xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaOverload.cpp (revision 38a52bd3b5cac3da6f7f6eef3dd050e6aa08ebb3)
1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ overloading.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/CXXInheritance.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/DependenceFlags.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/TypeOrdering.h"
21 #include "clang/Basic/Diagnostic.h"
22 #include "clang/Basic/DiagnosticOptions.h"
23 #include "clang/Basic/PartialDiagnostic.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/Overload.h"
29 #include "clang/Sema/SemaInternal.h"
30 #include "clang/Sema/Template.h"
31 #include "clang/Sema/TemplateDeduction.h"
32 #include "llvm/ADT/DenseSet.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallString.h"
37 #include <algorithm>
38 #include <cstdlib>
39 
40 using namespace clang;
41 using namespace sema;
42 
43 using AllowedExplicit = Sema::AllowedExplicit;
44 
45 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
46   return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
47     return P->hasAttr<PassObjectSizeAttr>();
48   });
49 }
50 
51 /// A convenience routine for creating a decayed reference to a function.
52 static ExprResult
53 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
54                       const Expr *Base, bool HadMultipleCandidates,
55                       SourceLocation Loc = SourceLocation(),
56                       const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
57   if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
58     return ExprError();
59   // If FoundDecl is different from Fn (such as if one is a template
60   // and the other a specialization), make sure DiagnoseUseOfDecl is
61   // called on both.
62   // FIXME: This would be more comprehensively addressed by modifying
63   // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
64   // being used.
65   if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
66     return ExprError();
67   DeclRefExpr *DRE = new (S.Context)
68       DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
69   if (HadMultipleCandidates)
70     DRE->setHadMultipleCandidates(true);
71 
72   S.MarkDeclRefReferenced(DRE, Base);
73   if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
74     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
75       S.ResolveExceptionSpec(Loc, FPT);
76       DRE->setType(Fn->getType());
77     }
78   }
79   return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
80                              CK_FunctionToPointerDecay);
81 }
82 
83 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
84                                  bool InOverloadResolution,
85                                  StandardConversionSequence &SCS,
86                                  bool CStyle,
87                                  bool AllowObjCWritebackConversion);
88 
89 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
90                                                  QualType &ToType,
91                                                  bool InOverloadResolution,
92                                                  StandardConversionSequence &SCS,
93                                                  bool CStyle);
94 static OverloadingResult
95 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
96                         UserDefinedConversionSequence& User,
97                         OverloadCandidateSet& Conversions,
98                         AllowedExplicit AllowExplicit,
99                         bool AllowObjCConversionOnExplicit);
100 
101 static ImplicitConversionSequence::CompareKind
102 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
103                                    const StandardConversionSequence& SCS1,
104                                    const StandardConversionSequence& SCS2);
105 
106 static ImplicitConversionSequence::CompareKind
107 CompareQualificationConversions(Sema &S,
108                                 const StandardConversionSequence& SCS1,
109                                 const StandardConversionSequence& SCS2);
110 
111 static ImplicitConversionSequence::CompareKind
112 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
113                                 const StandardConversionSequence& SCS1,
114                                 const StandardConversionSequence& SCS2);
115 
116 /// GetConversionRank - Retrieve the implicit conversion rank
117 /// corresponding to the given implicit conversion kind.
118 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
119   static const ImplicitConversionRank
120     Rank[(int)ICK_Num_Conversion_Kinds] = {
121     ICR_Exact_Match,
122     ICR_Exact_Match,
123     ICR_Exact_Match,
124     ICR_Exact_Match,
125     ICR_Exact_Match,
126     ICR_Exact_Match,
127     ICR_Promotion,
128     ICR_Promotion,
129     ICR_Promotion,
130     ICR_Conversion,
131     ICR_Conversion,
132     ICR_Conversion,
133     ICR_Conversion,
134     ICR_Conversion,
135     ICR_Conversion,
136     ICR_Conversion,
137     ICR_Conversion,
138     ICR_Conversion,
139     ICR_Conversion,
140     ICR_Conversion,
141     ICR_OCL_Scalar_Widening,
142     ICR_Complex_Real_Conversion,
143     ICR_Conversion,
144     ICR_Conversion,
145     ICR_Writeback_Conversion,
146     ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
147                      // it was omitted by the patch that added
148                      // ICK_Zero_Event_Conversion
149     ICR_C_Conversion,
150     ICR_C_Conversion_Extension
151   };
152   return Rank[(int)Kind];
153 }
154 
155 /// GetImplicitConversionName - Return the name of this kind of
156 /// implicit conversion.
157 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
158   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
159     "No conversion",
160     "Lvalue-to-rvalue",
161     "Array-to-pointer",
162     "Function-to-pointer",
163     "Function pointer conversion",
164     "Qualification",
165     "Integral promotion",
166     "Floating point promotion",
167     "Complex promotion",
168     "Integral conversion",
169     "Floating conversion",
170     "Complex conversion",
171     "Floating-integral conversion",
172     "Pointer conversion",
173     "Pointer-to-member conversion",
174     "Boolean conversion",
175     "Compatible-types conversion",
176     "Derived-to-base conversion",
177     "Vector conversion",
178     "SVE Vector conversion",
179     "Vector splat",
180     "Complex-real conversion",
181     "Block Pointer conversion",
182     "Transparent Union Conversion",
183     "Writeback conversion",
184     "OpenCL Zero Event Conversion",
185     "C specific type conversion",
186     "Incompatible pointer conversion"
187   };
188   return Name[Kind];
189 }
190 
191 /// StandardConversionSequence - Set the standard conversion
192 /// sequence to the identity conversion.
193 void StandardConversionSequence::setAsIdentityConversion() {
194   First = ICK_Identity;
195   Second = ICK_Identity;
196   Third = ICK_Identity;
197   DeprecatedStringLiteralToCharPtr = false;
198   QualificationIncludesObjCLifetime = false;
199   ReferenceBinding = false;
200   DirectBinding = false;
201   IsLvalueReference = true;
202   BindsToFunctionLvalue = false;
203   BindsToRvalue = false;
204   BindsImplicitObjectArgumentWithoutRefQualifier = false;
205   ObjCLifetimeConversionBinding = false;
206   CopyConstructor = nullptr;
207 }
208 
209 /// getRank - Retrieve the rank of this standard conversion sequence
210 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
211 /// implicit conversions.
212 ImplicitConversionRank StandardConversionSequence::getRank() const {
213   ImplicitConversionRank Rank = ICR_Exact_Match;
214   if  (GetConversionRank(First) > Rank)
215     Rank = GetConversionRank(First);
216   if  (GetConversionRank(Second) > Rank)
217     Rank = GetConversionRank(Second);
218   if  (GetConversionRank(Third) > Rank)
219     Rank = GetConversionRank(Third);
220   return Rank;
221 }
222 
223 /// isPointerConversionToBool - Determines whether this conversion is
224 /// a conversion of a pointer or pointer-to-member to bool. This is
225 /// used as part of the ranking of standard conversion sequences
226 /// (C++ 13.3.3.2p4).
227 bool StandardConversionSequence::isPointerConversionToBool() const {
228   // Note that FromType has not necessarily been transformed by the
229   // array-to-pointer or function-to-pointer implicit conversions, so
230   // check for their presence as well as checking whether FromType is
231   // a pointer.
232   if (getToType(1)->isBooleanType() &&
233       (getFromType()->isPointerType() ||
234        getFromType()->isMemberPointerType() ||
235        getFromType()->isObjCObjectPointerType() ||
236        getFromType()->isBlockPointerType() ||
237        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
238     return true;
239 
240   return false;
241 }
242 
243 /// isPointerConversionToVoidPointer - Determines whether this
244 /// conversion is a conversion of a pointer to a void pointer. This is
245 /// used as part of the ranking of standard conversion sequences (C++
246 /// 13.3.3.2p4).
247 bool
248 StandardConversionSequence::
249 isPointerConversionToVoidPointer(ASTContext& Context) const {
250   QualType FromType = getFromType();
251   QualType ToType = getToType(1);
252 
253   // Note that FromType has not necessarily been transformed by the
254   // array-to-pointer implicit conversion, so check for its presence
255   // and redo the conversion to get a pointer.
256   if (First == ICK_Array_To_Pointer)
257     FromType = Context.getArrayDecayedType(FromType);
258 
259   if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
260     if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
261       return ToPtrType->getPointeeType()->isVoidType();
262 
263   return false;
264 }
265 
266 /// Skip any implicit casts which could be either part of a narrowing conversion
267 /// or after one in an implicit conversion.
268 static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
269                                              const Expr *Converted) {
270   // We can have cleanups wrapping the converted expression; these need to be
271   // preserved so that destructors run if necessary.
272   if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
273     Expr *Inner =
274         const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
275     return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
276                                     EWC->getObjects());
277   }
278 
279   while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
280     switch (ICE->getCastKind()) {
281     case CK_NoOp:
282     case CK_IntegralCast:
283     case CK_IntegralToBoolean:
284     case CK_IntegralToFloating:
285     case CK_BooleanToSignedIntegral:
286     case CK_FloatingToIntegral:
287     case CK_FloatingToBoolean:
288     case CK_FloatingCast:
289       Converted = ICE->getSubExpr();
290       continue;
291 
292     default:
293       return Converted;
294     }
295   }
296 
297   return Converted;
298 }
299 
300 /// Check if this standard conversion sequence represents a narrowing
301 /// conversion, according to C++11 [dcl.init.list]p7.
302 ///
303 /// \param Ctx  The AST context.
304 /// \param Converted  The result of applying this standard conversion sequence.
305 /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
306 ///        value of the expression prior to the narrowing conversion.
307 /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
308 ///        type of the expression prior to the narrowing conversion.
309 /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
310 ///        from floating point types to integral types should be ignored.
311 NarrowingKind StandardConversionSequence::getNarrowingKind(
312     ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
313     QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
314   assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
315 
316   // C++11 [dcl.init.list]p7:
317   //   A narrowing conversion is an implicit conversion ...
318   QualType FromType = getToType(0);
319   QualType ToType = getToType(1);
320 
321   // A conversion to an enumeration type is narrowing if the conversion to
322   // the underlying type is narrowing. This only arises for expressions of
323   // the form 'Enum{init}'.
324   if (auto *ET = ToType->getAs<EnumType>())
325     ToType = ET->getDecl()->getIntegerType();
326 
327   switch (Second) {
328   // 'bool' is an integral type; dispatch to the right place to handle it.
329   case ICK_Boolean_Conversion:
330     if (FromType->isRealFloatingType())
331       goto FloatingIntegralConversion;
332     if (FromType->isIntegralOrUnscopedEnumerationType())
333       goto IntegralConversion;
334     // -- from a pointer type or pointer-to-member type to bool, or
335     return NK_Type_Narrowing;
336 
337   // -- from a floating-point type to an integer type, or
338   //
339   // -- from an integer type or unscoped enumeration type to a floating-point
340   //    type, except where the source is a constant expression and the actual
341   //    value after conversion will fit into the target type and will produce
342   //    the original value when converted back to the original type, or
343   case ICK_Floating_Integral:
344   FloatingIntegralConversion:
345     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
346       return NK_Type_Narrowing;
347     } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
348                ToType->isRealFloatingType()) {
349       if (IgnoreFloatToIntegralConversion)
350         return NK_Not_Narrowing;
351       const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
352       assert(Initializer && "Unknown conversion expression");
353 
354       // If it's value-dependent, we can't tell whether it's narrowing.
355       if (Initializer->isValueDependent())
356         return NK_Dependent_Narrowing;
357 
358       if (Optional<llvm::APSInt> IntConstantValue =
359               Initializer->getIntegerConstantExpr(Ctx)) {
360         // Convert the integer to the floating type.
361         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
362         Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(),
363                                 llvm::APFloat::rmNearestTiesToEven);
364         // And back.
365         llvm::APSInt ConvertedValue = *IntConstantValue;
366         bool ignored;
367         Result.convertToInteger(ConvertedValue,
368                                 llvm::APFloat::rmTowardZero, &ignored);
369         // If the resulting value is different, this was a narrowing conversion.
370         if (*IntConstantValue != ConvertedValue) {
371           ConstantValue = APValue(*IntConstantValue);
372           ConstantType = Initializer->getType();
373           return NK_Constant_Narrowing;
374         }
375       } else {
376         // Variables are always narrowings.
377         return NK_Variable_Narrowing;
378       }
379     }
380     return NK_Not_Narrowing;
381 
382   // -- from long double to double or float, or from double to float, except
383   //    where the source is a constant expression and the actual value after
384   //    conversion is within the range of values that can be represented (even
385   //    if it cannot be represented exactly), or
386   case ICK_Floating_Conversion:
387     if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
388         Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
389       // FromType is larger than ToType.
390       const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
391 
392       // If it's value-dependent, we can't tell whether it's narrowing.
393       if (Initializer->isValueDependent())
394         return NK_Dependent_Narrowing;
395 
396       if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
397         // Constant!
398         assert(ConstantValue.isFloat());
399         llvm::APFloat FloatVal = ConstantValue.getFloat();
400         // Convert the source value into the target type.
401         bool ignored;
402         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
403           Ctx.getFloatTypeSemantics(ToType),
404           llvm::APFloat::rmNearestTiesToEven, &ignored);
405         // If there was no overflow, the source value is within the range of
406         // values that can be represented.
407         if (ConvertStatus & llvm::APFloat::opOverflow) {
408           ConstantType = Initializer->getType();
409           return NK_Constant_Narrowing;
410         }
411       } else {
412         return NK_Variable_Narrowing;
413       }
414     }
415     return NK_Not_Narrowing;
416 
417   // -- from an integer type or unscoped enumeration type to an integer type
418   //    that cannot represent all the values of the original type, except where
419   //    the source is a constant expression and the actual value after
420   //    conversion will fit into the target type and will produce the original
421   //    value when converted back to the original type.
422   case ICK_Integral_Conversion:
423   IntegralConversion: {
424     assert(FromType->isIntegralOrUnscopedEnumerationType());
425     assert(ToType->isIntegralOrUnscopedEnumerationType());
426     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
427     const unsigned FromWidth = Ctx.getIntWidth(FromType);
428     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
429     const unsigned ToWidth = Ctx.getIntWidth(ToType);
430 
431     if (FromWidth > ToWidth ||
432         (FromWidth == ToWidth && FromSigned != ToSigned) ||
433         (FromSigned && !ToSigned)) {
434       // Not all values of FromType can be represented in ToType.
435       const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
436 
437       // If it's value-dependent, we can't tell whether it's narrowing.
438       if (Initializer->isValueDependent())
439         return NK_Dependent_Narrowing;
440 
441       Optional<llvm::APSInt> OptInitializerValue;
442       if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) {
443         // Such conversions on variables are always narrowing.
444         return NK_Variable_Narrowing;
445       }
446       llvm::APSInt &InitializerValue = *OptInitializerValue;
447       bool Narrowing = false;
448       if (FromWidth < ToWidth) {
449         // Negative -> unsigned is narrowing. Otherwise, more bits is never
450         // narrowing.
451         if (InitializerValue.isSigned() && InitializerValue.isNegative())
452           Narrowing = true;
453       } else {
454         // Add a bit to the InitializerValue so we don't have to worry about
455         // signed vs. unsigned comparisons.
456         InitializerValue = InitializerValue.extend(
457           InitializerValue.getBitWidth() + 1);
458         // Convert the initializer to and from the target width and signed-ness.
459         llvm::APSInt ConvertedValue = InitializerValue;
460         ConvertedValue = ConvertedValue.trunc(ToWidth);
461         ConvertedValue.setIsSigned(ToSigned);
462         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
463         ConvertedValue.setIsSigned(InitializerValue.isSigned());
464         // If the result is different, this was a narrowing conversion.
465         if (ConvertedValue != InitializerValue)
466           Narrowing = true;
467       }
468       if (Narrowing) {
469         ConstantType = Initializer->getType();
470         ConstantValue = APValue(InitializerValue);
471         return NK_Constant_Narrowing;
472       }
473     }
474     return NK_Not_Narrowing;
475   }
476 
477   default:
478     // Other kinds of conversions are not narrowings.
479     return NK_Not_Narrowing;
480   }
481 }
482 
483 /// dump - Print this standard conversion sequence to standard
484 /// error. Useful for debugging overloading issues.
485 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
486   raw_ostream &OS = llvm::errs();
487   bool PrintedSomething = false;
488   if (First != ICK_Identity) {
489     OS << GetImplicitConversionName(First);
490     PrintedSomething = true;
491   }
492 
493   if (Second != ICK_Identity) {
494     if (PrintedSomething) {
495       OS << " -> ";
496     }
497     OS << GetImplicitConversionName(Second);
498 
499     if (CopyConstructor) {
500       OS << " (by copy constructor)";
501     } else if (DirectBinding) {
502       OS << " (direct reference binding)";
503     } else if (ReferenceBinding) {
504       OS << " (reference binding)";
505     }
506     PrintedSomething = true;
507   }
508 
509   if (Third != ICK_Identity) {
510     if (PrintedSomething) {
511       OS << " -> ";
512     }
513     OS << GetImplicitConversionName(Third);
514     PrintedSomething = true;
515   }
516 
517   if (!PrintedSomething) {
518     OS << "No conversions required";
519   }
520 }
521 
522 /// dump - Print this user-defined conversion sequence to standard
523 /// error. Useful for debugging overloading issues.
524 void UserDefinedConversionSequence::dump() const {
525   raw_ostream &OS = llvm::errs();
526   if (Before.First || Before.Second || Before.Third) {
527     Before.dump();
528     OS << " -> ";
529   }
530   if (ConversionFunction)
531     OS << '\'' << *ConversionFunction << '\'';
532   else
533     OS << "aggregate initialization";
534   if (After.First || After.Second || After.Third) {
535     OS << " -> ";
536     After.dump();
537   }
538 }
539 
540 /// dump - Print this implicit conversion sequence to standard
541 /// error. Useful for debugging overloading issues.
542 void ImplicitConversionSequence::dump() const {
543   raw_ostream &OS = llvm::errs();
544   if (hasInitializerListContainerType())
545     OS << "Worst list element conversion: ";
546   switch (ConversionKind) {
547   case StandardConversion:
548     OS << "Standard conversion: ";
549     Standard.dump();
550     break;
551   case UserDefinedConversion:
552     OS << "User-defined conversion: ";
553     UserDefined.dump();
554     break;
555   case EllipsisConversion:
556     OS << "Ellipsis conversion";
557     break;
558   case AmbiguousConversion:
559     OS << "Ambiguous conversion";
560     break;
561   case BadConversion:
562     OS << "Bad conversion";
563     break;
564   }
565 
566   OS << "\n";
567 }
568 
569 void AmbiguousConversionSequence::construct() {
570   new (&conversions()) ConversionSet();
571 }
572 
573 void AmbiguousConversionSequence::destruct() {
574   conversions().~ConversionSet();
575 }
576 
577 void
578 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
579   FromTypePtr = O.FromTypePtr;
580   ToTypePtr = O.ToTypePtr;
581   new (&conversions()) ConversionSet(O.conversions());
582 }
583 
584 namespace {
585   // Structure used by DeductionFailureInfo to store
586   // template argument information.
587   struct DFIArguments {
588     TemplateArgument FirstArg;
589     TemplateArgument SecondArg;
590   };
591   // Structure used by DeductionFailureInfo to store
592   // template parameter and template argument information.
593   struct DFIParamWithArguments : DFIArguments {
594     TemplateParameter Param;
595   };
596   // Structure used by DeductionFailureInfo to store template argument
597   // information and the index of the problematic call argument.
598   struct DFIDeducedMismatchArgs : DFIArguments {
599     TemplateArgumentList *TemplateArgs;
600     unsigned CallArgIndex;
601   };
602   // Structure used by DeductionFailureInfo to store information about
603   // unsatisfied constraints.
604   struct CNSInfo {
605     TemplateArgumentList *TemplateArgs;
606     ConstraintSatisfaction Satisfaction;
607   };
608 }
609 
610 /// Convert from Sema's representation of template deduction information
611 /// to the form used in overload-candidate information.
612 DeductionFailureInfo
613 clang::MakeDeductionFailureInfo(ASTContext &Context,
614                                 Sema::TemplateDeductionResult TDK,
615                                 TemplateDeductionInfo &Info) {
616   DeductionFailureInfo Result;
617   Result.Result = static_cast<unsigned>(TDK);
618   Result.HasDiagnostic = false;
619   switch (TDK) {
620   case Sema::TDK_Invalid:
621   case Sema::TDK_InstantiationDepth:
622   case Sema::TDK_TooManyArguments:
623   case Sema::TDK_TooFewArguments:
624   case Sema::TDK_MiscellaneousDeductionFailure:
625   case Sema::TDK_CUDATargetMismatch:
626     Result.Data = nullptr;
627     break;
628 
629   case Sema::TDK_Incomplete:
630   case Sema::TDK_InvalidExplicitArguments:
631     Result.Data = Info.Param.getOpaqueValue();
632     break;
633 
634   case Sema::TDK_DeducedMismatch:
635   case Sema::TDK_DeducedMismatchNested: {
636     // FIXME: Should allocate from normal heap so that we can free this later.
637     auto *Saved = new (Context) DFIDeducedMismatchArgs;
638     Saved->FirstArg = Info.FirstArg;
639     Saved->SecondArg = Info.SecondArg;
640     Saved->TemplateArgs = Info.take();
641     Saved->CallArgIndex = Info.CallArgIndex;
642     Result.Data = Saved;
643     break;
644   }
645 
646   case Sema::TDK_NonDeducedMismatch: {
647     // FIXME: Should allocate from normal heap so that we can free this later.
648     DFIArguments *Saved = new (Context) DFIArguments;
649     Saved->FirstArg = Info.FirstArg;
650     Saved->SecondArg = Info.SecondArg;
651     Result.Data = Saved;
652     break;
653   }
654 
655   case Sema::TDK_IncompletePack:
656     // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
657   case Sema::TDK_Inconsistent:
658   case Sema::TDK_Underqualified: {
659     // FIXME: Should allocate from normal heap so that we can free this later.
660     DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
661     Saved->Param = Info.Param;
662     Saved->FirstArg = Info.FirstArg;
663     Saved->SecondArg = Info.SecondArg;
664     Result.Data = Saved;
665     break;
666   }
667 
668   case Sema::TDK_SubstitutionFailure:
669     Result.Data = Info.take();
670     if (Info.hasSFINAEDiagnostic()) {
671       PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
672           SourceLocation(), PartialDiagnostic::NullDiagnostic());
673       Info.takeSFINAEDiagnostic(*Diag);
674       Result.HasDiagnostic = true;
675     }
676     break;
677 
678   case Sema::TDK_ConstraintsNotSatisfied: {
679     CNSInfo *Saved = new (Context) CNSInfo;
680     Saved->TemplateArgs = Info.take();
681     Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
682     Result.Data = Saved;
683     break;
684   }
685 
686   case Sema::TDK_Success:
687   case Sema::TDK_NonDependentConversionFailure:
688     llvm_unreachable("not a deduction failure");
689   }
690 
691   return Result;
692 }
693 
694 void DeductionFailureInfo::Destroy() {
695   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
696   case Sema::TDK_Success:
697   case Sema::TDK_Invalid:
698   case Sema::TDK_InstantiationDepth:
699   case Sema::TDK_Incomplete:
700   case Sema::TDK_TooManyArguments:
701   case Sema::TDK_TooFewArguments:
702   case Sema::TDK_InvalidExplicitArguments:
703   case Sema::TDK_CUDATargetMismatch:
704   case Sema::TDK_NonDependentConversionFailure:
705     break;
706 
707   case Sema::TDK_IncompletePack:
708   case Sema::TDK_Inconsistent:
709   case Sema::TDK_Underqualified:
710   case Sema::TDK_DeducedMismatch:
711   case Sema::TDK_DeducedMismatchNested:
712   case Sema::TDK_NonDeducedMismatch:
713     // FIXME: Destroy the data?
714     Data = nullptr;
715     break;
716 
717   case Sema::TDK_SubstitutionFailure:
718     // FIXME: Destroy the template argument list?
719     Data = nullptr;
720     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
721       Diag->~PartialDiagnosticAt();
722       HasDiagnostic = false;
723     }
724     break;
725 
726   case Sema::TDK_ConstraintsNotSatisfied:
727     // FIXME: Destroy the template argument list?
728     Data = nullptr;
729     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
730       Diag->~PartialDiagnosticAt();
731       HasDiagnostic = false;
732     }
733     break;
734 
735   // Unhandled
736   case Sema::TDK_MiscellaneousDeductionFailure:
737     break;
738   }
739 }
740 
741 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
742   if (HasDiagnostic)
743     return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
744   return nullptr;
745 }
746 
747 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
748   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
749   case Sema::TDK_Success:
750   case Sema::TDK_Invalid:
751   case Sema::TDK_InstantiationDepth:
752   case Sema::TDK_TooManyArguments:
753   case Sema::TDK_TooFewArguments:
754   case Sema::TDK_SubstitutionFailure:
755   case Sema::TDK_DeducedMismatch:
756   case Sema::TDK_DeducedMismatchNested:
757   case Sema::TDK_NonDeducedMismatch:
758   case Sema::TDK_CUDATargetMismatch:
759   case Sema::TDK_NonDependentConversionFailure:
760   case Sema::TDK_ConstraintsNotSatisfied:
761     return TemplateParameter();
762 
763   case Sema::TDK_Incomplete:
764   case Sema::TDK_InvalidExplicitArguments:
765     return TemplateParameter::getFromOpaqueValue(Data);
766 
767   case Sema::TDK_IncompletePack:
768   case Sema::TDK_Inconsistent:
769   case Sema::TDK_Underqualified:
770     return static_cast<DFIParamWithArguments*>(Data)->Param;
771 
772   // Unhandled
773   case Sema::TDK_MiscellaneousDeductionFailure:
774     break;
775   }
776 
777   return TemplateParameter();
778 }
779 
780 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
781   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
782   case Sema::TDK_Success:
783   case Sema::TDK_Invalid:
784   case Sema::TDK_InstantiationDepth:
785   case Sema::TDK_TooManyArguments:
786   case Sema::TDK_TooFewArguments:
787   case Sema::TDK_Incomplete:
788   case Sema::TDK_IncompletePack:
789   case Sema::TDK_InvalidExplicitArguments:
790   case Sema::TDK_Inconsistent:
791   case Sema::TDK_Underqualified:
792   case Sema::TDK_NonDeducedMismatch:
793   case Sema::TDK_CUDATargetMismatch:
794   case Sema::TDK_NonDependentConversionFailure:
795     return nullptr;
796 
797   case Sema::TDK_DeducedMismatch:
798   case Sema::TDK_DeducedMismatchNested:
799     return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
800 
801   case Sema::TDK_SubstitutionFailure:
802     return static_cast<TemplateArgumentList*>(Data);
803 
804   case Sema::TDK_ConstraintsNotSatisfied:
805     return static_cast<CNSInfo*>(Data)->TemplateArgs;
806 
807   // Unhandled
808   case Sema::TDK_MiscellaneousDeductionFailure:
809     break;
810   }
811 
812   return nullptr;
813 }
814 
815 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
816   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
817   case Sema::TDK_Success:
818   case Sema::TDK_Invalid:
819   case Sema::TDK_InstantiationDepth:
820   case Sema::TDK_Incomplete:
821   case Sema::TDK_TooManyArguments:
822   case Sema::TDK_TooFewArguments:
823   case Sema::TDK_InvalidExplicitArguments:
824   case Sema::TDK_SubstitutionFailure:
825   case Sema::TDK_CUDATargetMismatch:
826   case Sema::TDK_NonDependentConversionFailure:
827   case Sema::TDK_ConstraintsNotSatisfied:
828     return nullptr;
829 
830   case Sema::TDK_IncompletePack:
831   case Sema::TDK_Inconsistent:
832   case Sema::TDK_Underqualified:
833   case Sema::TDK_DeducedMismatch:
834   case Sema::TDK_DeducedMismatchNested:
835   case Sema::TDK_NonDeducedMismatch:
836     return &static_cast<DFIArguments*>(Data)->FirstArg;
837 
838   // Unhandled
839   case Sema::TDK_MiscellaneousDeductionFailure:
840     break;
841   }
842 
843   return nullptr;
844 }
845 
846 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
847   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
848   case Sema::TDK_Success:
849   case Sema::TDK_Invalid:
850   case Sema::TDK_InstantiationDepth:
851   case Sema::TDK_Incomplete:
852   case Sema::TDK_IncompletePack:
853   case Sema::TDK_TooManyArguments:
854   case Sema::TDK_TooFewArguments:
855   case Sema::TDK_InvalidExplicitArguments:
856   case Sema::TDK_SubstitutionFailure:
857   case Sema::TDK_CUDATargetMismatch:
858   case Sema::TDK_NonDependentConversionFailure:
859   case Sema::TDK_ConstraintsNotSatisfied:
860     return nullptr;
861 
862   case Sema::TDK_Inconsistent:
863   case Sema::TDK_Underqualified:
864   case Sema::TDK_DeducedMismatch:
865   case Sema::TDK_DeducedMismatchNested:
866   case Sema::TDK_NonDeducedMismatch:
867     return &static_cast<DFIArguments*>(Data)->SecondArg;
868 
869   // Unhandled
870   case Sema::TDK_MiscellaneousDeductionFailure:
871     break;
872   }
873 
874   return nullptr;
875 }
876 
877 llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
878   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
879   case Sema::TDK_DeducedMismatch:
880   case Sema::TDK_DeducedMismatchNested:
881     return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
882 
883   default:
884     return llvm::None;
885   }
886 }
887 
888 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
889     OverloadedOperatorKind Op) {
890   if (!AllowRewrittenCandidates)
891     return false;
892   return Op == OO_EqualEqual || Op == OO_Spaceship;
893 }
894 
895 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
896     ASTContext &Ctx, const FunctionDecl *FD) {
897   if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
898     return false;
899   // Don't bother adding a reversed candidate that can never be a better
900   // match than the non-reversed version.
901   return FD->getNumParams() != 2 ||
902          !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
903                                      FD->getParamDecl(1)->getType()) ||
904          FD->hasAttr<EnableIfAttr>();
905 }
906 
907 void OverloadCandidateSet::destroyCandidates() {
908   for (iterator i = begin(), e = end(); i != e; ++i) {
909     for (auto &C : i->Conversions)
910       C.~ImplicitConversionSequence();
911     if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
912       i->DeductionFailure.Destroy();
913   }
914 }
915 
916 void OverloadCandidateSet::clear(CandidateSetKind CSK) {
917   destroyCandidates();
918   SlabAllocator.Reset();
919   NumInlineBytesUsed = 0;
920   Candidates.clear();
921   Functions.clear();
922   Kind = CSK;
923 }
924 
925 namespace {
926   class UnbridgedCastsSet {
927     struct Entry {
928       Expr **Addr;
929       Expr *Saved;
930     };
931     SmallVector<Entry, 2> Entries;
932 
933   public:
934     void save(Sema &S, Expr *&E) {
935       assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
936       Entry entry = { &E, E };
937       Entries.push_back(entry);
938       E = S.stripARCUnbridgedCast(E);
939     }
940 
941     void restore() {
942       for (SmallVectorImpl<Entry>::iterator
943              i = Entries.begin(), e = Entries.end(); i != e; ++i)
944         *i->Addr = i->Saved;
945     }
946   };
947 }
948 
949 /// checkPlaceholderForOverload - Do any interesting placeholder-like
950 /// preprocessing on the given expression.
951 ///
952 /// \param unbridgedCasts a collection to which to add unbridged casts;
953 ///   without this, they will be immediately diagnosed as errors
954 ///
955 /// Return true on unrecoverable error.
956 static bool
957 checkPlaceholderForOverload(Sema &S, Expr *&E,
958                             UnbridgedCastsSet *unbridgedCasts = nullptr) {
959   if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
960     // We can't handle overloaded expressions here because overload
961     // resolution might reasonably tweak them.
962     if (placeholder->getKind() == BuiltinType::Overload) return false;
963 
964     // If the context potentially accepts unbridged ARC casts, strip
965     // the unbridged cast and add it to the collection for later restoration.
966     if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
967         unbridgedCasts) {
968       unbridgedCasts->save(S, E);
969       return false;
970     }
971 
972     // Go ahead and check everything else.
973     ExprResult result = S.CheckPlaceholderExpr(E);
974     if (result.isInvalid())
975       return true;
976 
977     E = result.get();
978     return false;
979   }
980 
981   // Nothing to do.
982   return false;
983 }
984 
985 /// checkArgPlaceholdersForOverload - Check a set of call operands for
986 /// placeholders.
987 static bool checkArgPlaceholdersForOverload(Sema &S,
988                                             MultiExprArg Args,
989                                             UnbridgedCastsSet &unbridged) {
990   for (unsigned i = 0, e = Args.size(); i != e; ++i)
991     if (checkPlaceholderForOverload(S, Args[i], &unbridged))
992       return true;
993 
994   return false;
995 }
996 
997 /// Determine whether the given New declaration is an overload of the
998 /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
999 /// New and Old cannot be overloaded, e.g., if New has the same signature as
1000 /// some function in Old (C++ 1.3.10) or if the Old declarations aren't
1001 /// functions (or function templates) at all. When it does return Ovl_Match or
1002 /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
1003 /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
1004 /// declaration.
1005 ///
1006 /// Example: Given the following input:
1007 ///
1008 ///   void f(int, float); // #1
1009 ///   void f(int, int); // #2
1010 ///   int f(int, int); // #3
1011 ///
1012 /// When we process #1, there is no previous declaration of "f", so IsOverload
1013 /// will not be used.
1014 ///
1015 /// When we process #2, Old contains only the FunctionDecl for #1. By comparing
1016 /// the parameter types, we see that #1 and #2 are overloaded (since they have
1017 /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
1018 /// unchanged.
1019 ///
1020 /// When we process #3, Old is an overload set containing #1 and #2. We compare
1021 /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
1022 /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
1023 /// functions are not part of the signature), IsOverload returns Ovl_Match and
1024 /// MatchedDecl will be set to point to the FunctionDecl for #2.
1025 ///
1026 /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
1027 /// by a using declaration. The rules for whether to hide shadow declarations
1028 /// ignore some properties which otherwise figure into a function template's
1029 /// signature.
1030 Sema::OverloadKind
1031 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
1032                     NamedDecl *&Match, bool NewIsUsingDecl) {
1033   for (LookupResult::iterator I = Old.begin(), E = Old.end();
1034          I != E; ++I) {
1035     NamedDecl *OldD = *I;
1036 
1037     bool OldIsUsingDecl = false;
1038     if (isa<UsingShadowDecl>(OldD)) {
1039       OldIsUsingDecl = true;
1040 
1041       // We can always introduce two using declarations into the same
1042       // context, even if they have identical signatures.
1043       if (NewIsUsingDecl) continue;
1044 
1045       OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
1046     }
1047 
1048     // A using-declaration does not conflict with another declaration
1049     // if one of them is hidden.
1050     if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
1051       continue;
1052 
1053     // If either declaration was introduced by a using declaration,
1054     // we'll need to use slightly different rules for matching.
1055     // Essentially, these rules are the normal rules, except that
1056     // function templates hide function templates with different
1057     // return types or template parameter lists.
1058     bool UseMemberUsingDeclRules =
1059       (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1060       !New->getFriendObjectKind();
1061 
1062     if (FunctionDecl *OldF = OldD->getAsFunction()) {
1063       if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1064         if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1065           HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1066           continue;
1067         }
1068 
1069         if (!isa<FunctionTemplateDecl>(OldD) &&
1070             !shouldLinkPossiblyHiddenDecl(*I, New))
1071           continue;
1072 
1073         Match = *I;
1074         return Ovl_Match;
1075       }
1076 
1077       // Builtins that have custom typechecking or have a reference should
1078       // not be overloadable or redeclarable.
1079       if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1080         Match = *I;
1081         return Ovl_NonFunction;
1082       }
1083     } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1084       // We can overload with these, which can show up when doing
1085       // redeclaration checks for UsingDecls.
1086       assert(Old.getLookupKind() == LookupUsingDeclName);
1087     } else if (isa<TagDecl>(OldD)) {
1088       // We can always overload with tags by hiding them.
1089     } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1090       // Optimistically assume that an unresolved using decl will
1091       // overload; if it doesn't, we'll have to diagnose during
1092       // template instantiation.
1093       //
1094       // Exception: if the scope is dependent and this is not a class
1095       // member, the using declaration can only introduce an enumerator.
1096       if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1097         Match = *I;
1098         return Ovl_NonFunction;
1099       }
1100     } else {
1101       // (C++ 13p1):
1102       //   Only function declarations can be overloaded; object and type
1103       //   declarations cannot be overloaded.
1104       Match = *I;
1105       return Ovl_NonFunction;
1106     }
1107   }
1108 
1109   // C++ [temp.friend]p1:
1110   //   For a friend function declaration that is not a template declaration:
1111   //    -- if the name of the friend is a qualified or unqualified template-id,
1112   //       [...], otherwise
1113   //    -- if the name of the friend is a qualified-id and a matching
1114   //       non-template function is found in the specified class or namespace,
1115   //       the friend declaration refers to that function, otherwise,
1116   //    -- if the name of the friend is a qualified-id and a matching function
1117   //       template is found in the specified class or namespace, the friend
1118   //       declaration refers to the deduced specialization of that function
1119   //       template, otherwise
1120   //    -- the name shall be an unqualified-id [...]
1121   // If we get here for a qualified friend declaration, we've just reached the
1122   // third bullet. If the type of the friend is dependent, skip this lookup
1123   // until instantiation.
1124   if (New->getFriendObjectKind() && New->getQualifier() &&
1125       !New->getDescribedFunctionTemplate() &&
1126       !New->getDependentSpecializationInfo() &&
1127       !New->getType()->isDependentType()) {
1128     LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1129     TemplateSpecResult.addAllDecls(Old);
1130     if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1131                                             /*QualifiedFriend*/true)) {
1132       New->setInvalidDecl();
1133       return Ovl_Overload;
1134     }
1135 
1136     Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1137     return Ovl_Match;
1138   }
1139 
1140   return Ovl_Overload;
1141 }
1142 
1143 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1144                       bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs,
1145                       bool ConsiderRequiresClauses) {
1146   // C++ [basic.start.main]p2: This function shall not be overloaded.
1147   if (New->isMain())
1148     return false;
1149 
1150   // MSVCRT user defined entry points cannot be overloaded.
1151   if (New->isMSVCRTEntryPoint())
1152     return false;
1153 
1154   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1155   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1156 
1157   // C++ [temp.fct]p2:
1158   //   A function template can be overloaded with other function templates
1159   //   and with normal (non-template) functions.
1160   if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1161     return true;
1162 
1163   // Is the function New an overload of the function Old?
1164   QualType OldQType = Context.getCanonicalType(Old->getType());
1165   QualType NewQType = Context.getCanonicalType(New->getType());
1166 
1167   // Compare the signatures (C++ 1.3.10) of the two functions to
1168   // determine whether they are overloads. If we find any mismatch
1169   // in the signature, they are overloads.
1170 
1171   // If either of these functions is a K&R-style function (no
1172   // prototype), then we consider them to have matching signatures.
1173   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1174       isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1175     return false;
1176 
1177   const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1178   const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1179 
1180   // The signature of a function includes the types of its
1181   // parameters (C++ 1.3.10), which includes the presence or absence
1182   // of the ellipsis; see C++ DR 357).
1183   if (OldQType != NewQType &&
1184       (OldType->getNumParams() != NewType->getNumParams() ||
1185        OldType->isVariadic() != NewType->isVariadic() ||
1186        !FunctionParamTypesAreEqual(OldType, NewType)))
1187     return true;
1188 
1189   // C++ [temp.over.link]p4:
1190   //   The signature of a function template consists of its function
1191   //   signature, its return type and its template parameter list. The names
1192   //   of the template parameters are significant only for establishing the
1193   //   relationship between the template parameters and the rest of the
1194   //   signature.
1195   //
1196   // We check the return type and template parameter lists for function
1197   // templates first; the remaining checks follow.
1198   //
1199   // However, we don't consider either of these when deciding whether
1200   // a member introduced by a shadow declaration is hidden.
1201   if (!UseMemberUsingDeclRules && NewTemplate &&
1202       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1203                                        OldTemplate->getTemplateParameters(),
1204                                        false, TPL_TemplateMatch) ||
1205        !Context.hasSameType(Old->getDeclaredReturnType(),
1206                             New->getDeclaredReturnType())))
1207     return true;
1208 
1209   // If the function is a class member, its signature includes the
1210   // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1211   //
1212   // As part of this, also check whether one of the member functions
1213   // is static, in which case they are not overloads (C++
1214   // 13.1p2). While not part of the definition of the signature,
1215   // this check is important to determine whether these functions
1216   // can be overloaded.
1217   CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1218   CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1219   if (OldMethod && NewMethod &&
1220       !OldMethod->isStatic() && !NewMethod->isStatic()) {
1221     if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1222       if (!UseMemberUsingDeclRules &&
1223           (OldMethod->getRefQualifier() == RQ_None ||
1224            NewMethod->getRefQualifier() == RQ_None)) {
1225         // C++0x [over.load]p2:
1226         //   - Member function declarations with the same name and the same
1227         //     parameter-type-list as well as member function template
1228         //     declarations with the same name, the same parameter-type-list, and
1229         //     the same template parameter lists cannot be overloaded if any of
1230         //     them, but not all, have a ref-qualifier (8.3.5).
1231         Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1232           << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1233         Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1234       }
1235       return true;
1236     }
1237 
1238     // We may not have applied the implicit const for a constexpr member
1239     // function yet (because we haven't yet resolved whether this is a static
1240     // or non-static member function). Add it now, on the assumption that this
1241     // is a redeclaration of OldMethod.
1242     auto OldQuals = OldMethod->getMethodQualifiers();
1243     auto NewQuals = NewMethod->getMethodQualifiers();
1244     if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1245         !isa<CXXConstructorDecl>(NewMethod))
1246       NewQuals.addConst();
1247     // We do not allow overloading based off of '__restrict'.
1248     OldQuals.removeRestrict();
1249     NewQuals.removeRestrict();
1250     if (OldQuals != NewQuals)
1251       return true;
1252   }
1253 
1254   // Though pass_object_size is placed on parameters and takes an argument, we
1255   // consider it to be a function-level modifier for the sake of function
1256   // identity. Either the function has one or more parameters with
1257   // pass_object_size or it doesn't.
1258   if (functionHasPassObjectSizeParams(New) !=
1259       functionHasPassObjectSizeParams(Old))
1260     return true;
1261 
1262   // enable_if attributes are an order-sensitive part of the signature.
1263   for (specific_attr_iterator<EnableIfAttr>
1264          NewI = New->specific_attr_begin<EnableIfAttr>(),
1265          NewE = New->specific_attr_end<EnableIfAttr>(),
1266          OldI = Old->specific_attr_begin<EnableIfAttr>(),
1267          OldE = Old->specific_attr_end<EnableIfAttr>();
1268        NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1269     if (NewI == NewE || OldI == OldE)
1270       return true;
1271     llvm::FoldingSetNodeID NewID, OldID;
1272     NewI->getCond()->Profile(NewID, Context, true);
1273     OldI->getCond()->Profile(OldID, Context, true);
1274     if (NewID != OldID)
1275       return true;
1276   }
1277 
1278   if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1279     // Don't allow overloading of destructors.  (In theory we could, but it
1280     // would be a giant change to clang.)
1281     if (!isa<CXXDestructorDecl>(New)) {
1282       CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1283                          OldTarget = IdentifyCUDATarget(Old);
1284       if (NewTarget != CFT_InvalidTarget) {
1285         assert((OldTarget != CFT_InvalidTarget) &&
1286                "Unexpected invalid target.");
1287 
1288         // Allow overloading of functions with same signature and different CUDA
1289         // target attributes.
1290         if (NewTarget != OldTarget)
1291           return true;
1292       }
1293     }
1294   }
1295 
1296   if (ConsiderRequiresClauses) {
1297     Expr *NewRC = New->getTrailingRequiresClause(),
1298          *OldRC = Old->getTrailingRequiresClause();
1299     if ((NewRC != nullptr) != (OldRC != nullptr))
1300       // RC are most certainly different - these are overloads.
1301       return true;
1302 
1303     if (NewRC) {
1304       llvm::FoldingSetNodeID NewID, OldID;
1305       NewRC->Profile(NewID, Context, /*Canonical=*/true);
1306       OldRC->Profile(OldID, Context, /*Canonical=*/true);
1307       if (NewID != OldID)
1308         // RCs are not equivalent - these are overloads.
1309         return true;
1310     }
1311   }
1312 
1313   // The signatures match; this is not an overload.
1314   return false;
1315 }
1316 
1317 /// Tries a user-defined conversion from From to ToType.
1318 ///
1319 /// Produces an implicit conversion sequence for when a standard conversion
1320 /// is not an option. See TryImplicitConversion for more information.
1321 static ImplicitConversionSequence
1322 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1323                          bool SuppressUserConversions,
1324                          AllowedExplicit AllowExplicit,
1325                          bool InOverloadResolution,
1326                          bool CStyle,
1327                          bool AllowObjCWritebackConversion,
1328                          bool AllowObjCConversionOnExplicit) {
1329   ImplicitConversionSequence ICS;
1330 
1331   if (SuppressUserConversions) {
1332     // We're not in the case above, so there is no conversion that
1333     // we can perform.
1334     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1335     return ICS;
1336   }
1337 
1338   // Attempt user-defined conversion.
1339   OverloadCandidateSet Conversions(From->getExprLoc(),
1340                                    OverloadCandidateSet::CSK_Normal);
1341   switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1342                                   Conversions, AllowExplicit,
1343                                   AllowObjCConversionOnExplicit)) {
1344   case OR_Success:
1345   case OR_Deleted:
1346     ICS.setUserDefined();
1347     // C++ [over.ics.user]p4:
1348     //   A conversion of an expression of class type to the same class
1349     //   type is given Exact Match rank, and a conversion of an
1350     //   expression of class type to a base class of that type is
1351     //   given Conversion rank, in spite of the fact that a copy
1352     //   constructor (i.e., a user-defined conversion function) is
1353     //   called for those cases.
1354     if (CXXConstructorDecl *Constructor
1355           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1356       QualType FromCanon
1357         = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1358       QualType ToCanon
1359         = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1360       if (Constructor->isCopyConstructor() &&
1361           (FromCanon == ToCanon ||
1362            S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1363         // Turn this into a "standard" conversion sequence, so that it
1364         // gets ranked with standard conversion sequences.
1365         DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1366         ICS.setStandard();
1367         ICS.Standard.setAsIdentityConversion();
1368         ICS.Standard.setFromType(From->getType());
1369         ICS.Standard.setAllToTypes(ToType);
1370         ICS.Standard.CopyConstructor = Constructor;
1371         ICS.Standard.FoundCopyConstructor = Found;
1372         if (ToCanon != FromCanon)
1373           ICS.Standard.Second = ICK_Derived_To_Base;
1374       }
1375     }
1376     break;
1377 
1378   case OR_Ambiguous:
1379     ICS.setAmbiguous();
1380     ICS.Ambiguous.setFromType(From->getType());
1381     ICS.Ambiguous.setToType(ToType);
1382     for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1383          Cand != Conversions.end(); ++Cand)
1384       if (Cand->Best)
1385         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1386     break;
1387 
1388     // Fall through.
1389   case OR_No_Viable_Function:
1390     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1391     break;
1392   }
1393 
1394   return ICS;
1395 }
1396 
1397 /// TryImplicitConversion - Attempt to perform an implicit conversion
1398 /// from the given expression (Expr) to the given type (ToType). This
1399 /// function returns an implicit conversion sequence that can be used
1400 /// to perform the initialization. Given
1401 ///
1402 ///   void f(float f);
1403 ///   void g(int i) { f(i); }
1404 ///
1405 /// this routine would produce an implicit conversion sequence to
1406 /// describe the initialization of f from i, which will be a standard
1407 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1408 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1409 //
1410 /// Note that this routine only determines how the conversion can be
1411 /// performed; it does not actually perform the conversion. As such,
1412 /// it will not produce any diagnostics if no conversion is available,
1413 /// but will instead return an implicit conversion sequence of kind
1414 /// "BadConversion".
1415 ///
1416 /// If @p SuppressUserConversions, then user-defined conversions are
1417 /// not permitted.
1418 /// If @p AllowExplicit, then explicit user-defined conversions are
1419 /// permitted.
1420 ///
1421 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1422 /// writeback conversion, which allows __autoreleasing id* parameters to
1423 /// be initialized with __strong id* or __weak id* arguments.
1424 static ImplicitConversionSequence
1425 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1426                       bool SuppressUserConversions,
1427                       AllowedExplicit AllowExplicit,
1428                       bool InOverloadResolution,
1429                       bool CStyle,
1430                       bool AllowObjCWritebackConversion,
1431                       bool AllowObjCConversionOnExplicit) {
1432   ImplicitConversionSequence ICS;
1433   if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1434                            ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1435     ICS.setStandard();
1436     return ICS;
1437   }
1438 
1439   if (!S.getLangOpts().CPlusPlus) {
1440     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1441     return ICS;
1442   }
1443 
1444   // C++ [over.ics.user]p4:
1445   //   A conversion of an expression of class type to the same class
1446   //   type is given Exact Match rank, and a conversion of an
1447   //   expression of class type to a base class of that type is
1448   //   given Conversion rank, in spite of the fact that a copy/move
1449   //   constructor (i.e., a user-defined conversion function) is
1450   //   called for those cases.
1451   QualType FromType = From->getType();
1452   if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1453       (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1454        S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1455     ICS.setStandard();
1456     ICS.Standard.setAsIdentityConversion();
1457     ICS.Standard.setFromType(FromType);
1458     ICS.Standard.setAllToTypes(ToType);
1459 
1460     // We don't actually check at this point whether there is a valid
1461     // copy/move constructor, since overloading just assumes that it
1462     // exists. When we actually perform initialization, we'll find the
1463     // appropriate constructor to copy the returned object, if needed.
1464     ICS.Standard.CopyConstructor = nullptr;
1465 
1466     // Determine whether this is considered a derived-to-base conversion.
1467     if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1468       ICS.Standard.Second = ICK_Derived_To_Base;
1469 
1470     return ICS;
1471   }
1472 
1473   return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1474                                   AllowExplicit, InOverloadResolution, CStyle,
1475                                   AllowObjCWritebackConversion,
1476                                   AllowObjCConversionOnExplicit);
1477 }
1478 
1479 ImplicitConversionSequence
1480 Sema::TryImplicitConversion(Expr *From, QualType ToType,
1481                             bool SuppressUserConversions,
1482                             AllowedExplicit AllowExplicit,
1483                             bool InOverloadResolution,
1484                             bool CStyle,
1485                             bool AllowObjCWritebackConversion) {
1486   return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions,
1487                                  AllowExplicit, InOverloadResolution, CStyle,
1488                                  AllowObjCWritebackConversion,
1489                                  /*AllowObjCConversionOnExplicit=*/false);
1490 }
1491 
1492 /// PerformImplicitConversion - Perform an implicit conversion of the
1493 /// expression From to the type ToType. Returns the
1494 /// converted expression. Flavor is the kind of conversion we're
1495 /// performing, used in the error message. If @p AllowExplicit,
1496 /// explicit user-defined conversions are permitted.
1497 ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1498                                            AssignmentAction Action,
1499                                            bool AllowExplicit) {
1500   if (checkPlaceholderForOverload(*this, From))
1501     return ExprError();
1502 
1503   // Objective-C ARC: Determine whether we will allow the writeback conversion.
1504   bool AllowObjCWritebackConversion
1505     = getLangOpts().ObjCAutoRefCount &&
1506       (Action == AA_Passing || Action == AA_Sending);
1507   if (getLangOpts().ObjC)
1508     CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1509                                       From->getType(), From);
1510   ImplicitConversionSequence ICS = ::TryImplicitConversion(
1511       *this, From, ToType,
1512       /*SuppressUserConversions=*/false,
1513       AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None,
1514       /*InOverloadResolution=*/false,
1515       /*CStyle=*/false, AllowObjCWritebackConversion,
1516       /*AllowObjCConversionOnExplicit=*/false);
1517   return PerformImplicitConversion(From, ToType, ICS, Action);
1518 }
1519 
1520 /// Determine whether the conversion from FromType to ToType is a valid
1521 /// conversion that strips "noexcept" or "noreturn" off the nested function
1522 /// type.
1523 bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1524                                 QualType &ResultTy) {
1525   if (Context.hasSameUnqualifiedType(FromType, ToType))
1526     return false;
1527 
1528   // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1529   //                    or F(t noexcept) -> F(t)
1530   // where F adds one of the following at most once:
1531   //   - a pointer
1532   //   - a member pointer
1533   //   - a block pointer
1534   // Changes here need matching changes in FindCompositePointerType.
1535   CanQualType CanTo = Context.getCanonicalType(ToType);
1536   CanQualType CanFrom = Context.getCanonicalType(FromType);
1537   Type::TypeClass TyClass = CanTo->getTypeClass();
1538   if (TyClass != CanFrom->getTypeClass()) return false;
1539   if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1540     if (TyClass == Type::Pointer) {
1541       CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1542       CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1543     } else if (TyClass == Type::BlockPointer) {
1544       CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1545       CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1546     } else if (TyClass == Type::MemberPointer) {
1547       auto ToMPT = CanTo.castAs<MemberPointerType>();
1548       auto FromMPT = CanFrom.castAs<MemberPointerType>();
1549       // A function pointer conversion cannot change the class of the function.
1550       if (ToMPT->getClass() != FromMPT->getClass())
1551         return false;
1552       CanTo = ToMPT->getPointeeType();
1553       CanFrom = FromMPT->getPointeeType();
1554     } else {
1555       return false;
1556     }
1557 
1558     TyClass = CanTo->getTypeClass();
1559     if (TyClass != CanFrom->getTypeClass()) return false;
1560     if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1561       return false;
1562   }
1563 
1564   const auto *FromFn = cast<FunctionType>(CanFrom);
1565   FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1566 
1567   const auto *ToFn = cast<FunctionType>(CanTo);
1568   FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1569 
1570   bool Changed = false;
1571 
1572   // Drop 'noreturn' if not present in target type.
1573   if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1574     FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1575     Changed = true;
1576   }
1577 
1578   // Drop 'noexcept' if not present in target type.
1579   if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1580     const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1581     if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1582       FromFn = cast<FunctionType>(
1583           Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1584                                                    EST_None)
1585                  .getTypePtr());
1586       Changed = true;
1587     }
1588 
1589     // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1590     // only if the ExtParameterInfo lists of the two function prototypes can be
1591     // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1592     SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1593     bool CanUseToFPT, CanUseFromFPT;
1594     if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1595                                       CanUseFromFPT, NewParamInfos) &&
1596         CanUseToFPT && !CanUseFromFPT) {
1597       FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1598       ExtInfo.ExtParameterInfos =
1599           NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1600       QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1601                                             FromFPT->getParamTypes(), ExtInfo);
1602       FromFn = QT->getAs<FunctionType>();
1603       Changed = true;
1604     }
1605   }
1606 
1607   if (!Changed)
1608     return false;
1609 
1610   assert(QualType(FromFn, 0).isCanonical());
1611   if (QualType(FromFn, 0) != CanTo) return false;
1612 
1613   ResultTy = ToType;
1614   return true;
1615 }
1616 
1617 /// Determine whether the conversion from FromType to ToType is a valid
1618 /// vector conversion.
1619 ///
1620 /// \param ICK Will be set to the vector conversion kind, if this is a vector
1621 /// conversion.
1622 static bool IsVectorConversion(Sema &S, QualType FromType,
1623                                QualType ToType, ImplicitConversionKind &ICK) {
1624   // We need at least one of these types to be a vector type to have a vector
1625   // conversion.
1626   if (!ToType->isVectorType() && !FromType->isVectorType())
1627     return false;
1628 
1629   // Identical types require no conversions.
1630   if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1631     return false;
1632 
1633   // There are no conversions between extended vector types, only identity.
1634   if (ToType->isExtVectorType()) {
1635     // There are no conversions between extended vector types other than the
1636     // identity conversion.
1637     if (FromType->isExtVectorType())
1638       return false;
1639 
1640     // Vector splat from any arithmetic type to a vector.
1641     if (FromType->isArithmeticType()) {
1642       ICK = ICK_Vector_Splat;
1643       return true;
1644     }
1645   }
1646 
1647   if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType())
1648     if (S.Context.areCompatibleSveTypes(FromType, ToType) ||
1649         S.Context.areLaxCompatibleSveTypes(FromType, ToType)) {
1650       ICK = ICK_SVE_Vector_Conversion;
1651       return true;
1652     }
1653 
1654   // We can perform the conversion between vector types in the following cases:
1655   // 1)vector types are equivalent AltiVec and GCC vector types
1656   // 2)lax vector conversions are permitted and the vector types are of the
1657   //   same size
1658   // 3)the destination type does not have the ARM MVE strict-polymorphism
1659   //   attribute, which inhibits lax vector conversion for overload resolution
1660   //   only
1661   if (ToType->isVectorType() && FromType->isVectorType()) {
1662     if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1663         (S.isLaxVectorConversion(FromType, ToType) &&
1664          !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) {
1665       ICK = ICK_Vector_Conversion;
1666       return true;
1667     }
1668   }
1669 
1670   return false;
1671 }
1672 
1673 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1674                                 bool InOverloadResolution,
1675                                 StandardConversionSequence &SCS,
1676                                 bool CStyle);
1677 
1678 /// IsStandardConversion - Determines whether there is a standard
1679 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1680 /// expression From to the type ToType. Standard conversion sequences
1681 /// only consider non-class types; for conversions that involve class
1682 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1683 /// contain the standard conversion sequence required to perform this
1684 /// conversion and this routine will return true. Otherwise, this
1685 /// routine will return false and the value of SCS is unspecified.
1686 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1687                                  bool InOverloadResolution,
1688                                  StandardConversionSequence &SCS,
1689                                  bool CStyle,
1690                                  bool AllowObjCWritebackConversion) {
1691   QualType FromType = From->getType();
1692 
1693   // Standard conversions (C++ [conv])
1694   SCS.setAsIdentityConversion();
1695   SCS.IncompatibleObjC = false;
1696   SCS.setFromType(FromType);
1697   SCS.CopyConstructor = nullptr;
1698 
1699   // There are no standard conversions for class types in C++, so
1700   // abort early. When overloading in C, however, we do permit them.
1701   if (S.getLangOpts().CPlusPlus &&
1702       (FromType->isRecordType() || ToType->isRecordType()))
1703     return false;
1704 
1705   // The first conversion can be an lvalue-to-rvalue conversion,
1706   // array-to-pointer conversion, or function-to-pointer conversion
1707   // (C++ 4p1).
1708 
1709   if (FromType == S.Context.OverloadTy) {
1710     DeclAccessPair AccessPair;
1711     if (FunctionDecl *Fn
1712           = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1713                                                  AccessPair)) {
1714       // We were able to resolve the address of the overloaded function,
1715       // so we can convert to the type of that function.
1716       FromType = Fn->getType();
1717       SCS.setFromType(FromType);
1718 
1719       // we can sometimes resolve &foo<int> regardless of ToType, so check
1720       // if the type matches (identity) or we are converting to bool
1721       if (!S.Context.hasSameUnqualifiedType(
1722                       S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1723         QualType resultTy;
1724         // if the function type matches except for [[noreturn]], it's ok
1725         if (!S.IsFunctionConversion(FromType,
1726               S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1727           // otherwise, only a boolean conversion is standard
1728           if (!ToType->isBooleanType())
1729             return false;
1730       }
1731 
1732       // Check if the "from" expression is taking the address of an overloaded
1733       // function and recompute the FromType accordingly. Take advantage of the
1734       // fact that non-static member functions *must* have such an address-of
1735       // expression.
1736       CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1737       if (Method && !Method->isStatic()) {
1738         assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1739                "Non-unary operator on non-static member address");
1740         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1741                == UO_AddrOf &&
1742                "Non-address-of operator on non-static member address");
1743         const Type *ClassType
1744           = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1745         FromType = S.Context.getMemberPointerType(FromType, ClassType);
1746       } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1747         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1748                UO_AddrOf &&
1749                "Non-address-of operator for overloaded function expression");
1750         FromType = S.Context.getPointerType(FromType);
1751       }
1752 
1753       // Check that we've computed the proper type after overload resolution.
1754       // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1755       // be calling it from within an NDEBUG block.
1756       assert(S.Context.hasSameType(
1757         FromType,
1758         S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1759     } else {
1760       return false;
1761     }
1762   }
1763   // Lvalue-to-rvalue conversion (C++11 4.1):
1764   //   A glvalue (3.10) of a non-function, non-array type T can
1765   //   be converted to a prvalue.
1766   bool argIsLValue = From->isGLValue();
1767   if (argIsLValue &&
1768       !FromType->isFunctionType() && !FromType->isArrayType() &&
1769       S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1770     SCS.First = ICK_Lvalue_To_Rvalue;
1771 
1772     // C11 6.3.2.1p2:
1773     //   ... if the lvalue has atomic type, the value has the non-atomic version
1774     //   of the type of the lvalue ...
1775     if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1776       FromType = Atomic->getValueType();
1777 
1778     // If T is a non-class type, the type of the rvalue is the
1779     // cv-unqualified version of T. Otherwise, the type of the rvalue
1780     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1781     // just strip the qualifiers because they don't matter.
1782     FromType = FromType.getUnqualifiedType();
1783   } else if (FromType->isArrayType()) {
1784     // Array-to-pointer conversion (C++ 4.2)
1785     SCS.First = ICK_Array_To_Pointer;
1786 
1787     // An lvalue or rvalue of type "array of N T" or "array of unknown
1788     // bound of T" can be converted to an rvalue of type "pointer to
1789     // T" (C++ 4.2p1).
1790     FromType = S.Context.getArrayDecayedType(FromType);
1791 
1792     if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1793       // This conversion is deprecated in C++03 (D.4)
1794       SCS.DeprecatedStringLiteralToCharPtr = true;
1795 
1796       // For the purpose of ranking in overload resolution
1797       // (13.3.3.1.1), this conversion is considered an
1798       // array-to-pointer conversion followed by a qualification
1799       // conversion (4.4). (C++ 4.2p2)
1800       SCS.Second = ICK_Identity;
1801       SCS.Third = ICK_Qualification;
1802       SCS.QualificationIncludesObjCLifetime = false;
1803       SCS.setAllToTypes(FromType);
1804       return true;
1805     }
1806   } else if (FromType->isFunctionType() && argIsLValue) {
1807     // Function-to-pointer conversion (C++ 4.3).
1808     SCS.First = ICK_Function_To_Pointer;
1809 
1810     if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1811       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1812         if (!S.checkAddressOfFunctionIsAvailable(FD))
1813           return false;
1814 
1815     // An lvalue of function type T can be converted to an rvalue of
1816     // type "pointer to T." The result is a pointer to the
1817     // function. (C++ 4.3p1).
1818     FromType = S.Context.getPointerType(FromType);
1819   } else {
1820     // We don't require any conversions for the first step.
1821     SCS.First = ICK_Identity;
1822   }
1823   SCS.setToType(0, FromType);
1824 
1825   // The second conversion can be an integral promotion, floating
1826   // point promotion, integral conversion, floating point conversion,
1827   // floating-integral conversion, pointer conversion,
1828   // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1829   // For overloading in C, this can also be a "compatible-type"
1830   // conversion.
1831   bool IncompatibleObjC = false;
1832   ImplicitConversionKind SecondICK = ICK_Identity;
1833   if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1834     // The unqualified versions of the types are the same: there's no
1835     // conversion to do.
1836     SCS.Second = ICK_Identity;
1837   } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1838     // Integral promotion (C++ 4.5).
1839     SCS.Second = ICK_Integral_Promotion;
1840     FromType = ToType.getUnqualifiedType();
1841   } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1842     // Floating point promotion (C++ 4.6).
1843     SCS.Second = ICK_Floating_Promotion;
1844     FromType = ToType.getUnqualifiedType();
1845   } else if (S.IsComplexPromotion(FromType, ToType)) {
1846     // Complex promotion (Clang extension)
1847     SCS.Second = ICK_Complex_Promotion;
1848     FromType = ToType.getUnqualifiedType();
1849   } else if (ToType->isBooleanType() &&
1850              (FromType->isArithmeticType() ||
1851               FromType->isAnyPointerType() ||
1852               FromType->isBlockPointerType() ||
1853               FromType->isMemberPointerType())) {
1854     // Boolean conversions (C++ 4.12).
1855     SCS.Second = ICK_Boolean_Conversion;
1856     FromType = S.Context.BoolTy;
1857   } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1858              ToType->isIntegralType(S.Context)) {
1859     // Integral conversions (C++ 4.7).
1860     SCS.Second = ICK_Integral_Conversion;
1861     FromType = ToType.getUnqualifiedType();
1862   } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1863     // Complex conversions (C99 6.3.1.6)
1864     SCS.Second = ICK_Complex_Conversion;
1865     FromType = ToType.getUnqualifiedType();
1866   } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1867              (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1868     // Complex-real conversions (C99 6.3.1.7)
1869     SCS.Second = ICK_Complex_Real;
1870     FromType = ToType.getUnqualifiedType();
1871   } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1872     // FIXME: disable conversions between long double, __ibm128 and __float128
1873     // if their representation is different until there is back end support
1874     // We of course allow this conversion if long double is really double.
1875 
1876     // Conversions between bfloat and other floats are not permitted.
1877     if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty)
1878       return false;
1879 
1880     // Conversions between IEEE-quad and IBM-extended semantics are not
1881     // permitted.
1882     const llvm::fltSemantics &FromSem =
1883         S.Context.getFloatTypeSemantics(FromType);
1884     const llvm::fltSemantics &ToSem = S.Context.getFloatTypeSemantics(ToType);
1885     if ((&FromSem == &llvm::APFloat::PPCDoubleDouble() &&
1886          &ToSem == &llvm::APFloat::IEEEquad()) ||
1887         (&FromSem == &llvm::APFloat::IEEEquad() &&
1888          &ToSem == &llvm::APFloat::PPCDoubleDouble()))
1889       return false;
1890 
1891     // Floating point conversions (C++ 4.8).
1892     SCS.Second = ICK_Floating_Conversion;
1893     FromType = ToType.getUnqualifiedType();
1894   } else if ((FromType->isRealFloatingType() &&
1895               ToType->isIntegralType(S.Context)) ||
1896              (FromType->isIntegralOrUnscopedEnumerationType() &&
1897               ToType->isRealFloatingType())) {
1898     // Conversions between bfloat and int are not permitted.
1899     if (FromType->isBFloat16Type() || ToType->isBFloat16Type())
1900       return false;
1901 
1902     // Floating-integral conversions (C++ 4.9).
1903     SCS.Second = ICK_Floating_Integral;
1904     FromType = ToType.getUnqualifiedType();
1905   } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1906     SCS.Second = ICK_Block_Pointer_Conversion;
1907   } else if (AllowObjCWritebackConversion &&
1908              S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1909     SCS.Second = ICK_Writeback_Conversion;
1910   } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1911                                    FromType, IncompatibleObjC)) {
1912     // Pointer conversions (C++ 4.10).
1913     SCS.Second = ICK_Pointer_Conversion;
1914     SCS.IncompatibleObjC = IncompatibleObjC;
1915     FromType = FromType.getUnqualifiedType();
1916   } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1917                                          InOverloadResolution, FromType)) {
1918     // Pointer to member conversions (4.11).
1919     SCS.Second = ICK_Pointer_Member;
1920   } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1921     SCS.Second = SecondICK;
1922     FromType = ToType.getUnqualifiedType();
1923   } else if (!S.getLangOpts().CPlusPlus &&
1924              S.Context.typesAreCompatible(ToType, FromType)) {
1925     // Compatible conversions (Clang extension for C function overloading)
1926     SCS.Second = ICK_Compatible_Conversion;
1927     FromType = ToType.getUnqualifiedType();
1928   } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1929                                              InOverloadResolution,
1930                                              SCS, CStyle)) {
1931     SCS.Second = ICK_TransparentUnionConversion;
1932     FromType = ToType;
1933   } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1934                                  CStyle)) {
1935     // tryAtomicConversion has updated the standard conversion sequence
1936     // appropriately.
