotion); 1275 1276 // Convert the value to the same width/sign as the condition. 1277 AdjustAPSInt(LoVal, CondWidth, CondIsSigned); 1278 1279 // If this is a case range, remember it in CaseRanges, otherwise CaseVals. 1280 if (CS->getRHS()) { 1281 if (CS->getRHS()->isValueDependent()) { 1282 HasDependentValue = true; 1283 break; 1284 } 1285 CaseRanges.push_back(std::make_pair(LoVal, CS)); 1286 } else 1287 CaseVals.push_back(std::make_pair(LoVal, CS)); 1288 } 1289 } 1290 1291 if (!HasDependentValue) { 1292 // If we don't have a default statement, check whether the 1293 // condition is constant. 1294 llvm::APSInt ConstantCondValue; 1295 bool HasConstantCond = false; 1296 if (!TheDefaultStmt) { 1297 Expr::EvalResult Result; 1298 HasConstantCond = CondExpr->EvaluateAsInt(Result, Context, 1299 Expr::SE_AllowSideEffects); 1300 if (Result.Val.isInt()) 1301 ConstantCondValue = Result.Val.getInt(); 1302 assert(!HasConstantCond || 1303 (ConstantCondValue.getBitWidth() == CondWidth && 1304 ConstantCondValue.isSigned() == CondIsSigned)); 1305 } 1306 bool ShouldCheckConstantCond = HasConstantCond; 1307 1308 // Sort all the scalar case values so we can easily detect duplicates. 1309 llvm::stable_sort(CaseVals, CmpCaseVals); 1310 1311 if (!CaseVals.empty()) { 1312 for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) { 1313 if (ShouldCheckConstantCond && 1314 CaseVals[i].first == ConstantCondValue) 1315 ShouldCheckConstantCond = false; 1316 1317 if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) { 1318 // If we have a duplicate, report it. 1319 // First, determine if either case value has a name 1320 StringRef PrevString, CurrString; 1321 Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts(); 1322 Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts(); 1323 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) { 1324 PrevString = DeclRef->getDecl()->getName(); 1325 } 1326 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) { 1327 CurrString = DeclRef->getDecl()->getName(); 1328 } 1329 SmallString<16> CaseValStr; 1330 CaseVals[i-1].first.toString(CaseValStr); 1331 1332 if (PrevString == CurrString) 1333 Diag(CaseVals[i].second->getLHS()->getBeginLoc(), 1334 diag::err_duplicate_case) 1335 << (PrevString.empty() ? CaseValStr.str() : PrevString); 1336 else 1337 Diag(CaseVals[i].second->getLHS()->getBeginLoc(), 1338 diag::err_duplicate_case_differing_expr) 1339 << (PrevString.empty() ? CaseValStr.str() : PrevString) 1340 << (CurrString.empty() ? CaseValStr.str() : CurrString) 1341 << CaseValStr; 1342 1343 Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(), 1344 diag::note_duplicate_case_prev); 1345 // FIXME: We really want to remove the bogus case stmt from the 1346 // substmt, but we have no way to do this right now. 1347 CaseListIsErroneous = true; 1348 } 1349 } 1350 } 1351 1352 // Detect duplicate case ranges, which usually don't exist at all in 1353 // the first place. 1354 if (!CaseRanges.empty()) { 1355 // Sort all the case ranges by their low value so we can easily detect 1356 // overlaps between ranges. 1357 llvm::stable_sort(CaseRanges); 1358 1359 // Scan the ranges, computing the high values and removing empty ranges. 1360 std::vector<llvm::APSInt> HiVals; 1361 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { 1362 llvm::APSInt &LoVal = CaseRanges[i].first; 1363 CaseStmt *CR = CaseRanges[i].second; 1364 Expr *Hi = CR->getRHS(); 1365 1366 const Expr *HiBeforePromotion = Hi; 1367 GetTypeBeforeIntegralPromotion(HiBeforePromotion); 1368 llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context); 1369 1370 // Check the unconverted value is within the range of possible values of 1371 // the switch expression. 1372 checkCaseValue(*this, Hi->getBeginLoc(), HiVal, 1373 CondWidthBeforePromotion, CondIsSignedBeforePromotion); 1374 1375 // Convert the value to the same width/sign as the condition. 1376 AdjustAPSInt(HiVal, CondWidth, CondIsSigned); 1377 1378 // If the low value is bigger than the high value, the case is empty. 1379 if (LoVal > HiVal) { 1380 Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range) 1381 << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc()); 1382 CaseRanges.erase(CaseRanges.begin()+i); 1383 --i; 1384 --e; 1385 continue; 1386 } 1387 1388 if (ShouldCheckConstantCond && 1389 LoVal <= ConstantCondValue && 1390 ConstantCondValue <= HiVal) 1391 ShouldCheckConstantCond = false; 1392 1393 HiVals.push_back(HiVal); 1394 } 1395 1396 // Rescan the ranges, looking for overlap with singleton values and other 1397 // ranges. Since the range list is sorted, we only need to compare case 1398 // ranges with their neighbors. 1399 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { 1400 llvm::APSInt &CRLo = CaseRanges[i].first; 1401 llvm::APSInt &CRHi = HiVals[i]; 1402 CaseStmt *CR = CaseRanges[i].second; 1403 1404 // Check to see whether the case range overlaps with any 1405 // singleton cases. 1406 CaseStmt *OverlapStmt = nullptr; 1407 llvm::APSInt OverlapVal(32); 1408 1409 // Find the smallest value >= the lower bound. If I is in the 1410 // case range, then we have overlap. 1411 CaseValsTy::iterator I = 1412 llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor()); 1413 if (I != CaseVals.end() && I->first < CRHi) { 1414 OverlapVal = I->first; // Found overlap with scalar. 1415 OverlapStmt = I->second; 1416 } 1417 1418 // Find the smallest value bigger than the upper bound. 1419 I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); 1420 if (I != CaseVals.begin() && (I-1)->first >= CRLo) { 1421 OverlapVal = (I-1)->first; // Found overlap with scalar. 1422 OverlapStmt = (I-1)->second; 1423 } 1424 1425 // Check to see if this case stmt overlaps with the subsequent 1426 // case range. 1427 if (i && CRLo <= HiVals[i-1]) { 1428 OverlapVal = HiVals[i-1]; // Found overlap with range. 1429 OverlapStmt = CaseRanges[i-1].second; 1430 } 1431 1432 if (OverlapStmt) { 1433 // If we have a duplicate, report it. 1434 Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case) 1435 << toString(OverlapVal, 10); 1436 Diag(OverlapStmt->getLHS()->getBeginLoc(), 1437 diag::note_duplicate_case_prev); 1438 // FIXME: We really want to remove the bogus case stmt from the 1439 // substmt, but we have no way to do this right now. 1440 CaseListIsErroneous = true; 1441 } 1442 } 1443 } 1444 1445 // Complain if we have a constant condition and we didn't find a match. 1446 if (!CaseListIsErroneous && !CaseListIsIncomplete && 1447 ShouldCheckConstantCond) { 1448 // TODO: it would be nice if we printed enums as enums, chars as 1449 // chars, etc. 1450 Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition) 1451 << toString(ConstantCondValue, 10) 1452 << CondExpr->getSourceRange(); 1453 } 1454 1455 // Check to see if switch is over an Enum and handles all of its 1456 // values. We only issue a warning if there is not 'default:', but 1457 // we still do the analysis to preserve this information in the AST 1458 // (which can be used by flow-based analyes). 1459 // 1460 const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>(); 1461 1462 // If switch has default case, then ignore it. 1463 if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond && 1464 ET && ET->getDecl()->isCompleteDefinition() && 1465 !empty(ET->getDecl()->enumerators())) { 1466 const EnumDecl *ED = ET->getDecl(); 1467 EnumValsTy EnumVals; 1468 1469 // Gather all enum values, set their type and sort them, 1470 // allowing easier comparison with CaseVals. 1471 for (auto *EDI : ED->enumerators()) { 1472 llvm::APSInt Val = EDI->getInitVal(); 1473 AdjustAPSInt(Val, CondWidth, CondIsSigned); 1474 EnumVals.push_back(std::make_pair(Val, EDI)); 1475 } 1476 llvm::stable_sort(EnumVals, CmpEnumVals); 1477 auto EI = EnumVals.begin(), EIEnd = 1478 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); 1479 1480 // See which case values aren't in enum. 1481 for (CaseValsTy::const_iterator CI = CaseVals.begin(); 1482 CI != CaseVals.end(); CI++) { 1483 Expr *CaseExpr = CI->second->getLHS(); 1484 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, 1485 CI->first)) 1486 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) 1487 << CondTypeBeforePromotion; 1488 } 1489 1490 // See which of case ranges aren't in enum 1491 EI = EnumVals.begin(); 1492 for (CaseRangesTy::const_iterator RI = CaseRanges.begin(); 1493 RI != CaseRanges.end(); RI++) { 1494 Expr *CaseExpr = RI->second->getLHS(); 1495 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, 1496 RI->first)) 1497 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) 1498 << CondTypeBeforePromotion; 1499 1500 llvm::APSInt Hi = 1501 RI->second->getRHS()->EvaluateKnownConstInt(Context); 1502 AdjustAPSInt(Hi, CondWidth, CondIsSigned); 1503 1504 CaseExpr = RI->second->getRHS(); 1505 if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, 1506 Hi)) 1507 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) 1508 << CondTypeBeforePromotion; 1509 } 1510 1511 // Check which enum vals aren't in switch 1512 auto CI = CaseVals.begin(); 1513 auto RI = CaseRanges.begin(); 1514 bool hasCasesNotInSwitch = false; 1515 1516 SmallVector<DeclarationName,8> UnhandledNames; 1517 1518 for (EI = EnumVals.begin(); EI != EIEnd; EI++) { 1519 // Don't warn about omitted unavailable EnumConstantDecls. 1520 switch (EI->second->getAvailability()) { 1521 case AR_Deprecated: 1522 // Omitting a deprecated constant is ok; it should never materialize. 1523 case AR_Unavailable: 1524 continue; 1525 1526 case AR_NotYetIntroduced: 1527 // Partially available enum constants should be present. Note that we 1528 // suppress -Wunguarded-availability diagnostics for such uses. 1529 case AR_Available: 1530 break; 1531 } 1532 1533 if (EI->second->hasAttr<UnusedAttr>()) 1534 continue; 1535 1536 // Drop unneeded case values 1537 while (CI != CaseVals.end() && CI->first < EI->first) 1538 CI++; 1539 1540 if (CI != CaseVals.end() && CI->first == EI->first) 1541 continue; 1542 1543 // Drop unneeded case ranges 1544 for (; RI != CaseRanges.end(); RI++) { 1545 llvm::APSInt Hi = 1546 RI->second->getRHS()->EvaluateKnownConstInt(Context); 1547 AdjustAPSInt(Hi, CondWidth, CondIsSigned); 1548 if (EI->first <= Hi) 1549 break; 1550 } 1551 1552 if (RI == CaseRanges.end() || EI->first < RI->first) { 1553 hasCasesNotInSwitch = true; 1554 UnhandledNames.push_back(EI->second->getDeclName()); 1555 } 1556 } 1557 1558 if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag()) 1559 Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default); 1560 1561 // Produce a nice diagnostic if multiple values aren't handled. 1562 if (!UnhandledNames.empty()) { 1563 auto DB = Diag(CondExpr->getExprLoc(), TheDefaultStmt 1564 ? diag::warn_def_missing_case 1565 : diag::warn_missing_case) 1566 << (int)UnhandledNames.size(); 1567 1568 for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3); 1569 I != E; ++I) 1570 DB << UnhandledNames[I]; 1571 } 1572 1573 if (!hasCasesNotInSwitch) 1574 SS->setAllEnumCasesCovered(); 1575 } 1576 } 1577 1578 if (BodyStmt) 1579 DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt, 1580 diag::warn_empty_switch_body); 1581 1582 // FIXME: If the case list was broken is some way, we don't have a good system 1583 // to patch it up. Instead, just return the whole substmt as broken. 1584 if (CaseListIsErroneous) 1585 return StmtError(); 1586 1587 return SS; 1588 } 1589 1590 void 1591 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, 1592 Expr *SrcExpr) { 1593 if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc())) 1594 return; 1595 1596 if (const EnumType *ET = DstType->getAs<EnumType>()) 1597 if (!Context.hasSameUnqualifiedType(SrcType, DstType) && 1598 SrcType->isIntegerType()) { 1599 if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() && 1600 SrcExpr->isIntegerConstantExpr(Context)) { 1601 // Get the bitwidth of the enum value before promotions. 1602 unsigned DstWidth = Context.getIntWidth(DstType); 1603 bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType(); 1604 1605 llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context); 1606 AdjustAPSInt(RhsVal, DstWidth, DstIsSigned); 1607 const EnumDecl *ED = ET->getDecl(); 1608 1609 if (!ED->isClosed()) 1610 return; 1611 1612 if (ED->hasAttr<FlagEnumAttr>()) { 1613 if (!IsValueInFlagEnum(ED, RhsVal, true)) 1614 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) 1615 << DstType.getUnqualifiedType(); 1616 } else { 1617 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64> 1618 EnumValsTy; 1619 EnumValsTy EnumVals; 1620 1621 // Gather all enum values, set their type and sort them, 1622 // allowing easier comparison with rhs constant. 1623 for (auto *EDI : ED->enumerators()) { 1624 llvm::APSInt Val = EDI->getInitVal(); 1625 AdjustAPSInt(Val, DstWidth, DstIsSigned); 1626 EnumVals.push_back(std::make_pair(Val, EDI)); 1627 } 1628 if (EnumVals.empty()) 1629 return; 1630 llvm::stable_sort(EnumVals, CmpEnumVals); 1631 EnumValsTy::iterator EIend = 1632 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); 1633 1634 // See which values aren't in the enum. 1635 EnumValsTy::const_iterator EI = EnumVals.begin(); 1636 while (EI != EIend && EI->first < RhsVal) 1637 EI++; 1638 if (EI == EIend || EI->first != RhsVal) { 1639 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) 1640 << DstType.getUnqualifiedType(); 1641 } 1642 } 1643 } 1644 } 1645 } 1646 1647 StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, 1648 SourceLocation LParenLoc, ConditionResult Cond, 1649 SourceLocation RParenLoc, Stmt *Body) { 1650 if (Cond.isInvalid()) 1651 return StmtError(); 1652 1653 auto CondVal = Cond.get(); 1654 CheckBreakContinueBinding(CondVal.second); 1655 1656 if (CondVal.second && 1657 !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc())) 1658 CommaVisitor(*this).Visit(CondVal.second); 1659 1660 if (isa<NullStmt>(Body)) 1661 getCurCompoundScope().setHasEmptyLoopBodies(); 1662 1663 return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body, 1664 WhileLoc, LParenLoc, RParenLoc); 1665 } 1666 1667 StmtResult 1668 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, 1669 SourceLocation WhileLoc, SourceLocation CondLParen, 1670 Expr *Cond, SourceLocation CondRParen) { 1671 assert(Cond && "ActOnDoStmt(): missing expression"); 1672 1673 CheckBreakContinueBinding(Cond); 1674 ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond); 1675 if (CondResult.isInvalid()) 1676 return StmtError(); 1677 Cond = CondResult.get(); 1678 1679 CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false); 1680 if (CondResult.isInvalid()) 1681 return StmtError(); 1682 Cond = CondResult.get(); 1683 1684 // Only call the CommaVisitor for C89 due to differences in scope flags. 1685 if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus && 1686 !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc())) 1687 CommaVisitor(*this).Visit(Cond); 1688 1689 return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen); 1690 } 1691 1692 namespace { 1693 // Use SetVector since the diagnostic cares about the ordering of the Decl's. 1694 using DeclSetVector = 1695 llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>, 1696 llvm::SmallPtrSet<VarDecl *, 8>>; 1697 1698 // This visitor will traverse a conditional statement and store all 1699 // the evaluated decls into a vector. Simple is set to true if none 1700 // of the excluded constructs are used. 1701 class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> { 1702 DeclSetVector &Decls; 1703 SmallVectorImpl<SourceRange> &Ranges; 1704 bool Simple; 1705 public: 1706 typedef EvaluatedExprVisitor<DeclExtractor> Inherited; 1707 1708 DeclExtractor(Sema &S, DeclSetVector &Decls, 1709 SmallVectorImpl<SourceRange> &Ranges) : 1710 Inherited(S.Context), 1711 Decls(Decls), 1712 Ranges(Ranges), 1713 Simple(true) {} 1714 1715 bool isSimple() { return Simple; } 1716 1717 // Replaces the method in EvaluatedExprVisitor. 1718 void VisitMemberExpr(MemberExpr* E) { 1719 Simple = false; 1720 } 1721 1722 // Any Stmt not explicitly listed will cause the condition to be marked 1723 // complex. 