1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides Sema routines for C++ overloading. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/CXXInheritance.h" 15 #include "clang/AST/DeclCXX.h" 16 #include "clang/AST/DeclObjC.h" 17 #include "clang/AST/DependenceFlags.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/ExprObjC.h" 21 #include "clang/AST/Type.h" 22 #include "clang/AST/TypeOrdering.h" 23 #include "clang/Basic/Diagnostic.h" 24 #include "clang/Basic/DiagnosticOptions.h" 25 #include "clang/Basic/OperatorKinds.h" 26 #include "clang/Basic/PartialDiagnostic.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Sema/Initialization.h" 30 #include "clang/Sema/Lookup.h" 31 #include "clang/Sema/Overload.h" 32 #include "clang/Sema/SemaInternal.h" 33 #include "clang/Sema/Template.h" 34 #include "clang/Sema/TemplateDeduction.h" 35 #include "llvm/ADT/DenseSet.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallString.h" 39 #include "llvm/Support/Casting.h" 40 #include <algorithm> 41 #include <cstdlib> 42 #include <optional> 43 44 using namespace clang; 45 using namespace sema; 46 47 using AllowedExplicit = Sema::AllowedExplicit; 48 49 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) { 50 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) { 51 return P->hasAttr<PassObjectSizeAttr>(); 52 }); 53 } 54 55 /// A convenience routine for creating a decayed reference to a function. 56 static ExprResult CreateFunctionRefExpr( 57 Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, const Expr *Base, 58 bool HadMultipleCandidates, SourceLocation Loc = SourceLocation(), 59 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()) { 60 if (S.DiagnoseUseOfDecl(FoundDecl, Loc)) 61 return ExprError(); 62 // If FoundDecl is different from Fn (such as if one is a template 63 // and the other a specialization), make sure DiagnoseUseOfDecl is 64 // called on both. 65 // FIXME: This would be more comprehensively addressed by modifying 66 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl 67 // being used. 68 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc)) 69 return ExprError(); 70 DeclRefExpr *DRE = new (S.Context) 71 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo); 72 if (HadMultipleCandidates) 73 DRE->setHadMultipleCandidates(true); 74 75 S.MarkDeclRefReferenced(DRE, Base); 76 if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) { 77 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { 78 S.ResolveExceptionSpec(Loc, FPT); 79 DRE->setType(Fn->getType()); 80 } 81 } 82 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()), 83 CK_FunctionToPointerDecay); 84 } 85 86 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 87 bool InOverloadResolution, 88 StandardConversionSequence &SCS, 89 bool CStyle, 90 bool AllowObjCWritebackConversion); 91 92 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 93 QualType &ToType, 94 bool InOverloadResolution, 95 StandardConversionSequence &SCS, 96 bool CStyle); 97 static OverloadingResult 98 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 99 UserDefinedConversionSequence& User, 100 OverloadCandidateSet& Conversions, 101 AllowedExplicit AllowExplicit, 102 bool AllowObjCConversionOnExplicit); 103 104 static ImplicitConversionSequence::CompareKind 105 CompareStandardConversionSequences(Sema &S, SourceLocation Loc, 106 const StandardConversionSequence& SCS1, 107 const StandardConversionSequence& SCS2); 108 109 static ImplicitConversionSequence::CompareKind 110 CompareQualificationConversions(Sema &S, 111 const StandardConversionSequence& SCS1, 112 const StandardConversionSequence& SCS2); 113 114 static ImplicitConversionSequence::CompareKind 115 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, 116 const StandardConversionSequence& SCS1, 117 const StandardConversionSequence& SCS2); 118 119 /// GetConversionRank - Retrieve the implicit conversion rank 120 /// corresponding to the given implicit conversion kind. 121 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { 122 static const ImplicitConversionRank 123 Rank[(int)ICK_Num_Conversion_Kinds] = { 124 ICR_Exact_Match, 125 ICR_Exact_Match, 126 ICR_Exact_Match, 127 ICR_Exact_Match, 128 ICR_Exact_Match, 129 ICR_Exact_Match, 130 ICR_Promotion, 131 ICR_Promotion, 132 ICR_Promotion, 133 ICR_Conversion, 134 ICR_Conversion, 135 ICR_Conversion, 136 ICR_Conversion, 137 ICR_Conversion, 138 ICR_Conversion, 139 ICR_Conversion, 140 ICR_Conversion, 141 ICR_Conversion, 142 ICR_Conversion, 143 ICR_Conversion, 144 ICR_OCL_Scalar_Widening, 145 ICR_Complex_Real_Conversion, 146 ICR_Conversion, 147 ICR_Conversion, 148 ICR_Writeback_Conversion, 149 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right -- 150 // it was omitted by the patch that added 151 // ICK_Zero_Event_Conversion 152 ICR_C_Conversion, 153 ICR_C_Conversion_Extension 154 }; 155 return Rank[(int)Kind]; 156 } 157 158 /// GetImplicitConversionName - Return the name of this kind of 159 /// implicit conversion. 160 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 161 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 162 "No conversion", 163 "Lvalue-to-rvalue", 164 "Array-to-pointer", 165 "Function-to-pointer", 166 "Function pointer conversion", 167 "Qualification", 168 "Integral promotion", 169 "Floating point promotion", 170 "Complex promotion", 171 "Integral conversion", 172 "Floating conversion", 173 "Complex conversion", 174 "Floating-integral conversion", 175 "Pointer conversion", 176 "Pointer-to-member conversion", 177 "Boolean conversion", 178 "Compatible-types conversion", 179 "Derived-to-base conversion", 180 "Vector conversion", 181 "SVE Vector conversion", 182 "Vector splat", 183 "Complex-real conversion", 184 "Block Pointer conversion", 185 "Transparent Union Conversion", 186 "Writeback conversion", 187 "OpenCL Zero Event Conversion", 188 "C specific type conversion", 189 "Incompatible pointer conversion" 190 }; 191 return Name[Kind]; 192 } 193 194 /// StandardConversionSequence - Set the standard conversion 195 /// sequence to the identity conversion. 196 void StandardConversionSequence::setAsIdentityConversion() { 197 First = ICK_Identity; 198 Second = ICK_Identity; 199 Third = ICK_Identity; 200 DeprecatedStringLiteralToCharPtr = false; 201 QualificationIncludesObjCLifetime = false; 202 ReferenceBinding = false; 203 DirectBinding = false; 204 IsLvalueReference = true; 205 BindsToFunctionLvalue = false; 206 BindsToRvalue = false; 207 BindsImplicitObjectArgumentWithoutRefQualifier = false; 208 ObjCLifetimeConversionBinding = false; 209 CopyConstructor = nullptr; 210 } 211 212 /// getRank - Retrieve the rank of this standard conversion sequence 213 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 214 /// implicit conversions. 215 ImplicitConversionRank StandardConversionSequence::getRank() const { 216 ImplicitConversionRank Rank = ICR_Exact_Match; 217 if (GetConversionRank(First) > Rank) 218 Rank = GetConversionRank(First); 219 if (GetConversionRank(Second) > Rank) 220 Rank = GetConversionRank(Second); 221 if (GetConversionRank(Third) > Rank) 222 Rank = GetConversionRank(Third); 223 return Rank; 224 } 225 226 /// isPointerConversionToBool - Determines whether this conversion is 227 /// a conversion of a pointer or pointer-to-member to bool. This is 228 /// used as part of the ranking of standard conversion sequences 229 /// (C++ 13.3.3.2p4). 230 bool StandardConversionSequence::isPointerConversionToBool() const { 231 // Note that FromType has not necessarily been transformed by the 232 // array-to-pointer or function-to-pointer implicit conversions, so 233 // check for their presence as well as checking whether FromType is 234 // a pointer. 235 if (getToType(1)->isBooleanType() && 236 (getFromType()->isPointerType() || 237 getFromType()->isMemberPointerType() || 238 getFromType()->isObjCObjectPointerType() || 239 getFromType()->isBlockPointerType() || 240 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 241 return true; 242 243 return false; 244 } 245 246 /// isPointerConversionToVoidPointer - Determines whether this 247 /// conversion is a conversion of a pointer to a void pointer. This is 248 /// used as part of the ranking of standard conversion sequences (C++ 249 /// 13.3.3.2p4). 250 bool 251 StandardConversionSequence:: 252 isPointerConversionToVoidPointer(ASTContext& Context) const { 253 QualType FromType = getFromType(); 254 QualType ToType = getToType(1); 255 256 // Note that FromType has not necessarily been transformed by the 257 // array-to-pointer implicit conversion, so check for its presence 258 // and redo the conversion to get a pointer. 259 if (First == ICK_Array_To_Pointer) 260 FromType = Context.getArrayDecayedType(FromType); 261 262 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) 263 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 264 return ToPtrType->getPointeeType()->isVoidType(); 265 266 return false; 267 } 268 269 /// Skip any implicit casts which could be either part of a narrowing conversion 270 /// or after one in an implicit conversion. 271 static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx, 272 const Expr *Converted) { 273 // We can have cleanups wrapping the converted expression; these need to be 274 // preserved so that destructors run if necessary. 275 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) { 276 Expr *Inner = 277 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr())); 278 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(), 279 EWC->getObjects()); 280 } 281 282 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { 283 switch (ICE->getCastKind()) { 284 case CK_NoOp: 285 case CK_IntegralCast: 286 case CK_IntegralToBoolean: 287 case CK_IntegralToFloating: 288 case CK_BooleanToSignedIntegral: 289 case CK_FloatingToIntegral: 290 case CK_FloatingToBoolean: 291 case CK_FloatingCast: 292 Converted = ICE->getSubExpr(); 293 continue; 294 295 default: 296 return Converted; 297 } 298 } 299 300 return Converted; 301 } 302 303 /// Check if this standard conversion sequence represents a narrowing 304 /// conversion, according to C++11 [dcl.init.list]p7. 305 /// 306 /// \param Ctx The AST context. 307 /// \param Converted The result of applying this standard conversion sequence. 308 /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the 309 /// value of the expression prior to the narrowing conversion. 310 /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the 311 /// type of the expression prior to the narrowing conversion. 312 /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions 313 /// from floating point types to integral types should be ignored. 314 NarrowingKind StandardConversionSequence::getNarrowingKind( 315 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue, 316 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const { 317 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"); 318 319 // C++11 [dcl.init.list]p7: 320 // A narrowing conversion is an implicit conversion ... 321 QualType FromType = getToType(0); 322 QualType ToType = getToType(1); 323 324 // A conversion to an enumeration type is narrowing if the conversion to 325 // the underlying type is narrowing. This only arises for expressions of 326 // the form 'Enum{init}'. 327 if (auto *ET = ToType->getAs<EnumType>()) 328 ToType = ET->getDecl()->getIntegerType(); 329 330 switch (Second) { 331 // 'bool' is an integral type; dispatch to the right place to handle it. 332 case ICK_Boolean_Conversion: 333 if (FromType->isRealFloatingType()) 334 goto FloatingIntegralConversion; 335 if (FromType->isIntegralOrUnscopedEnumerationType()) 336 goto IntegralConversion; 337 // -- from a pointer type or pointer-to-member type to bool, or 338 return NK_Type_Narrowing; 339 340 // -- from a floating-point type to an integer type, or 341 // 342 // -- from an integer type or unscoped enumeration type to a floating-point 343 // type, except where the source is a constant expression and the actual 344 // value after conversion will fit into the target type and will produce 345 // the original value when converted back to the original type, or 346 case ICK_Floating_Integral: 347 FloatingIntegralConversion: 348 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { 349 return NK_Type_Narrowing; 350 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 351 ToType->isRealFloatingType()) { 352 if (IgnoreFloatToIntegralConversion) 353 return NK_Not_Narrowing; 354 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); 355 assert(Initializer && "Unknown conversion expression"); 356 357 // If it's value-dependent, we can't tell whether it's narrowing. 358 if (Initializer->isValueDependent()) 359 return NK_Dependent_Narrowing; 360 361 if (std::optional<llvm::APSInt> IntConstantValue = 362 Initializer->getIntegerConstantExpr(Ctx)) { 363 // Convert the integer to the floating type. 364 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); 365 Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(), 366 llvm::APFloat::rmNearestTiesToEven); 367 // And back. 368 llvm::APSInt ConvertedValue = *IntConstantValue; 369 bool ignored; 370 Result.convertToInteger(ConvertedValue, 371 llvm::APFloat::rmTowardZero, &ignored); 372 // If the resulting value is different, this was a narrowing conversion. 373 if (*IntConstantValue != ConvertedValue) { 374 ConstantValue = APValue(*IntConstantValue); 375 ConstantType = Initializer->getType(); 376 return NK_Constant_Narrowing; 377 } 378 } else { 379 // Variables are always narrowings. 380 return NK_Variable_Narrowing; 381 } 382 } 383 return NK_Not_Narrowing; 384 385 // -- from long double to double or float, or from double to float, except 386 // where the source is a constant expression and the actual value after 387 // conversion is within the range of values that can be represented (even 388 // if it cannot be represented exactly), or 389 case ICK_Floating_Conversion: 390 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && 391 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { 392 // FromType is larger than ToType. 393 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); 394 395 // If it's value-dependent, we can't tell whether it's narrowing. 396 if (Initializer->isValueDependent()) 397 return NK_Dependent_Narrowing; 398 399 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { 400 // Constant! 401 assert(ConstantValue.isFloat()); 402 llvm::APFloat FloatVal = ConstantValue.getFloat(); 403 // Convert the source value into the target type. 404 bool ignored; 405 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( 406 Ctx.getFloatTypeSemantics(ToType), 407 llvm::APFloat::rmNearestTiesToEven, &ignored); 408 // If there was no overflow, the source value is within the range of 409 // values that can be represented. 410 if (ConvertStatus & llvm::APFloat::opOverflow) { 411 ConstantType = Initializer->getType(); 412 return NK_Constant_Narrowing; 413 } 414 } else { 415 return NK_Variable_Narrowing; 416 } 417 } 418 return NK_Not_Narrowing; 419 420 // -- from an integer type or unscoped enumeration type to an integer type 421 // that cannot represent all the values of the original type, except where 422 // the source is a constant expression and the actual value after 423 // conversion will fit into the target type and will produce the original 424 // value when converted back to the original type. 425 case ICK_Integral_Conversion: 426 IntegralConversion: { 427 assert(FromType->isIntegralOrUnscopedEnumerationType()); 428 assert(ToType->isIntegralOrUnscopedEnumerationType()); 429 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); 430 const unsigned FromWidth = Ctx.getIntWidth(FromType); 431 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); 432 const unsigned ToWidth = Ctx.getIntWidth(ToType); 433 434 if (FromWidth > ToWidth || 435 (FromWidth == ToWidth && FromSigned != ToSigned) || 436 (FromSigned && !ToSigned)) { 437 // Not all values of FromType can be represented in ToType. 438 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); 439 440 // If it's value-dependent, we can't tell whether it's narrowing. 441 if (Initializer->isValueDependent()) 442 return NK_Dependent_Narrowing; 443 444 std::optional<llvm::APSInt> OptInitializerValue; 445 if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) { 446 // Such conversions on variables are always narrowing. 447 return NK_Variable_Narrowing; 448 } 449 llvm::APSInt &InitializerValue = *OptInitializerValue; 450 bool Narrowing = false; 451 if (FromWidth < ToWidth) { 452 // Negative -> unsigned is narrowing. Otherwise, more bits is never 453 // narrowing. 454 if (InitializerValue.isSigned() && InitializerValue.isNegative()) 455 Narrowing = true; 456 } else { 457 // Add a bit to the InitializerValue so we don't have to worry about 458 // signed vs. unsigned comparisons. 459 InitializerValue = InitializerValue.extend( 460 InitializerValue.getBitWidth() + 1); 461 // Convert the initializer to and from the target width and signed-ness. 462 llvm::APSInt ConvertedValue = InitializerValue; 463 ConvertedValue = ConvertedValue.trunc(ToWidth); 464 ConvertedValue.setIsSigned(ToSigned); 465 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); 466 ConvertedValue.setIsSigned(InitializerValue.isSigned()); 467 // If the result is different, this was a narrowing conversion. 468 if (ConvertedValue != InitializerValue) 469 Narrowing = true; 470 } 471 if (Narrowing) { 472 ConstantType = Initializer->getType(); 473 ConstantValue = APValue(InitializerValue); 474 return NK_Constant_Narrowing; 475 } 476 } 477 return NK_Not_Narrowing; 478 } 479 480 default: 481 // Other kinds of conversions are not narrowings. 482 return NK_Not_Narrowing; 483 } 484 } 485 486 /// dump - Print this standard conversion sequence to standard 487 /// error. Useful for debugging overloading issues. 488 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const { 489 raw_ostream &OS = llvm::errs(); 490 bool PrintedSomething = false; 491 if (First != ICK_Identity) { 492 OS << GetImplicitConversionName(First); 493 PrintedSomething = true; 494 } 495 496 if (Second != ICK_Identity) { 497 if (PrintedSomething) { 498 OS << " -> "; 499 } 500 OS << GetImplicitConversionName(Second); 501 502 if (CopyConstructor) { 503 OS << " (by copy constructor)"; 504 } else if (DirectBinding) { 505 OS << " (direct reference binding)"; 506 } else if (ReferenceBinding) { 507 OS << " (reference binding)"; 508 } 509 PrintedSomething = true; 510 } 511 512 if (Third != ICK_Identity) { 513 if (PrintedSomething) { 514 OS << " -> "; 515 } 516 OS << GetImplicitConversionName(Third); 517 PrintedSomething = true; 518 } 519 520 if (!PrintedSomething) { 521 OS << "No conversions required"; 522 } 523 } 524 525 /// dump - Print this user-defined conversion sequence to standard 526 /// error. Useful for debugging overloading issues. 527 void UserDefinedConversionSequence::dump() const { 528 raw_ostream &OS = llvm::errs(); 529 if (Before.First || Before.Second || Before.Third) { 530 Before.dump(); 531 OS << " -> "; 532 } 533 if (ConversionFunction) 534 OS << '\'' << *ConversionFunction << '\''; 535 else 536 OS << "aggregate initialization"; 537 if (After.First || After.Second || After.Third) { 538 OS << " -> "; 539 After.dump(); 540 } 541 } 542 543 /// dump - Print this implicit conversion sequence to standard 544 /// error. Useful for debugging overloading issues. 545 void ImplicitConversionSequence::dump() const { 546 raw_ostream &OS = llvm::errs(); 547 if (hasInitializerListContainerType()) 548 OS << "Worst list element conversion: "; 549 switch (ConversionKind) { 550 case StandardConversion: 551 OS << "Standard conversion: "; 552 Standard.dump(); 553 break; 554 case UserDefinedConversion: 555 OS << "User-defined conversion: "; 556 UserDefined.dump(); 557 break; 558 case EllipsisConversion: 559 OS << "Ellipsis conversion"; 560 break; 561 case AmbiguousConversion: 562 OS << "Ambiguous conversion"; 563 break; 564 case BadConversion: 565 OS << "Bad conversion"; 566 break; 567 } 568 569 OS << "\n"; 570 } 571 572 void AmbiguousConversionSequence::construct() { 573 new (&conversions()) ConversionSet(); 574 } 575 576 void AmbiguousConversionSequence::destruct() { 577 conversions().~ConversionSet(); 578 } 579 580 void 581 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 582 FromTypePtr = O.FromTypePtr; 583 ToTypePtr = O.ToTypePtr; 584 new (&conversions()) ConversionSet(O.conversions()); 585 } 586 587 namespace { 588 // Structure used by DeductionFailureInfo to store 589 // template argument information. 590 struct DFIArguments { 591 TemplateArgument FirstArg; 592 TemplateArgument SecondArg; 593 }; 594 // Structure used by DeductionFailureInfo to store 595 // template parameter and template argument information. 596 struct DFIParamWithArguments : DFIArguments { 597 TemplateParameter Param; 598 }; 599 // Structure used by DeductionFailureInfo to store template argument 600 // information and the index of the problematic call argument. 601 struct DFIDeducedMismatchArgs : DFIArguments { 602 TemplateArgumentList *TemplateArgs; 603 unsigned CallArgIndex; 604 }; 605 // Structure used by DeductionFailureInfo to store information about 606 // unsatisfied constraints. 607 struct CNSInfo { 608 TemplateArgumentList *TemplateArgs; 609 ConstraintSatisfaction Satisfaction; 610 }; 611 } 612 613 /// Convert from Sema's representation of template deduction information 614 /// to the form used in overload-candidate information. 615 DeductionFailureInfo 616 clang::MakeDeductionFailureInfo(ASTContext &Context, 617 Sema::TemplateDeductionResult TDK, 618 TemplateDeductionInfo &Info) { 619 DeductionFailureInfo Result; 620 Result.Result = static_cast<unsigned>(TDK); 621 Result.HasDiagnostic = false; 622 switch (TDK) { 623 case Sema::TDK_Invalid: 624 case Sema::TDK_InstantiationDepth: 625 case Sema::TDK_TooManyArguments: 626 case Sema::TDK_TooFewArguments: 627 case Sema::TDK_MiscellaneousDeductionFailure: 628 case Sema::TDK_CUDATargetMismatch: 629 Result.Data = nullptr; 630 break; 631 632 case Sema::TDK_Incomplete: 633 case Sema::TDK_InvalidExplicitArguments: 634 Result.Data = Info.Param.getOpaqueValue(); 635 break; 636 637 case Sema::TDK_DeducedMismatch: 638 case Sema::TDK_DeducedMismatchNested: { 639 // FIXME: Should allocate from normal heap so that we can free this later. 640 auto *Saved = new (Context) DFIDeducedMismatchArgs; 641 Saved->FirstArg = Info.FirstArg; 642 Saved->SecondArg = Info.SecondArg; 643 Saved->TemplateArgs = Info.takeSugared(); 644 Saved->CallArgIndex = Info.CallArgIndex; 645 Result.Data = Saved; 646 break; 647 } 648 649 case Sema::TDK_NonDeducedMismatch: { 650 // FIXME: Should allocate from normal heap so that we can free this later. 651 DFIArguments *Saved = new (Context) DFIArguments; 652 Saved->FirstArg = Info.FirstArg; 653 Saved->SecondArg = Info.SecondArg; 654 Result.Data = Saved; 655 break; 656 } 657 658 case Sema::TDK_IncompletePack: 659 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this. 660 case Sema::TDK_Inconsistent: 661 case Sema::TDK_Underqualified: { 662 // FIXME: Should allocate from normal heap so that we can free this later. 663 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 664 Saved->Param = Info.Param; 665 Saved->FirstArg = Info.FirstArg; 666 Saved->SecondArg = Info.SecondArg; 667 Result.Data = Saved; 668 break; 669 } 670 671 case Sema::TDK_SubstitutionFailure: 672 Result.Data = Info.takeSugared(); 673 if (Info.hasSFINAEDiagnostic()) { 674 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( 675 SourceLocation(), PartialDiagnostic::NullDiagnostic()); 676 Info.takeSFINAEDiagnostic(*Diag); 677 Result.HasDiagnostic = true; 678 } 679 break; 680 681 case Sema::TDK_ConstraintsNotSatisfied: { 682 CNSInfo *Saved = new (Context) CNSInfo; 683 Saved->TemplateArgs = Info.takeSugared(); 684 Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction; 685 Result.Data = Saved; 686 break; 687 } 688 689 case Sema::TDK_Success: 690 case Sema::TDK_NonDependentConversionFailure: 691 case Sema::TDK_AlreadyDiagnosed: 692 llvm_unreachable("not a deduction failure"); 693 } 694 695 return Result; 696 } 697 698 void DeductionFailureInfo::Destroy() { 699 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 700 case Sema::TDK_Success: 701 case Sema::TDK_Invalid: 702 case Sema::TDK_InstantiationDepth: 703 case Sema::TDK_Incomplete: 704 case Sema::TDK_TooManyArguments: 705 case Sema::TDK_TooFewArguments: 706 case Sema::TDK_InvalidExplicitArguments: 707 case Sema::TDK_CUDATargetMismatch: 708 case Sema::TDK_NonDependentConversionFailure: 709 break; 710 711 case Sema::TDK_IncompletePack: 712 case Sema::TDK_Inconsistent: 713 case Sema::TDK_Underqualified: 714 case Sema::TDK_DeducedMismatch: 715 case Sema::TDK_DeducedMismatchNested: 716 case Sema::TDK_NonDeducedMismatch: 717 // FIXME: Destroy the data? 718 Data = nullptr; 719 break; 720 721 case Sema::TDK_SubstitutionFailure: 722 // FIXME: Destroy the template argument list? 723 Data = nullptr; 724 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { 725 Diag->~PartialDiagnosticAt(); 726 HasDiagnostic = false; 727 } 728 break; 729 730 case Sema::TDK_ConstraintsNotSatisfied: 731 // FIXME: Destroy the template argument list? 732 Data = nullptr; 733 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { 734 Diag->~PartialDiagnosticAt(); 735 HasDiagnostic = false; 736 } 737 break; 738 739 // Unhandled 740 case Sema::TDK_MiscellaneousDeductionFailure: 741 case Sema::TDK_AlreadyDiagnosed: 742 break; 743 } 744 } 745 746 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { 747 if (HasDiagnostic) 748 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); 749 return nullptr; 750 } 751 752 TemplateParameter DeductionFailureInfo::getTemplateParameter() { 753 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 754 case Sema::TDK_Success: 755 case Sema::TDK_Invalid: 756 case Sema::TDK_InstantiationDepth: 757 case Sema::TDK_TooManyArguments: 758 case Sema::TDK_TooFewArguments: 759 case Sema::TDK_SubstitutionFailure: 760 case Sema::TDK_DeducedMismatch: 761 case Sema::TDK_DeducedMismatchNested: 762 case Sema::TDK_NonDeducedMismatch: 763 case Sema::TDK_CUDATargetMismatch: 764 case Sema::TDK_NonDependentConversionFailure: 765 case Sema::TDK_ConstraintsNotSatisfied: 766 return TemplateParameter(); 767 768 case Sema::TDK_Incomplete: 769 case Sema::TDK_InvalidExplicitArguments: 770 return TemplateParameter::getFromOpaqueValue(Data); 771 772 case Sema::TDK_IncompletePack: 773 case Sema::TDK_Inconsistent: 774 case Sema::TDK_Underqualified: 775 return static_cast<DFIParamWithArguments*>(Data)->Param; 776 777 // Unhandled 778 case Sema::TDK_MiscellaneousDeductionFailure: 779 case Sema::TDK_AlreadyDiagnosed: 780 break; 781 } 782 783 return TemplateParameter(); 784 } 785 786 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { 787 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 788 case Sema::TDK_Success: 789 case Sema::TDK_Invalid: 790 case Sema::TDK_InstantiationDepth: 791 case Sema::TDK_TooManyArguments: 792 case Sema::TDK_TooFewArguments: 793 case Sema::TDK_Incomplete: 794 case Sema::TDK_IncompletePack: 795 case Sema::TDK_InvalidExplicitArguments: 796 case Sema::TDK_Inconsistent: 797 case Sema::TDK_Underqualified: 798 case Sema::TDK_NonDeducedMismatch: 799 case Sema::TDK_CUDATargetMismatch: 800 case Sema::TDK_NonDependentConversionFailure: 801 return nullptr; 802 803 case Sema::TDK_DeducedMismatch: 804 case Sema::TDK_DeducedMismatchNested: 805 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs; 806 807 case Sema::TDK_SubstitutionFailure: 808 return static_cast<TemplateArgumentList*>(Data); 809 810 case Sema::TDK_ConstraintsNotSatisfied: 811 return static_cast<CNSInfo*>(Data)->TemplateArgs; 812 813 // Unhandled 814 case Sema::TDK_MiscellaneousDeductionFailure: 815 case Sema::TDK_AlreadyDiagnosed: 816 break; 817 } 818 819 return nullptr; 820 } 821 822 const TemplateArgument *DeductionFailureInfo::getFirstArg() { 823 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 824 case Sema::TDK_Success: 825 case Sema::TDK_Invalid: 826 case Sema::TDK_InstantiationDepth: 827 case Sema::TDK_Incomplete: 828 case Sema::TDK_TooManyArguments: 829 case Sema::TDK_TooFewArguments: 830 case Sema::TDK_InvalidExplicitArguments: 831 case Sema::TDK_SubstitutionFailure: 832 case Sema::TDK_CUDATargetMismatch: 833 case Sema::TDK_NonDependentConversionFailure: 834 case Sema::TDK_ConstraintsNotSatisfied: 835 return nullptr; 836 837 case Sema::TDK_IncompletePack: 838 case Sema::TDK_Inconsistent: 839 case Sema::TDK_Underqualified: 840 case Sema::TDK_DeducedMismatch: 841 case Sema::TDK_DeducedMismatchNested: 842 case Sema::TDK_NonDeducedMismatch: 843 return &static_cast<DFIArguments*>(Data)->FirstArg; 844 845 // Unhandled 846 case Sema::TDK_MiscellaneousDeductionFailure: 847 case Sema::TDK_AlreadyDiagnosed: 848 break; 849 } 850 851 return nullptr; 852 } 853 854 const TemplateArgument *DeductionFailureInfo::getSecondArg() { 855 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 856 case Sema::TDK_Success: 857 case Sema::TDK_Invalid: 858 case Sema::TDK_InstantiationDepth: 859 case Sema::TDK_Incomplete: 860 case Sema::TDK_IncompletePack: 861 case Sema::TDK_TooManyArguments: 862 case Sema::TDK_TooFewArguments: 863 case Sema::TDK_InvalidExplicitArguments: 864 case Sema::TDK_SubstitutionFailure: 865 case Sema::TDK_CUDATargetMismatch: 866 case Sema::TDK_NonDependentConversionFailure: 867 case Sema::TDK_ConstraintsNotSatisfied: 868 return nullptr; 869 870 case Sema::TDK_Inconsistent: 871 case Sema::TDK_Underqualified: 872 case Sema::TDK_DeducedMismatch: 873 case Sema::TDK_DeducedMismatchNested: 874 case Sema::TDK_NonDeducedMismatch: 875 return &static_cast<DFIArguments*>(Data)->SecondArg; 876 877 // Unhandled 878 case Sema::TDK_MiscellaneousDeductionFailure: 879 case Sema::TDK_AlreadyDiagnosed: 880 break; 881 } 882 883 return nullptr; 884 } 885 886 std::optional<unsigned> DeductionFailureInfo::getCallArgIndex() { 887 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 888 case Sema::TDK_DeducedMismatch: 889 case Sema::TDK_DeducedMismatchNested: 890 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex; 891 892 default: 893 return std::nullopt; 894 } 895 } 896 897 static bool FunctionsCorrespond(ASTContext &Ctx, const FunctionDecl *X, 898 const FunctionDecl *Y) { 899 if (!X || !Y) 900 return false; 901 if (X->getNumParams() != Y->getNumParams()) 902 return false; 903 for (unsigned I = 0; I < X->getNumParams(); ++I) 904 if (!Ctx.hasSameUnqualifiedType(X->getParamDecl(I)->getType(), 905 Y->getParamDecl(I)->getType())) 906 return false; 907 if (auto *FTX = X->getDescribedFunctionTemplate()) { 908 auto *FTY = Y->getDescribedFunctionTemplate(); 909 if (!FTY) 910 return false; 911 if (!Ctx.isSameTemplateParameterList(FTX->getTemplateParameters(), 912 FTY->getTemplateParameters())) 913 return false; 914 } 915 return true; 916 } 917 918 static bool shouldAddReversedEqEq(Sema &S, SourceLocation OpLoc, 919 Expr *FirstOperand, FunctionDecl *EqFD) { 920 assert(EqFD->getOverloadedOperator() == 921 OverloadedOperatorKind::OO_EqualEqual); 922 // C++2a [over.match.oper]p4: 923 // A non-template function or function template F named operator== is a 924 // rewrite target with first operand o unless a search for the name operator!= 925 // in the scope S from the instantiation context of the operator expression 926 // finds a function or function template that would correspond 927 // ([basic.scope.scope]) to F if its name were operator==, where S is the 928 // scope of the class type of o if F is a class member, and the namespace 929 // scope of which F is a member otherwise. A function template specialization 930 // named operator== is a rewrite target if its function template is a rewrite 931 // target. 932 DeclarationName NotEqOp = S.Context.DeclarationNames.getCXXOperatorName( 933 OverloadedOperatorKind::OO_ExclaimEqual); 934 if (isa<CXXMethodDecl>(EqFD)) { 935 // If F is a class member, search scope is class type of first operand. 936 QualType RHS = FirstOperand->getType(); 937 auto *RHSRec = RHS->getAs<RecordType>(); 938 if (!RHSRec) 939 return true; 940 LookupResult Members(S, NotEqOp, OpLoc, 941 Sema::LookupNameKind::LookupMemberName); 942 S.LookupQualifiedName(Members, RHSRec->getDecl()); 943 Members.suppressDiagnostics(); 944 for (NamedDecl *Op : Members) 945 if (FunctionsCorrespond(S.Context, EqFD, Op->getAsFunction())) 946 return false; 947 return true; 948 } 949 // Otherwise the search scope is the namespace scope of which F is a member. 950 LookupResult NonMembers(S, NotEqOp, OpLoc, 951 Sema::LookupNameKind::LookupOperatorName); 952 S.LookupName(NonMembers, 953 S.getScopeForContext(EqFD->getEnclosingNamespaceContext())); 954 NonMembers.suppressDiagnostics(); 955 for (NamedDecl *Op : NonMembers) { 956 auto *FD = Op->getAsFunction(); 957 if(auto* UD = dyn_cast<UsingShadowDecl>(Op)) 958 FD = UD->getUnderlyingDecl()->getAsFunction(); 959 if (FunctionsCorrespond(S.Context, EqFD, FD) && 960 declaresSameEntity(cast<Decl>(EqFD->getDeclContext()), 961 cast<Decl>(Op->getDeclContext()))) 962 return false; 963 } 964 return true; 965 } 966 967 bool OverloadCandidateSet::OperatorRewriteInfo::allowsReversed( 968 OverloadedOperatorKind Op) { 969 if (!AllowRewrittenCandidates) 970 return false; 971 return Op == OO_EqualEqual || Op == OO_Spaceship; 972 } 973 974 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( 975 Sema &S, ArrayRef<Expr *> OriginalArgs, FunctionDecl *FD) { 976 auto Op = FD->getOverloadedOperator(); 977 if (!allowsReversed(Op)) 978 return false; 979 if (Op == OverloadedOperatorKind::OO_EqualEqual) { 980 assert(OriginalArgs.size() == 2); 981 if (!shouldAddReversedEqEq( 982 S, OpLoc, /*FirstOperand in reversed args*/ OriginalArgs[1], FD)) 983 return false; 984 } 985 // Don't bother adding a reversed candidate that can never be a better 986 // match than the non-reversed version. 987 return FD->getNumParams() != 2 || 988 !S.Context.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(), 989 FD->getParamDecl(1)->getType()) || 990 FD->hasAttr<EnableIfAttr>(); 991 } 992 993 void OverloadCandidateSet::destroyCandidates() { 994 for (iterator i = begin(), e = end(); i != e; ++i) { 995 for (auto &C : i->Conversions) 996 C.~ImplicitConversionSequence(); 997 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) 998 i->DeductionFailure.Destroy(); 999 } 1000 } 1001 1002 void OverloadCandidateSet::clear(CandidateSetKind CSK) { 1003 destroyCandidates(); 1004 SlabAllocator.Reset(); 1005 NumInlineBytesUsed = 0; 1006 Candidates.clear(); 1007 Functions.clear(); 1008 Kind = CSK; 1009 } 1010 1011 namespace { 1012 class UnbridgedCastsSet { 1013 struct Entry { 1014 Expr **Addr; 1015 Expr *Saved; 1016 }; 1017 SmallVector<Entry, 2> Entries; 1018 1019 public: 1020 void save(Sema &S, Expr *&E) { 1021 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 1022 Entry entry = { &E, E }; 1023 Entries.push_back(entry); 1024 E = S.stripARCUnbridgedCast(E); 1025 } 1026 1027 void restore() { 1028 for (SmallVectorImpl<Entry>::iterator 1029 i = Entries.begin(), e = Entries.end(); i != e; ++i) 1030 *i->Addr = i->Saved; 1031 } 1032 }; 1033 } 1034 1035 /// checkPlaceholderForOverload - Do any interesting placeholder-like 1036 /// preprocessing on the given expression. 1037 /// 1038 /// \param unbridgedCasts a collection to which to add unbridged casts; 1039 /// without this, they will be immediately diagnosed as errors 1040 /// 1041 /// Return true on unrecoverable error. 1042 static bool 1043 checkPlaceholderForOverload(Sema &S, Expr *&E, 1044 UnbridgedCastsSet *unbridgedCasts = nullptr) { 1045 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { 1046 // We can't handle overloaded expressions here because overload 1047 // resolution might reasonably tweak them. 1048 if (placeholder->getKind() == BuiltinType::Overload) return false; 1049 1050 // If the context potentially accepts unbridged ARC casts, strip 1051 // the unbridged cast and add it to the collection for later restoration. 1052 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && 1053 unbridgedCasts) { 1054 unbridgedCasts->save(S, E); 1055 return false; 1056 } 1057 1058 // Go ahead and check everything else. 1059 ExprResult result = S.CheckPlaceholderExpr(E); 1060 if (result.isInvalid()) 1061 return true; 1062 1063 E = result.get(); 1064 return false; 1065 } 1066 1067 // Nothing to do. 1068 return false; 1069 } 1070 1071 /// checkArgPlaceholdersForOverload - Check a set of call operands for 1072 /// placeholders. 1073 static bool checkArgPlaceholdersForOverload(Sema &S, MultiExprArg Args, 1074 UnbridgedCastsSet &unbridged) { 1075 for (unsigned i = 0, e = Args.size(); i != e; ++i) 1076 if (checkPlaceholderForOverload(S, Args[i], &unbridged)) 1077 return true; 1078 1079 return false; 1080 } 1081 1082 /// Determine whether the given New declaration is an overload of the 1083 /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if 1084 /// New and Old cannot be overloaded, e.g., if New has the same signature as 1085 /// some function in Old (C++ 1.3.10) or if the Old declarations aren't 1086 /// functions (or function templates) at all. When it does return Ovl_Match or 1087 /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be 1088 /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying 1089 /// declaration. 1090 /// 1091 /// Example: Given the following input: 1092 /// 1093 /// void f(int, float); // #1 1094 /// void f(int, int); // #2 1095 /// int f(int, int); // #3 1096 /// 1097 /// When we process #1, there is no previous declaration of "f", so IsOverload 1098 /// will not be used. 1099 /// 1100 /// When we process #2, Old contains only the FunctionDecl for #1. By comparing 1101 /// the parameter types, we see that #1 and #2 are overloaded (since they have 1102 /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is 1103 /// unchanged. 1104 /// 1105 /// When we process #3, Old is an overload set containing #1 and #2. We compare 1106 /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then 1107 /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of 1108 /// functions are not part of the signature), IsOverload returns Ovl_Match and 1109 /// MatchedDecl will be set to point to the FunctionDecl for #2. 1110 /// 1111 /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class 1112 /// by a using declaration. The rules for whether to hide shadow declarations 1113 /// ignore some properties which otherwise figure into a function template's 1114 /// signature. 1115 Sema::OverloadKind 1116 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 1117 NamedDecl *&Match, bool NewIsUsingDecl) { 1118 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 1119 I != E; ++I) { 1120 NamedDecl *OldD = *I; 1121 1122 bool OldIsUsingDecl = false; 1123 if (isa<UsingShadowDecl>(OldD)) { 1124 OldIsUsingDecl = true; 1125 1126 // We can always introduce two using declarations into the same 1127 // context, even if they have identical signatures. 1128 if (NewIsUsingDecl) continue; 1129 1130 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 1131 } 1132 1133 // A using-declaration does not conflict with another declaration 1134 // if one of them is hidden. 1135 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I)) 1136 continue; 1137 1138 // If either declaration was introduced by a using declaration, 1139 // we'll need to use slightly different rules for matching. 1140 // Essentially, these rules are the normal rules, except that 1141 // function templates hide function templates with different 1142 // return types or template parameter lists. 1143 bool UseMemberUsingDeclRules = 1144 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && 1145 !New->getFriendObjectKind(); 1146 1147 if (FunctionDecl *OldF = OldD->getAsFunction()) { 1148 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 1149 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 1150 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 1151 continue; 1152 } 1153 1154 if (!isa<FunctionTemplateDecl>(OldD) && 1155 !shouldLinkPossiblyHiddenDecl(*I, New)) 1156 continue; 1157 1158 // C++20 [temp.friend] p9: A non-template friend declaration with a 1159 // requires-clause shall be a definition. A friend function template 1160 // with a constraint that depends on a template parameter from an 1161 // enclosing template shall be a definition. Such a constrained friend 1162 // function or function template declaration does not declare the same 1163 // function or function template as a declaration in any other scope. 1164 if (Context.FriendsDifferByConstraints(OldF, New)) 1165 continue; 1166 1167 Match = *I; 1168 return Ovl_Match; 1169 } 1170 1171 // Builtins that have custom typechecking or have a reference should 1172 // not be overloadable or redeclarable. 1173 if (!getASTContext().canBuiltinBeRedeclared(OldF)) { 1174 Match = *I; 1175 return Ovl_NonFunction; 1176 } 1177 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) { 1178 // We can overload with these, which can show up when doing 1179 // redeclaration checks for UsingDecls. 1180 assert(Old.getLookupKind() == LookupUsingDeclName); 1181 } else if (isa<TagDecl>(OldD)) { 1182 // We can always overload with tags by hiding them. 1183 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) { 1184 // Optimistically assume that an unresolved using decl will 1185 // overload; if it doesn't, we'll have to diagnose during 1186 // template instantiation. 1187 // 1188 // Exception: if the scope is dependent and this is not a class 1189 // member, the using declaration can only introduce an enumerator. 1190 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) { 1191 Match = *I; 1192 return Ovl_NonFunction; 1193 } 1194 } else { 1195 // (C++ 13p1): 1196 // Only function declarations can be overloaded; object and type 1197 // declarations cannot be overloaded. 1198 Match = *I; 1199 return Ovl_NonFunction; 1200 } 1201 } 1202 1203 // C++ [temp.friend]p1: 1204 // For a friend function declaration that is not a template declaration: 1205 // -- if the name of the friend is a qualified or unqualified template-id, 1206 // [...], otherwise 1207 // -- if the name of the friend is a qualified-id and a matching 1208 // non-template function is found in the specified class or namespace, 1209 // the friend declaration refers to that function, otherwise, 1210 // -- if the name of the friend is a qualified-id and a matching function 1211 // template is found in the specified class or namespace, the friend 1212 // declaration refers to the deduced specialization of that function 1213 // template, otherwise 1214 // -- the name shall be an unqualified-id [...] 1215 // If we get here for a qualified friend declaration, we've just reached the 1216 // third bullet. If the type of the friend is dependent, skip this lookup 1217 // until instantiation. 1218 if (New->getFriendObjectKind() && New->getQualifier() && 1219 !New->getDescribedFunctionTemplate() && 1220 !New->getDependentSpecializationInfo() && 1221 !New->getType()->isDependentType()) { 1222 LookupResult TemplateSpecResult(LookupResult::Temporary, Old); 1223 TemplateSpecResult.addAllDecls(Old); 1224 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult, 1225 /*QualifiedFriend*/true)) { 1226 New->setInvalidDecl(); 1227 return Ovl_Overload; 1228 } 1229 1230 Match = TemplateSpecResult.getAsSingle<FunctionDecl>(); 1231 return Ovl_Match; 1232 } 1233 1234 return Ovl_Overload; 1235 } 1236 1237 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 1238 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs, 1239 bool ConsiderRequiresClauses) { 1240 // C++ [basic.start.main]p2: This function shall not be overloaded. 1241 if (New->isMain()) 1242 return false; 1243 1244 // MSVCRT user defined entry points cannot be overloaded. 1245 if (New->isMSVCRTEntryPoint()) 1246 return false; 1247 1248 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 1249 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 1250 1251 // C++ [temp.fct]p2: 1252 // A function template can be overloaded with other function templates 1253 // and with normal (non-template) functions. 1254 if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) 1255 return true; 1256 1257 // Is the function New an overload of the function Old? 1258 QualType OldQType = Context.getCanonicalType(Old->getType()); 1259 QualType NewQType = Context.getCanonicalType(New->getType()); 1260 1261 // Compare the signatures (C++ 1.3.10) of the two functions to 1262 // determine whether they are overloads. If we find any mismatch 1263 // in the signature, they are overloads. 1264 1265 // If either of these functions is a K&R-style function (no 1266 // prototype), then we consider them to have matching signatures. 1267 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 1268 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 1269 return false; 1270 1271 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType); 1272 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType); 1273 1274 // The signature of a function includes the types of its 1275 // parameters (C++ 1.3.10), which includes the presence or absence 1276 // of the ellipsis; see C++ DR 357). 1277 if (OldQType != NewQType && 1278 (OldType->getNumParams() != NewType->getNumParams() || 1279 OldType->isVariadic() != NewType->isVariadic() || 1280 !FunctionParamTypesAreEqual(OldType, NewType))) 1281 return true; 1282 1283 if (NewTemplate) { 1284 // C++ [temp.over.link]p4: 1285 // The signature of a function template consists of its function 1286 // signature, its return type and its template parameter list. The names 1287 // of the template parameters are significant only for establishing the 1288 // relationship between the template parameters and the rest of the 1289 // signature. 1290 // 1291 // We check the return type and template parameter lists for function 1292 // templates first; the remaining checks follow. 1293 bool SameTemplateParameterList = TemplateParameterListsAreEqual( 1294 NewTemplate->getTemplateParameters(), 1295 OldTemplate->getTemplateParameters(), false, TPL_TemplateMatch); 1296 bool SameReturnType = Context.hasSameType(Old->getDeclaredReturnType(), 1297 New->getDeclaredReturnType()); 1298 // FIXME(GH58571): Match template parameter list even for non-constrained 1299 // template heads. This currently ensures that the code prior to C++20 is 1300 // not newly broken. 1301 bool ConstraintsInTemplateHead = 1302 NewTemplate->getTemplateParameters()->hasAssociatedConstraints() || 1303 OldTemplate->getTemplateParameters()->hasAssociatedConstraints(); 1304 // C++ [namespace.udecl]p11: 1305 // The set of declarations named by a using-declarator that inhabits a 1306 // class C does not include member functions and member function 1307 // templates of a base class that "correspond" to (and thus would 1308 // conflict with) a declaration of a function or function template in 1309 // C. 1310 // Comparing return types is not required for the "correspond" check to 1311 // decide whether a member introduced by a shadow declaration is hidden. 1312 if (UseMemberUsingDeclRules && ConstraintsInTemplateHead && 1313 !SameTemplateParameterList) 1314 return true; 1315 if (!UseMemberUsingDeclRules && 1316 (!SameTemplateParameterList || !SameReturnType)) 1317 return true; 1318 } 1319 1320 if (ConsiderRequiresClauses) { 1321 Expr *NewRC = New->getTrailingRequiresClause(), 1322 *OldRC = Old->getTrailingRequiresClause(); 1323 if ((NewRC != nullptr) != (OldRC != nullptr)) 1324 return true; 1325 1326 if (NewRC && !AreConstraintExpressionsEqual(Old, OldRC, New, NewRC)) 1327 return true; 1328 } 1329 1330 // If the function is a class member, its signature includes the 1331 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. 1332 // 1333 // As part of this, also check whether one of the member functions 1334 // is static, in which case they are not overloads (C++ 1335 // 13.1p2). While not part of the definition of the signature, 1336 // this check is important to determine whether these functions 1337 // can be overloaded. 1338 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); 1339 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); 1340 if (OldMethod && NewMethod && 1341 !OldMethod->isStatic() && !NewMethod->isStatic()) { 1342 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) { 1343 if (!UseMemberUsingDeclRules && 1344 (OldMethod->getRefQualifier() == RQ_None || 1345 NewMethod->getRefQualifier() == RQ_None)) { 1346 // C++20 [over.load]p2: 1347 // - Member function declarations with the same name, the same 1348 // parameter-type-list, and the same trailing requires-clause (if 1349 // any), as well as member function template declarations with the 1350 // same name, the same parameter-type-list, the same trailing 1351 // requires-clause (if any), and the same template-head, cannot be 1352 // overloaded if any of them, but not all, have a ref-qualifier. 1353 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) 1354 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); 1355 Diag(OldMethod->getLocation(), diag::note_previous_declaration); 1356 } 1357 return true; 1358 } 1359 1360 // We may not have applied the implicit const for a constexpr member 1361 // function yet (because we haven't yet resolved whether this is a static 1362 // or non-static member function). Add it now, on the assumption that this 1363 // is a redeclaration of OldMethod. 1364 auto OldQuals = OldMethod->getMethodQualifiers(); 1365 auto NewQuals = NewMethod->getMethodQualifiers(); 1366 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() && 1367 !isa<CXXConstructorDecl>(NewMethod)) 1368 NewQuals.addConst(); 1369 // We do not allow overloading based off of '__restrict'. 1370 OldQuals.removeRestrict(); 1371 NewQuals.removeRestrict(); 1372 if (OldQuals != NewQuals) 1373 return true; 1374 } 1375 1376 // Though pass_object_size is placed on parameters and takes an argument, we 1377 // consider it to be a function-level modifier for the sake of function 1378 // identity. Either the function has one or more parameters with 1379 // pass_object_size or it doesn't. 1380 if (functionHasPassObjectSizeParams(New) != 1381 functionHasPassObjectSizeParams(Old)) 1382 return true; 1383 1384 // enable_if attributes are an order-sensitive part of the signature. 1385 for (specific_attr_iterator<EnableIfAttr> 1386 NewI = New->specific_attr_begin<EnableIfAttr>(), 1387 NewE = New->specific_attr_end<EnableIfAttr>(), 1388 OldI = Old->specific_attr_begin<EnableIfAttr>(), 1389 OldE = Old->specific_attr_end<EnableIfAttr>(); 1390 NewI != NewE || OldI != OldE; ++NewI, ++OldI) { 1391 if (NewI == NewE || OldI == OldE) 1392 return true; 1393 llvm::FoldingSetNodeID NewID, OldID; 1394 NewI->getCond()->Profile(NewID, Context, true); 1395 OldI->getCond()->Profile(OldID, Context, true); 1396 if (NewID != OldID) 1397 return true; 1398 } 1399 1400 if (getLangOpts().CUDA && ConsiderCudaAttrs) { 1401 // Don't allow overloading of destructors. (In theory we could, but it 1402 // would be a giant change to clang.) 1403 if (!isa<CXXDestructorDecl>(New)) { 1404 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New), 1405 OldTarget = IdentifyCUDATarget(Old); 1406 if (NewTarget != CFT_InvalidTarget) { 1407 assert((OldTarget != CFT_InvalidTarget) && 1408 "Unexpected invalid target."); 1409 1410 // Allow overloading of functions with same signature and different CUDA 1411 // target attributes. 1412 if (NewTarget != OldTarget) 1413 return true; 1414 } 1415 } 1416 } 1417 1418 // The signatures match; this is not an overload. 1419 return false; 1420 } 1421 1422 /// Tries a user-defined conversion from From to ToType. 1423 /// 1424 /// Produces an implicit conversion sequence for when a standard conversion 1425 /// is not an option. See TryImplicitConversion for more information. 1426 static ImplicitConversionSequence 1427 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 1428 bool SuppressUserConversions, 1429 AllowedExplicit AllowExplicit, 1430 bool InOverloadResolution, 1431 bool CStyle, 1432 bool AllowObjCWritebackConversion, 1433 bool AllowObjCConversionOnExplicit) { 1434 ImplicitConversionSequence ICS; 1435 1436 if (SuppressUserConversions) { 1437 // We're not in the case above, so there is no conversion that 1438 // we can perform. 1439 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1440 return ICS; 1441 } 1442 1443 // Attempt user-defined conversion. 1444 OverloadCandidateSet Conversions(From->getExprLoc(), 1445 OverloadCandidateSet::CSK_Normal); 1446 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, 1447 Conversions, AllowExplicit, 1448 AllowObjCConversionOnExplicit)) { 1449 case OR_Success: 1450 case OR_Deleted: 1451 ICS.setUserDefined(); 1452 // C++ [over.ics.user]p4: 1453 // A conversion of an expression of class type to the same class 1454 // type is given Exact Match rank, and a conversion of an 1455 // expression of class type to a base class of that type is 1456 // given Conversion rank, in spite of the fact that a copy 1457 // constructor (i.e., a user-defined conversion function) is 1458 // called for those cases. 1459 if (CXXConstructorDecl *Constructor 1460 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 1461 QualType FromCanon 1462 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 1463 QualType ToCanon 1464 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 1465 if (Constructor->isCopyConstructor() && 1466 (FromCanon == ToCanon || 1467 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) { 1468 // Turn this into a "standard" conversion sequence, so that it 1469 // gets ranked with standard conversion sequences. 1470 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction; 1471 ICS.setStandard(); 1472 ICS.Standard.setAsIdentityConversion(); 1473 ICS.Standard.setFromType(From->getType()); 1474 ICS.Standard.setAllToTypes(ToType); 1475 ICS.Standard.CopyConstructor = Constructor; 1476 ICS.Standard.FoundCopyConstructor = Found; 1477 if (ToCanon != FromCanon) 1478 ICS.Standard.Second = ICK_Derived_To_Base; 1479 } 1480 } 1481 break; 1482 1483 case OR_Ambiguous: 1484 ICS.setAmbiguous(); 1485 ICS.Ambiguous.setFromType(From->getType()); 1486 ICS.Ambiguous.setToType(ToType); 1487 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 1488 Cand != Conversions.end(); ++Cand) 1489 if (Cand->Best) 1490 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); 1491 break; 1492 1493 // Fall through. 1494 case OR_No_Viable_Function: 1495 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1496 break; 1497 } 1498 1499 return ICS; 1500 } 1501 1502 /// TryImplicitConversion - Attempt to perform an implicit conversion 1503 /// from the given expression (Expr) to the given type (ToType). This 1504 /// function returns an implicit conversion sequence that can be used 1505 /// to perform the initialization. Given 1506 /// 1507 /// void f(float f); 1508 /// void g(int i) { f(i); } 1509 /// 1510 /// this routine would produce an implicit conversion sequence to 1511 /// describe the initialization of f from i, which will be a standard 1512 /// conversion sequence containing an lvalue-to-rvalue conversion (C++ 1513 /// 4.1) followed by a floating-integral conversion (C++ 4.9). 1514 // 1515 /// Note that this routine only determines how the conversion can be 1516 /// performed; it does not actually perform the conversion. As such, 1517 /// it will not produce any diagnostics if no conversion is available, 1518 /// but will instead return an implicit conversion sequence of kind 1519 /// "BadConversion". 1520 /// 1521 /// If @p SuppressUserConversions, then user-defined conversions are 1522 /// not permitted. 1523 /// If @p AllowExplicit, then explicit user-defined conversions are 1524 /// permitted. 1525 /// 1526 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C 1527 /// writeback conversion, which allows __autoreleasing id* parameters to 1528 /// be initialized with __strong id* or __weak id* arguments. 1529 static ImplicitConversionSequence 1530 TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 1531 bool SuppressUserConversions, 1532 AllowedExplicit AllowExplicit, 1533 bool InOverloadResolution, 1534 bool CStyle, 1535 bool AllowObjCWritebackConversion, 1536 bool AllowObjCConversionOnExplicit) { 1537 ImplicitConversionSequence ICS; 1538 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 1539 ICS.Standard, CStyle, AllowObjCWritebackConversion)){ 1540 ICS.setStandard(); 1541 return ICS; 1542 } 1543 1544 if (!S.getLangOpts().CPlusPlus) { 1545 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1546 return ICS; 1547 } 1548 1549 // C++ [over.ics.user]p4: 1550 // A conversion of an expression of class type to the same class 1551 // type is given Exact Match rank, and a conversion of an 1552 // expression of class type to a base class of that type is 1553 // given Conversion rank, in spite of the fact that a copy/move 1554 // constructor (i.e., a user-defined conversion function) is 1555 // called for those cases. 1556 QualType FromType = From->getType(); 1557 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 1558 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 1559 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) { 1560 ICS.setStandard(); 1561 ICS.Standard.setAsIdentityConversion(); 1562 ICS.Standard.setFromType(FromType); 1563 ICS.Standard.setAllToTypes(ToType); 1564 1565 // We don't actually check at this point whether there is a valid 1566 // copy/move constructor, since overloading just assumes that it 1567 // exists. When we actually perform initialization, we'll find the 1568 // appropriate constructor to copy the returned object, if needed. 1569 ICS.Standard.CopyConstructor = nullptr; 1570 1571 // Determine whether this is considered a derived-to-base conversion. 1572 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 1573 ICS.Standard.Second = ICK_Derived_To_Base; 1574 1575 return ICS; 1576 } 1577 1578 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 1579 AllowExplicit, InOverloadResolution, CStyle, 1580 AllowObjCWritebackConversion, 1581 AllowObjCConversionOnExplicit); 1582 } 1583 1584 ImplicitConversionSequence 1585 Sema::TryImplicitConversion(Expr *From, QualType ToType, 1586 bool SuppressUserConversions, 1587 AllowedExplicit AllowExplicit, 1588 bool InOverloadResolution, 1589 bool CStyle, 1590 bool AllowObjCWritebackConversion) { 1591 return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions, 1592 AllowExplicit, InOverloadResolution, CStyle, 1593 AllowObjCWritebackConversion, 1594 /*AllowObjCConversionOnExplicit=*/false); 1595 } 1596 1597 /// PerformImplicitConversion - Perform an implicit conversion of the 1598 /// expression From to the type ToType. Returns the 1599 /// converted expression. Flavor is the kind of conversion we're 1600 /// performing, used in the error message. If @p AllowExplicit, 1601 /// explicit user-defined conversions are permitted. 1602 ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType, 1603 AssignmentAction Action, 1604 bool AllowExplicit) { 1605 if (checkPlaceholderForOverload(*this, From)) 1606 return ExprError(); 1607 1608 // Objective-C ARC: Determine whether we will allow the writeback conversion. 1609 bool AllowObjCWritebackConversion 1610 = getLangOpts().ObjCAutoRefCount && 1611 (Action == AA_Passing || Action == AA_Sending); 1612 if (getLangOpts().ObjC) 1613 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType, 1614 From->getType(), From); 1615 ImplicitConversionSequence ICS = ::TryImplicitConversion( 1616 *this, From, ToType, 1617 /*SuppressUserConversions=*/false, 1618 AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None, 1619 /*InOverloadResolution=*/false, 1620 /*CStyle=*/false, AllowObjCWritebackConversion, 1621 /*AllowObjCConversionOnExplicit=*/false); 1622 return PerformImplicitConversion(From, ToType, ICS, Action); 1623 } 1624 1625 /// Determine whether the conversion from FromType to ToType is a valid 1626 /// conversion that strips "noexcept" or "noreturn" off the nested function 1627 /// type. 1628 bool Sema::IsFunctionConversion(QualType FromType, QualType ToType, 1629 QualType &ResultTy) { 1630 if (Context.hasSameUnqualifiedType(FromType, ToType)) 1631 return false; 1632 1633 // Permit the conversion F(t __attribute__((noreturn))) -> F(t) 1634 // or F(t noexcept) -> F(t) 1635 // where F adds one of the following at most once: 1636 // - a pointer 1637 // - a member pointer 1638 // - a block pointer 1639 // Changes here need matching changes in FindCompositePointerType. 1640 CanQualType CanTo = Context.getCanonicalType(ToType); 1641 CanQualType CanFrom = Context.getCanonicalType(FromType); 1642 Type::TypeClass TyClass = CanTo->getTypeClass(); 1643 if (TyClass != CanFrom->getTypeClass()) return false; 1644 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { 1645 if (TyClass == Type::Pointer) { 1646 CanTo = CanTo.castAs<PointerType>()->getPointeeType(); 1647 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType(); 1648 } else if (TyClass == Type::BlockPointer) { 1649 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType(); 1650 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType(); 1651 } else if (TyClass == Type::MemberPointer) { 1652 auto ToMPT = CanTo.castAs<MemberPointerType>(); 1653 auto FromMPT = CanFrom.castAs<MemberPointerType>(); 1654 // A function pointer conversion cannot change the class of the function. 1655 if (ToMPT->getClass() != FromMPT->getClass()) 1656 return false; 1657 CanTo = ToMPT->getPointeeType(); 1658 CanFrom = FromMPT->getPointeeType(); 1659 } else { 1660 return false; 1661 } 1662 1663 TyClass = CanTo->getTypeClass(); 1664 if (TyClass != CanFrom->getTypeClass()) return false; 1665 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) 1666 return false; 1667 } 1668 1669 const auto *FromFn = cast<FunctionType>(CanFrom); 1670 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); 1671 1672 const auto *ToFn = cast<FunctionType>(CanTo); 1673 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); 1674 1675 bool Changed = false; 1676 1677 // Drop 'noreturn' if not present in target type. 1678 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) { 1679 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false)); 1680 Changed = true; 1681 } 1682 1683 // Drop 'noexcept' if not present in target type. 1684 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) { 1685 const auto *ToFPT = cast<FunctionProtoType>(ToFn); 1686 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) { 1687 FromFn = cast<FunctionType>( 1688 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0), 1689 EST_None) 1690 .getTypePtr()); 1691 Changed = true; 1692 } 1693 1694 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid 1695 // only if the ExtParameterInfo lists of the two function prototypes can be 1696 // merged and the merged list is identical to ToFPT's ExtParameterInfo list. 1697 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; 1698 bool CanUseToFPT, CanUseFromFPT; 1699 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT, 1700 CanUseFromFPT, NewParamInfos) && 1701 CanUseToFPT && !CanUseFromFPT) { 1702 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); 1703 ExtInfo.ExtParameterInfos = 1704 NewParamInfos.empty() ? nullptr : NewParamInfos.data(); 1705 QualType QT = Context.getFunctionType(FromFPT->getReturnType(), 1706 FromFPT->getParamTypes(), ExtInfo); 1707 FromFn = QT->getAs<FunctionType>(); 1708 Changed = true; 1709 } 1710 } 1711 1712 if (!Changed) 1713 return false; 1714 1715 assert(QualType(FromFn, 0).isCanonical()); 1716 if (QualType(FromFn, 0) != CanTo) return false; 1717 1718 ResultTy = ToType; 1719 return true; 1720 } 1721 1722 /// Determine whether the conversion from FromType to ToType is a valid 1723 /// vector conversion. 1724 /// 1725 /// \param ICK Will be set to the vector conversion kind, if this is a vector 1726 /// conversion. 1727 static bool IsVectorConversion(Sema &S, QualType FromType, QualType ToType, 1728 ImplicitConversionKind &ICK, Expr *From, 1729 bool InOverloadResolution, bool CStyle) { 1730 // We need at least one of these types to be a vector type to have a vector 1731 // conversion. 1732 if (!ToType->isVectorType() && !FromType->isVectorType()) 1733 return false; 1734 1735 // Identical types require no conversions. 1736 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) 1737 return false; 1738 1739 // There are no conversions between extended vector types, only identity. 1740 if (ToType->isExtVectorType()) { 1741 // There are no conversions between extended vector types other than the 1742 // identity conversion. 1743 if (FromType->isExtVectorType()) 1744 return false; 1745 1746 // Vector splat from any arithmetic type to a vector. 1747 if (FromType->isArithmeticType()) { 1748 ICK = ICK_Vector_Splat; 1749 return true; 1750 } 1751 } 1752 1753 if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType()) 1754 if (S.Context.areCompatibleSveTypes(FromType, ToType) || 1755 S.Context.areLaxCompatibleSveTypes(FromType, ToType)) { 1756 ICK = ICK_SVE_Vector_Conversion; 1757 return true; 1758 } 1759 1760 // We can perform the conversion between vector types in the following cases: 1761 // 1)vector types are equivalent AltiVec and GCC vector types 1762 // 2)lax vector conversions are permitted and the vector types are of the 1763 // same size 1764 // 3)the destination type does not have the ARM MVE strict-polymorphism 1765 // attribute, which inhibits lax vector conversion for overload resolution 1766 // only 1767 if (ToType->isVectorType() && FromType->isVectorType()) { 1768 if (S.Context.areCompatibleVectorTypes(FromType, ToType) || 1769 (S.isLaxVectorConversion(FromType, ToType) && 1770 !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) { 1771 if (S.isLaxVectorConversion(FromType, ToType) && 1772 S.anyAltivecTypes(FromType, ToType) && 1773 !S.areSameVectorElemTypes(FromType, ToType) && 1774 !InOverloadResolution && !CStyle) { 1775 S.Diag(From->getBeginLoc(), diag::warn_deprecated_lax_vec_conv_all) 1776 << FromType << ToType; 1777 } 1778 ICK = ICK_Vector_Conversion; 1779 return true; 1780 } 1781 } 1782 1783 return false; 1784 } 1785 1786 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, 1787 bool InOverloadResolution, 1788 StandardConversionSequence &SCS, 1789 bool CStyle); 1790 1791 /// IsStandardConversion - Determines whether there is a standard 1792 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 1793 /// expression From to the type ToType. Standard conversion sequences 1794 /// only consider non-class types; for conversions that involve class 1795 /// types, use TryImplicitConversion. If a conversion exists, SCS will 1796 /// contain the standard conversion sequence required to perform this 1797 /// conversion and this routine will return true. Otherwise, this 1798 /// routine will return false and the value of SCS is unspecified. 1799 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 1800 bool InOverloadResolution, 1801 StandardConversionSequence &SCS, 1802 bool CStyle, 1803 bool AllowObjCWritebackConversion) { 1804 QualType FromType = From->getType(); 1805 1806 // Standard conversions (C++ [conv]) 1807 SCS.setAsIdentityConversion(); 1808 SCS.IncompatibleObjC = false; 1809 SCS.setFromType(FromType); 1810 SCS.CopyConstructor = nullptr; 1811 1812 // There are no standard conversions for class types in C++, so 1813 // abort early. When overloading in C, however, we do permit them. 1814 if (S.getLangOpts().CPlusPlus && 1815 (FromType->isRecordType() || ToType->isRecordType())) 1816 return false; 1817 1818 // The first conversion can be an lvalue-to-rvalue conversion, 1819 // array-to-pointer conversion, or function-to-pointer conversion 1820 // (C++ 4p1). 1821 1822 if (FromType == S.Context.OverloadTy) { 1823 DeclAccessPair AccessPair; 1824 if (FunctionDecl *Fn 1825 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 1826 AccessPair)) { 1827 // We were able to resolve the address of the overloaded function, 1828 // so we can convert to the type of that function. 1829 FromType = Fn->getType(); 1830 SCS.setFromType(FromType); 1831 1832 // we can sometimes resolve &foo<int> regardless of ToType, so check 1833 // if the type matches (identity) or we are converting to bool 1834 if (!S.Context.hasSameUnqualifiedType( 1835 S.ExtractUnqualifiedFunctionType(ToType), FromType)) { 1836 QualType resultTy; 1837 // if the function type matches except for [[noreturn]], it's ok 1838 if (!S.IsFunctionConversion(FromType, 1839 S.ExtractUnqualifiedFunctionType(ToType), resultTy)) 1840 // otherwise, only a boolean conversion is standard 1841 if (!ToType->isBooleanType()) 1842 return false; 1843 } 1844 1845 // Check if the "from" expression is taking the address of an overloaded 1846 // function and recompute the FromType accordingly. Take advantage of the 1847 // fact that non-static member functions *must* have such an address-of 1848 // expression. 1849 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); 1850 if (Method && !Method->isStatic()) { 1851 assert(isa<UnaryOperator>(From->IgnoreParens()) && 1852 "Non-unary operator on non-static member address"); 1853 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() 1854 == UO_AddrOf && 1855 "Non-address-of operator on non-static member address"); 1856 const Type *ClassType 1857 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 1858 FromType = S.Context.getMemberPointerType(FromType, ClassType); 1859 } else if (isa<UnaryOperator>(From->IgnoreParens())) { 1860 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == 1861 UO_AddrOf && 1862 "Non-address-of operator for overloaded function expression"); 1863 FromType = S.Context.getPointerType(FromType); 1864 } 1865 } else { 1866 return false; 1867 } 1868 } 1869 // Lvalue-to-rvalue conversion (C++11 4.1): 1870 // A glvalue (3.10) of a non-function, non-array type T can 1871 // be converted to a prvalue. 1872 bool argIsLValue = From->isGLValue(); 1873 if (argIsLValue && 1874 !FromType->isFunctionType() && !FromType->isArrayType() && 1875 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1876 SCS.First = ICK_Lvalue_To_Rvalue; 1877 1878 // C11 6.3.2.1p2: 1879 // ... if the lvalue has atomic type, the value has the non-atomic version 1880 // of the type of the lvalue ... 1881 if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) 1882 FromType = Atomic->getValueType(); 1883 1884 // If T is a non-class type, the type of the rvalue is the 1885 // cv-unqualified version of T. Otherwise, the type of the rvalue 1886 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1887 // just strip the qualifiers because they don't matter. 1888 FromType = FromType.getUnqualifiedType(); 1889 } else if (FromType->isArrayType()) { 1890 // Array-to-pointer conversion (C++ 4.2) 1891 SCS.First = ICK_Array_To_Pointer; 1892 1893 // An lvalue or rvalue of type "array of N T" or "array of unknown 1894 // bound of T" can be converted to an rvalue of type "pointer to 1895 // T" (C++ 4.2p1). 1896 FromType = S.Context.getArrayDecayedType(FromType); 1897 1898 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1899 // This conversion is deprecated in C++03 (D.4) 1900 SCS.DeprecatedStringLiteralToCharPtr = true; 1901 1902 // For the purpose of ranking in overload resolution 1903 // (13.3.3.1.1), this conversion is considered an 1904 // array-to-pointer conversion followed by a qualification 1905 // conversion (4.4). (C++ 4.2p2) 1906 SCS.Second = ICK_Identity; 1907 SCS.Third = ICK_Qualification; 1908 SCS.QualificationIncludesObjCLifetime = false; 1909 SCS.setAllToTypes(FromType); 1910 return true; 1911 } 1912 } else if (FromType->isFunctionType() && argIsLValue) { 1913 // Function-to-pointer conversion (C++ 4.3). 1914 SCS.First = ICK_Function_To_Pointer; 1915 1916 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts())) 1917 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) 1918 if (!S.checkAddressOfFunctionIsAvailable(FD)) 1919 return false; 1920 1921 // An lvalue of function type T can be converted to an rvalue of 1922 // type "pointer to T." The result is a pointer to the 1923 // function. (C++ 4.3p1). 1924 FromType = S.Context.getPointerType(FromType); 1925 } else { 1926 // We don't require any conversions for the first step. 1927 SCS.First = ICK_Identity; 1928 } 1929 SCS.setToType(0, FromType); 1930 1931 // The second conversion can be an integral promotion, floating 1932 // point promotion, integral conversion, floating point conversion, 1933 // floating-integral conversion, pointer conversion, 1934 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1935 // For overloading in C, this can also be a "compatible-type" 1936 // conversion. 1937 bool IncompatibleObjC = false; 1938 ImplicitConversionKind SecondICK = ICK_Identity; 1939 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1940 // The unqualified versions of the types are the same: there's no 1941 // conversion to do. 1942 SCS.Second = ICK_Identity; 1943 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1944 // Integral promotion (C++ 4.5). 1945 SCS.Second = ICK_Integral_Promotion; 1946 FromType = ToType.getUnqualifiedType(); 1947 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1948 // Floating point promotion (C++ 4.6). 1949 SCS.Second = ICK_Floating_Promotion; 1950 FromType = ToType.getUnqualifiedType(); 1951 } else if (S.IsComplexPromotion(FromType, ToType)) { 1952 // Complex promotion (Clang extension) 1953 SCS.Second = ICK_Complex_Promotion; 1954 FromType = ToType.getUnqualifiedType(); 1955 } else if (ToType->isBooleanType() && 1956 (FromType->isArithmeticType() || 1957 FromType->isAnyPointerType() || 1958 FromType->isBlockPointerType() || 1959 FromType->isMemberPointerType())) { 1960 // Boolean conversions (C++ 4.12). 1961 SCS.Second = ICK_Boolean_Conversion; 1962 FromType = S.Context.BoolTy; 1963 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1964 ToType->isIntegralType(S.Context)) { 1965 // Integral conversions (C++ 4.7). 1966 SCS.Second = ICK_Integral_Conversion; 1967 FromType = ToType.getUnqualifiedType(); 1968 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { 1969 // Complex conversions (C99 6.3.1.6) 1970 SCS.Second = ICK_Complex_Conversion; 1971 FromType = ToType.getUnqualifiedType(); 1972 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1973 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1974 // Complex-real conversions (C99 6.3.1.7) 1975 SCS.Second = ICK_Complex_Real; 1976 FromType = ToType.getUnqualifiedType(); 1977 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1978 // FIXME: disable conversions between long double, __ibm128 and __float128 1979 // if their representation is different until there is back end support 1980 // We of course allow this conversion if long double is really double. 1981 1982 // Conversions between bfloat and other floats are not permitted. 1983 if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty) 1984 return false; 1985 1986 // Conversions between IEEE-quad and IBM-extended semantics are not 1987 // permitted. 1988 const llvm::fltSemantics &FromSem = 1989 S.Context.getFloatTypeSemantics(FromType); 1990 const llvm::fltSemantics &ToSem = S.Context.getFloatTypeSemantics(ToType); 1991 if ((&FromSem == &llvm::APFloat::PPCDoubleDouble() && 1992 &ToSem == &llvm::APFloat::IEEEquad()) || 1993 (&FromSem == &llvm::APFloat::IEEEquad() && 1994 &ToSem == &llvm::APFloat::PPCDoubleDouble())) 1995 return false; 1996 1997 // Floating point conversions (C++ 4.8). 1998 SCS.Second = ICK_Floating_Conversion; 1999 FromType = ToType.getUnqualifiedType(); 2000 } else if ((FromType->isRealFloatingType() && 2001 ToType->isIntegralType(S.Context)) || 2002 (FromType->isIntegralOrUnscopedEnumerationType() && 2003 ToType->isRealFloatingType())) { 2004 // Conversions between bfloat and int are not permitted. 2005 if (FromType->isBFloat16Type() || ToType->isBFloat16Type()) 2006 return false; 2007 2008 // Floating-integral conversions (C++ 4.9). 2009 SCS.Second = ICK_Floating_Integral; 2010 FromType = ToType.getUnqualifiedType(); 2011 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { 2012 SCS.Second = ICK_Block_Pointer_Conversion; 2013 } else if (AllowObjCWritebackConversion && 2014 S.isObjCWritebackConversion(FromType, ToType, FromType)) { 2015 SCS.Second = ICK_Writeback_Conversion; 2016 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 2017 FromType, IncompatibleObjC)) { 2018 // Pointer conversions (C++ 4.10). 