1937     return true;
1938   } else if (ToType->isEventT() &&
1939              From->isIntegerConstantExpr(S.getASTContext()) &&
1940              From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1941     SCS.Second = ICK_Zero_Event_Conversion;
1942     FromType = ToType;
1943   } else if (ToType->isQueueT() &&
1944              From->isIntegerConstantExpr(S.getASTContext()) &&
1945              (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1946     SCS.Second = ICK_Zero_Queue_Conversion;
1947     FromType = ToType;
1948   } else if (ToType->isSamplerT() &&
1949              From->isIntegerConstantExpr(S.getASTContext())) {
1950     SCS.Second = ICK_Compatible_Conversion;
1951     FromType = ToType;
1952   } else {
1953     // No second conversion required.
1954     SCS.Second = ICK_Identity;
1955   }
1956   SCS.setToType(1, FromType);
1957 
1958   // The third conversion can be a function pointer conversion or a
1959   // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1960   bool ObjCLifetimeConversion;
1961   if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1962     // Function pointer conversions (removing 'noexcept') including removal of
1963     // 'noreturn' (Clang extension).
1964     SCS.Third = ICK_Function_Conversion;
1965   } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1966                                          ObjCLifetimeConversion)) {
1967     SCS.Third = ICK_Qualification;
1968     SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1969     FromType = ToType;
1970   } else {
1971     // No conversion required
1972     SCS.Third = ICK_Identity;
1973   }
1974 
1975   // C++ [over.best.ics]p6:
1976   //   [...] Any difference in top-level cv-qualification is
1977   //   subsumed by the initialization itself and does not constitute
1978   //   a conversion. [...]
1979   QualType CanonFrom = S.Context.getCanonicalType(FromType);
1980   QualType CanonTo = S.Context.getCanonicalType(ToType);
1981   if (CanonFrom.getLocalUnqualifiedType()
1982                                      == CanonTo.getLocalUnqualifiedType() &&
1983       CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1984     FromType = ToType;
1985     CanonFrom = CanonTo;
1986   }
1987 
1988   SCS.setToType(2, FromType);
1989 
1990   if (CanonFrom == CanonTo)
1991     return true;
1992 
1993   // If we have not converted the argument type to the parameter type,
1994   // this is a bad conversion sequence, unless we're resolving an overload in C.
1995   if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1996     return false;
1997 
1998   ExprResult ER = ExprResult{From};
1999   Sema::AssignConvertType Conv =
2000       S.CheckSingleAssignmentConstraints(ToType, ER,
2001                                          /*Diagnose=*/false,
2002                                          /*DiagnoseCFAudited=*/false,
2003                                          /*ConvertRHS=*/false);
2004   ImplicitConversionKind SecondConv;
2005   switch (Conv) {
2006   case Sema::Compatible:
2007     SecondConv = ICK_C_Only_Conversion;
2008     break;
2009   // For our purposes, discarding qualifiers is just as bad as using an
2010   // incompatible pointer. Note that an IncompatiblePointer conversion can drop
2011   // qualifiers, as well.
2012   case Sema::CompatiblePointerDiscardsQualifiers:
2013   case Sema::IncompatiblePointer:
2014   case Sema::IncompatiblePointerSign:
2015     SecondConv = ICK_Incompatible_Pointer_Conversion;
2016     break;
2017   default:
2018     return false;
2019   }
2020 
2021   // First can only be an lvalue conversion, so we pretend that this was the
2022   // second conversion. First should already be valid from earlier in the
2023   // function.
2024   SCS.Second = SecondConv;
2025   SCS.setToType(1, ToType);
2026 
2027   // Third is Identity, because Second should rank us worse than any other
2028   // conversion. This could also be ICK_Qualification, but it's simpler to just
2029   // lump everything in with the second conversion, and we don't gain anything
2030   // from making this ICK_Qualification.
2031   SCS.Third = ICK_Identity;
2032   SCS.setToType(2, ToType);
2033   return true;
2034 }
2035 
2036 static bool
2037 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
2038                                      QualType &ToType,
2039                                      bool InOverloadResolution,
2040                                      StandardConversionSequence &SCS,
2041                                      bool CStyle) {
2042 
2043   const RecordType *UT = ToType->getAsUnionType();
2044   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
2045     return false;
2046   // The field to initialize within the transparent union.
2047   RecordDecl *UD = UT->getDecl();
2048   // It's compatible if the expression matches any of the fields.
2049   for (const auto *it : UD->fields()) {
2050     if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
2051                              CStyle, /*AllowObjCWritebackConversion=*/false)) {
2052       ToType = it->getType();
2053       return true;
2054     }
2055   }
2056   return false;
2057 }
2058 
2059 /// IsIntegralPromotion - Determines whether the conversion from the
2060 /// expression From (whose potentially-adjusted type is FromType) to
2061 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
2062 /// sets PromotedType to the promoted type.
2063 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
2064   const BuiltinType *To = ToType->getAs<BuiltinType>();
2065   // All integers are built-in.
2066   if (!To) {
2067     return false;
2068   }
2069 
2070   // An rvalue of type char, signed char, unsigned char, short int, or
2071   // unsigned short int can be converted to an rvalue of type int if
2072   // int can represent all the values of the source type; otherwise,
2073   // the source rvalue can be converted to an rvalue of type unsigned
2074   // int (C++ 4.5p1).
2075   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
2076       !FromType->isEnumeralType()) {
2077     if (// We can promote any signed, promotable integer type to an int
2078         (FromType->isSignedIntegerType() ||
2079          // We can promote any unsigned integer type whose size is
2080          // less than int to an int.
2081          Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
2082       return To->getKind() == BuiltinType::Int;
2083     }
2084 
2085     return To->getKind() == BuiltinType::UInt;
2086   }
2087 
2088   // C++11 [conv.prom]p3:
2089   //   A prvalue of an unscoped enumeration type whose underlying type is not
2090   //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2091   //   following types that can represent all the values of the enumeration
2092   //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
2093   //   unsigned int, long int, unsigned long int, long long int, or unsigned
2094   //   long long int. If none of the types in that list can represent all the
2095   //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2096   //   type can be converted to an rvalue a prvalue of the extended integer type
2097   //   with lowest integer conversion rank (4.13) greater than the rank of long
2098   //   long in which all the values of the enumeration can be represented. If
2099   //   there are two such extended types, the signed one is chosen.
2100   // C++11 [conv.prom]p4:
2101   //   A prvalue of an unscoped enumeration type whose underlying type is fixed
2102   //   can be converted to a prvalue of its underlying type. Moreover, if
2103   //   integral promotion can be applied to its underlying type, a prvalue of an
2104   //   unscoped enumeration type whose underlying type is fixed can also be
2105   //   converted to a prvalue of the promoted underlying type.
2106   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2107     // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2108     // provided for a scoped enumeration.
2109     if (FromEnumType->getDecl()->isScoped())
2110       return false;
2111 
2112     // We can perform an integral promotion to the underlying type of the enum,
2113     // even if that's not the promoted type. Note that the check for promoting
2114     // the underlying type is based on the type alone, and does not consider
2115     // the bitfield-ness of the actual source expression.
2116     if (FromEnumType->getDecl()->isFixed()) {
2117       QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2118       return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2119              IsIntegralPromotion(nullptr, Underlying, ToType);
2120     }
2121 
2122     // We have already pre-calculated the promotion type, so this is trivial.
2123     if (ToType->isIntegerType() &&
2124         isCompleteType(From->getBeginLoc(), FromType))
2125       return Context.hasSameUnqualifiedType(
2126           ToType, FromEnumType->getDecl()->getPromotionType());
2127 
2128     // C++ [conv.prom]p5:
2129     //   If the bit-field has an enumerated type, it is treated as any other
2130     //   value of that type for promotion purposes.
2131     //
2132     // ... so do not fall through into the bit-field checks below in C++.
2133     if (getLangOpts().CPlusPlus)
2134       return false;
2135   }
2136 
2137   // C++0x [conv.prom]p2:
2138   //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2139   //   to an rvalue a prvalue of the first of the following types that can
2140   //   represent all the values of its underlying type: int, unsigned int,
2141   //   long int, unsigned long int, long long int, or unsigned long long int.
2142   //   If none of the types in that list can represent all the values of its
2143   //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
2144   //   or wchar_t can be converted to an rvalue a prvalue of its underlying
2145   //   type.
2146   if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2147       ToType->isIntegerType()) {
2148     // Determine whether the type we're converting from is signed or
2149     // unsigned.
2150     bool FromIsSigned = FromType->isSignedIntegerType();
2151     uint64_t FromSize = Context.getTypeSize(FromType);
2152 
2153     // The types we'll try to promote to, in the appropriate
2154     // order. Try each of these types.
2155     QualType PromoteTypes[6] = {
2156       Context.IntTy, Context.UnsignedIntTy,
2157       Context.LongTy, Context.UnsignedLongTy ,
2158       Context.LongLongTy, Context.UnsignedLongLongTy
2159     };
2160     for (int Idx = 0; Idx < 6; ++Idx) {
2161       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2162       if (FromSize < ToSize ||
2163           (FromSize == ToSize &&
2164            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2165         // We found the type that we can promote to. If this is the
2166         // type we wanted, we have a promotion. Otherwise, no
2167         // promotion.
2168         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2169       }
2170     }
2171   }
2172 
2173   // An rvalue for an integral bit-field (9.6) can be converted to an
2174   // rvalue of type int if int can represent all the values of the
2175   // bit-field; otherwise, it can be converted to unsigned int if
2176   // unsigned int can represent all the values of the bit-field. If
2177   // the bit-field is larger yet, no integral promotion applies to
2178   // it. If the bit-field has an enumerated type, it is treated as any
2179   // other value of that type for promotion purposes (C++ 4.5p3).
2180   // FIXME: We should delay checking of bit-fields until we actually perform the
2181   // conversion.
2182   //
2183   // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2184   // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2185   // bit-fields and those whose underlying type is larger than int) for GCC
2186   // compatibility.
2187   if (From) {
2188     if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2189       Optional<llvm::APSInt> BitWidth;
2190       if (FromType->isIntegralType(Context) &&
2191           (BitWidth =
2192                MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) {
2193         llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned());
2194         ToSize = Context.getTypeSize(ToType);
2195 
2196         // Are we promoting to an int from a bitfield that fits in an int?
2197         if (*BitWidth < ToSize ||
2198             (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) {
2199           return To->getKind() == BuiltinType::Int;
2200         }
2201 
2202         // Are we promoting to an unsigned int from an unsigned bitfield
2203         // that fits into an unsigned int?
2204         if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) {
2205           return To->getKind() == BuiltinType::UInt;
2206         }
2207 
2208         return false;
2209       }
2210     }
2211   }
2212 
2213   // An rvalue of type bool can be converted to an rvalue of type int,
2214   // with false becoming zero and true becoming one (C++ 4.5p4).
2215   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2216     return true;
2217   }
2218 
2219   return false;
2220 }
2221 
2222 /// IsFloatingPointPromotion - Determines whether the conversion from
2223 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2224 /// returns true and sets PromotedType to the promoted type.
2225 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2226   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2227     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2228       /// An rvalue of type float can be converted to an rvalue of type
2229       /// double. (C++ 4.6p1).
2230       if (FromBuiltin->getKind() == BuiltinType::Float &&
2231           ToBuiltin->getKind() == BuiltinType::Double)
2232         return true;
2233 
2234       // C99 6.3.1.5p1:
2235       //   When a float is promoted to double or long double, or a
2236       //   double is promoted to long double [...].
2237       if (!getLangOpts().CPlusPlus &&
2238           (FromBuiltin->getKind() == BuiltinType::Float ||
2239            FromBuiltin->getKind() == BuiltinType::Double) &&
2240           (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2241            ToBuiltin->getKind() == BuiltinType::Float128 ||
2242            ToBuiltin->getKind() == BuiltinType::Ibm128))
2243         return true;
2244 
2245       // Half can be promoted to float.
2246       if (!getLangOpts().NativeHalfType &&
2247            FromBuiltin->getKind() == BuiltinType::Half &&
2248           ToBuiltin->getKind() == BuiltinType::Float)
2249         return true;
2250     }
2251 
2252   return false;
2253 }
2254 
2255 /// Determine if a conversion is a complex promotion.
2256 ///
2257 /// A complex promotion is defined as a complex -> complex conversion
2258 /// where the conversion between the underlying real types is a
2259 /// floating-point or integral promotion.
2260 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2261   const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2262   if (!FromComplex)
2263     return false;
2264 
2265   const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2266   if (!ToComplex)
2267     return false;
2268 
2269   return IsFloatingPointPromotion(FromComplex->getElementType(),
2270                                   ToComplex->getElementType()) ||
2271     IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2272                         ToComplex->getElementType());
2273 }
2274 
2275 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2276 /// the pointer type FromPtr to a pointer to type ToPointee, with the
2277 /// same type qualifiers as FromPtr has on its pointee type. ToType,
2278 /// if non-empty, will be a pointer to ToType that may or may not have
2279 /// the right set of qualifiers on its pointee.
2280 ///
2281 static QualType
2282 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2283                                    QualType ToPointee, QualType ToType,
2284                                    ASTContext &Context,
2285                                    bool StripObjCLifetime = false) {
2286   assert((FromPtr->getTypeClass() == Type::Pointer ||
2287           FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
2288          "Invalid similarly-qualified pointer type");
2289 
2290   /// Conversions to 'id' subsume cv-qualifier conversions.
2291   if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2292     return ToType.getUnqualifiedType();
2293 
2294   QualType CanonFromPointee
2295     = Context.getCanonicalType(FromPtr->getPointeeType());
2296   QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2297   Qualifiers Quals = CanonFromPointee.getQualifiers();
2298 
2299   if (StripObjCLifetime)
2300     Quals.removeObjCLifetime();
2301 
2302   // Exact qualifier match -> return the pointer type we're converting to.
2303   if (CanonToPointee.getLocalQualifiers() == Quals) {
2304     // ToType is exactly what we need. Return it.
2305     if (!ToType.isNull())
2306       return ToType.getUnqualifiedType();
2307 
2308     // Build a pointer to ToPointee. It has the right qualifiers
2309     // already.
2310     if (isa<ObjCObjectPointerType>(ToType))
2311       return Context.getObjCObjectPointerType(ToPointee);
2312     return Context.getPointerType(ToPointee);
2313   }
2314 
2315   // Just build a canonical type that has the right qualifiers.
2316   QualType QualifiedCanonToPointee
2317     = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2318 
2319   if (isa<ObjCObjectPointerType>(ToType))
2320     return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2321   return Context.getPointerType(QualifiedCanonToPointee);
2322 }
2323 
2324 static bool isNullPointerConstantForConversion(Expr *Expr,
2325                                                bool InOverloadResolution,
2326                                                ASTContext &Context) {
2327   // Handle value-dependent integral null pointer constants correctly.
2328   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2329   if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2330       Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2331     return !InOverloadResolution;
2332 
2333   return Expr->isNullPointerConstant(Context,
2334                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2335                                         : Expr::NPC_ValueDependentIsNull);
2336 }
2337 
2338 /// IsPointerConversion - Determines whether the conversion of the
2339 /// expression From, which has the (possibly adjusted) type FromType,
2340 /// can be converted to the type ToType via a pointer conversion (C++
2341 /// 4.10). If so, returns true and places the converted type (that
2342 /// might differ from ToType in its cv-qualifiers at some level) into
2343 /// ConvertedType.
2344 ///
2345 /// This routine also supports conversions to and from block pointers
2346 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
2347 /// pointers to interfaces. FIXME: Once we've determined the
2348 /// appropriate overloading rules for Objective-C, we may want to
2349 /// split the Objective-C checks into a different routine; however,
2350 /// GCC seems to consider all of these conversions to be pointer
2351 /// conversions, so for now they live here. IncompatibleObjC will be
2352 /// set if the conversion is an allowed Objective-C conversion that
2353 /// should result in a warning.
2354 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2355                                bool InOverloadResolution,
2356                                QualType& ConvertedType,
2357                                bool &IncompatibleObjC) {
2358   IncompatibleObjC = false;
2359   if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2360                               IncompatibleObjC))
2361     return true;
2362 
2363   // Conversion from a null pointer constant to any Objective-C pointer type.
2364   if (ToType->isObjCObjectPointerType() &&
2365       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2366     ConvertedType = ToType;
2367     return true;
2368   }
2369 
2370   // Blocks: Block pointers can be converted to void*.
2371   if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2372       ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2373     ConvertedType = ToType;
2374     return true;
2375   }
2376   // Blocks: A null pointer constant can be converted to a block
2377   // pointer type.
2378   if (ToType->isBlockPointerType() &&
2379       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2380     ConvertedType = ToType;
2381     return true;
2382   }
2383 
2384   // If the left-hand-side is nullptr_t, the right side can be a null
2385   // pointer constant.
2386   if (ToType->isNullPtrType() &&
2387       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2388     ConvertedType = ToType;
2389     return true;
2390   }
2391 
2392   const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2393   if (!ToTypePtr)
2394     return false;
2395 
2396   // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2397   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2398     ConvertedType = ToType;
2399     return true;
2400   }
2401 
2402   // Beyond this point, both types need to be pointers
2403   // , including objective-c pointers.
2404   QualType ToPointeeType = ToTypePtr->getPointeeType();
2405   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2406       !getLangOpts().ObjCAutoRefCount) {
2407     ConvertedType = BuildSimilarlyQualifiedPointerType(
2408         FromType->castAs<ObjCObjectPointerType>(), ToPointeeType, ToType,
2409         Context);
2410     return true;
2411   }
2412   const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2413   if (!FromTypePtr)
2414     return false;
2415 
2416   QualType FromPointeeType = FromTypePtr->getPointeeType();
2417 
2418   // If the unqualified pointee types are the same, this can't be a
2419   // pointer conversion, so don't do all of the work below.
2420   if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2421     return false;
2422 
2423   // An rvalue of type "pointer to cv T," where T is an object type,
2424   // can be converted to an rvalue of type "pointer to cv void" (C++
2425   // 4.10p2).
2426   if (FromPointeeType->isIncompleteOrObjectType() &&
2427       ToPointeeType->isVoidType()) {
2428     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2429                                                        ToPointeeType,
2430                                                        ToType, Context,
2431                                                    /*StripObjCLifetime=*/true);
2432     return true;
2433   }
2434 
2435   // MSVC allows implicit function to void* type conversion.
2436   if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2437       ToPointeeType->isVoidType()) {
2438     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2439                                                        ToPointeeType,
2440                                                        ToType, Context);
2441     return true;
2442   }
2443 
2444   // When we're overloading in C, we allow a special kind of pointer
2445   // conversion for compatible-but-not-identical pointee types.
2446   if (!getLangOpts().CPlusPlus &&
2447       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2448     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2449                                                        ToPointeeType,
2450                                                        ToType, Context);
2451     return true;
2452   }
2453 
2454   // C++ [conv.ptr]p3:
2455   //
2456   //   An rvalue of type "pointer to cv D," where D is a class type,
2457   //   can be converted to an rvalue of type "pointer to cv B," where
2458   //   B is a base class (clause 10) of D. If B is an inaccessible
2459   //   (clause 11) or ambiguous (10.2) base class of D, a program that
2460   //   necessitates this conversion is ill-formed. The result of the
2461   //   conversion is a pointer to the base class sub-object of the
2462   //   derived class object. The null pointer value is converted to
2463   //   the null pointer value of the destination type.
2464   //
2465   // Note that we do not check for ambiguity or inaccessibility
2466   // here. That is handled by CheckPointerConversion.
2467   if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2468       ToPointeeType->isRecordType() &&
2469       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2470       IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2471     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2472                                                        ToPointeeType,
2473                                                        ToType, Context);
2474     return true;
2475   }
2476 
2477   if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2478       Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2479     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2480                                                        ToPointeeType,
2481                                                        ToType, Context);
2482     return true;
2483   }
2484 
2485   return false;
2486 }
2487 
2488 /// Adopt the given qualifiers for the given type.
2489 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2490   Qualifiers TQs = T.getQualifiers();
2491 
2492   // Check whether qualifiers already match.
2493   if (TQs == Qs)
2494     return T;
2495 
2496   if (Qs.compatiblyIncludes(TQs))
2497     return Context.getQualifiedType(T, Qs);
2498 
2499   return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2500 }
2501 
2502 /// isObjCPointerConversion - Determines whether this is an
2503 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2504 /// with the same arguments and return values.
2505 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2506                                    QualType& ConvertedType,
2507                                    bool &IncompatibleObjC) {
2508   if (!getLangOpts().ObjC)
2509     return false;
2510 
2511   // The set of qualifiers on the type we're converting from.
2512   Qualifiers FromQualifiers = FromType.getQualifiers();
2513 
2514   // First, we handle all conversions on ObjC object pointer types.
2515   const ObjCObjectPointerType* ToObjCPtr =
2516     ToType->getAs<ObjCObjectPointerType>();
2517   const ObjCObjectPointerType *FromObjCPtr =
2518     FromType->getAs<ObjCObjectPointerType>();
2519 
2520   if (ToObjCPtr && FromObjCPtr) {
2521     // If the pointee types are the same (ignoring qualifications),
2522     // then this is not a pointer conversion.
2523     if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2524                                        FromObjCPtr->getPointeeType()))
2525       return false;
2526 
2527     // Conversion between Objective-C pointers.
2528     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2529       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2530       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2531       if (getLangOpts().CPlusPlus && LHS && RHS &&
2532           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2533                                                 FromObjCPtr->getPointeeType()))
2534         return false;
2535       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2536                                                    ToObjCPtr->getPointeeType(),
2537                                                          ToType, Context);
2538       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2539       return true;
2540     }
2541 
2542     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2543       // Okay: this is some kind of implicit downcast of Objective-C
2544       // interfaces, which is permitted. However, we're going to
2545       // complain about it.
2546       IncompatibleObjC = true;
2547       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2548                                                    ToObjCPtr->getPointeeType(),
2549                                                          ToType, Context);
2550       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2551       return true;
2552     }
2553   }
2554   // Beyond this point, both types need to be C pointers or block pointers.
2555   QualType ToPointeeType;
2556   if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2557     ToPointeeType = ToCPtr->getPointeeType();
2558   else if (const BlockPointerType *ToBlockPtr =
2559             ToType->getAs<BlockPointerType>()) {
2560     // Objective C++: We're able to convert from a pointer to any object
2561     // to a block pointer type.
2562     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2563       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2564       return true;
2565     }
2566     ToPointeeType = ToBlockPtr->getPointeeType();
2567   }
2568   else if (FromType->getAs<BlockPointerType>() &&
2569            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2570     // Objective C++: We're able to convert from a block pointer type to a
2571     // pointer to any object.
2572     ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2573     return true;
2574   }
2575   else
2576     return false;
2577 
2578   QualType FromPointeeType;
2579   if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2580     FromPointeeType = FromCPtr->getPointeeType();
2581   else if (const BlockPointerType *FromBlockPtr =
2582            FromType->getAs<BlockPointerType>())
2583     FromPointeeType = FromBlockPtr->getPointeeType();
2584   else
2585     return false;
2586 
2587   // If we have pointers to pointers, recursively check whether this
2588   // is an Objective-C conversion.
2589   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2590       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2591                               IncompatibleObjC)) {
2592     // We always complain about this conversion.
2593     IncompatibleObjC = true;
2594     ConvertedType = Context.getPointerType(ConvertedType);
2595     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2596     return true;
2597   }
2598   // Allow conversion of pointee being objective-c pointer to another one;
2599   // as in I* to id.
2600   if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2601       ToPointeeType->getAs<ObjCObjectPointerType>() &&
2602       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2603                               IncompatibleObjC)) {
2604 
2605     ConvertedType = Context.getPointerType(ConvertedType);
2606     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2607     return true;
2608   }
2609 
2610   // If we have pointers to functions or blocks, check whether the only
2611   // differences in the argument and result types are in Objective-C
2612   // pointer conversions. If so, we permit the conversion (but
2613   // complain about it).
2614   const FunctionProtoType *FromFunctionType
2615     = FromPointeeType->getAs<FunctionProtoType>();
2616   const FunctionProtoType *ToFunctionType
2617     = ToPointeeType->getAs<FunctionProtoType>();
2618   if (FromFunctionType && ToFunctionType) {
2619     // If the function types are exactly the same, this isn't an
2620     // Objective-C pointer conversion.
2621     if (Context.getCanonicalType(FromPointeeType)
2622           == Context.getCanonicalType(ToPointeeType))
2623       return false;
2624 
2625     // Perform the quick checks that will tell us whether these
2626     // function types are obviously different.
2627     if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2628         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2629         FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2630       return false;
2631 
2632     bool HasObjCConversion = false;
2633     if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2634         Context.getCanonicalType(ToFunctionType->getReturnType())) {
2635       // Okay, the types match exactly. Nothing to do.
2636     } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2637                                        ToFunctionType->getReturnType(),
2638                                        ConvertedType, IncompatibleObjC)) {
2639       // Okay, we have an Objective-C pointer conversion.
2640       HasObjCConversion = true;
2641     } else {
2642       // Function types are too different. Abort.
2643       return false;
2644     }
2645 
2646     // Check argument types.
2647     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2648          ArgIdx != NumArgs; ++ArgIdx) {
2649       QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2650       QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2651       if (Context.getCanonicalType(FromArgType)
2652             == Context.getCanonicalType(ToArgType)) {
2653         // Okay, the types match exactly. Nothing to do.
2654       } else if (isObjCPointerConversion(FromArgType, ToArgType,
2655                                          ConvertedType, IncompatibleObjC)) {
2656         // Okay, we have an Objective-C pointer conversion.
2657         HasObjCConversion = true;
2658       } else {
2659         // Argument types are too different. Abort.
2660         return false;
2661       }
2662     }
2663 
2664     if (HasObjCConversion) {
2665       // We had an Objective-C conversion. Allow this pointer
2666       // conversion, but complain about it.
2667       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2668       IncompatibleObjC = true;
2669       return true;
2670     }
2671   }
2672 
2673   return false;
2674 }
2675 
2676 /// Determine whether this is an Objective-C writeback conversion,
2677 /// used for parameter passing when performing automatic reference counting.
2678 ///
2679 /// \param FromType The type we're converting form.
2680 ///
2681 /// \param ToType The type we're converting to.
2682 ///
2683 /// \param ConvertedType The type that will be produced after applying
2684 /// this conversion.
2685 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2686                                      QualType &ConvertedType) {
2687   if (!getLangOpts().ObjCAutoRefCount ||
2688       Context.hasSameUnqualifiedType(FromType, ToType))
2689     return false;
2690 
2691   // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2692   QualType ToPointee;
2693   if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2694     ToPointee = ToPointer->getPointeeType();
2695   else
2696     return false;
2697 
2698   Qualifiers ToQuals = ToPointee.getQualifiers();
2699   if (!ToPointee->isObjCLifetimeType() ||
2700       ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2701       !ToQuals.withoutObjCLifetime().empty())
2702     return false;
2703 
2704   // Argument must be a pointer to __strong to __weak.
2705   QualType FromPointee;
2706   if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2707     FromPointee = FromPointer->getPointeeType();
2708   else
2709     return false;
2710 
2711   Qualifiers FromQuals = FromPointee.getQualifiers();
2712   if (!FromPointee->isObjCLifetimeType() ||
2713       (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2714        FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2715     return false;
2716 
2717   // Make sure that we have compatible qualifiers.
2718   FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2719   if (!ToQuals.compatiblyIncludes(FromQuals))
2720     return false;
2721 
2722   // Remove qualifiers from the pointee type we're converting from; they
2723   // aren't used in the compatibility check belong, and we'll be adding back
2724   // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2725   FromPointee = FromPointee.getUnqualifiedType();
2726 
2727   // The unqualified form of the pointee types must be compatible.
2728   ToPointee = ToPointee.getUnqualifiedType();
2729   bool IncompatibleObjC;
2730   if (Context.typesAreCompatible(FromPointee, ToPointee))
2731     FromPointee = ToPointee;
2732   else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2733                                     IncompatibleObjC))
2734     return false;
2735 
2736   /// Construct the type we're converting to, which is a pointer to
2737   /// __autoreleasing pointee.
2738   FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2739   ConvertedType = Context.getPointerType(FromPointee);
2740   return true;
2741 }
2742 
2743 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2744                                     QualType& ConvertedType) {
2745   QualType ToPointeeType;
2746   if (const BlockPointerType *ToBlockPtr =
2747         ToType->getAs<BlockPointerType>())
2748     ToPointeeType = ToBlockPtr->getPointeeType();
2749   else
2750     return false;
2751 
2752   QualType FromPointeeType;
2753   if (const BlockPointerType *FromBlockPtr =
2754       FromType->getAs<BlockPointerType>())
2755     FromPointeeType = FromBlockPtr->getPointeeType();
2756   else
2757     return false;
2758   // We have pointer to blocks, check whether the only
2759   // differences in the argument and result types are in Objective-C
2760   // pointer conversions. If so, we permit the conversion.
2761 
2762   const FunctionProtoType *FromFunctionType
2763     = FromPointeeType->getAs<FunctionProtoType>();
2764   const FunctionProtoType *ToFunctionType
2765     = ToPointeeType->getAs<FunctionProtoType>();
2766 
2767   if (!FromFunctionType || !ToFunctionType)
2768     return false;
2769 
2770   if (Context.hasSameType(FromPointeeType, ToPointeeType))
2771     return true;
2772 
2773   // Perform the quick checks that will tell us whether these
2774   // function types are obviously different.
2775   if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2776       FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2777     return false;
2778 
2779   FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2780   FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2781   if (FromEInfo != ToEInfo)
2782     return false;
2783 
2784   bool IncompatibleObjC = false;
2785   if (Context.hasSameType(FromFunctionType->getReturnType(),
2786                           ToFunctionType->getReturnType())) {
2787     // Okay, the types match exactly. Nothing to do.
2788   } else {
2789     QualType RHS = FromFunctionType->getReturnType();
2790     QualType LHS = ToFunctionType->getReturnType();
2791     if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2792         !RHS.hasQualifiers() && LHS.hasQualifiers())
2793        LHS = LHS.getUnqualifiedType();
2794 
2795      if (Context.hasSameType(RHS,LHS)) {
2796        // OK exact match.
2797      } else if (isObjCPointerConversion(RHS, LHS,
2798                                         ConvertedType, IncompatibleObjC)) {
2799      if (IncompatibleObjC)
2800        return false;
2801      // Okay, we have an Objective-C pointer conversion.
2802      }
2803      else
2804        return false;
2805    }
2806 
2807    // Check argument types.
2808    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2809         ArgIdx != NumArgs; ++ArgIdx) {
2810      IncompatibleObjC = false;
2811      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2812      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2813      if (Context.hasSameType(FromArgType, ToArgType)) {
2814        // Okay, the types match exactly. Nothing to do.
2815      } else if (isObjCPointerConversion(ToArgType, FromArgType,
2816                                         ConvertedType, IncompatibleObjC)) {
2817        if (IncompatibleObjC)
2818          return false;
2819        // Okay, we have an Objective-C pointer conversion.
2820      } else
2821        // Argument types are too different. Abort.
2822        return false;
2823    }
2824 
2825    SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2826    bool CanUseToFPT, CanUseFromFPT;
2827    if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2828                                       CanUseToFPT, CanUseFromFPT,
2829                                       NewParamInfos))
2830      return false;
2831 
2832    ConvertedType = ToType;
2833    return true;
2834 }
2835 
2836 enum {
2837   ft_default,
2838   ft_different_class,
2839   ft_parameter_arity,
2840   ft_parameter_mismatch,
2841   ft_return_type,
2842   ft_qualifer_mismatch,
2843   ft_noexcept
2844 };
2845 
2846 /// Attempts to get the FunctionProtoType from a Type. Handles
2847 /// MemberFunctionPointers properly.
2848 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2849   if (auto *FPT = FromType->getAs<FunctionProtoType>())
2850     return FPT;
2851 
2852   if (auto *MPT = FromType->getAs<MemberPointerType>())
2853     return MPT->getPointeeType()->getAs<FunctionProtoType>();
2854 
2855   return nullptr;
2856 }
2857 
2858 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2859 /// function types.  Catches different number of parameter, mismatch in
2860 /// parameter types, and different return types.
2861 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2862                                       QualType FromType, QualType ToType) {
2863   // If either type is not valid, include no extra info.
2864   if (FromType.isNull() || ToType.isNull()) {
2865     PDiag << ft_default;
2866     return;
2867   }
2868 
2869   // Get the function type from the pointers.
2870   if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2871     const auto *FromMember = FromType->castAs<MemberPointerType>(),
2872                *ToMember = ToType->castAs<MemberPointerType>();
2873     if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2874       PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2875             << QualType(FromMember->getClass(), 0);
2876       return;
2877     }
2878     FromType = FromMember->getPointeeType();
2879     ToType = ToMember->getPointeeType();
2880   }
2881 
2882   if (FromType->isPointerType())
2883     FromType = FromType->getPointeeType();
2884   if (ToType->isPointerType())
2885     ToType = ToType->getPointeeType();
2886 
2887   // Remove references.
2888   FromType = FromType.getNonReferenceType();
2889   ToType = ToType.getNonReferenceType();
2890 
2891   // Don't print extra info for non-specialized template functions.
2892   if (FromType->isInstantiationDependentType() &&
2893       !FromType->getAs<TemplateSpecializationType>()) {
2894     PDiag << ft_default;
2895     return;
2896   }
2897 
2898   // No extra info for same types.
2899   if (Context.hasSameType(FromType, ToType)) {
2900     PDiag << ft_default;
2901     return;
2902   }
2903 
2904   const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2905                           *ToFunction = tryGetFunctionProtoType(ToType);
2906 
2907   // Both types need to be function types.
2908   if (!FromFunction || !ToFunction) {
2909     PDiag << ft_default;
2910     return;
2911   }
2912 
2913   if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2914     PDiag << ft_parameter_arity << ToFunction->getNumParams()
2915           << FromFunction->getNumParams();
2916     return;
2917   }
2918 
2919   // Handle different parameter types.
2920   unsigned ArgPos;
2921   if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2922     PDiag << ft_parameter_mismatch << ArgPos + 1
2923           << ToFunction->getParamType(ArgPos)
2924           << FromFunction->getParamType(ArgPos);
2925     return;
2926   }
2927 
2928   // Handle different return type.
2929   if (!Context.hasSameType(FromFunction->getReturnType(),
2930                            ToFunction->getReturnType())) {
2931     PDiag << ft_return_type << ToFunction->getReturnType()
2932           << FromFunction->getReturnType();
2933     return;
2934   }
2935 
2936   if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2937     PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2938           << FromFunction->getMethodQuals();
2939     return;
2940   }
2941 
2942   // Handle exception specification differences on canonical type (in C++17
2943   // onwards).
2944   if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2945           ->isNothrow() !=
2946       cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2947           ->isNothrow()) {
2948     PDiag << ft_noexcept;
2949     return;
2950   }
2951 
2952   // Unable to find a difference, so add no extra info.
2953   PDiag << ft_default;
2954 }
2955 
2956 /// FunctionParamTypesAreEqual - This routine checks two function proto types
2957 /// for equality of their argument types. Caller has already checked that
2958 /// they have same number of arguments.  If the parameters are different,
2959 /// ArgPos will have the parameter index of the first different parameter.
2960 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2961                                       const FunctionProtoType *NewType,
2962                                       unsigned *ArgPos) {
2963   for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2964                                               N = NewType->param_type_begin(),
2965                                               E = OldType->param_type_end();
2966        O && (O != E); ++O, ++N) {
2967     // Ignore address spaces in pointee type. This is to disallow overloading
2968     // on __ptr32/__ptr64 address spaces.
2969     QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType());
2970     QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType());
2971 
2972     if (!Context.hasSameType(Old, New)) {
2973       if (ArgPos)
2974         *ArgPos = O - OldType->param_type_begin();
2975       return false;
2976     }
2977   }
2978   return true;
2979 }
2980 
2981 /// CheckPointerConversion - Check the pointer conversion from the
2982 /// expression From to the type ToType. This routine checks for
2983 /// ambiguous or inaccessible derived-to-base pointer
2984 /// conversions for which IsPointerConversion has already returned
2985 /// true. It returns true and produces a diagnostic if there was an
2986 /// error, or returns false otherwise.
2987 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2988                                   CastKind &Kind,
2989                                   CXXCastPath& BasePath,
2990                                   bool IgnoreBaseAccess,
2991                                   bool Diagnose) {
2992   QualType FromType = From->getType();
2993   bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2994 
2995   Kind = CK_BitCast;
2996 
2997   if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2998       From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2999           Expr::NPCK_ZeroExpression) {
3000     if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
3001       DiagRuntimeBehavior(From->getExprLoc(), From,
3002                           PDiag(diag::warn_impcast_bool_to_null_pointer)
3003                             << ToType << From->getSourceRange());
3004     else if (!isUnevaluatedContext())
3005       Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
3006         << ToType << From->getSourceRange();
3007   }
3008   if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
3009     if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
3010       QualType FromPointeeType = FromPtrType->getPointeeType(),
3011                ToPointeeType   = ToPtrType->getPointeeType();
3012 
3013       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
3014           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
3015         // We must have a derived-to-base conversion. Check an
3016         // ambiguous or inaccessible conversion.
3017         unsigned InaccessibleID = 0;
3018         unsigned AmbiguousID = 0;
3019         if (Diagnose) {
3020           InaccessibleID = diag::err_upcast_to_inaccessible_base;
3021           AmbiguousID = diag::err_ambiguous_derived_to_base_conv;
3022         }
3023         if (CheckDerivedToBaseConversion(
3024                 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID,
3025                 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
3026                 &BasePath, IgnoreBaseAccess))
3027           return true;
3028 
3029         // The conversion was successful.
3030         Kind = CK_DerivedToBase;
3031       }
3032 
3033       if (Diagnose && !IsCStyleOrFunctionalCast &&
3034           FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
3035         assert(getLangOpts().MSVCCompat &&
3036                "this should only be possible with MSVCCompat!");
3037         Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
3038             << From->getSourceRange();
3039       }
3040     }
3041   } else if (const ObjCObjectPointerType *ToPtrType =
3042                ToType->getAs<ObjCObjectPointerType>()) {
3043     if (const ObjCObjectPointerType *FromPtrType =
3044           FromType->getAs<ObjCObjectPointerType>()) {
3045       // Objective-C++ conversions are always okay.
3046       // FIXME: We should have a different class of conversions for the
3047       // Objective-C++ implicit conversions.
3048       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
3049         return false;
3050     } else if (FromType->isBlockPointerType()) {
3051       Kind = CK_BlockPointerToObjCPointerCast;
3052     } else {
3053       Kind = CK_CPointerToObjCPointerCast;
3054     }
3055   } else if (ToType->isBlockPointerType()) {
3056     if (!FromType->isBlockPointerType())
3057       Kind = CK_AnyPointerToBlockPointerCast;
3058   }
3059 
3060   // We shouldn't fall into this case unless it's valid for other
3061   // reasons.
3062   if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
3063     Kind = CK_NullToPointer;
3064 
3065   return false;
3066 }
3067 
3068 /// IsMemberPointerConversion - Determines whether the conversion of the
3069 /// expression From, which has the (possibly adjusted) type FromType, can be
3070 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
3071 /// If so, returns true and places the converted type (that might differ from
3072 /// ToType in its cv-qualifiers at some level) into ConvertedType.
3073 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
3074                                      QualType ToType,
3075                                      bool InOverloadResolution,
3076                                      QualType &ConvertedType) {
3077   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
3078   if (!ToTypePtr)
3079     return false;
3080 
3081   // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
3082   if (From->isNullPointerConstant(Context,
3083                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
3084                                         : Expr::NPC_ValueDependentIsNull)) {
3085     ConvertedType = ToType;
3086     return true;
3087   }
3088 
3089   // Otherwise, both types have to be member pointers.
3090   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3091   if (!FromTypePtr)
3092     return false;
3093 
3094   // A pointer to member of B can be converted to a pointer to member of D,
3095   // where D is derived from B (C++ 4.11p2).
3096   QualType FromClass(FromTypePtr->getClass(), 0);
3097   QualType ToClass(ToTypePtr->getClass(), 0);
3098 
3099   if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3100       IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3101     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3102                                                  ToClass.getTypePtr());
3103     return true;
3104   }
3105 
3106   return false;
3107 }
3108 
3109 /// CheckMemberPointerConversion - Check the member pointer conversion from the
3110 /// expression From to the type ToType. This routine checks for ambiguous or
3111 /// virtual or inaccessible base-to-derived member pointer conversions
3112 /// for which IsMemberPointerConversion has already returned true. It returns
3113 /// true and produces a diagnostic if there was an error, or returns false
3114 /// otherwise.
3115 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3116                                         CastKind &Kind,
3117                                         CXXCastPath &BasePath,
3118                                         bool IgnoreBaseAccess) {
3119   QualType FromType = From->getType();
3120   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3121   if (!FromPtrType) {
3122     // This must be a null pointer to member pointer conversion
3123     assert(From->isNullPointerConstant(Context,
3124                                        Expr::NPC_ValueDependentIsNull) &&
3125            "Expr must be null pointer constant!");
3126     Kind = CK_NullToMemberPointer;
3127     return false;
3128   }
3129 
3130   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3131   assert(ToPtrType && "No member pointer cast has a target type "
3132                       "that is not a member pointer.");
3133 
3134   QualType FromClass = QualType(FromPtrType->getClass(), 0);
3135   QualType ToClass   = QualType(ToPtrType->getClass(), 0);
3136 
3137   // FIXME: What about dependent types?
3138   assert(FromClass->isRecordType() && "Pointer into non-class.");
3139   assert(ToClass->isRecordType() && "Pointer into non-class.");
3140 
3141   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3142                      /*DetectVirtual=*/true);
3143   bool DerivationOkay =
3144       IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3145   assert(DerivationOkay &&
3146          "Should not have been called if derivation isn't OK.");
3147   (void)DerivationOkay;
3148 
3149   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3150                                   getUnqualifiedType())) {
3151     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3152     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3153       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3154     return true;
3155   }
3156 
3157   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3158     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3159       << FromClass << ToClass << QualType(VBase, 0)
3160       << From->getSourceRange();
3161     return true;
3162   }
3163 
3164   if (!IgnoreBaseAccess)
3165     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3166                          Paths.front(),
3167                          diag::err_downcast_from_inaccessible_base);
3168 
3169   // Must be a base to derived member conversion.
3170   BuildBasePathArray(Paths, BasePath);
3171   Kind = CK_BaseToDerivedMemberPointer;
3172   return false;
3173 }
3174 
3175 /// Determine whether the lifetime conversion between the two given
3176 /// qualifiers sets is nontrivial.
3177 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3178                                                Qualifiers ToQuals) {
3179   // Converting anything to const __unsafe_unretained is trivial.
3180   if (ToQuals.hasConst() &&
3181       ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3182     return false;
3183 
3184   return true;
3185 }
3186 
3187 /// Perform a single iteration of the loop for checking if a qualification
3188 /// conversion is valid.
3189 ///
3190 /// Specifically, check whether any change between the qualifiers of \p
3191 /// FromType and \p ToType is permissible, given knowledge about whether every
3192 /// outer layer is const-qualified.
3193 static bool isQualificationConversionStep(QualType FromType, QualType ToType,
3194                                           bool CStyle, bool IsTopLevel,
3195                                           bool &PreviousToQualsIncludeConst,
3196                                           bool &ObjCLifetimeConversion) {
3197   Qualifiers FromQuals = FromType.getQualifiers();
3198   Qualifiers ToQuals = ToType.getQualifiers();
3199 
3200   // Ignore __unaligned qualifier if this type is void.
3201   if (ToType.getUnqualifiedType()->isVoidType())
3202     FromQuals.removeUnaligned();
3203 
3204   // Objective-C ARC:
3205   //   Check Objective-C lifetime conversions.
3206   if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) {
3207     if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3208       if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3209         ObjCLifetimeConversion = true;
3210       FromQuals.removeObjCLifetime();
3211       ToQuals.removeObjCLifetime();
3212     } else {
3213       // Qualification conversions cannot cast between different
3214       // Objective-C lifetime qualifiers.
3215       return false;
3216     }
3217   }
3218 
3219   // Allow addition/removal of GC attributes but not changing GC attributes.
3220   if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3221       (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3222     FromQuals.removeObjCGCAttr();
3223     ToQuals.removeObjCGCAttr();
3224   }
3225 
3226   //   -- for every j > 0, if const is in cv 1,j then const is in cv
3227   //      2,j, and similarly for volatile.
3228   if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3229     return false;
3230 
3231   // If address spaces mismatch:
3232   //  - in top level it is only valid to convert to addr space that is a
3233   //    superset in all cases apart from C-style casts where we allow
3234   //    conversions between overlapping address spaces.
3235   //  - in non-top levels it is not a valid conversion.
3236   if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() &&
3237       (!IsTopLevel ||
3238        !(ToQuals.isAddressSpaceSupersetOf(FromQuals) ||
3239          (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals)))))
3240     return false;
3241 
3242   //   -- if the cv 1,j and cv 2,j are different, then const is in
3243   //      every cv for 0 < k < j.
3244   if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() &&
3245       !PreviousToQualsIncludeConst)
3246     return false;
3247 
3248   // The following wording is from C++20, where the result of the conversion
3249   // is T3, not T2.
3250   //   -- if [...] P1,i [...] is "array of unknown bound of", P3,i is
3251   //      "array of unknown bound of"
3252   if (FromType->isIncompleteArrayType() && !ToType->isIncompleteArrayType())
3253     return false;
3254 
3255   //   -- if the resulting P3,i is different from P1,i [...], then const is
3256   //      added to every cv 3_k for 0 < k < i.
3257   if (!CStyle && FromType->isConstantArrayType() &&
3258       ToType->isIncompleteArrayType() && !PreviousToQualsIncludeConst)
3259     return false;
3260 
3261   // Keep track of whether all prior cv-qualifiers in the "to" type
3262   // include const.
3263   PreviousToQualsIncludeConst =
3264       PreviousToQualsIncludeConst && ToQuals.hasConst();
3265   return true;
3266 }
3267 
3268 /// IsQualificationConversion - Determines whether the conversion from
3269 /// an rvalue of type FromType to ToType is a qualification conversion
3270 /// (C++ 4.4).
3271 ///
3272 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3273 /// when the qualification conversion involves a change in the Objective-C
3274 /// object lifetime.
3275 bool
3276 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3277                                 bool CStyle, bool &ObjCLifetimeConversion) {
3278   FromType = Context.getCanonicalType(FromType);
3279   ToType = Context.getCanonicalType(ToType);
3280   ObjCLifetimeConversion = false;
3281 
3282   // If FromType and ToType are the same type, this is not a
3283   // qualification conversion.
3284   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3285     return false;
3286 
3287   // (C++ 4.4p4):
3288   //   A conversion can add cv-qualifiers at levels other than the first
3289   //   in multi-level pointers, subject to the following rules: [...]
3290   bool PreviousToQualsIncludeConst = true;
3291   bool UnwrappedAnyPointer = false;
3292   while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3293     if (!isQualificationConversionStep(
3294             FromType, ToType, CStyle, !UnwrappedAnyPointer,
3295             PreviousToQualsIncludeConst, ObjCLifetimeConversion))
3296       return false;
3297     UnwrappedAnyPointer = true;
3298   }
3299 
3300   // We are left with FromType and ToType being the pointee types
3301   // after unwrapping the original FromType and ToType the same number
3302   // of times. If we unwrapped any pointers, and if FromType and
3303   // ToType have the same unqualified type (since we checked
3304   // qualifiers above), then this is a qualification conversion.
3305   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3306 }
3307 
3308 /// - Determine whether this is a conversion from a scalar type to an
3309 /// atomic type.
3310 ///
3311 /// If successful, updates \c SCS's second and third steps in the conversion
3312 /// sequence to finish the conversion.
3313 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3314                                 bool InOverloadResolution,
3315                                 StandardConversionSequence &SCS,
3316                                 bool CStyle) {
3317   const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3318   if (!ToAtomic)
3319     return false;
3320 
3321   StandardConversionSequence InnerSCS;
3322   if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3323                             InOverloadResolution, InnerSCS,
3324                             CStyle, /*AllowObjCWritebackConversion=*/false))
3325     return false;
3326 
3327   SCS.Second = InnerSCS.Second;
3328   SCS.setToType(1, InnerSCS.getToType(1));
3329   SCS.Third = InnerSCS.Third;
3330   SCS.QualificationIncludesObjCLifetime
3331     = InnerSCS.QualificationIncludesObjCLifetime;
3332   SCS.setToType(2, InnerSCS.getToType(2));
3333   return true;
3334 }
3335 
3336 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3337                                               CXXConstructorDecl *Constructor,
3338                                               QualType Type) {
3339   const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>();
3340   if (CtorType->getNumParams() > 0) {
3341     QualType FirstArg = CtorType->getParamType(0);
3342     if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3343       return true;
3344   }
3345   return false;
3346 }
3347 
3348 static OverloadingResult
3349 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3350                                        CXXRecordDecl *To,
3351                                        UserDefinedConversionSequence &User,
3352                                        OverloadCandidateSet &CandidateSet,
3353                                        bool AllowExplicit) {
3354   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3355   for (auto *D : S.LookupConstructors(To)) {
3356     auto Info = getConstructorInfo(D);
3357     if (!Info)
3358       continue;
3359 
3360     bool Usable = !Info.Constructor->isInvalidDecl() &&
3361                   S.isInitListConstructor(Info.Constructor);
3362     if (Usable) {
3363       bool SuppressUserConversions = false;
3364       if (Info.ConstructorTmpl)
3365         S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3366                                        /*ExplicitArgs*/ nullptr, From,
3367                                        CandidateSet, SuppressUserConversions,
3368                                        /*PartialOverloading*/ false,
3369                                        AllowExplicit);
3370       else
3371         S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3372                                CandidateSet, SuppressUserConversions,
3373                                /*PartialOverloading*/ false, AllowExplicit);
3374     }
3375   }
3376 
3377   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3378 
3379   OverloadCandidateSet::iterator Best;
3380   switch (auto Result =
3381               CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3382   case OR_Deleted:
3383   case OR_Success: {
3384     // Record the standard conversion we used and the conversion function.
3385     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3386     QualType ThisType = Constructor->getThisType();
3387     // Initializer lists don't have conversions as such.
3388     User.Before.setAsIdentityConversion();
3389     User.HadMultipleCandidates = HadMultipleCandidates;
3390     User.ConversionFunction = Constructor;
3391     User.FoundConversionFunction = Best->FoundDecl;
3392     User.After.setAsIdentityConversion();
3393     User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3394     User.After.setAllToTypes(ToType);
3395     return Result;
3396   }
3397 
3398   case OR_No_Viable_Function:
3399     return OR_No_Viable_Function;
3400   case OR_Ambiguous:
3401     return OR_Ambiguous;
3402   }
3403 
3404   llvm_unreachable("Invalid OverloadResult!");
3405 }
3406 
3407 /// Determines whether there is a user-defined conversion sequence
3408 /// (C++ [over.ics.user]) that converts expression From to the type
3409 /// ToType. If such a conversion exists, User will contain the
3410 /// user-defined conversion sequence that performs such a conversion
3411 /// and this routine will return true. Otherwise, this routine returns
3412 /// false and User is unspecified.
3413 ///
3414 /// \param AllowExplicit  true if the conversion should consider C++0x
3415 /// "explicit" conversion functions as well as non-explicit conversion
3416 /// functions (C++0x [class.conv.fct]p2).
3417 ///
3418 /// \param AllowObjCConversionOnExplicit true if the conversion should
3419 /// allow an extra Objective-C pointer conversion on uses of explicit
3420 /// constructors. Requires \c AllowExplicit to also be set.
3421 static OverloadingResult
3422 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3423                         UserDefinedConversionSequence &User,
3424                         OverloadCandidateSet &CandidateSet,
3425                         AllowedExplicit AllowExplicit,
3426                         bool AllowObjCConversionOnExplicit) {
3427   assert(AllowExplicit != AllowedExplicit::None ||
3428          !AllowObjCConversionOnExplicit);
3429   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3430 
3431   // Whether we will only visit constructors.
3432   bool ConstructorsOnly = false;
3433 
3434   // If the type we are conversion to is a class type, enumerate its
3435   // constructors.
3436   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3437     // C++ [over.match.ctor]p1:
3438     //   When objects of class type are direct-initialized (8.5), or
3439     //   copy-initialized from an expression of the same or a
3440     //   derived class type (8.5), overload resolution selects the
3441     //   constructor. [...] For copy-initialization, the candidate
3442     //   functions are all the converting constructors (12.3.1) of
3443     //   that class. The argument list is the expression-list within
3444     //   the parentheses of the initializer.
3445     if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3446         (From->getType()->getAs<RecordType>() &&
3447          S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3448       ConstructorsOnly = true;
3449 
3450     if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3451       // We're not going to find any constructors.
3452     } else if (CXXRecordDecl *ToRecordDecl
3453                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3454 
3455       Expr **Args = &From;
3456       unsigned NumArgs = 1;
3457       bool ListInitializing = false;
3458       if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3459         // But first, see if there is an init-list-constructor that will work.
3460         OverloadingResult Result = IsInitializerListConstructorConversion(
3461             S, From, ToType, ToRecordDecl, User, CandidateSet,
3462             AllowExplicit == AllowedExplicit::All);
3463         if (Result != OR_No_Viable_Function)
3464           return Result;
3465         // Never mind.
3466         CandidateSet.clear(
3467             OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3468 
3469         // If we're list-initializing, we pass the individual elements as
3470         // arguments, not the entire list.
3471         Args = InitList->getInits();
3472         NumArgs = InitList->getNumInits();
3473         ListInitializing = true;
3474       }
3475 
3476       for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3477         auto Info = getConstructorInfo(D);
3478         if (!Info)
3479           continue;
3480 
3481         bool Usable = !Info.Constructor->isInvalidDecl();
3482         if (!ListInitializing)
3483           Usable = Usable && Info.Constructor->isConvertingConstructor(
3484                                  /*AllowExplicit*/ true);
3485         if (Usable) {
3486           bool SuppressUserConversions = !ConstructorsOnly;
3487           // C++20 [over.best.ics.general]/4.5:
3488           //   if the target is the first parameter of a constructor [of class
3489           //   X] and the constructor [...] is a candidate by [...] the second
3490           //   phase of [over.match.list] when the initializer list has exactly
3491           //   one element that is itself an initializer list, [...] and the
3492           //   conversion is to X or reference to cv X, user-defined conversion
3493           //   sequences are not cnosidered.
3494           if (SuppressUserConversions && ListInitializing) {
3495             SuppressUserConversions =
3496                 NumArgs == 1 && isa<InitListExpr>(Args[0]) &&
3497                 isFirstArgumentCompatibleWithType(S.Context, Info.Constructor,
3498                                                   ToType);
3499           }
3500           if (Info.ConstructorTmpl)
3501             S.AddTemplateOverloadCandidate(
3502                 Info.ConstructorTmpl, Info.FoundDecl,
3503                 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3504                 CandidateSet, SuppressUserConversions,
3505                 /*PartialOverloading*/ false,
3506                 AllowExplicit == AllowedExplicit::All);
3507           else
3508             // Allow one user-defined conversion when user specifies a
3509             // From->ToType conversion via an static cast (c-style, etc).
3510             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3511                                    llvm::makeArrayRef(Args, NumArgs),
3512                                    CandidateSet, SuppressUserConversions,
3513                                    /*PartialOverloading*/ false,
3514                                    AllowExplicit == AllowedExplicit::All);
3515         }
3516       }
3517     }
3518   }
3519 
3520   // Enumerate conversion functions, if we're allowed to.
3521   if (ConstructorsOnly || isa<InitListExpr>(From)) {
3522   } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3523     // No conversion functions from incomplete types.
3524   } else if (const RecordType *FromRecordType =
3525                  From->getType()->getAs<RecordType>()) {
3526     if (CXXRecordDecl *FromRecordDecl
3527          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3528       // Add all of the conversion functions as candidates.
3529       const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3530       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3531         DeclAccessPair FoundDecl = I.getPair();
3532         NamedDecl *D = FoundDecl.getDecl();
3533         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3534         if (isa<UsingShadowDecl>(D))
3535           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3536 
3537         CXXConversionDecl *Conv;
3538         FunctionTemplateDecl *ConvTemplate;
3539         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3540           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3541         else
3542           Conv = cast<CXXConversionDecl>(D);
3543 
3544         if (ConvTemplate)
3545           S.AddTemplateConversionCandidate(
3546               ConvTemplate, FoundDecl, ActingContext, From, ToType,
3547               CandidateSet, AllowObjCConversionOnExplicit,
3548               AllowExplicit != AllowedExplicit::None);
3549         else
3550           S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType,
3551                                    CandidateSet, AllowObjCConversionOnExplicit,
3552                                    AllowExplicit != AllowedExplicit::None);
3553       }
3554     }
3555   }
3556 
3557   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3558 
3559   OverloadCandidateSet::iterator Best;
3560   switch (auto Result =
3561               CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3562   case OR_Success:
3563   case OR_Deleted:
3564     // Record the standard conversion we used and the conversion function.
3565     if (CXXConstructorDecl *Constructor
3566           = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3567       // C++ [over.ics.user]p1:
3568       //   If the user-defined conversion is specified by a
3569       //   constructor (12.3.1), the initial standard conversion
3570       //   sequence converts the source type to the type required by
3571       //   the argument of the constructor.
3572       //
3573       QualType ThisType = Constructor->getThisType();
3574       if (isa<InitListExpr>(From)) {
3575         // Initializer lists don't have conversions as such.
3576         User.Before.setAsIdentityConversion();
3577       } else {
3578         if (Best->Conversions[0].isEllipsis())
3579           User.EllipsisConversion = true;
3580         else {
3581           User.Before = Best->Conversions[0].Standard;
3582           User.EllipsisConversion = false;
3583         }
3584       }
3585       User.HadMultipleCandidates = HadMultipleCandidates;
3586       User.ConversionFunction = Constructor;
3587       User.FoundConversionFunction = Best->FoundDecl;
3588       User.After.setAsIdentityConversion();
3589       User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3590       User.After.setAllToTypes(ToType);
3591       return Result;
3592     }
3593     if (CXXConversionDecl *Conversion
3594                  = dyn_cast<CXXConversionDecl>(Best->Function)) {
3595       // C++ [over.ics.user]p1:
3596       //
3597       //   [...] If the user-defined conversion is specified by a
3598       //   conversion function (12.3.2), the initial standard
3599       //   conversion sequence converts the source type to the
3600       //   implicit object parameter of the conversion function.
3601       User.Before = Best->Conversions[0].Standard;
3602       User.HadMultipleCandidates = HadMultipleCandidates;
3603       User.ConversionFunction = Conversion;
3604       User.FoundConversionFunction = Best->FoundDecl;
3605       User.EllipsisConversion = false;
3606 
3607       // C++ [over.ics.user]p2:
3608       //   The second standard conversion sequence converts the
3609       //   result of the user-defined conversion to the target type
3610       //   for the sequence. Since an implicit conversion sequence
3611       //   is an initialization, the special rules for
3612       //   initialization by user-defined conversion apply when
3613       //   selecting the best user-defined conversion for a
3614       //   user-defined conversion sequence (see 13.3.3 and
3615       //   13.3.3.1).
3616       User.After = Best->FinalConversion;
3617       return Result;
3618     }
3619     llvm_unreachable("Not a constructor or conversion function?");
3620 
3621   case OR_No_Viable_Function:
3622     return OR_No_Viable_Function;
3623 
3624   case OR_Ambiguous:
3625     return OR_Ambiguous;
3626   }
3627 
3628   llvm_unreachable("Invalid OverloadResult!");
3629 }
3630 
3631 bool
3632 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3633   ImplicitConversionSequence ICS;
3634   OverloadCandidateSet CandidateSet(From->getExprLoc(),
3635                                     OverloadCandidateSet::CSK_Normal);
3636   OverloadingResult OvResult =
3637     IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3638                             CandidateSet, AllowedExplicit::None, false);
3639 
3640   if (!(OvResult == OR_Ambiguous ||
3641         (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3642     return false;
3643 
3644   auto Cands = CandidateSet.CompleteCandidates(
3645       *this,
3646       OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
3647       From);
3648   if (OvResult == OR_Ambiguous)
3649     Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3650         << From->getType() << ToType << From->getSourceRange();
3651   else { // OR_No_Viable_Function && !CandidateSet.empty()
3652     if (!RequireCompleteType(From->getBeginLoc(), ToType,
3653                              diag::err_typecheck_nonviable_condition_incomplete,
3654                              From->getType(), From->getSourceRange()))
3655       Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3656           << false << From->getType() << From->getSourceRange() << ToType;
3657   }
3658 
3659   CandidateSet.NoteCandidates(
3660                               *this, From, Cands);
3661   return true;
3662 }
3663 
3664 // Helper for compareConversionFunctions that gets the FunctionType that the
3665 // conversion-operator return  value 'points' to, or nullptr.
3666 static const FunctionType *
3667 getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) {
3668   const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>();
3669   const PointerType *RetPtrTy =
3670       ConvFuncTy->getReturnType()->getAs<PointerType>();
3671 
3672   if (!RetPtrTy)
3673     return nullptr;
3674 
3675   return RetPtrTy->getPointeeType()->getAs<FunctionType>();
3676 }
3677 
3678 /// Compare the user-defined conversion functions or constructors
3679 /// of two user-defined conversion sequences to determine whether any ordering
3680 /// is possible.
3681 static ImplicitConversionSequence::CompareKind
3682 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3683                            FunctionDecl *Function2) {
3684   CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3685   CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2);
3686   if (!Conv1 || !Conv2)
3687     return ImplicitConversionSequence::Indistinguishable;
3688 
3689   if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda())
3690     return ImplicitConversionSequence::Indistinguishable;
3691 
3692   // Objective-C++:
3693   //   If both conversion functions are implicitly-declared conversions from
3694   //   a lambda closure type to a function pointer and a block pointer,
3695   //   respectively, always prefer the conversion to a function pointer,
3696   //   because the function pointer is more lightweight and is more likely
3697   //   to keep code working.
3698   if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) {
3699     bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3700     bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3701     if (Block1 != Block2)
3702       return Block1 ? ImplicitConversionSequence::Worse
3703                     : ImplicitConversionSequence::Better;
3704   }
3705 
3706   // In order to support multiple calling conventions for the lambda conversion
3707   // operator (such as when the free and member function calling convention is
3708   // different), prefer the 'free' mechanism, followed by the calling-convention
3709   // of operator(). The latter is in place to support the MSVC-like solution of
3710   // defining ALL of the possible conversions in regards to calling-convention.
3711   const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1);
3712   const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2);
3713 
3714   if (Conv1FuncRet && Conv2FuncRet &&
3715       Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) {
3716     CallingConv Conv1CC = Conv1FuncRet->getCallConv();
3717     CallingConv Conv2CC = Conv2FuncRet->getCallConv();
3718 
3719     CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator();
3720     const auto *CallOpProto = CallOp->getType()->castAs<FunctionProtoType>();
3721 
3722     CallingConv CallOpCC =
3723         CallOp->getType()->castAs<FunctionType>()->getCallConv();
3724     CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
3725         CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
3726     CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
3727         CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
3728 
3729     CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC};
3730     for (CallingConv CC : PrefOrder) {
3731       if (Conv1CC == CC)
3732         return ImplicitConversionSequence::Better;
3733       if (Conv2CC == CC)
3734         return ImplicitConversionSequence::Worse;
3735     }
3736   }
3737 
3738   return ImplicitConversionSequence::Indistinguishable;
3739 }
3740 
3741 static bool hasDeprecatedStringLiteralToCharPtrConversion(
3742     const ImplicitConversionSequence &ICS) {
3743   return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3744          (ICS.isUserDefined() &&
3745           ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3746 }
3747 
3748 /// CompareImplicitConversionSequences - Compare two implicit
3749 /// conversion sequences to determine whether one is better than the
3750 /// other or if they are indistinguishable (C++ 13.3.3.2).
3751 static ImplicitConversionSequence::CompareKind
3752 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3753                                    const ImplicitConversionSequence& ICS1,
3754                                    const ImplicitConversionSequence& ICS2)
3755 {
3756   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3757   // conversion sequences (as defined in 13.3.3.1)
3758   //   -- a standard conversion sequence (13.3.3.1.1) is a better
3759   //      conversion sequence than a user-defined conversion sequence or
3760   //      an ellipsis conversion sequence, and
3761   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3762   //      conversion sequence than an ellipsis conversion sequence
3763   //      (13.3.3.1.3).
3764   //
3765   // C++0x [over.best.ics]p10:
3766   //   For the purpose of ranking implicit conversion sequences as
3767   //   described in 13.3.3.2, the ambiguous conversion sequence is
3768   //   treated as a user-defined sequence that is indistinguishable
3769   //   from any other user-defined conversion sequence.
3770 
3771   // String literal to 'char *' conversion has been deprecated in C++03. It has
3772   // been removed from C++11. We still accept this conversion, if it happens at
3773   // the best viable function. Otherwise, this conversion is considered worse
3774   // than ellipsis conversion. Consider this as an extension; this is not in the
3775   // standard. For example:
3776   //
3777   // int &f(...);    // #1
3778   // void f(char*);  // #2
3779   // void g() { int &r = f("foo"); }
3780   //
3781   // In C++03, we pick #2 as the best viable function.
3782   // In C++11, we pick #1 as the best viable function, because ellipsis
3783   // conversion is better than string-literal to char* conversion (since there
3784   // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3785   // convert arguments, #2 would be the best viable function in C++11.
3786   // If the best viable function has this conversion, a warning will be issued
3787   // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3788 
3789   if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3790       hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3791           hasDeprecatedStringLiteralToCharPtrConversion(ICS2) &&
3792       // Ill-formedness must not differ
3793       ICS1.isBad() == ICS2.isBad())
3794     return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3795                ? ImplicitConversionSequence::Worse
3796                : ImplicitConversionSequence::Better;
3797 
3798   if (ICS1.getKindRank() < ICS2.getKindRank())
3799     return ImplicitConversionSequence::Better;
3800   if (ICS2.getKindRank() < ICS1.getKindRank())
3801     return ImplicitConversionSequence::Worse;
3802 
3803   // The following checks require both conversion sequences to be of
3804   // the same kind.
3805   if (ICS1.getKind() != ICS2.getKind())
3806     return ImplicitConversionSequence::Indistinguishable;
3807 
3808   ImplicitConversionSequence::CompareKind Result =
3809       ImplicitConversionSequence::Indistinguishable;
3810 
3811   // Two implicit conversion sequences of the same form are
3812   // indistinguishable conversion sequences unless one of the
3813   // following rules apply: (C++ 13.3.3.2p3):
3814 
3815   // List-initialization sequence L1 is a better conversion sequence than
3816   // list-initialization sequence L2 if:
3817   // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3818   //   if not that,
3819   // — L1 and L2 convert to arrays of the same element type, and either the
3820   //   number of elements n_1 initialized by L1 is less than the number of
3821   //   elements n_2 initialized by L2, or (C++20) n_1 = n_2 and L2 converts to
3822   //   an array of unknown bound and L1 does not,
3823   // even if one of the other rules in this paragraph would otherwise apply.
3824   if (!ICS1.isBad()) {
3825     bool StdInit1 = false, StdInit2 = false;
3826     if (ICS1.hasInitializerListContainerType())
3827       StdInit1 = S.isStdInitializerList(ICS1.getInitializerListContainerType(),
3828                                         nullptr);
3829     if (ICS2.hasInitializerListContainerType())
3830       StdInit2 = S.isStdInitializerList(ICS2.getInitializerListContainerType(),
3831                                         nullptr);
3832     if (StdInit1 != StdInit2)
3833       return StdInit1 ? ImplicitConversionSequence::Better
3834                       : ImplicitConversionSequence::Worse;
3835 
3836     if (ICS1.hasInitializerListContainerType() &&
3837         ICS2.hasInitializerListContainerType())
3838       if (auto *CAT1 = S.Context.getAsConstantArrayType(
3839               ICS1.getInitializerListContainerType()))
3840         if (auto *CAT2 = S.Context.getAsConstantArrayType(
3841                 ICS2.getInitializerListContainerType())) {
3842           if (S.Context.hasSameUnqualifiedType(CAT1->getElementType(),
3843                                                CAT2->getElementType())) {
3844             // Both to arrays of the same element type
3845             if (CAT1->getSize() != CAT2->getSize())
3846               // Different sized, the smaller wins
3847               return CAT1->getSize().ult(CAT2->getSize())
3848                          ? ImplicitConversionSequence::Better
3849                          : ImplicitConversionSequence::Worse;
3850             if (ICS1.isInitializerListOfIncompleteArray() !=
3851                 ICS2.isInitializerListOfIncompleteArray())
3852               // One is incomplete, it loses
3853               return ICS2.isInitializerListOfIncompleteArray()
3854                          ? ImplicitConversionSequence::Better
3855                          : ImplicitConversionSequence::Worse;
3856           }
3857         }
3858   }
3859 
3860   if (ICS1.isStandard())
3861     // Standard conversion sequence S1 is a better conversion sequence than
3862     // standard conversion sequence S2 if [...]