1724 void VisitStmt(Stmt *S) { Simple = false; } 1725 1726 void VisitBinaryOperator(BinaryOperator *E) { 1727 Visit(E->getLHS()); 1728 Visit(E->getRHS()); 1729 } 1730 1731 void VisitCastExpr(CastExpr *E) { 1732 Visit(E->getSubExpr()); 1733 } 1734 1735 void VisitUnaryOperator(UnaryOperator *E) { 1736 // Skip checking conditionals with derefernces. 1737 if (E->getOpcode() == UO_Deref) 1738 Simple = false; 1739 else 1740 Visit(E->getSubExpr()); 1741 } 1742 1743 void VisitConditionalOperator(ConditionalOperator *E) { 1744 Visit(E->getCond()); 1745 Visit(E->getTrueExpr()); 1746 Visit(E->getFalseExpr()); 1747 } 1748 1749 void VisitParenExpr(ParenExpr *E) { 1750 Visit(E->getSubExpr()); 1751 } 1752 1753 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { 1754 Visit(E->getOpaqueValue()->getSourceExpr()); 1755 Visit(E->getFalseExpr()); 1756 } 1757 1758 void VisitIntegerLiteral(IntegerLiteral *E) { } 1759 void VisitFloatingLiteral(FloatingLiteral *E) { } 1760 void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { } 1761 void VisitCharacterLiteral(CharacterLiteral *E) { } 1762 void VisitGNUNullExpr(GNUNullExpr *E) { } 1763 void VisitImaginaryLiteral(ImaginaryLiteral *E) { } 1764 1765 void VisitDeclRefExpr(DeclRefExpr *E) { 1766 VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()); 1767 if (!VD) { 1768 // Don't allow unhandled Decl types. 1769 Simple = false; 1770 return; 1771 } 1772 1773 Ranges.push_back(E->getSourceRange()); 1774 1775 Decls.insert(VD); 1776 } 1777 1778 }; // end class DeclExtractor 1779 1780 // DeclMatcher checks to see if the decls are used in a non-evaluated 1781 // context. 1782 class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> { 1783 DeclSetVector &Decls; 1784 bool FoundDecl; 1785 1786 public: 1787 typedef EvaluatedExprVisitor<DeclMatcher> Inherited; 1788 1789 DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) : 1790 Inherited(S.Context), Decls(Decls), FoundDecl(false) { 1791 if (!Statement) return; 1792 1793 Visit(Statement); 1794 } 1795 1796 void VisitReturnStmt(ReturnStmt *S) { 1797 FoundDecl = true; 1798 } 1799 1800 void VisitBreakStmt(BreakStmt *S) { 1801 FoundDecl = true; 1802 } 1803 1804 void VisitGotoStmt(GotoStmt *S) { 1805 FoundDecl = true; 1806 } 1807 1808 void VisitCastExpr(CastExpr *E) { 1809 if (E->getCastKind() == CK_LValueToRValue) 1810 CheckLValueToRValueCast(E->getSubExpr()); 1811 else 1812 Visit(E->getSubExpr()); 1813 } 1814 1815 void CheckLValueToRValueCast(Expr *E) { 1816 E = E->IgnoreParenImpCasts(); 1817 1818 if (isa<DeclRefExpr>(E)) { 1819 return; 1820 } 1821 1822 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 1823 Visit(CO->getCond()); 1824 CheckLValueToRValueCast(CO->getTrueExpr()); 1825 CheckLValueToRValueCast(CO->getFalseExpr()); 1826 return; 1827 } 1828 1829 if (BinaryConditionalOperator *BCO = 1830 dyn_cast<BinaryConditionalOperator>(E)) { 1831 CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr()); 1832 CheckLValueToRValueCast(BCO->getFalseExpr()); 1833 return; 1834 } 1835 1836 Visit(E); 1837 } 1838 1839 void VisitDeclRefExpr(DeclRefExpr *E) { 1840 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) 1841 if (Decls.count(VD)) 1842 FoundDecl = true; 1843 } 1844 1845 void VisitPseudoObjectExpr(PseudoObjectExpr *POE) { 1846 // Only need to visit the semantics for POE. 1847 // SyntaticForm doesn't really use the Decal. 1848 for (auto *S : POE->semantics()) { 1849 if (auto *OVE = dyn_cast<OpaqueValueExpr>(S)) 1850 // Look past the OVE into the expression it binds. 1851 Visit(OVE->getSourceExpr()); 1852 else 1853 Visit(S); 1854 } 1855 } 1856 1857 bool FoundDeclInUse() { return FoundDecl; } 1858 1859 }; // end class DeclMatcher 1860 1861 void CheckForLoopConditionalStatement(Sema &S, Expr *Second, 1862 Expr *Third, Stmt *Body) { 1863 // Condition is empty 1864 if (!Second) return; 1865 1866 if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body, 1867 Second->getBeginLoc())) 1868 return; 1869 1870 PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body); 1871 DeclSetVector Decls; 1872 SmallVector<SourceRange, 10> Ranges; 1873 DeclExtractor DE(S, Decls, Ranges); 1874 DE.Visit(Second); 1875 1876 // Don't analyze complex conditionals. 1877 if (!DE.isSimple()) return; 1878 1879 // No decls found. 1880 if (Decls.size() == 0) return; 1881 1882 // Don't warn on volatile, static, or global variables. 1883 for (auto *VD : Decls) 1884 if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage()) 1885 return; 1886 1887 if (DeclMatcher(S, Decls, Second).FoundDeclInUse() || 1888 DeclMatcher(S, Decls, Third).FoundDeclInUse() || 1889 DeclMatcher(S, Decls, Body).FoundDeclInUse()) 1890 return; 1891 1892 // Load decl names into diagnostic. 1893 if (Decls.size() > 4) { 1894 PDiag << 0; 1895 } else { 1896 PDiag << (unsigned)Decls.size(); 1897 for (auto *VD : Decls) 1898 PDiag << VD->getDeclName(); 1899 } 1900 1901 for (auto Range : Ranges) 1902 PDiag << Range; 1903 1904 S.Diag(Ranges.begin()->getBegin(), PDiag); 1905 } 1906 1907 // If Statement is an incemement or decrement, return true and sets the 1908 // variables Increment and DRE. 1909 bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment, 1910 DeclRefExpr *&DRE) { 1911 if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement)) 1912 if (!Cleanups->cleanupsHaveSideEffects()) 1913 Statement = Cleanups->getSubExpr(); 1914 1915 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) { 1916 switch (UO->getOpcode()) { 1917 default: return false; 1918 case UO_PostInc: 1919 case UO_PreInc: 1920 Increment = true; 1921 break; 1922 case UO_PostDec: 1923 case UO_PreDec: 1924 Increment = false; 1925 break; 1926 } 1927 DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr()); 1928 return DRE; 1929 } 1930 1931 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) { 1932 FunctionDecl *FD = Call->getDirectCallee(); 1933 if (!FD || !FD->isOverloadedOperator()) return false; 1934 switch (FD->getOverloadedOperator()) { 1935 default: return false; 1936 case OO_PlusPlus: 1937 Increment = true; 1938 break; 1939 case OO_MinusMinus: 1940 Increment = false; 1941 break; 1942 } 1943 DRE = dyn_cast<DeclRefExpr>(Call->getArg(0)); 1944 return DRE; 1945 } 1946 1947 return false; 1948 } 1949 1950 // A visitor to determine if a continue or break statement is a 1951 // subexpression. 1952 class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> { 1953 SourceLocation BreakLoc; 1954 SourceLocation ContinueLoc; 1955 bool InSwitch = false; 1956 1957 public: 1958 BreakContinueFinder(Sema &S, const Stmt* Body) : 1959 Inherited(S.Context) { 1960 Visit(Body); 1961 } 1962 1963 typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited; 1964 1965 void VisitContinueStmt(const ContinueStmt* E) { 1966 ContinueLoc = E->getContinueLoc(); 1967 } 1968 1969 void VisitBreakStmt(const BreakStmt* E) { 1970 if (!InSwitch) 1971 BreakLoc = E->getBreakLoc(); 1972 } 1973 1974 void VisitSwitchStmt(const SwitchStmt* S) { 1975 if (const Stmt *Init = S->getInit()) 1976 Visit(Init); 1977 if (const Stmt *CondVar = S->getConditionVariableDeclStmt()) 1978 Visit(CondVar); 1979 if (const Stmt *Cond = S->getCond()) 1980 Visit(Cond); 1981 1982 // Don't return break statements from the body of a switch. 1983 InSwitch = true; 1984 if (const Stmt *Body = S->getBody()) 1985 Visit(Body); 1986 InSwitch = false; 1987 } 1988 1989 void VisitForStmt(const ForStmt *S) { 1990 // Only visit the init statement of a for loop; the body 1991 // has a different break/continue scope. 1992 if (const Stmt *Init = S->getInit()) 1993 Visit(Init); 1994 } 1995 1996 void VisitWhileStmt(const WhileStmt *) { 1997 // Do nothing; the children of a while loop have a different 1998 // break/continue scope. 1999 } 2000 2001 void VisitDoStmt(const DoStmt *) { 2002 // Do nothing; the children of a while loop have a different 2003 // break/continue scope. 2004 } 2005 2006 void VisitCXXForRangeStmt(const CXXForRangeStmt *S) { 2007 // Only visit the initialization of a for loop; the body 2008 // has a different break/continue scope. 2009 if (const Stmt *Init = S->getInit()) 2010 Visit(Init); 2011 if (const Stmt *Range = S->getRangeStmt()) 2012 Visit(Range); 2013 if (const Stmt *Begin = S->getBeginStmt()) 2014 Visit(Begin); 2015 if (const Stmt *End = S->getEndStmt()) 2016 Visit(End); 2017 } 2018 2019 void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) { 2020 // Only visit the initialization of a for loop; the body 2021 // has a different break/continue scope. 2022 if (const Stmt *Element = S->getElement()) 2023 Visit(Element); 2024 if (const Stmt *Collection = S->getCollection()) 2025 Visit(Collection); 2026 } 2027 2028 bool ContinueFound() { return ContinueLoc.isValid(); } 2029 bool BreakFound() { return BreakLoc.isValid(); } 2030 SourceLocation GetContinueLoc() { return ContinueLoc; } 2031 SourceLocation GetBreakLoc() { return BreakLoc; } 2032 2033 }; // end class BreakContinueFinder 2034 2035 // Emit a warning when a loop increment/decrement appears twice per loop 2036 // iteration. The conditions which trigger this warning are: 2037 // 1) The last statement in the loop body and the third expression in the 2038 // for loop are both increment or both decrement of the same variable 2039 // 2) No continue statements in the loop body. 2040 void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) { 2041 // Return when there is nothing to check. 2042 if (!Body || !Third) return; 2043 2044 if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration, 2045 Third->getBeginLoc())) 2046 return; 2047 2048 // Get the last statement from the loop body. 2049 CompoundStmt *CS = dyn_cast<CompoundStmt>(Body); 2050 if (!CS || CS->body_empty()) return; 2051 Stmt *LastStmt = CS->body_back(); 2052 if (!LastStmt) return; 2053 2054 bool LoopIncrement, LastIncrement; 2055 DeclRefExpr *LoopDRE, *LastDRE; 2056 2057 if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return; 2058 if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return; 2059 2060 // Check that the two statements are both increments or both decrements 2061 // on the same variable. 2062 if (LoopIncrement != LastIncrement || 2063 LoopDRE->getDecl() != LastDRE->getDecl()) return; 2064 2065 if (BreakContinueFinder(S, Body).ContinueFound()) return; 2066 2067 S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration) 2068 << LastDRE->getDecl() << LastIncrement; 2069 S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here) 2070 << LoopIncrement; 2071 } 2072 2073 } // end namespace 2074 2075 2076 void Sema::CheckBreakContinueBinding(Expr *E) { 2077 if (!E || getLangOpts().CPlusPlus) 2078 return; 2079 BreakContinueFinder BCFinder(*this, E); 2080 Scope *BreakParent = CurScope->getBreakParent(); 2081 if (BCFinder.BreakFound() && BreakParent) { 2082 if (BreakParent->getFlags() & Scope::SwitchScope) { 2083 Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch); 2084 } else { 2085 Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner) 2086 << "break"; 2087 } 2088 } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) { 2089 Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner) 2090 << "continue"; 2091 } 2092 } 2093 2094 StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, 2095 Stmt *First, ConditionResult Second, 2096 FullExprArg third, SourceLocation RParenLoc, 2097 Stmt *Body) { 2098 if (Second.isInvalid()) 2099 return StmtError(); 2100 2101 if (!getLangOpts().CPlusPlus) { 2102 if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) { 2103 // C99 6.8.5p3: The declaration part of a 'for' statement shall only 2104 // declare identifiers for objects having storage class 'auto' or 2105 // 'register'. 2106 const Decl *NonVarSeen = nullptr; 2107 bool VarDeclSeen = false; 2108 for (auto *DI : DS->decls()) { 2109 if (VarDecl *VD = dyn_cast<VarDecl>(DI)) { 2110 VarDeclSeen = true; 2111 if (VD->isLocalVarDecl() && !VD->hasLocalStorage()) { 2112 Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for); 2113 DI->setInvalidDecl(); 2114 } 2115 } else if (!NonVarSeen) { 2116 // Keep track of the first non-variable declaration we saw so that 2117 // we can diagnose if we don't see any variable declarations. This 2118 // covers a case like declaring a typedef, function, or structure 2119 // type rather than a variable. 2120 NonVarSeen = DI; 2121 } 2122 } 2123 // Diagnose if we saw a non-variable declaration but no variable 2124 // declarations. 2125 if (NonVarSeen && !VarDeclSeen) 2126 Diag(NonVarSeen->getLocation(), diag::err_non_variable_decl_in_for); 2127 } 2128 } 2129 2130 CheckBreakContinueBinding(Second.get().second); 2131 CheckBreakContinueBinding(third.get()); 2132 2133 if (!Second.get().first) 2134 CheckForLoopConditionalStatement(*this, Second.get().second, third.get(), 2135 Body); 2136 CheckForRedundantIteration(*this, third.get(), Body); 2137 2138 if (Second.get().second && 2139 !Diags.isIgnored(diag::warn_comma_operator, 2140 Second.get().second->getExprLoc())) 2141 CommaVisitor(*this).Visit(Second.get().second); 2142 2143 Expr *Third = third.release().getAs<Expr>(); 2144 if (isa<NullStmt>(Body)) 2145 getCurCompoundScope().setHasEmptyLoopBodies(); 2146 2147 return new (Context) 2148 ForStmt(Context, First, Second.get().second, Second.get().first, Third, 2149 Body, ForLoc, LParenLoc, RParenLoc); 2150 } 2151 2152 /// In an Objective C collection iteration statement: 2153 /// for (x in y) 2154 /// x can be an arbitrary l-value expression. Bind it up as a 2155 /// full-expression. 2156 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) { 2157 // Reduce placeholder expressions here. Note that this rejects the 2158 // use of pseudo-object l-values in this position. 2159 ExprResult result = CheckPlaceholderExpr(E); 2160 if (result.isInvalid()) return StmtError(); 2161 E = result.get(); 2162 2163 ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false); 2164 if (FullExpr.isInvalid()) 2165 return StmtError(); 2166 return StmtResult(static_cast<Stmt*>(FullExpr.get())); 2167 } 2168 2169 ExprResult 2170 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) { 2171 if (!collection) 2172 return ExprError(); 2173 2174 ExprResult result = CorrectDelayedTyposInExpr(collection); 2175 if (!result.isUsable()) 2176 return ExprError(); 2177 collection = result.get(); 2178 2179 // Bail out early if we've got a type-dependent expression. 2180 if (collection->isTypeDependent()) return collection; 2181 2182 // Perform normal l-value conversion. 2183 result = DefaultFunctionArrayLvalueConversion(collection); 2184 if (result.isInvalid()) 2185 return ExprError(); 2186 collection = result.get(); 2187 2188 // The operand needs to have object-pointer type. 2189 // TODO: should we do a contextual conversion? 2190 const ObjCObjectPointerType *pointerType = 2191 collection->getType()->getAs<ObjCObjectPointerType>(); 2192 if (!pointerType) 2193 return Diag(forLoc, diag::err_collection_expr_type) 2194 << collection->getType() << collection->getSourceRange(); 2195 2196 // Check that the operand provides 2197 // - countByEnumeratingWithState:objects:count: 2198 const ObjCObjectType *objectType = pointerType->getObjectType(); 2199 ObjCInterfaceDecl *iface = objectType->getInterface(); 2200 2201 // If we have a forward-declared type, we can't do this check. 2202 // Under ARC, it is an error not to have a forward-declared class. 2203 if (iface && 2204 (getLangOpts().ObjCAutoRefCount 2205 ? RequireCompleteType(forLoc, QualType(objectType, 0), 2206 diag::err_arc_collection_forward, collection) 2207 : !isCompleteType(forLoc, QualType(objectType, 0)))) { 2208 // Otherwise, if we have any useful type information, check that 2209 // the type declares the appropriate method. 2210 } else if (iface || !objectType->qual_empty()) { 2211 IdentifierInfo *selectorIdents[] = { 2212 &Context.Idents.get("countByEnumeratingWithState"), 2213 &Context.Idents.get("objects"), 2214 &Context.Idents.get("count") 2215 }; 2216 Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]); 2217 2218 ObjCMethodDecl *method = nullptr; 2219 2220 // If there's an interface, look in both the public and private APIs. 2221 if (iface) { 2222 method = iface->lookupInstanceMethod(selector); 2223 if (!method) method = iface->lookupPrivateMethod(selector); 2224 } 2225 2226 // Also check protocol qualifiers. 