2019 SCS.Second = ICK_Pointer_Conversion; 2020 SCS.IncompatibleObjC = IncompatibleObjC; 2021 FromType = FromType.getUnqualifiedType(); 2022 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 2023 InOverloadResolution, FromType)) { 2024 // Pointer to member conversions (4.11). 2025 SCS.Second = ICK_Pointer_Member; 2026 } else if (IsVectorConversion(S, FromType, ToType, SecondICK, From, 2027 InOverloadResolution, CStyle)) { 2028 SCS.Second = SecondICK; 2029 FromType = ToType.getUnqualifiedType(); 2030 } else if (!S.getLangOpts().CPlusPlus && 2031 S.Context.typesAreCompatible(ToType, FromType)) { 2032 // Compatible conversions (Clang extension for C function overloading) 2033 SCS.Second = ICK_Compatible_Conversion; 2034 FromType = ToType.getUnqualifiedType(); 2035 } else if (IsTransparentUnionStandardConversion(S, From, ToType, 2036 InOverloadResolution, 2037 SCS, CStyle)) { 2038 SCS.Second = ICK_TransparentUnionConversion; 2039 FromType = ToType; 2040 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, 2041 CStyle)) { 2042 // tryAtomicConversion has updated the standard conversion sequence 2043 // appropriately. 2044 return true; 2045 } else if (ToType->isEventT() && 2046 From->isIntegerConstantExpr(S.getASTContext()) && 2047 From->EvaluateKnownConstInt(S.getASTContext()) == 0) { 2048 SCS.Second = ICK_Zero_Event_Conversion; 2049 FromType = ToType; 2050 } else if (ToType->isQueueT() && 2051 From->isIntegerConstantExpr(S.getASTContext()) && 2052 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) { 2053 SCS.Second = ICK_Zero_Queue_Conversion; 2054 FromType = ToType; 2055 } else if (ToType->isSamplerT() && 2056 From->isIntegerConstantExpr(S.getASTContext())) { 2057 SCS.Second = ICK_Compatible_Conversion; 2058 FromType = ToType; 2059 } else { 2060 // No second conversion required. 2061 SCS.Second = ICK_Identity; 2062 } 2063 SCS.setToType(1, FromType); 2064 2065 // The third conversion can be a function pointer conversion or a 2066 // qualification conversion (C++ [conv.fctptr], [conv.qual]). 2067 bool ObjCLifetimeConversion; 2068 if (S.IsFunctionConversion(FromType, ToType, FromType)) { 2069 // Function pointer conversions (removing 'noexcept') including removal of 2070 // 'noreturn' (Clang extension). 2071 SCS.Third = ICK_Function_Conversion; 2072 } else if (S.IsQualificationConversion(FromType, ToType, CStyle, 2073 ObjCLifetimeConversion)) { 2074 SCS.Third = ICK_Qualification; 2075 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; 2076 FromType = ToType; 2077 } else { 2078 // No conversion required 2079 SCS.Third = ICK_Identity; 2080 } 2081 2082 // C++ [over.best.ics]p6: 2083 // [...] Any difference in top-level cv-qualification is 2084 // subsumed by the initialization itself and does not constitute 2085 // a conversion. [...] 2086 QualType CanonFrom = S.Context.getCanonicalType(FromType); 2087 QualType CanonTo = S.Context.getCanonicalType(ToType); 2088 if (CanonFrom.getLocalUnqualifiedType() 2089 == CanonTo.getLocalUnqualifiedType() && 2090 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { 2091 FromType = ToType; 2092 CanonFrom = CanonTo; 2093 } 2094 2095 SCS.setToType(2, FromType); 2096 2097 if (CanonFrom == CanonTo) 2098 return true; 2099 2100 // If we have not converted the argument type to the parameter type, 2101 // this is a bad conversion sequence, unless we're resolving an overload in C. 2102 if (S.getLangOpts().CPlusPlus || !InOverloadResolution) 2103 return false; 2104 2105 ExprResult ER = ExprResult{From}; 2106 Sema::AssignConvertType Conv = 2107 S.CheckSingleAssignmentConstraints(ToType, ER, 2108 /*Diagnose=*/false, 2109 /*DiagnoseCFAudited=*/false, 2110 /*ConvertRHS=*/false); 2111 ImplicitConversionKind SecondConv; 2112 switch (Conv) { 2113 case Sema::Compatible: 2114 SecondConv = ICK_C_Only_Conversion; 2115 break; 2116 // For our purposes, discarding qualifiers is just as bad as using an 2117 // incompatible pointer. Note that an IncompatiblePointer conversion can drop 2118 // qualifiers, as well. 2119 case Sema::CompatiblePointerDiscardsQualifiers: 2120 case Sema::IncompatiblePointer: 2121 case Sema::IncompatiblePointerSign: 2122 SecondConv = ICK_Incompatible_Pointer_Conversion; 2123 break; 2124 default: 2125 return false; 2126 } 2127 2128 // First can only be an lvalue conversion, so we pretend that this was the 2129 // second conversion. First should already be valid from earlier in the 2130 // function. 2131 SCS.Second = SecondConv; 2132 SCS.setToType(1, ToType); 2133 2134 // Third is Identity, because Second should rank us worse than any other 2135 // conversion. This could also be ICK_Qualification, but it's simpler to just 2136 // lump everything in with the second conversion, and we don't gain anything 2137 // from making this ICK_Qualification. 2138 SCS.Third = ICK_Identity; 2139 SCS.setToType(2, ToType); 2140 return true; 2141 } 2142 2143 static bool 2144 IsTransparentUnionStandardConversion(Sema &S, Expr* From, 2145 QualType &ToType, 2146 bool InOverloadResolution, 2147 StandardConversionSequence &SCS, 2148 bool CStyle) { 2149 2150 const RecordType *UT = ToType->getAsUnionType(); 2151 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) 2152 return false; 2153 // The field to initialize within the transparent union. 2154 RecordDecl *UD = UT->getDecl(); 2155 // It's compatible if the expression matches any of the fields. 2156 for (const auto *it : UD->fields()) { 2157 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, 2158 CStyle, /*AllowObjCWritebackConversion=*/false)) { 2159 ToType = it->getType(); 2160 return true; 2161 } 2162 } 2163 return false; 2164 } 2165 2166 /// IsIntegralPromotion - Determines whether the conversion from the 2167 /// expression From (whose potentially-adjusted type is FromType) to 2168 /// ToType is an integral promotion (C++ 4.5). If so, returns true and 2169 /// sets PromotedType to the promoted type. 2170 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 2171 const BuiltinType *To = ToType->getAs<BuiltinType>(); 2172 // All integers are built-in. 2173 if (!To) { 2174 return false; 2175 } 2176 2177 // An rvalue of type char, signed char, unsigned char, short int, or 2178 // unsigned short int can be converted to an rvalue of type int if 2179 // int can represent all the values of the source type; otherwise, 2180 // the source rvalue can be converted to an rvalue of type unsigned 2181 // int (C++ 4.5p1). 2182 if (Context.isPromotableIntegerType(FromType) && !FromType->isBooleanType() && 2183 !FromType->isEnumeralType()) { 2184 if ( // We can promote any signed, promotable integer type to an int 2185 (FromType->isSignedIntegerType() || 2186 // We can promote any unsigned integer type whose size is 2187 // less than int to an int. 2188 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) { 2189 return To->getKind() == BuiltinType::Int; 2190 } 2191 2192 return To->getKind() == BuiltinType::UInt; 2193 } 2194 2195 // C++11 [conv.prom]p3: 2196 // A prvalue of an unscoped enumeration type whose underlying type is not 2197 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 2198 // following types that can represent all the values of the enumeration 2199 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 2200 // unsigned int, long int, unsigned long int, long long int, or unsigned 2201 // long long int. If none of the types in that list can represent all the 2202 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 2203 // type can be converted to an rvalue a prvalue of the extended integer type 2204 // with lowest integer conversion rank (4.13) greater than the rank of long 2205 // long in which all the values of the enumeration can be represented. If 2206 // there are two such extended types, the signed one is chosen. 2207 // C++11 [conv.prom]p4: 2208 // A prvalue of an unscoped enumeration type whose underlying type is fixed 2209 // can be converted to a prvalue of its underlying type. Moreover, if 2210 // integral promotion can be applied to its underlying type, a prvalue of an 2211 // unscoped enumeration type whose underlying type is fixed can also be 2212 // converted to a prvalue of the promoted underlying type. 2213 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 2214 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 2215 // provided for a scoped enumeration. 2216 if (FromEnumType->getDecl()->isScoped()) 2217 return false; 2218 2219 // We can perform an integral promotion to the underlying type of the enum, 2220 // even if that's not the promoted type. Note that the check for promoting 2221 // the underlying type is based on the type alone, and does not consider 2222 // the bitfield-ness of the actual source expression. 2223 if (FromEnumType->getDecl()->isFixed()) { 2224 QualType Underlying = FromEnumType->getDecl()->getIntegerType(); 2225 return Context.hasSameUnqualifiedType(Underlying, ToType) || 2226 IsIntegralPromotion(nullptr, Underlying, ToType); 2227 } 2228 2229 // We have already pre-calculated the promotion type, so this is trivial. 2230 if (ToType->isIntegerType() && 2231 isCompleteType(From->getBeginLoc(), FromType)) 2232 return Context.hasSameUnqualifiedType( 2233 ToType, FromEnumType->getDecl()->getPromotionType()); 2234 2235 // C++ [conv.prom]p5: 2236 // If the bit-field has an enumerated type, it is treated as any other 2237 // value of that type for promotion purposes. 2238 // 2239 // ... so do not fall through into the bit-field checks below in C++. 2240 if (getLangOpts().CPlusPlus) 2241 return false; 2242 } 2243 2244 // C++0x [conv.prom]p2: 2245 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 2246 // to an rvalue a prvalue of the first of the following types that can 2247 // represent all the values of its underlying type: int, unsigned int, 2248 // long int, unsigned long int, long long int, or unsigned long long int. 2249 // If none of the types in that list can represent all the values of its 2250 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 2251 // or wchar_t can be converted to an rvalue a prvalue of its underlying 2252 // type. 2253 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 2254 ToType->isIntegerType()) { 2255 // Determine whether the type we're converting from is signed or 2256 // unsigned. 2257 bool FromIsSigned = FromType->isSignedIntegerType(); 2258 uint64_t FromSize = Context.getTypeSize(FromType); 2259 2260 // The types we'll try to promote to, in the appropriate 2261 // order. Try each of these types. 2262 QualType PromoteTypes[6] = { 2263 Context.IntTy, Context.UnsignedIntTy, 2264 Context.LongTy, Context.UnsignedLongTy , 2265 Context.LongLongTy, Context.UnsignedLongLongTy 2266 }; 2267 for (int Idx = 0; Idx < 6; ++Idx) { 2268 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 2269 if (FromSize < ToSize || 2270 (FromSize == ToSize && 2271 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 2272 // We found the type that we can promote to. If this is the 2273 // type we wanted, we have a promotion. Otherwise, no 2274 // promotion. 2275 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 2276 } 2277 } 2278 } 2279 2280 // An rvalue for an integral bit-field (9.6) can be converted to an 2281 // rvalue of type int if int can represent all the values of the 2282 // bit-field; otherwise, it can be converted to unsigned int if 2283 // unsigned int can represent all the values of the bit-field. If 2284 // the bit-field is larger yet, no integral promotion applies to 2285 // it. If the bit-field has an enumerated type, it is treated as any 2286 // other value of that type for promotion purposes (C++ 4.5p3). 2287 // FIXME: We should delay checking of bit-fields until we actually perform the 2288 // conversion. 2289 // 2290 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be 2291 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum 2292 // bit-fields and those whose underlying type is larger than int) for GCC 2293 // compatibility. 2294 if (From) { 2295 if (FieldDecl *MemberDecl = From->getSourceBitField()) { 2296 std::optional<llvm::APSInt> BitWidth; 2297 if (FromType->isIntegralType(Context) && 2298 (BitWidth = 2299 MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) { 2300 llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned()); 2301 ToSize = Context.getTypeSize(ToType); 2302 2303 // Are we promoting to an int from a bitfield that fits in an int? 2304 if (*BitWidth < ToSize || 2305 (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) { 2306 return To->getKind() == BuiltinType::Int; 2307 } 2308 2309 // Are we promoting to an unsigned int from an unsigned bitfield 2310 // that fits into an unsigned int? 2311 if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) { 2312 return To->getKind() == BuiltinType::UInt; 2313 } 2314 2315 return false; 2316 } 2317 } 2318 } 2319 2320 // An rvalue of type bool can be converted to an rvalue of type int, 2321 // with false becoming zero and true becoming one (C++ 4.5p4). 2322 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 2323 return true; 2324 } 2325 2326 return false; 2327 } 2328 2329 /// IsFloatingPointPromotion - Determines whether the conversion from 2330 /// FromType to ToType is a floating point promotion (C++ 4.6). If so, 2331 /// returns true and sets PromotedType to the promoted type. 2332 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 2333 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 2334 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 2335 /// An rvalue of type float can be converted to an rvalue of type 2336 /// double. (C++ 4.6p1). 2337 if (FromBuiltin->getKind() == BuiltinType::Float && 2338 ToBuiltin->getKind() == BuiltinType::Double) 2339 return true; 2340 2341 // C99 6.3.1.5p1: 2342 // When a float is promoted to double or long double, or a 2343 // double is promoted to long double [...]. 2344 if (!getLangOpts().CPlusPlus && 2345 (FromBuiltin->getKind() == BuiltinType::Float || 2346 FromBuiltin->getKind() == BuiltinType::Double) && 2347 (ToBuiltin->getKind() == BuiltinType::LongDouble || 2348 ToBuiltin->getKind() == BuiltinType::Float128 || 2349 ToBuiltin->getKind() == BuiltinType::Ibm128)) 2350 return true; 2351 2352 // Half can be promoted to float. 2353 if (!getLangOpts().NativeHalfType && 2354 FromBuiltin->getKind() == BuiltinType::Half && 2355 ToBuiltin->getKind() == BuiltinType::Float) 2356 return true; 2357 } 2358 2359 return false; 2360 } 2361 2362 /// Determine if a conversion is a complex promotion. 2363 /// 2364 /// A complex promotion is defined as a complex -> complex conversion 2365 /// where the conversion between the underlying real types is a 2366 /// floating-point or integral promotion. 2367 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 2368 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 2369 if (!FromComplex) 2370 return false; 2371 2372 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 2373 if (!ToComplex) 2374 return false; 2375 2376 return IsFloatingPointPromotion(FromComplex->getElementType(), 2377 ToComplex->getElementType()) || 2378 IsIntegralPromotion(nullptr, FromComplex->getElementType(), 2379 ToComplex->getElementType()); 2380 } 2381 2382 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 2383 /// the pointer type FromPtr to a pointer to type ToPointee, with the 2384 /// same type qualifiers as FromPtr has on its pointee type. ToType, 2385 /// if non-empty, will be a pointer to ToType that may or may not have 2386 /// the right set of qualifiers on its pointee. 2387 /// 2388 static QualType 2389 BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 2390 QualType ToPointee, QualType ToType, 2391 ASTContext &Context, 2392 bool StripObjCLifetime = false) { 2393 assert((FromPtr->getTypeClass() == Type::Pointer || 2394 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 2395 "Invalid similarly-qualified pointer type"); 2396 2397 /// Conversions to 'id' subsume cv-qualifier conversions. 2398 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 2399 return ToType.getUnqualifiedType(); 2400 2401 QualType CanonFromPointee 2402 = Context.getCanonicalType(FromPtr->getPointeeType()); 2403 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 2404 Qualifiers Quals = CanonFromPointee.getQualifiers(); 2405 2406 if (StripObjCLifetime) 2407 Quals.removeObjCLifetime(); 2408 2409 // Exact qualifier match -> return the pointer type we're converting to. 2410 if (CanonToPointee.getLocalQualifiers() == Quals) { 2411 // ToType is exactly what we need. Return it. 2412 if (!ToType.isNull()) 2413 return ToType.getUnqualifiedType(); 2414 2415 // Build a pointer to ToPointee. It has the right qualifiers 2416 // already. 2417 if (isa<ObjCObjectPointerType>(ToType)) 2418 return Context.getObjCObjectPointerType(ToPointee); 2419 return Context.getPointerType(ToPointee); 2420 } 2421 2422 // Just build a canonical type that has the right qualifiers. 2423 QualType QualifiedCanonToPointee 2424 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 2425 2426 if (isa<ObjCObjectPointerType>(ToType)) 2427 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 2428 return Context.getPointerType(QualifiedCanonToPointee); 2429 } 2430 2431 static bool isNullPointerConstantForConversion(Expr *Expr, 2432 bool InOverloadResolution, 2433 ASTContext &Context) { 2434 // Handle value-dependent integral null pointer constants correctly. 2435 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 2436 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 2437 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 2438 return !InOverloadResolution; 2439 2440 return Expr->isNullPointerConstant(Context, 2441 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 2442 : Expr::NPC_ValueDependentIsNull); 2443 } 2444 2445 /// IsPointerConversion - Determines whether the conversion of the 2446 /// expression From, which has the (possibly adjusted) type FromType, 2447 /// can be converted to the type ToType via a pointer conversion (C++ 2448 /// 4.10). If so, returns true and places the converted type (that 2449 /// might differ from ToType in its cv-qualifiers at some level) into 2450 /// ConvertedType. 2451 /// 2452 /// This routine also supports conversions to and from block pointers 2453 /// and conversions with Objective-C's 'id', 'id<protocols...>', and 2454 /// pointers to interfaces. FIXME: Once we've determined the 2455 /// appropriate overloading rules for Objective-C, we may want to 2456 /// split the Objective-C checks into a different routine; however, 2457 /// GCC seems to consider all of these conversions to be pointer 2458 /// conversions, so for now they live here. IncompatibleObjC will be 2459 /// set if the conversion is an allowed Objective-C conversion that 2460 /// should result in a warning. 2461 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 2462 bool InOverloadResolution, 2463 QualType& ConvertedType, 2464 bool &IncompatibleObjC) { 2465 IncompatibleObjC = false; 2466 if (isObjCPointerConversion(FromType, ToType, ConvertedType, 2467 IncompatibleObjC)) 2468 return true; 2469 2470 // Conversion from a null pointer constant to any Objective-C pointer type. 2471 if (ToType->isObjCObjectPointerType() && 2472 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2473 ConvertedType = ToType; 2474 return true; 2475 } 2476 2477 // Blocks: Block pointers can be converted to void*. 2478 if (FromType->isBlockPointerType() && ToType->isPointerType() && 2479 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) { 2480 ConvertedType = ToType; 2481 return true; 2482 } 2483 // Blocks: A null pointer constant can be converted to a block 2484 // pointer type. 2485 if (ToType->isBlockPointerType() && 2486 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2487 ConvertedType = ToType; 2488 return true; 2489 } 2490 2491 // If the left-hand-side is nullptr_t, the right side can be a null 2492 // pointer constant. 2493 if (ToType->isNullPtrType() && 2494 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2495 ConvertedType = ToType; 2496 return true; 2497 } 2498 2499 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 2500 if (!ToTypePtr) 2501 return false; 2502 2503 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 2504 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2505 ConvertedType = ToType; 2506 return true; 2507 } 2508 2509 // Beyond this point, both types need to be pointers 2510 // , including objective-c pointers. 2511 QualType ToPointeeType = ToTypePtr->getPointeeType(); 2512 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && 2513 !getLangOpts().ObjCAutoRefCount) { 2514 ConvertedType = BuildSimilarlyQualifiedPointerType( 2515 FromType->castAs<ObjCObjectPointerType>(), ToPointeeType, ToType, 2516 Context); 2517 return true; 2518 } 2519 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 2520 if (!FromTypePtr) 2521 return false; 2522 2523 QualType FromPointeeType = FromTypePtr->getPointeeType(); 2524 2525 // If the unqualified pointee types are the same, this can't be a 2526 // pointer conversion, so don't do all of the work below. 2527 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 2528 return false; 2529 2530 // An rvalue of type "pointer to cv T," where T is an object type, 2531 // can be converted to an rvalue of type "pointer to cv void" (C++ 2532 // 4.10p2). 2533 if (FromPointeeType->isIncompleteOrObjectType() && 2534 ToPointeeType->isVoidType()) { 2535 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2536 ToPointeeType, 2537 ToType, Context, 2538 /*StripObjCLifetime=*/true); 2539 return true; 2540 } 2541 2542 // MSVC allows implicit function to void* type conversion. 2543 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() && 2544 ToPointeeType->isVoidType()) { 2545 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2546 ToPointeeType, 2547 ToType, Context); 2548 return true; 2549 } 2550 2551 // When we're overloading in C, we allow a special kind of pointer 2552 // conversion for compatible-but-not-identical pointee types. 2553 if (!getLangOpts().CPlusPlus && 2554 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 2555 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2556 ToPointeeType, 2557 ToType, Context); 2558 return true; 2559 } 2560 2561 // C++ [conv.ptr]p3: 2562 // 2563 // An rvalue of type "pointer to cv D," where D is a class type, 2564 // can be converted to an rvalue of type "pointer to cv B," where 2565 // B is a base class (clause 10) of D. If B is an inaccessible 2566 // (clause 11) or ambiguous (10.2) base class of D, a program that 2567 // necessitates this conversion is ill-formed. The result of the 2568 // conversion is a pointer to the base class sub-object of the 2569 // derived class object. The null pointer value is converted to 2570 // the null pointer value of the destination type. 2571 // 2572 // Note that we do not check for ambiguity or inaccessibility 2573 // here. That is handled by CheckPointerConversion. 2574 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() && 2575 ToPointeeType->isRecordType() && 2576 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 2577 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) { 2578 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2579 ToPointeeType, 2580 ToType, Context); 2581 return true; 2582 } 2583 2584 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && 2585 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { 2586 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2587 ToPointeeType, 2588 ToType, Context); 2589 return true; 2590 } 2591 2592 return false; 2593 } 2594 2595 /// Adopt the given qualifiers for the given type. 2596 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ 2597 Qualifiers TQs = T.getQualifiers(); 2598 2599 // Check whether qualifiers already match. 2600 if (TQs == Qs) 2601 return T; 2602 2603 if (Qs.compatiblyIncludes(TQs)) 2604 return Context.getQualifiedType(T, Qs); 2605 2606 return Context.getQualifiedType(T.getUnqualifiedType(), Qs); 2607 } 2608 2609 /// isObjCPointerConversion - Determines whether this is an 2610 /// Objective-C pointer conversion. Subroutine of IsPointerConversion, 2611 /// with the same arguments and return values. 2612 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 2613 QualType& ConvertedType, 2614 bool &IncompatibleObjC) { 2615 if (!getLangOpts().ObjC) 2616 return false; 2617 2618 // The set of qualifiers on the type we're converting from. 2619 Qualifiers FromQualifiers = FromType.getQualifiers(); 2620 2621 // First, we handle all conversions on ObjC object pointer types. 2622 const ObjCObjectPointerType* ToObjCPtr = 2623 ToType->getAs<ObjCObjectPointerType>(); 2624 const ObjCObjectPointerType *FromObjCPtr = 2625 FromType->getAs<ObjCObjectPointerType>(); 2626 2627 if (ToObjCPtr && FromObjCPtr) { 2628 // If the pointee types are the same (ignoring qualifications), 2629 // then this is not a pointer conversion. 2630 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 2631 FromObjCPtr->getPointeeType())) 2632 return false; 2633 2634 // Conversion between Objective-C pointers. 2635 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 2636 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 2637 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 2638 if (getLangOpts().CPlusPlus && LHS && RHS && 2639 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 2640 FromObjCPtr->getPointeeType())) 2641 return false; 2642 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2643 ToObjCPtr->getPointeeType(), 2644 ToType, Context); 2645 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2646 return true; 2647 } 2648 2649 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 2650 // Okay: this is some kind of implicit downcast of Objective-C 2651 // interfaces, which is permitted. However, we're going to 2652 // complain about it. 2653 IncompatibleObjC = true; 2654 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2655 ToObjCPtr->getPointeeType(), 2656 ToType, Context); 2657 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2658 return true; 2659 } 2660 } 2661 // Beyond this point, both types need to be C pointers or block pointers. 2662 QualType ToPointeeType; 2663 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 2664 ToPointeeType = ToCPtr->getPointeeType(); 2665 else if (const BlockPointerType *ToBlockPtr = 2666 ToType->getAs<BlockPointerType>()) { 2667 // Objective C++: We're able to convert from a pointer to any object 2668 // to a block pointer type. 2669 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 2670 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2671 return true; 2672 } 2673 ToPointeeType = ToBlockPtr->getPointeeType(); 2674 } 2675 else if (FromType->getAs<BlockPointerType>() && 2676 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 2677 // Objective C++: We're able to convert from a block pointer type to a 2678 // pointer to any object. 2679 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2680 return true; 2681 } 2682 else 2683 return false; 2684 2685 QualType FromPointeeType; 2686 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 2687 FromPointeeType = FromCPtr->getPointeeType(); 2688 else if (const BlockPointerType *FromBlockPtr = 2689 FromType->getAs<BlockPointerType>()) 2690 FromPointeeType = FromBlockPtr->getPointeeType(); 2691 else 2692 return false; 2693 2694 // If we have pointers to pointers, recursively check whether this 2695 // is an Objective-C conversion. 2696 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 2697 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2698 IncompatibleObjC)) { 2699 // We always complain about this conversion. 2700 IncompatibleObjC = true; 2701 ConvertedType = Context.getPointerType(ConvertedType); 2702 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2703 return true; 2704 } 2705 // Allow conversion of pointee being objective-c pointer to another one; 2706 // as in I* to id. 2707 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 2708 ToPointeeType->getAs<ObjCObjectPointerType>() && 2709 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2710 IncompatibleObjC)) { 2711 2712 ConvertedType = Context.getPointerType(ConvertedType); 2713 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2714 return true; 2715 } 2716 2717 // If we have pointers to functions or blocks, check whether the only 2718 // differences in the argument and result types are in Objective-C 2719 // pointer conversions. If so, we permit the conversion (but 2720 // complain about it). 2721 const FunctionProtoType *FromFunctionType 2722 = FromPointeeType->getAs<FunctionProtoType>(); 2723 const FunctionProtoType *ToFunctionType 2724 = ToPointeeType->getAs<FunctionProtoType>(); 2725 if (FromFunctionType && ToFunctionType) { 2726 // If the function types are exactly the same, this isn't an 2727 // Objective-C pointer conversion. 2728 if (Context.getCanonicalType(FromPointeeType) 2729 == Context.getCanonicalType(ToPointeeType)) 2730 return false; 2731 2732 // Perform the quick checks that will tell us whether these 2733 // function types are obviously different. 2734 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || 2735 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 2736 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals()) 2737 return false; 2738 2739 bool HasObjCConversion = false; 2740 if (Context.getCanonicalType(FromFunctionType->getReturnType()) == 2741 Context.getCanonicalType(ToFunctionType->getReturnType())) { 2742 // Okay, the types match exactly. Nothing to do. 2743 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(), 2744 ToFunctionType->getReturnType(), 2745 ConvertedType, IncompatibleObjC)) { 2746 // Okay, we have an Objective-C pointer conversion. 2747 HasObjCConversion = true; 2748 } else { 2749 // Function types are too different. Abort. 2750 return false; 2751 } 2752 2753 // Check argument types. 2754 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); 2755 ArgIdx != NumArgs; ++ArgIdx) { 2756 QualType FromArgType = FromFunctionType->getParamType(ArgIdx); 2757 QualType ToArgType = ToFunctionType->getParamType(ArgIdx); 2758 if (Context.getCanonicalType(FromArgType) 2759 == Context.getCanonicalType(ToArgType)) { 2760 // Okay, the types match exactly. Nothing to do. 2761 } else if (isObjCPointerConversion(FromArgType, ToArgType, 2762 ConvertedType, IncompatibleObjC)) { 2763 // Okay, we have an Objective-C pointer conversion. 2764 HasObjCConversion = true; 2765 } else { 2766 // Argument types are too different. Abort. 2767 return false; 2768 } 2769 } 2770 2771 if (HasObjCConversion) { 2772 // We had an Objective-C conversion. Allow this pointer 2773 // conversion, but complain about it. 2774 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2775 IncompatibleObjC = true; 2776 return true; 2777 } 2778 } 2779 2780 return false; 2781 } 2782 2783 /// Determine whether this is an Objective-C writeback conversion, 2784 /// used for parameter passing when performing automatic reference counting. 2785 /// 2786 /// \param FromType The type we're converting form. 2787 /// 2788 /// \param ToType The type we're converting to. 2789 /// 2790 /// \param ConvertedType The type that will be produced after applying 2791 /// this conversion. 2792 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, 2793 QualType &ConvertedType) { 2794 if (!getLangOpts().ObjCAutoRefCount || 2795 Context.hasSameUnqualifiedType(FromType, ToType)) 2796 return false; 2797 2798 // Parameter must be a pointer to __autoreleasing (with no other qualifiers). 2799 QualType ToPointee; 2800 if (const PointerType *ToPointer = ToType->getAs<PointerType>()) 2801 ToPointee = ToPointer->getPointeeType(); 2802 else 2803 return false; 2804 2805 Qualifiers ToQuals = ToPointee.getQualifiers(); 2806 if (!ToPointee->isObjCLifetimeType() || 2807 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || 2808 !ToQuals.withoutObjCLifetime().empty()) 2809 return false; 2810 2811 // Argument must be a pointer to __strong to __weak. 2812 QualType FromPointee; 2813 if (const PointerType *FromPointer = FromType->getAs<PointerType>()) 2814 FromPointee = FromPointer->getPointeeType(); 2815 else 2816 return false; 2817 2818 Qualifiers FromQuals = FromPointee.getQualifiers(); 2819 if (!FromPointee->isObjCLifetimeType() || 2820 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && 2821 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) 2822 return false; 2823 2824 // Make sure that we have compatible qualifiers. 2825 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); 2826 if (!ToQuals.compatiblyIncludes(FromQuals)) 2827 return false; 2828 2829 // Remove qualifiers from the pointee type we're converting from; they 2830 // aren't used in the compatibility check belong, and we'll be adding back 2831 // qualifiers (with __autoreleasing) if the compatibility check succeeds. 2832 FromPointee = FromPointee.getUnqualifiedType(); 2833 2834 // The unqualified form of the pointee types must be compatible. 2835 ToPointee = ToPointee.getUnqualifiedType(); 2836 bool IncompatibleObjC; 2837 if (Context.typesAreCompatible(FromPointee, ToPointee)) 2838 FromPointee = ToPointee; 2839 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, 2840 IncompatibleObjC)) 2841 return false; 2842 2843 /// Construct the type we're converting to, which is a pointer to 2844 /// __autoreleasing pointee. 2845 FromPointee = Context.getQualifiedType(FromPointee, FromQuals); 2846 ConvertedType = Context.getPointerType(FromPointee); 2847 return true; 2848 } 2849 2850 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, 2851 QualType& ConvertedType) { 2852 QualType ToPointeeType; 2853 if (const BlockPointerType *ToBlockPtr = 2854 ToType->getAs<BlockPointerType>()) 2855 ToPointeeType = ToBlockPtr->getPointeeType(); 2856 else 2857 return false; 2858 2859 QualType FromPointeeType; 2860 if (const BlockPointerType *FromBlockPtr = 2861 FromType->getAs<BlockPointerType>()) 2862 FromPointeeType = FromBlockPtr->getPointeeType(); 2863 else 2864 return false; 2865 // We have pointer to blocks, check whether the only 2866 // differences in the argument and result types are in Objective-C 2867 // pointer conversions. If so, we permit the conversion. 2868 2869 const FunctionProtoType *FromFunctionType 2870 = FromPointeeType->getAs<FunctionProtoType>(); 2871 const FunctionProtoType *ToFunctionType 2872 = ToPointeeType->getAs<FunctionProtoType>(); 2873 2874 if (!FromFunctionType || !ToFunctionType) 2875 return false; 2876 2877 if (Context.hasSameType(FromPointeeType, ToPointeeType)) 2878 return true; 2879 2880 // Perform the quick checks that will tell us whether these 2881 // function types are obviously different. 2882 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || 2883 FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) 2884 return false; 2885 2886 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); 2887 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); 2888 if (FromEInfo != ToEInfo) 2889 return false; 2890 2891 bool IncompatibleObjC = false; 2892 if (Context.hasSameType(FromFunctionType->getReturnType(), 2893 ToFunctionType->getReturnType())) { 2894 // Okay, the types match exactly. Nothing to do. 2895 } else { 2896 QualType RHS = FromFunctionType->getReturnType(); 2897 QualType LHS = ToFunctionType->getReturnType(); 2898 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && 2899 !RHS.hasQualifiers() && LHS.hasQualifiers()) 2900 LHS = LHS.getUnqualifiedType(); 2901 2902 if (Context.hasSameType(RHS,LHS)) { 2903 // OK exact match. 2904 } else if (isObjCPointerConversion(RHS, LHS, 2905 ConvertedType, IncompatibleObjC)) { 2906 if (IncompatibleObjC) 2907 return false; 2908 // Okay, we have an Objective-C pointer conversion. 2909 } 2910 else 2911 return false; 2912 } 2913 2914 // Check argument types. 2915 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); 2916 ArgIdx != NumArgs; ++ArgIdx) { 2917 IncompatibleObjC = false; 2918 QualType FromArgType = FromFunctionType->getParamType(ArgIdx); 2919 QualType ToArgType = ToFunctionType->getParamType(ArgIdx); 2920 if (Context.hasSameType(FromArgType, ToArgType)) { 2921 // Okay, the types match exactly. Nothing to do. 2922 } else if (isObjCPointerConversion(ToArgType, FromArgType, 2923 ConvertedType, IncompatibleObjC)) { 2924 if (IncompatibleObjC) 2925 return false; 2926 // Okay, we have an Objective-C pointer conversion. 2927 } else 2928 // Argument types are too different. Abort. 2929 return false; 2930 } 2931 2932 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; 2933 bool CanUseToFPT, CanUseFromFPT; 2934 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType, 2935 CanUseToFPT, CanUseFromFPT, 2936 NewParamInfos)) 2937 return false; 2938 2939 ConvertedType = ToType; 2940 return true; 2941 } 2942 2943 enum { 2944 ft_default, 2945 ft_different_class, 2946 ft_parameter_arity, 2947 ft_parameter_mismatch, 2948 ft_return_type, 2949 ft_qualifer_mismatch, 2950 ft_noexcept 2951 }; 2952 2953 /// Attempts to get the FunctionProtoType from a Type. Handles 2954 /// MemberFunctionPointers properly. 2955 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) { 2956 if (auto *FPT = FromType->getAs<FunctionProtoType>()) 2957 return FPT; 2958 2959 if (auto *MPT = FromType->getAs<MemberPointerType>()) 2960 return MPT->getPointeeType()->getAs<FunctionProtoType>(); 2961 2962 return nullptr; 2963 } 2964 2965 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing 2966 /// function types. Catches different number of parameter, mismatch in 2967 /// parameter types, and different return types. 2968 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, 2969 QualType FromType, QualType ToType) { 2970 // If either type is not valid, include no extra info. 2971 if (FromType.isNull() || ToType.isNull()) { 2972 PDiag << ft_default; 2973 return; 2974 } 2975 2976 // Get the function type from the pointers. 2977 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { 2978 const auto *FromMember = FromType->castAs<MemberPointerType>(), 2979 *ToMember = ToType->castAs<MemberPointerType>(); 2980 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) { 2981 PDiag << ft_different_class << QualType(ToMember->getClass(), 0) 2982 << QualType(FromMember->getClass(), 0); 2983 return; 2984 } 2985 FromType = FromMember->getPointeeType(); 2986 ToType = ToMember->getPointeeType(); 2987 } 2988 2989 if (FromType->isPointerType()) 2990 FromType = FromType->getPointeeType(); 2991 if (ToType->isPointerType()) 2992 ToType = ToType->getPointeeType(); 2993 2994 // Remove references. 2995 FromType = FromType.getNonReferenceType(); 2996 ToType = ToType.getNonReferenceType(); 2997 2998 // Don't print extra info for non-specialized template functions. 2999 if (FromType->isInstantiationDependentType() && 3000 !FromType->getAs<TemplateSpecializationType>()) { 3001 PDiag << ft_default; 3002 return; 3003 } 3004 3005 // No extra info for same types. 3006 if (Context.hasSameType(FromType, ToType)) { 3007 PDiag << ft_default; 3008 return; 3009 } 3010 3011 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType), 3012 *ToFunction = tryGetFunctionProtoType(ToType); 3013 3014 // Both types need to be function types. 3015 if (!FromFunction || !ToFunction) { 3016 PDiag << ft_default; 3017 return; 3018 } 3019 3020 if (FromFunction->getNumParams() != ToFunction->getNumParams()) { 3021 PDiag << ft_parameter_arity << ToFunction->getNumParams() 3022 << FromFunction->getNumParams(); 3023 return; 3024 } 3025 3026 // Handle different parameter types. 3027 unsigned ArgPos; 3028 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { 3029 PDiag << ft_parameter_mismatch << ArgPos + 1 3030 << ToFunction->getParamType(ArgPos) 3031 << FromFunction->getParamType(ArgPos); 3032 return; 3033 } 3034 3035 // Handle different return type. 3036 if (!Context.hasSameType(FromFunction->getReturnType(), 3037 ToFunction->getReturnType())) { 3038 PDiag << ft_return_type << ToFunction->getReturnType() 3039 << FromFunction->getReturnType(); 3040 return; 3041 } 3042 3043 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) { 3044 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals() 3045 << FromFunction->getMethodQuals(); 3046 return; 3047 } 3048 3049 // Handle exception specification differences on canonical type (in C++17 3050 // onwards). 3051 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified()) 3052 ->isNothrow() != 3053 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified()) 3054 ->isNothrow()) { 3055 PDiag << ft_noexcept; 3056 return; 3057 } 3058 3059 // Unable to find a difference, so add no extra info. 3060 PDiag << ft_default; 3061 } 3062 3063 /// FunctionParamTypesAreEqual - This routine checks two function proto types 3064 /// for equality of their parameter types. Caller has already checked that 3065 /// they have same number of parameters. If the parameters are different, 3066 /// ArgPos will have the parameter index of the first different parameter. 3067 /// If `Reversed` is true, the parameters of `NewType` will be compared in 3068 /// reverse order. That's useful if one of the functions is being used as a C++20 3069 /// synthesized operator overload with a reversed parameter order. 3070 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, 3071 const FunctionProtoType *NewType, 3072 unsigned *ArgPos, bool Reversed) { 3073 assert(OldType->getNumParams() == NewType->getNumParams() && 3074 "Can't compare parameters of functions with different number of " 3075 "parameters!"); 3076 for (size_t I = 0; I < OldType->getNumParams(); I++) { 3077 // Reverse iterate over the parameters of `OldType` if `Reversed` is true. 3078 size_t J = Reversed ? (OldType->getNumParams() - I - 1) : I; 3079 3080 // Ignore address spaces in pointee type. This is to disallow overloading 3081 // on __ptr32/__ptr64 address spaces. 3082 QualType Old = Context.removePtrSizeAddrSpace(OldType->getParamType(I).getUnqualifiedType()); 3083 QualType New = Context.removePtrSizeAddrSpace(NewType->getParamType(J).getUnqualifiedType()); 3084 3085 if (!Context.hasSameType(Old, New)) { 3086 if (ArgPos) 3087 *ArgPos = I; 3088 return false; 3089 } 3090 } 3091 return true; 3092 } 3093 3094 /// CheckPointerConversion - Check the pointer conversion from the 3095 /// expression From to the type ToType. This routine checks for 3096 /// ambiguous or inaccessible derived-to-base pointer 3097 /// conversions for which IsPointerConversion has already returned 3098 /// true. It returns true and produces a diagnostic if there was an 3099 /// error, or returns false otherwise. 3100 bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 3101 CastKind &Kind, 3102 CXXCastPath& BasePath, 3103 bool IgnoreBaseAccess, 3104 bool Diagnose) { 3105 QualType FromType = From->getType(); 3106 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 3107 3108 Kind = CK_BitCast; 3109 3110 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && 3111 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == 3112 Expr::NPCK_ZeroExpression) { 3113 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) 3114 DiagRuntimeBehavior(From->getExprLoc(), From, 3115 PDiag(diag::warn_impcast_bool_to_null_pointer) 3116 << ToType << From->getSourceRange()); 3117 else if (!isUnevaluatedContext()) 3118 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) 3119 << ToType << From->getSourceRange(); 3120 } 3121 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 3122 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { 3123 QualType FromPointeeType = FromPtrType->getPointeeType(), 3124 ToPointeeType = ToPtrType->getPointeeType(); 3125 3126 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 3127 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 3128 // We must have a derived-to-base conversion. Check an 3129 // ambiguous or inaccessible conversion. 3130 unsigned InaccessibleID = 0; 3131 unsigned AmbiguousID = 0; 3132 if (Diagnose) { 3133 InaccessibleID = diag::err_upcast_to_inaccessible_base; 3134 AmbiguousID = diag::err_ambiguous_derived_to_base_conv; 3135 } 3136 if (CheckDerivedToBaseConversion( 3137 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID, 3138 From->getExprLoc(), From->getSourceRange(), DeclarationName(), 3139 &BasePath, IgnoreBaseAccess)) 3140 return true; 3141 3142 // The conversion was successful. 3143 Kind = CK_DerivedToBase; 3144 } 3145 3146 if (Diagnose && !IsCStyleOrFunctionalCast && 3147 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { 3148 assert(getLangOpts().MSVCCompat && 3149 "this should only be possible with MSVCCompat!"); 3150 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj) 3151 << From->getSourceRange(); 3152 } 3153 } 3154 } else if (const ObjCObjectPointerType *ToPtrType = 3155 ToType->getAs<ObjCObjectPointerType>()) { 3156 if (const ObjCObjectPointerType *FromPtrType = 3157 FromType->getAs<ObjCObjectPointerType>()) { 3158 // Objective-C++ conversions are always okay. 3159 // FIXME: We should have a different class of conversions for the 3160 // Objective-C++ implicit conversions. 3161 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 3162 return false; 3163 } else if (FromType->isBlockPointerType()) { 3164 Kind = CK_BlockPointerToObjCPointerCast; 3165 } else { 3166 Kind = CK_CPointerToObjCPointerCast; 3167 } 3168 } else if (ToType->isBlockPointerType()) { 3169 if (!FromType->isBlockPointerType()) 3170 Kind = CK_AnyPointerToBlockPointerCast; 3171 } 3172 3173 // We shouldn't fall into this case unless it's valid for other 3174 // reasons. 3175 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 3176 Kind = CK_NullToPointer; 3177 3178 return false; 3179 } 3180 3181 /// IsMemberPointerConversion - Determines whether the conversion of the 3182 /// expression From, which has the (possibly adjusted) type FromType, can be 3183 /// converted to the type ToType via a member pointer conversion (C++ 4.11). 3184 /// If so, returns true and places the converted type (that might differ from 3185 /// ToType in its cv-qualifiers at some level) into ConvertedType. 3186 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 3187 QualType ToType, 3188 bool InOverloadResolution, 3189 QualType &ConvertedType) { 3190 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 3191 if (!ToTypePtr) 3192 return false; 3193 3194 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 3195 if (From->isNullPointerConstant(Context, 3196 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 3197 : Expr::NPC_ValueDependentIsNull)) { 3198 ConvertedType = ToType; 3199 return true; 3200 } 3201 3202 // Otherwise, both types have to be member pointers. 3203 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 3204 if (!FromTypePtr) 3205 return false; 3206 3207 // A pointer to member of B can be converted to a pointer to member of D, 3208 // where D is derived from B (C++ 4.11p2). 3209 QualType FromClass(FromTypePtr->getClass(), 0); 3210 QualType ToClass(ToTypePtr->getClass(), 0); 3211 3212 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && 3213 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) { 3214 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 3215 ToClass.getTypePtr()); 3216 return true; 3217 } 3218 3219 return false; 3220 } 3221 3222 /// CheckMemberPointerConversion - Check the member pointer conversion from the 3223 /// expression From to the type ToType. This routine checks for ambiguous or 3224 /// virtual or inaccessible base-to-derived member pointer conversions 3225 /// for which IsMemberPointerConversion has already returned true. It returns 3226 /// true and produces a diagnostic if there was an error, or returns false 3227 /// otherwise. 3228 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 3229 CastKind &Kind, 3230 CXXCastPath &BasePath, 3231 bool IgnoreBaseAccess) { 3232 QualType FromType = From->getType(); 3233 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 3234 if (!FromPtrType) { 3235 // This must be a null pointer to member pointer conversion 3236 assert(From->isNullPointerConstant(Context, 3237 Expr::NPC_ValueDependentIsNull) && 3238 "Expr must be null pointer constant!"); 3239 Kind = CK_NullToMemberPointer; 3240 return false; 3241 } 3242 3243 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 3244 assert(ToPtrType && "No member pointer cast has a target type " 3245 "that is not a member pointer."); 3246 3247 QualType FromClass = QualType(FromPtrType->getClass(), 0); 3248 QualType ToClass = QualType(ToPtrType->getClass(), 0); 3249 3250 // FIXME: What about dependent types? 3251 assert(FromClass->isRecordType() && "Pointer into non-class."); 3252 assert(ToClass->isRecordType() && "Pointer into non-class."); 3253 3254 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3255 /*DetectVirtual=*/true); 3256 bool DerivationOkay = 3257 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths); 3258 assert(DerivationOkay && 3259 "Should not have been called if derivation isn't OK."); 3260 (void)DerivationOkay; 3261 3262 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 3263 getUnqualifiedType())) { 3264 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 3265 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 3266 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 3267 return true; 3268 } 3269 3270 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 3271 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 3272 << FromClass << ToClass << QualType(VBase, 0) 3273 << From->getSourceRange(); 3274 return true; 3275 } 3276 3277 if (!IgnoreBaseAccess) 3278 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 3279 Paths.front(), 3280 diag::err_downcast_from_inaccessible_base); 3281 3282 // Must be a base to derived member conversion. 3283 BuildBasePathArray(Paths, BasePath); 3284 Kind = CK_BaseToDerivedMemberPointer; 3285 return false; 3286 } 3287 3288 /// Determine whether the lifetime conversion between the two given 3289 /// qualifiers sets is nontrivial. 3290 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, 3291 Qualifiers ToQuals) { 3292 // Converting anything to const __unsafe_unretained is trivial. 3293 if (ToQuals.hasConst() && 3294 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) 3295 return false; 3296 3297 return true; 3298 } 3299 3300 /// Perform a single iteration of the loop for checking if a qualification 3301 /// conversion is valid. 3302 /// 3303 /// Specifically, check whether any change between the qualifiers of \p 3304 /// FromType and \p ToType is permissible, given knowledge about whether every 3305 /// outer layer is const-qualified. 3306 static bool isQualificationConversionStep(QualType FromType, QualType ToType, 3307 bool CStyle, bool IsTopLevel, 3308 bool &PreviousToQualsIncludeConst, 3309 bool &ObjCLifetimeConversion) { 3310 Qualifiers FromQuals = FromType.getQualifiers(); 3311 Qualifiers ToQuals = ToType.getQualifiers(); 3312 3313 // Ignore __unaligned qualifier. 3314 FromQuals.removeUnaligned(); 3315 3316 // Objective-C ARC: 3317 // Check Objective-C lifetime conversions. 3318 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) { 3319 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { 3320 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) 3321 ObjCLifetimeConversion = true; 3322 FromQuals.removeObjCLifetime(); 3323 ToQuals.removeObjCLifetime(); 3324 } else { 3325 // Qualification conversions cannot cast between different 3326 // Objective-C lifetime qualifiers. 3327 return false; 3328 } 3329 } 3330 3331 // Allow addition/removal of GC attributes but not changing GC attributes. 3332 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && 3333 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { 3334 FromQuals.removeObjCGCAttr(); 3335 ToQuals.removeObjCGCAttr(); 3336 } 3337 3338 // -- for every j > 0, if const is in cv 1,j then const is in cv 3339 // 2,j, and similarly for volatile. 3340 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) 3341 return false; 3342 3343 // If address spaces mismatch: 3344 // - in top level it is only valid to convert to addr space that is a 3345 // superset in all cases apart from C-style casts where we allow 3346 // conversions between overlapping address spaces. 3347 // - in non-top levels it is not a valid conversion. 3348 if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() && 3349 (!IsTopLevel || 3350 !(ToQuals.isAddressSpaceSupersetOf(FromQuals) || 3351 (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals))))) 3352 return false; 3353 3354 // -- if the cv 1,j and cv 2,j are different, then const is in 3355 // every cv for 0 < k < j. 3356 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() && 3357 !PreviousToQualsIncludeConst) 3358 return false; 3359 3360 // The following wording is from C++20, where the result of the conversion 3361 // is T3, not T2. 3362 // -- if [...] P1,i [...] is "array of unknown bound of", P3,i is 3363 // "array of unknown bound of" 3364 if (FromType->isIncompleteArrayType() && !ToType->isIncompleteArrayType()) 3365 return false; 3366 3367 // -- if the resulting P3,i is different from P1,i [...], then const is 3368 // added to every cv 3_k for 0 < k < i. 3369 if (!CStyle && FromType->isConstantArrayType() && 3370 ToType->isIncompleteArrayType() && !PreviousToQualsIncludeConst) 3371 return false; 3372 3373 // Keep track of whether all prior cv-qualifiers in the "to" type 3374 // include const. 3375 PreviousToQualsIncludeConst = 3376 PreviousToQualsIncludeConst && ToQuals.hasConst(); 3377 return true; 3378 } 3379 3380 /// IsQualificationConversion - Determines whether the conversion from 3381 /// an rvalue of type FromType to ToType is a qualification conversion 3382 /// (C++ 4.4). 3383 /// 3384 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate 3385 /// when the qualification conversion involves a change in the Objective-C 3386 /// object lifetime. 3387 bool 3388 Sema::IsQualificationConversion(QualType FromType, QualType ToType, 3389 bool CStyle, bool &ObjCLifetimeConversion) { 3390 FromType = Context.getCanonicalType(FromType); 3391 ToType = Context.getCanonicalType(ToType); 3392 ObjCLifetimeConversion = false; 3393 3394 // If FromType and ToType are the same type, this is not a 3395 // qualification conversion. 3396 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 3397 return false; 3398 3399 // (C++ 4.4p4): 3400 // A conversion can add cv-qualifiers at levels other than the first 3401 // in multi-level pointers, subject to the following rules: [...] 3402 bool PreviousToQualsIncludeConst = true; 3403 bool UnwrappedAnyPointer = false; 3404 while (Context.UnwrapSimilarTypes(FromType, ToType)) { 3405 if (!isQualificationConversionStep( 3406 FromType, ToType, CStyle, !UnwrappedAnyPointer, 3407 PreviousToQualsIncludeConst, ObjCLifetimeConversion)) 3408 return false; 3409 UnwrappedAnyPointer = true; 3410 } 3411 3412 // We are left with FromType and ToType being the pointee types 3413 // after unwrapping the original FromType and ToType the same number 3414 // of times. If we unwrapped any pointers, and if FromType and 3415 // ToType have the same unqualified type (since we checked 3416 // qualifiers above), then this is a qualification conversion. 3417 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 3418 } 3419 3420 /// - Determine whether this is a conversion from a scalar type to an 3421 /// atomic type. 3422 /// 3423 /// If successful, updates \c SCS's second and third steps in the conversion 3424 /// sequence to finish the conversion. 3425 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, 3426 bool InOverloadResolution, 3427 StandardConversionSequence &SCS, 3428 bool CStyle) { 3429 const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); 3430 if (!ToAtomic) 3431 return false; 3432 3433 StandardConversionSequence InnerSCS; 3434 if (!IsStandardConversion(S, From, ToAtomic->getValueType(), 3435 InOverloadResolution, InnerSCS, 3436 CStyle, /*AllowObjCWritebackConversion=*/false)) 3437 return false; 3438 3439 SCS.Second = InnerSCS.Second; 3440 SCS.setToType(1, InnerSCS.getToType(1)); 3441 SCS.Third = InnerSCS.Third; 3442 SCS.QualificationIncludesObjCLifetime 3443 = InnerSCS.QualificationIncludesObjCLifetime; 3444 SCS.setToType(2, InnerSCS.getToType(2)); 3445 return true; 3446 } 3447 3448 static bool isFirstArgumentCompatibleWithType(ASTContext &Context, 3449 CXXConstructorDecl *Constructor, 3450 QualType Type) { 3451 const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>(); 3452 if (CtorType->getNumParams() > 0) { 3453 QualType FirstArg = CtorType->getParamType(0); 3454 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) 3455 return true; 3456 } 3457 return false; 3458 } 3459 3460 static OverloadingResult 3461 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, 3462 CXXRecordDecl *To, 3463 UserDefinedConversionSequence &User, 3464 OverloadCandidateSet &CandidateSet, 3465 bool AllowExplicit) { 3466 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3467 for (auto *D : S.LookupConstructors(To)) { 3468 auto Info = getConstructorInfo(D); 3469 if (!Info) 3470 continue; 3471 3472 bool Usable = !Info.Constructor->isInvalidDecl() && 3473 S.isInitListConstructor(Info.Constructor); 3474 if (Usable) { 3475 bool SuppressUserConversions = false; 3476 if (Info.ConstructorTmpl) 3477 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, 3478 /*ExplicitArgs*/ nullptr, From, 3479 CandidateSet, SuppressUserConversions, 3480 /*PartialOverloading*/ false, 3481 AllowExplicit); 3482 else 3483 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From, 3484 CandidateSet, SuppressUserConversions, 3485 /*PartialOverloading*/ false, AllowExplicit); 3486 } 3487 } 3488 3489 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3490 3491 OverloadCandidateSet::iterator Best; 3492 switch (auto Result = 3493 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { 3494 case OR_Deleted: 3495 case OR_Success: { 3496 // Record the standard conversion we used and the conversion function. 3497 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 3498 QualType ThisType = Constructor->getThisType(); 3499 // Initializer lists don't have conversions as such. 3500 User.Before.setAsIdentityConversion(); 3501 User.HadMultipleCandidates = HadMultipleCandidates; 3502 User.ConversionFunction = Constructor; 3503 User.FoundConversionFunction = Best->FoundDecl; 3504 User.After.setAsIdentityConversion(); 3505 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); 3506 User.After.setAllToTypes(ToType); 3507 return Result; 3508 } 3509 3510 case OR_No_Viable_Function: 3511 return OR_No_Viable_Function; 3512 case OR_Ambiguous: 3513 return OR_Ambiguous; 3514 } 3515 3516 llvm_unreachable("Invalid OverloadResult!"); 3517 } 3518 3519 /// Determines whether there is a user-defined conversion sequence 3520 /// (C++ [over.ics.user]) that converts expression From to the type 3521 /// ToType. If such a conversion exists, User will contain the 3522 /// user-defined conversion sequence that performs such a conversion 3523 /// and this routine will return true. Otherwise, this routine returns 3524 /// false and User is unspecified. 3525 /// 3526 /// \param AllowExplicit true if the conversion should consider C++0x 3527 /// "explicit" conversion functions as well as non-explicit conversion 3528 /// functions (C++0x [class.conv.fct]p2). 3529 /// 3530 /// \param AllowObjCConversionOnExplicit true if the conversion should 3531 /// allow an extra Objective-C pointer conversion on uses of explicit 3532 /// constructors. Requires \c AllowExplicit to also be set. 3533 static OverloadingResult 3534 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 3535 UserDefinedConversionSequence &User, 3536 OverloadCandidateSet &CandidateSet, 3537 AllowedExplicit AllowExplicit, 3538 bool AllowObjCConversionOnExplicit) { 3539 assert(AllowExplicit != AllowedExplicit::None || 3540 !AllowObjCConversionOnExplicit); 3541 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3542 3543 // Whether we will only visit constructors. 3544 bool ConstructorsOnly = false; 3545 3546 // If the type we are conversion to is a class type, enumerate its 3547 // constructors. 3548 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 3549 // C++ [over.match.ctor]p1: 3550 // When objects of class type are direct-initialized (8.5), or 3551 // copy-initialized from an expression of the same or a 3552 // derived class type (8.5), overload resolution selects the 3553 // constructor. [...] For copy-initialization, the candidate 3554 // functions are all the converting constructors (12.3.1) of 3555 // that class. The argument list is the expression-list within 3556 // the parentheses of the initializer. 3557 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 3558 (From->getType()->getAs<RecordType>() && 3559 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType))) 3560 ConstructorsOnly = true; 3561 3562 if (!S.isCompleteType(From->getExprLoc(), ToType)) { 3563 // We're not going to find any constructors. 3564 } else if (CXXRecordDecl *ToRecordDecl 3565 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 3566 3567 Expr **Args = &From; 3568 unsigned NumArgs = 1; 3569 bool ListInitializing = false; 3570 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { 3571 // But first, see if there is an init-list-constructor that will work. 3572 OverloadingResult Result = IsInitializerListConstructorConversion( 3573 S, From, ToType, ToRecordDecl, User, CandidateSet, 3574 AllowExplicit == AllowedExplicit::All); 3575 if (Result != OR_No_Viable_Function) 3576 return Result; 3577 // Never mind. 3578 CandidateSet.clear( 3579 OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3580 3581 // If we're list-initializing, we pass the individual elements as 3582 // arguments, not the entire list. 3583 Args = InitList->getInits(); 3584 NumArgs = InitList->getNumInits(); 3585 ListInitializing = true; 3586 } 3587 3588 for (auto *D : S.LookupConstructors(ToRecordDecl)) { 3589 auto Info = getConstructorInfo(D); 3590 if (!Info) 3591 continue; 3592 3593 bool Usable = !Info.Constructor->isInvalidDecl(); 3594 if (!ListInitializing) 3595 Usable = Usable && Info.Constructor->isConvertingConstructor( 3596 /*AllowExplicit*/ true); 3597 if (Usable) { 3598 bool SuppressUserConversions = !ConstructorsOnly; 3599 // C++20 [over.best.ics.general]/4.5: 3600 // if the target is the first parameter of a constructor [of class 3601 // X] and the constructor [...] is a candidate by [...] the second 3602 // phase of [over.match.list] when the initializer list has exactly 3603 // one element that is itself an initializer list, [...] and the 3604 // conversion is to X or reference to cv X, user-defined conversion 3605 // sequences are not cnosidered. 3606 if (SuppressUserConversions && ListInitializing) { 3607 SuppressUserConversions = 3608 NumArgs == 1 && isa<InitListExpr>(Args[0]) && 3609 isFirstArgumentCompatibleWithType(S.Context, Info.Constructor, 3610 ToType); 3611 } 3612 if (Info.ConstructorTmpl) 3613 S.AddTemplateOverloadCandidate( 3614 Info.ConstructorTmpl, Info.FoundDecl, 3615 /*ExplicitArgs*/ nullptr, llvm::ArrayRef(Args, NumArgs), 3616 CandidateSet, SuppressUserConversions, 3617 /*PartialOverloading*/ false, 3618 AllowExplicit == AllowedExplicit::All); 3619 else 3620 // Allow one user-defined conversion when user specifies a 3621 // From->ToType conversion via an static cast (c-style, etc). 3622 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 3623 llvm::ArrayRef(Args, NumArgs), CandidateSet, 3624 SuppressUserConversions, 3625 /*PartialOverloading*/ false, 3626 AllowExplicit == AllowedExplicit::All); 3627 } 3628 } 3629 } 3630 } 3631 3632 // Enumerate conversion functions, if we're allowed to. 3633 if (ConstructorsOnly || isa<InitListExpr>(From)) { 3634 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) { 3635 // No conversion functions from incomplete types. 3636 } else if (const RecordType *FromRecordType = 3637 From->getType()->getAs<RecordType>()) { 3638 if (CXXRecordDecl *FromRecordDecl 3639 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 3640 // Add all of the conversion functions as candidates. 3641 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); 3642 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3643 DeclAccessPair FoundDecl = I.getPair(); 3644 NamedDecl *D = FoundDecl.getDecl(); 3645 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 3646 if (isa<UsingShadowDecl>(D)) 3647 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3648 3649 CXXConversionDecl *Conv; 3650 FunctionTemplateDecl *ConvTemplate; 3651 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 3652 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3653 else 3654 Conv = cast<CXXConversionDecl>(D); 3655 3656 if (ConvTemplate) 3657 S.AddTemplateConversionCandidate( 3658 ConvTemplate, FoundDecl, ActingContext, From, ToType, 3659 CandidateSet, AllowObjCConversionOnExplicit, 3660 AllowExplicit != AllowedExplicit::None); 3661 else 3662 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType, 3663 CandidateSet, AllowObjCConversionOnExplicit, 3664 AllowExplicit != AllowedExplicit::None); 3665 } 3666 } 3667 } 3668 3669 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3670 3671 OverloadCandidateSet::iterator Best; 3672 switch (auto Result = 3673 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { 3674 case OR_Success: 3675 case OR_Deleted: 3676 // Record the standard conversion we used and the conversion function. 3677 if (CXXConstructorDecl *Constructor 3678 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 3679 // C++ [over.ics.user]p1: 3680 // If the user-defined conversion is specified by a 3681 // constructor (12.3.1), the initial standard conversion 3682 // sequence converts the source type to the type required by 3683 // the argument of the constructor. 3684 // 3685 QualType ThisType = Constructor->getThisType(); 3686 if (isa<InitListExpr>(From)) { 3687 // Initializer lists don't have conversions as such. 3688 User.Before.setAsIdentityConversion(); 3689 } else { 3690 if (Best->Conversions[0].isEllipsis()) 3691 User.EllipsisConversion = true; 3692 else { 3693 User.Before = Best->Conversions[0].Standard; 3694 User.EllipsisConversion = false; 3695 } 3696 } 3697 User.HadMultipleCandidates = HadMultipleCandidates; 3698 User.ConversionFunction = Constructor; 3699 User.FoundConversionFunction = Best->FoundDecl; 3700 User.After.setAsIdentityConversion(); 3701 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); 3702 User.After.setAllToTypes(ToType); 3703 return Result; 3704 } 3705 if (CXXConversionDecl *Conversion 3706 = dyn_cast<CXXConversionDecl>(Best->Function)) { 3707 // C++ [over.ics.user]p1: 3708 // 3709 // [...] If the user-defined conversion is specified by a 3710 // conversion function (12.3.2), the initial standard 3711 // conversion sequence converts the source type to the 3712 // implicit object parameter of the conversion function. 3713 User.Before = Best->Conversions[0].Standard; 3714 User.HadMultipleCandidates = HadMultipleCandidates; 3715 User.ConversionFunction = Conversion; 3716 User.FoundConversionFunction = Best->FoundDecl; 3717 User.EllipsisConversion = false; 3718 3719 // C++ [over.ics.user]p2: 3720 // The second standard conversion sequence converts the 3721 // result of the user-defined conversion to the target type 3722 // for the sequence. Since an implicit conversion sequence 3723 // is an initialization, the special rules for 3724 // initialization by user-defined conversion apply when 3725 // selecting the best user-defined conversion for a 3726 // user-defined conversion sequence (see 13.3.3 and 3727 // 13.3.3.1). 3728 User.After = Best->FinalConversion; 3729 return Result; 3730 } 3731 llvm_unreachable("Not a constructor or conversion function?"); 3732 3733 case OR_No_Viable_Function: 3734 return OR_No_Viable_Function; 3735 3736 case OR_Ambiguous: 3737 return OR_Ambiguous; 3738 } 3739 3740 llvm_unreachable("Invalid OverloadResult!"); 3741 } 3742 3743 bool 3744 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 3745 ImplicitConversionSequence ICS; 3746 OverloadCandidateSet CandidateSet(From->getExprLoc(), 3747 OverloadCandidateSet::CSK_Normal); 3748 OverloadingResult OvResult = 3749 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 3750 CandidateSet, AllowedExplicit::None, false); 3751 3752 if (!(OvResult == OR_Ambiguous || 3753 (OvResult == OR_No_Viable_Function && !CandidateSet.empty()))) 3754 return false; 3755 3756 auto Cands = CandidateSet.CompleteCandidates( 3757 *this, 3758 OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates, 3759 From); 3760 if (OvResult == OR_Ambiguous) 3761 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition) 3762 << From->getType() << ToType << From->getSourceRange(); 3763 else { // OR_No_Viable_Function && !CandidateSet.empty() 3764 if (!RequireCompleteType(From->getBeginLoc(), ToType, 3765 diag::err_typecheck_nonviable_condition_incomplete, 3766 From->getType(), From->getSourceRange())) 3767 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition) 3768 << false << From->getType() << From->getSourceRange() << ToType; 3769 } 3770 3771 CandidateSet.NoteCandidates( 3772 *this, From, Cands); 3773 return true; 3774 } 3775 3776 // Helper for compareConversionFunctions that gets the FunctionType that the 3777 // conversion-operator return value 'points' to, or nullptr. 3778 static const FunctionType * 3779 getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) { 3780 const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>(); 3781 const PointerType *RetPtrTy = 3782 ConvFuncTy->getReturnType()->getAs<PointerType>(); 3783 3784 if (!RetPtrTy) 3785 return nullptr; 3786 3787 return RetPtrTy->getPointeeType()->getAs<FunctionType>(); 3788 } 3789 3790 /// Compare the user-defined conversion functions or constructors 3791 /// of two user-defined conversion sequences to determine whether any ordering 3792 /// is possible. 3793 static ImplicitConversionSequence::CompareKind 3794 compareConversionFunctions(Sema &S, FunctionDecl *Function1, 3795 FunctionDecl *Function2) { 3796 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1); 3797 CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2); 3798 if (!Conv1 || !Conv2) 3799 return ImplicitConversionSequence::Indistinguishable; 3800 3801 if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda()) 3802 return ImplicitConversionSequence::Indistinguishable; 3803 3804 // Objective-C++: 3805 // If both conversion functions are implicitly-declared conversions from 3806 // a lambda closure type to a function pointer and a block pointer, 3807 // respectively, always prefer the conversion to a function pointer, 3808 // because the function pointer is more lightweight and is more likely 3809 // to keep code working. 3810 if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) { 3811 bool Block1 = Conv1->getConversionType()->isBlockPointerType(); 3812 bool Block2 = Conv2->getConversionType()->isBlockPointerType(); 3813 if (Block1 != Block2) 3814 return Block1 ? ImplicitConversionSequence::Worse 3815 : ImplicitConversionSequence::Better; 3816 } 3817 3818 // In order to support multiple calling conventions for the lambda conversion 3819 // operator (such as when the free and member function calling convention is 3820 // different), prefer the 'free' mechanism, followed by the calling-convention 3821 // of operator(). The latter is in place to support the MSVC-like solution of 3822 // defining ALL of the possible conversions in regards to calling-convention. 3823 const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1); 3824 const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2); 3825 3826 if (Conv1FuncRet && Conv2FuncRet && 3827 Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) { 3828 CallingConv Conv1CC = Conv1FuncRet->getCallConv(); 3829 CallingConv Conv2CC = Conv2FuncRet->getCallConv(); 3830 3831 CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator(); 3832 const auto *CallOpProto = CallOp->getType()->castAs<FunctionProtoType>(); 3833 3834 CallingConv CallOpCC = 3835 CallOp->getType()->castAs<FunctionType>()->getCallConv(); 3836 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 3837 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 3838 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 3839 CallOpProto->isVariadic(), /*IsCXXMethod=*/true); 3840 3841 CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC}; 3842 for (CallingConv CC : PrefOrder) { 3843 if (Conv1CC == CC) 3844 return ImplicitConversionSequence::Better; 3845 if (Conv2CC == CC) 3846 return ImplicitConversionSequence::Worse; 3847 } 3848 } 3849 3850 return ImplicitConversionSequence::Indistinguishable; 3851 } 3852 3853 static bool hasDeprecatedStringLiteralToCharPtrConversion( 3854 const ImplicitConversionSequence &ICS) { 3855 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || 3856 (ICS.isUserDefined() && 3857 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); 3858 } 3859 3860 /// CompareImplicitConversionSequences - Compare two implicit 3861 /// conversion sequences to determine whether one is better than the 3862 /// other or if they are indistinguishable (C++ 13.3.3.2). 3863 static ImplicitConversionSequence::CompareKind 3864 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc, 3865 const ImplicitConversionSequence& ICS1, 3866 const ImplicitConversionSequence& ICS2) 3867 { 3868 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 3869 // conversion sequences (as defined in 13.3.3.1) 3870 // -- a standard conversion sequence (13.3.3.1.1) is a better 3871 // conversion sequence than a user-defined conversion sequence or 3872 // an ellipsis conversion sequence, and 3873 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 3874 // conversion sequence than an ellipsis conversion sequence 3875 // (13.3.3.1.3). 3876 // 3877 // C++0x [over.best.ics]p10: 3878 // For the purpose of ranking implicit conversion sequences as 3879 // described in 13.3.3.2, the ambiguous conversion sequence is 3880 // treated as a user-defined sequence that is indistinguishable 3881 // from any other user-defined conversion sequence. 3882 3883 // String literal to 'char *' conversion has been deprecated in C++03. It has 3884 // been removed from C++11. We still accept this conversion, if it happens at 3885 // the best viable function. Otherwise, this conversion is considered worse 3886 // than ellipsis conversion. Consider this as an extension; this is not in the 3887 // standard. For example: 3888 // 3889 // int &f(...); // #1 3890 // void f(char*); // #2 3891 // void g() { int &r = f("foo"); } 3892 // 3893 // In C++03, we pick #2 as the best viable function. 3894 // In C++11, we pick #1 as the best viable function, because ellipsis 3895 // conversion is better than string-literal to char* conversion (since there 3896 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't 3897 // convert arguments, #2 would be the best viable function in C++11. 3898 // If the best viable function has this conversion, a warning will be issued 3899 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. 3900 3901 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && 3902 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) != 3903 hasDeprecatedStringLiteralToCharPtrConversion(ICS2) && 3904 // Ill-formedness must not differ 3905 ICS1.isBad() == ICS2.isBad()) 3906 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1) 3907 ? ImplicitConversionSequence::Worse 3908 : ImplicitConversionSequence::Better; 3909 3910 if (ICS1.getKindRank() < ICS2.getKindRank()) 3911 return ImplicitConversionSequence::Better; 3912 if (ICS2.getKindRank() < ICS1.getKindRank()) 3913 return ImplicitConversionSequence::Worse; 3914 3915 // The following checks require both conversion sequences to be of 3916 // the same kind. 3917 if (ICS1.getKind() != ICS2.getKind()) 3918 return ImplicitConversionSequence::Indistinguishable; 3919 3920 ImplicitConversionSequence::CompareKind Result = 3921 ImplicitConversionSequence::Indistinguishable; 3922 3923 // Two implicit conversion sequences of the same form are 3924 // indistinguishable conversion sequences unless one of the 3925 // following rules apply: (C++ 13.3.3.2p3): 3926 3927 // List-initialization sequence L1 is a better conversion sequence than 3928 // list-initialization sequence L2 if: 3929 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or, 3930 // if not that, 3931 // — L1 and L2 convert to arrays of the same element type, and either the 3932 // number of elements n_1 initialized by L1 is less than the number of 3933 // elements n_2 initialized by L2, or (C++20) n_1 = n_2 and L2 converts to 3934 // an array of unknown bound and L1 does not, 3935 // even if one of the other rules in this paragraph would otherwise apply. 