3863     Result = CompareStandardConversionSequences(S, Loc,
3864                                                 ICS1.Standard, ICS2.Standard);
3865   else if (ICS1.isUserDefined()) {
3866     // User-defined conversion sequence U1 is a better conversion
3867     // sequence than another user-defined conversion sequence U2 if
3868     // they contain the same user-defined conversion function or
3869     // constructor and if the second standard conversion sequence of
3870     // U1 is better than the second standard conversion sequence of
3871     // U2 (C++ 13.3.3.2p3).
3872     if (ICS1.UserDefined.ConversionFunction ==
3873           ICS2.UserDefined.ConversionFunction)
3874       Result = CompareStandardConversionSequences(S, Loc,
3875                                                   ICS1.UserDefined.After,
3876                                                   ICS2.UserDefined.After);
3877     else
3878       Result = compareConversionFunctions(S,
3879                                           ICS1.UserDefined.ConversionFunction,
3880                                           ICS2.UserDefined.ConversionFunction);
3881   }
3882 
3883   return Result;
3884 }
3885 
3886 // Per 13.3.3.2p3, compare the given standard conversion sequences to
3887 // determine if one is a proper subset of the other.
3888 static ImplicitConversionSequence::CompareKind
3889 compareStandardConversionSubsets(ASTContext &Context,
3890                                  const StandardConversionSequence& SCS1,
3891                                  const StandardConversionSequence& SCS2) {
3892   ImplicitConversionSequence::CompareKind Result
3893     = ImplicitConversionSequence::Indistinguishable;
3894 
3895   // the identity conversion sequence is considered to be a subsequence of
3896   // any non-identity conversion sequence
3897   if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3898     return ImplicitConversionSequence::Better;
3899   else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3900     return ImplicitConversionSequence::Worse;
3901 
3902   if (SCS1.Second != SCS2.Second) {
3903     if (SCS1.Second == ICK_Identity)
3904       Result = ImplicitConversionSequence::Better;
3905     else if (SCS2.Second == ICK_Identity)
3906       Result = ImplicitConversionSequence::Worse;
3907     else
3908       return ImplicitConversionSequence::Indistinguishable;
3909   } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3910     return ImplicitConversionSequence::Indistinguishable;
3911 
3912   if (SCS1.Third == SCS2.Third) {
3913     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3914                              : ImplicitConversionSequence::Indistinguishable;
3915   }
3916 
3917   if (SCS1.Third == ICK_Identity)
3918     return Result == ImplicitConversionSequence::Worse
3919              ? ImplicitConversionSequence::Indistinguishable
3920              : ImplicitConversionSequence::Better;
3921 
3922   if (SCS2.Third == ICK_Identity)
3923     return Result == ImplicitConversionSequence::Better
3924              ? ImplicitConversionSequence::Indistinguishable
3925              : ImplicitConversionSequence::Worse;
3926 
3927   return ImplicitConversionSequence::Indistinguishable;
3928 }
3929 
3930 /// Determine whether one of the given reference bindings is better
3931 /// than the other based on what kind of bindings they are.
3932 static bool
3933 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3934                              const StandardConversionSequence &SCS2) {
3935   // C++0x [over.ics.rank]p3b4:
3936   //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3937   //      implicit object parameter of a non-static member function declared
3938   //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3939   //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3940   //      lvalue reference to a function lvalue and S2 binds an rvalue
3941   //      reference*.
3942   //
3943   // FIXME: Rvalue references. We're going rogue with the above edits,
3944   // because the semantics in the current C++0x working paper (N3225 at the
3945   // time of this writing) break the standard definition of std::forward
3946   // and std::reference_wrapper when dealing with references to functions.
3947   // Proposed wording changes submitted to CWG for consideration.
3948   if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3949       SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3950     return false;
3951 
3952   return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3953           SCS2.IsLvalueReference) ||
3954          (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3955           !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3956 }
3957 
3958 enum class FixedEnumPromotion {
3959   None,
3960   ToUnderlyingType,
3961   ToPromotedUnderlyingType
3962 };
3963 
3964 /// Returns kind of fixed enum promotion the \a SCS uses.
3965 static FixedEnumPromotion
3966 getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
3967 
3968   if (SCS.Second != ICK_Integral_Promotion)
3969     return FixedEnumPromotion::None;
3970 
3971   QualType FromType = SCS.getFromType();
3972   if (!FromType->isEnumeralType())
3973     return FixedEnumPromotion::None;
3974 
3975   EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl();
3976   if (!Enum->isFixed())
3977     return FixedEnumPromotion::None;
3978 
3979   QualType UnderlyingType = Enum->getIntegerType();
3980   if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
3981     return FixedEnumPromotion::ToUnderlyingType;
3982 
3983   return FixedEnumPromotion::ToPromotedUnderlyingType;
3984 }
3985 
3986 /// CompareStandardConversionSequences - Compare two standard
3987 /// conversion sequences to determine whether one is better than the
3988 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
3989 static ImplicitConversionSequence::CompareKind
3990 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3991                                    const StandardConversionSequence& SCS1,
3992                                    const StandardConversionSequence& SCS2)
3993 {
3994   // Standard conversion sequence S1 is a better conversion sequence
3995   // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3996 
3997   //  -- S1 is a proper subsequence of S2 (comparing the conversion
3998   //     sequences in the canonical form defined by 13.3.3.1.1,
3999   //     excluding any Lvalue Transformation; the identity conversion
4000   //     sequence is considered to be a subsequence of any
4001   //     non-identity conversion sequence) or, if not that,
4002   if (ImplicitConversionSequence::CompareKind CK
4003         = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
4004     return CK;
4005 
4006   //  -- the rank of S1 is better than the rank of S2 (by the rules
4007   //     defined below), or, if not that,
4008   ImplicitConversionRank Rank1 = SCS1.getRank();
4009   ImplicitConversionRank Rank2 = SCS2.getRank();
4010   if (Rank1 < Rank2)
4011     return ImplicitConversionSequence::Better;
4012   else if (Rank2 < Rank1)
4013     return ImplicitConversionSequence::Worse;
4014 
4015   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
4016   // are indistinguishable unless one of the following rules
4017   // applies:
4018 
4019   //   A conversion that is not a conversion of a pointer, or
4020   //   pointer to member, to bool is better than another conversion
4021   //   that is such a conversion.
4022   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
4023     return SCS2.isPointerConversionToBool()
4024              ? ImplicitConversionSequence::Better
4025              : ImplicitConversionSequence::Worse;
4026 
4027   // C++14 [over.ics.rank]p4b2:
4028   // This is retroactively applied to C++11 by CWG 1601.
4029   //
4030   //   A conversion that promotes an enumeration whose underlying type is fixed
4031   //   to its underlying type is better than one that promotes to the promoted
4032   //   underlying type, if the two are different.
4033   FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
4034   FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
4035   if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
4036       FEP1 != FEP2)
4037     return FEP1 == FixedEnumPromotion::ToUnderlyingType
4038                ? ImplicitConversionSequence::Better
4039                : ImplicitConversionSequence::Worse;
4040 
4041   // C++ [over.ics.rank]p4b2:
4042   //
4043   //   If class B is derived directly or indirectly from class A,
4044   //   conversion of B* to A* is better than conversion of B* to
4045   //   void*, and conversion of A* to void* is better than conversion
4046   //   of B* to void*.
4047   bool SCS1ConvertsToVoid
4048     = SCS1.isPointerConversionToVoidPointer(S.Context);
4049   bool SCS2ConvertsToVoid
4050     = SCS2.isPointerConversionToVoidPointer(S.Context);
4051   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
4052     // Exactly one of the conversion sequences is a conversion to
4053     // a void pointer; it's the worse conversion.
4054     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
4055                               : ImplicitConversionSequence::Worse;
4056   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
4057     // Neither conversion sequence converts to a void pointer; compare
4058     // their derived-to-base conversions.
4059     if (ImplicitConversionSequence::CompareKind DerivedCK
4060           = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
4061       return DerivedCK;
4062   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
4063              !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
4064     // Both conversion sequences are conversions to void
4065     // pointers. Compare the source types to determine if there's an
4066     // inheritance relationship in their sources.
4067     QualType FromType1 = SCS1.getFromType();
4068     QualType FromType2 = SCS2.getFromType();
4069 
4070     // Adjust the types we're converting from via the array-to-pointer
4071     // conversion, if we need to.
4072     if (SCS1.First == ICK_Array_To_Pointer)
4073       FromType1 = S.Context.getArrayDecayedType(FromType1);
4074     if (SCS2.First == ICK_Array_To_Pointer)
4075       FromType2 = S.Context.getArrayDecayedType(FromType2);
4076 
4077     QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
4078     QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
4079 
4080     if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4081       return ImplicitConversionSequence::Better;
4082     else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4083       return ImplicitConversionSequence::Worse;
4084 
4085     // Objective-C++: If one interface is more specific than the
4086     // other, it is the better one.
4087     const ObjCObjectPointerType* FromObjCPtr1
4088       = FromType1->getAs<ObjCObjectPointerType>();
4089     const ObjCObjectPointerType* FromObjCPtr2
4090       = FromType2->getAs<ObjCObjectPointerType>();
4091     if (FromObjCPtr1 && FromObjCPtr2) {
4092       bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
4093                                                           FromObjCPtr2);
4094       bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
4095                                                            FromObjCPtr1);
4096       if (AssignLeft != AssignRight) {
4097         return AssignLeft? ImplicitConversionSequence::Better
4098                          : ImplicitConversionSequence::Worse;
4099       }
4100     }
4101   }
4102 
4103   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4104     // Check for a better reference binding based on the kind of bindings.
4105     if (isBetterReferenceBindingKind(SCS1, SCS2))
4106       return ImplicitConversionSequence::Better;
4107     else if (isBetterReferenceBindingKind(SCS2, SCS1))
4108       return ImplicitConversionSequence::Worse;
4109   }
4110 
4111   // Compare based on qualification conversions (C++ 13.3.3.2p3,
4112   // bullet 3).
4113   if (ImplicitConversionSequence::CompareKind QualCK
4114         = CompareQualificationConversions(S, SCS1, SCS2))
4115     return QualCK;
4116 
4117   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4118     // C++ [over.ics.rank]p3b4:
4119     //   -- S1 and S2 are reference bindings (8.5.3), and the types to
4120     //      which the references refer are the same type except for
4121     //      top-level cv-qualifiers, and the type to which the reference
4122     //      initialized by S2 refers is more cv-qualified than the type
4123     //      to which the reference initialized by S1 refers.
4124     QualType T1 = SCS1.getToType(2);
4125     QualType T2 = SCS2.getToType(2);
4126     T1 = S.Context.getCanonicalType(T1);
4127     T2 = S.Context.getCanonicalType(T2);
4128     Qualifiers T1Quals, T2Quals;
4129     QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4130     QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4131     if (UnqualT1 == UnqualT2) {
4132       // Objective-C++ ARC: If the references refer to objects with different
4133       // lifetimes, prefer bindings that don't change lifetime.
4134       if (SCS1.ObjCLifetimeConversionBinding !=
4135                                           SCS2.ObjCLifetimeConversionBinding) {
4136         return SCS1.ObjCLifetimeConversionBinding
4137                                            ? ImplicitConversionSequence::Worse
4138                                            : ImplicitConversionSequence::Better;
4139       }
4140 
4141       // If the type is an array type, promote the element qualifiers to the
4142       // type for comparison.
4143       if (isa<ArrayType>(T1) && T1Quals)
4144         T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4145       if (isa<ArrayType>(T2) && T2Quals)
4146         T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4147       if (T2.isMoreQualifiedThan(T1))
4148         return ImplicitConversionSequence::Better;
4149       if (T1.isMoreQualifiedThan(T2))
4150         return ImplicitConversionSequence::Worse;
4151     }
4152   }
4153 
4154   // In Microsoft mode (below 19.28), prefer an integral conversion to a
4155   // floating-to-integral conversion if the integral conversion
4156   // is between types of the same size.
4157   // For example:
4158   // void f(float);
4159   // void f(int);
4160   // int main {
4161   //    long a;
4162   //    f(a);
4163   // }
4164   // Here, MSVC will call f(int) instead of generating a compile error
4165   // as clang will do in standard mode.
4166   if (S.getLangOpts().MSVCCompat &&
4167       !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) &&
4168       SCS1.Second == ICK_Integral_Conversion &&
4169       SCS2.Second == ICK_Floating_Integral &&
4170       S.Context.getTypeSize(SCS1.getFromType()) ==
4171           S.Context.getTypeSize(SCS1.getToType(2)))
4172     return ImplicitConversionSequence::Better;
4173 
4174   // Prefer a compatible vector conversion over a lax vector conversion
4175   // For example:
4176   //
4177   // typedef float __v4sf __attribute__((__vector_size__(16)));
4178   // void f(vector float);
4179   // void f(vector signed int);
4180   // int main() {
4181   //   __v4sf a;
4182   //   f(a);
4183   // }
4184   // Here, we'd like to choose f(vector float) and not
4185   // report an ambiguous call error
4186   if (SCS1.Second == ICK_Vector_Conversion &&
4187       SCS2.Second == ICK_Vector_Conversion) {
4188     bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4189         SCS1.getFromType(), SCS1.getToType(2));
4190     bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4191         SCS2.getFromType(), SCS2.getToType(2));
4192 
4193     if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
4194       return SCS1IsCompatibleVectorConversion
4195                  ? ImplicitConversionSequence::Better
4196                  : ImplicitConversionSequence::Worse;
4197   }
4198 
4199   if (SCS1.Second == ICK_SVE_Vector_Conversion &&
4200       SCS2.Second == ICK_SVE_Vector_Conversion) {
4201     bool SCS1IsCompatibleSVEVectorConversion =
4202         S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2));
4203     bool SCS2IsCompatibleSVEVectorConversion =
4204         S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2));
4205 
4206     if (SCS1IsCompatibleSVEVectorConversion !=
4207         SCS2IsCompatibleSVEVectorConversion)
4208       return SCS1IsCompatibleSVEVectorConversion
4209                  ? ImplicitConversionSequence::Better
4210                  : ImplicitConversionSequence::Worse;
4211   }
4212 
4213   return ImplicitConversionSequence::Indistinguishable;
4214 }
4215 
4216 /// CompareQualificationConversions - Compares two standard conversion
4217 /// sequences to determine whether they can be ranked based on their
4218 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
4219 static ImplicitConversionSequence::CompareKind
4220 CompareQualificationConversions(Sema &S,
4221                                 const StandardConversionSequence& SCS1,
4222                                 const StandardConversionSequence& SCS2) {
4223   // C++ [over.ics.rank]p3:
4224   //  -- S1 and S2 differ only in their qualification conversion and
4225   //     yield similar types T1 and T2 (C++ 4.4), respectively, [...]
4226   // [C++98]
4227   //     [...] and the cv-qualification signature of type T1 is a proper subset
4228   //     of the cv-qualification signature of type T2, and S1 is not the
4229   //     deprecated string literal array-to-pointer conversion (4.2).
4230   // [C++2a]
4231   //     [...] where T1 can be converted to T2 by a qualification conversion.
4232   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
4233       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
4234     return ImplicitConversionSequence::Indistinguishable;
4235 
4236   // FIXME: the example in the standard doesn't use a qualification
4237   // conversion (!)
4238   QualType T1 = SCS1.getToType(2);
4239   QualType T2 = SCS2.getToType(2);
4240   T1 = S.Context.getCanonicalType(T1);
4241   T2 = S.Context.getCanonicalType(T2);
4242   assert(!T1->isReferenceType() && !T2->isReferenceType());
4243   Qualifiers T1Quals, T2Quals;
4244   QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4245   QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4246 
4247   // If the types are the same, we won't learn anything by unwrapping
4248   // them.
4249   if (UnqualT1 == UnqualT2)
4250     return ImplicitConversionSequence::Indistinguishable;
4251 
4252   // Don't ever prefer a standard conversion sequence that uses the deprecated
4253   // string literal array to pointer conversion.
4254   bool CanPick1 = !SCS1.DeprecatedStringLiteralToCharPtr;
4255   bool CanPick2 = !SCS2.DeprecatedStringLiteralToCharPtr;
4256 
4257   // Objective-C++ ARC:
4258   //   Prefer qualification conversions not involving a change in lifetime
4259   //   to qualification conversions that do change lifetime.
4260   if (SCS1.QualificationIncludesObjCLifetime &&
4261       !SCS2.QualificationIncludesObjCLifetime)
4262     CanPick1 = false;
4263   if (SCS2.QualificationIncludesObjCLifetime &&
4264       !SCS1.QualificationIncludesObjCLifetime)
4265     CanPick2 = false;
4266 
4267   bool ObjCLifetimeConversion;
4268   if (CanPick1 &&
4269       !S.IsQualificationConversion(T1, T2, false, ObjCLifetimeConversion))
4270     CanPick1 = false;
4271   // FIXME: In Objective-C ARC, we can have qualification conversions in both
4272   // directions, so we can't short-cut this second check in general.
4273   if (CanPick2 &&
4274       !S.IsQualificationConversion(T2, T1, false, ObjCLifetimeConversion))
4275     CanPick2 = false;
4276 
4277   if (CanPick1 != CanPick2)
4278     return CanPick1 ? ImplicitConversionSequence::Better
4279                     : ImplicitConversionSequence::Worse;
4280   return ImplicitConversionSequence::Indistinguishable;
4281 }
4282 
4283 /// CompareDerivedToBaseConversions - Compares two standard conversion
4284 /// sequences to determine whether they can be ranked based on their
4285 /// various kinds of derived-to-base conversions (C++
4286 /// [over.ics.rank]p4b3).  As part of these checks, we also look at
4287 /// conversions between Objective-C interface types.
4288 static ImplicitConversionSequence::CompareKind
4289 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4290                                 const StandardConversionSequence& SCS1,
4291                                 const StandardConversionSequence& SCS2) {
4292   QualType FromType1 = SCS1.getFromType();
4293   QualType ToType1 = SCS1.getToType(1);
4294   QualType FromType2 = SCS2.getFromType();
4295   QualType ToType2 = SCS2.getToType(1);
4296 
4297   // Adjust the types we're converting from via the array-to-pointer
4298   // conversion, if we need to.
4299   if (SCS1.First == ICK_Array_To_Pointer)
4300     FromType1 = S.Context.getArrayDecayedType(FromType1);
4301   if (SCS2.First == ICK_Array_To_Pointer)
4302     FromType2 = S.Context.getArrayDecayedType(FromType2);
4303 
4304   // Canonicalize all of the types.
4305   FromType1 = S.Context.getCanonicalType(FromType1);
4306   ToType1 = S.Context.getCanonicalType(ToType1);
4307   FromType2 = S.Context.getCanonicalType(FromType2);
4308   ToType2 = S.Context.getCanonicalType(ToType2);
4309 
4310   // C++ [over.ics.rank]p4b3:
4311   //
4312   //   If class B is derived directly or indirectly from class A and
4313   //   class C is derived directly or indirectly from B,
4314   //
4315   // Compare based on pointer conversions.
4316   if (SCS1.Second == ICK_Pointer_Conversion &&
4317       SCS2.Second == ICK_Pointer_Conversion &&
4318       /*FIXME: Remove if Objective-C id conversions get their own rank*/
4319       FromType1->isPointerType() && FromType2->isPointerType() &&
4320       ToType1->isPointerType() && ToType2->isPointerType()) {
4321     QualType FromPointee1 =
4322         FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4323     QualType ToPointee1 =
4324         ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4325     QualType FromPointee2 =
4326         FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4327     QualType ToPointee2 =
4328         ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4329 
4330     //   -- conversion of C* to B* is better than conversion of C* to A*,
4331     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4332       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4333         return ImplicitConversionSequence::Better;
4334       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4335         return ImplicitConversionSequence::Worse;
4336     }
4337 
4338     //   -- conversion of B* to A* is better than conversion of C* to A*,
4339     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4340       if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4341         return ImplicitConversionSequence::Better;
4342       else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4343         return ImplicitConversionSequence::Worse;
4344     }
4345   } else if (SCS1.Second == ICK_Pointer_Conversion &&
4346              SCS2.Second == ICK_Pointer_Conversion) {
4347     const ObjCObjectPointerType *FromPtr1
4348       = FromType1->getAs<ObjCObjectPointerType>();
4349     const ObjCObjectPointerType *FromPtr2
4350       = FromType2->getAs<ObjCObjectPointerType>();
4351     const ObjCObjectPointerType *ToPtr1
4352       = ToType1->getAs<ObjCObjectPointerType>();
4353     const ObjCObjectPointerType *ToPtr2
4354       = ToType2->getAs<ObjCObjectPointerType>();
4355 
4356     if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4357       // Apply the same conversion ranking rules for Objective-C pointer types
4358       // that we do for C++ pointers to class types. However, we employ the
4359       // Objective-C pseudo-subtyping relationship used for assignment of
4360       // Objective-C pointer types.
4361       bool FromAssignLeft
4362         = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4363       bool FromAssignRight
4364         = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4365       bool ToAssignLeft
4366         = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4367       bool ToAssignRight
4368         = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4369 
4370       // A conversion to an a non-id object pointer type or qualified 'id'
4371       // type is better than a conversion to 'id'.
4372       if (ToPtr1->isObjCIdType() &&
4373           (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4374         return ImplicitConversionSequence::Worse;
4375       if (ToPtr2->isObjCIdType() &&
4376           (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4377         return ImplicitConversionSequence::Better;
4378 
4379       // A conversion to a non-id object pointer type is better than a
4380       // conversion to a qualified 'id' type
4381       if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4382         return ImplicitConversionSequence::Worse;
4383       if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4384         return ImplicitConversionSequence::Better;
4385 
4386       // A conversion to an a non-Class object pointer type or qualified 'Class'
4387       // type is better than a conversion to 'Class'.
4388       if (ToPtr1->isObjCClassType() &&
4389           (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4390         return ImplicitConversionSequence::Worse;
4391       if (ToPtr2->isObjCClassType() &&
4392           (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4393         return ImplicitConversionSequence::Better;
4394 
4395       // A conversion to a non-Class object pointer type is better than a
4396       // conversion to a qualified 'Class' type.
4397       if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4398         return ImplicitConversionSequence::Worse;
4399       if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4400         return ImplicitConversionSequence::Better;
4401 
4402       //   -- "conversion of C* to B* is better than conversion of C* to A*,"
4403       if (S.Context.hasSameType(FromType1, FromType2) &&
4404           !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4405           (ToAssignLeft != ToAssignRight)) {
4406         if (FromPtr1->isSpecialized()) {
4407           // "conversion of B<A> * to B * is better than conversion of B * to
4408           // C *.
4409           bool IsFirstSame =
4410               FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4411           bool IsSecondSame =
4412               FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4413           if (IsFirstSame) {
4414             if (!IsSecondSame)
4415               return ImplicitConversionSequence::Better;
4416           } else if (IsSecondSame)
4417             return ImplicitConversionSequence::Worse;
4418         }
4419         return ToAssignLeft? ImplicitConversionSequence::Worse
4420                            : ImplicitConversionSequence::Better;
4421       }
4422 
4423       //   -- "conversion of B* to A* is better than conversion of C* to A*,"
4424       if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4425           (FromAssignLeft != FromAssignRight))
4426         return FromAssignLeft? ImplicitConversionSequence::Better
4427         : ImplicitConversionSequence::Worse;
4428     }
4429   }
4430 
4431   // Ranking of member-pointer types.
4432   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4433       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4434       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4435     const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>();
4436     const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>();
4437     const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>();
4438     const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>();
4439     const Type *FromPointeeType1 = FromMemPointer1->getClass();
4440     const Type *ToPointeeType1 = ToMemPointer1->getClass();
4441     const Type *FromPointeeType2 = FromMemPointer2->getClass();
4442     const Type *ToPointeeType2 = ToMemPointer2->getClass();
4443     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4444     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4445     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4446     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4447     // conversion of A::* to B::* is better than conversion of A::* to C::*,
4448     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4449       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4450         return ImplicitConversionSequence::Worse;
4451       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4452         return ImplicitConversionSequence::Better;
4453     }
4454     // conversion of B::* to C::* is better than conversion of A::* to C::*
4455     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4456       if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4457         return ImplicitConversionSequence::Better;
4458       else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4459         return ImplicitConversionSequence::Worse;
4460     }
4461   }
4462 
4463   if (SCS1.Second == ICK_Derived_To_Base) {
4464     //   -- conversion of C to B is better than conversion of C to A,
4465     //   -- binding of an expression of type C to a reference of type
4466     //      B& is better than binding an expression of type C to a
4467     //      reference of type A&,
4468     if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4469         !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4470       if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4471         return ImplicitConversionSequence::Better;
4472       else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4473         return ImplicitConversionSequence::Worse;
4474     }
4475 
4476     //   -- conversion of B to A is better than conversion of C to A.
4477     //   -- binding of an expression of type B to a reference of type
4478     //      A& is better than binding an expression of type C to a
4479     //      reference of type A&,
4480     if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4481         S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4482       if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4483         return ImplicitConversionSequence::Better;
4484       else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4485         return ImplicitConversionSequence::Worse;
4486     }
4487   }
4488 
4489   return ImplicitConversionSequence::Indistinguishable;
4490 }
4491 
4492 /// Determine whether the given type is valid, e.g., it is not an invalid
4493 /// C++ class.
4494 static bool isTypeValid(QualType T) {
4495   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4496     return !Record->isInvalidDecl();
4497 
4498   return true;
4499 }
4500 
4501 static QualType withoutUnaligned(ASTContext &Ctx, QualType T) {
4502   if (!T.getQualifiers().hasUnaligned())
4503     return T;
4504 
4505   Qualifiers Q;
4506   T = Ctx.getUnqualifiedArrayType(T, Q);
4507   Q.removeUnaligned();
4508   return Ctx.getQualifiedType(T, Q);
4509 }
4510 
4511 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
4512 /// determine whether they are reference-compatible,
4513 /// reference-related, or incompatible, for use in C++ initialization by
4514 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4515 /// type, and the first type (T1) is the pointee type of the reference
4516 /// type being initialized.
4517 Sema::ReferenceCompareResult
4518 Sema::CompareReferenceRelationship(SourceLocation Loc,
4519                                    QualType OrigT1, QualType OrigT2,
4520                                    ReferenceConversions *ConvOut) {
4521   assert(!OrigT1->isReferenceType() &&
4522     "T1 must be the pointee type of the reference type");
4523   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4524 
4525   QualType T1 = Context.getCanonicalType(OrigT1);
4526   QualType T2 = Context.getCanonicalType(OrigT2);
4527   Qualifiers T1Quals, T2Quals;
4528   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4529   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4530 
4531   ReferenceConversions ConvTmp;
4532   ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp;
4533   Conv = ReferenceConversions();
4534 
4535   // C++2a [dcl.init.ref]p4:
4536   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4537   //   reference-related to "cv2 T2" if T1 is similar to T2, or
4538   //   T1 is a base class of T2.
4539   //   "cv1 T1" is reference-compatible with "cv2 T2" if
4540   //   a prvalue of type "pointer to cv2 T2" can be converted to the type
4541   //   "pointer to cv1 T1" via a standard conversion sequence.
4542 
4543   // Check for standard conversions we can apply to pointers: derived-to-base
4544   // conversions, ObjC pointer conversions, and function pointer conversions.
4545   // (Qualification conversions are checked last.)
4546   QualType ConvertedT2;
4547   if (UnqualT1 == UnqualT2) {
4548     // Nothing to do.
4549   } else if (isCompleteType(Loc, OrigT2) &&
4550              isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4551              IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4552     Conv |= ReferenceConversions::DerivedToBase;
4553   else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4554            UnqualT2->isObjCObjectOrInterfaceType() &&
4555            Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4556     Conv |= ReferenceConversions::ObjC;
4557   else if (UnqualT2->isFunctionType() &&
4558            IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
4559     Conv |= ReferenceConversions::Function;
4560     // No need to check qualifiers; function types don't have them.
4561     return Ref_Compatible;
4562   }
4563   bool ConvertedReferent = Conv != 0;
4564 
4565   // We can have a qualification conversion. Compute whether the types are
4566   // similar at the same time.
4567   bool PreviousToQualsIncludeConst = true;
4568   bool TopLevel = true;
4569   do {
4570     if (T1 == T2)
4571       break;
4572 
4573     // We will need a qualification conversion.
4574     Conv |= ReferenceConversions::Qualification;
4575 
4576     // Track whether we performed a qualification conversion anywhere other
4577     // than the top level. This matters for ranking reference bindings in
4578     // overload resolution.
4579     if (!TopLevel)
4580       Conv |= ReferenceConversions::NestedQualification;
4581 
4582     // MS compiler ignores __unaligned qualifier for references; do the same.
4583     T1 = withoutUnaligned(Context, T1);
4584     T2 = withoutUnaligned(Context, T2);
4585 
4586     // If we find a qualifier mismatch, the types are not reference-compatible,
4587     // but are still be reference-related if they're similar.
4588     bool ObjCLifetimeConversion = false;
4589     if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel,
4590                                        PreviousToQualsIncludeConst,
4591                                        ObjCLifetimeConversion))
4592       return (ConvertedReferent || Context.hasSimilarType(T1, T2))
4593                  ? Ref_Related
4594                  : Ref_Incompatible;
4595 
4596     // FIXME: Should we track this for any level other than the first?
4597     if (ObjCLifetimeConversion)
4598       Conv |= ReferenceConversions::ObjCLifetime;
4599 
4600     TopLevel = false;
4601   } while (Context.UnwrapSimilarTypes(T1, T2));
4602 
4603   // At this point, if the types are reference-related, we must either have the
4604   // same inner type (ignoring qualifiers), or must have already worked out how
4605   // to convert the referent.
4606   return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2))
4607              ? Ref_Compatible
4608              : Ref_Incompatible;
4609 }
4610 
4611 /// Look for a user-defined conversion to a value reference-compatible
4612 ///        with DeclType. Return true if something definite is found.
4613 static bool
4614 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4615                          QualType DeclType, SourceLocation DeclLoc,
4616                          Expr *Init, QualType T2, bool AllowRvalues,
4617                          bool AllowExplicit) {
4618   assert(T2->isRecordType() && "Can only find conversions of record types.");
4619   auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4620 
4621   OverloadCandidateSet CandidateSet(
4622       DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4623   const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4624   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4625     NamedDecl *D = *I;
4626     CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4627     if (isa<UsingShadowDecl>(D))
4628       D = cast<UsingShadowDecl>(D)->getTargetDecl();
4629 
4630     FunctionTemplateDecl *ConvTemplate
4631       = dyn_cast<FunctionTemplateDecl>(D);
4632     CXXConversionDecl *Conv;
4633     if (ConvTemplate)
4634       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4635     else
4636       Conv = cast<CXXConversionDecl>(D);
4637 
4638     if (AllowRvalues) {
4639       // If we are initializing an rvalue reference, don't permit conversion
4640       // functions that return lvalues.
4641       if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4642         const ReferenceType *RefType
4643           = Conv->getConversionType()->getAs<LValueReferenceType>();
4644         if (RefType && !RefType->getPointeeType()->isFunctionType())
4645           continue;
4646       }
4647 
4648       if (!ConvTemplate &&
4649           S.CompareReferenceRelationship(
4650               DeclLoc,
4651               Conv->getConversionType()
4652                   .getNonReferenceType()
4653                   .getUnqualifiedType(),
4654               DeclType.getNonReferenceType().getUnqualifiedType()) ==
4655               Sema::Ref_Incompatible)
4656         continue;
4657     } else {
4658       // If the conversion function doesn't return a reference type,
4659       // it can't be considered for this conversion. An rvalue reference
4660       // is only acceptable if its referencee is a function type.
4661 
4662       const ReferenceType *RefType =
4663         Conv->getConversionType()->getAs<ReferenceType>();
4664       if (!RefType ||
4665           (!RefType->isLValueReferenceType() &&
4666            !RefType->getPointeeType()->isFunctionType()))
4667         continue;
4668     }
4669 
4670     if (ConvTemplate)
4671       S.AddTemplateConversionCandidate(
4672           ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4673           /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4674     else
4675       S.AddConversionCandidate(
4676           Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4677           /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4678   }
4679 
4680   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4681 
4682   OverloadCandidateSet::iterator Best;
4683   switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4684   case OR_Success:
4685     // C++ [over.ics.ref]p1:
4686     //
4687     //   [...] If the parameter binds directly to the result of
4688     //   applying a conversion function to the argument
4689     //   expression, the implicit conversion sequence is a
4690     //   user-defined conversion sequence (13.3.3.1.2), with the
4691     //   second standard conversion sequence either an identity
4692     //   conversion or, if the conversion function returns an
4693     //   entity of a type that is a derived class of the parameter
4694     //   type, a derived-to-base Conversion.
4695     if (!Best->FinalConversion.DirectBinding)
4696       return false;
4697 
4698     ICS.setUserDefined();
4699     ICS.UserDefined.Before = Best->Conversions[0].Standard;
4700     ICS.UserDefined.After = Best->FinalConversion;
4701     ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4702     ICS.UserDefined.ConversionFunction = Best->Function;
4703     ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4704     ICS.UserDefined.EllipsisConversion = false;
4705     assert(ICS.UserDefined.After.ReferenceBinding &&
4706            ICS.UserDefined.After.DirectBinding &&
4707            "Expected a direct reference binding!");
4708     return true;
4709 
4710   case OR_Ambiguous:
4711     ICS.setAmbiguous();
4712     for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4713          Cand != CandidateSet.end(); ++Cand)
4714       if (Cand->Best)
4715         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4716     return true;
4717 
4718   case OR_No_Viable_Function:
4719   case OR_Deleted:
4720     // There was no suitable conversion, or we found a deleted
4721     // conversion; continue with other checks.
4722     return false;
4723   }
4724 
4725   llvm_unreachable("Invalid OverloadResult!");
4726 }
4727 
4728 /// Compute an implicit conversion sequence for reference
4729 /// initialization.
4730 static ImplicitConversionSequence
4731 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4732                  SourceLocation DeclLoc,
4733                  bool SuppressUserConversions,
4734                  bool AllowExplicit) {
4735   assert(DeclType->isReferenceType() && "Reference init needs a reference");
4736 
4737   // Most paths end in a failed conversion.
4738   ImplicitConversionSequence ICS;
4739   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4740 
4741   QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4742   QualType T2 = Init->getType();
4743 
4744   // If the initializer is the address of an overloaded function, try
4745   // to resolve the overloaded function. If all goes well, T2 is the
4746   // type of the resulting function.
4747   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4748     DeclAccessPair Found;
4749     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4750                                                                 false, Found))
4751       T2 = Fn->getType();
4752   }
4753 
4754   // Compute some basic properties of the types and the initializer.
4755   bool isRValRef = DeclType->isRValueReferenceType();
4756   Expr::Classification InitCategory = Init->Classify(S.Context);
4757 
4758   Sema::ReferenceConversions RefConv;
4759   Sema::ReferenceCompareResult RefRelationship =
4760       S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv);
4761 
4762   auto SetAsReferenceBinding = [&](bool BindsDirectly) {
4763     ICS.setStandard();
4764     ICS.Standard.First = ICK_Identity;
4765     // FIXME: A reference binding can be a function conversion too. We should
4766     // consider that when ordering reference-to-function bindings.
4767     ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase)
4768                               ? ICK_Derived_To_Base
4769                               : (RefConv & Sema::ReferenceConversions::ObjC)
4770                                     ? ICK_Compatible_Conversion
4771                                     : ICK_Identity;
4772     // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank
4773     // a reference binding that performs a non-top-level qualification
4774     // conversion as a qualification conversion, not as an identity conversion.
4775     ICS.Standard.Third = (RefConv &
4776                               Sema::ReferenceConversions::NestedQualification)
4777                              ? ICK_Qualification
4778                              : ICK_Identity;
4779     ICS.Standard.setFromType(T2);
4780     ICS.Standard.setToType(0, T2);
4781     ICS.Standard.setToType(1, T1);
4782     ICS.Standard.setToType(2, T1);
4783     ICS.Standard.ReferenceBinding = true;
4784     ICS.Standard.DirectBinding = BindsDirectly;
4785     ICS.Standard.IsLvalueReference = !isRValRef;
4786     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4787     ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4788     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4789     ICS.Standard.ObjCLifetimeConversionBinding =
4790         (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0;
4791     ICS.Standard.CopyConstructor = nullptr;
4792     ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4793   };
4794 
4795   // C++0x [dcl.init.ref]p5:
4796   //   A reference to type "cv1 T1" is initialized by an expression
4797   //   of type "cv2 T2" as follows:
4798 
4799   //     -- If reference is an lvalue reference and the initializer expression
4800   if (!isRValRef) {
4801     //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4802     //        reference-compatible with "cv2 T2," or
4803     //
4804     // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4805     if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4806       // C++ [over.ics.ref]p1:
4807       //   When a parameter of reference type binds directly (8.5.3)
4808       //   to an argument expression, the implicit conversion sequence
4809       //   is the identity conversion, unless the argument expression
4810       //   has a type that is a derived class of the parameter type,
4811       //   in which case the implicit conversion sequence is a
4812       //   derived-to-base Conversion (13.3.3.1).
4813       SetAsReferenceBinding(/*BindsDirectly=*/true);
4814 
4815       // Nothing more to do: the inaccessibility/ambiguity check for
4816       // derived-to-base conversions is suppressed when we're
4817       // computing the implicit conversion sequence (C++
4818       // [over.best.ics]p2).
4819       return ICS;
4820     }
4821 
4822     //       -- has a class type (i.e., T2 is a class type), where T1 is
4823     //          not reference-related to T2, and can be implicitly
4824     //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4825     //          is reference-compatible with "cv3 T3" 92) (this
4826     //          conversion is selected by enumerating the applicable
4827     //          conversion functions (13.3.1.6) and choosing the best
4828     //          one through overload resolution (13.3)),
4829     if (!SuppressUserConversions && T2->isRecordType() &&
4830         S.isCompleteType(DeclLoc, T2) &&
4831         RefRelationship == Sema::Ref_Incompatible) {
4832       if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4833                                    Init, T2, /*AllowRvalues=*/false,
4834                                    AllowExplicit))
4835         return ICS;
4836     }
4837   }
4838 
4839   //     -- Otherwise, the reference shall be an lvalue reference to a
4840   //        non-volatile const type (i.e., cv1 shall be const), or the reference
4841   //        shall be an rvalue reference.
4842   if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) {
4843     if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible)
4844       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4845     return ICS;
4846   }
4847 
4848   //       -- If the initializer expression
4849   //
4850   //            -- is an xvalue, class prvalue, array prvalue or function
4851   //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4852   if (RefRelationship == Sema::Ref_Compatible &&
4853       (InitCategory.isXValue() ||
4854        (InitCategory.isPRValue() &&
4855           (T2->isRecordType() || T2->isArrayType())) ||
4856        (InitCategory.isLValue() && T2->isFunctionType()))) {
4857     // In C++11, this is always a direct binding. In C++98/03, it's a direct
4858     // binding unless we're binding to a class prvalue.
4859     // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4860     // allow the use of rvalue references in C++98/03 for the benefit of
4861     // standard library implementors; therefore, we need the xvalue check here.
4862     SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 ||
4863                           !(InitCategory.isPRValue() || T2->isRecordType()));
4864     return ICS;
4865   }
4866 
4867   //            -- has a class type (i.e., T2 is a class type), where T1 is not
4868   //               reference-related to T2, and can be implicitly converted to
4869   //               an xvalue, class prvalue, or function lvalue of type
4870   //               "cv3 T3", where "cv1 T1" is reference-compatible with
4871   //               "cv3 T3",
4872   //
4873   //          then the reference is bound to the value of the initializer
4874   //          expression in the first case and to the result of the conversion
4875   //          in the second case (or, in either case, to an appropriate base
4876   //          class subobject).
4877   if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4878       T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4879       FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4880                                Init, T2, /*AllowRvalues=*/true,
4881                                AllowExplicit)) {
4882     // In the second case, if the reference is an rvalue reference
4883     // and the second standard conversion sequence of the
4884     // user-defined conversion sequence includes an lvalue-to-rvalue
4885     // conversion, the program is ill-formed.
4886     if (ICS.isUserDefined() && isRValRef &&
4887         ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4888       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4889 
4890     return ICS;
4891   }
4892 
4893   // A temporary of function type cannot be created; don't even try.
4894   if (T1->isFunctionType())
4895     return ICS;
4896 
4897   //       -- Otherwise, a temporary of type "cv1 T1" is created and
4898   //          initialized from the initializer expression using the
4899   //          rules for a non-reference copy initialization (8.5). The
4900   //          reference is then bound to the temporary. If T1 is
4901   //          reference-related to T2, cv1 must be the same
4902   //          cv-qualification as, or greater cv-qualification than,
4903   //          cv2; otherwise, the program is ill-formed.
4904   if (RefRelationship == Sema::Ref_Related) {
4905     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4906     // we would be reference-compatible or reference-compatible with
4907     // added qualification. But that wasn't the case, so the reference
4908     // initialization fails.
4909     //
4910     // Note that we only want to check address spaces and cvr-qualifiers here.
4911     // ObjC GC, lifetime and unaligned qualifiers aren't important.
4912     Qualifiers T1Quals = T1.getQualifiers();
4913     Qualifiers T2Quals = T2.getQualifiers();
4914     T1Quals.removeObjCGCAttr();
4915     T1Quals.removeObjCLifetime();
4916     T2Quals.removeObjCGCAttr();
4917     T2Quals.removeObjCLifetime();
4918     // MS compiler ignores __unaligned qualifier for references; do the same.
4919     T1Quals.removeUnaligned();
4920     T2Quals.removeUnaligned();
4921     if (!T1Quals.compatiblyIncludes(T2Quals))
4922       return ICS;
4923   }
4924 
4925   // If at least one of the types is a class type, the types are not
4926   // related, and we aren't allowed any user conversions, the
4927   // reference binding fails. This case is important for breaking
4928   // recursion, since TryImplicitConversion below will attempt to
4929   // create a temporary through the use of a copy constructor.
4930   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4931       (T1->isRecordType() || T2->isRecordType()))
4932     return ICS;
4933 
4934   // If T1 is reference-related to T2 and the reference is an rvalue
4935   // reference, the initializer expression shall not be an lvalue.
4936   if (RefRelationship >= Sema::Ref_Related && isRValRef &&
4937       Init->Classify(S.Context).isLValue()) {
4938     ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType);
4939     return ICS;
4940   }
4941 
4942   // C++ [over.ics.ref]p2:
4943   //   When a parameter of reference type is not bound directly to
4944   //   an argument expression, the conversion sequence is the one
4945   //   required to convert the argument expression to the
4946   //   underlying type of the reference according to
4947   //   13.3.3.1. Conceptually, this conversion sequence corresponds
4948   //   to copy-initializing a temporary of the underlying type with
4949   //   the argument expression. Any difference in top-level
4950   //   cv-qualification is subsumed by the initialization itself
4951   //   and does not constitute a conversion.
4952   ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4953                               AllowedExplicit::None,
4954                               /*InOverloadResolution=*/false,
4955                               /*CStyle=*/false,
4956                               /*AllowObjCWritebackConversion=*/false,
4957                               /*AllowObjCConversionOnExplicit=*/false);
4958 
4959   // Of course, that's still a reference binding.
4960   if (ICS.isStandard()) {
4961     ICS.Standard.ReferenceBinding = true;
4962     ICS.Standard.IsLvalueReference = !isRValRef;
4963     ICS.Standard.BindsToFunctionLvalue = false;
4964     ICS.Standard.BindsToRvalue = true;
4965     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4966     ICS.Standard.ObjCLifetimeConversionBinding = false;
4967   } else if (ICS.isUserDefined()) {
4968     const ReferenceType *LValRefType =
4969         ICS.UserDefined.ConversionFunction->getReturnType()
4970             ->getAs<LValueReferenceType>();
4971 
4972     // C++ [over.ics.ref]p3:
4973     //   Except for an implicit object parameter, for which see 13.3.1, a
4974     //   standard conversion sequence cannot be formed if it requires [...]
4975     //   binding an rvalue reference to an lvalue other than a function
4976     //   lvalue.
4977     // Note that the function case is not possible here.
4978     if (isRValRef && LValRefType) {
4979       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4980       return ICS;
4981     }
4982 
4983     ICS.UserDefined.After.ReferenceBinding = true;
4984     ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4985     ICS.UserDefined.After.BindsToFunctionLvalue = false;
4986     ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4987     ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4988     ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4989   }
4990 
4991   return ICS;
4992 }
4993 
4994 static ImplicitConversionSequence
4995 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4996                       bool SuppressUserConversions,
4997                       bool InOverloadResolution,
4998                       bool AllowObjCWritebackConversion,
4999                       bool AllowExplicit = false);
5000 
5001 /// TryListConversion - Try to copy-initialize a value of type ToType from the
5002 /// initializer list From.
5003 static ImplicitConversionSequence
5004 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
5005                   bool SuppressUserConversions,
5006                   bool InOverloadResolution,
5007                   bool AllowObjCWritebackConversion) {
5008   // C++11 [over.ics.list]p1:
5009   //   When an argument is an initializer list, it is not an expression and
5010   //   special rules apply for converting it to a parameter type.
5011 
5012   ImplicitConversionSequence Result;
5013   Result.setBad(BadConversionSequence::no_conversion, From, ToType);
5014 
5015   // We need a complete type for what follows.  With one C++20 exception,
5016   // incomplete types can never be initialized from init lists.
5017   QualType InitTy = ToType;
5018   const ArrayType *AT = S.Context.getAsArrayType(ToType);
5019   if (AT && S.getLangOpts().CPlusPlus20)
5020     if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT))
5021       // C++20 allows list initialization of an incomplete array type.
5022       InitTy = IAT->getElementType();
5023   if (!S.isCompleteType(From->getBeginLoc(), InitTy))
5024     return Result;
5025 
5026   // Per DR1467:
5027   //   If the parameter type is a class X and the initializer list has a single
5028   //   element of type cv U, where U is X or a class derived from X, the
5029   //   implicit conversion sequence is the one required to convert the element
5030   //   to the parameter type.
5031   //
5032   //   Otherwise, if the parameter type is a character array [... ]
5033   //   and the initializer list has a single element that is an
5034   //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the
5035   //   implicit conversion sequence is the identity conversion.
5036   if (From->getNumInits() == 1) {
5037     if (ToType->isRecordType()) {
5038       QualType InitType = From->getInit(0)->getType();
5039       if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
5040           S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
5041         return TryCopyInitialization(S, From->getInit(0), ToType,
5042                                      SuppressUserConversions,
5043                                      InOverloadResolution,
5044                                      AllowObjCWritebackConversion);
5045     }
5046 
5047     if (AT && S.IsStringInit(From->getInit(0), AT)) {
5048       InitializedEntity Entity =
5049           InitializedEntity::InitializeParameter(S.Context, ToType,
5050                                                  /*Consumed=*/false);
5051       if (S.CanPerformCopyInitialization(Entity, From)) {
5052         Result.setStandard();
5053         Result.Standard.setAsIdentityConversion();
5054         Result.Standard.setFromType(ToType);
5055         Result.Standard.setAllToTypes(ToType);
5056         return Result;
5057       }
5058     }
5059   }
5060 
5061   // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
5062   // C++11 [over.ics.list]p2:
5063   //   If the parameter type is std::initializer_list<X> or "array of X" and
5064   //   all the elements can be implicitly converted to X, the implicit
5065   //   conversion sequence is the worst conversion necessary to convert an
5066   //   element of the list to X.
5067   //
5068   // C++14 [over.ics.list]p3:
5069   //   Otherwise, if the parameter type is "array of N X", if the initializer
5070   //   list has exactly N elements or if it has fewer than N elements and X is
5071   //   default-constructible, and if all the elements of the initializer list
5072   //   can be implicitly converted to X, the implicit conversion sequence is
5073   //   the worst conversion necessary to convert an element of the list to X.
5074   if (AT || S.isStdInitializerList(ToType, &InitTy)) {
5075     unsigned e = From->getNumInits();
5076     ImplicitConversionSequence DfltElt;
5077     DfltElt.setBad(BadConversionSequence::no_conversion, QualType(),
5078                    QualType());
5079     QualType ContTy = ToType;
5080     bool IsUnbounded = false;
5081     if (AT) {
5082       InitTy = AT->getElementType();
5083       if (ConstantArrayType const *CT = dyn_cast<ConstantArrayType>(AT)) {
5084         if (CT->getSize().ult(e)) {
5085           // Too many inits, fatally bad
5086           Result.setBad(BadConversionSequence::too_many_initializers, From,
5087                         ToType);
5088           Result.setInitializerListContainerType(ContTy, IsUnbounded);
5089           return Result;
5090         }
5091         if (CT->getSize().ugt(e)) {
5092           // Need an init from empty {}, is there one?
5093           InitListExpr EmptyList(S.Context, From->getEndLoc(), None,
5094                                  From->getEndLoc());
5095           EmptyList.setType(S.Context.VoidTy);
5096           DfltElt = TryListConversion(
5097               S, &EmptyList, InitTy, SuppressUserConversions,
5098               InOverloadResolution, AllowObjCWritebackConversion);
5099           if (DfltElt.isBad()) {
5100             // No {} init, fatally bad
5101             Result.setBad(BadConversionSequence::too_few_initializers, From,
5102                           ToType);
5103             Result.setInitializerListContainerType(ContTy, IsUnbounded);
5104             return Result;
5105           }
5106         }
5107       } else {
5108         assert(isa<IncompleteArrayType>(AT) && "Expected incomplete array");
5109         IsUnbounded = true;
5110         if (!e) {
5111           // Cannot convert to zero-sized.
5112           Result.setBad(BadConversionSequence::too_few_initializers, From,
5113                         ToType);
5114           Result.setInitializerListContainerType(ContTy, IsUnbounded);
5115           return Result;
5116         }
5117         llvm::APInt Size(S.Context.getTypeSize(S.Context.getSizeType()), e);
5118         ContTy = S.Context.getConstantArrayType(InitTy, Size, nullptr,
5119                                                 ArrayType::Normal, 0);
5120       }
5121     }
5122 
5123     Result.setStandard();
5124     Result.Standard.setAsIdentityConversion();
5125     Result.Standard.setFromType(InitTy);
5126     Result.Standard.setAllToTypes(InitTy);
5127     for (unsigned i = 0; i < e; ++i) {
5128       Expr *Init = From->getInit(i);
5129       ImplicitConversionSequence ICS = TryCopyInitialization(
5130           S, Init, InitTy, SuppressUserConversions, InOverloadResolution,
5131           AllowObjCWritebackConversion);
5132 
5133       // Keep the worse conversion seen so far.
5134       // FIXME: Sequences are not totally ordered, so 'worse' can be
5135       // ambiguous. CWG has been informed.
5136       if (CompareImplicitConversionSequences(S, From->getBeginLoc(), ICS,
5137                                              Result) ==
5138           ImplicitConversionSequence::Worse) {
5139         Result = ICS;
5140         // Bail as soon as we find something unconvertible.
5141         if (Result.isBad()) {
5142           Result.setInitializerListContainerType(ContTy, IsUnbounded);
5143           return Result;
5144         }
5145       }
5146     }
5147 
5148     // If we needed any implicit {} initialization, compare that now.
5149     // over.ics.list/6 indicates we should compare that conversion.  Again CWG
5150     // has been informed that this might not be the best thing.
5151     if (!DfltElt.isBad() && CompareImplicitConversionSequences(
5152                                 S, From->getEndLoc(), DfltElt, Result) ==
5153                                 ImplicitConversionSequence::Worse)
5154       Result = DfltElt;
5155     // Record the type being initialized so that we may compare sequences
5156     Result.setInitializerListContainerType(ContTy, IsUnbounded);
5157     return Result;
5158   }
5159 
5160   // C++14 [over.ics.list]p4:
5161   // C++11 [over.ics.list]p3:
5162   //   Otherwise, if the parameter is a non-aggregate class X and overload
5163   //   resolution chooses a single best constructor [...] the implicit
5164   //   conversion sequence is a user-defined conversion sequence. If multiple
5165   //   constructors are viable but none is better than the others, the
5166   //   implicit conversion sequence is a user-defined conversion sequence.
5167   if (ToType->isRecordType() && !ToType->isAggregateType()) {
5168     // This function can deal with initializer lists.
5169     return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
5170                                     AllowedExplicit::None,
5171                                     InOverloadResolution, /*CStyle=*/false,
5172                                     AllowObjCWritebackConversion,
5173                                     /*AllowObjCConversionOnExplicit=*/false);
5174   }
5175 
5176   // C++14 [over.ics.list]p5:
5177   // C++11 [over.ics.list]p4:
5178   //   Otherwise, if the parameter has an aggregate type which can be
5179   //   initialized from the initializer list [...] the implicit conversion
5180   //   sequence is a user-defined conversion sequence.
5181   if (ToType->isAggregateType()) {
5182     // Type is an aggregate, argument is an init list. At this point it comes
5183     // down to checking whether the initialization works.
5184     // FIXME: Find out whether this parameter is consumed or not.
5185     InitializedEntity Entity =
5186         InitializedEntity::InitializeParameter(S.Context, ToType,
5187                                                /*Consumed=*/false);
5188     if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
5189                                                                  From)) {
5190       Result.setUserDefined();
5191       Result.UserDefined.Before.setAsIdentityConversion();
5192       // Initializer lists don't have a type.
5193       Result.UserDefined.Before.setFromType(QualType());
5194       Result.UserDefined.Before.setAllToTypes(QualType());
5195 
5196       Result.UserDefined.After.setAsIdentityConversion();
5197       Result.UserDefined.After.setFromType(ToType);
5198       Result.UserDefined.After.setAllToTypes(ToType);
5199       Result.UserDefined.ConversionFunction = nullptr;
5200     }
5201     return Result;
5202   }
5203 
5204   // C++14 [over.ics.list]p6:
5205   // C++11 [over.ics.list]p5:
5206   //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
5207   if (ToType->isReferenceType()) {
5208     // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
5209     // mention initializer lists in any way. So we go by what list-
5210     // initialization would do and try to extrapolate from that.
5211 
5212     QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
5213 
5214     // If the initializer list has a single element that is reference-related
5215     // to the parameter type, we initialize the reference from that.
5216     if (From->getNumInits() == 1) {
5217       Expr *Init = From->getInit(0);
5218 
5219       QualType T2 = Init->getType();
5220 
5221       // If the initializer is the address of an overloaded function, try
5222       // to resolve the overloaded function. If all goes well, T2 is the
5223       // type of the resulting function.
5224       if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
5225         DeclAccessPair Found;
5226         if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
5227                                    Init, ToType, false, Found))
5228           T2 = Fn->getType();
5229       }
5230 
5231       // Compute some basic properties of the types and the initializer.
5232       Sema::ReferenceCompareResult RefRelationship =
5233           S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2);
5234 
5235       if (RefRelationship >= Sema::Ref_Related) {
5236         return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
5237                                 SuppressUserConversions,
5238                                 /*AllowExplicit=*/false);
5239       }
5240     }
5241 
5242     // Otherwise, we bind the reference to a temporary created from the
5243     // initializer list.
5244     Result = TryListConversion(S, From, T1, SuppressUserConversions,
5245                                InOverloadResolution,
5246                                AllowObjCWritebackConversion);
5247     if (Result.isFailure())
5248       return Result;
5249     assert(!Result.isEllipsis() &&
5250            "Sub-initialization cannot result in ellipsis conversion.");
5251 
5252     // Can we even bind to a temporary?
5253     if (ToType->isRValueReferenceType() ||
5254         (T1.isConstQualified() && !T1.isVolatileQualified())) {
5255       StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
5256                                             Result.UserDefined.After;
5257       SCS.ReferenceBinding = true;
5258       SCS.IsLvalueReference = ToType->isLValueReferenceType();
5259       SCS.BindsToRvalue = true;
5260       SCS.BindsToFunctionLvalue = false;
5261       SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5262       SCS.ObjCLifetimeConversionBinding = false;
5263     } else
5264       Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5265                     From, ToType);
5266     return Result;
5267   }
5268 
5269   // C++14 [over.ics.list]p7:
5270   // C++11 [over.ics.list]p6:
5271   //   Otherwise, if the parameter type is not a class:
5272   if (!ToType->isRecordType()) {
5273     //    - if the initializer list has one element that is not itself an
5274     //      initializer list, the implicit conversion sequence is the one
5275     //      required to convert the element to the parameter type.
5276     unsigned NumInits = From->getNumInits();
5277     if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5278       Result = TryCopyInitialization(S, From->getInit(0), ToType,
5279                                      SuppressUserConversions,
5280                                      InOverloadResolution,
5281                                      AllowObjCWritebackConversion);
5282     //    - if the initializer list has no elements, the implicit conversion
5283     //      sequence is the identity conversion.
5284     else if (NumInits == 0) {
5285       Result.setStandard();
5286       Result.Standard.setAsIdentityConversion();
5287       Result.Standard.setFromType(ToType);
5288       Result.Standard.setAllToTypes(ToType);
5289     }
5290     return Result;
5291   }
5292 
5293   // C++14 [over.ics.list]p8:
5294   // C++11 [over.ics.list]p7:
5295   //   In all cases other than those enumerated above, no conversion is possible
5296   return Result;
5297 }
5298 
5299 /// TryCopyInitialization - Try to copy-initialize a value of type
5300 /// ToType from the expression From. Return the implicit conversion
5301 /// sequence required to pass this argument, which may be a bad
5302 /// conversion sequence (meaning that the argument cannot be passed to
5303 /// a parameter of this type). If @p SuppressUserConversions, then we
5304 /// do not permit any user-defined conversion sequences.
5305 static ImplicitConversionSequence
5306 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5307                       bool SuppressUserConversions,
5308                       bool InOverloadResolution,
5309                       bool AllowObjCWritebackConversion,
5310                       bool AllowExplicit) {
5311   if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5312     return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5313                              InOverloadResolution,AllowObjCWritebackConversion);
5314 
5315   if (ToType->isReferenceType())
5316     return TryReferenceInit(S, From, ToType,
5317                             /*FIXME:*/ From->getBeginLoc(),
5318                             SuppressUserConversions, AllowExplicit);
5319 
5320   return TryImplicitConversion(S, From, ToType,
5321                                SuppressUserConversions,
5322                                AllowedExplicit::None,
5323                                InOverloadResolution,
5324                                /*CStyle=*/false,
5325                                AllowObjCWritebackConversion,
5326                                /*AllowObjCConversionOnExplicit=*/false);
5327 }
5328 
5329 static bool TryCopyInitialization(const CanQualType FromQTy,
5330                                   const CanQualType ToQTy,
5331                                   Sema &S,
5332                                   SourceLocation Loc,
5333                                   ExprValueKind FromVK) {
5334   OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5335   ImplicitConversionSequence ICS =
5336     TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5337 
5338   return !ICS.isBad();
5339 }
5340 
5341 /// TryObjectArgumentInitialization - Try to initialize the object
5342 /// parameter of the given member function (@c Method) from the
5343 /// expression @p From.
5344 static ImplicitConversionSequence
5345 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5346                                 Expr::Classification FromClassification,
5347                                 CXXMethodDecl *Method,
5348                                 CXXRecordDecl *ActingContext) {
5349   QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5350   // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5351   //                 const volatile object.
5352   Qualifiers Quals = Method->getMethodQualifiers();
5353   if (isa<CXXDestructorDecl>(Method)) {
5354     Quals.addConst();
5355     Quals.addVolatile();
5356   }
5357 
5358   QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5359 
5360   // Set up the conversion sequence as a "bad" conversion, to allow us
5361   // to exit early.
5362   ImplicitConversionSequence ICS;
5363 
5364   // We need to have an object of class type.
5365   if (const PointerType *PT = FromType->getAs<PointerType>()) {
5366     FromType = PT->getPointeeType();
5367 
5368     // When we had a pointer, it's implicitly dereferenced, so we
5369     // better have an lvalue.
5370     assert(FromClassification.isLValue());
5371   }
5372 
5373   assert(FromType->isRecordType());
5374 
5375   // C++0x [over.match.funcs]p4:
5376   //   For non-static member functions, the type of the implicit object
5377   //   parameter is
5378   //
5379   //     - "lvalue reference to cv X" for functions declared without a
5380   //        ref-qualifier or with the & ref-qualifier
5381   //     - "rvalue reference to cv X" for functions declared with the &&
5382   //        ref-qualifier
5383   //
5384   // where X is the class of which the function is a member and cv is the
5385   // cv-qualification on the member function declaration.
5386   //
5387   // However, when finding an implicit conversion sequence for the argument, we
5388   // are not allowed to perform user-defined conversions
5389   // (C++ [over.match.funcs]p5). We perform a simplified version of
5390   // reference binding here, that allows class rvalues to bind to
5391   // non-constant references.
5392 
5393   // First check the qualifiers.
5394   QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5395   if (ImplicitParamType.getCVRQualifiers()
5396                                     != FromTypeCanon.getLocalCVRQualifiers() &&
5397       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5398     ICS.setBad(BadConversionSequence::bad_qualifiers,
5399                FromType, ImplicitParamType);
5400     return ICS;
5401   }
5402 
5403   if (FromTypeCanon.hasAddressSpace()) {
5404     Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5405     Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5406     if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5407       ICS.setBad(BadConversionSequence::bad_qualifiers,
5408                  FromType, ImplicitParamType);
5409       return ICS;
5410     }
5411   }
5412 
5413   // Check that we have either the same type or a derived type. It
5414   // affects the conversion rank.
5415   QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5416   ImplicitConversionKind SecondKind;
5417   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5418     SecondKind = ICK_Identity;
5419   } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5420     SecondKind = ICK_Derived_To_Base;
5421   else {
5422     ICS.setBad(BadConversionSequence::unrelated_class,
5423                FromType, ImplicitParamType);
5424     return ICS;
5425   }
5426 
5427   // Check the ref-qualifier.
5428   switch (Method->getRefQualifier()) {
5429   case RQ_None:
5430     // Do nothing; we don't care about lvalueness or rvalueness.
5431     break;
5432 
5433   case RQ_LValue:
5434     if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5435       // non-const lvalue reference cannot bind to an rvalue
5436       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5437                  ImplicitParamType);
5438       return ICS;
5439     }
5440     break;
5441 
5442   case RQ_RValue:
5443     if (!FromClassification.isRValue()) {
5444       // rvalue reference cannot bind to an lvalue
5445       ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5446                  ImplicitParamType);
5447       return ICS;
5448     }
5449     break;
5450   }
5451 
5452   // Success. Mark this as a reference binding.
5453   ICS.setStandard();
5454   ICS.Standard.setAsIdentityConversion();
5455   ICS.Standard.Second = SecondKind;
5456   ICS.Standard.setFromType(FromType);
5457   ICS.Standard.setAllToTypes(ImplicitParamType);
5458   ICS.Standard.ReferenceBinding = true;
5459   ICS.Standard.DirectBinding = true;
5460   ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5461   ICS.Standard.BindsToFunctionLvalue = false;
5462   ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5463   ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5464     = (Method->getRefQualifier() == RQ_None);
5465   return ICS;
5466 }
5467 
5468 /// PerformObjectArgumentInitialization - Perform initialization of
5469 /// the implicit object parameter for the given Method with the given
5470 /// expression.
5471 ExprResult
5472 Sema::PerformObjectArgumentInitialization(Expr *From,
5473                                           NestedNameSpecifier *Qualifier,
5474                                           NamedDecl *FoundDecl,
5475                                           CXXMethodDecl *Method) {
5476   QualType FromRecordType, DestType;
5477   QualType ImplicitParamRecordType  =
5478     Method->getThisType()->castAs<PointerType>()->getPointeeType();
5479 
5480   Expr::Classification FromClassification;
5481   if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5482     FromRecordType = PT->getPointeeType();
5483     DestType = Method->getThisType();
5484     FromClassification = Expr::Classification::makeSimpleLValue();
5485   } else {
5486     FromRecordType = From->getType();
5487     DestType = ImplicitParamRecordType;
5488     FromClassification = From->Classify(Context);
5489 
5490     // When performing member access on a prvalue, materialize a temporary.
5491     if (From->isPRValue()) {
5492       From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5493                                             Method->getRefQualifier() !=
5494                                                 RefQualifierKind::RQ_RValue);
5495     }
5496   }
5497 
5498   // Note that we always use the true parent context when performing
5499   // the actual argument initialization.
5500   ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5501       *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5502       Method->getParent());
5503   if (ICS.isBad()) {
5504     switch (ICS.Bad.Kind) {
5505     case BadConversionSequence::bad_qualifiers: {
5506       Qualifiers FromQs = FromRecordType.getQualifiers();
5507       Qualifiers ToQs = DestType.getQualifiers();
5508       unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5509       if (CVR) {
5510         Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5511             << Method->getDeclName() << FromRecordType << (CVR - 1)
5512             << From->getSourceRange();
5513         Diag(Method->getLocation(), diag::note_previous_decl)
5514           << Method->getDeclName();
5515         return ExprError();
5516       }
5517       break;
5518     }
5519 
5520     case BadConversionSequence::lvalue_ref_to_rvalue:
5521     case BadConversionSequence::rvalue_ref_to_lvalue: {
5522       bool IsRValueQualified =
5523         Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5524       Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5525           << Method->getDeclName() << FromClassification.isRValue()
5526           << IsRValueQualified;
5527       Diag(Method->getLocation(), diag::note_previous_decl)
5528         << Method->getDeclName();
5529       return ExprError();
5530     }
5531 
5532     case BadConversionSequence::no_conversion:
5533     case BadConversionSequence::unrelated_class:
5534       break;
5535 
5536     case BadConversionSequence::too_few_initializers:
5537     case BadConversionSequence::too_many_initializers:
5538       llvm_unreachable("Lists are not objects");
5539     }
5540 
5541     return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5542            << ImplicitParamRecordType << FromRecordType
5543            << From->getSourceRange();
5544   }
5545 
5546   if (ICS.Standard.Second == ICK_Derived_To_Base) {
5547     ExprResult FromRes =
5548       PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5549     if (FromRes.isInvalid())
5550       return ExprError();
5551     From = FromRes.get();
5552   }
5553 
5554   if (!Context.hasSameType(From->getType(), DestType)) {
5555     CastKind CK;
5556     QualType PteeTy = DestType->getPointeeType();
5557     LangAS DestAS =
5558         PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace();
5559     if (FromRecordType.getAddressSpace() != DestAS)
5560       CK = CK_AddressSpaceConversion;
5561     else
5562       CK = CK_NoOp;
5563     From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5564   }
5565   return From;
5566 }
5567 
5568 /// TryContextuallyConvertToBool - Attempt to contextually convert the
5569 /// expression From to bool (C++0x [conv]p3).
5570 static ImplicitConversionSequence
5571 TryContextuallyConvertToBool(Sema &S, Expr *From) {
5572   // C++ [dcl.init]/17.8:
5573   //   - Otherwise, if the initialization is direct-initialization, the source
5574   //     type is std::nullptr_t, and the destination type is bool, the initial
5575   //     value of the object being initialized is false.
5576   if (From->getType()->isNullPtrType())
5577     return ImplicitConversionSequence::getNullptrToBool(From->getType(),
5578                                                         S.Context.BoolTy,
5579                                                         From->isGLValue());
5580 
5581   // All other direct-initialization of bool is equivalent to an implicit
5582   // conversion to bool in which explicit conversions are permitted.
5583   return TryImplicitConversion(S, From, S.Context.BoolTy,
5584                                /*SuppressUserConversions=*/false,
5585                                AllowedExplicit::Conversions,
5586                                /*InOverloadResolution=*/false,
5587                                /*CStyle=*/false,
5588                                /*AllowObjCWritebackConversion=*/false,
5589                                /*AllowObjCConversionOnExplicit=*/false);
5590 }
5591 
5592 /// PerformContextuallyConvertToBool - Perform a contextual conversion
5593 /// of the expression From to bool (C++0x [conv]p3).