2227 if (!method) 2228 method = LookupMethodInQualifiedType(selector, pointerType, 2229 /*instance*/ true); 2230 2231 // If we didn't find it anywhere, give up. 2232 if (!method) { 2233 Diag(forLoc, diag::warn_collection_expr_type) 2234 << collection->getType() << selector << collection->getSourceRange(); 2235 } 2236 2237 // TODO: check for an incompatible signature? 2238 } 2239 2240 // Wrap up any cleanups in the expression. 2241 return collection; 2242 } 2243 2244 StmtResult 2245 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc, 2246 Stmt *First, Expr *collection, 2247 SourceLocation RParenLoc) { 2248 setFunctionHasBranchProtectedScope(); 2249 2250 ExprResult CollectionExprResult = 2251 CheckObjCForCollectionOperand(ForLoc, collection); 2252 2253 if (First) { 2254 QualType FirstType; 2255 if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) { 2256 if (!DS->isSingleDecl()) 2257 return StmtError(Diag((*DS->decl_begin())->getLocation(), 2258 diag::err_toomany_element_decls)); 2259 2260 VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl()); 2261 if (!D || D->isInvalidDecl()) 2262 return StmtError(); 2263 2264 FirstType = D->getType(); 2265 // C99 6.8.5p3: The declaration part of a 'for' statement shall only 2266 // declare identifiers for objects having storage class 'auto' or 2267 // 'register'. 2268 if (!D->hasLocalStorage()) 2269 return StmtError(Diag(D->getLocation(), 2270 diag::err_non_local_variable_decl_in_for)); 2271 2272 // If the type contained 'auto', deduce the 'auto' to 'id'. 2273 if (FirstType->getContainedAutoType()) { 2274 OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(), 2275 VK_PRValue); 2276 Expr *DeducedInit = &OpaqueId; 2277 if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) == 2278 DAR_Failed) 2279 DiagnoseAutoDeductionFailure(D, DeducedInit); 2280 if (FirstType.isNull()) { 2281 D->setInvalidDecl(); 2282 return StmtError(); 2283 } 2284 2285 D->setType(FirstType); 2286 2287 if (!inTemplateInstantiation()) { 2288 SourceLocation Loc = 2289 D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(); 2290 Diag(Loc, diag::warn_auto_var_is_id) 2291 << D->getDeclName(); 2292 } 2293 } 2294 2295 } else { 2296 Expr *FirstE = cast<Expr>(First); 2297 if (!FirstE->isTypeDependent() && !FirstE->isLValue()) 2298 return StmtError( 2299 Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue) 2300 << First->getSourceRange()); 2301 2302 FirstType = static_cast<Expr*>(First)->getType(); 2303 if (FirstType.isConstQualified()) 2304 Diag(ForLoc, diag::err_selector_element_const_type) 2305 << FirstType << First->getSourceRange(); 2306 } 2307 if (!FirstType->isDependentType() && 2308 !FirstType->isObjCObjectPointerType() && 2309 !FirstType->isBlockPointerType()) 2310 return StmtError(Diag(ForLoc, diag::err_selector_element_type) 2311 << FirstType << First->getSourceRange()); 2312 } 2313 2314 if (CollectionExprResult.isInvalid()) 2315 return StmtError(); 2316 2317 CollectionExprResult = 2318 ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false); 2319 if (CollectionExprResult.isInvalid()) 2320 return StmtError(); 2321 2322 return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(), 2323 nullptr, ForLoc, RParenLoc); 2324 } 2325 2326 /// Finish building a variable declaration for a for-range statement. 2327 /// \return true if an error occurs. 2328 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init, 2329 SourceLocation Loc, int DiagID) { 2330 if (Decl->getType()->isUndeducedType()) { 2331 ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init); 2332 if (!Res.isUsable()) { 2333 Decl->setInvalidDecl(); 2334 return true; 2335 } 2336 Init = Res.get(); 2337 } 2338 2339 // Deduce the type for the iterator variable now rather than leaving it to 2340 // AddInitializerToDecl, so we can produce a more suitable diagnostic. 2341 QualType InitType; 2342 if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) || 2343 SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) == 2344 Sema::DAR_Failed) 2345 SemaRef.Diag(Loc, DiagID) << Init->getType(); 2346 if (InitType.isNull()) { 2347 Decl->setInvalidDecl(); 2348 return true; 2349 } 2350 Decl->setType(InitType); 2351 2352 // In ARC, infer lifetime. 2353 // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if 2354 // we're doing the equivalent of fast iteration. 2355 if (SemaRef.getLangOpts().ObjCAutoRefCount && 2356 SemaRef.inferObjCARCLifetime(Decl)) 2357 Decl->setInvalidDecl(); 2358 2359 SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false); 2360 SemaRef.FinalizeDeclaration(Decl); 2361 SemaRef.CurContext->addHiddenDecl(Decl); 2362 return false; 2363 } 2364 2365 namespace { 2366 // An enum to represent whether something is dealing with a call to begin() 2367 // or a call to end() in a range-based for loop. 2368 enum BeginEndFunction { 2369 BEF_begin, 2370 BEF_end 2371 }; 2372 2373 /// Produce a note indicating which begin/end function was implicitly called 2374 /// by a C++11 for-range statement. This is often not obvious from the code, 2375 /// nor from the diagnostics produced when analysing the implicit expressions 2376 /// required in a for-range statement. 2377 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E, 2378 BeginEndFunction BEF) { 2379 CallExpr *CE = dyn_cast<CallExpr>(E); 2380 if (!CE) 2381 return; 2382 FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 2383 if (!D) 2384 return; 2385 SourceLocation Loc = D->getLocation(); 2386 2387 std::string Description; 2388 bool IsTemplate = false; 2389 if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) { 2390 Description = SemaRef.getTemplateArgumentBindingsText( 2391 FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs()); 2392 IsTemplate = true; 2393 } 2394 2395 SemaRef.Diag(Loc, diag::note_for_range_begin_end) 2396 << BEF << IsTemplate << Description << E->getType(); 2397 } 2398 2399 /// Build a variable declaration for a for-range statement. 2400 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc, 2401 QualType Type, StringRef Name) { 2402 DeclContext *DC = SemaRef.CurContext; 2403 IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name); 2404 TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc); 2405 VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type, 2406 TInfo, SC_None); 2407 Decl->setImplicit(); 2408 return Decl; 2409 } 2410 2411 } 2412 2413 static bool ObjCEnumerationCollection(Expr *Collection) { 2414 return !Collection->isTypeDependent() 2415 && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr; 2416 } 2417 2418 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement. 2419 /// 2420 /// C++11 [stmt.ranged]: 2421 /// A range-based for statement is equivalent to 2422 /// 2423 /// { 2424 /// auto && __range = range-init; 2425 /// for ( auto __begin = begin-expr, 2426 /// __end = end-expr; 2427 /// __begin != __end; 2428 /// ++__begin ) { 2429 /// for-range-declaration = *__begin; 2430 /// statement 2431 /// } 2432 /// } 2433 /// 2434 /// The body of the loop is not available yet, since it cannot be analysed until 2435 /// we have determined the type of the for-range-declaration. 2436 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, 2437 SourceLocation CoawaitLoc, Stmt *InitStmt, 2438 Stmt *First, SourceLocation ColonLoc, 2439 Expr *Range, SourceLocation RParenLoc, 2440 BuildForRangeKind Kind) { 2441 if (!First) 2442 return StmtError(); 2443 2444 if (Range && ObjCEnumerationCollection(Range)) { 2445 // FIXME: Support init-statements in Objective-C++20 ranged for statement. 2446 if (InitStmt) 2447 return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt) 2448 << InitStmt->getSourceRange(); 2449 return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc); 2450 } 2451 2452 DeclStmt *DS = dyn_cast<DeclStmt>(First); 2453 assert(DS && "first part of for range not a decl stmt"); 2454 2455 if (!DS->isSingleDecl()) { 2456 Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range); 2457 return StmtError(); 2458 } 2459 2460 // This function is responsible for attaching an initializer to LoopVar. We 2461 // must call ActOnInitializerError if we fail to do so. 2462 Decl *LoopVar = DS->getSingleDecl(); 2463 if (LoopVar->isInvalidDecl() || !Range || 2464 DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) { 2465 ActOnInitializerError(LoopVar); 2466 return StmtError(); 2467 } 2468 2469 // Build the coroutine state immediately and not later during template 2470 // instantiation 2471 if (!CoawaitLoc.isInvalid()) { 2472 if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) { 2473 ActOnInitializerError(LoopVar); 2474 return StmtError(); 2475 } 2476 } 2477 2478 // Build auto && __range = range-init 2479 // Divide by 2, since the variables are in the inner scope (loop body). 2480 const auto DepthStr = std::to_string(S->getDepth() / 2); 2481 SourceLocation RangeLoc = Range->getBeginLoc(); 2482 VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc, 2483 Context.getAutoRRefDeductType(), 2484 std::string("__range") + DepthStr); 2485 if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc, 2486 diag::err_for_range_deduction_failure)) { 2487 ActOnInitializerError(LoopVar); 2488 return StmtError(); 2489 } 2490 2491 // Claim the type doesn't contain auto: we've already done the checking. 2492 DeclGroupPtrTy RangeGroup = 2493 BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1)); 2494 StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc); 2495 if (RangeDecl.isInvalid()) { 2496 ActOnInitializerError(LoopVar); 2497 return StmtError(); 2498 } 2499 2500 StmtResult R = BuildCXXForRangeStmt( 2501 ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(), 2502 /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr, 2503 /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind); 2504 if (R.isInvalid()) { 2505 ActOnInitializerError(LoopVar); 2506 return StmtError(); 2507 } 2508 2509 return R; 2510 } 2511 2512 /// Create the initialization, compare, and increment steps for 2513 /// the range-based for loop expression. 2514 /// This function does not handle array-based for loops, 2515 /// which are created in Sema::BuildCXXForRangeStmt. 2516 /// 2517 /// \returns a ForRangeStatus indicating success or what kind of error occurred. 2518 /// BeginExpr and EndExpr are set and FRS_Success is returned on success; 2519 /// CandidateSet and BEF are set and some non-success value is returned on 2520 /// failure. 2521 static Sema::ForRangeStatus 2522 BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange, 2523 QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar, 2524 SourceLocation ColonLoc, SourceLocation CoawaitLoc, 2525 OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr, 2526 ExprResult *EndExpr, BeginEndFunction *BEF) { 2527 DeclarationNameInfo BeginNameInfo( 2528 &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc); 2529 DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"), 2530 ColonLoc); 2531 2532 LookupResult BeginMemberLookup(SemaRef, BeginNameInfo, 2533 Sema::LookupMemberName); 2534 LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName); 2535 2536 auto BuildBegin = [&] { 2537 *BEF = BEF_begin; 2538 Sema::ForRangeStatus RangeStatus = 2539 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo, 2540 BeginMemberLookup, CandidateSet, 2541 BeginRange, BeginExpr); 2542 2543 if (RangeStatus != Sema::FRS_Success) { 2544 if (RangeStatus == Sema::FRS_DiagnosticIssued) 2545 SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range) 2546 << ColonLoc << BEF_begin << BeginRange->getType(); 2547 return RangeStatus; 2548 } 2549 if (!CoawaitLoc.isInvalid()) { 2550 // FIXME: getCurScope() should not be used during template instantiation. 2551 // We should pick up the set of unqualified lookup results for operator 2552 // co_await during the initial parse. 2553 *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc, 2554 BeginExpr->get()); 2555 if (BeginExpr->isInvalid()) 2556 return Sema::FRS_DiagnosticIssued; 2557 } 2558 if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc, 2559 diag::err_for_range_iter_deduction_failure)) { 2560 NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF); 2561 return Sema::FRS_DiagnosticIssued; 2562 } 2563 return Sema::FRS_Success; 2564 }; 2565 2566 auto BuildEnd = [&] { 2567 *BEF = BEF_end; 2568 Sema::ForRangeStatus RangeStatus = 2569 SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo, 2570 EndMemberLookup, CandidateSet, 2571 EndRange, EndExpr); 2572 if (RangeStatus != Sema::FRS_Success) { 2573 if (RangeStatus == Sema::FRS_DiagnosticIssued) 2574 SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range) 2575 << ColonLoc << BEF_end << EndRange->getType(); 2576 return RangeStatus; 2577 } 2578 if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc, 2579 diag::err_for_range_iter_deduction_failure)) { 2580 NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF); 2581 return Sema::FRS_DiagnosticIssued; 2582 } 2583 return Sema::FRS_Success; 2584 }; 2585 2586 if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) { 2587 // - if _RangeT is a class type, the unqualified-ids begin and end are 2588 // looked up in the scope of class _RangeT as if by class member access 2589 // lookup (3.4.5), and if either (or both) finds at least one 2590 // declaration, begin-expr and end-expr are __range.begin() and 2591 // __range.end(), respectively; 2592 SemaRef.LookupQualifiedName(BeginMemberLookup, D); 2593 if (BeginMemberLookup.isAmbiguous()) 2594 return Sema::FRS_DiagnosticIssued; 2595 2596 SemaRef.LookupQualifiedName(EndMemberLookup, D); 2597 if (EndMemberLookup.isAmbiguous()) 2598 return Sema::FRS_DiagnosticIssued; 2599 2600 if (BeginMemberLookup.empty() != EndMemberLookup.empty()) { 2601 // Look up the non-member form of the member we didn't find, first. 2602 // This way we prefer a "no viable 'end'" diagnostic over a "i found 2603 // a 'begin' but ignored it because there was no member 'end'" 2604 // diagnostic. 2605 auto BuildNonmember = [&]( 2606 BeginEndFunction BEFFound, LookupResult &Found, 2607 llvm::function_ref<Sema::ForRangeStatus()> BuildFound, 2608 llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) { 2609 LookupResult OldFound = std::move(Found); 2610 Found.clear(); 2611 2612 if (Sema::ForRangeStatus Result = BuildNotFound()) 2613 return Result; 2614 2615 switch (BuildFound()) { 2616 case Sema::FRS_Success: 2617 return Sema::FRS_Success; 2618 2619 case Sema::FRS_NoViableFunction: 2620 CandidateSet->NoteCandidates( 2621 PartialDiagnosticAt(BeginRange->getBeginLoc(), 2622 SemaRef.PDiag(diag::err_for_range_invalid) 2623 << BeginRange->getType() << BEFFound), 2624 SemaRef, OCD_AllCandidates, BeginRange); 2625 LLVM_FALLTHROUGH; 2626 2627 case Sema::FRS_DiagnosticIssued: 2628 for (NamedDecl *D : OldFound) { 2629 SemaRef.Diag(D->getLocation(), 2630 diag::note_for_range_member_begin_end_ignored) 2631 << BeginRange->getType() << BEFFound; 2632 } 2633 return Sema::FRS_DiagnosticIssued; 2634 } 2635 llvm_unreachable("unexpected ForRangeStatus"); 2636 }; 2637 if (BeginMemberLookup.empty()) 2638 return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin); 2639 return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd); 2640 } 2641 } else { 2642 // - otherwise, begin-expr and end-expr are begin(__range) and 2643 // end(__range), respectively, where begin and end are looked up with 2644 // argument-dependent lookup (3.4.2). For the purposes of this name 2645 // lookup, namespace std is an associated namespace. 2646 } 2647 2648 if (Sema::ForRangeStatus Result = BuildBegin()) 2649 return Result; 2650 return BuildEnd(); 2651 } 2652 2653 /// Speculatively attempt to dereference an invalid range expression. 2654 /// If the attempt fails, this function will return a valid, null StmtResult 2655 /// and emit no diagnostics. 2656 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S, 2657 SourceLocation ForLoc, 2658 SourceLocation CoawaitLoc, 2659 Stmt *InitStmt, 2660 Stmt *LoopVarDecl, 2661 SourceLocation ColonLoc, 2662 Expr *Range, 2663 SourceLocation RangeLoc, 2664 SourceLocation RParenLoc) { 2665 // Determine whether we can rebuild the for-range statement with a 2666 // dereferenced range expression. 