3936 if (!ICS1.isBad()) { 3937 bool StdInit1 = false, StdInit2 = false; 3938 if (ICS1.hasInitializerListContainerType()) 3939 StdInit1 = S.isStdInitializerList(ICS1.getInitializerListContainerType(), 3940 nullptr); 3941 if (ICS2.hasInitializerListContainerType()) 3942 StdInit2 = S.isStdInitializerList(ICS2.getInitializerListContainerType(), 3943 nullptr); 3944 if (StdInit1 != StdInit2) 3945 return StdInit1 ? ImplicitConversionSequence::Better 3946 : ImplicitConversionSequence::Worse; 3947 3948 if (ICS1.hasInitializerListContainerType() && 3949 ICS2.hasInitializerListContainerType()) 3950 if (auto *CAT1 = S.Context.getAsConstantArrayType( 3951 ICS1.getInitializerListContainerType())) 3952 if (auto *CAT2 = S.Context.getAsConstantArrayType( 3953 ICS2.getInitializerListContainerType())) { 3954 if (S.Context.hasSameUnqualifiedType(CAT1->getElementType(), 3955 CAT2->getElementType())) { 3956 // Both to arrays of the same element type 3957 if (CAT1->getSize() != CAT2->getSize()) 3958 // Different sized, the smaller wins 3959 return CAT1->getSize().ult(CAT2->getSize()) 3960 ? ImplicitConversionSequence::Better 3961 : ImplicitConversionSequence::Worse; 3962 if (ICS1.isInitializerListOfIncompleteArray() != 3963 ICS2.isInitializerListOfIncompleteArray()) 3964 // One is incomplete, it loses 3965 return ICS2.isInitializerListOfIncompleteArray() 3966 ? ImplicitConversionSequence::Better 3967 : ImplicitConversionSequence::Worse; 3968 } 3969 } 3970 } 3971 3972 if (ICS1.isStandard()) 3973 // Standard conversion sequence S1 is a better conversion sequence than 3974 // standard conversion sequence S2 if [...] 3975 Result = CompareStandardConversionSequences(S, Loc, 3976 ICS1.Standard, ICS2.Standard); 3977 else if (ICS1.isUserDefined()) { 3978 // User-defined conversion sequence U1 is a better conversion 3979 // sequence than another user-defined conversion sequence U2 if 3980 // they contain the same user-defined conversion function or 3981 // constructor and if the second standard conversion sequence of 3982 // U1 is better than the second standard conversion sequence of 3983 // U2 (C++ 13.3.3.2p3). 3984 if (ICS1.UserDefined.ConversionFunction == 3985 ICS2.UserDefined.ConversionFunction) 3986 Result = CompareStandardConversionSequences(S, Loc, 3987 ICS1.UserDefined.After, 3988 ICS2.UserDefined.After); 3989 else 3990 Result = compareConversionFunctions(S, 3991 ICS1.UserDefined.ConversionFunction, 3992 ICS2.UserDefined.ConversionFunction); 3993 } 3994 3995 return Result; 3996 } 3997 3998 // Per 13.3.3.2p3, compare the given standard conversion sequences to 3999 // determine if one is a proper subset of the other. 4000 static ImplicitConversionSequence::CompareKind 4001 compareStandardConversionSubsets(ASTContext &Context, 4002 const StandardConversionSequence& SCS1, 4003 const StandardConversionSequence& SCS2) { 4004 ImplicitConversionSequence::CompareKind Result 4005 = ImplicitConversionSequence::Indistinguishable; 4006 4007 // the identity conversion sequence is considered to be a subsequence of 4008 // any non-identity conversion sequence 4009 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 4010 return ImplicitConversionSequence::Better; 4011 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 4012 return ImplicitConversionSequence::Worse; 4013 4014 if (SCS1.Second != SCS2.Second) { 4015 if (SCS1.Second == ICK_Identity) 4016 Result = ImplicitConversionSequence::Better; 4017 else if (SCS2.Second == ICK_Identity) 4018 Result = ImplicitConversionSequence::Worse; 4019 else 4020 return ImplicitConversionSequence::Indistinguishable; 4021 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1))) 4022 return ImplicitConversionSequence::Indistinguishable; 4023 4024 if (SCS1.Third == SCS2.Third) { 4025 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 4026 : ImplicitConversionSequence::Indistinguishable; 4027 } 4028 4029 if (SCS1.Third == ICK_Identity) 4030 return Result == ImplicitConversionSequence::Worse 4031 ? ImplicitConversionSequence::Indistinguishable 4032 : ImplicitConversionSequence::Better; 4033 4034 if (SCS2.Third == ICK_Identity) 4035 return Result == ImplicitConversionSequence::Better 4036 ? ImplicitConversionSequence::Indistinguishable 4037 : ImplicitConversionSequence::Worse; 4038 4039 return ImplicitConversionSequence::Indistinguishable; 4040 } 4041 4042 /// Determine whether one of the given reference bindings is better 4043 /// than the other based on what kind of bindings they are. 4044 static bool 4045 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, 4046 const StandardConversionSequence &SCS2) { 4047 // C++0x [over.ics.rank]p3b4: 4048 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 4049 // implicit object parameter of a non-static member function declared 4050 // without a ref-qualifier, and *either* S1 binds an rvalue reference 4051 // to an rvalue and S2 binds an lvalue reference *or S1 binds an 4052 // lvalue reference to a function lvalue and S2 binds an rvalue 4053 // reference*. 4054 // 4055 // FIXME: Rvalue references. We're going rogue with the above edits, 4056 // because the semantics in the current C++0x working paper (N3225 at the 4057 // time of this writing) break the standard definition of std::forward 4058 // and std::reference_wrapper when dealing with references to functions. 4059 // Proposed wording changes submitted to CWG for consideration. 4060 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || 4061 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) 4062 return false; 4063 4064 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && 4065 SCS2.IsLvalueReference) || 4066 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && 4067 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); 4068 } 4069 4070 enum class FixedEnumPromotion { 4071 None, 4072 ToUnderlyingType, 4073 ToPromotedUnderlyingType 4074 }; 4075 4076 /// Returns kind of fixed enum promotion the \a SCS uses. 4077 static FixedEnumPromotion 4078 getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) { 4079 4080 if (SCS.Second != ICK_Integral_Promotion) 4081 return FixedEnumPromotion::None; 4082 4083 QualType FromType = SCS.getFromType(); 4084 if (!FromType->isEnumeralType()) 4085 return FixedEnumPromotion::None; 4086 4087 EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl(); 4088 if (!Enum->isFixed()) 4089 return FixedEnumPromotion::None; 4090 4091 QualType UnderlyingType = Enum->getIntegerType(); 4092 if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType)) 4093 return FixedEnumPromotion::ToUnderlyingType; 4094 4095 return FixedEnumPromotion::ToPromotedUnderlyingType; 4096 } 4097 4098 /// CompareStandardConversionSequences - Compare two standard 4099 /// conversion sequences to determine whether one is better than the 4100 /// other or if they are indistinguishable (C++ 13.3.3.2p3). 4101 static ImplicitConversionSequence::CompareKind 4102 CompareStandardConversionSequences(Sema &S, SourceLocation Loc, 4103 const StandardConversionSequence& SCS1, 4104 const StandardConversionSequence& SCS2) 4105 { 4106 // Standard conversion sequence S1 is a better conversion sequence 4107 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 4108 4109 // -- S1 is a proper subsequence of S2 (comparing the conversion 4110 // sequences in the canonical form defined by 13.3.3.1.1, 4111 // excluding any Lvalue Transformation; the identity conversion 4112 // sequence is considered to be a subsequence of any 4113 // non-identity conversion sequence) or, if not that, 4114 if (ImplicitConversionSequence::CompareKind CK 4115 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 4116 return CK; 4117 4118 // -- the rank of S1 is better than the rank of S2 (by the rules 4119 // defined below), or, if not that, 4120 ImplicitConversionRank Rank1 = SCS1.getRank(); 4121 ImplicitConversionRank Rank2 = SCS2.getRank(); 4122 if (Rank1 < Rank2) 4123 return ImplicitConversionSequence::Better; 4124 else if (Rank2 < Rank1) 4125 return ImplicitConversionSequence::Worse; 4126 4127 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 4128 // are indistinguishable unless one of the following rules 4129 // applies: 4130 4131 // A conversion that is not a conversion of a pointer, or 4132 // pointer to member, to bool is better than another conversion 4133 // that is such a conversion. 4134 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 4135 return SCS2.isPointerConversionToBool() 4136 ? ImplicitConversionSequence::Better 4137 : ImplicitConversionSequence::Worse; 4138 4139 // C++14 [over.ics.rank]p4b2: 4140 // This is retroactively applied to C++11 by CWG 1601. 4141 // 4142 // A conversion that promotes an enumeration whose underlying type is fixed 4143 // to its underlying type is better than one that promotes to the promoted 4144 // underlying type, if the two are different. 4145 FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1); 4146 FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2); 4147 if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None && 4148 FEP1 != FEP2) 4149 return FEP1 == FixedEnumPromotion::ToUnderlyingType 4150 ? ImplicitConversionSequence::Better 4151 : ImplicitConversionSequence::Worse; 4152 4153 // C++ [over.ics.rank]p4b2: 4154 // 4155 // If class B is derived directly or indirectly from class A, 4156 // conversion of B* to A* is better than conversion of B* to 4157 // void*, and conversion of A* to void* is better than conversion 4158 // of B* to void*. 4159 bool SCS1ConvertsToVoid 4160 = SCS1.isPointerConversionToVoidPointer(S.Context); 4161 bool SCS2ConvertsToVoid 4162 = SCS2.isPointerConversionToVoidPointer(S.Context); 4163 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 4164 // Exactly one of the conversion sequences is a conversion to 4165 // a void pointer; it's the worse conversion. 4166 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 4167 : ImplicitConversionSequence::Worse; 4168 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 4169 // Neither conversion sequence converts to a void pointer; compare 4170 // their derived-to-base conversions. 4171 if (ImplicitConversionSequence::CompareKind DerivedCK 4172 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) 4173 return DerivedCK; 4174 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && 4175 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { 4176 // Both conversion sequences are conversions to void 4177 // pointers. Compare the source types to determine if there's an 4178 // inheritance relationship in their sources. 4179 QualType FromType1 = SCS1.getFromType(); 4180 QualType FromType2 = SCS2.getFromType(); 4181 4182 // Adjust the types we're converting from via the array-to-pointer 4183 // conversion, if we need to. 4184 if (SCS1.First == ICK_Array_To_Pointer) 4185 FromType1 = S.Context.getArrayDecayedType(FromType1); 4186 if (SCS2.First == ICK_Array_To_Pointer) 4187 FromType2 = S.Context.getArrayDecayedType(FromType2); 4188 4189 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); 4190 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); 4191 4192 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4193 return ImplicitConversionSequence::Better; 4194 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4195 return ImplicitConversionSequence::Worse; 4196 4197 // Objective-C++: If one interface is more specific than the 4198 // other, it is the better one. 4199 const ObjCObjectPointerType* FromObjCPtr1 4200 = FromType1->getAs<ObjCObjectPointerType>(); 4201 const ObjCObjectPointerType* FromObjCPtr2 4202 = FromType2->getAs<ObjCObjectPointerType>(); 4203 if (FromObjCPtr1 && FromObjCPtr2) { 4204 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 4205 FromObjCPtr2); 4206 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 4207 FromObjCPtr1); 4208 if (AssignLeft != AssignRight) { 4209 return AssignLeft? ImplicitConversionSequence::Better 4210 : ImplicitConversionSequence::Worse; 4211 } 4212 } 4213 } 4214 4215 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 4216 // Check for a better reference binding based on the kind of bindings. 4217 if (isBetterReferenceBindingKind(SCS1, SCS2)) 4218 return ImplicitConversionSequence::Better; 4219 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 4220 return ImplicitConversionSequence::Worse; 4221 } 4222 4223 // Compare based on qualification conversions (C++ 13.3.3.2p3, 4224 // bullet 3). 4225 if (ImplicitConversionSequence::CompareKind QualCK 4226 = CompareQualificationConversions(S, SCS1, SCS2)) 4227 return QualCK; 4228 4229 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 4230 // C++ [over.ics.rank]p3b4: 4231 // -- S1 and S2 are reference bindings (8.5.3), and the types to 4232 // which the references refer are the same type except for 4233 // top-level cv-qualifiers, and the type to which the reference 4234 // initialized by S2 refers is more cv-qualified than the type 4235 // to which the reference initialized by S1 refers. 4236 QualType T1 = SCS1.getToType(2); 4237 QualType T2 = SCS2.getToType(2); 4238 T1 = S.Context.getCanonicalType(T1); 4239 T2 = S.Context.getCanonicalType(T2); 4240 Qualifiers T1Quals, T2Quals; 4241 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 4242 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 4243 if (UnqualT1 == UnqualT2) { 4244 // Objective-C++ ARC: If the references refer to objects with different 4245 // lifetimes, prefer bindings that don't change lifetime. 4246 if (SCS1.ObjCLifetimeConversionBinding != 4247 SCS2.ObjCLifetimeConversionBinding) { 4248 return SCS1.ObjCLifetimeConversionBinding 4249 ? ImplicitConversionSequence::Worse 4250 : ImplicitConversionSequence::Better; 4251 } 4252 4253 // If the type is an array type, promote the element qualifiers to the 4254 // type for comparison. 4255 if (isa<ArrayType>(T1) && T1Quals) 4256 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 4257 if (isa<ArrayType>(T2) && T2Quals) 4258 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 4259 if (T2.isMoreQualifiedThan(T1)) 4260 return ImplicitConversionSequence::Better; 4261 if (T1.isMoreQualifiedThan(T2)) 4262 return ImplicitConversionSequence::Worse; 4263 } 4264 } 4265 4266 // In Microsoft mode (below 19.28), prefer an integral conversion to a 4267 // floating-to-integral conversion if the integral conversion 4268 // is between types of the same size. 4269 // For example: 4270 // void f(float); 4271 // void f(int); 4272 // int main { 4273 // long a; 4274 // f(a); 4275 // } 4276 // Here, MSVC will call f(int) instead of generating a compile error 4277 // as clang will do in standard mode. 4278 if (S.getLangOpts().MSVCCompat && 4279 !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) && 4280 SCS1.Second == ICK_Integral_Conversion && 4281 SCS2.Second == ICK_Floating_Integral && 4282 S.Context.getTypeSize(SCS1.getFromType()) == 4283 S.Context.getTypeSize(SCS1.getToType(2))) 4284 return ImplicitConversionSequence::Better; 4285 4286 // Prefer a compatible vector conversion over a lax vector conversion 4287 // For example: 4288 // 4289 // typedef float __v4sf __attribute__((__vector_size__(16))); 4290 // void f(vector float); 4291 // void f(vector signed int); 4292 // int main() { 4293 // __v4sf a; 4294 // f(a); 4295 // } 4296 // Here, we'd like to choose f(vector float) and not 4297 // report an ambiguous call error 4298 if (SCS1.Second == ICK_Vector_Conversion && 4299 SCS2.Second == ICK_Vector_Conversion) { 4300 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( 4301 SCS1.getFromType(), SCS1.getToType(2)); 4302 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( 4303 SCS2.getFromType(), SCS2.getToType(2)); 4304 4305 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion) 4306 return SCS1IsCompatibleVectorConversion 4307 ? ImplicitConversionSequence::Better 4308 : ImplicitConversionSequence::Worse; 4309 } 4310 4311 if (SCS1.Second == ICK_SVE_Vector_Conversion && 4312 SCS2.Second == ICK_SVE_Vector_Conversion) { 4313 bool SCS1IsCompatibleSVEVectorConversion = 4314 S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2)); 4315 bool SCS2IsCompatibleSVEVectorConversion = 4316 S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2)); 4317 4318 if (SCS1IsCompatibleSVEVectorConversion != 4319 SCS2IsCompatibleSVEVectorConversion) 4320 return SCS1IsCompatibleSVEVectorConversion 4321 ? ImplicitConversionSequence::Better 4322 : ImplicitConversionSequence::Worse; 4323 } 4324 4325 return ImplicitConversionSequence::Indistinguishable; 4326 } 4327 4328 /// CompareQualificationConversions - Compares two standard conversion 4329 /// sequences to determine whether they can be ranked based on their 4330 /// qualification conversions (C++ 13.3.3.2p3 bullet 3). 4331 static ImplicitConversionSequence::CompareKind 4332 CompareQualificationConversions(Sema &S, 4333 const StandardConversionSequence& SCS1, 4334 const StandardConversionSequence& SCS2) { 4335 // C++ [over.ics.rank]p3: 4336 // -- S1 and S2 differ only in their qualification conversion and 4337 // yield similar types T1 and T2 (C++ 4.4), respectively, [...] 4338 // [C++98] 4339 // [...] and the cv-qualification signature of type T1 is a proper subset 4340 // of the cv-qualification signature of type T2, and S1 is not the 4341 // deprecated string literal array-to-pointer conversion (4.2). 4342 // [C++2a] 4343 // [...] where T1 can be converted to T2 by a qualification conversion. 4344 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 4345 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 4346 return ImplicitConversionSequence::Indistinguishable; 4347 4348 // FIXME: the example in the standard doesn't use a qualification 4349 // conversion (!) 4350 QualType T1 = SCS1.getToType(2); 4351 QualType T2 = SCS2.getToType(2); 4352 T1 = S.Context.getCanonicalType(T1); 4353 T2 = S.Context.getCanonicalType(T2); 4354 assert(!T1->isReferenceType() && !T2->isReferenceType()); 4355 Qualifiers T1Quals, T2Quals; 4356 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 4357 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 4358 4359 // If the types are the same, we won't learn anything by unwrapping 4360 // them. 4361 if (UnqualT1 == UnqualT2) 4362 return ImplicitConversionSequence::Indistinguishable; 4363 4364 // Don't ever prefer a standard conversion sequence that uses the deprecated 4365 // string literal array to pointer conversion. 4366 bool CanPick1 = !SCS1.DeprecatedStringLiteralToCharPtr; 4367 bool CanPick2 = !SCS2.DeprecatedStringLiteralToCharPtr; 4368 4369 // Objective-C++ ARC: 4370 // Prefer qualification conversions not involving a change in lifetime 4371 // to qualification conversions that do change lifetime. 4372 if (SCS1.QualificationIncludesObjCLifetime && 4373 !SCS2.QualificationIncludesObjCLifetime) 4374 CanPick1 = false; 4375 if (SCS2.QualificationIncludesObjCLifetime && 4376 !SCS1.QualificationIncludesObjCLifetime) 4377 CanPick2 = false; 4378 4379 bool ObjCLifetimeConversion; 4380 if (CanPick1 && 4381 !S.IsQualificationConversion(T1, T2, false, ObjCLifetimeConversion)) 4382 CanPick1 = false; 4383 // FIXME: In Objective-C ARC, we can have qualification conversions in both 4384 // directions, so we can't short-cut this second check in general. 4385 if (CanPick2 && 4386 !S.IsQualificationConversion(T2, T1, false, ObjCLifetimeConversion)) 4387 CanPick2 = false; 4388 4389 if (CanPick1 != CanPick2) 4390 return CanPick1 ? ImplicitConversionSequence::Better 4391 : ImplicitConversionSequence::Worse; 4392 return ImplicitConversionSequence::Indistinguishable; 4393 } 4394 4395 /// CompareDerivedToBaseConversions - Compares two standard conversion 4396 /// sequences to determine whether they can be ranked based on their 4397 /// various kinds of derived-to-base conversions (C++ 4398 /// [over.ics.rank]p4b3). As part of these checks, we also look at 4399 /// conversions between Objective-C interface types. 4400 static ImplicitConversionSequence::CompareKind 4401 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, 4402 const StandardConversionSequence& SCS1, 4403 const StandardConversionSequence& SCS2) { 4404 QualType FromType1 = SCS1.getFromType(); 4405 QualType ToType1 = SCS1.getToType(1); 4406 QualType FromType2 = SCS2.getFromType(); 4407 QualType ToType2 = SCS2.getToType(1); 4408 4409 // Adjust the types we're converting from via the array-to-pointer 4410 // conversion, if we need to. 4411 if (SCS1.First == ICK_Array_To_Pointer) 4412 FromType1 = S.Context.getArrayDecayedType(FromType1); 4413 if (SCS2.First == ICK_Array_To_Pointer) 4414 FromType2 = S.Context.getArrayDecayedType(FromType2); 4415 4416 // Canonicalize all of the types. 4417 FromType1 = S.Context.getCanonicalType(FromType1); 4418 ToType1 = S.Context.getCanonicalType(ToType1); 4419 FromType2 = S.Context.getCanonicalType(FromType2); 4420 ToType2 = S.Context.getCanonicalType(ToType2); 4421 4422 // C++ [over.ics.rank]p4b3: 4423 // 4424 // If class B is derived directly or indirectly from class A and 4425 // class C is derived directly or indirectly from B, 4426 // 4427 // Compare based on pointer conversions. 4428 if (SCS1.Second == ICK_Pointer_Conversion && 4429 SCS2.Second == ICK_Pointer_Conversion && 4430 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 4431 FromType1->isPointerType() && FromType2->isPointerType() && 4432 ToType1->isPointerType() && ToType2->isPointerType()) { 4433 QualType FromPointee1 = 4434 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4435 QualType ToPointee1 = 4436 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4437 QualType FromPointee2 = 4438 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4439 QualType ToPointee2 = 4440 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4441 4442 // -- conversion of C* to B* is better than conversion of C* to A*, 4443 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 4444 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) 4445 return ImplicitConversionSequence::Better; 4446 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) 4447 return ImplicitConversionSequence::Worse; 4448 } 4449 4450 // -- conversion of B* to A* is better than conversion of C* to A*, 4451 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 4452 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4453 return ImplicitConversionSequence::Better; 4454 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4455 return ImplicitConversionSequence::Worse; 4456 } 4457 } else if (SCS1.Second == ICK_Pointer_Conversion && 4458 SCS2.Second == ICK_Pointer_Conversion) { 4459 const ObjCObjectPointerType *FromPtr1 4460 = FromType1->getAs<ObjCObjectPointerType>(); 4461 const ObjCObjectPointerType *FromPtr2 4462 = FromType2->getAs<ObjCObjectPointerType>(); 4463 const ObjCObjectPointerType *ToPtr1 4464 = ToType1->getAs<ObjCObjectPointerType>(); 4465 const ObjCObjectPointerType *ToPtr2 4466 = ToType2->getAs<ObjCObjectPointerType>(); 4467 4468 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { 4469 // Apply the same conversion ranking rules for Objective-C pointer types 4470 // that we do for C++ pointers to class types. However, we employ the 4471 // Objective-C pseudo-subtyping relationship used for assignment of 4472 // Objective-C pointer types. 4473 bool FromAssignLeft 4474 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); 4475 bool FromAssignRight 4476 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); 4477 bool ToAssignLeft 4478 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); 4479 bool ToAssignRight 4480 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); 4481 4482 // A conversion to an a non-id object pointer type or qualified 'id' 4483 // type is better than a conversion to 'id'. 4484 if (ToPtr1->isObjCIdType() && 4485 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) 4486 return ImplicitConversionSequence::Worse; 4487 if (ToPtr2->isObjCIdType() && 4488 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) 4489 return ImplicitConversionSequence::Better; 4490 4491 // A conversion to a non-id object pointer type is better than a 4492 // conversion to a qualified 'id' type 4493 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) 4494 return ImplicitConversionSequence::Worse; 4495 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) 4496 return ImplicitConversionSequence::Better; 4497 4498 // A conversion to an a non-Class object pointer type or qualified 'Class' 4499 // type is better than a conversion to 'Class'. 4500 if (ToPtr1->isObjCClassType() && 4501 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) 4502 return ImplicitConversionSequence::Worse; 4503 if (ToPtr2->isObjCClassType() && 4504 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) 4505 return ImplicitConversionSequence::Better; 4506 4507 // A conversion to a non-Class object pointer type is better than a 4508 // conversion to a qualified 'Class' type. 4509 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) 4510 return ImplicitConversionSequence::Worse; 4511 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) 4512 return ImplicitConversionSequence::Better; 4513 4514 // -- "conversion of C* to B* is better than conversion of C* to A*," 4515 if (S.Context.hasSameType(FromType1, FromType2) && 4516 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && 4517 (ToAssignLeft != ToAssignRight)) { 4518 if (FromPtr1->isSpecialized()) { 4519 // "conversion of B<A> * to B * is better than conversion of B * to 4520 // C *. 4521 bool IsFirstSame = 4522 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); 4523 bool IsSecondSame = 4524 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); 4525 if (IsFirstSame) { 4526 if (!IsSecondSame) 4527 return ImplicitConversionSequence::Better; 4528 } else if (IsSecondSame) 4529 return ImplicitConversionSequence::Worse; 4530 } 4531 return ToAssignLeft? ImplicitConversionSequence::Worse 4532 : ImplicitConversionSequence::Better; 4533 } 4534 4535 // -- "conversion of B* to A* is better than conversion of C* to A*," 4536 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && 4537 (FromAssignLeft != FromAssignRight)) 4538 return FromAssignLeft? ImplicitConversionSequence::Better 4539 : ImplicitConversionSequence::Worse; 4540 } 4541 } 4542 4543 // Ranking of member-pointer types. 4544 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 4545 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 4546 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 4547 const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>(); 4548 const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>(); 4549 const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>(); 4550 const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>(); 4551 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 4552 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 4553 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 4554 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 4555 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 4556 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 4557 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 4558 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 4559 // conversion of A::* to B::* is better than conversion of A::* to C::*, 4560 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 4561 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) 4562 return ImplicitConversionSequence::Worse; 4563 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) 4564 return ImplicitConversionSequence::Better; 4565 } 4566 // conversion of B::* to C::* is better than conversion of A::* to C::* 4567 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 4568 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4569 return ImplicitConversionSequence::Better; 4570 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4571 return ImplicitConversionSequence::Worse; 4572 } 4573 } 4574 4575 if (SCS1.Second == ICK_Derived_To_Base) { 4576 // -- conversion of C to B is better than conversion of C to A, 4577 // -- binding of an expression of type C to a reference of type 4578 // B& is better than binding an expression of type C to a 4579 // reference of type A&, 4580 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 4581 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 4582 if (S.IsDerivedFrom(Loc, ToType1, ToType2)) 4583 return ImplicitConversionSequence::Better; 4584 else if (S.IsDerivedFrom(Loc, ToType2, ToType1)) 4585 return ImplicitConversionSequence::Worse; 4586 } 4587 4588 // -- conversion of B to A is better than conversion of C to A. 4589 // -- binding of an expression of type B to a reference of type 4590 // A& is better than binding an expression of type C to a 4591 // reference of type A&, 4592 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 4593 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 4594 if (S.IsDerivedFrom(Loc, FromType2, FromType1)) 4595 return ImplicitConversionSequence::Better; 4596 else if (S.IsDerivedFrom(Loc, FromType1, FromType2)) 4597 return ImplicitConversionSequence::Worse; 4598 } 4599 } 4600 4601 return ImplicitConversionSequence::Indistinguishable; 4602 } 4603 4604 static QualType withoutUnaligned(ASTContext &Ctx, QualType T) { 4605 if (!T.getQualifiers().hasUnaligned()) 4606 return T; 4607 4608 Qualifiers Q; 4609 T = Ctx.getUnqualifiedArrayType(T, Q); 4610 Q.removeUnaligned(); 4611 return Ctx.getQualifiedType(T, Q); 4612 } 4613 4614 /// CompareReferenceRelationship - Compare the two types T1 and T2 to 4615 /// determine whether they are reference-compatible, 4616 /// reference-related, or incompatible, for use in C++ initialization by 4617 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 4618 /// type, and the first type (T1) is the pointee type of the reference 4619 /// type being initialized. 4620 Sema::ReferenceCompareResult 4621 Sema::CompareReferenceRelationship(SourceLocation Loc, 4622 QualType OrigT1, QualType OrigT2, 4623 ReferenceConversions *ConvOut) { 4624 assert(!OrigT1->isReferenceType() && 4625 "T1 must be the pointee type of the reference type"); 4626 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 4627 4628 QualType T1 = Context.getCanonicalType(OrigT1); 4629 QualType T2 = Context.getCanonicalType(OrigT2); 4630 Qualifiers T1Quals, T2Quals; 4631 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 4632 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 4633 4634 ReferenceConversions ConvTmp; 4635 ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp; 4636 Conv = ReferenceConversions(); 4637 4638 // C++2a [dcl.init.ref]p4: 4639 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 4640 // reference-related to "cv2 T2" if T1 is similar to T2, or 4641 // T1 is a base class of T2. 4642 // "cv1 T1" is reference-compatible with "cv2 T2" if 4643 // a prvalue of type "pointer to cv2 T2" can be converted to the type 4644 // "pointer to cv1 T1" via a standard conversion sequence. 4645 4646 // Check for standard conversions we can apply to pointers: derived-to-base 4647 // conversions, ObjC pointer conversions, and function pointer conversions. 4648 // (Qualification conversions are checked last.) 4649 QualType ConvertedT2; 4650 if (UnqualT1 == UnqualT2) { 4651 // Nothing to do. 4652 } else if (isCompleteType(Loc, OrigT2) && 4653 IsDerivedFrom(Loc, UnqualT2, UnqualT1)) 4654 Conv |= ReferenceConversions::DerivedToBase; 4655 else if (UnqualT1->isObjCObjectOrInterfaceType() && 4656 UnqualT2->isObjCObjectOrInterfaceType() && 4657 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 4658 Conv |= ReferenceConversions::ObjC; 4659 else if (UnqualT2->isFunctionType() && 4660 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) { 4661 Conv |= ReferenceConversions::Function; 4662 // No need to check qualifiers; function types don't have them. 4663 return Ref_Compatible; 4664 } 4665 bool ConvertedReferent = Conv != 0; 4666 4667 // We can have a qualification conversion. Compute whether the types are 4668 // similar at the same time. 4669 bool PreviousToQualsIncludeConst = true; 4670 bool TopLevel = true; 4671 do { 4672 if (T1 == T2) 4673 break; 4674 4675 // We will need a qualification conversion. 4676 Conv |= ReferenceConversions::Qualification; 4677 4678 // Track whether we performed a qualification conversion anywhere other 4679 // than the top level. This matters for ranking reference bindings in 4680 // overload resolution. 4681 if (!TopLevel) 4682 Conv |= ReferenceConversions::NestedQualification; 4683 4684 // MS compiler ignores __unaligned qualifier for references; do the same. 4685 T1 = withoutUnaligned(Context, T1); 4686 T2 = withoutUnaligned(Context, T2); 4687 4688 // If we find a qualifier mismatch, the types are not reference-compatible, 4689 // but are still be reference-related if they're similar. 4690 bool ObjCLifetimeConversion = false; 4691 if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel, 4692 PreviousToQualsIncludeConst, 4693 ObjCLifetimeConversion)) 4694 return (ConvertedReferent || Context.hasSimilarType(T1, T2)) 4695 ? Ref_Related 4696 : Ref_Incompatible; 4697 4698 // FIXME: Should we track this for any level other than the first? 4699 if (ObjCLifetimeConversion) 4700 Conv |= ReferenceConversions::ObjCLifetime; 4701 4702 TopLevel = false; 4703 } while (Context.UnwrapSimilarTypes(T1, T2)); 4704 4705 // At this point, if the types are reference-related, we must either have the 4706 // same inner type (ignoring qualifiers), or must have already worked out how 4707 // to convert the referent. 4708 return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2)) 4709 ? Ref_Compatible 4710 : Ref_Incompatible; 4711 } 4712 4713 /// Look for a user-defined conversion to a value reference-compatible 4714 /// with DeclType. Return true if something definite is found. 4715 static bool 4716 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 4717 QualType DeclType, SourceLocation DeclLoc, 4718 Expr *Init, QualType T2, bool AllowRvalues, 4719 bool AllowExplicit) { 4720 assert(T2->isRecordType() && "Can only find conversions of record types."); 4721 auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl()); 4722 4723 OverloadCandidateSet CandidateSet( 4724 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4725 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4726 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4727 NamedDecl *D = *I; 4728 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4729 if (isa<UsingShadowDecl>(D)) 4730 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4731 4732 FunctionTemplateDecl *ConvTemplate 4733 = dyn_cast<FunctionTemplateDecl>(D); 4734 CXXConversionDecl *Conv; 4735 if (ConvTemplate) 4736 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4737 else 4738 Conv = cast<CXXConversionDecl>(D); 4739 4740 if (AllowRvalues) { 4741 // If we are initializing an rvalue reference, don't permit conversion 4742 // functions that return lvalues. 4743 if (!ConvTemplate && DeclType->isRValueReferenceType()) { 4744 const ReferenceType *RefType 4745 = Conv->getConversionType()->getAs<LValueReferenceType>(); 4746 if (RefType && !RefType->getPointeeType()->isFunctionType()) 4747 continue; 4748 } 4749 4750 if (!ConvTemplate && 4751 S.CompareReferenceRelationship( 4752 DeclLoc, 4753 Conv->getConversionType() 4754 .getNonReferenceType() 4755 .getUnqualifiedType(), 4756 DeclType.getNonReferenceType().getUnqualifiedType()) == 4757 Sema::Ref_Incompatible) 4758 continue; 4759 } else { 4760 // If the conversion function doesn't return a reference type, 4761 // it can't be considered for this conversion. An rvalue reference 4762 // is only acceptable if its referencee is a function type. 4763 4764 const ReferenceType *RefType = 4765 Conv->getConversionType()->getAs<ReferenceType>(); 4766 if (!RefType || 4767 (!RefType->isLValueReferenceType() && 4768 !RefType->getPointeeType()->isFunctionType())) 4769 continue; 4770 } 4771 4772 if (ConvTemplate) 4773 S.AddTemplateConversionCandidate( 4774 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet, 4775 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); 4776 else 4777 S.AddConversionCandidate( 4778 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet, 4779 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); 4780 } 4781 4782 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4783 4784 OverloadCandidateSet::iterator Best; 4785 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 4786 case OR_Success: 4787 // C++ [over.ics.ref]p1: 4788 // 4789 // [...] If the parameter binds directly to the result of 4790 // applying a conversion function to the argument 4791 // expression, the implicit conversion sequence is a 4792 // user-defined conversion sequence (13.3.3.1.2), with the 4793 // second standard conversion sequence either an identity 4794 // conversion or, if the conversion function returns an 4795 // entity of a type that is a derived class of the parameter 4796 // type, a derived-to-base Conversion. 4797 if (!Best->FinalConversion.DirectBinding) 4798 return false; 4799 4800 ICS.setUserDefined(); 4801 ICS.UserDefined.Before = Best->Conversions[0].Standard; 4802 ICS.UserDefined.After = Best->FinalConversion; 4803 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; 4804 ICS.UserDefined.ConversionFunction = Best->Function; 4805 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; 4806 ICS.UserDefined.EllipsisConversion = false; 4807 assert(ICS.UserDefined.After.ReferenceBinding && 4808 ICS.UserDefined.After.DirectBinding && 4809 "Expected a direct reference binding!"); 4810 return true; 4811 4812 case OR_Ambiguous: 4813 ICS.setAmbiguous(); 4814 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4815 Cand != CandidateSet.end(); ++Cand) 4816 if (Cand->Best) 4817 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); 4818 return true; 4819 4820 case OR_No_Viable_Function: 4821 case OR_Deleted: 4822 // There was no suitable conversion, or we found a deleted 4823 // conversion; continue with other checks. 4824 return false; 4825 } 4826 4827 llvm_unreachable("Invalid OverloadResult!"); 4828 } 4829 4830 /// Compute an implicit conversion sequence for reference 4831 /// initialization. 4832 static ImplicitConversionSequence 4833 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, 4834 SourceLocation DeclLoc, 4835 bool SuppressUserConversions, 4836 bool AllowExplicit) { 4837 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 4838 4839 // Most paths end in a failed conversion. 4840 ImplicitConversionSequence ICS; 4841 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4842 4843 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType(); 4844 QualType T2 = Init->getType(); 4845 4846 // If the initializer is the address of an overloaded function, try 4847 // to resolve the overloaded function. If all goes well, T2 is the 4848 // type of the resulting function. 4849 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 4850 DeclAccessPair Found; 4851 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 4852 false, Found)) 4853 T2 = Fn->getType(); 4854 } 4855 4856 // Compute some basic properties of the types and the initializer. 4857 bool isRValRef = DeclType->isRValueReferenceType(); 4858 Expr::Classification InitCategory = Init->Classify(S.Context); 4859 4860 Sema::ReferenceConversions RefConv; 4861 Sema::ReferenceCompareResult RefRelationship = 4862 S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv); 4863 4864 auto SetAsReferenceBinding = [&](bool BindsDirectly) { 4865 ICS.setStandard(); 4866 ICS.Standard.First = ICK_Identity; 4867 // FIXME: A reference binding can be a function conversion too. We should 4868 // consider that when ordering reference-to-function bindings. 4869 ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase) 4870 ? ICK_Derived_To_Base 4871 : (RefConv & Sema::ReferenceConversions::ObjC) 4872 ? ICK_Compatible_Conversion 4873 : ICK_Identity; 4874 // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank 4875 // a reference binding that performs a non-top-level qualification 4876 // conversion as a qualification conversion, not as an identity conversion. 4877 ICS.Standard.Third = (RefConv & 4878 Sema::ReferenceConversions::NestedQualification) 4879 ? ICK_Qualification 4880 : ICK_Identity; 4881 ICS.Standard.setFromType(T2); 4882 ICS.Standard.setToType(0, T2); 4883 ICS.Standard.setToType(1, T1); 4884 ICS.Standard.setToType(2, T1); 4885 ICS.Standard.ReferenceBinding = true; 4886 ICS.Standard.DirectBinding = BindsDirectly; 4887 ICS.Standard.IsLvalueReference = !isRValRef; 4888 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 4889 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 4890 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4891 ICS.Standard.ObjCLifetimeConversionBinding = 4892 (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0; 4893 ICS.Standard.CopyConstructor = nullptr; 4894 ICS.Standard.DeprecatedStringLiteralToCharPtr = false; 4895 }; 4896 4897 // C++0x [dcl.init.ref]p5: 4898 // A reference to type "cv1 T1" is initialized by an expression 4899 // of type "cv2 T2" as follows: 4900 4901 // -- If reference is an lvalue reference and the initializer expression 4902 if (!isRValRef) { 4903 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 4904 // reference-compatible with "cv2 T2," or 4905 // 4906 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 4907 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { 4908 // C++ [over.ics.ref]p1: 4909 // When a parameter of reference type binds directly (8.5.3) 4910 // to an argument expression, the implicit conversion sequence 4911 // is the identity conversion, unless the argument expression 4912 // has a type that is a derived class of the parameter type, 4913 // in which case the implicit conversion sequence is a 4914 // derived-to-base Conversion (13.3.3.1). 4915 SetAsReferenceBinding(/*BindsDirectly=*/true); 4916 4917 // Nothing more to do: the inaccessibility/ambiguity check for 4918 // derived-to-base conversions is suppressed when we're 4919 // computing the implicit conversion sequence (C++ 4920 // [over.best.ics]p2). 4921 return ICS; 4922 } 4923 4924 // -- has a class type (i.e., T2 is a class type), where T1 is 4925 // not reference-related to T2, and can be implicitly 4926 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 4927 // is reference-compatible with "cv3 T3" 92) (this 4928 // conversion is selected by enumerating the applicable 4929 // conversion functions (13.3.1.6) and choosing the best 4930 // one through overload resolution (13.3)), 4931 if (!SuppressUserConversions && T2->isRecordType() && 4932 S.isCompleteType(DeclLoc, T2) && 4933 RefRelationship == Sema::Ref_Incompatible) { 4934 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4935 Init, T2, /*AllowRvalues=*/false, 4936 AllowExplicit)) 4937 return ICS; 4938 } 4939 } 4940 4941 // -- Otherwise, the reference shall be an lvalue reference to a 4942 // non-volatile const type (i.e., cv1 shall be const), or the reference 4943 // shall be an rvalue reference. 4944 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) { 4945 if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible) 4946 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); 4947 return ICS; 4948 } 4949 4950 // -- If the initializer expression 4951 // 4952 // -- is an xvalue, class prvalue, array prvalue or function 4953 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or 4954 if (RefRelationship == Sema::Ref_Compatible && 4955 (InitCategory.isXValue() || 4956 (InitCategory.isPRValue() && 4957 (T2->isRecordType() || T2->isArrayType())) || 4958 (InitCategory.isLValue() && T2->isFunctionType()))) { 4959 // In C++11, this is always a direct binding. In C++98/03, it's a direct 4960 // binding unless we're binding to a class prvalue. 4961 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 4962 // allow the use of rvalue references in C++98/03 for the benefit of 4963 // standard library implementors; therefore, we need the xvalue check here. 4964 SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 || 4965 !(InitCategory.isPRValue() || T2->isRecordType())); 4966 return ICS; 4967 } 4968 4969 // -- has a class type (i.e., T2 is a class type), where T1 is not 4970 // reference-related to T2, and can be implicitly converted to 4971 // an xvalue, class prvalue, or function lvalue of type 4972 // "cv3 T3", where "cv1 T1" is reference-compatible with 4973 // "cv3 T3", 4974 // 4975 // then the reference is bound to the value of the initializer 4976 // expression in the first case and to the result of the conversion 4977 // in the second case (or, in either case, to an appropriate base 4978 // class subobject). 4979 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4980 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && 4981 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4982 Init, T2, /*AllowRvalues=*/true, 4983 AllowExplicit)) { 4984 // In the second case, if the reference is an rvalue reference 4985 // and the second standard conversion sequence of the 4986 // user-defined conversion sequence includes an lvalue-to-rvalue 4987 // conversion, the program is ill-formed. 4988 if (ICS.isUserDefined() && isRValRef && 4989 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 4990 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4991 4992 return ICS; 4993 } 4994 4995 // A temporary of function type cannot be created; don't even try. 4996 if (T1->isFunctionType()) 4997 return ICS; 4998 4999 // -- Otherwise, a temporary of type "cv1 T1" is created and 5000 // initialized from the initializer expression using the 5001 // rules for a non-reference copy initialization (8.5). The 5002 // reference is then bound to the temporary. If T1 is 5003 // reference-related to T2, cv1 must be the same 5004 // cv-qualification as, or greater cv-qualification than, 5005 // cv2; otherwise, the program is ill-formed. 5006 if (RefRelationship == Sema::Ref_Related) { 5007 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 5008 // we would be reference-compatible or reference-compatible with 5009 // added qualification. But that wasn't the case, so the reference 5010 // initialization fails. 5011 // 5012 // Note that we only want to check address spaces and cvr-qualifiers here. 5013 // ObjC GC, lifetime and unaligned qualifiers aren't important. 5014 Qualifiers T1Quals = T1.getQualifiers(); 5015 Qualifiers T2Quals = T2.getQualifiers(); 5016 T1Quals.removeObjCGCAttr(); 5017 T1Quals.removeObjCLifetime(); 5018 T2Quals.removeObjCGCAttr(); 5019 T2Quals.removeObjCLifetime(); 5020 // MS compiler ignores __unaligned qualifier for references; do the same. 5021 T1Quals.removeUnaligned(); 5022 T2Quals.removeUnaligned(); 5023 if (!T1Quals.compatiblyIncludes(T2Quals)) 5024 return ICS; 5025 } 5026 5027 // If at least one of the types is a class type, the types are not 5028 // related, and we aren't allowed any user conversions, the 5029 // reference binding fails. This case is important for breaking 5030 // recursion, since TryImplicitConversion below will attempt to 5031 // create a temporary through the use of a copy constructor. 5032 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 5033 (T1->isRecordType() || T2->isRecordType())) 5034 return ICS; 5035 5036 // If T1 is reference-related to T2 and the reference is an rvalue 5037 // reference, the initializer expression shall not be an lvalue. 5038 if (RefRelationship >= Sema::Ref_Related && isRValRef && 5039 Init->Classify(S.Context).isLValue()) { 5040 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType); 5041 return ICS; 5042 } 5043 5044 // C++ [over.ics.ref]p2: 5045 // When a parameter of reference type is not bound directly to 5046 // an argument expression, the conversion sequence is the one 5047 // required to convert the argument expression to the 5048 // underlying type of the reference according to 5049 // 13.3.3.1. Conceptually, this conversion sequence corresponds 5050 // to copy-initializing a temporary of the underlying type with 5051 // the argument expression. Any difference in top-level 5052 // cv-qualification is subsumed by the initialization itself 5053 // and does not constitute a conversion. 5054 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 5055 AllowedExplicit::None, 5056 /*InOverloadResolution=*/false, 5057 /*CStyle=*/false, 5058 /*AllowObjCWritebackConversion=*/false, 5059 /*AllowObjCConversionOnExplicit=*/false); 5060 5061 // Of course, that's still a reference binding. 5062 if (ICS.isStandard()) { 5063 ICS.Standard.ReferenceBinding = true; 5064 ICS.Standard.IsLvalueReference = !isRValRef; 5065 ICS.Standard.BindsToFunctionLvalue = false; 5066 ICS.Standard.BindsToRvalue = true; 5067 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 5068 ICS.Standard.ObjCLifetimeConversionBinding = false; 5069 } else if (ICS.isUserDefined()) { 5070 const ReferenceType *LValRefType = 5071 ICS.UserDefined.ConversionFunction->getReturnType() 5072 ->getAs<LValueReferenceType>(); 5073 5074 // C++ [over.ics.ref]p3: 5075 // Except for an implicit object parameter, for which see 13.3.1, a 5076 // standard conversion sequence cannot be formed if it requires [...] 5077 // binding an rvalue reference to an lvalue other than a function 5078 // lvalue. 5079 // Note that the function case is not possible here. 5080 if (isRValRef && LValRefType) { 5081 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 5082 return ICS; 5083 } 5084 5085 ICS.UserDefined.After.ReferenceBinding = true; 5086 ICS.UserDefined.After.IsLvalueReference = !isRValRef; 5087 ICS.UserDefined.After.BindsToFunctionLvalue = false; 5088 ICS.UserDefined.After.BindsToRvalue = !LValRefType; 5089 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; 5090 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; 5091 } 5092 5093 return ICS; 5094 } 5095 5096 static ImplicitConversionSequence 5097 TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 5098 bool SuppressUserConversions, 5099 bool InOverloadResolution, 5100 bool AllowObjCWritebackConversion, 5101 bool AllowExplicit = false); 5102 5103 /// TryListConversion - Try to copy-initialize a value of type ToType from the 5104 /// initializer list From. 5105 static ImplicitConversionSequence 5106 TryListConversion(Sema &S, InitListExpr *From, QualType ToType, 5107 bool SuppressUserConversions, 5108 bool InOverloadResolution, 5109 bool AllowObjCWritebackConversion) { 5110 // C++11 [over.ics.list]p1: 5111 // When an argument is an initializer list, it is not an expression and 5112 // special rules apply for converting it to a parameter type. 5113 5114 ImplicitConversionSequence Result; 5115 Result.setBad(BadConversionSequence::no_conversion, From, ToType); 5116 5117 // We need a complete type for what follows. With one C++20 exception, 5118 // incomplete types can never be initialized from init lists. 5119 QualType InitTy = ToType; 5120 const ArrayType *AT = S.Context.getAsArrayType(ToType); 5121 if (AT && S.getLangOpts().CPlusPlus20) 5122 if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) 5123 // C++20 allows list initialization of an incomplete array type. 5124 InitTy = IAT->getElementType(); 5125 if (!S.isCompleteType(From->getBeginLoc(), InitTy)) 5126 return Result; 5127 5128 // Per DR1467: 5129 // If the parameter type is a class X and the initializer list has a single 5130 // element of type cv U, where U is X or a class derived from X, the 5131 // implicit conversion sequence is the one required to convert the element 5132 // to the parameter type. 5133 // 5134 // Otherwise, if the parameter type is a character array [... ] 5135 // and the initializer list has a single element that is an 5136 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the 5137 // implicit conversion sequence is the identity conversion. 5138 if (From->getNumInits() == 1) { 5139 if (ToType->isRecordType()) { 5140 QualType InitType = From->getInit(0)->getType(); 5141 if (S.Context.hasSameUnqualifiedType(InitType, ToType) || 5142 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType)) 5143 return TryCopyInitialization(S, From->getInit(0), ToType, 5144 SuppressUserConversions, 5145 InOverloadResolution, 5146 AllowObjCWritebackConversion); 5147 } 5148 5149 if (AT && S.IsStringInit(From->getInit(0), AT)) { 5150 InitializedEntity Entity = 5151 InitializedEntity::InitializeParameter(S.Context, ToType, 5152 /*Consumed=*/false); 5153 if (S.CanPerformCopyInitialization(Entity, From)) { 5154 Result.setStandard(); 5155 Result.Standard.setAsIdentityConversion(); 5156 Result.Standard.setFromType(ToType); 5157 Result.Standard.setAllToTypes(ToType); 5158 return Result; 5159 } 5160 } 5161 } 5162 5163 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). 5164 // C++11 [over.ics.list]p2: 5165 // If the parameter type is std::initializer_list<X> or "array of X" and 5166 // all the elements can be implicitly converted to X, the implicit 5167 // conversion sequence is the worst conversion necessary to convert an 5168 // element of the list to X. 5169 // 5170 // C++14 [over.ics.list]p3: 5171 // Otherwise, if the parameter type is "array of N X", if the initializer 5172 // list has exactly N elements or if it has fewer than N elements and X is 5173 // default-constructible, and if all the elements of the initializer list 5174 // can be implicitly converted to X, the implicit conversion sequence is 5175 // the worst conversion necessary to convert an element of the list to X. 5176 if (AT || S.isStdInitializerList(ToType, &InitTy)) { 5177 unsigned e = From->getNumInits(); 5178 ImplicitConversionSequence DfltElt; 5179 DfltElt.setBad(BadConversionSequence::no_conversion, QualType(), 5180 QualType()); 5181 QualType ContTy = ToType; 5182 bool IsUnbounded = false; 5183 if (AT) { 5184 InitTy = AT->getElementType(); 5185 if (ConstantArrayType const *CT = dyn_cast<ConstantArrayType>(AT)) { 5186 if (CT->getSize().ult(e)) { 5187 // Too many inits, fatally bad 5188 Result.setBad(BadConversionSequence::too_many_initializers, From, 5189 ToType); 5190 Result.setInitializerListContainerType(ContTy, IsUnbounded); 5191 return Result; 5192 } 5193 if (CT->getSize().ugt(e)) { 5194 // Need an init from empty {}, is there one? 5195 InitListExpr EmptyList(S.Context, From->getEndLoc(), std::nullopt, 5196 From->getEndLoc()); 5197 EmptyList.setType(S.Context.VoidTy); 5198 DfltElt = TryListConversion( 5199 S, &EmptyList, InitTy, SuppressUserConversions, 5200 InOverloadResolution, AllowObjCWritebackConversion); 5201 if (DfltElt.isBad()) { 5202 // No {} init, fatally bad 5203 Result.setBad(BadConversionSequence::too_few_initializers, From, 5204 ToType); 5205 Result.setInitializerListContainerType(ContTy, IsUnbounded); 5206 return Result; 5207 } 5208 } 5209 } else { 5210 assert(isa<IncompleteArrayType>(AT) && "Expected incomplete array"); 5211 IsUnbounded = true; 5212 if (!e) { 5213 // Cannot convert to zero-sized. 5214 Result.setBad(BadConversionSequence::too_few_initializers, From, 5215 ToType); 5216 Result.setInitializerListContainerType(ContTy, IsUnbounded); 5217 return Result; 5218 } 5219 llvm::APInt Size(S.Context.getTypeSize(S.Context.getSizeType()), e); 5220 ContTy = S.Context.getConstantArrayType(InitTy, Size, nullptr, 5221 ArrayType::Normal, 0); 5222 } 5223 } 5224 5225 Result.setStandard(); 5226 Result.Standard.setAsIdentityConversion(); 5227 Result.Standard.setFromType(InitTy); 5228 Result.Standard.setAllToTypes(InitTy); 5229 for (unsigned i = 0; i < e; ++i) { 5230 Expr *Init = From->getInit(i); 5231 ImplicitConversionSequence ICS = TryCopyInitialization( 5232 S, Init, InitTy, SuppressUserConversions, InOverloadResolution, 5233 AllowObjCWritebackConversion); 5234 5235 // Keep the worse conversion seen so far. 5236 // FIXME: Sequences are not totally ordered, so 'worse' can be 5237 // ambiguous. CWG has been informed. 5238 if (CompareImplicitConversionSequences(S, From->getBeginLoc(), ICS, 5239 Result) == 5240 ImplicitConversionSequence::Worse) { 5241 Result = ICS; 5242 // Bail as soon as we find something unconvertible. 5243 if (Result.isBad()) { 5244 Result.setInitializerListContainerType(ContTy, IsUnbounded); 5245 return Result; 5246 } 5247 } 5248 } 5249 5250 // If we needed any implicit {} initialization, compare that now. 5251 // over.ics.list/6 indicates we should compare that conversion. Again CWG 5252 // has been informed that this might not be the best thing. 5253 if (!DfltElt.isBad() && CompareImplicitConversionSequences( 5254 S, From->getEndLoc(), DfltElt, Result) == 5255 ImplicitConversionSequence::Worse) 5256 Result = DfltElt; 5257 // Record the type being initialized so that we may compare sequences 5258 Result.setInitializerListContainerType(ContTy, IsUnbounded); 5259 return Result; 5260 } 5261 5262 // C++14 [over.ics.list]p4: 5263 // C++11 [over.ics.list]p3: 5264 // Otherwise, if the parameter is a non-aggregate class X and overload 5265 // resolution chooses a single best constructor [...] the implicit 5266 // conversion sequence is a user-defined conversion sequence. If multiple 5267 // constructors are viable but none is better than the others, the 5268 // implicit conversion sequence is a user-defined conversion sequence. 5269 if (ToType->isRecordType() && !ToType->isAggregateType()) { 5270 // This function can deal with initializer lists. 5271 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 5272 AllowedExplicit::None, 5273 InOverloadResolution, /*CStyle=*/false, 5274 AllowObjCWritebackConversion, 5275 /*AllowObjCConversionOnExplicit=*/false); 5276 } 5277 5278 // C++14 [over.ics.list]p5: 5279 // C++11 [over.ics.list]p4: 5280 // Otherwise, if the parameter has an aggregate type which can be 5281 // initialized from the initializer list [...] the implicit conversion 5282 // sequence is a user-defined conversion sequence. 5283 if (ToType->isAggregateType()) { 5284 // Type is an aggregate, argument is an init list. At this point it comes 5285 // down to checking whether the initialization works. 5286 // FIXME: Find out whether this parameter is consumed or not. 5287 InitializedEntity Entity = 5288 InitializedEntity::InitializeParameter(S.Context, ToType, 5289 /*Consumed=*/false); 5290 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity, 5291 From)) { 5292 Result.setUserDefined(); 5293 Result.UserDefined.Before.setAsIdentityConversion(); 5294 // Initializer lists don't have a type. 5295 Result.UserDefined.Before.setFromType(QualType()); 5296 Result.UserDefined.Before.setAllToTypes(QualType()); 5297 5298 Result.UserDefined.After.setAsIdentityConversion(); 5299 Result.UserDefined.After.setFromType(ToType); 5300 Result.UserDefined.After.setAllToTypes(ToType); 5301 Result.UserDefined.ConversionFunction = nullptr; 5302 } 5303 return Result; 5304 } 5305 5306 // C++14 [over.ics.list]p6: 5307 // C++11 [over.ics.list]p5: 5308 // Otherwise, if the parameter is a reference, see 13.3.3.1.4. 5309 if (ToType->isReferenceType()) { 5310 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't 5311 // mention initializer lists in any way. So we go by what list- 5312 // initialization would do and try to extrapolate from that. 5313 5314 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType(); 5315 5316 // If the initializer list has a single element that is reference-related 5317 // to the parameter type, we initialize the reference from that. 5318 if (From->getNumInits() == 1) { 5319 Expr *Init = From->getInit(0); 5320 5321 QualType T2 = Init->getType(); 5322 5323 // If the initializer is the address of an overloaded function, try 5324 // to resolve the overloaded function. If all goes well, T2 is the 5325 // type of the resulting function. 5326 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 5327 DeclAccessPair Found; 5328 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( 5329 Init, ToType, false, Found)) 5330 T2 = Fn->getType(); 5331 } 5332 5333 // Compute some basic properties of the types and the initializer. 5334 Sema::ReferenceCompareResult RefRelationship = 5335 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2); 5336 5337 if (RefRelationship >= Sema::Ref_Related) { 5338 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(), 5339 SuppressUserConversions, 5340 /*AllowExplicit=*/false); 5341 } 5342 } 5343 5344 // Otherwise, we bind the reference to a temporary created from the 5345 // initializer list. 5346 Result = TryListConversion(S, From, T1, SuppressUserConversions, 5347 InOverloadResolution, 5348 AllowObjCWritebackConversion); 5349 if (Result.isFailure()) 5350 return Result; 5351 assert(!Result.isEllipsis() && 5352 "Sub-initialization cannot result in ellipsis conversion."); 5353 5354 // Can we even bind to a temporary? 5355 if (ToType->isRValueReferenceType() || 5356 (T1.isConstQualified() && !T1.isVolatileQualified())) { 5357 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : 5358 Result.UserDefined.After; 5359 SCS.ReferenceBinding = true; 5360 SCS.IsLvalueReference = ToType->isLValueReferenceType(); 5361 SCS.BindsToRvalue = true; 5362 SCS.BindsToFunctionLvalue = false; 5363 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; 5364 SCS.ObjCLifetimeConversionBinding = false; 5365 } else 5366 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, 5367 From, ToType); 5368 return Result; 5369 } 5370 5371 // C++14 [over.ics.list]p7: 5372 // C++11 [over.ics.list]p6: 5373 // Otherwise, if the parameter type is not a class: 5374 if (!ToType->isRecordType()) { 5375 // - if the initializer list has one element that is not itself an 5376 // initializer list, the implicit conversion sequence is the one 5377 // required to convert the element to the parameter type. 5378 unsigned NumInits = From->getNumInits(); 5379 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0))) 5380 Result = TryCopyInitialization(S, From->getInit(0), ToType, 5381 SuppressUserConversions, 5382 InOverloadResolution, 5383 AllowObjCWritebackConversion); 5384 // - if the initializer list has no elements, the implicit conversion 5385 // sequence is the identity conversion. 5386 else if (NumInits == 0) { 5387 Result.setStandard(); 5388 Result.Standard.setAsIdentityConversion(); 5389 Result.Standard.setFromType(ToType); 5390 Result.Standard.setAllToTypes(ToType); 5391 } 5392 return Result; 5393 } 5394 5395 // C++14 [over.ics.list]p8: 5396 // C++11 [over.ics.list]p7: 5397 // In all cases other than those enumerated above, no conversion is possible 5398 return Result; 5399 } 5400 5401 /// TryCopyInitialization - Try to copy-initialize a value of type 5402 /// ToType from the expression From. Return the implicit conversion 5403 /// sequence required to pass this argument, which may be a bad 5404 /// conversion sequence (meaning that the argument cannot be passed to 5405 /// a parameter of this type). If @p SuppressUserConversions, then we 5406 /// do not permit any user-defined conversion sequences. 5407 static ImplicitConversionSequence 5408 TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 5409 bool SuppressUserConversions, 5410 bool InOverloadResolution, 5411 bool AllowObjCWritebackConversion, 5412 bool AllowExplicit) { 5413 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) 5414 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, 5415 InOverloadResolution,AllowObjCWritebackConversion); 5416 5417 if (ToType->isReferenceType()) 5418 return TryReferenceInit(S, From, ToType, 5419 /*FIXME:*/ From->getBeginLoc(), 5420 SuppressUserConversions, AllowExplicit); 5421 5422 return TryImplicitConversion(S, From, ToType, 5423 SuppressUserConversions, 5424 AllowedExplicit::None, 5425 InOverloadResolution, 5426 /*CStyle=*/false, 5427 AllowObjCWritebackConversion, 5428 /*AllowObjCConversionOnExplicit=*/false); 5429 } 5430 5431 static bool TryCopyInitialization(const CanQualType FromQTy, 5432 const CanQualType ToQTy, 5433 Sema &S, 5434 SourceLocation Loc, 5435 ExprValueKind FromVK) { 5436 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); 5437 ImplicitConversionSequence ICS = 5438 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); 5439 5440 return !ICS.isBad(); 5441 } 5442 5443 /// TryObjectArgumentInitialization - Try to initialize the object 5444 /// parameter of the given member function (@c Method) from the 5445 /// expression @p From. 5446 static ImplicitConversionSequence 5447 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType, 5448 Expr::Classification FromClassification, 5449 CXXMethodDecl *Method, 5450 CXXRecordDecl *ActingContext) { 5451 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 5452 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 5453 // const volatile object. 5454 Qualifiers Quals = Method->getMethodQualifiers(); 5455 if (isa<CXXDestructorDecl>(Method)) { 5456 Quals.addConst(); 5457 Quals.addVolatile(); 5458 } 5459 5460 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals); 5461 5462 // Set up the conversion sequence as a "bad" conversion, to allow us 5463 // to exit early. 5464 ImplicitConversionSequence ICS; 5465 5466 // We need to have an object of class type. 5467 if (const PointerType *PT = FromType->getAs<PointerType>()) { 5468 FromType = PT->getPointeeType(); 5469 5470 // When we had a pointer, it's implicitly dereferenced, so we 5471 // better have an lvalue. 5472 assert(FromClassification.isLValue()); 5473 } 5474 5475 assert(FromType->isRecordType()); 5476 5477 // C++0x [over.match.funcs]p4: 5478 // For non-static member functions, the type of the implicit object 5479 // parameter is 5480 // 5481 // - "lvalue reference to cv X" for functions declared without a 5482 // ref-qualifier or with the & ref-qualifier 5483 // - "rvalue reference to cv X" for functions declared with the && 5484 // ref-qualifier 5485 // 5486 // where X is the class of which the function is a member and cv is the 5487 // cv-qualification on the member function declaration. 5488 // 5489 // However, when finding an implicit conversion sequence for the argument, we 5490 // are not allowed to perform user-defined conversions 5491 // (C++ [over.match.funcs]p5). We perform a simplified version of 5492 // reference binding here, that allows class rvalues to bind to 5493 // non-constant references. 5494 5495 // First check the qualifiers. 5496 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 5497 if (ImplicitParamType.getCVRQualifiers() 5498 != FromTypeCanon.getLocalCVRQualifiers() && 5499 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 5500 ICS.setBad(BadConversionSequence::bad_qualifiers, 5501 FromType, ImplicitParamType); 5502 return ICS; 5503 } 5504 5505 if (FromTypeCanon.hasAddressSpace()) { 5506 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers(); 5507 Qualifiers QualsFromType = FromTypeCanon.getQualifiers(); 5508 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) { 5509 ICS.setBad(BadConversionSequence::bad_qualifiers, 5510 FromType, ImplicitParamType); 5511 return ICS; 5512 } 5513 } 5514 5515 // Check that we have either the same type or a derived type. It 5516 // affects the conversion rank. 5517 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 5518 ImplicitConversionKind SecondKind; 5519 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 5520 SecondKind = ICK_Identity; 5521 } else if (S.IsDerivedFrom(Loc, FromType, ClassType)) 5522 SecondKind = ICK_Derived_To_Base; 5523 else { 5524 ICS.setBad(BadConversionSequence::unrelated_class, 5525 FromType, ImplicitParamType); 5526 return ICS; 5527 } 5528 5529 // Check the ref-qualifier. 5530 switch (Method->getRefQualifier()) { 5531 case RQ_None: 5532 // Do nothing; we don't care about lvalueness or rvalueness. 5533 break; 5534 5535 case RQ_LValue: 5536 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) { 5537 // non-const lvalue reference cannot bind to an rvalue 5538 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 5539 ImplicitParamType); 5540 return ICS; 5541 } 5542 break; 5543 5544 case RQ_RValue: 5545 if (!FromClassification.isRValue()) { 5546 // rvalue reference cannot bind to an lvalue 5547 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 5548 ImplicitParamType); 5549 return ICS; 5550 } 5551 break; 5552 } 5553 5554 // Success. Mark this as a reference binding. 5555 ICS.setStandard(); 5556 ICS.Standard.setAsIdentityConversion(); 5557 ICS.Standard.Second = SecondKind; 5558 ICS.Standard.setFromType(FromType); 5559 ICS.Standard.setAllToTypes(ImplicitParamType); 5560 ICS.Standard.ReferenceBinding = true; 5561 ICS.Standard.DirectBinding = true; 5562 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 5563 ICS.Standard.BindsToFunctionLvalue = false; 5564 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 5565 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 5566 = (Method->getRefQualifier() == RQ_None); 5567 return ICS; 5568 } 5569 5570 /// PerformObjectArgumentInitialization - Perform initialization of 5571 /// the implicit object parameter for the given Method with the given 5572 /// expression. 5573 ExprResult 5574 Sema::PerformObjectArgumentInitialization(Expr *From, 5575 NestedNameSpecifier *Qualifier, 5576 NamedDecl *FoundDecl, 5577 CXXMethodDecl *Method) { 5578 QualType FromRecordType, DestType; 5579 QualType ImplicitParamRecordType = 5580 Method->getThisType()->castAs<PointerType>()->getPointeeType(); 5581 5582 Expr::Classification FromClassification; 5583 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 5584 FromRecordType = PT->getPointeeType(); 5585 DestType = Method->getThisType(); 5586 FromClassification = Expr::Classification::makeSimpleLValue(); 5587 } else { 5588 FromRecordType = From->getType(); 5589 DestType = ImplicitParamRecordType; 5590 FromClassification = From->Classify(Context); 5591 5592 // When performing member access on a prvalue, materialize a temporary. 5593 if (From->isPRValue()) { 5594 From = CreateMaterializeTemporaryExpr(FromRecordType, From, 5595 Method->getRefQualifier() != 5596 RefQualifierKind::RQ_RValue); 5597 } 5598 } 5599 5600 // Note that we always use the true parent context when performing 5601 // the actual argument initialization. 5602 ImplicitConversionSequence ICS = TryObjectArgumentInitialization( 5603 *this, From->getBeginLoc(), From->getType(), FromClassification, Method, 5604 Method->getParent()); 5605 if (ICS.isBad()) { 5606 switch (ICS.Bad.Kind) { 5607 case BadConversionSequence::bad_qualifiers: { 5608 Qualifiers FromQs = FromRecordType.getQualifiers(); 5609 Qualifiers ToQs = DestType.getQualifiers(); 5610 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 5611 if (CVR) { 5612 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr) 5613 << Method->getDeclName() << FromRecordType << (CVR - 1) 5614 << From->getSourceRange(); 5615 Diag(Method->getLocation(), diag::note_previous_decl) 5616 << Method->getDeclName(); 5617 return ExprError(); 5618 } 5619 break; 5620 } 5621 5622 case BadConversionSequence::lvalue_ref_to_rvalue: 5623 case BadConversionSequence::rvalue_ref_to_lvalue: { 5624 bool IsRValueQualified = 5625 Method->getRefQualifier() == RefQualifierKind::RQ_RValue; 5626 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref) 5627 << Method->getDeclName() << FromClassification.isRValue() 5628 << IsRValueQualified; 5629 Diag(Method->getLocation(), diag::note_previous_decl) 5630 << Method->getDeclName(); 5631 return ExprError(); 5632 } 5633 5634 case BadConversionSequence::no_conversion: 5635 case BadConversionSequence::unrelated_class: 5636 break; 5637 5638 case BadConversionSequence::too_few_initializers: 5639 case BadConversionSequence::too_many_initializers: 5640 llvm_unreachable("Lists are not objects"); 5641 } 5642 5643 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type) 5644 << ImplicitParamRecordType << FromRecordType 5645 << From->getSourceRange(); 5646 } 5647 5648 if (ICS.Standard.Second == ICK_Derived_To_Base) { 5649 ExprResult FromRes = 5650 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 5651 if (FromRes.isInvalid()) 5652 return ExprError(); 5653 From = FromRes.get(); 5654 } 5655 5656 if (!Context.hasSameType(From->getType(), DestType)) { 5657 CastKind CK; 5658 QualType PteeTy = DestType->getPointeeType(); 5659 LangAS DestAS = 5660 PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace(); 5661 if (FromRecordType.getAddressSpace() != DestAS) 5662 CK = CK_AddressSpaceConversion; 5663 else 5664 CK = CK_NoOp; 5665 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get(); 5666 } 5667 return From; 5668 } 5669 5670 /// TryContextuallyConvertToBool - Attempt to contextually convert the 5671 /// expression From to bool (C++0x [conv]p3). 5672 static ImplicitConversionSequence 5673 TryContextuallyConvertToBool(Sema &S, Expr *From) { 5674 // C++ [dcl.init]/17.8: 5675 // - Otherwise, if the initialization is direct-initialization, the source 5676 // type is std::nullptr_t, and the destination type is bool, the initial 5677 // value of the object being initialized is false. 5678 if (From->getType()->isNullPtrType()) 5679 return ImplicitConversionSequence::getNullptrToBool(From->getType(), 5680 S.Context.BoolTy, 5681 From->isGLValue()); 5682 5683 // All other direct-initialization of bool is equivalent to an implicit 5684 // conversion to bool in which explicit conversions are permitted. 5685 return TryImplicitConversion(S, From, S.Context.BoolTy, 5686 /*SuppressUserConversions=*/false, 5687 AllowedExplicit::Conversions, 5688 /*InOverloadResolution=*/false, 5689 /*CStyle=*/false, 5690 /*AllowObjCWritebackConversion=*/false, 5691 /*AllowObjCConversionOnExplicit=*/false); 5692 } 5693 5694 /// PerformContextuallyConvertToBool - Perform a contextual conversion 5695 /// of the expression From to bool (C++0x [conv]p3). 5696 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { 5697 if (checkPlaceholderForOverload(*this, From)) 5698 return ExprError(); 5699 5700 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 5701 if (!ICS.isBad()) 5702 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 5703 5704 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 5705 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition) 5706 << From->getType() << From->getSourceRange(); 5707 return ExprError(); 5708 } 5709 5710 /// Check that the specified conversion is permitted in a converted constant 5711 /// expression, according to C++11 [expr.const]p3. Return true if the conversion 5712 /// is acceptable. 5713 static bool CheckConvertedConstantConversions(Sema &S, 5714 StandardConversionSequence &SCS) { 5715 // Since we know that the target type is an integral or unscoped enumeration 5716 // type, most conversion kinds are impossible. All possible First and Third 5717 // conversions are fine. 5718 switch (SCS.Second) { 5719 case ICK_Identity: 5720 case ICK_Integral_Promotion: 5721 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. 5722 case ICK_Zero_Queue_Conversion: 5723 return true; 5724 5725 case ICK_Boolean_Conversion: 5726 // Conversion from an integral or unscoped enumeration type to bool is 5727 // classified as ICK_Boolean_Conversion, but it's also arguably an integral 5728 // conversion, so we allow it in a converted constant expression. 5729 // 5730 // FIXME: Per core issue 1407, we should not allow this, but that breaks 5731 // a lot of popular code. We should at least add a warning for this 5732 // (non-conforming) extension. 