5594 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5595   if (checkPlaceholderForOverload(*this, From))
5596     return ExprError();
5597 
5598   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5599   if (!ICS.isBad())
5600     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5601 
5602   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5603     return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5604            << From->getType() << From->getSourceRange();
5605   return ExprError();
5606 }
5607 
5608 /// Check that the specified conversion is permitted in a converted constant
5609 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
5610 /// is acceptable.
5611 static bool CheckConvertedConstantConversions(Sema &S,
5612                                               StandardConversionSequence &SCS) {
5613   // Since we know that the target type is an integral or unscoped enumeration
5614   // type, most conversion kinds are impossible. All possible First and Third
5615   // conversions are fine.
5616   switch (SCS.Second) {
5617   case ICK_Identity:
5618   case ICK_Integral_Promotion:
5619   case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5620   case ICK_Zero_Queue_Conversion:
5621     return true;
5622 
5623   case ICK_Boolean_Conversion:
5624     // Conversion from an integral or unscoped enumeration type to bool is
5625     // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5626     // conversion, so we allow it in a converted constant expression.
5627     //
5628     // FIXME: Per core issue 1407, we should not allow this, but that breaks
5629     // a lot of popular code. We should at least add a warning for this
5630     // (non-conforming) extension.
5631     return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5632            SCS.getToType(2)->isBooleanType();
5633 
5634   case ICK_Pointer_Conversion:
5635   case ICK_Pointer_Member:
5636     // C++1z: null pointer conversions and null member pointer conversions are
5637     // only permitted if the source type is std::nullptr_t.
5638     return SCS.getFromType()->isNullPtrType();
5639 
5640   case ICK_Floating_Promotion:
5641   case ICK_Complex_Promotion:
5642   case ICK_Floating_Conversion:
5643   case ICK_Complex_Conversion:
5644   case ICK_Floating_Integral:
5645   case ICK_Compatible_Conversion:
5646   case ICK_Derived_To_Base:
5647   case ICK_Vector_Conversion:
5648   case ICK_SVE_Vector_Conversion:
5649   case ICK_Vector_Splat:
5650   case ICK_Complex_Real:
5651   case ICK_Block_Pointer_Conversion:
5652   case ICK_TransparentUnionConversion:
5653   case ICK_Writeback_Conversion:
5654   case ICK_Zero_Event_Conversion:
5655   case ICK_C_Only_Conversion:
5656   case ICK_Incompatible_Pointer_Conversion:
5657     return false;
5658 
5659   case ICK_Lvalue_To_Rvalue:
5660   case ICK_Array_To_Pointer:
5661   case ICK_Function_To_Pointer:
5662     llvm_unreachable("found a first conversion kind in Second");
5663 
5664   case ICK_Function_Conversion:
5665   case ICK_Qualification:
5666     llvm_unreachable("found a third conversion kind in Second");
5667 
5668   case ICK_Num_Conversion_Kinds:
5669     break;
5670   }
5671 
5672   llvm_unreachable("unknown conversion kind");
5673 }
5674 
5675 /// CheckConvertedConstantExpression - Check that the expression From is a
5676 /// converted constant expression of type T, perform the conversion and produce
5677 /// the converted expression, per C++11 [expr.const]p3.
5678 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5679                                                    QualType T, APValue &Value,
5680                                                    Sema::CCEKind CCE,
5681                                                    bool RequireInt,
5682                                                    NamedDecl *Dest) {
5683   assert(S.getLangOpts().CPlusPlus11 &&
5684          "converted constant expression outside C++11");
5685 
5686   if (checkPlaceholderForOverload(S, From))
5687     return ExprError();
5688 
5689   // C++1z [expr.const]p3:
5690   //  A converted constant expression of type T is an expression,
5691   //  implicitly converted to type T, where the converted
5692   //  expression is a constant expression and the implicit conversion
5693   //  sequence contains only [... list of conversions ...].
5694   ImplicitConversionSequence ICS =
5695       (CCE == Sema::CCEK_ExplicitBool || CCE == Sema::CCEK_Noexcept)
5696           ? TryContextuallyConvertToBool(S, From)
5697           : TryCopyInitialization(S, From, T,
5698                                   /*SuppressUserConversions=*/false,
5699                                   /*InOverloadResolution=*/false,
5700                                   /*AllowObjCWritebackConversion=*/false,
5701                                   /*AllowExplicit=*/false);
5702   StandardConversionSequence *SCS = nullptr;
5703   switch (ICS.getKind()) {
5704   case ImplicitConversionSequence::StandardConversion:
5705     SCS = &ICS.Standard;
5706     break;
5707   case ImplicitConversionSequence::UserDefinedConversion:
5708     if (T->isRecordType())
5709       SCS = &ICS.UserDefined.Before;
5710     else
5711       SCS = &ICS.UserDefined.After;
5712     break;
5713   case ImplicitConversionSequence::AmbiguousConversion:
5714   case ImplicitConversionSequence::BadConversion:
5715     if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5716       return S.Diag(From->getBeginLoc(),
5717                     diag::err_typecheck_converted_constant_expression)
5718              << From->getType() << From->getSourceRange() << T;
5719     return ExprError();
5720 
5721   case ImplicitConversionSequence::EllipsisConversion:
5722     llvm_unreachable("ellipsis conversion in converted constant expression");
5723   }
5724 
5725   // Check that we would only use permitted conversions.
5726   if (!CheckConvertedConstantConversions(S, *SCS)) {
5727     return S.Diag(From->getBeginLoc(),
5728                   diag::err_typecheck_converted_constant_expression_disallowed)
5729            << From->getType() << From->getSourceRange() << T;
5730   }
5731   // [...] and where the reference binding (if any) binds directly.
5732   if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5733     return S.Diag(From->getBeginLoc(),
5734                   diag::err_typecheck_converted_constant_expression_indirect)
5735            << From->getType() << From->getSourceRange() << T;
5736   }
5737 
5738   // Usually we can simply apply the ImplicitConversionSequence we formed
5739   // earlier, but that's not guaranteed to work when initializing an object of
5740   // class type.
5741   ExprResult Result;
5742   if (T->isRecordType()) {
5743     assert(CCE == Sema::CCEK_TemplateArg &&
5744            "unexpected class type converted constant expr");
5745     Result = S.PerformCopyInitialization(
5746         InitializedEntity::InitializeTemplateParameter(
5747             T, cast<NonTypeTemplateParmDecl>(Dest)),
5748         SourceLocation(), From);
5749   } else {
5750     Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5751   }
5752   if (Result.isInvalid())
5753     return Result;
5754 
5755   // C++2a [intro.execution]p5:
5756   //   A full-expression is [...] a constant-expression [...]
5757   Result =
5758       S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
5759                             /*DiscardedValue=*/false, /*IsConstexpr=*/true);
5760   if (Result.isInvalid())
5761     return Result;
5762 
5763   // Check for a narrowing implicit conversion.
5764   bool ReturnPreNarrowingValue = false;
5765   APValue PreNarrowingValue;
5766   QualType PreNarrowingType;
5767   switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5768                                 PreNarrowingType)) {
5769   case NK_Dependent_Narrowing:
5770     // Implicit conversion to a narrower type, but the expression is
5771     // value-dependent so we can't tell whether it's actually narrowing.
5772   case NK_Variable_Narrowing:
5773     // Implicit conversion to a narrower type, and the value is not a constant
5774     // expression. We'll diagnose this in a moment.
5775   case NK_Not_Narrowing:
5776     break;
5777 
5778   case NK_Constant_Narrowing:
5779     if (CCE == Sema::CCEK_ArrayBound &&
5780         PreNarrowingType->isIntegralOrEnumerationType() &&
5781         PreNarrowingValue.isInt()) {
5782       // Don't diagnose array bound narrowing here; we produce more precise
5783       // errors by allowing the un-narrowed value through.
5784       ReturnPreNarrowingValue = true;
5785       break;
5786     }
5787     S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5788         << CCE << /*Constant*/ 1
5789         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5790     break;
5791 
5792   case NK_Type_Narrowing:
5793     // FIXME: It would be better to diagnose that the expression is not a
5794     // constant expression.
5795     S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5796         << CCE << /*Constant*/ 0 << From->getType() << T;
5797     break;
5798   }
5799 
5800   if (Result.get()->isValueDependent()) {
5801     Value = APValue();
5802     return Result;
5803   }
5804 
5805   // Check the expression is a constant expression.
5806   SmallVector<PartialDiagnosticAt, 8> Notes;
5807   Expr::EvalResult Eval;
5808   Eval.Diag = &Notes;
5809 
5810   ConstantExprKind Kind;
5811   if (CCE == Sema::CCEK_TemplateArg && T->isRecordType())
5812     Kind = ConstantExprKind::ClassTemplateArgument;
5813   else if (CCE == Sema::CCEK_TemplateArg)
5814     Kind = ConstantExprKind::NonClassTemplateArgument;
5815   else
5816     Kind = ConstantExprKind::Normal;
5817 
5818   if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) ||
5819       (RequireInt && !Eval.Val.isInt())) {
5820     // The expression can't be folded, so we can't keep it at this position in
5821     // the AST.
5822     Result = ExprError();
5823   } else {
5824     Value = Eval.Val;
5825 
5826     if (Notes.empty()) {
5827       // It's a constant expression.
5828       Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value);
5829       if (ReturnPreNarrowingValue)
5830         Value = std::move(PreNarrowingValue);
5831       return E;
5832     }
5833   }
5834 
5835   // It's not a constant expression. Produce an appropriate diagnostic.
5836   if (Notes.size() == 1 &&
5837       Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) {
5838     S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5839   } else if (!Notes.empty() && Notes[0].second.getDiagID() ==
5840                                    diag::note_constexpr_invalid_template_arg) {
5841     Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg);
5842     for (unsigned I = 0; I < Notes.size(); ++I)
5843       S.Diag(Notes[I].first, Notes[I].second);
5844   } else {
5845     S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5846         << CCE << From->getSourceRange();
5847     for (unsigned I = 0; I < Notes.size(); ++I)
5848       S.Diag(Notes[I].first, Notes[I].second);
5849   }
5850   return ExprError();
5851 }
5852 
5853 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5854                                                   APValue &Value, CCEKind CCE,
5855                                                   NamedDecl *Dest) {
5856   return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false,
5857                                             Dest);
5858 }
5859 
5860 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5861                                                   llvm::APSInt &Value,
5862                                                   CCEKind CCE) {
5863   assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
5864 
5865   APValue V;
5866   auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true,
5867                                               /*Dest=*/nullptr);
5868   if (!R.isInvalid() && !R.get()->isValueDependent())
5869     Value = V.getInt();
5870   return R;
5871 }
5872 
5873 
5874 /// dropPointerConversions - If the given standard conversion sequence
5875 /// involves any pointer conversions, remove them.  This may change
5876 /// the result type of the conversion sequence.
5877 static void dropPointerConversion(StandardConversionSequence &SCS) {
5878   if (SCS.Second == ICK_Pointer_Conversion) {
5879     SCS.Second = ICK_Identity;
5880     SCS.Third = ICK_Identity;
5881     SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5882   }
5883 }
5884 
5885 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
5886 /// convert the expression From to an Objective-C pointer type.
5887 static ImplicitConversionSequence
5888 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5889   // Do an implicit conversion to 'id'.
5890   QualType Ty = S.Context.getObjCIdType();
5891   ImplicitConversionSequence ICS
5892     = TryImplicitConversion(S, From, Ty,
5893                             // FIXME: Are these flags correct?
5894                             /*SuppressUserConversions=*/false,
5895                             AllowedExplicit::Conversions,
5896                             /*InOverloadResolution=*/false,
5897                             /*CStyle=*/false,
5898                             /*AllowObjCWritebackConversion=*/false,
5899                             /*AllowObjCConversionOnExplicit=*/true);
5900 
5901   // Strip off any final conversions to 'id'.
5902   switch (ICS.getKind()) {
5903   case ImplicitConversionSequence::BadConversion:
5904   case ImplicitConversionSequence::AmbiguousConversion:
5905   case ImplicitConversionSequence::EllipsisConversion:
5906     break;
5907 
5908   case ImplicitConversionSequence::UserDefinedConversion:
5909     dropPointerConversion(ICS.UserDefined.After);
5910     break;
5911 
5912   case ImplicitConversionSequence::StandardConversion:
5913     dropPointerConversion(ICS.Standard);
5914     break;
5915   }
5916 
5917   return ICS;
5918 }
5919 
5920 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
5921 /// conversion of the expression From to an Objective-C pointer type.
5922 /// Returns a valid but null ExprResult if no conversion sequence exists.
5923 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5924   if (checkPlaceholderForOverload(*this, From))
5925     return ExprError();
5926 
5927   QualType Ty = Context.getObjCIdType();
5928   ImplicitConversionSequence ICS =
5929     TryContextuallyConvertToObjCPointer(*this, From);
5930   if (!ICS.isBad())
5931     return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5932   return ExprResult();
5933 }
5934 
5935 /// Determine whether the provided type is an integral type, or an enumeration
5936 /// type of a permitted flavor.
5937 bool Sema::ICEConvertDiagnoser::match(QualType T) {
5938   return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5939                                  : T->isIntegralOrUnscopedEnumerationType();
5940 }
5941 
5942 static ExprResult
5943 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5944                             Sema::ContextualImplicitConverter &Converter,
5945                             QualType T, UnresolvedSetImpl &ViableConversions) {
5946 
5947   if (Converter.Suppress)
5948     return ExprError();
5949 
5950   Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5951   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5952     CXXConversionDecl *Conv =
5953         cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5954     QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5955     Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5956   }
5957   return From;
5958 }
5959 
5960 static bool
5961 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5962                            Sema::ContextualImplicitConverter &Converter,
5963                            QualType T, bool HadMultipleCandidates,
5964                            UnresolvedSetImpl &ExplicitConversions) {
5965   if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5966     DeclAccessPair Found = ExplicitConversions[0];
5967     CXXConversionDecl *Conversion =
5968         cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5969 
5970     // The user probably meant to invoke the given explicit
5971     // conversion; use it.
5972     QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5973     std::string TypeStr;
5974     ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5975 
5976     Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5977         << FixItHint::CreateInsertion(From->getBeginLoc(),
5978                                       "static_cast<" + TypeStr + ">(")
5979         << FixItHint::CreateInsertion(
5980                SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5981     Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5982 
5983     // If we aren't in a SFINAE context, build a call to the
5984     // explicit conversion function.
5985     if (SemaRef.isSFINAEContext())
5986       return true;
5987 
5988     SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5989     ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5990                                                        HadMultipleCandidates);
5991     if (Result.isInvalid())
5992       return true;
5993     // Record usage of conversion in an implicit cast.
5994     From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5995                                     CK_UserDefinedConversion, Result.get(),
5996                                     nullptr, Result.get()->getValueKind(),
5997                                     SemaRef.CurFPFeatureOverrides());
5998   }
5999   return false;
6000 }
6001 
6002 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
6003                              Sema::ContextualImplicitConverter &Converter,
6004                              QualType T, bool HadMultipleCandidates,
6005                              DeclAccessPair &Found) {
6006   CXXConversionDecl *Conversion =
6007       cast<CXXConversionDecl>(Found->getUnderlyingDecl());
6008   SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
6009 
6010   QualType ToType = Conversion->getConversionType().getNonReferenceType();
6011   if (!Converter.SuppressConversion) {
6012     if (SemaRef.isSFINAEContext())
6013       return true;
6014 
6015     Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
6016         << From->getSourceRange();
6017   }
6018 
6019   ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
6020                                                      HadMultipleCandidates);
6021   if (Result.isInvalid())
6022     return true;
6023   // Record usage of conversion in an implicit cast.
6024   From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
6025                                   CK_UserDefinedConversion, Result.get(),
6026                                   nullptr, Result.get()->getValueKind(),
6027                                   SemaRef.CurFPFeatureOverrides());
6028   return false;
6029 }
6030 
6031 static ExprResult finishContextualImplicitConversion(
6032     Sema &SemaRef, SourceLocation Loc, Expr *From,
6033     Sema::ContextualImplicitConverter &Converter) {
6034   if (!Converter.match(From->getType()) && !Converter.Suppress)
6035     Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
6036         << From->getSourceRange();
6037 
6038   return SemaRef.DefaultLvalueConversion(From);
6039 }
6040 
6041 static void
6042 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
6043                                   UnresolvedSetImpl &ViableConversions,
6044                                   OverloadCandidateSet &CandidateSet) {
6045   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
6046     DeclAccessPair FoundDecl = ViableConversions[I];
6047     NamedDecl *D = FoundDecl.getDecl();
6048     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6049     if (isa<UsingShadowDecl>(D))
6050       D = cast<UsingShadowDecl>(D)->getTargetDecl();
6051 
6052     CXXConversionDecl *Conv;
6053     FunctionTemplateDecl *ConvTemplate;
6054     if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
6055       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
6056     else
6057       Conv = cast<CXXConversionDecl>(D);
6058 
6059     if (ConvTemplate)
6060       SemaRef.AddTemplateConversionCandidate(
6061           ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
6062           /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
6063     else
6064       SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
6065                                      ToType, CandidateSet,
6066                                      /*AllowObjCConversionOnExplicit=*/false,
6067                                      /*AllowExplicit*/ true);
6068   }
6069 }
6070 
6071 /// Attempt to convert the given expression to a type which is accepted
6072 /// by the given converter.
6073 ///
6074 /// This routine will attempt to convert an expression of class type to a
6075 /// type accepted by the specified converter. In C++11 and before, the class
6076 /// must have a single non-explicit conversion function converting to a matching
6077 /// type. In C++1y, there can be multiple such conversion functions, but only
6078 /// one target type.
6079 ///
6080 /// \param Loc The source location of the construct that requires the
6081 /// conversion.
6082 ///
6083 /// \param From The expression we're converting from.
6084 ///
6085 /// \param Converter Used to control and diagnose the conversion process.
6086 ///
6087 /// \returns The expression, converted to an integral or enumeration type if
6088 /// successful.
6089 ExprResult Sema::PerformContextualImplicitConversion(
6090     SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
6091   // We can't perform any more checking for type-dependent expressions.
6092   if (From->isTypeDependent())
6093     return From;
6094 
6095   // Process placeholders immediately.
6096   if (From->hasPlaceholderType()) {
6097     ExprResult result = CheckPlaceholderExpr(From);
6098     if (result.isInvalid())
6099       return result;
6100     From = result.get();
6101   }
6102 
6103   // If the expression already has a matching type, we're golden.
6104   QualType T = From->getType();
6105   if (Converter.match(T))
6106     return DefaultLvalueConversion(From);
6107 
6108   // FIXME: Check for missing '()' if T is a function type?
6109 
6110   // We can only perform contextual implicit conversions on objects of class
6111   // type.
6112   const RecordType *RecordTy = T->getAs<RecordType>();
6113   if (!RecordTy || !getLangOpts().CPlusPlus) {
6114     if (!Converter.Suppress)
6115       Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
6116     return From;
6117   }
6118 
6119   // We must have a complete class type.
6120   struct TypeDiagnoserPartialDiag : TypeDiagnoser {
6121     ContextualImplicitConverter &Converter;
6122     Expr *From;
6123 
6124     TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
6125         : Converter(Converter), From(From) {}
6126 
6127     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
6128       Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
6129     }
6130   } IncompleteDiagnoser(Converter, From);
6131 
6132   if (Converter.Suppress ? !isCompleteType(Loc, T)
6133                          : RequireCompleteType(Loc, T, IncompleteDiagnoser))
6134     return From;
6135 
6136   // Look for a conversion to an integral or enumeration type.
6137   UnresolvedSet<4>
6138       ViableConversions; // These are *potentially* viable in C++1y.
6139   UnresolvedSet<4> ExplicitConversions;
6140   const auto &Conversions =
6141       cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
6142 
6143   bool HadMultipleCandidates =
6144       (std::distance(Conversions.begin(), Conversions.end()) > 1);
6145 
6146   // To check that there is only one target type, in C++1y:
6147   QualType ToType;
6148   bool HasUniqueTargetType = true;
6149 
6150   // Collect explicit or viable (potentially in C++1y) conversions.
6151   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
6152     NamedDecl *D = (*I)->getUnderlyingDecl();
6153     CXXConversionDecl *Conversion;
6154     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
6155     if (ConvTemplate) {
6156       if (getLangOpts().CPlusPlus14)
6157         Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
6158       else
6159         continue; // C++11 does not consider conversion operator templates(?).
6160     } else
6161       Conversion = cast<CXXConversionDecl>(D);
6162 
6163     assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
6164            "Conversion operator templates are considered potentially "
6165            "viable in C++1y");
6166 
6167     QualType CurToType = Conversion->getConversionType().getNonReferenceType();
6168     if (Converter.match(CurToType) || ConvTemplate) {
6169 
6170       if (Conversion->isExplicit()) {
6171         // FIXME: For C++1y, do we need this restriction?
6172         // cf. diagnoseNoViableConversion()
6173         if (!ConvTemplate)
6174           ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
6175       } else {
6176         if (!ConvTemplate && getLangOpts().CPlusPlus14) {
6177           if (ToType.isNull())
6178             ToType = CurToType.getUnqualifiedType();
6179           else if (HasUniqueTargetType &&
6180                    (CurToType.getUnqualifiedType() != ToType))
6181             HasUniqueTargetType = false;
6182         }
6183         ViableConversions.addDecl(I.getDecl(), I.getAccess());
6184       }
6185     }
6186   }
6187 
6188   if (getLangOpts().CPlusPlus14) {
6189     // C++1y [conv]p6:
6190     // ... An expression e of class type E appearing in such a context
6191     // is said to be contextually implicitly converted to a specified
6192     // type T and is well-formed if and only if e can be implicitly
6193     // converted to a type T that is determined as follows: E is searched
6194     // for conversion functions whose return type is cv T or reference to
6195     // cv T such that T is allowed by the context. There shall be
6196     // exactly one such T.
6197 
6198     // If no unique T is found:
6199     if (ToType.isNull()) {
6200       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6201                                      HadMultipleCandidates,
6202                                      ExplicitConversions))
6203         return ExprError();
6204       return finishContextualImplicitConversion(*this, Loc, From, Converter);
6205     }
6206 
6207     // If more than one unique Ts are found:
6208     if (!HasUniqueTargetType)
6209       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6210                                          ViableConversions);
6211 
6212     // If one unique T is found:
6213     // First, build a candidate set from the previously recorded
6214     // potentially viable conversions.
6215     OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6216     collectViableConversionCandidates(*this, From, ToType, ViableConversions,
6217                                       CandidateSet);
6218 
6219     // Then, perform overload resolution over the candidate set.
6220     OverloadCandidateSet::iterator Best;
6221     switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
6222     case OR_Success: {
6223       // Apply this conversion.
6224       DeclAccessPair Found =
6225           DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
6226       if (recordConversion(*this, Loc, From, Converter, T,
6227                            HadMultipleCandidates, Found))
6228         return ExprError();
6229       break;
6230     }
6231     case OR_Ambiguous:
6232       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6233                                          ViableConversions);
6234     case OR_No_Viable_Function:
6235       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6236                                      HadMultipleCandidates,
6237                                      ExplicitConversions))
6238         return ExprError();
6239       LLVM_FALLTHROUGH;
6240     case OR_Deleted:
6241       // We'll complain below about a non-integral condition type.
6242       break;
6243     }
6244   } else {
6245     switch (ViableConversions.size()) {
6246     case 0: {
6247       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6248                                      HadMultipleCandidates,
6249                                      ExplicitConversions))
6250         return ExprError();
6251 
6252       // We'll complain below about a non-integral condition type.
6253       break;
6254     }
6255     case 1: {
6256       // Apply this conversion.
6257       DeclAccessPair Found = ViableConversions[0];
6258       if (recordConversion(*this, Loc, From, Converter, T,
6259                            HadMultipleCandidates, Found))
6260         return ExprError();
6261       break;
6262     }
6263     default:
6264       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6265                                          ViableConversions);
6266     }
6267   }
6268 
6269   return finishContextualImplicitConversion(*this, Loc, From, Converter);
6270 }
6271 
6272 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
6273 /// an acceptable non-member overloaded operator for a call whose
6274 /// arguments have types T1 (and, if non-empty, T2). This routine
6275 /// implements the check in C++ [over.match.oper]p3b2 concerning
6276 /// enumeration types.
6277 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
6278                                                    FunctionDecl *Fn,
6279                                                    ArrayRef<Expr *> Args) {
6280   QualType T1 = Args[0]->getType();
6281   QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
6282 
6283   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
6284     return true;
6285 
6286   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
6287     return true;
6288 
6289   const auto *Proto = Fn->getType()->castAs<FunctionProtoType>();
6290   if (Proto->getNumParams() < 1)
6291     return false;
6292 
6293   if (T1->isEnumeralType()) {
6294     QualType ArgType = Proto->getParamType(0).getNonReferenceType();
6295     if (Context.hasSameUnqualifiedType(T1, ArgType))
6296       return true;
6297   }
6298 
6299   if (Proto->getNumParams() < 2)
6300     return false;
6301 
6302   if (!T2.isNull() && T2->isEnumeralType()) {
6303     QualType ArgType = Proto->getParamType(1).getNonReferenceType();
6304     if (Context.hasSameUnqualifiedType(T2, ArgType))
6305       return true;
6306   }
6307 
6308   return false;
6309 }
6310 
6311 /// AddOverloadCandidate - Adds the given function to the set of
6312 /// candidate functions, using the given function call arguments.  If
6313 /// @p SuppressUserConversions, then don't allow user-defined
6314 /// conversions via constructors or conversion operators.
6315 ///
6316 /// \param PartialOverloading true if we are performing "partial" overloading
6317 /// based on an incomplete set of function arguments. This feature is used by
6318 /// code completion.
6319 void Sema::AddOverloadCandidate(
6320     FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
6321     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6322     bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
6323     ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions,
6324     OverloadCandidateParamOrder PO) {
6325   const FunctionProtoType *Proto
6326     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
6327   assert(Proto && "Functions without a prototype cannot be overloaded");
6328   assert(!Function->getDescribedFunctionTemplate() &&
6329          "Use AddTemplateOverloadCandidate for function templates");
6330 
6331   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
6332     if (!isa<CXXConstructorDecl>(Method)) {
6333       // If we get here, it's because we're calling a member function
6334       // that is named without a member access expression (e.g.,
6335       // "this->f") that was either written explicitly or created
6336       // implicitly. This can happen with a qualified call to a member
6337       // function, e.g., X::f(). We use an empty type for the implied
6338       // object argument (C++ [over.call.func]p3), and the acting context
6339       // is irrelevant.
6340       AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
6341                          Expr::Classification::makeSimpleLValue(), Args,
6342                          CandidateSet, SuppressUserConversions,
6343                          PartialOverloading, EarlyConversions, PO);
6344       return;
6345     }
6346     // We treat a constructor like a non-member function, since its object
6347     // argument doesn't participate in overload resolution.
6348   }
6349 
6350   if (!CandidateSet.isNewCandidate(Function, PO))
6351     return;
6352 
6353   // C++11 [class.copy]p11: [DR1402]
6354   //   A defaulted move constructor that is defined as deleted is ignored by
6355   //   overload resolution.
6356   CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
6357   if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
6358       Constructor->isMoveConstructor())
6359     return;
6360 
6361   // Overload resolution is always an unevaluated context.
6362   EnterExpressionEvaluationContext Unevaluated(
6363       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6364 
6365   // C++ [over.match.oper]p3:
6366   //   if no operand has a class type, only those non-member functions in the
6367   //   lookup set that have a first parameter of type T1 or "reference to
6368   //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
6369   //   is a right operand) a second parameter of type T2 or "reference to
6370   //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
6371   //   candidate functions.
6372   if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
6373       !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
6374     return;
6375 
6376   // Add this candidate
6377   OverloadCandidate &Candidate =
6378       CandidateSet.addCandidate(Args.size(), EarlyConversions);
6379   Candidate.FoundDecl = FoundDecl;
6380   Candidate.Function = Function;
6381   Candidate.Viable = true;
6382   Candidate.RewriteKind =
6383       CandidateSet.getRewriteInfo().getRewriteKind(Function, PO);
6384   Candidate.IsSurrogate = false;
6385   Candidate.IsADLCandidate = IsADLCandidate;
6386   Candidate.IgnoreObjectArgument = false;
6387   Candidate.ExplicitCallArguments = Args.size();
6388 
6389   // Explicit functions are not actually candidates at all if we're not
6390   // allowing them in this context, but keep them around so we can point
6391   // to them in diagnostics.
6392   if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) {
6393     Candidate.Viable = false;
6394     Candidate.FailureKind = ovl_fail_explicit;
6395     return;
6396   }
6397 
6398   if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
6399       !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
6400     Candidate.Viable = false;
6401     Candidate.FailureKind = ovl_non_default_multiversion_function;
6402     return;
6403   }
6404 
6405   if (Constructor) {
6406     // C++ [class.copy]p3:
6407     //   A member function template is never instantiated to perform the copy
6408     //   of a class object to an object of its class type.
6409     QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
6410     if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
6411         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
6412          IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
6413                        ClassType))) {
6414       Candidate.Viable = false;
6415       Candidate.FailureKind = ovl_fail_illegal_constructor;
6416       return;
6417     }
6418 
6419     // C++ [over.match.funcs]p8: (proposed DR resolution)
6420     //   A constructor inherited from class type C that has a first parameter
6421     //   of type "reference to P" (including such a constructor instantiated
6422     //   from a template) is excluded from the set of candidate functions when
6423     //   constructing an object of type cv D if the argument list has exactly
6424     //   one argument and D is reference-related to P and P is reference-related
6425     //   to C.
6426     auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
6427     if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
6428         Constructor->getParamDecl(0)->getType()->isReferenceType()) {
6429       QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
6430       QualType C = Context.getRecordType(Constructor->getParent());
6431       QualType D = Context.getRecordType(Shadow->getParent());
6432       SourceLocation Loc = Args.front()->getExprLoc();
6433       if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
6434           (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
6435         Candidate.Viable = false;
6436         Candidate.FailureKind = ovl_fail_inhctor_slice;
6437         return;
6438       }
6439     }
6440 
6441     // Check that the constructor is capable of constructing an object in the
6442     // destination address space.
6443     if (!Qualifiers::isAddressSpaceSupersetOf(
6444             Constructor->getMethodQualifiers().getAddressSpace(),
6445             CandidateSet.getDestAS())) {
6446       Candidate.Viable = false;
6447       Candidate.FailureKind = ovl_fail_object_addrspace_mismatch;
6448     }
6449   }
6450 
6451   unsigned NumParams = Proto->getNumParams();
6452 
6453   // (C++ 13.3.2p2): A candidate function having fewer than m
6454   // parameters is viable only if it has an ellipsis in its parameter
6455   // list (8.3.5).
6456   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6457       !Proto->isVariadic() &&
6458       shouldEnforceArgLimit(PartialOverloading, Function)) {
6459     Candidate.Viable = false;
6460     Candidate.FailureKind = ovl_fail_too_many_arguments;
6461     return;
6462   }
6463 
6464   // (C++ 13.3.2p2): A candidate function having more than m parameters
6465   // is viable only if the (m+1)st parameter has a default argument
6466   // (8.3.6). For the purposes of overload resolution, the
6467   // parameter list is truncated on the right, so that there are
6468   // exactly m parameters.
6469   unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6470   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6471     // Not enough arguments.
6472     Candidate.Viable = false;
6473     Candidate.FailureKind = ovl_fail_too_few_arguments;
6474     return;
6475   }
6476 
6477   // (CUDA B.1): Check for invalid calls between targets.
6478   if (getLangOpts().CUDA)
6479     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6480       // Skip the check for callers that are implicit members, because in this
6481       // case we may not yet know what the member's target is; the target is
6482       // inferred for the member automatically, based on the bases and fields of
6483       // the class.
6484       if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6485         Candidate.Viable = false;
6486         Candidate.FailureKind = ovl_fail_bad_target;
6487         return;
6488       }
6489 
6490   if (Function->getTrailingRequiresClause()) {
6491     ConstraintSatisfaction Satisfaction;
6492     if (CheckFunctionConstraints(Function, Satisfaction) ||
6493         !Satisfaction.IsSatisfied) {
6494       Candidate.Viable = false;
6495       Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
6496       return;
6497     }
6498   }
6499 
6500   // Determine the implicit conversion sequences for each of the
6501   // arguments.
6502   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6503     unsigned ConvIdx =
6504         PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx;
6505     if (Candidate.Conversions[ConvIdx].isInitialized()) {
6506       // We already formed a conversion sequence for this parameter during
6507       // template argument deduction.
6508     } else if (ArgIdx < NumParams) {
6509       // (C++ 13.3.2p3): for F to be a viable function, there shall
6510       // exist for each argument an implicit conversion sequence
6511       // (13.3.3.1) that converts that argument to the corresponding
6512       // parameter of F.
6513       QualType ParamType = Proto->getParamType(ArgIdx);
6514       Candidate.Conversions[ConvIdx] = TryCopyInitialization(
6515           *this, Args[ArgIdx], ParamType, SuppressUserConversions,
6516           /*InOverloadResolution=*/true,
6517           /*AllowObjCWritebackConversion=*/
6518           getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
6519       if (Candidate.Conversions[ConvIdx].isBad()) {
6520         Candidate.Viable = false;
6521         Candidate.FailureKind = ovl_fail_bad_conversion;
6522         return;
6523       }
6524     } else {
6525       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6526       // argument for which there is no corresponding parameter is
6527       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6528       Candidate.Conversions[ConvIdx].setEllipsis();
6529     }
6530   }
6531 
6532   if (EnableIfAttr *FailedAttr =
6533           CheckEnableIf(Function, CandidateSet.getLocation(), Args)) {
6534     Candidate.Viable = false;
6535     Candidate.FailureKind = ovl_fail_enable_if;
6536     Candidate.DeductionFailure.Data = FailedAttr;
6537     return;
6538   }
6539 }
6540 
6541 ObjCMethodDecl *
6542 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6543                        SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6544   if (Methods.size() <= 1)
6545     return nullptr;
6546 
6547   for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6548     bool Match = true;
6549     ObjCMethodDecl *Method = Methods[b];
6550     unsigned NumNamedArgs = Sel.getNumArgs();
6551     // Method might have more arguments than selector indicates. This is due
6552     // to addition of c-style arguments in method.
6553     if (Method->param_size() > NumNamedArgs)
6554       NumNamedArgs = Method->param_size();
6555     if (Args.size() < NumNamedArgs)
6556       continue;
6557 
6558     for (unsigned i = 0; i < NumNamedArgs; i++) {
6559       // We can't do any type-checking on a type-dependent argument.
6560       if (Args[i]->isTypeDependent()) {
6561         Match = false;
6562         break;
6563       }
6564 
6565       ParmVarDecl *param = Method->parameters()[i];
6566       Expr *argExpr = Args[i];
6567       assert(argExpr && "SelectBestMethod(): missing expression");
6568 
6569       // Strip the unbridged-cast placeholder expression off unless it's
6570       // a consumed argument.
6571       if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6572           !param->hasAttr<CFConsumedAttr>())
6573         argExpr = stripARCUnbridgedCast(argExpr);
6574 
6575       // If the parameter is __unknown_anytype, move on to the next method.
6576       if (param->getType() == Context.UnknownAnyTy) {
6577         Match = false;
6578         break;
6579       }
6580 
6581       ImplicitConversionSequence ConversionState
6582         = TryCopyInitialization(*this, argExpr, param->getType(),
6583                                 /*SuppressUserConversions*/false,
6584                                 /*InOverloadResolution=*/true,
6585                                 /*AllowObjCWritebackConversion=*/
6586                                 getLangOpts().ObjCAutoRefCount,
6587                                 /*AllowExplicit*/false);
6588       // This function looks for a reasonably-exact match, so we consider
6589       // incompatible pointer conversions to be a failure here.
6590       if (ConversionState.isBad() ||
6591           (ConversionState.isStandard() &&
6592            ConversionState.Standard.Second ==
6593                ICK_Incompatible_Pointer_Conversion)) {
6594         Match = false;
6595         break;
6596       }
6597     }
6598     // Promote additional arguments to variadic methods.
6599     if (Match && Method->isVariadic()) {
6600       for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6601         if (Args[i]->isTypeDependent()) {
6602           Match = false;
6603           break;
6604         }
6605         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6606                                                           nullptr);
6607         if (Arg.isInvalid()) {
6608           Match = false;
6609           break;
6610         }
6611       }
6612     } else {
6613       // Check for extra arguments to non-variadic methods.
6614       if (Args.size() != NumNamedArgs)
6615         Match = false;
6616       else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6617         // Special case when selectors have no argument. In this case, select
6618         // one with the most general result type of 'id'.
6619         for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6620           QualType ReturnT = Methods[b]->getReturnType();
6621           if (ReturnT->isObjCIdType())
6622             return Methods[b];
6623         }
6624       }
6625     }
6626 
6627     if (Match)
6628       return Method;
6629   }
6630   return nullptr;
6631 }
6632 
6633 static bool convertArgsForAvailabilityChecks(
6634     Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc,
6635     ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis,
6636     Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) {
6637   if (ThisArg) {
6638     CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6639     assert(!isa<CXXConstructorDecl>(Method) &&
6640            "Shouldn't have `this` for ctors!");
6641     assert(!Method->isStatic() && "Shouldn't have `this` for static methods!");
6642     ExprResult R = S.PerformObjectArgumentInitialization(
6643         ThisArg, /*Qualifier=*/nullptr, Method, Method);
6644     if (R.isInvalid())
6645       return false;
6646     ConvertedThis = R.get();
6647   } else {
6648     if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6649       (void)MD;
6650       assert((MissingImplicitThis || MD->isStatic() ||
6651               isa<CXXConstructorDecl>(MD)) &&
6652              "Expected `this` for non-ctor instance methods");
6653     }
6654     ConvertedThis = nullptr;
6655   }
6656 
6657   // Ignore any variadic arguments. Converting them is pointless, since the
6658   // user can't refer to them in the function condition.
6659   unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6660 
6661   // Convert the arguments.
6662   for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6663     ExprResult R;
6664     R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6665                                         S.Context, Function->getParamDecl(I)),
6666                                     SourceLocation(), Args[I]);
6667 
6668     if (R.isInvalid())
6669       return false;
6670 
6671     ConvertedArgs.push_back(R.get());
6672   }
6673 
6674   if (Trap.hasErrorOccurred())
6675     return false;
6676 
6677   // Push default arguments if needed.
6678   if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6679     for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6680       ParmVarDecl *P = Function->getParamDecl(i);
6681       if (!P->hasDefaultArg())
6682         return false;
6683       ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P);
6684       if (R.isInvalid())
6685         return false;
6686       ConvertedArgs.push_back(R.get());
6687     }
6688 
6689     if (Trap.hasErrorOccurred())
6690       return false;
6691   }
6692   return true;
6693 }
6694 
6695 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function,
6696                                   SourceLocation CallLoc,
6697                                   ArrayRef<Expr *> Args,
6698                                   bool MissingImplicitThis) {
6699   auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
6700   if (EnableIfAttrs.begin() == EnableIfAttrs.end())
6701     return nullptr;
6702 
6703   SFINAETrap Trap(*this);
6704   SmallVector<Expr *, 16> ConvertedArgs;
6705   // FIXME: We should look into making enable_if late-parsed.
6706   Expr *DiscardedThis;
6707   if (!convertArgsForAvailabilityChecks(
6708           *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap,
6709           /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6710     return *EnableIfAttrs.begin();
6711 
6712   for (auto *EIA : EnableIfAttrs) {
6713     APValue Result;
6714     // FIXME: This doesn't consider value-dependent cases, because doing so is
6715     // very difficult. Ideally, we should handle them more gracefully.
6716     if (EIA->getCond()->isValueDependent() ||
6717         !EIA->getCond()->EvaluateWithSubstitution(
6718             Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6719       return EIA;
6720 
6721     if (!Result.isInt() || !Result.getInt().getBoolValue())
6722       return EIA;
6723   }
6724   return nullptr;
6725 }
6726 
6727 template <typename CheckFn>
6728 static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6729                                         bool ArgDependent, SourceLocation Loc,
6730                                         CheckFn &&IsSuccessful) {
6731   SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6732   for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6733     if (ArgDependent == DIA->getArgDependent())
6734       Attrs.push_back(DIA);
6735   }
6736 
6737   // Common case: No diagnose_if attributes, so we can quit early.
6738   if (Attrs.empty())
6739     return false;
6740 
6741   auto WarningBegin = std::stable_partition(
6742       Attrs.begin(), Attrs.end(),
6743       [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6744 
6745   // Note that diagnose_if attributes are late-parsed, so they appear in the
6746   // correct order (unlike enable_if attributes).
6747   auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6748                                IsSuccessful);
6749   if (ErrAttr != WarningBegin) {
6750     const DiagnoseIfAttr *DIA = *ErrAttr;
6751     S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6752     S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6753         << DIA->getParent() << DIA->getCond()->getSourceRange();
6754     return true;
6755   }
6756 
6757   for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6758     if (IsSuccessful(DIA)) {
6759       S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6760       S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6761           << DIA->getParent() << DIA->getCond()->getSourceRange();
6762     }
6763 
6764   return false;
6765 }
6766 
6767 bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6768                                                const Expr *ThisArg,
6769                                                ArrayRef<const Expr *> Args,
6770                                                SourceLocation Loc) {
6771   return diagnoseDiagnoseIfAttrsWith(
6772       *this, Function, /*ArgDependent=*/true, Loc,
6773       [&](const DiagnoseIfAttr *DIA) {
6774         APValue Result;
6775         // It's sane to use the same Args for any redecl of this function, since
6776         // EvaluateWithSubstitution only cares about the position of each
6777         // argument in the arg list, not the ParmVarDecl* it maps to.
6778         if (!DIA->getCond()->EvaluateWithSubstitution(
6779                 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6780           return false;
6781         return Result.isInt() && Result.getInt().getBoolValue();
6782       });
6783 }
6784 
6785 bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6786                                                  SourceLocation Loc) {
6787   return diagnoseDiagnoseIfAttrsWith(
6788       *this, ND, /*ArgDependent=*/false, Loc,
6789       [&](const DiagnoseIfAttr *DIA) {
6790         bool Result;
6791         return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6792                Result;
6793       });
6794 }
6795 
6796 /// Add all of the function declarations in the given function set to
6797 /// the overload candidate set.
6798 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6799                                  ArrayRef<Expr *> Args,
6800                                  OverloadCandidateSet &CandidateSet,
6801                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6802                                  bool SuppressUserConversions,
6803                                  bool PartialOverloading,
6804                                  bool FirstArgumentIsBase) {
6805   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6806     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6807     ArrayRef<Expr *> FunctionArgs = Args;
6808 
6809     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
6810     FunctionDecl *FD =
6811         FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
6812 
6813     if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6814       QualType ObjectType;
6815       Expr::Classification ObjectClassification;
6816       if (Args.size() > 0) {
6817         if (Expr *E = Args[0]) {
6818           // Use the explicit base to restrict the lookup:
6819           ObjectType = E->getType();
6820           // Pointers in the object arguments are implicitly dereferenced, so we
6821           // always classify them as l-values.
6822           if (!ObjectType.isNull() && ObjectType->isPointerType())
6823             ObjectClassification = Expr::Classification::makeSimpleLValue();
6824           else
6825             ObjectClassification = E->Classify(Context);
6826         } // .. else there is an implicit base.
6827         FunctionArgs = Args.slice(1);
6828       }
6829       if (FunTmpl) {
6830         AddMethodTemplateCandidate(
6831             FunTmpl, F.getPair(),
6832             cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6833             ExplicitTemplateArgs, ObjectType, ObjectClassification,
6834             FunctionArgs, CandidateSet, SuppressUserConversions,
6835             PartialOverloading);
6836       } else {
6837         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6838                            cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6839                            ObjectClassification, FunctionArgs, CandidateSet,
6840                            SuppressUserConversions, PartialOverloading);
6841       }
6842     } else {
6843       // This branch handles both standalone functions and static methods.
6844 
6845       // Slice the first argument (which is the base) when we access
6846       // static method as non-static.
6847       if (Args.size() > 0 &&
6848           (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6849                         !isa<CXXConstructorDecl>(FD)))) {
6850         assert(cast<CXXMethodDecl>(FD)->isStatic());
6851         FunctionArgs = Args.slice(1);
6852       }
6853       if (FunTmpl) {
6854         AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
6855                                      ExplicitTemplateArgs, FunctionArgs,
6856                                      CandidateSet, SuppressUserConversions,
6857                                      PartialOverloading);
6858       } else {
6859         AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6860                              SuppressUserConversions, PartialOverloading);
6861       }
6862     }
6863   }
6864 }
6865 
6866 /// AddMethodCandidate - Adds a named decl (which is some kind of
6867 /// method) as a method candidate to the given overload set.
6868 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType,
6869                               Expr::Classification ObjectClassification,
6870                               ArrayRef<Expr *> Args,
6871                               OverloadCandidateSet &CandidateSet,
6872                               bool SuppressUserConversions,
6873                               OverloadCandidateParamOrder PO) {
6874   NamedDecl *Decl = FoundDecl.getDecl();
6875   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6876 
6877   if (isa<UsingShadowDecl>(Decl))
6878     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6879 
6880   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6881     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
6882            "Expected a member function template");
6883     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6884                                /*ExplicitArgs*/ nullptr, ObjectType,
6885                                ObjectClassification, Args, CandidateSet,
6886                                SuppressUserConversions, false, PO);
6887   } else {
6888     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6889                        ObjectType, ObjectClassification, Args, CandidateSet,
6890                        SuppressUserConversions, false, None, PO);
6891   }
6892 }
6893 
6894 /// AddMethodCandidate - Adds the given C++ member function to the set
6895 /// of candidate functions, using the given function call arguments
6896 /// and the object argument (@c Object). For example, in a call
6897 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6898 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6899 /// allow user-defined conversions via constructors or conversion
6900 /// operators.
6901 void
6902 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6903                          CXXRecordDecl *ActingContext, QualType ObjectType,
6904                          Expr::Classification ObjectClassification,
6905                          ArrayRef<Expr *> Args,
6906                          OverloadCandidateSet &CandidateSet,
6907                          bool SuppressUserConversions,
6908                          bool PartialOverloading,
6909                          ConversionSequenceList EarlyConversions,
6910                          OverloadCandidateParamOrder PO) {
6911   const FunctionProtoType *Proto
6912     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6913   assert(Proto && "Methods without a prototype cannot be overloaded");
6914   assert(!isa<CXXConstructorDecl>(Method) &&
6915          "Use AddOverloadCandidate for constructors");
6916 
6917   if (!CandidateSet.isNewCandidate(Method, PO))
6918     return;
6919 
6920   // C++11 [class.copy]p23: [DR1402]
6921   //   A defaulted move assignment operator that is defined as deleted is
6922   //   ignored by overload resolution.
6923   if (Method->isDefaulted() && Method->isDeleted() &&
6924       Method->isMoveAssignmentOperator())
6925     return;
6926 
6927   // Overload resolution is always an unevaluated context.
6928   EnterExpressionEvaluationContext Unevaluated(
6929       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6930 
6931   // Add this candidate
6932   OverloadCandidate &Candidate =
6933       CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
6934   Candidate.FoundDecl = FoundDecl;
6935   Candidate.Function = Method;
6936   Candidate.RewriteKind =
6937       CandidateSet.getRewriteInfo().getRewriteKind(Method, PO);
6938   Candidate.IsSurrogate = false;
6939   Candidate.IgnoreObjectArgument = false;
6940   Candidate.ExplicitCallArguments = Args.size();
6941 
6942   unsigned NumParams = Proto->getNumParams();
6943 
6944   // (C++ 13.3.2p2): A candidate function having fewer than m
6945   // parameters is viable only if it has an ellipsis in its parameter
6946   // list (8.3.5).
6947   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6948       !Proto->isVariadic() &&
6949       shouldEnforceArgLimit(PartialOverloading, Method)) {
6950     Candidate.Viable = false;
6951     Candidate.FailureKind = ovl_fail_too_many_arguments;
6952     return;
6953   }
6954 
6955   // (C++ 13.3.2p2): A candidate function having more than m parameters
6956   // is viable only if the (m+1)st parameter has a default argument
6957   // (8.3.6). For the purposes of overload resolution, the
6958   // parameter list is truncated on the right, so that there are
6959   // exactly m parameters.
6960   unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6961   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6962     // Not enough arguments.
6963     Candidate.Viable = false;
6964     Candidate.FailureKind = ovl_fail_too_few_arguments;
6965     return;
6966   }
6967 
6968   Candidate.Viable = true;
6969 
6970   if (Method->isStatic() || ObjectType.isNull())
6971     // The implicit object argument is ignored.
6972     Candidate.IgnoreObjectArgument = true;
6973   else {
6974     unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
6975     // Determine the implicit conversion sequence for the object
6976     // parameter.
6977     Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization(
6978         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6979         Method, ActingContext);
6980     if (Candidate.Conversions[ConvIdx].isBad()) {
6981       Candidate.Viable = false;
6982       Candidate.FailureKind = ovl_fail_bad_conversion;
6983       return;
6984     }
6985   }
6986 
6987   // (CUDA B.1): Check for invalid calls between targets.
6988   if (getLangOpts().CUDA)
6989     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6990       if (!IsAllowedCUDACall(Caller, Method)) {
6991         Candidate.Viable = false;
6992         Candidate.FailureKind = ovl_fail_bad_target;
6993         return;
6994       }
6995 
6996   if (Method->getTrailingRequiresClause()) {
6997     ConstraintSatisfaction Satisfaction;
6998     if (CheckFunctionConstraints(Method, Satisfaction) ||
6999         !Satisfaction.IsSatisfied) {
7000       Candidate.Viable = false;
7001       Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
7002       return;
7003     }
7004   }
7005 
7006   // Determine the implicit conversion sequences for each of the
7007   // arguments.
7008   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
7009     unsigned ConvIdx =
7010         PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1);
7011     if (Candidate.Conversions[ConvIdx].isInitialized()) {
7012       // We already formed a conversion sequence for this parameter during
7013       // template argument deduction.
7014     } else if (ArgIdx < NumParams) {
7015       // (C++ 13.3.2p3): for F to be a viable function, there shall
7016       // exist for each argument an implicit conversion sequence
7017       // (13.3.3.1) that converts that argument to the corresponding
7018       // parameter of F.
7019       QualType ParamType = Proto->getParamType(ArgIdx);
7020       Candidate.Conversions[ConvIdx]
7021         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7022                                 SuppressUserConversions,
7023                                 /*InOverloadResolution=*/true,
7024                                 /*AllowObjCWritebackConversion=*/
7025                                   getLangOpts().ObjCAutoRefCount);
7026       if (Candidate.Conversions[ConvIdx].isBad()) {
7027         Candidate.Viable = false;
7028         Candidate.FailureKind = ovl_fail_bad_conversion;
7029         return;
7030       }
7031     } else {
7032       // (C++ 13.3.2p2): For the purposes of overload resolution, any
7033       // argument for which there is no corresponding parameter is
7034       // considered to "match the ellipsis" (C+ 13.3.3.1.3).
7035       Candidate.Conversions[ConvIdx].setEllipsis();
7036     }
7037   }
7038 
7039   if (EnableIfAttr *FailedAttr =
7040           CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) {
7041     Candidate.Viable = false;
7042     Candidate.FailureKind = ovl_fail_enable_if;
7043     Candidate.DeductionFailure.Data = FailedAttr;
7044     return;
7045   }
7046 
7047   if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
7048       !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
7049     Candidate.Viable = false;
7050     Candidate.FailureKind = ovl_non_default_multiversion_function;
7051   }
7052 }
7053 
7054 /// Add a C++ member function template as a candidate to the candidate
7055 /// set, using template argument deduction to produce an appropriate member
7056 /// function template specialization.
7057 void Sema::AddMethodTemplateCandidate(
7058     FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl,
7059     CXXRecordDecl *ActingContext,
7060     TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType,
7061     Expr::Classification ObjectClassification, ArrayRef<Expr *> Args,
7062     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7063     bool PartialOverloading, OverloadCandidateParamOrder PO) {
7064   if (!CandidateSet.isNewCandidate(MethodTmpl, PO))
7065     return;
7066 
7067   // C++ [over.match.funcs]p7:
7068   //   In each case where a candidate is a function template, candidate
7069   //   function template specializations are generated using template argument
7070   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
7071   //   candidate functions in the usual way.113) A given name can refer to one
7072   //   or more function templates and also to a set of overloaded non-template
7073   //   functions. In such a case, the candidate functions generated from each
7074   //   function template are combined with the set of non-template candidate
7075   //   functions.
7076   TemplateDeductionInfo Info(CandidateSet.getLocation());
7077   FunctionDecl *Specialization = nullptr;
7078   ConversionSequenceList Conversions;
7079   if (TemplateDeductionResult Result = DeduceTemplateArguments(
7080           MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
7081           PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7082             return CheckNonDependentConversions(
7083                 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
7084                 SuppressUserConversions, ActingContext, ObjectType,
7085                 ObjectClassification, PO);
7086           })) {
7087     OverloadCandidate &Candidate =
7088         CandidateSet.addCandidate(Conversions.size(), Conversions);
7089     Candidate.FoundDecl = FoundDecl;
7090     Candidate.Function = MethodTmpl->getTemplatedDecl();
7091     Candidate.Viable = false;
7092     Candidate.RewriteKind =
7093       CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7094     Candidate.IsSurrogate = false;
7095     Candidate.IgnoreObjectArgument =
7096         cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
7097         ObjectType.isNull();
7098     Candidate.ExplicitCallArguments = Args.size();
7099     if (Result == TDK_NonDependentConversionFailure)
7100       Candidate.FailureKind = ovl_fail_bad_conversion;
7101     else {
7102       Candidate.FailureKind = ovl_fail_bad_deduction;
7103       Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7104                                                             Info);
7105     }
7106     return;
7107   }
7108 
7109   // Add the function template specialization produced by template argument
7110   // deduction as a candidate.
7111   assert(Specialization && "Missing member function template specialization?");
7112   assert(isa<CXXMethodDecl>(Specialization) &&
7113          "Specialization is not a member function?");
7114   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
7115                      ActingContext, ObjectType, ObjectClassification, Args,
7116                      CandidateSet, SuppressUserConversions, PartialOverloading,
7117                      Conversions, PO);
7118 }
7119 
7120 /// Determine whether a given function template has a simple explicit specifier
7121 /// or a non-value-dependent explicit-specification that evaluates to true.
7122 static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) {
7123   return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit();
7124 }
7125 
7126 /// Add a C++ function template specialization as a candidate
7127 /// in the candidate set, using template argument deduction to produce
7128 /// an appropriate function template specialization.
7129 void Sema::AddTemplateOverloadCandidate(
7130     FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7131     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
7132     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7133     bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate,
7134     OverloadCandidateParamOrder PO) {
7135   if (!CandidateSet.isNewCandidate(FunctionTemplate, PO))
7136     return;
7137 
7138   // If the function template has a non-dependent explicit specification,
7139   // exclude it now if appropriate; we are not permitted to perform deduction
7140   // and substitution in this case.
7141   if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7142     OverloadCandidate &Candidate = CandidateSet.addCandidate();
7143     Candidate.FoundDecl = FoundDecl;
7144     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7145     Candidate.Viable = false;
7146     Candidate.FailureKind = ovl_fail_explicit;
7147     return;
7148   }
7149 
7150   // C++ [over.match.funcs]p7:
7151   //   In each case where a candidate is a function template, candidate
7152   //   function template specializations are generated using template argument
7153   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
7154   //   candidate functions in the usual way.113) A given name can refer to one
7155   //   or more function templates and also to a set of overloaded non-template
7156   //   functions. In such a case, the candidate functions generated from each
7157   //   function template are combined with the set of non-template candidate
7158   //   functions.
7159   TemplateDeductionInfo Info(CandidateSet.getLocation());
7160   FunctionDecl *Specialization = nullptr;
7161   ConversionSequenceList Conversions;
7162   if (TemplateDeductionResult Result = DeduceTemplateArguments(
7163           FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
7164           PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7165             return CheckNonDependentConversions(
7166                 FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions,
7167                 SuppressUserConversions, nullptr, QualType(), {}, PO);
7168           })) {
7169     OverloadCandidate &Candidate =
7170         CandidateSet.addCandidate(Conversions.size(), Conversions);
7171     Candidate.FoundDecl = FoundDecl;
7172     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7173     Candidate.Viable = false;
7174     Candidate.RewriteKind =
7175       CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7176     Candidate.IsSurrogate = false;
7177     Candidate.IsADLCandidate = IsADLCandidate;
7178     // Ignore the object argument if there is one, since we don't have an object
7179     // type.
7180     Candidate.IgnoreObjectArgument =
7181         isa<CXXMethodDecl>(Candidate.Function) &&
7182         !isa<CXXConstructorDecl>(Candidate.Function);
7183     Candidate.ExplicitCallArguments = Args.size();
7184     if (Result == TDK_NonDependentConversionFailure)
7185       Candidate.FailureKind = ovl_fail_bad_conversion;
7186     else {
7187       Candidate.FailureKind = ovl_fail_bad_deduction;
7188       Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7189                                                             Info);
7190     }
7191     return;
7192   }
7193 
7194   // Add the function template specialization produced by template argument
7195   // deduction as a candidate.
7196   assert(Specialization && "Missing function template specialization?");
7197   AddOverloadCandidate(
7198       Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
7199       PartialOverloading, AllowExplicit,
7200       /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO);
7201 }
7202 
7203 /// Check that implicit conversion sequences can be formed for each argument
7204 /// whose corresponding parameter has a non-dependent type, per DR1391's
7205 /// [temp.deduct.call]p10.
7206 bool Sema::CheckNonDependentConversions(
7207     FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
7208     ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
7209     ConversionSequenceList &Conversions, bool SuppressUserConversions,
7210     CXXRecordDecl *ActingContext, QualType ObjectType,
7211     Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) {
7212   // FIXME: The cases in which we allow explicit conversions for constructor
7213   // arguments never consider calling a constructor template. It's not clear
7214   // that is correct.
7215   const bool AllowExplicit = false;
7216 
7217   auto *FD = FunctionTemplate->getTemplatedDecl();
7218   auto *Method = dyn_cast<CXXMethodDecl>(FD);
7219   bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
7220   unsigned ThisConversions = HasThisConversion ? 1 : 0;
7221 
7222   Conversions =
7223       CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
7224 
7225   // Overload resolution is always an unevaluated context.
7226   EnterExpressionEvaluationContext Unevaluated(
7227       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7228 
7229   // For a method call, check the 'this' conversion here too. DR1391 doesn't
7230   // require that, but this check should never result in a hard error, and
7231   // overload resolution is permitted to sidestep instantiations.
7232   if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
7233       !ObjectType.isNull()) {
7234     unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
7235     Conversions[ConvIdx] = TryObjectArgumentInitialization(
7236         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
7237         Method, ActingContext);
7238     if (Conversions[ConvIdx].isBad())
7239       return true;
7240   }
7241 
7242   for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
7243        ++I) {
7244     QualType ParamType = ParamTypes[I];
7245     if (!ParamType->isDependentType()) {
7246       unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed
7247                              ? 0
7248                              : (ThisConversions + I);
7249       Conversions[ConvIdx]
7250         = TryCopyInitialization(*this, Args[I], ParamType,
7251                                 SuppressUserConversions,
7252                                 /*InOverloadResolution=*/true,
7253                                 /*AllowObjCWritebackConversion=*/
7254                                   getLangOpts().ObjCAutoRefCount,
7255                                 AllowExplicit);
7256       if (Conversions[ConvIdx].isBad())
7257         return true;
7258     }
7259   }
7260 
7261   return false;
7262 }
7263 
7264 /// Determine whether this is an allowable conversion from the result
7265 /// of an explicit conversion operator to the expected type, per C++
7266 /// [over.match.conv]p1 and [over.match.ref]p1.
7267 ///
7268 /// \param ConvType The return type of the conversion function.
7269 ///
7270 /// \param ToType The type we are converting to.
7271 ///
7272 /// \param AllowObjCPointerConversion Allow a conversion from one
7273 /// Objective-C pointer to another.
7274 ///
7275 /// \returns true if the conversion is allowable, false otherwise.
7276 static bool isAllowableExplicitConversion(Sema &S,
7277                                           QualType ConvType, QualType ToType,
7278                                           bool AllowObjCPointerConversion) {
7279   QualType ToNonRefType = ToType.getNonReferenceType();
7280 
7281   // Easy case: the types are the same.
7282   if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
7283     return true;
7284 
7285   // Allow qualification conversions.
7286   bool ObjCLifetimeConversion;
7287   if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
7288                                   ObjCLifetimeConversion))
7289     return true;
7290 
7291   // If we're not allowed to consider Objective-C pointer conversions,
7292   // we're done.
7293   if (!AllowObjCPointerConversion)
7294     return false;
7295 
7296   // Is this an Objective-C pointer conversion?
7297   bool IncompatibleObjC = false;
7298   QualType ConvertedType;
7299   return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
7300                                    IncompatibleObjC);
7301 }
7302 
7303 /// AddConversionCandidate - Add a C++ conversion function as a
7304 /// candidate in the candidate set (C++ [over.match.conv],
7305 /// C++ [over.match.copy]). From is the expression we're converting from,
7306 /// and ToType is the type that we're eventually trying to convert to
7307 /// (which may or may not be the same type as the type that the
7308 /// conversion function produces).
7309 void Sema::AddConversionCandidate(
7310     CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
7311     CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
7312     OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7313     bool AllowExplicit, bool AllowResultConversion) {
7314   assert(!Conversion->getDescribedFunctionTemplate() &&
7315          "Conversion function templates use AddTemplateConversionCandidate");
7316   QualType ConvType = Conversion->getConversionType().getNonReferenceType();
7317   if (!CandidateSet.isNewCandidate(Conversion))
7318     return;
7319 
7320   // If the conversion function has an undeduced return type, trigger its
7321   // deduction now.
7322   if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
7323     if (DeduceReturnType(Conversion, From->getExprLoc()))
7324       return;
7325     ConvType = Conversion->getConversionType().getNonReferenceType();
7326   }
7327 
7328   // If we don't allow any conversion of the result type, ignore conversion
7329   // functions that don't convert to exactly (possibly cv-qualified) T.
7330   if (!AllowResultConversion &&
7331       !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
7332     return;
7333 
7334   // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
7335   // operator is only a candidate if its return type is the target type or
7336   // can be converted to the target type with a qualification conversion.
7337   //
7338   // FIXME: Include such functions in the candidate list and explain why we
7339   // can't select them.
7340   if (Conversion->isExplicit() &&
7341       !isAllowableExplicitConversion(*this, ConvType, ToType,
7342                                      AllowObjCConversionOnExplicit))
7343     return;
7344 
7345   // Overload resolution is always an unevaluated context.
7346   EnterExpressionEvaluationContext Unevaluated(
7347       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7348 
7349   // Add this candidate
7350   OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
7351   Candidate.FoundDecl = FoundDecl;
7352   Candidate.Function = Conversion;
7353   Candidate.IsSurrogate = false;
7354   Candidate.IgnoreObjectArgument = false;
7355   Candidate.FinalConversion.setAsIdentityConversion();
7356   Candidate.FinalConversion.setFromType(ConvType);
7357   Candidate.FinalConversion.setAllToTypes(ToType);
7358   Candidate.Viable = true;
7359   Candidate.ExplicitCallArguments = 1;
7360 
7361   // Explicit functions are not actually candidates at all if we're not
7362   // allowing them in this context, but keep them around so we can point
7363   // to them in diagnostics.
7364   if (!AllowExplicit && Conversion->isExplicit()) {
7365     Candidate.Viable = false;
7366     Candidate.FailureKind = ovl_fail_explicit;
7367     return;
7368   }
7369 
7370   // C++ [over.match.funcs]p4:
7371   //   For conversion functions, the function is considered to be a member of
7372   //   the class of the implicit implied object argument for the purpose of
7373   //   defining the type of the implicit object parameter.
7374   //
7375   // Determine the implicit conversion sequence for the implicit
7376   // object parameter.
7377   QualType ImplicitParamType = From->getType();
7378   if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
7379     ImplicitParamType = FromPtrType->getPointeeType();
7380   CXXRecordDecl *ConversionContext
7381     = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl());
7382 
7383   Candidate.Conversions[0] = TryObjectArgumentInitialization(
7384       *this, CandidateSet.getLocation(), From->getType(),
7385       From->Classify(Context), Conversion, ConversionContext);
7386 
7387   if (Candidate.Conversions[0].isBad()) {
7388     Candidate.Viable = false;
7389     Candidate.FailureKind = ovl_fail_bad_conversion;
7390     return;
7391   }
7392 
7393   if (Conversion->getTrailingRequiresClause()) {
7394     ConstraintSatisfaction Satisfaction;
7395     if (CheckFunctionConstraints(Conversion, Satisfaction) ||
7396         !Satisfaction.IsSatisfied) {
7397       Candidate.Viable = false;
7398       Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
7399       return;
7400     }
7401   }
7402 
7403   // We won't go through a user-defined type conversion function to convert a
7404   // derived to base as such conversions are given Conversion Rank. They only
7405   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
7406   QualType FromCanon
7407     = Context.getCanonicalType(From->getType().getUnqualifiedType());
7408   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
7409   if (FromCanon == ToCanon ||
7410       IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
7411     Candidate.Viable = false;
7412     Candidate.FailureKind = ovl_fail_trivial_conversion;
7413     return;
7414   }
7415 
7416   // To determine what the conversion from the result of calling the
7417   // conversion function to the type we're eventually trying to
7418   // convert to (ToType), we need to synthesize a call to the
7419   // conversion function and attempt copy initialization from it. This
7420   // makes sure that we get the right semantics with respect to
7421   // lvalues/rvalues and the type. Fortunately, we can allocate this
7422   // call on the stack and we don't need its arguments to be
7423   // well-formed.
7424   DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
7425                             VK_LValue, From->getBeginLoc());
7426   ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
7427                                 Context.getPointerType(Conversion->getType()),
7428                                 CK_FunctionToPointerDecay, &ConversionRef,
7429                                 VK_PRValue, FPOptionsOverride());
7430 
7431   QualType ConversionType = Conversion->getConversionType();
7432   if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
7433     Candidate.Viable = false;
7434     Candidate.FailureKind = ovl_fail_bad_final_conversion;
7435     return;
7436   }
7437 
7438   ExprValueKind VK = Expr::getValueKindForType(ConversionType);
7439 
7440   // Note that it is safe to allocate CallExpr on the stack here because
7441   // there are 0 arguments (i.e., nothing is allocated using ASTContext's
7442   // allocator).
7443   QualType CallResultType = ConversionType.getNonLValueExprType(Context);
7444 
7445   alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
7446   CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
7447       Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
7448 
7449   ImplicitConversionSequence ICS =
7450       TryCopyInitialization(*this, TheTemporaryCall, ToType,
7451                             /*SuppressUserConversions=*/true,
7452                             /*InOverloadResolution=*/false,
7453                             /*AllowObjCWritebackConversion=*/false);
7454 
7455   switch (ICS.getKind()) {
7456   case ImplicitConversionSequence::StandardConversion:
7457     Candidate.FinalConversion = ICS.Standard;
7458 
7459     // C++ [over.ics.user]p3:
7460     //   If the user-defined conversion is specified by a specialization of a
7461     //   conversion function template, the second standard conversion sequence
7462     //   shall have exact match rank.
7463     if (Conversion->getPrimaryTemplate() &&
7464         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
7465       Candidate.Viable = false;
7466       Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
7467       return;
7468     }
7469 
7470     // C++0x [dcl.init.ref]p5:
7471     //    In the second case, if the reference is an rvalue reference and
7472     //    the second standard conversion sequence of the user-defined
7473     //    conversion sequence includes an lvalue-to-rvalue conversion, the
7474     //    program is ill-formed.