2667 ExprResult AdjustedRange; 2668 { 2669 Sema::SFINAETrap Trap(SemaRef); 2670 2671 AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range); 2672 if (AdjustedRange.isInvalid()) 2673 return StmtResult(); 2674 2675 StmtResult SR = SemaRef.ActOnCXXForRangeStmt( 2676 S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc, 2677 AdjustedRange.get(), RParenLoc, Sema::BFRK_Check); 2678 if (SR.isInvalid()) 2679 return StmtResult(); 2680 } 2681 2682 // The attempt to dereference worked well enough that it could produce a valid 2683 // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in 2684 // case there are any other (non-fatal) problems with it. 2685 SemaRef.Diag(RangeLoc, diag::err_for_range_dereference) 2686 << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*"); 2687 return SemaRef.ActOnCXXForRangeStmt( 2688 S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc, 2689 AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild); 2690 } 2691 2692 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement. 2693 StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, 2694 SourceLocation CoawaitLoc, Stmt *InitStmt, 2695 SourceLocation ColonLoc, Stmt *RangeDecl, 2696 Stmt *Begin, Stmt *End, Expr *Cond, 2697 Expr *Inc, Stmt *LoopVarDecl, 2698 SourceLocation RParenLoc, 2699 BuildForRangeKind Kind) { 2700 // FIXME: This should not be used during template instantiation. We should 2701 // pick up the set of unqualified lookup results for the != and + operators 2702 // in the initial parse. 2703 // 2704 // Testcase (accepts-invalid): 2705 // template<typename T> void f() { for (auto x : T()) {} } 2706 // namespace N { struct X { X begin(); X end(); int operator*(); }; } 2707 // bool operator!=(N::X, N::X); void operator++(N::X); 2708 // void g() { f<N::X>(); } 2709 Scope *S = getCurScope(); 2710 2711 DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl); 2712 VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl()); 2713 QualType RangeVarType = RangeVar->getType(); 2714 2715 DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl); 2716 VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl()); 2717 2718 StmtResult BeginDeclStmt = Begin; 2719 StmtResult EndDeclStmt = End; 2720 ExprResult NotEqExpr = Cond, IncrExpr = Inc; 2721 2722 if (RangeVarType->isDependentType()) { 2723 // The range is implicitly used as a placeholder when it is dependent. 2724 RangeVar->markUsed(Context); 2725 2726 // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill 2727 // them in properly when we instantiate the loop. 2728 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { 2729 if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar)) 2730 for (auto *Binding : DD->bindings()) 2731 Binding->setType(Context.DependentTy); 2732 LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy)); 2733 } 2734 } else if (!BeginDeclStmt.get()) { 2735 SourceLocation RangeLoc = RangeVar->getLocation(); 2736 2737 const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType(); 2738 2739 ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, 2740 VK_LValue, ColonLoc); 2741 if (BeginRangeRef.isInvalid()) 2742 return StmtError(); 2743 2744 ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, 2745 VK_LValue, ColonLoc); 2746 if (EndRangeRef.isInvalid()) 2747 return StmtError(); 2748 2749 QualType AutoType = Context.getAutoDeductType(); 2750 Expr *Range = RangeVar->getInit(); 2751 if (!Range) 2752 return StmtError(); 2753 QualType RangeType = Range->getType(); 2754 2755 if (RequireCompleteType(RangeLoc, RangeType, 2756 diag::err_for_range_incomplete_type)) 2757 return StmtError(); 2758 2759 // Build auto __begin = begin-expr, __end = end-expr. 2760 // Divide by 2, since the variables are in the inner scope (loop body). 2761 const auto DepthStr = std::to_string(S->getDepth() / 2); 2762 VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, 2763 std::string("__begin") + DepthStr); 2764 VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, 2765 std::string("__end") + DepthStr); 2766 2767 // Build begin-expr and end-expr and attach to __begin and __end variables. 2768 ExprResult BeginExpr, EndExpr; 2769 if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) { 2770 // - if _RangeT is an array type, begin-expr and end-expr are __range and 2771 // __range + __bound, respectively, where __bound is the array bound. If 2772 // _RangeT is an array of unknown size or an array of incomplete type, 2773 // the program is ill-formed; 2774 2775 // begin-expr is __range. 2776 BeginExpr = BeginRangeRef; 2777 if (!CoawaitLoc.isInvalid()) { 2778 BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get()); 2779 if (BeginExpr.isInvalid()) 2780 return StmtError(); 2781 } 2782 if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc, 2783 diag::err_for_range_iter_deduction_failure)) { 2784 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2785 return StmtError(); 2786 } 2787 2788 // Find the array bound. 2789 ExprResult BoundExpr; 2790 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT)) 2791 BoundExpr = IntegerLiteral::Create( 2792 Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc); 2793 else if (const VariableArrayType *VAT = 2794 dyn_cast<VariableArrayType>(UnqAT)) { 2795 // For a variably modified type we can't just use the expression within 2796 // the array bounds, since we don't want that to be re-evaluated here. 2797 // Rather, we need to determine what it was when the array was first 2798 // created - so we resort to using sizeof(vla)/sizeof(element). 2799 // For e.g. 2800 // void f(int b) { 2801 // int vla[b]; 2802 // b = -1; <-- This should not affect the num of iterations below 2803 // for (int &c : vla) { .. } 2804 // } 2805 2806 // FIXME: This results in codegen generating IR that recalculates the 2807 // run-time number of elements (as opposed to just using the IR Value 2808 // that corresponds to the run-time value of each bound that was 2809 // generated when the array was created.) If this proves too embarrassing 2810 // even for unoptimized IR, consider passing a magic-value/cookie to 2811 // codegen that then knows to simply use that initial llvm::Value (that 2812 // corresponds to the bound at time of array creation) within 2813 // getelementptr. But be prepared to pay the price of increasing a 2814 // customized form of coupling between the two components - which could 2815 // be hard to maintain as the codebase evolves. 2816 2817 ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr( 2818 EndVar->getLocation(), UETT_SizeOf, 2819 /*IsType=*/true, 2820 CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo( 2821 VAT->desugar(), RangeLoc)) 2822 .getAsOpaquePtr(), 2823 EndVar->getSourceRange()); 2824 if (SizeOfVLAExprR.isInvalid()) 2825 return StmtError(); 2826 2827 ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr( 2828 EndVar->getLocation(), UETT_SizeOf, 2829 /*IsType=*/true, 2830 CreateParsedType(VAT->desugar(), 2831 Context.getTrivialTypeSourceInfo( 2832 VAT->getElementType(), RangeLoc)) 2833 .getAsOpaquePtr(), 2834 EndVar->getSourceRange()); 2835 if (SizeOfEachElementExprR.isInvalid()) 2836 return StmtError(); 2837 2838 BoundExpr = 2839 ActOnBinOp(S, EndVar->getLocation(), tok::slash, 2840 SizeOfVLAExprR.get(), SizeOfEachElementExprR.get()); 2841 if (BoundExpr.isInvalid()) 2842 return StmtError(); 2843 2844 } else { 2845 // Can't be a DependentSizedArrayType or an IncompleteArrayType since 2846 // UnqAT is not incomplete and Range is not type-dependent. 2847 llvm_unreachable("Unexpected array type in for-range"); 2848 } 2849 2850 // end-expr is __range + __bound. 2851 EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(), 2852 BoundExpr.get()); 2853 if (EndExpr.isInvalid()) 2854 return StmtError(); 2855 if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc, 2856 diag::err_for_range_iter_deduction_failure)) { 2857 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); 2858 return StmtError(); 2859 } 2860 } else { 2861 OverloadCandidateSet CandidateSet(RangeLoc, 2862 OverloadCandidateSet::CSK_Normal); 2863 BeginEndFunction BEFFailure; 2864 ForRangeStatus RangeStatus = BuildNonArrayForRange( 2865 *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar, 2866 EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr, 2867 &BEFFailure); 2868 2869 if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction && 2870 BEFFailure == BEF_begin) { 2871 // If the range is being built from an array parameter, emit a 2872 // a diagnostic that it is being treated as a pointer. 2873 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) { 2874 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { 2875 QualType ArrayTy = PVD->getOriginalType(); 2876 QualType PointerTy = PVD->getType(); 2877 if (PointerTy->isPointerType() && ArrayTy->isArrayType()) { 2878 Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter) 2879 << RangeLoc << PVD << ArrayTy << PointerTy; 2880 Diag(PVD->getLocation(), diag::note_declared_at); 2881 return StmtError(); 2882 } 2883 } 2884 } 2885 2886 // If building the range failed, try dereferencing the range expression 2887 // unless a diagnostic was issued or the end function is problematic. 2888 StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc, 2889 CoawaitLoc, InitStmt, 2890 LoopVarDecl, ColonLoc, 2891 Range, RangeLoc, 2892 RParenLoc); 2893 if (SR.isInvalid() || SR.isUsable()) 2894 return SR; 2895 } 2896 2897 // Otherwise, emit diagnostics if we haven't already. 2898 if (RangeStatus == FRS_NoViableFunction) { 2899 Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get(); 2900 CandidateSet.NoteCandidates( 2901 PartialDiagnosticAt(Range->getBeginLoc(), 2902 PDiag(diag::err_for_range_invalid) 2903 << RangeLoc << Range->getType() 2904 << BEFFailure), 2905 *this, OCD_AllCandidates, Range); 2906 } 2907 // Return an error if no fix was discovered. 2908 if (RangeStatus != FRS_Success) 2909 return StmtError(); 2910 } 2911 2912 assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() && 2913 "invalid range expression in for loop"); 2914 2915 // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same. 2916 // C++1z removes this restriction. 2917 QualType BeginType = BeginVar->getType(), EndType = EndVar->getType(); 2918 if (!Context.hasSameType(BeginType, EndType)) { 2919 Diag(RangeLoc, getLangOpts().CPlusPlus17 2920 ? diag::warn_for_range_begin_end_types_differ 2921 : diag::ext_for_range_begin_end_types_differ) 2922 << BeginType << EndType; 2923 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2924 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); 2925 } 2926 2927 BeginDeclStmt = 2928 ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc); 2929 EndDeclStmt = 2930 ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc); 2931 2932 const QualType BeginRefNonRefType = BeginType.getNonReferenceType(); 2933 ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, 2934 VK_LValue, ColonLoc); 2935 if (BeginRef.isInvalid()) 2936 return StmtError(); 2937 2938 ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(), 2939 VK_LValue, ColonLoc); 2940 if (EndRef.isInvalid()) 2941 return StmtError(); 2942 2943 // Build and check __begin != __end expression. 2944 NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal, 2945 BeginRef.get(), EndRef.get()); 2946 if (!NotEqExpr.isInvalid()) 2947 NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get()); 2948 if (!NotEqExpr.isInvalid()) 2949 NotEqExpr = 2950 ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false); 2951 if (NotEqExpr.isInvalid()) { 2952 Diag(RangeLoc, diag::note_for_range_invalid_iterator) 2953 << RangeLoc << 0 << BeginRangeRef.get()->getType(); 2954 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2955 if (!Context.hasSameType(BeginType, EndType)) 2956 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); 2957 return StmtError(); 2958 } 2959 2960 // Build and check ++__begin expression. 2961 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, 2962 VK_LValue, ColonLoc); 2963 if (BeginRef.isInvalid()) 2964 return StmtError(); 2965 2966 IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get()); 2967 if (!IncrExpr.isInvalid() && CoawaitLoc.isValid()) 2968 // FIXME: getCurScope() should not be used during template instantiation. 2969 // We should pick up the set of unqualified lookup results for operator 2970 // co_await during the initial parse. 2971 IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get()); 2972 if (!IncrExpr.isInvalid()) 2973 IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false); 2974 if (IncrExpr.isInvalid()) { 2975 Diag(RangeLoc, diag::note_for_range_invalid_iterator) 2976 << RangeLoc << 2 << BeginRangeRef.get()->getType() ; 2977 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2978 return StmtError(); 2979 } 2980 2981 // Build and check *__begin expression. 2982 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, 2983 VK_LValue, ColonLoc); 2984 if (BeginRef.isInvalid()) 2985 return StmtError(); 2986 2987 ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get()); 2988 if (DerefExpr.isInvalid()) { 2989 Diag(RangeLoc, diag::note_for_range_invalid_iterator) 2990 << RangeLoc << 1 << BeginRangeRef.get()->getType(); 2991 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 2992 return StmtError(); 2993 } 2994 2995 // Attach *__begin as initializer for VD. Don't touch it if we're just 2996 // trying to determine whether this would be a valid range. 2997 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { 2998 AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false); 2999 if (LoopVar->isInvalidDecl() || 3000 (LoopVar->getInit() && LoopVar->getInit()->containsErrors())) 3001 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); 3002 } 3003 } 3004 3005 // Don't bother to actually allocate the result if we're just trying to 3006 // determine whether it would be valid. 3007 if (Kind == BFRK_Check) 3008 return StmtResult(); 3009 3010 // In OpenMP loop region loop control variable must be private. Perform 3011 // analysis of first part (if any). 3012 if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable()) 3013 ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get()); 3014 3015 return new (Context) CXXForRangeStmt( 3016 InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()), 3017 cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(), 3018 IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc, 3019 ColonLoc, RParenLoc); 3020 } 3021 3022 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach 3023 /// statement. 3024 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) { 3025 if (!S || !B) 3026 return StmtError(); 3027 ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S); 3028 3029 ForStmt->setBody(B); 3030 return S; 3031 } 3032 3033 // Warn when the loop variable is a const reference that creates a copy. 3034 // Suggest using the non-reference type for copies. If a copy can be prevented 3035 // suggest the const reference type that would do so. 3036 // For instance, given "for (const &Foo : Range)", suggest 3037 // "for (const Foo : Range)" to denote a copy is made for the loop. If 3038 // possible, also suggest "for (const &Bar : Range)" if this type prevents 3039 // the copy altogether. 3040 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef, 3041 const VarDecl *VD, 3042 QualType RangeInitType) { 3043 const Expr *InitExpr = VD->getInit(); 3044 if (!InitExpr) 3045 return; 3046 3047 QualType VariableType = VD->getType(); 3048 3049 if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr)) 3050 if (!Cleanups->cleanupsHaveSideEffects()) 3051 InitExpr = Cleanups->getSubExpr(); 3052 3053 const MaterializeTemporaryExpr *MTE = 3054 dyn_cast<MaterializeTemporaryExpr>(InitExpr); 3055 3056 // No copy made. 3057 if (!MTE) 3058 return; 3059 3060 const Expr *E = MTE->getSubExpr()->IgnoreImpCasts(); 3061 3062 // Searching for either UnaryOperator for dereference of a pointer or 3063 // CXXOperatorCallExpr for handling iterators. 