5733 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && 5734 SCS.getToType(2)->isBooleanType(); 5735 5736 case ICK_Pointer_Conversion: 5737 case ICK_Pointer_Member: 5738 // C++1z: null pointer conversions and null member pointer conversions are 5739 // only permitted if the source type is std::nullptr_t. 5740 return SCS.getFromType()->isNullPtrType(); 5741 5742 case ICK_Floating_Promotion: 5743 case ICK_Complex_Promotion: 5744 case ICK_Floating_Conversion: 5745 case ICK_Complex_Conversion: 5746 case ICK_Floating_Integral: 5747 case ICK_Compatible_Conversion: 5748 case ICK_Derived_To_Base: 5749 case ICK_Vector_Conversion: 5750 case ICK_SVE_Vector_Conversion: 5751 case ICK_Vector_Splat: 5752 case ICK_Complex_Real: 5753 case ICK_Block_Pointer_Conversion: 5754 case ICK_TransparentUnionConversion: 5755 case ICK_Writeback_Conversion: 5756 case ICK_Zero_Event_Conversion: 5757 case ICK_C_Only_Conversion: 5758 case ICK_Incompatible_Pointer_Conversion: 5759 return false; 5760 5761 case ICK_Lvalue_To_Rvalue: 5762 case ICK_Array_To_Pointer: 5763 case ICK_Function_To_Pointer: 5764 llvm_unreachable("found a first conversion kind in Second"); 5765 5766 case ICK_Function_Conversion: 5767 case ICK_Qualification: 5768 llvm_unreachable("found a third conversion kind in Second"); 5769 5770 case ICK_Num_Conversion_Kinds: 5771 break; 5772 } 5773 5774 llvm_unreachable("unknown conversion kind"); 5775 } 5776 5777 /// CheckConvertedConstantExpression - Check that the expression From is a 5778 /// converted constant expression of type T, perform the conversion and produce 5779 /// the converted expression, per C++11 [expr.const]p3. 5780 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, 5781 QualType T, APValue &Value, 5782 Sema::CCEKind CCE, 5783 bool RequireInt, 5784 NamedDecl *Dest) { 5785 assert(S.getLangOpts().CPlusPlus11 && 5786 "converted constant expression outside C++11"); 5787 5788 if (checkPlaceholderForOverload(S, From)) 5789 return ExprError(); 5790 5791 // C++1z [expr.const]p3: 5792 // A converted constant expression of type T is an expression, 5793 // implicitly converted to type T, where the converted 5794 // expression is a constant expression and the implicit conversion 5795 // sequence contains only [... list of conversions ...]. 5796 ImplicitConversionSequence ICS = 5797 (CCE == Sema::CCEK_ExplicitBool || CCE == Sema::CCEK_Noexcept) 5798 ? TryContextuallyConvertToBool(S, From) 5799 : TryCopyInitialization(S, From, T, 5800 /*SuppressUserConversions=*/false, 5801 /*InOverloadResolution=*/false, 5802 /*AllowObjCWritebackConversion=*/false, 5803 /*AllowExplicit=*/false); 5804 StandardConversionSequence *SCS = nullptr; 5805 switch (ICS.getKind()) { 5806 case ImplicitConversionSequence::StandardConversion: 5807 SCS = &ICS.Standard; 5808 break; 5809 case ImplicitConversionSequence::UserDefinedConversion: 5810 if (T->isRecordType()) 5811 SCS = &ICS.UserDefined.Before; 5812 else 5813 SCS = &ICS.UserDefined.After; 5814 break; 5815 case ImplicitConversionSequence::AmbiguousConversion: 5816 case ImplicitConversionSequence::BadConversion: 5817 if (!S.DiagnoseMultipleUserDefinedConversion(From, T)) 5818 return S.Diag(From->getBeginLoc(), 5819 diag::err_typecheck_converted_constant_expression) 5820 << From->getType() << From->getSourceRange() << T; 5821 return ExprError(); 5822 5823 case ImplicitConversionSequence::EllipsisConversion: 5824 case ImplicitConversionSequence::StaticObjectArgumentConversion: 5825 llvm_unreachable("bad conversion in converted constant expression"); 5826 } 5827 5828 // Check that we would only use permitted conversions. 5829 if (!CheckConvertedConstantConversions(S, *SCS)) { 5830 return S.Diag(From->getBeginLoc(), 5831 diag::err_typecheck_converted_constant_expression_disallowed) 5832 << From->getType() << From->getSourceRange() << T; 5833 } 5834 // [...] and where the reference binding (if any) binds directly. 5835 if (SCS->ReferenceBinding && !SCS->DirectBinding) { 5836 return S.Diag(From->getBeginLoc(), 5837 diag::err_typecheck_converted_constant_expression_indirect) 5838 << From->getType() << From->getSourceRange() << T; 5839 } 5840 5841 // Usually we can simply apply the ImplicitConversionSequence we formed 5842 // earlier, but that's not guaranteed to work when initializing an object of 5843 // class type. 5844 ExprResult Result; 5845 if (T->isRecordType()) { 5846 assert(CCE == Sema::CCEK_TemplateArg && 5847 "unexpected class type converted constant expr"); 5848 Result = S.PerformCopyInitialization( 5849 InitializedEntity::InitializeTemplateParameter( 5850 T, cast<NonTypeTemplateParmDecl>(Dest)), 5851 SourceLocation(), From); 5852 } else { 5853 Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting); 5854 } 5855 if (Result.isInvalid()) 5856 return Result; 5857 5858 // C++2a [intro.execution]p5: 5859 // A full-expression is [...] a constant-expression [...] 5860 Result = S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(), 5861 /*DiscardedValue=*/false, /*IsConstexpr=*/true, 5862 CCE == Sema::CCEKind::CCEK_TemplateArg); 5863 if (Result.isInvalid()) 5864 return Result; 5865 5866 // Check for a narrowing implicit conversion. 5867 bool ReturnPreNarrowingValue = false; 5868 APValue PreNarrowingValue; 5869 QualType PreNarrowingType; 5870 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue, 5871 PreNarrowingType)) { 5872 case NK_Dependent_Narrowing: 5873 // Implicit conversion to a narrower type, but the expression is 5874 // value-dependent so we can't tell whether it's actually narrowing. 5875 case NK_Variable_Narrowing: 5876 // Implicit conversion to a narrower type, and the value is not a constant 5877 // expression. We'll diagnose this in a moment. 5878 case NK_Not_Narrowing: 5879 break; 5880 5881 case NK_Constant_Narrowing: 5882 if (CCE == Sema::CCEK_ArrayBound && 5883 PreNarrowingType->isIntegralOrEnumerationType() && 5884 PreNarrowingValue.isInt()) { 5885 // Don't diagnose array bound narrowing here; we produce more precise 5886 // errors by allowing the un-narrowed value through. 5887 ReturnPreNarrowingValue = true; 5888 break; 5889 } 5890 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) 5891 << CCE << /*Constant*/ 1 5892 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T; 5893 break; 5894 5895 case NK_Type_Narrowing: 5896 // FIXME: It would be better to diagnose that the expression is not a 5897 // constant expression. 5898 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) 5899 << CCE << /*Constant*/ 0 << From->getType() << T; 5900 break; 5901 } 5902 5903 if (Result.get()->isValueDependent()) { 5904 Value = APValue(); 5905 return Result; 5906 } 5907 5908 // Check the expression is a constant expression. 5909 SmallVector<PartialDiagnosticAt, 8> Notes; 5910 Expr::EvalResult Eval; 5911 Eval.Diag = &Notes; 5912 5913 ConstantExprKind Kind; 5914 if (CCE == Sema::CCEK_TemplateArg && T->isRecordType()) 5915 Kind = ConstantExprKind::ClassTemplateArgument; 5916 else if (CCE == Sema::CCEK_TemplateArg) 5917 Kind = ConstantExprKind::NonClassTemplateArgument; 5918 else 5919 Kind = ConstantExprKind::Normal; 5920 5921 if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) || 5922 (RequireInt && !Eval.Val.isInt())) { 5923 // The expression can't be folded, so we can't keep it at this position in 5924 // the AST. 5925 Result = ExprError(); 5926 } else { 5927 Value = Eval.Val; 5928 5929 if (Notes.empty()) { 5930 // It's a constant expression. 5931 Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value); 5932 if (ReturnPreNarrowingValue) 5933 Value = std::move(PreNarrowingValue); 5934 return E; 5935 } 5936 } 5937 5938 // It's not a constant expression. Produce an appropriate diagnostic. 5939 if (Notes.size() == 1 && 5940 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) { 5941 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; 5942 } else if (!Notes.empty() && Notes[0].second.getDiagID() == 5943 diag::note_constexpr_invalid_template_arg) { 5944 Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg); 5945 for (unsigned I = 0; I < Notes.size(); ++I) 5946 S.Diag(Notes[I].first, Notes[I].second); 5947 } else { 5948 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce) 5949 << CCE << From->getSourceRange(); 5950 for (unsigned I = 0; I < Notes.size(); ++I) 5951 S.Diag(Notes[I].first, Notes[I].second); 5952 } 5953 return ExprError(); 5954 } 5955 5956 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 5957 APValue &Value, CCEKind CCE, 5958 NamedDecl *Dest) { 5959 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false, 5960 Dest); 5961 } 5962 5963 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 5964 llvm::APSInt &Value, 5965 CCEKind CCE) { 5966 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type"); 5967 5968 APValue V; 5969 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true, 5970 /*Dest=*/nullptr); 5971 if (!R.isInvalid() && !R.get()->isValueDependent()) 5972 Value = V.getInt(); 5973 return R; 5974 } 5975 5976 5977 /// dropPointerConversions - If the given standard conversion sequence 5978 /// involves any pointer conversions, remove them. This may change 5979 /// the result type of the conversion sequence. 5980 static void dropPointerConversion(StandardConversionSequence &SCS) { 5981 if (SCS.Second == ICK_Pointer_Conversion) { 5982 SCS.Second = ICK_Identity; 5983 SCS.Third = ICK_Identity; 5984 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; 5985 } 5986 } 5987 5988 /// TryContextuallyConvertToObjCPointer - Attempt to contextually 5989 /// convert the expression From to an Objective-C pointer type. 5990 static ImplicitConversionSequence 5991 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { 5992 // Do an implicit conversion to 'id'. 5993 QualType Ty = S.Context.getObjCIdType(); 5994 ImplicitConversionSequence ICS 5995 = TryImplicitConversion(S, From, Ty, 5996 // FIXME: Are these flags correct? 5997 /*SuppressUserConversions=*/false, 5998 AllowedExplicit::Conversions, 5999 /*InOverloadResolution=*/false, 6000 /*CStyle=*/false, 6001 /*AllowObjCWritebackConversion=*/false, 6002 /*AllowObjCConversionOnExplicit=*/true); 6003 6004 // Strip off any final conversions to 'id'. 6005 switch (ICS.getKind()) { 6006 case ImplicitConversionSequence::BadConversion: 6007 case ImplicitConversionSequence::AmbiguousConversion: 6008 case ImplicitConversionSequence::EllipsisConversion: 6009 case ImplicitConversionSequence::StaticObjectArgumentConversion: 6010 break; 6011 6012 case ImplicitConversionSequence::UserDefinedConversion: 6013 dropPointerConversion(ICS.UserDefined.After); 6014 break; 6015 6016 case ImplicitConversionSequence::StandardConversion: 6017 dropPointerConversion(ICS.Standard); 6018 break; 6019 } 6020 6021 return ICS; 6022 } 6023 6024 /// PerformContextuallyConvertToObjCPointer - Perform a contextual 6025 /// conversion of the expression From to an Objective-C pointer type. 6026 /// Returns a valid but null ExprResult if no conversion sequence exists. 6027 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { 6028 if (checkPlaceholderForOverload(*this, From)) 6029 return ExprError(); 6030 6031 QualType Ty = Context.getObjCIdType(); 6032 ImplicitConversionSequence ICS = 6033 TryContextuallyConvertToObjCPointer(*this, From); 6034 if (!ICS.isBad()) 6035 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 6036 return ExprResult(); 6037 } 6038 6039 /// Determine whether the provided type is an integral type, or an enumeration 6040 /// type of a permitted flavor. 6041 bool Sema::ICEConvertDiagnoser::match(QualType T) { 6042 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType() 6043 : T->isIntegralOrUnscopedEnumerationType(); 6044 } 6045 6046 static ExprResult 6047 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From, 6048 Sema::ContextualImplicitConverter &Converter, 6049 QualType T, UnresolvedSetImpl &ViableConversions) { 6050 6051 if (Converter.Suppress) 6052 return ExprError(); 6053 6054 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange(); 6055 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 6056 CXXConversionDecl *Conv = 6057 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 6058 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 6059 Converter.noteAmbiguous(SemaRef, Conv, ConvTy); 6060 } 6061 return From; 6062 } 6063 6064 static bool 6065 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, 6066 Sema::ContextualImplicitConverter &Converter, 6067 QualType T, bool HadMultipleCandidates, 6068 UnresolvedSetImpl &ExplicitConversions) { 6069 if (ExplicitConversions.size() == 1 && !Converter.Suppress) { 6070 DeclAccessPair Found = ExplicitConversions[0]; 6071 CXXConversionDecl *Conversion = 6072 cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 6073 6074 // The user probably meant to invoke the given explicit 6075 // conversion; use it. 6076 QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); 6077 std::string TypeStr; 6078 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy()); 6079 6080 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy) 6081 << FixItHint::CreateInsertion(From->getBeginLoc(), 6082 "static_cast<" + TypeStr + ">(") 6083 << FixItHint::CreateInsertion( 6084 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")"); 6085 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy); 6086 6087 // If we aren't in a SFINAE context, build a call to the 6088 // explicit conversion function. 6089 if (SemaRef.isSFINAEContext()) 6090 return true; 6091 6092 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); 6093 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, 6094 HadMultipleCandidates); 6095 if (Result.isInvalid()) 6096 return true; 6097 // Record usage of conversion in an implicit cast. 6098 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), 6099 CK_UserDefinedConversion, Result.get(), 6100 nullptr, Result.get()->getValueKind(), 6101 SemaRef.CurFPFeatureOverrides()); 6102 } 6103 return false; 6104 } 6105 6106 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, 6107 Sema::ContextualImplicitConverter &Converter, 6108 QualType T, bool HadMultipleCandidates, 6109 DeclAccessPair &Found) { 6110 CXXConversionDecl *Conversion = 6111 cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 6112 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); 6113 6114 QualType ToType = Conversion->getConversionType().getNonReferenceType(); 6115 if (!Converter.SuppressConversion) { 6116 if (SemaRef.isSFINAEContext()) 6117 return true; 6118 6119 Converter.diagnoseConversion(SemaRef, Loc, T, ToType) 6120 << From->getSourceRange(); 6121 } 6122 6123 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, 6124 HadMultipleCandidates); 6125 if (Result.isInvalid()) 6126 return true; 6127 // Record usage of conversion in an implicit cast. 6128 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), 6129 CK_UserDefinedConversion, Result.get(), 6130 nullptr, Result.get()->getValueKind(), 6131 SemaRef.CurFPFeatureOverrides()); 6132 return false; 6133 } 6134 6135 static ExprResult finishContextualImplicitConversion( 6136 Sema &SemaRef, SourceLocation Loc, Expr *From, 6137 Sema::ContextualImplicitConverter &Converter) { 6138 if (!Converter.match(From->getType()) && !Converter.Suppress) 6139 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType()) 6140 << From->getSourceRange(); 6141 6142 return SemaRef.DefaultLvalueConversion(From); 6143 } 6144 6145 static void 6146 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType, 6147 UnresolvedSetImpl &ViableConversions, 6148 OverloadCandidateSet &CandidateSet) { 6149 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 6150 DeclAccessPair FoundDecl = ViableConversions[I]; 6151 NamedDecl *D = FoundDecl.getDecl(); 6152 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 6153 if (isa<UsingShadowDecl>(D)) 6154 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 6155 6156 CXXConversionDecl *Conv; 6157 FunctionTemplateDecl *ConvTemplate; 6158 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 6159 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 6160 else 6161 Conv = cast<CXXConversionDecl>(D); 6162 6163 if (ConvTemplate) 6164 SemaRef.AddTemplateConversionCandidate( 6165 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, 6166 /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true); 6167 else 6168 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, 6169 ToType, CandidateSet, 6170 /*AllowObjCConversionOnExplicit=*/false, 6171 /*AllowExplicit*/ true); 6172 } 6173 } 6174 6175 /// Attempt to convert the given expression to a type which is accepted 6176 /// by the given converter. 6177 /// 6178 /// This routine will attempt to convert an expression of class type to a 6179 /// type accepted by the specified converter. In C++11 and before, the class 6180 /// must have a single non-explicit conversion function converting to a matching 6181 /// type. In C++1y, there can be multiple such conversion functions, but only 6182 /// one target type. 6183 /// 6184 /// \param Loc The source location of the construct that requires the 6185 /// conversion. 6186 /// 6187 /// \param From The expression we're converting from. 6188 /// 6189 /// \param Converter Used to control and diagnose the conversion process. 6190 /// 6191 /// \returns The expression, converted to an integral or enumeration type if 6192 /// successful. 6193 ExprResult Sema::PerformContextualImplicitConversion( 6194 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) { 6195 // We can't perform any more checking for type-dependent expressions. 6196 if (From->isTypeDependent()) 6197 return From; 6198 6199 // Process placeholders immediately. 6200 if (From->hasPlaceholderType()) { 6201 ExprResult result = CheckPlaceholderExpr(From); 6202 if (result.isInvalid()) 6203 return result; 6204 From = result.get(); 6205 } 6206 6207 // If the expression already has a matching type, we're golden. 6208 QualType T = From->getType(); 6209 if (Converter.match(T)) 6210 return DefaultLvalueConversion(From); 6211 6212 // FIXME: Check for missing '()' if T is a function type? 6213 6214 // We can only perform contextual implicit conversions on objects of class 6215 // type. 6216 const RecordType *RecordTy = T->getAs<RecordType>(); 6217 if (!RecordTy || !getLangOpts().CPlusPlus) { 6218 if (!Converter.Suppress) 6219 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange(); 6220 return From; 6221 } 6222 6223 // We must have a complete class type. 6224 struct TypeDiagnoserPartialDiag : TypeDiagnoser { 6225 ContextualImplicitConverter &Converter; 6226 Expr *From; 6227 6228 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From) 6229 : Converter(Converter), From(From) {} 6230 6231 void diagnose(Sema &S, SourceLocation Loc, QualType T) override { 6232 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange(); 6233 } 6234 } IncompleteDiagnoser(Converter, From); 6235 6236 if (Converter.Suppress ? !isCompleteType(Loc, T) 6237 : RequireCompleteType(Loc, T, IncompleteDiagnoser)) 6238 return From; 6239 6240 // Look for a conversion to an integral or enumeration type. 6241 UnresolvedSet<4> 6242 ViableConversions; // These are *potentially* viable in C++1y. 6243 UnresolvedSet<4> ExplicitConversions; 6244 const auto &Conversions = 6245 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 6246 6247 bool HadMultipleCandidates = 6248 (std::distance(Conversions.begin(), Conversions.end()) > 1); 6249 6250 // To check that there is only one target type, in C++1y: 6251 QualType ToType; 6252 bool HasUniqueTargetType = true; 6253 6254 // Collect explicit or viable (potentially in C++1y) conversions. 6255 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 6256 NamedDecl *D = (*I)->getUnderlyingDecl(); 6257 CXXConversionDecl *Conversion; 6258 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 6259 if (ConvTemplate) { 6260 if (getLangOpts().CPlusPlus14) 6261 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 6262 else 6263 continue; // C++11 does not consider conversion operator templates(?). 6264 } else 6265 Conversion = cast<CXXConversionDecl>(D); 6266 6267 assert((!ConvTemplate || getLangOpts().CPlusPlus14) && 6268 "Conversion operator templates are considered potentially " 6269 "viable in C++1y"); 6270 6271 QualType CurToType = Conversion->getConversionType().getNonReferenceType(); 6272 if (Converter.match(CurToType) || ConvTemplate) { 6273 6274 if (Conversion->isExplicit()) { 6275 // FIXME: For C++1y, do we need this restriction? 6276 // cf. diagnoseNoViableConversion() 6277 if (!ConvTemplate) 6278 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 6279 } else { 6280 if (!ConvTemplate && getLangOpts().CPlusPlus14) { 6281 if (ToType.isNull()) 6282 ToType = CurToType.getUnqualifiedType(); 6283 else if (HasUniqueTargetType && 6284 (CurToType.getUnqualifiedType() != ToType)) 6285 HasUniqueTargetType = false; 6286 } 6287 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 6288 } 6289 } 6290 } 6291 6292 if (getLangOpts().CPlusPlus14) { 6293 // C++1y [conv]p6: 6294 // ... An expression e of class type E appearing in such a context 6295 // is said to be contextually implicitly converted to a specified 6296 // type T and is well-formed if and only if e can be implicitly 6297 // converted to a type T that is determined as follows: E is searched 6298 // for conversion functions whose return type is cv T or reference to 6299 // cv T such that T is allowed by the context. There shall be 6300 // exactly one such T. 6301 6302 // If no unique T is found: 6303 if (ToType.isNull()) { 6304 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 6305 HadMultipleCandidates, 6306 ExplicitConversions)) 6307 return ExprError(); 6308 return finishContextualImplicitConversion(*this, Loc, From, Converter); 6309 } 6310 6311 // If more than one unique Ts are found: 6312 if (!HasUniqueTargetType) 6313 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 6314 ViableConversions); 6315 6316 // If one unique T is found: 6317 // First, build a candidate set from the previously recorded 6318 // potentially viable conversions. 6319 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6320 collectViableConversionCandidates(*this, From, ToType, ViableConversions, 6321 CandidateSet); 6322 6323 // Then, perform overload resolution over the candidate set. 6324 OverloadCandidateSet::iterator Best; 6325 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) { 6326 case OR_Success: { 6327 // Apply this conversion. 6328 DeclAccessPair Found = 6329 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess()); 6330 if (recordConversion(*this, Loc, From, Converter, T, 6331 HadMultipleCandidates, Found)) 6332 return ExprError(); 6333 break; 6334 } 6335 case OR_Ambiguous: 6336 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 6337 ViableConversions); 6338 case OR_No_Viable_Function: 6339 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 6340 HadMultipleCandidates, 6341 ExplicitConversions)) 6342 return ExprError(); 6343 [[fallthrough]]; 6344 case OR_Deleted: 6345 // We'll complain below about a non-integral condition type. 6346 break; 6347 } 6348 } else { 6349 switch (ViableConversions.size()) { 6350 case 0: { 6351 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 6352 HadMultipleCandidates, 6353 ExplicitConversions)) 6354 return ExprError(); 6355 6356 // We'll complain below about a non-integral condition type. 6357 break; 6358 } 6359 case 1: { 6360 // Apply this conversion. 6361 DeclAccessPair Found = ViableConversions[0]; 6362 if (recordConversion(*this, Loc, From, Converter, T, 6363 HadMultipleCandidates, Found)) 6364 return ExprError(); 6365 break; 6366 } 6367 default: 6368 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 6369 ViableConversions); 6370 } 6371 } 6372 6373 return finishContextualImplicitConversion(*this, Loc, From, Converter); 6374 } 6375 6376 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is 6377 /// an acceptable non-member overloaded operator for a call whose 6378 /// arguments have types T1 (and, if non-empty, T2). This routine 6379 /// implements the check in C++ [over.match.oper]p3b2 concerning 6380 /// enumeration types. 6381 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context, 6382 FunctionDecl *Fn, 6383 ArrayRef<Expr *> Args) { 6384 QualType T1 = Args[0]->getType(); 6385 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType(); 6386 6387 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) 6388 return true; 6389 6390 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) 6391 return true; 6392 6393 const auto *Proto = Fn->getType()->castAs<FunctionProtoType>(); 6394 if (Proto->getNumParams() < 1) 6395 return false; 6396 6397 if (T1->isEnumeralType()) { 6398 QualType ArgType = Proto->getParamType(0).getNonReferenceType(); 6399 if (Context.hasSameUnqualifiedType(T1, ArgType)) 6400 return true; 6401 } 6402 6403 if (Proto->getNumParams() < 2) 6404 return false; 6405 6406 if (!T2.isNull() && T2->isEnumeralType()) { 6407 QualType ArgType = Proto->getParamType(1).getNonReferenceType(); 6408 if (Context.hasSameUnqualifiedType(T2, ArgType)) 6409 return true; 6410 } 6411 6412 return false; 6413 } 6414 6415 /// AddOverloadCandidate - Adds the given function to the set of 6416 /// candidate functions, using the given function call arguments. If 6417 /// @p SuppressUserConversions, then don't allow user-defined 6418 /// conversions via constructors or conversion operators. 6419 /// 6420 /// \param PartialOverloading true if we are performing "partial" overloading 6421 /// based on an incomplete set of function arguments. This feature is used by 6422 /// code completion. 6423 void Sema::AddOverloadCandidate( 6424 FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args, 6425 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, 6426 bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions, 6427 ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions, 6428 OverloadCandidateParamOrder PO) { 6429 const FunctionProtoType *Proto 6430 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 6431 assert(Proto && "Functions without a prototype cannot be overloaded"); 6432 assert(!Function->getDescribedFunctionTemplate() && 6433 "Use AddTemplateOverloadCandidate for function templates"); 6434 6435 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 6436 if (!isa<CXXConstructorDecl>(Method)) { 6437 // If we get here, it's because we're calling a member function 6438 // that is named without a member access expression (e.g., 6439 // "this->f") that was either written explicitly or created 6440 // implicitly. This can happen with a qualified call to a member 6441 // function, e.g., X::f(). We use an empty type for the implied 6442 // object argument (C++ [over.call.func]p3), and the acting context 6443 // is irrelevant. 6444 AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(), 6445 Expr::Classification::makeSimpleLValue(), Args, 6446 CandidateSet, SuppressUserConversions, 6447 PartialOverloading, EarlyConversions, PO); 6448 return; 6449 } 6450 // We treat a constructor like a non-member function, since its object 6451 // argument doesn't participate in overload resolution. 6452 } 6453 6454 if (!CandidateSet.isNewCandidate(Function, PO)) 6455 return; 6456 6457 // C++11 [class.copy]p11: [DR1402] 6458 // A defaulted move constructor that is defined as deleted is ignored by 6459 // overload resolution. 6460 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function); 6461 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() && 6462 Constructor->isMoveConstructor()) 6463 return; 6464 6465 // Overload resolution is always an unevaluated context. 6466 EnterExpressionEvaluationContext Unevaluated( 6467 *this, Sema::ExpressionEvaluationContext::Unevaluated); 6468 6469 // C++ [over.match.oper]p3: 6470 // if no operand has a class type, only those non-member functions in the 6471 // lookup set that have a first parameter of type T1 or "reference to 6472 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there 6473 // is a right operand) a second parameter of type T2 or "reference to 6474 // (possibly cv-qualified) T2", when T2 is an enumeration type, are 6475 // candidate functions. 6476 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator && 6477 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args)) 6478 return; 6479 6480 // Add this candidate 6481 OverloadCandidate &Candidate = 6482 CandidateSet.addCandidate(Args.size(), EarlyConversions); 6483 Candidate.FoundDecl = FoundDecl; 6484 Candidate.Function = Function; 6485 Candidate.Viable = true; 6486 Candidate.RewriteKind = 6487 CandidateSet.getRewriteInfo().getRewriteKind(Function, PO); 6488 Candidate.IsSurrogate = false; 6489 Candidate.IsADLCandidate = IsADLCandidate; 6490 Candidate.IgnoreObjectArgument = false; 6491 Candidate.ExplicitCallArguments = Args.size(); 6492 6493 // Explicit functions are not actually candidates at all if we're not 6494 // allowing them in this context, but keep them around so we can point 6495 // to them in diagnostics. 6496 if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) { 6497 Candidate.Viable = false; 6498 Candidate.FailureKind = ovl_fail_explicit; 6499 return; 6500 } 6501 6502 // Functions with internal linkage are only viable in the same module unit. 6503 if (auto *MF = Function->getOwningModule()) { 6504 if (getLangOpts().CPlusPlusModules && !MF->isModuleMapModule() && 6505 !isModuleUnitOfCurrentTU(MF)) { 6506 /// FIXME: Currently, the semantics of linkage in clang is slightly 6507 /// different from the semantics in C++ spec. In C++ spec, only names 6508 /// have linkage. So that all entities of the same should share one 6509 /// linkage. But in clang, different entities of the same could have 6510 /// different linkage. 6511 NamedDecl *ND = Function; 6512 if (auto *SpecInfo = Function->getTemplateSpecializationInfo()) 6513 ND = SpecInfo->getTemplate(); 6514 6515 if (ND->getFormalLinkage() == Linkage::InternalLinkage) { 6516 Candidate.Viable = false; 6517 Candidate.FailureKind = ovl_fail_module_mismatched; 6518 return; 6519 } 6520 } 6521 } 6522 6523 if (Function->isMultiVersion() && 6524 ((Function->hasAttr<TargetAttr>() && 6525 !Function->getAttr<TargetAttr>()->isDefaultVersion()) || 6526 (Function->hasAttr<TargetVersionAttr>() && 6527 !Function->getAttr<TargetVersionAttr>()->isDefaultVersion()))) { 6528 Candidate.Viable = false; 6529 Candidate.FailureKind = ovl_non_default_multiversion_function; 6530 return; 6531 } 6532 6533 if (Constructor) { 6534 // C++ [class.copy]p3: 6535 // A member function template is never instantiated to perform the copy 6536 // of a class object to an object of its class type. 6537 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 6538 if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() && 6539 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 6540 IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(), 6541 ClassType))) { 6542 Candidate.Viable = false; 6543 Candidate.FailureKind = ovl_fail_illegal_constructor; 6544 return; 6545 } 6546 6547 // C++ [over.match.funcs]p8: (proposed DR resolution) 6548 // A constructor inherited from class type C that has a first parameter 6549 // of type "reference to P" (including such a constructor instantiated 6550 // from a template) is excluded from the set of candidate functions when 6551 // constructing an object of type cv D if the argument list has exactly 6552 // one argument and D is reference-related to P and P is reference-related 6553 // to C. 6554 auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl()); 6555 if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 && 6556 Constructor->getParamDecl(0)->getType()->isReferenceType()) { 6557 QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType(); 6558 QualType C = Context.getRecordType(Constructor->getParent()); 6559 QualType D = Context.getRecordType(Shadow->getParent()); 6560 SourceLocation Loc = Args.front()->getExprLoc(); 6561 if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) && 6562 (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) { 6563 Candidate.Viable = false; 6564 Candidate.FailureKind = ovl_fail_inhctor_slice; 6565 return; 6566 } 6567 } 6568 6569 // Check that the constructor is capable of constructing an object in the 6570 // destination address space. 6571 if (!Qualifiers::isAddressSpaceSupersetOf( 6572 Constructor->getMethodQualifiers().getAddressSpace(), 6573 CandidateSet.getDestAS())) { 6574 Candidate.Viable = false; 6575 Candidate.FailureKind = ovl_fail_object_addrspace_mismatch; 6576 } 6577 } 6578 6579 unsigned NumParams = Proto->getNumParams(); 6580 6581 // (C++ 13.3.2p2): A candidate function having fewer than m 6582 // parameters is viable only if it has an ellipsis in its parameter 6583 // list (8.3.5). 6584 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && 6585 !Proto->isVariadic() && 6586 shouldEnforceArgLimit(PartialOverloading, Function)) { 6587 Candidate.Viable = false; 6588 Candidate.FailureKind = ovl_fail_too_many_arguments; 6589 return; 6590 } 6591 6592 // (C++ 13.3.2p2): A candidate function having more than m parameters 6593 // is viable only if the (m+1)st parameter has a default argument 6594 // (8.3.6). For the purposes of overload resolution, the 6595 // parameter list is truncated on the right, so that there are 6596 // exactly m parameters. 6597 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 6598 if (Args.size() < MinRequiredArgs && !PartialOverloading) { 6599 // Not enough arguments. 6600 Candidate.Viable = false; 6601 Candidate.FailureKind = ovl_fail_too_few_arguments; 6602 return; 6603 } 6604 6605 // (CUDA B.1): Check for invalid calls between targets. 6606 if (getLangOpts().CUDA) 6607 if (const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true)) 6608 // Skip the check for callers that are implicit members, because in this 6609 // case we may not yet know what the member's target is; the target is 6610 // inferred for the member automatically, based on the bases and fields of 6611 // the class. 6612 if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) { 6613 Candidate.Viable = false; 6614 Candidate.FailureKind = ovl_fail_bad_target; 6615 return; 6616 } 6617 6618 if (Function->getTrailingRequiresClause()) { 6619 ConstraintSatisfaction Satisfaction; 6620 if (CheckFunctionConstraints(Function, Satisfaction, /*Loc*/ {}, 6621 /*ForOverloadResolution*/ true) || 6622 !Satisfaction.IsSatisfied) { 6623 Candidate.Viable = false; 6624 Candidate.FailureKind = ovl_fail_constraints_not_satisfied; 6625 return; 6626 } 6627 } 6628 6629 // Determine the implicit conversion sequences for each of the 6630 // arguments. 6631 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { 6632 unsigned ConvIdx = 6633 PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx; 6634 if (Candidate.Conversions[ConvIdx].isInitialized()) { 6635 // We already formed a conversion sequence for this parameter during 6636 // template argument deduction. 6637 } else if (ArgIdx < NumParams) { 6638 // (C++ 13.3.2p3): for F to be a viable function, there shall 6639 // exist for each argument an implicit conversion sequence 6640 // (13.3.3.1) that converts that argument to the corresponding 6641 // parameter of F. 6642 QualType ParamType = Proto->getParamType(ArgIdx); 6643 Candidate.Conversions[ConvIdx] = TryCopyInitialization( 6644 *this, Args[ArgIdx], ParamType, SuppressUserConversions, 6645 /*InOverloadResolution=*/true, 6646 /*AllowObjCWritebackConversion=*/ 6647 getLangOpts().ObjCAutoRefCount, AllowExplicitConversions); 6648 if (Candidate.Conversions[ConvIdx].isBad()) { 6649 Candidate.Viable = false; 6650 Candidate.FailureKind = ovl_fail_bad_conversion; 6651 return; 6652 } 6653 } else { 6654 // (C++ 13.3.2p2): For the purposes of overload resolution, any 6655 // argument for which there is no corresponding parameter is 6656 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 6657 Candidate.Conversions[ConvIdx].setEllipsis(); 6658 } 6659 } 6660 6661 if (EnableIfAttr *FailedAttr = 6662 CheckEnableIf(Function, CandidateSet.getLocation(), Args)) { 6663 Candidate.Viable = false; 6664 Candidate.FailureKind = ovl_fail_enable_if; 6665 Candidate.DeductionFailure.Data = FailedAttr; 6666 return; 6667 } 6668 } 6669 6670 ObjCMethodDecl * 6671 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance, 6672 SmallVectorImpl<ObjCMethodDecl *> &Methods) { 6673 if (Methods.size() <= 1) 6674 return nullptr; 6675 6676 for (unsigned b = 0, e = Methods.size(); b < e; b++) { 6677 bool Match = true; 6678 ObjCMethodDecl *Method = Methods[b]; 6679 unsigned NumNamedArgs = Sel.getNumArgs(); 6680 // Method might have more arguments than selector indicates. This is due 6681 // to addition of c-style arguments in method. 6682 if (Method->param_size() > NumNamedArgs) 6683 NumNamedArgs = Method->param_size(); 6684 if (Args.size() < NumNamedArgs) 6685 continue; 6686 6687 for (unsigned i = 0; i < NumNamedArgs; i++) { 6688 // We can't do any type-checking on a type-dependent argument. 6689 if (Args[i]->isTypeDependent()) { 6690 Match = false; 6691 break; 6692 } 6693 6694 ParmVarDecl *param = Method->parameters()[i]; 6695 Expr *argExpr = Args[i]; 6696 assert(argExpr && "SelectBestMethod(): missing expression"); 6697 6698 // Strip the unbridged-cast placeholder expression off unless it's 6699 // a consumed argument. 6700 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && 6701 !param->hasAttr<CFConsumedAttr>()) 6702 argExpr = stripARCUnbridgedCast(argExpr); 6703 6704 // If the parameter is __unknown_anytype, move on to the next method. 6705 if (param->getType() == Context.UnknownAnyTy) { 6706 Match = false; 6707 break; 6708 } 6709 6710 ImplicitConversionSequence ConversionState 6711 = TryCopyInitialization(*this, argExpr, param->getType(), 6712 /*SuppressUserConversions*/false, 6713 /*InOverloadResolution=*/true, 6714 /*AllowObjCWritebackConversion=*/ 6715 getLangOpts().ObjCAutoRefCount, 6716 /*AllowExplicit*/false); 6717 // This function looks for a reasonably-exact match, so we consider 6718 // incompatible pointer conversions to be a failure here. 6719 if (ConversionState.isBad() || 6720 (ConversionState.isStandard() && 6721 ConversionState.Standard.Second == 6722 ICK_Incompatible_Pointer_Conversion)) { 6723 Match = false; 6724 break; 6725 } 6726 } 6727 // Promote additional arguments to variadic methods. 6728 if (Match && Method->isVariadic()) { 6729 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { 6730 if (Args[i]->isTypeDependent()) { 6731 Match = false; 6732 break; 6733 } 6734 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 6735 nullptr); 6736 if (Arg.isInvalid()) { 6737 Match = false; 6738 break; 6739 } 6740 } 6741 } else { 6742 // Check for extra arguments to non-variadic methods. 6743 if (Args.size() != NumNamedArgs) 6744 Match = false; 6745 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) { 6746 // Special case when selectors have no argument. In this case, select 6747 // one with the most general result type of 'id'. 6748 for (unsigned b = 0, e = Methods.size(); b < e; b++) { 6749 QualType ReturnT = Methods[b]->getReturnType(); 6750 if (ReturnT->isObjCIdType()) 6751 return Methods[b]; 6752 } 6753 } 6754 } 6755 6756 if (Match) 6757 return Method; 6758 } 6759 return nullptr; 6760 } 6761 6762 static bool convertArgsForAvailabilityChecks( 6763 Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc, 6764 ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis, 6765 Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) { 6766 if (ThisArg) { 6767 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function); 6768 assert(!isa<CXXConstructorDecl>(Method) && 6769 "Shouldn't have `this` for ctors!"); 6770 assert(!Method->isStatic() && "Shouldn't have `this` for static methods!"); 6771 ExprResult R = S.PerformObjectArgumentInitialization( 6772 ThisArg, /*Qualifier=*/nullptr, Method, Method); 6773 if (R.isInvalid()) 6774 return false; 6775 ConvertedThis = R.get(); 6776 } else { 6777 if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) { 6778 (void)MD; 6779 assert((MissingImplicitThis || MD->isStatic() || 6780 isa<CXXConstructorDecl>(MD)) && 6781 "Expected `this` for non-ctor instance methods"); 6782 } 6783 ConvertedThis = nullptr; 6784 } 6785 6786 // Ignore any variadic arguments. Converting them is pointless, since the 6787 // user can't refer to them in the function condition. 6788 unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size()); 6789 6790 // Convert the arguments. 6791 for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) { 6792 ExprResult R; 6793 R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 6794 S.Context, Function->getParamDecl(I)), 6795 SourceLocation(), Args[I]); 6796 6797 if (R.isInvalid()) 6798 return false; 6799 6800 ConvertedArgs.push_back(R.get()); 6801 } 6802 6803 if (Trap.hasErrorOccurred()) 6804 return false; 6805 6806 // Push default arguments if needed. 6807 if (!Function->isVariadic() && Args.size() < Function->getNumParams()) { 6808 for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) { 6809 ParmVarDecl *P = Function->getParamDecl(i); 6810 if (!P->hasDefaultArg()) 6811 return false; 6812 ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P); 6813 if (R.isInvalid()) 6814 return false; 6815 ConvertedArgs.push_back(R.get()); 6816 } 6817 6818 if (Trap.hasErrorOccurred()) 6819 return false; 6820 } 6821 return true; 6822 } 6823 6824 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, 6825 SourceLocation CallLoc, 6826 ArrayRef<Expr *> Args, 6827 bool MissingImplicitThis) { 6828 auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>(); 6829 if (EnableIfAttrs.begin() == EnableIfAttrs.end()) 6830 return nullptr; 6831 6832 SFINAETrap Trap(*this); 6833 SmallVector<Expr *, 16> ConvertedArgs; 6834 // FIXME: We should look into making enable_if late-parsed. 6835 Expr *DiscardedThis; 6836 if (!convertArgsForAvailabilityChecks( 6837 *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap, 6838 /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs)) 6839 return *EnableIfAttrs.begin(); 6840 6841 for (auto *EIA : EnableIfAttrs) { 6842 APValue Result; 6843 // FIXME: This doesn't consider value-dependent cases, because doing so is 6844 // very difficult. Ideally, we should handle them more gracefully. 6845 if (EIA->getCond()->isValueDependent() || 6846 !EIA->getCond()->EvaluateWithSubstitution( 6847 Result, Context, Function, llvm::ArrayRef(ConvertedArgs))) 6848 return EIA; 6849 6850 if (!Result.isInt() || !Result.getInt().getBoolValue()) 6851 return EIA; 6852 } 6853 return nullptr; 6854 } 6855 6856 template <typename CheckFn> 6857 static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND, 6858 bool ArgDependent, SourceLocation Loc, 6859 CheckFn &&IsSuccessful) { 6860 SmallVector<const DiagnoseIfAttr *, 8> Attrs; 6861 for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) { 6862 if (ArgDependent == DIA->getArgDependent()) 6863 Attrs.push_back(DIA); 6864 } 6865 6866 // Common case: No diagnose_if attributes, so we can quit early. 6867 if (Attrs.empty()) 6868 return false; 6869 6870 auto WarningBegin = std::stable_partition( 6871 Attrs.begin(), Attrs.end(), 6872 [](const DiagnoseIfAttr *DIA) { return DIA->isError(); }); 6873 6874 // Note that diagnose_if attributes are late-parsed, so they appear in the 6875 // correct order (unlike enable_if attributes). 6876 auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin), 6877 IsSuccessful); 6878 if (ErrAttr != WarningBegin) { 6879 const DiagnoseIfAttr *DIA = *ErrAttr; 6880 S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage(); 6881 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) 6882 << DIA->getParent() << DIA->getCond()->getSourceRange(); 6883 return true; 6884 } 6885 6886 for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end())) 6887 if (IsSuccessful(DIA)) { 6888 S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage(); 6889 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) 6890 << DIA->getParent() << DIA->getCond()->getSourceRange(); 6891 } 6892 6893 return false; 6894 } 6895 6896 bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function, 6897 const Expr *ThisArg, 6898 ArrayRef<const Expr *> Args, 6899 SourceLocation Loc) { 6900 return diagnoseDiagnoseIfAttrsWith( 6901 *this, Function, /*ArgDependent=*/true, Loc, 6902 [&](const DiagnoseIfAttr *DIA) { 6903 APValue Result; 6904 // It's sane to use the same Args for any redecl of this function, since 6905 // EvaluateWithSubstitution only cares about the position of each 6906 // argument in the arg list, not the ParmVarDecl* it maps to. 6907 if (!DIA->getCond()->EvaluateWithSubstitution( 6908 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg)) 6909 return false; 6910 return Result.isInt() && Result.getInt().getBoolValue(); 6911 }); 6912 } 6913 6914 bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND, 6915 SourceLocation Loc) { 6916 return diagnoseDiagnoseIfAttrsWith( 6917 *this, ND, /*ArgDependent=*/false, Loc, 6918 [&](const DiagnoseIfAttr *DIA) { 6919 bool Result; 6920 return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) && 6921 Result; 6922 }); 6923 } 6924 6925 /// Add all of the function declarations in the given function set to 6926 /// the overload candidate set. 6927 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 6928 ArrayRef<Expr *> Args, 6929 OverloadCandidateSet &CandidateSet, 6930 TemplateArgumentListInfo *ExplicitTemplateArgs, 6931 bool SuppressUserConversions, 6932 bool PartialOverloading, 6933 bool FirstArgumentIsBase) { 6934 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 6935 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 6936 ArrayRef<Expr *> FunctionArgs = Args; 6937 6938 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); 6939 FunctionDecl *FD = 6940 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); 6941 6942 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) { 6943 QualType ObjectType; 6944 Expr::Classification ObjectClassification; 6945 if (Args.size() > 0) { 6946 if (Expr *E = Args[0]) { 6947 // Use the explicit base to restrict the lookup: 6948 ObjectType = E->getType(); 6949 // Pointers in the object arguments are implicitly dereferenced, so we 6950 // always classify them as l-values. 6951 if (!ObjectType.isNull() && ObjectType->isPointerType()) 6952 ObjectClassification = Expr::Classification::makeSimpleLValue(); 6953 else 6954 ObjectClassification = E->Classify(Context); 6955 } // .. else there is an implicit base. 6956 FunctionArgs = Args.slice(1); 6957 } 6958 if (FunTmpl) { 6959 AddMethodTemplateCandidate( 6960 FunTmpl, F.getPair(), 6961 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 6962 ExplicitTemplateArgs, ObjectType, ObjectClassification, 6963 FunctionArgs, CandidateSet, SuppressUserConversions, 6964 PartialOverloading); 6965 } else { 6966 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 6967 cast<CXXMethodDecl>(FD)->getParent(), ObjectType, 6968 ObjectClassification, FunctionArgs, CandidateSet, 6969 SuppressUserConversions, PartialOverloading); 6970 } 6971 } else { 6972 // This branch handles both standalone functions and static methods. 6973 6974 // Slice the first argument (which is the base) when we access 6975 // static method as non-static. 6976 if (Args.size() > 0 && 6977 (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) && 6978 !isa<CXXConstructorDecl>(FD)))) { 6979 assert(cast<CXXMethodDecl>(FD)->isStatic()); 6980 FunctionArgs = Args.slice(1); 6981 } 6982 if (FunTmpl) { 6983 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 6984 ExplicitTemplateArgs, FunctionArgs, 6985 CandidateSet, SuppressUserConversions, 6986 PartialOverloading); 6987 } else { 6988 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet, 6989 SuppressUserConversions, PartialOverloading); 6990 } 6991 } 6992 } 6993 } 6994 6995 /// AddMethodCandidate - Adds a named decl (which is some kind of 6996 /// method) as a method candidate to the given overload set. 6997 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, 6998 Expr::Classification ObjectClassification, 6999 ArrayRef<Expr *> Args, 7000 OverloadCandidateSet &CandidateSet, 7001 bool SuppressUserConversions, 7002 OverloadCandidateParamOrder PO) { 7003 NamedDecl *Decl = FoundDecl.getDecl(); 7004 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 7005 7006 if (isa<UsingShadowDecl>(Decl)) 7007 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 7008 7009 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 7010 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 7011 "Expected a member function template"); 7012 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 7013 /*ExplicitArgs*/ nullptr, ObjectType, 7014 ObjectClassification, Args, CandidateSet, 7015 SuppressUserConversions, false, PO); 7016 } else { 7017 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 7018 ObjectType, ObjectClassification, Args, CandidateSet, 7019 SuppressUserConversions, false, std::nullopt, PO); 7020 } 7021 } 7022 7023 /// AddMethodCandidate - Adds the given C++ member function to the set 7024 /// of candidate functions, using the given function call arguments 7025 /// and the object argument (@c Object). For example, in a call 7026 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 7027 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 7028 /// allow user-defined conversions via constructors or conversion 7029 /// operators. 7030 void 7031 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 7032 CXXRecordDecl *ActingContext, QualType ObjectType, 7033 Expr::Classification ObjectClassification, 7034 ArrayRef<Expr *> Args, 7035 OverloadCandidateSet &CandidateSet, 7036 bool SuppressUserConversions, 7037 bool PartialOverloading, 7038 ConversionSequenceList EarlyConversions, 7039 OverloadCandidateParamOrder PO) { 7040 const FunctionProtoType *Proto 7041 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 7042 assert(Proto && "Methods without a prototype cannot be overloaded"); 7043 assert(!isa<CXXConstructorDecl>(Method) && 7044 "Use AddOverloadCandidate for constructors"); 7045 7046 if (!CandidateSet.isNewCandidate(Method, PO)) 7047 return; 7048 7049 // C++11 [class.copy]p23: [DR1402] 7050 // A defaulted move assignment operator that is defined as deleted is 7051 // ignored by overload resolution. 7052 if (Method->isDefaulted() && Method->isDeleted() && 7053 Method->isMoveAssignmentOperator()) 7054 return; 7055 7056 // Overload resolution is always an unevaluated context. 7057 EnterExpressionEvaluationContext Unevaluated( 7058 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7059 7060 // Add this candidate 7061 OverloadCandidate &Candidate = 7062 CandidateSet.addCandidate(Args.size() + 1, EarlyConversions); 7063 Candidate.FoundDecl = FoundDecl; 7064 Candidate.Function = Method; 7065 Candidate.RewriteKind = 7066 CandidateSet.getRewriteInfo().getRewriteKind(Method, PO); 7067 Candidate.IsSurrogate = false; 7068 Candidate.IgnoreObjectArgument = false; 7069 Candidate.ExplicitCallArguments = Args.size(); 7070 7071 unsigned NumParams = Proto->getNumParams(); 7072 7073 // (C++ 13.3.2p2): A candidate function having fewer than m 7074 // parameters is viable only if it has an ellipsis in its parameter 7075 // list (8.3.5). 7076 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && 7077 !Proto->isVariadic() && 7078 shouldEnforceArgLimit(PartialOverloading, Method)) { 7079 Candidate.Viable = false; 7080 Candidate.FailureKind = ovl_fail_too_many_arguments; 7081 return; 7082 } 7083 7084 // (C++ 13.3.2p2): A candidate function having more than m parameters 7085 // is viable only if the (m+1)st parameter has a default argument 7086 // (8.3.6). For the purposes of overload resolution, the 7087 // parameter list is truncated on the right, so that there are 7088 // exactly m parameters. 7089 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 7090 if (Args.size() < MinRequiredArgs && !PartialOverloading) { 7091 // Not enough arguments. 7092 Candidate.Viable = false; 7093 Candidate.FailureKind = ovl_fail_too_few_arguments; 7094 return; 7095 } 7096 7097 Candidate.Viable = true; 7098 7099 unsigned FirstConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; 7100 if (ObjectType.isNull()) 7101 Candidate.IgnoreObjectArgument = true; 7102 else if (Method->isStatic()) { 7103 // [over.best.ics.general]p8 7104 // When the parameter is the implicit object parameter of a static member 7105 // function, the implicit conversion sequence is a standard conversion 7106 // sequence that is neither better nor worse than any other standard 7107 // conversion sequence. 7108 // 7109 // This is a rule that was introduced in C++23 to support static lambdas. We 7110 // apply it retroactively because we want to support static lambdas as an 7111 // extension and it doesn't hurt previous code. 7112 Candidate.Conversions[FirstConvIdx].setStaticObjectArgument(); 7113 } else { 7114 // Determine the implicit conversion sequence for the object 7115 // parameter. 7116 Candidate.Conversions[FirstConvIdx] = TryObjectArgumentInitialization( 7117 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, 7118 Method, ActingContext); 7119 if (Candidate.Conversions[FirstConvIdx].isBad()) { 7120 Candidate.Viable = false; 7121 Candidate.FailureKind = ovl_fail_bad_conversion; 7122 return; 7123 } 7124 } 7125 7126 // (CUDA B.1): Check for invalid calls between targets. 7127 if (getLangOpts().CUDA) 7128 if (const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true)) 7129 if (!IsAllowedCUDACall(Caller, Method)) { 7130 Candidate.Viable = false; 7131 Candidate.FailureKind = ovl_fail_bad_target; 7132 return; 7133 } 7134 7135 if (Method->getTrailingRequiresClause()) { 7136 ConstraintSatisfaction Satisfaction; 7137 if (CheckFunctionConstraints(Method, Satisfaction, /*Loc*/ {}, 7138 /*ForOverloadResolution*/ true) || 7139 !Satisfaction.IsSatisfied) { 7140 Candidate.Viable = false; 7141 Candidate.FailureKind = ovl_fail_constraints_not_satisfied; 7142 return; 7143 } 7144 } 7145 7146 // Determine the implicit conversion sequences for each of the 7147 // arguments. 7148 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { 7149 unsigned ConvIdx = 7150 PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1); 7151 if (Candidate.Conversions[ConvIdx].isInitialized()) { 7152 // We already formed a conversion sequence for this parameter during 7153 // template argument deduction. 7154 } else if (ArgIdx < NumParams) { 7155 // (C++ 13.3.2p3): for F to be a viable function, there shall 7156 // exist for each argument an implicit conversion sequence 7157 // (13.3.3.1) that converts that argument to the corresponding 7158 // parameter of F. 7159 QualType ParamType = Proto->getParamType(ArgIdx); 7160 Candidate.Conversions[ConvIdx] 7161 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 7162 SuppressUserConversions, 7163 /*InOverloadResolution=*/true, 7164 /*AllowObjCWritebackConversion=*/ 7165 getLangOpts().ObjCAutoRefCount); 7166 if (Candidate.Conversions[ConvIdx].isBad()) { 7167 Candidate.Viable = false; 7168 Candidate.FailureKind = ovl_fail_bad_conversion; 7169 return; 7170 } 7171 } else { 7172 // (C++ 13.3.2p2): For the purposes of overload resolution, any 7173 // argument for which there is no corresponding parameter is 7174 // considered to "match the ellipsis" (C+ 13.3.3.1.3). 7175 Candidate.Conversions[ConvIdx].setEllipsis(); 7176 } 7177 } 7178 7179 if (EnableIfAttr *FailedAttr = 7180 CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) { 7181 Candidate.Viable = false; 7182 Candidate.FailureKind = ovl_fail_enable_if; 7183 Candidate.DeductionFailure.Data = FailedAttr; 7184 return; 7185 } 7186 7187 if (Method->isMultiVersion() && 7188 ((Method->hasAttr<TargetAttr>() && 7189 !Method->getAttr<TargetAttr>()->isDefaultVersion()) || 7190 (Method->hasAttr<TargetVersionAttr>() && 7191 !Method->getAttr<TargetVersionAttr>()->isDefaultVersion()))) { 7192 Candidate.Viable = false; 7193 Candidate.FailureKind = ovl_non_default_multiversion_function; 7194 } 7195 } 7196 7197 /// Add a C++ member function template as a candidate to the candidate 7198 /// set, using template argument deduction to produce an appropriate member 7199 /// function template specialization. 7200 void Sema::AddMethodTemplateCandidate( 7201 FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, 7202 CXXRecordDecl *ActingContext, 7203 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, 7204 Expr::Classification ObjectClassification, ArrayRef<Expr *> Args, 7205 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, 7206 bool PartialOverloading, OverloadCandidateParamOrder PO) { 7207 if (!CandidateSet.isNewCandidate(MethodTmpl, PO)) 7208 return; 7209 7210 // C++ [over.match.funcs]p7: 7211 // In each case where a candidate is a function template, candidate 7212 // function template specializations are generated using template argument 7213 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 7214 // candidate functions in the usual way.113) A given name can refer to one 7215 // or more function templates and also to a set of overloaded non-template 7216 // functions. In such a case, the candidate functions generated from each 7217 // function template are combined with the set of non-template candidate 7218 // functions. 7219 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7220 FunctionDecl *Specialization = nullptr; 7221 ConversionSequenceList Conversions; 7222 if (TemplateDeductionResult Result = DeduceTemplateArguments( 7223 MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info, 7224 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { 7225 return CheckNonDependentConversions( 7226 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions, 7227 SuppressUserConversions, ActingContext, ObjectType, 7228 ObjectClassification, PO); 7229 })) { 7230 OverloadCandidate &Candidate = 7231 CandidateSet.addCandidate(Conversions.size(), Conversions); 7232 Candidate.FoundDecl = FoundDecl; 7233 Candidate.Function = MethodTmpl->getTemplatedDecl(); 7234 Candidate.Viable = false; 7235 Candidate.RewriteKind = 7236 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); 7237 Candidate.IsSurrogate = false; 7238 Candidate.IgnoreObjectArgument = 7239 cast<CXXMethodDecl>(Candidate.Function)->isStatic() || 7240 ObjectType.isNull(); 7241 Candidate.ExplicitCallArguments = Args.size(); 7242 if (Result == TDK_NonDependentConversionFailure) 7243 Candidate.FailureKind = ovl_fail_bad_conversion; 7244 else { 7245 Candidate.FailureKind = ovl_fail_bad_deduction; 7246 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7247 Info); 7248 } 7249 return; 7250 } 7251 7252 // Add the function template specialization produced by template argument 7253 // deduction as a candidate. 7254 assert(Specialization && "Missing member function template specialization?"); 7255 assert(isa<CXXMethodDecl>(Specialization) && 7256 "Specialization is not a member function?"); 7257 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 7258 ActingContext, ObjectType, ObjectClassification, Args, 7259 CandidateSet, SuppressUserConversions, PartialOverloading, 7260 Conversions, PO); 7261 } 7262 7263 /// Determine whether a given function template has a simple explicit specifier 7264 /// or a non-value-dependent explicit-specification that evaluates to true. 7265 static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) { 7266 return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit(); 7267 } 7268 7269 /// Add a C++ function template specialization as a candidate 7270 /// in the candidate set, using template argument deduction to produce 7271 /// an appropriate function template specialization. 7272 void Sema::AddTemplateOverloadCandidate( 7273 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, 7274 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 7275 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, 7276 bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate, 7277 OverloadCandidateParamOrder PO) { 7278 if (!CandidateSet.isNewCandidate(FunctionTemplate, PO)) 7279 return; 7280 7281 // If the function template has a non-dependent explicit specification, 7282 // exclude it now if appropriate; we are not permitted to perform deduction 7283 // and substitution in this case. 7284 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { 7285 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7286 Candidate.FoundDecl = FoundDecl; 7287 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7288 Candidate.Viable = false; 7289 Candidate.FailureKind = ovl_fail_explicit; 7290 return; 7291 } 7292 7293 // C++ [over.match.funcs]p7: 7294 // In each case where a candidate is a function template, candidate 7295 // function template specializations are generated using template argument 7296 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 7297 // candidate functions in the usual way.113) A given name can refer to one 7298 // or more function templates and also to a set of overloaded non-template 7299 // functions. In such a case, the candidate functions generated from each 7300 // function template are combined with the set of non-template candidate 7301 // functions. 7302 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7303 FunctionDecl *Specialization = nullptr; 7304 ConversionSequenceList Conversions; 7305 if (TemplateDeductionResult Result = DeduceTemplateArguments( 7306 FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info, 7307 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { 7308 return CheckNonDependentConversions( 7309 FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions, 7310 SuppressUserConversions, nullptr, QualType(), {}, PO); 7311 })) { 7312 OverloadCandidate &Candidate = 7313 CandidateSet.addCandidate(Conversions.size(), Conversions); 7314 Candidate.FoundDecl = FoundDecl; 7315 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7316 Candidate.Viable = false; 7317 Candidate.RewriteKind = 7318 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); 7319 Candidate.IsSurrogate = false; 7320 Candidate.IsADLCandidate = IsADLCandidate; 7321 // Ignore the object argument if there is one, since we don't have an object 7322 // type. 7323 Candidate.IgnoreObjectArgument = 7324 isa<CXXMethodDecl>(Candidate.Function) && 7325 !isa<CXXConstructorDecl>(Candidate.Function); 7326 Candidate.ExplicitCallArguments = Args.size(); 7327 if (Result == TDK_NonDependentConversionFailure) 7328 Candidate.FailureKind = ovl_fail_bad_conversion; 7329 else { 7330 Candidate.FailureKind = ovl_fail_bad_deduction; 7331 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7332 Info); 7333 } 7334 return; 7335 } 7336 7337 // Add the function template specialization produced by template argument 7338 // deduction as a candidate. 7339 assert(Specialization && "Missing function template specialization?"); 7340 AddOverloadCandidate( 7341 Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions, 7342 PartialOverloading, AllowExplicit, 7343 /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO); 7344 } 7345 7346 /// Check that implicit conversion sequences can be formed for each argument 7347 /// whose corresponding parameter has a non-dependent type, per DR1391's 7348 /// [temp.deduct.call]p10. 7349 bool Sema::CheckNonDependentConversions( 7350 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes, 7351 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet, 7352 ConversionSequenceList &Conversions, bool SuppressUserConversions, 7353 CXXRecordDecl *ActingContext, QualType ObjectType, 7354 Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) { 7355 // FIXME: The cases in which we allow explicit conversions for constructor 7356 // arguments never consider calling a constructor template. It's not clear 7357 // that is correct. 7358 const bool AllowExplicit = false; 7359 7360 auto *FD = FunctionTemplate->getTemplatedDecl(); 7361 auto *Method = dyn_cast<CXXMethodDecl>(FD); 7362 bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method); 7363 unsigned ThisConversions = HasThisConversion ? 1 : 0; 7364 7365 Conversions = 7366 CandidateSet.allocateConversionSequences(ThisConversions + Args.size()); 7367 7368 // Overload resolution is always an unevaluated context. 7369 EnterExpressionEvaluationContext Unevaluated( 7370 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7371 7372 // For a method call, check the 'this' conversion here too. DR1391 doesn't 7373 // require that, but this check should never result in a hard error, and 7374 // overload resolution is permitted to sidestep instantiations. 7375 if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() && 7376 !ObjectType.isNull()) { 7377 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; 7378 Conversions[ConvIdx] = TryObjectArgumentInitialization( 7379 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, 7380 Method, ActingContext); 7381 if (Conversions[ConvIdx].isBad()) 7382 return true; 7383 } 7384 7385 for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N; 7386 ++I) { 7387 QualType ParamType = ParamTypes[I]; 7388 if (!ParamType->isDependentType()) { 7389 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed 7390 ? 0 7391 : (ThisConversions + I); 7392 Conversions[ConvIdx] 7393 = TryCopyInitialization(*this, Args[I], ParamType, 7394 SuppressUserConversions, 7395 /*InOverloadResolution=*/true, 7396 /*AllowObjCWritebackConversion=*/ 7397 getLangOpts().ObjCAutoRefCount, 7398 AllowExplicit); 7399 if (Conversions[ConvIdx].isBad()) 7400 return true; 7401 } 7402 } 7403 7404 return false; 7405 } 7406 7407 /// Determine whether this is an allowable conversion from the result 7408 /// of an explicit conversion operator to the expected type, per C++ 7409 /// [over.match.conv]p1 and [over.match.ref]p1. 7410 /// 7411 /// \param ConvType The return type of the conversion function. 7412 /// 7413 /// \param ToType The type we are converting to. 7414 /// 7415 /// \param AllowObjCPointerConversion Allow a conversion from one 7416 /// Objective-C pointer to another. 7417 /// 7418 /// \returns true if the conversion is allowable, false otherwise. 7419 static bool isAllowableExplicitConversion(Sema &S, 7420 QualType ConvType, QualType ToType, 7421 bool AllowObjCPointerConversion) { 7422 QualType ToNonRefType = ToType.getNonReferenceType(); 7423 7424 // Easy case: the types are the same. 7425 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType)) 7426 return true; 7427 7428 // Allow qualification conversions. 7429 bool ObjCLifetimeConversion; 7430 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false, 7431 ObjCLifetimeConversion)) 7432 return true; 7433 7434 // If we're not allowed to consider Objective-C pointer conversions, 7435 // we're done. 7436 if (!AllowObjCPointerConversion) 7437 return false; 7438 7439 // Is this an Objective-C pointer conversion? 7440 bool IncompatibleObjC = false; 7441 QualType ConvertedType; 7442 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType, 7443 IncompatibleObjC); 7444 } 7445 7446 /// AddConversionCandidate - Add a C++ conversion function as a 7447 /// candidate in the candidate set (C++ [over.match.conv], 7448 /// C++ [over.match.copy]). From is the expression we're converting from, 7449 /// and ToType is the type that we're eventually trying to convert to 7450 /// (which may or may not be the same type as the type that the 7451 /// conversion function produces). 7452 void Sema::AddConversionCandidate( 7453 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, 7454 CXXRecordDecl *ActingContext, Expr *From, QualType ToType, 7455 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, 7456 bool AllowExplicit, bool AllowResultConversion) { 7457 assert(!Conversion->getDescribedFunctionTemplate() && 7458 "Conversion function templates use AddTemplateConversionCandidate"); 7459 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 7460 if (!CandidateSet.isNewCandidate(Conversion)) 7461 return; 7462 7463 // If the conversion function has an undeduced return type, trigger its 7464 // deduction now. 7465 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) { 7466 if (DeduceReturnType(Conversion, From->getExprLoc())) 7467 return; 7468 ConvType = Conversion->getConversionType().getNonReferenceType(); 7469 } 7470 7471 // If we don't allow any conversion of the result type, ignore conversion 7472 // functions that don't convert to exactly (possibly cv-qualified) T. 7473 if (!AllowResultConversion && 7474 !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType)) 7475 return; 7476 7477 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion 7478 // operator is only a candidate if its return type is the target type or 7479 // can be converted to the target type with a qualification conversion. 7480 // 7481 // FIXME: Include such functions in the candidate list and explain why we 7482 // can't select them. 7483 if (Conversion->isExplicit() && 7484 !isAllowableExplicitConversion(*this, ConvType, ToType, 7485 AllowObjCConversionOnExplicit)) 7486 return; 7487 7488 // Overload resolution is always an unevaluated context. 7489 EnterExpressionEvaluationContext Unevaluated( 7490 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7491 7492 // Add this candidate 7493 OverloadCandidate &Candidate = CandidateSet.addCandidate(1); 7494 Candidate.FoundDecl = FoundDecl; 7495 Candidate.Function = Conversion; 7496 Candidate.IsSurrogate = false; 7497 Candidate.IgnoreObjectArgument = false; 7498 Candidate.FinalConversion.setAsIdentityConversion(); 7499 Candidate.FinalConversion.setFromType(ConvType); 7500 Candidate.FinalConversion.setAllToTypes(ToType); 7501 Candidate.Viable = true; 7502 Candidate.ExplicitCallArguments = 1; 7503 7504 // Explicit functions are not actually candidates at all if we're not 7505 // allowing them in this context, but keep them around so we can point 7506 // to them in diagnostics. 7507 if (!AllowExplicit && Conversion->isExplicit()) { 7508 Candidate.Viable = false; 7509 Candidate.FailureKind = ovl_fail_explicit; 7510 return; 7511 } 7512 7513 // C++ [over.match.funcs]p4: 7514 // For conversion functions, the function is considered to be a member of 7515 // the class of the implicit implied object argument for the purpose of 7516 // defining the type of the implicit object parameter. 7517 // 7518 // Determine the implicit conversion sequence for the implicit 7519 // object parameter. 7520 QualType ImplicitParamType = From->getType(); 7521 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 7522 ImplicitParamType = FromPtrType->getPointeeType(); 7523 CXXRecordDecl *ConversionContext 7524 = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl()); 7525 7526 Candidate.Conversions[0] = TryObjectArgumentInitialization( 7527 *this, CandidateSet.getLocation(), From->getType(), 7528 From->Classify(Context), Conversion, ConversionContext); 7529 7530 if (Candidate.Conversions[0].isBad()) { 7531 Candidate.Viable = false; 7532 Candidate.FailureKind = ovl_fail_bad_conversion; 7533 return; 7534 } 7535 7536 if (Conversion->getTrailingRequiresClause()) { 7537 ConstraintSatisfaction Satisfaction; 7538 if (CheckFunctionConstraints(Conversion, Satisfaction) || 7539 !Satisfaction.IsSatisfied) { 7540 Candidate.Viable = false; 7541 Candidate.FailureKind = ovl_fail_constraints_not_satisfied; 7542 return; 7543 } 7544 } 7545 7546 // We won't go through a user-defined type conversion function to convert a 7547 // derived to base as such conversions are given Conversion Rank. They only 7548 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 7549 QualType FromCanon 7550 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 7551 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 7552 if (FromCanon == ToCanon || 7553 IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) { 7554 Candidate.Viable = false; 7555 Candidate.FailureKind = ovl_fail_trivial_conversion; 7556 return; 7557 } 7558 7559 // To determine what the conversion from the result of calling the 7560 // conversion function to the type we're eventually trying to 7561 // convert to (ToType), we need to synthesize a call to the 7562 // conversion function and attempt copy initialization from it. This 7563 // makes sure that we get the right semantics with respect to 7564 // lvalues/rvalues and the type. Fortunately, we can allocate this 7565 // call on the stack and we don't need its arguments to be 7566 // well-formed. 7567 DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(), 7568 VK_LValue, From->getBeginLoc()); 7569 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 7570 Context.getPointerType(Conversion->getType()), 7571 CK_FunctionToPointerDecay, &ConversionRef, 7572 VK_PRValue, FPOptionsOverride()); 7573 7574 QualType ConversionType = Conversion->getConversionType(); 7575 if (!isCompleteType(From->getBeginLoc(), ConversionType)) { 7576 Candidate.Viable = false; 7577 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7578 return; 7579 } 7580 7581 ExprValueKind VK = Expr::getValueKindForType(ConversionType); 7582 7583 // Note that it is safe to allocate CallExpr on the stack here because 7584 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 7585 // allocator). 7586 QualType CallResultType = ConversionType.getNonLValueExprType(Context); 7587 7588 alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)]; 7589 CallExpr *TheTemporaryCall = CallExpr::CreateTemporary( 7590 Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc()); 7591 7592 ImplicitConversionSequence ICS = 7593 TryCopyInitialization(*this, TheTemporaryCall, ToType, 7594 /*SuppressUserConversions=*/true, 7595 /*InOverloadResolution=*/false, 7596 /*AllowObjCWritebackConversion=*/false); 7597 7598 switch (ICS.getKind()) { 7599 case ImplicitConversionSequence::StandardConversion: 7600 Candidate.FinalConversion = ICS.Standard; 7601 7602 // C++ [over.ics.user]p3: 7603 // If the user-defined conversion is specified by a specialization of a 7604 // conversion function template, the second standard conversion sequence 7605 // shall have exact match rank. 7606 if (Conversion->getPrimaryTemplate() && 7607 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 7608 Candidate.Viable = false; 7609 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 7610 return; 7611 } 7612 7613 // C++0x [dcl.init.ref]p5: 7614 // In the second case, if the reference is an rvalue reference and 7615 // the second standard conversion sequence of the user-defined 7616 // conversion sequence includes an lvalue-to-rvalue conversion, the 7617 // program is ill-formed. 7618 if (ToType->isRValueReferenceType() && 7619 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 7620 Candidate.Viable = false; 7621 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7622 return; 7623 } 7624 break; 7625 7626 case ImplicitConversionSequence::BadConversion: 7627 Candidate.Viable = false; 7628 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7629 return; 7630 7631 default: 7632 llvm_unreachable( 7633 "Can only end up with a standard conversion sequence or failure"); 7634 } 7635 7636 if (EnableIfAttr *FailedAttr = 7637 CheckEnableIf(Conversion, CandidateSet.getLocation(), std::nullopt)) { 7638 Candidate.Viable = false; 7639 Candidate.FailureKind = ovl_fail_enable_if; 7640 Candidate.DeductionFailure.Data = FailedAttr; 7641 return; 7642 } 7643 7644 if (Conversion->isMultiVersion() && 7645 ((Conversion->hasAttr<TargetAttr>() && 7646 !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) || 7647 (Conversion->hasAttr<TargetVersionAttr>() && 7648 !Conversion->getAttr<TargetVersionAttr>()->isDefaultVersion()))) { 7649 Candidate.Viable = false; 7650 Candidate.FailureKind = ovl_non_default_multiversion_function; 7651 } 7652 } 7653 7654 /// Adds a conversion function template specialization 7655 /// candidate to the overload set, using template argument deduction 7656 /// to deduce the template arguments of the conversion function 7657 /// template from the type that we are converting to (C++ 7658 /// [temp.deduct.conv]). 