7475     if (ToType->isRValueReferenceType() &&
7476         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
7477       Candidate.Viable = false;
7478       Candidate.FailureKind = ovl_fail_bad_final_conversion;
7479       return;
7480     }
7481     break;
7482 
7483   case ImplicitConversionSequence::BadConversion:
7484     Candidate.Viable = false;
7485     Candidate.FailureKind = ovl_fail_bad_final_conversion;
7486     return;
7487 
7488   default:
7489     llvm_unreachable(
7490            "Can only end up with a standard conversion sequence or failure");
7491   }
7492 
7493   if (EnableIfAttr *FailedAttr =
7494           CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
7495     Candidate.Viable = false;
7496     Candidate.FailureKind = ovl_fail_enable_if;
7497     Candidate.DeductionFailure.Data = FailedAttr;
7498     return;
7499   }
7500 
7501   if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
7502       !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
7503     Candidate.Viable = false;
7504     Candidate.FailureKind = ovl_non_default_multiversion_function;
7505   }
7506 }
7507 
7508 /// Adds a conversion function template specialization
7509 /// candidate to the overload set, using template argument deduction
7510 /// to deduce the template arguments of the conversion function
7511 /// template from the type that we are converting to (C++
7512 /// [temp.deduct.conv]).
7513 void Sema::AddTemplateConversionCandidate(
7514     FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7515     CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
7516     OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7517     bool AllowExplicit, bool AllowResultConversion) {
7518   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
7519          "Only conversion function templates permitted here");
7520 
7521   if (!CandidateSet.isNewCandidate(FunctionTemplate))
7522     return;
7523 
7524   // If the function template has a non-dependent explicit specification,
7525   // exclude it now if appropriate; we are not permitted to perform deduction
7526   // and substitution in this case.
7527   if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7528     OverloadCandidate &Candidate = CandidateSet.addCandidate();
7529     Candidate.FoundDecl = FoundDecl;
7530     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7531     Candidate.Viable = false;
7532     Candidate.FailureKind = ovl_fail_explicit;
7533     return;
7534   }
7535 
7536   TemplateDeductionInfo Info(CandidateSet.getLocation());
7537   CXXConversionDecl *Specialization = nullptr;
7538   if (TemplateDeductionResult Result
7539         = DeduceTemplateArguments(FunctionTemplate, ToType,
7540                                   Specialization, Info)) {
7541     OverloadCandidate &Candidate = CandidateSet.addCandidate();
7542     Candidate.FoundDecl = FoundDecl;
7543     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7544     Candidate.Viable = false;
7545     Candidate.FailureKind = ovl_fail_bad_deduction;
7546     Candidate.IsSurrogate = false;
7547     Candidate.IgnoreObjectArgument = false;
7548     Candidate.ExplicitCallArguments = 1;
7549     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7550                                                           Info);
7551     return;
7552   }
7553 
7554   // Add the conversion function template specialization produced by
7555   // template argument deduction as a candidate.
7556   assert(Specialization && "Missing function template specialization?");
7557   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7558                          CandidateSet, AllowObjCConversionOnExplicit,
7559                          AllowExplicit, AllowResultConversion);
7560 }
7561 
7562 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7563 /// converts the given @c Object to a function pointer via the
7564 /// conversion function @c Conversion, and then attempts to call it
7565 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
7566 /// the type of function that we'll eventually be calling.
7567 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7568                                  DeclAccessPair FoundDecl,
7569                                  CXXRecordDecl *ActingContext,
7570                                  const FunctionProtoType *Proto,
7571                                  Expr *Object,
7572                                  ArrayRef<Expr *> Args,
7573                                  OverloadCandidateSet& CandidateSet) {
7574   if (!CandidateSet.isNewCandidate(Conversion))
7575     return;
7576 
7577   // Overload resolution is always an unevaluated context.
7578   EnterExpressionEvaluationContext Unevaluated(
7579       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7580 
7581   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7582   Candidate.FoundDecl = FoundDecl;
7583   Candidate.Function = nullptr;
7584   Candidate.Surrogate = Conversion;
7585   Candidate.Viable = true;
7586   Candidate.IsSurrogate = true;
7587   Candidate.IgnoreObjectArgument = false;
7588   Candidate.ExplicitCallArguments = Args.size();
7589 
7590   // Determine the implicit conversion sequence for the implicit
7591   // object parameter.
7592   ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7593       *this, CandidateSet.getLocation(), Object->getType(),
7594       Object->Classify(Context), Conversion, ActingContext);
7595   if (ObjectInit.isBad()) {
7596     Candidate.Viable = false;
7597     Candidate.FailureKind = ovl_fail_bad_conversion;
7598     Candidate.Conversions[0] = ObjectInit;
7599     return;
7600   }
7601 
7602   // The first conversion is actually a user-defined conversion whose
7603   // first conversion is ObjectInit's standard conversion (which is
7604   // effectively a reference binding). Record it as such.
7605   Candidate.Conversions[0].setUserDefined();
7606   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7607   Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7608   Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7609   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7610   Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7611   Candidate.Conversions[0].UserDefined.After
7612     = Candidate.Conversions[0].UserDefined.Before;
7613   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7614 
7615   // Find the
7616   unsigned NumParams = Proto->getNumParams();
7617 
7618   // (C++ 13.3.2p2): A candidate function having fewer than m
7619   // parameters is viable only if it has an ellipsis in its parameter
7620   // list (8.3.5).
7621   if (Args.size() > NumParams && !Proto->isVariadic()) {
7622     Candidate.Viable = false;
7623     Candidate.FailureKind = ovl_fail_too_many_arguments;
7624     return;
7625   }
7626 
7627   // Function types don't have any default arguments, so just check if
7628   // we have enough arguments.
7629   if (Args.size() < NumParams) {
7630     // Not enough arguments.
7631     Candidate.Viable = false;
7632     Candidate.FailureKind = ovl_fail_too_few_arguments;
7633     return;
7634   }
7635 
7636   // Determine the implicit conversion sequences for each of the
7637   // arguments.
7638   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7639     if (ArgIdx < NumParams) {
7640       // (C++ 13.3.2p3): for F to be a viable function, there shall
7641       // exist for each argument an implicit conversion sequence
7642       // (13.3.3.1) that converts that argument to the corresponding
7643       // parameter of F.
7644       QualType ParamType = Proto->getParamType(ArgIdx);
7645       Candidate.Conversions[ArgIdx + 1]
7646         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7647                                 /*SuppressUserConversions=*/false,
7648                                 /*InOverloadResolution=*/false,
7649                                 /*AllowObjCWritebackConversion=*/
7650                                   getLangOpts().ObjCAutoRefCount);
7651       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7652         Candidate.Viable = false;
7653         Candidate.FailureKind = ovl_fail_bad_conversion;
7654         return;
7655       }
7656     } else {
7657       // (C++ 13.3.2p2): For the purposes of overload resolution, any
7658       // argument for which there is no corresponding parameter is
7659       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7660       Candidate.Conversions[ArgIdx + 1].setEllipsis();
7661     }
7662   }
7663 
7664   if (EnableIfAttr *FailedAttr =
7665           CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
7666     Candidate.Viable = false;
7667     Candidate.FailureKind = ovl_fail_enable_if;
7668     Candidate.DeductionFailure.Data = FailedAttr;
7669     return;
7670   }
7671 }
7672 
7673 /// Add all of the non-member operator function declarations in the given
7674 /// function set to the overload candidate set.
7675 void Sema::AddNonMemberOperatorCandidates(
7676     const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args,
7677     OverloadCandidateSet &CandidateSet,
7678     TemplateArgumentListInfo *ExplicitTemplateArgs) {
7679   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
7680     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
7681     ArrayRef<Expr *> FunctionArgs = Args;
7682 
7683     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
7684     FunctionDecl *FD =
7685         FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
7686 
7687     // Don't consider rewritten functions if we're not rewriting.
7688     if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD))
7689       continue;
7690 
7691     assert(!isa<CXXMethodDecl>(FD) &&
7692            "unqualified operator lookup found a member function");
7693 
7694     if (FunTmpl) {
7695       AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs,
7696                                    FunctionArgs, CandidateSet);
7697       if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7698         AddTemplateOverloadCandidate(
7699             FunTmpl, F.getPair(), ExplicitTemplateArgs,
7700             {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false,
7701             true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed);
7702     } else {
7703       if (ExplicitTemplateArgs)
7704         continue;
7705       AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet);
7706       if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7707         AddOverloadCandidate(FD, F.getPair(),
7708                              {FunctionArgs[1], FunctionArgs[0]}, CandidateSet,
7709                              false, false, true, false, ADLCallKind::NotADL,
7710                              None, OverloadCandidateParamOrder::Reversed);
7711     }
7712   }
7713 }
7714 
7715 /// Add overload candidates for overloaded operators that are
7716 /// member functions.
7717 ///
7718 /// Add the overloaded operator candidates that are member functions
7719 /// for the operator Op that was used in an operator expression such
7720 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
7721 /// CandidateSet will store the added overload candidates. (C++
7722 /// [over.match.oper]).
7723 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7724                                        SourceLocation OpLoc,
7725                                        ArrayRef<Expr *> Args,
7726                                        OverloadCandidateSet &CandidateSet,
7727                                        OverloadCandidateParamOrder PO) {
7728   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7729 
7730   // C++ [over.match.oper]p3:
7731   //   For a unary operator @ with an operand of a type whose
7732   //   cv-unqualified version is T1, and for a binary operator @ with
7733   //   a left operand of a type whose cv-unqualified version is T1 and
7734   //   a right operand of a type whose cv-unqualified version is T2,
7735   //   three sets of candidate functions, designated member
7736   //   candidates, non-member candidates and built-in candidates, are
7737   //   constructed as follows:
7738   QualType T1 = Args[0]->getType();
7739 
7740   //     -- If T1 is a complete class type or a class currently being
7741   //        defined, the set of member candidates is the result of the
7742   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7743   //        the set of member candidates is empty.
7744   if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7745     // Complete the type if it can be completed.
7746     if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7747       return;
7748     // If the type is neither complete nor being defined, bail out now.
7749     if (!T1Rec->getDecl()->getDefinition())
7750       return;
7751 
7752     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7753     LookupQualifiedName(Operators, T1Rec->getDecl());
7754     Operators.suppressDiagnostics();
7755 
7756     for (LookupResult::iterator Oper = Operators.begin(),
7757                              OperEnd = Operators.end();
7758          Oper != OperEnd;
7759          ++Oper)
7760       AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7761                          Args[0]->Classify(Context), Args.slice(1),
7762                          CandidateSet, /*SuppressUserConversion=*/false, PO);
7763   }
7764 }
7765 
7766 /// AddBuiltinCandidate - Add a candidate for a built-in
7767 /// operator. ResultTy and ParamTys are the result and parameter types
7768 /// of the built-in candidate, respectively. Args and NumArgs are the
7769 /// arguments being passed to the candidate. IsAssignmentOperator
7770 /// should be true when this built-in candidate is an assignment
7771 /// operator. NumContextualBoolArguments is the number of arguments
7772 /// (at the beginning of the argument list) that will be contextually
7773 /// converted to bool.
7774 void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7775                                OverloadCandidateSet& CandidateSet,
7776                                bool IsAssignmentOperator,
7777                                unsigned NumContextualBoolArguments) {
7778   // Overload resolution is always an unevaluated context.
7779   EnterExpressionEvaluationContext Unevaluated(
7780       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7781 
7782   // Add this candidate
7783   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7784   Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7785   Candidate.Function = nullptr;
7786   Candidate.IsSurrogate = false;
7787   Candidate.IgnoreObjectArgument = false;
7788   std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7789 
7790   // Determine the implicit conversion sequences for each of the
7791   // arguments.
7792   Candidate.Viable = true;
7793   Candidate.ExplicitCallArguments = Args.size();
7794   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7795     // C++ [over.match.oper]p4:
7796     //   For the built-in assignment operators, conversions of the
7797     //   left operand are restricted as follows:
7798     //     -- no temporaries are introduced to hold the left operand, and
7799     //     -- no user-defined conversions are applied to the left
7800     //        operand to achieve a type match with the left-most
7801     //        parameter of a built-in candidate.
7802     //
7803     // We block these conversions by turning off user-defined
7804     // conversions, since that is the only way that initialization of
7805     // a reference to a non-class type can occur from something that
7806     // is not of the same type.
7807     if (ArgIdx < NumContextualBoolArguments) {
7808       assert(ParamTys[ArgIdx] == Context.BoolTy &&
7809              "Contextual conversion to bool requires bool type");
7810       Candidate.Conversions[ArgIdx]
7811         = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7812     } else {
7813       Candidate.Conversions[ArgIdx]
7814         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7815                                 ArgIdx == 0 && IsAssignmentOperator,
7816                                 /*InOverloadResolution=*/false,
7817                                 /*AllowObjCWritebackConversion=*/
7818                                   getLangOpts().ObjCAutoRefCount);
7819     }
7820     if (Candidate.Conversions[ArgIdx].isBad()) {
7821       Candidate.Viable = false;
7822       Candidate.FailureKind = ovl_fail_bad_conversion;
7823       break;
7824     }
7825   }
7826 }
7827 
7828 namespace {
7829 
7830 /// BuiltinCandidateTypeSet - A set of types that will be used for the
7831 /// candidate operator functions for built-in operators (C++
7832 /// [over.built]). The types are separated into pointer types and
7833 /// enumeration types.
7834 class BuiltinCandidateTypeSet  {
7835   /// TypeSet - A set of types.
7836   typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7837                           llvm::SmallPtrSet<QualType, 8>> TypeSet;
7838 
7839   /// PointerTypes - The set of pointer types that will be used in the
7840   /// built-in candidates.
7841   TypeSet PointerTypes;
7842 
7843   /// MemberPointerTypes - The set of member pointer types that will be
7844   /// used in the built-in candidates.
7845   TypeSet MemberPointerTypes;
7846 
7847   /// EnumerationTypes - The set of enumeration types that will be
7848   /// used in the built-in candidates.
7849   TypeSet EnumerationTypes;
7850 
7851   /// The set of vector types that will be used in the built-in
7852   /// candidates.
7853   TypeSet VectorTypes;
7854 
7855   /// The set of matrix types that will be used in the built-in
7856   /// candidates.
7857   TypeSet MatrixTypes;
7858 
7859   /// A flag indicating non-record types are viable candidates
7860   bool HasNonRecordTypes;
7861 
7862   /// A flag indicating whether either arithmetic or enumeration types
7863   /// were present in the candidate set.
7864   bool HasArithmeticOrEnumeralTypes;
7865 
7866   /// A flag indicating whether the nullptr type was present in the
7867   /// candidate set.
7868   bool HasNullPtrType;
7869 
7870   /// Sema - The semantic analysis instance where we are building the
7871   /// candidate type set.
7872   Sema &SemaRef;
7873 
7874   /// Context - The AST context in which we will build the type sets.
7875   ASTContext &Context;
7876 
7877   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7878                                                const Qualifiers &VisibleQuals);
7879   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
7880 
7881 public:
7882   /// iterator - Iterates through the types that are part of the set.
7883   typedef TypeSet::iterator iterator;
7884 
7885   BuiltinCandidateTypeSet(Sema &SemaRef)
7886     : HasNonRecordTypes(false),
7887       HasArithmeticOrEnumeralTypes(false),
7888       HasNullPtrType(false),
7889       SemaRef(SemaRef),
7890       Context(SemaRef.Context) { }
7891 
7892   void AddTypesConvertedFrom(QualType Ty,
7893                              SourceLocation Loc,
7894                              bool AllowUserConversions,
7895                              bool AllowExplicitConversions,
7896                              const Qualifiers &VisibleTypeConversionsQuals);
7897 
7898   llvm::iterator_range<iterator> pointer_types() { return PointerTypes; }
7899   llvm::iterator_range<iterator> member_pointer_types() {
7900     return MemberPointerTypes;
7901   }
7902   llvm::iterator_range<iterator> enumeration_types() {
7903     return EnumerationTypes;
7904   }
7905   llvm::iterator_range<iterator> vector_types() { return VectorTypes; }
7906   llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; }
7907 
7908   bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); }
7909   bool hasNonRecordTypes() { return HasNonRecordTypes; }
7910   bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
7911   bool hasNullPtrType() const { return HasNullPtrType; }
7912 };
7913 
7914 } // end anonymous namespace
7915 
7916 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
7917 /// the set of pointer types along with any more-qualified variants of
7918 /// that type. For example, if @p Ty is "int const *", this routine
7919 /// will add "int const *", "int const volatile *", "int const
7920 /// restrict *", and "int const volatile restrict *" to the set of
7921 /// pointer types. Returns true if the add of @p Ty itself succeeded,
7922 /// false otherwise.
7923 ///
7924 /// FIXME: what to do about extended qualifiers?
7925 bool
7926 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7927                                              const Qualifiers &VisibleQuals) {
7928 
7929   // Insert this type.
7930   if (!PointerTypes.insert(Ty))
7931     return false;
7932 
7933   QualType PointeeTy;
7934   const PointerType *PointerTy = Ty->getAs<PointerType>();
7935   bool buildObjCPtr = false;
7936   if (!PointerTy) {
7937     const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
7938     PointeeTy = PTy->getPointeeType();
7939     buildObjCPtr = true;
7940   } else {
7941     PointeeTy = PointerTy->getPointeeType();
7942   }
7943 
7944   // Don't add qualified variants of arrays. For one, they're not allowed
7945   // (the qualifier would sink to the element type), and for another, the
7946   // only overload situation where it matters is subscript or pointer +- int,
7947   // and those shouldn't have qualifier variants anyway.
7948   if (PointeeTy->isArrayType())
7949     return true;
7950 
7951   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7952   bool hasVolatile = VisibleQuals.hasVolatile();
7953   bool hasRestrict = VisibleQuals.hasRestrict();
7954 
7955   // Iterate through all strict supersets of BaseCVR.
7956   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7957     if ((CVR | BaseCVR) != CVR) continue;
7958     // Skip over volatile if no volatile found anywhere in the types.
7959     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
7960 
7961     // Skip over restrict if no restrict found anywhere in the types, or if
7962     // the type cannot be restrict-qualified.
7963     if ((CVR & Qualifiers::Restrict) &&
7964         (!hasRestrict ||
7965          (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
7966       continue;
7967 
7968     // Build qualified pointee type.
7969     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7970 
7971     // Build qualified pointer type.
7972     QualType QPointerTy;
7973     if (!buildObjCPtr)
7974       QPointerTy = Context.getPointerType(QPointeeTy);
7975     else
7976       QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
7977 
7978     // Insert qualified pointer type.
7979     PointerTypes.insert(QPointerTy);
7980   }
7981 
7982   return true;
7983 }
7984 
7985 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
7986 /// to the set of pointer types along with any more-qualified variants of
7987 /// that type. For example, if @p Ty is "int const *", this routine
7988 /// will add "int const *", "int const volatile *", "int const
7989 /// restrict *", and "int const volatile restrict *" to the set of
7990 /// pointer types. Returns true if the add of @p Ty itself succeeded,
7991 /// false otherwise.
7992 ///
7993 /// FIXME: what to do about extended qualifiers?
7994 bool
7995 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
7996     QualType Ty) {
7997   // Insert this type.
7998   if (!MemberPointerTypes.insert(Ty))
7999     return false;
8000 
8001   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
8002   assert(PointerTy && "type was not a member pointer type!");
8003 
8004   QualType PointeeTy = PointerTy->getPointeeType();
8005   // Don't add qualified variants of arrays. For one, they're not allowed
8006   // (the qualifier would sink to the element type), and for another, the
8007   // only overload situation where it matters is subscript or pointer +- int,
8008   // and those shouldn't have qualifier variants anyway.
8009   if (PointeeTy->isArrayType())
8010     return true;
8011   const Type *ClassTy = PointerTy->getClass();
8012 
8013   // Iterate through all strict supersets of the pointee type's CVR
8014   // qualifiers.
8015   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
8016   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
8017     if ((CVR | BaseCVR) != CVR) continue;
8018 
8019     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
8020     MemberPointerTypes.insert(
8021       Context.getMemberPointerType(QPointeeTy, ClassTy));
8022   }
8023 
8024   return true;
8025 }
8026 
8027 /// AddTypesConvertedFrom - Add each of the types to which the type @p
8028 /// Ty can be implicit converted to the given set of @p Types. We're
8029 /// primarily interested in pointer types and enumeration types. We also
8030 /// take member pointer types, for the conditional operator.
8031 /// AllowUserConversions is true if we should look at the conversion
8032 /// functions of a class type, and AllowExplicitConversions if we
8033 /// should also include the explicit conversion functions of a class
8034 /// type.
8035 void
8036 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
8037                                                SourceLocation Loc,
8038                                                bool AllowUserConversions,
8039                                                bool AllowExplicitConversions,
8040                                                const Qualifiers &VisibleQuals) {
8041   // Only deal with canonical types.
8042   Ty = Context.getCanonicalType(Ty);
8043 
8044   // Look through reference types; they aren't part of the type of an
8045   // expression for the purposes of conversions.
8046   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
8047     Ty = RefTy->getPointeeType();
8048 
8049   // If we're dealing with an array type, decay to the pointer.
8050   if (Ty->isArrayType())
8051     Ty = SemaRef.Context.getArrayDecayedType(Ty);
8052 
8053   // Otherwise, we don't care about qualifiers on the type.
8054   Ty = Ty.getLocalUnqualifiedType();
8055 
8056   // Flag if we ever add a non-record type.
8057   const RecordType *TyRec = Ty->getAs<RecordType>();
8058   HasNonRecordTypes = HasNonRecordTypes || !TyRec;
8059 
8060   // Flag if we encounter an arithmetic type.
8061   HasArithmeticOrEnumeralTypes =
8062     HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
8063 
8064   if (Ty->isObjCIdType() || Ty->isObjCClassType())
8065     PointerTypes.insert(Ty);
8066   else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
8067     // Insert our type, and its more-qualified variants, into the set
8068     // of types.
8069     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
8070       return;
8071   } else if (Ty->isMemberPointerType()) {
8072     // Member pointers are far easier, since the pointee can't be converted.
8073     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
8074       return;
8075   } else if (Ty->isEnumeralType()) {
8076     HasArithmeticOrEnumeralTypes = true;
8077     EnumerationTypes.insert(Ty);
8078   } else if (Ty->isVectorType()) {
8079     // We treat vector types as arithmetic types in many contexts as an
8080     // extension.
8081     HasArithmeticOrEnumeralTypes = true;
8082     VectorTypes.insert(Ty);
8083   } else if (Ty->isMatrixType()) {
8084     // Similar to vector types, we treat vector types as arithmetic types in
8085     // many contexts as an extension.
8086     HasArithmeticOrEnumeralTypes = true;
8087     MatrixTypes.insert(Ty);
8088   } else if (Ty->isNullPtrType()) {
8089     HasNullPtrType = true;
8090   } else if (AllowUserConversions && TyRec) {
8091     // No conversion functions in incomplete types.
8092     if (!SemaRef.isCompleteType(Loc, Ty))
8093       return;
8094 
8095     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8096     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8097       if (isa<UsingShadowDecl>(D))
8098         D = cast<UsingShadowDecl>(D)->getTargetDecl();
8099 
8100       // Skip conversion function templates; they don't tell us anything
8101       // about which builtin types we can convert to.
8102       if (isa<FunctionTemplateDecl>(D))
8103         continue;
8104 
8105       CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
8106       if (AllowExplicitConversions || !Conv->isExplicit()) {
8107         AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
8108                               VisibleQuals);
8109       }
8110     }
8111   }
8112 }
8113 /// Helper function for adjusting address spaces for the pointer or reference
8114 /// operands of builtin operators depending on the argument.
8115 static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
8116                                                         Expr *Arg) {
8117   return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
8118 }
8119 
8120 /// Helper function for AddBuiltinOperatorCandidates() that adds
8121 /// the volatile- and non-volatile-qualified assignment operators for the
8122 /// given type to the candidate set.
8123 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
8124                                                    QualType T,
8125                                                    ArrayRef<Expr *> Args,
8126                                     OverloadCandidateSet &CandidateSet) {
8127   QualType ParamTypes[2];
8128 
8129   // T& operator=(T&, T)
8130   ParamTypes[0] = S.Context.getLValueReferenceType(
8131       AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
8132   ParamTypes[1] = T;
8133   S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8134                         /*IsAssignmentOperator=*/true);
8135 
8136   if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
8137     // volatile T& operator=(volatile T&, T)
8138     ParamTypes[0] = S.Context.getLValueReferenceType(
8139         AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
8140                                                 Args[0]));
8141     ParamTypes[1] = T;
8142     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8143                           /*IsAssignmentOperator=*/true);
8144   }
8145 }
8146 
8147 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
8148 /// if any, found in visible type conversion functions found in ArgExpr's type.
8149 static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
8150     Qualifiers VRQuals;
8151     const RecordType *TyRec;
8152     if (const MemberPointerType *RHSMPType =
8153         ArgExpr->getType()->getAs<MemberPointerType>())
8154       TyRec = RHSMPType->getClass()->getAs<RecordType>();
8155     else
8156       TyRec = ArgExpr->getType()->getAs<RecordType>();
8157     if (!TyRec) {
8158       // Just to be safe, assume the worst case.
8159       VRQuals.addVolatile();
8160       VRQuals.addRestrict();
8161       return VRQuals;
8162     }
8163 
8164     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8165     if (!ClassDecl->hasDefinition())
8166       return VRQuals;
8167 
8168     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8169       if (isa<UsingShadowDecl>(D))
8170         D = cast<UsingShadowDecl>(D)->getTargetDecl();
8171       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
8172         QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
8173         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
8174           CanTy = ResTypeRef->getPointeeType();
8175         // Need to go down the pointer/mempointer chain and add qualifiers
8176         // as see them.
8177         bool done = false;
8178         while (!done) {
8179           if (CanTy.isRestrictQualified())
8180             VRQuals.addRestrict();
8181           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
8182             CanTy = ResTypePtr->getPointeeType();
8183           else if (const MemberPointerType *ResTypeMPtr =
8184                 CanTy->getAs<MemberPointerType>())
8185             CanTy = ResTypeMPtr->getPointeeType();
8186           else
8187             done = true;
8188           if (CanTy.isVolatileQualified())
8189             VRQuals.addVolatile();
8190           if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
8191             return VRQuals;
8192         }
8193       }
8194     }
8195     return VRQuals;
8196 }
8197 
8198 namespace {
8199 
8200 /// Helper class to manage the addition of builtin operator overload
8201 /// candidates. It provides shared state and utility methods used throughout
8202 /// the process, as well as a helper method to add each group of builtin
8203 /// operator overloads from the standard to a candidate set.
8204 class BuiltinOperatorOverloadBuilder {
8205   // Common instance state available to all overload candidate addition methods.
8206   Sema &S;
8207   ArrayRef<Expr *> Args;
8208   Qualifiers VisibleTypeConversionsQuals;
8209   bool HasArithmeticOrEnumeralCandidateType;
8210   SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
8211   OverloadCandidateSet &CandidateSet;
8212 
8213   static constexpr int ArithmeticTypesCap = 24;
8214   SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
8215 
8216   // Define some indices used to iterate over the arithmetic types in
8217   // ArithmeticTypes.  The "promoted arithmetic types" are the arithmetic
8218   // types are that preserved by promotion (C++ [over.built]p2).
8219   unsigned FirstIntegralType,
8220            LastIntegralType;
8221   unsigned FirstPromotedIntegralType,
8222            LastPromotedIntegralType;
8223   unsigned FirstPromotedArithmeticType,
8224            LastPromotedArithmeticType;
8225   unsigned NumArithmeticTypes;
8226 
8227   void InitArithmeticTypes() {
8228     // Start of promoted types.
8229     FirstPromotedArithmeticType = 0;
8230     ArithmeticTypes.push_back(S.Context.FloatTy);
8231     ArithmeticTypes.push_back(S.Context.DoubleTy);
8232     ArithmeticTypes.push_back(S.Context.LongDoubleTy);
8233     if (S.Context.getTargetInfo().hasFloat128Type())
8234       ArithmeticTypes.push_back(S.Context.Float128Ty);
8235     if (S.Context.getTargetInfo().hasIbm128Type())
8236       ArithmeticTypes.push_back(S.Context.Ibm128Ty);
8237 
8238     // Start of integral types.
8239     FirstIntegralType = ArithmeticTypes.size();
8240     FirstPromotedIntegralType = ArithmeticTypes.size();
8241     ArithmeticTypes.push_back(S.Context.IntTy);
8242     ArithmeticTypes.push_back(S.Context.LongTy);
8243     ArithmeticTypes.push_back(S.Context.LongLongTy);
8244     if (S.Context.getTargetInfo().hasInt128Type() ||
8245         (S.Context.getAuxTargetInfo() &&
8246          S.Context.getAuxTargetInfo()->hasInt128Type()))
8247       ArithmeticTypes.push_back(S.Context.Int128Ty);
8248     ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
8249     ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
8250     ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
8251     if (S.Context.getTargetInfo().hasInt128Type() ||
8252         (S.Context.getAuxTargetInfo() &&
8253          S.Context.getAuxTargetInfo()->hasInt128Type()))
8254       ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
8255     LastPromotedIntegralType = ArithmeticTypes.size();
8256     LastPromotedArithmeticType = ArithmeticTypes.size();
8257     // End of promoted types.
8258 
8259     ArithmeticTypes.push_back(S.Context.BoolTy);
8260     ArithmeticTypes.push_back(S.Context.CharTy);
8261     ArithmeticTypes.push_back(S.Context.WCharTy);
8262     if (S.Context.getLangOpts().Char8)
8263       ArithmeticTypes.push_back(S.Context.Char8Ty);
8264     ArithmeticTypes.push_back(S.Context.Char16Ty);
8265     ArithmeticTypes.push_back(S.Context.Char32Ty);
8266     ArithmeticTypes.push_back(S.Context.SignedCharTy);
8267     ArithmeticTypes.push_back(S.Context.ShortTy);
8268     ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
8269     ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
8270     LastIntegralType = ArithmeticTypes.size();
8271     NumArithmeticTypes = ArithmeticTypes.size();
8272     // End of integral types.
8273     // FIXME: What about complex? What about half?
8274 
8275     assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&
8276            "Enough inline storage for all arithmetic types.");
8277   }
8278 
8279   /// Helper method to factor out the common pattern of adding overloads
8280   /// for '++' and '--' builtin operators.
8281   void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
8282                                            bool HasVolatile,
8283                                            bool HasRestrict) {
8284     QualType ParamTypes[2] = {
8285       S.Context.getLValueReferenceType(CandidateTy),
8286       S.Context.IntTy
8287     };
8288 
8289     // Non-volatile version.
8290     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8291 
8292     // Use a heuristic to reduce number of builtin candidates in the set:
8293     // add volatile version only if there are conversions to a volatile type.
8294     if (HasVolatile) {
8295       ParamTypes[0] =
8296         S.Context.getLValueReferenceType(
8297           S.Context.getVolatileType(CandidateTy));
8298       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8299     }
8300 
8301     // Add restrict version only if there are conversions to a restrict type
8302     // and our candidate type is a non-restrict-qualified pointer.
8303     if (HasRestrict && CandidateTy->isAnyPointerType() &&
8304         !CandidateTy.isRestrictQualified()) {
8305       ParamTypes[0]
8306         = S.Context.getLValueReferenceType(
8307             S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
8308       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8309 
8310       if (HasVolatile) {
8311         ParamTypes[0]
8312           = S.Context.getLValueReferenceType(
8313               S.Context.getCVRQualifiedType(CandidateTy,
8314                                             (Qualifiers::Volatile |
8315                                              Qualifiers::Restrict)));
8316         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8317       }
8318     }
8319 
8320   }
8321 
8322   /// Helper to add an overload candidate for a binary builtin with types \p L
8323   /// and \p R.
8324   void AddCandidate(QualType L, QualType R) {
8325     QualType LandR[2] = {L, R};
8326     S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8327   }
8328 
8329 public:
8330   BuiltinOperatorOverloadBuilder(
8331     Sema &S, ArrayRef<Expr *> Args,
8332     Qualifiers VisibleTypeConversionsQuals,
8333     bool HasArithmeticOrEnumeralCandidateType,
8334     SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
8335     OverloadCandidateSet &CandidateSet)
8336     : S(S), Args(Args),
8337       VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
8338       HasArithmeticOrEnumeralCandidateType(
8339         HasArithmeticOrEnumeralCandidateType),
8340       CandidateTypes(CandidateTypes),
8341       CandidateSet(CandidateSet) {
8342 
8343     InitArithmeticTypes();
8344   }
8345 
8346   // Increment is deprecated for bool since C++17.
8347   //
8348   // C++ [over.built]p3:
8349   //
8350   //   For every pair (T, VQ), where T is an arithmetic type other
8351   //   than bool, and VQ is either volatile or empty, there exist
8352   //   candidate operator functions of the form
8353   //
8354   //       VQ T&      operator++(VQ T&);
8355   //       T          operator++(VQ T&, int);
8356   //
8357   // C++ [over.built]p4:
8358   //
8359   //   For every pair (T, VQ), where T is an arithmetic type other
8360   //   than bool, and VQ is either volatile or empty, there exist
8361   //   candidate operator functions of the form
8362   //
8363   //       VQ T&      operator--(VQ T&);
8364   //       T          operator--(VQ T&, int);
8365   void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
8366     if (!HasArithmeticOrEnumeralCandidateType)
8367       return;
8368 
8369     for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
8370       const auto TypeOfT = ArithmeticTypes[Arith];
8371       if (TypeOfT == S.Context.BoolTy) {
8372         if (Op == OO_MinusMinus)
8373           continue;
8374         if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
8375           continue;
8376       }
8377       addPlusPlusMinusMinusStyleOverloads(
8378         TypeOfT,
8379         VisibleTypeConversionsQuals.hasVolatile(),
8380         VisibleTypeConversionsQuals.hasRestrict());
8381     }
8382   }
8383 
8384   // C++ [over.built]p5:
8385   //
8386   //   For every pair (T, VQ), where T is a cv-qualified or
8387   //   cv-unqualified object type, and VQ is either volatile or
8388   //   empty, there exist candidate operator functions of the form
8389   //
8390   //       T*VQ&      operator++(T*VQ&);
8391   //       T*VQ&      operator--(T*VQ&);
8392   //       T*         operator++(T*VQ&, int);
8393   //       T*         operator--(T*VQ&, int);
8394   void addPlusPlusMinusMinusPointerOverloads() {
8395     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8396       // Skip pointer types that aren't pointers to object types.
8397       if (!PtrTy->getPointeeType()->isObjectType())
8398         continue;
8399 
8400       addPlusPlusMinusMinusStyleOverloads(
8401           PtrTy,
8402           (!PtrTy.isVolatileQualified() &&
8403            VisibleTypeConversionsQuals.hasVolatile()),
8404           (!PtrTy.isRestrictQualified() &&
8405            VisibleTypeConversionsQuals.hasRestrict()));
8406     }
8407   }
8408 
8409   // C++ [over.built]p6:
8410   //   For every cv-qualified or cv-unqualified object type T, there
8411   //   exist candidate operator functions of the form
8412   //
8413   //       T&         operator*(T*);
8414   //
8415   // C++ [over.built]p7:
8416   //   For every function type T that does not have cv-qualifiers or a
8417   //   ref-qualifier, there exist candidate operator functions of the form
8418   //       T&         operator*(T*);
8419   void addUnaryStarPointerOverloads() {
8420     for (QualType ParamTy : CandidateTypes[0].pointer_types()) {
8421       QualType PointeeTy = ParamTy->getPointeeType();
8422       if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
8423         continue;
8424 
8425       if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
8426         if (Proto->getMethodQuals() || Proto->getRefQualifier())
8427           continue;
8428 
8429       S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8430     }
8431   }
8432 
8433   // C++ [over.built]p9:
8434   //  For every promoted arithmetic type T, there exist candidate
8435   //  operator functions of the form
8436   //
8437   //       T         operator+(T);
8438   //       T         operator-(T);
8439   void addUnaryPlusOrMinusArithmeticOverloads() {
8440     if (!HasArithmeticOrEnumeralCandidateType)
8441       return;
8442 
8443     for (unsigned Arith = FirstPromotedArithmeticType;
8444          Arith < LastPromotedArithmeticType; ++Arith) {
8445       QualType ArithTy = ArithmeticTypes[Arith];
8446       S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
8447     }
8448 
8449     // Extension: We also add these operators for vector types.
8450     for (QualType VecTy : CandidateTypes[0].vector_types())
8451       S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8452   }
8453 
8454   // C++ [over.built]p8:
8455   //   For every type T, there exist candidate operator functions of
8456   //   the form
8457   //
8458   //       T*         operator+(T*);
8459   void addUnaryPlusPointerOverloads() {
8460     for (QualType ParamTy : CandidateTypes[0].pointer_types())
8461       S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8462   }
8463 
8464   // C++ [over.built]p10:
8465   //   For every promoted integral type T, there exist candidate
8466   //   operator functions of the form
8467   //
8468   //        T         operator~(T);
8469   void addUnaryTildePromotedIntegralOverloads() {
8470     if (!HasArithmeticOrEnumeralCandidateType)
8471       return;
8472 
8473     for (unsigned Int = FirstPromotedIntegralType;
8474          Int < LastPromotedIntegralType; ++Int) {
8475       QualType IntTy = ArithmeticTypes[Int];
8476       S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
8477     }
8478 
8479     // Extension: We also add this operator for vector types.
8480     for (QualType VecTy : CandidateTypes[0].vector_types())
8481       S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8482   }
8483 
8484   // C++ [over.match.oper]p16:
8485   //   For every pointer to member type T or type std::nullptr_t, there
8486   //   exist candidate operator functions of the form
8487   //
8488   //        bool operator==(T,T);
8489   //        bool operator!=(T,T);
8490   void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
8491     /// Set of (canonical) types that we've already handled.
8492     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8493 
8494     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8495       for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
8496         // Don't add the same builtin candidate twice.
8497         if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
8498           continue;
8499 
8500         QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
8501         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8502       }
8503 
8504       if (CandidateTypes[ArgIdx].hasNullPtrType()) {
8505         CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
8506         if (AddedTypes.insert(NullPtrTy).second) {
8507           QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
8508           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8509         }
8510       }
8511     }
8512   }
8513 
8514   // C++ [over.built]p15:
8515   //
8516   //   For every T, where T is an enumeration type or a pointer type,
8517   //   there exist candidate operator functions of the form
8518   //
8519   //        bool       operator<(T, T);
8520   //        bool       operator>(T, T);
8521   //        bool       operator<=(T, T);
8522   //        bool       operator>=(T, T);
8523   //        bool       operator==(T, T);
8524   //        bool       operator!=(T, T);
8525   //           R       operator<=>(T, T)
8526   void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) {
8527     // C++ [over.match.oper]p3:
8528     //   [...]the built-in candidates include all of the candidate operator
8529     //   functions defined in 13.6 that, compared to the given operator, [...]
8530     //   do not have the same parameter-type-list as any non-template non-member
8531     //   candidate.
8532     //
8533     // Note that in practice, this only affects enumeration types because there
8534     // aren't any built-in candidates of record type, and a user-defined operator
8535     // must have an operand of record or enumeration type. Also, the only other
8536     // overloaded operator with enumeration arguments, operator=,
8537     // cannot be overloaded for enumeration types, so this is the only place
8538     // where we must suppress candidates like this.
8539     llvm::DenseSet<std::pair<CanQualType, CanQualType> >
8540       UserDefinedBinaryOperators;
8541 
8542     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8543       if (!CandidateTypes[ArgIdx].enumeration_types().empty()) {
8544         for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
8545                                          CEnd = CandidateSet.end();
8546              C != CEnd; ++C) {
8547           if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
8548             continue;
8549 
8550           if (C->Function->isFunctionTemplateSpecialization())
8551             continue;
8552 
8553           // We interpret "same parameter-type-list" as applying to the
8554           // "synthesized candidate, with the order of the two parameters
8555           // reversed", not to the original function.
8556           bool Reversed = C->isReversed();
8557           QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0)
8558                                         ->getType()
8559                                         .getUnqualifiedType();
8560           QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1)
8561                                          ->getType()
8562                                          .getUnqualifiedType();
8563 
8564           // Skip if either parameter isn't of enumeral type.
8565           if (!FirstParamType->isEnumeralType() ||
8566               !SecondParamType->isEnumeralType())
8567             continue;
8568 
8569           // Add this operator to the set of known user-defined operators.
8570           UserDefinedBinaryOperators.insert(
8571             std::make_pair(S.Context.getCanonicalType(FirstParamType),
8572                            S.Context.getCanonicalType(SecondParamType)));
8573         }
8574       }
8575     }
8576 
8577     /// Set of (canonical) types that we've already handled.
8578     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8579 
8580     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8581       for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
8582         // Don't add the same builtin candidate twice.
8583         if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8584           continue;
8585         if (IsSpaceship && PtrTy->isFunctionPointerType())
8586           continue;
8587 
8588         QualType ParamTypes[2] = {PtrTy, PtrTy};
8589         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8590       }
8591       for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
8592         CanQualType CanonType = S.Context.getCanonicalType(EnumTy);
8593 
8594         // Don't add the same builtin candidate twice, or if a user defined
8595         // candidate exists.
8596         if (!AddedTypes.insert(CanonType).second ||
8597             UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8598                                                             CanonType)))
8599           continue;
8600         QualType ParamTypes[2] = {EnumTy, EnumTy};
8601         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8602       }
8603     }
8604   }
8605 
8606   // C++ [over.built]p13:
8607   //
8608   //   For every cv-qualified or cv-unqualified object type T
8609   //   there exist candidate operator functions of the form
8610   //
8611   //      T*         operator+(T*, ptrdiff_t);
8612   //      T&         operator[](T*, ptrdiff_t);    [BELOW]
8613   //      T*         operator-(T*, ptrdiff_t);
8614   //      T*         operator+(ptrdiff_t, T*);
8615   //      T&         operator[](ptrdiff_t, T*);    [BELOW]
8616   //
8617   // C++ [over.built]p14:
8618   //
8619   //   For every T, where T is a pointer to object type, there
8620   //   exist candidate operator functions of the form
8621   //
8622   //      ptrdiff_t  operator-(T, T);
8623   void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8624     /// Set of (canonical) types that we've already handled.
8625     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8626 
8627     for (int Arg = 0; Arg < 2; ++Arg) {
8628       QualType AsymmetricParamTypes[2] = {
8629         S.Context.getPointerDiffType(),
8630         S.Context.getPointerDiffType(),
8631       };
8632       for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) {
8633         QualType PointeeTy = PtrTy->getPointeeType();
8634         if (!PointeeTy->isObjectType())
8635           continue;
8636 
8637         AsymmetricParamTypes[Arg] = PtrTy;
8638         if (Arg == 0 || Op == OO_Plus) {
8639           // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8640           // T* operator+(ptrdiff_t, T*);
8641           S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8642         }
8643         if (Op == OO_Minus) {
8644           // ptrdiff_t operator-(T, T);
8645           if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8646             continue;
8647 
8648           QualType ParamTypes[2] = {PtrTy, PtrTy};
8649           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8650         }
8651       }
8652     }
8653   }
8654 
8655   // C++ [over.built]p12:
8656   //
8657   //   For every pair of promoted arithmetic types L and R, there
8658   //   exist candidate operator functions of the form
8659   //
8660   //        LR         operator*(L, R);
8661   //        LR         operator/(L, R);
8662   //        LR         operator+(L, R);
8663   //        LR         operator-(L, R);
8664   //        bool       operator<(L, R);
8665   //        bool       operator>(L, R);
8666   //        bool       operator<=(L, R);
8667   //        bool       operator>=(L, R);
8668   //        bool       operator==(L, R);
8669   //        bool       operator!=(L, R);
8670   //
8671   //   where LR is the result of the usual arithmetic conversions
8672   //   between types L and R.
8673   //
8674   // C++ [over.built]p24:
8675   //
8676   //   For every pair of promoted arithmetic types L and R, there exist
8677   //   candidate operator functions of the form
8678   //
8679   //        LR       operator?(bool, L, R);
8680   //
8681   //   where LR is the result of the usual arithmetic conversions
8682   //   between types L and R.
8683   // Our candidates ignore the first parameter.
8684   void addGenericBinaryArithmeticOverloads() {
8685     if (!HasArithmeticOrEnumeralCandidateType)
8686       return;
8687 
8688     for (unsigned Left = FirstPromotedArithmeticType;
8689          Left < LastPromotedArithmeticType; ++Left) {
8690       for (unsigned Right = FirstPromotedArithmeticType;
8691            Right < LastPromotedArithmeticType; ++Right) {
8692         QualType LandR[2] = { ArithmeticTypes[Left],
8693                               ArithmeticTypes[Right] };
8694         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8695       }
8696     }
8697 
8698     // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8699     // conditional operator for vector types.
8700     for (QualType Vec1Ty : CandidateTypes[0].vector_types())
8701       for (QualType Vec2Ty : CandidateTypes[1].vector_types()) {
8702         QualType LandR[2] = {Vec1Ty, Vec2Ty};
8703         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8704       }
8705   }
8706 
8707   /// Add binary operator overloads for each candidate matrix type M1, M2:
8708   ///  * (M1, M1) -> M1
8709   ///  * (M1, M1.getElementType()) -> M1
8710   ///  * (M2.getElementType(), M2) -> M2
8711   ///  * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0].
8712   void addMatrixBinaryArithmeticOverloads() {
8713     if (!HasArithmeticOrEnumeralCandidateType)
8714       return;
8715 
8716     for (QualType M1 : CandidateTypes[0].matrix_types()) {
8717       AddCandidate(M1, cast<MatrixType>(M1)->getElementType());
8718       AddCandidate(M1, M1);
8719     }
8720 
8721     for (QualType M2 : CandidateTypes[1].matrix_types()) {
8722       AddCandidate(cast<MatrixType>(M2)->getElementType(), M2);
8723       if (!CandidateTypes[0].containsMatrixType(M2))
8724         AddCandidate(M2, M2);
8725     }
8726   }
8727 
8728   // C++2a [over.built]p14:
8729   //
8730   //   For every integral type T there exists a candidate operator function
8731   //   of the form
8732   //
8733   //        std::strong_ordering operator<=>(T, T)
8734   //
8735   // C++2a [over.built]p15:
8736   //
8737   //   For every pair of floating-point types L and R, there exists a candidate
8738   //   operator function of the form
8739   //
8740   //       std::partial_ordering operator<=>(L, R);
8741   //
8742   // FIXME: The current specification for integral types doesn't play nice with
8743   // the direction of p0946r0, which allows mixed integral and unscoped-enum
8744   // comparisons. Under the current spec this can lead to ambiguity during
8745   // overload resolution. For example:
8746   //
8747   //   enum A : int {a};
8748   //   auto x = (a <=> (long)42);
8749   //
8750   //   error: call is ambiguous for arguments 'A' and 'long'.
8751   //   note: candidate operator<=>(int, int)
8752   //   note: candidate operator<=>(long, long)
8753   //
8754   // To avoid this error, this function deviates from the specification and adds
8755   // the mixed overloads `operator<=>(L, R)` where L and R are promoted
8756   // arithmetic types (the same as the generic relational overloads).
8757   //
8758   // For now this function acts as a placeholder.
8759   void addThreeWayArithmeticOverloads() {
8760     addGenericBinaryArithmeticOverloads();
8761   }
8762 
8763   // C++ [over.built]p17:
8764   //
8765   //   For every pair of promoted integral types L and R, there
8766   //   exist candidate operator functions of the form
8767   //
8768   //      LR         operator%(L, R);
8769   //      LR         operator&(L, R);
8770   //      LR         operator^(L, R);
8771   //      LR         operator|(L, R);
8772   //      L          operator<<(L, R);
8773   //      L          operator>>(L, R);
8774   //
8775   //   where LR is the result of the usual arithmetic conversions
8776   //   between types L and R.
8777   void addBinaryBitwiseArithmeticOverloads() {
8778     if (!HasArithmeticOrEnumeralCandidateType)
8779       return;
8780 
8781     for (unsigned Left = FirstPromotedIntegralType;
8782          Left < LastPromotedIntegralType; ++Left) {
8783       for (unsigned Right = FirstPromotedIntegralType;
8784            Right < LastPromotedIntegralType; ++Right) {
8785         QualType LandR[2] = { ArithmeticTypes[Left],
8786                               ArithmeticTypes[Right] };
8787         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8788       }
8789     }
8790   }
8791 
8792   // C++ [over.built]p20:
8793   //
8794   //   For every pair (T, VQ), where T is an enumeration or
8795   //   pointer to member type and VQ is either volatile or
8796   //   empty, there exist candidate operator functions of the form
8797   //
8798   //        VQ T&      operator=(VQ T&, T);
8799   void addAssignmentMemberPointerOrEnumeralOverloads() {
8800     /// Set of (canonical) types that we've already handled.
8801     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8802 
8803     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8804       for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
8805         if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
8806           continue;
8807 
8808         AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet);
8809       }
8810 
8811       for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
8812         if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
8813           continue;
8814 
8815         AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet);
8816       }
8817     }
8818   }
8819 
8820   // C++ [over.built]p19:
8821   //
8822   //   For every pair (T, VQ), where T is any type and VQ is either
8823   //   volatile or empty, there exist candidate operator functions
8824   //   of the form
8825   //
8826   //        T*VQ&      operator=(T*VQ&, T*);
8827   //
8828   // C++ [over.built]p21:
8829   //
8830   //   For every pair (T, VQ), where T is a cv-qualified or
8831   //   cv-unqualified object type and VQ is either volatile or
8832   //   empty, there exist candidate operator functions of the form
8833   //
8834   //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
8835   //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
8836   void addAssignmentPointerOverloads(bool isEqualOp) {
8837     /// Set of (canonical) types that we've already handled.
8838     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8839 
8840     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8841       // If this is operator=, keep track of the builtin candidates we added.
8842       if (isEqualOp)
8843         AddedTypes.insert(S.Context.getCanonicalType(PtrTy));
8844       else if (!PtrTy->getPointeeType()->isObjectType())
8845         continue;
8846 
8847       // non-volatile version
8848       QualType ParamTypes[2] = {
8849           S.Context.getLValueReferenceType(PtrTy),
8850           isEqualOp ? PtrTy : S.Context.getPointerDiffType(),
8851       };
8852       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8853                             /*IsAssignmentOperator=*/ isEqualOp);
8854 
8855       bool NeedVolatile = !PtrTy.isVolatileQualified() &&
8856                           VisibleTypeConversionsQuals.hasVolatile();
8857       if (NeedVolatile) {
8858         // volatile version
8859         ParamTypes[0] =
8860             S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy));
8861         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8862                               /*IsAssignmentOperator=*/isEqualOp);
8863       }
8864 
8865       if (!PtrTy.isRestrictQualified() &&
8866           VisibleTypeConversionsQuals.hasRestrict()) {
8867         // restrict version
8868         ParamTypes[0] =
8869             S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy));
8870         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8871                               /*IsAssignmentOperator=*/isEqualOp);
8872 
8873         if (NeedVolatile) {
8874           // volatile restrict version
8875           ParamTypes[0] =
8876               S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
8877                   PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
8878           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8879                                 /*IsAssignmentOperator=*/isEqualOp);
8880         }
8881       }
8882     }
8883 
8884     if (isEqualOp) {
8885       for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
8886         // Make sure we don't add the same candidate twice.
8887         if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8888           continue;
8889 
8890         QualType ParamTypes[2] = {
8891             S.Context.getLValueReferenceType(PtrTy),
8892             PtrTy,
8893         };
8894 
8895         // non-volatile version
8896         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8897                               /*IsAssignmentOperator=*/true);
8898 
8899         bool NeedVolatile = !PtrTy.isVolatileQualified() &&
8900                             VisibleTypeConversionsQuals.hasVolatile();
8901         if (NeedVolatile) {
8902           // volatile version
8903           ParamTypes[0] = S.Context.getLValueReferenceType(
8904               S.Context.getVolatileType(PtrTy));
8905           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8906                                 /*IsAssignmentOperator=*/true);
8907         }
8908 
8909         if (!PtrTy.isRestrictQualified() &&
8910             VisibleTypeConversionsQuals.hasRestrict()) {
8911           // restrict version
8912           ParamTypes[0] = S.Context.getLValueReferenceType(
8913               S.Context.getRestrictType(PtrTy));
8914           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8915                                 /*IsAssignmentOperator=*/true);
8916 
8917           if (NeedVolatile) {
8918             // volatile restrict version
8919             ParamTypes[0] =
8920                 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
8921                     PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
8922             S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8923                                   /*IsAssignmentOperator=*/true);
8924           }
8925         }
8926       }
8927     }
8928   }
8929 
8930   // C++ [over.built]p18:
8931   //
8932   //   For every triple (L, VQ, R), where L is an arithmetic type,
8933   //   VQ is either volatile or empty, and R is a promoted
8934   //   arithmetic type, there exist candidate operator functions of
8935   //   the form
8936   //
8937   //        VQ L&      operator=(VQ L&, R);
8938   //        VQ L&      operator*=(VQ L&, R);
8939   //        VQ L&      operator/=(VQ L&, R);
8940   //        VQ L&      operator+=(VQ L&, R);
8941   //        VQ L&      operator-=(VQ L&, R);
8942   void addAssignmentArithmeticOverloads(bool isEqualOp) {
8943     if (!HasArithmeticOrEnumeralCandidateType)
8944       return;
8945 
8946     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
8947       for (unsigned Right = FirstPromotedArithmeticType;
8948            Right < LastPromotedArithmeticType; ++Right) {
8949         QualType ParamTypes[2];
8950         ParamTypes[1] = ArithmeticTypes[Right];
8951         auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8952             S, ArithmeticTypes[Left], Args[0]);
8953         // Add this built-in operator as a candidate (VQ is empty).
8954         ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8955         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8956                               /*IsAssignmentOperator=*/isEqualOp);
8957 
8958         // Add this built-in operator as a candidate (VQ is 'volatile').
8959         if (VisibleTypeConversionsQuals.hasVolatile()) {
8960           ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
8961           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8962           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8963                                 /*IsAssignmentOperator=*/isEqualOp);
8964         }
8965       }
8966     }
8967 
8968     // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8969     for (QualType Vec1Ty : CandidateTypes[0].vector_types())
8970       for (QualType Vec2Ty : CandidateTypes[0].vector_types()) {
8971         QualType ParamTypes[2];
8972         ParamTypes[1] = Vec2Ty;
8973         // Add this built-in operator as a candidate (VQ is empty).
8974         ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty);
8975         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8976                               /*IsAssignmentOperator=*/isEqualOp);
8977 
8978         // Add this built-in operator as a candidate (VQ is 'volatile').
8979         if (VisibleTypeConversionsQuals.hasVolatile()) {
8980           ParamTypes[0] = S.Context.getVolatileType(Vec1Ty);
8981           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8982           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8983                                 /*IsAssignmentOperator=*/isEqualOp);
8984         }
8985       }
8986   }
8987 
8988   // C++ [over.built]p22:
8989   //
8990   //   For every triple (L, VQ, R), where L is an integral type, VQ
8991   //   is either volatile or empty, and R is a promoted integral
8992   //   type, there exist candidate operator functions of the form
8993   //
8994   //        VQ L&       operator%=(VQ L&, R);
8995   //        VQ L&       operator<<=(VQ L&, R);
8996   //        VQ L&       operator>>=(VQ L&, R);
8997   //        VQ L&       operator&=(VQ L&, R);
8998   //        VQ L&       operator^=(VQ L&, R);
8999   //        VQ L&       operator|=(VQ L&, R);
9000   void addAssignmentIntegralOverloads() {
9001     if (!HasArithmeticOrEnumeralCandidateType)
9002       return;
9003 
9004     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
9005       for (unsigned Right = FirstPromotedIntegralType;
9006            Right < LastPromotedIntegralType; ++Right) {
9007         QualType ParamTypes[2];
9008         ParamTypes[1] = ArithmeticTypes[Right];
9009         auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
9010             S, ArithmeticTypes[Left], Args[0]);
9011         // Add this built-in operator as a candidate (VQ is empty).
9012         ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
9013         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9014         if (VisibleTypeConversionsQuals.hasVolatile()) {
9015           // Add this built-in operator as a candidate (VQ is 'volatile').
9016           ParamTypes[0] = LeftBaseTy;
9017           ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
9018           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
9019           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9020         }
9021       }
9022     }
9023   }
9024 
9025   // C++ [over.operator]p23:
9026   //
9027   //   There also exist candidate operator functions of the form
9028   //
9029   //        bool        operator!(bool);
9030   //        bool        operator&&(bool, bool);
9031   //        bool        operator||(bool, bool);
9032   void addExclaimOverload() {
9033     QualType ParamTy = S.Context.BoolTy;
9034     S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
9035                           /*IsAssignmentOperator=*/false,
9036                           /*NumContextualBoolArguments=*/1);
9037   }
9038   void addAmpAmpOrPipePipeOverload() {
9039     QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
9040     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9041                           /*IsAssignmentOperator=*/false,
9042                           /*NumContextualBoolArguments=*/2);
9043   }
9044 
9045   // C++ [over.built]p13:
9046   //
9047   //   For every cv-qualified or cv-unqualified object type T there
9048   //   exist candidate operator functions of the form
9049   //
9050   //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
9051   //        T&         operator[](T*, ptrdiff_t);
9052   //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
9053   //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
9054   //        T&         operator[](ptrdiff_t, T*);
9055   void addSubscriptOverloads() {
9056     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
9057       QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()};
9058       QualType PointeeType = PtrTy->getPointeeType();
9059       if (!PointeeType->isObjectType())
9060         continue;
9061 
9062       // T& operator[](T*, ptrdiff_t)
9063       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9064     }
9065 
9066     for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
9067       QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy};
9068       QualType PointeeType = PtrTy->getPointeeType();
9069       if (!PointeeType->isObjectType())
9070         continue;
9071 
9072       // T& operator[](ptrdiff_t, T*)
9073       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9074     }
9075   }
9076 
9077   // C++ [over.built]p11:
9078   //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
9079   //    C1 is the same type as C2 or is a derived class of C2, T is an object
9080   //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
9081   //    there exist candidate operator functions of the form
9082   //
9083   //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
9084   //
9085   //    where CV12 is the union of CV1 and CV2.
9086   void addArrowStarOverloads() {
9087     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
9088       QualType C1Ty = PtrTy;
9089       QualType C1;
9090       QualifierCollector Q1;
9091       C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
9092       if (!isa<RecordType>(C1))
9093         continue;
9094       // heuristic to reduce number of builtin candidates in the set.
9095       // Add volatile/restrict version only if there are conversions to a
9096       // volatile/restrict type.
9097       if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
9098         continue;
9099       if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
9100         continue;
9101       for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) {
9102         const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy);
9103         QualType C2 = QualType(mptr->getClass(), 0);
9104         C2 = C2.getUnqualifiedType();
9105         if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
9106           break;
9107         QualType ParamTypes[2] = {PtrTy, MemPtrTy};
9108         // build CV12 T&
9109         QualType T = mptr->getPointeeType();
9110         if (!VisibleTypeConversionsQuals.hasVolatile() &&
9111             T.isVolatileQualified())
9112           continue;
9113         if (!VisibleTypeConversionsQuals.hasRestrict() &&
9114             T.isRestrictQualified())
9115           continue;
9116         T = Q1.apply(S.Context, T);
9117         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9118       }
9119     }
9120   }
9121 
9122   // Note that we don't consider the first argument, since it has been
9123   // contextually converted to bool long ago. The candidates below are
9124   // therefore added as binary.
9125   //
9126   // C++ [over.built]p25:
9127   //   For every type T, where T is a pointer, pointer-to-member, or scoped
9128   //   enumeration type, there exist candidate operator functions of the form
9129   //
9130   //        T        operator?(bool, T, T);
9131   //
9132   void addConditionalOperatorOverloads() {
9133     /// Set of (canonical) types that we've already handled.
9134     llvm::SmallPtrSet<QualType, 8> AddedTypes;
9135 
9136     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
9137       for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
9138         if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
9139           continue;
9140 
9141         QualType ParamTypes[2] = {PtrTy, PtrTy};
9142         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9143       }
9144 
9145       for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
9146         if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
9147           continue;
9148 
9149         QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
9150         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9151       }
9152 
9153       if (S.getLangOpts().CPlusPlus11) {
9154         for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
9155           if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped())
9156             continue;
9157 
9158           if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
9159             continue;
9160 
9161           QualType ParamTypes[2] = {EnumTy, EnumTy};
9162           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9163         }
9164       }
9165     }
9166   }
9167 };
9168 
9169 } // end anonymous namespace
9170 
9171 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
9172 /// operator overloads to the candidate set (C++ [over.built]), based
9173 /// on the operator @p Op and the arguments given. For example, if the
9174 /// operator is a binary '+', this routine might add "int
9175 /// operator+(int, int)" to cover integer addition.
9176 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
9177                                         SourceLocation OpLoc,
9178                                         ArrayRef<Expr *> Args,
9179                                         OverloadCandidateSet &CandidateSet) {
9180   // Find all of the types that the arguments can convert to, but only
9181   // if the operator we're looking at has built-in operator candidates
9182   // that make use of these types. Also record whether we encounter non-record
9183   // candidate types or either arithmetic or enumeral candidate types.
9184   Qualifiers VisibleTypeConversionsQuals;
9185   VisibleTypeConversionsQuals.addConst();
9186   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
9187     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
9188 
9189   bool HasNonRecordCandidateType = false;
9190   bool HasArithmeticOrEnumeralCandidateType = false;
9191   SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
9192   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
9193     CandidateTypes.emplace_back(*this);
9194     CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
9195                                                  OpLoc,
9196                                                  true,
9197                                                  (Op == OO_Exclaim ||
9198                                                   Op == OO_AmpAmp ||
9199                                                   Op == OO_PipePipe),
9200                                                  VisibleTypeConversionsQuals);
9201     HasNonRecordCandidateType = HasNonRecordCandidateType ||
9202         CandidateTypes[ArgIdx].hasNonRecordTypes();
9203     HasArithmeticOrEnumeralCandidateType =
9204         HasArithmeticOrEnumeralCandidateType ||
9205         CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
9206   }
9207 
9208   // Exit early when no non-record types have been added to the candidate set
9209   // for any of the arguments to the operator.
9210   //
9211   // We can't exit early for !, ||, or &&, since there we have always have
9212   // 'bool' overloads.
9213   if (!HasNonRecordCandidateType &&
9214       !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
9215     return;
9216 
9217   // Setup an object to manage the common state for building overloads.
9218   BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
9219                                            VisibleTypeConversionsQuals,
9220                                            HasArithmeticOrEnumeralCandidateType,
9221                                            CandidateTypes, CandidateSet);
9222 
9223   // Dispatch over the operation to add in only those overloads which apply.
9224   switch (Op) {
9225   case OO_None:
9226   case NUM_OVERLOADED_OPERATORS:
9227     llvm_unreachable("Expected an overloaded operator");
9228 
9229   case OO_New:
9230   case OO_Delete:
9231   case OO_Array_New:
9232   case OO_Array_Delete:
9233   case OO_Call:
9234     llvm_unreachable(
9235                     "Special operators don't use AddBuiltinOperatorCandidates");
9236 
9237   case OO_Comma:
9238   case OO_Arrow:
9239   case OO_Coawait:
9240     // C++ [over.match.oper]p3:
9241     //   -- For the operator ',', the unary operator '&', the
9242     //      operator '->', or the operator 'co_await', the
9243     //      built-in candidates set is empty.
9244     break;
9245 
9246   case OO_Plus: // '+' is either unary or binary
9247     if (Args.size() == 1)
9248       OpBuilder.addUnaryPlusPointerOverloads();
9249     LLVM_FALLTHROUGH;
9250 
9251   case OO_Minus: // '-' is either unary or binary
9252     if (Args.size() == 1) {
9253       OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
9254     } else {
9255       OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
9256       OpBuilder.addGenericBinaryArithmeticOverloads();
9257       OpBuilder.addMatrixBinaryArithmeticOverloads();
9258     }
9259     break;
9260 
9261   case OO_Star: // '*' is either unary or binary
9262     if (Args.size() == 1)
9263       OpBuilder.addUnaryStarPointerOverloads();
9264     else {
9265       OpBuilder.addGenericBinaryArithmeticOverloads();
9266       OpBuilder.addMatrixBinaryArithmeticOverloads();
9267     }
9268     break;
9269 
9270   case OO_Slash:
9271     OpBuilder.addGenericBinaryArithmeticOverloads();
9272     break;
9273 
9274   case OO_PlusPlus:
9275   case OO_MinusMinus:
9276     OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
9277     OpBuilder.addPlusPlusMinusMinusPointerOverloads();
9278     break;
9279 
9280   case OO_EqualEqual:
9281   case OO_ExclaimEqual:
9282     OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
9283     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false);
9284     OpBuilder.addGenericBinaryArithmeticOverloads();
9285     break;
9286 
9287   case OO_Less:
9288   case OO_Greater:
9289   case OO_LessEqual:
9290   case OO_GreaterEqual:
9291     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false);
9292     OpBuilder.addGenericBinaryArithmeticOverloads();
9293     break;
9294 
9295   case OO_Spaceship:
9296     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true);
9297     OpBuilder.addThreeWayArithmeticOverloads();
9298     break;
9299 
9300   case OO_Percent:
9301   case OO_Caret:
9302   case OO_Pipe:
9303   case OO_LessLess:
9304   case OO_GreaterGreater:
9305     OpBuilder.addBinaryBitwiseArithmeticOverloads();
9306     break;
9307 
9308   case OO_Amp: // '&' is either unary or binary
9309     if (Args.size() == 1)
9310       // C++ [over.match.oper]p3:
9311       //   -- For the operator ',', the unary operator '&', or the
9312       //      operator '->', the built-in candidates set is empty.
9313       break;
9314 
9315     OpBuilder.addBinaryBitwiseArithmeticOverloads();
9316     break;
9317 
9318   case OO_Tilde:
9319     OpBuilder.addUnaryTildePromotedIntegralOverloads();
9320     break;
9321 
9322   case OO_Equal:
9323     OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
9324     LLVM_FALLTHROUGH;
9325 
9326   case OO_PlusEqual:
9327   case OO_MinusEqual:
9328     OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
9329     LLVM_FALLTHROUGH;
9330 
9331   case OO_StarEqual:
9332   case OO_SlashEqual:
9333     OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
9334     break;
9335 
9336   case OO_PercentEqual:
9337   case OO_LessLessEqual:
9338   case OO_GreaterGreaterEqual:
9339   case OO_AmpEqual:
9340   case OO_CaretEqual:
9341   case OO_PipeEqual:
9342     OpBuilder.addAssignmentIntegralOverloads();
9343     break;
9344 
9345   case OO_Exclaim:
9346     OpBuilder.addExclaimOverload();
9347     break;
9348 
9349   case OO_AmpAmp:
9350   case OO_PipePipe:
9351     OpBuilder.addAmpAmpOrPipePipeOverload();
9352     break;
9353 
9354   case OO_Subscript:
9355     OpBuilder.addSubscriptOverloads();
9356     break;
9357 
9358   case OO_ArrowStar:
9359     OpBuilder.addArrowStarOverloads();
9360     break;
9361 
9362   case OO_Conditional:
9363     OpBuilder.addConditionalOperatorOverloads();
9364     OpBuilder.addGenericBinaryArithmeticOverloads();
9365     break;
9366   }
9367 }
9368 
9369 /// Add function candidates found via argument-dependent lookup
9370 /// to the set of overloading candidates.
9371 ///
9372 /// This routine performs argument-dependent name lookup based on the
9373 /// given function name (which may also be an operator name) and adds
9374 /// all of the overload candidates found by ADL to the overload
9375 /// candidate set (C++ [basic.lookup.argdep]).
9376 void
9377 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
9378                                            SourceLocation Loc,
9379                                            ArrayRef<Expr *> Args,
9380                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
9381                                            OverloadCandidateSet& CandidateSet,
9382                                            bool PartialOverloading) {
9383   ADLResult Fns;
9384 
9385   // FIXME: This approach for uniquing ADL results (and removing
9386   // redundant candidates from the set) relies on pointer-equality,
9387   // which means we need to key off the canonical decl.  However,
9388   // always going back to the canonical decl might not get us the
9389   // right set of default arguments.  What default arguments are
9390   // we supposed to consider on ADL candidates, anyway?
9391 
9392   // FIXME: Pass in the explicit template arguments?
9393   ArgumentDependentLookup(Name, Loc, Args, Fns);
9394 
9395   // Erase all of the candidates we already knew about.