3064 while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) { 3065 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) { 3066 E = CCE->getArg(0); 3067 } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) { 3068 const MemberExpr *ME = cast<MemberExpr>(Call->getCallee()); 3069 E = ME->getBase(); 3070 } else { 3071 const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E); 3072 E = MTE->getSubExpr(); 3073 } 3074 E = E->IgnoreImpCasts(); 3075 } 3076 3077 QualType ReferenceReturnType; 3078 if (isa<UnaryOperator>(E)) { 3079 ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType()); 3080 } else { 3081 const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E); 3082 const FunctionDecl *FD = Call->getDirectCallee(); 3083 QualType ReturnType = FD->getReturnType(); 3084 if (ReturnType->isReferenceType()) 3085 ReferenceReturnType = ReturnType; 3086 } 3087 3088 if (!ReferenceReturnType.isNull()) { 3089 // Loop variable creates a temporary. Suggest either to go with 3090 // non-reference loop variable to indicate a copy is made, or 3091 // the correct type to bind a const reference. 3092 SemaRef.Diag(VD->getLocation(), 3093 diag::warn_for_range_const_ref_binds_temp_built_from_ref) 3094 << VD << VariableType << ReferenceReturnType; 3095 QualType NonReferenceType = VariableType.getNonReferenceType(); 3096 NonReferenceType.removeLocalConst(); 3097 QualType NewReferenceType = 3098 SemaRef.Context.getLValueReferenceType(E->getType().withConst()); 3099 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference) 3100 << NonReferenceType << NewReferenceType << VD->getSourceRange() 3101 << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc()); 3102 } else if (!VariableType->isRValueReferenceType()) { 3103 // The range always returns a copy, so a temporary is always created. 3104 // Suggest removing the reference from the loop variable. 3105 // If the type is a rvalue reference do not warn since that changes the 3106 // semantic of the code. 3107 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp) 3108 << VD << RangeInitType; 3109 QualType NonReferenceType = VariableType.getNonReferenceType(); 3110 NonReferenceType.removeLocalConst(); 3111 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type) 3112 << NonReferenceType << VD->getSourceRange() 3113 << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc()); 3114 } 3115 } 3116 3117 /// Determines whether the @p VariableType's declaration is a record with the 3118 /// clang::trivial_abi attribute. 3119 static bool hasTrivialABIAttr(QualType VariableType) { 3120 if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl()) 3121 return RD->hasAttr<TrivialABIAttr>(); 3122 3123 return false; 3124 } 3125 3126 // Warns when the loop variable can be changed to a reference type to 3127 // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest 3128 // "for (const Foo &x : Range)" if this form does not make a copy. 3129 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef, 3130 const VarDecl *VD) { 3131 const Expr *InitExpr = VD->getInit(); 3132 if (!InitExpr) 3133 return; 3134 3135 QualType VariableType = VD->getType(); 3136 3137 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) { 3138 if (!CE->getConstructor()->isCopyConstructor()) 3139 return; 3140 } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) { 3141 if (CE->getCastKind() != CK_LValueToRValue) 3142 return; 3143 } else { 3144 return; 3145 } 3146 3147 // Small trivially copyable types are cheap to copy. Do not emit the 3148 // diagnostic for these instances. 64 bytes is a common size of a cache line. 3149 // (The function `getTypeSize` returns the size in bits.) 3150 ASTContext &Ctx = SemaRef.Context; 3151 if (Ctx.getTypeSize(VariableType) <= 64 * 8 && 3152 (VariableType.isTriviallyCopyableType(Ctx) || 3153 hasTrivialABIAttr(VariableType))) 3154 return; 3155 3156 // Suggest changing from a const variable to a const reference variable 3157 // if doing so will prevent a copy. 3158 SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy) 3159 << VD << VariableType; 3160 SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type) 3161 << SemaRef.Context.getLValueReferenceType(VariableType) 3162 << VD->getSourceRange() 3163 << FixItHint::CreateInsertion(VD->getLocation(), "&"); 3164 } 3165 3166 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them. 3167 /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest 3168 /// using "const foo x" to show that a copy is made 3169 /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar. 3170 /// Suggest either "const bar x" to keep the copying or "const foo& x" to 3171 /// prevent the copy. 3172 /// 3) for (const foo x : foos) where x is constructed from a reference foo. 3173 /// Suggest "const foo &x" to prevent the copy. 3174 static void DiagnoseForRangeVariableCopies(Sema &SemaRef, 3175 const CXXForRangeStmt *ForStmt) { 3176 if (SemaRef.inTemplateInstantiation()) 3177 return; 3178 3179 if (SemaRef.Diags.isIgnored( 3180 diag::warn_for_range_const_ref_binds_temp_built_from_ref, 3181 ForStmt->getBeginLoc()) && 3182 SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp, 3183 ForStmt->getBeginLoc()) && 3184 SemaRef.Diags.isIgnored(diag::warn_for_range_copy, 3185 ForStmt->getBeginLoc())) { 3186 return; 3187 } 3188 3189 const VarDecl *VD = ForStmt->getLoopVariable(); 3190 if (!VD) 3191 return; 3192 3193 QualType VariableType = VD->getType(); 3194 3195 if (VariableType->isIncompleteType()) 3196 return; 3197 3198 const Expr *InitExpr = VD->getInit(); 3199 if (!InitExpr) 3200 return; 3201 3202 if (InitExpr->getExprLoc().isMacroID()) 3203 return; 3204 3205 if (VariableType->isReferenceType()) { 3206 DiagnoseForRangeReferenceVariableCopies(SemaRef, VD, 3207 ForStmt->getRangeInit()->getType()); 3208 } else if (VariableType.isConstQualified()) { 3209 DiagnoseForRangeConstVariableCopies(SemaRef, VD); 3210 } 3211 } 3212 3213 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement. 3214 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the 3215 /// body cannot be performed until after the type of the range variable is 3216 /// determined. 3217 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) { 3218 if (!S || !B) 3219 return StmtError(); 3220 3221 if (isa<ObjCForCollectionStmt>(S)) 3222 return FinishObjCForCollectionStmt(S, B); 3223 3224 CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S); 3225 ForStmt->setBody(B); 3226 3227 DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B, 3228 diag::warn_empty_range_based_for_body); 3229 3230 DiagnoseForRangeVariableCopies(*this, ForStmt); 3231 3232 return S; 3233 } 3234 3235 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc, 3236 SourceLocation LabelLoc, 3237 LabelDecl *TheDecl) { 3238 setFunctionHasBranchIntoScope(); 3239 TheDecl->markUsed(Context); 3240 return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc); 3241 } 3242 3243 StmtResult 3244 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, 3245 Expr *E) { 3246 // Convert operand to void* 3247 if (!E->isTypeDependent()) { 3248 QualType ETy = E->getType(); 3249 QualType DestTy = Context.getPointerType(Context.VoidTy.withConst()); 3250 ExprResult ExprRes = E; 3251 AssignConvertType ConvTy = 3252 CheckSingleAssignmentConstraints(DestTy, ExprRes); 3253 if (ExprRes.isInvalid()) 3254 return StmtError(); 3255 E = ExprRes.get(); 3256 if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing)) 3257 return StmtError(); 3258 } 3259 3260 ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false); 3261 if (ExprRes.isInvalid()) 3262 return StmtError(); 3263 E = ExprRes.get(); 3264 3265 setFunctionHasIndirectGoto(); 3266 3267 return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E); 3268 } 3269 3270 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc, 3271 const Scope &DestScope) { 3272 if (!S.CurrentSEHFinally.empty() && 3273 DestScope.Contains(*S.CurrentSEHFinally.back())) { 3274 S.Diag(Loc, diag::warn_jump_out_of_seh_finally); 3275 } 3276 } 3277 3278 StmtResult 3279 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { 3280 Scope *S = CurScope->getContinueParent(); 3281 if (!S) { 3282 // C99 6.8.6.2p1: A break shall appear only in or as a loop body. 3283 return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop)); 3284 } 3285 if (S->getFlags() & Scope::ConditionVarScope) { 3286 // We cannot 'continue;' from within a statement expression in the 3287 // initializer of a condition variable because we would jump past the 3288 // initialization of that variable. 3289 return StmtError(Diag(ContinueLoc, diag::err_continue_from_cond_var_init)); 3290 } 3291 CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S); 3292 3293 return new (Context) ContinueStmt(ContinueLoc); 3294 } 3295 3296 StmtResult 3297 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { 3298 Scope *S = CurScope->getBreakParent(); 3299 if (!S) { 3300 // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. 3301 return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch)); 3302 } 3303 if (S->isOpenMPLoopScope()) 3304 return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt) 3305 << "break"); 3306 CheckJumpOutOfSEHFinally(*this, BreakLoc, *S); 3307 3308 return new (Context) BreakStmt(BreakLoc); 3309 } 3310 3311 /// Determine whether the given expression might be move-eligible or 3312 /// copy-elidable in either a (co_)return statement or throw expression, 3313 /// without considering function return type, if applicable. 3314 /// 3315 /// \param E The expression being returned from the function or block, 3316 /// being thrown, or being co_returned from a coroutine. This expression 3317 /// might be modified by the implementation. 3318 /// 3319 /// \param ForceCXX2b Overrides detection of current language mode 3320 /// and uses the rules for C++2b. 3321 /// 3322 /// \returns An aggregate which contains the Candidate and isMoveEligible 3323 /// and isCopyElidable methods. If Candidate is non-null, it means 3324 /// isMoveEligible() would be true under the most permissive language standard. 3325 Sema::NamedReturnInfo Sema::getNamedReturnInfo(Expr *&E, 3326 SimplerImplicitMoveMode Mode) { 3327 if (!E) 3328 return NamedReturnInfo(); 3329 // - in a return statement in a function [where] ... 3330 // ... the expression is the name of a non-volatile automatic object ... 3331 const auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens()); 3332 if (!DR || DR->refersToEnclosingVariableOrCapture()) 3333 return NamedReturnInfo(); 3334 const auto *VD = dyn_cast<VarDecl>(DR->getDecl()); 3335 if (!VD) 3336 return NamedReturnInfo(); 3337 NamedReturnInfo Res = getNamedReturnInfo(VD); 3338 if (Res.Candidate && !E->isXValue() && 3339 (Mode == SimplerImplicitMoveMode::ForceOn || 3340 (Mode != SimplerImplicitMoveMode::ForceOff && 3341 getLangOpts().CPlusPlus2b))) { 3342 E = ImplicitCastExpr::Create(Context, VD->getType().getNonReferenceType(), 3343 CK_NoOp, E, nullptr, VK_XValue, 3344 FPOptionsOverride()); 3345 } 3346 return Res; 3347 } 3348 3349 /// Determine whether the given NRVO candidate variable is move-eligible or 3350 /// copy-elidable, without considering function return type. 3351 /// 3352 /// \param VD The NRVO candidate variable. 3353 /// 3354 /// \returns An aggregate which contains the Candidate and isMoveEligible 3355 /// and isCopyElidable methods. If Candidate is non-null, it means 3356 /// isMoveEligible() would be true under the most permissive language standard. 3357 Sema::NamedReturnInfo Sema::getNamedReturnInfo(const VarDecl *VD) { 3358 NamedReturnInfo Info{VD, NamedReturnInfo::MoveEligibleAndCopyElidable}; 3359 3360 // C++20 [class.copy.elision]p3: 3361 // - in a return statement in a function with ... 3362 // (other than a function ... parameter) 3363 if (VD->getKind() == Decl::ParmVar) 3364 Info.S = NamedReturnInfo::MoveEligible; 3365 else if (VD->getKind() != Decl::Var) 3366 return NamedReturnInfo(); 3367 3368 // (other than ... a catch-clause parameter) 3369 if (VD->isExceptionVariable()) 3370 Info.S = NamedReturnInfo::MoveEligible; 3371 3372 // ...automatic... 3373 if (!VD->hasLocalStorage()) 3374 return NamedReturnInfo(); 3375 3376 // We don't want to implicitly move out of a __block variable during a return 3377 // because we cannot assume the variable will no longer be used. 3378 if (VD->hasAttr<BlocksAttr>()) 3379 return NamedReturnInfo(); 3380 3381 QualType VDType = VD->getType(); 3382 if (VDType->isObjectType()) { 3383 // C++17 [class.copy.elision]p3: 3384 // ...non-volatile automatic object... 3385 if (VDType.isVolatileQualified()) 3386 return NamedReturnInfo(); 3387 } else if (VDType->isRValueReferenceType()) { 3388 // C++20 [class.copy.elision]p3: 3389 // ...either a non-volatile object or an rvalue reference to a non-volatile 3390 // object type... 3391 QualType VDReferencedType = VDType.getNonReferenceType(); 3392 if (VDReferencedType.isVolatileQualified() || 3393 !VDReferencedType->isObjectType()) 3394 return NamedReturnInfo(); 3395 Info.S = NamedReturnInfo::MoveEligible; 3396 } else { 3397 return NamedReturnInfo(); 3398 } 3399 3400 // Variables with higher required alignment than their type's ABI 3401 // alignment cannot use NRVO. 3402 if (!VD->hasDependentAlignment() && 3403 Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VDType)) 3404 Info.S = NamedReturnInfo::MoveEligible; 3405 3406 return Info; 3407 } 3408 3409 /// Updates given NamedReturnInfo's move-eligible and 3410 /// copy-elidable statuses, considering the function 3411 /// return type criteria as applicable to return statements. 3412 /// 3413 /// \param Info The NamedReturnInfo object to update. 3414 /// 3415 /// \param ReturnType This is the return type of the function. 3416 /// \returns The copy elision candidate, in case the initial return expression 3417 /// was copy elidable, or nullptr otherwise. 3418 const VarDecl *Sema::getCopyElisionCandidate(NamedReturnInfo &Info, 3419 QualType ReturnType) { 3420 if (!Info.Candidate) 3421 return nullptr; 3422 3423 auto invalidNRVO = [&] { 3424 Info = NamedReturnInfo(); 3425 return nullptr; 3426 }; 3427 3428 // If we got a non-deduced auto ReturnType, we are in a dependent context and 3429 // there is no point in allowing copy elision since we won't have it deduced 3430 // by the point the VardDecl is instantiated, which is the last chance we have 3431 // of deciding if the candidate is really copy elidable. 3432 if ((ReturnType->getTypeClass() == Type::TypeClass::Auto && 3433 ReturnType->isCanonicalUnqualified()) || 3434 ReturnType->isSpecificBuiltinType(BuiltinType::Dependent)) 3435 return invalidNRVO(); 3436 3437 if (!ReturnType->isDependentType()) { 3438 // - in a return statement in a function with ... 3439 // ... a class return type ... 3440 if (!ReturnType->isRecordType()) 3441 return invalidNRVO(); 3442 3443 QualType VDType = Info.Candidate->getType(); 3444 // ... the same cv-unqualified type as the function return type ... 3445 // When considering moving this expression out, allow dissimilar types. 3446 if (!VDType->isDependentType() && 3447 !Context.hasSameUnqualifiedType(ReturnType, VDType)) 3448 Info.S = NamedReturnInfo::MoveEligible; 3449 } 3450 return Info.isCopyElidable() ? Info.Candidate : nullptr; 3451 } 3452 3453 /// Verify that the initialization sequence that was picked for the 3454 /// first overload resolution is permissible under C++98. 3455 /// 3456 /// Reject (possibly converting) contructors not taking an rvalue reference, 3457 /// or user conversion operators which are not ref-qualified. 3458 static bool 3459 VerifyInitializationSequenceCXX98(const Sema &S, 3460 const InitializationSequence &Seq) { 3461 const auto *Step = llvm::find_if(Seq.steps(), [](const auto &Step) { 3462 return Step.Kind == InitializationSequence::SK_ConstructorInitialization || 3463 Step.Kind == InitializationSequence::SK_UserConversion; 3464 }); 3465 if (Step != Seq.step_end()) { 3466 const auto *FD = Step->Function.Function; 3467 if (isa<CXXConstructorDecl>(FD) 3468 ? !FD->getParamDecl(0)->getType()->isRValueReferenceType() 3469 : cast<CXXMethodDecl>(FD)->getRefQualifier() == RQ_None) 3470 return false; 3471 } 3472 return true; 3473 } 3474 3475 /// Perform the initialization of a potentially-movable value, which 3476 /// is the result of return value. 