7659 void Sema::AddTemplateConversionCandidate( 7660 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, 7661 CXXRecordDecl *ActingDC, Expr *From, QualType ToType, 7662 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, 7663 bool AllowExplicit, bool AllowResultConversion) { 7664 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 7665 "Only conversion function templates permitted here"); 7666 7667 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 7668 return; 7669 7670 // If the function template has a non-dependent explicit specification, 7671 // exclude it now if appropriate; we are not permitted to perform deduction 7672 // and substitution in this case. 7673 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { 7674 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7675 Candidate.FoundDecl = FoundDecl; 7676 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7677 Candidate.Viable = false; 7678 Candidate.FailureKind = ovl_fail_explicit; 7679 return; 7680 } 7681 7682 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7683 CXXConversionDecl *Specialization = nullptr; 7684 if (TemplateDeductionResult Result 7685 = DeduceTemplateArguments(FunctionTemplate, ToType, 7686 Specialization, Info)) { 7687 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7688 Candidate.FoundDecl = FoundDecl; 7689 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7690 Candidate.Viable = false; 7691 Candidate.FailureKind = ovl_fail_bad_deduction; 7692 Candidate.IsSurrogate = false; 7693 Candidate.IgnoreObjectArgument = false; 7694 Candidate.ExplicitCallArguments = 1; 7695 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7696 Info); 7697 return; 7698 } 7699 7700 // Add the conversion function template specialization produced by 7701 // template argument deduction as a candidate. 7702 assert(Specialization && "Missing function template specialization?"); 7703 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 7704 CandidateSet, AllowObjCConversionOnExplicit, 7705 AllowExplicit, AllowResultConversion); 7706 } 7707 7708 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that 7709 /// converts the given @c Object to a function pointer via the 7710 /// conversion function @c Conversion, and then attempts to call it 7711 /// with the given arguments (C++ [over.call.object]p2-4). Proto is 7712 /// the type of function that we'll eventually be calling. 7713 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 7714 DeclAccessPair FoundDecl, 7715 CXXRecordDecl *ActingContext, 7716 const FunctionProtoType *Proto, 7717 Expr *Object, 7718 ArrayRef<Expr *> Args, 7719 OverloadCandidateSet& CandidateSet) { 7720 if (!CandidateSet.isNewCandidate(Conversion)) 7721 return; 7722 7723 // Overload resolution is always an unevaluated context. 7724 EnterExpressionEvaluationContext Unevaluated( 7725 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7726 7727 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1); 7728 Candidate.FoundDecl = FoundDecl; 7729 Candidate.Function = nullptr; 7730 Candidate.Surrogate = Conversion; 7731 Candidate.Viable = true; 7732 Candidate.IsSurrogate = true; 7733 Candidate.IgnoreObjectArgument = false; 7734 Candidate.ExplicitCallArguments = Args.size(); 7735 7736 // Determine the implicit conversion sequence for the implicit 7737 // object parameter. 7738 ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization( 7739 *this, CandidateSet.getLocation(), Object->getType(), 7740 Object->Classify(Context), Conversion, ActingContext); 7741 if (ObjectInit.isBad()) { 7742 Candidate.Viable = false; 7743 Candidate.FailureKind = ovl_fail_bad_conversion; 7744 Candidate.Conversions[0] = ObjectInit; 7745 return; 7746 } 7747 7748 // The first conversion is actually a user-defined conversion whose 7749 // first conversion is ObjectInit's standard conversion (which is 7750 // effectively a reference binding). Record it as such. 7751 Candidate.Conversions[0].setUserDefined(); 7752 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 7753 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 7754 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; 7755 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 7756 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; 7757 Candidate.Conversions[0].UserDefined.After 7758 = Candidate.Conversions[0].UserDefined.Before; 7759 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 7760 7761 // Find the 7762 unsigned NumParams = Proto->getNumParams(); 7763 7764 // (C++ 13.3.2p2): A candidate function having fewer than m 7765 // parameters is viable only if it has an ellipsis in its parameter 7766 // list (8.3.5). 7767 if (Args.size() > NumParams && !Proto->isVariadic()) { 7768 Candidate.Viable = false; 7769 Candidate.FailureKind = ovl_fail_too_many_arguments; 7770 return; 7771 } 7772 7773 // Function types don't have any default arguments, so just check if 7774 // we have enough arguments. 7775 if (Args.size() < NumParams) { 7776 // Not enough arguments. 7777 Candidate.Viable = false; 7778 Candidate.FailureKind = ovl_fail_too_few_arguments; 7779 return; 7780 } 7781 7782 // Determine the implicit conversion sequences for each of the 7783 // arguments. 7784 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 7785 if (ArgIdx < NumParams) { 7786 // (C++ 13.3.2p3): for F to be a viable function, there shall 7787 // exist for each argument an implicit conversion sequence 7788 // (13.3.3.1) that converts that argument to the corresponding 7789 // parameter of F. 7790 QualType ParamType = Proto->getParamType(ArgIdx); 7791 Candidate.Conversions[ArgIdx + 1] 7792 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 7793 /*SuppressUserConversions=*/false, 7794 /*InOverloadResolution=*/false, 7795 /*AllowObjCWritebackConversion=*/ 7796 getLangOpts().ObjCAutoRefCount); 7797 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 7798 Candidate.Viable = false; 7799 Candidate.FailureKind = ovl_fail_bad_conversion; 7800 return; 7801 } 7802 } else { 7803 // (C++ 13.3.2p2): For the purposes of overload resolution, any 7804 // argument for which there is no corresponding parameter is 7805 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 7806 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 7807 } 7808 } 7809 7810 if (EnableIfAttr *FailedAttr = 7811 CheckEnableIf(Conversion, CandidateSet.getLocation(), std::nullopt)) { 7812 Candidate.Viable = false; 7813 Candidate.FailureKind = ovl_fail_enable_if; 7814 Candidate.DeductionFailure.Data = FailedAttr; 7815 return; 7816 } 7817 } 7818 7819 /// Add all of the non-member operator function declarations in the given 7820 /// function set to the overload candidate set. 7821 void Sema::AddNonMemberOperatorCandidates( 7822 const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args, 7823 OverloadCandidateSet &CandidateSet, 7824 TemplateArgumentListInfo *ExplicitTemplateArgs) { 7825 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 7826 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 7827 ArrayRef<Expr *> FunctionArgs = Args; 7828 7829 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); 7830 FunctionDecl *FD = 7831 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); 7832 7833 // Don't consider rewritten functions if we're not rewriting. 7834 if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD)) 7835 continue; 7836 7837 assert(!isa<CXXMethodDecl>(FD) && 7838 "unqualified operator lookup found a member function"); 7839 7840 if (FunTmpl) { 7841 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs, 7842 FunctionArgs, CandidateSet); 7843 if (CandidateSet.getRewriteInfo().shouldAddReversed(*this, Args, FD)) 7844 AddTemplateOverloadCandidate( 7845 FunTmpl, F.getPair(), ExplicitTemplateArgs, 7846 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false, 7847 true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed); 7848 } else { 7849 if (ExplicitTemplateArgs) 7850 continue; 7851 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet); 7852 if (CandidateSet.getRewriteInfo().shouldAddReversed(*this, Args, FD)) 7853 AddOverloadCandidate( 7854 FD, F.getPair(), {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, 7855 false, false, true, false, ADLCallKind::NotADL, std::nullopt, 7856 OverloadCandidateParamOrder::Reversed); 7857 } 7858 } 7859 } 7860 7861 /// Add overload candidates for overloaded operators that are 7862 /// member functions. 7863 /// 7864 /// Add the overloaded operator candidates that are member functions 7865 /// for the operator Op that was used in an operator expression such 7866 /// as "x Op y". , Args/NumArgs provides the operator arguments, and 7867 /// CandidateSet will store the added overload candidates. (C++ 7868 /// [over.match.oper]). 7869 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 7870 SourceLocation OpLoc, 7871 ArrayRef<Expr *> Args, 7872 OverloadCandidateSet &CandidateSet, 7873 OverloadCandidateParamOrder PO) { 7874 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 7875 7876 // C++ [over.match.oper]p3: 7877 // For a unary operator @ with an operand of a type whose 7878 // cv-unqualified version is T1, and for a binary operator @ with 7879 // a left operand of a type whose cv-unqualified version is T1 and 7880 // a right operand of a type whose cv-unqualified version is T2, 7881 // three sets of candidate functions, designated member 7882 // candidates, non-member candidates and built-in candidates, are 7883 // constructed as follows: 7884 QualType T1 = Args[0]->getType(); 7885 7886 // -- If T1 is a complete class type or a class currently being 7887 // defined, the set of member candidates is the result of the 7888 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise, 7889 // the set of member candidates is empty. 7890 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 7891 // Complete the type if it can be completed. 7892 if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined()) 7893 return; 7894 // If the type is neither complete nor being defined, bail out now. 7895 if (!T1Rec->getDecl()->getDefinition()) 7896 return; 7897 7898 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 7899 LookupQualifiedName(Operators, T1Rec->getDecl()); 7900 Operators.suppressDiagnostics(); 7901 7902 for (LookupResult::iterator Oper = Operators.begin(), 7903 OperEnd = Operators.end(); 7904 Oper != OperEnd; ++Oper) { 7905 if (Oper->getAsFunction() && 7906 PO == OverloadCandidateParamOrder::Reversed && 7907 !CandidateSet.getRewriteInfo().shouldAddReversed( 7908 *this, {Args[1], Args[0]}, Oper->getAsFunction())) 7909 continue; 7910 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 7911 Args[0]->Classify(Context), Args.slice(1), 7912 CandidateSet, /*SuppressUserConversion=*/false, PO); 7913 } 7914 } 7915 } 7916 7917 /// AddBuiltinCandidate - Add a candidate for a built-in 7918 /// operator. ResultTy and ParamTys are the result and parameter types 7919 /// of the built-in candidate, respectively. Args and NumArgs are the 7920 /// arguments being passed to the candidate. IsAssignmentOperator 7921 /// should be true when this built-in candidate is an assignment 7922 /// operator. NumContextualBoolArguments is the number of arguments 7923 /// (at the beginning of the argument list) that will be contextually 7924 /// converted to bool. 7925 void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args, 7926 OverloadCandidateSet& CandidateSet, 7927 bool IsAssignmentOperator, 7928 unsigned NumContextualBoolArguments) { 7929 // Overload resolution is always an unevaluated context. 7930 EnterExpressionEvaluationContext Unevaluated( 7931 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7932 7933 // Add this candidate 7934 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size()); 7935 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none); 7936 Candidate.Function = nullptr; 7937 Candidate.IsSurrogate = false; 7938 Candidate.IgnoreObjectArgument = false; 7939 std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes); 7940 7941 // Determine the implicit conversion sequences for each of the 7942 // arguments. 7943 Candidate.Viable = true; 7944 Candidate.ExplicitCallArguments = Args.size(); 7945 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 7946 // C++ [over.match.oper]p4: 7947 // For the built-in assignment operators, conversions of the 7948 // left operand are restricted as follows: 7949 // -- no temporaries are introduced to hold the left operand, and 7950 // -- no user-defined conversions are applied to the left 7951 // operand to achieve a type match with the left-most 7952 // parameter of a built-in candidate. 7953 // 7954 // We block these conversions by turning off user-defined 7955 // conversions, since that is the only way that initialization of 7956 // a reference to a non-class type can occur from something that 7957 // is not of the same type. 7958 if (ArgIdx < NumContextualBoolArguments) { 7959 assert(ParamTys[ArgIdx] == Context.BoolTy && 7960 "Contextual conversion to bool requires bool type"); 7961 Candidate.Conversions[ArgIdx] 7962 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 7963 } else { 7964 Candidate.Conversions[ArgIdx] 7965 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 7966 ArgIdx == 0 && IsAssignmentOperator, 7967 /*InOverloadResolution=*/false, 7968 /*AllowObjCWritebackConversion=*/ 7969 getLangOpts().ObjCAutoRefCount); 7970 } 7971 if (Candidate.Conversions[ArgIdx].isBad()) { 7972 Candidate.Viable = false; 7973 Candidate.FailureKind = ovl_fail_bad_conversion; 7974 break; 7975 } 7976 } 7977 } 7978 7979 namespace { 7980 7981 /// BuiltinCandidateTypeSet - A set of types that will be used for the 7982 /// candidate operator functions for built-in operators (C++ 7983 /// [over.built]). The types are separated into pointer types and 7984 /// enumeration types. 7985 class BuiltinCandidateTypeSet { 7986 /// TypeSet - A set of types. 7987 typedef llvm::SetVector<QualType, SmallVector<QualType, 8>, 7988 llvm::SmallPtrSet<QualType, 8>> TypeSet; 7989 7990 /// PointerTypes - The set of pointer types that will be used in the 7991 /// built-in candidates. 7992 TypeSet PointerTypes; 7993 7994 /// MemberPointerTypes - The set of member pointer types that will be 7995 /// used in the built-in candidates. 7996 TypeSet MemberPointerTypes; 7997 7998 /// EnumerationTypes - The set of enumeration types that will be 7999 /// used in the built-in candidates. 8000 TypeSet EnumerationTypes; 8001 8002 /// The set of vector types that will be used in the built-in 8003 /// candidates. 8004 TypeSet VectorTypes; 8005 8006 /// The set of matrix types that will be used in the built-in 8007 /// candidates. 8008 TypeSet MatrixTypes; 8009 8010 /// A flag indicating non-record types are viable candidates 8011 bool HasNonRecordTypes; 8012 8013 /// A flag indicating whether either arithmetic or enumeration types 8014 /// were present in the candidate set. 8015 bool HasArithmeticOrEnumeralTypes; 8016 8017 /// A flag indicating whether the nullptr type was present in the 8018 /// candidate set. 8019 bool HasNullPtrType; 8020 8021 /// Sema - The semantic analysis instance where we are building the 8022 /// candidate type set. 8023 Sema &SemaRef; 8024 8025 /// Context - The AST context in which we will build the type sets. 8026 ASTContext &Context; 8027 8028 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 8029 const Qualifiers &VisibleQuals); 8030 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 8031 8032 public: 8033 /// iterator - Iterates through the types that are part of the set. 8034 typedef TypeSet::iterator iterator; 8035 8036 BuiltinCandidateTypeSet(Sema &SemaRef) 8037 : HasNonRecordTypes(false), 8038 HasArithmeticOrEnumeralTypes(false), 8039 HasNullPtrType(false), 8040 SemaRef(SemaRef), 8041 Context(SemaRef.Context) { } 8042 8043 void AddTypesConvertedFrom(QualType Ty, 8044 SourceLocation Loc, 8045 bool AllowUserConversions, 8046 bool AllowExplicitConversions, 8047 const Qualifiers &VisibleTypeConversionsQuals); 8048 8049 llvm::iterator_range<iterator> pointer_types() { return PointerTypes; } 8050 llvm::iterator_range<iterator> member_pointer_types() { 8051 return MemberPointerTypes; 8052 } 8053 llvm::iterator_range<iterator> enumeration_types() { 8054 return EnumerationTypes; 8055 } 8056 llvm::iterator_range<iterator> vector_types() { return VectorTypes; } 8057 llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; } 8058 8059 bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); } 8060 bool hasNonRecordTypes() { return HasNonRecordTypes; } 8061 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } 8062 bool hasNullPtrType() const { return HasNullPtrType; } 8063 }; 8064 8065 } // end anonymous namespace 8066 8067 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 8068 /// the set of pointer types along with any more-qualified variants of 8069 /// that type. For example, if @p Ty is "int const *", this routine 8070 /// will add "int const *", "int const volatile *", "int const 8071 /// restrict *", and "int const volatile restrict *" to the set of 8072 /// pointer types. Returns true if the add of @p Ty itself succeeded, 8073 /// false otherwise. 8074 /// 8075 /// FIXME: what to do about extended qualifiers? 8076 bool 8077 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 8078 const Qualifiers &VisibleQuals) { 8079 8080 // Insert this type. 8081 if (!PointerTypes.insert(Ty)) 8082 return false; 8083 8084 QualType PointeeTy; 8085 const PointerType *PointerTy = Ty->getAs<PointerType>(); 8086 bool buildObjCPtr = false; 8087 if (!PointerTy) { 8088 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>(); 8089 PointeeTy = PTy->getPointeeType(); 8090 buildObjCPtr = true; 8091 } else { 8092 PointeeTy = PointerTy->getPointeeType(); 8093 } 8094 8095 // Don't add qualified variants of arrays. For one, they're not allowed 8096 // (the qualifier would sink to the element type), and for another, the 8097 // only overload situation where it matters is subscript or pointer +- int, 8098 // and those shouldn't have qualifier variants anyway. 8099 if (PointeeTy->isArrayType()) 8100 return true; 8101 8102 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 8103 bool hasVolatile = VisibleQuals.hasVolatile(); 8104 bool hasRestrict = VisibleQuals.hasRestrict(); 8105 8106 // Iterate through all strict supersets of BaseCVR. 8107 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 8108 if ((CVR | BaseCVR) != CVR) continue; 8109 // Skip over volatile if no volatile found anywhere in the types. 8110 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 8111 8112 // Skip over restrict if no restrict found anywhere in the types, or if 8113 // the type cannot be restrict-qualified. 8114 if ((CVR & Qualifiers::Restrict) && 8115 (!hasRestrict || 8116 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType())))) 8117 continue; 8118 8119 // Build qualified pointee type. 8120 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 8121 8122 // Build qualified pointer type. 8123 QualType QPointerTy; 8124 if (!buildObjCPtr) 8125 QPointerTy = Context.getPointerType(QPointeeTy); 8126 else 8127 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy); 8128 8129 // Insert qualified pointer type. 8130 PointerTypes.insert(QPointerTy); 8131 } 8132 8133 return true; 8134 } 8135 8136 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 8137 /// to the set of pointer types along with any more-qualified variants of 8138 /// that type. For example, if @p Ty is "int const *", this routine 8139 /// will add "int const *", "int const volatile *", "int const 8140 /// restrict *", and "int const volatile restrict *" to the set of 8141 /// pointer types. Returns true if the add of @p Ty itself succeeded, 8142 /// false otherwise. 8143 /// 8144 /// FIXME: what to do about extended qualifiers? 8145 bool 8146 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 8147 QualType Ty) { 8148 // Insert this type. 8149 if (!MemberPointerTypes.insert(Ty)) 8150 return false; 8151 8152 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 8153 assert(PointerTy && "type was not a member pointer type!"); 8154 8155 QualType PointeeTy = PointerTy->getPointeeType(); 8156 // Don't add qualified variants of arrays. For one, they're not allowed 8157 // (the qualifier would sink to the element type), and for another, the 8158 // only overload situation where it matters is subscript or pointer +- int, 8159 // and those shouldn't have qualifier variants anyway. 8160 if (PointeeTy->isArrayType()) 8161 return true; 8162 const Type *ClassTy = PointerTy->getClass(); 8163 8164 // Iterate through all strict supersets of the pointee type's CVR 8165 // qualifiers. 8166 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 8167 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 8168 if ((CVR | BaseCVR) != CVR) continue; 8169 8170 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 8171 MemberPointerTypes.insert( 8172 Context.getMemberPointerType(QPointeeTy, ClassTy)); 8173 } 8174 8175 return true; 8176 } 8177 8178 /// AddTypesConvertedFrom - Add each of the types to which the type @p 8179 /// Ty can be implicit converted to the given set of @p Types. We're 8180 /// primarily interested in pointer types and enumeration types. We also 8181 /// take member pointer types, for the conditional operator. 8182 /// AllowUserConversions is true if we should look at the conversion 8183 /// functions of a class type, and AllowExplicitConversions if we 8184 /// should also include the explicit conversion functions of a class 8185 /// type. 8186 void 8187 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 8188 SourceLocation Loc, 8189 bool AllowUserConversions, 8190 bool AllowExplicitConversions, 8191 const Qualifiers &VisibleQuals) { 8192 // Only deal with canonical types. 8193 Ty = Context.getCanonicalType(Ty); 8194 8195 // Look through reference types; they aren't part of the type of an 8196 // expression for the purposes of conversions. 8197 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 8198 Ty = RefTy->getPointeeType(); 8199 8200 // If we're dealing with an array type, decay to the pointer. 8201 if (Ty->isArrayType()) 8202 Ty = SemaRef.Context.getArrayDecayedType(Ty); 8203 8204 // Otherwise, we don't care about qualifiers on the type. 8205 Ty = Ty.getLocalUnqualifiedType(); 8206 8207 // Flag if we ever add a non-record type. 8208 const RecordType *TyRec = Ty->getAs<RecordType>(); 8209 HasNonRecordTypes = HasNonRecordTypes || !TyRec; 8210 8211 // Flag if we encounter an arithmetic type. 8212 HasArithmeticOrEnumeralTypes = 8213 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); 8214 8215 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 8216 PointerTypes.insert(Ty); 8217 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 8218 // Insert our type, and its more-qualified variants, into the set 8219 // of types. 8220 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 8221 return; 8222 } else if (Ty->isMemberPointerType()) { 8223 // Member pointers are far easier, since the pointee can't be converted. 8224 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 8225 return; 8226 } else if (Ty->isEnumeralType()) { 8227 HasArithmeticOrEnumeralTypes = true; 8228 EnumerationTypes.insert(Ty); 8229 } else if (Ty->isVectorType()) { 8230 // We treat vector types as arithmetic types in many contexts as an 8231 // extension. 8232 HasArithmeticOrEnumeralTypes = true; 8233 VectorTypes.insert(Ty); 8234 } else if (Ty->isMatrixType()) { 8235 // Similar to vector types, we treat vector types as arithmetic types in 8236 // many contexts as an extension. 8237 HasArithmeticOrEnumeralTypes = true; 8238 MatrixTypes.insert(Ty); 8239 } else if (Ty->isNullPtrType()) { 8240 HasNullPtrType = true; 8241 } else if (AllowUserConversions && TyRec) { 8242 // No conversion functions in incomplete types. 8243 if (!SemaRef.isCompleteType(Loc, Ty)) 8244 return; 8245 8246 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 8247 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { 8248 if (isa<UsingShadowDecl>(D)) 8249 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 8250 8251 // Skip conversion function templates; they don't tell us anything 8252 // about which builtin types we can convert to. 8253 if (isa<FunctionTemplateDecl>(D)) 8254 continue; 8255 8256 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 8257 if (AllowExplicitConversions || !Conv->isExplicit()) { 8258 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 8259 VisibleQuals); 8260 } 8261 } 8262 } 8263 } 8264 /// Helper function for adjusting address spaces for the pointer or reference 8265 /// operands of builtin operators depending on the argument. 8266 static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T, 8267 Expr *Arg) { 8268 return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace()); 8269 } 8270 8271 /// Helper function for AddBuiltinOperatorCandidates() that adds 8272 /// the volatile- and non-volatile-qualified assignment operators for the 8273 /// given type to the candidate set. 8274 static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 8275 QualType T, 8276 ArrayRef<Expr *> Args, 8277 OverloadCandidateSet &CandidateSet) { 8278 QualType ParamTypes[2]; 8279 8280 // T& operator=(T&, T) 8281 ParamTypes[0] = S.Context.getLValueReferenceType( 8282 AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0])); 8283 ParamTypes[1] = T; 8284 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8285 /*IsAssignmentOperator=*/true); 8286 8287 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 8288 // volatile T& operator=(volatile T&, T) 8289 ParamTypes[0] = S.Context.getLValueReferenceType( 8290 AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T), 8291 Args[0])); 8292 ParamTypes[1] = T; 8293 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8294 /*IsAssignmentOperator=*/true); 8295 } 8296 } 8297 8298 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 8299 /// if any, found in visible type conversion functions found in ArgExpr's type. 8300 static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 8301 Qualifiers VRQuals; 8302 const RecordType *TyRec; 8303 if (const MemberPointerType *RHSMPType = 8304 ArgExpr->getType()->getAs<MemberPointerType>()) 8305 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 8306 else 8307 TyRec = ArgExpr->getType()->getAs<RecordType>(); 8308 if (!TyRec) { 8309 // Just to be safe, assume the worst case. 8310 VRQuals.addVolatile(); 8311 VRQuals.addRestrict(); 8312 return VRQuals; 8313 } 8314 8315 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 8316 if (!ClassDecl->hasDefinition()) 8317 return VRQuals; 8318 8319 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { 8320 if (isa<UsingShadowDecl>(D)) 8321 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 8322 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 8323 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 8324 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 8325 CanTy = ResTypeRef->getPointeeType(); 8326 // Need to go down the pointer/mempointer chain and add qualifiers 8327 // as see them. 8328 bool done = false; 8329 while (!done) { 8330 if (CanTy.isRestrictQualified()) 8331 VRQuals.addRestrict(); 8332 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 8333 CanTy = ResTypePtr->getPointeeType(); 8334 else if (const MemberPointerType *ResTypeMPtr = 8335 CanTy->getAs<MemberPointerType>()) 8336 CanTy = ResTypeMPtr->getPointeeType(); 8337 else 8338 done = true; 8339 if (CanTy.isVolatileQualified()) 8340 VRQuals.addVolatile(); 8341 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 8342 return VRQuals; 8343 } 8344 } 8345 } 8346 return VRQuals; 8347 } 8348 8349 // Note: We're currently only handling qualifiers that are meaningful for the 8350 // LHS of compound assignment overloading. 8351 static void forAllQualifierCombinationsImpl( 8352 QualifiersAndAtomic Available, QualifiersAndAtomic Applied, 8353 llvm::function_ref<void(QualifiersAndAtomic)> Callback) { 8354 // _Atomic 8355 if (Available.hasAtomic()) { 8356 Available.removeAtomic(); 8357 forAllQualifierCombinationsImpl(Available, Applied.withAtomic(), Callback); 8358 forAllQualifierCombinationsImpl(Available, Applied, Callback); 8359 return; 8360 } 8361 8362 // volatile 8363 if (Available.hasVolatile()) { 8364 Available.removeVolatile(); 8365 assert(!Applied.hasVolatile()); 8366 forAllQualifierCombinationsImpl(Available, Applied.withVolatile(), 8367 Callback); 8368 forAllQualifierCombinationsImpl(Available, Applied, Callback); 8369 return; 8370 } 8371 8372 Callback(Applied); 8373 } 8374 8375 static void forAllQualifierCombinations( 8376 QualifiersAndAtomic Quals, 8377 llvm::function_ref<void(QualifiersAndAtomic)> Callback) { 8378 return forAllQualifierCombinationsImpl(Quals, QualifiersAndAtomic(), 8379 Callback); 8380 } 8381 8382 static QualType makeQualifiedLValueReferenceType(QualType Base, 8383 QualifiersAndAtomic Quals, 8384 Sema &S) { 8385 if (Quals.hasAtomic()) 8386 Base = S.Context.getAtomicType(Base); 8387 if (Quals.hasVolatile()) 8388 Base = S.Context.getVolatileType(Base); 8389 return S.Context.getLValueReferenceType(Base); 8390 } 8391 8392 namespace { 8393 8394 /// Helper class to manage the addition of builtin operator overload 8395 /// candidates. It provides shared state and utility methods used throughout 8396 /// the process, as well as a helper method to add each group of builtin 8397 /// operator overloads from the standard to a candidate set. 8398 class BuiltinOperatorOverloadBuilder { 8399 // Common instance state available to all overload candidate addition methods. 8400 Sema &S; 8401 ArrayRef<Expr *> Args; 8402 QualifiersAndAtomic VisibleTypeConversionsQuals; 8403 bool HasArithmeticOrEnumeralCandidateType; 8404 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; 8405 OverloadCandidateSet &CandidateSet; 8406 8407 static constexpr int ArithmeticTypesCap = 24; 8408 SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes; 8409 8410 // Define some indices used to iterate over the arithmetic types in 8411 // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic 8412 // types are that preserved by promotion (C++ [over.built]p2). 8413 unsigned FirstIntegralType, 8414 LastIntegralType; 8415 unsigned FirstPromotedIntegralType, 8416 LastPromotedIntegralType; 8417 unsigned FirstPromotedArithmeticType, 8418 LastPromotedArithmeticType; 8419 unsigned NumArithmeticTypes; 8420 8421 void InitArithmeticTypes() { 8422 // Start of promoted types. 8423 FirstPromotedArithmeticType = 0; 8424 ArithmeticTypes.push_back(S.Context.FloatTy); 8425 ArithmeticTypes.push_back(S.Context.DoubleTy); 8426 ArithmeticTypes.push_back(S.Context.LongDoubleTy); 8427 if (S.Context.getTargetInfo().hasFloat128Type()) 8428 ArithmeticTypes.push_back(S.Context.Float128Ty); 8429 if (S.Context.getTargetInfo().hasIbm128Type()) 8430 ArithmeticTypes.push_back(S.Context.Ibm128Ty); 8431 8432 // Start of integral types. 8433 FirstIntegralType = ArithmeticTypes.size(); 8434 FirstPromotedIntegralType = ArithmeticTypes.size(); 8435 ArithmeticTypes.push_back(S.Context.IntTy); 8436 ArithmeticTypes.push_back(S.Context.LongTy); 8437 ArithmeticTypes.push_back(S.Context.LongLongTy); 8438 if (S.Context.getTargetInfo().hasInt128Type() || 8439 (S.Context.getAuxTargetInfo() && 8440 S.Context.getAuxTargetInfo()->hasInt128Type())) 8441 ArithmeticTypes.push_back(S.Context.Int128Ty); 8442 ArithmeticTypes.push_back(S.Context.UnsignedIntTy); 8443 ArithmeticTypes.push_back(S.Context.UnsignedLongTy); 8444 ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy); 8445 if (S.Context.getTargetInfo().hasInt128Type() || 8446 (S.Context.getAuxTargetInfo() && 8447 S.Context.getAuxTargetInfo()->hasInt128Type())) 8448 ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty); 8449 LastPromotedIntegralType = ArithmeticTypes.size(); 8450 LastPromotedArithmeticType = ArithmeticTypes.size(); 8451 // End of promoted types. 8452 8453 ArithmeticTypes.push_back(S.Context.BoolTy); 8454 ArithmeticTypes.push_back(S.Context.CharTy); 8455 ArithmeticTypes.push_back(S.Context.WCharTy); 8456 if (S.Context.getLangOpts().Char8) 8457 ArithmeticTypes.push_back(S.Context.Char8Ty); 8458 ArithmeticTypes.push_back(S.Context.Char16Ty); 8459 ArithmeticTypes.push_back(S.Context.Char32Ty); 8460 ArithmeticTypes.push_back(S.Context.SignedCharTy); 8461 ArithmeticTypes.push_back(S.Context.ShortTy); 8462 ArithmeticTypes.push_back(S.Context.UnsignedCharTy); 8463 ArithmeticTypes.push_back(S.Context.UnsignedShortTy); 8464 LastIntegralType = ArithmeticTypes.size(); 8465 NumArithmeticTypes = ArithmeticTypes.size(); 8466 // End of integral types. 8467 // FIXME: What about complex? What about half? 8468 8469 assert(ArithmeticTypes.size() <= ArithmeticTypesCap && 8470 "Enough inline storage for all arithmetic types."); 8471 } 8472 8473 /// Helper method to factor out the common pattern of adding overloads 8474 /// for '++' and '--' builtin operators. 8475 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, 8476 bool HasVolatile, 8477 bool HasRestrict) { 8478 QualType ParamTypes[2] = { 8479 S.Context.getLValueReferenceType(CandidateTy), 8480 S.Context.IntTy 8481 }; 8482 8483 // Non-volatile version. 8484 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8485 8486 // Use a heuristic to reduce number of builtin candidates in the set: 8487 // add volatile version only if there are conversions to a volatile type. 8488 if (HasVolatile) { 8489 ParamTypes[0] = 8490 S.Context.getLValueReferenceType( 8491 S.Context.getVolatileType(CandidateTy)); 8492 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8493 } 8494 8495 // Add restrict version only if there are conversions to a restrict type 8496 // and our candidate type is a non-restrict-qualified pointer. 8497 if (HasRestrict && CandidateTy->isAnyPointerType() && 8498 !CandidateTy.isRestrictQualified()) { 8499 ParamTypes[0] 8500 = S.Context.getLValueReferenceType( 8501 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict)); 8502 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8503 8504 if (HasVolatile) { 8505 ParamTypes[0] 8506 = S.Context.getLValueReferenceType( 8507 S.Context.getCVRQualifiedType(CandidateTy, 8508 (Qualifiers::Volatile | 8509 Qualifiers::Restrict))); 8510 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8511 } 8512 } 8513 8514 } 8515 8516 /// Helper to add an overload candidate for a binary builtin with types \p L 8517 /// and \p R. 8518 void AddCandidate(QualType L, QualType R) { 8519 QualType LandR[2] = {L, R}; 8520 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8521 } 8522 8523 public: 8524 BuiltinOperatorOverloadBuilder( 8525 Sema &S, ArrayRef<Expr *> Args, 8526 QualifiersAndAtomic VisibleTypeConversionsQuals, 8527 bool HasArithmeticOrEnumeralCandidateType, 8528 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, 8529 OverloadCandidateSet &CandidateSet) 8530 : S(S), Args(Args), 8531 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), 8532 HasArithmeticOrEnumeralCandidateType( 8533 HasArithmeticOrEnumeralCandidateType), 8534 CandidateTypes(CandidateTypes), 8535 CandidateSet(CandidateSet) { 8536 8537 InitArithmeticTypes(); 8538 } 8539 8540 // Increment is deprecated for bool since C++17. 8541 // 8542 // C++ [over.built]p3: 8543 // 8544 // For every pair (T, VQ), where T is an arithmetic type other 8545 // than bool, and VQ is either volatile or empty, there exist 8546 // candidate operator functions of the form 8547 // 8548 // VQ T& operator++(VQ T&); 8549 // T operator++(VQ T&, int); 8550 // 8551 // C++ [over.built]p4: 8552 // 8553 // For every pair (T, VQ), where T is an arithmetic type other 8554 // than bool, and VQ is either volatile or empty, there exist 8555 // candidate operator functions of the form 8556 // 8557 // VQ T& operator--(VQ T&); 8558 // T operator--(VQ T&, int); 8559 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { 8560 if (!HasArithmeticOrEnumeralCandidateType) 8561 return; 8562 8563 for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) { 8564 const auto TypeOfT = ArithmeticTypes[Arith]; 8565 if (TypeOfT == S.Context.BoolTy) { 8566 if (Op == OO_MinusMinus) 8567 continue; 8568 if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17) 8569 continue; 8570 } 8571 addPlusPlusMinusMinusStyleOverloads( 8572 TypeOfT, 8573 VisibleTypeConversionsQuals.hasVolatile(), 8574 VisibleTypeConversionsQuals.hasRestrict()); 8575 } 8576 } 8577 8578 // C++ [over.built]p5: 8579 // 8580 // For every pair (T, VQ), where T is a cv-qualified or 8581 // cv-unqualified object type, and VQ is either volatile or 8582 // empty, there exist candidate operator functions of the form 8583 // 8584 // T*VQ& operator++(T*VQ&); 8585 // T*VQ& operator--(T*VQ&); 8586 // T* operator++(T*VQ&, int); 8587 // T* operator--(T*VQ&, int); 8588 void addPlusPlusMinusMinusPointerOverloads() { 8589 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 8590 // Skip pointer types that aren't pointers to object types. 8591 if (!PtrTy->getPointeeType()->isObjectType()) 8592 continue; 8593 8594 addPlusPlusMinusMinusStyleOverloads( 8595 PtrTy, 8596 (!PtrTy.isVolatileQualified() && 8597 VisibleTypeConversionsQuals.hasVolatile()), 8598 (!PtrTy.isRestrictQualified() && 8599 VisibleTypeConversionsQuals.hasRestrict())); 8600 } 8601 } 8602 8603 // C++ [over.built]p6: 8604 // For every cv-qualified or cv-unqualified object type T, there 8605 // exist candidate operator functions of the form 8606 // 8607 // T& operator*(T*); 8608 // 8609 // C++ [over.built]p7: 8610 // For every function type T that does not have cv-qualifiers or a 8611 // ref-qualifier, there exist candidate operator functions of the form 8612 // T& operator*(T*); 8613 void addUnaryStarPointerOverloads() { 8614 for (QualType ParamTy : CandidateTypes[0].pointer_types()) { 8615 QualType PointeeTy = ParamTy->getPointeeType(); 8616 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) 8617 continue; 8618 8619 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) 8620 if (Proto->getMethodQuals() || Proto->getRefQualifier()) 8621 continue; 8622 8623 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); 8624 } 8625 } 8626 8627 // C++ [over.built]p9: 8628 // For every promoted arithmetic type T, there exist candidate 8629 // operator functions of the form 8630 // 8631 // T operator+(T); 8632 // T operator-(T); 8633 void addUnaryPlusOrMinusArithmeticOverloads() { 8634 if (!HasArithmeticOrEnumeralCandidateType) 8635 return; 8636 8637 for (unsigned Arith = FirstPromotedArithmeticType; 8638 Arith < LastPromotedArithmeticType; ++Arith) { 8639 QualType ArithTy = ArithmeticTypes[Arith]; 8640 S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet); 8641 } 8642 8643 // Extension: We also add these operators for vector types. 8644 for (QualType VecTy : CandidateTypes[0].vector_types()) 8645 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); 8646 } 8647 8648 // C++ [over.built]p8: 8649 // For every type T, there exist candidate operator functions of 8650 // the form 8651 // 8652 // T* operator+(T*); 8653 void addUnaryPlusPointerOverloads() { 8654 for (QualType ParamTy : CandidateTypes[0].pointer_types()) 8655 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); 8656 } 8657 8658 // C++ [over.built]p10: 8659 // For every promoted integral type T, there exist candidate 8660 // operator functions of the form 8661 // 8662 // T operator~(T); 8663 void addUnaryTildePromotedIntegralOverloads() { 8664 if (!HasArithmeticOrEnumeralCandidateType) 8665 return; 8666 8667 for (unsigned Int = FirstPromotedIntegralType; 8668 Int < LastPromotedIntegralType; ++Int) { 8669 QualType IntTy = ArithmeticTypes[Int]; 8670 S.AddBuiltinCandidate(&IntTy, Args, CandidateSet); 8671 } 8672 8673 // Extension: We also add this operator for vector types. 8674 for (QualType VecTy : CandidateTypes[0].vector_types()) 8675 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); 8676 } 8677 8678 // C++ [over.match.oper]p16: 8679 // For every pointer to member type T or type std::nullptr_t, there 8680 // exist candidate operator functions of the form 8681 // 8682 // bool operator==(T,T); 8683 // bool operator!=(T,T); 8684 void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() { 8685 /// Set of (canonical) types that we've already handled. 8686 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8687 8688 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8689 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { 8690 // Don't add the same builtin candidate twice. 8691 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) 8692 continue; 8693 8694 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; 8695 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8696 } 8697 8698 if (CandidateTypes[ArgIdx].hasNullPtrType()) { 8699 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); 8700 if (AddedTypes.insert(NullPtrTy).second) { 8701 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; 8702 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8703 } 8704 } 8705 } 8706 } 8707 8708 // C++ [over.built]p15: 8709 // 8710 // For every T, where T is an enumeration type or a pointer type, 8711 // there exist candidate operator functions of the form 8712 // 8713 // bool operator<(T, T); 8714 // bool operator>(T, T); 8715 // bool operator<=(T, T); 8716 // bool operator>=(T, T); 8717 // bool operator==(T, T); 8718 // bool operator!=(T, T); 8719 // R operator<=>(T, T) 8720 void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) { 8721 // C++ [over.match.oper]p3: 8722 // [...]the built-in candidates include all of the candidate operator 8723 // functions defined in 13.6 that, compared to the given operator, [...] 8724 // do not have the same parameter-type-list as any non-template non-member 8725 // candidate. 8726 // 8727 // Note that in practice, this only affects enumeration types because there 8728 // aren't any built-in candidates of record type, and a user-defined operator 8729 // must have an operand of record or enumeration type. Also, the only other 8730 // overloaded operator with enumeration arguments, operator=, 8731 // cannot be overloaded for enumeration types, so this is the only place 8732 // where we must suppress candidates like this. 8733 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 8734 UserDefinedBinaryOperators; 8735 8736 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8737 if (!CandidateTypes[ArgIdx].enumeration_types().empty()) { 8738 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 8739 CEnd = CandidateSet.end(); 8740 C != CEnd; ++C) { 8741 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 8742 continue; 8743 8744 if (C->Function->isFunctionTemplateSpecialization()) 8745 continue; 8746 8747 // We interpret "same parameter-type-list" as applying to the 8748 // "synthesized candidate, with the order of the two parameters 8749 // reversed", not to the original function. 8750 bool Reversed = C->isReversed(); 8751 QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0) 8752 ->getType() 8753 .getUnqualifiedType(); 8754 QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1) 8755 ->getType() 8756 .getUnqualifiedType(); 8757 8758 // Skip if either parameter isn't of enumeral type. 8759 if (!FirstParamType->isEnumeralType() || 8760 !SecondParamType->isEnumeralType()) 8761 continue; 8762 8763 // Add this operator to the set of known user-defined operators. 8764 UserDefinedBinaryOperators.insert( 8765 std::make_pair(S.Context.getCanonicalType(FirstParamType), 8766 S.Context.getCanonicalType(SecondParamType))); 8767 } 8768 } 8769 } 8770 8771 /// Set of (canonical) types that we've already handled. 8772 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8773 8774 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8775 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { 8776 // Don't add the same builtin candidate twice. 8777 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 8778 continue; 8779 if (IsSpaceship && PtrTy->isFunctionPointerType()) 8780 continue; 8781 8782 QualType ParamTypes[2] = {PtrTy, PtrTy}; 8783 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8784 } 8785 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { 8786 CanQualType CanonType = S.Context.getCanonicalType(EnumTy); 8787 8788 // Don't add the same builtin candidate twice, or if a user defined 8789 // candidate exists. 8790 if (!AddedTypes.insert(CanonType).second || 8791 UserDefinedBinaryOperators.count(std::make_pair(CanonType, 8792 CanonType))) 8793 continue; 8794 QualType ParamTypes[2] = {EnumTy, EnumTy}; 8795 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8796 } 8797 } 8798 } 8799 8800 // C++ [over.built]p13: 8801 // 8802 // For every cv-qualified or cv-unqualified object type T 8803 // there exist candidate operator functions of the form 8804 // 8805 // T* operator+(T*, ptrdiff_t); 8806 // T& operator[](T*, ptrdiff_t); [BELOW] 8807 // T* operator-(T*, ptrdiff_t); 8808 // T* operator+(ptrdiff_t, T*); 8809 // T& operator[](ptrdiff_t, T*); [BELOW] 8810 // 8811 // C++ [over.built]p14: 8812 // 8813 // For every T, where T is a pointer to object type, there 8814 // exist candidate operator functions of the form 8815 // 8816 // ptrdiff_t operator-(T, T); 8817 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { 8818 /// Set of (canonical) types that we've already handled. 8819 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8820 8821 for (int Arg = 0; Arg < 2; ++Arg) { 8822 QualType AsymmetricParamTypes[2] = { 8823 S.Context.getPointerDiffType(), 8824 S.Context.getPointerDiffType(), 8825 }; 8826 for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) { 8827 QualType PointeeTy = PtrTy->getPointeeType(); 8828 if (!PointeeTy->isObjectType()) 8829 continue; 8830 8831 AsymmetricParamTypes[Arg] = PtrTy; 8832 if (Arg == 0 || Op == OO_Plus) { 8833 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 8834 // T* operator+(ptrdiff_t, T*); 8835 S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet); 8836 } 8837 if (Op == OO_Minus) { 8838 // ptrdiff_t operator-(T, T); 8839 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 8840 continue; 8841 8842 QualType ParamTypes[2] = {PtrTy, PtrTy}; 8843 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8844 } 8845 } 8846 } 8847 } 8848 8849 // C++ [over.built]p12: 8850 // 8851 // For every pair of promoted arithmetic types L and R, there 8852 // exist candidate operator functions of the form 8853 // 8854 // LR operator*(L, R); 8855 // LR operator/(L, R); 8856 // LR operator+(L, R); 8857 // LR operator-(L, R); 8858 // bool operator<(L, R); 8859 // bool operator>(L, R); 8860 // bool operator<=(L, R); 8861 // bool operator>=(L, R); 8862 // bool operator==(L, R); 8863 // bool operator!=(L, R); 8864 // 8865 // where LR is the result of the usual arithmetic conversions 8866 // between types L and R. 8867 // 8868 // C++ [over.built]p24: 8869 // 8870 // For every pair of promoted arithmetic types L and R, there exist 8871 // candidate operator functions of the form 8872 // 8873 // LR operator?(bool, L, R); 8874 // 8875 // where LR is the result of the usual arithmetic conversions 8876 // between types L and R. 8877 // Our candidates ignore the first parameter. 8878 void addGenericBinaryArithmeticOverloads() { 8879 if (!HasArithmeticOrEnumeralCandidateType) 8880 return; 8881 8882 for (unsigned Left = FirstPromotedArithmeticType; 8883 Left < LastPromotedArithmeticType; ++Left) { 8884 for (unsigned Right = FirstPromotedArithmeticType; 8885 Right < LastPromotedArithmeticType; ++Right) { 8886 QualType LandR[2] = { ArithmeticTypes[Left], 8887 ArithmeticTypes[Right] }; 8888 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8889 } 8890 } 8891 8892 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 8893 // conditional operator for vector types. 8894 for (QualType Vec1Ty : CandidateTypes[0].vector_types()) 8895 for (QualType Vec2Ty : CandidateTypes[1].vector_types()) { 8896 QualType LandR[2] = {Vec1Ty, Vec2Ty}; 8897 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8898 } 8899 } 8900 8901 /// Add binary operator overloads for each candidate matrix type M1, M2: 8902 /// * (M1, M1) -> M1 8903 /// * (M1, M1.getElementType()) -> M1 8904 /// * (M2.getElementType(), M2) -> M2 8905 /// * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0]. 8906 void addMatrixBinaryArithmeticOverloads() { 8907 if (!HasArithmeticOrEnumeralCandidateType) 8908 return; 8909 8910 for (QualType M1 : CandidateTypes[0].matrix_types()) { 8911 AddCandidate(M1, cast<MatrixType>(M1)->getElementType()); 8912 AddCandidate(M1, M1); 8913 } 8914 8915 for (QualType M2 : CandidateTypes[1].matrix_types()) { 8916 AddCandidate(cast<MatrixType>(M2)->getElementType(), M2); 8917 if (!CandidateTypes[0].containsMatrixType(M2)) 8918 AddCandidate(M2, M2); 8919 } 8920 } 8921 8922 // C++2a [over.built]p14: 8923 // 8924 // For every integral type T there exists a candidate operator function 8925 // of the form 8926 // 8927 // std::strong_ordering operator<=>(T, T) 8928 // 8929 // C++2a [over.built]p15: 8930 // 8931 // For every pair of floating-point types L and R, there exists a candidate 8932 // operator function of the form 8933 // 8934 // std::partial_ordering operator<=>(L, R); 8935 // 8936 // FIXME: The current specification for integral types doesn't play nice with 8937 // the direction of p0946r0, which allows mixed integral and unscoped-enum 8938 // comparisons. Under the current spec this can lead to ambiguity during 8939 // overload resolution. For example: 8940 // 8941 // enum A : int {a}; 8942 // auto x = (a <=> (long)42); 8943 // 8944 // error: call is ambiguous for arguments 'A' and 'long'. 8945 // note: candidate operator<=>(int, int) 8946 // note: candidate operator<=>(long, long) 8947 // 8948 // To avoid this error, this function deviates from the specification and adds 8949 // the mixed overloads `operator<=>(L, R)` where L and R are promoted 8950 // arithmetic types (the same as the generic relational overloads). 8951 // 8952 // For now this function acts as a placeholder. 8953 void addThreeWayArithmeticOverloads() { 8954 addGenericBinaryArithmeticOverloads(); 8955 } 8956 8957 // C++ [over.built]p17: 8958 // 8959 // For every pair of promoted integral types L and R, there 8960 // exist candidate operator functions of the form 8961 // 8962 // LR operator%(L, R); 8963 // LR operator&(L, R); 8964 // LR operator^(L, R); 8965 // LR operator|(L, R); 8966 // L operator<<(L, R); 8967 // L operator>>(L, R); 8968 // 8969 // where LR is the result of the usual arithmetic conversions 8970 // between types L and R. 8971 void addBinaryBitwiseArithmeticOverloads() { 8972 if (!HasArithmeticOrEnumeralCandidateType) 8973 return; 8974 8975 for (unsigned Left = FirstPromotedIntegralType; 8976 Left < LastPromotedIntegralType; ++Left) { 8977 for (unsigned Right = FirstPromotedIntegralType; 8978 Right < LastPromotedIntegralType; ++Right) { 8979 QualType LandR[2] = { ArithmeticTypes[Left], 8980 ArithmeticTypes[Right] }; 8981 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8982 } 8983 } 8984 } 8985 8986 // C++ [over.built]p20: 8987 // 8988 // For every pair (T, VQ), where T is an enumeration or 8989 // pointer to member type and VQ is either volatile or 8990 // empty, there exist candidate operator functions of the form 8991 // 8992 // VQ T& operator=(VQ T&, T); 8993 void addAssignmentMemberPointerOrEnumeralOverloads() { 8994 /// Set of (canonical) types that we've already handled. 8995 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8996 8997 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 8998 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { 8999 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) 9000 continue; 9001 9002 AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet); 9003 } 9004 9005 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { 9006 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) 9007 continue; 9008 9009 AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet); 9010 } 9011 } 9012 } 9013 9014 // C++ [over.built]p19: 9015 // 9016 // For every pair (T, VQ), where T is any type and VQ is either 9017 // volatile or empty, there exist candidate operator functions 9018 // of the form 9019 // 9020 // T*VQ& operator=(T*VQ&, T*); 9021 // 9022 // C++ [over.built]p21: 9023 // 9024 // For every pair (T, VQ), where T is a cv-qualified or 9025 // cv-unqualified object type and VQ is either volatile or 9026 // empty, there exist candidate operator functions of the form 9027 // 9028 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 9029 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 9030 void addAssignmentPointerOverloads(bool isEqualOp) { 9031 /// Set of (canonical) types that we've already handled. 9032 llvm::SmallPtrSet<QualType, 8> AddedTypes; 9033 9034 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 9035 // If this is operator=, keep track of the builtin candidates we added. 9036 if (isEqualOp) 9037 AddedTypes.insert(S.Context.getCanonicalType(PtrTy)); 9038 else if (!PtrTy->getPointeeType()->isObjectType()) 9039 continue; 9040 9041 // non-volatile version 9042 QualType ParamTypes[2] = { 9043 S.Context.getLValueReferenceType(PtrTy), 9044 isEqualOp ? PtrTy : S.Context.getPointerDiffType(), 9045 }; 9046 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 9047 /*IsAssignmentOperator=*/ isEqualOp); 9048 9049 bool NeedVolatile = !PtrTy.isVolatileQualified() && 9050 VisibleTypeConversionsQuals.hasVolatile(); 9051 if (NeedVolatile) { 9052 // volatile version 9053 ParamTypes[0] = 9054 S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy)); 9055 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 9056 /*IsAssignmentOperator=*/isEqualOp); 9057 } 9058 9059 if (!PtrTy.isRestrictQualified() && 9060 VisibleTypeConversionsQuals.hasRestrict()) { 9061 // restrict version 9062 ParamTypes[0] = 9063 S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy)); 9064 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 9065 /*IsAssignmentOperator=*/isEqualOp); 9066 9067 if (NeedVolatile) { 9068 // volatile restrict version 9069 ParamTypes[0] = 9070 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( 9071 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); 9072 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 9073 /*IsAssignmentOperator=*/isEqualOp); 9074 } 9075 } 9076 } 9077 9078 if (isEqualOp) { 9079 for (QualType PtrTy : CandidateTypes[1].pointer_types()) { 9080 // Make sure we don't add the same candidate twice. 9081 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 9082 continue; 9083 9084 QualType ParamTypes[2] = { 9085 S.Context.getLValueReferenceType(PtrTy), 9086 PtrTy, 9087 }; 9088 9089 // non-volatile version 9090 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 9091 /*IsAssignmentOperator=*/true); 9092 9093 bool NeedVolatile = !PtrTy.isVolatileQualified() && 9094 VisibleTypeConversionsQuals.hasVolatile(); 9095 if (NeedVolatile) { 9096 // volatile version 9097 ParamTypes[0] = S.Context.getLValueReferenceType( 9098 S.Context.getVolatileType(PtrTy)); 9099 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 9100 /*IsAssignmentOperator=*/true); 9101 } 9102 9103 if (!PtrTy.isRestrictQualified() && 9104 VisibleTypeConversionsQuals.hasRestrict()) { 9105 // restrict version 9106 ParamTypes[0] = S.Context.getLValueReferenceType( 9107 S.Context.getRestrictType(PtrTy)); 9108 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 9109 /*IsAssignmentOperator=*/true); 9110 9111 if (NeedVolatile) { 9112 // volatile restrict version 9113 ParamTypes[0] = 9114 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( 9115 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); 9116 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 9117 /*IsAssignmentOperator=*/true); 9118 } 9119 } 9120 } 9121 } 9122 } 9123 9124 // C++ [over.built]p18: 9125 // 9126 // For every triple (L, VQ, R), where L is an arithmetic type, 9127 // VQ is either volatile or empty, and R is a promoted 9128 // arithmetic type, there exist candidate operator functions of 9129 // the form 9130 // 9131 // VQ L& operator=(VQ L&, R); 9132 // VQ L& operator*=(VQ L&, R); 9133 // VQ L& operator/=(VQ L&, R); 9134 // VQ L& operator+=(VQ L&, R); 9135 // VQ L& operator-=(VQ L&, R); 9136 void addAssignmentArithmeticOverloads(bool isEqualOp) { 9137 if (!HasArithmeticOrEnumeralCandidateType) 9138 return; 9139 9140 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 9141 for (unsigned Right = FirstPromotedArithmeticType; 9142 Right < LastPromotedArithmeticType; ++Right) { 9143 QualType ParamTypes[2]; 9144 ParamTypes[1] = ArithmeticTypes[Right]; 9145 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( 9146 S, ArithmeticTypes[Left], Args[0]); 9147 9148 forAllQualifierCombinations( 9149 VisibleTypeConversionsQuals, [&](QualifiersAndAtomic Quals) { 9150 ParamTypes[0] = 9151 makeQualifiedLValueReferenceType(LeftBaseTy, Quals, S); 9152 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 9153 /*IsAssignmentOperator=*/isEqualOp); 9154 }); 9155 } 9156 } 9157 9158 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 9159 for (QualType Vec1Ty : CandidateTypes[0].vector_types()) 9160 for (QualType Vec2Ty : CandidateTypes[0].vector_types()) { 9161 QualType ParamTypes[2]; 9162 ParamTypes[1] = Vec2Ty; 9163 // Add this built-in operator as a candidate (VQ is empty). 9164 ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty); 9165 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 9166 /*IsAssignmentOperator=*/isEqualOp); 9167 9168 // Add this built-in operator as a candidate (VQ is 'volatile'). 9169 if (VisibleTypeConversionsQuals.hasVolatile()) { 9170 ParamTypes[0] = S.Context.getVolatileType(Vec1Ty); 9171 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 9172 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 9173 /*IsAssignmentOperator=*/isEqualOp); 9174 } 9175 } 9176 } 9177 9178 // C++ [over.built]p22: 9179 // 9180 // For every triple (L, VQ, R), where L is an integral type, VQ 9181 // is either volatile or empty, and R is a promoted integral 9182 // type, there exist candidate operator functions of the form 9183 // 9184 // VQ L& operator%=(VQ L&, R); 9185 // VQ L& operator<<=(VQ L&, R); 9186 // VQ L& operator>>=(VQ L&, R); 9187 // VQ L& operator&=(VQ L&, R); 9188 // VQ L& operator^=(VQ L&, R); 9189 // VQ L& operator|=(VQ L&, R); 9190 void addAssignmentIntegralOverloads() { 9191 if (!HasArithmeticOrEnumeralCandidateType) 9192 return; 9193 9194 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 9195 for (unsigned Right = FirstPromotedIntegralType; 9196 Right < LastPromotedIntegralType; ++Right) { 9197 QualType ParamTypes[2]; 9198 ParamTypes[1] = ArithmeticTypes[Right]; 9199 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( 9200 S, ArithmeticTypes[Left], Args[0]); 9201 9202 forAllQualifierCombinations( 9203 VisibleTypeConversionsQuals, [&](QualifiersAndAtomic Quals) { 9204 ParamTypes[0] = 9205 makeQualifiedLValueReferenceType(LeftBaseTy, Quals, S); 9206 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9207 }); 9208 } 9209 } 9210 } 9211 9212 // C++ [over.operator]p23: 9213 // 9214 // There also exist candidate operator functions of the form 9215 // 9216 // bool operator!(bool); 9217 // bool operator&&(bool, bool); 9218 // bool operator||(bool, bool); 9219 void addExclaimOverload() { 9220 QualType ParamTy = S.Context.BoolTy; 9221 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet, 9222 /*IsAssignmentOperator=*/false, 9223 /*NumContextualBoolArguments=*/1); 9224 } 9225 void addAmpAmpOrPipePipeOverload() { 9226 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; 9227 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 9228 /*IsAssignmentOperator=*/false, 9229 /*NumContextualBoolArguments=*/2); 9230 } 9231 9232 // C++ [over.built]p13: 9233 // 9234 // For every cv-qualified or cv-unqualified object type T there 9235 // exist candidate operator functions of the form 9236 // 9237 // T* operator+(T*, ptrdiff_t); [ABOVE] 9238 // T& operator[](T*, ptrdiff_t); 9239 // T* operator-(T*, ptrdiff_t); [ABOVE] 9240 // T* operator+(ptrdiff_t, T*); [ABOVE] 9241 // T& operator[](ptrdiff_t, T*); 9242 void addSubscriptOverloads() { 9243 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 9244 QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()}; 9245 QualType PointeeType = PtrTy->getPointeeType(); 9246 if (!PointeeType->isObjectType()) 9247 continue; 9248 9249 // T& operator[](T*, ptrdiff_t) 9250 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9251 } 9252 9253 for (QualType PtrTy : CandidateTypes[1].pointer_types()) { 9254 QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy}; 9255 QualType PointeeType = PtrTy->getPointeeType(); 9256 if (!PointeeType->isObjectType()) 9257 continue; 9258 9259 // T& operator[](ptrdiff_t, T*) 9260 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9261 } 9262 } 9263 9264 // C++ [over.built]p11: 9265 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 9266 // C1 is the same type as C2 or is a derived class of C2, T is an object 9267 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 9268 // there exist candidate operator functions of the form 9269 // 9270 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 9271 // 9272 // where CV12 is the union of CV1 and CV2. 9273 void addArrowStarOverloads() { 9274 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 9275 QualType C1Ty = PtrTy; 9276 QualType C1; 9277 QualifierCollector Q1; 9278 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 9279 if (!isa<RecordType>(C1)) 9280 continue; 9281 // heuristic to reduce number of builtin candidates in the set. 9282 // Add volatile/restrict version only if there are conversions to a 9283 // volatile/restrict type. 9284 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 9285 continue; 9286 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 9287 continue; 9288 for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) { 9289 const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy); 9290 QualType C2 = QualType(mptr->getClass(), 0); 9291 C2 = C2.getUnqualifiedType(); 9292 if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2)) 9293 break; 9294 QualType ParamTypes[2] = {PtrTy, MemPtrTy}; 9295 // build CV12 T& 9296 QualType T = mptr->getPointeeType(); 9297 if (!VisibleTypeConversionsQuals.hasVolatile() && 9298 T.isVolatileQualified()) 9299 continue; 9300 if (!VisibleTypeConversionsQuals.hasRestrict() && 9301 T.isRestrictQualified()) 9302 continue; 9303 T = Q1.apply(S.Context, T); 9304 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9305 } 9306 } 9307 } 9308 9309 // Note that we don't consider the first argument, since it has been 9310 // contextually converted to bool long ago. The candidates below are 9311 // therefore added as binary. 9312 // 9313 // C++ [over.built]p25: 9314 // For every type T, where T is a pointer, pointer-to-member, or scoped 9315 // enumeration type, there exist candidate operator functions of the form 9316 // 9317 // T operator?(bool, T, T); 9318 // 9319 void addConditionalOperatorOverloads() { 9320 /// Set of (canonical) types that we've already handled. 9321 llvm::SmallPtrSet<QualType, 8> AddedTypes; 9322 9323 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 9324 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { 9325 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 9326 continue; 9327 9328 QualType ParamTypes[2] = {PtrTy, PtrTy}; 9329 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9330 } 9331 9332 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { 9333 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) 9334 continue; 9335 9336 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; 9337 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9338 } 9339 9340 if (S.getLangOpts().CPlusPlus11) { 9341 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { 9342 if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped()) 9343 continue; 9344 9345 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) 9346 continue; 9347 9348 QualType ParamTypes[2] = {EnumTy, EnumTy}; 9349 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9350 } 9351 } 9352 } 9353 } 9354 }; 9355 9356 } // end anonymous namespace 9357 9358 /// AddBuiltinOperatorCandidates - Add the appropriate built-in 9359 /// operator overloads to the candidate set (C++ [over.built]), based 9360 /// on the operator @p Op and the arguments given. For example, if the 9361 /// operator is a binary '+', this routine might add "int 9362 /// operator+(int, int)" to cover integer addition. 9363 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 9364 SourceLocation OpLoc, 9365 ArrayRef<Expr *> Args, 9366 OverloadCandidateSet &CandidateSet) { 9367 // Find all of the types that the arguments can convert to, but only 9368 // if the operator we're looking at has built-in operator candidates 9369 // that make use of these types. Also record whether we encounter non-record 9370 // candidate types or either arithmetic or enumeral candidate types. 9371 QualifiersAndAtomic VisibleTypeConversionsQuals; 9372 VisibleTypeConversionsQuals.addConst(); 9373 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 9374 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 9375 if (Args[ArgIdx]->getType()->isAtomicType()) 9376 VisibleTypeConversionsQuals.addAtomic(); 9377 } 9378 9379 bool HasNonRecordCandidateType = false; 9380 bool HasArithmeticOrEnumeralCandidateType = false; 9381 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 9382 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 9383 CandidateTypes.emplace_back(*this); 9384 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 9385 OpLoc, 9386 true, 9387 (Op == OO_Exclaim || 9388 Op == OO_AmpAmp || 9389 Op == OO_PipePipe), 9390 VisibleTypeConversionsQuals); 9391 HasNonRecordCandidateType = HasNonRecordCandidateType || 9392 CandidateTypes[ArgIdx].hasNonRecordTypes(); 9393 HasArithmeticOrEnumeralCandidateType = 9394 HasArithmeticOrEnumeralCandidateType || 9395 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); 9396 } 9397 9398 // Exit early when no non-record types have been added to the candidate set 9399 // for any of the arguments to the operator. 9400 // 9401 // We can't exit early for !, ||, or &&, since there we have always have 9402 // 'bool' overloads. 9403 if (!HasNonRecordCandidateType && 9404 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) 9405 return; 9406 9407 // Setup an object to manage the common state for building overloads. 9408 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, 9409 VisibleTypeConversionsQuals, 9410 HasArithmeticOrEnumeralCandidateType, 9411 CandidateTypes, CandidateSet); 9412 9413 // Dispatch over the operation to add in only those overloads which apply. 9414 switch (Op) { 9415 case OO_None: 9416 case NUM_OVERLOADED_OPERATORS: 9417 llvm_unreachable("Expected an overloaded operator"); 9418 9419 case OO_New: 9420 case OO_Delete: 9421 case OO_Array_New: 9422 case OO_Array_Delete: 9423 case OO_Call: 9424 llvm_unreachable( 9425 "Special operators don't use AddBuiltinOperatorCandidates"); 9426 9427 case OO_Comma: 9428 case OO_Arrow: 9429 case OO_Coawait: 9430 // C++ [over.match.oper]p3: 9431 // -- For the operator ',', the unary operator '&', the 9432 // operator '->', or the operator 'co_await', the 9433 // built-in candidates set is empty. 9434 break; 9435 9436 case OO_Plus: // '+' is either unary or binary 9437 if (Args.size() == 1) 9438 OpBuilder.addUnaryPlusPointerOverloads(); 9439 [[fallthrough]]; 9440 9441 case OO_Minus: // '-' is either unary or binary 9442 if (Args.size() == 1) { 9443 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); 9444 } else { 9445 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); 9446 OpBuilder.addGenericBinaryArithmeticOverloads(); 9447 OpBuilder.addMatrixBinaryArithmeticOverloads(); 9448 } 9449 break; 9450 9451 case OO_Star: // '*' is either unary or binary 9452 if (Args.size() == 1) 9453 OpBuilder.addUnaryStarPointerOverloads(); 9454 else { 9455 OpBuilder.addGenericBinaryArithmeticOverloads(); 9456 OpBuilder.addMatrixBinaryArithmeticOverloads(); 9457 } 9458 break; 9459 9460 case OO_Slash: 9461 OpBuilder.addGenericBinaryArithmeticOverloads(); 9462 break; 9463 9464 case OO_PlusPlus: 9465 case OO_MinusMinus: 9466 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); 9467 OpBuilder.addPlusPlusMinusMinusPointerOverloads(); 9468 break; 9469 9470 case OO_EqualEqual: 9471 case OO_ExclaimEqual: 9472 OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads(); 9473 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); 9474 OpBuilder.addGenericBinaryArithmeticOverloads(); 9475 break; 9476 9477 case OO_Less: 9478 case OO_Greater: 9479 case OO_LessEqual: 9480 case OO_GreaterEqual: 9481 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); 9482 OpBuilder.addGenericBinaryArithmeticOverloads(); 9483 break; 9484 9485 case OO_Spaceship: 9486 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true); 9487 OpBuilder.addThreeWayArithmeticOverloads(); 9488 break; 9489 9490 case OO_Percent: 9491 case OO_Caret: 9492 case OO_Pipe: 9493 case OO_LessLess: 9494 case OO_GreaterGreater: 9495 OpBuilder.addBinaryBitwiseArithmeticOverloads(); 9496 break; 9497 9498 case OO_Amp: // '&' is either unary or binary 9499 if (Args.size() == 1) 9500 // C++ [over.match.oper]p3: 9501 // -- For the operator ',', the unary operator '&', or the 9502 // operator '->', the built-in candidates set is empty. 9503 break; 9504 9505 OpBuilder.addBinaryBitwiseArithmeticOverloads(); 9506 break; 9507 9508 case OO_Tilde: 9509 OpBuilder.addUnaryTildePromotedIntegralOverloads(); 9510 break; 9511 9512 case OO_Equal: 9513 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); 9514 [[fallthrough]]; 9515 9516 case OO_PlusEqual: 9517 case OO_MinusEqual: 9518 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); 9519 [[fallthrough]]; 9520 9521 case OO_StarEqual: 9522 case OO_SlashEqual: 9523 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); 9524 break; 9525 9526 case OO_PercentEqual: 9527 case OO_LessLessEqual: 9528 case OO_GreaterGreaterEqual: 9529 case OO_AmpEqual: 9530 case OO_CaretEqual: 9531 case OO_PipeEqual: 9532 OpBuilder.addAssignmentIntegralOverloads(); 9533 break; 9534 9535 case OO_Exclaim: 9536 OpBuilder.addExclaimOverload(); 9537 break; 9538 9539 case OO_AmpAmp: 9540 case OO_PipePipe: 9541 OpBuilder.addAmpAmpOrPipePipeOverload(); 9542 break; 9543 9544 case OO_Subscript: 9545 if (Args.size() == 2) 9546 OpBuilder.addSubscriptOverloads(); 9547 break; 9548 9549 case OO_ArrowStar: 9550 OpBuilder.addArrowStarOverloads(); 9551 break; 9552 9553 case OO_Conditional: 9554 OpBuilder.addConditionalOperatorOverloads(); 9555 OpBuilder.addGenericBinaryArithmeticOverloads(); 9556 break; 9557 } 9558 } 9559 9560 /// Add function candidates found via argument-dependent lookup 9561 /// to the set of overloading candidates. 9562 /// 9563 /// This routine performs argument-dependent name lookup based on the 9564 /// given function name (which may also be an operator name) and adds 9565 /// all of the overload candidates found by ADL to the overload 9566 /// candidate set (C++ [basic.lookup.argdep]). 9567 void 9568 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 9569 SourceLocation Loc, 9570 ArrayRef<Expr *> Args, 9571 TemplateArgumentListInfo *ExplicitTemplateArgs, 9572 OverloadCandidateSet& CandidateSet, 9573 bool PartialOverloading) { 9574 ADLResult Fns; 9575 9576 // FIXME: This approach for uniquing ADL results (and removing 9577 // redundant candidates from the set) relies on pointer-equality, 9578 // which means we need to key off the canonical decl. However, 9579 // always going back to the canonical decl might not get us the 9580 // right set of default arguments. What default arguments are 9581 // we supposed to consider on ADL candidates, anyway? 9582 9583 // FIXME: Pass in the explicit template arguments? 9584 ArgumentDependentLookup(Name, Loc, Args, Fns); 9585 9586 // Erase all of the candidates we already knew about. 9587 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 9588 CandEnd = CandidateSet.end(); 9589 Cand != CandEnd; ++Cand) 9590 if (Cand->Function) { 9591 Fns.erase(Cand->Function); 9592 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 9593 Fns.erase(FunTmpl); 9594 } 9595 9596 // For each of the ADL candidates we found, add it to the overload 9597 // set. 9598 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 9599 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 9600 9601 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 9602 if (ExplicitTemplateArgs) 9603 continue; 9604 9605 AddOverloadCandidate( 9606 FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false, 9607 PartialOverloading, /*AllowExplicit=*/true, 9608 /*AllowExplicitConversion=*/false, ADLCallKind::UsesADL); 9609 if (CandidateSet.getRewriteInfo().shouldAddReversed(*this, Args, FD)) { 9610 AddOverloadCandidate( 9611 FD, FoundDecl, {Args[1], Args[0]}, CandidateSet, 9612 /*SuppressUserConversions=*/false, PartialOverloading, 9613 /*AllowExplicit=*/true, /*AllowExplicitConversion=*/false, 9614 ADLCallKind::UsesADL, std::nullopt, 9615 OverloadCandidateParamOrder::Reversed); 9616 } 9617 } else { 9618 auto *FTD = cast<FunctionTemplateDecl>(*I); 9619 AddTemplateOverloadCandidate( 9620 FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet, 9621 /*SuppressUserConversions=*/false, PartialOverloading, 9622 /*AllowExplicit=*/true, ADLCallKind::UsesADL); 9623 if (CandidateSet.getRewriteInfo().shouldAddReversed( 9624 *this, Args, FTD->getTemplatedDecl())) { 9625 AddTemplateOverloadCandidate( 9626 FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]}, 9627 CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading, 9628 /*AllowExplicit=*/true, ADLCallKind::UsesADL, 9629 OverloadCandidateParamOrder::Reversed); 9630 } 9631 } 9632 } 9633 } 9634 9635 namespace { 9636 enum class Comparison { Equal, Better, Worse }; 9637 } 9638 9639 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of 9640 /// overload resolution. 9641 /// 9642 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff 9643 /// Cand1's first N enable_if attributes have precisely the same conditions as 9644 /// Cand2's first N enable_if attributes (where N = the number of enable_if 9645 /// attributes on Cand2), and Cand1 has more than N enable_if attributes. 9646 /// 9647 /// Note that you can have a pair of candidates such that Cand1's enable_if 9648 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are 9649 /// worse than Cand1's. 9650 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1, 9651 const FunctionDecl *Cand2) { 9652 // Common case: One (or both) decls don't have enable_if attrs. 9653 bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>(); 9654 bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>(); 9655 if (!Cand1Attr || !Cand2Attr) { 9656 if (Cand1Attr == Cand2Attr) 9657 return Comparison::Equal; 9658 return Cand1Attr ? Comparison::Better : Comparison::Worse; 9659 } 9660 9661 auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>(); 9662 auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>(); 9663 9664 llvm::FoldingSetNodeID Cand1ID, Cand2ID; 9665 for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) { 9666 std::optional<EnableIfAttr *> Cand1A = std::get<0>(Pair); 9667 std::optional<EnableIfAttr *> Cand2A = std::get<1>(Pair); 9668 9669 // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1 9670 // has fewer enable_if attributes than Cand2, and vice versa. 9671 if (!Cand1A) 9672 return Comparison::Worse; 9673 if (!Cand2A) 9674 return Comparison::Better; 9675 9676 Cand1ID.clear(); 9677 Cand2ID.clear(); 9678 9679 (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true); 9680 (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true); 9681 if (Cand1ID != Cand2ID) 9682 return Comparison::Worse; 9683 } 9684 9685 return Comparison::Equal; 9686 } 9687 9688 static Comparison 9689 isBetterMultiversionCandidate(const OverloadCandidate &Cand1, 9690 const OverloadCandidate &Cand2) { 9691 if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function || 9692 !Cand2.Function->isMultiVersion()) 9693 return Comparison::Equal; 9694 9695 // If both are invalid, they are equal. If one of them is invalid, the other 9696 // is better. 9697 if (Cand1.Function->isInvalidDecl()) { 9698 if (Cand2.Function->isInvalidDecl()) 9699 return Comparison::Equal; 9700 return Comparison::Worse; 9701 } 9702 if (Cand2.Function->isInvalidDecl()) 9703 return Comparison::Better; 9704 9705 // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer 9706 // cpu_dispatch, else arbitrarily based on the identifiers. 