9396   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
9397                                    CandEnd = CandidateSet.end();
9398        Cand != CandEnd; ++Cand)
9399     if (Cand->Function) {
9400       Fns.erase(Cand->Function);
9401       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
9402         Fns.erase(FunTmpl);
9403     }
9404 
9405   // For each of the ADL candidates we found, add it to the overload
9406   // set.
9407   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
9408     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
9409 
9410     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
9411       if (ExplicitTemplateArgs)
9412         continue;
9413 
9414       AddOverloadCandidate(
9415           FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false,
9416           PartialOverloading, /*AllowExplicit=*/true,
9417           /*AllowExplicitConversion=*/false, ADLCallKind::UsesADL);
9418       if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) {
9419         AddOverloadCandidate(
9420             FD, FoundDecl, {Args[1], Args[0]}, CandidateSet,
9421             /*SuppressUserConversions=*/false, PartialOverloading,
9422             /*AllowExplicit=*/true, /*AllowExplicitConversion=*/false,
9423             ADLCallKind::UsesADL, None, OverloadCandidateParamOrder::Reversed);
9424       }
9425     } else {
9426       auto *FTD = cast<FunctionTemplateDecl>(*I);
9427       AddTemplateOverloadCandidate(
9428           FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet,
9429           /*SuppressUserConversions=*/false, PartialOverloading,
9430           /*AllowExplicit=*/true, ADLCallKind::UsesADL);
9431       if (CandidateSet.getRewriteInfo().shouldAddReversed(
9432               Context, FTD->getTemplatedDecl())) {
9433         AddTemplateOverloadCandidate(
9434             FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]},
9435             CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading,
9436             /*AllowExplicit=*/true, ADLCallKind::UsesADL,
9437             OverloadCandidateParamOrder::Reversed);
9438       }
9439     }
9440   }
9441 }
9442 
9443 namespace {
9444 enum class Comparison { Equal, Better, Worse };
9445 }
9446 
9447 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of
9448 /// overload resolution.
9449 ///
9450 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
9451 /// Cand1's first N enable_if attributes have precisely the same conditions as
9452 /// Cand2's first N enable_if attributes (where N = the number of enable_if
9453 /// attributes on Cand2), and Cand1 has more than N enable_if attributes.
9454 ///
9455 /// Note that you can have a pair of candidates such that Cand1's enable_if
9456 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are
9457 /// worse than Cand1's.
9458 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
9459                                        const FunctionDecl *Cand2) {
9460   // Common case: One (or both) decls don't have enable_if attrs.
9461   bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
9462   bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
9463   if (!Cand1Attr || !Cand2Attr) {
9464     if (Cand1Attr == Cand2Attr)
9465       return Comparison::Equal;
9466     return Cand1Attr ? Comparison::Better : Comparison::Worse;
9467   }
9468 
9469   auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
9470   auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
9471 
9472   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
9473   for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
9474     Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
9475     Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
9476 
9477     // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
9478     // has fewer enable_if attributes than Cand2, and vice versa.
9479     if (!Cand1A)
9480       return Comparison::Worse;
9481     if (!Cand2A)
9482       return Comparison::Better;
9483 
9484     Cand1ID.clear();
9485     Cand2ID.clear();
9486 
9487     (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
9488     (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
9489     if (Cand1ID != Cand2ID)
9490       return Comparison::Worse;
9491   }
9492 
9493   return Comparison::Equal;
9494 }
9495 
9496 static Comparison
9497 isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
9498                               const OverloadCandidate &Cand2) {
9499   if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
9500       !Cand2.Function->isMultiVersion())
9501     return Comparison::Equal;
9502 
9503   // If both are invalid, they are equal. If one of them is invalid, the other
9504   // is better.
9505   if (Cand1.Function->isInvalidDecl()) {
9506     if (Cand2.Function->isInvalidDecl())
9507       return Comparison::Equal;
9508     return Comparison::Worse;
9509   }
9510   if (Cand2.Function->isInvalidDecl())
9511     return Comparison::Better;
9512 
9513   // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
9514   // cpu_dispatch, else arbitrarily based on the identifiers.
9515   bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
9516   bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
9517   const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
9518   const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
9519 
9520   if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
9521     return Comparison::Equal;
9522 
9523   if (Cand1CPUDisp && !Cand2CPUDisp)
9524     return Comparison::Better;
9525   if (Cand2CPUDisp && !Cand1CPUDisp)
9526     return Comparison::Worse;
9527 
9528   if (Cand1CPUSpec && Cand2CPUSpec) {
9529     if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
9530       return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size()
9531                  ? Comparison::Better
9532                  : Comparison::Worse;
9533 
9534     std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
9535         FirstDiff = std::mismatch(
9536             Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
9537             Cand2CPUSpec->cpus_begin(),
9538             [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
9539               return LHS->getName() == RHS->getName();
9540             });
9541 
9542     assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&
9543            "Two different cpu-specific versions should not have the same "
9544            "identifier list, otherwise they'd be the same decl!");
9545     return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName()
9546                ? Comparison::Better
9547                : Comparison::Worse;
9548   }
9549   llvm_unreachable("No way to get here unless both had cpu_dispatch");
9550 }
9551 
9552 /// Compute the type of the implicit object parameter for the given function,
9553 /// if any. Returns None if there is no implicit object parameter, and a null
9554 /// QualType if there is a 'matches anything' implicit object parameter.
9555 static Optional<QualType> getImplicitObjectParamType(ASTContext &Context,
9556                                                      const FunctionDecl *F) {
9557   if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F))
9558     return llvm::None;
9559 
9560   auto *M = cast<CXXMethodDecl>(F);
9561   // Static member functions' object parameters match all types.
9562   if (M->isStatic())
9563     return QualType();
9564 
9565   QualType T = M->getThisObjectType();
9566   if (M->getRefQualifier() == RQ_RValue)
9567     return Context.getRValueReferenceType(T);
9568   return Context.getLValueReferenceType(T);
9569 }
9570 
9571 static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1,
9572                                    const FunctionDecl *F2, unsigned NumParams) {
9573   if (declaresSameEntity(F1, F2))
9574     return true;
9575 
9576   auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) {
9577     if (First) {
9578       if (Optional<QualType> T = getImplicitObjectParamType(Context, F))
9579         return *T;
9580     }
9581     assert(I < F->getNumParams());
9582     return F->getParamDecl(I++)->getType();
9583   };
9584 
9585   unsigned I1 = 0, I2 = 0;
9586   for (unsigned I = 0; I != NumParams; ++I) {
9587     QualType T1 = NextParam(F1, I1, I == 0);
9588     QualType T2 = NextParam(F2, I2, I == 0);
9589     assert(!T1.isNull() && !T2.isNull() && "Unexpected null param types");
9590     if (!Context.hasSameUnqualifiedType(T1, T2))
9591       return false;
9592   }
9593   return true;
9594 }
9595 
9596 /// isBetterOverloadCandidate - Determines whether the first overload
9597 /// candidate is a better candidate than the second (C++ 13.3.3p1).
9598 bool clang::isBetterOverloadCandidate(
9599     Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
9600     SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
9601   // Define viable functions to be better candidates than non-viable
9602   // functions.
9603   if (!Cand2.Viable)
9604     return Cand1.Viable;
9605   else if (!Cand1.Viable)
9606     return false;
9607 
9608   // [CUDA] A function with 'never' preference is marked not viable, therefore
9609   // is never shown up here. The worst preference shown up here is 'wrong side',
9610   // e.g. an H function called by a HD function in device compilation. This is
9611   // valid AST as long as the HD function is not emitted, e.g. it is an inline
9612   // function which is called only by an H function. A deferred diagnostic will
9613   // be triggered if it is emitted. However a wrong-sided function is still
9614   // a viable candidate here.
9615   //
9616   // If Cand1 can be emitted and Cand2 cannot be emitted in the current
9617   // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2
9618   // can be emitted, Cand1 is not better than Cand2. This rule should have
9619   // precedence over other rules.
9620   //
9621   // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then
9622   // other rules should be used to determine which is better. This is because
9623   // host/device based overloading resolution is mostly for determining
9624   // viability of a function. If two functions are both viable, other factors
9625   // should take precedence in preference, e.g. the standard-defined preferences
9626   // like argument conversion ranks or enable_if partial-ordering. The
9627   // preference for pass-object-size parameters is probably most similar to a
9628   // type-based-overloading decision and so should take priority.
9629   //
9630   // If other rules cannot determine which is better, CUDA preference will be
9631   // used again to determine which is better.
9632   //
9633   // TODO: Currently IdentifyCUDAPreference does not return correct values
9634   // for functions called in global variable initializers due to missing
9635   // correct context about device/host. Therefore we can only enforce this
9636   // rule when there is a caller. We should enforce this rule for functions
9637   // in global variable initializers once proper context is added.
9638   //
9639   // TODO: We can only enable the hostness based overloading resolution when
9640   // -fgpu-exclude-wrong-side-overloads is on since this requires deferring
9641   // overloading resolution diagnostics.
9642   if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function &&
9643       S.getLangOpts().GPUExcludeWrongSideOverloads) {
9644     if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) {
9645       bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller);
9646       bool IsCand1ImplicitHD =
9647           Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function);
9648       bool IsCand2ImplicitHD =
9649           Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function);
9650       auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function);
9651       auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function);
9652       assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never);
9653       // The implicit HD function may be a function in a system header which
9654       // is forced by pragma. In device compilation, if we prefer HD candidates
9655       // over wrong-sided candidates, overloading resolution may change, which
9656       // may result in non-deferrable diagnostics. As a workaround, we let
9657       // implicit HD candidates take equal preference as wrong-sided candidates.
9658       // This will preserve the overloading resolution.
9659       // TODO: We still need special handling of implicit HD functions since
9660       // they may incur other diagnostics to be deferred. We should make all
9661       // host/device related diagnostics deferrable and remove special handling
9662       // of implicit HD functions.
9663       auto EmitThreshold =
9664           (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD &&
9665            (IsCand1ImplicitHD || IsCand2ImplicitHD))
9666               ? Sema::CFP_Never
9667               : Sema::CFP_WrongSide;
9668       auto Cand1Emittable = P1 > EmitThreshold;
9669       auto Cand2Emittable = P2 > EmitThreshold;
9670       if (Cand1Emittable && !Cand2Emittable)
9671         return true;
9672       if (!Cand1Emittable && Cand2Emittable)
9673         return false;
9674     }
9675   }
9676 
9677   // C++ [over.match.best]p1:
9678   //
9679   //   -- if F is a static member function, ICS1(F) is defined such
9680   //      that ICS1(F) is neither better nor worse than ICS1(G) for
9681   //      any function G, and, symmetrically, ICS1(G) is neither
9682   //      better nor worse than ICS1(F).
9683   unsigned StartArg = 0;
9684   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
9685     StartArg = 1;
9686 
9687   auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
9688     // We don't allow incompatible pointer conversions in C++.
9689     if (!S.getLangOpts().CPlusPlus)
9690       return ICS.isStandard() &&
9691              ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
9692 
9693     // The only ill-formed conversion we allow in C++ is the string literal to
9694     // char* conversion, which is only considered ill-formed after C++11.
9695     return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
9696            hasDeprecatedStringLiteralToCharPtrConversion(ICS);
9697   };
9698 
9699   // Define functions that don't require ill-formed conversions for a given
9700   // argument to be better candidates than functions that do.
9701   unsigned NumArgs = Cand1.Conversions.size();
9702   assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
9703   bool HasBetterConversion = false;
9704   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9705     bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
9706     bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
9707     if (Cand1Bad != Cand2Bad) {
9708       if (Cand1Bad)
9709         return false;
9710       HasBetterConversion = true;
9711     }
9712   }
9713 
9714   if (HasBetterConversion)
9715     return true;
9716 
9717   // C++ [over.match.best]p1:
9718   //   A viable function F1 is defined to be a better function than another
9719   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
9720   //   conversion sequence than ICSi(F2), and then...
9721   bool HasWorseConversion = false;
9722   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9723     switch (CompareImplicitConversionSequences(S, Loc,
9724                                                Cand1.Conversions[ArgIdx],
9725                                                Cand2.Conversions[ArgIdx])) {
9726     case ImplicitConversionSequence::Better:
9727       // Cand1 has a better conversion sequence.
9728       HasBetterConversion = true;
9729       break;
9730 
9731     case ImplicitConversionSequence::Worse:
9732       if (Cand1.Function && Cand2.Function &&
9733           Cand1.isReversed() != Cand2.isReversed() &&
9734           haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function,
9735                                  NumArgs)) {
9736         // Work around large-scale breakage caused by considering reversed
9737         // forms of operator== in C++20:
9738         //
9739         // When comparing a function against a reversed function with the same
9740         // parameter types, if we have a better conversion for one argument and
9741         // a worse conversion for the other, the implicit conversion sequences
9742         // are treated as being equally good.
9743         //
9744         // This prevents a comparison function from being considered ambiguous
9745         // with a reversed form that is written in the same way.
9746         //
9747         // We diagnose this as an extension from CreateOverloadedBinOp.
9748         HasWorseConversion = true;
9749         break;
9750       }
9751 
9752       // Cand1 can't be better than Cand2.
9753       return false;
9754 
9755     case ImplicitConversionSequence::Indistinguishable:
9756       // Do nothing.
9757       break;
9758     }
9759   }
9760 
9761   //    -- for some argument j, ICSj(F1) is a better conversion sequence than
9762   //       ICSj(F2), or, if not that,
9763   if (HasBetterConversion && !HasWorseConversion)
9764     return true;
9765 
9766   //   -- the context is an initialization by user-defined conversion
9767   //      (see 8.5, 13.3.1.5) and the standard conversion sequence
9768   //      from the return type of F1 to the destination type (i.e.,
9769   //      the type of the entity being initialized) is a better
9770   //      conversion sequence than the standard conversion sequence
9771   //      from the return type of F2 to the destination type.
9772   if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
9773       Cand1.Function && Cand2.Function &&
9774       isa<CXXConversionDecl>(Cand1.Function) &&
9775       isa<CXXConversionDecl>(Cand2.Function)) {
9776     // First check whether we prefer one of the conversion functions over the
9777     // other. This only distinguishes the results in non-standard, extension
9778     // cases such as the conversion from a lambda closure type to a function
9779     // pointer or block.
9780     ImplicitConversionSequence::CompareKind Result =
9781         compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9782     if (Result == ImplicitConversionSequence::Indistinguishable)
9783       Result = CompareStandardConversionSequences(S, Loc,
9784                                                   Cand1.FinalConversion,
9785                                                   Cand2.FinalConversion);
9786 
9787     if (Result != ImplicitConversionSequence::Indistinguishable)
9788       return Result == ImplicitConversionSequence::Better;
9789 
9790     // FIXME: Compare kind of reference binding if conversion functions
9791     // convert to a reference type used in direct reference binding, per
9792     // C++14 [over.match.best]p1 section 2 bullet 3.
9793   }
9794 
9795   // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
9796   // as combined with the resolution to CWG issue 243.
9797   //
9798   // When the context is initialization by constructor ([over.match.ctor] or
9799   // either phase of [over.match.list]), a constructor is preferred over
9800   // a conversion function.
9801   if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
9802       Cand1.Function && Cand2.Function &&
9803       isa<CXXConstructorDecl>(Cand1.Function) !=
9804           isa<CXXConstructorDecl>(Cand2.Function))
9805     return isa<CXXConstructorDecl>(Cand1.Function);
9806 
9807   //    -- F1 is a non-template function and F2 is a function template
9808   //       specialization, or, if not that,
9809   bool Cand1IsSpecialization = Cand1.Function &&
9810                                Cand1.Function->getPrimaryTemplate();
9811   bool Cand2IsSpecialization = Cand2.Function &&
9812                                Cand2.Function->getPrimaryTemplate();
9813   if (Cand1IsSpecialization != Cand2IsSpecialization)
9814     return Cand2IsSpecialization;
9815 
9816   //   -- F1 and F2 are function template specializations, and the function
9817   //      template for F1 is more specialized than the template for F2
9818   //      according to the partial ordering rules described in 14.5.5.2, or,
9819   //      if not that,
9820   if (Cand1IsSpecialization && Cand2IsSpecialization) {
9821     if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate(
9822             Cand1.Function->getPrimaryTemplate(),
9823             Cand2.Function->getPrimaryTemplate(), Loc,
9824             isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion
9825                                                    : TPOC_Call,
9826             Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments,
9827             Cand1.isReversed() ^ Cand2.isReversed()))
9828       return BetterTemplate == Cand1.Function->getPrimaryTemplate();
9829   }
9830 
9831   //   -— F1 and F2 are non-template functions with the same
9832   //      parameter-type-lists, and F1 is more constrained than F2 [...],
9833   if (Cand1.Function && Cand2.Function && !Cand1IsSpecialization &&
9834       !Cand2IsSpecialization && Cand1.Function->hasPrototype() &&
9835       Cand2.Function->hasPrototype()) {
9836     auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType());
9837     auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType());
9838     if (PT1->getNumParams() == PT2->getNumParams() &&
9839         PT1->isVariadic() == PT2->isVariadic() &&
9840         S.FunctionParamTypesAreEqual(PT1, PT2)) {
9841       Expr *RC1 = Cand1.Function->getTrailingRequiresClause();
9842       Expr *RC2 = Cand2.Function->getTrailingRequiresClause();
9843       if (RC1 && RC2) {
9844         bool AtLeastAsConstrained1, AtLeastAsConstrained2;
9845         if (S.IsAtLeastAsConstrained(Cand1.Function, {RC1}, Cand2.Function,
9846                                      {RC2}, AtLeastAsConstrained1) ||
9847             S.IsAtLeastAsConstrained(Cand2.Function, {RC2}, Cand1.Function,
9848                                      {RC1}, AtLeastAsConstrained2))
9849           return false;
9850         if (AtLeastAsConstrained1 != AtLeastAsConstrained2)
9851           return AtLeastAsConstrained1;
9852       } else if (RC1 || RC2) {
9853         return RC1 != nullptr;
9854       }
9855     }
9856   }
9857 
9858   //   -- F1 is a constructor for a class D, F2 is a constructor for a base
9859   //      class B of D, and for all arguments the corresponding parameters of
9860   //      F1 and F2 have the same type.
9861   // FIXME: Implement the "all parameters have the same type" check.
9862   bool Cand1IsInherited =
9863       isa_and_nonnull<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
9864   bool Cand2IsInherited =
9865       isa_and_nonnull<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
9866   if (Cand1IsInherited != Cand2IsInherited)
9867     return Cand2IsInherited;
9868   else if (Cand1IsInherited) {
9869     assert(Cand2IsInherited);
9870     auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
9871     auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
9872     if (Cand1Class->isDerivedFrom(Cand2Class))
9873       return true;
9874     if (Cand2Class->isDerivedFrom(Cand1Class))
9875       return false;
9876     // Inherited from sibling base classes: still ambiguous.
9877   }
9878 
9879   //   -- F2 is a rewritten candidate (12.4.1.2) and F1 is not
9880   //   -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate
9881   //      with reversed order of parameters and F1 is not
9882   //
9883   // We rank reversed + different operator as worse than just reversed, but
9884   // that comparison can never happen, because we only consider reversing for
9885   // the maximally-rewritten operator (== or <=>).
9886   if (Cand1.RewriteKind != Cand2.RewriteKind)
9887     return Cand1.RewriteKind < Cand2.RewriteKind;
9888 
9889   // Check C++17 tie-breakers for deduction guides.
9890   {
9891     auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
9892     auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
9893     if (Guide1 && Guide2) {
9894       //  -- F1 is generated from a deduction-guide and F2 is not
9895       if (Guide1->isImplicit() != Guide2->isImplicit())
9896         return Guide2->isImplicit();
9897 
9898       //  -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
9899       if (Guide1->isCopyDeductionCandidate())
9900         return true;
9901     }
9902   }
9903 
9904   // Check for enable_if value-based overload resolution.
9905   if (Cand1.Function && Cand2.Function) {
9906     Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
9907     if (Cmp != Comparison::Equal)
9908       return Cmp == Comparison::Better;
9909   }
9910 
9911   bool HasPS1 = Cand1.Function != nullptr &&
9912                 functionHasPassObjectSizeParams(Cand1.Function);
9913   bool HasPS2 = Cand2.Function != nullptr &&
9914                 functionHasPassObjectSizeParams(Cand2.Function);
9915   if (HasPS1 != HasPS2 && HasPS1)
9916     return true;
9917 
9918   auto MV = isBetterMultiversionCandidate(Cand1, Cand2);
9919   if (MV == Comparison::Better)
9920     return true;
9921   if (MV == Comparison::Worse)
9922     return false;
9923 
9924   // If other rules cannot determine which is better, CUDA preference is used
9925   // to determine which is better.
9926   if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
9927     FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9928     return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
9929            S.IdentifyCUDAPreference(Caller, Cand2.Function);
9930   }
9931 
9932   // General member function overloading is handled above, so this only handles
9933   // constructors with address spaces.
9934   // This only handles address spaces since C++ has no other
9935   // qualifier that can be used with constructors.
9936   const auto *CD1 = dyn_cast_or_null<CXXConstructorDecl>(Cand1.Function);
9937   const auto *CD2 = dyn_cast_or_null<CXXConstructorDecl>(Cand2.Function);
9938   if (CD1 && CD2) {
9939     LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace();
9940     LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace();
9941     if (AS1 != AS2) {
9942       if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1))
9943         return true;
9944       if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1))
9945         return false;
9946     }
9947   }
9948 
9949   return false;
9950 }
9951 
9952 /// Determine whether two declarations are "equivalent" for the purposes of
9953 /// name lookup and overload resolution. This applies when the same internal/no
9954 /// linkage entity is defined by two modules (probably by textually including
9955 /// the same header). In such a case, we don't consider the declarations to
9956 /// declare the same entity, but we also don't want lookups with both
9957 /// declarations visible to be ambiguous in some cases (this happens when using
9958 /// a modularized libstdc++).
9959 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
9960                                                   const NamedDecl *B) {
9961   auto *VA = dyn_cast_or_null<ValueDecl>(A);
9962   auto *VB = dyn_cast_or_null<ValueDecl>(B);
9963   if (!VA || !VB)
9964     return false;
9965 
9966   // The declarations must be declaring the same name as an internal linkage
9967   // entity in different modules.
9968   if (!VA->getDeclContext()->getRedeclContext()->Equals(
9969           VB->getDeclContext()->getRedeclContext()) ||
9970       getOwningModule(VA) == getOwningModule(VB) ||
9971       VA->isExternallyVisible() || VB->isExternallyVisible())
9972     return false;
9973 
9974   // Check that the declarations appear to be equivalent.
9975   //
9976   // FIXME: Checking the type isn't really enough to resolve the ambiguity.
9977   // For constants and functions, we should check the initializer or body is
9978   // the same. For non-constant variables, we shouldn't allow it at all.
9979   if (Context.hasSameType(VA->getType(), VB->getType()))
9980     return true;
9981 
9982   // Enum constants within unnamed enumerations will have different types, but
9983   // may still be similar enough to be interchangeable for our purposes.
9984   if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
9985     if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
9986       // Only handle anonymous enums. If the enumerations were named and
9987       // equivalent, they would have been merged to the same type.
9988       auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
9989       auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
9990       if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
9991           !Context.hasSameType(EnumA->getIntegerType(),
9992                                EnumB->getIntegerType()))
9993         return false;
9994       // Allow this only if the value is the same for both enumerators.
9995       return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
9996     }
9997   }
9998 
9999   // Nothing else is sufficiently similar.
10000   return false;
10001 }
10002 
10003 void Sema::diagnoseEquivalentInternalLinkageDeclarations(
10004     SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
10005   assert(D && "Unknown declaration");
10006   Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
10007 
10008   Module *M = getOwningModule(D);
10009   Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
10010       << !M << (M ? M->getFullModuleName() : "");
10011 
10012   for (auto *E : Equiv) {
10013     Module *M = getOwningModule(E);
10014     Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
10015         << !M << (M ? M->getFullModuleName() : "");
10016   }
10017 }
10018 
10019 /// Computes the best viable function (C++ 13.3.3)
10020 /// within an overload candidate set.
10021 ///
10022 /// \param Loc The location of the function name (or operator symbol) for
10023 /// which overload resolution occurs.
10024 ///
10025 /// \param Best If overload resolution was successful or found a deleted
10026 /// function, \p Best points to the candidate function found.
10027 ///
10028 /// \returns The result of overload resolution.
10029 OverloadingResult
10030 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
10031                                          iterator &Best) {
10032   llvm::SmallVector<OverloadCandidate *, 16> Candidates;
10033   std::transform(begin(), end(), std::back_inserter(Candidates),
10034                  [](OverloadCandidate &Cand) { return &Cand; });
10035 
10036   // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
10037   // are accepted by both clang and NVCC. However, during a particular
10038   // compilation mode only one call variant is viable. We need to
10039   // exclude non-viable overload candidates from consideration based
10040   // only on their host/device attributes. Specifically, if one
10041   // candidate call is WrongSide and the other is SameSide, we ignore
10042   // the WrongSide candidate.
10043   // We only need to remove wrong-sided candidates here if
10044   // -fgpu-exclude-wrong-side-overloads is off. When
10045   // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared
10046   // uniformly in isBetterOverloadCandidate.
10047   if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) {
10048     const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
10049     bool ContainsSameSideCandidate =
10050         llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
10051           // Check viable function only.
10052           return Cand->Viable && Cand->Function &&
10053                  S.IdentifyCUDAPreference(Caller, Cand->Function) ==
10054                      Sema::CFP_SameSide;
10055         });
10056     if (ContainsSameSideCandidate) {
10057       auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
10058         // Check viable function only to avoid unnecessary data copying/moving.
10059         return Cand->Viable && Cand->Function &&
10060                S.IdentifyCUDAPreference(Caller, Cand->Function) ==
10061                    Sema::CFP_WrongSide;
10062       };
10063       llvm::erase_if(Candidates, IsWrongSideCandidate);
10064     }
10065   }
10066 
10067   // Find the best viable function.
10068   Best = end();
10069   for (auto *Cand : Candidates) {
10070     Cand->Best = false;
10071     if (Cand->Viable)
10072       if (Best == end() ||
10073           isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
10074         Best = Cand;
10075   }
10076 
10077   // If we didn't find any viable functions, abort.
10078   if (Best == end())
10079     return OR_No_Viable_Function;
10080 
10081   llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
10082 
10083   llvm::SmallVector<OverloadCandidate*, 4> PendingBest;
10084   PendingBest.push_back(&*Best);
10085   Best->Best = true;
10086 
10087   // Make sure that this function is better than every other viable
10088   // function. If not, we have an ambiguity.
10089   while (!PendingBest.empty()) {
10090     auto *Curr = PendingBest.pop_back_val();
10091     for (auto *Cand : Candidates) {
10092       if (Cand->Viable && !Cand->Best &&
10093           !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) {
10094         PendingBest.push_back(Cand);
10095         Cand->Best = true;
10096 
10097         if (S.isEquivalentInternalLinkageDeclaration(Cand->Function,
10098                                                      Curr->Function))
10099           EquivalentCands.push_back(Cand->Function);
10100         else
10101           Best = end();
10102       }
10103     }
10104   }
10105 
10106   // If we found more than one best candidate, this is ambiguous.
10107   if (Best == end())
10108     return OR_Ambiguous;
10109 
10110   // Best is the best viable function.
10111   if (Best->Function && Best->Function->isDeleted())
10112     return OR_Deleted;
10113 
10114   if (!EquivalentCands.empty())
10115     S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
10116                                                     EquivalentCands);
10117 
10118   return OR_Success;
10119 }
10120 
10121 namespace {
10122 
10123 enum OverloadCandidateKind {
10124   oc_function,
10125   oc_method,
10126   oc_reversed_binary_operator,
10127   oc_constructor,
10128   oc_implicit_default_constructor,
10129   oc_implicit_copy_constructor,
10130   oc_implicit_move_constructor,
10131   oc_implicit_copy_assignment,
10132   oc_implicit_move_assignment,
10133   oc_implicit_equality_comparison,
10134   oc_inherited_constructor
10135 };
10136 
10137 enum OverloadCandidateSelect {
10138   ocs_non_template,
10139   ocs_template,
10140   ocs_described_template,
10141 };
10142 
10143 static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
10144 ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
10145                           OverloadCandidateRewriteKind CRK,
10146                           std::string &Description) {
10147 
10148   bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
10149   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
10150     isTemplate = true;
10151     Description = S.getTemplateArgumentBindingsText(
10152         FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
10153   }
10154 
10155   OverloadCandidateSelect Select = [&]() {
10156     if (!Description.empty())
10157       return ocs_described_template;
10158     return isTemplate ? ocs_template : ocs_non_template;
10159   }();
10160 
10161   OverloadCandidateKind Kind = [&]() {
10162     if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual)
10163       return oc_implicit_equality_comparison;
10164 
10165     if (CRK & CRK_Reversed)
10166       return oc_reversed_binary_operator;
10167 
10168     if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
10169       if (!Ctor->isImplicit()) {
10170         if (isa<ConstructorUsingShadowDecl>(Found))
10171           return oc_inherited_constructor;
10172         else
10173           return oc_constructor;
10174       }
10175 
10176       if (Ctor->isDefaultConstructor())
10177         return oc_implicit_default_constructor;
10178 
10179       if (Ctor->isMoveConstructor())
10180         return oc_implicit_move_constructor;
10181 
10182       assert(Ctor->isCopyConstructor() &&
10183              "unexpected sort of implicit constructor");
10184       return oc_implicit_copy_constructor;
10185     }
10186 
10187     if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
10188       // This actually gets spelled 'candidate function' for now, but
10189       // it doesn't hurt to split it out.
10190       if (!Meth->isImplicit())
10191         return oc_method;
10192 
10193       if (Meth->isMoveAssignmentOperator())
10194         return oc_implicit_move_assignment;
10195 
10196       if (Meth->isCopyAssignmentOperator())
10197         return oc_implicit_copy_assignment;
10198 
10199       assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
10200       return oc_method;
10201     }
10202 
10203     return oc_function;
10204   }();
10205 
10206   return std::make_pair(Kind, Select);
10207 }
10208 
10209 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
10210   // FIXME: It'd be nice to only emit a note once per using-decl per overload
10211   // set.
10212   if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
10213     S.Diag(FoundDecl->getLocation(),
10214            diag::note_ovl_candidate_inherited_constructor)
10215       << Shadow->getNominatedBaseClass();
10216 }
10217 
10218 } // end anonymous namespace
10219 
10220 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
10221                                     const FunctionDecl *FD) {
10222   for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
10223     bool AlwaysTrue;
10224     if (EnableIf->getCond()->isValueDependent() ||
10225         !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
10226       return false;
10227     if (!AlwaysTrue)
10228       return false;
10229   }
10230   return true;
10231 }
10232 
10233 /// Returns true if we can take the address of the function.
10234 ///
10235 /// \param Complain - If true, we'll emit a diagnostic
10236 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
10237 ///   we in overload resolution?
10238 /// \param Loc - The location of the statement we're complaining about. Ignored
10239 ///   if we're not complaining, or if we're in overload resolution.
10240 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
10241                                               bool Complain,
10242                                               bool InOverloadResolution,
10243                                               SourceLocation Loc) {
10244   if (!isFunctionAlwaysEnabled(S.Context, FD)) {
10245     if (Complain) {
10246       if (InOverloadResolution)
10247         S.Diag(FD->getBeginLoc(),
10248                diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
10249       else
10250         S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
10251     }
10252     return false;
10253   }
10254 
10255   if (FD->getTrailingRequiresClause()) {
10256     ConstraintSatisfaction Satisfaction;
10257     if (S.CheckFunctionConstraints(FD, Satisfaction, Loc))
10258       return false;
10259     if (!Satisfaction.IsSatisfied) {
10260       if (Complain) {
10261         if (InOverloadResolution)
10262           S.Diag(FD->getBeginLoc(),
10263                  diag::note_ovl_candidate_unsatisfied_constraints);
10264         else
10265           S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied)
10266               << FD;
10267         S.DiagnoseUnsatisfiedConstraint(Satisfaction);
10268       }
10269       return false;
10270     }
10271   }
10272 
10273   auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
10274     return P->hasAttr<PassObjectSizeAttr>();
10275   });
10276   if (I == FD->param_end())
10277     return true;
10278 
10279   if (Complain) {
10280     // Add one to ParamNo because it's user-facing
10281     unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
10282     if (InOverloadResolution)
10283       S.Diag(FD->getLocation(),
10284              diag::note_ovl_candidate_has_pass_object_size_params)
10285           << ParamNo;
10286     else
10287       S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
10288           << FD << ParamNo;
10289   }
10290   return false;
10291 }
10292 
10293 static bool checkAddressOfCandidateIsAvailable(Sema &S,
10294                                                const FunctionDecl *FD) {
10295   return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
10296                                            /*InOverloadResolution=*/true,
10297                                            /*Loc=*/SourceLocation());
10298 }
10299 
10300 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
10301                                              bool Complain,
10302                                              SourceLocation Loc) {
10303   return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
10304                                              /*InOverloadResolution=*/false,
10305                                              Loc);
10306 }
10307 
10308 // Don't print candidates other than the one that matches the calling
10309 // convention of the call operator, since that is guaranteed to exist.
10310 static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) {
10311   const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn);
10312 
10313   if (!ConvD)
10314     return false;
10315   const auto *RD = cast<CXXRecordDecl>(Fn->getParent());
10316   if (!RD->isLambda())
10317     return false;
10318 
10319   CXXMethodDecl *CallOp = RD->getLambdaCallOperator();
10320   CallingConv CallOpCC =
10321       CallOp->getType()->castAs<FunctionType>()->getCallConv();
10322   QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType();
10323   CallingConv ConvToCC =
10324       ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv();
10325 
10326   return ConvToCC != CallOpCC;
10327 }
10328 
10329 // Notes the location of an overload candidate.
10330 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
10331                                  OverloadCandidateRewriteKind RewriteKind,
10332                                  QualType DestType, bool TakingAddress) {
10333   if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
10334     return;
10335   if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
10336       !Fn->getAttr<TargetAttr>()->isDefaultVersion())
10337     return;
10338   if (shouldSkipNotingLambdaConversionDecl(Fn))
10339     return;
10340 
10341   std::string FnDesc;
10342   std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
10343       ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc);
10344   PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
10345                          << (unsigned)KSPair.first << (unsigned)KSPair.second
10346                          << Fn << FnDesc;
10347 
10348   HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
10349   Diag(Fn->getLocation(), PD);
10350   MaybeEmitInheritedConstructorNote(*this, Found);
10351 }
10352 
10353 static void
10354 MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) {
10355   // Perhaps the ambiguity was caused by two atomic constraints that are
10356   // 'identical' but not equivalent:
10357   //
10358   // void foo() requires (sizeof(T) > 4) { } // #1
10359   // void foo() requires (sizeof(T) > 4) && T::value { } // #2
10360   //
10361   // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause
10362   // #2 to subsume #1, but these constraint are not considered equivalent
10363   // according to the subsumption rules because they are not the same
10364   // source-level construct. This behavior is quite confusing and we should try
10365   // to help the user figure out what happened.
10366 
10367   SmallVector<const Expr *, 3> FirstAC, SecondAC;
10368   FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr;
10369   for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10370     if (!I->Function)
10371       continue;
10372     SmallVector<const Expr *, 3> AC;
10373     if (auto *Template = I->Function->getPrimaryTemplate())
10374       Template->getAssociatedConstraints(AC);
10375     else
10376       I->Function->getAssociatedConstraints(AC);
10377     if (AC.empty())
10378       continue;
10379     if (FirstCand == nullptr) {
10380       FirstCand = I->Function;
10381       FirstAC = AC;
10382     } else if (SecondCand == nullptr) {
10383       SecondCand = I->Function;
10384       SecondAC = AC;
10385     } else {
10386       // We have more than one pair of constrained functions - this check is
10387       // expensive and we'd rather not try to diagnose it.
10388       return;
10389     }
10390   }
10391   if (!SecondCand)
10392     return;
10393   // The diagnostic can only happen if there are associated constraints on
10394   // both sides (there needs to be some identical atomic constraint).
10395   if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC,
10396                                                       SecondCand, SecondAC))
10397     // Just show the user one diagnostic, they'll probably figure it out
10398     // from here.
10399     return;
10400 }
10401 
10402 // Notes the location of all overload candidates designated through
10403 // OverloadedExpr
10404 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
10405                                      bool TakingAddress) {
10406   assert(OverloadedExpr->getType() == Context.OverloadTy);
10407 
10408   OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
10409   OverloadExpr *OvlExpr = Ovl.Expression;
10410 
10411   for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10412                             IEnd = OvlExpr->decls_end();
10413        I != IEnd; ++I) {
10414     if (FunctionTemplateDecl *FunTmpl =
10415                 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
10416       NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType,
10417                             TakingAddress);
10418     } else if (FunctionDecl *Fun
10419                       = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
10420       NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress);
10421     }
10422   }
10423 }
10424 
10425 /// Diagnoses an ambiguous conversion.  The partial diagnostic is the
10426 /// "lead" diagnostic; it will be given two arguments, the source and
10427 /// target types of the conversion.
10428 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
10429                                  Sema &S,
10430                                  SourceLocation CaretLoc,
10431                                  const PartialDiagnostic &PDiag) const {
10432   S.Diag(CaretLoc, PDiag)
10433     << Ambiguous.getFromType() << Ambiguous.getToType();
10434   unsigned CandsShown = 0;
10435   AmbiguousConversionSequence::const_iterator I, E;
10436   for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
10437     if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow())
10438       break;
10439     ++CandsShown;
10440     S.NoteOverloadCandidate(I->first, I->second);
10441   }
10442   S.Diags.overloadCandidatesShown(CandsShown);
10443   if (I != E)
10444     S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
10445 }
10446 
10447 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
10448                                   unsigned I, bool TakingCandidateAddress) {
10449   const ImplicitConversionSequence &Conv = Cand->Conversions[I];
10450   assert(Conv.isBad());
10451   assert(Cand->Function && "for now, candidate must be a function");
10452   FunctionDecl *Fn = Cand->Function;
10453 
10454   // There's a conversion slot for the object argument if this is a
10455   // non-constructor method.  Note that 'I' corresponds the
10456   // conversion-slot index.
10457   bool isObjectArgument = false;
10458   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
10459     if (I == 0)
10460       isObjectArgument = true;
10461     else
10462       I--;
10463   }
10464 
10465   std::string FnDesc;
10466   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10467       ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(),
10468                                 FnDesc);
10469 
10470   Expr *FromExpr = Conv.Bad.FromExpr;
10471   QualType FromTy = Conv.Bad.getFromType();
10472   QualType ToTy = Conv.Bad.getToType();
10473 
10474   if (FromTy == S.Context.OverloadTy) {
10475     assert(FromExpr && "overload set argument came from implicit argument?");
10476     Expr *E = FromExpr->IgnoreParens();
10477     if (isa<UnaryOperator>(E))
10478       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
10479     DeclarationName Name = cast<OverloadExpr>(E)->getName();
10480 
10481     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
10482         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10483         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
10484         << Name << I + 1;
10485     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10486     return;
10487   }
10488 
10489   // Do some hand-waving analysis to see if the non-viability is due
10490   // to a qualifier mismatch.
10491   CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
10492   CanQualType CToTy = S.Context.getCanonicalType(ToTy);
10493   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
10494     CToTy = RT->getPointeeType();
10495   else {
10496     // TODO: detect and diagnose the full richness of const mismatches.
10497     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
10498       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
10499         CFromTy = FromPT->getPointeeType();
10500         CToTy = ToPT->getPointeeType();
10501       }
10502   }
10503 
10504   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
10505       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
10506     Qualifiers FromQs = CFromTy.getQualifiers();
10507     Qualifiers ToQs = CToTy.getQualifiers();
10508 
10509     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
10510       if (isObjectArgument)
10511         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this)
10512             << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10513             << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10514             << FromQs.getAddressSpace() << ToQs.getAddressSpace();
10515       else
10516         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
10517             << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10518             << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10519             << FromQs.getAddressSpace() << ToQs.getAddressSpace()
10520             << ToTy->isReferenceType() << I + 1;
10521       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10522       return;
10523     }
10524 
10525     if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10526       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
10527           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10528           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10529           << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
10530           << (unsigned)isObjectArgument << I + 1;
10531       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10532       return;
10533     }
10534 
10535     if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
10536       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
10537           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10538           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10539           << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
10540           << (unsigned)isObjectArgument << I + 1;
10541       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10542       return;
10543     }
10544 
10545     if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
10546       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
10547           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10548           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10549           << FromQs.hasUnaligned() << I + 1;
10550       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10551       return;
10552     }
10553 
10554     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
10555     assert(CVR && "expected qualifiers mismatch");
10556 
10557     if (isObjectArgument) {
10558       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
10559           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10560           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10561           << (CVR - 1);
10562     } else {
10563       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
10564           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10565           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10566           << (CVR - 1) << I + 1;
10567     }
10568     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10569     return;
10570   }
10571 
10572   if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue ||
10573       Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) {
10574     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category)
10575         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10576         << (unsigned)isObjectArgument << I + 1
10577         << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue)
10578         << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
10579     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10580     return;
10581   }
10582 
10583   // Special diagnostic for failure to convert an initializer list, since
10584   // telling the user that it has type void is not useful.
10585   if (FromExpr && isa<InitListExpr>(FromExpr)) {
10586     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
10587         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10588         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10589         << ToTy << (unsigned)isObjectArgument << I + 1
10590         << (Conv.Bad.Kind == BadConversionSequence::too_few_initializers ? 1
10591             : Conv.Bad.Kind == BadConversionSequence::too_many_initializers
10592                 ? 2
10593                 : 0);
10594     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10595     return;
10596   }
10597 
10598   // Diagnose references or pointers to incomplete types differently,
10599   // since it's far from impossible that the incompleteness triggered
10600   // the failure.
10601   QualType TempFromTy = FromTy.getNonReferenceType();
10602   if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
10603     TempFromTy = PTy->getPointeeType();
10604   if (TempFromTy->isIncompleteType()) {
10605     // Emit the generic diagnostic and, optionally, add the hints to it.
10606     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
10607         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10608         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10609         << ToTy << (unsigned)isObjectArgument << I + 1
10610         << (unsigned)(Cand->Fix.Kind);
10611 
10612     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10613     return;
10614   }
10615 
10616   // Diagnose base -> derived pointer conversions.
10617   unsigned BaseToDerivedConversion = 0;
10618   if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
10619     if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
10620       if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10621                                                FromPtrTy->getPointeeType()) &&
10622           !FromPtrTy->getPointeeType()->isIncompleteType() &&
10623           !ToPtrTy->getPointeeType()->isIncompleteType() &&
10624           S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
10625                           FromPtrTy->getPointeeType()))
10626         BaseToDerivedConversion = 1;
10627     }
10628   } else if (const ObjCObjectPointerType *FromPtrTy
10629                                     = FromTy->getAs<ObjCObjectPointerType>()) {
10630     if (const ObjCObjectPointerType *ToPtrTy
10631                                         = ToTy->getAs<ObjCObjectPointerType>())
10632       if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
10633         if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
10634           if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10635                                                 FromPtrTy->getPointeeType()) &&
10636               FromIface->isSuperClassOf(ToIface))
10637             BaseToDerivedConversion = 2;
10638   } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
10639     if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
10640         !FromTy->isIncompleteType() &&
10641         !ToRefTy->getPointeeType()->isIncompleteType() &&
10642         S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
10643       BaseToDerivedConversion = 3;
10644     }
10645   }
10646 
10647   if (BaseToDerivedConversion) {
10648     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
10649         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10650         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10651         << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
10652     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10653     return;
10654   }
10655 
10656   if (isa<ObjCObjectPointerType>(CFromTy) &&
10657       isa<PointerType>(CToTy)) {
10658       Qualifiers FromQs = CFromTy.getQualifiers();
10659       Qualifiers ToQs = CToTy.getQualifiers();
10660       if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10661         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
10662             << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10663             << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10664             << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
10665         MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10666         return;
10667       }
10668   }
10669 
10670   if (TakingCandidateAddress &&
10671       !checkAddressOfCandidateIsAvailable(S, Cand->Function))
10672     return;
10673 
10674   // Emit the generic diagnostic and, optionally, add the hints to it.
10675   PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
10676   FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10677         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10678         << ToTy << (unsigned)isObjectArgument << I + 1
10679         << (unsigned)(Cand->Fix.Kind);
10680 
10681   // If we can fix the conversion, suggest the FixIts.
10682   for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
10683        HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
10684     FDiag << *HI;
10685   S.Diag(Fn->getLocation(), FDiag);
10686 
10687   MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10688 }
10689 
10690 /// Additional arity mismatch diagnosis specific to a function overload
10691 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
10692 /// over a candidate in any candidate set.
10693 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
10694                                unsigned NumArgs) {
10695   FunctionDecl *Fn = Cand->Function;
10696   unsigned MinParams = Fn->getMinRequiredArguments();
10697 
10698   // With invalid overloaded operators, it's possible that we think we
10699   // have an arity mismatch when in fact it looks like we have the
10700   // right number of arguments, because only overloaded operators have
10701   // the weird behavior of overloading member and non-member functions.
10702   // Just don't report anything.
10703   if (Fn->isInvalidDecl() &&
10704       Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
10705     return true;
10706 
10707   if (NumArgs < MinParams) {
10708     assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
10709            (Cand->FailureKind == ovl_fail_bad_deduction &&
10710             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
10711   } else {
10712     assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
10713            (Cand->FailureKind == ovl_fail_bad_deduction &&
10714             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
10715   }
10716 
10717   return false;
10718 }
10719 
10720 /// General arity mismatch diagnosis over a candidate in a candidate set.
10721 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
10722                                   unsigned NumFormalArgs) {
10723   assert(isa<FunctionDecl>(D) &&
10724       "The templated declaration should at least be a function"
10725       " when diagnosing bad template argument deduction due to too many"
10726       " or too few arguments");
10727 
10728   FunctionDecl *Fn = cast<FunctionDecl>(D);
10729 
10730   // TODO: treat calls to a missing default constructor as a special case
10731   const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>();
10732   unsigned MinParams = Fn->getMinRequiredArguments();
10733 
10734   // at least / at most / exactly
10735   unsigned mode, modeCount;
10736   if (NumFormalArgs < MinParams) {
10737     if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
10738         FnTy->isTemplateVariadic())
10739       mode = 0; // "at least"
10740     else
10741       mode = 2; // "exactly"
10742     modeCount = MinParams;
10743   } else {
10744     if (MinParams != FnTy->getNumParams())
10745       mode = 1; // "at most"
10746     else
10747       mode = 2; // "exactly"
10748     modeCount = FnTy->getNumParams();
10749   }
10750 
10751   std::string Description;
10752   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10753       ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description);
10754 
10755   if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
10756     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
10757         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10758         << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
10759   else
10760     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
10761         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10762         << Description << mode << modeCount << NumFormalArgs;
10763 
10764   MaybeEmitInheritedConstructorNote(S, Found);
10765 }
10766 
10767 /// Arity mismatch diagnosis specific to a function overload candidate.
10768 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
10769                                   unsigned NumFormalArgs) {
10770   if (!CheckArityMismatch(S, Cand, NumFormalArgs))
10771     DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
10772 }
10773 
10774 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
10775   if (TemplateDecl *TD = Templated->getDescribedTemplate())
10776     return TD;
10777   llvm_unreachable("Unsupported: Getting the described template declaration"
10778                    " for bad deduction diagnosis");
10779 }
10780 
10781 /// Diagnose a failed template-argument deduction.
10782 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
10783                                  DeductionFailureInfo &DeductionFailure,
10784                                  unsigned NumArgs,
10785                                  bool TakingCandidateAddress) {
10786   TemplateParameter Param = DeductionFailure.getTemplateParameter();
10787   NamedDecl *ParamD;
10788   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
10789   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
10790   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
10791   switch (DeductionFailure.Result) {
10792   case Sema::TDK_Success:
10793     llvm_unreachable("TDK_success while diagnosing bad deduction");
10794 
10795   case Sema::TDK_Incomplete: {
10796     assert(ParamD && "no parameter found for incomplete deduction result");
10797     S.Diag(Templated->getLocation(),
10798            diag::note_ovl_candidate_incomplete_deduction)
10799         << ParamD->getDeclName();
10800     MaybeEmitInheritedConstructorNote(S, Found);
10801     return;
10802   }
10803 
10804   case Sema::TDK_IncompletePack: {
10805     assert(ParamD && "no parameter found for incomplete deduction result");
10806     S.Diag(Templated->getLocation(),
10807            diag::note_ovl_candidate_incomplete_deduction_pack)
10808         << ParamD->getDeclName()
10809         << (DeductionFailure.getFirstArg()->pack_size() + 1)
10810         << *DeductionFailure.getFirstArg();
10811     MaybeEmitInheritedConstructorNote(S, Found);
10812     return;
10813   }
10814 
10815   case Sema::TDK_Underqualified: {
10816     assert(ParamD && "no parameter found for bad qualifiers deduction result");
10817     TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
10818 
10819     QualType Param = DeductionFailure.getFirstArg()->getAsType();
10820 
10821     // Param will have been canonicalized, but it should just be a
10822     // qualified version of ParamD, so move the qualifiers to that.
10823     QualifierCollector Qs;
10824     Qs.strip(Param);
10825     QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
10826     assert(S.Context.hasSameType(Param, NonCanonParam));
10827 
10828     // Arg has also been canonicalized, but there's nothing we can do
10829     // about that.  It also doesn't matter as much, because it won't
10830     // have any template parameters in it (because deduction isn't
10831     // done on dependent types).
10832     QualType Arg = DeductionFailure.getSecondArg()->getAsType();
10833 
10834     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
10835         << ParamD->getDeclName() << Arg << NonCanonParam;
10836     MaybeEmitInheritedConstructorNote(S, Found);
10837     return;
10838   }
10839 
10840   case Sema::TDK_Inconsistent: {
10841     assert(ParamD && "no parameter found for inconsistent deduction result");
10842     int which = 0;
10843     if (isa<TemplateTypeParmDecl>(ParamD))
10844       which = 0;
10845     else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
10846       // Deduction might have failed because we deduced arguments of two
10847       // different types for a non-type template parameter.
10848       // FIXME: Use a different TDK value for this.
10849       QualType T1 =
10850           DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
10851       QualType T2 =
10852           DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
10853       if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
10854         S.Diag(Templated->getLocation(),
10855                diag::note_ovl_candidate_inconsistent_deduction_types)
10856           << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
10857           << *DeductionFailure.getSecondArg() << T2;
10858         MaybeEmitInheritedConstructorNote(S, Found);
10859         return;
10860       }
10861 
10862       which = 1;
10863     } else {
10864       which = 2;
10865     }
10866 
10867     // Tweak the diagnostic if the problem is that we deduced packs of
10868     // different arities. We'll print the actual packs anyway in case that
10869     // includes additional useful information.
10870     if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack &&
10871         DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack &&
10872         DeductionFailure.getFirstArg()->pack_size() !=
10873             DeductionFailure.getSecondArg()->pack_size()) {
10874       which = 3;
10875     }
10876 
10877     S.Diag(Templated->getLocation(),
10878            diag::note_ovl_candidate_inconsistent_deduction)
10879         << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
10880         << *DeductionFailure.getSecondArg();
10881     MaybeEmitInheritedConstructorNote(S, Found);
10882     return;
10883   }
10884 
10885   case Sema::TDK_InvalidExplicitArguments:
10886     assert(ParamD && "no parameter found for invalid explicit arguments");
10887     if (ParamD->getDeclName())
10888       S.Diag(Templated->getLocation(),
10889              diag::note_ovl_candidate_explicit_arg_mismatch_named)
10890           << ParamD->getDeclName();
10891     else {
10892       int index = 0;
10893       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
10894         index = TTP->getIndex();
10895       else if (NonTypeTemplateParmDecl *NTTP
10896                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
10897         index = NTTP->getIndex();
10898       else
10899         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
10900       S.Diag(Templated->getLocation(),
10901              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
10902           << (index + 1);
10903     }
10904     MaybeEmitInheritedConstructorNote(S, Found);
10905     return;
10906 
10907   case Sema::TDK_ConstraintsNotSatisfied: {
10908     // Format the template argument list into the argument string.
10909     SmallString<128> TemplateArgString;
10910     TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList();
10911     TemplateArgString = " ";
10912     TemplateArgString += S.getTemplateArgumentBindingsText(
10913         getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10914     if (TemplateArgString.size() == 1)
10915       TemplateArgString.clear();
10916     S.Diag(Templated->getLocation(),
10917            diag::note_ovl_candidate_unsatisfied_constraints)
10918         << TemplateArgString;
10919 
10920     S.DiagnoseUnsatisfiedConstraint(
10921         static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction);
10922     return;
10923   }
10924   case Sema::TDK_TooManyArguments:
10925   case Sema::TDK_TooFewArguments:
10926     DiagnoseArityMismatch(S, Found, Templated, NumArgs);
10927     return;
10928 
10929   case Sema::TDK_InstantiationDepth:
10930     S.Diag(Templated->getLocation(),
10931            diag::note_ovl_candidate_instantiation_depth);
10932     MaybeEmitInheritedConstructorNote(S, Found);
10933     return;
10934 
10935   case Sema::TDK_SubstitutionFailure: {
10936     // Format the template argument list into the argument string.
10937     SmallString<128> TemplateArgString;
10938     if (TemplateArgumentList *Args =
10939             DeductionFailure.getTemplateArgumentList()) {
10940       TemplateArgString = " ";
10941       TemplateArgString += S.getTemplateArgumentBindingsText(
10942           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10943       if (TemplateArgString.size() == 1)
10944         TemplateArgString.clear();
10945     }
10946 
10947     // If this candidate was disabled by enable_if, say so.
10948     PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
10949     if (PDiag && PDiag->second.getDiagID() ==
10950           diag::err_typename_nested_not_found_enable_if) {
10951       // FIXME: Use the source range of the condition, and the fully-qualified
10952       //        name of the enable_if template. These are both present in PDiag.
10953       S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
10954         << "'enable_if'" << TemplateArgString;
10955       return;
10956     }
10957 
10958     // We found a specific requirement that disabled the enable_if.
10959     if (PDiag && PDiag->second.getDiagID() ==
10960         diag::err_typename_nested_not_found_requirement) {
10961       S.Diag(Templated->getLocation(),
10962              diag::note_ovl_candidate_disabled_by_requirement)
10963         << PDiag->second.getStringArg(0) << TemplateArgString;
10964       return;
10965     }
10966 
10967     // Format the SFINAE diagnostic into the argument string.
10968     // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
10969     //        formatted message in another diagnostic.
10970     SmallString<128> SFINAEArgString;
10971     SourceRange R;
10972     if (PDiag) {
10973       SFINAEArgString = ": ";
10974       R = SourceRange(PDiag->first, PDiag->first);
10975       PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
10976     }
10977 
10978     S.Diag(Templated->getLocation(),
10979            diag::note_ovl_candidate_substitution_failure)
10980         << TemplateArgString << SFINAEArgString << R;
10981     MaybeEmitInheritedConstructorNote(S, Found);
10982     return;
10983   }
10984 
10985   case Sema::TDK_DeducedMismatch:
10986   case Sema::TDK_DeducedMismatchNested: {
10987     // Format the template argument list into the argument string.
10988     SmallString<128> TemplateArgString;
10989     if (TemplateArgumentList *Args =
10990             DeductionFailure.getTemplateArgumentList()) {
10991       TemplateArgString = " ";
10992       TemplateArgString += S.getTemplateArgumentBindingsText(
10993           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10994       if (TemplateArgString.size() == 1)
10995         TemplateArgString.clear();
10996     }
10997 
10998     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
10999         << (*DeductionFailure.getCallArgIndex() + 1)
11000         << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
11001         << TemplateArgString
11002         << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
11003     break;
11004   }
11005 
11006   case Sema::TDK_NonDeducedMismatch: {
11007     // FIXME: Provide a source location to indicate what we couldn't match.
11008     TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
11009     TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
11010     if (FirstTA.getKind() == TemplateArgument::Template &&
11011         SecondTA.getKind() == TemplateArgument::Template) {
11012       TemplateName FirstTN = FirstTA.getAsTemplate();
11013       TemplateName SecondTN = SecondTA.getAsTemplate();
11014       if (FirstTN.getKind() == TemplateName::Template &&
11015           SecondTN.getKind() == TemplateName::Template) {
11016         if (FirstTN.getAsTemplateDecl()->getName() ==
11017             SecondTN.getAsTemplateDecl()->getName()) {
11018           // FIXME: This fixes a bad diagnostic where both templates are named
11019           // the same.  This particular case is a bit difficult since:
11020           // 1) It is passed as a string to the diagnostic printer.
11021           // 2) The diagnostic printer only attempts to find a better
11022           //    name for types, not decls.
11023           // Ideally, this should folded into the diagnostic printer.
11024           S.Diag(Templated->getLocation(),
11025                  diag::note_ovl_candidate_non_deduced_mismatch_qualified)
11026               << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
11027           return;
11028         }
11029       }
11030     }
11031 
11032     if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
11033         !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
11034       return;
11035 
11036     // FIXME: For generic lambda parameters, check if the function is a lambda
11037     // call operator, and if so, emit a prettier and more informative
11038     // diagnostic that mentions 'auto' and lambda in addition to
11039     // (or instead of?) the canonical template type parameters.
11040     S.Diag(Templated->getLocation(),
11041            diag::note_ovl_candidate_non_deduced_mismatch)
11042         << FirstTA << SecondTA;
11043     return;
11044   }
11045   // TODO: diagnose these individually, then kill off
11046   // note_ovl_candidate_bad_deduction, which is uselessly vague.
11047   case Sema::TDK_MiscellaneousDeductionFailure:
11048     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
11049     MaybeEmitInheritedConstructorNote(S, Found);
11050     return;
11051   case Sema::TDK_CUDATargetMismatch:
11052     S.Diag(Templated->getLocation(),
11053            diag::note_cuda_ovl_candidate_target_mismatch);
11054     return;
11055   }
11056 }
11057 
11058 /// Diagnose a failed template-argument deduction, for function calls.
11059 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
11060                                  unsigned NumArgs,
11061                                  bool TakingCandidateAddress) {
11062   unsigned TDK = Cand->DeductionFailure.Result;
11063   if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
11064     if (CheckArityMismatch(S, Cand, NumArgs))
11065       return;
11066   }
11067   DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
11068                        Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
11069 }
11070 
11071 /// CUDA: diagnose an invalid call across targets.
11072 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
11073   FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
11074   FunctionDecl *Callee = Cand->Function;
11075 
11076   Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
11077                            CalleeTarget = S.IdentifyCUDATarget(Callee);
11078 
11079   std::string FnDesc;
11080   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11081       ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee,
11082                                 Cand->getRewriteKind(), FnDesc);
11083 
11084   S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
11085       << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
11086       << FnDesc /* Ignored */
11087       << CalleeTarget << CallerTarget;
11088 
11089   // This could be an implicit constructor for which we could not infer the
11090   // target due to a collsion. Diagnose that case.
11091   CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
11092   if (Meth != nullptr && Meth->isImplicit()) {
11093     CXXRecordDecl *ParentClass = Meth->getParent();
11094     Sema::CXXSpecialMember CSM;
11095 
11096     switch (FnKindPair.first) {
11097     default:
11098       return;
11099     case oc_implicit_default_constructor:
11100       CSM = Sema::CXXDefaultConstructor;
11101       break;
11102     case oc_implicit_copy_constructor:
11103       CSM = Sema::CXXCopyConstructor;
11104       break;
11105     case oc_implicit_move_constructor:
11106       CSM = Sema::CXXMoveConstructor;
11107       break;
11108     case oc_implicit_copy_assignment:
11109       CSM = Sema::CXXCopyAssignment;
11110       break;
11111     case oc_implicit_move_assignment:
11112       CSM = Sema::CXXMoveAssignment;
11113       break;
11114     };
11115 
11116     bool ConstRHS = false;
11117     if (Meth->getNumParams()) {
11118       if (const ReferenceType *RT =
11119               Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
11120         ConstRHS = RT->getPointeeType().isConstQualified();
11121       }
11122     }
11123 
11124     S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
11125                                               /* ConstRHS */ ConstRHS,
11126                                               /* Diagnose */ true);
11127   }
11128 }
11129 
11130 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
11131   FunctionDecl *Callee = Cand->Function;
11132   EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
11133 
11134   S.Diag(Callee->getLocation(),
11135          diag::note_ovl_candidate_disabled_by_function_cond_attr)
11136       << Attr->getCond()->getSourceRange() << Attr->getMessage();
11137 }
11138 
11139 static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
11140   ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function);
11141   assert(ES.isExplicit() && "not an explicit candidate");
11142 
11143   unsigned Kind;
11144   switch (Cand->Function->getDeclKind()) {
11145   case Decl::Kind::CXXConstructor:
11146     Kind = 0;
11147     break;
11148   case Decl::Kind::CXXConversion:
11149     Kind = 1;
11150     break;
11151   case Decl::Kind::CXXDeductionGuide:
11152     Kind = Cand->Function->isImplicit() ? 0 : 2;
11153     break;
11154   default:
11155     llvm_unreachable("invalid Decl");
11156   }
11157 
11158   // Note the location of the first (in-class) declaration; a redeclaration
11159   // (particularly an out-of-class definition) will typically lack the
11160   // 'explicit' specifier.
11161   // FIXME: This is probably a good thing to do for all 'candidate' notes.
11162   FunctionDecl *First = Cand->Function->getFirstDecl();
11163   if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern())
11164     First = Pattern->getFirstDecl();
11165 
11166   S.Diag(First->getLocation(),
11167          diag::note_ovl_candidate_explicit)
11168       << Kind << (ES.getExpr() ? 1 : 0)
11169       << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange());
11170 }
11171 
11172 /// Generates a 'note' diagnostic for an overload candidate.  We've
11173 /// already generated a primary error at the call site.
11174 ///
11175 /// It really does need to be a single diagnostic with its caret
11176 /// pointed at the candidate declaration.  Yes, this creates some
11177 /// major challenges of technical writing.  Yes, this makes pointing
11178 /// out problems with specific arguments quite awkward.  It's still
11179 /// better than generating twenty screens of text for every failed
11180 /// overload.
11181 ///
11182 /// It would be great to be able to express per-candidate problems
11183 /// more richly for those diagnostic clients that cared, but we'd
11184 /// still have to be just as careful with the default diagnostics.
11185 /// \param CtorDestAS Addr space of object being constructed (for ctor
11186 /// candidates only).
11187 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
11188                                   unsigned NumArgs,
11189                                   bool TakingCandidateAddress,
11190                                   LangAS CtorDestAS = LangAS::Default) {
11191   FunctionDecl *Fn = Cand->Function;
11192   if (shouldSkipNotingLambdaConversionDecl(Fn))
11193     return;
11194 
11195   // Note deleted candidates, but only if they're viable.
11196   if (Cand->Viable) {
11197     if (Fn->isDeleted()) {
11198       std::string FnDesc;
11199       std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11200           ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11201                                     Cand->getRewriteKind(), FnDesc);
11202 
11203       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
11204           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
11205           << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
11206       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11207       return;
11208     }
11209 
11210     // We don't really have anything else to say about viable candidates.
11211     S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11212     return;
11213   }
11214 
11215   switch (Cand->FailureKind) {
11216   case ovl_fail_too_many_arguments:
11217   case ovl_fail_too_few_arguments:
11218     return DiagnoseArityMismatch(S, Cand, NumArgs);
11219 
11220   case ovl_fail_bad_deduction:
11221     return DiagnoseBadDeduction(S, Cand, NumArgs,
11222                                 TakingCandidateAddress);
11223 
11224   case ovl_fail_illegal_constructor: {
11225     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
11226       << (Fn->getPrimaryTemplate() ? 1 : 0);
11227     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11228     return;
11229   }
11230 
11231   case ovl_fail_object_addrspace_mismatch: {
11232     Qualifiers QualsForPrinting;
11233     QualsForPrinting.setAddressSpace(CtorDestAS);
11234     S.Diag(Fn->getLocation(),
11235            diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch)
11236         << QualsForPrinting;
11237     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11238     return;
11239   }
11240 
11241   case ovl_fail_trivial_conversion:
11242   case ovl_fail_bad_final_conversion:
11243   case ovl_fail_final_conversion_not_exact:
11244     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11245 
11246   case ovl_fail_bad_conversion: {
11247     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
11248     for (unsigned N = Cand->Conversions.size(); I != N; ++I)
11249       if (Cand->Conversions[I].isBad())
11250         return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
11251 
11252     // FIXME: this currently happens when we're called from SemaInit
11253     // when user-conversion overload fails.  Figure out how to handle
11254     // those conditions and diagnose them well.
11255     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11256   }
11257 
11258   case ovl_fail_bad_target:
11259     return DiagnoseBadTarget(S, Cand);
11260 
11261   case ovl_fail_enable_if:
11262     return DiagnoseFailedEnableIfAttr(S, Cand);
11263 
11264   case ovl_fail_explicit:
11265     return DiagnoseFailedExplicitSpec(S, Cand);
11266 
11267   case ovl_fail_inhctor_slice:
11268     // It's generally not interesting to note copy/move constructors here.
11269     if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
11270       return;
11271     S.Diag(Fn->getLocation(),
11272            diag::note_ovl_candidate_inherited_constructor_slice)
11273       << (Fn->getPrimaryTemplate() ? 1 : 0)
11274       << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
11275     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11276     return;
11277 
11278   case ovl_fail_addr_not_available: {
11279     bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
11280     (void)Available;
11281     assert(!Available);
11282     break;
11283   }
11284   case ovl_non_default_multiversion_function:
11285     // Do nothing, these should simply be ignored.
11286     break;
11287 
11288   case ovl_fail_constraints_not_satisfied: {
11289     std::string FnDesc;
11290     std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11291         ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11292                                   Cand->getRewriteKind(), FnDesc);
11293 
11294     S.Diag(Fn->getLocation(),
11295            diag::note_ovl_candidate_constraints_not_satisfied)
11296         << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
11297         << FnDesc /* Ignored */;
11298     ConstraintSatisfaction Satisfaction;
11299     if (S.CheckFunctionConstraints(Fn, Satisfaction))
11300       break;
11301     S.DiagnoseUnsatisfiedConstraint(Satisfaction);
11302   }
11303   }
11304 }
11305 
11306 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
11307   if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate))
11308     return;
11309 
11310   // Desugar the type of the surrogate down to a function type,
11311   // retaining as many typedefs as possible while still showing
11312   // the function type (and, therefore, its parameter types).
11313   QualType FnType = Cand->Surrogate->getConversionType();
11314   bool isLValueReference = false;
11315   bool isRValueReference = false;
11316   bool isPointer = false;
11317   if (const LValueReferenceType *FnTypeRef =
11318         FnType->getAs<LValueReferenceType>()) {
11319     FnType = FnTypeRef->getPointeeType();
11320     isLValueReference = true;
11321   } else if (const RValueReferenceType *FnTypeRef =
11322                FnType->getAs<RValueReferenceType>()) {
11323     FnType = FnTypeRef->getPointeeType();
11324     isRValueReference = true;
11325   }
11326   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
11327     FnType = FnTypePtr->getPointeeType();
11328     isPointer = true;
11329   }
11330   // Desugar down to a function type.
11331   FnType = QualType(FnType->getAs<FunctionType>(), 0);
11332   // Reconstruct the pointer/reference as appropriate.