3477 /// 3478 /// This routine implements C++20 [class.copy.elision]p3, which attempts to 3479 /// treat returned lvalues as rvalues in certain cases (to prefer move 3480 /// construction), then falls back to treating them as lvalues if that failed. 3481 ExprResult Sema::PerformMoveOrCopyInitialization( 3482 const InitializedEntity &Entity, const NamedReturnInfo &NRInfo, Expr *Value, 3483 bool SupressSimplerImplicitMoves) { 3484 if (getLangOpts().CPlusPlus && 3485 (!getLangOpts().CPlusPlus2b || SupressSimplerImplicitMoves) && 3486 NRInfo.isMoveEligible()) { 3487 ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(), 3488 CK_NoOp, Value, VK_XValue, FPOptionsOverride()); 3489 Expr *InitExpr = &AsRvalue; 3490 auto Kind = InitializationKind::CreateCopy(Value->getBeginLoc(), 3491 Value->getBeginLoc()); 3492 InitializationSequence Seq(*this, Entity, Kind, InitExpr); 3493 auto Res = Seq.getFailedOverloadResult(); 3494 if ((Res == OR_Success || Res == OR_Deleted) && 3495 (getLangOpts().CPlusPlus11 || 3496 VerifyInitializationSequenceCXX98(*this, Seq))) { 3497 // Promote "AsRvalue" to the heap, since we now need this 3498 // expression node to persist. 3499 Value = 3500 ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp, Value, 3501 nullptr, VK_XValue, FPOptionsOverride()); 3502 // Complete type-checking the initialization of the return type 3503 // using the constructor we found. 3504 return Seq.Perform(*this, Entity, Kind, Value); 3505 } 3506 } 3507 // Either we didn't meet the criteria for treating an lvalue as an rvalue, 3508 // above, or overload resolution failed. Either way, we need to try 3509 // (again) now with the return value expression as written. 3510 return PerformCopyInitialization(Entity, SourceLocation(), Value); 3511 } 3512 3513 /// Determine whether the declared return type of the specified function 3514 /// contains 'auto'. 3515 static bool hasDeducedReturnType(FunctionDecl *FD) { 3516 const FunctionProtoType *FPT = 3517 FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); 3518 return FPT->getReturnType()->isUndeducedType(); 3519 } 3520 3521 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements 3522 /// for capturing scopes. 3523 /// 3524 StmtResult Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, 3525 Expr *RetValExp, 3526 NamedReturnInfo &NRInfo, 3527 bool SupressSimplerImplicitMoves) { 3528 // If this is the first return we've seen, infer the return type. 3529 // [expr.prim.lambda]p4 in C++11; block literals follow the same rules. 3530 CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction()); 3531 QualType FnRetType = CurCap->ReturnType; 3532 LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap); 3533 bool HasDeducedReturnType = 3534 CurLambda && hasDeducedReturnType(CurLambda->CallOperator); 3535 3536 if (ExprEvalContexts.back().Context == 3537 ExpressionEvaluationContext::DiscardedStatement && 3538 (HasDeducedReturnType || CurCap->HasImplicitReturnType)) { 3539 if (RetValExp) { 3540 ExprResult ER = 3541 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 3542 if (ER.isInvalid()) 3543 return StmtError(); 3544 RetValExp = ER.get(); 3545 } 3546 return ReturnStmt::Create(Context, ReturnLoc, RetValExp, 3547 /* NRVOCandidate=*/nullptr); 3548 } 3549 3550 if (HasDeducedReturnType) { 3551 FunctionDecl *FD = CurLambda->CallOperator; 3552 // If we've already decided this lambda is invalid, e.g. because 3553 // we saw a `return` whose expression had an error, don't keep 3554 // trying to deduce its return type. 3555 if (FD->isInvalidDecl()) 3556 return StmtError(); 3557 // In C++1y, the return type may involve 'auto'. 3558 // FIXME: Blocks might have a return type of 'auto' explicitly specified. 3559 if (CurCap->ReturnType.isNull()) 3560 CurCap->ReturnType = FD->getReturnType(); 3561 3562 AutoType *AT = CurCap->ReturnType->getContainedAutoType(); 3563 assert(AT && "lost auto type from lambda return type"); 3564 if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { 3565 FD->setInvalidDecl(); 3566 // FIXME: preserve the ill-formed return expression. 3567 return StmtError(); 3568 } 3569 CurCap->ReturnType = FnRetType = FD->getReturnType(); 3570 } else if (CurCap->HasImplicitReturnType) { 3571 // For blocks/lambdas with implicit return types, we check each return 3572 // statement individually, and deduce the common return type when the block 3573 // or lambda is completed. 3574 // FIXME: Fold this into the 'auto' codepath above. 3575 if (RetValExp && !isa<InitListExpr>(RetValExp)) { 3576 ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp); 3577 if (Result.isInvalid()) 3578 return StmtError(); 3579 RetValExp = Result.get(); 3580 3581 // DR1048: even prior to C++14, we should use the 'auto' deduction rules 3582 // when deducing a return type for a lambda-expression (or by extension 3583 // for a block). These rules differ from the stated C++11 rules only in 3584 // that they remove top-level cv-qualifiers. 3585 if (!CurContext->isDependentContext()) 3586 FnRetType = RetValExp->getType().getUnqualifiedType(); 3587 else 3588 FnRetType = CurCap->ReturnType = Context.DependentTy; 3589 } else { 3590 if (RetValExp) { 3591 // C++11 [expr.lambda.prim]p4 bans inferring the result from an 3592 // initializer list, because it is not an expression (even 3593 // though we represent it as one). We still deduce 'void'. 3594 Diag(ReturnLoc, diag::err_lambda_return_init_list) 3595 << RetValExp->getSourceRange(); 3596 } 3597 3598 FnRetType = Context.VoidTy; 3599 } 3600 3601 // Although we'll properly infer the type of the block once it's completed, 3602 // make sure we provide a return type now for better error recovery. 3603 if (CurCap->ReturnType.isNull()) 3604 CurCap->ReturnType = FnRetType; 3605 } 3606 const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType); 3607 3608 if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) { 3609 if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) { 3610 Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr); 3611 return StmtError(); 3612 } 3613 } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) { 3614 Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName(); 3615 return StmtError(); 3616 } else { 3617 assert(CurLambda && "unknown kind of captured scope"); 3618 if (CurLambda->CallOperator->getType() 3619 ->castAs<FunctionType>() 3620 ->getNoReturnAttr()) { 3621 Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr); 3622 return StmtError(); 3623 } 3624 } 3625 3626 // Otherwise, verify that this result type matches the previous one. We are 3627 // pickier with blocks than for normal functions because we don't have GCC 3628 // compatibility to worry about here. 3629 if (FnRetType->isDependentType()) { 3630 // Delay processing for now. TODO: there are lots of dependent 3631 // types we can conclusively prove aren't void. 3632 } else if (FnRetType->isVoidType()) { 3633 if (RetValExp && !isa<InitListExpr>(RetValExp) && 3634 !(getLangOpts().CPlusPlus && 3635 (RetValExp->isTypeDependent() || 3636 RetValExp->getType()->isVoidType()))) { 3637 if (!getLangOpts().CPlusPlus && 3638 RetValExp->getType()->isVoidType()) 3639 Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2; 3640 else { 3641 Diag(ReturnLoc, diag::err_return_block_has_expr); 3642 RetValExp = nullptr; 3643 } 3644 } 3645 } else if (!RetValExp) { 3646 return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr)); 3647 } else if (!RetValExp->isTypeDependent()) { 3648 // we have a non-void block with an expression, continue checking 3649 3650 // C99 6.8.6.4p3(136): The return statement is not an assignment. The 3651 // overlap restriction of subclause 6.5.16.1 does not apply to the case of 3652 // function return. 3653 3654 // In C++ the return statement is handled via a copy initialization. 3655 // the C version of which boils down to CheckSingleAssignmentConstraints. 3656 InitializedEntity Entity = 3657 InitializedEntity::InitializeResult(ReturnLoc, FnRetType); 3658 ExprResult Res = PerformMoveOrCopyInitialization( 3659 Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves); 3660 if (Res.isInvalid()) { 3661 // FIXME: Cleanup temporaries here, anyway? 3662 return StmtError(); 3663 } 3664 RetValExp = Res.get(); 3665 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc); 3666 } 3667 3668 if (RetValExp) { 3669 ExprResult ER = 3670 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 3671 if (ER.isInvalid()) 3672 return StmtError(); 3673 RetValExp = ER.get(); 3674 } 3675 auto *Result = 3676 ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate); 3677 3678 // If we need to check for the named return value optimization, 3679 // or if we need to infer the return type, 3680 // save the return statement in our scope for later processing. 3681 if (CurCap->HasImplicitReturnType || NRVOCandidate) 3682 FunctionScopes.back()->Returns.push_back(Result); 3683 3684 if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) 3685 FunctionScopes.back()->FirstReturnLoc = ReturnLoc; 3686 3687 return Result; 3688 } 3689 3690 namespace { 3691 /// Marks all typedefs in all local classes in a type referenced. 3692 /// 3693 /// In a function like 3694 /// auto f() { 3695 /// struct S { typedef int a; }; 3696 /// return S(); 3697 /// } 3698 /// 3699 /// the local type escapes and could be referenced in some TUs but not in 3700 /// others. Pretend that all local typedefs are always referenced, to not warn 3701 /// on this. This isn't necessary if f has internal linkage, or the typedef 3702 /// is private. 3703 class LocalTypedefNameReferencer 3704 : public RecursiveASTVisitor<LocalTypedefNameReferencer> { 3705 public: 3706 LocalTypedefNameReferencer(Sema &S) : S(S) {} 3707 bool VisitRecordType(const RecordType *RT); 3708 private: 3709 Sema &S; 3710 }; 3711 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) { 3712 auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl()); 3713 if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() || 3714 R->isDependentType()) 3715 return true; 3716 for (auto *TmpD : R->decls()) 3717 if (auto *T = dyn_cast<TypedefNameDecl>(TmpD)) 3718 if (T->getAccess() != AS_private || R->hasFriends()) 3719 S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false); 3720 return true; 3721 } 3722 } 3723 3724 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const { 3725 return FD->getTypeSourceInfo() 3726 ->getTypeLoc() 3727 .getAsAdjusted<FunctionProtoTypeLoc>() 3728 .getReturnLoc(); 3729 } 3730 3731 /// Deduce the return type for a function from a returned expression, per 3732 /// C++1y [dcl.spec.auto]p6. 3733 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, 3734 SourceLocation ReturnLoc, 3735 Expr *&RetExpr, 3736 AutoType *AT) { 3737 // If this is the conversion function for a lambda, we choose to deduce it 3738 // type from the corresponding call operator, not from the synthesized return 3739 // statement within it. See Sema::DeduceReturnType. 3740 if (isLambdaConversionOperator(FD)) 3741 return false; 3742 3743 TypeLoc OrigResultType = getReturnTypeLoc(FD); 3744 QualType Deduced; 3745 3746 if (RetExpr && isa<InitListExpr>(RetExpr)) { 3747 // If the deduction is for a return statement and the initializer is 3748 // a braced-init-list, the program is ill-formed. 3749 Diag(RetExpr->getExprLoc(), 3750 getCurLambda() ? diag::err_lambda_return_init_list 3751 : diag::err_auto_fn_return_init_list) 3752 << RetExpr->getSourceRange(); 3753 return true; 3754 } 3755 3756 if (FD->isDependentContext()) { 3757 // C++1y [dcl.spec.auto]p12: 3758 // Return type deduction [...] occurs when the definition is 3759 // instantiated even if the function body contains a return 3760 // statement with a non-type-dependent operand. 3761 assert(AT->isDeduced() && "should have deduced to dependent type"); 3762 return false; 3763 } 3764 3765 if (RetExpr) { 3766 // Otherwise, [...] deduce a value for U using the rules of template 3767 // argument deduction. 3768 DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced); 3769 3770 if (DAR == DAR_Failed && !FD->isInvalidDecl()) 3771 Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure) 3772 << OrigResultType.getType() << RetExpr->getType(); 3773 3774 if (DAR != DAR_Succeeded) 3775 return true; 3776 3777 // If a local type is part of the returned type, mark its fields as 3778 // referenced. 3779 LocalTypedefNameReferencer Referencer(*this); 3780 Referencer.TraverseType(RetExpr->getType()); 3781 } else { 3782 // In the case of a return with no operand, the initializer is considered 3783 // to be void(). 3784 // 3785 // Deduction here can only succeed if the return type is exactly 'cv auto' 3786 // or 'decltype(auto)', so just check for that case directly. 3787 if (!OrigResultType.getType()->getAs<AutoType>()) { 3788 Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto) 3789 << OrigResultType.getType(); 3790 return true; 3791 } 3792 // We always deduce U = void in this case. 3793 Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy); 3794 if (Deduced.isNull()) 3795 return true; 3796 } 3797 3798 // CUDA: Kernel function must have 'void' return type. 3799 if (getLangOpts().CUDA) 3800 if (FD->hasAttr<CUDAGlobalAttr>() && !Deduced->isVoidType()) { 3801 Diag(FD->getLocation(), diag::err_kern_type_not_void_return) 3802 << FD->getType() << FD->getSourceRange(); 3803 return true; 3804 } 3805 3806 // If a function with a declared return type that contains a placeholder type 3807 // has multiple return statements, the return type is deduced for each return 3808 // statement. [...] if the type deduced is not the same in each deduction, 3809 // the program is ill-formed. 3810 QualType DeducedT = AT->getDeducedType(); 3811 if (!DeducedT.isNull() && !FD->isInvalidDecl()) { 3812 AutoType *NewAT = Deduced->getContainedAutoType(); 3813 // It is possible that NewAT->getDeducedType() is null. When that happens, 3814 // we should not crash, instead we ignore this deduction. 3815 if (NewAT->getDeducedType().isNull()) 3816 return false; 3817 3818 CanQualType OldDeducedType = Context.getCanonicalFunctionResultType( 3819 DeducedT); 3820 CanQualType NewDeducedType = Context.getCanonicalFunctionResultType( 3821 NewAT->getDeducedType()); 3822 if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) { 3823 const LambdaScopeInfo *LambdaSI = getCurLambda(); 3824 if (LambdaSI && LambdaSI->HasImplicitReturnType) { 3825 Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible) 3826 << NewAT->getDeducedType() << DeducedT 3827 << true /*IsLambda*/; 3828 } else { 3829 Diag(ReturnLoc, diag::err_auto_fn_different_deductions) 3830 << (AT->isDecltypeAuto() ? 1 : 0) 3831 << NewAT->getDeducedType() << DeducedT; 3832 } 3833 return true; 3834 } 3835 } else if (!FD->isInvalidDecl()) { 3836 // Update all declarations of the function to have the deduced return type. 3837 Context.adjustDeducedFunctionResultType(FD, Deduced); 3838 } 3839 3840 return false; 3841 } 3842 3843 StmtResult 3844 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, 3845 Scope *CurScope) { 3846 // Correct typos, in case the containing function returns 'auto' and 3847 // RetValExp should determine the deduced type. 3848 ExprResult RetVal = CorrectDelayedTyposInExpr( 3849 RetValExp, nullptr, /*RecoverUncorrectedTypos=*/true); 3850 if (RetVal.isInvalid()) 3851 return StmtError(); 3852 StmtResult R = BuildReturnStmt(ReturnLoc, RetVal.get()); 3853 if (R.isInvalid() || ExprEvalContexts.back().Context == 3854 ExpressionEvaluationContext::DiscardedStatement) 3855 return R; 3856 3857 if (VarDecl *VD = 3858 const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) { 3859 CurScope->addNRVOCandidate(VD); 3860 } else { 3861 CurScope->setNoNRVO(); 3862 } 3863 3864 CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent()); 3865 3866 return R; 3867 } 3868 3869 static bool CheckSimplerImplicitMovesMSVCWorkaround(const Sema &S, 3870 const Expr *E) { 3871 if (!E || !S.getLangOpts().CPlusPlus2b || !S.getLangOpts().MSVCCompat) 3872 return false; 3873 const Decl *D = E->getReferencedDeclOfCallee(); 3874 if (!D || !S.SourceMgr.isInSystemHeader(D->getLocation())) 3875 return false; 3876 for (const DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) { 3877 if (DC->isStdNamespace()) 3878 return true; 3879 } 3880 return false; 3881 } 3882 3883 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) { 3884 // Check for unexpanded parameter packs. 