9707 bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>(); 9708 bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>(); 9709 const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>(); 9710 const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>(); 9711 9712 if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec) 9713 return Comparison::Equal; 9714 9715 if (Cand1CPUDisp && !Cand2CPUDisp) 9716 return Comparison::Better; 9717 if (Cand2CPUDisp && !Cand1CPUDisp) 9718 return Comparison::Worse; 9719 9720 if (Cand1CPUSpec && Cand2CPUSpec) { 9721 if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size()) 9722 return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size() 9723 ? Comparison::Better 9724 : Comparison::Worse; 9725 9726 std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator> 9727 FirstDiff = std::mismatch( 9728 Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(), 9729 Cand2CPUSpec->cpus_begin(), 9730 [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) { 9731 return LHS->getName() == RHS->getName(); 9732 }); 9733 9734 assert(FirstDiff.first != Cand1CPUSpec->cpus_end() && 9735 "Two different cpu-specific versions should not have the same " 9736 "identifier list, otherwise they'd be the same decl!"); 9737 return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName() 9738 ? Comparison::Better 9739 : Comparison::Worse; 9740 } 9741 llvm_unreachable("No way to get here unless both had cpu_dispatch"); 9742 } 9743 9744 /// Compute the type of the implicit object parameter for the given function, 9745 /// if any. Returns std::nullopt if there is no implicit object parameter, and a 9746 /// null QualType if there is a 'matches anything' implicit object parameter. 9747 static std::optional<QualType> 9748 getImplicitObjectParamType(ASTContext &Context, const FunctionDecl *F) { 9749 if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F)) 9750 return std::nullopt; 9751 9752 auto *M = cast<CXXMethodDecl>(F); 9753 // Static member functions' object parameters match all types. 9754 if (M->isStatic()) 9755 return QualType(); 9756 9757 QualType T = M->getThisObjectType(); 9758 if (M->getRefQualifier() == RQ_RValue) 9759 return Context.getRValueReferenceType(T); 9760 return Context.getLValueReferenceType(T); 9761 } 9762 9763 static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1, 9764 const FunctionDecl *F2, unsigned NumParams) { 9765 if (declaresSameEntity(F1, F2)) 9766 return true; 9767 9768 auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) { 9769 if (First) { 9770 if (std::optional<QualType> T = getImplicitObjectParamType(Context, F)) 9771 return *T; 9772 } 9773 assert(I < F->getNumParams()); 9774 return F->getParamDecl(I++)->getType(); 9775 }; 9776 9777 unsigned I1 = 0, I2 = 0; 9778 for (unsigned I = 0; I != NumParams; ++I) { 9779 QualType T1 = NextParam(F1, I1, I == 0); 9780 QualType T2 = NextParam(F2, I2, I == 0); 9781 assert(!T1.isNull() && !T2.isNull() && "Unexpected null param types"); 9782 if (!Context.hasSameUnqualifiedType(T1, T2)) 9783 return false; 9784 } 9785 return true; 9786 } 9787 9788 /// We're allowed to use constraints partial ordering only if the candidates 9789 /// have the same parameter types: 9790 /// [over.match.best]p2.6 9791 /// F1 and F2 are non-template functions with the same parameter-type-lists, 9792 /// and F1 is more constrained than F2 [...] 9793 static bool sameFunctionParameterTypeLists(Sema &S, 9794 const OverloadCandidate &Cand1, 9795 const OverloadCandidate &Cand2) { 9796 if (Cand1.Function && Cand2.Function) { 9797 auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType()); 9798 auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType()); 9799 if (PT1->getNumParams() == PT2->getNumParams() && 9800 PT1->isVariadic() == PT2->isVariadic() && 9801 S.FunctionParamTypesAreEqual(PT1, PT2, nullptr, 9802 Cand1.isReversed() ^ Cand2.isReversed())) 9803 return true; 9804 } 9805 return false; 9806 } 9807 9808 /// isBetterOverloadCandidate - Determines whether the first overload 9809 /// candidate is a better candidate than the second (C++ 13.3.3p1). 9810 bool clang::isBetterOverloadCandidate( 9811 Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2, 9812 SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) { 9813 // Define viable functions to be better candidates than non-viable 9814 // functions. 9815 if (!Cand2.Viable) 9816 return Cand1.Viable; 9817 else if (!Cand1.Viable) 9818 return false; 9819 9820 // [CUDA] A function with 'never' preference is marked not viable, therefore 9821 // is never shown up here. The worst preference shown up here is 'wrong side', 9822 // e.g. an H function called by a HD function in device compilation. This is 9823 // valid AST as long as the HD function is not emitted, e.g. it is an inline 9824 // function which is called only by an H function. A deferred diagnostic will 9825 // be triggered if it is emitted. However a wrong-sided function is still 9826 // a viable candidate here. 9827 // 9828 // If Cand1 can be emitted and Cand2 cannot be emitted in the current 9829 // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2 9830 // can be emitted, Cand1 is not better than Cand2. This rule should have 9831 // precedence over other rules. 9832 // 9833 // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then 9834 // other rules should be used to determine which is better. This is because 9835 // host/device based overloading resolution is mostly for determining 9836 // viability of a function. If two functions are both viable, other factors 9837 // should take precedence in preference, e.g. the standard-defined preferences 9838 // like argument conversion ranks or enable_if partial-ordering. The 9839 // preference for pass-object-size parameters is probably most similar to a 9840 // type-based-overloading decision and so should take priority. 9841 // 9842 // If other rules cannot determine which is better, CUDA preference will be 9843 // used again to determine which is better. 9844 // 9845 // TODO: Currently IdentifyCUDAPreference does not return correct values 9846 // for functions called in global variable initializers due to missing 9847 // correct context about device/host. Therefore we can only enforce this 9848 // rule when there is a caller. We should enforce this rule for functions 9849 // in global variable initializers once proper context is added. 9850 // 9851 // TODO: We can only enable the hostness based overloading resolution when 9852 // -fgpu-exclude-wrong-side-overloads is on since this requires deferring 9853 // overloading resolution diagnostics. 9854 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function && 9855 S.getLangOpts().GPUExcludeWrongSideOverloads) { 9856 if (FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true)) { 9857 bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller); 9858 bool IsCand1ImplicitHD = 9859 Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function); 9860 bool IsCand2ImplicitHD = 9861 Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function); 9862 auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function); 9863 auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function); 9864 assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never); 9865 // The implicit HD function may be a function in a system header which 9866 // is forced by pragma. In device compilation, if we prefer HD candidates 9867 // over wrong-sided candidates, overloading resolution may change, which 9868 // may result in non-deferrable diagnostics. As a workaround, we let 9869 // implicit HD candidates take equal preference as wrong-sided candidates. 9870 // This will preserve the overloading resolution. 9871 // TODO: We still need special handling of implicit HD functions since 9872 // they may incur other diagnostics to be deferred. We should make all 9873 // host/device related diagnostics deferrable and remove special handling 9874 // of implicit HD functions. 9875 auto EmitThreshold = 9876 (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD && 9877 (IsCand1ImplicitHD || IsCand2ImplicitHD)) 9878 ? Sema::CFP_Never 9879 : Sema::CFP_WrongSide; 9880 auto Cand1Emittable = P1 > EmitThreshold; 9881 auto Cand2Emittable = P2 > EmitThreshold; 9882 if (Cand1Emittable && !Cand2Emittable) 9883 return true; 9884 if (!Cand1Emittable && Cand2Emittable) 9885 return false; 9886 } 9887 } 9888 9889 // C++ [over.match.best]p1: (Changed in C++2b) 9890 // 9891 // -- if F is a static member function, ICS1(F) is defined such 9892 // that ICS1(F) is neither better nor worse than ICS1(G) for 9893 // any function G, and, symmetrically, ICS1(G) is neither 9894 // better nor worse than ICS1(F). 9895 unsigned StartArg = 0; 9896 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 9897 StartArg = 1; 9898 9899 auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) { 9900 // We don't allow incompatible pointer conversions in C++. 9901 if (!S.getLangOpts().CPlusPlus) 9902 return ICS.isStandard() && 9903 ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion; 9904 9905 // The only ill-formed conversion we allow in C++ is the string literal to 9906 // char* conversion, which is only considered ill-formed after C++11. 9907 return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && 9908 hasDeprecatedStringLiteralToCharPtrConversion(ICS); 9909 }; 9910 9911 // Define functions that don't require ill-formed conversions for a given 9912 // argument to be better candidates than functions that do. 9913 unsigned NumArgs = Cand1.Conversions.size(); 9914 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 9915 bool HasBetterConversion = false; 9916 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 9917 bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]); 9918 bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]); 9919 if (Cand1Bad != Cand2Bad) { 9920 if (Cand1Bad) 9921 return false; 9922 HasBetterConversion = true; 9923 } 9924 } 9925 9926 if (HasBetterConversion) 9927 return true; 9928 9929 // C++ [over.match.best]p1: 9930 // A viable function F1 is defined to be a better function than another 9931 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 9932 // conversion sequence than ICSi(F2), and then... 9933 bool HasWorseConversion = false; 9934 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 9935 switch (CompareImplicitConversionSequences(S, Loc, 9936 Cand1.Conversions[ArgIdx], 9937 Cand2.Conversions[ArgIdx])) { 9938 case ImplicitConversionSequence::Better: 9939 // Cand1 has a better conversion sequence. 9940 HasBetterConversion = true; 9941 break; 9942 9943 case ImplicitConversionSequence::Worse: 9944 if (Cand1.Function && Cand2.Function && 9945 Cand1.isReversed() != Cand2.isReversed() && 9946 haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function, 9947 NumArgs)) { 9948 // Work around large-scale breakage caused by considering reversed 9949 // forms of operator== in C++20: 9950 // 9951 // When comparing a function against a reversed function with the same 9952 // parameter types, if we have a better conversion for one argument and 9953 // a worse conversion for the other, the implicit conversion sequences 9954 // are treated as being equally good. 9955 // 9956 // This prevents a comparison function from being considered ambiguous 9957 // with a reversed form that is written in the same way. 9958 // 9959 // We diagnose this as an extension from CreateOverloadedBinOp. 9960 HasWorseConversion = true; 9961 break; 9962 } 9963 9964 // Cand1 can't be better than Cand2. 9965 return false; 9966 9967 case ImplicitConversionSequence::Indistinguishable: 9968 // Do nothing. 9969 break; 9970 } 9971 } 9972 9973 // -- for some argument j, ICSj(F1) is a better conversion sequence than 9974 // ICSj(F2), or, if not that, 9975 if (HasBetterConversion && !HasWorseConversion) 9976 return true; 9977 9978 // -- the context is an initialization by user-defined conversion 9979 // (see 8.5, 13.3.1.5) and the standard conversion sequence 9980 // from the return type of F1 to the destination type (i.e., 9981 // the type of the entity being initialized) is a better 9982 // conversion sequence than the standard conversion sequence 9983 // from the return type of F2 to the destination type. 9984 if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion && 9985 Cand1.Function && Cand2.Function && 9986 isa<CXXConversionDecl>(Cand1.Function) && 9987 isa<CXXConversionDecl>(Cand2.Function)) { 9988 // First check whether we prefer one of the conversion functions over the 9989 // other. This only distinguishes the results in non-standard, extension 9990 // cases such as the conversion from a lambda closure type to a function 9991 // pointer or block. 9992 ImplicitConversionSequence::CompareKind Result = 9993 compareConversionFunctions(S, Cand1.Function, Cand2.Function); 9994 if (Result == ImplicitConversionSequence::Indistinguishable) 9995 Result = CompareStandardConversionSequences(S, Loc, 9996 Cand1.FinalConversion, 9997 Cand2.FinalConversion); 9998 9999 if (Result != ImplicitConversionSequence::Indistinguishable) 10000 return Result == ImplicitConversionSequence::Better; 10001 10002 // FIXME: Compare kind of reference binding if conversion functions 10003 // convert to a reference type used in direct reference binding, per 10004 // C++14 [over.match.best]p1 section 2 bullet 3. 10005 } 10006 10007 // FIXME: Work around a defect in the C++17 guaranteed copy elision wording, 10008 // as combined with the resolution to CWG issue 243. 10009 // 10010 // When the context is initialization by constructor ([over.match.ctor] or 10011 // either phase of [over.match.list]), a constructor is preferred over 10012 // a conversion function. 10013 if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 && 10014 Cand1.Function && Cand2.Function && 10015 isa<CXXConstructorDecl>(Cand1.Function) != 10016 isa<CXXConstructorDecl>(Cand2.Function)) 10017 return isa<CXXConstructorDecl>(Cand1.Function); 10018 10019 // -- F1 is a non-template function and F2 is a function template 10020 // specialization, or, if not that, 10021 bool Cand1IsSpecialization = Cand1.Function && 10022 Cand1.Function->getPrimaryTemplate(); 10023 bool Cand2IsSpecialization = Cand2.Function && 10024 Cand2.Function->getPrimaryTemplate(); 10025 if (Cand1IsSpecialization != Cand2IsSpecialization) 10026 return Cand2IsSpecialization; 10027 10028 // -- F1 and F2 are function template specializations, and the function 10029 // template for F1 is more specialized than the template for F2 10030 // according to the partial ordering rules described in 14.5.5.2, or, 10031 // if not that, 10032 if (Cand1IsSpecialization && Cand2IsSpecialization) { 10033 if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate( 10034 Cand1.Function->getPrimaryTemplate(), 10035 Cand2.Function->getPrimaryTemplate(), Loc, 10036 isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion 10037 : TPOC_Call, 10038 Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments, 10039 Cand1.isReversed() ^ Cand2.isReversed())) 10040 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 10041 } 10042 10043 // -— F1 and F2 are non-template functions with the same 10044 // parameter-type-lists, and F1 is more constrained than F2 [...], 10045 if (!Cand1IsSpecialization && !Cand2IsSpecialization && 10046 sameFunctionParameterTypeLists(S, Cand1, Cand2)) { 10047 FunctionDecl *Function1 = Cand1.Function; 10048 FunctionDecl *Function2 = Cand2.Function; 10049 if (FunctionDecl *MF = Function1->getInstantiatedFromMemberFunction()) 10050 Function1 = MF; 10051 if (FunctionDecl *MF = Function2->getInstantiatedFromMemberFunction()) 10052 Function2 = MF; 10053 10054 const Expr *RC1 = Function1->getTrailingRequiresClause(); 10055 const Expr *RC2 = Function2->getTrailingRequiresClause(); 10056 if (RC1 && RC2) { 10057 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 10058 if (S.IsAtLeastAsConstrained(Function1, RC1, Function2, RC2, 10059 AtLeastAsConstrained1) || 10060 S.IsAtLeastAsConstrained(Function2, RC2, Function1, RC1, 10061 AtLeastAsConstrained2)) 10062 return false; 10063 if (AtLeastAsConstrained1 != AtLeastAsConstrained2) 10064 return AtLeastAsConstrained1; 10065 } else if (RC1 || RC2) { 10066 return RC1 != nullptr; 10067 } 10068 } 10069 10070 // -- F1 is a constructor for a class D, F2 is a constructor for a base 10071 // class B of D, and for all arguments the corresponding parameters of 10072 // F1 and F2 have the same type. 10073 // FIXME: Implement the "all parameters have the same type" check. 10074 bool Cand1IsInherited = 10075 isa_and_nonnull<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl()); 10076 bool Cand2IsInherited = 10077 isa_and_nonnull<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl()); 10078 if (Cand1IsInherited != Cand2IsInherited) 10079 return Cand2IsInherited; 10080 else if (Cand1IsInherited) { 10081 assert(Cand2IsInherited); 10082 auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext()); 10083 auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext()); 10084 if (Cand1Class->isDerivedFrom(Cand2Class)) 10085 return true; 10086 if (Cand2Class->isDerivedFrom(Cand1Class)) 10087 return false; 10088 // Inherited from sibling base classes: still ambiguous. 10089 } 10090 10091 // -- F2 is a rewritten candidate (12.4.1.2) and F1 is not 10092 // -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate 10093 // with reversed order of parameters and F1 is not 10094 // 10095 // We rank reversed + different operator as worse than just reversed, but 10096 // that comparison can never happen, because we only consider reversing for 10097 // the maximally-rewritten operator (== or <=>). 10098 if (Cand1.RewriteKind != Cand2.RewriteKind) 10099 return Cand1.RewriteKind < Cand2.RewriteKind; 10100 10101 // Check C++17 tie-breakers for deduction guides. 10102 { 10103 auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function); 10104 auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function); 10105 if (Guide1 && Guide2) { 10106 // -- F1 is generated from a deduction-guide and F2 is not 10107 if (Guide1->isImplicit() != Guide2->isImplicit()) 10108 return Guide2->isImplicit(); 10109 10110 // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not 10111 if (Guide1->isCopyDeductionCandidate()) 10112 return true; 10113 } 10114 } 10115 10116 // Check for enable_if value-based overload resolution. 10117 if (Cand1.Function && Cand2.Function) { 10118 Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function); 10119 if (Cmp != Comparison::Equal) 10120 return Cmp == Comparison::Better; 10121 } 10122 10123 bool HasPS1 = Cand1.Function != nullptr && 10124 functionHasPassObjectSizeParams(Cand1.Function); 10125 bool HasPS2 = Cand2.Function != nullptr && 10126 functionHasPassObjectSizeParams(Cand2.Function); 10127 if (HasPS1 != HasPS2 && HasPS1) 10128 return true; 10129 10130 auto MV = isBetterMultiversionCandidate(Cand1, Cand2); 10131 if (MV == Comparison::Better) 10132 return true; 10133 if (MV == Comparison::Worse) 10134 return false; 10135 10136 // If other rules cannot determine which is better, CUDA preference is used 10137 // to determine which is better. 10138 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) { 10139 FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true); 10140 return S.IdentifyCUDAPreference(Caller, Cand1.Function) > 10141 S.IdentifyCUDAPreference(Caller, Cand2.Function); 10142 } 10143 10144 // General member function overloading is handled above, so this only handles 10145 // constructors with address spaces. 10146 // This only handles address spaces since C++ has no other 10147 // qualifier that can be used with constructors. 10148 const auto *CD1 = dyn_cast_or_null<CXXConstructorDecl>(Cand1.Function); 10149 const auto *CD2 = dyn_cast_or_null<CXXConstructorDecl>(Cand2.Function); 10150 if (CD1 && CD2) { 10151 LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace(); 10152 LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace(); 10153 if (AS1 != AS2) { 10154 if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1)) 10155 return true; 10156 if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1)) 10157 return false; 10158 } 10159 } 10160 10161 return false; 10162 } 10163 10164 /// Determine whether two declarations are "equivalent" for the purposes of 10165 /// name lookup and overload resolution. This applies when the same internal/no 10166 /// linkage entity is defined by two modules (probably by textually including 10167 /// the same header). In such a case, we don't consider the declarations to 10168 /// declare the same entity, but we also don't want lookups with both 10169 /// declarations visible to be ambiguous in some cases (this happens when using 10170 /// a modularized libstdc++). 10171 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A, 10172 const NamedDecl *B) { 10173 auto *VA = dyn_cast_or_null<ValueDecl>(A); 10174 auto *VB = dyn_cast_or_null<ValueDecl>(B); 10175 if (!VA || !VB) 10176 return false; 10177 10178 // The declarations must be declaring the same name as an internal linkage 10179 // entity in different modules. 10180 if (!VA->getDeclContext()->getRedeclContext()->Equals( 10181 VB->getDeclContext()->getRedeclContext()) || 10182 getOwningModule(VA) == getOwningModule(VB) || 10183 VA->isExternallyVisible() || VB->isExternallyVisible()) 10184 return false; 10185 10186 // Check that the declarations appear to be equivalent. 10187 // 10188 // FIXME: Checking the type isn't really enough to resolve the ambiguity. 10189 // For constants and functions, we should check the initializer or body is 10190 // the same. For non-constant variables, we shouldn't allow it at all. 10191 if (Context.hasSameType(VA->getType(), VB->getType())) 10192 return true; 10193 10194 // Enum constants within unnamed enumerations will have different types, but 10195 // may still be similar enough to be interchangeable for our purposes. 10196 if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) { 10197 if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) { 10198 // Only handle anonymous enums. If the enumerations were named and 10199 // equivalent, they would have been merged to the same type. 10200 auto *EnumA = cast<EnumDecl>(EA->getDeclContext()); 10201 auto *EnumB = cast<EnumDecl>(EB->getDeclContext()); 10202 if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() || 10203 !Context.hasSameType(EnumA->getIntegerType(), 10204 EnumB->getIntegerType())) 10205 return false; 10206 // Allow this only if the value is the same for both enumerators. 10207 return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal()); 10208 } 10209 } 10210 10211 // Nothing else is sufficiently similar. 10212 return false; 10213 } 10214 10215 void Sema::diagnoseEquivalentInternalLinkageDeclarations( 10216 SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) { 10217 assert(D && "Unknown declaration"); 10218 Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D; 10219 10220 Module *M = getOwningModule(D); 10221 Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl) 10222 << !M << (M ? M->getFullModuleName() : ""); 10223 10224 for (auto *E : Equiv) { 10225 Module *M = getOwningModule(E); 10226 Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl) 10227 << !M << (M ? M->getFullModuleName() : ""); 10228 } 10229 } 10230 10231 bool OverloadCandidate::NotValidBecauseConstraintExprHasError() const { 10232 return FailureKind == ovl_fail_bad_deduction && 10233 DeductionFailure.Result == Sema::TDK_ConstraintsNotSatisfied && 10234 static_cast<CNSInfo *>(DeductionFailure.Data) 10235 ->Satisfaction.ContainsErrors; 10236 } 10237 10238 /// Computes the best viable function (C++ 13.3.3) 10239 /// within an overload candidate set. 10240 /// 10241 /// \param Loc The location of the function name (or operator symbol) for 10242 /// which overload resolution occurs. 10243 /// 10244 /// \param Best If overload resolution was successful or found a deleted 10245 /// function, \p Best points to the candidate function found. 10246 /// 10247 /// \returns The result of overload resolution. 10248 OverloadingResult 10249 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 10250 iterator &Best) { 10251 llvm::SmallVector<OverloadCandidate *, 16> Candidates; 10252 std::transform(begin(), end(), std::back_inserter(Candidates), 10253 [](OverloadCandidate &Cand) { return &Cand; }); 10254 10255 // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but 10256 // are accepted by both clang and NVCC. However, during a particular 10257 // compilation mode only one call variant is viable. We need to 10258 // exclude non-viable overload candidates from consideration based 10259 // only on their host/device attributes. Specifically, if one 10260 // candidate call is WrongSide and the other is SameSide, we ignore 10261 // the WrongSide candidate. 10262 // We only need to remove wrong-sided candidates here if 10263 // -fgpu-exclude-wrong-side-overloads is off. When 10264 // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared 10265 // uniformly in isBetterOverloadCandidate. 10266 if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) { 10267 const FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true); 10268 bool ContainsSameSideCandidate = 10269 llvm::any_of(Candidates, [&](OverloadCandidate *Cand) { 10270 // Check viable function only. 10271 return Cand->Viable && Cand->Function && 10272 S.IdentifyCUDAPreference(Caller, Cand->Function) == 10273 Sema::CFP_SameSide; 10274 }); 10275 if (ContainsSameSideCandidate) { 10276 auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) { 10277 // Check viable function only to avoid unnecessary data copying/moving. 10278 return Cand->Viable && Cand->Function && 10279 S.IdentifyCUDAPreference(Caller, Cand->Function) == 10280 Sema::CFP_WrongSide; 10281 }; 10282 llvm::erase_if(Candidates, IsWrongSideCandidate); 10283 } 10284 } 10285 10286 // Find the best viable function. 10287 Best = end(); 10288 for (auto *Cand : Candidates) { 10289 Cand->Best = false; 10290 if (Cand->Viable) { 10291 if (Best == end() || 10292 isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind)) 10293 Best = Cand; 10294 } else if (Cand->NotValidBecauseConstraintExprHasError()) { 10295 // This candidate has constraint that we were unable to evaluate because 10296 // it referenced an expression that contained an error. Rather than fall 10297 // back onto a potentially unintended candidate (made worse by 10298 // subsuming constraints), treat this as 'no viable candidate'. 10299 Best = end(); 10300 return OR_No_Viable_Function; 10301 } 10302 } 10303 10304 // If we didn't find any viable functions, abort. 10305 if (Best == end()) 10306 return OR_No_Viable_Function; 10307 10308 llvm::SmallVector<const NamedDecl *, 4> EquivalentCands; 10309 10310 llvm::SmallVector<OverloadCandidate*, 4> PendingBest; 10311 PendingBest.push_back(&*Best); 10312 Best->Best = true; 10313 10314 // Make sure that this function is better than every other viable 10315 // function. If not, we have an ambiguity. 10316 while (!PendingBest.empty()) { 10317 auto *Curr = PendingBest.pop_back_val(); 10318 for (auto *Cand : Candidates) { 10319 if (Cand->Viable && !Cand->Best && 10320 !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) { 10321 PendingBest.push_back(Cand); 10322 Cand->Best = true; 10323 10324 if (S.isEquivalentInternalLinkageDeclaration(Cand->Function, 10325 Curr->Function)) 10326 EquivalentCands.push_back(Cand->Function); 10327 else 10328 Best = end(); 10329 } 10330 } 10331 } 10332 10333 // If we found more than one best candidate, this is ambiguous. 10334 if (Best == end()) 10335 return OR_Ambiguous; 10336 10337 // Best is the best viable function. 10338 if (Best->Function && Best->Function->isDeleted()) 10339 return OR_Deleted; 10340 10341 if (!EquivalentCands.empty()) 10342 S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function, 10343 EquivalentCands); 10344 10345 return OR_Success; 10346 } 10347 10348 namespace { 10349 10350 enum OverloadCandidateKind { 10351 oc_function, 10352 oc_method, 10353 oc_reversed_binary_operator, 10354 oc_constructor, 10355 oc_implicit_default_constructor, 10356 oc_implicit_copy_constructor, 10357 oc_implicit_move_constructor, 10358 oc_implicit_copy_assignment, 10359 oc_implicit_move_assignment, 10360 oc_implicit_equality_comparison, 10361 oc_inherited_constructor 10362 }; 10363 10364 enum OverloadCandidateSelect { 10365 ocs_non_template, 10366 ocs_template, 10367 ocs_described_template, 10368 }; 10369 10370 static std::pair<OverloadCandidateKind, OverloadCandidateSelect> 10371 ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn, 10372 OverloadCandidateRewriteKind CRK, 10373 std::string &Description) { 10374 10375 bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl(); 10376 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 10377 isTemplate = true; 10378 Description = S.getTemplateArgumentBindingsText( 10379 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 10380 } 10381 10382 OverloadCandidateSelect Select = [&]() { 10383 if (!Description.empty()) 10384 return ocs_described_template; 10385 return isTemplate ? ocs_template : ocs_non_template; 10386 }(); 10387 10388 OverloadCandidateKind Kind = [&]() { 10389 if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual) 10390 return oc_implicit_equality_comparison; 10391 10392 if (CRK & CRK_Reversed) 10393 return oc_reversed_binary_operator; 10394 10395 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 10396 if (!Ctor->isImplicit()) { 10397 if (isa<ConstructorUsingShadowDecl>(Found)) 10398 return oc_inherited_constructor; 10399 else 10400 return oc_constructor; 10401 } 10402 10403 if (Ctor->isDefaultConstructor()) 10404 return oc_implicit_default_constructor; 10405 10406 if (Ctor->isMoveConstructor()) 10407 return oc_implicit_move_constructor; 10408 10409 assert(Ctor->isCopyConstructor() && 10410 "unexpected sort of implicit constructor"); 10411 return oc_implicit_copy_constructor; 10412 } 10413 10414 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 10415 // This actually gets spelled 'candidate function' for now, but 10416 // it doesn't hurt to split it out. 10417 if (!Meth->isImplicit()) 10418 return oc_method; 10419 10420 if (Meth->isMoveAssignmentOperator()) 10421 return oc_implicit_move_assignment; 10422 10423 if (Meth->isCopyAssignmentOperator()) 10424 return oc_implicit_copy_assignment; 10425 10426 assert(isa<CXXConversionDecl>(Meth) && "expected conversion"); 10427 return oc_method; 10428 } 10429 10430 return oc_function; 10431 }(); 10432 10433 return std::make_pair(Kind, Select); 10434 } 10435 10436 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) { 10437 // FIXME: It'd be nice to only emit a note once per using-decl per overload 10438 // set. 10439 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) 10440 S.Diag(FoundDecl->getLocation(), 10441 diag::note_ovl_candidate_inherited_constructor) 10442 << Shadow->getNominatedBaseClass(); 10443 } 10444 10445 } // end anonymous namespace 10446 10447 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx, 10448 const FunctionDecl *FD) { 10449 for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) { 10450 bool AlwaysTrue; 10451 if (EnableIf->getCond()->isValueDependent() || 10452 !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx)) 10453 return false; 10454 if (!AlwaysTrue) 10455 return false; 10456 } 10457 return true; 10458 } 10459 10460 /// Returns true if we can take the address of the function. 10461 /// 10462 /// \param Complain - If true, we'll emit a diagnostic 10463 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are 10464 /// we in overload resolution? 10465 /// \param Loc - The location of the statement we're complaining about. Ignored 10466 /// if we're not complaining, or if we're in overload resolution. 10467 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD, 10468 bool Complain, 10469 bool InOverloadResolution, 10470 SourceLocation Loc) { 10471 if (!isFunctionAlwaysEnabled(S.Context, FD)) { 10472 if (Complain) { 10473 if (InOverloadResolution) 10474 S.Diag(FD->getBeginLoc(), 10475 diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr); 10476 else 10477 S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD; 10478 } 10479 return false; 10480 } 10481 10482 if (FD->getTrailingRequiresClause()) { 10483 ConstraintSatisfaction Satisfaction; 10484 if (S.CheckFunctionConstraints(FD, Satisfaction, Loc)) 10485 return false; 10486 if (!Satisfaction.IsSatisfied) { 10487 if (Complain) { 10488 if (InOverloadResolution) { 10489 SmallString<128> TemplateArgString; 10490 if (FunctionTemplateDecl *FunTmpl = FD->getPrimaryTemplate()) { 10491 TemplateArgString += " "; 10492 TemplateArgString += S.getTemplateArgumentBindingsText( 10493 FunTmpl->getTemplateParameters(), 10494 *FD->getTemplateSpecializationArgs()); 10495 } 10496 10497 S.Diag(FD->getBeginLoc(), 10498 diag::note_ovl_candidate_unsatisfied_constraints) 10499 << TemplateArgString; 10500 } else 10501 S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied) 10502 << FD; 10503 S.DiagnoseUnsatisfiedConstraint(Satisfaction); 10504 } 10505 return false; 10506 } 10507 } 10508 10509 auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) { 10510 return P->hasAttr<PassObjectSizeAttr>(); 10511 }); 10512 if (I == FD->param_end()) 10513 return true; 10514 10515 if (Complain) { 10516 // Add one to ParamNo because it's user-facing 10517 unsigned ParamNo = std::distance(FD->param_begin(), I) + 1; 10518 if (InOverloadResolution) 10519 S.Diag(FD->getLocation(), 10520 diag::note_ovl_candidate_has_pass_object_size_params) 10521 << ParamNo; 10522 else 10523 S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params) 10524 << FD << ParamNo; 10525 } 10526 return false; 10527 } 10528 10529 static bool checkAddressOfCandidateIsAvailable(Sema &S, 10530 const FunctionDecl *FD) { 10531 return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true, 10532 /*InOverloadResolution=*/true, 10533 /*Loc=*/SourceLocation()); 10534 } 10535 10536 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function, 10537 bool Complain, 10538 SourceLocation Loc) { 10539 return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain, 10540 /*InOverloadResolution=*/false, 10541 Loc); 10542 } 10543 10544 // Don't print candidates other than the one that matches the calling 10545 // convention of the call operator, since that is guaranteed to exist. 10546 static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) { 10547 const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn); 10548 10549 if (!ConvD) 10550 return false; 10551 const auto *RD = cast<CXXRecordDecl>(Fn->getParent()); 10552 if (!RD->isLambda()) 10553 return false; 10554 10555 CXXMethodDecl *CallOp = RD->getLambdaCallOperator(); 10556 CallingConv CallOpCC = 10557 CallOp->getType()->castAs<FunctionType>()->getCallConv(); 10558 QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType(); 10559 CallingConv ConvToCC = 10560 ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv(); 10561 10562 return ConvToCC != CallOpCC; 10563 } 10564 10565 // Notes the location of an overload candidate. 10566 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn, 10567 OverloadCandidateRewriteKind RewriteKind, 10568 QualType DestType, bool TakingAddress) { 10569 if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn)) 10570 return; 10571 if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() && 10572 !Fn->getAttr<TargetAttr>()->isDefaultVersion()) 10573 return; 10574 if (Fn->isMultiVersion() && Fn->hasAttr<TargetVersionAttr>() && 10575 !Fn->getAttr<TargetVersionAttr>()->isDefaultVersion()) 10576 return; 10577 if (shouldSkipNotingLambdaConversionDecl(Fn)) 10578 return; 10579 10580 std::string FnDesc; 10581 std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair = 10582 ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc); 10583 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) 10584 << (unsigned)KSPair.first << (unsigned)KSPair.second 10585 << Fn << FnDesc; 10586 10587 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); 10588 Diag(Fn->getLocation(), PD); 10589 MaybeEmitInheritedConstructorNote(*this, Found); 10590 } 10591 10592 static void 10593 MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) { 10594 // Perhaps the ambiguity was caused by two atomic constraints that are 10595 // 'identical' but not equivalent: 10596 // 10597 // void foo() requires (sizeof(T) > 4) { } // #1 10598 // void foo() requires (sizeof(T) > 4) && T::value { } // #2 10599 // 10600 // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause 10601 // #2 to subsume #1, but these constraint are not considered equivalent 10602 // according to the subsumption rules because they are not the same 10603 // source-level construct. This behavior is quite confusing and we should try 10604 // to help the user figure out what happened. 10605 10606 SmallVector<const Expr *, 3> FirstAC, SecondAC; 10607 FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr; 10608 for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) { 10609 if (!I->Function) 10610 continue; 10611 SmallVector<const Expr *, 3> AC; 10612 if (auto *Template = I->Function->getPrimaryTemplate()) 10613 Template->getAssociatedConstraints(AC); 10614 else 10615 I->Function->getAssociatedConstraints(AC); 10616 if (AC.empty()) 10617 continue; 10618 if (FirstCand == nullptr) { 10619 FirstCand = I->Function; 10620 FirstAC = AC; 10621 } else if (SecondCand == nullptr) { 10622 SecondCand = I->Function; 10623 SecondAC = AC; 10624 } else { 10625 // We have more than one pair of constrained functions - this check is 10626 // expensive and we'd rather not try to diagnose it. 10627 return; 10628 } 10629 } 10630 if (!SecondCand) 10631 return; 10632 // The diagnostic can only happen if there are associated constraints on 10633 // both sides (there needs to be some identical atomic constraint). 10634 if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC, 10635 SecondCand, SecondAC)) 10636 // Just show the user one diagnostic, they'll probably figure it out 10637 // from here. 10638 return; 10639 } 10640 10641 // Notes the location of all overload candidates designated through 10642 // OverloadedExpr 10643 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType, 10644 bool TakingAddress) { 10645 assert(OverloadedExpr->getType() == Context.OverloadTy); 10646 10647 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); 10648 OverloadExpr *OvlExpr = Ovl.Expression; 10649 10650 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 10651 IEnd = OvlExpr->decls_end(); 10652 I != IEnd; ++I) { 10653 if (FunctionTemplateDecl *FunTmpl = 10654 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { 10655 NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType, 10656 TakingAddress); 10657 } else if (FunctionDecl *Fun 10658 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { 10659 NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress); 10660 } 10661 } 10662 } 10663 10664 /// Diagnoses an ambiguous conversion. The partial diagnostic is the 10665 /// "lead" diagnostic; it will be given two arguments, the source and 10666 /// target types of the conversion. 10667 void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 10668 Sema &S, 10669 SourceLocation CaretLoc, 10670 const PartialDiagnostic &PDiag) const { 10671 S.Diag(CaretLoc, PDiag) 10672 << Ambiguous.getFromType() << Ambiguous.getToType(); 10673 unsigned CandsShown = 0; 10674 AmbiguousConversionSequence::const_iterator I, E; 10675 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 10676 if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow()) 10677 break; 10678 ++CandsShown; 10679 S.NoteOverloadCandidate(I->first, I->second); 10680 } 10681 S.Diags.overloadCandidatesShown(CandsShown); 10682 if (I != E) 10683 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I); 10684 } 10685 10686 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, 10687 unsigned I, bool TakingCandidateAddress) { 10688 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 10689 assert(Conv.isBad()); 10690 assert(Cand->Function && "for now, candidate must be a function"); 10691 FunctionDecl *Fn = Cand->Function; 10692 10693 // There's a conversion slot for the object argument if this is a 10694 // non-constructor method. Note that 'I' corresponds the 10695 // conversion-slot index. 10696 bool isObjectArgument = false; 10697 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 10698 if (I == 0) 10699 isObjectArgument = true; 10700 else 10701 I--; 10702 } 10703 10704 std::string FnDesc; 10705 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 10706 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(), 10707 FnDesc); 10708 10709 Expr *FromExpr = Conv.Bad.FromExpr; 10710 QualType FromTy = Conv.Bad.getFromType(); 10711 QualType ToTy = Conv.Bad.getToType(); 10712 10713 if (FromTy == S.Context.OverloadTy) { 10714 assert(FromExpr && "overload set argument came from implicit argument?"); 10715 Expr *E = FromExpr->IgnoreParens(); 10716 if (isa<UnaryOperator>(E)) 10717 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 10718 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 10719 10720 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 10721 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10722 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy 10723 << Name << I + 1; 10724 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10725 return; 10726 } 10727 10728 // Do some hand-waving analysis to see if the non-viability is due 10729 // to a qualifier mismatch. 10730 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 10731 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 10732 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 10733 CToTy = RT->getPointeeType(); 10734 else { 10735 // TODO: detect and diagnose the full richness of const mismatches. 10736 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 10737 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) { 10738 CFromTy = FromPT->getPointeeType(); 10739 CToTy = ToPT->getPointeeType(); 10740 } 10741 } 10742 10743 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 10744 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 10745 Qualifiers FromQs = CFromTy.getQualifiers(); 10746 Qualifiers ToQs = CToTy.getQualifiers(); 10747 10748 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 10749 if (isObjectArgument) 10750 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this) 10751 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10752 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10753 << FromQs.getAddressSpace() << ToQs.getAddressSpace(); 10754 else 10755 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 10756 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10757 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10758 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 10759 << ToTy->isReferenceType() << I + 1; 10760 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10761 return; 10762 } 10763 10764 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 10765 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) 10766 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10767 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10768 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() 10769 << (unsigned)isObjectArgument << I + 1; 10770 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10771 return; 10772 } 10773 10774 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { 10775 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) 10776 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10777 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10778 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() 10779 << (unsigned)isObjectArgument << I + 1; 10780 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10781 return; 10782 } 10783 10784 if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) { 10785 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned) 10786 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10787 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10788 << FromQs.hasUnaligned() << I + 1; 10789 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10790 return; 10791 } 10792 10793 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 10794 assert(CVR && "expected qualifiers mismatch"); 10795 10796 if (isObjectArgument) { 10797 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 10798 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10799 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10800 << (CVR - 1); 10801 } else { 10802 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 10803 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10804 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10805 << (CVR - 1) << I + 1; 10806 } 10807 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10808 return; 10809 } 10810 10811 if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue || 10812 Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) { 10813 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category) 10814 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10815 << (unsigned)isObjectArgument << I + 1 10816 << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) 10817 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()); 10818 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10819 return; 10820 } 10821 10822 // Special diagnostic for failure to convert an initializer list, since 10823 // telling the user that it has type void is not useful. 10824 if (FromExpr && isa<InitListExpr>(FromExpr)) { 10825 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) 10826 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10827 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10828 << ToTy << (unsigned)isObjectArgument << I + 1 10829 << (Conv.Bad.Kind == BadConversionSequence::too_few_initializers ? 1 10830 : Conv.Bad.Kind == BadConversionSequence::too_many_initializers 10831 ? 2 10832 : 0); 10833 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10834 return; 10835 } 10836 10837 // Diagnose references or pointers to incomplete types differently, 10838 // since it's far from impossible that the incompleteness triggered 10839 // the failure. 10840 QualType TempFromTy = FromTy.getNonReferenceType(); 10841 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 10842 TempFromTy = PTy->getPointeeType(); 10843 if (TempFromTy->isIncompleteType()) { 10844 // Emit the generic diagnostic and, optionally, add the hints to it. 10845 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 10846 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10847 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10848 << ToTy << (unsigned)isObjectArgument << I + 1 10849 << (unsigned)(Cand->Fix.Kind); 10850 10851 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10852 return; 10853 } 10854 10855 // Diagnose base -> derived pointer conversions. 10856 unsigned BaseToDerivedConversion = 0; 10857 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 10858 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 10859 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 10860 FromPtrTy->getPointeeType()) && 10861 !FromPtrTy->getPointeeType()->isIncompleteType() && 10862 !ToPtrTy->getPointeeType()->isIncompleteType() && 10863 S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(), 10864 FromPtrTy->getPointeeType())) 10865 BaseToDerivedConversion = 1; 10866 } 10867 } else if (const ObjCObjectPointerType *FromPtrTy 10868 = FromTy->getAs<ObjCObjectPointerType>()) { 10869 if (const ObjCObjectPointerType *ToPtrTy 10870 = ToTy->getAs<ObjCObjectPointerType>()) 10871 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 10872 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 10873 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 10874 FromPtrTy->getPointeeType()) && 10875 FromIface->isSuperClassOf(ToIface)) 10876 BaseToDerivedConversion = 2; 10877 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 10878 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 10879 !FromTy->isIncompleteType() && 10880 !ToRefTy->getPointeeType()->isIncompleteType() && 10881 S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) { 10882 BaseToDerivedConversion = 3; 10883 } 10884 } 10885 10886 if (BaseToDerivedConversion) { 10887 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv) 10888 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10889 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10890 << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1; 10891 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10892 return; 10893 } 10894 10895 if (isa<ObjCObjectPointerType>(CFromTy) && 10896 isa<PointerType>(CToTy)) { 10897 Qualifiers FromQs = CFromTy.getQualifiers(); 10898 Qualifiers ToQs = CToTy.getQualifiers(); 10899 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 10900 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) 10901 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10902 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10903 << FromTy << ToTy << (unsigned)isObjectArgument << I + 1; 10904 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10905 return; 10906 } 10907 } 10908 10909 if (TakingCandidateAddress && 10910 !checkAddressOfCandidateIsAvailable(S, Cand->Function)) 10911 return; 10912 10913 // Emit the generic diagnostic and, optionally, add the hints to it. 10914 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); 10915 FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10916 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10917 << ToTy << (unsigned)isObjectArgument << I + 1 10918 << (unsigned)(Cand->Fix.Kind); 10919 10920 // Check that location of Fn is not in system header. 10921 if (!S.SourceMgr.isInSystemHeader(Fn->getLocation())) { 10922 // If we can fix the conversion, suggest the FixIts. 10923 for (const FixItHint &HI : Cand->Fix.Hints) 10924 FDiag << HI; 10925 } 10926 10927 S.Diag(Fn->getLocation(), FDiag); 10928 10929 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10930 } 10931 10932 /// Additional arity mismatch diagnosis specific to a function overload 10933 /// candidates. This is not covered by the more general DiagnoseArityMismatch() 10934 /// over a candidate in any candidate set. 10935 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand, 10936 unsigned NumArgs) { 10937 FunctionDecl *Fn = Cand->Function; 10938 unsigned MinParams = Fn->getMinRequiredArguments(); 10939 10940 // With invalid overloaded operators, it's possible that we think we 10941 // have an arity mismatch when in fact it looks like we have the 10942 // right number of arguments, because only overloaded operators have 10943 // the weird behavior of overloading member and non-member functions. 10944 // Just don't report anything. 10945 if (Fn->isInvalidDecl() && 10946 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 10947 return true; 10948 10949 if (NumArgs < MinParams) { 10950 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 10951 (Cand->FailureKind == ovl_fail_bad_deduction && 10952 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 10953 } else { 10954 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 10955 (Cand->FailureKind == ovl_fail_bad_deduction && 10956 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 10957 } 10958 10959 return false; 10960 } 10961 10962 /// General arity mismatch diagnosis over a candidate in a candidate set. 10963 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D, 10964 unsigned NumFormalArgs) { 10965 assert(isa<FunctionDecl>(D) && 10966 "The templated declaration should at least be a function" 10967 " when diagnosing bad template argument deduction due to too many" 10968 " or too few arguments"); 10969 10970 FunctionDecl *Fn = cast<FunctionDecl>(D); 10971 10972 // TODO: treat calls to a missing default constructor as a special case 10973 const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>(); 10974 unsigned MinParams = Fn->getMinRequiredArguments(); 10975 10976 // at least / at most / exactly 10977 unsigned mode, modeCount; 10978 if (NumFormalArgs < MinParams) { 10979 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() || 10980 FnTy->isTemplateVariadic()) 10981 mode = 0; // "at least" 10982 else 10983 mode = 2; // "exactly" 10984 modeCount = MinParams; 10985 } else { 10986 if (MinParams != FnTy->getNumParams()) 10987 mode = 1; // "at most" 10988 else 10989 mode = 2; // "exactly" 10990 modeCount = FnTy->getNumParams(); 10991 } 10992 10993 std::string Description; 10994 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 10995 ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description); 10996 10997 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName()) 10998 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one) 10999 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 11000 << Description << mode << Fn->getParamDecl(0) << NumFormalArgs; 11001 else 11002 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 11003 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 11004 << Description << mode << modeCount << NumFormalArgs; 11005 11006 MaybeEmitInheritedConstructorNote(S, Found); 11007 } 11008 11009 /// Arity mismatch diagnosis specific to a function overload candidate. 11010 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 11011 unsigned NumFormalArgs) { 11012 if (!CheckArityMismatch(S, Cand, NumFormalArgs)) 11013 DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs); 11014 } 11015 11016 static TemplateDecl *getDescribedTemplate(Decl *Templated) { 11017 if (TemplateDecl *TD = Templated->getDescribedTemplate()) 11018 return TD; 11019 llvm_unreachable("Unsupported: Getting the described template declaration" 11020 " for bad deduction diagnosis"); 11021 } 11022 11023 /// Diagnose a failed template-argument deduction. 11024 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated, 11025 DeductionFailureInfo &DeductionFailure, 11026 unsigned NumArgs, 11027 bool TakingCandidateAddress) { 11028 TemplateParameter Param = DeductionFailure.getTemplateParameter(); 11029 NamedDecl *ParamD; 11030 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 11031 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 11032 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 11033 switch (DeductionFailure.Result) { 11034 case Sema::TDK_Success: 11035 llvm_unreachable("TDK_success while diagnosing bad deduction"); 11036 11037 case Sema::TDK_Incomplete: { 11038 assert(ParamD && "no parameter found for incomplete deduction result"); 11039 S.Diag(Templated->getLocation(), 11040 diag::note_ovl_candidate_incomplete_deduction) 11041 << ParamD->getDeclName(); 11042 MaybeEmitInheritedConstructorNote(S, Found); 11043 return; 11044 } 11045 11046 case Sema::TDK_IncompletePack: { 11047 assert(ParamD && "no parameter found for incomplete deduction result"); 11048 S.Diag(Templated->getLocation(), 11049 diag::note_ovl_candidate_incomplete_deduction_pack) 11050 << ParamD->getDeclName() 11051 << (DeductionFailure.getFirstArg()->pack_size() + 1) 11052 << *DeductionFailure.getFirstArg(); 11053 MaybeEmitInheritedConstructorNote(S, Found); 11054 return; 11055 } 11056 11057 case Sema::TDK_Underqualified: { 11058 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 11059 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 11060 11061 QualType Param = DeductionFailure.getFirstArg()->getAsType(); 11062 11063 // Param will have been canonicalized, but it should just be a 11064 // qualified version of ParamD, so move the qualifiers to that. 11065 QualifierCollector Qs; 11066 Qs.strip(Param); 11067 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); 11068 assert(S.Context.hasSameType(Param, NonCanonParam)); 11069 11070 // Arg has also been canonicalized, but there's nothing we can do 11071 // about that. It also doesn't matter as much, because it won't 11072 // have any template parameters in it (because deduction isn't 11073 // done on dependent types). 11074 QualType Arg = DeductionFailure.getSecondArg()->getAsType(); 11075 11076 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified) 11077 << ParamD->getDeclName() << Arg << NonCanonParam; 11078 MaybeEmitInheritedConstructorNote(S, Found); 11079 return; 11080 } 11081 11082 case Sema::TDK_Inconsistent: { 11083 assert(ParamD && "no parameter found for inconsistent deduction result"); 11084 int which = 0; 11085 if (isa<TemplateTypeParmDecl>(ParamD)) 11086 which = 0; 11087 else if (isa<NonTypeTemplateParmDecl>(ParamD)) { 11088 // Deduction might have failed because we deduced arguments of two 11089 // different types for a non-type template parameter. 11090 // FIXME: Use a different TDK value for this. 11091 QualType T1 = 11092 DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType(); 11093 QualType T2 = 11094 DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType(); 11095 if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) { 11096 S.Diag(Templated->getLocation(), 11097 diag::note_ovl_candidate_inconsistent_deduction_types) 11098 << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1 11099 << *DeductionFailure.getSecondArg() << T2; 11100 MaybeEmitInheritedConstructorNote(S, Found); 11101 return; 11102 } 11103 11104 which = 1; 11105 } else { 11106 which = 2; 11107 } 11108 11109 // Tweak the diagnostic if the problem is that we deduced packs of 11110 // different arities. We'll print the actual packs anyway in case that 11111 // includes additional useful information. 11112 if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack && 11113 DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack && 11114 DeductionFailure.getFirstArg()->pack_size() != 11115 DeductionFailure.getSecondArg()->pack_size()) { 11116 which = 3; 11117 } 11118 11119 S.Diag(Templated->getLocation(), 11120 diag::note_ovl_candidate_inconsistent_deduction) 11121 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg() 11122 << *DeductionFailure.getSecondArg(); 11123 MaybeEmitInheritedConstructorNote(S, Found); 11124 return; 11125 } 11126 11127 case Sema::TDK_InvalidExplicitArguments: 11128 assert(ParamD && "no parameter found for invalid explicit arguments"); 11129 if (ParamD->getDeclName()) 11130 S.Diag(Templated->getLocation(), 11131 diag::note_ovl_candidate_explicit_arg_mismatch_named) 11132 << ParamD->getDeclName(); 11133 else { 11134 int index = 0; 11135 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 11136 index = TTP->getIndex(); 11137 else if (NonTypeTemplateParmDecl *NTTP 11138 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 11139 index = NTTP->getIndex(); 11140 else 11141 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 11142 S.Diag(Templated->getLocation(), 11143 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 11144 << (index + 1); 11145 } 11146 MaybeEmitInheritedConstructorNote(S, Found); 11147 return; 11148 11149 case Sema::TDK_ConstraintsNotSatisfied: { 11150 // Format the template argument list into the argument string. 11151 SmallString<128> TemplateArgString; 11152 TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList(); 11153 TemplateArgString = " "; 11154 TemplateArgString += S.getTemplateArgumentBindingsText( 11155 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 11156 if (TemplateArgString.size() == 1) 11157 TemplateArgString.clear(); 11158 S.Diag(Templated->getLocation(), 11159 diag::note_ovl_candidate_unsatisfied_constraints) 11160 << TemplateArgString; 11161 11162 S.DiagnoseUnsatisfiedConstraint( 11163 static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction); 11164 return; 11165 } 11166 case Sema::TDK_TooManyArguments: 11167 case Sema::TDK_TooFewArguments: 11168 DiagnoseArityMismatch(S, Found, Templated, NumArgs); 11169 return; 11170 11171 case Sema::TDK_InstantiationDepth: 11172 S.Diag(Templated->getLocation(), 11173 diag::note_ovl_candidate_instantiation_depth); 11174 MaybeEmitInheritedConstructorNote(S, Found); 11175 return; 11176 11177 case Sema::TDK_SubstitutionFailure: { 11178 // Format the template argument list into the argument string. 11179 SmallString<128> TemplateArgString; 11180 if (TemplateArgumentList *Args = 11181 DeductionFailure.getTemplateArgumentList()) { 11182 TemplateArgString = " "; 11183 TemplateArgString += S.getTemplateArgumentBindingsText( 11184 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 11185 if (TemplateArgString.size() == 1) 11186 TemplateArgString.clear(); 11187 } 11188 11189 // If this candidate was disabled by enable_if, say so. 11190 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic(); 11191 if (PDiag && PDiag->second.getDiagID() == 11192 diag::err_typename_nested_not_found_enable_if) { 11193 // FIXME: Use the source range of the condition, and the fully-qualified 11194 // name of the enable_if template. These are both present in PDiag. 11195 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if) 11196 << "'enable_if'" << TemplateArgString; 11197 return; 11198 } 11199 11200 // We found a specific requirement that disabled the enable_if. 11201 if (PDiag && PDiag->second.getDiagID() == 11202 diag::err_typename_nested_not_found_requirement) { 11203 S.Diag(Templated->getLocation(), 11204 diag::note_ovl_candidate_disabled_by_requirement) 11205 << PDiag->second.getStringArg(0) << TemplateArgString; 11206 return; 11207 } 11208 11209 // Format the SFINAE diagnostic into the argument string. 11210 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s 11211 // formatted message in another diagnostic. 11212 SmallString<128> SFINAEArgString; 11213 SourceRange R; 11214 if (PDiag) { 11215 SFINAEArgString = ": "; 11216 R = SourceRange(PDiag->first, PDiag->first); 11217 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString); 11218 } 11219 11220 S.Diag(Templated->getLocation(), 11221 diag::note_ovl_candidate_substitution_failure) 11222 << TemplateArgString << SFINAEArgString << R; 11223 MaybeEmitInheritedConstructorNote(S, Found); 11224 return; 11225 } 11226 11227 case Sema::TDK_DeducedMismatch: 11228 case Sema::TDK_DeducedMismatchNested: { 11229 // Format the template argument list into the argument string. 11230 SmallString<128> TemplateArgString; 11231 if (TemplateArgumentList *Args = 11232 DeductionFailure.getTemplateArgumentList()) { 11233 TemplateArgString = " "; 11234 TemplateArgString += S.getTemplateArgumentBindingsText( 11235 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 11236 if (TemplateArgString.size() == 1) 11237 TemplateArgString.clear(); 11238 } 11239 11240 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch) 11241 << (*DeductionFailure.getCallArgIndex() + 1) 11242 << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg() 11243 << TemplateArgString 11244 << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested); 11245 break; 11246 } 11247 11248 case Sema::TDK_NonDeducedMismatch: { 11249 // FIXME: Provide a source location to indicate what we couldn't match. 11250 TemplateArgument FirstTA = *DeductionFailure.getFirstArg(); 11251 TemplateArgument SecondTA = *DeductionFailure.getSecondArg(); 11252 if (FirstTA.getKind() == TemplateArgument::Template && 11253 SecondTA.getKind() == TemplateArgument::Template) { 11254 TemplateName FirstTN = FirstTA.getAsTemplate(); 11255 TemplateName SecondTN = SecondTA.getAsTemplate(); 11256 if (FirstTN.getKind() == TemplateName::Template && 11257 SecondTN.getKind() == TemplateName::Template) { 11258 if (FirstTN.getAsTemplateDecl()->getName() == 11259 SecondTN.getAsTemplateDecl()->getName()) { 11260 // FIXME: This fixes a bad diagnostic where both templates are named 11261 // the same. This particular case is a bit difficult since: 11262 // 1) It is passed as a string to the diagnostic printer. 11263 // 2) The diagnostic printer only attempts to find a better 11264 // name for types, not decls. 11265 // Ideally, this should folded into the diagnostic printer. 11266 S.Diag(Templated->getLocation(), 11267 diag::note_ovl_candidate_non_deduced_mismatch_qualified) 11268 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl(); 11269 return; 11270 } 11271 } 11272 } 11273 11274 if (TakingCandidateAddress && isa<FunctionDecl>(Templated) && 11275 !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated))) 11276 return; 11277 11278 // FIXME: For generic lambda parameters, check if the function is a lambda 11279 // call operator, and if so, emit a prettier and more informative 11280 // diagnostic that mentions 'auto' and lambda in addition to 11281 // (or instead of?) the canonical template type parameters. 11282 S.Diag(Templated->getLocation(), 11283 diag::note_ovl_candidate_non_deduced_mismatch) 11284 << FirstTA << SecondTA; 11285 return; 11286 } 11287 // TODO: diagnose these individually, then kill off 11288 // note_ovl_candidate_bad_deduction, which is uselessly vague. 11289 case Sema::TDK_MiscellaneousDeductionFailure: 11290 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction); 11291 MaybeEmitInheritedConstructorNote(S, Found); 11292 return; 11293 case Sema::TDK_CUDATargetMismatch: 11294 S.Diag(Templated->getLocation(), 11295 diag::note_cuda_ovl_candidate_target_mismatch); 11296 return; 11297 } 11298 } 11299 11300 /// Diagnose a failed template-argument deduction, for function calls. 11301 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 11302 unsigned NumArgs, 11303 bool TakingCandidateAddress) { 11304 unsigned TDK = Cand->DeductionFailure.Result; 11305 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) { 11306 if (CheckArityMismatch(S, Cand, NumArgs)) 11307 return; 11308 } 11309 DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern 11310 Cand->DeductionFailure, NumArgs, TakingCandidateAddress); 11311 } 11312 11313 /// CUDA: diagnose an invalid call across targets. 11314 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { 11315 FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true); 11316 FunctionDecl *Callee = Cand->Function; 11317 11318 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller), 11319 CalleeTarget = S.IdentifyCUDATarget(Callee); 11320 11321 std::string FnDesc; 11322 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 11323 ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, 11324 Cand->getRewriteKind(), FnDesc); 11325 11326 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) 11327 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template 11328 << FnDesc /* Ignored */ 11329 << CalleeTarget << CallerTarget; 11330 11331 // This could be an implicit constructor for which we could not infer the 11332 // target due to a collsion. Diagnose that case. 11333 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee); 11334 if (Meth != nullptr && Meth->isImplicit()) { 11335 CXXRecordDecl *ParentClass = Meth->getParent(); 11336 Sema::CXXSpecialMember CSM; 11337 11338 switch (FnKindPair.first) { 11339 default: 11340 return; 11341 case oc_implicit_default_constructor: 11342 CSM = Sema::CXXDefaultConstructor; 11343 break; 11344 case oc_implicit_copy_constructor: 11345 CSM = Sema::CXXCopyConstructor; 11346 break; 11347 case oc_implicit_move_constructor: 11348 CSM = Sema::CXXMoveConstructor; 11349 break; 11350 case oc_implicit_copy_assignment: 11351 CSM = Sema::CXXCopyAssignment; 11352 break; 11353 case oc_implicit_move_assignment: 11354 CSM = Sema::CXXMoveAssignment; 11355 break; 11356 }; 11357 11358 bool ConstRHS = false; 11359 if (Meth->getNumParams()) { 11360 if (const ReferenceType *RT = 11361 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) { 11362 ConstRHS = RT->getPointeeType().isConstQualified(); 11363 } 11364 } 11365 11366 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth, 11367 /* ConstRHS */ ConstRHS, 11368 /* Diagnose */ true); 11369 } 11370 } 11371 11372 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) { 11373 FunctionDecl *Callee = Cand->Function; 11374 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data); 11375 11376 S.Diag(Callee->getLocation(), 11377 diag::note_ovl_candidate_disabled_by_function_cond_attr) 11378 << Attr->getCond()->getSourceRange() << Attr->getMessage(); 11379 } 11380 11381 static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) { 11382 ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function); 11383 assert(ES.isExplicit() && "not an explicit candidate"); 11384 11385 unsigned Kind; 11386 switch (Cand->Function->getDeclKind()) { 11387 case Decl::Kind::CXXConstructor: 11388 Kind = 0; 11389 break; 11390 case Decl::Kind::CXXConversion: 11391 Kind = 1; 11392 break; 11393 case Decl::Kind::CXXDeductionGuide: 11394 Kind = Cand->Function->isImplicit() ? 0 : 2; 11395 break; 11396 default: 11397 llvm_unreachable("invalid Decl"); 11398 } 11399 11400 // Note the location of the first (in-class) declaration; a redeclaration 11401 // (particularly an out-of-class definition) will typically lack the 11402 // 'explicit' specifier. 11403 // FIXME: This is probably a good thing to do for all 'candidate' notes. 11404 FunctionDecl *First = Cand->Function->getFirstDecl(); 11405 if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern()) 11406 First = Pattern->getFirstDecl(); 11407 11408 S.Diag(First->getLocation(), 11409 diag::note_ovl_candidate_explicit) 11410 << Kind << (ES.getExpr() ? 1 : 0) 11411 << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange()); 11412 } 11413 11414 /// Generates a 'note' diagnostic for an overload candidate. We've 11415 /// already generated a primary error at the call site. 11416 /// 11417 /// It really does need to be a single diagnostic with its caret 11418 /// pointed at the candidate declaration. Yes, this creates some 11419 /// major challenges of technical writing. Yes, this makes pointing 11420 /// out problems with specific arguments quite awkward. It's still 11421 /// better than generating twenty screens of text for every failed 11422 /// overload. 11423 /// 11424 /// It would be great to be able to express per-candidate problems 11425 /// more richly for those diagnostic clients that cared, but we'd 11426 /// still have to be just as careful with the default diagnostics. 11427 /// \param CtorDestAS Addr space of object being constructed (for ctor 11428 /// candidates only). 11429 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 11430 unsigned NumArgs, 11431 bool TakingCandidateAddress, 11432 LangAS CtorDestAS = LangAS::Default) { 11433 FunctionDecl *Fn = Cand->Function; 11434 if (shouldSkipNotingLambdaConversionDecl(Fn)) 11435 return; 11436 11437 // There is no physical candidate declaration to point to for OpenCL builtins. 11438 // Except for failed conversions, the notes are identical for each candidate, 11439 // so do not generate such notes. 11440 if (S.getLangOpts().OpenCL && Fn->isImplicit() && 11441 Cand->FailureKind != ovl_fail_bad_conversion) 11442 return; 11443 11444 // Note deleted candidates, but only if they're viable. 11445 if (Cand->Viable) { 11446 if (Fn->isDeleted()) { 11447 std::string FnDesc; 11448 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 11449 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, 11450 Cand->getRewriteKind(), FnDesc); 11451 11452 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 11453 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 11454 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0); 11455 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11456 return; 11457 } 11458 11459 // We don't really have anything else to say about viable candidates. 11460 S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); 11461 return; 11462 } 11463 11464 switch (Cand->FailureKind) { 11465 case ovl_fail_too_many_arguments: 11466 case ovl_fail_too_few_arguments: 11467 return DiagnoseArityMismatch(S, Cand, NumArgs); 11468 11469 case ovl_fail_bad_deduction: 11470 return DiagnoseBadDeduction(S, Cand, NumArgs, 11471 TakingCandidateAddress); 11472 11473 case ovl_fail_illegal_constructor: { 11474 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor) 11475 << (Fn->getPrimaryTemplate() ? 1 : 0); 11476 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11477 return; 11478 } 11479 11480 case ovl_fail_object_addrspace_mismatch: { 11481 Qualifiers QualsForPrinting; 11482 QualsForPrinting.setAddressSpace(CtorDestAS); 11483 S.Diag(Fn->getLocation(), 11484 diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch) 11485 << QualsForPrinting; 11486 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11487 return; 11488 } 11489 11490 case ovl_fail_trivial_conversion: 11491 case ovl_fail_bad_final_conversion: 11492 case ovl_fail_final_conversion_not_exact: 11493 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); 11494 11495 case ovl_fail_bad_conversion: { 11496 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 11497 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 11498 if (Cand->Conversions[I].isBad()) 11499 return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress); 11500 11501 // FIXME: this currently happens when we're called from SemaInit 11502 // when user-conversion overload fails. Figure out how to handle 11503 // those conditions and diagnose them well. 11504 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); 11505 } 11506 11507 case ovl_fail_bad_target: 11508 return DiagnoseBadTarget(S, Cand); 11509 11510 case ovl_fail_enable_if: 11511 return DiagnoseFailedEnableIfAttr(S, Cand); 11512 11513 case ovl_fail_explicit: 11514 return DiagnoseFailedExplicitSpec(S, Cand); 11515 11516 case ovl_fail_inhctor_slice: 11517 // It's generally not interesting to note copy/move constructors here. 11518 if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor()) 11519 return; 11520 S.Diag(Fn->getLocation(), 11521 diag::note_ovl_candidate_inherited_constructor_slice) 11522 << (Fn->getPrimaryTemplate() ? 1 : 0) 11523 << Fn->getParamDecl(0)->getType()->isRValueReferenceType(); 11524 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11525 return; 11526 11527 case ovl_fail_addr_not_available: { 11528 bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function); 11529 (void)Available; 11530 assert(!Available); 11531 break; 11532 } 11533 case ovl_non_default_multiversion_function: 11534 // Do nothing, these should simply be ignored. 11535 break; 11536 11537 case ovl_fail_constraints_not_satisfied: { 11538 std::string FnDesc; 11539 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 11540 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, 11541 Cand->getRewriteKind(), FnDesc); 11542 11543 S.Diag(Fn->getLocation(), 11544 diag::note_ovl_candidate_constraints_not_satisfied) 11545 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template 11546 << FnDesc /* Ignored */; 11547 ConstraintSatisfaction Satisfaction; 11548 if (S.CheckFunctionConstraints(Fn, Satisfaction)) 11549 break; 11550 S.DiagnoseUnsatisfiedConstraint(Satisfaction); 11551 } 11552 } 11553 } 11554 11555 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 11556 if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate)) 11557 return; 11558 11559 // Desugar the type of the surrogate down to a function type, 11560 // retaining as many typedefs as possible while still showing 11561 // the function type (and, therefore, its parameter types). 11562 QualType FnType = Cand->Surrogate->getConversionType(); 11563 bool isLValueReference = false; 11564 bool isRValueReference = false; 11565 bool isPointer = false; 11566 if (const LValueReferenceType *FnTypeRef = 11567 FnType->getAs<LValueReferenceType>()) { 11568 FnType = FnTypeRef->getPointeeType(); 11569 isLValueReference = true; 11570 } else if (const RValueReferenceType *FnTypeRef = 11571 FnType->getAs<RValueReferenceType>()) { 11572 FnType = FnTypeRef->getPointeeType(); 11573 isRValueReference = true; 11574 } 11575 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 11576 FnType = FnTypePtr->getPointeeType(); 11577 isPointer = true; 11578 } 11579 // Desugar down to a function type. 11580 FnType = QualType(FnType->getAs<FunctionType>(), 0); 11581 // Reconstruct the pointer/reference as appropriate. 