11333   if (isPointer) FnType = S.Context.getPointerType(FnType);
11334   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
11335   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
11336 
11337   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
11338     << FnType;
11339 }
11340 
11341 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
11342                                          SourceLocation OpLoc,
11343                                          OverloadCandidate *Cand) {
11344   assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
11345   std::string TypeStr("operator");
11346   TypeStr += Opc;
11347   TypeStr += "(";
11348   TypeStr += Cand->BuiltinParamTypes[0].getAsString();
11349   if (Cand->Conversions.size() == 1) {
11350     TypeStr += ")";
11351     S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11352   } else {
11353     TypeStr += ", ";
11354     TypeStr += Cand->BuiltinParamTypes[1].getAsString();
11355     TypeStr += ")";
11356     S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11357   }
11358 }
11359 
11360 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
11361                                          OverloadCandidate *Cand) {
11362   for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
11363     if (ICS.isBad()) break; // all meaningless after first invalid
11364     if (!ICS.isAmbiguous()) continue;
11365 
11366     ICS.DiagnoseAmbiguousConversion(
11367         S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
11368   }
11369 }
11370 
11371 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
11372   if (Cand->Function)
11373     return Cand->Function->getLocation();
11374   if (Cand->IsSurrogate)
11375     return Cand->Surrogate->getLocation();
11376   return SourceLocation();
11377 }
11378 
11379 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
11380   switch ((Sema::TemplateDeductionResult)DFI.Result) {
11381   case Sema::TDK_Success:
11382   case Sema::TDK_NonDependentConversionFailure:
11383     llvm_unreachable("non-deduction failure while diagnosing bad deduction");
11384 
11385   case Sema::TDK_Invalid:
11386   case Sema::TDK_Incomplete:
11387   case Sema::TDK_IncompletePack:
11388     return 1;
11389 
11390   case Sema::TDK_Underqualified:
11391   case Sema::TDK_Inconsistent:
11392     return 2;
11393 
11394   case Sema::TDK_SubstitutionFailure:
11395   case Sema::TDK_DeducedMismatch:
11396   case Sema::TDK_ConstraintsNotSatisfied:
11397   case Sema::TDK_DeducedMismatchNested:
11398   case Sema::TDK_NonDeducedMismatch:
11399   case Sema::TDK_MiscellaneousDeductionFailure:
11400   case Sema::TDK_CUDATargetMismatch:
11401     return 3;
11402 
11403   case Sema::TDK_InstantiationDepth:
11404     return 4;
11405 
11406   case Sema::TDK_InvalidExplicitArguments:
11407     return 5;
11408 
11409   case Sema::TDK_TooManyArguments:
11410   case Sema::TDK_TooFewArguments:
11411     return 6;
11412   }
11413   llvm_unreachable("Unhandled deduction result");
11414 }
11415 
11416 namespace {
11417 struct CompareOverloadCandidatesForDisplay {
11418   Sema &S;
11419   SourceLocation Loc;
11420   size_t NumArgs;
11421   OverloadCandidateSet::CandidateSetKind CSK;
11422 
11423   CompareOverloadCandidatesForDisplay(
11424       Sema &S, SourceLocation Loc, size_t NArgs,
11425       OverloadCandidateSet::CandidateSetKind CSK)
11426       : S(S), NumArgs(NArgs), CSK(CSK) {}
11427 
11428   OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const {
11429     // If there are too many or too few arguments, that's the high-order bit we
11430     // want to sort by, even if the immediate failure kind was something else.
11431     if (C->FailureKind == ovl_fail_too_many_arguments ||
11432         C->FailureKind == ovl_fail_too_few_arguments)
11433       return static_cast<OverloadFailureKind>(C->FailureKind);
11434 
11435     if (C->Function) {
11436       if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic())
11437         return ovl_fail_too_many_arguments;
11438       if (NumArgs < C->Function->getMinRequiredArguments())
11439         return ovl_fail_too_few_arguments;
11440     }
11441 
11442     return static_cast<OverloadFailureKind>(C->FailureKind);
11443   }
11444 
11445   bool operator()(const OverloadCandidate *L,
11446                   const OverloadCandidate *R) {
11447     // Fast-path this check.
11448     if (L == R) return false;
11449 
11450     // Order first by viability.
11451     if (L->Viable) {
11452       if (!R->Viable) return true;
11453 
11454       // TODO: introduce a tri-valued comparison for overload
11455       // candidates.  Would be more worthwhile if we had a sort
11456       // that could exploit it.
11457       if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
11458         return true;
11459       if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
11460         return false;
11461     } else if (R->Viable)
11462       return false;
11463 
11464     assert(L->Viable == R->Viable);
11465 
11466     // Criteria by which we can sort non-viable candidates:
11467     if (!L->Viable) {
11468       OverloadFailureKind LFailureKind = EffectiveFailureKind(L);
11469       OverloadFailureKind RFailureKind = EffectiveFailureKind(R);
11470 
11471       // 1. Arity mismatches come after other candidates.
11472       if (LFailureKind == ovl_fail_too_many_arguments ||
11473           LFailureKind == ovl_fail_too_few_arguments) {
11474         if (RFailureKind == ovl_fail_too_many_arguments ||
11475             RFailureKind == ovl_fail_too_few_arguments) {
11476           int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
11477           int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
11478           if (LDist == RDist) {
11479             if (LFailureKind == RFailureKind)
11480               // Sort non-surrogates before surrogates.
11481               return !L->IsSurrogate && R->IsSurrogate;
11482             // Sort candidates requiring fewer parameters than there were
11483             // arguments given after candidates requiring more parameters
11484             // than there were arguments given.
11485             return LFailureKind == ovl_fail_too_many_arguments;
11486           }
11487           return LDist < RDist;
11488         }
11489         return false;
11490       }
11491       if (RFailureKind == ovl_fail_too_many_arguments ||
11492           RFailureKind == ovl_fail_too_few_arguments)
11493         return true;
11494 
11495       // 2. Bad conversions come first and are ordered by the number
11496       // of bad conversions and quality of good conversions.
11497       if (LFailureKind == ovl_fail_bad_conversion) {
11498         if (RFailureKind != ovl_fail_bad_conversion)
11499           return true;
11500 
11501         // The conversion that can be fixed with a smaller number of changes,
11502         // comes first.
11503         unsigned numLFixes = L->Fix.NumConversionsFixed;
11504         unsigned numRFixes = R->Fix.NumConversionsFixed;
11505         numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
11506         numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
11507         if (numLFixes != numRFixes) {
11508           return numLFixes < numRFixes;
11509         }
11510 
11511         // If there's any ordering between the defined conversions...
11512         // FIXME: this might not be transitive.
11513         assert(L->Conversions.size() == R->Conversions.size());
11514 
11515         int leftBetter = 0;
11516         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
11517         for (unsigned E = L->Conversions.size(); I != E; ++I) {
11518           switch (CompareImplicitConversionSequences(S, Loc,
11519                                                      L->Conversions[I],
11520                                                      R->Conversions[I])) {
11521           case ImplicitConversionSequence::Better:
11522             leftBetter++;
11523             break;
11524 
11525           case ImplicitConversionSequence::Worse:
11526             leftBetter--;
11527             break;
11528 
11529           case ImplicitConversionSequence::Indistinguishable:
11530             break;
11531           }
11532         }
11533         if (leftBetter > 0) return true;
11534         if (leftBetter < 0) return false;
11535 
11536       } else if (RFailureKind == ovl_fail_bad_conversion)
11537         return false;
11538 
11539       if (LFailureKind == ovl_fail_bad_deduction) {
11540         if (RFailureKind != ovl_fail_bad_deduction)
11541           return true;
11542 
11543         if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11544           return RankDeductionFailure(L->DeductionFailure)
11545                < RankDeductionFailure(R->DeductionFailure);
11546       } else if (RFailureKind == ovl_fail_bad_deduction)
11547         return false;
11548 
11549       // TODO: others?
11550     }
11551 
11552     // Sort everything else by location.
11553     SourceLocation LLoc = GetLocationForCandidate(L);
11554     SourceLocation RLoc = GetLocationForCandidate(R);
11555 
11556     // Put candidates without locations (e.g. builtins) at the end.
11557     if (LLoc.isInvalid()) return false;
11558     if (RLoc.isInvalid()) return true;
11559 
11560     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11561   }
11562 };
11563 }
11564 
11565 /// CompleteNonViableCandidate - Normally, overload resolution only
11566 /// computes up to the first bad conversion. Produces the FixIt set if
11567 /// possible.
11568 static void
11569 CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
11570                            ArrayRef<Expr *> Args,
11571                            OverloadCandidateSet::CandidateSetKind CSK) {
11572   assert(!Cand->Viable);
11573 
11574   // Don't do anything on failures other than bad conversion.
11575   if (Cand->FailureKind != ovl_fail_bad_conversion)
11576     return;
11577 
11578   // We only want the FixIts if all the arguments can be corrected.
11579   bool Unfixable = false;
11580   // Use a implicit copy initialization to check conversion fixes.
11581   Cand->Fix.setConversionChecker(TryCopyInitialization);
11582 
11583   // Attempt to fix the bad conversion.
11584   unsigned ConvCount = Cand->Conversions.size();
11585   for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
11586        ++ConvIdx) {
11587     assert(ConvIdx != ConvCount && "no bad conversion in candidate");
11588     if (Cand->Conversions[ConvIdx].isInitialized() &&
11589         Cand->Conversions[ConvIdx].isBad()) {
11590       Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11591       break;
11592     }
11593   }
11594 
11595   // FIXME: this should probably be preserved from the overload
11596   // operation somehow.
11597   bool SuppressUserConversions = false;
11598 
11599   unsigned ConvIdx = 0;
11600   unsigned ArgIdx = 0;
11601   ArrayRef<QualType> ParamTypes;
11602   bool Reversed = Cand->isReversed();
11603 
11604   if (Cand->IsSurrogate) {
11605     QualType ConvType
11606       = Cand->Surrogate->getConversionType().getNonReferenceType();
11607     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
11608       ConvType = ConvPtrType->getPointeeType();
11609     ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes();
11610     // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11611     ConvIdx = 1;
11612   } else if (Cand->Function) {
11613     ParamTypes =
11614         Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes();
11615     if (isa<CXXMethodDecl>(Cand->Function) &&
11616         !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) {
11617       // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11618       ConvIdx = 1;
11619       if (CSK == OverloadCandidateSet::CSK_Operator &&
11620           Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call)
11621         // Argument 0 is 'this', which doesn't have a corresponding parameter.
11622         ArgIdx = 1;
11623     }
11624   } else {
11625     // Builtin operator.
11626     assert(ConvCount <= 3);
11627     ParamTypes = Cand->BuiltinParamTypes;
11628   }
11629 
11630   // Fill in the rest of the conversions.
11631   for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0;
11632        ConvIdx != ConvCount;
11633        ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) {
11634     assert(ArgIdx < Args.size() && "no argument for this arg conversion");
11635     if (Cand->Conversions[ConvIdx].isInitialized()) {
11636       // We've already checked this conversion.
11637     } else if (ParamIdx < ParamTypes.size()) {
11638       if (ParamTypes[ParamIdx]->isDependentType())
11639         Cand->Conversions[ConvIdx].setAsIdentityConversion(
11640             Args[ArgIdx]->getType());
11641       else {
11642         Cand->Conversions[ConvIdx] =
11643             TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx],
11644                                   SuppressUserConversions,
11645                                   /*InOverloadResolution=*/true,
11646                                   /*AllowObjCWritebackConversion=*/
11647                                   S.getLangOpts().ObjCAutoRefCount);
11648         // Store the FixIt in the candidate if it exists.
11649         if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
11650           Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11651       }
11652     } else
11653       Cand->Conversions[ConvIdx].setEllipsis();
11654   }
11655 }
11656 
11657 SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
11658     Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
11659     SourceLocation OpLoc,
11660     llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11661   // Sort the candidates by viability and position.  Sorting directly would
11662   // be prohibitive, so we make a set of pointers and sort those.
11663   SmallVector<OverloadCandidate*, 32> Cands;
11664   if (OCD == OCD_AllCandidates) Cands.reserve(size());
11665   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11666     if (!Filter(*Cand))
11667       continue;
11668     switch (OCD) {
11669     case OCD_AllCandidates:
11670       if (!Cand->Viable) {
11671         if (!Cand->Function && !Cand->IsSurrogate) {
11672           // This a non-viable builtin candidate.  We do not, in general,
11673           // want to list every possible builtin candidate.
11674           continue;
11675         }
11676         CompleteNonViableCandidate(S, Cand, Args, Kind);
11677       }
11678       break;
11679 
11680     case OCD_ViableCandidates:
11681       if (!Cand->Viable)
11682         continue;
11683       break;
11684 
11685     case OCD_AmbiguousCandidates:
11686       if (!Cand->Best)
11687         continue;
11688       break;
11689     }
11690 
11691     Cands.push_back(Cand);
11692   }
11693 
11694   llvm::stable_sort(
11695       Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
11696 
11697   return Cands;
11698 }
11699 
11700 bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args,
11701                                             SourceLocation OpLoc) {
11702   bool DeferHint = false;
11703   if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) {
11704     // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or
11705     // host device candidates.
11706     auto WrongSidedCands =
11707         CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) {
11708           return (Cand.Viable == false &&
11709                   Cand.FailureKind == ovl_fail_bad_target) ||
11710                  (Cand.Function &&
11711                   Cand.Function->template hasAttr<CUDAHostAttr>() &&
11712                   Cand.Function->template hasAttr<CUDADeviceAttr>());
11713         });
11714     DeferHint = !WrongSidedCands.empty();
11715   }
11716   return DeferHint;
11717 }
11718 
11719 /// When overload resolution fails, prints diagnostic messages containing the
11720 /// candidates in the candidate set.
11721 void OverloadCandidateSet::NoteCandidates(
11722     PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD,
11723     ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc,
11724     llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11725 
11726   auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
11727 
11728   S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc));
11729 
11730   NoteCandidates(S, Args, Cands, Opc, OpLoc);
11731 
11732   if (OCD == OCD_AmbiguousCandidates)
11733     MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()});
11734 }
11735 
11736 void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
11737                                           ArrayRef<OverloadCandidate *> Cands,
11738                                           StringRef Opc, SourceLocation OpLoc) {
11739   bool ReportedAmbiguousConversions = false;
11740 
11741   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11742   unsigned CandsShown = 0;
11743   auto I = Cands.begin(), E = Cands.end();
11744   for (; I != E; ++I) {
11745     OverloadCandidate *Cand = *I;
11746 
11747     if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() &&
11748         ShowOverloads == Ovl_Best) {
11749       break;
11750     }
11751     ++CandsShown;
11752 
11753     if (Cand->Function)
11754       NoteFunctionCandidate(S, Cand, Args.size(),
11755                             /*TakingCandidateAddress=*/false, DestAS);
11756     else if (Cand->IsSurrogate)
11757       NoteSurrogateCandidate(S, Cand);
11758     else {
11759       assert(Cand->Viable &&
11760              "Non-viable built-in candidates are not added to Cands.");
11761       // Generally we only see ambiguities including viable builtin
11762       // operators if overload resolution got screwed up by an
11763       // ambiguous user-defined conversion.
11764       //
11765       // FIXME: It's quite possible for different conversions to see
11766       // different ambiguities, though.
11767       if (!ReportedAmbiguousConversions) {
11768         NoteAmbiguousUserConversions(S, OpLoc, Cand);
11769         ReportedAmbiguousConversions = true;
11770       }
11771 
11772       // If this is a viable builtin, print it.
11773       NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
11774     }
11775   }
11776 
11777   // Inform S.Diags that we've shown an overload set with N elements.  This may
11778   // inform the future value of S.Diags.getNumOverloadCandidatesToShow().
11779   S.Diags.overloadCandidatesShown(CandsShown);
11780 
11781   if (I != E)
11782     S.Diag(OpLoc, diag::note_ovl_too_many_candidates,
11783            shouldDeferDiags(S, Args, OpLoc))
11784         << int(E - I);
11785 }
11786 
11787 static SourceLocation
11788 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
11789   return Cand->Specialization ? Cand->Specialization->getLocation()
11790                               : SourceLocation();
11791 }
11792 
11793 namespace {
11794 struct CompareTemplateSpecCandidatesForDisplay {
11795   Sema &S;
11796   CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
11797 
11798   bool operator()(const TemplateSpecCandidate *L,
11799                   const TemplateSpecCandidate *R) {
11800     // Fast-path this check.
11801     if (L == R)
11802       return false;
11803 
11804     // Assuming that both candidates are not matches...
11805 
11806     // Sort by the ranking of deduction failures.
11807     if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11808       return RankDeductionFailure(L->DeductionFailure) <
11809              RankDeductionFailure(R->DeductionFailure);
11810 
11811     // Sort everything else by location.
11812     SourceLocation LLoc = GetLocationForCandidate(L);
11813     SourceLocation RLoc = GetLocationForCandidate(R);
11814 
11815     // Put candidates without locations (e.g. builtins) at the end.
11816     if (LLoc.isInvalid())
11817       return false;
11818     if (RLoc.isInvalid())
11819       return true;
11820 
11821     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11822   }
11823 };
11824 }
11825 
11826 /// Diagnose a template argument deduction failure.
11827 /// We are treating these failures as overload failures due to bad
11828 /// deductions.
11829 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
11830                                                  bool ForTakingAddress) {
11831   DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
11832                        DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
11833 }
11834 
11835 void TemplateSpecCandidateSet::destroyCandidates() {
11836   for (iterator i = begin(), e = end(); i != e; ++i) {
11837     i->DeductionFailure.Destroy();
11838   }
11839 }
11840 
11841 void TemplateSpecCandidateSet::clear() {
11842   destroyCandidates();
11843   Candidates.clear();
11844 }
11845 
11846 /// NoteCandidates - When no template specialization match is found, prints
11847 /// diagnostic messages containing the non-matching specializations that form
11848 /// the candidate set.
11849 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
11850 /// OCD == OCD_AllCandidates and Cand->Viable == false.
11851 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
11852   // Sort the candidates by position (assuming no candidate is a match).
11853   // Sorting directly would be prohibitive, so we make a set of pointers
11854   // and sort those.
11855   SmallVector<TemplateSpecCandidate *, 32> Cands;
11856   Cands.reserve(size());
11857   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11858     if (Cand->Specialization)
11859       Cands.push_back(Cand);
11860     // Otherwise, this is a non-matching builtin candidate.  We do not,
11861     // in general, want to list every possible builtin candidate.
11862   }
11863 
11864   llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
11865 
11866   // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
11867   // for generalization purposes (?).
11868   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11869 
11870   SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
11871   unsigned CandsShown = 0;
11872   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
11873     TemplateSpecCandidate *Cand = *I;
11874 
11875     // Set an arbitrary limit on the number of candidates we'll spam
11876     // the user with.  FIXME: This limit should depend on details of the
11877     // candidate list.
11878     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
11879       break;
11880     ++CandsShown;
11881 
11882     assert(Cand->Specialization &&
11883            "Non-matching built-in candidates are not added to Cands.");
11884     Cand->NoteDeductionFailure(S, ForTakingAddress);
11885   }
11886 
11887   if (I != E)
11888     S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
11889 }
11890 
11891 // [PossiblyAFunctionType]  -->   [Return]
11892 // NonFunctionType --> NonFunctionType
11893 // R (A) --> R(A)
11894 // R (*)(A) --> R (A)
11895 // R (&)(A) --> R (A)
11896 // R (S::*)(A) --> R (A)
11897 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
11898   QualType Ret = PossiblyAFunctionType;
11899   if (const PointerType *ToTypePtr =
11900     PossiblyAFunctionType->getAs<PointerType>())
11901     Ret = ToTypePtr->getPointeeType();
11902   else if (const ReferenceType *ToTypeRef =
11903     PossiblyAFunctionType->getAs<ReferenceType>())
11904     Ret = ToTypeRef->getPointeeType();
11905   else if (const MemberPointerType *MemTypePtr =
11906     PossiblyAFunctionType->getAs<MemberPointerType>())
11907     Ret = MemTypePtr->getPointeeType();
11908   Ret =
11909     Context.getCanonicalType(Ret).getUnqualifiedType();
11910   return Ret;
11911 }
11912 
11913 static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
11914                                  bool Complain = true) {
11915   if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
11916       S.DeduceReturnType(FD, Loc, Complain))
11917     return true;
11918 
11919   auto *FPT = FD->getType()->castAs<FunctionProtoType>();
11920   if (S.getLangOpts().CPlusPlus17 &&
11921       isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
11922       !S.ResolveExceptionSpec(Loc, FPT))
11923     return true;
11924 
11925   return false;
11926 }
11927 
11928 namespace {
11929 // A helper class to help with address of function resolution
11930 // - allows us to avoid passing around all those ugly parameters
11931 class AddressOfFunctionResolver {
11932   Sema& S;
11933   Expr* SourceExpr;
11934   const QualType& TargetType;
11935   QualType TargetFunctionType; // Extracted function type from target type
11936 
11937   bool Complain;
11938   //DeclAccessPair& ResultFunctionAccessPair;
11939   ASTContext& Context;
11940 
11941   bool TargetTypeIsNonStaticMemberFunction;
11942   bool FoundNonTemplateFunction;
11943   bool StaticMemberFunctionFromBoundPointer;
11944   bool HasComplained;
11945 
11946   OverloadExpr::FindResult OvlExprInfo;
11947   OverloadExpr *OvlExpr;
11948   TemplateArgumentListInfo OvlExplicitTemplateArgs;
11949   SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
11950   TemplateSpecCandidateSet FailedCandidates;
11951 
11952 public:
11953   AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
11954                             const QualType &TargetType, bool Complain)
11955       : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
11956         Complain(Complain), Context(S.getASTContext()),
11957         TargetTypeIsNonStaticMemberFunction(
11958             !!TargetType->getAs<MemberPointerType>()),
11959         FoundNonTemplateFunction(false),
11960         StaticMemberFunctionFromBoundPointer(false),
11961         HasComplained(false),
11962         OvlExprInfo(OverloadExpr::find(SourceExpr)),
11963         OvlExpr(OvlExprInfo.Expression),
11964         FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
11965     ExtractUnqualifiedFunctionTypeFromTargetType();
11966 
11967     if (TargetFunctionType->isFunctionType()) {
11968       if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
11969         if (!UME->isImplicitAccess() &&
11970             !S.ResolveSingleFunctionTemplateSpecialization(UME))
11971           StaticMemberFunctionFromBoundPointer = true;
11972     } else if (OvlExpr->hasExplicitTemplateArgs()) {
11973       DeclAccessPair dap;
11974       if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
11975               OvlExpr, false, &dap)) {
11976         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
11977           if (!Method->isStatic()) {
11978             // If the target type is a non-function type and the function found
11979             // is a non-static member function, pretend as if that was the
11980             // target, it's the only possible type to end up with.
11981             TargetTypeIsNonStaticMemberFunction = true;
11982 
11983             // And skip adding the function if its not in the proper form.
11984             // We'll diagnose this due to an empty set of functions.
11985             if (!OvlExprInfo.HasFormOfMemberPointer)
11986               return;
11987           }
11988 
11989         Matches.push_back(std::make_pair(dap, Fn));
11990       }
11991       return;
11992     }
11993 
11994     if (OvlExpr->hasExplicitTemplateArgs())
11995       OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
11996 
11997     if (FindAllFunctionsThatMatchTargetTypeExactly()) {
11998       // C++ [over.over]p4:
11999       //   If more than one function is selected, [...]
12000       if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
12001         if (FoundNonTemplateFunction)
12002           EliminateAllTemplateMatches();
12003         else
12004           EliminateAllExceptMostSpecializedTemplate();
12005       }
12006     }
12007 
12008     if (S.getLangOpts().CUDA && Matches.size() > 1)
12009       EliminateSuboptimalCudaMatches();
12010   }
12011 
12012   bool hasComplained() const { return HasComplained; }
12013 
12014 private:
12015   bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
12016     QualType Discard;
12017     return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
12018            S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
12019   }
12020 
12021   /// \return true if A is considered a better overload candidate for the
12022   /// desired type than B.
12023   bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
12024     // If A doesn't have exactly the correct type, we don't want to classify it
12025     // as "better" than anything else. This way, the user is required to
12026     // disambiguate for us if there are multiple candidates and no exact match.
12027     return candidateHasExactlyCorrectType(A) &&
12028            (!candidateHasExactlyCorrectType(B) ||
12029             compareEnableIfAttrs(S, A, B) == Comparison::Better);
12030   }
12031 
12032   /// \return true if we were able to eliminate all but one overload candidate,
12033   /// false otherwise.
12034   bool eliminiateSuboptimalOverloadCandidates() {
12035     // Same algorithm as overload resolution -- one pass to pick the "best",
12036     // another pass to be sure that nothing is better than the best.
12037     auto Best = Matches.begin();
12038     for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
12039       if (isBetterCandidate(I->second, Best->second))
12040         Best = I;
12041 
12042     const FunctionDecl *BestFn = Best->second;
12043     auto IsBestOrInferiorToBest = [this, BestFn](
12044         const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
12045       return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
12046     };
12047 
12048     // Note: We explicitly leave Matches unmodified if there isn't a clear best
12049     // option, so we can potentially give the user a better error
12050     if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
12051       return false;
12052     Matches[0] = *Best;
12053     Matches.resize(1);
12054     return true;
12055   }
12056 
12057   bool isTargetTypeAFunction() const {
12058     return TargetFunctionType->isFunctionType();
12059   }
12060 
12061   // [ToType]     [Return]
12062 
12063   // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
12064   // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
12065   // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
12066   void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
12067     TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
12068   }
12069 
12070   // return true if any matching specializations were found
12071   bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
12072                                    const DeclAccessPair& CurAccessFunPair) {
12073     if (CXXMethodDecl *Method
12074               = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
12075       // Skip non-static function templates when converting to pointer, and
12076       // static when converting to member pointer.
12077       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
12078         return false;
12079     }
12080     else if (TargetTypeIsNonStaticMemberFunction)
12081       return false;
12082 
12083     // C++ [over.over]p2:
12084     //   If the name is a function template, template argument deduction is
12085     //   done (14.8.2.2), and if the argument deduction succeeds, the
12086     //   resulting template argument list is used to generate a single
12087     //   function template specialization, which is added to the set of
12088     //   overloaded functions considered.
12089     FunctionDecl *Specialization = nullptr;
12090     TemplateDeductionInfo Info(FailedCandidates.getLocation());
12091     if (Sema::TemplateDeductionResult Result
12092           = S.DeduceTemplateArguments(FunctionTemplate,
12093                                       &OvlExplicitTemplateArgs,
12094                                       TargetFunctionType, Specialization,
12095                                       Info, /*IsAddressOfFunction*/true)) {
12096       // Make a note of the failed deduction for diagnostics.
12097       FailedCandidates.addCandidate()
12098           .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
12099                MakeDeductionFailureInfo(Context, Result, Info));
12100       return false;
12101     }
12102 
12103     // Template argument deduction ensures that we have an exact match or
12104     // compatible pointer-to-function arguments that would be adjusted by ICS.
12105     // This function template specicalization works.
12106     assert(S.isSameOrCompatibleFunctionType(
12107               Context.getCanonicalType(Specialization->getType()),
12108               Context.getCanonicalType(TargetFunctionType)));
12109 
12110     if (!S.checkAddressOfFunctionIsAvailable(Specialization))
12111       return false;
12112 
12113     Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
12114     return true;
12115   }
12116 
12117   bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
12118                                       const DeclAccessPair& CurAccessFunPair) {
12119     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
12120       // Skip non-static functions when converting to pointer, and static
12121       // when converting to member pointer.
12122       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
12123         return false;
12124     }
12125     else if (TargetTypeIsNonStaticMemberFunction)
12126       return false;
12127 
12128     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
12129       if (S.getLangOpts().CUDA)
12130         if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
12131           if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
12132             return false;
12133       if (FunDecl->isMultiVersion()) {
12134         const auto *TA = FunDecl->getAttr<TargetAttr>();
12135         if (TA && !TA->isDefaultVersion())
12136           return false;
12137       }
12138 
12139       // If any candidate has a placeholder return type, trigger its deduction
12140       // now.
12141       if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
12142                                Complain)) {
12143         HasComplained |= Complain;
12144         return false;
12145       }
12146 
12147       if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
12148         return false;
12149 
12150       // If we're in C, we need to support types that aren't exactly identical.
12151       if (!S.getLangOpts().CPlusPlus ||
12152           candidateHasExactlyCorrectType(FunDecl)) {
12153         Matches.push_back(std::make_pair(
12154             CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
12155         FoundNonTemplateFunction = true;
12156         return true;
12157       }
12158     }
12159 
12160     return false;
12161   }
12162 
12163   bool FindAllFunctionsThatMatchTargetTypeExactly() {
12164     bool Ret = false;
12165 
12166     // If the overload expression doesn't have the form of a pointer to
12167     // member, don't try to convert it to a pointer-to-member type.
12168     if (IsInvalidFormOfPointerToMemberFunction())
12169       return false;
12170 
12171     for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12172                                E = OvlExpr->decls_end();
12173          I != E; ++I) {
12174       // Look through any using declarations to find the underlying function.
12175       NamedDecl *Fn = (*I)->getUnderlyingDecl();
12176 
12177       // C++ [over.over]p3:
12178       //   Non-member functions and static member functions match
12179       //   targets of type "pointer-to-function" or "reference-to-function."
12180       //   Nonstatic member functions match targets of
12181       //   type "pointer-to-member-function."
12182       // Note that according to DR 247, the containing class does not matter.
12183       if (FunctionTemplateDecl *FunctionTemplate
12184                                         = dyn_cast<FunctionTemplateDecl>(Fn)) {
12185         if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
12186           Ret = true;
12187       }
12188       // If we have explicit template arguments supplied, skip non-templates.
12189       else if (!OvlExpr->hasExplicitTemplateArgs() &&
12190                AddMatchingNonTemplateFunction(Fn, I.getPair()))
12191         Ret = true;
12192     }
12193     assert(Ret || Matches.empty());
12194     return Ret;
12195   }
12196 
12197   void EliminateAllExceptMostSpecializedTemplate() {
12198     //   [...] and any given function template specialization F1 is
12199     //   eliminated if the set contains a second function template
12200     //   specialization whose function template is more specialized
12201     //   than the function template of F1 according to the partial
12202     //   ordering rules of 14.5.5.2.
12203 
12204     // The algorithm specified above is quadratic. We instead use a
12205     // two-pass algorithm (similar to the one used to identify the
12206     // best viable function in an overload set) that identifies the
12207     // best function template (if it exists).
12208 
12209     UnresolvedSet<4> MatchesCopy; // TODO: avoid!
12210     for (unsigned I = 0, E = Matches.size(); I != E; ++I)
12211       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
12212 
12213     // TODO: It looks like FailedCandidates does not serve much purpose
12214     // here, since the no_viable diagnostic has index 0.
12215     UnresolvedSetIterator Result = S.getMostSpecialized(
12216         MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
12217         SourceExpr->getBeginLoc(), S.PDiag(),
12218         S.PDiag(diag::err_addr_ovl_ambiguous)
12219             << Matches[0].second->getDeclName(),
12220         S.PDiag(diag::note_ovl_candidate)
12221             << (unsigned)oc_function << (unsigned)ocs_described_template,
12222         Complain, TargetFunctionType);
12223 
12224     if (Result != MatchesCopy.end()) {
12225       // Make it the first and only element
12226       Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
12227       Matches[0].second = cast<FunctionDecl>(*Result);
12228       Matches.resize(1);
12229     } else
12230       HasComplained |= Complain;
12231   }
12232 
12233   void EliminateAllTemplateMatches() {
12234     //   [...] any function template specializations in the set are
12235     //   eliminated if the set also contains a non-template function, [...]
12236     for (unsigned I = 0, N = Matches.size(); I != N; ) {
12237       if (Matches[I].second->getPrimaryTemplate() == nullptr)
12238         ++I;
12239       else {
12240         Matches[I] = Matches[--N];
12241         Matches.resize(N);
12242       }
12243     }
12244   }
12245 
12246   void EliminateSuboptimalCudaMatches() {
12247     S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
12248   }
12249 
12250 public:
12251   void ComplainNoMatchesFound() const {
12252     assert(Matches.empty());
12253     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
12254         << OvlExpr->getName() << TargetFunctionType
12255         << OvlExpr->getSourceRange();
12256     if (FailedCandidates.empty())
12257       S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
12258                                   /*TakingAddress=*/true);
12259     else {
12260       // We have some deduction failure messages. Use them to diagnose
12261       // the function templates, and diagnose the non-template candidates
12262       // normally.
12263       for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12264                                  IEnd = OvlExpr->decls_end();
12265            I != IEnd; ++I)
12266         if (FunctionDecl *Fun =
12267                 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
12268           if (!functionHasPassObjectSizeParams(Fun))
12269             S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType,
12270                                     /*TakingAddress=*/true);
12271       FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
12272     }
12273   }
12274 
12275   bool IsInvalidFormOfPointerToMemberFunction() const {
12276     return TargetTypeIsNonStaticMemberFunction &&
12277       !OvlExprInfo.HasFormOfMemberPointer;
12278   }
12279 
12280   void ComplainIsInvalidFormOfPointerToMemberFunction() const {
12281       // TODO: Should we condition this on whether any functions might
12282       // have matched, or is it more appropriate to do that in callers?
12283       // TODO: a fixit wouldn't hurt.
12284       S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
12285         << TargetType << OvlExpr->getSourceRange();
12286   }
12287 
12288   bool IsStaticMemberFunctionFromBoundPointer() const {
12289     return StaticMemberFunctionFromBoundPointer;
12290   }
12291 
12292   void ComplainIsStaticMemberFunctionFromBoundPointer() const {
12293     S.Diag(OvlExpr->getBeginLoc(),
12294            diag::err_invalid_form_pointer_member_function)
12295         << OvlExpr->getSourceRange();
12296   }
12297 
12298   void ComplainOfInvalidConversion() const {
12299     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
12300         << OvlExpr->getName() << TargetType;
12301   }
12302 
12303   void ComplainMultipleMatchesFound() const {
12304     assert(Matches.size() > 1);
12305     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
12306         << OvlExpr->getName() << OvlExpr->getSourceRange();
12307     S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
12308                                 /*TakingAddress=*/true);
12309   }
12310 
12311   bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
12312 
12313   int getNumMatches() const { return Matches.size(); }
12314 
12315   FunctionDecl* getMatchingFunctionDecl() const {
12316     if (Matches.size() != 1) return nullptr;
12317     return Matches[0].second;
12318   }
12319 
12320   const DeclAccessPair* getMatchingFunctionAccessPair() const {
12321     if (Matches.size() != 1) return nullptr;
12322     return &Matches[0].first;
12323   }
12324 };
12325 }
12326 
12327 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
12328 /// an overloaded function (C++ [over.over]), where @p From is an
12329 /// expression with overloaded function type and @p ToType is the type
12330 /// we're trying to resolve to. For example:
12331 ///
12332 /// @code
12333 /// int f(double);
12334 /// int f(int);
12335 ///
12336 /// int (*pfd)(double) = f; // selects f(double)
12337 /// @endcode
12338 ///
12339 /// This routine returns the resulting FunctionDecl if it could be
12340 /// resolved, and NULL otherwise. When @p Complain is true, this
12341 /// routine will emit diagnostics if there is an error.
12342 FunctionDecl *
12343 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
12344                                          QualType TargetType,
12345                                          bool Complain,
12346                                          DeclAccessPair &FoundResult,
12347                                          bool *pHadMultipleCandidates) {
12348   assert(AddressOfExpr->getType() == Context.OverloadTy);
12349 
12350   AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
12351                                      Complain);
12352   int NumMatches = Resolver.getNumMatches();
12353   FunctionDecl *Fn = nullptr;
12354   bool ShouldComplain = Complain && !Resolver.hasComplained();
12355   if (NumMatches == 0 && ShouldComplain) {
12356     if (Resolver.IsInvalidFormOfPointerToMemberFunction())
12357       Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
12358     else
12359       Resolver.ComplainNoMatchesFound();
12360   }
12361   else if (NumMatches > 1 && ShouldComplain)
12362     Resolver.ComplainMultipleMatchesFound();
12363   else if (NumMatches == 1) {
12364     Fn = Resolver.getMatchingFunctionDecl();
12365     assert(Fn);
12366     if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
12367       ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
12368     FoundResult = *Resolver.getMatchingFunctionAccessPair();
12369     if (Complain) {
12370       if (Resolver.IsStaticMemberFunctionFromBoundPointer())
12371         Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
12372       else
12373         CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
12374     }
12375   }
12376 
12377   if (pHadMultipleCandidates)
12378     *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
12379   return Fn;
12380 }
12381 
12382 /// Given an expression that refers to an overloaded function, try to
12383 /// resolve that function to a single function that can have its address taken.
12384 /// This will modify `Pair` iff it returns non-null.
12385 ///
12386 /// This routine can only succeed if from all of the candidates in the overload
12387 /// set for SrcExpr that can have their addresses taken, there is one candidate
12388 /// that is more constrained than the rest.
12389 FunctionDecl *
12390 Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) {
12391   OverloadExpr::FindResult R = OverloadExpr::find(E);
12392   OverloadExpr *Ovl = R.Expression;
12393   bool IsResultAmbiguous = false;
12394   FunctionDecl *Result = nullptr;
12395   DeclAccessPair DAP;
12396   SmallVector<FunctionDecl *, 2> AmbiguousDecls;
12397 
12398   auto CheckMoreConstrained =
12399       [&] (FunctionDecl *FD1, FunctionDecl *FD2) -> Optional<bool> {
12400         SmallVector<const Expr *, 1> AC1, AC2;
12401         FD1->getAssociatedConstraints(AC1);
12402         FD2->getAssociatedConstraints(AC2);
12403         bool AtLeastAsConstrained1, AtLeastAsConstrained2;
12404         if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1))
12405           return None;
12406         if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2))
12407           return None;
12408         if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
12409           return None;
12410         return AtLeastAsConstrained1;
12411       };
12412 
12413   // Don't use the AddressOfResolver because we're specifically looking for
12414   // cases where we have one overload candidate that lacks
12415   // enable_if/pass_object_size/...
12416   for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
12417     auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
12418     if (!FD)
12419       return nullptr;
12420 
12421     if (!checkAddressOfFunctionIsAvailable(FD))
12422       continue;
12423 
12424     // We have more than one result - see if it is more constrained than the
12425     // previous one.
12426     if (Result) {
12427       Optional<bool> MoreConstrainedThanPrevious = CheckMoreConstrained(FD,
12428                                                                         Result);
12429       if (!MoreConstrainedThanPrevious) {
12430         IsResultAmbiguous = true;
12431         AmbiguousDecls.push_back(FD);
12432         continue;
12433       }
12434       if (!*MoreConstrainedThanPrevious)
12435         continue;
12436       // FD is more constrained - replace Result with it.
12437     }
12438     IsResultAmbiguous = false;
12439     DAP = I.getPair();
12440     Result = FD;
12441   }
12442 
12443   if (IsResultAmbiguous)
12444     return nullptr;
12445 
12446   if (Result) {
12447     SmallVector<const Expr *, 1> ResultAC;
12448     // We skipped over some ambiguous declarations which might be ambiguous with
12449     // the selected result.
12450     for (FunctionDecl *Skipped : AmbiguousDecls)
12451       if (!CheckMoreConstrained(Skipped, Result).hasValue())
12452         return nullptr;
12453     Pair = DAP;
12454   }
12455   return Result;
12456 }
12457 
12458 /// Given an overloaded function, tries to turn it into a non-overloaded
12459 /// function reference using resolveAddressOfSingleOverloadCandidate. This
12460 /// will perform access checks, diagnose the use of the resultant decl, and, if
12461 /// requested, potentially perform a function-to-pointer decay.
12462 ///
12463 /// Returns false if resolveAddressOfSingleOverloadCandidate fails.
12464 /// Otherwise, returns true. This may emit diagnostics and return true.
12465 bool Sema::resolveAndFixAddressOfSingleOverloadCandidate(
12466     ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
12467   Expr *E = SrcExpr.get();
12468   assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload");
12469 
12470   DeclAccessPair DAP;
12471   FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP);
12472   if (!Found || Found->isCPUDispatchMultiVersion() ||
12473       Found->isCPUSpecificMultiVersion())
12474     return false;
12475 
12476   // Emitting multiple diagnostics for a function that is both inaccessible and
12477   // unavailable is consistent with our behavior elsewhere. So, always check
12478   // for both.
12479   DiagnoseUseOfDecl(Found, E->getExprLoc());
12480   CheckAddressOfMemberAccess(E, DAP);
12481   Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
12482   if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
12483     SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
12484   else
12485     SrcExpr = Fixed;
12486   return true;
12487 }
12488 
12489 /// Given an expression that refers to an overloaded function, try to
12490 /// resolve that overloaded function expression down to a single function.
12491 ///
12492 /// This routine can only resolve template-ids that refer to a single function
12493 /// template, where that template-id refers to a single template whose template
12494 /// arguments are either provided by the template-id or have defaults,
12495 /// as described in C++0x [temp.arg.explicit]p3.
12496 ///
12497 /// If no template-ids are found, no diagnostics are emitted and NULL is
12498 /// returned.
12499 FunctionDecl *
12500 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
12501                                                   bool Complain,
12502                                                   DeclAccessPair *FoundResult) {
12503   // C++ [over.over]p1:
12504   //   [...] [Note: any redundant set of parentheses surrounding the
12505   //   overloaded function name is ignored (5.1). ]
12506   // C++ [over.over]p1:
12507   //   [...] The overloaded function name can be preceded by the &
12508   //   operator.
12509 
12510   // If we didn't actually find any template-ids, we're done.
12511   if (!ovl->hasExplicitTemplateArgs())
12512     return nullptr;
12513 
12514   TemplateArgumentListInfo ExplicitTemplateArgs;
12515   ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
12516   TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
12517 
12518   // Look through all of the overloaded functions, searching for one
12519   // whose type matches exactly.
12520   FunctionDecl *Matched = nullptr;
12521   for (UnresolvedSetIterator I = ovl->decls_begin(),
12522          E = ovl->decls_end(); I != E; ++I) {
12523     // C++0x [temp.arg.explicit]p3:
12524     //   [...] In contexts where deduction is done and fails, or in contexts
12525     //   where deduction is not done, if a template argument list is
12526     //   specified and it, along with any default template arguments,
12527     //   identifies a single function template specialization, then the
12528     //   template-id is an lvalue for the function template specialization.
12529     FunctionTemplateDecl *FunctionTemplate
12530       = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
12531 
12532     // C++ [over.over]p2:
12533     //   If the name is a function template, template argument deduction is
12534     //   done (14.8.2.2), and if the argument deduction succeeds, the
12535     //   resulting template argument list is used to generate a single
12536     //   function template specialization, which is added to the set of
12537     //   overloaded functions considered.
12538     FunctionDecl *Specialization = nullptr;
12539     TemplateDeductionInfo Info(FailedCandidates.getLocation());
12540     if (TemplateDeductionResult Result
12541           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
12542                                     Specialization, Info,
12543                                     /*IsAddressOfFunction*/true)) {
12544       // Make a note of the failed deduction for diagnostics.
12545       // TODO: Actually use the failed-deduction info?
12546       FailedCandidates.addCandidate()
12547           .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
12548                MakeDeductionFailureInfo(Context, Result, Info));
12549       continue;
12550     }
12551 
12552     assert(Specialization && "no specialization and no error?");
12553 
12554     // Multiple matches; we can't resolve to a single declaration.
12555     if (Matched) {
12556       if (Complain) {
12557         Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
12558           << ovl->getName();
12559         NoteAllOverloadCandidates(ovl);
12560       }
12561       return nullptr;
12562     }
12563 
12564     Matched = Specialization;
12565     if (FoundResult) *FoundResult = I.getPair();
12566   }
12567 
12568   if (Matched &&
12569       completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
12570     return nullptr;
12571 
12572   return Matched;
12573 }
12574 
12575 // Resolve and fix an overloaded expression that can be resolved
12576 // because it identifies a single function template specialization.
12577 //
12578 // Last three arguments should only be supplied if Complain = true
12579 //
12580 // Return true if it was logically possible to so resolve the
12581 // expression, regardless of whether or not it succeeded.  Always
12582 // returns true if 'complain' is set.
12583 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
12584                       ExprResult &SrcExpr, bool doFunctionPointerConverion,
12585                       bool complain, SourceRange OpRangeForComplaining,
12586                                            QualType DestTypeForComplaining,
12587                                             unsigned DiagIDForComplaining) {
12588   assert(SrcExpr.get()->getType() == Context.OverloadTy);
12589 
12590   OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
12591 
12592   DeclAccessPair found;
12593   ExprResult SingleFunctionExpression;
12594   if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
12595                            ovl.Expression, /*complain*/ false, &found)) {
12596     if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
12597       SrcExpr = ExprError();
12598       return true;
12599     }
12600 
12601     // It is only correct to resolve to an instance method if we're
12602     // resolving a form that's permitted to be a pointer to member.
12603     // Otherwise we'll end up making a bound member expression, which
12604     // is illegal in all the contexts we resolve like this.
12605     if (!ovl.HasFormOfMemberPointer &&
12606         isa<CXXMethodDecl>(fn) &&
12607         cast<CXXMethodDecl>(fn)->isInstance()) {
12608       if (!complain) return false;
12609 
12610       Diag(ovl.Expression->getExprLoc(),
12611            diag::err_bound_member_function)
12612         << 0 << ovl.Expression->getSourceRange();
12613 
12614       // TODO: I believe we only end up here if there's a mix of
12615       // static and non-static candidates (otherwise the expression
12616       // would have 'bound member' type, not 'overload' type).
12617       // Ideally we would note which candidate was chosen and why
12618       // the static candidates were rejected.
12619       SrcExpr = ExprError();
12620       return true;
12621     }
12622 
12623     // Fix the expression to refer to 'fn'.
12624     SingleFunctionExpression =
12625         FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
12626 
12627     // If desired, do function-to-pointer decay.
12628     if (doFunctionPointerConverion) {
12629       SingleFunctionExpression =
12630         DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
12631       if (SingleFunctionExpression.isInvalid()) {
12632         SrcExpr = ExprError();
12633         return true;
12634       }
12635     }
12636   }
12637 
12638   if (!SingleFunctionExpression.isUsable()) {
12639     if (complain) {
12640       Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
12641         << ovl.Expression->getName()
12642         << DestTypeForComplaining
12643         << OpRangeForComplaining
12644         << ovl.Expression->getQualifierLoc().getSourceRange();
12645       NoteAllOverloadCandidates(SrcExpr.get());
12646 
12647       SrcExpr = ExprError();
12648       return true;
12649     }
12650 
12651     return false;
12652   }
12653 
12654   SrcExpr = SingleFunctionExpression;
12655   return true;
12656 }
12657 
12658 /// Add a single candidate to the overload set.
12659 static void AddOverloadedCallCandidate(Sema &S,
12660                                        DeclAccessPair FoundDecl,
12661                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
12662                                        ArrayRef<Expr *> Args,
12663                                        OverloadCandidateSet &CandidateSet,
12664                                        bool PartialOverloading,
12665                                        bool KnownValid) {
12666   NamedDecl *Callee = FoundDecl.getDecl();
12667   if (isa<UsingShadowDecl>(Callee))
12668     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
12669 
12670   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
12671     if (ExplicitTemplateArgs) {
12672       assert(!KnownValid && "Explicit template arguments?");
12673       return;
12674     }
12675     // Prevent ill-formed function decls to be added as overload candidates.
12676     if (!isa<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
12677       return;
12678 
12679     S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
12680                            /*SuppressUserConversions=*/false,
12681                            PartialOverloading);
12682     return;
12683   }
12684 
12685   if (FunctionTemplateDecl *FuncTemplate
12686       = dyn_cast<FunctionTemplateDecl>(Callee)) {
12687     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
12688                                    ExplicitTemplateArgs, Args, CandidateSet,
12689                                    /*SuppressUserConversions=*/false,
12690                                    PartialOverloading);
12691     return;
12692   }
12693 
12694   assert(!KnownValid && "unhandled case in overloaded call candidate");
12695 }
12696 
12697 /// Add the overload candidates named by callee and/or found by argument
12698 /// dependent lookup to the given overload set.
12699 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
12700                                        ArrayRef<Expr *> Args,
12701                                        OverloadCandidateSet &CandidateSet,
12702                                        bool PartialOverloading) {
12703 
12704 #ifndef NDEBUG
12705   // Verify that ArgumentDependentLookup is consistent with the rules
12706   // in C++0x [basic.lookup.argdep]p3:
12707   //
12708   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
12709   //   and let Y be the lookup set produced by argument dependent
12710   //   lookup (defined as follows). If X contains
12711   //
12712   //     -- a declaration of a class member, or
12713   //
12714   //     -- a block-scope function declaration that is not a
12715   //        using-declaration, or
12716   //
12717   //     -- a declaration that is neither a function or a function
12718   //        template
12719   //
12720   //   then Y is empty.
12721 
12722   if (ULE->requiresADL()) {
12723     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12724            E = ULE->decls_end(); I != E; ++I) {
12725       assert(!(*I)->getDeclContext()->isRecord());
12726       assert(isa<UsingShadowDecl>(*I) ||
12727              !(*I)->getDeclContext()->isFunctionOrMethod());
12728       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
12729     }
12730   }
12731 #endif
12732 
12733   // It would be nice to avoid this copy.
12734   TemplateArgumentListInfo TABuffer;
12735   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12736   if (ULE->hasExplicitTemplateArgs()) {
12737     ULE->copyTemplateArgumentsInto(TABuffer);
12738     ExplicitTemplateArgs = &TABuffer;
12739   }
12740 
12741   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12742          E = ULE->decls_end(); I != E; ++I)
12743     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
12744                                CandidateSet, PartialOverloading,
12745                                /*KnownValid*/ true);
12746 
12747   if (ULE->requiresADL())
12748     AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
12749                                          Args, ExplicitTemplateArgs,
12750                                          CandidateSet, PartialOverloading);
12751 }
12752 
12753 /// Add the call candidates from the given set of lookup results to the given
12754 /// overload set. Non-function lookup results are ignored.
12755 void Sema::AddOverloadedCallCandidates(
12756     LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
12757     ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) {
12758   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12759     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
12760                                CandidateSet, false, /*KnownValid*/ false);
12761 }
12762 
12763 /// Determine whether a declaration with the specified name could be moved into
12764 /// a different namespace.
12765 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
12766   switch (Name.getCXXOverloadedOperator()) {
12767   case OO_New: case OO_Array_New:
12768   case OO_Delete: case OO_Array_Delete:
12769     return false;
12770 
12771   default:
12772     return true;
12773   }
12774 }
12775 
12776 /// Attempt to recover from an ill-formed use of a non-dependent name in a
12777 /// template, where the non-dependent name was declared after the template
12778 /// was defined. This is common in code written for a compilers which do not
12779 /// correctly implement two-stage name lookup.
12780 ///
12781 /// Returns true if a viable candidate was found and a diagnostic was issued.
12782 static bool DiagnoseTwoPhaseLookup(
12783     Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS,
12784     LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK,
12785     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
12786     CXXRecordDecl **FoundInClass = nullptr) {
12787   if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
12788     return false;
12789 
12790   for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
12791     if (DC->isTransparentContext())
12792       continue;
12793 
12794     SemaRef.LookupQualifiedName(R, DC);
12795 
12796     if (!R.empty()) {
12797       R.suppressDiagnostics();
12798 
12799       OverloadCandidateSet Candidates(FnLoc, CSK);
12800       SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args,
12801                                           Candidates);
12802 
12803       OverloadCandidateSet::iterator Best;
12804       OverloadingResult OR =
12805           Candidates.BestViableFunction(SemaRef, FnLoc, Best);
12806 
12807       if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) {
12808         // We either found non-function declarations or a best viable function
12809         // at class scope. A class-scope lookup result disables ADL. Don't
12810         // look past this, but let the caller know that we found something that
12811         // either is, or might be, usable in this class.
12812         if (FoundInClass) {
12813           *FoundInClass = RD;
12814           if (OR == OR_Success) {
12815             R.clear();
12816             R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
12817             R.resolveKind();
12818           }
12819         }
12820         return false;
12821       }
12822 
12823       if (OR != OR_Success) {
12824         // There wasn't a unique best function or function template.
12825         return false;
12826       }
12827 
12828       // Find the namespaces where ADL would have looked, and suggest
12829       // declaring the function there instead.
12830       Sema::AssociatedNamespaceSet AssociatedNamespaces;
12831       Sema::AssociatedClassSet AssociatedClasses;
12832       SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
12833                                                  AssociatedNamespaces,
12834                                                  AssociatedClasses);
12835       Sema::AssociatedNamespaceSet SuggestedNamespaces;
12836       if (canBeDeclaredInNamespace(R.getLookupName())) {
12837         DeclContext *Std = SemaRef.getStdNamespace();
12838         for (Sema::AssociatedNamespaceSet::iterator
12839                it = AssociatedNamespaces.begin(),
12840                end = AssociatedNamespaces.end(); it != end; ++it) {
12841           // Never suggest declaring a function within namespace 'std'.
12842           if (Std && Std->Encloses(*it))
12843             continue;
12844 
12845           // Never suggest declaring a function within a namespace with a
12846           // reserved name, like __gnu_cxx.
12847           NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
12848           if (NS &&
12849               NS->getQualifiedNameAsString().find("__") != std::string::npos)
12850             continue;
12851 
12852           SuggestedNamespaces.insert(*it);
12853         }
12854       }
12855 
12856       SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
12857         << R.getLookupName();
12858       if (SuggestedNamespaces.empty()) {
12859         SemaRef.Diag(Best->Function->getLocation(),
12860                      diag::note_not_found_by_two_phase_lookup)
12861           << R.getLookupName() << 0;
12862       } else if (SuggestedNamespaces.size() == 1) {
12863         SemaRef.Diag(Best->Function->getLocation(),
12864                      diag::note_not_found_by_two_phase_lookup)
12865           << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
12866       } else {
12867         // FIXME: It would be useful to list the associated namespaces here,
12868         // but the diagnostics infrastructure doesn't provide a way to produce
12869         // a localized representation of a list of items.
12870         SemaRef.Diag(Best->Function->getLocation(),
12871                      diag::note_not_found_by_two_phase_lookup)
12872           << R.getLookupName() << 2;
12873       }
12874 
12875       // Try to recover by calling this function.
12876       return true;
12877     }
12878 
12879     R.clear();
12880   }
12881 
12882   return false;
12883 }
12884 
12885 /// Attempt to recover from ill-formed use of a non-dependent operator in a
12886 /// template, where the non-dependent operator was declared after the template
12887 /// was defined.
12888 ///
12889 /// Returns true if a viable candidate was found and a diagnostic was issued.
12890 static bool
12891 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
12892                                SourceLocation OpLoc,
12893                                ArrayRef<Expr *> Args) {
12894   DeclarationName OpName =
12895     SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
12896   LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
12897   return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
12898                                 OverloadCandidateSet::CSK_Operator,
12899                                 /*ExplicitTemplateArgs=*/nullptr, Args);
12900 }
12901 
12902 namespace {
12903 class BuildRecoveryCallExprRAII {
12904   Sema &SemaRef;
12905 public:
12906   BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
12907     assert(SemaRef.IsBuildingRecoveryCallExpr == false);
12908     SemaRef.IsBuildingRecoveryCallExpr = true;
12909   }
12910 
12911   ~BuildRecoveryCallExprRAII() {
12912     SemaRef.IsBuildingRecoveryCallExpr = false;
12913   }
12914 };
12915 
12916 }
12917 
12918 /// Attempts to recover from a call where no functions were found.
12919 ///
12920 /// This function will do one of three things:
12921 ///  * Diagnose, recover, and return a recovery expression.
12922 ///  * Diagnose, fail to recover, and return ExprError().
12923 ///  * Do not diagnose, do not recover, and return ExprResult(). The caller is
12924 ///    expected to diagnose as appropriate.
12925 static ExprResult
12926 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12927                       UnresolvedLookupExpr *ULE,
12928                       SourceLocation LParenLoc,
12929                       MutableArrayRef<Expr *> Args,
12930                       SourceLocation RParenLoc,
12931                       bool EmptyLookup, bool AllowTypoCorrection) {
12932   // Do not try to recover if it is already building a recovery call.
12933   // This stops infinite loops for template instantiations like
12934   //
12935   // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
12936   // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
12937   if (SemaRef.IsBuildingRecoveryCallExpr)
12938     return ExprResult();
12939   BuildRecoveryCallExprRAII RCE(SemaRef);
12940 
12941   CXXScopeSpec SS;
12942   SS.Adopt(ULE->getQualifierLoc());
12943   SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
12944 
12945   TemplateArgumentListInfo TABuffer;
12946   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12947   if (ULE->hasExplicitTemplateArgs()) {
12948     ULE->copyTemplateArgumentsInto(TABuffer);
12949     ExplicitTemplateArgs = &TABuffer;
12950   }
12951 
12952   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
12953                  Sema::LookupOrdinaryName);
12954   CXXRecordDecl *FoundInClass = nullptr;
12955   if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
12956                              OverloadCandidateSet::CSK_Normal,
12957                              ExplicitTemplateArgs, Args, &FoundInClass)) {
12958     // OK, diagnosed a two-phase lookup issue.
12959   } else if (EmptyLookup) {
12960     // Try to recover from an empty lookup with typo correction.
12961     R.clear();
12962     NoTypoCorrectionCCC NoTypoValidator{};
12963     FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
12964                                                 ExplicitTemplateArgs != nullptr,
12965                                                 dyn_cast<MemberExpr>(Fn));
12966     CorrectionCandidateCallback &Validator =
12967         AllowTypoCorrection
12968             ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
12969             : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
12970     if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
12971                                     Args))
12972       return ExprError();
12973   } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) {
12974     // We found a usable declaration of the name in a dependent base of some
12975     // enclosing class.
12976     // FIXME: We should also explain why the candidates found by name lookup
12977     // were not viable.
12978     if (SemaRef.DiagnoseDependentMemberLookup(R))
12979       return ExprError();
12980   } else {
12981     // We had viable candidates and couldn't recover; let the caller diagnose
12982     // this.
12983     return ExprResult();
12984   }
12985 
12986   // If we get here, we should have issued a diagnostic and formed a recovery
12987   // lookup result.
12988   assert(!R.empty() && "lookup results empty despite recovery");
12989 
12990   // If recovery created an ambiguity, just bail out.
12991   if (R.isAmbiguous()) {
12992     R.suppressDiagnostics();
12993     return ExprError();
12994   }
12995 
12996   // Build an implicit member call if appropriate.  Just drop the
12997   // casts and such from the call, we don't really care.
12998   ExprResult NewFn = ExprError();
12999   if ((*R.begin())->isCXXClassMember())
13000     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
13001                                                     ExplicitTemplateArgs, S);
13002   else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
13003     NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
13004                                         ExplicitTemplateArgs);
13005   else
13006     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
13007 
13008   if (NewFn.isInvalid())
13009     return ExprError();
13010 
13011   // This shouldn't cause an infinite loop because we're giving it
13012   // an expression with viable lookup results, which should never
13013   // end up here.
13014   return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
13015                                MultiExprArg(Args.data(), Args.size()),
13016                                RParenLoc);
13017 }
13018 
13019 /// Constructs and populates an OverloadedCandidateSet from
13020 /// the given function.
13021 /// \returns true when an the ExprResult output parameter has been set.
13022 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
13023                                   UnresolvedLookupExpr *ULE,
13024                                   MultiExprArg Args,
13025                                   SourceLocation RParenLoc,
13026                                   OverloadCandidateSet *CandidateSet,
13027                                   ExprResult *Result) {
13028 #ifndef NDEBUG
13029   if (ULE->requiresADL()) {
13030     // To do ADL, we must have found an unqualified name.
13031     assert(!ULE->getQualifier() && "qualified name with ADL");
13032 
13033     // We don't perform ADL for implicit declarations of builtins.
13034     // Verify that this was correctly set up.
13035     FunctionDecl *F;
13036     if (ULE->decls_begin() != ULE->decls_end() &&
13037         ULE->decls_begin() + 1 == ULE->decls_end() &&
13038         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
13039         F->getBuiltinID() && F->isImplicit())
13040       llvm_unreachable("performing ADL for builtin");
13041 
13042     // We don't perform ADL in C.
13043     assert(getLangOpts().CPlusPlus && "ADL enabled in C");
13044   }
13045 #endif
13046 
13047   UnbridgedCastsSet UnbridgedCasts;
13048   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
13049     *Result = ExprError();
13050     return true;
13051   }
13052 
13053   // Add the functions denoted by the callee to the set of candidate
13054   // functions, including those from argument-dependent lookup.
13055   AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
13056 
13057   if (getLangOpts().MSVCCompat &&
13058       CurContext->isDependentContext() && !isSFINAEContext() &&
13059       (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
13060 
13061     OverloadCandidateSet::iterator Best;
13062     if (CandidateSet->empty() ||
13063         CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
13064             OR_No_Viable_Function) {
13065       // In Microsoft mode, if we are inside a template class member function
13066       // then create a type dependent CallExpr. The goal is to postpone name
13067       // lookup to instantiation time to be able to search into type dependent
13068       // base classes.
13069       CallExpr *CE =
13070           CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue,
13071                            RParenLoc, CurFPFeatureOverrides());
13072       CE->markDependentForPostponedNameLookup();
13073       *Result = CE;
13074       return true;
13075     }
13076   }
13077 
13078   if (CandidateSet->empty())
13079     return false;
13080 
13081   UnbridgedCasts.restore();
13082   return false;
13083 }
13084 
13085 // Guess at what the return type for an unresolvable overload should be.
13086 static QualType chooseRecoveryType(OverloadCandidateSet &CS,
13087                                    OverloadCandidateSet::iterator *Best) {
13088   llvm::Optional<QualType> Result;
13089   // Adjust Type after seeing a candidate.
13090   auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) {
13091     if (!Candidate.Function)
13092       return;
13093     if (Candidate.Function->isInvalidDecl())
13094       return;
13095     QualType T = Candidate.Function->getReturnType();
13096     if (T.isNull())
13097       return;
13098     if (!Result)
13099       Result = T;
13100     else if (Result != T)
13101       Result = QualType();
13102   };
13103 
13104   // Look for an unambiguous type from a progressively larger subset.
13105   // e.g. if types disagree, but all *viable* overloads return int, choose int.
13106   //
13107   // First, consider only the best candidate.
13108   if (Best && *Best != CS.end())
13109     ConsiderCandidate(**Best);
13110   // Next, consider only viable candidates.
13111   if (!Result)
13112     for (const auto &C : CS)
13113       if (C.Viable)
13114         ConsiderCandidate(C);
13115   // Finally, consider all candidates.
13116   if (!Result)
13117     for (const auto &C : CS)
13118       ConsiderCandidate(C);
13119 
13120   if (!Result)
13121     return QualType();
13122   auto Value = Result.getValue();
13123   if (Value.isNull() || Value->isUndeducedType())
13124     return QualType();
13125   return Value;
13126 }
13127 
13128 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
13129 /// the completed call expression. If overload resolution fails, emits
13130 /// diagnostics and returns ExprError()
13131 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
13132                                            UnresolvedLookupExpr *ULE,
13133                                            SourceLocation LParenLoc,
13134                                            MultiExprArg Args,
13135                                            SourceLocation RParenLoc,
13136                                            Expr *ExecConfig,
13137                                            OverloadCandidateSet *CandidateSet,
13138                                            OverloadCandidateSet::iterator *Best,
13139                                            OverloadingResult OverloadResult,
13140                                            bool AllowTypoCorrection) {
13141   switch (OverloadResult) {
13142   case OR_Success: {
13143     FunctionDecl *FDecl = (*Best)->Function;
13144     SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
13145     if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
13146       return ExprError();
13147     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13148     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13149                                          ExecConfig, /*IsExecConfig=*/false,
13150                                          (*Best)->IsADLCandidate);
13151   }
13152 
13153   case OR_No_Viable_Function: {
13154     // Try to recover by looking for viable functions which the user might
13155     // have meant to call.
13156     ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
13157                                                 Args, RParenLoc,
13158                                                 CandidateSet->empty(),
13159                                                 AllowTypoCorrection);
13160     if (Recovery.isInvalid() || Recovery.isUsable())
13161       return Recovery;
13162 
13163     // If the user passes in a function that we can't take the address of, we
13164     // generally end up emitting really bad error messages. Here, we attempt to
13165     // emit better ones.
13166     for (const Expr *Arg : Args) {
13167       if (!Arg->getType()->isFunctionType())
13168         continue;
13169       if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
13170         auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
13171         if (FD &&
13172             !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
13173                                                        Arg->getExprLoc()))
13174           return ExprError();
13175       }
13176     }
13177 
13178     CandidateSet->NoteCandidates(
13179         PartialDiagnosticAt(
13180             Fn->getBeginLoc(),
13181             SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
13182                 << ULE->getName() << Fn->getSourceRange()),
13183         SemaRef, OCD_AllCandidates, Args);
13184     break;
13185   }
13186 
13187   case OR_Ambiguous:
13188     CandidateSet->NoteCandidates(
13189         PartialDiagnosticAt(Fn->getBeginLoc(),
13190                             SemaRef.PDiag(diag::err_ovl_ambiguous_call)
13191                                 << ULE->getName() << Fn->getSourceRange()),
13192         SemaRef, OCD_AmbiguousCandidates, Args);
13193     break;
13194 
13195   case OR_Deleted: {
13196     CandidateSet->NoteCandidates(
13197         PartialDiagnosticAt(Fn->getBeginLoc(),
13198                             SemaRef.PDiag(diag::err_ovl_deleted_call)
13199                                 << ULE->getName() << Fn->getSourceRange()),
13200         SemaRef, OCD_AllCandidates, Args);
13201 
13202     // We emitted an error for the unavailable/deleted function call but keep
13203     // the call in the AST.
13204     FunctionDecl *FDecl = (*Best)->Function;
13205     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13206     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13207                                          ExecConfig, /*IsExecConfig=*/false,
13208                                          (*Best)->IsADLCandidate);
13209   }
13210   }
13211 
13212   // Overload resolution failed, try to recover.
13213   SmallVector<Expr *, 8> SubExprs = {Fn};
13214   SubExprs.append(Args.begin(), Args.end());
13215   return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs,
13216                                     chooseRecoveryType(*CandidateSet, Best));
13217 }
13218 
13219 static void markUnaddressableCandidatesUnviable(Sema &S,
13220                                                 OverloadCandidateSet &CS) {
13221   for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
13222     if (I->Viable &&
13223         !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
13224       I->Viable = false;
13225       I->FailureKind = ovl_fail_addr_not_available;
13226     }
13227   }
13228 }
13229 
13230 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
13231 /// (which eventually refers to the declaration Func) and the call
13232 /// arguments Args/NumArgs, attempt to resolve the function call down
13233 /// to a specific function. If overload resolution succeeds, returns
13234 /// the call expression produced by overload resolution.
13235 /// Otherwise, emits diagnostics and returns ExprError.
13236 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
13237                                          UnresolvedLookupExpr *ULE,
13238                                          SourceLocation LParenLoc,
13239                                          MultiExprArg Args,
13240                                          SourceLocation RParenLoc,
13241                                          Expr *ExecConfig,
13242                                          bool AllowTypoCorrection,
13243                                          bool CalleesAddressIsTaken) {
13244   OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
13245                                     OverloadCandidateSet::CSK_Normal);
13246   ExprResult result;
13247 
13248   if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
13249                              &result))
13250     return result;
13251 
13252   // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
13253   // functions that aren't addressible are considered unviable.
13254   if (CalleesAddressIsTaken)
13255     markUnaddressableCandidatesUnviable(*this, CandidateSet);
13256 
13257   OverloadCandidateSet::iterator Best;
13258   OverloadingResult OverloadResult =
13259       CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
13260 
13261   return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
13262                                   ExecConfig, &CandidateSet, &Best,
13263                                   OverloadResult, AllowTypoCorrection);
13264 }
13265 
13266 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
13267   return Functions.size() > 1 ||
13268          (Functions.size() == 1 &&
13269           isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl()));
13270 }
13271 
13272 ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
13273                                             NestedNameSpecifierLoc NNSLoc,
13274                                             DeclarationNameInfo DNI,
13275                                             const UnresolvedSetImpl &Fns,
13276                                             bool PerformADL) {
13277   return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI,
13278                                       PerformADL, IsOverloaded(Fns),
13279                                       Fns.begin(), Fns.end());
13280 }
13281 
13282 /// Create a unary operation that may resolve to an overloaded
13283 /// operator.
13284 ///
13285 /// \param OpLoc The location of the operator itself (e.g., '*').
13286 ///
13287 /// \param Opc The UnaryOperatorKind that describes this operator.
13288 ///
13289 /// \param Fns The set of non-member functions that will be
13290 /// considered by overload resolution. The caller needs to build this
13291 /// set based on the context using, e.g.,
13292 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13293 /// set should not contain any member functions; those will be added
13294 /// by CreateOverloadedUnaryOp().
13295 ///
13296 /// \param Input The input argument.