3885 if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp)) 3886 return StmtError(); 3887 3888 // HACK: We supress simpler implicit move here in msvc compatibility mode 3889 // just as a temporary work around, as the MSVC STL has issues with 3890 // this change. 3891 bool SupressSimplerImplicitMoves = 3892 CheckSimplerImplicitMovesMSVCWorkaround(*this, RetValExp); 3893 NamedReturnInfo NRInfo = getNamedReturnInfo( 3894 RetValExp, SupressSimplerImplicitMoves ? SimplerImplicitMoveMode::ForceOff 3895 : SimplerImplicitMoveMode::Normal); 3896 3897 if (isa<CapturingScopeInfo>(getCurFunction())) 3898 return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp, NRInfo, 3899 SupressSimplerImplicitMoves); 3900 3901 QualType FnRetType; 3902 QualType RelatedRetType; 3903 const AttrVec *Attrs = nullptr; 3904 bool isObjCMethod = false; 3905 3906 if (const FunctionDecl *FD = getCurFunctionDecl()) { 3907 FnRetType = FD->getReturnType(); 3908 if (FD->hasAttrs()) 3909 Attrs = &FD->getAttrs(); 3910 if (FD->isNoReturn()) 3911 Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD; 3912 if (FD->isMain() && RetValExp) 3913 if (isa<CXXBoolLiteralExpr>(RetValExp)) 3914 Diag(ReturnLoc, diag::warn_main_returns_bool_literal) 3915 << RetValExp->getSourceRange(); 3916 if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) { 3917 if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) { 3918 if (RT->getDecl()->isOrContainsUnion()) 3919 Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1; 3920 } 3921 } 3922 } else if (ObjCMethodDecl *MD = getCurMethodDecl()) { 3923 FnRetType = MD->getReturnType(); 3924 isObjCMethod = true; 3925 if (MD->hasAttrs()) 3926 Attrs = &MD->getAttrs(); 3927 if (MD->hasRelatedResultType() && MD->getClassInterface()) { 3928 // In the implementation of a method with a related return type, the 3929 // type used to type-check the validity of return statements within the 3930 // method body is a pointer to the type of the class being implemented. 3931 RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface()); 3932 RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType); 3933 } 3934 } else // If we don't have a function/method context, bail. 3935 return StmtError(); 3936 3937 // C++1z: discarded return statements are not considered when deducing a 3938 // return type. 3939 if (ExprEvalContexts.back().Context == 3940 ExpressionEvaluationContext::DiscardedStatement && 3941 FnRetType->getContainedAutoType()) { 3942 if (RetValExp) { 3943 ExprResult ER = 3944 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 3945 if (ER.isInvalid()) 3946 return StmtError(); 3947 RetValExp = ER.get(); 3948 } 3949 return ReturnStmt::Create(Context, ReturnLoc, RetValExp, 3950 /* NRVOCandidate=*/nullptr); 3951 } 3952 3953 // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing 3954 // deduction. 3955 if (getLangOpts().CPlusPlus14) { 3956 if (AutoType *AT = FnRetType->getContainedAutoType()) { 3957 FunctionDecl *FD = cast<FunctionDecl>(CurContext); 3958 // If we've already decided this function is invalid, e.g. because 3959 // we saw a `return` whose expression had an error, don't keep 3960 // trying to deduce its return type. 3961 if (FD->isInvalidDecl()) 3962 return StmtError(); 3963 if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { 3964 FD->setInvalidDecl(); 3965 return StmtError(); 3966 } else { 3967 FnRetType = FD->getReturnType(); 3968 } 3969 } 3970 } 3971 const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType); 3972 3973 bool HasDependentReturnType = FnRetType->isDependentType(); 3974 3975 ReturnStmt *Result = nullptr; 3976 if (FnRetType->isVoidType()) { 3977 if (RetValExp) { 3978 if (isa<InitListExpr>(RetValExp)) { 3979 // We simply never allow init lists as the return value of void 3980 // functions. This is compatible because this was never allowed before, 3981 // so there's no legacy code to deal with. 3982 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 3983 int FunctionKind = 0; 3984 if (isa<ObjCMethodDecl>(CurDecl)) 3985 FunctionKind = 1; 3986 else if (isa<CXXConstructorDecl>(CurDecl)) 3987 FunctionKind = 2; 3988 else if (isa<CXXDestructorDecl>(CurDecl)) 3989 FunctionKind = 3; 3990 3991 Diag(ReturnLoc, diag::err_return_init_list) 3992 << CurDecl << FunctionKind << RetValExp->getSourceRange(); 3993 3994 // Drop the expression. 3995 RetValExp = nullptr; 3996 } else if (!RetValExp->isTypeDependent()) { 3997 // C99 6.8.6.4p1 (ext_ since GCC warns) 3998 unsigned D = diag::ext_return_has_expr; 3999 if (RetValExp->getType()->isVoidType()) { 4000 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 4001 if (isa<CXXConstructorDecl>(CurDecl) || 4002 isa<CXXDestructorDecl>(CurDecl)) 4003 D = diag::err_ctor_dtor_returns_void; 4004 else 4005 D = diag::ext_return_has_void_expr; 4006 } 4007 else { 4008 ExprResult Result = RetValExp; 4009 Result = IgnoredValueConversions(Result.get()); 4010 if (Result.isInvalid()) 4011 return StmtError(); 4012 RetValExp = Result.get(); 4013 RetValExp = ImpCastExprToType(RetValExp, 4014 Context.VoidTy, CK_ToVoid).get(); 4015 } 4016 // return of void in constructor/destructor is illegal in C++. 4017 if (D == diag::err_ctor_dtor_returns_void) { 4018 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 4019 Diag(ReturnLoc, D) << CurDecl << isa<CXXDestructorDecl>(CurDecl) 4020 << RetValExp->getSourceRange(); 4021 } 4022 // return (some void expression); is legal in C++. 4023 else if (D != diag::ext_return_has_void_expr || 4024 !getLangOpts().CPlusPlus) { 4025 NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); 4026 4027 int FunctionKind = 0; 4028 if (isa<ObjCMethodDecl>(CurDecl)) 4029 FunctionKind = 1; 4030 else if (isa<CXXConstructorDecl>(CurDecl)) 4031 FunctionKind = 2; 4032 else if (isa<CXXDestructorDecl>(CurDecl)) 4033 FunctionKind = 3; 4034 4035 Diag(ReturnLoc, D) 4036 << CurDecl << FunctionKind << RetValExp->getSourceRange(); 4037 } 4038 } 4039 4040 if (RetValExp) { 4041 ExprResult ER = 4042 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 4043 if (ER.isInvalid()) 4044 return StmtError(); 4045 RetValExp = ER.get(); 4046 } 4047 } 4048 4049 Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, 4050 /* NRVOCandidate=*/nullptr); 4051 } else if (!RetValExp && !HasDependentReturnType) { 4052 FunctionDecl *FD = getCurFunctionDecl(); 4053 4054 if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) { 4055 // C++11 [stmt.return]p2 4056 Diag(ReturnLoc, diag::err_constexpr_return_missing_expr) 4057 << FD << FD->isConsteval(); 4058 FD->setInvalidDecl(); 4059 } else { 4060 // C99 6.8.6.4p1 (ext_ since GCC warns) 4061 // C90 6.6.6.4p4 4062 unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr 4063 : diag::warn_return_missing_expr; 4064 // Note that at this point one of getCurFunctionDecl() or 4065 // getCurMethodDecl() must be non-null (see above). 4066 assert((getCurFunctionDecl() || getCurMethodDecl()) && 4067 "Not in a FunctionDecl or ObjCMethodDecl?"); 4068 bool IsMethod = FD == nullptr; 4069 const NamedDecl *ND = 4070 IsMethod ? cast<NamedDecl>(getCurMethodDecl()) : cast<NamedDecl>(FD); 4071 Diag(ReturnLoc, DiagID) << ND << IsMethod; 4072 } 4073 4074 Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr, 4075 /* NRVOCandidate=*/nullptr); 4076 } else { 4077 assert(RetValExp || HasDependentReturnType); 4078 QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType; 4079 4080 // C99 6.8.6.4p3(136): The return statement is not an assignment. The 4081 // overlap restriction of subclause 6.5.16.1 does not apply to the case of 4082 // function return. 4083 4084 // In C++ the return statement is handled via a copy initialization, 4085 // the C version of which boils down to CheckSingleAssignmentConstraints. 4086 if (!HasDependentReturnType && !RetValExp->isTypeDependent()) { 4087 // we have a non-void function with an expression, continue checking 4088 InitializedEntity Entity = 4089 InitializedEntity::InitializeResult(ReturnLoc, RetType); 4090 ExprResult Res = PerformMoveOrCopyInitialization( 4091 Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves); 4092 if (Res.isInvalid()) { 4093 // FIXME: Clean up temporaries here anyway? 4094 return StmtError(); 4095 } 4096 RetValExp = Res.getAs<Expr>(); 4097 4098 // If we have a related result type, we need to implicitly 4099 // convert back to the formal result type. We can't pretend to 4100 // initialize the result again --- we might end double-retaining 4101 // --- so instead we initialize a notional temporary. 4102 if (!RelatedRetType.isNull()) { 4103 Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(), 4104 FnRetType); 4105 Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp); 4106 if (Res.isInvalid()) { 4107 // FIXME: Clean up temporaries here anyway? 4108 return StmtError(); 4109 } 4110 RetValExp = Res.getAs<Expr>(); 4111 } 4112 4113 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs, 4114 getCurFunctionDecl()); 4115 } 4116 4117 if (RetValExp) { 4118 ExprResult ER = 4119 ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); 4120 if (ER.isInvalid()) 4121 return StmtError(); 4122 RetValExp = ER.get(); 4123 } 4124 Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate); 4125 } 4126 4127 // If we need to check for the named return value optimization, save the 4128 // return statement in our scope for later processing. 4129 if (Result->getNRVOCandidate()) 4130 FunctionScopes.back()->Returns.push_back(Result); 4131 4132 if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) 4133 FunctionScopes.back()->FirstReturnLoc = ReturnLoc; 4134 4135 return Result; 4136 } 4137 4138 StmtResult 4139 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc, 4140 SourceLocation RParen, Decl *Parm, 4141 Stmt *Body) { 4142 VarDecl *Var = cast_or_null<VarDecl>(Parm); 4143 if (Var && Var->isInvalidDecl()) 4144 return StmtError(); 4145 4146 return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body); 4147 } 4148 4149 StmtResult 4150 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) { 4151 return new (Context) ObjCAtFinallyStmt(AtLoc, Body); 4152 } 4153 4154 StmtResult 4155 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, 4156 MultiStmtArg CatchStmts, Stmt *Finally) { 4157 if (!getLangOpts().ObjCExceptions) 4158 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try"; 4159 4160 setFunctionHasBranchProtectedScope(); 4161 unsigned NumCatchStmts = CatchStmts.size(); 4162 return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(), 4163 NumCatchStmts, Finally); 4164 } 4165 4166 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) { 4167 if (Throw) { 4168 ExprResult Result = DefaultLvalueConversion(Throw); 4169 if (Result.isInvalid()) 4170 return StmtError(); 4171 4172 Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false); 4173 if (Result.isInvalid()) 4174 return StmtError(); 4175 Throw = Result.get(); 4176 4177 QualType ThrowType = Throw->getType(); 4178 // Make sure the expression type is an ObjC pointer or "void *". 4179 if (!ThrowType->isDependentType() && 4180 !ThrowType->isObjCObjectPointerType()) { 4181 const PointerType *PT = ThrowType->getAs<PointerType>(); 4182 if (!PT || !PT->getPointeeType()->isVoidType()) 4183 return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object) 4184 << Throw->getType() << Throw->getSourceRange()); 4185 } 4186 } 4187 4188 return new (Context) ObjCAtThrowStmt(AtLoc, Throw); 4189 } 4190 4191 StmtResult 4192 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, 4193 Scope *CurScope) { 4194 if (!getLangOpts().ObjCExceptions) 4195 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw"; 4196 4197 if (!Throw) { 4198 // @throw without an expression designates a rethrow (which must occur 4199 // in the context of an @catch clause). 4200 Scope *AtCatchParent = CurScope; 4201 while (AtCatchParent && !AtCatchParent->isAtCatchScope()) 4202 AtCatchParent = AtCatchParent->getParent(); 4203 if (!AtCatchParent) 4204 return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch)); 4205 } 4206 return BuildObjCAtThrowStmt(AtLoc, Throw); 4207 } 4208 4209 ExprResult 4210 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) { 4211 ExprResult result = DefaultLvalueConversion(operand); 4212 if (result.isInvalid()) 4213 return ExprError(); 4214 operand = result.get(); 4215 4216 // Make sure the expression type is an ObjC pointer or "void *". 4217 QualType type = operand->getType(); 4218 if (!type->isDependentType() && 4219 !type->isObjCObjectPointerType()) { 4220 const PointerType *pointerType = type->getAs<PointerType>(); 4221 if (!pointerType || !pointerType->getPointeeType()->isVoidType()) { 4222 if (getLangOpts().CPlusPlus) { 4223 if (RequireCompleteType(atLoc, type, 4224 diag::err_incomplete_receiver_type)) 4225 return Diag(atLoc, diag::err_objc_synchronized_expects_object) 4226 << type << operand->getSourceRange(); 4227 4228 ExprResult result = PerformContextuallyConvertToObjCPointer(operand); 4229 if (result.isInvalid()) 4230 return ExprError(); 4231 if (!result.isUsable()) 4232 return Diag(atLoc, diag::err_objc_synchronized_expects_object) 4233 << type << operand->getSourceRange(); 4234 4235 operand = result.get(); 4236 } else { 4237 return Diag(atLoc, diag::err_objc_synchronized_expects_object) 4238 << type << operand->getSourceRange(); 4239 } 4240 } 4241 } 4242 4243 // The operand to @synchronized is a full-expression. 4244 return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false); 4245 } 4246 4247 StmtResult 4248 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr, 4249 Stmt *SyncBody) { 4250 // We can't jump into or indirect-jump out of a @synchronized block. 4251 setFunctionHasBranchProtectedScope(); 4252 return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody); 4253 } 4254 4255 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block 4256 /// and creates a proper catch handler from them. 4257 StmtResult 4258 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, 4259 Stmt *HandlerBlock) { 4260 // There's nothing to test that ActOnExceptionDecl didn't already test. 4261 return new (Context) 4262 CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock); 4263 } 4264 4265 StmtResult 4266 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) { 4267 setFunctionHasBranchProtectedScope(); 4268 return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body); 4269 } 4270 4271 namespace { 4272 class CatchHandlerType { 4273 QualType QT; 4274 unsigned IsPointer : 1; 4275 4276 // This is a special constructor to be used only with DenseMapInfo's 4277 // getEmptyKey() and getTombstoneKey() functions. 4278 friend struct llvm::DenseMapInfo<CatchHandlerType>; 4279 enum Unique { ForDenseMap }; 4280 CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {} 4281 4282 public: 4283 /// Used when creating a CatchHandlerType from a handler type; will determine 4284 /// whether the type is a pointer or reference and will strip off the top 4285 /// level pointer and cv-qualifiers. 4286 CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) { 4287 if (QT->isPointerType()) 4288 IsPointer = true; 4289 4290 if (IsPointer || QT->isReferenceType()) 4291 QT = QT->getPointeeType(); 4292 QT = QT.getUnqualifiedType(); 4293 } 4294 4295 /// Used when creating a CatchHandlerType from a base class type; pretends the 4296 /// type passed in had the pointer qualifier, does not need to get an 4297 /// unqualified type. 4298 CatchHandlerType(QualType QT, bool IsPointer) 4299 : QT(QT), IsPointer(IsPointer) {} 4300 4301 QualType underlying() const { return QT; } 4302 bool isPointer() const { return IsPointer; } 4303 4304 friend bool operator==(const CatchHandlerType &LHS, 4305 const CatchHandlerType &RHS) { 4306 // If the pointer qualification does not match, we can return early. 