11582 if (isPointer) FnType = S.Context.getPointerType(FnType); 11583 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 11584 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 11585 11586 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 11587 << FnType; 11588 } 11589 11590 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc, 11591 SourceLocation OpLoc, 11592 OverloadCandidate *Cand) { 11593 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 11594 std::string TypeStr("operator"); 11595 TypeStr += Opc; 11596 TypeStr += "("; 11597 TypeStr += Cand->BuiltinParamTypes[0].getAsString(); 11598 if (Cand->Conversions.size() == 1) { 11599 TypeStr += ")"; 11600 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; 11601 } else { 11602 TypeStr += ", "; 11603 TypeStr += Cand->BuiltinParamTypes[1].getAsString(); 11604 TypeStr += ")"; 11605 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; 11606 } 11607 } 11608 11609 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 11610 OverloadCandidate *Cand) { 11611 for (const ImplicitConversionSequence &ICS : Cand->Conversions) { 11612 if (ICS.isBad()) break; // all meaningless after first invalid 11613 if (!ICS.isAmbiguous()) continue; 11614 11615 ICS.DiagnoseAmbiguousConversion( 11616 S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion)); 11617 } 11618 } 11619 11620 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 11621 if (Cand->Function) 11622 return Cand->Function->getLocation(); 11623 if (Cand->IsSurrogate) 11624 return Cand->Surrogate->getLocation(); 11625 return SourceLocation(); 11626 } 11627 11628 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) { 11629 switch ((Sema::TemplateDeductionResult)DFI.Result) { 11630 case Sema::TDK_Success: 11631 case Sema::TDK_NonDependentConversionFailure: 11632 case Sema::TDK_AlreadyDiagnosed: 11633 llvm_unreachable("non-deduction failure while diagnosing bad deduction"); 11634 11635 case Sema::TDK_Invalid: 11636 case Sema::TDK_Incomplete: 11637 case Sema::TDK_IncompletePack: 11638 return 1; 11639 11640 case Sema::TDK_Underqualified: 11641 case Sema::TDK_Inconsistent: 11642 return 2; 11643 11644 case Sema::TDK_SubstitutionFailure: 11645 case Sema::TDK_DeducedMismatch: 11646 case Sema::TDK_ConstraintsNotSatisfied: 11647 case Sema::TDK_DeducedMismatchNested: 11648 case Sema::TDK_NonDeducedMismatch: 11649 case Sema::TDK_MiscellaneousDeductionFailure: 11650 case Sema::TDK_CUDATargetMismatch: 11651 return 3; 11652 11653 case Sema::TDK_InstantiationDepth: 11654 return 4; 11655 11656 case Sema::TDK_InvalidExplicitArguments: 11657 return 5; 11658 11659 case Sema::TDK_TooManyArguments: 11660 case Sema::TDK_TooFewArguments: 11661 return 6; 11662 } 11663 llvm_unreachable("Unhandled deduction result"); 11664 } 11665 11666 namespace { 11667 struct CompareOverloadCandidatesForDisplay { 11668 Sema &S; 11669 SourceLocation Loc; 11670 size_t NumArgs; 11671 OverloadCandidateSet::CandidateSetKind CSK; 11672 11673 CompareOverloadCandidatesForDisplay( 11674 Sema &S, SourceLocation Loc, size_t NArgs, 11675 OverloadCandidateSet::CandidateSetKind CSK) 11676 : S(S), NumArgs(NArgs), CSK(CSK) {} 11677 11678 OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const { 11679 // If there are too many or too few arguments, that's the high-order bit we 11680 // want to sort by, even if the immediate failure kind was something else. 11681 if (C->FailureKind == ovl_fail_too_many_arguments || 11682 C->FailureKind == ovl_fail_too_few_arguments) 11683 return static_cast<OverloadFailureKind>(C->FailureKind); 11684 11685 if (C->Function) { 11686 if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic()) 11687 return ovl_fail_too_many_arguments; 11688 if (NumArgs < C->Function->getMinRequiredArguments()) 11689 return ovl_fail_too_few_arguments; 11690 } 11691 11692 return static_cast<OverloadFailureKind>(C->FailureKind); 11693 } 11694 11695 bool operator()(const OverloadCandidate *L, 11696 const OverloadCandidate *R) { 11697 // Fast-path this check. 11698 if (L == R) return false; 11699 11700 // Order first by viability. 11701 if (L->Viable) { 11702 if (!R->Viable) return true; 11703 11704 // TODO: introduce a tri-valued comparison for overload 11705 // candidates. Would be more worthwhile if we had a sort 11706 // that could exploit it. 11707 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK)) 11708 return true; 11709 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK)) 11710 return false; 11711 } else if (R->Viable) 11712 return false; 11713 11714 assert(L->Viable == R->Viable); 11715 11716 // Criteria by which we can sort non-viable candidates: 11717 if (!L->Viable) { 11718 OverloadFailureKind LFailureKind = EffectiveFailureKind(L); 11719 OverloadFailureKind RFailureKind = EffectiveFailureKind(R); 11720 11721 // 1. Arity mismatches come after other candidates. 11722 if (LFailureKind == ovl_fail_too_many_arguments || 11723 LFailureKind == ovl_fail_too_few_arguments) { 11724 if (RFailureKind == ovl_fail_too_many_arguments || 11725 RFailureKind == ovl_fail_too_few_arguments) { 11726 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs); 11727 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs); 11728 if (LDist == RDist) { 11729 if (LFailureKind == RFailureKind) 11730 // Sort non-surrogates before surrogates. 11731 return !L->IsSurrogate && R->IsSurrogate; 11732 // Sort candidates requiring fewer parameters than there were 11733 // arguments given after candidates requiring more parameters 11734 // than there were arguments given. 11735 return LFailureKind == ovl_fail_too_many_arguments; 11736 } 11737 return LDist < RDist; 11738 } 11739 return false; 11740 } 11741 if (RFailureKind == ovl_fail_too_many_arguments || 11742 RFailureKind == ovl_fail_too_few_arguments) 11743 return true; 11744 11745 // 2. Bad conversions come first and are ordered by the number 11746 // of bad conversions and quality of good conversions. 11747 if (LFailureKind == ovl_fail_bad_conversion) { 11748 if (RFailureKind != ovl_fail_bad_conversion) 11749 return true; 11750 11751 // The conversion that can be fixed with a smaller number of changes, 11752 // comes first. 11753 unsigned numLFixes = L->Fix.NumConversionsFixed; 11754 unsigned numRFixes = R->Fix.NumConversionsFixed; 11755 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; 11756 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; 11757 if (numLFixes != numRFixes) { 11758 return numLFixes < numRFixes; 11759 } 11760 11761 // If there's any ordering between the defined conversions... 11762 // FIXME: this might not be transitive. 11763 assert(L->Conversions.size() == R->Conversions.size()); 11764 11765 int leftBetter = 0; 11766 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 11767 for (unsigned E = L->Conversions.size(); I != E; ++I) { 11768 switch (CompareImplicitConversionSequences(S, Loc, 11769 L->Conversions[I], 11770 R->Conversions[I])) { 11771 case ImplicitConversionSequence::Better: 11772 leftBetter++; 11773 break; 11774 11775 case ImplicitConversionSequence::Worse: 11776 leftBetter--; 11777 break; 11778 11779 case ImplicitConversionSequence::Indistinguishable: 11780 break; 11781 } 11782 } 11783 if (leftBetter > 0) return true; 11784 if (leftBetter < 0) return false; 11785 11786 } else if (RFailureKind == ovl_fail_bad_conversion) 11787 return false; 11788 11789 if (LFailureKind == ovl_fail_bad_deduction) { 11790 if (RFailureKind != ovl_fail_bad_deduction) 11791 return true; 11792 11793 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 11794 return RankDeductionFailure(L->DeductionFailure) 11795 < RankDeductionFailure(R->DeductionFailure); 11796 } else if (RFailureKind == ovl_fail_bad_deduction) 11797 return false; 11798 11799 // TODO: others? 11800 } 11801 11802 // Sort everything else by location. 11803 SourceLocation LLoc = GetLocationForCandidate(L); 11804 SourceLocation RLoc = GetLocationForCandidate(R); 11805 11806 // Put candidates without locations (e.g. builtins) at the end. 11807 if (LLoc.isInvalid()) return false; 11808 if (RLoc.isInvalid()) return true; 11809 11810 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 11811 } 11812 }; 11813 } 11814 11815 /// CompleteNonViableCandidate - Normally, overload resolution only 11816 /// computes up to the first bad conversion. Produces the FixIt set if 11817 /// possible. 11818 static void 11819 CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 11820 ArrayRef<Expr *> Args, 11821 OverloadCandidateSet::CandidateSetKind CSK) { 11822 assert(!Cand->Viable); 11823 11824 // Don't do anything on failures other than bad conversion. 11825 if (Cand->FailureKind != ovl_fail_bad_conversion) 11826 return; 11827 11828 // We only want the FixIts if all the arguments can be corrected. 11829 bool Unfixable = false; 11830 // Use a implicit copy initialization to check conversion fixes. 11831 Cand->Fix.setConversionChecker(TryCopyInitialization); 11832 11833 // Attempt to fix the bad conversion. 11834 unsigned ConvCount = Cand->Conversions.size(); 11835 for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/; 11836 ++ConvIdx) { 11837 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 11838 if (Cand->Conversions[ConvIdx].isInitialized() && 11839 Cand->Conversions[ConvIdx].isBad()) { 11840 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 11841 break; 11842 } 11843 } 11844 11845 // FIXME: this should probably be preserved from the overload 11846 // operation somehow. 11847 bool SuppressUserConversions = false; 11848 11849 unsigned ConvIdx = 0; 11850 unsigned ArgIdx = 0; 11851 ArrayRef<QualType> ParamTypes; 11852 bool Reversed = Cand->isReversed(); 11853 11854 if (Cand->IsSurrogate) { 11855 QualType ConvType 11856 = Cand->Surrogate->getConversionType().getNonReferenceType(); 11857 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 11858 ConvType = ConvPtrType->getPointeeType(); 11859 ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes(); 11860 // Conversion 0 is 'this', which doesn't have a corresponding parameter. 11861 ConvIdx = 1; 11862 } else if (Cand->Function) { 11863 ParamTypes = 11864 Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes(); 11865 if (isa<CXXMethodDecl>(Cand->Function) && 11866 !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) { 11867 // Conversion 0 is 'this', which doesn't have a corresponding parameter. 11868 ConvIdx = 1; 11869 if (CSK == OverloadCandidateSet::CSK_Operator && 11870 Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call && 11871 Cand->Function->getDeclName().getCXXOverloadedOperator() != 11872 OO_Subscript) 11873 // Argument 0 is 'this', which doesn't have a corresponding parameter. 11874 ArgIdx = 1; 11875 } 11876 } else { 11877 // Builtin operator. 11878 assert(ConvCount <= 3); 11879 ParamTypes = Cand->BuiltinParamTypes; 11880 } 11881 11882 // Fill in the rest of the conversions. 11883 for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0; 11884 ConvIdx != ConvCount; 11885 ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) { 11886 assert(ArgIdx < Args.size() && "no argument for this arg conversion"); 11887 if (Cand->Conversions[ConvIdx].isInitialized()) { 11888 // We've already checked this conversion. 11889 } else if (ParamIdx < ParamTypes.size()) { 11890 if (ParamTypes[ParamIdx]->isDependentType()) 11891 Cand->Conversions[ConvIdx].setAsIdentityConversion( 11892 Args[ArgIdx]->getType()); 11893 else { 11894 Cand->Conversions[ConvIdx] = 11895 TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx], 11896 SuppressUserConversions, 11897 /*InOverloadResolution=*/true, 11898 /*AllowObjCWritebackConversion=*/ 11899 S.getLangOpts().ObjCAutoRefCount); 11900 // Store the FixIt in the candidate if it exists. 11901 if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) 11902 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 11903 } 11904 } else 11905 Cand->Conversions[ConvIdx].setEllipsis(); 11906 } 11907 } 11908 11909 SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates( 11910 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args, 11911 SourceLocation OpLoc, 11912 llvm::function_ref<bool(OverloadCandidate &)> Filter) { 11913 // Sort the candidates by viability and position. Sorting directly would 11914 // be prohibitive, so we make a set of pointers and sort those. 11915 SmallVector<OverloadCandidate*, 32> Cands; 11916 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 11917 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 11918 if (!Filter(*Cand)) 11919 continue; 11920 switch (OCD) { 11921 case OCD_AllCandidates: 11922 if (!Cand->Viable) { 11923 if (!Cand->Function && !Cand->IsSurrogate) { 11924 // This a non-viable builtin candidate. We do not, in general, 11925 // want to list every possible builtin candidate. 11926 continue; 11927 } 11928 CompleteNonViableCandidate(S, Cand, Args, Kind); 11929 } 11930 break; 11931 11932 case OCD_ViableCandidates: 11933 if (!Cand->Viable) 11934 continue; 11935 break; 11936 11937 case OCD_AmbiguousCandidates: 11938 if (!Cand->Best) 11939 continue; 11940 break; 11941 } 11942 11943 Cands.push_back(Cand); 11944 } 11945 11946 llvm::stable_sort( 11947 Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind)); 11948 11949 return Cands; 11950 } 11951 11952 bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, 11953 SourceLocation OpLoc) { 11954 bool DeferHint = false; 11955 if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) { 11956 // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or 11957 // host device candidates. 11958 auto WrongSidedCands = 11959 CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) { 11960 return (Cand.Viable == false && 11961 Cand.FailureKind == ovl_fail_bad_target) || 11962 (Cand.Function && 11963 Cand.Function->template hasAttr<CUDAHostAttr>() && 11964 Cand.Function->template hasAttr<CUDADeviceAttr>()); 11965 }); 11966 DeferHint = !WrongSidedCands.empty(); 11967 } 11968 return DeferHint; 11969 } 11970 11971 /// When overload resolution fails, prints diagnostic messages containing the 11972 /// candidates in the candidate set. 11973 void OverloadCandidateSet::NoteCandidates( 11974 PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD, 11975 ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc, 11976 llvm::function_ref<bool(OverloadCandidate &)> Filter) { 11977 11978 auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter); 11979 11980 S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc)); 11981 11982 NoteCandidates(S, Args, Cands, Opc, OpLoc); 11983 11984 if (OCD == OCD_AmbiguousCandidates) 11985 MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()}); 11986 } 11987 11988 void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args, 11989 ArrayRef<OverloadCandidate *> Cands, 11990 StringRef Opc, SourceLocation OpLoc) { 11991 bool ReportedAmbiguousConversions = false; 11992 11993 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 11994 unsigned CandsShown = 0; 11995 auto I = Cands.begin(), E = Cands.end(); 11996 for (; I != E; ++I) { 11997 OverloadCandidate *Cand = *I; 11998 11999 if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() && 12000 ShowOverloads == Ovl_Best) { 12001 break; 12002 } 12003 ++CandsShown; 12004 12005 if (Cand->Function) 12006 NoteFunctionCandidate(S, Cand, Args.size(), 12007 /*TakingCandidateAddress=*/false, DestAS); 12008 else if (Cand->IsSurrogate) 12009 NoteSurrogateCandidate(S, Cand); 12010 else { 12011 assert(Cand->Viable && 12012 "Non-viable built-in candidates are not added to Cands."); 12013 // Generally we only see ambiguities including viable builtin 12014 // operators if overload resolution got screwed up by an 12015 // ambiguous user-defined conversion. 12016 // 12017 // FIXME: It's quite possible for different conversions to see 12018 // different ambiguities, though. 12019 if (!ReportedAmbiguousConversions) { 12020 NoteAmbiguousUserConversions(S, OpLoc, Cand); 12021 ReportedAmbiguousConversions = true; 12022 } 12023 12024 // If this is a viable builtin, print it. 12025 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 12026 } 12027 } 12028 12029 // Inform S.Diags that we've shown an overload set with N elements. This may 12030 // inform the future value of S.Diags.getNumOverloadCandidatesToShow(). 12031 S.Diags.overloadCandidatesShown(CandsShown); 12032 12033 if (I != E) 12034 S.Diag(OpLoc, diag::note_ovl_too_many_candidates, 12035 shouldDeferDiags(S, Args, OpLoc)) 12036 << int(E - I); 12037 } 12038 12039 static SourceLocation 12040 GetLocationForCandidate(const TemplateSpecCandidate *Cand) { 12041 return Cand->Specialization ? Cand->Specialization->getLocation() 12042 : SourceLocation(); 12043 } 12044 12045 namespace { 12046 struct CompareTemplateSpecCandidatesForDisplay { 12047 Sema &S; 12048 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {} 12049 12050 bool operator()(const TemplateSpecCandidate *L, 12051 const TemplateSpecCandidate *R) { 12052 // Fast-path this check. 12053 if (L == R) 12054 return false; 12055 12056 // Assuming that both candidates are not matches... 12057 12058 // Sort by the ranking of deduction failures. 12059 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 12060 return RankDeductionFailure(L->DeductionFailure) < 12061 RankDeductionFailure(R->DeductionFailure); 12062 12063 // Sort everything else by location. 12064 SourceLocation LLoc = GetLocationForCandidate(L); 12065 SourceLocation RLoc = GetLocationForCandidate(R); 12066 12067 // Put candidates without locations (e.g. builtins) at the end. 12068 if (LLoc.isInvalid()) 12069 return false; 12070 if (RLoc.isInvalid()) 12071 return true; 12072 12073 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 12074 } 12075 }; 12076 } 12077 12078 /// Diagnose a template argument deduction failure. 12079 /// We are treating these failures as overload failures due to bad 12080 /// deductions. 12081 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S, 12082 bool ForTakingAddress) { 12083 DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern 12084 DeductionFailure, /*NumArgs=*/0, ForTakingAddress); 12085 } 12086 12087 void TemplateSpecCandidateSet::destroyCandidates() { 12088 for (iterator i = begin(), e = end(); i != e; ++i) { 12089 i->DeductionFailure.Destroy(); 12090 } 12091 } 12092 12093 void TemplateSpecCandidateSet::clear() { 12094 destroyCandidates(); 12095 Candidates.clear(); 12096 } 12097 12098 /// NoteCandidates - When no template specialization match is found, prints 12099 /// diagnostic messages containing the non-matching specializations that form 12100 /// the candidate set. 12101 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with 12102 /// OCD == OCD_AllCandidates and Cand->Viable == false. 12103 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) { 12104 // Sort the candidates by position (assuming no candidate is a match). 12105 // Sorting directly would be prohibitive, so we make a set of pointers 12106 // and sort those. 12107 SmallVector<TemplateSpecCandidate *, 32> Cands; 12108 Cands.reserve(size()); 12109 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 12110 if (Cand->Specialization) 12111 Cands.push_back(Cand); 12112 // Otherwise, this is a non-matching builtin candidate. We do not, 12113 // in general, want to list every possible builtin candidate. 12114 } 12115 12116 llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S)); 12117 12118 // FIXME: Perhaps rename OverloadsShown and getShowOverloads() 12119 // for generalization purposes (?). 12120 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 12121 12122 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E; 12123 unsigned CandsShown = 0; 12124 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 12125 TemplateSpecCandidate *Cand = *I; 12126 12127 // Set an arbitrary limit on the number of candidates we'll spam 12128 // the user with. FIXME: This limit should depend on details of the 12129 // candidate list. 12130 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) 12131 break; 12132 ++CandsShown; 12133 12134 assert(Cand->Specialization && 12135 "Non-matching built-in candidates are not added to Cands."); 12136 Cand->NoteDeductionFailure(S, ForTakingAddress); 12137 } 12138 12139 if (I != E) 12140 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I); 12141 } 12142 12143 // [PossiblyAFunctionType] --> [Return] 12144 // NonFunctionType --> NonFunctionType 12145 // R (A) --> R(A) 12146 // R (*)(A) --> R (A) 12147 // R (&)(A) --> R (A) 12148 // R (S::*)(A) --> R (A) 12149 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { 12150 QualType Ret = PossiblyAFunctionType; 12151 if (const PointerType *ToTypePtr = 12152 PossiblyAFunctionType->getAs<PointerType>()) 12153 Ret = ToTypePtr->getPointeeType(); 12154 else if (const ReferenceType *ToTypeRef = 12155 PossiblyAFunctionType->getAs<ReferenceType>()) 12156 Ret = ToTypeRef->getPointeeType(); 12157 else if (const MemberPointerType *MemTypePtr = 12158 PossiblyAFunctionType->getAs<MemberPointerType>()) 12159 Ret = MemTypePtr->getPointeeType(); 12160 Ret = 12161 Context.getCanonicalType(Ret).getUnqualifiedType(); 12162 return Ret; 12163 } 12164 12165 static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc, 12166 bool Complain = true) { 12167 if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && 12168 S.DeduceReturnType(FD, Loc, Complain)) 12169 return true; 12170 12171 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 12172 if (S.getLangOpts().CPlusPlus17 && 12173 isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 12174 !S.ResolveExceptionSpec(Loc, FPT)) 12175 return true; 12176 12177 return false; 12178 } 12179 12180 namespace { 12181 // A helper class to help with address of function resolution 12182 // - allows us to avoid passing around all those ugly parameters 12183 class AddressOfFunctionResolver { 12184 Sema& S; 12185 Expr* SourceExpr; 12186 const QualType& TargetType; 12187 QualType TargetFunctionType; // Extracted function type from target type 12188 12189 bool Complain; 12190 //DeclAccessPair& ResultFunctionAccessPair; 12191 ASTContext& Context; 12192 12193 bool TargetTypeIsNonStaticMemberFunction; 12194 bool FoundNonTemplateFunction; 12195 bool StaticMemberFunctionFromBoundPointer; 12196 bool HasComplained; 12197 12198 OverloadExpr::FindResult OvlExprInfo; 12199 OverloadExpr *OvlExpr; 12200 TemplateArgumentListInfo OvlExplicitTemplateArgs; 12201 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 12202 TemplateSpecCandidateSet FailedCandidates; 12203 12204 public: 12205 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr, 12206 const QualType &TargetType, bool Complain) 12207 : S(S), SourceExpr(SourceExpr), TargetType(TargetType), 12208 Complain(Complain), Context(S.getASTContext()), 12209 TargetTypeIsNonStaticMemberFunction( 12210 !!TargetType->getAs<MemberPointerType>()), 12211 FoundNonTemplateFunction(false), 12212 StaticMemberFunctionFromBoundPointer(false), 12213 HasComplained(false), 12214 OvlExprInfo(OverloadExpr::find(SourceExpr)), 12215 OvlExpr(OvlExprInfo.Expression), 12216 FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) { 12217 ExtractUnqualifiedFunctionTypeFromTargetType(); 12218 12219 if (TargetFunctionType->isFunctionType()) { 12220 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) 12221 if (!UME->isImplicitAccess() && 12222 !S.ResolveSingleFunctionTemplateSpecialization(UME)) 12223 StaticMemberFunctionFromBoundPointer = true; 12224 } else if (OvlExpr->hasExplicitTemplateArgs()) { 12225 DeclAccessPair dap; 12226 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization( 12227 OvlExpr, false, &dap)) { 12228 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 12229 if (!Method->isStatic()) { 12230 // If the target type is a non-function type and the function found 12231 // is a non-static member function, pretend as if that was the 12232 // target, it's the only possible type to end up with. 12233 TargetTypeIsNonStaticMemberFunction = true; 12234 12235 // And skip adding the function if its not in the proper form. 12236 // We'll diagnose this due to an empty set of functions. 12237 if (!OvlExprInfo.HasFormOfMemberPointer) 12238 return; 12239 } 12240 12241 Matches.push_back(std::make_pair(dap, Fn)); 12242 } 12243 return; 12244 } 12245 12246 if (OvlExpr->hasExplicitTemplateArgs()) 12247 OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs); 12248 12249 if (FindAllFunctionsThatMatchTargetTypeExactly()) { 12250 // C++ [over.over]p4: 12251 // If more than one function is selected, [...] 12252 if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) { 12253 if (FoundNonTemplateFunction) 12254 EliminateAllTemplateMatches(); 12255 else 12256 EliminateAllExceptMostSpecializedTemplate(); 12257 } 12258 } 12259 12260 if (S.getLangOpts().CUDA && Matches.size() > 1) 12261 EliminateSuboptimalCudaMatches(); 12262 } 12263 12264 bool hasComplained() const { return HasComplained; } 12265 12266 private: 12267 bool candidateHasExactlyCorrectType(const FunctionDecl *FD) { 12268 QualType Discard; 12269 return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) || 12270 S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard); 12271 } 12272 12273 /// \return true if A is considered a better overload candidate for the 12274 /// desired type than B. 12275 bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) { 12276 // If A doesn't have exactly the correct type, we don't want to classify it 12277 // as "better" than anything else. This way, the user is required to 12278 // disambiguate for us if there are multiple candidates and no exact match. 12279 return candidateHasExactlyCorrectType(A) && 12280 (!candidateHasExactlyCorrectType(B) || 12281 compareEnableIfAttrs(S, A, B) == Comparison::Better); 12282 } 12283 12284 /// \return true if we were able to eliminate all but one overload candidate, 12285 /// false otherwise. 12286 bool eliminiateSuboptimalOverloadCandidates() { 12287 // Same algorithm as overload resolution -- one pass to pick the "best", 12288 // another pass to be sure that nothing is better than the best. 12289 auto Best = Matches.begin(); 12290 for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I) 12291 if (isBetterCandidate(I->second, Best->second)) 12292 Best = I; 12293 12294 const FunctionDecl *BestFn = Best->second; 12295 auto IsBestOrInferiorToBest = [this, BestFn]( 12296 const std::pair<DeclAccessPair, FunctionDecl *> &Pair) { 12297 return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second); 12298 }; 12299 12300 // Note: We explicitly leave Matches unmodified if there isn't a clear best 12301 // option, so we can potentially give the user a better error 12302 if (!llvm::all_of(Matches, IsBestOrInferiorToBest)) 12303 return false; 12304 Matches[0] = *Best; 12305 Matches.resize(1); 12306 return true; 12307 } 12308 12309 bool isTargetTypeAFunction() const { 12310 return TargetFunctionType->isFunctionType(); 12311 } 12312 12313 // [ToType] [Return] 12314 12315 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false 12316 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false 12317 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true 12318 void inline ExtractUnqualifiedFunctionTypeFromTargetType() { 12319 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); 12320 } 12321 12322 // return true if any matching specializations were found 12323 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 12324 const DeclAccessPair& CurAccessFunPair) { 12325 if (CXXMethodDecl *Method 12326 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 12327 // Skip non-static function templates when converting to pointer, and 12328 // static when converting to member pointer. 12329 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 12330 return false; 12331 } 12332 else if (TargetTypeIsNonStaticMemberFunction) 12333 return false; 12334 12335 // C++ [over.over]p2: 12336 // If the name is a function template, template argument deduction is 12337 // done (14.8.2.2), and if the argument deduction succeeds, the 12338 // resulting template argument list is used to generate a single 12339 // function template specialization, which is added to the set of 12340 // overloaded functions considered. 12341 FunctionDecl *Specialization = nullptr; 12342 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 12343 if (Sema::TemplateDeductionResult Result 12344 = S.DeduceTemplateArguments(FunctionTemplate, 12345 &OvlExplicitTemplateArgs, 12346 TargetFunctionType, Specialization, 12347 Info, /*IsAddressOfFunction*/true)) { 12348 // Make a note of the failed deduction for diagnostics. 12349 FailedCandidates.addCandidate() 12350 .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(), 12351 MakeDeductionFailureInfo(Context, Result, Info)); 12352 return false; 12353 } 12354 12355 // Template argument deduction ensures that we have an exact match or 12356 // compatible pointer-to-function arguments that would be adjusted by ICS. 12357 // This function template specicalization works. 12358 assert(S.isSameOrCompatibleFunctionType( 12359 Context.getCanonicalType(Specialization->getType()), 12360 Context.getCanonicalType(TargetFunctionType))); 12361 12362 if (!S.checkAddressOfFunctionIsAvailable(Specialization)) 12363 return false; 12364 12365 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); 12366 return true; 12367 } 12368 12369 bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 12370 const DeclAccessPair& CurAccessFunPair) { 12371 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 12372 // Skip non-static functions when converting to pointer, and static 12373 // when converting to member pointer. 12374 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 12375 return false; 12376 } 12377 else if (TargetTypeIsNonStaticMemberFunction) 12378 return false; 12379 12380 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 12381 if (S.getLangOpts().CUDA) 12382 if (FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true)) 12383 if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl)) 12384 return false; 12385 if (FunDecl->isMultiVersion()) { 12386 const auto *TA = FunDecl->getAttr<TargetAttr>(); 12387 if (TA && !TA->isDefaultVersion()) 12388 return false; 12389 const auto *TVA = FunDecl->getAttr<TargetVersionAttr>(); 12390 if (TVA && !TVA->isDefaultVersion()) 12391 return false; 12392 } 12393 12394 // If any candidate has a placeholder return type, trigger its deduction 12395 // now. 12396 if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(), 12397 Complain)) { 12398 HasComplained |= Complain; 12399 return false; 12400 } 12401 12402 if (!S.checkAddressOfFunctionIsAvailable(FunDecl)) 12403 return false; 12404 12405 // If we're in C, we need to support types that aren't exactly identical. 12406 if (!S.getLangOpts().CPlusPlus || 12407 candidateHasExactlyCorrectType(FunDecl)) { 12408 Matches.push_back(std::make_pair( 12409 CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 12410 FoundNonTemplateFunction = true; 12411 return true; 12412 } 12413 } 12414 12415 return false; 12416 } 12417 12418 bool FindAllFunctionsThatMatchTargetTypeExactly() { 12419 bool Ret = false; 12420 12421 // If the overload expression doesn't have the form of a pointer to 12422 // member, don't try to convert it to a pointer-to-member type. 12423 if (IsInvalidFormOfPointerToMemberFunction()) 12424 return false; 12425 12426 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 12427 E = OvlExpr->decls_end(); 12428 I != E; ++I) { 12429 // Look through any using declarations to find the underlying function. 12430 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 12431 12432 // C++ [over.over]p3: 12433 // Non-member functions and static member functions match 12434 // targets of type "pointer-to-function" or "reference-to-function." 12435 // Nonstatic member functions match targets of 12436 // type "pointer-to-member-function." 12437 // Note that according to DR 247, the containing class does not matter. 12438 if (FunctionTemplateDecl *FunctionTemplate 12439 = dyn_cast<FunctionTemplateDecl>(Fn)) { 12440 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) 12441 Ret = true; 12442 } 12443 // If we have explicit template arguments supplied, skip non-templates. 12444 else if (!OvlExpr->hasExplicitTemplateArgs() && 12445 AddMatchingNonTemplateFunction(Fn, I.getPair())) 12446 Ret = true; 12447 } 12448 assert(Ret || Matches.empty()); 12449 return Ret; 12450 } 12451 12452 void EliminateAllExceptMostSpecializedTemplate() { 12453 // [...] and any given function template specialization F1 is 12454 // eliminated if the set contains a second function template 12455 // specialization whose function template is more specialized 12456 // than the function template of F1 according to the partial 12457 // ordering rules of 14.5.5.2. 12458 12459 // The algorithm specified above is quadratic. We instead use a 12460 // two-pass algorithm (similar to the one used to identify the 12461 // best viable function in an overload set) that identifies the 12462 // best function template (if it exists). 12463 12464 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 12465 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 12466 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 12467 12468 // TODO: It looks like FailedCandidates does not serve much purpose 12469 // here, since the no_viable diagnostic has index 0. 12470 UnresolvedSetIterator Result = S.getMostSpecialized( 12471 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates, 12472 SourceExpr->getBeginLoc(), S.PDiag(), 12473 S.PDiag(diag::err_addr_ovl_ambiguous) 12474 << Matches[0].second->getDeclName(), 12475 S.PDiag(diag::note_ovl_candidate) 12476 << (unsigned)oc_function << (unsigned)ocs_described_template, 12477 Complain, TargetFunctionType); 12478 12479 if (Result != MatchesCopy.end()) { 12480 // Make it the first and only element 12481 Matches[0].first = Matches[Result - MatchesCopy.begin()].first; 12482 Matches[0].second = cast<FunctionDecl>(*Result); 12483 Matches.resize(1); 12484 } else 12485 HasComplained |= Complain; 12486 } 12487 12488 void EliminateAllTemplateMatches() { 12489 // [...] any function template specializations in the set are 12490 // eliminated if the set also contains a non-template function, [...] 12491 for (unsigned I = 0, N = Matches.size(); I != N; ) { 12492 if (Matches[I].second->getPrimaryTemplate() == nullptr) 12493 ++I; 12494 else { 12495 Matches[I] = Matches[--N]; 12496 Matches.resize(N); 12497 } 12498 } 12499 } 12500 12501 void EliminateSuboptimalCudaMatches() { 12502 S.EraseUnwantedCUDAMatches(S.getCurFunctionDecl(/*AllowLambda=*/true), 12503 Matches); 12504 } 12505 12506 public: 12507 void ComplainNoMatchesFound() const { 12508 assert(Matches.empty()); 12509 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable) 12510 << OvlExpr->getName() << TargetFunctionType 12511 << OvlExpr->getSourceRange(); 12512 if (FailedCandidates.empty()) 12513 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, 12514 /*TakingAddress=*/true); 12515 else { 12516 // We have some deduction failure messages. Use them to diagnose 12517 // the function templates, and diagnose the non-template candidates 12518 // normally. 12519 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 12520 IEnd = OvlExpr->decls_end(); 12521 I != IEnd; ++I) 12522 if (FunctionDecl *Fun = 12523 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) 12524 if (!functionHasPassObjectSizeParams(Fun)) 12525 S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType, 12526 /*TakingAddress=*/true); 12527 FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc()); 12528 } 12529 } 12530 12531 bool IsInvalidFormOfPointerToMemberFunction() const { 12532 return TargetTypeIsNonStaticMemberFunction && 12533 !OvlExprInfo.HasFormOfMemberPointer; 12534 } 12535 12536 void ComplainIsInvalidFormOfPointerToMemberFunction() const { 12537 // TODO: Should we condition this on whether any functions might 12538 // have matched, or is it more appropriate to do that in callers? 12539 // TODO: a fixit wouldn't hurt. 12540 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 12541 << TargetType << OvlExpr->getSourceRange(); 12542 } 12543 12544 bool IsStaticMemberFunctionFromBoundPointer() const { 12545 return StaticMemberFunctionFromBoundPointer; 12546 } 12547 12548 void ComplainIsStaticMemberFunctionFromBoundPointer() const { 12549 S.Diag(OvlExpr->getBeginLoc(), 12550 diag::err_invalid_form_pointer_member_function) 12551 << OvlExpr->getSourceRange(); 12552 } 12553 12554 void ComplainOfInvalidConversion() const { 12555 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref) 12556 << OvlExpr->getName() << TargetType; 12557 } 12558 12559 void ComplainMultipleMatchesFound() const { 12560 assert(Matches.size() > 1); 12561 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous) 12562 << OvlExpr->getName() << OvlExpr->getSourceRange(); 12563 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, 12564 /*TakingAddress=*/true); 12565 } 12566 12567 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } 12568 12569 int getNumMatches() const { return Matches.size(); } 12570 12571 FunctionDecl* getMatchingFunctionDecl() const { 12572 if (Matches.size() != 1) return nullptr; 12573 return Matches[0].second; 12574 } 12575 12576 const DeclAccessPair* getMatchingFunctionAccessPair() const { 12577 if (Matches.size() != 1) return nullptr; 12578 return &Matches[0].first; 12579 } 12580 }; 12581 } 12582 12583 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of 12584 /// an overloaded function (C++ [over.over]), where @p From is an 12585 /// expression with overloaded function type and @p ToType is the type 12586 /// we're trying to resolve to. For example: 12587 /// 12588 /// @code 12589 /// int f(double); 12590 /// int f(int); 12591 /// 12592 /// int (*pfd)(double) = f; // selects f(double) 12593 /// @endcode 12594 /// 12595 /// This routine returns the resulting FunctionDecl if it could be 12596 /// resolved, and NULL otherwise. When @p Complain is true, this 12597 /// routine will emit diagnostics if there is an error. 12598 FunctionDecl * 12599 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, 12600 QualType TargetType, 12601 bool Complain, 12602 DeclAccessPair &FoundResult, 12603 bool *pHadMultipleCandidates) { 12604 assert(AddressOfExpr->getType() == Context.OverloadTy); 12605 12606 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, 12607 Complain); 12608 int NumMatches = Resolver.getNumMatches(); 12609 FunctionDecl *Fn = nullptr; 12610 bool ShouldComplain = Complain && !Resolver.hasComplained(); 12611 if (NumMatches == 0 && ShouldComplain) { 12612 if (Resolver.IsInvalidFormOfPointerToMemberFunction()) 12613 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); 12614 else 12615 Resolver.ComplainNoMatchesFound(); 12616 } 12617 else if (NumMatches > 1 && ShouldComplain) 12618 Resolver.ComplainMultipleMatchesFound(); 12619 else if (NumMatches == 1) { 12620 Fn = Resolver.getMatchingFunctionDecl(); 12621 assert(Fn); 12622 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>()) 12623 ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT); 12624 FoundResult = *Resolver.getMatchingFunctionAccessPair(); 12625 if (Complain) { 12626 if (Resolver.IsStaticMemberFunctionFromBoundPointer()) 12627 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer(); 12628 else 12629 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); 12630 } 12631 } 12632 12633 if (pHadMultipleCandidates) 12634 *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); 12635 return Fn; 12636 } 12637 12638 /// Given an expression that refers to an overloaded function, try to 12639 /// resolve that function to a single function that can have its address taken. 12640 /// This will modify `Pair` iff it returns non-null. 12641 /// 12642 /// This routine can only succeed if from all of the candidates in the overload 12643 /// set for SrcExpr that can have their addresses taken, there is one candidate 12644 /// that is more constrained than the rest. 12645 FunctionDecl * 12646 Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) { 12647 OverloadExpr::FindResult R = OverloadExpr::find(E); 12648 OverloadExpr *Ovl = R.Expression; 12649 bool IsResultAmbiguous = false; 12650 FunctionDecl *Result = nullptr; 12651 DeclAccessPair DAP; 12652 SmallVector<FunctionDecl *, 2> AmbiguousDecls; 12653 12654 auto CheckMoreConstrained = [&](FunctionDecl *FD1, 12655 FunctionDecl *FD2) -> std::optional<bool> { 12656 if (FunctionDecl *MF = FD1->getInstantiatedFromMemberFunction()) 12657 FD1 = MF; 12658 if (FunctionDecl *MF = FD2->getInstantiatedFromMemberFunction()) 12659 FD2 = MF; 12660 SmallVector<const Expr *, 1> AC1, AC2; 12661 FD1->getAssociatedConstraints(AC1); 12662 FD2->getAssociatedConstraints(AC2); 12663 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 12664 if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1)) 12665 return std::nullopt; 12666 if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2)) 12667 return std::nullopt; 12668 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 12669 return std::nullopt; 12670 return AtLeastAsConstrained1; 12671 }; 12672 12673 // Don't use the AddressOfResolver because we're specifically looking for 12674 // cases where we have one overload candidate that lacks 12675 // enable_if/pass_object_size/... 12676 for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) { 12677 auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl()); 12678 if (!FD) 12679 return nullptr; 12680 12681 if (!checkAddressOfFunctionIsAvailable(FD)) 12682 continue; 12683 12684 // We have more than one result - see if it is more constrained than the 12685 // previous one. 12686 if (Result) { 12687 std::optional<bool> MoreConstrainedThanPrevious = 12688 CheckMoreConstrained(FD, Result); 12689 if (!MoreConstrainedThanPrevious) { 12690 IsResultAmbiguous = true; 12691 AmbiguousDecls.push_back(FD); 12692 continue; 12693 } 12694 if (!*MoreConstrainedThanPrevious) 12695 continue; 12696 // FD is more constrained - replace Result with it. 12697 } 12698 IsResultAmbiguous = false; 12699 DAP = I.getPair(); 12700 Result = FD; 12701 } 12702 12703 if (IsResultAmbiguous) 12704 return nullptr; 12705 12706 if (Result) { 12707 SmallVector<const Expr *, 1> ResultAC; 12708 // We skipped over some ambiguous declarations which might be ambiguous with 12709 // the selected result. 12710 for (FunctionDecl *Skipped : AmbiguousDecls) 12711 if (!CheckMoreConstrained(Skipped, Result)) 12712 return nullptr; 12713 Pair = DAP; 12714 } 12715 return Result; 12716 } 12717 12718 /// Given an overloaded function, tries to turn it into a non-overloaded 12719 /// function reference using resolveAddressOfSingleOverloadCandidate. This 12720 /// will perform access checks, diagnose the use of the resultant decl, and, if 12721 /// requested, potentially perform a function-to-pointer decay. 12722 /// 12723 /// Returns false if resolveAddressOfSingleOverloadCandidate fails. 12724 /// Otherwise, returns true. This may emit diagnostics and return true. 12725 bool Sema::resolveAndFixAddressOfSingleOverloadCandidate( 12726 ExprResult &SrcExpr, bool DoFunctionPointerConversion) { 12727 Expr *E = SrcExpr.get(); 12728 assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload"); 12729 12730 DeclAccessPair DAP; 12731 FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP); 12732 if (!Found || Found->isCPUDispatchMultiVersion() || 12733 Found->isCPUSpecificMultiVersion()) 12734 return false; 12735 12736 // Emitting multiple diagnostics for a function that is both inaccessible and 12737 // unavailable is consistent with our behavior elsewhere. So, always check 12738 // for both. 12739 DiagnoseUseOfDecl(Found, E->getExprLoc()); 12740 CheckAddressOfMemberAccess(E, DAP); 12741 Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found); 12742 if (DoFunctionPointerConversion && Fixed->getType()->isFunctionType()) 12743 SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false); 12744 else 12745 SrcExpr = Fixed; 12746 return true; 12747 } 12748 12749 /// Given an expression that refers to an overloaded function, try to 12750 /// resolve that overloaded function expression down to a single function. 12751 /// 12752 /// This routine can only resolve template-ids that refer to a single function 12753 /// template, where that template-id refers to a single template whose template 12754 /// arguments are either provided by the template-id or have defaults, 12755 /// as described in C++0x [temp.arg.explicit]p3. 12756 /// 12757 /// If no template-ids are found, no diagnostics are emitted and NULL is 12758 /// returned. 12759 FunctionDecl * 12760 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 12761 bool Complain, 12762 DeclAccessPair *FoundResult) { 12763 // C++ [over.over]p1: 12764 // [...] [Note: any redundant set of parentheses surrounding the 12765 // overloaded function name is ignored (5.1). ] 12766 // C++ [over.over]p1: 12767 // [...] The overloaded function name can be preceded by the & 12768 // operator. 12769 12770 // If we didn't actually find any template-ids, we're done. 12771 if (!ovl->hasExplicitTemplateArgs()) 12772 return nullptr; 12773 12774 TemplateArgumentListInfo ExplicitTemplateArgs; 12775 ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); 12776 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc()); 12777 12778 // Look through all of the overloaded functions, searching for one 12779 // whose type matches exactly. 12780 FunctionDecl *Matched = nullptr; 12781 for (UnresolvedSetIterator I = ovl->decls_begin(), 12782 E = ovl->decls_end(); I != E; ++I) { 12783 // C++0x [temp.arg.explicit]p3: 12784 // [...] In contexts where deduction is done and fails, or in contexts 12785 // where deduction is not done, if a template argument list is 12786 // specified and it, along with any default template arguments, 12787 // identifies a single function template specialization, then the 12788 // template-id is an lvalue for the function template specialization. 12789 FunctionTemplateDecl *FunctionTemplate 12790 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 12791 12792 // C++ [over.over]p2: 12793 // If the name is a function template, template argument deduction is 12794 // done (14.8.2.2), and if the argument deduction succeeds, the 12795 // resulting template argument list is used to generate a single 12796 // function template specialization, which is added to the set of 12797 // overloaded functions considered. 12798 FunctionDecl *Specialization = nullptr; 12799 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 12800 if (TemplateDeductionResult Result 12801 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 12802 Specialization, Info, 12803 /*IsAddressOfFunction*/true)) { 12804 // Make a note of the failed deduction for diagnostics. 12805 // TODO: Actually use the failed-deduction info? 12806 FailedCandidates.addCandidate() 12807 .set(I.getPair(), FunctionTemplate->getTemplatedDecl(), 12808 MakeDeductionFailureInfo(Context, Result, Info)); 12809 continue; 12810 } 12811 12812 assert(Specialization && "no specialization and no error?"); 12813 12814 // Multiple matches; we can't resolve to a single declaration. 12815 if (Matched) { 12816 if (Complain) { 12817 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) 12818 << ovl->getName(); 12819 NoteAllOverloadCandidates(ovl); 12820 } 12821 return nullptr; 12822 } 12823 12824 Matched = Specialization; 12825 if (FoundResult) *FoundResult = I.getPair(); 12826 } 12827 12828 if (Matched && 12829 completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain)) 12830 return nullptr; 12831 12832 return Matched; 12833 } 12834 12835 // Resolve and fix an overloaded expression that can be resolved 12836 // because it identifies a single function template specialization. 12837 // 12838 // Last three arguments should only be supplied if Complain = true 12839 // 12840 // Return true if it was logically possible to so resolve the 12841 // expression, regardless of whether or not it succeeded. Always 12842 // returns true if 'complain' is set. 12843 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( 12844 ExprResult &SrcExpr, bool doFunctionPointerConversion, bool complain, 12845 SourceRange OpRangeForComplaining, QualType DestTypeForComplaining, 12846 unsigned DiagIDForComplaining) { 12847 assert(SrcExpr.get()->getType() == Context.OverloadTy); 12848 12849 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); 12850 12851 DeclAccessPair found; 12852 ExprResult SingleFunctionExpression; 12853 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( 12854 ovl.Expression, /*complain*/ false, &found)) { 12855 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) { 12856 SrcExpr = ExprError(); 12857 return true; 12858 } 12859 12860 // It is only correct to resolve to an instance method if we're 12861 // resolving a form that's permitted to be a pointer to member. 12862 // Otherwise we'll end up making a bound member expression, which 12863 // is illegal in all the contexts we resolve like this. 12864 if (!ovl.HasFormOfMemberPointer && 12865 isa<CXXMethodDecl>(fn) && 12866 cast<CXXMethodDecl>(fn)->isInstance()) { 12867 if (!complain) return false; 12868 12869 Diag(ovl.Expression->getExprLoc(), 12870 diag::err_bound_member_function) 12871 << 0 << ovl.Expression->getSourceRange(); 12872 12873 // TODO: I believe we only end up here if there's a mix of 12874 // static and non-static candidates (otherwise the expression 12875 // would have 'bound member' type, not 'overload' type). 12876 // Ideally we would note which candidate was chosen and why 12877 // the static candidates were rejected. 12878 SrcExpr = ExprError(); 12879 return true; 12880 } 12881 12882 // Fix the expression to refer to 'fn'. 12883 SingleFunctionExpression = 12884 FixOverloadedFunctionReference(SrcExpr.get(), found, fn); 12885 12886 // If desired, do function-to-pointer decay. 12887 if (doFunctionPointerConversion) { 12888 SingleFunctionExpression = 12889 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get()); 12890 if (SingleFunctionExpression.isInvalid()) { 12891 SrcExpr = ExprError(); 12892 return true; 12893 } 12894 } 12895 } 12896 12897 if (!SingleFunctionExpression.isUsable()) { 12898 if (complain) { 12899 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) 12900 << ovl.Expression->getName() 12901 << DestTypeForComplaining 12902 << OpRangeForComplaining 12903 << ovl.Expression->getQualifierLoc().getSourceRange(); 12904 NoteAllOverloadCandidates(SrcExpr.get()); 12905 12906 SrcExpr = ExprError(); 12907 return true; 12908 } 12909 12910 return false; 12911 } 12912 12913 SrcExpr = SingleFunctionExpression; 12914 return true; 12915 } 12916 12917 /// Add a single candidate to the overload set. 12918 static void AddOverloadedCallCandidate(Sema &S, 12919 DeclAccessPair FoundDecl, 12920 TemplateArgumentListInfo *ExplicitTemplateArgs, 12921 ArrayRef<Expr *> Args, 12922 OverloadCandidateSet &CandidateSet, 12923 bool PartialOverloading, 12924 bool KnownValid) { 12925 NamedDecl *Callee = FoundDecl.getDecl(); 12926 if (isa<UsingShadowDecl>(Callee)) 12927 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 12928 12929 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 12930 if (ExplicitTemplateArgs) { 12931 assert(!KnownValid && "Explicit template arguments?"); 12932 return; 12933 } 12934 // Prevent ill-formed function decls to be added as overload candidates. 12935 if (!isa<FunctionProtoType>(Func->getType()->getAs<FunctionType>())) 12936 return; 12937 12938 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, 12939 /*SuppressUserConversions=*/false, 12940 PartialOverloading); 12941 return; 12942 } 12943 12944 if (FunctionTemplateDecl *FuncTemplate 12945 = dyn_cast<FunctionTemplateDecl>(Callee)) { 12946 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 12947 ExplicitTemplateArgs, Args, CandidateSet, 12948 /*SuppressUserConversions=*/false, 12949 PartialOverloading); 12950 return; 12951 } 12952 12953 assert(!KnownValid && "unhandled case in overloaded call candidate"); 12954 } 12955 12956 /// Add the overload candidates named by callee and/or found by argument 12957 /// dependent lookup to the given overload set. 12958 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 12959 ArrayRef<Expr *> Args, 12960 OverloadCandidateSet &CandidateSet, 12961 bool PartialOverloading) { 12962 12963 #ifndef NDEBUG 12964 // Verify that ArgumentDependentLookup is consistent with the rules 12965 // in C++0x [basic.lookup.argdep]p3: 12966 // 12967 // Let X be the lookup set produced by unqualified lookup (3.4.1) 12968 // and let Y be the lookup set produced by argument dependent 12969 // lookup (defined as follows). If X contains 12970 // 12971 // -- a declaration of a class member, or 12972 // 12973 // -- a block-scope function declaration that is not a 12974 // using-declaration, or 12975 // 12976 // -- a declaration that is neither a function or a function 12977 // template 12978 // 12979 // then Y is empty. 12980 12981 if (ULE->requiresADL()) { 12982 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 12983 E = ULE->decls_end(); I != E; ++I) { 12984 assert(!(*I)->getDeclContext()->isRecord()); 12985 assert(isa<UsingShadowDecl>(*I) || 12986 !(*I)->getDeclContext()->isFunctionOrMethod()); 12987 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 12988 } 12989 } 12990 #endif 12991 12992 // It would be nice to avoid this copy. 12993 TemplateArgumentListInfo TABuffer; 12994 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; 12995 if (ULE->hasExplicitTemplateArgs()) { 12996 ULE->copyTemplateArgumentsInto(TABuffer); 12997 ExplicitTemplateArgs = &TABuffer; 12998 } 12999 13000 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 13001 E = ULE->decls_end(); I != E; ++I) 13002 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, 13003 CandidateSet, PartialOverloading, 13004 /*KnownValid*/ true); 13005 13006 if (ULE->requiresADL()) 13007 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(), 13008 Args, ExplicitTemplateArgs, 13009 CandidateSet, PartialOverloading); 13010 } 13011 13012 /// Add the call candidates from the given set of lookup results to the given 13013 /// overload set. Non-function lookup results are ignored. 13014 void Sema::AddOverloadedCallCandidates( 13015 LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs, 13016 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) { 13017 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 13018 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, 13019 CandidateSet, false, /*KnownValid*/ false); 13020 } 13021 13022 /// Determine whether a declaration with the specified name could be moved into 13023 /// a different namespace. 13024 static bool canBeDeclaredInNamespace(const DeclarationName &Name) { 13025 switch (Name.getCXXOverloadedOperator()) { 13026 case OO_New: case OO_Array_New: 13027 case OO_Delete: case OO_Array_Delete: 13028 return false; 13029 13030 default: 13031 return true; 13032 } 13033 } 13034 13035 /// Attempt to recover from an ill-formed use of a non-dependent name in a 13036 /// template, where the non-dependent name was declared after the template 13037 /// was defined. This is common in code written for a compilers which do not 13038 /// correctly implement two-stage name lookup. 13039 /// 13040 /// Returns true if a viable candidate was found and a diagnostic was issued. 13041 static bool DiagnoseTwoPhaseLookup( 13042 Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS, 13043 LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK, 13044 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 13045 CXXRecordDecl **FoundInClass = nullptr) { 13046 if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty()) 13047 return false; 13048 13049 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { 13050 if (DC->isTransparentContext()) 13051 continue; 13052 13053 SemaRef.LookupQualifiedName(R, DC); 13054 13055 if (!R.empty()) { 13056 R.suppressDiagnostics(); 13057 13058 OverloadCandidateSet Candidates(FnLoc, CSK); 13059 SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, 13060 Candidates); 13061 13062 OverloadCandidateSet::iterator Best; 13063 OverloadingResult OR = 13064 Candidates.BestViableFunction(SemaRef, FnLoc, Best); 13065 13066 if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) { 13067 // We either found non-function declarations or a best viable function 13068 // at class scope. A class-scope lookup result disables ADL. Don't 13069 // look past this, but let the caller know that we found something that 13070 // either is, or might be, usable in this class. 13071 if (FoundInClass) { 13072 *FoundInClass = RD; 13073 if (OR == OR_Success) { 13074 R.clear(); 13075 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess()); 13076 R.resolveKind(); 13077 } 13078 } 13079 return false; 13080 } 13081 13082 if (OR != OR_Success) { 13083 // There wasn't a unique best function or function template. 13084 return false; 13085 } 13086 13087 // Find the namespaces where ADL would have looked, and suggest 13088 // declaring the function there instead. 13089 Sema::AssociatedNamespaceSet AssociatedNamespaces; 13090 Sema::AssociatedClassSet AssociatedClasses; 13091 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args, 13092 AssociatedNamespaces, 13093 AssociatedClasses); 13094 Sema::AssociatedNamespaceSet SuggestedNamespaces; 13095 if (canBeDeclaredInNamespace(R.getLookupName())) { 13096 DeclContext *Std = SemaRef.getStdNamespace(); 13097 for (Sema::AssociatedNamespaceSet::iterator 13098 it = AssociatedNamespaces.begin(), 13099 end = AssociatedNamespaces.end(); it != end; ++it) { 13100 // Never suggest declaring a function within namespace 'std'. 13101 if (Std && Std->Encloses(*it)) 13102 continue; 13103 13104 // Never suggest declaring a function within a namespace with a 13105 // reserved name, like __gnu_cxx. 13106 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it); 13107 if (NS && 13108 NS->getQualifiedNameAsString().find("__") != std::string::npos) 13109 continue; 13110 13111 SuggestedNamespaces.insert(*it); 13112 } 13113 } 13114 13115 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) 13116 << R.getLookupName(); 13117 if (SuggestedNamespaces.empty()) { 13118 SemaRef.Diag(Best->Function->getLocation(), 13119 diag::note_not_found_by_two_phase_lookup) 13120 << R.getLookupName() << 0; 13121 } else if (SuggestedNamespaces.size() == 1) { 13122 SemaRef.Diag(Best->Function->getLocation(), 13123 diag::note_not_found_by_two_phase_lookup) 13124 << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); 13125 } else { 13126 // FIXME: It would be useful to list the associated namespaces here, 13127 // but the diagnostics infrastructure doesn't provide a way to produce 13128 // a localized representation of a list of items. 13129 SemaRef.Diag(Best->Function->getLocation(), 13130 diag::note_not_found_by_two_phase_lookup) 13131 << R.getLookupName() << 2; 13132 } 13133 13134 // Try to recover by calling this function. 13135 return true; 13136 } 13137 13138 R.clear(); 13139 } 13140 13141 return false; 13142 } 13143 13144 /// Attempt to recover from ill-formed use of a non-dependent operator in a 13145 /// template, where the non-dependent operator was declared after the template 13146 /// was defined. 13147 /// 13148 /// Returns true if a viable candidate was found and a diagnostic was issued. 13149 static bool 13150 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, 13151 SourceLocation OpLoc, 13152 ArrayRef<Expr *> Args) { 13153 DeclarationName OpName = 13154 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); 13155 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); 13156 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, 13157 OverloadCandidateSet::CSK_Operator, 13158 /*ExplicitTemplateArgs=*/nullptr, Args); 13159 } 13160 13161 namespace { 13162 class BuildRecoveryCallExprRAII { 13163 Sema &SemaRef; 13164 Sema::SatisfactionStackResetRAII SatStack; 13165 13166 public: 13167 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S), SatStack(S) { 13168 assert(SemaRef.IsBuildingRecoveryCallExpr == false); 13169 SemaRef.IsBuildingRecoveryCallExpr = true; 13170 } 13171 13172 ~BuildRecoveryCallExprRAII() { SemaRef.IsBuildingRecoveryCallExpr = false; } 13173 }; 13174 } 13175 13176 /// Attempts to recover from a call where no functions were found. 13177 /// 13178 /// This function will do one of three things: 13179 /// * Diagnose, recover, and return a recovery expression. 13180 /// * Diagnose, fail to recover, and return ExprError(). 13181 /// * Do not diagnose, do not recover, and return ExprResult(). The caller is 13182 /// expected to diagnose as appropriate. 13183 static ExprResult 13184 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 13185 UnresolvedLookupExpr *ULE, 13186 SourceLocation LParenLoc, 13187 MutableArrayRef<Expr *> Args, 13188 SourceLocation RParenLoc, 13189 bool EmptyLookup, bool AllowTypoCorrection) { 13190 // Do not try to recover if it is already building a recovery call. 13191 // This stops infinite loops for template instantiations like 13192 // 13193 // template <typename T> auto foo(T t) -> decltype(foo(t)) {} 13194 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {} 13195 if (SemaRef.IsBuildingRecoveryCallExpr) 13196 return ExprResult(); 13197 BuildRecoveryCallExprRAII RCE(SemaRef); 13198 13199 CXXScopeSpec SS; 13200 SS.Adopt(ULE->getQualifierLoc()); 13201 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc(); 13202 13203 TemplateArgumentListInfo TABuffer; 13204 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; 13205 if (ULE->hasExplicitTemplateArgs()) { 13206 ULE->copyTemplateArgumentsInto(TABuffer); 13207 ExplicitTemplateArgs = &TABuffer; 13208 } 13209 13210 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 13211 Sema::LookupOrdinaryName); 13212 CXXRecordDecl *FoundInClass = nullptr; 13213 if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, 13214 OverloadCandidateSet::CSK_Normal, 13215 ExplicitTemplateArgs, Args, &FoundInClass)) { 13216 // OK, diagnosed a two-phase lookup issue. 13217 } else if (EmptyLookup) { 13218 // Try to recover from an empty lookup with typo correction. 13219 R.clear(); 13220 NoTypoCorrectionCCC NoTypoValidator{}; 13221 FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(), 13222 ExplicitTemplateArgs != nullptr, 13223 dyn_cast<MemberExpr>(Fn)); 13224 CorrectionCandidateCallback &Validator = 13225 AllowTypoCorrection 13226 ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator) 13227 : static_cast<CorrectionCandidateCallback &>(NoTypoValidator); 13228 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs, 13229 Args)) 13230 return ExprError(); 13231 } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) { 13232 // We found a usable declaration of the name in a dependent base of some 13233 // enclosing class. 13234 // FIXME: We should also explain why the candidates found by name lookup 13235 // were not viable. 13236 if (SemaRef.DiagnoseDependentMemberLookup(R)) 13237 return ExprError(); 13238 } else { 13239 // We had viable candidates and couldn't recover; let the caller diagnose 13240 // this. 13241 return ExprResult(); 13242 } 13243 13244 // If we get here, we should have issued a diagnostic and formed a recovery 13245 // lookup result. 13246 assert(!R.empty() && "lookup results empty despite recovery"); 13247 13248 // If recovery created an ambiguity, just bail out. 13249 if (R.isAmbiguous()) { 13250 R.suppressDiagnostics(); 13251 return ExprError(); 13252 } 13253 13254 // Build an implicit member call if appropriate. Just drop the 13255 // casts and such from the call, we don't really care. 13256 ExprResult NewFn = ExprError(); 13257 if ((*R.begin())->isCXXClassMember()) 13258 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, 13259 ExplicitTemplateArgs, S); 13260 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid()) 13261 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, 13262 ExplicitTemplateArgs); 13263 else 13264 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 13265 13266 if (NewFn.isInvalid()) 13267 return ExprError(); 13268 13269 // This shouldn't cause an infinite loop because we're giving it 13270 // an expression with viable lookup results, which should never 13271 // end up here. 13272 return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc, 13273 MultiExprArg(Args.data(), Args.size()), 13274 RParenLoc); 13275 } 13276 13277 /// Constructs and populates an OverloadedCandidateSet from 13278 /// the given function. 13279 /// \returns true when an the ExprResult output parameter has been set. 13280 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn, 13281 UnresolvedLookupExpr *ULE, 13282 MultiExprArg Args, 13283 SourceLocation RParenLoc, 13284 OverloadCandidateSet *CandidateSet, 13285 ExprResult *Result) { 13286 #ifndef NDEBUG 13287 if (ULE->requiresADL()) { 13288 // To do ADL, we must have found an unqualified name. 13289 assert(!ULE->getQualifier() && "qualified name with ADL"); 13290 13291 // We don't perform ADL for implicit declarations of builtins. 13292 // Verify that this was correctly set up. 13293 FunctionDecl *F; 13294 if (ULE->decls_begin() != ULE->decls_end() && 13295 ULE->decls_begin() + 1 == ULE->decls_end() && 13296 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 13297 F->getBuiltinID() && F->isImplicit()) 13298 llvm_unreachable("performing ADL for builtin"); 13299 13300 // We don't perform ADL in C. 13301 assert(getLangOpts().CPlusPlus && "ADL enabled in C"); 13302 } 13303 #endif 13304 13305 UnbridgedCastsSet UnbridgedCasts; 13306 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) { 13307 *Result = ExprError(); 13308 return true; 13309 } 13310 13311 // Add the functions denoted by the callee to the set of candidate 13312 // functions, including those from argument-dependent lookup. 13313 AddOverloadedCallCandidates(ULE, Args, *CandidateSet); 13314 13315 if (getLangOpts().MSVCCompat && 13316 CurContext->isDependentContext() && !isSFINAEContext() && 13317 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) { 13318 13319 OverloadCandidateSet::iterator Best; 13320 if (CandidateSet->empty() || 13321 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) == 13322 OR_No_Viable_Function) { 13323 // In Microsoft mode, if we are inside a template class member function 13324 // then create a type dependent CallExpr. The goal is to postpone name 13325 // lookup to instantiation time to be able to search into type dependent 13326 // base classes. 13327 CallExpr *CE = 13328 CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue, 13329 RParenLoc, CurFPFeatureOverrides()); 13330 CE->markDependentForPostponedNameLookup(); 13331 *Result = CE; 13332 return true; 13333 } 13334 } 13335 13336 if (CandidateSet->empty()) 13337 return false; 13338 13339 UnbridgedCasts.restore(); 13340 return false; 13341 } 13342 13343 // Guess at what the return type for an unresolvable overload should be. 13344 static QualType chooseRecoveryType(OverloadCandidateSet &CS, 13345 OverloadCandidateSet::iterator *Best) { 13346 std::optional<QualType> Result; 13347 // Adjust Type after seeing a candidate. 13348 auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) { 13349 if (!Candidate.Function) 13350 return; 13351 if (Candidate.Function->isInvalidDecl()) 13352 return; 13353 QualType T = Candidate.Function->getReturnType(); 13354 if (T.isNull()) 13355 return; 13356 if (!Result) 13357 Result = T; 13358 else if (Result != T) 13359 Result = QualType(); 13360 }; 13361 13362 // Look for an unambiguous type from a progressively larger subset. 13363 // e.g. if types disagree, but all *viable* overloads return int, choose int. 13364 // 13365 // First, consider only the best candidate. 13366 if (Best && *Best != CS.end()) 13367 ConsiderCandidate(**Best); 13368 // Next, consider only viable candidates. 13369 if (!Result) 13370 for (const auto &C : CS) 13371 if (C.Viable) 13372 ConsiderCandidate(C); 13373 // Finally, consider all candidates. 13374 if (!Result) 13375 for (const auto &C : CS) 13376 ConsiderCandidate(C); 13377 13378 if (!Result) 13379 return QualType(); 13380 auto Value = *Result; 13381 if (Value.isNull() || Value->isUndeducedType()) 13382 return QualType(); 13383 return Value; 13384 } 13385 13386 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns 13387 /// the completed call expression. If overload resolution fails, emits 13388 /// diagnostics and returns ExprError() 13389 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 13390 UnresolvedLookupExpr *ULE, 13391 SourceLocation LParenLoc, 13392 MultiExprArg Args, 13393 SourceLocation RParenLoc, 13394 Expr *ExecConfig, 13395 OverloadCandidateSet *CandidateSet, 13396 OverloadCandidateSet::iterator *Best, 13397 OverloadingResult OverloadResult, 13398 bool AllowTypoCorrection) { 13399 switch (OverloadResult) { 13400 case OR_Success: { 13401 FunctionDecl *FDecl = (*Best)->Function; 13402 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl); 13403 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc())) 13404 return ExprError(); 13405 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); 13406 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, 13407 ExecConfig, /*IsExecConfig=*/false, 13408 (*Best)->IsADLCandidate); 13409 } 13410 13411 case OR_No_Viable_Function: { 13412 // Try to recover by looking for viable functions which the user might 13413 // have meant to call. 13414 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, 13415 Args, RParenLoc, 13416 CandidateSet->empty(), 13417 AllowTypoCorrection); 13418 if (Recovery.isInvalid() || Recovery.isUsable()) 13419 return Recovery; 13420 13421 // If the user passes in a function that we can't take the address of, we 13422 // generally end up emitting really bad error messages. Here, we attempt to 13423 // emit better ones. 13424 for (const Expr *Arg : Args) { 13425 if (!Arg->getType()->isFunctionType()) 13426 continue; 13427 if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) { 13428 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); 13429 if (FD && 13430 !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 13431 Arg->getExprLoc())) 13432 return ExprError(); 13433 } 13434 } 13435 13436 CandidateSet->NoteCandidates( 13437 PartialDiagnosticAt( 13438 Fn->getBeginLoc(), 13439 SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call) 13440 << ULE->getName() << Fn->getSourceRange()), 13441 SemaRef, OCD_AllCandidates, Args); 13442 break; 13443 } 13444 13445 case OR_Ambiguous: 13446 CandidateSet->NoteCandidates( 13447 PartialDiagnosticAt(Fn->getBeginLoc(), 13448 SemaRef.PDiag(diag::err_ovl_ambiguous_call) 13449 << ULE->getName() << Fn->getSourceRange()), 13450 SemaRef, OCD_AmbiguousCandidates, Args); 13451 break; 13452 13453 case OR_Deleted: { 13454 CandidateSet->NoteCandidates( 13455 PartialDiagnosticAt(Fn->getBeginLoc(), 13456 SemaRef.PDiag(diag::err_ovl_deleted_call) 13457 << ULE->getName() << Fn->getSourceRange()), 13458 SemaRef, OCD_AllCandidates, Args); 13459 13460 // We emitted an error for the unavailable/deleted function call but keep 13461 // the call in the AST. 13462 FunctionDecl *FDecl = (*Best)->Function; 13463 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); 13464 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, 13465 ExecConfig, /*IsExecConfig=*/false, 13466 (*Best)->IsADLCandidate); 13467 } 13468 } 13469 13470 // Overload resolution failed, try to recover. 13471 SmallVector<Expr *, 8> SubExprs = {Fn}; 13472 SubExprs.append(Args.begin(), Args.end()); 13473 return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs, 13474 chooseRecoveryType(*CandidateSet, Best)); 13475 } 13476 13477 static void markUnaddressableCandidatesUnviable(Sema &S, 13478 OverloadCandidateSet &CS) { 13479 for (auto I = CS.begin(), E = CS.end(); I != E; ++I) { 13480 if (I->Viable && 13481 !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) { 13482 I->Viable = false; 13483 I->FailureKind = ovl_fail_addr_not_available; 13484 } 13485 } 13486 } 13487 13488 /// BuildOverloadedCallExpr - Given the call expression that calls Fn 13489 /// (which eventually refers to the declaration Func) and the call 13490 /// arguments Args/NumArgs, attempt to resolve the function call down 13491 /// to a specific function. If overload resolution succeeds, returns 13492 /// the call expression produced by overload resolution. 13493 /// Otherwise, emits diagnostics and returns ExprError. 13494 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, 13495 UnresolvedLookupExpr *ULE, 13496 SourceLocation LParenLoc, 13497 MultiExprArg Args, 13498 SourceLocation RParenLoc, 13499 Expr *ExecConfig, 13500 bool AllowTypoCorrection, 13501 bool CalleesAddressIsTaken) { 13502 OverloadCandidateSet CandidateSet(Fn->getExprLoc(), 13503 OverloadCandidateSet::CSK_Normal); 13504 ExprResult result; 13505 13506 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet, 13507 &result)) 13508 return result; 13509 13510 // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that 13511 // functions that aren't addressible are considered unviable. 13512 if (CalleesAddressIsTaken) 13513 markUnaddressableCandidatesUnviable(*this, CandidateSet); 13514 13515 OverloadCandidateSet::iterator Best; 13516 OverloadingResult OverloadResult = 13517 CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best); 13518 13519 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc, 13520 ExecConfig, &CandidateSet, &Best, 13521 OverloadResult, AllowTypoCorrection); 13522 } 13523 13524 static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 13525 return Functions.size() > 1 || 13526 (Functions.size() == 1 && 13527 isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl())); 13528 } 13529 13530 ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass, 13531 NestedNameSpecifierLoc NNSLoc, 13532 DeclarationNameInfo DNI, 13533 const UnresolvedSetImpl &Fns, 13534 bool PerformADL) { 13535 return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI, 13536 PerformADL, IsOverloaded(Fns), 13537 Fns.begin(), Fns.end()); 13538 } 13539 13540 /// Create a unary operation that may resolve to an overloaded 13541 /// operator. 13542 /// 13543 /// \param OpLoc The location of the operator itself (e.g., '*'). 13544 /// 13545 /// \param Opc The UnaryOperatorKind that describes this operator. 13546 /// 13547 /// \param Fns The set of non-member functions that will be 13548 /// considered by overload resolution. The caller needs to build this 13549 /// set based on the context using, e.g., 13550 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 13551 /// set should not contain any member functions; those will be added 13552 /// by CreateOverloadedUnaryOp(). 13553 /// 13554 /// \param Input The input argument. 13555 ExprResult 13556 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, 13557 const UnresolvedSetImpl &Fns, 13558 Expr *Input, bool PerformADL) { 13559 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 13560 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 13561 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 13562 // TODO: provide better source location info. 13563 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 13564 13565 if (checkPlaceholderForOverload(*this, Input)) 13566 return ExprError(); 13567 13568 Expr *Args[2] = { Input, nullptr }; 13569 unsigned NumArgs = 1; 13570 13571 // For post-increment and post-decrement, add the implicit '0' as 13572 // the second argument, so that we know this is a post-increment or 13573 // post-decrement. 13574 if (Opc == UO_PostInc || Opc == UO_PostDec) { 13575 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 13576 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 13577 SourceLocation()); 13578 NumArgs = 2; 13579 } 13580 13581 ArrayRef<Expr *> ArgsArray(Args, NumArgs); 13582 13583 if (Input->isTypeDependent()) { 13584 if (Fns.empty()) 13585 return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy, 13586 VK_PRValue, OK_Ordinary, OpLoc, false, 13587 CurFPFeatureOverrides()); 13588 13589 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 13590 ExprResult Fn = CreateUnresolvedLookupExpr( 13591 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns); 13592 if (Fn.isInvalid()) 13593 return ExprError(); 13594 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray, 13595 Context.DependentTy, VK_PRValue, OpLoc, 13596 CurFPFeatureOverrides()); 13597 } 13598 13599 // Build an empty overload set. 13600 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator); 13601 13602 // Add the candidates from the given function set. 13603 AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet); 13604 13605 // Add operator candidates that are member functions. 