13297 ExprResult
13298 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
13299                               const UnresolvedSetImpl &Fns,
13300                               Expr *Input, bool PerformADL) {
13301   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
13302   assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
13303   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13304   // TODO: provide better source location info.
13305   DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13306 
13307   if (checkPlaceholderForOverload(*this, Input))
13308     return ExprError();
13309 
13310   Expr *Args[2] = { Input, nullptr };
13311   unsigned NumArgs = 1;
13312 
13313   // For post-increment and post-decrement, add the implicit '0' as
13314   // the second argument, so that we know this is a post-increment or
13315   // post-decrement.
13316   if (Opc == UO_PostInc || Opc == UO_PostDec) {
13317     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13318     Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
13319                                      SourceLocation());
13320     NumArgs = 2;
13321   }
13322 
13323   ArrayRef<Expr *> ArgsArray(Args, NumArgs);
13324 
13325   if (Input->isTypeDependent()) {
13326     if (Fns.empty())
13327       return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy,
13328                                    VK_PRValue, OK_Ordinary, OpLoc, false,
13329                                    CurFPFeatureOverrides());
13330 
13331     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13332     ExprResult Fn = CreateUnresolvedLookupExpr(
13333         NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns);
13334     if (Fn.isInvalid())
13335       return ExprError();
13336     return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray,
13337                                        Context.DependentTy, VK_PRValue, OpLoc,
13338                                        CurFPFeatureOverrides());
13339   }
13340 
13341   // Build an empty overload set.
13342   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
13343 
13344   // Add the candidates from the given function set.
13345   AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet);
13346 
13347   // Add operator candidates that are member functions.
13348   AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13349 
13350   // Add candidates from ADL.
13351   if (PerformADL) {
13352     AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
13353                                          /*ExplicitTemplateArgs*/nullptr,
13354                                          CandidateSet);
13355   }
13356 
13357   // Add builtin operator candidates.
13358   AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13359 
13360   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13361 
13362   // Perform overload resolution.
13363   OverloadCandidateSet::iterator Best;
13364   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13365   case OR_Success: {
13366     // We found a built-in operator or an overloaded operator.
13367     FunctionDecl *FnDecl = Best->Function;
13368 
13369     if (FnDecl) {
13370       Expr *Base = nullptr;
13371       // We matched an overloaded operator. Build a call to that
13372       // operator.
13373 
13374       // Convert the arguments.
13375       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13376         CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
13377 
13378         ExprResult InputRes =
13379           PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
13380                                               Best->FoundDecl, Method);
13381         if (InputRes.isInvalid())
13382           return ExprError();
13383         Base = Input = InputRes.get();
13384       } else {
13385         // Convert the arguments.
13386         ExprResult InputInit
13387           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13388                                                       Context,
13389                                                       FnDecl->getParamDecl(0)),
13390                                       SourceLocation(),
13391                                       Input);
13392         if (InputInit.isInvalid())
13393           return ExprError();
13394         Input = InputInit.get();
13395       }
13396 
13397       // Build the actual expression node.
13398       ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
13399                                                 Base, HadMultipleCandidates,
13400                                                 OpLoc);
13401       if (FnExpr.isInvalid())
13402         return ExprError();
13403 
13404       // Determine the result type.
13405       QualType ResultTy = FnDecl->getReturnType();
13406       ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13407       ResultTy = ResultTy.getNonLValueExprType(Context);
13408 
13409       Args[0] = Input;
13410       CallExpr *TheCall = CXXOperatorCallExpr::Create(
13411           Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
13412           CurFPFeatureOverrides(), Best->IsADLCandidate);
13413 
13414       if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
13415         return ExprError();
13416 
13417       if (CheckFunctionCall(FnDecl, TheCall,
13418                             FnDecl->getType()->castAs<FunctionProtoType>()))
13419         return ExprError();
13420       return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl);
13421     } else {
13422       // We matched a built-in operator. Convert the arguments, then
13423       // break out so that we will build the appropriate built-in
13424       // operator node.
13425       ExprResult InputRes = PerformImplicitConversion(
13426           Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
13427           CCK_ForBuiltinOverloadedOp);
13428       if (InputRes.isInvalid())
13429         return ExprError();
13430       Input = InputRes.get();
13431       break;
13432     }
13433   }
13434 
13435   case OR_No_Viable_Function:
13436     // This is an erroneous use of an operator which can be overloaded by
13437     // a non-member function. Check for non-member operators which were
13438     // defined too late to be candidates.
13439     if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
13440       // FIXME: Recover by calling the found function.
13441       return ExprError();
13442 
13443     // No viable function; fall through to handling this as a
13444     // built-in operator, which will produce an error message for us.
13445     break;
13446 
13447   case OR_Ambiguous:
13448     CandidateSet.NoteCandidates(
13449         PartialDiagnosticAt(OpLoc,
13450                             PDiag(diag::err_ovl_ambiguous_oper_unary)
13451                                 << UnaryOperator::getOpcodeStr(Opc)
13452                                 << Input->getType() << Input->getSourceRange()),
13453         *this, OCD_AmbiguousCandidates, ArgsArray,
13454         UnaryOperator::getOpcodeStr(Opc), OpLoc);
13455     return ExprError();
13456 
13457   case OR_Deleted:
13458     CandidateSet.NoteCandidates(
13459         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
13460                                        << UnaryOperator::getOpcodeStr(Opc)
13461                                        << Input->getSourceRange()),
13462         *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
13463         OpLoc);
13464     return ExprError();
13465   }
13466 
13467   // Either we found no viable overloaded operator or we matched a
13468   // built-in operator. In either case, fall through to trying to
13469   // build a built-in operation.
13470   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13471 }
13472 
13473 /// Perform lookup for an overloaded binary operator.
13474 void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
13475                                  OverloadedOperatorKind Op,
13476                                  const UnresolvedSetImpl &Fns,
13477                                  ArrayRef<Expr *> Args, bool PerformADL) {
13478   SourceLocation OpLoc = CandidateSet.getLocation();
13479 
13480   OverloadedOperatorKind ExtraOp =
13481       CandidateSet.getRewriteInfo().AllowRewrittenCandidates
13482           ? getRewrittenOverloadedOperator(Op)
13483           : OO_None;
13484 
13485   // Add the candidates from the given function set. This also adds the
13486   // rewritten candidates using these functions if necessary.
13487   AddNonMemberOperatorCandidates(Fns, Args, CandidateSet);
13488 
13489   // Add operator candidates that are member functions.
13490   AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13491   if (CandidateSet.getRewriteInfo().shouldAddReversed(Op))
13492     AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet,
13493                                 OverloadCandidateParamOrder::Reversed);
13494 
13495   // In C++20, also add any rewritten member candidates.
13496   if (ExtraOp) {
13497     AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet);
13498     if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp))
13499       AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]},
13500                                   CandidateSet,
13501                                   OverloadCandidateParamOrder::Reversed);
13502   }
13503 
13504   // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
13505   // performed for an assignment operator (nor for operator[] nor operator->,
13506   // which don't get here).
13507   if (Op != OO_Equal && PerformADL) {
13508     DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13509     AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
13510                                          /*ExplicitTemplateArgs*/ nullptr,
13511                                          CandidateSet);
13512     if (ExtraOp) {
13513       DeclarationName ExtraOpName =
13514           Context.DeclarationNames.getCXXOperatorName(ExtraOp);
13515       AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args,
13516                                            /*ExplicitTemplateArgs*/ nullptr,
13517                                            CandidateSet);
13518     }
13519   }
13520 
13521   // Add builtin operator candidates.
13522   //
13523   // FIXME: We don't add any rewritten candidates here. This is strictly
13524   // incorrect; a builtin candidate could be hidden by a non-viable candidate,
13525   // resulting in our selecting a rewritten builtin candidate. For example:
13526   //
13527   //   enum class E { e };
13528   //   bool operator!=(E, E) requires false;
13529   //   bool k = E::e != E::e;
13530   //
13531   // ... should select the rewritten builtin candidate 'operator==(E, E)'. But
13532   // it seems unreasonable to consider rewritten builtin candidates. A core
13533   // issue has been filed proposing to removed this requirement.
13534   AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13535 }
13536 
13537 /// Create a binary operation that may resolve to an overloaded
13538 /// operator.
13539 ///
13540 /// \param OpLoc The location of the operator itself (e.g., '+').
13541 ///
13542 /// \param Opc The BinaryOperatorKind that describes this operator.
13543 ///
13544 /// \param Fns The set of non-member functions that will be
13545 /// considered by overload resolution. The caller needs to build this
13546 /// set based on the context using, e.g.,
13547 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13548 /// set should not contain any member functions; those will be added
13549 /// by CreateOverloadedBinOp().
13550 ///
13551 /// \param LHS Left-hand argument.
13552 /// \param RHS Right-hand argument.
13553 /// \param PerformADL Whether to consider operator candidates found by ADL.
13554 /// \param AllowRewrittenCandidates Whether to consider candidates found by
13555 ///        C++20 operator rewrites.
13556 /// \param DefaultedFn If we are synthesizing a defaulted operator function,
13557 ///        the function in question. Such a function is never a candidate in
13558 ///        our overload resolution. This also enables synthesizing a three-way
13559 ///        comparison from < and == as described in C++20 [class.spaceship]p1.
13560 ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
13561                                        BinaryOperatorKind Opc,
13562                                        const UnresolvedSetImpl &Fns, Expr *LHS,
13563                                        Expr *RHS, bool PerformADL,
13564                                        bool AllowRewrittenCandidates,
13565                                        FunctionDecl *DefaultedFn) {
13566   Expr *Args[2] = { LHS, RHS };
13567   LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
13568 
13569   if (!getLangOpts().CPlusPlus20)
13570     AllowRewrittenCandidates = false;
13571 
13572   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
13573 
13574   // If either side is type-dependent, create an appropriate dependent
13575   // expression.
13576   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
13577     if (Fns.empty()) {
13578       // If there are no functions to store, just build a dependent
13579       // BinaryOperator or CompoundAssignment.
13580       if (BinaryOperator::isCompoundAssignmentOp(Opc))
13581         return CompoundAssignOperator::Create(
13582             Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue,
13583             OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy,
13584             Context.DependentTy);
13585       return BinaryOperator::Create(
13586           Context, Args[0], Args[1], Opc, Context.DependentTy, VK_PRValue,
13587           OK_Ordinary, OpLoc, CurFPFeatureOverrides());
13588     }
13589 
13590     // FIXME: save results of ADL from here?
13591     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13592     // TODO: provide better source location info in DNLoc component.
13593     DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13594     DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13595     ExprResult Fn = CreateUnresolvedLookupExpr(
13596         NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL);
13597     if (Fn.isInvalid())
13598       return ExprError();
13599     return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args,
13600                                        Context.DependentTy, VK_PRValue, OpLoc,
13601                                        CurFPFeatureOverrides());
13602   }
13603 
13604   // Always do placeholder-like conversions on the RHS.
13605   if (checkPlaceholderForOverload(*this, Args[1]))
13606     return ExprError();
13607 
13608   // Do placeholder-like conversion on the LHS; note that we should
13609   // not get here with a PseudoObject LHS.
13610   assert(Args[0]->getObjectKind() != OK_ObjCProperty);
13611   if (checkPlaceholderForOverload(*this, Args[0]))
13612     return ExprError();
13613 
13614   // If this is the assignment operator, we only perform overload resolution
13615   // if the left-hand side is a class or enumeration type. This is actually
13616   // a hack. The standard requires that we do overload resolution between the
13617   // various built-in candidates, but as DR507 points out, this can lead to
13618   // problems. So we do it this way, which pretty much follows what GCC does.
13619   // Note that we go the traditional code path for compound assignment forms.
13620   if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
13621     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13622 
13623   // If this is the .* operator, which is not overloadable, just
13624   // create a built-in binary operator.
13625   if (Opc == BO_PtrMemD)
13626     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13627 
13628   // Build the overload set.
13629   OverloadCandidateSet CandidateSet(
13630       OpLoc, OverloadCandidateSet::CSK_Operator,
13631       OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates));
13632   if (DefaultedFn)
13633     CandidateSet.exclude(DefaultedFn);
13634   LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL);
13635 
13636   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13637 
13638   // Perform overload resolution.
13639   OverloadCandidateSet::iterator Best;
13640   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13641     case OR_Success: {
13642       // We found a built-in operator or an overloaded operator.
13643       FunctionDecl *FnDecl = Best->Function;
13644 
13645       bool IsReversed = Best->isReversed();
13646       if (IsReversed)
13647         std::swap(Args[0], Args[1]);
13648 
13649       if (FnDecl) {
13650         Expr *Base = nullptr;
13651         // We matched an overloaded operator. Build a call to that
13652         // operator.
13653 
13654         OverloadedOperatorKind ChosenOp =
13655             FnDecl->getDeclName().getCXXOverloadedOperator();
13656 
13657         // C++2a [over.match.oper]p9:
13658         //   If a rewritten operator== candidate is selected by overload
13659         //   resolution for an operator@, its return type shall be cv bool
13660         if (Best->RewriteKind && ChosenOp == OO_EqualEqual &&
13661             !FnDecl->getReturnType()->isBooleanType()) {
13662           bool IsExtension =
13663               FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType();
13664           Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool
13665                                   : diag::err_ovl_rewrite_equalequal_not_bool)
13666               << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc)
13667               << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13668           Diag(FnDecl->getLocation(), diag::note_declared_at);
13669           if (!IsExtension)
13670             return ExprError();
13671         }
13672 
13673         if (AllowRewrittenCandidates && !IsReversed &&
13674             CandidateSet.getRewriteInfo().isReversible()) {
13675           // We could have reversed this operator, but didn't. Check if some
13676           // reversed form was a viable candidate, and if so, if it had a
13677           // better conversion for either parameter. If so, this call is
13678           // formally ambiguous, and allowing it is an extension.
13679           llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith;
13680           for (OverloadCandidate &Cand : CandidateSet) {
13681             if (Cand.Viable && Cand.Function && Cand.isReversed() &&
13682                 haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) {
13683               for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
13684                 if (CompareImplicitConversionSequences(
13685                         *this, OpLoc, Cand.Conversions[ArgIdx],
13686                         Best->Conversions[ArgIdx]) ==
13687                     ImplicitConversionSequence::Better) {
13688                   AmbiguousWith.push_back(Cand.Function);
13689                   break;
13690                 }
13691               }
13692             }
13693           }
13694 
13695           if (!AmbiguousWith.empty()) {
13696             bool AmbiguousWithSelf =
13697                 AmbiguousWith.size() == 1 &&
13698                 declaresSameEntity(AmbiguousWith.front(), FnDecl);
13699             Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed)
13700                 << BinaryOperator::getOpcodeStr(Opc)
13701                 << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf
13702                 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13703             if (AmbiguousWithSelf) {
13704               Diag(FnDecl->getLocation(),
13705                    diag::note_ovl_ambiguous_oper_binary_reversed_self);
13706             } else {
13707               Diag(FnDecl->getLocation(),
13708                    diag::note_ovl_ambiguous_oper_binary_selected_candidate);
13709               for (auto *F : AmbiguousWith)
13710                 Diag(F->getLocation(),
13711                      diag::note_ovl_ambiguous_oper_binary_reversed_candidate);
13712             }
13713           }
13714         }
13715 
13716         // Convert the arguments.
13717         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13718           // Best->Access is only meaningful for class members.
13719           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
13720 
13721           ExprResult Arg1 =
13722             PerformCopyInitialization(
13723               InitializedEntity::InitializeParameter(Context,
13724                                                      FnDecl->getParamDecl(0)),
13725               SourceLocation(), Args[1]);
13726           if (Arg1.isInvalid())
13727             return ExprError();
13728 
13729           ExprResult Arg0 =
13730             PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
13731                                                 Best->FoundDecl, Method);
13732           if (Arg0.isInvalid())
13733             return ExprError();
13734           Base = Args[0] = Arg0.getAs<Expr>();
13735           Args[1] = RHS = Arg1.getAs<Expr>();
13736         } else {
13737           // Convert the arguments.
13738           ExprResult Arg0 = PerformCopyInitialization(
13739             InitializedEntity::InitializeParameter(Context,
13740                                                    FnDecl->getParamDecl(0)),
13741             SourceLocation(), Args[0]);
13742           if (Arg0.isInvalid())
13743             return ExprError();
13744 
13745           ExprResult Arg1 =
13746             PerformCopyInitialization(
13747               InitializedEntity::InitializeParameter(Context,
13748                                                      FnDecl->getParamDecl(1)),
13749               SourceLocation(), Args[1]);
13750           if (Arg1.isInvalid())
13751             return ExprError();
13752           Args[0] = LHS = Arg0.getAs<Expr>();
13753           Args[1] = RHS = Arg1.getAs<Expr>();
13754         }
13755 
13756         // Build the actual expression node.
13757         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
13758                                                   Best->FoundDecl, Base,
13759                                                   HadMultipleCandidates, OpLoc);
13760         if (FnExpr.isInvalid())
13761           return ExprError();
13762 
13763         // Determine the result type.
13764         QualType ResultTy = FnDecl->getReturnType();
13765         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13766         ResultTy = ResultTy.getNonLValueExprType(Context);
13767 
13768         CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
13769             Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc,
13770             CurFPFeatureOverrides(), Best->IsADLCandidate);
13771 
13772         if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
13773                                 FnDecl))
13774           return ExprError();
13775 
13776         ArrayRef<const Expr *> ArgsArray(Args, 2);
13777         const Expr *ImplicitThis = nullptr;
13778         // Cut off the implicit 'this'.
13779         if (isa<CXXMethodDecl>(FnDecl)) {
13780           ImplicitThis = ArgsArray[0];
13781           ArgsArray = ArgsArray.slice(1);
13782         }
13783 
13784         // Check for a self move.
13785         if (Op == OO_Equal)
13786           DiagnoseSelfMove(Args[0], Args[1], OpLoc);
13787 
13788         if (ImplicitThis) {
13789           QualType ThisType = Context.getPointerType(ImplicitThis->getType());
13790           QualType ThisTypeFromDecl = Context.getPointerType(
13791               cast<CXXMethodDecl>(FnDecl)->getThisObjectType());
13792 
13793           CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType,
13794                             ThisTypeFromDecl);
13795         }
13796 
13797         checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
13798                   isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
13799                   VariadicDoesNotApply);
13800 
13801         ExprResult R = MaybeBindToTemporary(TheCall);
13802         if (R.isInvalid())
13803           return ExprError();
13804 
13805         R = CheckForImmediateInvocation(R, FnDecl);
13806         if (R.isInvalid())
13807           return ExprError();
13808 
13809         // For a rewritten candidate, we've already reversed the arguments
13810         // if needed. Perform the rest of the rewrite now.
13811         if ((Best->RewriteKind & CRK_DifferentOperator) ||
13812             (Op == OO_Spaceship && IsReversed)) {
13813           if (Op == OO_ExclaimEqual) {
13814             assert(ChosenOp == OO_EqualEqual && "unexpected operator name");
13815             R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get());
13816           } else {
13817             assert(ChosenOp == OO_Spaceship && "unexpected operator name");
13818             llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13819             Expr *ZeroLiteral =
13820                 IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc);
13821 
13822             Sema::CodeSynthesisContext Ctx;
13823             Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship;
13824             Ctx.Entity = FnDecl;
13825             pushCodeSynthesisContext(Ctx);
13826 
13827             R = CreateOverloadedBinOp(
13828                 OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(),
13829                 IsReversed ? R.get() : ZeroLiteral, PerformADL,
13830                 /*AllowRewrittenCandidates=*/false);
13831 
13832             popCodeSynthesisContext();
13833           }
13834           if (R.isInvalid())
13835             return ExprError();
13836         } else {
13837           assert(ChosenOp == Op && "unexpected operator name");
13838         }
13839 
13840         // Make a note in the AST if we did any rewriting.
13841         if (Best->RewriteKind != CRK_None)
13842           R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed);
13843 
13844         return R;
13845       } else {
13846         // We matched a built-in operator. Convert the arguments, then
13847         // break out so that we will build the appropriate built-in
13848         // operator node.
13849         ExprResult ArgsRes0 = PerformImplicitConversion(
13850             Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
13851             AA_Passing, CCK_ForBuiltinOverloadedOp);
13852         if (ArgsRes0.isInvalid())
13853           return ExprError();
13854         Args[0] = ArgsRes0.get();
13855 
13856         ExprResult ArgsRes1 = PerformImplicitConversion(
13857             Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
13858             AA_Passing, CCK_ForBuiltinOverloadedOp);
13859         if (ArgsRes1.isInvalid())
13860           return ExprError();
13861         Args[1] = ArgsRes1.get();
13862         break;
13863       }
13864     }
13865 
13866     case OR_No_Viable_Function: {
13867       // C++ [over.match.oper]p9:
13868       //   If the operator is the operator , [...] and there are no
13869       //   viable functions, then the operator is assumed to be the
13870       //   built-in operator and interpreted according to clause 5.
13871       if (Opc == BO_Comma)
13872         break;
13873 
13874       // When defaulting an 'operator<=>', we can try to synthesize a three-way
13875       // compare result using '==' and '<'.
13876       if (DefaultedFn && Opc == BO_Cmp) {
13877         ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0],
13878                                                           Args[1], DefaultedFn);
13879         if (E.isInvalid() || E.isUsable())
13880           return E;
13881       }
13882 
13883       // For class as left operand for assignment or compound assignment
13884       // operator do not fall through to handling in built-in, but report that
13885       // no overloaded assignment operator found
13886       ExprResult Result = ExprError();
13887       StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
13888       auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
13889                                                    Args, OpLoc);
13890       DeferDiagsRAII DDR(*this,
13891                          CandidateSet.shouldDeferDiags(*this, Args, OpLoc));
13892       if (Args[0]->getType()->isRecordType() &&
13893           Opc >= BO_Assign && Opc <= BO_OrAssign) {
13894         Diag(OpLoc,  diag::err_ovl_no_viable_oper)
13895              << BinaryOperator::getOpcodeStr(Opc)
13896              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13897         if (Args[0]->getType()->isIncompleteType()) {
13898           Diag(OpLoc, diag::note_assign_lhs_incomplete)
13899             << Args[0]->getType()
13900             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13901         }
13902       } else {
13903         // This is an erroneous use of an operator which can be overloaded by
13904         // a non-member function. Check for non-member operators which were
13905         // defined too late to be candidates.
13906         if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
13907           // FIXME: Recover by calling the found function.
13908           return ExprError();
13909 
13910         // No viable function; try to create a built-in operation, which will
13911         // produce an error. Then, show the non-viable candidates.
13912         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13913       }
13914       assert(Result.isInvalid() &&
13915              "C++ binary operator overloading is missing candidates!");
13916       CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
13917       return Result;
13918     }
13919 
13920     case OR_Ambiguous:
13921       CandidateSet.NoteCandidates(
13922           PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
13923                                          << BinaryOperator::getOpcodeStr(Opc)
13924                                          << Args[0]->getType()
13925                                          << Args[1]->getType()
13926                                          << Args[0]->getSourceRange()
13927                                          << Args[1]->getSourceRange()),
13928           *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13929           OpLoc);
13930       return ExprError();
13931 
13932     case OR_Deleted:
13933       if (isImplicitlyDeleted(Best->Function)) {
13934         FunctionDecl *DeletedFD = Best->Function;
13935         DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD);
13936         if (DFK.isSpecialMember()) {
13937           Diag(OpLoc, diag::err_ovl_deleted_special_oper)
13938             << Args[0]->getType() << DFK.asSpecialMember();
13939         } else {
13940           assert(DFK.isComparison());
13941           Diag(OpLoc, diag::err_ovl_deleted_comparison)
13942             << Args[0]->getType() << DeletedFD;
13943         }
13944 
13945         // The user probably meant to call this special member. Just
13946         // explain why it's deleted.
13947         NoteDeletedFunction(DeletedFD);
13948         return ExprError();
13949       }
13950       CandidateSet.NoteCandidates(
13951           PartialDiagnosticAt(
13952               OpLoc, PDiag(diag::err_ovl_deleted_oper)
13953                          << getOperatorSpelling(Best->Function->getDeclName()
13954                                                     .getCXXOverloadedOperator())
13955                          << Args[0]->getSourceRange()
13956                          << Args[1]->getSourceRange()),
13957           *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13958           OpLoc);
13959       return ExprError();
13960   }
13961 
13962   // We matched a built-in operator; build it.
13963   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13964 }
13965 
13966 ExprResult Sema::BuildSynthesizedThreeWayComparison(
13967     SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS,
13968     FunctionDecl *DefaultedFn) {
13969   const ComparisonCategoryInfo *Info =
13970       Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType());
13971   // If we're not producing a known comparison category type, we can't
13972   // synthesize a three-way comparison. Let the caller diagnose this.
13973   if (!Info)
13974     return ExprResult((Expr*)nullptr);
13975 
13976   // If we ever want to perform this synthesis more generally, we will need to
13977   // apply the temporary materialization conversion to the operands.
13978   assert(LHS->isGLValue() && RHS->isGLValue() &&
13979          "cannot use prvalue expressions more than once");
13980   Expr *OrigLHS = LHS;
13981   Expr *OrigRHS = RHS;
13982 
13983   // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to
13984   // each of them multiple times below.
13985   LHS = new (Context)
13986       OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(),
13987                       LHS->getObjectKind(), LHS);
13988   RHS = new (Context)
13989       OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(),
13990                       RHS->getObjectKind(), RHS);
13991 
13992   ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true,
13993                                         DefaultedFn);
13994   if (Eq.isInvalid())
13995     return ExprError();
13996 
13997   ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true,
13998                                           true, DefaultedFn);
13999   if (Less.isInvalid())
14000     return ExprError();
14001 
14002   ExprResult Greater;
14003   if (Info->isPartial()) {
14004     Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true,
14005                                     DefaultedFn);
14006     if (Greater.isInvalid())
14007       return ExprError();
14008   }
14009 
14010   // Form the list of comparisons we're going to perform.
14011   struct Comparison {
14012     ExprResult Cmp;
14013     ComparisonCategoryResult Result;
14014   } Comparisons[4] =
14015   { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal
14016                           : ComparisonCategoryResult::Equivalent},
14017     {Less, ComparisonCategoryResult::Less},
14018     {Greater, ComparisonCategoryResult::Greater},
14019     {ExprResult(), ComparisonCategoryResult::Unordered},
14020   };
14021 
14022   int I = Info->isPartial() ? 3 : 2;
14023 
14024   // Combine the comparisons with suitable conditional expressions.
14025   ExprResult Result;
14026   for (; I >= 0; --I) {
14027     // Build a reference to the comparison category constant.
14028     auto *VI = Info->lookupValueInfo(Comparisons[I].Result);
14029     // FIXME: Missing a constant for a comparison category. Diagnose this?
14030     if (!VI)
14031       return ExprResult((Expr*)nullptr);
14032     ExprResult ThisResult =
14033         BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD);
14034     if (ThisResult.isInvalid())
14035       return ExprError();
14036 
14037     // Build a conditional unless this is the final case.
14038     if (Result.get()) {
14039       Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(),
14040                                   ThisResult.get(), Result.get());
14041       if (Result.isInvalid())
14042         return ExprError();
14043     } else {
14044       Result = ThisResult;
14045     }
14046   }
14047 
14048   // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to
14049   // bind the OpaqueValueExprs before they're (repeatedly) used.
14050   Expr *SyntacticForm = BinaryOperator::Create(
14051       Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(),
14052       Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc,
14053       CurFPFeatureOverrides());
14054   Expr *SemanticForm[] = {LHS, RHS, Result.get()};
14055   return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2);
14056 }
14057 
14058 ExprResult
14059 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
14060                                          SourceLocation RLoc,
14061                                          Expr *Base, Expr *Idx) {
14062   Expr *Args[2] = { Base, Idx };
14063   DeclarationName OpName =
14064       Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
14065 
14066   // If either side is type-dependent, create an appropriate dependent
14067   // expression.
14068   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
14069 
14070     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
14071     // CHECKME: no 'operator' keyword?
14072     DeclarationNameInfo OpNameInfo(OpName, LLoc);
14073     OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
14074     ExprResult Fn = CreateUnresolvedLookupExpr(
14075         NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>());
14076     if (Fn.isInvalid())
14077       return ExprError();
14078     // Can't add any actual overloads yet
14079 
14080     return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args,
14081                                        Context.DependentTy, VK_PRValue, RLoc,
14082                                        CurFPFeatureOverrides());
14083   }
14084 
14085   // Handle placeholders on both operands.
14086   if (checkPlaceholderForOverload(*this, Args[0]))
14087     return ExprError();
14088   if (checkPlaceholderForOverload(*this, Args[1]))
14089     return ExprError();
14090 
14091   // Build an empty overload set.
14092   OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
14093 
14094   // Subscript can only be overloaded as a member function.
14095 
14096   // Add operator candidates that are member functions.
14097   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
14098 
14099   // Add builtin operator candidates.
14100   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
14101 
14102   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14103 
14104   // Perform overload resolution.
14105   OverloadCandidateSet::iterator Best;
14106   switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
14107     case OR_Success: {
14108       // We found a built-in operator or an overloaded operator.
14109       FunctionDecl *FnDecl = Best->Function;
14110 
14111       if (FnDecl) {
14112         // We matched an overloaded operator. Build a call to that
14113         // operator.
14114 
14115         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
14116 
14117         // Convert the arguments.
14118         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
14119         ExprResult Arg0 =
14120           PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
14121                                               Best->FoundDecl, Method);
14122         if (Arg0.isInvalid())
14123           return ExprError();
14124         Args[0] = Arg0.get();
14125 
14126         // Convert the arguments.
14127         ExprResult InputInit
14128           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
14129                                                       Context,
14130                                                       FnDecl->getParamDecl(0)),
14131                                       SourceLocation(),
14132                                       Args[1]);
14133         if (InputInit.isInvalid())
14134           return ExprError();
14135 
14136         Args[1] = InputInit.getAs<Expr>();
14137 
14138         // Build the actual expression node.
14139         DeclarationNameInfo OpLocInfo(OpName, LLoc);
14140         OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
14141         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
14142                                                   Best->FoundDecl,
14143                                                   Base,
14144                                                   HadMultipleCandidates,
14145                                                   OpLocInfo.getLoc(),
14146                                                   OpLocInfo.getInfo());
14147         if (FnExpr.isInvalid())
14148           return ExprError();
14149 
14150         // Determine the result type
14151         QualType ResultTy = FnDecl->getReturnType();
14152         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14153         ResultTy = ResultTy.getNonLValueExprType(Context);
14154 
14155         CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14156             Context, OO_Subscript, FnExpr.get(), Args, ResultTy, VK, RLoc,
14157             CurFPFeatureOverrides());
14158         if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
14159           return ExprError();
14160 
14161         if (CheckFunctionCall(Method, TheCall,
14162                               Method->getType()->castAs<FunctionProtoType>()))
14163           return ExprError();
14164 
14165         return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall),
14166                                            FnDecl);
14167       } else {
14168         // We matched a built-in operator. Convert the arguments, then
14169         // break out so that we will build the appropriate built-in
14170         // operator node.
14171         ExprResult ArgsRes0 = PerformImplicitConversion(
14172             Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
14173             AA_Passing, CCK_ForBuiltinOverloadedOp);
14174         if (ArgsRes0.isInvalid())
14175           return ExprError();
14176         Args[0] = ArgsRes0.get();
14177 
14178         ExprResult ArgsRes1 = PerformImplicitConversion(
14179             Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
14180             AA_Passing, CCK_ForBuiltinOverloadedOp);
14181         if (ArgsRes1.isInvalid())
14182           return ExprError();
14183         Args[1] = ArgsRes1.get();
14184 
14185         break;
14186       }
14187     }
14188 
14189     case OR_No_Viable_Function: {
14190       PartialDiagnostic PD = CandidateSet.empty()
14191           ? (PDiag(diag::err_ovl_no_oper)
14192              << Args[0]->getType() << /*subscript*/ 0
14193              << Args[0]->getSourceRange() << Args[1]->getSourceRange())
14194           : (PDiag(diag::err_ovl_no_viable_subscript)
14195              << Args[0]->getType() << Args[0]->getSourceRange()
14196              << Args[1]->getSourceRange());
14197       CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
14198                                   OCD_AllCandidates, Args, "[]", LLoc);
14199       return ExprError();
14200     }
14201 
14202     case OR_Ambiguous:
14203       CandidateSet.NoteCandidates(
14204           PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
14205                                         << "[]" << Args[0]->getType()
14206                                         << Args[1]->getType()
14207                                         << Args[0]->getSourceRange()
14208                                         << Args[1]->getSourceRange()),
14209           *this, OCD_AmbiguousCandidates, Args, "[]", LLoc);
14210       return ExprError();
14211 
14212     case OR_Deleted:
14213       CandidateSet.NoteCandidates(
14214           PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
14215                                         << "[]" << Args[0]->getSourceRange()
14216                                         << Args[1]->getSourceRange()),
14217           *this, OCD_AllCandidates, Args, "[]", LLoc);
14218       return ExprError();
14219     }
14220 
14221   // We matched a built-in operator; build it.
14222   return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
14223 }
14224 
14225 /// BuildCallToMemberFunction - Build a call to a member
14226 /// function. MemExpr is the expression that refers to the member
14227 /// function (and includes the object parameter), Args/NumArgs are the
14228 /// arguments to the function call (not including the object
14229 /// parameter). The caller needs to validate that the member
14230 /// expression refers to a non-static member function or an overloaded
14231 /// member function.
14232 ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
14233                                            SourceLocation LParenLoc,
14234                                            MultiExprArg Args,
14235                                            SourceLocation RParenLoc,
14236                                            Expr *ExecConfig, bool IsExecConfig,
14237                                            bool AllowRecovery) {
14238   assert(MemExprE->getType() == Context.BoundMemberTy ||
14239          MemExprE->getType() == Context.OverloadTy);
14240 
14241   // Dig out the member expression. This holds both the object
14242   // argument and the member function we're referring to.
14243   Expr *NakedMemExpr = MemExprE->IgnoreParens();
14244 
14245   // Determine whether this is a call to a pointer-to-member function.
14246   if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
14247     assert(op->getType() == Context.BoundMemberTy);
14248     assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
14249 
14250     QualType fnType =
14251       op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
14252 
14253     const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
14254     QualType resultType = proto->getCallResultType(Context);
14255     ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
14256 
14257     // Check that the object type isn't more qualified than the
14258     // member function we're calling.
14259     Qualifiers funcQuals = proto->getMethodQuals();
14260 
14261     QualType objectType = op->getLHS()->getType();
14262     if (op->getOpcode() == BO_PtrMemI)
14263       objectType = objectType->castAs<PointerType>()->getPointeeType();
14264     Qualifiers objectQuals = objectType.getQualifiers();
14265 
14266     Qualifiers difference = objectQuals - funcQuals;
14267     difference.removeObjCGCAttr();
14268     difference.removeAddressSpace();
14269     if (difference) {
14270       std::string qualsString = difference.getAsString();
14271       Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
14272         << fnType.getUnqualifiedType()
14273         << qualsString
14274         << (qualsString.find(' ') == std::string::npos ? 1 : 2);
14275     }
14276 
14277     CXXMemberCallExpr *call = CXXMemberCallExpr::Create(
14278         Context, MemExprE, Args, resultType, valueKind, RParenLoc,
14279         CurFPFeatureOverrides(), proto->getNumParams());
14280 
14281     if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
14282                             call, nullptr))
14283       return ExprError();
14284 
14285     if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
14286       return ExprError();
14287 
14288     if (CheckOtherCall(call, proto))
14289       return ExprError();
14290 
14291     return MaybeBindToTemporary(call);
14292   }
14293 
14294   // We only try to build a recovery expr at this level if we can preserve
14295   // the return type, otherwise we return ExprError() and let the caller
14296   // recover.
14297   auto BuildRecoveryExpr = [&](QualType Type) {
14298     if (!AllowRecovery)
14299       return ExprError();
14300     std::vector<Expr *> SubExprs = {MemExprE};
14301     llvm::for_each(Args, [&SubExprs](Expr *E) { SubExprs.push_back(E); });
14302     return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs,
14303                               Type);
14304   };
14305   if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
14306     return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_PRValue,
14307                             RParenLoc, CurFPFeatureOverrides());
14308 
14309   UnbridgedCastsSet UnbridgedCasts;
14310   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14311     return ExprError();
14312 
14313   MemberExpr *MemExpr;
14314   CXXMethodDecl *Method = nullptr;
14315   DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
14316   NestedNameSpecifier *Qualifier = nullptr;
14317   if (isa<MemberExpr>(NakedMemExpr)) {
14318     MemExpr = cast<MemberExpr>(NakedMemExpr);
14319     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
14320     FoundDecl = MemExpr->getFoundDecl();
14321     Qualifier = MemExpr->getQualifier();
14322     UnbridgedCasts.restore();
14323   } else {
14324     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
14325     Qualifier = UnresExpr->getQualifier();
14326 
14327     QualType ObjectType = UnresExpr->getBaseType();
14328     Expr::Classification ObjectClassification
14329       = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
14330                             : UnresExpr->getBase()->Classify(Context);
14331 
14332     // Add overload candidates
14333     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
14334                                       OverloadCandidateSet::CSK_Normal);
14335 
14336     // FIXME: avoid copy.
14337     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
14338     if (UnresExpr->hasExplicitTemplateArgs()) {
14339       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
14340       TemplateArgs = &TemplateArgsBuffer;
14341     }
14342 
14343     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
14344            E = UnresExpr->decls_end(); I != E; ++I) {
14345 
14346       NamedDecl *Func = *I;
14347       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
14348       if (isa<UsingShadowDecl>(Func))
14349         Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
14350 
14351 
14352       // Microsoft supports direct constructor calls.
14353       if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
14354         AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
14355                              CandidateSet,
14356                              /*SuppressUserConversions*/ false);
14357       } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
14358         // If explicit template arguments were provided, we can't call a
14359         // non-template member function.
14360         if (TemplateArgs)
14361           continue;
14362 
14363         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
14364                            ObjectClassification, Args, CandidateSet,
14365                            /*SuppressUserConversions=*/false);
14366       } else {
14367         AddMethodTemplateCandidate(
14368             cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
14369             TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
14370             /*SuppressUserConversions=*/false);
14371       }
14372     }
14373 
14374     DeclarationName DeclName = UnresExpr->getMemberName();
14375 
14376     UnbridgedCasts.restore();
14377 
14378     OverloadCandidateSet::iterator Best;
14379     bool Succeeded = false;
14380     switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
14381                                             Best)) {
14382     case OR_Success:
14383       Method = cast<CXXMethodDecl>(Best->Function);
14384       FoundDecl = Best->FoundDecl;
14385       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
14386       if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
14387         break;
14388       // If FoundDecl is different from Method (such as if one is a template
14389       // and the other a specialization), make sure DiagnoseUseOfDecl is
14390       // called on both.
14391       // FIXME: This would be more comprehensively addressed by modifying
14392       // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
14393       // being used.
14394       if (Method != FoundDecl.getDecl() &&
14395                       DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
14396         break;
14397       Succeeded = true;
14398       break;
14399 
14400     case OR_No_Viable_Function:
14401       CandidateSet.NoteCandidates(
14402           PartialDiagnosticAt(
14403               UnresExpr->getMemberLoc(),
14404               PDiag(diag::err_ovl_no_viable_member_function_in_call)
14405                   << DeclName << MemExprE->getSourceRange()),
14406           *this, OCD_AllCandidates, Args);
14407       break;
14408     case OR_Ambiguous:
14409       CandidateSet.NoteCandidates(
14410           PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14411                               PDiag(diag::err_ovl_ambiguous_member_call)
14412                                   << DeclName << MemExprE->getSourceRange()),
14413           *this, OCD_AmbiguousCandidates, Args);
14414       break;
14415     case OR_Deleted:
14416       CandidateSet.NoteCandidates(
14417           PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14418                               PDiag(diag::err_ovl_deleted_member_call)
14419                                   << DeclName << MemExprE->getSourceRange()),
14420           *this, OCD_AllCandidates, Args);
14421       break;
14422     }
14423     // Overload resolution fails, try to recover.
14424     if (!Succeeded)
14425       return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best));
14426 
14427     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
14428 
14429     // If overload resolution picked a static member, build a
14430     // non-member call based on that function.
14431     if (Method->isStatic()) {
14432       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, RParenLoc,
14433                                    ExecConfig, IsExecConfig);
14434     }
14435 
14436     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
14437   }
14438 
14439   QualType ResultType = Method->getReturnType();
14440   ExprValueKind VK = Expr::getValueKindForType(ResultType);
14441   ResultType = ResultType.getNonLValueExprType(Context);
14442 
14443   assert(Method && "Member call to something that isn't a method?");
14444   const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14445   CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create(
14446       Context, MemExprE, Args, ResultType, VK, RParenLoc,
14447       CurFPFeatureOverrides(), Proto->getNumParams());
14448 
14449   // Check for a valid return type.
14450   if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
14451                           TheCall, Method))
14452     return BuildRecoveryExpr(ResultType);
14453 
14454   // Convert the object argument (for a non-static member function call).
14455   // We only need to do this if there was actually an overload; otherwise
14456   // it was done at lookup.
14457   if (!Method->isStatic()) {
14458     ExprResult ObjectArg =
14459       PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
14460                                           FoundDecl, Method);
14461     if (ObjectArg.isInvalid())
14462       return ExprError();
14463     MemExpr->setBase(ObjectArg.get());
14464   }
14465 
14466   // Convert the rest of the arguments
14467   if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
14468                               RParenLoc))
14469     return BuildRecoveryExpr(ResultType);
14470 
14471   DiagnoseSentinelCalls(Method, LParenLoc, Args);
14472 
14473   if (CheckFunctionCall(Method, TheCall, Proto))
14474     return ExprError();
14475 
14476   // In the case the method to call was not selected by the overloading
14477   // resolution process, we still need to handle the enable_if attribute. Do
14478   // that here, so it will not hide previous -- and more relevant -- errors.
14479   if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
14480     if (const EnableIfAttr *Attr =
14481             CheckEnableIf(Method, LParenLoc, Args, true)) {
14482       Diag(MemE->getMemberLoc(),
14483            diag::err_ovl_no_viable_member_function_in_call)
14484           << Method << Method->getSourceRange();
14485       Diag(Method->getLocation(),
14486            diag::note_ovl_candidate_disabled_by_function_cond_attr)
14487           << Attr->getCond()->getSourceRange() << Attr->getMessage();
14488       return ExprError();
14489     }
14490   }
14491 
14492   if ((isa<CXXConstructorDecl>(CurContext) ||
14493        isa<CXXDestructorDecl>(CurContext)) &&
14494       TheCall->getMethodDecl()->isPure()) {
14495     const CXXMethodDecl *MD = TheCall->getMethodDecl();
14496 
14497     if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
14498         MemExpr->performsVirtualDispatch(getLangOpts())) {
14499       Diag(MemExpr->getBeginLoc(),
14500            diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
14501           << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
14502           << MD->getParent();
14503 
14504       Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
14505       if (getLangOpts().AppleKext)
14506         Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
14507             << MD->getParent() << MD->getDeclName();
14508     }
14509   }
14510 
14511   if (CXXDestructorDecl *DD =
14512           dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
14513     // a->A::f() doesn't go through the vtable, except in AppleKext mode.
14514     bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
14515     CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
14516                          CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
14517                          MemExpr->getMemberLoc());
14518   }
14519 
14520   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall),
14521                                      TheCall->getMethodDecl());
14522 }
14523 
14524 /// BuildCallToObjectOfClassType - Build a call to an object of class
14525 /// type (C++ [over.call.object]), which can end up invoking an
14526 /// overloaded function call operator (@c operator()) or performing a
14527 /// user-defined conversion on the object argument.
14528 ExprResult
14529 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
14530                                    SourceLocation LParenLoc,
14531                                    MultiExprArg Args,
14532                                    SourceLocation RParenLoc) {
14533   if (checkPlaceholderForOverload(*this, Obj))
14534     return ExprError();
14535   ExprResult Object = Obj;
14536 
14537   UnbridgedCastsSet UnbridgedCasts;
14538   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14539     return ExprError();
14540 
14541   assert(Object.get()->getType()->isRecordType() &&
14542          "Requires object type argument");
14543 
14544   // C++ [over.call.object]p1:
14545   //  If the primary-expression E in the function call syntax
14546   //  evaluates to a class object of type "cv T", then the set of
14547   //  candidate functions includes at least the function call
14548   //  operators of T. The function call operators of T are obtained by
14549   //  ordinary lookup of the name operator() in the context of
14550   //  (E).operator().
14551   OverloadCandidateSet CandidateSet(LParenLoc,
14552                                     OverloadCandidateSet::CSK_Operator);
14553   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
14554 
14555   if (RequireCompleteType(LParenLoc, Object.get()->getType(),
14556                           diag::err_incomplete_object_call, Object.get()))
14557     return true;
14558 
14559   const auto *Record = Object.get()->getType()->castAs<RecordType>();
14560   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
14561   LookupQualifiedName(R, Record->getDecl());
14562   R.suppressDiagnostics();
14563 
14564   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14565        Oper != OperEnd; ++Oper) {
14566     AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
14567                        Object.get()->Classify(Context), Args, CandidateSet,
14568                        /*SuppressUserConversion=*/false);
14569   }
14570 
14571   // C++ [over.call.object]p2:
14572   //   In addition, for each (non-explicit in C++0x) conversion function
14573   //   declared in T of the form
14574   //
14575   //        operator conversion-type-id () cv-qualifier;
14576   //
14577   //   where cv-qualifier is the same cv-qualification as, or a
14578   //   greater cv-qualification than, cv, and where conversion-type-id
14579   //   denotes the type "pointer to function of (P1,...,Pn) returning
14580   //   R", or the type "reference to pointer to function of
14581   //   (P1,...,Pn) returning R", or the type "reference to function
14582   //   of (P1,...,Pn) returning R", a surrogate call function [...]
14583   //   is also considered as a candidate function. Similarly,
14584   //   surrogate call functions are added to the set of candidate
14585   //   functions for each conversion function declared in an
14586   //   accessible base class provided the function is not hidden
14587   //   within T by another intervening declaration.
14588   const auto &Conversions =
14589       cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
14590   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
14591     NamedDecl *D = *I;
14592     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
14593     if (isa<UsingShadowDecl>(D))
14594       D = cast<UsingShadowDecl>(D)->getTargetDecl();
14595 
14596     // Skip over templated conversion functions; they aren't
14597     // surrogates.
14598     if (isa<FunctionTemplateDecl>(D))
14599       continue;
14600 
14601     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
14602     if (!Conv->isExplicit()) {
14603       // Strip the reference type (if any) and then the pointer type (if
14604       // any) to get down to what might be a function type.
14605       QualType ConvType = Conv->getConversionType().getNonReferenceType();
14606       if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
14607         ConvType = ConvPtrType->getPointeeType();
14608 
14609       if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
14610       {
14611         AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
14612                               Object.get(), Args, CandidateSet);
14613       }
14614     }
14615   }
14616 
14617   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14618 
14619   // Perform overload resolution.
14620   OverloadCandidateSet::iterator Best;
14621   switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
14622                                           Best)) {
14623   case OR_Success:
14624     // Overload resolution succeeded; we'll build the appropriate call
14625     // below.
14626     break;
14627 
14628   case OR_No_Viable_Function: {
14629     PartialDiagnostic PD =
14630         CandidateSet.empty()
14631             ? (PDiag(diag::err_ovl_no_oper)
14632                << Object.get()->getType() << /*call*/ 1
14633                << Object.get()->getSourceRange())
14634             : (PDiag(diag::err_ovl_no_viable_object_call)
14635                << Object.get()->getType() << Object.get()->getSourceRange());
14636     CandidateSet.NoteCandidates(
14637         PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
14638         OCD_AllCandidates, Args);
14639     break;
14640   }
14641   case OR_Ambiguous:
14642     CandidateSet.NoteCandidates(
14643         PartialDiagnosticAt(Object.get()->getBeginLoc(),
14644                             PDiag(diag::err_ovl_ambiguous_object_call)
14645                                 << Object.get()->getType()
14646                                 << Object.get()->getSourceRange()),
14647         *this, OCD_AmbiguousCandidates, Args);
14648     break;
14649 
14650   case OR_Deleted:
14651     CandidateSet.NoteCandidates(
14652         PartialDiagnosticAt(Object.get()->getBeginLoc(),
14653                             PDiag(diag::err_ovl_deleted_object_call)
14654                                 << Object.get()->getType()
14655                                 << Object.get()->getSourceRange()),
14656         *this, OCD_AllCandidates, Args);
14657     break;
14658   }
14659 
14660   if (Best == CandidateSet.end())
14661     return true;
14662 
14663   UnbridgedCasts.restore();
14664 
14665   if (Best->Function == nullptr) {
14666     // Since there is no function declaration, this is one of the
14667     // surrogate candidates. Dig out the conversion function.
14668     CXXConversionDecl *Conv
14669       = cast<CXXConversionDecl>(
14670                          Best->Conversions[0].UserDefined.ConversionFunction);
14671 
14672     CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
14673                               Best->FoundDecl);
14674     if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
14675       return ExprError();
14676     assert(Conv == Best->FoundDecl.getDecl() &&
14677              "Found Decl & conversion-to-functionptr should be same, right?!");
14678     // We selected one of the surrogate functions that converts the
14679     // object parameter to a function pointer. Perform the conversion
14680     // on the object argument, then let BuildCallExpr finish the job.
14681 
14682     // Create an implicit member expr to refer to the conversion operator.
14683     // and then call it.
14684     ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
14685                                              Conv, HadMultipleCandidates);
14686     if (Call.isInvalid())
14687       return ExprError();
14688     // Record usage of conversion in an implicit cast.
14689     Call = ImplicitCastExpr::Create(
14690         Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(),
14691         nullptr, VK_PRValue, CurFPFeatureOverrides());
14692 
14693     return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
14694   }
14695 
14696   CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
14697 
14698   // We found an overloaded operator(). Build a CXXOperatorCallExpr
14699   // that calls this method, using Object for the implicit object
14700   // parameter and passing along the remaining arguments.
14701   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
14702 
14703   // An error diagnostic has already been printed when parsing the declaration.
14704   if (Method->isInvalidDecl())
14705     return ExprError();
14706 
14707   const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14708   unsigned NumParams = Proto->getNumParams();
14709 
14710   DeclarationNameInfo OpLocInfo(
14711                Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
14712   OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
14713   ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
14714                                            Obj, HadMultipleCandidates,
14715                                            OpLocInfo.getLoc(),
14716                                            OpLocInfo.getInfo());
14717   if (NewFn.isInvalid())
14718     return true;
14719 
14720   // The number of argument slots to allocate in the call. If we have default
14721   // arguments we need to allocate space for them as well. We additionally
14722   // need one more slot for the object parameter.
14723   unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);
14724 
14725   // Build the full argument list for the method call (the implicit object
14726   // parameter is placed at the beginning of the list).
14727   SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);
14728 
14729   bool IsError = false;
14730 
14731   // Initialize the implicit object parameter.
14732   ExprResult ObjRes =
14733     PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
14734                                         Best->FoundDecl, Method);
14735   if (ObjRes.isInvalid())
14736     IsError = true;
14737   else
14738     Object = ObjRes;
14739   MethodArgs[0] = Object.get();
14740 
14741   // Check the argument types.
14742   for (unsigned i = 0; i != NumParams; i++) {
14743     Expr *Arg;
14744     if (i < Args.size()) {
14745       Arg = Args[i];
14746 
14747       // Pass the argument.
14748 
14749       ExprResult InputInit
14750         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
14751                                                     Context,
14752                                                     Method->getParamDecl(i)),
14753                                     SourceLocation(), Arg);
14754 
14755       IsError |= InputInit.isInvalid();
14756       Arg = InputInit.getAs<Expr>();
14757     } else {
14758       ExprResult DefArg
14759         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
14760       if (DefArg.isInvalid()) {
14761         IsError = true;
14762         break;
14763       }
14764 
14765       Arg = DefArg.getAs<Expr>();
14766     }
14767 
14768     MethodArgs[i + 1] = Arg;
14769   }
14770 
14771   // If this is a variadic call, handle args passed through "...".
14772   if (Proto->isVariadic()) {
14773     // Promote the arguments (C99 6.5.2.2p7).
14774     for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
14775       ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
14776                                                         nullptr);
14777       IsError |= Arg.isInvalid();
14778       MethodArgs[i + 1] = Arg.get();
14779     }
14780   }
14781 
14782   if (IsError)
14783     return true;
14784 
14785   DiagnoseSentinelCalls(Method, LParenLoc, Args);
14786 
14787   // Once we've built TheCall, all of the expressions are properly owned.
14788   QualType ResultTy = Method->getReturnType();
14789   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14790   ResultTy = ResultTy.getNonLValueExprType(Context);
14791 
14792   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14793       Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc,
14794       CurFPFeatureOverrides());
14795 
14796   if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
14797     return true;
14798 
14799   if (CheckFunctionCall(Method, TheCall, Proto))
14800     return true;
14801 
14802   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method);
14803 }
14804 
14805 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
14806 ///  (if one exists), where @c Base is an expression of class type and
14807 /// @c Member is the name of the member we're trying to find.
14808 ExprResult
14809 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
14810                                bool *NoArrowOperatorFound) {
14811   assert(Base->getType()->isRecordType() &&
14812          "left-hand side must have class type");
14813 
14814   if (checkPlaceholderForOverload(*this, Base))
14815     return ExprError();
14816 
14817   SourceLocation Loc = Base->getExprLoc();
14818 
14819   // C++ [over.ref]p1:
14820   //
14821   //   [...] An expression x->m is interpreted as (x.operator->())->m
14822   //   for a class object x of type T if T::operator->() exists and if
14823   //   the operator is selected as the best match function by the
14824   //   overload resolution mechanism (13.3).
14825   DeclarationName OpName =
14826     Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
14827   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
14828 
14829   if (RequireCompleteType(Loc, Base->getType(),
14830                           diag::err_typecheck_incomplete_tag, Base))
14831     return ExprError();
14832 
14833   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
14834   LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl());
14835   R.suppressDiagnostics();
14836 
14837   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14838        Oper != OperEnd; ++Oper) {
14839     AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
14840                        None, CandidateSet, /*SuppressUserConversion=*/false);
14841   }
14842 
14843   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14844 
14845   // Perform overload resolution.
14846   OverloadCandidateSet::iterator Best;
14847   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
14848   case OR_Success:
14849     // Overload resolution succeeded; we'll build the call below.
14850     break;
14851 
14852   case OR_No_Viable_Function: {
14853     auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
14854     if (CandidateSet.empty()) {
14855       QualType BaseType = Base->getType();
14856       if (NoArrowOperatorFound) {
14857         // Report this specific error to the caller instead of emitting a
14858         // diagnostic, as requested.
14859         *NoArrowOperatorFound = true;
14860         return ExprError();
14861       }
14862       Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
14863         << BaseType << Base->getSourceRange();
14864       if (BaseType->isRecordType() && !BaseType->isPointerType()) {
14865         Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
14866           << FixItHint::CreateReplacement(OpLoc, ".");
14867       }
14868     } else
14869       Diag(OpLoc, diag::err_ovl_no_viable_oper)
14870         << "operator->" << Base->getSourceRange();
14871     CandidateSet.NoteCandidates(*this, Base, Cands);
14872     return ExprError();
14873   }
14874   case OR_Ambiguous:
14875     CandidateSet.NoteCandidates(
14876         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
14877                                        << "->" << Base->getType()
14878                                        << Base->getSourceRange()),
14879         *this, OCD_AmbiguousCandidates, Base);
14880     return ExprError();
14881 
14882   case OR_Deleted:
14883     CandidateSet.NoteCandidates(
14884         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
14885                                        << "->" << Base->getSourceRange()),
14886         *this, OCD_AllCandidates, Base);
14887     return ExprError();
14888   }
14889 
14890   CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
14891 
14892   // Convert the object parameter.
14893   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
14894   ExprResult BaseResult =
14895     PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
14896                                         Best->FoundDecl, Method);
14897   if (BaseResult.isInvalid())
14898     return ExprError();
14899   Base = BaseResult.get();
14900 
14901   // Build the operator call.
14902   ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
14903                                             Base, HadMultipleCandidates, OpLoc);
14904   if (FnExpr.isInvalid())
14905     return ExprError();
14906 
14907   QualType ResultTy = Method->getReturnType();
14908   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14909   ResultTy = ResultTy.getNonLValueExprType(Context);
14910   CXXOperatorCallExpr *TheCall =
14911       CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base,
14912                                   ResultTy, VK, OpLoc, CurFPFeatureOverrides());
14913 
14914   if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
14915     return ExprError();
14916 
14917   if (CheckFunctionCall(Method, TheCall,
14918                         Method->getType()->castAs<FunctionProtoType>()))
14919     return ExprError();
14920 
14921   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method);
14922 }
14923 
14924 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
14925 /// a literal operator described by the provided lookup results.
14926 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
14927                                           DeclarationNameInfo &SuffixInfo,
14928                                           ArrayRef<Expr*> Args,
14929                                           SourceLocation LitEndLoc,
14930                                        TemplateArgumentListInfo *TemplateArgs) {
14931   SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
14932 
14933   OverloadCandidateSet CandidateSet(UDSuffixLoc,
14934                                     OverloadCandidateSet::CSK_Normal);
14935   AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet,
14936                                  TemplateArgs);
14937 
14938   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14939 
14940   // Perform overload resolution. This will usually be trivial, but might need
14941   // to perform substitutions for a literal operator template.
14942   OverloadCandidateSet::iterator Best;
14943   switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
14944   case OR_Success:
14945   case OR_Deleted:
14946     break;
14947 
14948   case OR_No_Viable_Function:
14949     CandidateSet.NoteCandidates(
14950         PartialDiagnosticAt(UDSuffixLoc,
14951                             PDiag(diag::err_ovl_no_viable_function_in_call)
14952                                 << R.getLookupName()),
14953         *this, OCD_AllCandidates, Args);
14954     return ExprError();
14955 
14956   case OR_Ambiguous:
14957     CandidateSet.NoteCandidates(
14958         PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
14959                                                 << R.getLookupName()),
14960         *this, OCD_AmbiguousCandidates, Args);
14961     return ExprError();
14962   }
14963 
14964   FunctionDecl *FD = Best->Function;
14965   ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
14966                                         nullptr, HadMultipleCandidates,
14967                                         SuffixInfo.getLoc(),
14968                                         SuffixInfo.getInfo());
14969   if (Fn.isInvalid())
14970     return true;
14971 
14972   // Check the argument types. This should almost always be a no-op, except
14973   // that array-to-pointer decay is applied to string literals.
14974   Expr *ConvArgs[2];
14975   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
14976     ExprResult InputInit = PerformCopyInitialization(
14977       InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
14978       SourceLocation(), Args[ArgIdx]);
14979     if (InputInit.isInvalid())
14980       return true;
14981     ConvArgs[ArgIdx] = InputInit.get();
14982   }
14983 
14984   QualType ResultTy = FD->getReturnType();
14985   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14986   ResultTy = ResultTy.getNonLValueExprType(Context);
14987 
14988   UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
14989       Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
14990       VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides());
14991 
14992   if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
14993     return ExprError();
14994 
14995   if (CheckFunctionCall(FD, UDL, nullptr))
14996     return ExprError();
14997 
14998   return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD);
14999 }
15000 
15001 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
15002 /// given LookupResult is non-empty, it is assumed to describe a member which
15003 /// will be invoked. Otherwise, the function will be found via argument
15004 /// dependent lookup.
15005 /// CallExpr is set to a valid expression and FRS_Success returned on success,
15006 /// otherwise CallExpr is set to ExprError() and some non-success value
15007 /// is returned.
15008 Sema::ForRangeStatus
15009 Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
15010                                 SourceLocation RangeLoc,
15011                                 const DeclarationNameInfo &NameInfo,
15012                                 LookupResult &MemberLookup,
15013                                 OverloadCandidateSet *CandidateSet,
15014                                 Expr *Range, ExprResult *CallExpr) {
15015   Scope *S = nullptr;
15016 
15017   CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
15018   if (!MemberLookup.empty()) {
15019     ExprResult MemberRef =
15020         BuildMemberReferenceExpr(Range, Range->getType(), Loc,
15021                                  /*IsPtr=*/false, CXXScopeSpec(),
15022                                  /*TemplateKWLoc=*/SourceLocation(),
15023                                  /*FirstQualifierInScope=*/nullptr,
15024                                  MemberLookup,
15025                                  /*TemplateArgs=*/nullptr, S);
15026     if (MemberRef.isInvalid()) {
15027       *CallExpr = ExprError();
15028       return FRS_DiagnosticIssued;
15029     }
15030     *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
15031     if (CallExpr->isInvalid()) {
15032       *CallExpr = ExprError();
15033       return FRS_DiagnosticIssued;
15034     }
15035   } else {
15036     ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr,
15037                                                 NestedNameSpecifierLoc(),
15038                                                 NameInfo, UnresolvedSet<0>());
15039     if (FnR.isInvalid())
15040       return FRS_DiagnosticIssued;
15041     UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get());
15042 
15043     bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
15044                                                     CandidateSet, CallExpr);
15045     if (CandidateSet->empty() || CandidateSetError) {
15046       *CallExpr = ExprError();
15047       return FRS_NoViableFunction;
15048     }
15049     OverloadCandidateSet::iterator Best;
15050     OverloadingResult OverloadResult =
15051         CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
15052 
15053     if (OverloadResult == OR_No_Viable_Function) {
15054       *CallExpr = ExprError();
15055       return FRS_NoViableFunction;
15056     }
15057     *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
15058                                          Loc, nullptr, CandidateSet, &Best,
15059                                          OverloadResult,
15060                                          /*AllowTypoCorrection=*/false);
15061     if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
15062       *CallExpr = ExprError();
15063       return FRS_DiagnosticIssued;
15064     }
15065   }
15066   return FRS_Success;
15067 }
15068 
15069 
15070 /// FixOverloadedFunctionReference - E is an expression that refers to
15071 /// a C++ overloaded function (possibly with some parentheses and
15072 /// perhaps a '&' around it). We have resolved the overloaded function
15073 /// to the function declaration Fn, so patch up the expression E to
15074 /// refer (possibly indirectly) to Fn. Returns the new expr.
15075 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
15076                                            FunctionDecl *Fn) {
15077   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
15078     Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
15079                                                    Found, Fn);
15080     if (SubExpr == PE->getSubExpr())
15081       return PE;
15082 
15083     return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
15084   }
15085 
15086   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
15087     Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
15088                                                    Found, Fn);
15089     assert(Context.hasSameType(ICE->getSubExpr()->getType(),
15090                                SubExpr->getType()) &&
15091            "Implicit cast type cannot be determined from overload");
15092     assert(ICE->path_empty() && "fixing up hierarchy conversion?");
15093     if (SubExpr == ICE->getSubExpr())
15094       return ICE;
15095 
15096     return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(),
15097                                     SubExpr, nullptr, ICE->getValueKind(),
15098                                     CurFPFeatureOverrides());
15099   }
15100 
15101   if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
15102     if (!GSE->isResultDependent()) {
15103       Expr *SubExpr =
15104           FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
15105       if (SubExpr == GSE->getResultExpr())
15106         return GSE;
15107 
15108       // Replace the resulting type information before rebuilding the generic
15109       // selection expression.
15110       ArrayRef<Expr *> A = GSE->getAssocExprs();
15111       SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
15112       unsigned ResultIdx = GSE->getResultIndex();
15113       AssocExprs[ResultIdx] = SubExpr;
15114 
15115       return GenericSelectionExpr::Create(
15116           Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
15117           GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
15118           GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
15119           ResultIdx);
15120     }
15121     // Rather than fall through to the unreachable, return the original generic
15122     // selection expression.
15123     return GSE;
15124   }
15125 
15126   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
15127     assert(UnOp->getOpcode() == UO_AddrOf &&
15128            "Can only take the address of an overloaded function");
15129     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
15130       if (Method->isStatic()) {
15131         // Do nothing: static member functions aren't any different
15132         // from non-member functions.
15133       } else {
15134         // Fix the subexpression, which really has to be an
15135         // UnresolvedLookupExpr holding an overloaded member function
15136         // or template.
15137         Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
15138                                                        Found, Fn);
15139         if (SubExpr == UnOp->getSubExpr())
15140           return UnOp;
15141 
15142         assert(isa<DeclRefExpr>(SubExpr)
15143                && "fixed to something other than a decl ref");
15144         assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
15145                && "fixed to a member ref with no nested name qualifier");
15146 
15147         // We have taken the address of a pointer to member
15148         // function. Perform the computation here so that we get the
15149         // appropriate pointer to member type.
15150         QualType ClassType
15151           = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
15152         QualType MemPtrType
15153           = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
15154         // Under the MS ABI, lock down the inheritance model now.
15155         if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15156           (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
15157 
15158         return UnaryOperator::Create(
15159             Context, SubExpr, UO_AddrOf, MemPtrType, VK_PRValue, OK_Ordinary,
15160             UnOp->getOperatorLoc(), false, CurFPFeatureOverrides());
15161       }
15162     }
15163     Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
15164                                                    Found, Fn);
15165     if (SubExpr == UnOp->getSubExpr())
15166       return UnOp;
15167 
15168     return UnaryOperator::Create(
15169         Context, SubExpr, UO_AddrOf, Context.getPointerType(SubExpr->getType()),
15170         VK_PRValue, OK_Ordinary, UnOp->getOperatorLoc(), false,
15171         CurFPFeatureOverrides());
15172   }
15173 
15174   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15175     // FIXME: avoid copy.
15176     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15177     if (ULE->hasExplicitTemplateArgs()) {
15178       ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
15179       TemplateArgs = &TemplateArgsBuffer;
15180     }
15181 
15182     DeclRefExpr *DRE =
15183         BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(),
15184                          ULE->getQualifierLoc(), Found.getDecl(),
15185                          ULE->getTemplateKeywordLoc(), TemplateArgs);
15186     DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
15187     return DRE;
15188   }
15189 
15190   if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
15191     // FIXME: avoid copy.
15192     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15193     if (MemExpr->hasExplicitTemplateArgs()) {
15194       MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
15195       TemplateArgs = &TemplateArgsBuffer;
15196     }
15197 
15198     Expr *Base;
15199 
15200     // If we're filling in a static method where we used to have an
15201     // implicit member access, rewrite to a simple decl ref.
15202     if (MemExpr->isImplicitAccess()) {
15203       if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15204         DeclRefExpr *DRE = BuildDeclRefExpr(
15205             Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(),
15206             MemExpr->getQualifierLoc(), Found.getDecl(),
15207             MemExpr->getTemplateKeywordLoc(), TemplateArgs);
15208         DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
15209         return DRE;
15210       } else {
15211         SourceLocation Loc = MemExpr->getMemberLoc();
15212         if (MemExpr->getQualifier())
15213           Loc = MemExpr->getQualifierLoc().getBeginLoc();
15214         Base =
15215             BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true);
15216       }
15217     } else
15218       Base = MemExpr->getBase();
15219 
15220     ExprValueKind valueKind;
15221     QualType type;
15222     if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15223       valueKind = VK_LValue;
15224       type = Fn->getType();
15225     } else {
15226       valueKind = VK_PRValue;
15227       type = Context.BoundMemberTy;
15228     }
15229 
15230     return BuildMemberExpr(
15231         Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
15232         MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
15233         /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(),
15234         type, valueKind, OK_Ordinary, TemplateArgs);
15235   }
15236 
15237   llvm_unreachable("Invalid reference to overloaded function");
15238 }
15239 
15240 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
15241                                                 DeclAccessPair Found,
15242                                                 FunctionDecl *Fn) {
15243   return FixOverloadedFunctionReference(E.get(), Found, Fn);
15244 }
15245 
15246 bool clang::shouldEnforceArgLimit(bool PartialOverloading,
15247                                   FunctionDecl *Function) {
15248   if (!PartialOverloading || !Function)
15249     return true;
15250   if (Function->isVariadic())
15251     return false;
15252   if (const auto *Proto =
15253           dyn_cast<FunctionProtoType>(Function->getFunctionType()))
15254     if (Proto->isTemplateVariadic())
15255       return false;
15256   if (auto *Pattern = Function->getTemplateInstantiationPattern())
15257     if (const auto *Proto =
15258             dyn_cast<FunctionProtoType>(Pattern->getFunctionType()))
15259       if (Proto->isTemplateVariadic())
15260         return false;
15261   return true;
15262 }
15263