4307 if (LHS.IsPointer != RHS.IsPointer) 4308 return false; 4309 // Otherwise, check the underlying type without cv-qualifiers. 4310 return LHS.QT == RHS.QT; 4311 } 4312 }; 4313 } // namespace 4314 4315 namespace llvm { 4316 template <> struct DenseMapInfo<CatchHandlerType> { 4317 static CatchHandlerType getEmptyKey() { 4318 return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(), 4319 CatchHandlerType::ForDenseMap); 4320 } 4321 4322 static CatchHandlerType getTombstoneKey() { 4323 return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(), 4324 CatchHandlerType::ForDenseMap); 4325 } 4326 4327 static unsigned getHashValue(const CatchHandlerType &Base) { 4328 return DenseMapInfo<QualType>::getHashValue(Base.underlying()); 4329 } 4330 4331 static bool isEqual(const CatchHandlerType &LHS, 4332 const CatchHandlerType &RHS) { 4333 return LHS == RHS; 4334 } 4335 }; 4336 } 4337 4338 namespace { 4339 class CatchTypePublicBases { 4340 ASTContext &Ctx; 4341 const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck; 4342 const bool CheckAgainstPointer; 4343 4344 CXXCatchStmt *FoundHandler; 4345 CanQualType FoundHandlerType; 4346 4347 public: 4348 CatchTypePublicBases( 4349 ASTContext &Ctx, 4350 const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C) 4351 : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C), 4352 FoundHandler(nullptr) {} 4353 4354 CXXCatchStmt *getFoundHandler() const { return FoundHandler; } 4355 CanQualType getFoundHandlerType() const { return FoundHandlerType; } 4356 4357 bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) { 4358 if (S->getAccessSpecifier() == AccessSpecifier::AS_public) { 4359 CatchHandlerType Check(S->getType(), CheckAgainstPointer); 4360 const auto &M = TypesToCheck; 4361 auto I = M.find(Check); 4362 if (I != M.end()) { 4363 FoundHandler = I->second; 4364 FoundHandlerType = Ctx.getCanonicalType(S->getType()); 4365 return true; 4366 } 4367 } 4368 return false; 4369 } 4370 }; 4371 } 4372 4373 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of 4374 /// handlers and creates a try statement from them. 4375 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, 4376 ArrayRef<Stmt *> Handlers) { 4377 // Don't report an error if 'try' is used in system headers. 4378 if (!getLangOpts().CXXExceptions && 4379 !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) { 4380 // Delay error emission for the OpenMP device code. 4381 targetDiag(TryLoc, diag::err_exceptions_disabled) << "try"; 4382 } 4383 4384 // Exceptions aren't allowed in CUDA device code. 4385 if (getLangOpts().CUDA) 4386 CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions) 4387 << "try" << CurrentCUDATarget(); 4388 4389 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 4390 Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try"; 4391 4392 sema::FunctionScopeInfo *FSI = getCurFunction(); 4393 4394 // C++ try is incompatible with SEH __try. 4395 if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) { 4396 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try); 4397 Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'"; 4398 } 4399 4400 const unsigned NumHandlers = Handlers.size(); 4401 assert(!Handlers.empty() && 4402 "The parser shouldn't call this if there are no handlers."); 4403 4404 llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes; 4405 for (unsigned i = 0; i < NumHandlers; ++i) { 4406 CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]); 4407 4408 // Diagnose when the handler is a catch-all handler, but it isn't the last 4409 // handler for the try block. [except.handle]p5. Also, skip exception 4410 // declarations that are invalid, since we can't usefully report on them. 4411 if (!H->getExceptionDecl()) { 4412 if (i < NumHandlers - 1) 4413 return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all)); 4414 continue; 4415 } else if (H->getExceptionDecl()->isInvalidDecl()) 4416 continue; 4417 4418 // Walk the type hierarchy to diagnose when this type has already been 4419 // handled (duplication), or cannot be handled (derivation inversion). We 4420 // ignore top-level cv-qualifiers, per [except.handle]p3 4421 CatchHandlerType HandlerCHT = 4422 (QualType)Context.getCanonicalType(H->getCaughtType()); 4423 4424 // We can ignore whether the type is a reference or a pointer; we need the 4425 // underlying declaration type in order to get at the underlying record 4426 // decl, if there is one. 4427 QualType Underlying = HandlerCHT.underlying(); 4428 if (auto *RD = Underlying->getAsCXXRecordDecl()) { 4429 if (!RD->hasDefinition()) 4430 continue; 4431 // Check that none of the public, unambiguous base classes are in the 4432 // map ([except.handle]p1). Give the base classes the same pointer 4433 // qualification as the original type we are basing off of. This allows 4434 // comparison against the handler type using the same top-level pointer 4435 // as the original type. 4436 CXXBasePaths Paths; 4437 Paths.setOrigin(RD); 4438 CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer()); 4439 if (RD->lookupInBases(CTPB, Paths)) { 4440 const CXXCatchStmt *Problem = CTPB.getFoundHandler(); 4441 if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) { 4442 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), 4443 diag::warn_exception_caught_by_earlier_handler) 4444 << H->getCaughtType(); 4445 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), 4446 diag::note_previous_exception_handler) 4447 << Problem->getCaughtType(); 4448 } 4449 } 4450 } 4451 4452 // Add the type the list of ones we have handled; diagnose if we've already 4453 // handled it. 4454 auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H)); 4455 if (!R.second) { 4456 const CXXCatchStmt *Problem = R.first->second; 4457 Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), 4458 diag::warn_exception_caught_by_earlier_handler) 4459 << H->getCaughtType(); 4460 Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), 4461 diag::note_previous_exception_handler) 4462 << Problem->getCaughtType(); 4463 } 4464 } 4465 4466 FSI->setHasCXXTry(TryLoc); 4467 4468 return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers); 4469 } 4470 4471 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc, 4472 Stmt *TryBlock, Stmt *Handler) { 4473 assert(TryBlock && Handler); 4474 4475 sema::FunctionScopeInfo *FSI = getCurFunction(); 4476 4477 // SEH __try is incompatible with C++ try. Borland appears to support this, 4478 // however. 4479 if (!getLangOpts().Borland) { 4480 if (FSI->FirstCXXTryLoc.isValid()) { 4481 Diag(TryLoc, diag::err_mixing_cxx_try_seh_try); 4482 Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'"; 4483 } 4484 } 4485 4486 FSI->setHasSEHTry(TryLoc); 4487 4488 // Reject __try in Obj-C methods, blocks, and captured decls, since we don't 4489 // track if they use SEH. 4490 DeclContext *DC = CurContext; 4491 while (DC && !DC->isFunctionOrMethod()) 4492 DC = DC->getParent(); 4493 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC); 4494 if (FD) 4495 FD->setUsesSEHTry(true); 4496 else 4497 Diag(TryLoc, diag::err_seh_try_outside_functions); 4498 4499 // Reject __try on unsupported targets. 4500 if (!Context.getTargetInfo().isSEHTrySupported()) 4501 Diag(TryLoc, diag::err_seh_try_unsupported); 4502 4503 return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler); 4504 } 4505 4506 StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, 4507 Stmt *Block) { 4508 assert(FilterExpr && Block); 4509 QualType FTy = FilterExpr->getType(); 4510 if (!FTy->isIntegerType() && !FTy->isDependentType()) { 4511 return StmtError( 4512 Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral) 4513 << FTy); 4514 } 4515 return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block); 4516 } 4517 4518 void Sema::ActOnStartSEHFinallyBlock() { 4519 CurrentSEHFinally.push_back(CurScope); 4520 } 4521 4522 void Sema::ActOnAbortSEHFinallyBlock() { 4523 CurrentSEHFinally.pop_back(); 4524 } 4525 4526 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) { 4527 assert(Block); 4528 CurrentSEHFinally.pop_back(); 4529 return SEHFinallyStmt::Create(Context, Loc, Block); 4530 } 4531 4532 StmtResult 4533 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) { 4534 Scope *SEHTryParent = CurScope; 4535 while (SEHTryParent && !SEHTryParent->isSEHTryScope()) 4536 SEHTryParent = SEHTryParent->getParent(); 4537 if (!SEHTryParent) 4538 return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try)); 4539 CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent); 4540 4541 return new (Context) SEHLeaveStmt(Loc); 4542 } 4543 4544 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc, 4545 bool IsIfExists, 4546 NestedNameSpecifierLoc QualifierLoc, 4547 DeclarationNameInfo NameInfo, 4548 Stmt *Nested) 4549 { 4550 return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists, 4551 QualifierLoc, NameInfo, 4552 cast<CompoundStmt>(Nested)); 4553 } 4554 4555 4556 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, 4557 bool IsIfExists, 4558 CXXScopeSpec &SS, 4559 UnqualifiedId &Name, 4560 Stmt *Nested) { 4561 return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, 4562 SS.getWithLocInContext(Context), 4563 GetNameFromUnqualifiedId(Name), 4564 Nested); 4565 } 4566 4567 RecordDecl* 4568 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, 4569 unsigned NumParams) { 4570 DeclContext *DC = CurContext; 4571 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) 4572 DC = DC->getParent(); 4573 4574 RecordDecl *RD = nullptr; 4575 if (getLangOpts().CPlusPlus) 4576 RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, 4577 /*Id=*/nullptr); 4578 else 4579 RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr); 4580 4581 RD->setCapturedRecord(); 4582 DC->addDecl(RD); 4583 RD->setImplicit(); 4584 RD->startDefinition(); 4585 4586 assert(NumParams > 0 && "CapturedStmt requires context parameter"); 4587 CD = CapturedDecl::Create(Context, CurContext, NumParams); 4588 DC->addDecl(CD); 4589 return RD; 4590 } 4591 4592 static bool 4593 buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI, 4594 SmallVectorImpl<CapturedStmt::Capture> &Captures, 4595 SmallVectorImpl<Expr *> &CaptureInits) { 4596 for (const sema::Capture &Cap : RSI->Captures) { 4597 if (Cap.isInvalid()) 4598 continue; 4599 4600 // Form the initializer for the capture. 4601 ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(), 4602 RSI->CapRegionKind == CR_OpenMP); 4603 4604 // FIXME: Bail out now if the capture is not used and the initializer has 4605 // no side-effects. 4606 4607 // Create a field for this capture. 4608 FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap); 4609 4610 // Add the capture to our list of captures. 4611 if (Cap.isThisCapture()) { 4612 Captures.push_back(CapturedStmt::Capture(Cap.getLocation(), 4613 CapturedStmt::VCK_This)); 4614 } else if (Cap.isVLATypeCapture()) { 4615 Captures.push_back( 4616 CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType)); 4617 } else { 4618 assert(Cap.isVariableCapture() && "unknown kind of capture"); 4619 4620 if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) 4621 S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel); 4622 4623 Captures.push_back(CapturedStmt::Capture(Cap.getLocation(), 4624 Cap.isReferenceCapture() 4625 ? CapturedStmt::VCK_ByRef 4626 : CapturedStmt::VCK_ByCopy, 4627 Cap.getVariable())); 4628 } 4629 CaptureInits.push_back(Init.get()); 4630 } 4631 return false; 4632 } 4633 4634 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, 4635 CapturedRegionKind Kind, 4636 unsigned NumParams) { 4637 CapturedDecl *CD = nullptr; 4638 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams); 4639 4640 // Build the context parameter 4641 DeclContext *DC = CapturedDecl::castToDeclContext(CD); 4642 IdentifierInfo *ParamName = &Context.Idents.get("__context"); 4643 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); 4644 auto *Param = 4645 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, 4646 ImplicitParamDecl::CapturedContext); 4647 DC->addDecl(Param); 4648 4649 CD->setContextParam(0, Param); 4650 4651 // Enter the capturing scope for this captured region. 4652 PushCapturedRegionScope(CurScope, CD, RD, Kind); 4653 4654 if (CurScope) 4655 PushDeclContext(CurScope, CD); 4656 else 4657 CurContext = CD; 4658 4659 PushExpressionEvaluationContext( 4660 ExpressionEvaluationContext::PotentiallyEvaluated); 4661 } 4662 4663 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, 4664 CapturedRegionKind Kind, 4665 ArrayRef<CapturedParamNameType> Params, 4666 unsigned OpenMPCaptureLevel) { 4667 CapturedDecl *CD = nullptr; 4668 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size()); 4669 4670 // Build the context parameter 4671 DeclContext *DC = CapturedDecl::castToDeclContext(CD); 4672 bool ContextIsFound = false; 4673 unsigned ParamNum = 0; 4674 for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(), 4675 E = Params.end(); 4676 I != E; ++I, ++ParamNum) { 4677 if (I->second.isNull()) { 4678 assert(!ContextIsFound && 4679 "null type has been found already for '__context' parameter"); 4680 IdentifierInfo *ParamName = &Context.Idents.get("__context"); 4681 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)) 4682 .withConst() 4683 .withRestrict(); 4684 auto *Param = 4685 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, 4686 ImplicitParamDecl::CapturedContext); 4687 DC->addDecl(Param); 4688 CD->setContextParam(ParamNum, Param); 4689 ContextIsFound = true; 4690 } else { 4691 IdentifierInfo *ParamName = &Context.Idents.get(I->first); 4692 auto *Param = 4693 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second, 4694 ImplicitParamDecl::CapturedContext); 4695 DC->addDecl(Param); 4696 CD->setParam(ParamNum, Param); 4697 } 4698 } 4699 assert(ContextIsFound && "no null type for '__context' parameter"); 4700 if (!ContextIsFound) { 4701 // Add __context implicitly if it is not specified. 4702 IdentifierInfo *ParamName = &Context.Idents.get("__context"); 4703 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); 4704 auto *Param = 4705 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, 4706 ImplicitParamDecl::CapturedContext); 4707 DC->addDecl(Param); 4708 CD->setContextParam(ParamNum, Param); 4709 } 4710 // Enter the capturing scope for this captured region. 4711 PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel); 4712 4713 if (CurScope) 4714 PushDeclContext(CurScope, CD); 4715 else 4716 CurContext = CD; 4717 4718 PushExpressionEvaluationContext( 4719 ExpressionEvaluationContext::PotentiallyEvaluated); 4720 } 4721 4722 void Sema::ActOnCapturedRegionError() { 4723 DiscardCleanupsInEvaluationContext(); 4724 PopExpressionEvaluationContext(); 4725 PopDeclContext(); 4726 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(); 4727 CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get()); 4728 4729 RecordDecl *Record = RSI->TheRecordDecl; 4730 Record->setInvalidDecl(); 4731 4732 SmallVector<Decl*, 4> Fields(Record->fields()); 4733 ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields, 4734 SourceLocation(), SourceLocation(), ParsedAttributesView()); 4735 } 4736 4737 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) { 4738 // Leave the captured scope before we start creating captures in the 4739 // enclosing scope. 4740 DiscardCleanupsInEvaluationContext(); 4741 PopExpressionEvaluationContext(); 4742 PopDeclContext(); 4743 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(); 4744 CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get()); 4745 4746 SmallVector<CapturedStmt::Capture, 4> Captures; 4747 SmallVector<Expr *, 4> CaptureInits; 4748 if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits)) 4749 return StmtError(); 4750 4751 CapturedDecl *CD = RSI->TheCapturedDecl; 4752 RecordDecl *RD = RSI->TheRecordDecl; 4753 4754 CapturedStmt *Res = CapturedStmt::Create( 4755 getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind), 4756 Captures, CaptureInits, CD, RD); 4757 4758 CD->setBody(Res->getCapturedStmt()); 4759 RD->completeDefinition(); 4760 4761 return Res; 4762 } 4763