13606 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); 13607 13608 // Add candidates from ADL. 13609 if (PerformADL) { 13610 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray, 13611 /*ExplicitTemplateArgs*/nullptr, 13612 CandidateSet); 13613 } 13614 13615 // Add builtin operator candidates. 13616 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); 13617 13618 bool HadMultipleCandidates = (CandidateSet.size() > 1); 13619 13620 // Perform overload resolution. 13621 OverloadCandidateSet::iterator Best; 13622 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 13623 case OR_Success: { 13624 // We found a built-in operator or an overloaded operator. 13625 FunctionDecl *FnDecl = Best->Function; 13626 13627 if (FnDecl) { 13628 Expr *Base = nullptr; 13629 // We matched an overloaded operator. Build a call to that 13630 // operator. 13631 13632 // Convert the arguments. 13633 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 13634 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl); 13635 13636 ExprResult InputRes = 13637 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr, 13638 Best->FoundDecl, Method); 13639 if (InputRes.isInvalid()) 13640 return ExprError(); 13641 Base = Input = InputRes.get(); 13642 } else { 13643 // Convert the arguments. 13644 ExprResult InputInit 13645 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 13646 Context, 13647 FnDecl->getParamDecl(0)), 13648 SourceLocation(), 13649 Input); 13650 if (InputInit.isInvalid()) 13651 return ExprError(); 13652 Input = InputInit.get(); 13653 } 13654 13655 // Build the actual expression node. 13656 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl, 13657 Base, HadMultipleCandidates, 13658 OpLoc); 13659 if (FnExpr.isInvalid()) 13660 return ExprError(); 13661 13662 // Determine the result type. 13663 QualType ResultTy = FnDecl->getReturnType(); 13664 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 13665 ResultTy = ResultTy.getNonLValueExprType(Context); 13666 13667 Args[0] = Input; 13668 CallExpr *TheCall = CXXOperatorCallExpr::Create( 13669 Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc, 13670 CurFPFeatureOverrides(), Best->IsADLCandidate); 13671 13672 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl)) 13673 return ExprError(); 13674 13675 if (CheckFunctionCall(FnDecl, TheCall, 13676 FnDecl->getType()->castAs<FunctionProtoType>())) 13677 return ExprError(); 13678 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl); 13679 } else { 13680 // We matched a built-in operator. Convert the arguments, then 13681 // break out so that we will build the appropriate built-in 13682 // operator node. 13683 ExprResult InputRes = PerformImplicitConversion( 13684 Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing, 13685 CCK_ForBuiltinOverloadedOp); 13686 if (InputRes.isInvalid()) 13687 return ExprError(); 13688 Input = InputRes.get(); 13689 break; 13690 } 13691 } 13692 13693 case OR_No_Viable_Function: 13694 // This is an erroneous use of an operator which can be overloaded by 13695 // a non-member function. Check for non-member operators which were 13696 // defined too late to be candidates. 13697 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray)) 13698 // FIXME: Recover by calling the found function. 13699 return ExprError(); 13700 13701 // No viable function; fall through to handling this as a 13702 // built-in operator, which will produce an error message for us. 13703 break; 13704 13705 case OR_Ambiguous: 13706 CandidateSet.NoteCandidates( 13707 PartialDiagnosticAt(OpLoc, 13708 PDiag(diag::err_ovl_ambiguous_oper_unary) 13709 << UnaryOperator::getOpcodeStr(Opc) 13710 << Input->getType() << Input->getSourceRange()), 13711 *this, OCD_AmbiguousCandidates, ArgsArray, 13712 UnaryOperator::getOpcodeStr(Opc), OpLoc); 13713 return ExprError(); 13714 13715 case OR_Deleted: 13716 CandidateSet.NoteCandidates( 13717 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) 13718 << UnaryOperator::getOpcodeStr(Opc) 13719 << Input->getSourceRange()), 13720 *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc), 13721 OpLoc); 13722 return ExprError(); 13723 } 13724 13725 // Either we found no viable overloaded operator or we matched a 13726 // built-in operator. In either case, fall through to trying to 13727 // build a built-in operation. 13728 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 13729 } 13730 13731 /// Perform lookup for an overloaded binary operator. 13732 void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet, 13733 OverloadedOperatorKind Op, 13734 const UnresolvedSetImpl &Fns, 13735 ArrayRef<Expr *> Args, bool PerformADL) { 13736 SourceLocation OpLoc = CandidateSet.getLocation(); 13737 13738 OverloadedOperatorKind ExtraOp = 13739 CandidateSet.getRewriteInfo().AllowRewrittenCandidates 13740 ? getRewrittenOverloadedOperator(Op) 13741 : OO_None; 13742 13743 // Add the candidates from the given function set. This also adds the 13744 // rewritten candidates using these functions if necessary. 13745 AddNonMemberOperatorCandidates(Fns, Args, CandidateSet); 13746 13747 // Add operator candidates that are member functions. 13748 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet); 13749 if (CandidateSet.getRewriteInfo().allowsReversed(Op)) 13750 AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet, 13751 OverloadCandidateParamOrder::Reversed); 13752 13753 // In C++20, also add any rewritten member candidates. 13754 if (ExtraOp) { 13755 AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet); 13756 if (CandidateSet.getRewriteInfo().allowsReversed(ExtraOp)) 13757 AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]}, 13758 CandidateSet, 13759 OverloadCandidateParamOrder::Reversed); 13760 } 13761 13762 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not 13763 // performed for an assignment operator (nor for operator[] nor operator->, 13764 // which don't get here). 13765 if (Op != OO_Equal && PerformADL) { 13766 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 13767 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args, 13768 /*ExplicitTemplateArgs*/ nullptr, 13769 CandidateSet); 13770 if (ExtraOp) { 13771 DeclarationName ExtraOpName = 13772 Context.DeclarationNames.getCXXOperatorName(ExtraOp); 13773 AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args, 13774 /*ExplicitTemplateArgs*/ nullptr, 13775 CandidateSet); 13776 } 13777 } 13778 13779 // Add builtin operator candidates. 13780 // 13781 // FIXME: We don't add any rewritten candidates here. This is strictly 13782 // incorrect; a builtin candidate could be hidden by a non-viable candidate, 13783 // resulting in our selecting a rewritten builtin candidate. For example: 13784 // 13785 // enum class E { e }; 13786 // bool operator!=(E, E) requires false; 13787 // bool k = E::e != E::e; 13788 // 13789 // ... should select the rewritten builtin candidate 'operator==(E, E)'. But 13790 // it seems unreasonable to consider rewritten builtin candidates. A core 13791 // issue has been filed proposing to removed this requirement. 13792 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet); 13793 } 13794 13795 /// Create a binary operation that may resolve to an overloaded 13796 /// operator. 13797 /// 13798 /// \param OpLoc The location of the operator itself (e.g., '+'). 13799 /// 13800 /// \param Opc The BinaryOperatorKind that describes this operator. 13801 /// 13802 /// \param Fns The set of non-member functions that will be 13803 /// considered by overload resolution. The caller needs to build this 13804 /// set based on the context using, e.g., 13805 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 13806 /// set should not contain any member functions; those will be added 13807 /// by CreateOverloadedBinOp(). 13808 /// 13809 /// \param LHS Left-hand argument. 13810 /// \param RHS Right-hand argument. 13811 /// \param PerformADL Whether to consider operator candidates found by ADL. 13812 /// \param AllowRewrittenCandidates Whether to consider candidates found by 13813 /// C++20 operator rewrites. 13814 /// \param DefaultedFn If we are synthesizing a defaulted operator function, 13815 /// the function in question. Such a function is never a candidate in 13816 /// our overload resolution. This also enables synthesizing a three-way 13817 /// comparison from < and == as described in C++20 [class.spaceship]p1. 13818 ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 13819 BinaryOperatorKind Opc, 13820 const UnresolvedSetImpl &Fns, Expr *LHS, 13821 Expr *RHS, bool PerformADL, 13822 bool AllowRewrittenCandidates, 13823 FunctionDecl *DefaultedFn) { 13824 Expr *Args[2] = { LHS, RHS }; 13825 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple 13826 13827 if (!getLangOpts().CPlusPlus20) 13828 AllowRewrittenCandidates = false; 13829 13830 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 13831 13832 // If either side is type-dependent, create an appropriate dependent 13833 // expression. 13834 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 13835 if (Fns.empty()) { 13836 // If there are no functions to store, just build a dependent 13837 // BinaryOperator or CompoundAssignment. 13838 if (BinaryOperator::isCompoundAssignmentOp(Opc)) 13839 return CompoundAssignOperator::Create( 13840 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, 13841 OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy, 13842 Context.DependentTy); 13843 return BinaryOperator::Create( 13844 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_PRValue, 13845 OK_Ordinary, OpLoc, CurFPFeatureOverrides()); 13846 } 13847 13848 // FIXME: save results of ADL from here? 13849 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 13850 // TODO: provide better source location info in DNLoc component. 13851 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 13852 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 13853 ExprResult Fn = CreateUnresolvedLookupExpr( 13854 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL); 13855 if (Fn.isInvalid()) 13856 return ExprError(); 13857 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args, 13858 Context.DependentTy, VK_PRValue, OpLoc, 13859 CurFPFeatureOverrides()); 13860 } 13861 13862 // Always do placeholder-like conversions on the RHS. 13863 if (checkPlaceholderForOverload(*this, Args[1])) 13864 return ExprError(); 13865 13866 // Do placeholder-like conversion on the LHS; note that we should 13867 // not get here with a PseudoObject LHS. 13868 assert(Args[0]->getObjectKind() != OK_ObjCProperty); 13869 if (checkPlaceholderForOverload(*this, Args[0])) 13870 return ExprError(); 13871 13872 // If this is the assignment operator, we only perform overload resolution 13873 // if the left-hand side is a class or enumeration type. This is actually 13874 // a hack. The standard requires that we do overload resolution between the 13875 // various built-in candidates, but as DR507 points out, this can lead to 13876 // problems. So we do it this way, which pretty much follows what GCC does. 13877 // Note that we go the traditional code path for compound assignment forms. 13878 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 13879 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13880 13881 // If this is the .* operator, which is not overloadable, just 13882 // create a built-in binary operator. 13883 if (Opc == BO_PtrMemD) 13884 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13885 13886 // Build the overload set. 13887 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator, 13888 OverloadCandidateSet::OperatorRewriteInfo( 13889 Op, OpLoc, AllowRewrittenCandidates)); 13890 if (DefaultedFn) 13891 CandidateSet.exclude(DefaultedFn); 13892 LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL); 13893 13894 bool HadMultipleCandidates = (CandidateSet.size() > 1); 13895 13896 // Perform overload resolution. 13897 OverloadCandidateSet::iterator Best; 13898 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 13899 case OR_Success: { 13900 // We found a built-in operator or an overloaded operator. 13901 FunctionDecl *FnDecl = Best->Function; 13902 13903 bool IsReversed = Best->isReversed(); 13904 if (IsReversed) 13905 std::swap(Args[0], Args[1]); 13906 13907 if (FnDecl) { 13908 Expr *Base = nullptr; 13909 // We matched an overloaded operator. Build a call to that 13910 // operator. 13911 13912 OverloadedOperatorKind ChosenOp = 13913 FnDecl->getDeclName().getCXXOverloadedOperator(); 13914 13915 // C++2a [over.match.oper]p9: 13916 // If a rewritten operator== candidate is selected by overload 13917 // resolution for an operator@, its return type shall be cv bool 13918 if (Best->RewriteKind && ChosenOp == OO_EqualEqual && 13919 !FnDecl->getReturnType()->isBooleanType()) { 13920 bool IsExtension = 13921 FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType(); 13922 Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool 13923 : diag::err_ovl_rewrite_equalequal_not_bool) 13924 << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc) 13925 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13926 Diag(FnDecl->getLocation(), diag::note_declared_at); 13927 if (!IsExtension) 13928 return ExprError(); 13929 } 13930 13931 if (AllowRewrittenCandidates && !IsReversed && 13932 CandidateSet.getRewriteInfo().isReversible()) { 13933 // We could have reversed this operator, but didn't. Check if some 13934 // reversed form was a viable candidate, and if so, if it had a 13935 // better conversion for either parameter. If so, this call is 13936 // formally ambiguous, and allowing it is an extension. 13937 llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith; 13938 for (OverloadCandidate &Cand : CandidateSet) { 13939 if (Cand.Viable && Cand.Function && Cand.isReversed() && 13940 haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) { 13941 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 13942 if (CompareImplicitConversionSequences( 13943 *this, OpLoc, Cand.Conversions[ArgIdx], 13944 Best->Conversions[ArgIdx]) == 13945 ImplicitConversionSequence::Better) { 13946 AmbiguousWith.push_back(Cand.Function); 13947 break; 13948 } 13949 } 13950 } 13951 } 13952 13953 if (!AmbiguousWith.empty()) { 13954 bool AmbiguousWithSelf = 13955 AmbiguousWith.size() == 1 && 13956 declaresSameEntity(AmbiguousWith.front(), FnDecl); 13957 Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed) 13958 << BinaryOperator::getOpcodeStr(Opc) 13959 << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf 13960 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13961 if (AmbiguousWithSelf) { 13962 Diag(FnDecl->getLocation(), 13963 diag::note_ovl_ambiguous_oper_binary_reversed_self); 13964 // Mark member== const or provide matching != to disallow reversed 13965 // args. Eg. 13966 // struct S { bool operator==(const S&); }; 13967 // S()==S(); 13968 if (auto *MD = dyn_cast<CXXMethodDecl>(FnDecl)) 13969 if (Op == OverloadedOperatorKind::OO_EqualEqual && 13970 !MD->isConst() && 13971 Context.hasSameUnqualifiedType( 13972 MD->getThisObjectType(), 13973 MD->getParamDecl(0)->getType().getNonReferenceType()) && 13974 Context.hasSameUnqualifiedType(MD->getThisObjectType(), 13975 Args[0]->getType()) && 13976 Context.hasSameUnqualifiedType(MD->getThisObjectType(), 13977 Args[1]->getType())) 13978 Diag(FnDecl->getLocation(), 13979 diag::note_ovl_ambiguous_eqeq_reversed_self_non_const); 13980 } else { 13981 Diag(FnDecl->getLocation(), 13982 diag::note_ovl_ambiguous_oper_binary_selected_candidate); 13983 for (auto *F : AmbiguousWith) 13984 Diag(F->getLocation(), 13985 diag::note_ovl_ambiguous_oper_binary_reversed_candidate); 13986 } 13987 } 13988 } 13989 13990 // Convert the arguments. 13991 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 13992 // Best->Access is only meaningful for class members. 13993 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 13994 13995 ExprResult Arg1 = 13996 PerformCopyInitialization( 13997 InitializedEntity::InitializeParameter(Context, 13998 FnDecl->getParamDecl(0)), 13999 SourceLocation(), Args[1]); 14000 if (Arg1.isInvalid()) 14001 return ExprError(); 14002 14003 ExprResult Arg0 = 14004 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, 14005 Best->FoundDecl, Method); 14006 if (Arg0.isInvalid()) 14007 return ExprError(); 14008 Base = Args[0] = Arg0.getAs<Expr>(); 14009 Args[1] = RHS = Arg1.getAs<Expr>(); 14010 } else { 14011 // Convert the arguments. 14012 ExprResult Arg0 = PerformCopyInitialization( 14013 InitializedEntity::InitializeParameter(Context, 14014 FnDecl->getParamDecl(0)), 14015 SourceLocation(), Args[0]); 14016 if (Arg0.isInvalid()) 14017 return ExprError(); 14018 14019 ExprResult Arg1 = 14020 PerformCopyInitialization( 14021 InitializedEntity::InitializeParameter(Context, 14022 FnDecl->getParamDecl(1)), 14023 SourceLocation(), Args[1]); 14024 if (Arg1.isInvalid()) 14025 return ExprError(); 14026 Args[0] = LHS = Arg0.getAs<Expr>(); 14027 Args[1] = RHS = Arg1.getAs<Expr>(); 14028 } 14029 14030 // Build the actual expression node. 14031 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 14032 Best->FoundDecl, Base, 14033 HadMultipleCandidates, OpLoc); 14034 if (FnExpr.isInvalid()) 14035 return ExprError(); 14036 14037 // Determine the result type. 14038 QualType ResultTy = FnDecl->getReturnType(); 14039 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14040 ResultTy = ResultTy.getNonLValueExprType(Context); 14041 14042 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 14043 Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc, 14044 CurFPFeatureOverrides(), Best->IsADLCandidate); 14045 14046 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, 14047 FnDecl)) 14048 return ExprError(); 14049 14050 ArrayRef<const Expr *> ArgsArray(Args, 2); 14051 const Expr *ImplicitThis = nullptr; 14052 // Cut off the implicit 'this'. 14053 if (isa<CXXMethodDecl>(FnDecl)) { 14054 ImplicitThis = ArgsArray[0]; 14055 ArgsArray = ArgsArray.slice(1); 14056 } 14057 14058 // Check for a self move. 14059 if (Op == OO_Equal) 14060 DiagnoseSelfMove(Args[0], Args[1], OpLoc); 14061 14062 if (ImplicitThis) { 14063 QualType ThisType = Context.getPointerType(ImplicitThis->getType()); 14064 QualType ThisTypeFromDecl = Context.getPointerType( 14065 cast<CXXMethodDecl>(FnDecl)->getThisObjectType()); 14066 14067 CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType, 14068 ThisTypeFromDecl); 14069 } 14070 14071 checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray, 14072 isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(), 14073 VariadicDoesNotApply); 14074 14075 ExprResult R = MaybeBindToTemporary(TheCall); 14076 if (R.isInvalid()) 14077 return ExprError(); 14078 14079 R = CheckForImmediateInvocation(R, FnDecl); 14080 if (R.isInvalid()) 14081 return ExprError(); 14082 14083 // For a rewritten candidate, we've already reversed the arguments 14084 // if needed. Perform the rest of the rewrite now. 14085 if ((Best->RewriteKind & CRK_DifferentOperator) || 14086 (Op == OO_Spaceship && IsReversed)) { 14087 if (Op == OO_ExclaimEqual) { 14088 assert(ChosenOp == OO_EqualEqual && "unexpected operator name"); 14089 R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get()); 14090 } else { 14091 assert(ChosenOp == OO_Spaceship && "unexpected operator name"); 14092 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 14093 Expr *ZeroLiteral = 14094 IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc); 14095 14096 Sema::CodeSynthesisContext Ctx; 14097 Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship; 14098 Ctx.Entity = FnDecl; 14099 pushCodeSynthesisContext(Ctx); 14100 14101 R = CreateOverloadedBinOp( 14102 OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(), 14103 IsReversed ? R.get() : ZeroLiteral, /*PerformADL=*/true, 14104 /*AllowRewrittenCandidates=*/false); 14105 14106 popCodeSynthesisContext(); 14107 } 14108 if (R.isInvalid()) 14109 return ExprError(); 14110 } else { 14111 assert(ChosenOp == Op && "unexpected operator name"); 14112 } 14113 14114 // Make a note in the AST if we did any rewriting. 14115 if (Best->RewriteKind != CRK_None) 14116 R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed); 14117 14118 return R; 14119 } else { 14120 // We matched a built-in operator. Convert the arguments, then 14121 // break out so that we will build the appropriate built-in 14122 // operator node. 14123 ExprResult ArgsRes0 = PerformImplicitConversion( 14124 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], 14125 AA_Passing, CCK_ForBuiltinOverloadedOp); 14126 if (ArgsRes0.isInvalid()) 14127 return ExprError(); 14128 Args[0] = ArgsRes0.get(); 14129 14130 ExprResult ArgsRes1 = PerformImplicitConversion( 14131 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], 14132 AA_Passing, CCK_ForBuiltinOverloadedOp); 14133 if (ArgsRes1.isInvalid()) 14134 return ExprError(); 14135 Args[1] = ArgsRes1.get(); 14136 break; 14137 } 14138 } 14139 14140 case OR_No_Viable_Function: { 14141 // C++ [over.match.oper]p9: 14142 // If the operator is the operator , [...] and there are no 14143 // viable functions, then the operator is assumed to be the 14144 // built-in operator and interpreted according to clause 5. 14145 if (Opc == BO_Comma) 14146 break; 14147 14148 // When defaulting an 'operator<=>', we can try to synthesize a three-way 14149 // compare result using '==' and '<'. 14150 if (DefaultedFn && Opc == BO_Cmp) { 14151 ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0], 14152 Args[1], DefaultedFn); 14153 if (E.isInvalid() || E.isUsable()) 14154 return E; 14155 } 14156 14157 // For class as left operand for assignment or compound assignment 14158 // operator do not fall through to handling in built-in, but report that 14159 // no overloaded assignment operator found 14160 ExprResult Result = ExprError(); 14161 StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc); 14162 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, 14163 Args, OpLoc); 14164 DeferDiagsRAII DDR(*this, 14165 CandidateSet.shouldDeferDiags(*this, Args, OpLoc)); 14166 if (Args[0]->getType()->isRecordType() && 14167 Opc >= BO_Assign && Opc <= BO_OrAssign) { 14168 Diag(OpLoc, diag::err_ovl_no_viable_oper) 14169 << BinaryOperator::getOpcodeStr(Opc) 14170 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 14171 if (Args[0]->getType()->isIncompleteType()) { 14172 Diag(OpLoc, diag::note_assign_lhs_incomplete) 14173 << Args[0]->getType() 14174 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 14175 } 14176 } else { 14177 // This is an erroneous use of an operator which can be overloaded by 14178 // a non-member function. Check for non-member operators which were 14179 // defined too late to be candidates. 14180 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args)) 14181 // FIXME: Recover by calling the found function. 14182 return ExprError(); 14183 14184 // No viable function; try to create a built-in operation, which will 14185 // produce an error. Then, show the non-viable candidates. 14186 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 14187 } 14188 assert(Result.isInvalid() && 14189 "C++ binary operator overloading is missing candidates!"); 14190 CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc); 14191 return Result; 14192 } 14193 14194 case OR_Ambiguous: 14195 CandidateSet.NoteCandidates( 14196 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) 14197 << BinaryOperator::getOpcodeStr(Opc) 14198 << Args[0]->getType() 14199 << Args[1]->getType() 14200 << Args[0]->getSourceRange() 14201 << Args[1]->getSourceRange()), 14202 *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc), 14203 OpLoc); 14204 return ExprError(); 14205 14206 case OR_Deleted: 14207 if (isImplicitlyDeleted(Best->Function)) { 14208 FunctionDecl *DeletedFD = Best->Function; 14209 DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD); 14210 if (DFK.isSpecialMember()) { 14211 Diag(OpLoc, diag::err_ovl_deleted_special_oper) 14212 << Args[0]->getType() << DFK.asSpecialMember(); 14213 } else { 14214 assert(DFK.isComparison()); 14215 Diag(OpLoc, diag::err_ovl_deleted_comparison) 14216 << Args[0]->getType() << DeletedFD; 14217 } 14218 14219 // The user probably meant to call this special member. Just 14220 // explain why it's deleted. 14221 NoteDeletedFunction(DeletedFD); 14222 return ExprError(); 14223 } 14224 CandidateSet.NoteCandidates( 14225 PartialDiagnosticAt( 14226 OpLoc, PDiag(diag::err_ovl_deleted_oper) 14227 << getOperatorSpelling(Best->Function->getDeclName() 14228 .getCXXOverloadedOperator()) 14229 << Args[0]->getSourceRange() 14230 << Args[1]->getSourceRange()), 14231 *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc), 14232 OpLoc); 14233 return ExprError(); 14234 } 14235 14236 // We matched a built-in operator; build it. 14237 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 14238 } 14239 14240 ExprResult Sema::BuildSynthesizedThreeWayComparison( 14241 SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, 14242 FunctionDecl *DefaultedFn) { 14243 const ComparisonCategoryInfo *Info = 14244 Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType()); 14245 // If we're not producing a known comparison category type, we can't 14246 // synthesize a three-way comparison. Let the caller diagnose this. 14247 if (!Info) 14248 return ExprResult((Expr*)nullptr); 14249 14250 // If we ever want to perform this synthesis more generally, we will need to 14251 // apply the temporary materialization conversion to the operands. 14252 assert(LHS->isGLValue() && RHS->isGLValue() && 14253 "cannot use prvalue expressions more than once"); 14254 Expr *OrigLHS = LHS; 14255 Expr *OrigRHS = RHS; 14256 14257 // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to 14258 // each of them multiple times below. 14259 LHS = new (Context) 14260 OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(), 14261 LHS->getObjectKind(), LHS); 14262 RHS = new (Context) 14263 OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(), 14264 RHS->getObjectKind(), RHS); 14265 14266 ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true, 14267 DefaultedFn); 14268 if (Eq.isInvalid()) 14269 return ExprError(); 14270 14271 ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true, 14272 true, DefaultedFn); 14273 if (Less.isInvalid()) 14274 return ExprError(); 14275 14276 ExprResult Greater; 14277 if (Info->isPartial()) { 14278 Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true, 14279 DefaultedFn); 14280 if (Greater.isInvalid()) 14281 return ExprError(); 14282 } 14283 14284 // Form the list of comparisons we're going to perform. 14285 struct Comparison { 14286 ExprResult Cmp; 14287 ComparisonCategoryResult Result; 14288 } Comparisons[4] = 14289 { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal 14290 : ComparisonCategoryResult::Equivalent}, 14291 {Less, ComparisonCategoryResult::Less}, 14292 {Greater, ComparisonCategoryResult::Greater}, 14293 {ExprResult(), ComparisonCategoryResult::Unordered}, 14294 }; 14295 14296 int I = Info->isPartial() ? 3 : 2; 14297 14298 // Combine the comparisons with suitable conditional expressions. 14299 ExprResult Result; 14300 for (; I >= 0; --I) { 14301 // Build a reference to the comparison category constant. 14302 auto *VI = Info->lookupValueInfo(Comparisons[I].Result); 14303 // FIXME: Missing a constant for a comparison category. Diagnose this? 14304 if (!VI) 14305 return ExprResult((Expr*)nullptr); 14306 ExprResult ThisResult = 14307 BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD); 14308 if (ThisResult.isInvalid()) 14309 return ExprError(); 14310 14311 // Build a conditional unless this is the final case. 14312 if (Result.get()) { 14313 Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(), 14314 ThisResult.get(), Result.get()); 14315 if (Result.isInvalid()) 14316 return ExprError(); 14317 } else { 14318 Result = ThisResult; 14319 } 14320 } 14321 14322 // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to 14323 // bind the OpaqueValueExprs before they're (repeatedly) used. 14324 Expr *SyntacticForm = BinaryOperator::Create( 14325 Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(), 14326 Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc, 14327 CurFPFeatureOverrides()); 14328 Expr *SemanticForm[] = {LHS, RHS, Result.get()}; 14329 return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2); 14330 } 14331 14332 static bool PrepareArgumentsForCallToObjectOfClassType( 14333 Sema &S, SmallVectorImpl<Expr *> &MethodArgs, CXXMethodDecl *Method, 14334 MultiExprArg Args, SourceLocation LParenLoc) { 14335 14336 const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); 14337 unsigned NumParams = Proto->getNumParams(); 14338 unsigned NumArgsSlots = 14339 MethodArgs.size() + std::max<unsigned>(Args.size(), NumParams); 14340 // Build the full argument list for the method call (the implicit object 14341 // parameter is placed at the beginning of the list). 14342 MethodArgs.reserve(MethodArgs.size() + NumArgsSlots); 14343 bool IsError = false; 14344 // Initialize the implicit object parameter. 14345 // Check the argument types. 14346 for (unsigned i = 0; i != NumParams; i++) { 14347 Expr *Arg; 14348 if (i < Args.size()) { 14349 Arg = Args[i]; 14350 ExprResult InputInit = 14351 S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 14352 S.Context, Method->getParamDecl(i)), 14353 SourceLocation(), Arg); 14354 IsError |= InputInit.isInvalid(); 14355 Arg = InputInit.getAs<Expr>(); 14356 } else { 14357 ExprResult DefArg = 14358 S.BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 14359 if (DefArg.isInvalid()) { 14360 IsError = true; 14361 break; 14362 } 14363 Arg = DefArg.getAs<Expr>(); 14364 } 14365 14366 MethodArgs.push_back(Arg); 14367 } 14368 return IsError; 14369 } 14370 14371 ExprResult Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 14372 SourceLocation RLoc, 14373 Expr *Base, 14374 MultiExprArg ArgExpr) { 14375 SmallVector<Expr *, 2> Args; 14376 Args.push_back(Base); 14377 for (auto *e : ArgExpr) { 14378 Args.push_back(e); 14379 } 14380 DeclarationName OpName = 14381 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 14382 14383 SourceRange Range = ArgExpr.empty() 14384 ? SourceRange{} 14385 : SourceRange(ArgExpr.front()->getBeginLoc(), 14386 ArgExpr.back()->getEndLoc()); 14387 14388 // If either side is type-dependent, create an appropriate dependent 14389 // expression. 14390 if (Expr::hasAnyTypeDependentArguments(Args)) { 14391 14392 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 14393 // CHECKME: no 'operator' keyword? 14394 DeclarationNameInfo OpNameInfo(OpName, LLoc); 14395 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 14396 ExprResult Fn = CreateUnresolvedLookupExpr( 14397 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>()); 14398 if (Fn.isInvalid()) 14399 return ExprError(); 14400 // Can't add any actual overloads yet 14401 14402 return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args, 14403 Context.DependentTy, VK_PRValue, RLoc, 14404 CurFPFeatureOverrides()); 14405 } 14406 14407 // Handle placeholders 14408 UnbridgedCastsSet UnbridgedCasts; 14409 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) { 14410 return ExprError(); 14411 } 14412 // Build an empty overload set. 14413 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator); 14414 14415 // Subscript can only be overloaded as a member function. 14416 14417 // Add operator candidates that are member functions. 14418 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); 14419 14420 // Add builtin operator candidates. 14421 if (Args.size() == 2) 14422 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); 14423 14424 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14425 14426 // Perform overload resolution. 14427 OverloadCandidateSet::iterator Best; 14428 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 14429 case OR_Success: { 14430 // We found a built-in operator or an overloaded operator. 14431 FunctionDecl *FnDecl = Best->Function; 14432 14433 if (FnDecl) { 14434 // We matched an overloaded operator. Build a call to that 14435 // operator. 14436 14437 CheckMemberOperatorAccess(LLoc, Args[0], ArgExpr, Best->FoundDecl); 14438 14439 // Convert the arguments. 14440 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 14441 SmallVector<Expr *, 2> MethodArgs; 14442 14443 // Handle 'this' parameter if the selected function is not static. 14444 if (Method->isInstance()) { 14445 ExprResult Arg0 = PerformObjectArgumentInitialization( 14446 Args[0], /*Qualifier=*/nullptr, Best->FoundDecl, Method); 14447 if (Arg0.isInvalid()) 14448 return ExprError(); 14449 14450 MethodArgs.push_back(Arg0.get()); 14451 } 14452 14453 bool IsError = PrepareArgumentsForCallToObjectOfClassType( 14454 *this, MethodArgs, Method, ArgExpr, LLoc); 14455 if (IsError) 14456 return ExprError(); 14457 14458 // Build the actual expression node. 14459 DeclarationNameInfo OpLocInfo(OpName, LLoc); 14460 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 14461 ExprResult FnExpr = CreateFunctionRefExpr( 14462 *this, FnDecl, Best->FoundDecl, Base, HadMultipleCandidates, 14463 OpLocInfo.getLoc(), OpLocInfo.getInfo()); 14464 if (FnExpr.isInvalid()) 14465 return ExprError(); 14466 14467 // Determine the result type 14468 QualType ResultTy = FnDecl->getReturnType(); 14469 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14470 ResultTy = ResultTy.getNonLValueExprType(Context); 14471 14472 CallExpr *TheCall; 14473 if (Method->isInstance()) 14474 TheCall = CXXOperatorCallExpr::Create( 14475 Context, OO_Subscript, FnExpr.get(), MethodArgs, ResultTy, VK, 14476 RLoc, CurFPFeatureOverrides()); 14477 else 14478 TheCall = 14479 CallExpr::Create(Context, FnExpr.get(), MethodArgs, ResultTy, VK, 14480 RLoc, CurFPFeatureOverrides()); 14481 14482 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl)) 14483 return ExprError(); 14484 14485 if (CheckFunctionCall(Method, TheCall, 14486 Method->getType()->castAs<FunctionProtoType>())) 14487 return ExprError(); 14488 14489 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), 14490 FnDecl); 14491 } else { 14492 // We matched a built-in operator. Convert the arguments, then 14493 // break out so that we will build the appropriate built-in 14494 // operator node. 14495 ExprResult ArgsRes0 = PerformImplicitConversion( 14496 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], 14497 AA_Passing, CCK_ForBuiltinOverloadedOp); 14498 if (ArgsRes0.isInvalid()) 14499 return ExprError(); 14500 Args[0] = ArgsRes0.get(); 14501 14502 ExprResult ArgsRes1 = PerformImplicitConversion( 14503 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], 14504 AA_Passing, CCK_ForBuiltinOverloadedOp); 14505 if (ArgsRes1.isInvalid()) 14506 return ExprError(); 14507 Args[1] = ArgsRes1.get(); 14508 14509 break; 14510 } 14511 } 14512 14513 case OR_No_Viable_Function: { 14514 PartialDiagnostic PD = 14515 CandidateSet.empty() 14516 ? (PDiag(diag::err_ovl_no_oper) 14517 << Args[0]->getType() << /*subscript*/ 0 14518 << Args[0]->getSourceRange() << Range) 14519 : (PDiag(diag::err_ovl_no_viable_subscript) 14520 << Args[0]->getType() << Args[0]->getSourceRange() << Range); 14521 CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this, 14522 OCD_AllCandidates, ArgExpr, "[]", LLoc); 14523 return ExprError(); 14524 } 14525 14526 case OR_Ambiguous: 14527 if (Args.size() == 2) { 14528 CandidateSet.NoteCandidates( 14529 PartialDiagnosticAt( 14530 LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) 14531 << "[]" << Args[0]->getType() << Args[1]->getType() 14532 << Args[0]->getSourceRange() << Range), 14533 *this, OCD_AmbiguousCandidates, Args, "[]", LLoc); 14534 } else { 14535 CandidateSet.NoteCandidates( 14536 PartialDiagnosticAt(LLoc, 14537 PDiag(diag::err_ovl_ambiguous_subscript_call) 14538 << Args[0]->getType() 14539 << Args[0]->getSourceRange() << Range), 14540 *this, OCD_AmbiguousCandidates, Args, "[]", LLoc); 14541 } 14542 return ExprError(); 14543 14544 case OR_Deleted: 14545 CandidateSet.NoteCandidates( 14546 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper) 14547 << "[]" << Args[0]->getSourceRange() 14548 << Range), 14549 *this, OCD_AllCandidates, Args, "[]", LLoc); 14550 return ExprError(); 14551 } 14552 14553 // We matched a built-in operator; build it. 14554 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 14555 } 14556 14557 /// BuildCallToMemberFunction - Build a call to a member 14558 /// function. MemExpr is the expression that refers to the member 14559 /// function (and includes the object parameter), Args/NumArgs are the 14560 /// arguments to the function call (not including the object 14561 /// parameter). The caller needs to validate that the member 14562 /// expression refers to a non-static member function or an overloaded 14563 /// member function. 14564 ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 14565 SourceLocation LParenLoc, 14566 MultiExprArg Args, 14567 SourceLocation RParenLoc, 14568 Expr *ExecConfig, bool IsExecConfig, 14569 bool AllowRecovery) { 14570 assert(MemExprE->getType() == Context.BoundMemberTy || 14571 MemExprE->getType() == Context.OverloadTy); 14572 14573 // Dig out the member expression. This holds both the object 14574 // argument and the member function we're referring to. 14575 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 14576 14577 // Determine whether this is a call to a pointer-to-member function. 14578 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { 14579 assert(op->getType() == Context.BoundMemberTy); 14580 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); 14581 14582 QualType fnType = 14583 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); 14584 14585 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); 14586 QualType resultType = proto->getCallResultType(Context); 14587 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType()); 14588 14589 // Check that the object type isn't more qualified than the 14590 // member function we're calling. 14591 Qualifiers funcQuals = proto->getMethodQuals(); 14592 14593 QualType objectType = op->getLHS()->getType(); 14594 if (op->getOpcode() == BO_PtrMemI) 14595 objectType = objectType->castAs<PointerType>()->getPointeeType(); 14596 Qualifiers objectQuals = objectType.getQualifiers(); 14597 14598 Qualifiers difference = objectQuals - funcQuals; 14599 difference.removeObjCGCAttr(); 14600 difference.removeAddressSpace(); 14601 if (difference) { 14602 std::string qualsString = difference.getAsString(); 14603 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) 14604 << fnType.getUnqualifiedType() 14605 << qualsString 14606 << (qualsString.find(' ') == std::string::npos ? 1 : 2); 14607 } 14608 14609 CXXMemberCallExpr *call = CXXMemberCallExpr::Create( 14610 Context, MemExprE, Args, resultType, valueKind, RParenLoc, 14611 CurFPFeatureOverrides(), proto->getNumParams()); 14612 14613 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(), 14614 call, nullptr)) 14615 return ExprError(); 14616 14617 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc)) 14618 return ExprError(); 14619 14620 if (CheckOtherCall(call, proto)) 14621 return ExprError(); 14622 14623 return MaybeBindToTemporary(call); 14624 } 14625 14626 // We only try to build a recovery expr at this level if we can preserve 14627 // the return type, otherwise we return ExprError() and let the caller 14628 // recover. 14629 auto BuildRecoveryExpr = [&](QualType Type) { 14630 if (!AllowRecovery) 14631 return ExprError(); 14632 std::vector<Expr *> SubExprs = {MemExprE}; 14633 llvm::append_range(SubExprs, Args); 14634 return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs, 14635 Type); 14636 }; 14637 if (isa<CXXPseudoDestructorExpr>(NakedMemExpr)) 14638 return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_PRValue, 14639 RParenLoc, CurFPFeatureOverrides()); 14640 14641 UnbridgedCastsSet UnbridgedCasts; 14642 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) 14643 return ExprError(); 14644 14645 MemberExpr *MemExpr; 14646 CXXMethodDecl *Method = nullptr; 14647 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public); 14648 NestedNameSpecifier *Qualifier = nullptr; 14649 if (isa<MemberExpr>(NakedMemExpr)) { 14650 MemExpr = cast<MemberExpr>(NakedMemExpr); 14651 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 14652 FoundDecl = MemExpr->getFoundDecl(); 14653 Qualifier = MemExpr->getQualifier(); 14654 UnbridgedCasts.restore(); 14655 } else { 14656 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 14657 Qualifier = UnresExpr->getQualifier(); 14658 14659 QualType ObjectType = UnresExpr->getBaseType(); 14660 Expr::Classification ObjectClassification 14661 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() 14662 : UnresExpr->getBase()->Classify(Context); 14663 14664 // Add overload candidates 14665 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(), 14666 OverloadCandidateSet::CSK_Normal); 14667 14668 // FIXME: avoid copy. 14669 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 14670 if (UnresExpr->hasExplicitTemplateArgs()) { 14671 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 14672 TemplateArgs = &TemplateArgsBuffer; 14673 } 14674 14675 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 14676 E = UnresExpr->decls_end(); I != E; ++I) { 14677 14678 NamedDecl *Func = *I; 14679 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 14680 if (isa<UsingShadowDecl>(Func)) 14681 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 14682 14683 14684 // Microsoft supports direct constructor calls. 14685 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { 14686 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, 14687 CandidateSet, 14688 /*SuppressUserConversions*/ false); 14689 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 14690 // If explicit template arguments were provided, we can't call a 14691 // non-template member function. 14692 if (TemplateArgs) 14693 continue; 14694 14695 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 14696 ObjectClassification, Args, CandidateSet, 14697 /*SuppressUserConversions=*/false); 14698 } else { 14699 AddMethodTemplateCandidate( 14700 cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC, 14701 TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet, 14702 /*SuppressUserConversions=*/false); 14703 } 14704 } 14705 14706 DeclarationName DeclName = UnresExpr->getMemberName(); 14707 14708 UnbridgedCasts.restore(); 14709 14710 OverloadCandidateSet::iterator Best; 14711 bool Succeeded = false; 14712 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(), 14713 Best)) { 14714 case OR_Success: 14715 Method = cast<CXXMethodDecl>(Best->Function); 14716 FoundDecl = Best->FoundDecl; 14717 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 14718 if (DiagnoseUseOfOverloadedDecl(Best->FoundDecl, UnresExpr->getNameLoc())) 14719 break; 14720 // If FoundDecl is different from Method (such as if one is a template 14721 // and the other a specialization), make sure DiagnoseUseOfDecl is 14722 // called on both. 14723 // FIXME: This would be more comprehensively addressed by modifying 14724 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl 14725 // being used. 14726 if (Method != FoundDecl.getDecl() && 14727 DiagnoseUseOfOverloadedDecl(Method, UnresExpr->getNameLoc())) 14728 break; 14729 Succeeded = true; 14730 break; 14731 14732 case OR_No_Viable_Function: 14733 CandidateSet.NoteCandidates( 14734 PartialDiagnosticAt( 14735 UnresExpr->getMemberLoc(), 14736 PDiag(diag::err_ovl_no_viable_member_function_in_call) 14737 << DeclName << MemExprE->getSourceRange()), 14738 *this, OCD_AllCandidates, Args); 14739 break; 14740 case OR_Ambiguous: 14741 CandidateSet.NoteCandidates( 14742 PartialDiagnosticAt(UnresExpr->getMemberLoc(), 14743 PDiag(diag::err_ovl_ambiguous_member_call) 14744 << DeclName << MemExprE->getSourceRange()), 14745 *this, OCD_AmbiguousCandidates, Args); 14746 break; 14747 case OR_Deleted: 14748 CandidateSet.NoteCandidates( 14749 PartialDiagnosticAt(UnresExpr->getMemberLoc(), 14750 PDiag(diag::err_ovl_deleted_member_call) 14751 << DeclName << MemExprE->getSourceRange()), 14752 *this, OCD_AllCandidates, Args); 14753 break; 14754 } 14755 // Overload resolution fails, try to recover. 14756 if (!Succeeded) 14757 return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best)); 14758 14759 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 14760 14761 // If overload resolution picked a static member, build a 14762 // non-member call based on that function. 14763 if (Method->isStatic()) { 14764 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, RParenLoc, 14765 ExecConfig, IsExecConfig); 14766 } 14767 14768 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 14769 } 14770 14771 QualType ResultType = Method->getReturnType(); 14772 ExprValueKind VK = Expr::getValueKindForType(ResultType); 14773 ResultType = ResultType.getNonLValueExprType(Context); 14774 14775 assert(Method && "Member call to something that isn't a method?"); 14776 const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); 14777 CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create( 14778 Context, MemExprE, Args, ResultType, VK, RParenLoc, 14779 CurFPFeatureOverrides(), Proto->getNumParams()); 14780 14781 // Check for a valid return type. 14782 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(), 14783 TheCall, Method)) 14784 return BuildRecoveryExpr(ResultType); 14785 14786 // Convert the object argument (for a non-static member function call). 14787 // We only need to do this if there was actually an overload; otherwise 14788 // it was done at lookup. 14789 if (!Method->isStatic()) { 14790 ExprResult ObjectArg = 14791 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, 14792 FoundDecl, Method); 14793 if (ObjectArg.isInvalid()) 14794 return ExprError(); 14795 MemExpr->setBase(ObjectArg.get()); 14796 } 14797 14798 // Convert the rest of the arguments 14799 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, 14800 RParenLoc)) 14801 return BuildRecoveryExpr(ResultType); 14802 14803 DiagnoseSentinelCalls(Method, LParenLoc, Args); 14804 14805 if (CheckFunctionCall(Method, TheCall, Proto)) 14806 return ExprError(); 14807 14808 // In the case the method to call was not selected by the overloading 14809 // resolution process, we still need to handle the enable_if attribute. Do 14810 // that here, so it will not hide previous -- and more relevant -- errors. 14811 if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) { 14812 if (const EnableIfAttr *Attr = 14813 CheckEnableIf(Method, LParenLoc, Args, true)) { 14814 Diag(MemE->getMemberLoc(), 14815 diag::err_ovl_no_viable_member_function_in_call) 14816 << Method << Method->getSourceRange(); 14817 Diag(Method->getLocation(), 14818 diag::note_ovl_candidate_disabled_by_function_cond_attr) 14819 << Attr->getCond()->getSourceRange() << Attr->getMessage(); 14820 return ExprError(); 14821 } 14822 } 14823 14824 if ((isa<CXXConstructorDecl>(CurContext) || 14825 isa<CXXDestructorDecl>(CurContext)) && 14826 TheCall->getMethodDecl()->isPure()) { 14827 const CXXMethodDecl *MD = TheCall->getMethodDecl(); 14828 14829 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) && 14830 MemExpr->performsVirtualDispatch(getLangOpts())) { 14831 Diag(MemExpr->getBeginLoc(), 14832 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) 14833 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) 14834 << MD->getParent(); 14835 14836 Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName(); 14837 if (getLangOpts().AppleKext) 14838 Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext) 14839 << MD->getParent() << MD->getDeclName(); 14840 } 14841 } 14842 14843 if (CXXDestructorDecl *DD = 14844 dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) { 14845 // a->A::f() doesn't go through the vtable, except in AppleKext mode. 14846 bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext; 14847 CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false, 14848 CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true, 14849 MemExpr->getMemberLoc()); 14850 } 14851 14852 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), 14853 TheCall->getMethodDecl()); 14854 } 14855 14856 /// BuildCallToObjectOfClassType - Build a call to an object of class 14857 /// type (C++ [over.call.object]), which can end up invoking an 14858 /// overloaded function call operator (@c operator()) or performing a 14859 /// user-defined conversion on the object argument. 14860 ExprResult 14861 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, 14862 SourceLocation LParenLoc, 14863 MultiExprArg Args, 14864 SourceLocation RParenLoc) { 14865 if (checkPlaceholderForOverload(*this, Obj)) 14866 return ExprError(); 14867 ExprResult Object = Obj; 14868 14869 UnbridgedCastsSet UnbridgedCasts; 14870 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) 14871 return ExprError(); 14872 14873 assert(Object.get()->getType()->isRecordType() && 14874 "Requires object type argument"); 14875 14876 // C++ [over.call.object]p1: 14877 // If the primary-expression E in the function call syntax 14878 // evaluates to a class object of type "cv T", then the set of 14879 // candidate functions includes at least the function call 14880 // operators of T. The function call operators of T are obtained by 14881 // ordinary lookup of the name operator() in the context of 14882 // (E).operator(). 14883 OverloadCandidateSet CandidateSet(LParenLoc, 14884 OverloadCandidateSet::CSK_Operator); 14885 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 14886 14887 if (RequireCompleteType(LParenLoc, Object.get()->getType(), 14888 diag::err_incomplete_object_call, Object.get())) 14889 return true; 14890 14891 const auto *Record = Object.get()->getType()->castAs<RecordType>(); 14892 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 14893 LookupQualifiedName(R, Record->getDecl()); 14894 R.suppressDiagnostics(); 14895 14896 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 14897 Oper != OperEnd; ++Oper) { 14898 AddMethodCandidate(Oper.getPair(), Object.get()->getType(), 14899 Object.get()->Classify(Context), Args, CandidateSet, 14900 /*SuppressUserConversion=*/false); 14901 } 14902 14903 // C++ [over.call.object]p2: 14904 // In addition, for each (non-explicit in C++0x) conversion function 14905 // declared in T of the form 14906 // 14907 // operator conversion-type-id () cv-qualifier; 14908 // 14909 // where cv-qualifier is the same cv-qualification as, or a 14910 // greater cv-qualification than, cv, and where conversion-type-id 14911 // denotes the type "pointer to function of (P1,...,Pn) returning 14912 // R", or the type "reference to pointer to function of 14913 // (P1,...,Pn) returning R", or the type "reference to function 14914 // of (P1,...,Pn) returning R", a surrogate call function [...] 14915 // is also considered as a candidate function. Similarly, 14916 // surrogate call functions are added to the set of candidate 14917 // functions for each conversion function declared in an 14918 // accessible base class provided the function is not hidden 14919 // within T by another intervening declaration. 14920 const auto &Conversions = 14921 cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 14922 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 14923 NamedDecl *D = *I; 14924 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 14925 if (isa<UsingShadowDecl>(D)) 14926 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 14927 14928 // Skip over templated conversion functions; they aren't 14929 // surrogates. 14930 if (isa<FunctionTemplateDecl>(D)) 14931 continue; 14932 14933 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 14934 if (!Conv->isExplicit()) { 14935 // Strip the reference type (if any) and then the pointer type (if 14936 // any) to get down to what might be a function type. 14937 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 14938 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 14939 ConvType = ConvPtrType->getPointeeType(); 14940 14941 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 14942 { 14943 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 14944 Object.get(), Args, CandidateSet); 14945 } 14946 } 14947 } 14948 14949 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14950 14951 // Perform overload resolution. 14952 OverloadCandidateSet::iterator Best; 14953 switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(), 14954 Best)) { 14955 case OR_Success: 14956 // Overload resolution succeeded; we'll build the appropriate call 14957 // below. 14958 break; 14959 14960 case OR_No_Viable_Function: { 14961 PartialDiagnostic PD = 14962 CandidateSet.empty() 14963 ? (PDiag(diag::err_ovl_no_oper) 14964 << Object.get()->getType() << /*call*/ 1 14965 << Object.get()->getSourceRange()) 14966 : (PDiag(diag::err_ovl_no_viable_object_call) 14967 << Object.get()->getType() << Object.get()->getSourceRange()); 14968 CandidateSet.NoteCandidates( 14969 PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this, 14970 OCD_AllCandidates, Args); 14971 break; 14972 } 14973 case OR_Ambiguous: 14974 CandidateSet.NoteCandidates( 14975 PartialDiagnosticAt(Object.get()->getBeginLoc(), 14976 PDiag(diag::err_ovl_ambiguous_object_call) 14977 << Object.get()->getType() 14978 << Object.get()->getSourceRange()), 14979 *this, OCD_AmbiguousCandidates, Args); 14980 break; 14981 14982 case OR_Deleted: 14983 CandidateSet.NoteCandidates( 14984 PartialDiagnosticAt(Object.get()->getBeginLoc(), 14985 PDiag(diag::err_ovl_deleted_object_call) 14986 << Object.get()->getType() 14987 << Object.get()->getSourceRange()), 14988 *this, OCD_AllCandidates, Args); 14989 break; 14990 } 14991 14992 if (Best == CandidateSet.end()) 14993 return true; 14994 14995 UnbridgedCasts.restore(); 14996 14997 if (Best->Function == nullptr) { 14998 // Since there is no function declaration, this is one of the 14999 // surrogate candidates. Dig out the conversion function. 15000 CXXConversionDecl *Conv 15001 = cast<CXXConversionDecl>( 15002 Best->Conversions[0].UserDefined.ConversionFunction); 15003 15004 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, 15005 Best->FoundDecl); 15006 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc)) 15007 return ExprError(); 15008 assert(Conv == Best->FoundDecl.getDecl() && 15009 "Found Decl & conversion-to-functionptr should be same, right?!"); 15010 // We selected one of the surrogate functions that converts the 15011 // object parameter to a function pointer. Perform the conversion 15012 // on the object argument, then let BuildCallExpr finish the job. 15013 15014 // Create an implicit member expr to refer to the conversion operator. 15015 // and then call it. 15016 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, 15017 Conv, HadMultipleCandidates); 15018 if (Call.isInvalid()) 15019 return ExprError(); 15020 // Record usage of conversion in an implicit cast. 15021 Call = ImplicitCastExpr::Create( 15022 Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(), 15023 nullptr, VK_PRValue, CurFPFeatureOverrides()); 15024 15025 return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc); 15026 } 15027 15028 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl); 15029 15030 // We found an overloaded operator(). Build a CXXOperatorCallExpr 15031 // that calls this method, using Object for the implicit object 15032 // parameter and passing along the remaining arguments. 15033 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 15034 15035 // An error diagnostic has already been printed when parsing the declaration. 15036 if (Method->isInvalidDecl()) 15037 return ExprError(); 15038 15039 const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); 15040 unsigned NumParams = Proto->getNumParams(); 15041 15042 DeclarationNameInfo OpLocInfo( 15043 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc); 15044 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc)); 15045 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, 15046 Obj, HadMultipleCandidates, 15047 OpLocInfo.getLoc(), 15048 OpLocInfo.getInfo()); 15049 if (NewFn.isInvalid()) 15050 return true; 15051 15052 SmallVector<Expr *, 8> MethodArgs; 15053 MethodArgs.reserve(NumParams + 1); 15054 15055 bool IsError = false; 15056 15057 // Initialize the implicit object parameter if needed. 15058 // Since C++2b, this could also be a call to a static call operator 15059 // which we emit as a regular CallExpr. 15060 if (Method->isInstance()) { 15061 ExprResult ObjRes = PerformObjectArgumentInitialization( 15062 Object.get(), /*Qualifier=*/nullptr, Best->FoundDecl, Method); 15063 if (ObjRes.isInvalid()) 15064 IsError = true; 15065 else 15066 Object = ObjRes; 15067 MethodArgs.push_back(Object.get()); 15068 } 15069 15070 IsError |= PrepareArgumentsForCallToObjectOfClassType( 15071 *this, MethodArgs, Method, Args, LParenLoc); 15072 15073 // If this is a variadic call, handle args passed through "...". 15074 if (Proto->isVariadic()) { 15075 // Promote the arguments (C99 6.5.2.2p7). 15076 for (unsigned i = NumParams, e = Args.size(); i < e; i++) { 15077 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 15078 nullptr); 15079 IsError |= Arg.isInvalid(); 15080 MethodArgs.push_back(Arg.get()); 15081 } 15082 } 15083 15084 if (IsError) 15085 return true; 15086 15087 DiagnoseSentinelCalls(Method, LParenLoc, Args); 15088 15089 // Once we've built TheCall, all of the expressions are properly owned. 15090 QualType ResultTy = Method->getReturnType(); 15091 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 15092 ResultTy = ResultTy.getNonLValueExprType(Context); 15093 15094 CallExpr *TheCall; 15095 if (Method->isInstance()) 15096 TheCall = CXXOperatorCallExpr::Create(Context, OO_Call, NewFn.get(), 15097 MethodArgs, ResultTy, VK, RParenLoc, 15098 CurFPFeatureOverrides()); 15099 else 15100 TheCall = CallExpr::Create(Context, NewFn.get(), MethodArgs, ResultTy, VK, 15101 RParenLoc, CurFPFeatureOverrides()); 15102 15103 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method)) 15104 return true; 15105 15106 if (CheckFunctionCall(Method, TheCall, Proto)) 15107 return true; 15108 15109 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method); 15110 } 15111 15112 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 15113 /// (if one exists), where @c Base is an expression of class type and 15114 /// @c Member is the name of the member we're trying to find. 15115 ExprResult 15116 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, 15117 bool *NoArrowOperatorFound) { 15118 assert(Base->getType()->isRecordType() && 15119 "left-hand side must have class type"); 15120 15121 if (checkPlaceholderForOverload(*this, Base)) 15122 return ExprError(); 15123 15124 SourceLocation Loc = Base->getExprLoc(); 15125 15126 // C++ [over.ref]p1: 15127 // 15128 // [...] An expression x->m is interpreted as (x.operator->())->m 15129 // for a class object x of type T if T::operator->() exists and if 15130 // the operator is selected as the best match function by the 15131 // overload resolution mechanism (13.3). 15132 DeclarationName OpName = 15133 Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 15134 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator); 15135 15136 if (RequireCompleteType(Loc, Base->getType(), 15137 diag::err_typecheck_incomplete_tag, Base)) 15138 return ExprError(); 15139 15140 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 15141 LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl()); 15142 R.suppressDiagnostics(); 15143 15144 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 15145 Oper != OperEnd; ++Oper) { 15146 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), 15147 std::nullopt, CandidateSet, 15148 /*SuppressUserConversion=*/false); 15149 } 15150 15151 bool HadMultipleCandidates = (CandidateSet.size() > 1); 15152 15153 // Perform overload resolution. 15154 OverloadCandidateSet::iterator Best; 15155 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 15156 case OR_Success: 15157 // Overload resolution succeeded; we'll build the call below. 15158 break; 15159 15160 case OR_No_Viable_Function: { 15161 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base); 15162 if (CandidateSet.empty()) { 15163 QualType BaseType = Base->getType(); 15164 if (NoArrowOperatorFound) { 15165 // Report this specific error to the caller instead of emitting a 15166 // diagnostic, as requested. 15167 *NoArrowOperatorFound = true; 15168 return ExprError(); 15169 } 15170 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 15171 << BaseType << Base->getSourceRange(); 15172 if (BaseType->isRecordType() && !BaseType->isPointerType()) { 15173 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion) 15174 << FixItHint::CreateReplacement(OpLoc, "."); 15175 } 15176 } else 15177 Diag(OpLoc, diag::err_ovl_no_viable_oper) 15178 << "operator->" << Base->getSourceRange(); 15179 CandidateSet.NoteCandidates(*this, Base, Cands); 15180 return ExprError(); 15181 } 15182 case OR_Ambiguous: 15183 CandidateSet.NoteCandidates( 15184 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary) 15185 << "->" << Base->getType() 15186 << Base->getSourceRange()), 15187 *this, OCD_AmbiguousCandidates, Base); 15188 return ExprError(); 15189 15190 case OR_Deleted: 15191 CandidateSet.NoteCandidates( 15192 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) 15193 << "->" << Base->getSourceRange()), 15194 *this, OCD_AllCandidates, Base); 15195 return ExprError(); 15196 } 15197 15198 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl); 15199 15200 // Convert the object parameter. 15201 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 15202 ExprResult BaseResult = 15203 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr, 15204 Best->FoundDecl, Method); 15205 if (BaseResult.isInvalid()) 15206 return ExprError(); 15207 Base = BaseResult.get(); 15208 15209 // Build the operator call. 15210 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, 15211 Base, HadMultipleCandidates, OpLoc); 15212 if (FnExpr.isInvalid()) 15213 return ExprError(); 15214 15215 QualType ResultTy = Method->getReturnType(); 15216 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 15217 ResultTy = ResultTy.getNonLValueExprType(Context); 15218 CXXOperatorCallExpr *TheCall = 15219 CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base, 15220 ResultTy, VK, OpLoc, CurFPFeatureOverrides()); 15221 15222 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method)) 15223 return ExprError(); 15224 15225 if (CheckFunctionCall(Method, TheCall, 15226 Method->getType()->castAs<FunctionProtoType>())) 15227 return ExprError(); 15228 15229 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method); 15230 } 15231 15232 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to 15233 /// a literal operator described by the provided lookup results. 15234 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R, 15235 DeclarationNameInfo &SuffixInfo, 15236 ArrayRef<Expr*> Args, 15237 SourceLocation LitEndLoc, 15238 TemplateArgumentListInfo *TemplateArgs) { 15239 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc(); 15240 15241 OverloadCandidateSet CandidateSet(UDSuffixLoc, 15242 OverloadCandidateSet::CSK_Normal); 15243 AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet, 15244 TemplateArgs); 15245 15246 bool HadMultipleCandidates = (CandidateSet.size() > 1); 15247 15248 // Perform overload resolution. This will usually be trivial, but might need 15249 // to perform substitutions for a literal operator template. 15250 OverloadCandidateSet::iterator Best; 15251 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) { 15252 case OR_Success: 15253 case OR_Deleted: 15254 break; 15255 15256 case OR_No_Viable_Function: 15257 CandidateSet.NoteCandidates( 15258 PartialDiagnosticAt(UDSuffixLoc, 15259 PDiag(diag::err_ovl_no_viable_function_in_call) 15260 << R.getLookupName()), 15261 *this, OCD_AllCandidates, Args); 15262 return ExprError(); 15263 15264 case OR_Ambiguous: 15265 CandidateSet.NoteCandidates( 15266 PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call) 15267 << R.getLookupName()), 15268 *this, OCD_AmbiguousCandidates, Args); 15269 return ExprError(); 15270 } 15271 15272 FunctionDecl *FD = Best->Function; 15273 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl, 15274 nullptr, HadMultipleCandidates, 15275 SuffixInfo.getLoc(), 15276 SuffixInfo.getInfo()); 15277 if (Fn.isInvalid()) 15278 return true; 15279 15280 // Check the argument types. This should almost always be a no-op, except 15281 // that array-to-pointer decay is applied to string literals. 15282 Expr *ConvArgs[2]; 15283 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 15284 ExprResult InputInit = PerformCopyInitialization( 15285 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)), 15286 SourceLocation(), Args[ArgIdx]); 15287 if (InputInit.isInvalid()) 15288 return true; 15289 ConvArgs[ArgIdx] = InputInit.get(); 15290 } 15291 15292 QualType ResultTy = FD->getReturnType(); 15293 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 15294 ResultTy = ResultTy.getNonLValueExprType(Context); 15295 15296 UserDefinedLiteral *UDL = UserDefinedLiteral::Create( 15297 Context, Fn.get(), llvm::ArrayRef(ConvArgs, Args.size()), ResultTy, VK, 15298 LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides()); 15299 15300 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD)) 15301 return ExprError(); 15302 15303 if (CheckFunctionCall(FD, UDL, nullptr)) 15304 return ExprError(); 15305 15306 return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD); 15307 } 15308 15309 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the 15310 /// given LookupResult is non-empty, it is assumed to describe a member which 15311 /// will be invoked. Otherwise, the function will be found via argument 15312 /// dependent lookup. 15313 /// CallExpr is set to a valid expression and FRS_Success returned on success, 15314 /// otherwise CallExpr is set to ExprError() and some non-success value 15315 /// is returned. 15316 Sema::ForRangeStatus 15317 Sema::BuildForRangeBeginEndCall(SourceLocation Loc, 15318 SourceLocation RangeLoc, 15319 const DeclarationNameInfo &NameInfo, 15320 LookupResult &MemberLookup, 15321 OverloadCandidateSet *CandidateSet, 15322 Expr *Range, ExprResult *CallExpr) { 15323 Scope *S = nullptr; 15324 15325 CandidateSet->clear(OverloadCandidateSet::CSK_Normal); 15326 if (!MemberLookup.empty()) { 15327 ExprResult MemberRef = 15328 BuildMemberReferenceExpr(Range, Range->getType(), Loc, 15329 /*IsPtr=*/false, CXXScopeSpec(), 15330 /*TemplateKWLoc=*/SourceLocation(), 15331 /*FirstQualifierInScope=*/nullptr, 15332 MemberLookup, 15333 /*TemplateArgs=*/nullptr, S); 15334 if (MemberRef.isInvalid()) { 15335 *CallExpr = ExprError(); 15336 return FRS_DiagnosticIssued; 15337 } 15338 *CallExpr = 15339 BuildCallExpr(S, MemberRef.get(), Loc, std::nullopt, Loc, nullptr); 15340 if (CallExpr->isInvalid()) { 15341 *CallExpr = ExprError(); 15342 return FRS_DiagnosticIssued; 15343 } 15344 } else { 15345 ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr, 15346 NestedNameSpecifierLoc(), 15347 NameInfo, UnresolvedSet<0>()); 15348 if (FnR.isInvalid()) 15349 return FRS_DiagnosticIssued; 15350 UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get()); 15351 15352 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc, 15353 CandidateSet, CallExpr); 15354 if (CandidateSet->empty() || CandidateSetError) { 15355 *CallExpr = ExprError(); 15356 return FRS_NoViableFunction; 15357 } 15358 OverloadCandidateSet::iterator Best; 15359 OverloadingResult OverloadResult = 15360 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best); 15361 15362 if (OverloadResult == OR_No_Viable_Function) { 15363 *CallExpr = ExprError(); 15364 return FRS_NoViableFunction; 15365 } 15366 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range, 15367 Loc, nullptr, CandidateSet, &Best, 15368 OverloadResult, 15369 /*AllowTypoCorrection=*/false); 15370 if (CallExpr->isInvalid() || OverloadResult != OR_Success) { 15371 *CallExpr = ExprError(); 15372 return FRS_DiagnosticIssued; 15373 } 15374 } 15375 return FRS_Success; 15376 } 15377 15378 15379 /// FixOverloadedFunctionReference - E is an expression that refers to 15380 /// a C++ overloaded function (possibly with some parentheses and 15381 /// perhaps a '&' around it). We have resolved the overloaded function 15382 /// to the function declaration Fn, so patch up the expression E to 15383 /// refer (possibly indirectly) to Fn. Returns the new expr. 15384 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 15385 FunctionDecl *Fn) { 15386 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 15387 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 15388 Found, Fn); 15389 if (SubExpr == PE->getSubExpr()) 15390 return PE; 15391 15392 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 15393 } 15394 15395 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 15396 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 15397 Found, Fn); 15398 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 15399 SubExpr->getType()) && 15400 "Implicit cast type cannot be determined from overload"); 15401 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 15402 if (SubExpr == ICE->getSubExpr()) 15403 return ICE; 15404 15405 return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(), 15406 SubExpr, nullptr, ICE->getValueKind(), 15407 CurFPFeatureOverrides()); 15408 } 15409 15410 if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) { 15411 if (!GSE->isResultDependent()) { 15412 Expr *SubExpr = 15413 FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn); 15414 if (SubExpr == GSE->getResultExpr()) 15415 return GSE; 15416 15417 // Replace the resulting type information before rebuilding the generic 15418 // selection expression. 15419 ArrayRef<Expr *> A = GSE->getAssocExprs(); 15420 SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end()); 15421 unsigned ResultIdx = GSE->getResultIndex(); 15422 AssocExprs[ResultIdx] = SubExpr; 15423 15424 return GenericSelectionExpr::Create( 15425 Context, GSE->getGenericLoc(), GSE->getControllingExpr(), 15426 GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(), 15427 GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(), 15428 ResultIdx); 15429 } 15430 // Rather than fall through to the unreachable, return the original generic 15431 // selection expression. 15432 return GSE; 15433 } 15434 15435 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 15436 assert(UnOp->getOpcode() == UO_AddrOf && 15437 "Can only take the address of an overloaded function"); 15438 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 15439 if (Method->isStatic()) { 15440 // Do nothing: static member functions aren't any different 15441 // from non-member functions. 15442 } else { 15443 // Fix the subexpression, which really has to be an 15444 // UnresolvedLookupExpr holding an overloaded member function 15445 // or template. 15446 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 15447 Found, Fn); 15448 if (SubExpr == UnOp->getSubExpr()) 15449 return UnOp; 15450 15451 assert(isa<DeclRefExpr>(SubExpr) 15452 && "fixed to something other than a decl ref"); 15453 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 15454 && "fixed to a member ref with no nested name qualifier"); 15455 15456 // We have taken the address of a pointer to member 15457 // function. Perform the computation here so that we get the 15458 // appropriate pointer to member type. 15459 QualType ClassType 15460 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 15461 QualType MemPtrType 15462 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 15463 // Under the MS ABI, lock down the inheritance model now. 15464 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) 15465 (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType); 15466 15467 return UnaryOperator::Create( 15468 Context, SubExpr, UO_AddrOf, MemPtrType, VK_PRValue, OK_Ordinary, 15469 UnOp->getOperatorLoc(), false, CurFPFeatureOverrides()); 15470 } 15471 } 15472 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 15473 Found, Fn); 15474 if (SubExpr == UnOp->getSubExpr()) 15475 return UnOp; 15476 15477 // FIXME: This can't currently fail, but in principle it could. 15478 return CreateBuiltinUnaryOp(UnOp->getOperatorLoc(), UO_AddrOf, SubExpr) 15479 .get(); 15480 } 15481 15482 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 15483 // FIXME: avoid copy. 15484 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 15485 if (ULE->hasExplicitTemplateArgs()) { 15486 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 15487 TemplateArgs = &TemplateArgsBuffer; 15488 } 15489 15490 QualType Type = Fn->getType(); 15491 ExprValueKind ValueKind = getLangOpts().CPlusPlus ? VK_LValue : VK_PRValue; 15492 15493 // FIXME: Duplicated from BuildDeclarationNameExpr. 15494 if (unsigned BID = Fn->getBuiltinID()) { 15495 if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) { 15496 Type = Context.BuiltinFnTy; 15497 ValueKind = VK_PRValue; 15498 } 15499 } 15500 15501 DeclRefExpr *DRE = BuildDeclRefExpr( 15502 Fn, Type, ValueKind, ULE->getNameInfo(), ULE->getQualifierLoc(), 15503 Found.getDecl(), ULE->getTemplateKeywordLoc(), TemplateArgs); 15504 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); 15505 return DRE; 15506 } 15507 15508 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 15509 // FIXME: avoid copy. 15510 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 15511 if (MemExpr->hasExplicitTemplateArgs()) { 15512 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 15513 TemplateArgs = &TemplateArgsBuffer; 15514 } 15515 15516 Expr *Base; 15517 15518 // If we're filling in a static method where we used to have an 15519 // implicit member access, rewrite to a simple decl ref. 15520 if (MemExpr->isImplicitAccess()) { 15521 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 15522 DeclRefExpr *DRE = BuildDeclRefExpr( 15523 Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(), 15524 MemExpr->getQualifierLoc(), Found.getDecl(), 15525 MemExpr->getTemplateKeywordLoc(), TemplateArgs); 15526 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); 15527 return DRE; 15528 } else { 15529 SourceLocation Loc = MemExpr->getMemberLoc(); 15530 if (MemExpr->getQualifier()) 15531 Loc = MemExpr->getQualifierLoc().getBeginLoc(); 15532 Base = 15533 BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true); 15534 } 15535 } else 15536 Base = MemExpr->getBase(); 15537 15538 ExprValueKind valueKind; 15539 QualType type; 15540 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 15541 valueKind = VK_LValue; 15542 type = Fn->getType(); 15543 } else { 15544 valueKind = VK_PRValue; 15545 type = Context.BoundMemberTy; 15546 } 15547 15548 return BuildMemberExpr( 15549 Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(), 15550 MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found, 15551 /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(), 15552 type, valueKind, OK_Ordinary, TemplateArgs); 15553 } 15554 15555 llvm_unreachable("Invalid reference to overloaded function"); 15556 } 15557 15558 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 15559 DeclAccessPair Found, 15560 FunctionDecl *Fn) { 15561 return FixOverloadedFunctionReference(E.get(), Found, Fn); 15562 } 15563 15564 bool clang::shouldEnforceArgLimit(bool PartialOverloading, 15565 FunctionDecl *Function) { 15566 if (!PartialOverloading || !Function) 15567 return true; 15568 if (Function->isVariadic()) 15569 return false; 15570 if (const auto *Proto = 15571 dyn_cast<FunctionProtoType>(Function->getFunctionType())) 15572 if (Proto->isTemplateVariadic()) 15573 return false; 15574 if (auto *Pattern = Function->getTemplateInstantiationPattern()) 15575 if (const auto *Proto = 15576 dyn_cast<FunctionProtoType>(Pattern->getFunctionType())) 15577 if (Proto->isTemplateVariadic()) 15578 return false; 15579 return true; 15580 } 15581